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PREFACE. 

The mathematical works of the late Professor Liibsen have for many 

years enjoyed a wide fame, not only in Germany, but wherever the Ger¬ 

man language is read and the mathematical sciences are studied. This 

popularity has been due, not only to the matter contained in the books, 

but also to the manner of its presentation. The present writer himself had 

sought, and sought in vain, for books upon Arithmetic, Algebra, Geom- 

' etry, Trigonometry and the Calculus, which should present these subjects 

in clear everyday language, free from the technical verbiage in which so 

many writers love to bury the simplest propositions. Most authors of text 

books seem to think that it will not do to explain these things in simple 

language, lest the way be made too easy for the student, or perhaps, lest 

the importance of the teacher be diminished. Professor Liibsen was not 

one of this kind, as the following pages will show, and his books were 

written, as the title pages say: “for self-instruction and for use in the 

problems of practical life.” How well he has succeeded may be inferred 

from the fact that twenty-seven editions of the present volume have been 

issued in German ; and almost as many more of the succeeding vol¬ 

umes on Geometry, Trigonometry, Calculus and Mechanics have been 

demanded. 

The present writer has had the experience of most professional engi¬ 

neers in studying and applying mathematics, and has found the road 

often very rough, even with the assistance of able professors, hampered 

with text books of the orthodox type. Again and again he has been con¬ 

sulted by apprentices, students and mechanics ; willing, industrious, 

anxious to study at home, yet unable to give time or money for profes¬ 

sional teaching. These have felt the need of mathematical training. They 

have found articles in their technical papers which they knew were of 

utmost value to them, and yet which they could not use simply because of 

the presence of a few unintelligible mathematical expressions. It is to 

meet just such demands that the present volume is intended. 

The writer’s share in the work has been something more than that of 

mere translation. Many new examples have been added, and some bear¬ 

ing solely upon European practice have been omitted. The method of 

proving problems by the process of “unitation,” due to Mr. Walenn, has 

been inserted (page 19), and Professor Robinson’s excellent approximate 

method of extracting roots has also been added (page 201). 

It is trusted that this effort to place before English-speaking students 

a treatise on arithmetic and algebra, freed from technicalities and ex¬ 

pressed in simple language, will assist many who are compelled to study 

alone; and perhaps it may not be found unwelcome to some who wish 

to “brush up” their rusty mathematical information, acquired long ago 

under scholastic methods, and not improved by years of disuse. 

HENRY HARRISON SUPLEE. 

January, 1897. 





ARITHMETIC AND ALGEBRA. 

First Principles* 

If it were possible to produce an introduction to the science 

of mathematics which should give a broad, comprehensive view 

and insight into this marvellous creation of the human mind, 

such a treatise could not fail to produce the most inspiriting 

effect upon the emotions of the student. 

But the innumerable variations and conditions which accom¬ 

pany all the details of this branch of knowledge make such a 

general view a practical impossibility. It is necessary to assume 

a certain amount of preliminary knowledge on the part of the 

beginner, in order to make even the simplest introduction intel¬ 

ligible. Without a knowledge of the system of numeration no 

one can learn addition ; without these, multiplication cannot be 

understood ; while all are necessary for the study of division. 

So it goes on throughout the whole range of mathematics ; the 

principles overlap and lead into each other. From the simplest 

propositions we advance step by step upwards, and the higher 

branches are accessible to all who have climbed the lower steps. 

No principle can be properly understood if one has not fully 

mastered everything which has preceded it and upon which each 

fact hangs like a link in the chain of which it forms apart. In fact 

the word Mathematics belongs not to one, but to several branches 

of knowledge, (Arithmetic, Geometry, Mechanics, Optics, Astron¬ 

omy, etc., etc.) each of which is daily extending its scope, and 

each of which is practically without limits. 

A true conception of the meaning of the term Mathematics, 

both in the pure and the applied branches of the science, can 

only be obtained by continuous and earnest study, but we can 
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assure the student that every hour spent in the study possesses 

both a theoretical and practical value. 

Before entering- upon the immediate subject, the following 
a.i . * * >•' f y i i f ' f j .*• > 

explanations will serve to give a notion of the first principles 

upon which all the others are founded. 

I. No thing is of itself either large or small; its magnitude 

can only be spoken of in comparison with some other thing of 

the same kind. If, for example, one speaks of a large house, 

the speaker really has another house in mind with which he men¬ 

tally compares it, even if he does not say so. Such a comparison, 

however, gives no clear idea as to how much larger the one house 

is, or how much smaller the other one. In order to know this 

we must have some unit of comparison, and consider how many 

times larger than this unit is the object we have under considera¬ 

tion. If, for example, one has a clear idea of the length of a 

yardstick, and is told how many yards distant one point is from 

another, he will without seeing them be able to form an idea of 

the distance between the two points. This comparison of a size 

with the mental vision of a unit holds true for all magnitudes, 

such as length, surface, force, time, etc. It is interesting to 

notice how meaningless to some people statements will appear 

which are perfectly clear to others; a farmer knows how big a 

ten-acre lot is, a sailor estimates that a ship is going at the rate 

of 15 knots, a machinist grasps all dimensions in inches and 

fractions thereof, while the dressmaker knows no unit smaller 

than a yard. 

II. All magnitudes have this feature in common, namely, 

that they consist of parts. They are divided into two kinds, 

according as the successive parts are considered as absolute 

groups or as parts of a continuous whole, and hence are classi¬ 

fied as constant or as variable magnitudes. 

A number, for example, is a constant quantity, consisting as 

it does of a collection of non-coherent units. As one of the old 

mathematicians put it: “One cannot coil pease like rope." 
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Variable magnitudes are those which possess a continuity, such as 

length, surface, time. For example, one can always conceive of 

a line as composed of a succession of smaller lines so combined 

that end of one coincides with the beginning of the next, all thus 

forming an unbroken or continuous whole. 

III. Every quantity can be only compared with and meas¬ 

ured by an article of a similar kind. Beginners must be espec¬ 

ially careful to observe this point. One cannot, for instance, 

weigh time. The measure of time must itself be a quantity of 

time, the measure of surface a surface, the unit of angular measure 

must be an angle, etc. etc. 

IV. A unit may be subdivided into smaller values, or con¬ 

versely a number of units may be combined to form a larger 

unit. This fact is seen in all the various kinds of measurements. 

For example, in units of length we have feet and inches, meters 

and centimeters; in units of weight, ounces, pounds, tons, 

grammes and kilogrammes ; in units of time, hours, days and 

years. In mathematics every magnitude practically may become 

a unit and is so called when it is used as a standard for com¬ 

parison of magnitude. ' 

V. A multitude of any article is therefore indeterminate, but 

a number becomes a determinate quantity of the same thing, or 

a statement of the relation which that quantity bears to the unit 

or quantity by which they are to be measured. The name which 

is given to the magnitude indicated by the number is called the 

numeral. This name also indicates how many times the unit 

exists in the number so named, and hence for every number 

there is a distinctive and separate name. 

It is not sufficient that each name should distinguish the 

number to which it belongs, it must also indicate the order in 

which the number appears with regard to the other numbers; a 

numeral, therefore, indicates not only a number but also the 

next preceding number, etc. For example, one cannot obtain a 

clear notion of the number five without also realizing that the 
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preceding number is four, &c., back to the beginning. It would 

be quite impracticable to learn to count in any irregular fashion, 

such as : five, three, one hundred, two, &c. 
« 

“If first and second ne’er had been 

There could no third and fourth be seen.” 

VI. The act of repeating the numerals in regular order, that 

is, increasing uniformly, each being greater in value by a unit than 

its predecessor, is called counting If the unit upon which the 

series of numbers is based has a known value, the value of any 

of the numerals is also known. If, however, the unit merely 

indicated that any article, of any value, is taken once, it and all 

the numbers based upon it are abstract numbers of unknown 

value. For example : five feet is a quantity of determinate value, 

because we know the value of a foot, while the number five alone 

is an abstract number. 

That portion of mathematics which treats of the derivations 

and combinations of numerical values is called Arithmetic. 

Its fundamental conceptions are : Magnitude, Unity, Mani¬ 

foldness. These conceptions, which are so simple as to be under¬ 

stood by every one, and which therefore cannot be defined more 

clearly than by simply naming them, form the foundation upon 

which the entire science of mathematics is based. 

The perception of magnitude is one which must be expe¬ 

rienced by every one, and since it is inseparably united with the 
«* 

notion of number it follows that the formation of numbers is 

almost the first effort of infant intelligence. Almost the first 

thing which a child perceives is that “many’’ is composed of 

“one” and “one” and “one,”&c., and thus the notion of “mani¬ 

foldness ” is grasped almost naturally, without effort or instruction. 

The study of the formation of primitive and arbitrary names 

for numbers, varying as they do in different languages, belongs 

properly to the science of language ; yet there is a certain degree 

of mathematical knowledge involved in the subject, since the 

words are so constructed as to assist the memory in retaining 
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them. The formation of the names and symbols by which num¬ 

bers are known may therefore properly be considered the first 

subject and exercise in arithmetic. In order then that all which 

follows may be as clear and easy as possible, we shall take 

nothing- for granted, but assume that the simplest rudiments of 

arithmetic are to be explained, beginning with the origin of num¬ 

bers, and gradually proceed to open door after door and pene¬ 

trate into the innermost and highest chambers of this temple of 

knowledge. 





PART L 

Special Arithmetic. 

BOOK I. 

Numbers and Number Systems. 

U 

The idea of unity or the consideration of a thing singly is 

expressed by the word o?ie. The repetition of unity, however, 

may be expressed by some other arbitrary word, so that instead 

of saying one and one, we use the shorter expression two, (or in 

other languages, zwei, duo, deux, etc.) For the number follow¬ 

ing two, we say three, instead of two and one ; and going thus 

forward step by step we say four instead of three and one, five 

instead of four and one, six, seven, eight, — — —, each new 

name expressing a number greater by unity than the one which 

preceded it. By constant use and force of habit the mind be¬ 

comes so accustomed to the order and value of these names that 

the number of units expressed by each is instantly remembered. 

It is not difficult to proceed for some little distance in this 

way, nor to find names for numbers, such as nine, ten, eleven, 

twelve, etc., but to carry any system of arbitrary names very far 

would be a practical impossibility, involving a capacity for in¬ 

venting names and a memory for retaining them which no man 

possesses. 

Unless, therefore, as Josephus reports, Adam was created a 

natural mathematician, the world probably waited a long time 

for some one to invent the simpler method of making names for 

numbers by using names only as far as ten and then repeating 
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these in combination with the words “ten and.” Thus instead 

of choosing a new name for the next number to ten, might be 

said : one and ten : then, two and ten : three and ten, &c,, up to 

. ten and ten. The desire for abbreviation naturally soon caused 

the dropping of the conjunction “ and ”, and the compound words 

soon became contracted into one-ten, two-ten, three-ten (or in 

the Latin undecem, duodecem), from which our further numbers 

are derived, e. g. thirteen, fourteen, fifteen, &c. The attempted 

improvement by giving arbitrary names to the numbers eleven 

and twelve hardly seems to be any advantage. 

The number ten may also itself be used as a simple unit, and 

(as already explained in No. IV of the introduction) become the 

base of a new system; using “twice ten,” instead of ten and 

ten, and proceeding : one and twice ten ; two and twice ten ; 

three and twice ten, &c. The same idea extends to the series : 

thrice-ten ; one and thrice-ten ; two and thrice-ten ; three and 

thrice-ten ; &c., proceeding thus to ten times ten. By contrac¬ 

tion again the words : twice-ten, thrice-ten, &c., become : twen¬ 

ty, thirty, forty, &c., except that for : ten times ten, the arbitrary 

word : hundi'ed, is used. 

As we advance to numbers higher than a hundred we use 

this word followed by the smaller numbers, thus : hundred and 

one, hundred and two, &c., until a second hundred is reached, 

when we say two hundred, instead of hundred and hundred. 

We then proceed : two hundred and one, two hundred and two, 

&c., &c., and so go on till we reach ten hundred, for which the 

new word thousand is introduced. This number thousand is then 

used as a new base through the quantities ten thousand, and 

hundred thousand, neither of these having special names given 

to them. For a thousand thousand, the word million is used, and 

for a thousand millions, the word billion. We may thus proceed 

indefinitely with a million billions, or trillion ; a million trillions, 

or quadrillion, and so on, but these are quite unnecessary, even 

a billion being rarely used except in indicating the distance of the 

fixed stars, or similar astronomical magnitudes. See Appendix, 

In the manner above explained it is therefore possible to 

name all conceivable numbers by the use of very few words. 



9 

Starting- with the names of the first ten numbers, and adding to 

these the words “hundred/’ “thousand,” “million,” and at the 

most, “billion,” we can with fourteen words provide names for 

all numbers with which we shall have to work. We are able to 

count by having memorized these names in childhood almost in 

play. 

If, therefore, we have the fundamental principles clearly 

grasped, we shall be able to understand the meanings and values 

of the successive numbers and proceed, not in a hap-hazard 

manner but with orderly, systematic -method, and learn without 

serious trouble to understand the more difficult portions of our 

subject. 

3* 
Although numbers have thus been given names, yet it is 

evident that without some simpler method of indicating them it 

would be very difficult, indeed almost impossible, to make calcu¬ 

lations. For a long time our forefathers practiced a sort of labo¬ 

rious art of mental calculation (in Europe even as late as the 14th 

century), until some inventive genius conceived the idea of indi¬ 

cating numbers by simple symbols. Hence we have the symbol 

1 to indicate unity, the mark 2 to act as a mnemonic sign for the 

word two, and so the symbols 3, 4, 5, 6, 7, 8, 9, to stand for the 

numbers from three to nine. 

Originally these numbers must have been quite arbitrary; it 

was only after continued modifications that they reached their 

present forms. The invention of these figure symbols has been 

traced to India. From thence they were acquired by the Arabs, 

who endeavored to keep them a secret. Only from the time of 

the Crusades have these symbols been known in Europe, the 

Europeans calling them Arabic numbers, although the Arabs 

themselves properly named them Indian. Although isolated 

examples of their use in inscriptions have been found at earlier 

dates, the intelligent use of these numbers was even yet scarcely 

known in the 15th century. 

4. 
In the same manner as for the numbers from one to nine it 

would be easy to extend the use of single symbols for the suc¬ 

ceeding numbers ; for example, for ten we might use the sign 
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f, for eleven the sign *, etc. But the application of inventive 

genius has devised a vast improvement over such an unlimited 

extension of arbitrary symbols. 

Suppose we extend the principle adopted in indicating the 

first ten numbers by taking this group of ten numbers to form a 

new unit, and in order to distinguish it from the simple units, we 

will call it the unit of the first rank, or “tens.’' Proceeding thus 

until we reach ten units of the first rank, we obtain ten “tens,” 

which we then take as a new unit of the second rank, or “hun¬ 

dreds,” and so continue, making ten units of any rank constitute 

one unit of the next higher rank. Thus “thousands” would be 

the third rank, “ten thousands ” the fourth rank, “hundreds of 

thousands” the fifth rank, “ millions ” the sixth rank, etc. By 

thus using a system of successive ranks we may indicate all 

numbers by combinations of the nine original, arbitrary symbols. 

Each of the nine figures i, 2, 3, 4, 5, 6, 7, 8, 9, when stand¬ 

ing alone, signifies the number of units originally attributed to 

it, but figures, when used in connection with each other, have 

also an additional meaning according to their positions, with 

regard to the foregoing system. 

In this way the eye can recognize instantly which rank of 

units is indicated, whether hundreds, or thousands, etc. If, for 

example, we see the number 6 placed in the third rank, we know 

at once that 6 units of the 3rd rank are meant, corresponding to 

the number six thousand. In order tb write the number thirty 

thousand with figures, the figure 3 is written in the position of 

the fourth rank, because thirty thousand is equal to 3 units of 

the fourth rank. When a number is composed of various units, 

each one is placed in its corresponding position. For example, 

the number thirty-four thousand two hundred and fifty-six is sep¬ 

arated into its parts, thus: thirty thousand, four thousand, two 

hundred, fifty and six, and each placed in its proper rank, as 

shown in the following diagram on line (a). 

•. • 
Rank V. 

Hundreds of 
Thousands 

Rank IV. 
Tens of 

Thousands 

Rank III. 
Thousands 

Rank II. 
Hundreds 

Rank I. 
Tens 

« 

Units 

(a) 3 4 2 5 6 

(b) 7 
. . . 

9 
. . . . . . 

5 



In like manner the number seven hundred and nine thousand 

aud five is written as shown on line (b), in which the places of 

the ist, 2nd and 4th rank are left vacant. 

It there are no vacant places between the various figures, as 

shown on line (a) the rank of any figure is at once indicated by 

the number of figures which are on its right; the figure 5 on line 

(a) is of the first rank, or tens, because there is one figure stand¬ 

ing on its right. In such an instance, where all the places are 

filled, the diagram may be omitted and the number on line (a) 

written directly 34256, since a little practice enables the rank of 

each figure to be determined at a glance, by constantly keeping 

in mind the names units, tens, hundreds, thousands, etc., read¬ 

ing from right to left. When, as on line (b), all the places are 

not occupied by figures, the omission of the diagram would ren¬ 

der it impossible to determine the rank of the figures unless some 

mark or symbol, without value as a numeral, be chosen to fill 

the places not occupied by numbers. The symbol universally 

used for this purpose is o, called in English “naught,” “zero,” 

“cipher/ (in Arabic it is named Zephirum, Zero, Ziffer. )* Be¬ 

ginners very often fail to obtain a correct idea of the meaning of 

this symbol. As here explained, it only gives rank and meaning 

of the numbers which precede it, and is without the slightest 

influence on those which follow it. 

5* 

We have now no difficulty in naming any number which we 

may see written in figures. It is only necessary to remember 

that the thousands, tens of thousands and hundreds of thousands 

are named in one group, the hundreds are named next, and the 

tens and units grouped together. Thus 326,000, is called, three- 

hundred-and-twenty-six thousand; not three hundred thousand, 

and twenty thousand, and six thousand. 

The following examples will serve to show how written 

numbers are named : 

51207, fifty-one thousand two hundred and seven 

509004, five hundred and nine thousand and four 

319039, three hundred and nineteen thousand and thirty-nine 

*Of these names it is preferable to use zero, not only as understood in many languages 
but also to avoid the not uncommon blunder of saying “ aught” for “ naught.” 



100070, one hundred thousand and seventy 

111111, one hundred and eleven thousand one hundred and 

eleven 

555555, five hundred and fifty-five thousand five hundred and 

fifty-five 

700009, seven hundred thousand and nine 

If a number consists of more than six figures, it is divided 

into groups consisting of three figures, except that the groups at 

the extreme left may contain fewer than three, according to the 

size of the number. 

Example : 

Billions Millions Thousands Hundreds 

975 403 507 001 

which reads : nine hundred and seventy-five billion four hundred 

and three million five hundred and seven thousand and one. 

If it is desired to write a number in figures as it is read in 

words the places may first be indicated by groups of points and 

then the figures written in afterwards until the student can per¬ 

form the operation with facility without such assistance. Thus 

for the above number : 

Billions Millions Thousands Hundreds 

6* 

The above described method or system by means of which 

all numbers may be written by the use of very few symbols is 

called the system of iiumeration. In this simple and apparently 

universal system the fundamental principle needs only to be 

memorized, namely : that each unit of any figure is ten times 

greater in value than a unit of the figure standing at its right, so 

that we say that our system is based upon the number ten, and 

call it the Decimal System, (from the Latin decem., ten). See 

Appendix, §312. 



BOOK n. 

The First Four Rules. 

I* Addition* 

7. 
The first application of the number system which we have 

now acquired, will be the method of uniting several numbers to¬ 

gether so as to make a single number of them. 

The number which we thus obtain by uniting several others, 

and which is as great as all of them taken together (that is, con¬ 

tains the same number of units), is called the Sum, and the method 

of obtaining this sum in a shorter way than by counting the units 

one at a time, is called Addition. To perform addition it is 

necessary to assume that the sum of any two single numbers is 

already known. Addition then involves no very great degree of 

inventive ability, since the principle involved necessarily follows 

from the system of numeration. 

The numbers which are to be added together are written 

under each other in such a manner that numbers of the same 

rank stand directly under each other; units under units, tens 

under tens, hundreds under hundreds, etc. These columns are 

then added successively, beginning at the bottom of the units 

column, and carrying one unit to the next column for every ten 

units obtained by the addition of the figures in any column. 

Thus the number of tens obtained by adding up the units column, 

is carried on to the tens column, the number of tens in the tens 

column carried to the hundreds column, etc. If there are very 

many numbers to be added together it may be found less fatigu¬ 

ing to divide them into groups, adding each group separately 

and then adding the sums of the various groups together. 



14 

It is evidently a matter of no consequence in what order the 

numbers are taken, as the sum must obviously be the same in 

any case. 

The following examples will be sufficient to show the 

process: 

7 0 

4 2 7 5 

5 9 9 
9 0 

7 8 4 0 7 

3 4 

4 2 5 4 9 
i|2|6|o|2| 4 

789959 

98879 
357768 

5599 
99°75 

800 

997997 
60088 

7673099 

10083264 

Facility in addition comes only by practice, and account¬ 

ants, salesmen and others who are constantly adding long 

columns of figures frequently add two, three or even five 

columns simultaneously, thus greatly increasing the rapidity of 

the work. Such feats, however, do not imply that the individual 

possesses any superior mathematical talent in other branches of 

the science. 

2. Subtraction. 

8. 
In addition we have seen how to find the sum of two or 

more numbers. Suppose now, that we have two numbers of 

which we know the sum; which sum, for example, is 12; and 

also that we have given one of the two numbers, for example, 7. 

The operation of finding the other 5, by taking the given one 

from the known sum, is called Subtraction. The given number 12 

from which the other given number 7 is taken, is called the Minu¬ 

end, and the latter number 7 which is subtracted, is called the Sub¬ 

trahend. The number 5, which is obtained as the result of the sub¬ 

traction, is called the Difference, or Remainder. The rule of sub¬ 

traction is really contained in the theory of the number system 

and in addition, and the process is just the reverse of addition. 

The subtrahend is placed under the minuend in such a manner 

that units of the same rank shall be under each other, and then 
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beginning at the units place each figure of the subtrahend is sub¬ 

tracted from the figure of the minuend which stands directly over 

it. If the figure in any place of the minuend is smaller than the 

one which is to be subtracted from it, the figure standing next to 

the left in the minuend is diminished by one unit and its neigh¬ 

bor to the right increased by ten units, which will enable the 

subtraction to be made. If the figure next to the left is a zero, 

we must go on to the next figure to the left and take one unit 

from it; then call the zero equal to io, and take one of these 

units to increase the desired figure by io. This will leave a value 

of 9 where the zero stood, which must be considered in the sub¬ 

traction of the figure under it. This operation will be more 

readily understood it after any subtraction the remainder be 

added to the subtrahend, and as the sum should just equal the 

minuend this will also serve as a proof of the correctness of the 
work. 

Examples : 

(0 Minuend 
Subtrahend 

789 
246 

(*) 3453 
1914 

Remainder 543 153 9 

(3) 30002503 
27494097 

• (4) 70040321 
29067332 

2508406 40972989 

3* Multiplication- 

9. 

If we have to add several like numbers together, as for 
example : 

7 

7 

7 

7 

28 

we may simplify such a case of addition by means of Multiplica¬ 

tion so as only to require two numbers. 
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One of these numbers is the one which is used repeatedly, 

(in the above example 7) and is called the Multiplicand; the other 

is that which gives the number of times the addition is performed, 

(in the above example 4), and is called the Multiplier. 

Very often no attempt is made to distinguish the two num¬ 

bers by different names, but both are called Factors. If there¬ 

fore we desire to indicate the sum of four sevens, for example, 

we may do so by the following arrangement: 

Multiplicand 
Multiplier 

Factors 

Product 28 

The manner in which the important and valuable process of 

multiplying together two factors each consisting of several places 

of figures was invented, may perhaps best be made clear in the 

following manner. 

Suppose, for instance, it is required to find the number 

which corresponds to 4253 times the number 8067, and that so 

far we only know how to multiply single figures together. We 

should doubtless proceed somewhat in the following fashion. 

Considering the example as a problem in addition we think at 

once of taking the multiplicand, and writing it again and again 

in a vertical column as many times as there are units in the 

multiplier, and finally adding all these together. But this is a 

very tedious operation, and in order to shorten it, we examine 

the multiplier, and the idea occurs to us to separate it into 

its ranks as follows : 

3 
10 

10 

10 

We can see here that there are 3 units, 5 tens, 10 

2 hundreds and 4 thousands, so that if we divide 10 

up the operation of addition into four sums, and 100 

take our multiplication as many times as there are 100 

units in each rank we have shortened the work very 1000 

much, as follows : 1000 

1000 

1000 

4253 
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a b c d e 

80670 
80670 8067000 24201 

8067 80670 8067000 403350 
8067 80670 806700 8067000 1613400 
8067 80670 806700 8067000 32268000 

24201 403350 1613400 32268000 34308951 

Here it will be seen that we have made use of our knowl¬ 

edge that a number is multiplied by io or ioo or 1000 simply by 

placing the corresponding number of zeros to the right of the 

multiplicand, and so have greatly simplified the work. We have 

in fact found the result of multiplying 8067 by 4253 by adding 

the multiplicand to itself as many times as the multiplier has 

units, as at a, then again as often as the multiplier has tens, as at 

b and placing a zero at the right, etc., as c and d, and finally 

adding all these sums together as at e. 

Now we see that the largest figure in the multiplier in any 

case cannot be greater than 9, hence it follows that in this 

method the multiplicand can never be required to be added to 

itself more than 9 times. 

If, therefore, we make for ourselves a little table showing the 

products of all numbers from 1 to 9 we shall shorten the work 

still more by getting rid of all the preliminary additions a, b, c, d. 

MULTIPLICATION TABLE. 

1 2 3 4 5 6 7 8 9 

2 4 6 8 10 12 14 16 18 

3 6 9 12 15 18 21 24 27 

4 8 12 16 20 24 28 32 36 

5 10 15 20 25 30 35 40 45 

6 12 18 24 30 36 42 48 54 

7 14 21 28 35 42 49 56 63 
8 16 24 32 40 48 56 64 72 

9 18 27 36 45 54 63 72 81 

This should be committed very thoroughly to memory, after 

which any example in multiplication can be performed as follows : 
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Multiplicand 8067 ) pactors 
Multiplier 4253 j 

24201 

40335 

16134 
32268 

Product 34308951 

Here we have simply multiplied by each figure of the multi¬ 

plier successively, placing each product one place further to the 

right than the preceding, and the result is the same as in the 

method first shown. 

10. 

If either or both of the factors terminate with zero, it is only 

necessary to multiply the significant figures together and annex 

to the product as many zeros as are at the end of both factors, as 

shown in examples (1) and (2) below. If zeros occur in the 

middle of the multiplier the next product is moved as many 

places to the left as there are zeros, and in order to avoid errors, 

dots may be used to mark off the places, as in example (3), 

below. 

0 (*) (3) 

32 5302000 30794 
4000 3400 200506 

128000 21208 184764 
15906 153970 • 

61588 • • 

6174381764 
18026800000 

The relative positions of the factors are interchangeable, and 

it is generally simpler to take the smaller of the two for the 

multiplier. See Appendix §313. 
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In performing multiplications of large numbers together, 

especially when several large factors are to be multiplied, there 

is liability to error, either by neglecting to carry the proper 

amount from one column to the next, or in some trifling detail 

in the addition. In order to check up the work and prove the 

correctness of such multiplication, the method of proof by -imita¬ 

tion will be found most useful. 

Unitation consists in reducing any number which is com¬ 

posed of more than one figure, to a number of a single figure, by 

adding together all the figures of which it is composed. Thus the 

unitate of 2132 is equal to 2—|— 1 —)—3—[—2=8 ; the unitate of 513 is 

5—f~1 ~l-3=9, e^c- 
If the sum of the figures in any number is a number of more 

than one figure, then these are to be added together also, until a 

single figure is obtained. Thus the unitate of 2897 is 2 —|—8 —|—9 —7 

=26=2—)—6=8 ; or of 978596 is 9-]—7—|—8—[—5—|—9-]—6=44=4-)—4=8, 

etc., etc. This being understood, we have the following simple 

method of proof for multiplication. If we have two factors 

multiplied together, we also take the unitates of the two factors 

and multiply them together. (If the product comes to more than 

one figure, add these together, forming its unitate.) The number 

so found will be equal to the unitate of the product, if the multi¬ 

plication has been correctly performed. If it is not so, then there 

must be some error. 

In other words : The product of the imitates of the factors is 

equal to the unitate of the product. 

This rule holds good for any number of factors, and may be 

applied successively as the work is performed, or only to the 

final product, as may be desired. 

A few examples will make the operation clear. 

Unitate 

532 = 5-1-3+2=io=i4-o=i 
876 =5= 8—|—7—|—6=21=2—|—1=3 

3192 

3724 
4256 

Product of unitates= 

1X3=3 

466032 = 4—|—6—6—[—o—|—3—[—2=21=2—|—1=3 
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Unitates 

82543 
2541 

82543 
3 3°17 2 

412715 
165086 

209741763 

7254 

838967052 
1048708815 
419483526 

1468192341 

1521466748802=54=9 

4 

3 

4X3=I2=I + 2=3 

3 

9 

3X9=27=9 

In the second example we find that the imitates (4 and 3) of 

the first two factors, multiplied together give 4X3=I2=3> anc^ 

that this is the imitate of the product also ; showing the work to 

be correct thus far. We also have the imitate of the third factor 

to be 9, and hence the unitate of the final product must be 

3X9=27=9, which is the case. 
We might, however, have deferred the proof until the multi¬ 

plications were all performed and then multiplied the unitates of 

all three factors together to obtain the unitate of the final pro¬ 

duct, thus— 

4X3X9= io8=9 

and then if the unitate of the product should come out =9> the 

work would be proved, if not, some error must have been made. 

It is barely possible that two equal errors might have been 

made in separate columns by which the actual figures in the pro¬ 

duct would give the correct unitate, and not reveal the errors, 

but the probabilities against such a coincidence are very great. 

If the unitate of the product comes out correct, it is therefore 

a very strong presumption in favor of the correctness of the 

work, while if the unitate does not come out correct, there has 

certainly some error been made. 



4. Division. 

U. 

As subtraction is related to addition so we have related to 

multiplication another rule, i. e. Division. By means of multipli¬ 

cation we may obtain the desired product of any two given num¬ 

bers, as for example the product 54 of the two factors 6 and 9. 

If now we reverse the operation, having given the product 54, 

and one of the factors, say 6, we find by division the other factor 

9. This rule gives the answer, then, to two questions; first, 

how great is the sixth part of 54 ? and second, how often is 6 

contained in 54 ? 

In both cases we are seeking a number (9) which multiplied 

by the given factor (6) produces the given product (54). This 

latter quantity, the product of which we seek one of the factors, 

is called the Dividend; the given factor is called the Divisor, and 

the factor which is sought is called the Quotient. In performing 

the operation we say : 

54 divided by 6 gives 9, or : 6 is contained in 54, 9 times. 

Here 54 is the dividend, 6 the divisor and 9 the quotient. 

If a number of several places is to be divided by another 

number of several places, as for example, 34308951 divided by 

4253, we find the method by the following considerations. We 

might subtract the latter from the former number repeatedly, 

placing a unit in the quotient for each subtraction, but it is evi¬ 

dent that this tedious process may be much abridged by the use 

of multiplication. If we compare the number of figures in the 

divisor with those in the dividend we see at once, by multiply¬ 

ing the divisor (mentally)by 8 and annexing three zeros, that 

8000 times the divisor is smaller, and 9000 times is larger, than 

the dividend. The quotient must lie between 8000 and 9000, 

and 8 must be first figure of the result. We may therefore sub¬ 

tract 8000 times the divisor at once. If now we again compare 

the divisor with the remainder, we see in the same manner that 

60 times the divisor is smaller, and 70 times is greater, than the 

remainder, and that hence o and 6 must be the second and third 

figures of the quotient, etc. 
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or more briefly : 

Divisor Dividend Quotient 

4253 343o895i 
34024000 

8000 
60 

7 

284951 
255i8° 8067 

29771 
29771 

4253 34308951 
34024 • • ' 

8067 

28495 ' 
25518 • 

29771 
29771 

12. 
From the four rules of Arithmetic already explained (in 

which we see multiplication to be a shortened form of addition, 

subtraction a reversal of addition and division a reversal of multi¬ 

plication) we may obtain three additional rules; powers, an 

extension of multiplication, extraction of roots, a reversal of 

powers, and logarithms. In elementary arithmetic, the first four 

rules only are necessary. 

The ease and rapidity with which these may be used follow 

naturally from the simple arrangement of our number system, in 

which the value for a unit of any figure is a constant multiple of 

the unit for the same figure standing in the next place to its right, 

rendering it unnecessary to think of the name of the unit at all 

in practice. If instead our present system we had one in which, 

for example, six units of the right hand place made one of the 

second rank, then four of the second made one of the third 

rank, etc., etc., what would become of our simple and easy 

arithmetic ? 



BOOK m. 

Symbols, Special Terms, Properties of Numbers, Division, Etc. 

13. 

Every branch of knowledge has its own special terms and 

symbols, the use of which assists very much in shortening expla¬ 

nations and simplifying expressions. 

In order to avoid subsequent misunderstandings it is im¬ 

portant that the meanings and uses of these special terms should 

be clearly understood at the start and learned thoroughly, so as 

to be remembered thereafter. 

The use of such special terms in mathematics will readily be 

admitted, and as an illustration of the simplification of a sentence 

which is obtained by a few simple terms, the following will 

serve : 
“The remainder added to the subtrahend gives the minuend 

again.” If we attempt to make this simple statement without 

using the special terms subtrahend, minuend, etc., we find our¬ 

selves obliged to use the very roundabout expression : 

“The number which has been taken from another number, 

added to the number which remains, will give the first number 

again.’’ 

Like other scientific terms, the words used to denote special 

terms in mathematics are nearly all taken from classical sources 

‘so that they are practically the same in all modern languages.* 

It is very desirable that the correct mathematical terms 

should be used from the very beginning, as even small children 

would thus learn to associate the words with the ideas and have 

no further trouble. 

*It is a matter tor regret, that the present tendency in Germany is to form scientific terms 
from German roots, and thus place Germany outside of the international usage in this 

respect.—H. H. S. 
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H. 
In order to indicate briefly that two or more quantities are 

to be added together the sign of addition, plus (-[-) is placed be¬ 

tween them, it being of no consequence as to the order in which 

the quantities are placed. It, for example, 3, 8 and 5 are to be 

added together, they are written 3—|—8—|—5 ; which is read 3 plus 8 

plus 5. 
If one quantity is to be subtracted from another, the opera¬ 

tion is indicated by placing the sign of subtraction, minus, (—) 

after the minuend and before the subtrahend, thus : 8—5, which 

is read 8 minus 5. 

To show that two or more factors are to be multiplied to¬ 

gether, they are written in any order, and between them the sign 

of multiplication (X), or sometimes a dot ( •) is used, thus 8X5> 

or 8 • 5 means 8 times 5, or 8 multiplied by 5. 

If we have 4 multiplied by 5 and this product by 3 and the 

resulting product again by 2, we write: 4X5X3X2> or 5X2X 
3X4, or 2X3XlX5> ^ being quite immaterial in this case as to 

the order in which the factors are placed. 

To indicate that one quantity is to be divided by another, a 

colon (:) is placed between the dividend and the divisor (the 

divisor always being placed last), or instead of the colon, the 

sign(-f-) is sometimes used. There is also another method of in¬ 

dicating division, and this must be remembered as most import¬ 

ant ; the dividend has a horizontal line drawn under it and the 

divisor is written under the line. Thus we have either 10:5, or 

10-4-5, or we may write I°, the expression in all three cases being 

read 10 divided by 5. ^ 

The latter form will be met again in discussing the subjec 

of fractions, but it must not be forgotten that whatever other 

name may be given, it always means that the quantity above 

the line is to be divided by the quantity beneath. 

15* 

or 

A quantity composed of several parts united by the signs -|- 

—, may be called a compound expression in general, or 
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named by the number of such parts or members which it con¬ 

tains ; numbers connected by the signs of multiplication or divi- 

vision being considered as single numbers. For example : 

4X8 —; _ are single members 
3 2 

2X3 ! expressions composed of two members 

is an expression composed of three members. 

16* 

In order to indicate that any two expressions are equal to each 

other in value, the sign of equality (=) is placed between them, 

and such an indication of equality between two expressions is 

called an equation. The expression which is written before the 

sign of equality is called the first or left-hand side of the equation, 

while that which follows the sign of equality is called the second, 

or right-hand side, and any quantities on either side which are 

connected by the signs or —, are called members. For 

example : 

8+5=i3 ; 2X3X4X5=I2°; 

8—5=3 ; ¥—2X3=5—3; 

3X8 
6 4’ "r6+8=4X6-T ■ 

17* 

When two quantities 

may be indicated by using 

the two quantities in such 

are not equal to each other, the fact 

the sign <^, which is placed between 

a manner that the point is towards the 

smaller quantity. For example: or 7<^9 is read, 9 is 

greater than 8, or 7 is smaller than 9. In like manner, 3~|-6^>8, 

is read 3 plus 6 is greater than 8. 1 

7+2; 

each ; and 

64 

8 

16 18 
2 ' 3 

18* 

If equal magnitudes be added to both sides of an equation, 

or if both sides be multiplied or divided by the same quantity, 
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the equation will evidently still remain true , that is, the two 

sides will still remain equal to each other. Hence we have the 

rule regarding equations that : Equal quantities treated in the same 

manner still remain equal to each other. 

Self-evident as this statement appears, it is most important, 

and should always be kept in mind when equations of any sort 

are under consideration. 

For example : if we have the equation 

2X6=8-]—4 

and add 5 to each side we have 

2X^+5=8+4+5 

and the truth of the equation is still evident. 

\9. 

When it is desired to indicate that a quantity composed of sev¬ 

eral members is to be taken several times ; i. e. is to be multiplied 

by another quantity, the quantity which is composed of several 

members is enclosed between parentheses, and the multiplier is 

placed before or after the parenthesis. In this case there is no need 

for the use of a multiplication sign and it is therefore omitted, the 

presence of the parenthesis marks sufficiently indicating that 

multiplication is intended. It makes no difference whether the 

members within the parenthesis are first added together and then 

multiplied by the quantity without, or whether each member is 

multiplied by it separately and the products afterwards added to¬ 

gether, as the result will be the same in both instances. In order 

to see the truth of this statement it is only necessary to consider 

the quantity within the parenthesis as added to itself repeatedly 

as many times as there are units in the multiplier. For example : 

Suppose we have the quantity 3—]— 5—]—1 to be taken five times ; 

this is indicated by writing 5 (3—5—j—1); which means : 

= 15+25+5=45 
which is the same as 

or : 

5 (3+5+1)— 5X3+5X.5+5X1 

5 (3+5+0=' 

' 3+5+i 

3+5+i 

3+5+i 

3+5+1 

[3+5+1 

5 (3+5+0= 5X3+5X5+5Xi 

= H+25+5=45 
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20* 

When a magnitude composed of several members is to be 

divided by another magnitude, we see from the preceding section, 

that it is all the same whether each member is divided singly/or 

whether all the members are first collected together and the divi¬ 

sion performed afterward. For example : if we have the quantity 

15—|— 2 5—f-5 to be divided into 5 parts, which is indicated by writ¬ 

ing- 15~f~^5~T75, ^see g it is equal to : 

15+/+5 = 11 + 11 + | =3+5+i=9 

2\* 

When several numbers can each be divided by the same 

number without a remainder, then their sum is also divisible by 

the same number without a remainder. For instance, we have 

15, 25, and 5, each divisible by 5 without remainder, hence their 

sum, 45, is also divisible by 5 without remainder. 

22* 

A product composed of several factors is evidently divisible 

without remainder by any one of the factors of which it is com¬ 

posed, and the quotient will be equal to the product of the other 

factors. For example: 2X3X4X5==I20> anc^ 120 divided by 

any one of these four factors will give a quotient which is equal 

to the product of the other three factors. We see also that 120 is 

exactly divisible by the products of any two or three of the 

factors, as 2X4=8, 3X5=15. We may thus see that 

2X3X4X5_, . 3X2X5X4_„Ny 
^X3xr-5’ 1x5 X4 

23* 

When two numbers, such as 18 and 52 are to be multiplied 

together, and the product divided by a third number, such as 6, 

the operation is indicated thus : 18X52 

6 ’ 

which means that only 
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one of the factors is to be divided, and the quotient multiplied by 

the other factor. 

In the above example this would be equal to 

I^^=^X52=3X52=I56 

In order to see the reason for this rule we have only to con¬ 

sider the number 52 added to itself 18 times, and the result 

divided by 6, and we see that this is the same as 52 added to 

itself 3 times. 
Examples : 

=2X36=72 

18X49 

7 
= i8X7=I26 

In such examples it is often desirable to be able to deter¬ 

mine readily if one number is divisible by another without 

remainder. For this purpose the following easily remembered 

facts will be found useful. 

24. 
A number is always divisible by 2 when its last figure can 

be divided by 2, as 10; 24 ; 210 ; 506, etc., divisible by 2X2 or 4, 

when its last two figures are divisible by 2, as 100; 316; 5124; 

500, etc.; by 2X2X2> or 8 when its last three figures are divisible 

by 2, as 5832; 1008; 2160, etc.; by 2X2X2X2> or 16, when its 

last four figures are divisible by 2, and so on indefinitely. 

A number is divisible by 5 when its last figure is so divisible, 

as 10 ; 65 ; 75 ; 310, etc.; by 5X5 or 25 when its last two figures 

are so divisible, by 5X5X5 or I25> when its last three figures are 

so divisible, etc., etc. 

A number is divisible by 3 or 9, when the sum of its figures 

is so divisible; for example, 141 is divisible by 3 because 

1 —|—4—f-1;=6 is divisible by 3, and in like manner, 99; m, 1101, 

6594, etc. are so divisible. The number 5121 is divisible by 9, 

because the sum of its several figures 5—|—1 —|— 2~1=9? and for the 

same reason the numbers 99 ; 7074 ; 9297 ; 7992, etc., are divisible 
by 9. 

Similar rules may be found for the easy factoring by other 

numbers such as 7, 13, 17, etc., but they are not so simple and 
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are not of practical use. Tables of factors have also been made, 

giving directly the factors of numbers, and are used by those 

who are engaged in mathematical computations. 

25. 
All numbers which are divisible by 2 without a remainder, 

such as 2, 4, 184, 100, etc., are called even numbers, and all 

numbers which when divided by 2 leave a remainder of 1, are 

called odd numbers. Although o is really used as a symbol of 

position, and 1 a symbol of unity, yet it has become the custom 

to consider them also as numbers, o being even and 1 being odd. 

A number which is divisible by any other number without a 

remainder, is capable of being divided into factors, and is called 

a Composite number, and the numbers into which is may be 

divided are called its factors. For example : 8 is a composite 

number, and its factors are 2 and 4 ; also 9, 10, 12, 27, etc., are 

composite numbers, since 9=3X3; 10=2X5; 12 = 3X4 = 

3X2X2- 

26 

A number wThich is not divisible by any other number (ex¬ 

cepting 1, and itself), cannot be separated into factors, and 

is called a Prime number. Such are 2, 3, 5, 7, 11, 13, 17, 19, 23, 

29, 31, 37, 4i, 43, 47, 53, etc. 
With the exception of 2, all prime numbers are odd, but it 

by no means follows that all odd numbers are prime numbers. 

In spite of the labors of mathematicians and the discovery 

of many curious properties of numbers, no general rule for the 

detection of prime numbers has been found. Extensive tables of 

prime numbers have been computed, and to them reference is 

made by those who have to make many computations involving 

factors. 

27. 
When several numbers are all exactly divisible by any one 

number, the latter number is called their common divisor, and the 

numbers which possess a common divisor are said to be com¬ 

mensurable. Thus for example: 21, 28, 14, 7 are commensur¬ 

able with regard to each other, as are also 9, 27, 18; the first 

group have 7 as a common divisor, the latter group may be 

divided by 3 and by 9. 
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Numbers which have no common divisor, so that there is no 

number by which they can all be exactly divided are said to be 

prime to each other. Such, for example, are 8 and 9, 17 and 31. 

28* 

In order to find all the factors of a given number, both com¬ 

posite and prime, by which it can be divided without a remainder, 

we divide it first by a prime number, then the quotient by a 

prime number, and so on until the quotient becomes unity, and 

the divisors will be the prime factors. By multiplying these to¬ 

gether (see § 22), we obtain the composite factors. The method 

and most convenient arrangement will be seen by taking an ex¬ 

ample. Let it be required to find the factors of 210. 

The number is first written and a vertical line drawn to its 

right, and to the right of the line is placed the first prime divisor, 

and to the left, the quotient obtained by the divisior ; this quotient 

is again divided, and the operation continued until no more prime 

factors are found, thus : 

Example i. 

210 

105 

35 

7 

Hence: 2io=2Xio5 

2, 210=2X3X35 
3,6, 210=2X3X5X7 
5. io> 15,3°, 
7, r4, 21, 42, 35, 70, 105 

Here we have first divided by the successive prime num¬ 

bers which on trial were found to leave no remainder; we then 

multiplied 2 by 3, and obtained 6 ; then 2 by 5, then 2 by 7; then 

multiplied in like manner each of the prime factors by all the 

other prime factors, and so obtained this complete list of com¬ 

posite factors. 

Example 2. find all the factors, both prime and composite, 

of the number 360. 

360 
180 2 
90 2, 4 

45 2, 4, 8 

15 3, 6, 12, 24 

5 3> 6, I2> 24, 
1 5, 10, 20, 40 
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We see by the above examples that 210 is capable of being 

factored into the prime numbers 2, 3, 5, 7, also that according to 

§ 22, it is capable of being divided by 2, 3, 5, 7, 6, 10, 15, 30, 14, 

21, etc., without remainder; all the numbers being products of 

two or more of the prime factors*. 

In the same manner we find that 360 is composed of the 

prime numbers 2, 2, 2, 3, 3, 5, and is divisible by 2, 3, 5, 4, 8, 6, 

12, etc., etc., without remainder. 

Examples. Find the prime and composite factors of the follow¬ 

ing numbers : 

(1) 4158. 

(2) 1836. 

(3) 1155- 

Answers. (1) Prime factors : 3, 3, 3, 2, 7, 11. Composite 

factors: 9, 27, 6, 18, 54, 21, 63, 189, 14, 42, 126, 378, 33, 99, 

297, 22, 66, 198, 594, 71, 231, 693, 2079, 154, 362, 13^6. 

(2) Prime factors: 2, 2, 3, 3, 3, 17. Composite factors: 4, 

6, 12, 9, 18, 36, 27, 54, 108, 34, 68, 51, 102, 204, 153. 3°6, 6l2, 

459, 918. 

(3) Prime factors: 5, 3, 7, n. Composite factors: 15, 35, 

55, 2I, 33, 77, etc. 

29 

Those factors which are common to any two numbers, as, for 

example, 68, and 88, are very readily found if we first separate 

each of them into their prime factors, according to the preceding 

section. We thus find that 68=2X2XI7 and 88=2X2X2XI][, 

from which it is evident that the numbers 68 and 88 are both 

divisible exactly by 2 and by 2X2=4- If, however, we wish to 

find the greatest common factor which will exactly divide two 

given numbers, it will be shorter to proceed in the following 

manner. 

Divide the greater of the two numbers by the lesser, then di¬ 

vide the lesser by the remainder, and so keep on dividing each 

divisor by the remainder. As soon as a divisor is found which 

gives no remainder, it will be the greatest factor which is com¬ 

mon to both of the original numbers. For example : 
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Example (i). 68)88(1 

68 

20)68(3 

60 

8)20(2 

16 

4)8(2 
8 

Example (2). 306)595(1 

306 

289)306(1 

289 

17)289(17 

17 

ll9 
IU) 

In example (1) the greatest factor which will divide 68 and 

88 is shown to be 4 ; while in example (2) the greatest common 

to 595 and 306 is 17 ; these being the first divisions which leave 

no remainder. (See Appendix, §315.) 

Example (3). Find the greatest common factor of 235 and 
564. 

Example (4). Find the greatest common factor of 1240 and 

372. 
Example (5). Find the greatest common factor of 65 and 

112. 

Answers. (3) 47. 

(4) 124. 

(5) The numbers have no common factor, and are 

therefore prime to each other. 

30.! 

In the study of addition and subtraction of fractions, in sub¬ 

sequent pages, we shall sometimes find it necessary to determine 

the smallest number which is divisible by several other numbers 

without a remainder; or as it usually termed : the least common 

multiple, of several given numbers. 

Ihis can readily be done in the following manner. First set 

aside those of the given numbers which are already contained in 
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others ; if then among the remaining numbers two or more are 

found which possess a common factor, these can be divided by 

this common factor and instead of each of these numbers place 

the factor and the corresponding quotients. If then these are all 

multiplied together, and by the numbers which have no common 

factor, vve get the least common multiple of the given numbers. 

Suppose, for example, it is required to find a number which 

shall be divisible by 2, 5, 4, 18, 6, 9, 10, 24, 35 and 21, it is evi¬ 

dent that we could find such a number merely by multiplying 

them all together. This, however, would give a very large number, 

and if we desire to find the least number in which they would 

all be contained, we must proceed otherwise. 

First, we see at once by examining the numbers, that 2, 4, 

5, 6 and 9 are contained in 18, 10, 24 and 35, and hence any num¬ 

ber divisible by these latter will undoubtedly be divisible by the 

former. 

The remaining numbers are then written in a row, (a) and it 

is seen that of them, 18 and 24 are divisible by 6; performing 

this division, we obtain a second row (b), here we see that the 3 

is contained in 21, so it can be stricken out, and also see that two 

of the numbers are divisible by 5. This gives us the third row 

(c), m which the 2 and 7 are stricken out, being contained in 4 

and in 21 ; and finally multiplying together the figures which re¬ 

main, and the factors together, we get 2,520 for the least common 

multiple of the given numbers. The work in detail is as fol¬ 

lows : 

% ft A l8, % 10, 24, 35, 2 I 

(a) 6) l8, IO, 24, 35, 21, 

(b) 5) h IO, 4, 35, 21, 

V) % 4, l 21, 

6X5X4X21 =2,520. 

In the same manner we find 5,040 as the least common mul¬ 

tiple of the numbers, 6, 9, 5, 7, 21, 56, 8, 12, 10 and 16. 

% 9, T, 21, 56, jB, 12, 10, 16. 

3) 9, 21, 56, 12, IO, l6, 

8) 3, f, 56, 4 IO. l6, 

3, 7, IO, % 

3X8X3X7XIO=5,°4o. 
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Examples: 

What is the least common multiple of 2, 

22 ? 

What is the least common multiple of 2, 

What is the least common multiple of 5, 

What is the least common multiple of 

3,IO°. 

11, 9> 2I> 8> l8> 7, 
Answer, 5,544- 

3, 4, 6 ? Ans. 12. 

12, 20, 15 ? Ans. 60. 

124 and 100? Ans. 

* 



BOOK IV. 

Common or Vulgar Fractions* 

31* 

We have already seen that in order to express a value for any 

magnitude it must be compared with some unit of the same kind. 

At the same time it often occurs that the unit is not contained in 

the given magnitude an exact number of times, and indeed the 

quantity to be measured may itself be smaller than the unit. In 

such cases the way out of the difficulty is to conceive the unit as 

divided up into smaller units, and use the smaller unit as a meas¬ 

ure. If we have a clear idea of the value of the original unit, we 

must also have just as clear a conception of any definite sub¬ 

divisions of it. 

When, therefore, we find that the original unit is not contain¬ 

ed exactly in the quantity to be measured, we may sub-divide the 

unit into any definite number of parts which will best enable us 

to express the value of the excess. 

For this purpose we may take the 3rd, 8th, 100th or any sub¬ 

division of the original unit, as may be found most convenient. 

We may thus express the value of the given quantity by stat¬ 

ing the number of times the original unit is contained in it, and 

also the number of times the sub-division is contained in the ex¬ 

cess, and so give a clear and definite value to any magnitude. 

The original unit we may consider as the whole unit and the 

sub-division, (or smaller unit) as a portion, or fraction of the 

whole unit; hence we call that portion of the quantity which is 

measured by the whole unit, a whole number, and that portion 

which is measured by the fraction of the unit, the fraction ; both 

taken together being called a mixed number. 

(The fraction really may be considered a whole number, if 

by the word “fraction” we understand simply a name for a 

smaller unit.) 
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32. 

In order to be able to express these quantities clearly and 

briefly by means of figures, the following notation has been 

adopted. The whole unit and the whole number are written as 

usual, and the fractional portion immediately following ; the num¬ 

ber of fractional units being written above a short horizontal line, 

and the number of such units contained in a single whole unit 

written below the line. The fractional unit is written alone by 

placing a i above the line and the number of fractional units in a 

whole unit below the line. 
Thus if the fractional unit is the eighth part of a yard it is 

written §, and if the quantity to be measured is as long as five of 

these eighths, it is written § yd. The number which is placed 

above the line, and which gives the number of fractional units, is 

called the numerator \ the number below the line, which gives the 

denomination of the fraction, or tells of what portion of the whole 

unit it consists, is called the denominator. For example, in the 

fraction § (read five-eighths), 5 is the numerator, 8 the denomina¬ 

tor, and | is the fractional unit. The 8 tells that it takes eight of 

the fractional units to equal one whole unit, and the 5 tells that 

5 of these fractional units (or eighths) are equal to the value to be 

expressed. In like manner, in -Jf, the fractional unit is 15 is 

the numerator, and 34 the denominator. 

A mixed number is expressed by writing the fraction immed¬ 

iately after the whole number, thus 7§ (read seven and five- 

eighths) is equal to seven whole units, and five times the one- 

eighth part of a whole unit, and is the same as 7—1—s* Appen¬ 

dix, § 317- 

33. 

The form of a fraction coincides with one of the expressions 

to indicate division, as already explained in § 14. This is quite 

correct, and every fraction should also be considered" as a state¬ 

ment of division. It is evidently just the same thing to say that 

| pound is three times the fourth part of a pound, or one time the 

fourth of three pounds. Or, taking another case, 1 kilogram= 

equals 1000 gram; and 3 kilos=3X1000 grams=3000 grams. 

Now it is evidently exactly the same value to take the 

fourth part of 1000 grams, 3 times, as to take the fourth part 
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v TOOO 3X1000 / P X 

of 3000 grams 1 time, tor 3X =---—75° (see § 23)- 

It is therefore as correct to say f means 8 divided by 4 as to 

say eight-fourths. Any fraction in which the numerator and de¬ 

nominator are alike, as -§, -J, is equal to unity, and eight- 

fourths is equal to twice £ or equal to two whole units. 

This conception of a fraction as an expression of the divis¬ 

ion of the numerator by the denominator is most important, and 

and should always be kept in mind in view of what follows. 

34. 

Any whole number may be written as a fraction of any de¬ 

sired denomination simply by multiplying the number by the 

desired denominator and placing the product over this denomi¬ 

nator. If, for example, we wish to express 7 in the form of a 

fraction with a denominator of 4 or 5, we may write : 

_7X4_z8 Qr 7X5 _35 
4 4 ’ 7 5 5 

In the same manner any mixed number can be converted 

into a fraction by multiplying the whole number by the denomi¬ 

nator of the fractional portion, adding the numerator of the 

fraction to the product and placing the sum over the denomina¬ 

tor. 

For example : 
7X8+5_6i. 

8 8 ’ 
2°°ii= 

26ll 
etc. 

13 

All fractions of which the numerator is greater than the de¬ 

nominator, as -Sgl, f, etc., are called improper fractions, while 

those in which the numerator is smaller than the denominator, 

as §, §, etc., are called proper fractions. 

35. 

The two cases in which fractions are necessary for the 

measurement and expression of magnitudes are the following : 

1. When the magnitude which is to be measured is a de¬ 

nominate quantity, and the unit will not divide it exactly. This 



occurs so frequently, that the units in customary use are sub¬ 

divided into smaller units for the purpose of enabling the expres¬ 

sion of fractional parts to be readily made. Thus the pound is 

subdivided into ounces, and these again into grains ; the kilogram 

into ioths, iooths and ioooths; each of these being given 

names ; also measures of length are divided into sub-units, as 

feet and inches, meters and millimeters, etc., etc. The smaller 

units can again be converted into fractional parts of the larger 

units, it only being necessary to know how many of the sub¬ 

units are contained in the main unit. 

2. For the comparison, measurement and division of ab¬ 

stract numbers, the fractional form of expression is much used. 

In division we always endeavor to ascertain how often the divisior 

is contained in the dividend, and hence we can always consider 

the divisor as composed of a group of several equal units. We 

then have possible the three following cases : First; how many 

times larger is one magnitude than another of a similar kind? In 

this case the quotient is always an undenominate, abstract num¬ 

ber, representing only the ratio or relation between the two com¬ 

pared magnitudes, and telling nothing whatever about their de¬ 

nomination or actual magnitude. For example, we may ask : 

how many times greater is 20 than 4 ? or $20 than $4 ? or 20 

pounds than 4 pounds; and the answer in each case is 5, not 

$5, or 5 pounds, but 5 times, the result being an abstract number. 

If the divisor is not contained in the dividend an exact number of 

times, the remainder must be appended to the quotient in the 

form of a fraction. Thus, if it be asked how many times greater 

is 23 than 4? the answer is that 4 is contained in 23, 5 whole 

times, and that the fourth part of the unit 1 is contained in the 

remainder 3 times, hence ^=5|, and 23 is 5! times greater than 

4. In the same manner we have -|J=3^. If the question is 

how many times is 8 contained in 3 ? the answer is f times, and 

in all these cases it will be seen how the fractional form is merely 

the expression of division. 

Second : It is required to reduce lower units to higher 

ones. In this case the unit of the undenominate quotient takes 

the appellation of the higher unit to which the divisor is equal. 

For example: if it be asked how many pounds are equal to 160 

ounces? Knowing that there are 16 ounces in one pound, we 
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have ifa°- oz. = io pounds ; or if the question be, how many kilo¬ 

grams are 556 grams, we have kilograms, since 1 kilo- 

gram=iooo grams. 

Third : It is required to divide a magnitude into a given 

number of parts. In this case the quotient is of the same de¬ 

nomination as the dividend. For example : the 4th part of $23, 

is $5|; that is 5 dollars and 3 quarter dollars. The half of /5, 

is £2\=£2 10s. 

If the student has fully understood the foregoing, and masters 

thoroughly the following five rules, he will be able to work with 

fractions quite as easily as with whole numbers. 

36* 

When the numerator of a fraction is multiplied or divided by a 

number, the value of the fraction will become as many times greater 

or smaller, as there are units in the multiplier or divisor, 

For example : If the numerator of the fraction fa be multi¬ 

plied by 3, the fraction becomes The first fraction contained 

the unit fa six times, and the latter contains the same unit 

eighteen times, hence it is evident that 18 units are 3 times as 

many as 6 units of the same kind. If we divide the numerator 

of the fraction fa by 3, we get fa, and this is clearly only \ as 

much. In the same manner we see that || is 6 times as much 

as fa, and that fa is the eighth part of f-§, etc. 

37* 

When the denominator of a fraction is multiplied or divided by 

a number, the value of the fraction becomes inversely smaller or 

greater, as many times as there are units in the multiplier or divisor. 

This rule will be seen by comparison to be just the reverse 

of the preceeding, and although perhaps not so readily grasped 

by the beginner, will nevertheless be quite clear on inspection. 

It will be most readily understood by thinking of the frac¬ 

tional unit as a length. Suppose we have the fi action of an 

inch, and multiply the denominator by 4, we get -g3¥ of an inch. 

If now we only think of an inch as divided into i6ths and into 

64ths, or, indeed, examine these divisions on a good drawing scale 

or foot-rule, we shall see that the fractional unit fa is four times as 

great as the fractional unit -fa and hence that 3 times this smaller 
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unit, is only J as large as T3^. Hence our multiplying 

the denominator by 4 has made the value only \ as much as it 

was before the multiplication. 

If we have a number of weights of 1 lb. 2lbs. 3lbs. etc., we 

can see that a given number of 1 lb. weights will only weigh \ 

as much as the same number of 2lb. weights, or J as much as 

3lb. weights, and that smaller the unit the less the value of a 

given number of units. The reverse is also now evident. If we 

divide the denominator of T3g- by 4 we get §, and this fraction is 

four times as great as T3^, because the unit is four times as 

great as the unit y1^. If we divide the denominator of the fraction 

T|~y of a dollar by 25 we get | of a dollar, which is evidently 25 

times as much ; the first is only 3 cents. The second is 75 cents. 

38* 

When the numerator and denominator of a fractio7i are both 

multiplied or divided by the same number, the value of the frac¬ 

tion remains unchanged. 

If, for example, we multiply both numerator and denomina¬ 

tor of the fraction -| by 3 we obtain the form |~|, the unit be¬ 

ing 3 times smaller than 1 but since there are 3 times as many 

of them the value is the same, and -f—Jf. In the same manner, 

if we divide both numerator and denominator of -J by 3 we get 

§, in which the unit J is 3 times greater than 1, but there are only 

one third as many, and -|=§. We can then change any fraction 

into an indefinite number of forms without altering its value. 

39* 

By dividing the numerator and denominator of a fraction by 

their greatest common divisor (§ 29), or by repeatedly dividing 

them by any factors which they may have in common until they 

become prime to each other we may reduce the fraction to its 

lowest terms, and thus simplify the expression without changing 

its value. Thus the fraction -JJ divided above and below by 12 

may be reduced to or by dividing by 2X2X3> fT=i#=2r=f- 

Examples: Reduce the following fractions to their lowest 

terms 
11 11 8 
6 3’ 5¥’ H* 

JL. 4 3.1 HI 1 9 4 111 _2_3 3 5 3 0 0 
14’ 6’ 93’ 6 3 6’ ¥ 5 f>H’ Hill’ 5 5 3 1’ TS"3T’ 

7 2 9 8 5 0 9 7.1 41 
8¥’ 6’ 9 9 8 3’ 7913’ 

7 8 
T¥’ H* 

Answers: §, i *1 ^ iff, f, f, if’, fl ff; 
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40. 
If it is desired to reduce a fraction to a form having a given 

denominator, without altering its value, it is only necessary to 

make the new numerator as many times greater than the old 

numerator as the new denominator is greater than the old de¬ 

nominator (see § 38). Hence it is only necessary to divide the 

new denominator by the old one and multiply the quotient by 

the old numerator, and the product will be the new numerator. 

For instance, if the fraction is to be reduced to one having a 

denominator of 45, we have |=J£. In the same manner § re¬ 

duced to a denominator 12, gives T82, etc. 

Examples. Bring the following fractions to the indicated 

forms 
5 _. 5_ 

6 144 ’ 17 51 ’ 7 84 

Answers 
5 120 6 18 

6—144 ’ 17 5 1 ’ 

9 .... 

13““2613 

5 60 9 1809 

7~84 ; 13 2613 

41. 

In order that several fractions with various denominators 

may be added together, they must first all be reduced to the same 

denominator or fractional unit. This is not difficult to accom¬ 

plish, since we may, according to § 30, easily find a number 

which will contain all of the denominators without a remainder. 

Suppose we have, for example, to reduce all the following frac¬ 

tions to the same denominator (called reduction to a common 

denominator), §, |, f, ■$, f. 

We find by § 30, that the least common multiple of 3, 4, 6, 9, 

12 and 8 is 72, and therefore have : §=f|-; f=jf ; |—ff ; -J=yf- ; 
11-6J5_ • 1-41 
l¥-7 2 ’ 8 7 2- 

Addition. 

42. 

We have already seen that only such numbers can be added 

together as are based upon the same unit. If, therefore, it is re¬ 

quired to add fractions which have not a common denominator, 

they must first be reduced to a common denominator. This be¬ 

ing done, it is only necessary to add the numerators together and 
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set the sum over the common denominator. If mixed numbers 

are to be added together, the whole numbers and the fractions 

are added separately. 

For example : 

8 “if—8’ rTTTTTTTTn 17 ’ ill \ *11 17* 

The method of reduction to a common denominator, applied 

to a number of fractions which are to be added together, is shown 

in the following example, which gives a convenient arrangement. 

Let it be required to find the sum of : 

3 +1+1+1+i 7+i+ T 5+t! 8+S71 

First finding the least common multiple of the denominators, 

we have according to § 30 : 

3, 0, 8, ft, 9, 15, 108, 

I08 3) 3, 8> *5> 
4) 1, 8, 5, 36 

2, 5, 9 

hence the least common multiple is : 3X4X2X5X9— io8°, and 

the corresponding numerators are : 

1080= 

2 
3 720 
3 
4 8lO 
5 
6 9OO 
7 
8 945 

1 4 
ITT 560 
T 
IT 480 
7 

17 504 
5 

ITS* 50 
7 

7¥ 140 

5 10 9- 
10 8 0 

a 7 8 9 -a 2 6 3 
^ ^ 3 6 0 

The numerators are found by dividing the new denominator, 

1080, by the old denominators and multiplying by the old numer¬ 

ators. Thus for the first fraction § we have io8oX§=36c>X2= 

720, etc. The results may often be obtained more readily if the 

factors of the common denominator are used as : 

io8o_2X3X4X5X9. 
15 3X5 

numerator for 

:2X4X9=72 and 72X7=504=the new 

7 . 
TIT 

-_5_0 4 
1 0 8TF- 
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For another example let it be required to find the sum of: 

+ l+i i— 
63+60+77. 2 0 Q- 

7X12 
84 

-2 8 

Here we see that the common denominator will be 7X12= 

84, since 4 is a factor of any multiple of 12, and the numerators 

are obtained as before. 

Mental calculations, which should be used wherever possi¬ 

ble, are often available in operations with fractions. For in¬ 

stance, the sum of |+-^=-||= 1is readily obtained mentally, 

since we see at once that we have only to multiply both numera¬ 

tor and denominator of the first fraction by 6 to bring it to the 

same denominator as the other one, after which the addition is 

simply performed. Again, the sum |+g==-|;J==i-JJ, is obtained 

by multiplying the first fraction by 4 and the second by 3, to re¬ 

duce them to 24ths. 

Again : -|+J=+|; obtained by multiplying by 4 and 7 to 

obtain 2 8ths. 

Again : f+|= 
16+63 

8X9 ' 
7 9- 

T2" T 7 * 

Again: J+|+|=+=i |; the first and second factors hav- 

been reduced by multiplying them respectively by 4 and 2. 

Sometimes the work can be simplified by performing it in 

two operations as : 4+i+i+§+-J=2$+i4=3+f 

Here the first three and the last two fractions are added sepa¬ 

rately, and the sums then added together. 

Examples : Find the sum of 

(0 i+T+xi+I+A+3- Answer. 3^f-f 

(2) ‘2f+3H-4TVH+++f§- “ 2311 

(3) H+i+J+A+f+il+l+tV “ 7 

1 5 1 8 I 6 5 i C 

1 2¥H 6 2\ r24 84 1J* 

(5) 

(6) 

(7) 

3151 1 1 5 1+21 4 
7 1 94^ 1 1 8 1 J 3 1 12 5* 

A+1+H+TT+l+l + 12T • 

rV+f+TW+T+o+iiro+i' t ‘ _7_6 1 
1 0TT7T 
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Subtraction* 

43* 

The same principle applies in Subtraction as in Addition. If 

the fractions all have not the same denominator they must first be 

reduced to a common denominator before the subtraction can be 

performed. The numerator of the subtrahend is then subtracted 

from the numerator of the minuend, and the remainder is written 

over the common denominator. For example : 

If a fraction is to be subtracted from a whole number, a 

unit must be taken from the whole number and converted into a 

fraction of the same denominator as the subtrahend. For ex¬ 

ample : 
r 2 — a1: 2— a 5. 
5 7-47 7 47 

Again: 16 — TV\=i 5fff—tA^1 

If mixed numbers are to be subtracted the fractional portions 

are first reduced to a common denominator and the fractions and 

whole numbers are subtracted separately. If the fraction in the 

subtrahend is larger than that in the minuend, a unit must be 

taken from the whole number of the minuend and converted into 

a fraction of the same denominator. For example : 

5§ 13 = SfT 

Again: I4§—2g=i3~^—2fi=IUf 

In this last example |=|-f and 14=13ff, so that 14§= 13^2- 

It is more convenient to subtract the 16 from the 24 and add 

the remainder 3 to the 16, than to subtract the 21 from the 40, 

etc. Examples: 

5iV 
7 
■9 

1. 
8' 

4- 
■9' 

.1 
3 

7 1 1 2 — ^ T) -* n 12 
1 

5 6 

2 ’ 
1 
8 

3 _ 
4 

22^ 
1- 
9‘ 

■ 1 
'7 2 

. 7 
TO 

3 
4 

3 -r 7 27 • 
4 -1 / 2 8 > 

X 
9 

2 8 
1 - 1_ 

1 0 9 0 

_1 . 
— 8 > 
2 1 2 _ 2 XT 

• 4.JL. 
> 41 5 

5 
T 

2 —' 
£ 9' 

1_ 1_ • 
2-1 8 f 

— _7 7 • 
~T 2 3 > 

- r 4 4 
T 5* 

3 — i= 
2 
3 
5. 
8' 

3 > 

. 5 • 
"TT > 

The answers are given to these examples, but in these and 

all other examples the student must work out the operations and 

reductions in full. 
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Multiplication. 

' 44. 

The rule for multiplication of two fractions is easily remem¬ 

bered. Multiply numerator by numerator and denominator by de¬ 

nominator. 

This rule, which will be explained below, holds good in all 

cases. If either one of the factors be a whole number it may be 

assumed to have a denominator of unity, and if either or both of 

the factors be mixed numbers they should be reduced to im¬ 

proper fractions before proceeding with the multiplication. 

Examples : 

fO 1N/T-!^7 ± 
V1/ 5A9 5X9 45 

0) !Xi=^=it 

(3) 4X^=*Xi=¥=3i 

(4) 2%X*=¥X*=H=*A 

(5) *iX**=VXV=W=7« 

Explanation : Multiplication consists in taking one quantity 

(the multiplicand) as many times as unity is contained in the 

other quantity (the multiplier). If, for example, the multiplier is 

1 and the multiplicand is ■$, we see that the multiplier does not 

contain a whole unit, but only | part of a unit, which it contains 

once. The multiplicand must therefore not be taken once, but 

only | times. According to §37 we know that we will make 

equal to l of its value by making the denominator five times 

larger, whence iXl=irV 
To the beginner it will appear that in this case J times J, we 

have, in the form of multiplication, performed a division, since 

the value of the quantity ■$ is not increased but diminished. This 

apparent confusion of operations will easily be understood, and 

the difficulty cleared away if we remember that we can take a 

quantity a fractional part of a time, as well as we can take it a 

whole number of times. It is just the same thing if say we take 

the fifth part of a quantity, or say we take it 1 times (multiply it 
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by |), and thus we must think of multiplication in a broader 

sense than was attempted in § 9, so it may be defined thus : 

Multiplication consists in taking a quantity as many times as 

a?iother quantity contains units. 

This general definition of multiplication involves correspond- 

ing general meanings for the terms multiplicand, multiplier and 

product, and considers, for instance, the word product as meaning 

a given number of times a fraction is taken, as well as a whole 

number. Multiplicand applies to any magnitude, whether either 

itself or any part of it is to be taken ; the multiplier shows how 

often the whole multiplicand, or any part of it, is to be taken. 

In this connection the rules in §§36 and 37 should be compared. 

For example : If | is the multiplier and the multiplicand, 

the multiplier contains the 5th part of a unit 4 times, and hence 

it must also contain 1 part of the multiplicand 4 times. 

According to § 37, the 5th part of \ is According to § 36 

this is taken 4 times by multiplying the numerator 7 by 4, which 

gives ff, whence |Xl=ff- The operation of taking a quantity £ 

times, therefore, involves both multiplication and division. 

45. 
When it is required to multiply several fractions together, all 

the numerators are multiplied together to form a new numerator, 

and all the denominators multiplied together to form the new de¬ 

nominator. For example, if we have -| to be multiplied by j- and 

the product by f, and this resulting product again by J, we have : 

ixixtxi 8X4X2XI= 
9X7X5X3 ™ 

When the multiplier is a proper fraction the product will of 

course be less than the multiplicand. In like manner, if all the 

factors are proper fractions the product will always be smaller 

than any one of the factors. For instance, in the example -fXf 

Xi=t¥s>we have > A45<t; or iVs<f- 

46. 
In multiplying several fractions together, we often find that the 

numerators of some of the fractions are the same as the denomi¬ 

nators of others, or have common factors, and these can at once 
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be divided out. This will not affect the result, as it is obviously 

the same thing whether a reduction be made before or after the 

multiplication is performed. 

Beginners often neglect to make as much use of this labor- 

saving principle as they should 

We see at once that |-X1—f> as the 7 in the numerator of 

one fraction is canceled by the 7 in the denominator of the other, 

and the result is read immediately. In the same manner ytX-It 

=§; I!Xit=A ; C<§=2X2=4; 1X25=3X5='5 ; '6XA= 
J.=2|. If we have to multiply together the quantities §, |, 2|, 

4, A and 2\ we have : 

2X^X^X^XT_2Xh_11_t5 

HX4X4X7X3X3 4X3 6 6 

When one of two factors is mixed and the other a whole 

number, is more convenient to multiply the whole number 

and the fraction of the former by the latter separately and add 

the two products together afterwards. For example : 

6X 52t= 3°+lf= 3°4 

■2X'3f='56+J58=l65i 

This method is also convenient when one factor is a mixed 

number and the other a proper fraction. 

When both factors are mixed numbers, the whole number 

and fraction of each may be multiplied by the whole number and 

fraction of the other, and the four products then added together. 

This method will only be found preferable when there are not more 

than two fractions, or when the whole numbers are large. In 

most cases it will be found simpler to reduce them to improper 

fractions before multiplying. 

Examples of both methods are here given : 

25!XI24!=25XI24+25X|+fXl 24+fXl 

=3IO°+l8i+I03i+i 
=322I+1+I+3=3222H 

31X6|= +X-¥=X-7=25 2 

2 5IX12 4 i=HAXH±==31X1 °4=3 2 2 4 

In connection with the multiplication of fractions occurs the 

' problem of reduction of fractional parts of a higher denominate 
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unit to a lower unit, since this operation really consists in the 

multiplication of the fraction by the number of lower units contained 

in a higher unit. 

For instance, there are ioo cents in one dollar, hence | of a 

dollar is equal to |XIOO=3X25=75 cents. 
The following examples should be carefully worked out with 

the aid of the principle of cancellation of common factors. 

(0 
3 V 5-3 5 7 7 (!3) 125X71=975 

(2) 
2\/l-_7_ 
fAg-2 0 (14) 3V T T —4- 6-9- 

111—ui 1 

(3) 
7V4-1 
8 at—2 (>5) 

5 \/ 2 2— t T 
11AT—14 

(4) IV3—3 2 /N 4-8 
(16) 2|-X33i=94H 

(5) (i7) 1X14=1 

(6) >Xi=i (.8) 1X|XIX6=3 

(7) 4X4=1 (19) 
•2 v 5V 4- 40 3ATAI-1 8 9 

(8) 2Xi=i (20) 2 3 V 4 v 7 XX 2 3- 

(9) 
3 V 2 8- 6 
144T ¥T (21) 23fX2 2TV=533 

(IO) 2 2 V-5---3- 
6 5 XX11 13 (22) 33lXIOO=3366 

(") 
5 V4-__4_ 

3TA5 31 (23) 2 v5 'y — ^_— 1—— 3 / tAi 0 0—15 0 

(12) 15V1 2 1-3.3. 
TT/n365 73 (24) 123V 2 8_-_4T_ 

2 5 2 A-71 7 2151 

Division* 

47* 

In indicating the division of fractions the sign -4- or its ab¬ 

breviation : may be conveniently used.* For instance, to indi- 
4 

cate that 4- is divided by §, it is better to write f : §, than | 
° ' 3 

The division of fractions may be considered as a special 

case of multiplication, and converted into a multiplication. 

The very simple rule for performing a division of fractions 

is as follows : 

To divide one fraction by another fraction, invert the divisor 

(placing the numerator below the line, and the denominator above) 

and then multiply the dividend by this inverted divisor. 

This sign -f is really a picture of a fraction, thus emphasizing the fact that the frac¬ 

tional expression is really in itself a symbol of division. 
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This rule is entirely general, since whole numbers can be 

written as fractions with a denominator of unity, and mixed num¬ 

bers reduced to improper fractions before proceeding with the 

operation. For example : 

4 • 2.-4V3-12 
5 • 3-5/\2 10 

2 . 4-2 V 5-1-0 
3 ' 5-3/nT-12 

2 • r-2\/l--2- 
3 • 3-3 A. 5-1 5 

c • 2-5 V 3-1 5. 
5 * 3-TA2- ¥ 

2 3 • 2-11V 5-5 5 
z4 ' 5- T Af ¥ 

o 3 • 22-J1V -3 
2 4 • 33-TATI-4 

Explanation: If the fractions under consideration possessed 

the same denominator, it would be unnecessary to take the de¬ 

nominator into consideration at all, and we should only have to 

divide the numerator of the dividend by the numerator of the 

divisor. For instance, 

6 • 2 6 ■ 5 • 6 • 2 -7 • 0 • _2 ■ o 
¥ * 8-2-3 >11‘1 Tf J ’ 3 5 * 3l) 3* 

Acrnin • 2 • 6-1 • _2_ • 6 -i pfc Again . -g- . -g-3 , . jif-3, UlC. 

In these cases it is at once apparent that 2 units are contained 

3 times in 6 units of the same kind, and also that 6 units are con¬ 

tained l times in 2 units of the same kind. 

But this is the same principle as that involved in the above 

rule for division, since : 

6 . 2__6x/A6=, 
8 ' 8—P'S 2 

If now the fractions have not the same denominator, they 

may be reduced to a common denominator by multiplying nume¬ 

rator and denominator of the dividend by the denominator of the 

divisor, and also the numerator and denominator of the divisor 

by the denominator of the dividend. In the example : §, these 

operations would be 

4X3. 5X2 
5X3' 5X3 

This gives us the common denominator 5X3 for both frac¬ 

tions, hence it can be omitted, as before, and we simply divide the 
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new numerator (4X3) of the dividend by the new numerator (5 

X2) of the divisor. If we examine this carefully we will see that 

we have in this operation done exactly what the rule above given 

directs, namely, inverted the divisor, and then proceeded as in 

multiplication. Thus : 

4X3 2X5 4X3, 4 
5 

2. 
3 

_zZEx—4 v 3—1 2 
5X2 5X3 10 '5X3' 3X5 

In the same manner : 

.5X3 . 7X2= 
:X3 ' 7X3 

The following examples are to be worked out by the student 

according to the rule given at the beginning of this section. 

Examples: 

5. 
7 

2. 
3‘ 

• 5V3-15 
' 7 X\ 2 11 

(I) 
4 

1 6 
• 3 - T 1 
' 1 6 1 3 (15) 

1 3 ■ 
1 7 ■ 

t 7-_1_3_ 
1 /-2 8 9 

00 
5 • 4- T 1 

7-1 4 
(16) 3§ : 

7-11 
/-21 

(3) 5 • 
6 ' 

2 -T 1 
3 -1 4 (17) 11 : 

(4) 
4 • 
7 ' 

5-32 
■8-3 5 

(18) 13t ■ §=20f 

(5) 
3 

2 5 • S\=H (!9) 
' Q  -1-3- 
' V8-1 5 

(0 
1 . 
5 ' l=l (20) 2 . 

3 • 
1-2 
3-z 

(7) 
1 . 
2 ' 

(21) 1 . 
. 3 • 

2— 1 
3— 2 

(8) 
1 • 
5 ' S=T5 

(22) 4 • 
5 • 8=I0 

(9) i : 1=5 (23) 8 4 5 • 4 5 -2 3 
1000 '100 30 

(10) 1 . 
2 • l=\ (24) 1 • 

9 ' 
_1_- T 1 
1 0 1 9 

W) 1 : 1 -2 
2 -Z (25) 

1 
1 0 

• 1- 9 
' 9-1 0 

(12) 5 
1 7 

■ T-_5_ . 1—! n (26) 3 
1 0 

. 17 -r 1 3 
' 1 0 0-1 1 7 

(13) i : 2 -T 1 
3 -1 2 (27) 25§ 

. jA3-t 10 7 
' 1U4-12 01 

(14) 
1 4 
3 9 

• 7-_2_ 
' /-3 9 

(28) 8 • 
5 ' 

7-32 
^-3 5 

Ans. 

(30) How much is ^ of 2-J? 

(31) What is the J part of kilograms? 

(32) How often is J contained in 4 ? 

(33) How many times is § contained in 2 ? 

(34) How often is | contained in 1 ? 

tV yard- 

Ans. 

9 

i 7 
3 O' 

Ans. 1 29o kg. 

Ans. 5! times. 

Ans. 3 times. 

Ans. 3 times. 



BOOK V. 

Decimal Fractions* 

Preliminary Ideas about Approximate Calculations, 

48*' 

In the greater number of cases in which theoretical methods 

are applied to practical work it is not practicable to obtain results 

which are absolutely exact, and we must often be content with 

approximations which are as precise as the conditions will per¬ 

mit. This is always the case when the accuracy of the values 

from which the data are derived is dependent upon the individ¬ 

ual skill of the practical man by whom they have been de¬ 

termined. 

Suppose, for instance, that it is required to measure, by 

means of a surveyor’s chain, the distance between two points 

about 2000 feet apart. It will be found practically impossible to 

obtain results which do not vary more or less than half an inch 

from the true distance. In many cases the personal error, due 

to the varying ability of different observers, renders it useless to 

carry calculations beyond a certain closeness to accuracy, and 

this personal equation, as it is called, has been made a subject of 

calculation itself by means of the Method of Probabilities. 

Now in all cases in which it is practically impossible or un¬ 

necessary to obtain absolute accuracy, and in which the practical 

value of the final result will not be impaired if we neglect small 

fractions, the labor can be greatly reduced and the work simpli¬ 

fied by the use of a certain special form of fractions, as will now 

be explained by an example in addition. It must first be shown 

that a fraction may be reduced to any denominator we please, 

without altering its value in the slightest, simply by multiplying 

both numerator and denominator by the new denominator, and 
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then dividing them both by the old denominator. Thus, for ex¬ 

ample, the fraction -§ can be converted into one having the de- 

6 12 7 2 
nominator 12, as follows : gX [^=gwI^ ancl this divided above 

and below by 8 gives If the old denominator will not divide 

the product of the old numerator and the new denominator with¬ 

out remainder, the new numerator will be a mixed number. 

Thus if we reduce f to the denominator 12 we have 

o. 

8" 
=5X12=7i= 7 , i 
8X12 12 12 ''12 

Fractions in which the numerator or denominator is a frac¬ 

tion are called complex fractions. It is clear that a complex 

fraction is smaller in value as its denominator becomes greater, 

thus : — 
10 ^4 

If we wish to know how many eighths there are in the frac¬ 

tion -J, we have : 

-,_ZX8_\6=/6|\ 
9 9X8 8 \8) 

so that we find it to contain 6 whole eighths, that is f, and some- 
2 

thing over; this something being -J of an 8th, or | 

Hence it follows that if we simply annex one, two or three 

zeros to the numerator of a fraction, and then divide by the de¬ 

nominator, neglecting the fractional remainder, if any, the result 

will be the equivalent value of the fraction in ioths, iooths, or 

ioooths, as the case may be. 

In the same way, we can find the number of whole tenths, 

hundredths, or thousandths, etc., which there are in any fraction ; 

as for example |, we have : 

7. 
8' 

7. 
8' 

=¥ /8t\ 
10 V10/ 

ion , 
:_8_= / '*7h' 
100 V H°°, 
7 0 0 0 

. _ 8 7 5 
IOOO 

10 0 0 

-_8_ 

1 0 

■ 8 7 
10 0 
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That is, there are 8 whole ioths in \ ; or 87 whole iooths; or 

875 whole ioooths, this last being- exact, the two former having 

a small remainder over. 

Let us now attempt to find the sum of the following fractions : 

i+A+5+ 7+1+t r+r93+AV+ fAt+ttt 

these being fractions of same small unit, such as a centimetre, 

gram, inch, etc. 

Now if it is understood that it will be sufficient to obtain the 

result within of the unit of its exact value, so that the error 

shall not be more than of a centimetre, gramme, inch, etc., 

more or less, the labor can be very much reduced in the follow¬ 

ing manner. Instead of reducing the fractions to a common de¬ 

nominator (which, according to the method explained in § 30, 

would be a very large number), we take for the common denom¬ 

inator one of the simple unit numbers—10, 100, 1000, etc., which¬ 

ever is the most convenient. Suppose that we take 100 for the com¬ 

mon denominator, and by the method just explained convert the 

given fractions by (mentally) adding two zeros to each numera¬ 

tor and dividing by the denominators, and if the fractional re¬ 

mainder is less than | it may be neglected, while if it is greater 

than \ it may be called 1. We thus get the following values, all 

understood to be hundredths. 

iooths 

1 = 50 

Tff = 33+tV 

i= 80 

f = 86 — f 

-1 = 78-1 
5 ----- 

11 45+A 
9 — 

13 - 6 9+A 

Af = 5+At 

TTTT ~ 
o4- 3 0 0 
UT 6 TUT 

7 - 6 2 
117 - 0 117 

Total, 4 2 2_a 11 
1 0 0—4 5 0 

Explanation : If, in this approximate calculation, we had ne- 
1 

elected 1 of a fractional unit —for each number, the total 
£ 100 
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error in the sum of the ten figures could not have exceeded 

1 
2 

I o’ 

But we have only neglected fractions of less than \ a unit, 

and as these have been taken sometimes on one side and some¬ 

times on the other, it follows that the error in the sum 4^ must be 

less than 
If the common denominator had been taken as 100000 or 

1,000,000 instead of 100 the possible error would have been enor¬ 

mously reduced, and become practically inconceivably small 

even though the unit itself be as large as a kilogram or a mile. 

49- 

Common fractions require, as w*e know, two numbers to be 

used in writing them, a numerator and a denominator, and this is 

more or less inconvenient, especially in tabular matter, where 

room is a question of importance. The form of common fractions 

is also a matter of inconvenience in various ways, such as the neces¬ 

sity of reduction to a common denominator for purposes of addi¬ 

tion or subtraction, and hence the invention and introduction of 

decimal fractions which do away with all this inconvenience, is 

an improvement of the highest importance, especially for long and 

intricate computations. 

50* 

Decimal Fractions, are those fractions of which the denomi¬ 

nators are any one of the units of the decimal system of notation, 

as for example, Ty¥3¥, TVo, to> tAo> etc- 
Such a fraction, as a necessary consequence of its form, has 

the property of being subdivided into as many separate fractions 

as it has zeros in the denominator, and the denominators of these 

separate fractions follow each other in the regular decimal order, 

thus, J-q, Ti¥, ToVo- For example, the number 873=8oo-f-7°+3> 

and likewise the fraction 

8 7 3 _ 8 0_0_L 7 0 _L 3 
TWO — 1 0 0 oT 1 0 0 0 1 1 0 0 0 

or by canceling those zeros which appear both in numerator and 

denominator : 
q 7 q ft I 7 I *1 

TT0 0 TOTTOITTOOO 
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In like manner we have 

8 4 5 0 7 8 I 4 4- 5 0 7 
100000 10 1 loo 1 10 0 0 rioooo r 100000 

47 0 4 4 i- 7 
To 0 0 1 0 1 100 1 1 0 0 0 ’ 

4 7 0 I 0 1 0 1 4 J 7 
100000 10 1 loo 1 1000 1 r 10 0 0 oi 100000 

in which, for sake of uniformity, the numerators which are lack¬ 

ing have been replaced by zeros. 

51* 

From the above analysis we see that the numerator of a 

decimal fraction has as many figures as there are zeros in the de¬ 

denominator, or else zeros can be prefixed to the numerator to fill 

the deficiency. 

Thus t8oV5¥, yVo are examples of the first case, and x£Jo= 

_o_y_ illustrate the second case. It also appears 

that the first figure of the numerator shows the number of tenths, 

the second the number of hundredths, the third the number of 

thousandths, etc. 

These features may be utilized to enable us to write decimal 

fractions in a very simple manner without the necessity for writ¬ 

ing the denominator at all. This accomplished by the use of 

the decimal point, the figures of the numerator being written to 

the right of a period (.), there being always as many figures 

written as there are zeros in the denominator of the decimal frac¬ 

tion.* If the numerator does not contain as many figures as 

there are zeros m the denominator, then after writing the decimal 

point, zeros are used to fill in the deficiency before the figures are 

written, always writing to the right from the decimal point. 

If there are any whole numbers to be written with the deci¬ 

mal, these are written to the left of the decimal point. 

Thus, for example, ^^=0.875, which is read o units, 8 

tenths, 7 hundredths, and 5 thousandths; or, more simply, 875 

thousandths. royg-0-==o.oo47, which is read o units, o tenths, o 

hundredths, 4 thousandths, 7 ten thousandths; or, more simply, 

47 ten-thousandths. 

In the same way we may write : 

5 
4 7 

1000 =5.047; 24805- 
'10 0 0 

24.805 ; 32t 
5 

10 0 =32.05. 

*In Germany, and on the continent generally, a comma (,) is used instead of a period, 
and care must be taken in reading mathematical works to avoid confusion trom this source. 

The period is invariably used in England and America. 
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We see, therefore, that it is easy to write decimal fractions 

without the use of a denominator, and the reverse is also true, 

that any decimal fraction can at once be written with a denomin¬ 

ator, as the denominator will always consist of unity followed 

by as many zeros as there are places of figures following the 

decimal point. Thus we have : o. 875=ryo-5F; o.oo7i==r-0-y0T. 

Examples. Write the following fractions as decimals : 

A=°- 5 

tVV=°- 13 

t$t=°-°3 
101 _ 

1 0 0 0 0 —O.OIOI 

1 —O OOO T 
1 0 0 0 0 

3 _ 
1 0 0 0 — =0.003 

tA=°-75 

iooo o—°-°376 

0.02005 

=0. 5OIOO7 

2 0 0 5 _ 
100000— 

'5 0 1 0 0 7 _ 
1000000 

3*=3-2 

728tVV=728-47 

I0twit=,0-0I5 

I I 110 1 
100000 

5_0JL!__3.— pq 01 2 1000 —du-u1 a 

I I.OI IOI 

Examples. 

fractions : 

°-5+=AV 

Convert the following decimals into common 

0-0I5=drlhr 
2.004 = 2^=1 

0 0 0 

30.07=30^=^1 

o. 005=1 oW 

100.001 = 100 _ 1__1 0 0 0 0 1 
1 "OTTO— 1000 

Conversion of Common Fractions into Decimal Fractions. 

52. 

Decimal fractions are found extremely useful in applied 

mathematics, especially in connection with the extraction of 

roots, and with the use of logarithms, as will be seen hereafter. 

Logarithms could hardly be used without decimals, and, indeed, 

it was the use of decimals which led to the introduction of 

logarithms. Although decimals are most frequently used directly 

in their own form in actual practice, yet it is often required to 

convert a common fraction into the decimal form, and this is 

most readily done in the following manner : Write o for the units 

place, also write the decimal point; annex a zero to the numera¬ 

tor, and divide by the denominator, the quotient will give the 
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number of tenths which the fraction contains, which write next 

on the right of the decimal point (if there are no tenths, write a 

zero in the place); annex a zero to the remainder and divide 

again by the denominator, the quotient will be hundredths ; pro¬ 

ceed thus with the division until as many decimal places have 

been determined as the precision of the calculation demands. 

More than seven places are rarely required ; in many cases two, 

three or five are sufficient. The last decimal figure should be in¬ 

creased by i when the remainder after the last division exceeds 5. 

For example, if the decimal 0.8468 is to be used only to three 

places, the value will be more accurately given by 0.847 than by 

0.846 ; the former is too large by only Tofo-o> while the latter is 

too small by T 0|-0-0-. 

If the denominator of a fraction can be separated into the 

simple factors 2 and 5, as f=-, or •^3Tr=—————, the divis- 
2x2x2 2x2x5 

ion can be carried out exactly, but if the denominator cannot be 

separated into the simple factors 2 and 5, as -|=—^—, or T%= 
2x3 

—-—, the division can never be exactly completed without a 
3X5 

remainder. See §317. 

Examples: 

^=0.1875, exactly. 

0.875, exactly. 

ittt^0,002^ • • • • 

The actual work on the first of the above examples is as 

follows : 

16 ) 3.0 ( 0.1875 
1 6 
1 40 

1 28 

120 
112 

80 
80 

This, expressed in words, would be: 16 into 3, no times; 

16 into 30 tenths gives 1 tenth and 14 remainder; 16 into 140 
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hundredths gives 8 hundredths and 12 remainder; 16 into 120 

thousandths gives 7 thousandths and 8 remainder; 16 into 80 

ten-thousandths gives 5 ten-thousandths. 

The principle of the above method for converting a proper 

fraction into a decimal is easily seen, for if, (according to §48) 

the numerator and denominator of the fraction T3^- are first multi¬ 

plied by the new denominator (in this case 10,000) and then 

divided by the old denominator (16) we have practically the same 
30000 

operation, thus : 
16' 

. 1 8 7 5 . 
'T 0 0 0 0' =0.1875 

16 X IOOOO 

If the common fraction is an improper fraction, the whole 

portion must, of course, be written before the decimal point, 

instead of the o, as directed above, thus : 

^-=2.625; 2|=2.75, etc. 

If any number of zeros be annexed at the right of a decimal 

the value will thereby not be altered, there being no more effect 

than if zeros were placed at the left of a whole number. For 

example: 0.54=0.540=0.5400, etc. 

Zeros are sometimes thus annexed merely to secure uniform¬ 

ity among a number of decimal fractions by making them all of 

the same denomination. When an exact division cannot be 

made in reducing a common fraction to a decimal, it will be 

found that after a certain time the figures will be repeated in the 

same order as before. Such fractions are termed “ periodical’’ or 

“repeating" decimals, and the return of the period indicated by 

dots, thus : -^=0.0505 . . ., with the period 05 ; |=o.o666 . . ., 

with the period 6. 

Examples. Convert the following fractions into decimals. 

If the division cannot be made exactly, five decimal places will 

be sufficient. 

3 _ 
4 - 0.75 

3 10 0_ 
301 - 12.29236 

9 _ 
T6- 0.36 1 5 9 5_ 

' 2TS - 
6.5102 

5_ 
1— 0.71429 3 0 0 _ 

115 1- 0.25929 

1_ 
9- 0.11111 . . . 20-| = 20.375 

2_ 
9- 0.22222 . . . 3°44= 304.71429 

4_ 
9- 0.44444 . . . 

1_ 
9 3- 

0.01075 

1_ 
2- 0.5 1 _ 

10 — 0.1 
2 
¥- 0.4 3 _ 

10 0 0 0.003 
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100 O.O2964 3 7  O.OOIO3 

37rrr— 3 6 0 0 0 
1 0.010IOI . . . 14 1  O.OO352 

9 9— TO 0 0 0 

0.02321 7 _ 
TO — 0.175 

1_ 
8- 

0.125 3 _ 
TO 0 — 

O.OI5 
7 7 _ 

6 0 0- 
O.I2833 . . . 

See Appendix §316. 

53. 

The decimal system is especially convenient when we con¬ 

sider a whole number in combination with a decimal fraction, as 

the same system enables us to pass from the fractional units to 

the whole ones. Thus in the number : 

20704.56803 

we see that ten units of the second decimal place (6) equal one 

unit of the first decimal place (5), since 1 °Xttto ~to 1 *en un^s 

of the first decimal place equal one of the whole units place (4), 

etc. For this reason all calculations with decimals are performed 

in exactly the same manner as with whole numbers, it being' 

only necessary to exercise a little care with regard to the position 

of the decimal point. 

Addition. 

54. 

The quantities to be added are under each other ; care being 

taken to place units of the same kind under each other, units 

under units, tenths under tenths, etc. The addition is performed 

just the same as with whole numbers; for every ten units in any 

column, one unit is carried to the next higher column. If any of 

the quantities contain common fractions they must be reduced to 

decimal fractions before the addition is commenced. For ex¬ 

ample : 

(1) 0.724-0.087-4-2.5+14.0089= 

o. 72 
0.087 

2-5 
14.0089 

17.3159 Answer. 
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(2) 0.05012-I-30.0707-f- 0.66-bf+2I= 

0.050120 

30.0 70707 
o. 666667 

f= 0-833333 
2|= 2.750OOO 

34.370827—Answer. 

(3) 10.3131-[-9.11-h°-5°3X°-003+0* 1 = 

10.313131 

9.111111 

o. 503000 
0.003000 

o. IOOOOO 

20.030242 

Subtraction, 

55, 
The subtrahend is written under the minuend in the same 

manner as with whole numbers, and the subtraction made as 

usual. Common fractions must first be converted into decimals. 

Examples: 

(O (*> 
Minuend 1.0407 8.000 
Subtrahend 0.9745 7-995 

Difference 0.0662 0.005 

(3) (4) 
Minuend 13.66667 2=0.7500 
Subtrahend 3.67809 0.2305 

Difference 9.98858 

Multiplication, 

56, 

Rule i. When a decimal is to be multiplied by a decimal 

unit (such as 10, 100, 1000, &c.), it is only necessary to move 

the decimal point as many places to the right as there are zeros 



in the multiplier. For example : 10X0*045=0.45 ; 100X0.045= 

4.5; 1000X0.045=45; 10000X0.045=450; 100X2.003=200.3. 

Rule 2. In order to multiply two decimals together, pro¬ 

ceed with the multiplication exactly as with whole numbers, pay¬ 

ing no attention to the decimal point; then point off as many 

decimal places in the product as there are in both the factors to¬ 

gether. If the product has fewer places than this requires, sup¬ 

ply the deficiency with zeros. 

Examples: 

0.43 0) 8.034 (3) 0.0478 
0.25 0.46 0.003 

215 48204 0.0001434 
86 32136 

0.1075 3.69564 

4.03 (5) 0.035 (6) 0.056 

2.15 
2.04 24 

2015 140 224 

403 70 112 

806 
0.0714(5 1*344 

8.6645 

In example (1) both factors together have four decimal 

places ; in (2) five, in (3) seven, in (5) four, in (5) five, in (6) 

three. 

The reason for this rule will be apparent if we consider the 

two factors as fractions with their denominators written under 

them, multiplying numerator by numerator and denominator by 

denominator, and then finally write the product as a decimal 

again, without a denominator. Thus : 

°.43X°- 25=i4tftrXi%=iW^=°- io75 

and it is seen at once that the denominator of the product con¬ 

tains as many zeros as there are in the denominators of both 

factors together, which determines the number of decimal places 

in the answer. In the same manner we have : 

8.034X0-46=f-^XT1ftr=IMMI=3-69564. 

o.o56X24=TfJ(5-X24={|^=:=i.344 (see § 51). 
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Examples: 

(7) o.o57X°-005—°-0002^5 

(8) o.205X7-°4=i-4432 

(9) i-09XI-003—1<09327 

(10) 1 iX1-io36=12-J396 

(n) 0.013X101=1.313 

(12) 203.07XI05-002=2I322-756i4 

(13) 100X0.031=3.1 

(14) O. 2XIO°—20 

(15) 1000X31-°451=3 IQ4 5-1 

(16) 21.005X0-74X0-07=i-o88o590 

The above examples are merely stated with their answers 

but should be fully worked out in detail by the student. 

Division. 

57 

Rule i. If a decimal is to be divided by a decimal unit 

(10, 100, 1,000, &c.) it is only necessary to move the decimal 

point to the left, as many places as there are zeros in the divisor. 

For example : 

320.45 

100 

5 • 23 
10 

1.04 

100 

—3- 2°45 

=0.523 

=0.0104 

Rule 2. If the divisor is a whole number, the dividend is 

divided directly by it, continuing the division as far as may be 

desired, instead of setting down the usual remainder. Thus : 

3-645 
8 -=o.455625 

This is as if we said : the 8th part of three units is no unit; 

the 8th part of 36 tenths is 4 tenths, and 4 remainder ; the 8th 

part of 44 hundredths is 5 hundredths, and 4 remainder, &c., &c. 

In like manner we have : 

0.06305 
=0.005254 

12 



Rule 3. If the divisor is a decimal, proceed as follows : 

Move the decimal point in the divisor as many places to the right 

as are necessary to convert it into a whole number. Also move 

the decimal point in the dividend to the right as many places as 

has been done in the divisor ; then proceed as in rule 2. 

For example : 

Q-Q57_ ? 

3 •2 

Here the divisor has one decimal place, so the decimal point 

must be moved to the right one place in both numbers, and we 

have 

Q-57 
32 

=0.01781 

This follows from the fact that we can multiply both num¬ 

erator and denominator of a fraction by any number without 

changing its value and the above operation is practically as fol¬ 

lows : 

Again : 

o.057__o.Q57X10_°- 57 
3.2 3.2X10 32 

=0.01781 

Q-35 =? 
0.4073 

Here the divisor has four decimal places, and hence the dec¬ 

imal point must be moved four places to the right in both num¬ 

bers, and we have 

Q-35 
0.4073 

35oo 

4073 
=0.85932 

The following are additional examples of the same principle : 

o134=34=2 
0.17 17 

because 
Q-3 4_o. 34X 1QO_34 
0.17 o. i7XIO° r7 

8 8XIO°o 8000 
- =— \ . -=- =32.653064 

0.245 0.245XI000 245 

0.3645^0.364 5 X10 _ 3 - 645 
0.8 o.8XIQ 8 

=0.455625 
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When a decimal fraction is to be multiplied by a common 

fraction, the latter may first be converted into a decimal, but it is 

usually simpler to multiply the decimal by the numerator of the 

common fraction, and divide the product by the denominator* 

2X6.0435 
Thus : 1X6.0435=^3-^= 

—2X2.0145=4.029 

3V025 0.75 0 
IXo. 2 5=X~= 4°'18 7 5 

If a decimal fraction is to be divided by a common fraction, 

we have simply to multiply it by the fraction inverted. Thus : 

, o 4X0.326 
0.32 6-4- f=o. 3 2 6X4=--= 

1/ 

_I.:l04=o.43466 
3 

If a common fraction is to be divided by a decimal we must 

first convert the common fraction into a decimal, or else we may 

convert the decimal into a common fraction and then invert it 

and multiply thus : 

3 

or else : 

3 

4 

0.75 750 , 
0.321=-—=--=2.3364 

0.321 321 

321 3V .1000 250 , 
--=-X-= „=2.3364 
1000 4 321 107 

Examples : Perform the divisions indicated in the following: 

examples, carrying- the results out to four places of decimals . 

(I) 
|=o. 6028 

0.506 
(2) 

1 
O

O
 

u
n

 
O

 

O
 

0.23 

(3) 2 '°-~=2.6776 
O . 76 

(4) 
0.03 _ 

8.134 

(5) 3'2°7=°-785 
4.085 

(6) 
0.001 

T8T-' 

(7) —“o=49-3°97 
0.507 

(8) 
0.0453 

8 

(9) 

2.l6l6... D 
-O IoOI (10) 

0.04 

1 2 10 

=0.2513 

=0.0056 
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(») 

('3) 

(i5) 

(■7) 

(i9) 

(21) 

(23) 

540.047 
---=0.540047 

1000 
(12) 

^=84.71 
IOO 

(14) 

** —°-°35 
1000 

(16) 

—0.9881 
1 .012 

(18) 

-|-f- 0.14=2.0408 (20) 

0.1875-^1=0.25 (22) 

0.435 21=°-1 5^2 (24) 

o. 04 
=o. 0004 

:Q .OI 

IOO 

I 

IOO 

I 

0-305 

2 

3- 05' 

4- 03-^1=6.045 

0.056 -f--|r=0. 1307 

.=3-2787 

=0.6557 

0.05=7.5 

(25) °'°3XI=°-4 
o. 05 



BOOK VI. 

Calculating with Denominate Numbers. 

After having learned how to calculate with abstract numbers 

it is easy to reckon with denominate quantities, as the only thing 

necessary is to learn the different kinds of units in use, as well 

as their sub-divisions ; that is to say, the various systems of 

weights, measures, and monetary values. 

Addition. 

58. 

When magnitudes of different denominations are to be added 

together, all quantities of the same denomination are set 

under each other, and each column added, beginning with the 

lowest denomination. The sum of each column, as added, is 

reduced to that of the next hig her denomination. 

Examples: 

(0 (*) 

Dollars Cents Kilograms 

8 45 27-537 
11 32 29.756 

126 89 37-825 

0 28 20.762 

17 2 8.059 

163 96 123.939 k 

(3) (4) 

Hours Minutes Seconds Feet Inches 

5 37 l8 I 2 7 
l8 48 l6 23 5 

9 20 39 9 11 

12 11 42 27 2 

5 7 8 84 3 

51 h. 5 min. 3 sec. 157 ft. 4 m. 
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Subtraction* 

59* 

The quantities are placed as in addition, that is, those of 

like denomination under each other. If any quantity in the 

subtrahend is greater than that in the same denomination of the 

minuend, one unit is taken from the next higher denomination of 

the minuend and reduced to the next lower denomination. 

Thus : 

Hours Minutes Seconds 

(i) io 45 3° 

7 59 45 

2 h. 4 5 m. 4 5 sec. 

The preceding examples are all m such well-known denom¬ 

inations that no especial explanation is necessary. There is, 

however, another case relating to the subtraction of one quantity 

of time from another, which will here be explained. 

When it is desired to find the difference between two quan¬ 

tities of time, both of which are reckoned from the same starting 

point, that is, from the year of the birth of Christ, and hence 

expressed in the form of dates, a somewhat different procedure 

is necessary. We must remember that the civil day begins at 12 

o’clock midnight, and lasts for 2X12=24 hours. We also have 

the times given in dates, but require the answer to tell the num¬ 

ber of years, months, days and hours which have elapsed between 

them. 
Hence, for instance, at 7 o’clock in the evening, on April 25, 

1834, there had elapsed from the Christian era, 1833 whole years, 3 

whole months, 24 whole days, and 12+7=19 hours. The num¬ 

ber of days in the various months must be memorized, and this 

task can be made easy by arbitrary rules. February is the 

exception, having 28 days, except in leap year when it has 29. 

(A leap year is one in which the date can be divided by 4 without 

a remainder.) If we repeat the names ot the months over, 

starting with January, and counting on the knuckles and the 

spaces between the knuckles, every month which falls on a 
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knuckle will contain 31 days, and those which fall between the 

knuckles will have 30 days, excepting February.* 

We will now illustrate by an example : 

(1) How much time has elapsed between 5.31 p. m., October 

24, 1790, and 11.27 a. m., March 22, 1832? 

Operation : 
Years Months Days Hours Min. 

2 9 
1832, March 22, 11 h., 27 m., a. m. = i83I 2 21 11 27 

1790, October 24, 5 h., 31 m., p. ^. = 1789 9 23 17 31 

Difference 41 4 26 17 56 

Note that 1832 is a leap year, and hence the month preceding 

March is February, 29 days, and hence 29 days are added to 21 

when a month is borrowed from the column of months. 

(2) What will be the date when 60 years, 2 months, 16 

days, 17 hours and 50 minutes have elapsed since 11.25 p- M-> 

July 17, 1819 ? 
Years Months Days Hours Min. 

The given date is 1818 6 16 23 25 

Adding 60 2 16 17 50 

1878 9 3 17 15 

Hence the date is 5-15 p. m., October 4, 1879. 

Multiplication* 

60* 

The multiplier must itself always be an abstract number, 

since no denominate number can be multiplied by another de¬ 

nominate number. If the multiplicand is of several denomina¬ 

tions, each of these is multiplied by the multiplier separately, 

and the product reduced to the next higher unit. 

We must be careful to observe that what may at first appear 

to be the multiplying of one denominate number by another is 

really only apparently so. 

♦ This is an old German rule. In England and America everyone goes by the old jingle : 
“ Thirty days hath September, 

April, June and November. 
All the rest have thirty-one. 
Excepting February alone, 
To which we twenty-eight assign 
’Till Leap Year gives it twenty-nine.” 



Suppose we ask how much 7 pounds of a given article would 

cost at $6.72 a pound—we have : 

$6.72 

7 

$47-°4 

Here we have not multiplied dollars by pounds, although it 

may look so. One pound costs $6.72, hence 7 pounds cost 7 

times as much, and the multiplier 7 is an abstract and not a 

denominate number. 

Examples, (i) A meter contains 100 centimeters. How 

much is 5-If- times 7 meters, 83 centimeters ? Ans. 44 m., 74 cm. 

(2) A kilogram contains 1000 grams. How much is 2| times 

2 kilograms, 430 grams? • Ans. 6 kg., 682.5 grms. 

(3) Multiply 3 hours, 26 minutes, 12 seconds by 

Ans. 2 hrs., 51 min., 50 sec. 

Division, 

6t. 

First Case. If it is required to divide the dividend into a 

given number of parts, the divisor is always an abstract number, 

while the quotient, being a part of the dividend, is of the same 

denomination. The highest units are divided first, and the 

remainder after each division reduced to the next lower unit. 

For example: Required the 8th part of 29 days, 15 hours, 14 

minutes. We have : 

Days Hours Min. 

8 ) 29_ 15_14 

3 d. 16 hrs. 54 \ min. 

Second Case. If both divisor and dividend are denominate 

quantities, they must both be reduced to units of like denomina¬ 

tion, whether higher or lower, since division can only be per¬ 

formed with quantities of the same denomination. The quotient 

in this case is always an abstract number, and simply indicates 

the number of times the one quantity is contained in the other. 
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For example : 

How many times is 3 hours, 20 minutes contained in 11 

hours, 40 minutes ? 

11 hours, 40 minutes=700 minutes. 

3 hours, 20 minutes=200 minutes. 
_T__o.il—■? 1 times 
2 00—3 2 

Examples : 

(1) What is the 24th part of 130 dollars and 20 cents? 

Ans. $5-42|. 

(2) How many times greater is 8 metres, 11 centimetres, 

than 2 metres, 6 centimetres ? Ans. 3 J-||. 



BOOK vn. 

Direct, Inverse and Compound Proportion. (The Rule of Three.) 

Direct Proportion. 

62. 
When two quantities bear such a relation to each other that 

when either one of them alters its value in the slightest degree, be¬ 

coming either greater or smaller, the other becomes also propor¬ 

tionally greater or smaller, the two quantities are said to be in 

Direct Proportion to each other. Thus, for example, a number 

of articles and their value are in direct proportion to each other 

since it is evident that the value of two or three times the number 

would be two or three times as great as that of the original 

number, or that | the original number would be worth ^ the 

value. 

Examples of this sort, in which the variation of one magni¬ 

tude is given and the corresponding variation is required of some 

magnitude which is dependent upon the given one, are of much 

importance and frequent occurrence in every day life. The 

principle of stating and solving such problems is always the same, 

and when one understands the simplest examples, he can readily 

solve any which may occur. Example. If 5 yards of cloth cost 

54 shillings, what would be the cost (in the same proportion) of 

100 yards ? 

First Solution. As we must pay 54 shillings for every 5 yards, 

we may consider 5 yards as a unit of measurement, and hence 

shall have to pay as many times 54 shillings as 5 is contained in 

the given number of yards. Therefore we have 

I00^dSlX54 shillings=-i^X54=2oX54=io8o s. 
5 ycls- 

Second Solution. We may reduce the given value first to the 

actual unit of measurement, and say : If 5 yards cost 54 shillings 
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i yard will cost i as much, that is -$J, shillings, and ioo yards will 

cost ioo times as much, whence : 

iooX\4:=io8o shillings (see § 60). 

Either of the above solutions may be readily stated in the 

form of a rule of Direct Proportion, or the so-called “ Rule of 

Three.” * 

We may say : If 5 yards cost 54 s., what will be the cost of 

100 yards? and multiply the second and third quantities together 

and divide by the first, considering the first and third quantities, 

both having the same name, as undenominate numbers. 

The operation may very often be simplified by factoring the 

numbers and canceling out those factors which appear in both 

dividend and divisor. 

If the first and third quantities are not of the same denomin¬ 

ation they must first be reduced either to the next lower unit or to 

the highest unit; the latter often involving the least labor, since the 

smaller units may at once be put in the form of a fraction of the 

higher. (See §61, 62.) 

When two quantities stand in Direct Proportion to each bther 

we may avoid mistakes by saying mentally “the greater, the 

greater,” or “the less, the less,” and thus prevent confusion with 

Inverse Proportion, which will be explained hereafter. Thus in 

the above example, 100 yards is greater than 5 yards, and 1080 

shillings is greater than 54 shillings. If the question had been : 

100 yards cost 1080 shillings, how much would 5 yards cost? we 

should have had 5 yards is less than 100 yards, and so 54 shillings 

is less than 1080 shillings. It must therefore be remembered that 

in Direct Proportion both quantities either increase or diminish 

together. 

Examples : 

(1) If $100 earns $5 interest in one year, how much will 

$625 earn in one year? 

Answer. i|tX5—$31 i interest; i. e., “the greater” capital 

“the greater” interest, hence 5 will be contained in the answer as 

often as 100 is contained in 625 ; or, if 100 give 5, how much will 

625 give ? 

(2) What will be the interest on $1065.25 for one year at 5 

per cent. ? (By per cent, is meant simply the interest on every 

* Called the “ Rule of Three” because three quantities are given and the fourth required. 
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hundred, i. e., at a rate of 5 per cent, the interest is 5 dollars for 

every hundred dollars, 5 cents for every 100 cents, etc., etc.) 

Answer. ^53. 26 

(3) If $14,560 earns $364 interest in one year, what is the 

per cent. ? That is, what interest would $100 earn? 

Answer. Tif§TX364==2i%. 

The symbol % is used to indicate per cent. 

In the calculation of interest a certain time is always given, 

i. e., 1 year, J year, 1 month, etc. If, therefore, the time is 

greater or less than the unit for which the rate of interest is 

stated, the time-unit must be taken as many times, or parts of 

times, as the question states. For example : 

(4) What will be the interest on $600 in 3 years, if it earns 

4% a year} i. e. if the rate is 4% a year. 

Answer. J-^g-X4X3=$72- We multiply by 3 because it 

would earn 3 times as much in 3 years as it does in 1 year. 

(5) What is the interest on $34. 50 in 6 years, 3 months at 2\% ? 

Answer. 3 ^Q"-X2iX6i= 

_ 69 y/ TfN / 2 5  _L_6JL — $c_JL 

“2XlOOX¥A * “2X4X4“ 32 ~®532 

or, converting ^ into a decimal=$5.03 

(5) What will be the interest on $73.75 for 14 days at 5% a 

year ? 
73 75 

Answer. —X5XtA= 14•144 cents, or 14 cents. 
100 ,iD0 

When a bill is to be discounted the discount is a certain per¬ 

centage calculated for the length of time which will elapse before 

the bill falls due, this amount, oq discount, being deducted from 

the value of the face of the bill, gives its present value. 

Example : 

(6) A draft fon$6oo at 4 weeks, is to be discounted at the 

rate of 8 per cent, (a year), how much will the discount be ? 

Answer. f£ftX8XA=<7y=#3 A- 

In countries where the money is based on the decimal sys¬ 

tem it is best to make all interest calculations in the decimal 

system also, as this admits of the use of very simple methods, and 
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avoids the introduction of awkward fractions in the final result. 

The best plan is to reduce the time to months and decimals 

of a month, and, as the legal month consists of 30 days, we can 

always reduce days to tenths of a month by dividing by 3. 

Thus, 5 months, 18 days=5.6 months; 2 years, 5 months, 18 

days—29.6 months. 

The rate for 1 month is ^ of the rate for 1 year, hence we 

have only to divide the capital by 100 and by 12, and multiply by 

the rate and the time (in months and decimals) to obtain the in¬ 

terest. 

Example : 

(7) What is the interest on $1252.75 at 6 per cent, for 3 

years, 6 months, 12 days? 

Answer. 3 yrs., 6 mo., 12 d. =42.4 mo. 

hence, —75^—XAX42.4=1265. 58. 

In business and commercial establishments, where calcula¬ 

tions of interest and percentages are constantly required, interest 

tables are used, such tables having been computed in a very 

complete and exhaustive manner. 

Inverse Proportion* 

63* 

When two quantities bear such a relation to each other 

that when either one of them alters its value in the slightest 

degree, becoming either greater or smaller, the other becomes 

inversely smaller or greater, the two quantities are said to be in 

Inverse Proportion to each other. 

It must always be remembered that in hiverse proportion the 

two quantities vary in the opposite direction, one becoming 

smaller as the other becomes greater, or greater as the other 

becomes smaller. This can be memorized by saying mentally : 

“the more—the less,” or “the less—the more.” 

If, for example, 4 workmen can accomplish a given piece of 

work in 6 days, twice as many workmen, that is 8 men, will do 

the work, not in twice the time, but inversely, in one-half the 

time; hence “the more” the men, “the less” the time, and 

therefore we say that the number of men and the amount of time 
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stand in inverse proportion to each other. In like manner, if 4 

men can accomplish a piece of work in 6 days, and it is asked 

how many men will be required to accomplish it in 2 days, we 

see clearly that the number of men must be increased in the same 

proportion as the time is decreased. We must learn in all exam¬ 

ples of this sort, to remember that the quantity about which the 

question is asked, is to be divided by the quantity which is given 

(this latter being regarded as a scale or unit of measurement) 

and then use the quotient to divide the quantity whose magnitude 

has changed, or (what is the same thing) multiply by the quotient 

inverted. 

Stating this as a Rule of Three, we must multiply the first 

two together and divide by the third, and as this is the inverse of 

the rule for direct proportion, it may be called the Inverse Rule 

of Three. 

Examples: 

(1) 6 men can perform a piece of work in 3 days, how many 

men will be required to do it in 2 days ? 

Answer. JX^=9 

or, If 3 days require 6 men, how many will be required 

for 2 days ? 

3X6=18 

18-4-2=9 men. 

(2) 6 men can perform a piece of work in 7 hours, in how 

many hours can it be done by eight men ? 

Answer. fX7=5i hours. “The more” men “the less” 

time. 

(3) It requires 3^ yards of cloth 1^ yards wide to make a 

coat, how many yards will it take if the cloth is | yards wide ? 

“The less” the width, “the more the length. 

}X3i=|Xi=V=5.833 yds. 
4 

(4) There are in a fortress 600 men, supplied with a quantity 

of bread which will last them 4 months at 2 pounds a day for 

each man. If 400 more men are placed in the fortress, and the 

same amount of bread is required to last 4 months, how much 

will the daily allowance be for each man ? 

Answer. tVwX2 lbs. = i.2 lbs. 
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Compound Proportion* 

64* 

A quantity may depend upon several other quantities in such 

a manner that it may be either in direct or inverse proportion 

with each of them, and at the same time be in compound propor¬ 

tion with all of them together. For example, if 6 stone masons 

can in 7 days build a wall 4 stones thick, 3 feet high and 120 feet 

long, and it is required to know how long a time would be re¬ 

quired for 12 stone masons, working at the same known rate, to 

build a wall 2 stones thick, 9 feet high and 60 feet long, we can 

solve this simple problem, or any similar one in the following 

manner : 

The question is stated by writing the known case under the 

unknown, in such a manner that like quantities shall be under 

each other, thus : 

12 men ? time 2 stones thick 9 ft. high 60 ft. long (unknown case) 

6 men 7 days 4 stones thick 3 ft. high 120 ft. long (known case) 

Here we have the unknown quantity (time) in the upper line, 

in inverse proportion to the number of men, and in direct pro¬ 

portion to the other quantities, since we see that “ the more” 

men “the less” time (hence inverse), but “the greater ” thickness 

“the greater” time (direct), the higher, the greater time (direct), 

and the longer, the greater time (direct). 

We first determine how many times greater or smaller the 

time would be, taking only one condition, such as the number of 

men, as different and assuming for the time that the other con¬ 

ditions, i. e., thickness, height and length, being equal. 

We see that, all other things being equal, the increase in the 

number of men will make a proportional reduction in time, 

namely, in the above example, ^ the length of time ; again we 

see that if we consider only the thickness, the thinner wall will 

only take |- the length of time, hence both together will give 

AXf as much time as the given case. Again we see that the 

required wall is the height of the given wall, so that independ¬ 

ently of the greater number of men and the thinner wall, the 

time will be greater on account of the greater height, giving 

AXfXf the time; but finally the required wall is not so long as 

the given one by j6^-. 
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The required time therefore is : 

=AXIXIXiVfrX 7=21 days. 

It will be seen that the whole operation consists in the con¬ 

tinued multiplication of a number of fractions (or ratios). The 

successive ratios are first multiplied together, and the product, 

which may be termed a compound ratio, is then multiplied by 

the quantity in which the change is required. 

Examples: 

(1) If 6 men can dig a ditch 40 yards long in 8 days, work¬ 

ing 9 hours a day, how long a ditch can be dug by 4 men in 18 

days, working 10 hours a day? All conditions of width, depth, 

soil, etc., are supposed to be the same in both cases. 

Answer. 66| yards=66 yds., 2 ft. 

Men Days Hours Length 

4 18 10 ? 

6 8 9 40 yds. 

Here all quantities are in direct proportion, hence : 

fX¥XYX40=66§. 

(2) If 6 men working 9 hours a day, can build a wall 40 

yards long in 8 days, how many days will be required for 4 men 

working 10 hours a day to build a wall 66§ yards long? 

Answer. 
Men Days Hours Yards =3 Feet 

4 ? IO 66§ =200 

6 8 9 40 =120 

fX8XAXf#$=l8 days- 

The men are in inverse proportion, the more men the less 

time; the hours are inverse, the more hours per day the fewer 

days ; the lengths are direct, the longer the wall the longer the 

time. 

(3) 1500 men can subsist on the provisions in a fortress for 

30 days if each man consumes i pound of bread per day. If 

now 500 additional men are thrown into the place and they are 

only required to hold out 24 days, what will be the allowance 

per man ? 

Answer. ilKXffX1 =rt lbs* 
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(4) If 40 weavers can weave 200 pieces of goods, each piece 

48 yards long and 40 inches wide, in 7 weeks, working 6 days a 

week and 12 hours a day ; how many pieces will be made by 60 

weavers, working 8 weeks, 5 days a week and 8 hours a day, if 

each piece of goods be 36 yards long and 28 inches wide? 

Men Pieces Weeks Days Hours Length Width 

60 p 8 5 8 36 28 

40 200 7 6 12 48 40 

Direct Direct Direct Direct Inverse Inverse 

Answer. f$X 2°°XfXfX AX 4 8\/ 4 0. 
3 6A2'8' 

_2 ? 3 5 8 
—3024¥T pieces 

See Appendix §322. 



BOOK vm. 

Proportional Numbers (Ratios) and their Use. 

65. 

In many mathematical researches the actual values of the 

subjects are not required, but only their relative values, or the 

ratio which they bear to each other. 

By ratio is meant, how many times greater or smaller one 

magnitude is than the other. 

Instead of stating the actual values in numbers, we may 

divide one of them by the other, and thus use the quotient, or 

ratio, instead. For instance, if one person, A, has $200, and 

another one, B, has $600, we may say that the possession of the 

first person is to the second as 200 is to 600, or more briefly, as 

2 is to 6 ; which may be written “ as 2 : 6, the colon here being 

used as an abbreviation of the words “is to”, as well as an 

indication of division. We will always have the same relation 

existing if we multiply or divide both numbers by the same 

quantity, and hence may have 1 : 3 as J : |, which is read : 1 is 

to 3 as \ is to J. The double colon (::) or the sign of equality 

(=) is usually used for the word “as” between two equal ratios, 

thus : 1 :3 :: J : |, or 1 : 3=5 : J and it is apparent that the first 

number divided by the second, gives the same result as the third 

divided by the fourth. This follows also if we regard the colon 
i 

as a symbol of division (which it still is), for we have the 
4 

truth of which is obvious, and hence we say that the two pairs 

of quantities are in the same ratio. This question of ratio is not 

limited to quantities; suppose there are four cities A, B, C, 

D, of which the populations are in the proportion (or ratio) of 3, 

2, 6, and 4, or as written 3:216:4, the relation will be the same 
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if we divide them all by any given number, and if we divide 

successively by 3, 2, 6, and 4 we shall have 

A B C D 

as 3 : 2 : 6 : 4 

or as 1 . 2 
• 3 ■ : 2 : . 4 

■ 3 
or 3 

2 : 1 : : 3 : 2 

or 1 
2 

. 1 ■ • 3 • 1 : . 2 
3 

or 3 
4 

. 1 
* 2 

• 3 
• 2 : 1 

That is, for example, the population of A is to C, as 3:6 or 

as 1 : 2, or as f : 3 etc., and the population of A is to D, as 3 : 4, 

or 1 :-f or as \ : §, etc., etc., 

66* 

We see also by the preceding section that when we have 

the ratios of several quantities expressed as numbers, that we 

know just how many times each one is greater or smaller than the 

other. Thus we see that B has § times as many inhabitants as 

A, and that C has twice as many, and D | as many. Also that 

A has J- as many inhabitants as B, while C has 3 times and D 

twice as many. 
When therefore we have the ratios of a number of quantities 

given, and the actual value of one of them is known, we can 

easily find all the others. We have only, by inspection to select 

the ratio which belongs to the known quantity and divide all the 

others by it, thus making the ratio of the known quantity equal 

to unity. (See § 322) 

Suppose again, for example, that we know the population of 

the four towns to be in the ratio of 312:6:4, and know that A 

has 6000 inhabitants, we can find the population of the other 
.. • 

towns as follows : 

A B C D 

are as 3 2 64 

dividing by 3—1 | 2 ^ 

whence since A=6ooo=6ooo inhabitants 

B=§X6ooo=4ooo “ 

0=2X6000=12000 “ 

D=-JX6ooo=8ooo “ 
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Examples: 

The age of a person, A, bears to that of a person, B, the ratio 

2:5. A is 20 years old, how old is B ? 

Answer. 1X20=50 years. 

67. 

Ratios are often stated so that one of them is equal to 

100, if as is often the case, it is desired to express them in 

percentages. For example, the mark is to the franc as 25 is to 

20, or as 100 : 80, so that the franc is worth 20 per cent, (symbol 

%) less than a mark, and any value in francs must be multiplied 

by t8q-°q- or o. 80 to obtain the value in marks. 

68. 
Ratios may be used to divide a given magnitude into propor¬ 

tional parts. This operation is best explained by a practical 

illustration. 

Suppose it is required to divide the number 72 into 3 parts, 

which shall bear to each other the relation 2:4:6. This is done by 

dividing the given number by the sum of the proportional num¬ 

bers, and then multiplying the quotient by each of them sepa¬ 

rately. 

Thus if we divide 72 by 2—f-4—j—6=12, we obtain the 12th 

part of 72. If then we take this 12th, twice, 4 times, and 6 times, 

we shall have three products which still are in the given propor¬ 

tion, and also when added together make the given number. 

This gives also a proof of the correctness of the work, since 

should equal the whole amount. 

The work in the example is as follows : 

7±_ 
' 2—j—4—|—6 

the second part=4X6=24 

the third part=6X6=36 

Proof total, 

The 1st part=2X .=2X6=12, i. e. T%y of 72. 

_4_ 
12 

6_ 
1 2 

7 2   _1_2. 

i£   12 

Example : Four merchants enter into a speculation, each 

contributing the following amounts: 

A, $600, B, #750, C, $1200, and D, $1050. The venture 

resulted in a profit of $1500, which was divided in the same pro¬ 

portion as each had contributed. How much did each receive? 
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Answer. A, $250, B, $3I2b c> $5°°> and D> $437b 

Explanation : The total amount contributed was 

6oo-)-75o-(-i 200-1-1050=3600 

Hence we have A=^ftrXI 500=1250 

B=3Vo°oXi 500=131 2l 

C=UUX150o=$5oo 

D=iU$Xi5oo=$437i 

The above example is based on the assumption that the 

money of all four men was in use the same length of time. 

When the different amounts are not all invested in an under¬ 

taking for the same length of time, a compound proportion, in¬ 

cluding the various amounts of time, must be made. 

For example : Suppose three persons enter into an undertak¬ 

ing; A, contributes $6 for 2 months; B, $12 for 4 months; and C, 

$18 for 6 months. At the end of 6 months the undertaking is 

completed and results in a gain of $42, to be divided among the 

three men. The correct proportion is obtained in the following 

manner. A, has contributed $6 for 2 months, which is the same 

as 6^2^$!2 for one month. This is clear, for it would have 

been just the same if one person had put in $6 for one month 

and then drawn out and a second person had put in $6 for the 

second month, and the contribution of two persons $6 for one 

month is the same as one person $12 for one month. 

In the same way we see that the use of B’s $12 for 4 months 

is the same as i2X4=$48 for 1 month; and C’s 18 for 6 months 

is =18X6=$ 108 for 1 month. 
In this way we reduce the investments all to the same unit 

of time, i. e., one month, and can then proceed as before. Thus : 

A, $6 for 2 months=$ 12 for 1 mo. 

B, $12 “ 4 “ =$ 48 “ “ 

■ C, $18 “ 6 “ =$108 “ “ 

Total, $168 

The total gain is $42, hence the shares are as follows : 

A=I2Xt46I= 1 2Xi=$ 3 

B = 48Xi=$12 

C =i°8Xi=$27 

Proof total, $42 
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Example : In a business venture in which $200 was lost, the 

following interests were held : A put in $200 for 5 months; B, 

$500 for 2 months; C, $300 for 4 months; and D, $600 for 3 

months. In what proportion should the loss be shared? 

Answer. A, $40; B, $40; C, $48; D, $72. 

69. 

Ratios, or Proportional numbers are of much use in deter¬ 

mining the quantities to be used in various compounds and mix¬ 

tures, the proportions being given, and always available for pre¬ 

paring any desired quantity of the mixture. 

Such instances are constantly occurring in practical chemistry, 

technology, etc. A single example will make the method under¬ 

stood so that it can be applied to any case in actual practice. 

Example : Common gunpowder is a mixture of saltpetre, 

sulphur and charcoal, the proportions by weight being 16:2:3, 

that is, 16 parts of saltpetre, by weight, must be mixed with 2 

parts of the same weight of sulphur, and 3 parts of powdered 

charcoal. What will be the number of pounds of each material 

to make 1470 pounds of gunpowder? 

Explanation : If we divide the total quantity, 1470, by 

16—(—2—)—3=21, we will obtain the number of times each propor¬ 

tional number must be taken to give the amounts of the corres¬ 

ponding materials. Hence 1470 lbs. of gunpowder will consist of 

1470 -f- 21 = 70 

70X16=1120 lbs. saltpetre 

70X 2= 140 lbs. sulphur 

70X 3= 210 lbs. charcoal 

Proof total, 1470 lbs. gunpowder 

If we desire to state the percentage of each article in a given 

compound, we consider the total weight to be divided into 100 

parts. By dividing 100 by the sum of the proportionate parts 

and multiplying the quotient by each of the proportionate num¬ 

bers, we obtain the number of hundredths, i. e., the percentages. 

Thus in 100 parts of gunpowder we have : 

"WX16=76/r parts saltpetre=76g^-% 

¥r°-X 2= 9U Parts sulphur=9^% 
¥r°‘X 3—x4/r parts charcoal=i4^-%' 

Total, 100 parts gunpowder 

See Appendix §323. 



BOOK IX. 

Weights and Measures* 

70* 

We have already assumed some familiarity on the part of 

the student with a few of the terms and values used in denomin¬ 

ate numbers, such as pounds, miles, hours, minutes, seconds, etc. 

The various denominate units differ in importance to differ¬ 

ent men, according to their kinds of work and their nationality, 

and it is rarely necessary for many tables to be memorized by 

any one person, each man becoming familiar by practice with 

those which he is most frequently called upon to use. 

The principal tables of denominate quantities will here be 

given in condensed form, with a few words of explanation, and 

reference must be made to special works upon the subject for 

special information. 

Measures of Length—United States and Great Britain* 

12 inches=i foot. 

3 feet=i yard=36 inches. 

5± yards=i rod=i6i feet=i98 inches. 

40 rods=i furlong=2 20 yards=66o feet. 

8 furlongs=i mile=320 rods=i76o yards=52 8o feet. 

Of the above, the inch and the foot are most frequently used 

by mechanics. The ordinary two-foot rule has the inches sub¬ 

divided by the system of repeated halving, thus giving | 

and of an inch; and this is sometimes carried as far as to 

include 32nds and 64ths. This system, however, is now being 

used principally by carpenters, builders, etc., while machinists 

are generally using scales, calipers and measuring tools which 

have the inch subdivided into ioths, iooths and ioooths. 

The yard is much used by shop keepers for measuring cloth, 

carpet and fabrics generally, and is by them also subdivided into 

halves, quarters and eighths. 
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For long distances the mile is universally used, and portions 

of a mile given either in furlongs and feet, or in halves and quarters. 

For engineering measurements steel tapes are much used, 

ioo feet long, with the feet subdivided into ioths, instead of 

inches, thus giving ioths, iooths and ioooths of the length of 

the tape. 

The mile given in the above table is called the statute mile, 

and is always used on land. The nautical mile, used only at sea, 

is equal to 6,080 feet, being about 15 per cent, longer than the 

statute mile. 

The only other system of measures of length which is 

extensively used is the Metric System. 

Metrical Measures of Length—Used generally on the Continent 

of Europe* 

The unit is the Metre=39-37 inches. 

The metre is subdivided decimally and multiplied decimally, 

as below : 

1 millimetre=T-u-1Q-0- metre=o. 03937 ins. 

1 centimetre=T-J-Q metre=o. 3937 ins. 

1 decimetre=r'L- metre=3.937 ins. 

1 metre=39-37 ins. =3.2808 ft. 

1 dekametre=io metres=32.8087 ft. 

1 hectometre=ioo metres=328.o869 ft. 

1 kilometre=iooo metres=328o.869 ft.=o.621 mile. 

In using the metric system it is important to think of the 

metre as a main unit and the subdivisions as decimals of it. In 

mechanical and scientific work the metre and the millimetre are 

usually employed, and sometimes the centimetre, the decimetre 

more rarely. In the machine shop, for instance, measurements 

are usually given directly in millimetres, as 325 mm., not 3 dcm., 

2 cm., 5 mm. 

For longer distances the kilometre is used exclusively, 

and should be kept in mind as the unit of out-door measurement, 

with the metre, its part, for all subdivisions ; the dekametre 

and hectometre being hardly used at all. It is very desirable 

that the student should learn the values of these measurements 

directly from the use of a metric scale, and not by transforma¬ 

tion into English measures. When such transformations must be 
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roughly made, however, it will be convenient to remember the 

following : 

i millimetre==^g- inch, approximately. 

i decimetre=4 inches, “ 

i metre=3 ft., 3 ins., and § ins., very closely. 

1 kilometre=g of a mile, nearly. 

Measures of Weight—United States and British* 

The commercial system is the Avoirdupois ; the unit being 

the pound of 7000 grains. 

The system for weighing gold and silver is called Troy 

Weight, of which the pound contains 5760 grains. 

For medicines and drugs the Apothecaries system is used, 

the grain and pound being the same as in Troy Weight, but the 

subdivisions of the pound being different. 

Avoirdupois or Commercial Weight* 

1 dram=2 7.34375 grains 

16 drams=i ounce=437^ grains 

16 ounces=i pound=7ooo grains. 

28 pounds=i quarter. 

4 quarters=i hundredweight=i 12 pounds. 

20 hundredweight=i ton=2 240 pounds. 

It will be noticed that the “hundredweight" (so called) is 12 

pounds more than 100 pounds, this having been the allowance 

for loss in handling merchandise in old times. The Ton of 2240 

pounds, is sometimes called the long ton in commerce as dis¬ 

tinguished from the short to7i of 2000 pounds. When no explana¬ 

tion is made, the long ton of 2240 pounds is the legal value of 

the ton, but in engineering calculations, such as the load upon a 

bridge, the pressure of a mass of earthwork, or the lifting ca¬ 

pacity of a crane, it is customary to use the word ton to mean 

2000 pounds. In practice a hundredweight (used as one word) 

means always 112 pounds, while a hundred pounds, means 100 

pounds exactly. 

Troy Weight* 

1 penny weigh t=2 4 grains. 

20 pennyweights=i ounce=48o grains. 

12 ounces—1 pound Troy=576o grains. 
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Apothecaries Weight* 

i scruple=20 grains 

3 scruples=i dram=6o grains. 

8 drams=i ounce—480 grains. 

12 ounces=i pound=576o grains. 

Measures of Weight—Metric System* 

The Metric unit of weight is the gram, which is the 

weight of a cubic centimeter of pure water, and which is equal to 

15.432 grains. The gram is subdivided and multiplied deci¬ 

mally as follows : 

1 milligram=1 gram=o.oi 5432 grains. 

1 centigram=1-J-Q gram—0.15432 grains. 

1 decigram=11Q-gram=i. 5432 grains. 

1 gram=i gram= 15.432 grains. 

1 dekagram=io grams=i 54.32 grains. 

1 hectogram=ioo grams=i 543.2 grains. 

1 kilogram=icoo grams=2.2046 pounds. 

1 myriagram=ioooo grams=22.046 pounds. 

1 metric ton=iooo kilograms=2 204.6 pounds. 

In practice many of these subdivisions and multiples are 

rarely used. The gram and the milligram, are used by chemists 

and physicists all over the world. The kilogram is used almost 

everywhere on the continent of Europe except in Russia, and 

its subdivisions are generally referred to as kilo, b kilo, etc., 

instead of the tabular names, while the multiples are similarly 

named as 10 kilos, 100 kilos, etc. It will be noticed that the 

Metric Ton, or Tonne as it is written in France, is very nearly 

the same as the English long ton, so nearly that for ordinary 

commercial purposes they may be considered the same. 

Measures of Volume 

Measures of Volume are not the same in the United States and 

m Great Britain, and hence it should always be stated as to which 

is meant. 
In the United States the systems for Liquid and for Dry 

Measures of volume are also different from each other, while in 

England both liquid and dry substances are measured by the 

same system. 
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Liquid Measure—U* S* A* Only* 

The unit of volume is the Gallon= 231 cubic inches. The 

gallon is subdivided and multiplied as follows : 

4 gills=i pint=28.875 cu. in. 

2 pints=i quart=57.75o cu. in. 

4 quarts=i gallon=23i cu. in. 

63 gallons=i hogshead. 

2 hogsheads—1 pipe or butt. 

2 pipes=i tun. 

Of the above measures the pint and quart are most frequently 

used. The barrel is not a standard volume, although in the U. S. 

and in England a wine barrel is supposed to contain 31^ gallons, 

but in referring to a barrel in liquid measure the number of 

gallons it contains should be stated. 

A cylinder 7 inches in diameter and 6 inches high contains 

almost precisely a gallon, and a gallon of pure water at its greatest 

density weighs 8.33888 pounds. Ordinarily it may be taken at 

8.34 pounds. A cubic foot contains 7.48052 U. S. gallons. 

Dry Measure—U* S* A. Only* 

The unit of Dry Measure is the Bushel=2150.42 cubic 

inches. The bushel is subdivided as follows : 

2 pints=i quart=67.2 cu. ins. 

4 quarts=i gallon=268.8 cu. ins. 

2 gallons=i peck=537.6 cu. ins. 

4 pecks=i struck bushel=2150.42 cu. ins. 

The barrel is not a legalized unit in dry measure, and its 

value should always be stated in gallons, or in pounds weight of 

the substance it contains. A barrel of flour is equal to 196 pounds. 

British Measures of Volume* 

In the British or Imperial system the same measures are 

used both for liquid and for dry measure. The unit of the system 

is the Imperial Gallon=277.274 cubic inches. This is intended 

to be equal to 10 pounds avoirdupois weight of pure water at a 

temperature of 62° Fah. 
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The Imperial Gallon is subdivided and multiplied as follows: 

4 gills=i pint=i.2 5 lbs. water. 

2 pints=i quart—2.50 lbs. water. 

2 quarts=i pottle=5.oo lbs. water. 

2 pottles=i gallon=io.oo lbs. water. 

2 gallons=i peck=20.oo lbs water. 

4 pecks=i bushel=8o.oo lbs. water. 

4 bushels=i coomb=32o.oo lbs. water. 

2 coombs=i quarter=640.oo lbs water. 

The measures above the gallon are used for dry measures 

exclusively, and it is customary to state all quantities above the 

bushel in bushels. 

Metric Measures of Volume. 

The unit of volume is the Litre, which is equal to 1 cubic 

decimetre. This is subdivided and multiplied decimally as 

follows : 

Liquid. 

1 millilitre^YoW litre. 
1 centilitre==T-J¥ litre. 

1 decilitre=TV litre. 
1 litre= 1 litre. 

1 decalitre=io litres. 

1 hectolitre=ioo litres. 

1 kilolitre=iooo litres. 

The principal measure used is the litre itself, and in trade the 

| litre is often used, this being a little more than a pint litre— 

1.056 pint), and so convenient that the fact of its not being a 

decimal equivalent is overlooked. For chemical and physical 

measurements the cubic centimetre is much used, and called by 

this name, c. c., and not millilitre, which latter it really is. 

The unit of dry measure in the metric system is supposed to 

be the Stere—1 cubic metre, but in practice the term cubic metre 

is very generally used, and the subdivisions and multiples so 

named; i. e., TV cubic metre, 100 cubic metres, etc. 

MONETARY SYSTEMS. 

The various systems used for the money of different coun¬ 

tries are too numerous to be described here, but a few of the 

most important will be given. 
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United States and Canada* 

The unit is the dollar ($), subdivided and multiplied deci¬ 

mally. The dollar is divided into ioo cents, and the other units 

are as follows : 

i dime=io cents=T^ dollar, 

i dollar=ioo cents, 

io dollars=i eagle. 

Besides these decimal units there are coins as follows : 

J dollar=2 5 cents. 

\ dollar=50 cents. 

Double eagle=20 dollars. 

These coins are made for convenience, but are not known 

by their names in reckoning, the quarter and half-dollar being 

counted as 25 and 50 cents, and the double eagle, as well as the 

eagle, as so many dollars. 

Great Britain* 

The unit is the pound sterling, or sovereign (£), subdivided 

as follows : 

The penny=-^Q pound. 

1 shilling=i2 pence=about 24 cents. 

1 pound==20 shillings=240 pence=about $4.86. 

Besides these there are the following coins ; half-penny=J 

penny, crown=5 shillings, half-crown=2\ shillings, florin=2 

shillings, but the calculations are all made in pounds, shillings 

and pence. 

Latin Monetary Union* 

On the Continent ot Europe the following countries have 

formed themselves into the Latin Monetary Union, and use the 

same system, i. e. France, Belgium, Switzerland, Italy and 

Greece. The unit is the Franc, called Lira in Italy, and 

Drachma in Greece. 

The franc is subdivided into 100 centimes, centesmi in Italy, 

lepta in Greece. There are also gold pieces of 20 francs, and 

silver coins =\ franc, besides minor coins of nickel, but these 

have no special names, all the reckoning being done in francs 

and iooths. The equivalent value of the franc is about 19.3 

cents. 
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Germany* 

The unit is the Mark, equal about 24 cents, subdivided into 

100 pfennigs. There are gold coins of 20 marks, but all the 

reckoning is done in marks and iooths. 

7E 

The relations between units of measurement of various 

countries are given in extensive tables, to which reference must 

be made when such information is desired. By the use of such 

tables the various conversions are readily performed, as an ex¬ 

ample will show. 

Suppose for example it is required to know the equivalent of 

732 Russian sachines in metres, and that one sachine is equal to 

2\English yards, and 1 metreequals 1.09363 English yards; these 

values being found in tables ; we have : 
n\/no 2 

732 sachines=2JX732=-~—-yards. 

yard: 
1.09363 

metres=^-|-|f-| metres. 

hence 732 sachines: ioooooX7X732 

3X109363 
= 1561.772 metres. 

72* 

The exchange value of the monetary units of different coun¬ 

tries is constantly varying with the variations in trade and finan¬ 

cial dealings, values being affected by the demand and supply. 

If we have to convert money of one country into that of another, 

we must find the correct rate of exchange from the bankers 

reports for the day, and it is often necessary to reckon through a 

chain of such rates to get the required value. An example will 

show how such a reduction can be made. 

Example: What will be the value in dollars, of 125 rubles 

(St. Petersburgh) if 100 rubles=202 marks at Berlin, 100 marks 

at Berlin=59 gulden at Vienna, and 135 gulden at Vienna=54 

dollars at New York? 

Since we have : 

100 rubles=202 marks. 

100 marks—59 gulden. 

13 5 gulden=54 dollars. 
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we have : 
202 M. 59 guld. 

i ruble=——-, i mark=- 
ioo ioo 

$ 54 
and i gulden= whence 

3 D 

125X202X59X54 „ 
125 rubles— xXXXX/X; -=$59.59. 

100X100X135 

When such calculations are required to be made frequently 

they can be readily stated without liability to error in the follow¬ 

ing manner. 

How many dollars=i25 rubles 

When 100 rubles=202 marks. 

100 marks=59 gulden. 

135 gulden=54 dollars. 

Then divide the product of the right-hand numbers by the 

product of those on the left, for the answer ; taking care always 

to shorten the work as much as possible by cancelling out all 

common factors. 

73. 

Besides the tables and terms already described, there are 

many other calculations made in trade and commerce which can¬ 

not be given here but which must be learned by actual experi¬ 

ence. There are many words such as net, gross, rebate, tare, 

tret, etc., etc., for the meanings of which the student must refer 

to the dictionary. 

There are two ratios however, which are of sufficient inter¬ 

est to be described here. The ‘‘fineness," so-called, of gold or 

silver, is determined by the number of parts of pure gold or 

silver there are in 1000 parts of the alloy. The metal is of course 

pure only when it contains no alloy whatever, and is then j-§~§-§- 

fine. The standard alloy tor gold for U. S. coinage is 900 parts 

of pure gold and 100 parts alloy, and hence is T9oVo fine. 

Of this alloy the gold dollar contains 25.8 grains, the eagle 

258 grains, and the double eagle 516 grains. 

The standard “fineness” for silver is also x^Vir’ andthe stan¬ 

dard dollar contains 412.5 grains of this alloy. 
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General Arithmetic. 

The Use of Symbols. 

ALGEBRA. 

BOOK X. 

Reckoning with Universal Symbols. 

74. 

Calculating by means of universal symbols (usually letters) 

involves a knowledge of the use of opposing magnitudes (positive 

and negative quantities), and hence this subject will first be 

studied in the following sections, §§74 to 79. 

When several quantities are to be added together, and then 

from the sum several other quantities are to be subtracted, the 

operations may be readily indicated by writing the quantities one 

after the other, prefixing the sign -j— to those which are to. be 

added, and the sign — to those which are to be subtracted. 

Suppose, for example, the numbers 9 and 12 are to be added 

together, and from their sum the numbers 5, 3 and 2 are to be 

substracted ; these operations can be indicated by writing : 

+9+12—5 3 2 

and this expression does not mean that 2 is to be subtracted from 

3, or 3 subtracted from 5? but that the sum of oil the figures pre¬ 

ceded by the minus sign, is to be subtracted from the sum ot all 

the figures preceded by the plus sign. 

This point being thoroughly understood and always borne in 

mind, we see that it is quite immaterial in what 01 du the quan¬ 

tities are written, as the order can have no influence upon the 
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final result. It is customary in writing such an expression, to 

begin with a plus (or positive) quantity, as it is then unnecessary 

to write any sign before it, for a quantity is always understood to 

be plus (or positive) unless it is indicated to be minus (or negative). 

When the first quantity is negative, the minus sign must never be 

omitted, but for simplicity the plus sign may be omitted, and in 

general any quantity without a sign prefixed is understood to be 

positive. 

The following statements are therefore all identical in value, 

the result being =11, although the figures are written in different 

orders : 
9+12—5—3—2 

12-|~9—3—2—5 

9—5+12—2—3 

—5+9—3+12—2 

75. 

In every expression consisting of several quantities of differ¬ 

ent signs, the quantities which are preceded by the sign -|- are 

called positive (or direct), and those which are prefixed by the sign 

— are called negative (or inverse) quantities. The signs -|- and 

— are called opposing signs, each being the inverse of the other. 

Each sign belongs to the quantity before which it stands. 

Addition of Opposing Quantities* 

In determining the sum of several positive and negative 

numbers, the following points must be carefully observed : 

(1) If all the quantities have like signs, i. e., are all positive 

or all negative, they are all added together and the same sign 

prefixed to the sum. Thus we have : 

6+4+3=i3 

—6—4—3=—13 

(2) If the quantities have different signs, the positive quanti¬ 

ties are added together, and the negative quantities also added 

together; then the smaller of the two sums is taken from the 

greater, and to the remainder is prefixed the sign of the greater 

sum. 

Such a remainder, regardless of the fact that it is positive or 

negative, is called the algebraic sum of the quantities. 
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If the sums of the positive and negative quantities are equal 

to each other, it is evident that the value of the expression =o, 

since equal and opposite magnitudes cancel each other. 

Thus, for example : 

+5—5=° 
—6—|—6=o 

+8—5=3 
—8+5=—3 

9—5 + 12—2—3=11 
8— 10—6+3=—5 

Subtraction of Opposing Quantities* 

77* 

If we have to subtract the expression 4—10+7 from 9, we 

write it 
9— (4—10+7) 

enclosing the expression which is composed of several quantities, 

in a parenthesis. 

In order to perform the subtraction thus indicated, we re¬ 

move the parenthesis and convert the subtraction into an ad¬ 

dition, by changing the signs of all the positive quantities in the 

parenthesis into negative and all the negative into positive quan¬ 

tities. 

In the above example we would therefore change the +4 

into —4, the —10 into +10, and the +7 into —7, and thus have 

the addition ; example : 

9—4-j-io—7=19—11=8 

The proof of the correctness of a subtraction is the fact that 

the remainder added to the subtrahend must equal the minuend. 

Thus, for example : 

9—(+4—IO)=9—4+!0 

must be correct because if we add the subtrahend (+4—10) to 

the remainder 9—4+10, we get: 

9—4+10+4—10=9 

which is equal to the minuend. 

Again suppose it is required to subtract —13+25—6 from 

—7+2, we state the problem thus : 

—7+2—(— 13+25—6)= 
—7+2+13—25+6=21—32=11 
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Multiplication of Opposing Quantities* 

78* 

If it is required to multiply-|-7 by-[~3 it is evidently=7X3= 

2i——|—21. Now if we have to multiply —7 by —|—3, it is the same 

as taking —7 three times, or —7—7—7=—21. 

But what will it be if we are required to multiply—7 by—3 ? 

If -j-7 times —3=—21, then—7 times —3 must be equal to 

its exact opposite, i. e. =-\-2i. 

Hence we have the following rule : Like signs give plus, 

unlike signs give minus. 

Examples : * 

—5-—2=+10 

9'—1=+9‘—I =—9 

—2 '5=—2 '+5=—10 

3 '4=+3 4-4=+1 2=12 

—6-—5-—4=~|~3°‘—4=—120 

Division of Opposing Quantities* 

79* 

The same rule holds good for division as for multiplication : 

Like signs give plus, imlike signs give minus. Thus : 

12=-|-3) because -4~S'—4=—12, (See § 11,) 
—4 

Examples: 

3 _+3 
-2 -2 

1 
2 

—8_—8 

6 ~+6 

4-2 
1 
5 

5’— 

—2 

Those who wish to go more fully into the subject of positive 

and negative values are referred to § 320 (appendix.) 

*Hereafter we shall use the point (•) to indicate multiplication, and it need not be con¬ 

fused with the decimal point, since it will be placed above the line, not on the line. 
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The use of Letters as Symbols. 

80. 
Complicated calculations may often be very much simplified 

it the operations of addition, subtraction, multiplication etc., are 

not performed at once, but first merely indicated by the signs 

—, etc., so that we have the entire operation before us as a 

whole, before any of the detailed work is done, and can thus de¬ 

cide the best method of shortening the work by cancelling, 

collecting like members together, factoring etc., etc. As an 

example of the advantages of this method of proceeding, the 

following simple instance will serve. 

Question ? What will be the result, it we add together the 

half-sum and the half-difference of the fractions |~|tt anc^ tfA 

Solution. We first proceed to indicate the operations stated 

by the question. We have then as the sum, and 

|the differe7ice of the two fractions, and hence the half¬ 

sum and half-difference will be represented respectively by 

1 / 4 5 T fi I 213 \ anr| 1 (4 5 7 6  2 1 3 \ 
2 \ 8 7 7 iT 7 6 91/ £lllu- 2\8 7 7 7 7l>91/ 

Both these quantities added together, is indicated by 

1 f 417.61 _2_l_3_\_Li ( 4 5 7 6 2 1 3 \ 
2 \ 8 7 7 IT 7 6 91 / 2 V'S’ 7 7 7 7 6 91 / 

which then is the full statement of the question, in such a form 

that we can study it as a whole. 

The first thing to do is to see how we can collect the various 

quantities together so as to simplify the somewhat complicated 

looking expression, and for this purpose we remove the paren¬ 

thesis. This we can readily do, since the \ of each of the 

quantities within the parenthesis is the same as the \ of them 

taken together, and we have 

_2_l_3_-4—I • 4 5 7 6. 
11 4 2 

1 • 4 5 7 6 I 1 _ __ 
2 8 7 7 7 1 2 7 6 9: 8 7 7 7 

1 • _2 1 3_ 
2 7 6 IF 1 

We can now see at once that of the four members in the 

above expression there are two alike of the same sign and two 

alike of opposite signs. The latter, i. e. the 2nd and 4th mem¬ 

bers being equal in value and of opposite signs cancel each 

other, and may be struck out. The 1st and 3rd members, we see 

are the same and since each of them is equal to J of the fraction 

the two together will be equal to the whole of that fraction, 

so that the answer to the question is obtained entirely by 

this reduction and without any reckoning whatever. 
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Now in examining such a problem as that just given, we see 

that in the various operations which have been performed, no 

changes whatever have been made in the original quantities 

themselves. The fractions above given have been shifted in 

position, multiplied, divided, added and subtracted, but to all 

intents and purposes we might, instead of writing out the quan¬ 

tities themselves, have used some simple and distinctive 

symbol for each original quantity, and then when the work was 

completed, given each symbol its original value again.* 

Such symbols can have the operations indicated by the signs 

_|_5 _? etc., and relieve the detail of the work entirely from the 

burden of bulky numerical quantities, and thus constitute a sort 

of mathematical short-hand, with much economy of labor and 

fewer opportunities for error. 

The nature of the symbols to be employed is entirely a 

matter of choice. Ordinarily, however, it is customary to use 

the letters of the alphabet, since these are already well known 

and very convenient for the purpose. 

The use of such symbols can be well explained by applying 

them to the same example given above. Suppose then again 

that we have to find the result of the addition of the half sum and 

half difference of the fractions and Ty-g3T. 

We may use the letter a, for the first fraction, and b, for the 

second fraction. In this case the sum of the two quantities will 

pe a-\-b, and their difference a—b, and the half sum —\(a-\-b)= 

and the half-difference — \{a—b)==-- and hence the sum 
2 2 

of the two will be 
a-\-b a- 

which shows us the whole oper- 
2 2 

ation in one statement. Before substituting the values of the 

letters again we will see what reductions can be made. We can 

(according to § 20) unite the above 

aba b 
- ~r ~ ~r ~ ~ 

We then see at once that -|— and -cancel each other, 
2 

leaving —|- - which is clearly equal to a. But a is the symbol 
2 2 

a 

*A practical example of such symbols is found in the use of bank checks, for instance, 
which may pass through several hands before being presented for payment, or in a less 
reputable manner perhaps, by poker chips, which are symbols of value passing through all 
the vicissitudes of the game to be redeemed at last. 
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which we selected for the fraction and hence this is the 

answer to the problem, as before. 

81. 
Seco?id Example. A pedestrian walks at a uniform rate from 

a place, O, to another place, W. He starts 4 minutes, 59 seconds 

after eight o’clock in the morning from O, and arrives at W at 57 

minutes, 48 seconds after 3 o’clock in the afternoon. What time 

of day is it when he is just half-way between the two places ? 

Solution. If we take \ the total amount of time he spends 

between the two points and add it to the time at which he started, 

we shall obtain the required hour at which the journey will be 

half completed. But in order to obtain the total time spent on 

the whole journey we must subtract the hour of starting from 12 

to find out how much time elapsed before noon, and then add 

this to the time spent after noon; this sum is then divided by 2, 

and the result added to the hour of starting. The work involved 

is shown below : 

0 ; W 
min., 59 sec. 3 h., 57 min., 48 sec. 

I2h O'' O" 

Starting time, a, m., 8 4 59 

Elapsed time to noon, 3h 55' 1" 

Elapsed time after noon, 3 57 48 

Total time of journey, 7h 52' 
. * /r 
49 

Half the total time, 3h 56' 24J 
Add the starting time, 8 4 59 

Answer, I 2h T nh" 
Hence the traveler was just half-way between the two points 

at 1 minute, 23J seconds after 12 o’clock. 

Now let us see how much this computation can be shortened 

by the use of symbols. 

If we call the hour of starting =a, then the number of hours 

elapsed before noon will be 12—a. Then if we call the hour the 

journey ends —b, we have for the whole time 12—a-\-b, and also 

for the half time ——t 
2 
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If we add to this the symbol for the hour of starting, we 

have for the statement of the whole question : 

12—a-\-b (i) 
1-\-a 

2 

This expression can doubtless be simplified by bringing it to 

a common denominator. Instead of leaving the second member 

without a denominator we may write it -2-g, and thus we get: 

12—a-\-b 2a 

2 2 

or, what is the same thing : 

12—a-\-b-\-2a (3) 

2 

We see in the numerator two opposed quantities, namely —a 

and-f 2a. But —a+2a=^—a+a-lra=a. We may therefore put 

for —a-\-2a the simpler value a, which gives : 

i2-\-a-\-b (4) 

2 

All four of the above expressions must give the same result 

when we substitute for the letters their respective values. The 

last one, however, being the simplest, will give the least numerical 

work, as it can be reduced no further. 

On inspection we see that it means that we must add 12 to 

the sum of the time of starting and the time of arriving and 

divide the result by 2. The actual work is as follows : 

I 2= I 2h o' 0" 

a= 8 4 59 

b= 3 57 48 

2 ) 24 2 47 

I 2h T 231" 

It is hoped that a careful study of these examples and the 

explanations which have been given of them will at least give 

the student such an idea of the use of letters as symbols that he 

he can clearly understand the following section, and pursue his 

studies without meeting the difficulties and obscurity which so 

often embarrass and hinder the beginner. 
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General Ideas about the Use of Letters in Calculation* 

/ 
82* 

(t) When we have to make calculations of one quantity 

with another, it is most important first to consider how we may 

do the work with the least amount of actual reckoning-; that is, 

with the least numerical and laborious work. In order therefore 

to avoid all unnecessary numerical work, such as addition, 

multiplication, etc., etc., and reduce the work as much as possi¬ 

ble, as well as to abridge the labor of frequent writing of 

numbers, we may use letters as symbols instead of the actual 

quantities themselves. 

(2) The result obtained by solving a problem when using 

symbols, applies to all problems of the same kind, independently 

of the numerical values of the original data. Thus, for instance, 

we found in the second example in the preceeding section that 

• 1 . 12—|—cl—I—b 
the desired result, expressed m symbols, was . 

Now this expression holds good for any example of the same 

sort, independently of the actual hours of starting and arriving 

given in the above example, and if another hour of starting be 

substituted for a, and a different time of arrival for b, the result 

will still give the time of the middle of the journey. Hence we 

12—|—cl—j—b 
see that the expression is a general rule, or formula, 

in which, if we substitute any given values, we may obtain easily 

and correctly the required result. Suppose for instance, the 

traveler should start from O at 9 o’clock a. m. , and arrive at W 

at 3 o’clock p. m., we can at once find the time when he is at the 

middle of the journey, simply, by making a=9 b—3, and we 

I2+9+3 have :i2 noon. 

We thus see that the letters do not have absolute values but 

sometimes one value and sometimes another, as we may choose. 

(3) There is great economy both of time in writing and in 

speaking, by using symbols instead ot numbers, thus obtaining, 

as has been already said, a kind of mathematical shorthand. 

Besides these advantages there is the very important feature 

of being able to see the whole operation at once before the eyes, 
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and follow the transformation and action of the various quanti¬ 

ties ; which feature is almost entirely lost with arithmetical 

operations. This ability to examine a problem as a whole also 

enables one to see how many important reductions and simplifi¬ 

cations may be made. 

When any problem, which has been stated in a general 

form with symbols, is solved, the solution applies to all prob¬ 

lems of the same kind merely by inserting the data for each 

special case. 

Such a general solution differs from a special result, because 

the magnitudes of the various data are left undetermined, and by 

the various operations possible with symbols the expression may 

be reduced to its simplest form directly. 

A general solution also teaches much more about the prob¬ 

lem in hand, as it gives a broad general idea of the subject, 

showing causes and effects, before the eyes in a manner not 

possible with general solutions. 

83* 

If these fundamental ideas are clearly understood, the 

student should find this chapter upon the use of letters as symbols 

one of the easiest in the whole subject of mathematics, since all 

reductions are made in the most mechanical and least laborious 

manner possible. 

The operations with letters are not numerical calculations 

at all, but rather a kind of reckoning in which the various 

operations are rather indicated than performed, the symbols 

being placed, collected, separated and generally manipulated 

quite independently of the actual values which may be assigned 

to them. The definite values are not given to the symbols until 

the calculations are completed, after all possible reductions have 

been made and the expressions reduced to the very simplest form. 

The manner of making such reductions and performing the 

various operations will be fully explained in the following sections. 

84. 

In order to make the operations more agreeable to the eye, it 

is preferable to place the letters in the order in which they occur 

in the alphabet. For instance, the addition of the quantities c, a 

and b is written a-\-b-\-c, rather than c-\-a-\-b. 



To indicate that two letters are to be multiplied together, 

the two factors are written closely together without using any 

symbol of multiplication whatever, these symbols being omitted 

as unnecessary. Thus, if b, a and x are to be multiplied together, 

instead of writing a-b-x, we write simply abx. In the same 

manner 3 multiplied by a and by y is written ^qy. When a letter 

is to be multiplied by a number, the numerical factor, which is 

called the co-efficient, is always written first, Thus a multiplied 

by 3 is written 3a, and 3 is the coefficient of a. In §ax, § is the 

coefficient of ax. In -— (that is |ab), f is the coefficient of ab. 

The coefficient 1 is never written, but simply understood, as 

1 -8=8 ; in like manner we write for 1 -a, or 1 •abc, simply a and 

abc. In the coefficient is really i, for —% =b*T- 
5b J 5 5 'b 0 b 

86. 
Expressions in letters are said to be similar when they con¬ 

sist of the same letters, arranged in the same manner, although 

the coefficients may be different. Thus, for example, 2ab, —§ ab 

and 12ab are similar quantities. So likewise are $aax and 25aax% 

The expressions ab, a-fib, 3abc and 2abb are dissimilar, being com¬ 

posed of different letters or in different arrangements. 

Addition. 

87. 

We know that 7—|—7—|— 7=3 7, and in like manner we see that 

afi-a-\-a=3<z. We also see that ?>a-\-2a=a-\-a-\-a-\-a-\-a=z)a, and 

hence for addition we have the rule : Write the symbols which 

are to be added together in any order which may be convenient, 

prefixing to each symbol its proper sign, and collecting all 

similar expressions by taking the algebraic sum of their coefficients. 

Thus, JX—iox=—3X, since the algebraic sum of 7 and —10 

= —3 ; 

abc-j-6abc= 1 'abc-\-6abc—jabc ; 

\ax-\-\ax=\tLax; 

2ab-\-3ax-\-ab=3ab-\~3ax; 

a—5 a=—4 a. 
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When the quantities to be added contain various members, it 

is better to arrange them so that similar expressions are over each 

other, as a general view of the whole operation can then be ob¬ 

tained. Thus, for example, to add together the following : 

^ax-\-^>bc, 2aax—3, —5x-\-y, and 6bc—4ax, we have : 

8 ax-\- 3 be—|— 2 aax— 3—5 ax-1- 7—|—6<5> c—4 ax— 2 aax—ax-\- 3 b c-\- 4 

but this would be much clearer arranged as follows : 

8 ax—$bc 

-\-2 aax—3 

' —5 ax +7 

—4ax-\-6bc 

Total, —ax-\-'$bc-\-2aax-\~4- 

in which we have placed all the ax s over each other, the bc’s over 

each other, and the other quantities also each in columns of their 

own. 

Subtraction* 

88* 

In subtraction we proceed as in § 77, changing the signs of 

the members of the subtrahend and then taking the algebraic sum 

of minuend and subtrahend, also collecting all simular expres¬ 

sions. For example, to subtract 2a from 6a, we have 6a—2a= 

4a. Again 2ax from 6ax gives 6ax—2ax—\ax; or b from a gives 

a—b. 

If it is desired to indicate that any quantity composed of 

several members, is to be subtracted from any other quantity, 

the subtrahend is enclosed in a parenthesis and a minus sign 

prefixed; and if the parenthesis marks are removed, the signs of 

every member in it must be reversed. 

For example, to subtract y—a from x, we indicate the 

operation thus : 

x—(y—a)=x—y-\-a 

the signs of jv and a being changed when the parenthesis is 

removed. 

Again to subtract 2ab-\r6bc—4x from $ab—36c, the oper¬ 

ation is stated thus: 

2ab—36c—(2ab-j-6bc—4x) 
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In like manner 

a-\-b—(a—b)=a-[- b—a-\-b=2b 

If the minuend and subtrahend both consist of several 

members, we may write the subtrahend under the minuend, like 

members under like, and then convert the problem into an 

example in addition by changing the signs of the members of 

the subtrahend. This will be understood by reference to § 77, 

where it will be seen that to subtract -|-4 and —10 is the same as 

to add —4 and 

Thus, from 2ab—36c 

subtract 2ab-\-6bc—\x 

(-) (-) (+) 

difference —gbc-\-\x 

again, from 2ax■—6bz-(-7 

subtract 6ax—3by—3 

—4 ax—6bz-^-'$by-\-10 

The correctness of the subtraction is proved if the difference 

added to the subtrahend gives the minuend again. 

Multiplication 

89. 

First Case. If the factors each consist of but one member, 

the letters are written next to each other m alphabetical order, 

and preceded by the product of the numerical coefficients. § 320. 

For example 2a multiplied by 3b, gives 2a^b=2 ^-ab=6ab. 

In the same way we have : 

$ab. ^ac=\^aabc 

| ab'\oc=\abx 

abc 

4 

abx 
§ax-j<5-£= 3 

i 7 ax • 3 b= 51 abx 

^abx’ 3 bx= gabbxx 

2abc 

3 

amn 

4 

5 a'i6ic= 

^am #|w= 
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Second Case. If one factor contains one member and the 

other factor several members, the multiplication is merely 

indicated by enclosing the factor which consists of several mem¬ 

bers* in a parenthesis and writing the other factor outside of 

the parenthesis. If in the course of reduction the parenthesis is 

to be removed, this is done by multiplying each member in the 

parenthesis by the single factor. Thus if the quantity a-\-b—c is 

to be multiplied by a, we indicate the operation by writing 

a(a-\-b—c) and performing the multiplication we have : 

a[a-\-b—c)=aa-\-ab—ac. 

In- like manner we have : 

2a{b—?>c)=2ab—6ac ; 

^abpjab—$ax-\-i)—2 laabb—^aabx-\-^ab ; 

(9ax—^bjy)yb=6$abx-—5bby ; 

4+5(-*+6)=4+5-*+5 -6=34+5-*; 

x(jy—1 )=xy—x; (<2+1 )b=ab-\-b ; 

2 ac—ab-\-a(b—c-j-x)=2 ac—ab-\-ab—ac-\-ax=ac-\-ax 

If the single factor has a minus sign, the rule of §78 is always 

to be applied. Thus : 

7—3 {a—2b+4 )=? 

Here we multiply—3 and+«= —3^ 

—3 and—2b= +65 

—3 and+4= 12 

hence we have 

a+7—3<2+6b—12=6/5—2a—5 

Third Case. If both factors are polynomials (i. e., consist 

of more than one member), we multiply each part of one factor 

by each part of the other factor, and then collect all the similar 

members together. It will usually be found convenient to select 

for the multiplier the factor which is composed of the fewer parts. 

In order to follow the work clearly, and avoid errors it is advisa¬ 

ble to write the factors under each other, and sum up the pro¬ 

ducts as shown in the following examples, 1, 2, and 3. 

It is quite immaterial with which part of the multiplier the 

first multiplication is performed. Suppose we have a-\-b—c to be 

*A quantity composed of more than one member, the members being connected by the 
sign + or —, is called a polynominal. 
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multiplied by a—b, we have, multiplying each part of a-\-b—c 

first by a and then by —b : 

(<a—b) (a-\-b—c)=aa-\-ab—ac—ab—bb-\-bc 

=aa—ac—bb-\-bc 
or as follows : 

(1) a-\-b—c 

a—b 

aa-\-ab—ac 

—ab—bb-\-bc 

aa—bb—ac-\-bc 

(2) a—}—b 

a—b 

aa-\-ab 

—ab—bb 

aa—bb 

(3) 
a-\-b 

aa—ab 

-\~ab—bb 

aa—bb 

In the same way we perform the following multiplications : 

I-b} (&~h"b^)=aa—\-ab—j—ab-\~bb 

—aa-^2ab-\-bb ; 

(a—b) (a—b)=aa—ab—ab-\-bb 

—aa—2ab-\-bb ; 

0+1) (y—i)=xy—x+y—i ; 

(Sax—4by) (5bx-\-1) =r 15abxx-\-3ax—20bbxy—4by ; 

(§■*—\y) (3X—ty—i)=2xx—^xy—x+{{jy+i-fy. 

Factoring* 

90* 

Besides having to multiply several factors together, we often 

have the reverse problem to solve ; namely, that of separating a 

given expression into its factors, and as factoring is very often 
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the most valuable and important method of reduction, the student 

must become thoroughly familiar with it and give the subject his 

most earnest attention. The following examples will show how 

factoring is performed. 

Suppose we have multiplied 3a—4C-f-2 by $ab, we obtain the 

product 9aab—i2abc-\-6ab. 

If, now, we had the reverse problem given, we could see by 

careful inspection, first, that every member of this last expression 

could be divided by the numerical factor 3, without a remainder, 

and also would observe that the literal factor ab is found in every 

member. We can therefore take out the common factor 3ab from 

each member and write it in front of a parenthesis in which is 

enclosed the balance of the expression, thus : 

9 aab—12abc-\-6ab—'$ab('$a—4 c-}-2) 

In the same manner we can see by inspection of the expres¬ 

sion xx-\-xy, that it is composed of two factors, one of which is 

x} since n; appears as a multiplier in both, members, and that: 

xx-\~xy=x(x-\-y) 

There is one form of expression which sometimes causes 

difficulty to beginners, namely, that of the form yx-j-y. The 

common factor here is at once seen however, if we write it 

yx-\-y • 1, so that 

yx+y=yx-^-y • 1 =y(x-f -1) 

In the same way we see that 

x—xx=x( 1 -\-x) ; 

and x-\-mx-\-nx=(i-\-m-\-n)x 

The correctness of any problem in factoring can be proved 

by multiplying the factors together again ; the result should be 

the original expression. 

Further examples are : 

3^+3 ax— 3 a (b-\-x) ; 

2R71—4W=2W=(7z—2) ; 

y—yz—y{\—z) ; 

ah bh h a-\-b 

T+T=dfl+^=A— 1 

1 

If the first member of the expression to be factored is pre¬ 

ceded by a minus sign, the expression should be enclosed in a 
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parenthesis, preceded by a minus sign, before taking out the 

common factor. Thus for example : 

a—be—bd-\-be=a—(bc-\-bd—be) 

—a—b(c-\-d—e) 

The reason for changing the signs of the quantities in the 

parenthesis will be clear when it is seen that they will all be 

changed back if the multiplication by —b is performed. Again : 

5 ax—3 by-\- 6 bz= 5 ax—$b(y—2 z) 

=5 ax-\-^b{2z—y) 

Here we see that —$b(j’—22) is the same as +3^ (22—-y), 

since the same result will be given in both cases when the mul¬ 

tiplication is performed. 

A complicated expression may often be greatly simplified by 

means of factoring. Thus, in the following expression, the first 

two members have the common factor ac and c, and the two fol¬ 

lowing have the factor be. Taking these factors out the follow¬ 

ing reduction can be made : 

abc—ace—bbc-\-bcc-\-cibd —acd—bbd-\-bcd 

=ac(b—c)—bc{b—c)-\-ad(b—c)—bd{b—c) 

Now we see that each member contains the binomial* factor 

(h—c). By taking out this common factor we have : 

=(b—c) [ac—bc-\-ad—bd] 

We now see that the quantity in the second parenthesis can 

be factored, since the first two members both contain c, and the 

last two contain d, hence 

={b—c) [c(a—b)-{-d(a—£)] 

and factoring it again, we get 

=(b—c) [{a— 

■=(a—b) (b—c) (c—(— d) 

which is a great simplification of the original expression. 

91- 

When a quantity is multiplied by itself we call the product 

the square of the quantity. The reason for this name will be 

seen when the student takes up geometry. 

* “ Binomial” means consisting of two quantities connected by the signs + or—, just 

as polynomial means consisting of several such. 
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For Example : 8—(—8=64, which is the square of 8; the 

square of 5 is 25 ; the squares of 1, 2, ±, J, f are 1, 4, J, 

respectively. The square of J is (which is read of a 

square,” or “a square divided by 4.”) Remembering this defini¬ 

tion we have the two following important rules to learn by heart: 

1. The sum of two quantities (a-\~b) multiplied by their differ¬ 

ence (a—b) is equal to the difference of their squares. 

Thus if we perform the multiplication, we have : 

(a-\-b) {a—b)=aa-\-ab—ab—bb—aa—bb 

By memorizing this rule, we are able at once to write down 

the product of the sum and difference of two quantities without 

performing the intermediate work. 

Examples: 

(a-j-x) (a—x)=aa—xx 

(I ff-x) ( I-x)= I-AW 

1) {a— 1 )=aa— 1 

(2a-\-\b){2a—\b)—\aa—— 
4 

(2) When a quantity consists of the difference of two squares, 

(as aa—bb ; bb—yy, &c.,) it can always be separated into two factors, 

consisting of the sum and difference of the quantities. 

This rule is simply the reverse of the preceding one. 

Examples: 

XX—zz= (x-\-z) (x—z) 

xx—aa=(x-\-a) (x—a) 

ZZ—I=(^r—|— I )(-S—i) 

I-XX= (I -|- x) ( I —x) 

bb / | b \ / b 
4aa-= ( 2a-\— )( 2a- 

9 V 3/\ 3 

57X.57—43X43=(57+43)(57—43)=IOOXI4 

Division. 

92. 

Division is always indicated by writing the quantities in the 

form of a fraction. For example : If a is to be divided by b, the 

fact is indicated by writing ~ (read “a divided by b,” or more 

briefly “ a over b ” ). 
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2 ax 
In the same manner 2ax divided by iby is written and 

y ' z¥ 
a-\-b divided by a—b is written 

a—b 

(1) If the divisor and dividend have any common factors, 

these factors may at once be 

they do not affect the quotient. 

stricken out 

(See §§ 22, 

, or cancelled, 

23, 38.) Thus 

ac 2 a be 2 a 2 abx 2 6 abb 3ab 

c a 7 3bc ~ “3 ’ 3aabx 3a7 \bc 2C 

xy x 

6y 6 7 

a 
=1 ; 

a 

b 

r=I; 
-1 ' 

a-\-b 

a—|—c—d 

a-\-c—d 

(a-\-b) (a—b) ( 7 ab (a-\-b) a . m (a-\-b) a-\-b 

a—b a~' 7 2b(a-\-b) 2 7 m{a-\-c) a-\-c 

(2) If the dividend is composed of several members (poly¬ 

nomial) and the divisor consists of but one member (monomial), 

the divisor can be divided into each member of the dividend. 

(See § 20.) 

Thus we have for example : 

a-\-b—c a b c 

d (I'd d 

8 abb—10 ax %abb 

2ab 2ab 

loax 

Xab^b~ b 

(3) It both dividend and divisor are polynomials the di¬ 

vision may be performed in two ways : (a) By factoring both 

quantities, whenever this is possible. This usually renders the 

division much simpler. 

Examples: 

ab—ax a(b—x) a 

bb—bx b(b—x) 1) 7 

ax-\-xx x(a-\-x) a-\-x 

%bx—xr x (3b—x) 3 b-\-x 7 

y—-yy y( 1 —-y 1 

3by—3byy~sby(i—y)~3b 7 

ac—hex—cz c(a—bx—z) a—bx—z 

qbcz—cz cz{()b-\-i) 2(9 b—1) 
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6aa—3<z<5 3aiya—b) a 

\2ac—6bc 6c(2a—b) 2c ’ 

4 ax—$bx—xx x(4 a—3$—x) x 

8ayz—6byz—-2xyz 2yz{ya—3$—x) 2yz’ 

ay-\-iy—av-\-iv y («-)-/)—v (#-)-/) 

az-\-tz—2au-\-2lu z(a-\-l)—2u(a-\-t) 

= (y—v) (a+0 __ ^ . 
(z—2u) z—2u ’ 

(a-\-b)(a-\-b) (a-\-b)(a-\-b) a-\-b 

aa—bb {a-\-b){a—b) a—b 
U~VU / e e x 

=rJ-i (see §§ 91, 92); 

xx—|—x x(yc—|—1 ^ x 

I-XX (I ~\~x) (I—.r)x I—x} 

mz—m m (2—1) z—1 (—1) (z—1) 1—z 

m—my m(i—-y) 1—y (—i)(l—yj y—1" 

(b) The second method is that of so-called “partial division,” 

which may be deferred to the Appendix. (See §321.) 

Fractions. 

When we have to work with fractional expressions, the 

general rules and methods for fractions are used, as explained in 

the following sections, §§93, 94. See Appendix, §321. 

Addition and Subtraction of Fractions. 

93 

(1) If the fractions have a common denominator, we simply 

take the algebraic sum or difference of the numerators, and 

place the result over the common denominator. Thus for ex¬ 

ample (§ 42) we have : 

a 

c 

a b a—b 

c c c ’ 

2 1 1 

X X X ’ 

a z a—z 

a—z a—z a—z 

. b a-\-b 

+T="; 
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a.—j—b . a—b a—|—b—|—a—b 
d } 

2 2 2 

a a- -b a-\-b — (a—b) 
=b +1 

2 2 2 

ac—by cx by ac-\-cx c(a-\-x) a-j-x 

ac ac' ac ac ac a 

a y a +J 
aa—yy aa—yy (a-\-y)(a—y) a—y 

(see §§91, 92). 

If the fractions have not a common denominator, they may 

be reduced to a common denominator, but the advisibility of 

doing this depends upon circumstances, as the expression is not 

always simplified by such reduction. » 
Cl c 

For example, to reduce the fractions - and — to a common 
b a 

denominator we multiply the numerator and denominator of the 

first by d and the second by b. The result is : 

a ad c be 

b ~bd and J=Jd 

Examples : 

a c ad , be ab-\-bc 

b ' ~d = bd^~bd=~bd~ ’ 
a a . be a-\-bc 
+c=-. +-r=-Jr- > (see §34) 

12—a—|—b . 12—a—|—b—|—2 a 12—|—a—|—b 
' i~^_ ■ ~ t 

8^z—j— 6<5 6 a—2b $(8a-\-6b) — 4(6*2—2b) 13b 

a 

a 

4 3 12 6 ' 

' cd 

acd—|—b (a—|—b^ 

bed 

1 aJ[~b 1 aa—bb—ab acd—|—ab—|— bb—j—aa— -bb—ab a(cd-j-a) 

"r ctC1 bed bed bed ’ 

az a{z-\-i) az a 

z + l z-\-1 z -f-1 -2+. ’ 

am am-\-an—am an 

+
 

8 m-\-n m-j- n ’ 
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Multiplication and Division of Fractions* 

94* 

(2) In multiplying two fractions together, we proceed as 

with numbers, multiplying numerator by numerator and denom¬ 

inator by denominator. If one fraction is to be divided by 

another, we invert the divisor and proceed as m multiplication. 

(See §§44, 47-) 

Examples: 

a c ac 

1 d bd ’ 

a 

b 

Q 3xy <- 
8 m n •-=6 nx: 

4 my 

5am 15 mxx 5am 6ac 2aa 

be * 6 ac be 15 mxx bxx ’ 

2 ax 2 ax 

3 *3^ 

2ax xbc 
-•—— =bc ; 

3 2 ax 

n 711a na 

a-\-x ax-\-xx a-\-x x (a—x) 

a—x ax—xx a—x x (aA-x) 

a c ad 

T1 d = bc ; 

1 6x z 2 

x z $x x ’ 

95* 

The following expressions in letter symbols are to be re¬ 

duced by the student to their simpler forms. Every operation 

should be carefully and conscientiously performed, as the practice 

thus gained will be found most important in connection with the 

subjects which follow. 

Examples: 

(0 aAr2b—5-ftf ; (4 a—(-)-/>); 

(3) a—(—b) ; (4) —a*—b ; 

(5) —a•—1 ; (0 
b 

cr—‘4 ; 
2 

(7) 3<r43-|c ; (8) \ax'\by; 

(9) (10) 
a 

b 
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— a 

~r; 
(12) 

a 

b’ 

—a : 
(14) 

X y 

—b X; 

-X 
(16) 

2 a 

2 V 
2X 

(18) 
X 

y y 
X 2X 

Saxyy . 
(20) 

6 abb 

9 axy 4 be ’ 

•H .>•. 
a+_y’ 

(22) a+y. 
a—y ’ 

| abb a , $ 

\aab ’ 
(24) - + 

X X 

ax-\-6ax—^>ax-\-^bx; (26) \°y—\ 

00 

(■3) 

(i5) 

07) 

(■9) 

(21) 

(23) 

(27) 2ax—5by—16—(ax—16—[— 5by)\ 

(28) (a-\-b) (a-\-b); 

(29) |atx—|bzz—(—3aix—|— Qbzz); 

(30) (ax-\-by) (ax—by) ; (31) (a+b+c) (a-\-b— c) ; 

(33) 6(7^—i2abc-\~^ab ) (34) x-\-mx-\-nx~\-px ; 

(35) 

(37) 

(39) 

(41) 

m n 

2 nx 3 m 

<2#—bb 

a—b ’ 

3 —(— 3 ’ 

a—I—x . a—I—x 

3——3 : 

a 2x 

(36) 

(38) 

(40) 

a-j-x a—x _ •__ • 

a—x a-j-x ’ 

aa—bb 

a-\-b 

2 ay—5 by 

4 axy—lobxy ’ 

, x a 1 

<42> T:T’ 

<43) T:7 ; 

(45) 
a—x a a—xx 

(44) 7ax: 

(46) 

14 ax 

5 by ; 

a(b—c) b(a—c) 

a—|—x ax—|—xx 

, x iootf4-cz/> / . p \ , n. fo-}-xs 
(47) ‘I+— ); (48) - 1-1-; 

100 \ 100 / az az 100 az 
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(56) 

(a— 1) (ax—bx) 

x—ax 

a 

+cj (a—x) 

(b+c~ a 

aa-\-xx 

2 (aa—xx) 

Answers : 

(1) 2(a+b)—5; (2) a—b; 

(3) aJrb) (4) ab; 

(5) a; (6) 2 ab ; 

(7) 8abc; (8) 

abxy 

2 * 

a 
(9) 2txz; (10) 

T; 

a a 

(") 
(12) 

~b ’ 

(13) f; (14) 1; 

a 
('5) —1; (16) 

V 

(17) 2; (18) 1 . 
2 > 
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V 
(I9)3; . (20) 3"'; 

2C 

(2 1) I ; (22) 
a—v 

, \ U 
(23) 9a ; 

/ \ a~\~b 
24> 

(25) 5 bx—ax= (5 b—a) x ; (26) V; 

(27) ax—10by ; 
1 

(28) (2(2—j—2(2(5—|—(5$ j 

, . 11 atx 1 ofes 
(29)--— ; 

3 15 
(30) (2(2^;^—(5<5>^ ; 

(31) aa-\-2ab-\-bb—cc ; 
xx yy 

(32) 4 9 ; 

(33) 3ab(2a—4c+i); 
• 

(34) (1 -\-m-\-n-\-p). 

<35><s; 
(36) 1 ; 

(37) ; (38) a—b ■ 

(39) 
(40) — ; 

2X 

(4 0 -M+x) ; 
^T' 

<«) ; (** >?.• 

(46) 

(47) «; (48)^; 

(49) -f2; (50) f; 

(51) 

(53) •*; (54) •*; 

(55) (56) 1. 



BOOK XL 

Algebra. 

Simple Equations with One Unknown Quantity. 

96. 

Nearly all mathematical investigations lead into the investi¬ 

gation of problems which require for their final solution the help 

of arithmetic, and involve not only a thorough knowledge of 

arithmetic but also a certain degree of mechanical dexterity. In 

order to carry the study of arithmetic beyond the limits of the 

first part of this work, it is necessary not only to develop the 

theory, but also to be able to grasp the practical questions, with¬ 

out which a further development of the subject is impracticable. 

The first portion of this work dealt only with the theory of num¬ 

ber systems, with the first four rules, both for whole and fractional 

numbers, and with the rules of proportion ; together with a few 

of the simplest applications of these theories. 

Now as a matter of fact all calculations, no matter how com¬ 

plicated they may appear, may be carried back to the first four 

rules of arithmetic. But before we can bring the many condi¬ 

tions of a problem into their final form, there must often be many 

statements and deductions made, and the four simple rules must 

be turned and twisted, combined and separated in many ways. 

For these reasons it is necessary, in order to keep the premises 

and conclusions clearly in mind, to use all the methods of abridg¬ 

ment and simplifying symbols possible, and thus to avoid con¬ 

fusion wherever practicable. Especially is it important to study 

first the so-called “ simple” equations, and learn to apply them 

to the solution of practical problems, remembering that after all 

this is nothing but a symbolical application of the rule of three. 



The student cannot be too thorough in studying this, subject, upon 

which so many others depend, and should make sure that he un¬ 

derstands the following simple, but very important matters. 

97* 

Two expressions of the same value can be placed equal to 

each other. Thus 18—4 is just as much as 6—3—|—5, and so we 

can write : 

18—4=6—f-3—f-5 

and such a statement of equality, as already explained in §16, 

is called an equation. All that stands on the right of the sign of 

equality (=) is called the right hand side of the equation, all on 

the left, the left hand side; and the various quantities (letters, 

figures, &c.), which make up the two sides, are called the mem¬ 

bers of these sides. For example, in the above equation, -|~5 is 

the third member of the right side, and —4, is the second mem¬ 

ber of the left side. 

98* 

If we transpose (or transfer) any member from one side of 

an equation to the other side, at the same time changing its sign, 

the equation will still be true. Thus, for example, in the equa¬ 

tion : 

18—4=6+3+5 (1) 

if we take the second member of the left side and, changing its 

sign, place it over on the'right side, we have the following new 

equation : 

18=6+3+5+4 (2) 

The truth of this simple, but very important, fact, follows 

from the general truth, “ Equals added to, or subtracted from, 

equals, give equals.” (See § 18). The value of each of the two 

sides of equation (1) is equal to 14. If we add -(-4 to both sides, 

they must still remain equal to each other. The left side will now 

be 18—4 —j—4, or 18, since the —4 and -|-4 cancel each other. 

Briefly, then, the transposition of any member of an equation 

from one side to the other, changing its sign at the same time, is 

equivalent to adding or subtracting the same member from both 

sides of the equation. 
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Suppose we take equation (2) and transpose the first two 

members of the right side to the left side, also changing their 

signs, we have the true equation, 

18—6—3=5+4 (3) 

this being just the same as if we had subtracted—6 and 3 from 

both sides. The value of each side is now 9. 

If we transpose the first member of the left side to the right, 

we have : 

—6—3=5+4—18 (4) 

and the algebraic sum of both sides= —9. 

From (4), by transposing the two members from the left side 

to the right, we have : 

0=5+4—18+6+3 (5) 

If we change all the signs on both sides the equation will 

still remain true. Thus, for instance, from : 

18—4=6+3+5 (6) 

by changing all the + to —, and all the — to +, we get : 

— 18+4=—6—3 —5 (7) 

which is evidently true, since the values of the two sides are not 

changed but only reversed in sign. The value of each side of 

(6) is 14, of each side of (7) is —14. (See § 76). 

99. 

We have seen that by transposing members from either side 

of an equation the truth of the equation is not affected, and 

hence if we reduce one side of an equation to a single member 

by transposing all the other members to the other side, the value 

of all the members on this last side will be equal to that of the 

one member on the first side. Thus if we take the equation : 

6+5—3=10—2 (1) 

and reduce the left side to +5 by transposing the other members 

+6 and —3 to the right hand side, we have : 

5=IQ—2 — 6+3 (2) 

and the value of the right hand side must be equal to 5. (§ 98). 

Let us now suppose that in equation (1) there was one mem¬ 

ber whose value was unknown, and in its place any'symbol, such 

as x, be placed, and let it be required to find the value of x. 
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Suppose the equation to be : 

6-\-x—3=10—2 (i) 

To solve the equation, means to find a number, which when 

put in place of x, will still keep the values of both sides equal to 

each other. The equation is then said to be satisfied. 

This we may do by transposing all the members but x to the 

right hand side, when we have : 

■*=10—2+3—6 

and collecting the right hand members (according to § 76) we 

have : 
X—^ 

*00. 
We see that to solve an equation is to find a value for the un¬ 

known quantity x, which shall make the left side equal to the 

right. The study of the solution of equations is called Algebra. 

The equation 4—|—13, for example, is solved when it is reduced 

to the form x=g, since 4+9=13* The value for the unknown 

quantity (9 in the foregoing example) is called the root of the 

equation. Since the unknown quantity may be combined with 

the known or given quantities in a variety of ways, we must 

first classify the various forms, and explain simple examples 

under each form before we can proceed to the application of 

equations in solving algebraic problems. 

m♦ 

First Case. When the unknown quantity appears in only 

one member of the equation, with a factor, or coefficient. 

Reduce one side of the equation to a single member, con¬ 

taining the unknown quantity, then collect the members of the 

other side into one by taking their algebraic sum, and divide this 

sum by the coefficient of the unknown quantity. 

Suppose in the equation 4+7-8=60, the quantity 8 was 

unknown, and instead the symbol x was written, thus : 

4+7.r=6o 

We first transpose the +4, 

yx=6o—4 

Collecting, 7^=56 

Dividing by 7, x=8 
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It is quite clear that if yx— 56, x must equal 1 as much, i. e. 

-5T6-—8. 

Example : If we subtract 5 from six times a certain number 

the remainder will be 14. What is the number? 

Solution : If we call the unknown number x, then six times 

the number will be 6x, and we have from the question the fol¬ 

lowing equation : 

6x—5=14 

Transposing, 6^tr= 14—[—5 

Collecting, 6x=ig 

Dividing by the coefficient of x : x=—=3y. 
6 6 

102. 
Second Case. When the unknown quantity appears in only 

one member of the equation, with a divisor. 

In this case reduce one side to a single member containing 

the unknown quantity, and then multiply both sides by the 

divisor. 

Suppose in the equation the quantity 18 was un¬ 

known, and instead the symbol x, was written, we should have : 

iH-4=7 

Transposing, f=7—4 

Collecting, f=3 

Multiplying by 6, x=i8 

Since the sixth part of x—3, x itself must be 6 times as 

great. 

Example. If we divide a certain number by 5 and subtract 

| from the quotient, the result will be f, what is the number? 

Solution. Placing the unknown =x, and stating the question 

as an equation, we have : 

*_2__3 
5 3 — 7 

Transposing, f=-f+§ 

Collecting, j==§f 

Multiplying by 5, x—^f- 
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If the unknown on the left side should be negative, we mul¬ 

tiply both sides by —i. Thus, for example : 

3-*+5=4-* 

3„r—4u:=5 

Multiplying by —i, x—^ 

103. 

Third Case. When the unknown appears in only one mem¬ 

ber of the equation, but with both a factor and a divisor. 

Reduce the equation to the unknown member, as before, aud 

then divide the value on the other side by the fractional co¬ 

efficient ■ i. e., multiply by the divisor and divide by the factor. 

(See §47-) 
Suppose, in the equation 6—|—4-i-Q-=i4, we had x instead of 

io, the equation would become : 

4x-=8 5 

whence x=S • j- 

x=io 

for if -jf of a quantity is equal to 8, it is clear that the quantity 

itself is equal to -|X8=io. 
Or we may put it, if the 5th part of \x is equal to 8, clearly 

4j£=8 -5, and jv=-8t5-=io. 

Example. There is a certain number which if multiplied by 

7, and the product divided by 9? and then added to the quotient, 

the result will be T6T. What is the number ? 

Solution. Stating the question in the form of an equation, 

we have : 
7* 1 2.__( 
TT 5 — l 

whence -V—t 
or -'LL—— ui 9 — K K 

X- 

x-. 

JL 
11 

_6 
11 

8_ 
b 5 

,_8_ -9. 
•5 5 7 
■ 7 2_ 
3 8 5 

2. 

5 

104. 

Fourth Case. ‘When the unknown quantity appears in sev¬ 

eral members of an equation. In this case separate all the 

known from the unknown members, by transposing all members 



containing the unknown quantity to the left side of the equation, 

and all containing known quantities to the right hand side. 

Then collect each side into a single member, when the so¬ 

lution will be the same as in the third case. 

It in the equation 4—1~3 '5:=49—4 '5—2'5, the number 5 is 

unknown, and the symbol w written for it, we have : 

4 -\-$x=4 9—4.x—2x 

Transposing all members containing a; to the left side, and 

all known members to the right side, we have : 

3x-j-4x-f-2x=4 9—4 

Collecting, 9^=45 

Dividing by 9, x=$ 

It is clear that a quantity multiplied by 3, by 4, and by 2 is 

the same as it it were at once multiplied by 9. 

Example. W hat number is it which when multiplied by 10 

gives the same result as when 10 is added to it? 

Solution. Let a: be the number, then we have : 

I OX — X—|— I o 

Transposing, iox—x=io 

Collecting, 9^=10 

Dividing by 9. x=i± 

105* 

Fifth Case. When an unknown quantity stands in a paren¬ 

thesis with known quantities. In this case we first proceed to 

remove the parenthesis by multiplying the quantities within by 

the factor which stands without the parenthesis. (See §19.) 

Suppose, in the equation 6 *4=9—J—3 *5^ we have instead of the 

single factors 4 and 5, the binomial factors 7—3 and 12—7, which 

(according to §19) must be enclosed in parentheses. The equa¬ 
tion would then read : 

6(7—3)=9+'3(12—7) 

Now suppose the number 7 to be the unknown quantity, 
indicated by x, the equation is : 

6(x~3)=9+3(r2— x) (1) 

from which we must determine x. 
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In order to get the unknown quantity out of the parentheses 

we must (according to §19) multiply every quantity within the 

parenthesis by the factor without, which gives : 

6x—18=9—(—36—2,x (2) 

whence, 6 jv—(— 3 9—(—36—)—18 

and, 9^=63 

hence, x=j 

106. 
In problems involving the use of parentheses we must be 

careful to consider those which are preceded by a minus sign. 

Take, for example, the following equation : 

6(x— 3)—3(12—.*)=9 (3) 

and we have according to §89, Case 2, 

6x—18—3 6—[—3jv*=9 (4) 

6x-j-3x= 94-18+36 

9^=63 

x=i 

Example. What number is it which, when we subtract 6 

from it, multiply the remainder by 5 and subtract this product 

from 10, will equal zero? 

Solution. Let the required number be x. We then have for 

the first remainder, x—6, and this multiplied by 5, gives 5([x—6). 

Substracting this product from 10 gives 10—5(x—6) and since 

this is equal to zero, we have : 

10—5 (x—6)=o (1) 

whence 10—5_r-}-30=o (2) 

—5w=—30—10 (3) 

—$x=—40 (4) 

changing signs on both sides, according to §98, we have : 

5^=40 

x=8 

Instead of changing the signs in (4), we might have trans¬ 

posed the unknown to the other side, or, we should have ob¬ 

tained the result more simply by dividing both sides of (4) at 

once by —5. 

107, 
Finally we have the case in which the unknown exists in 

several members with a divisor. Suppose in the equation 
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2 -24+^-2 2=40- 

quantity. 

222 A. 
3 the factor 24 is the unknown 

Replacing- it by x we have : 

2X-j- -f- —22=40-f. + -f- (I) 3 1 ~T 

transposing all members containing- x to the left side : 

2x+3e- + 3f— -8r=4°+22 (2) 

Now before we can collect the members containing x, we 

must reduce the fractional coefficients to a common denominator, 

and thus we get : 

*+i + -2-1- 14 I _8_15. 
-* r 12T12 12' ■ 2-3- 

2 

and therefore 
? _7y. 
"1 2a‘ :62 

•3-1--—62 1 2 - 
l'=24 

Instead of working the equation (2) in the above manner it 

is, however, generally found simpler, first to collect the quantities 

on the right side, and then multiply both sides by the least common 

denominator, determining this by the method already given in 

§23. Thus we have from equation (2): 

2-r+V-— 5f = 62 (3) 

then multiplying both sides by 12 all the denominators will dis¬ 

appear, since they will all divide 12 without remainder, we get: 

12 * 2X-j- 12 • 7$ -|-12 • -2j—12 • -5j- = 6 2 • 12 

or more briefly (see §23): 

24x-j-1 4x-\-8x— 15.1=6 2 • i 2 

31^=62 -12 

a gj 

x—24 

Example. Required a number such that when | of itself 

be subtracted from J of itself the remainder will equal 14. 

Solution. Let x be the number; then from the above con¬ 

ditions we have: 

\x — %x=i4 

then multiplying both sides by 4 • 5 we have : 

1 5jv—Sx=28o 

jx—280 

x—40 
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Example. Required a number such that when" we subtract 

15 from h times the number, multiply the remainder by | and 

then subtract the product from 8 times the number, the result 

will equal 12. 

Solution. Calling the number a, we have : 

8a—I (6x—15)=12 

multiplying both sides by 5, we have : 

40a-—4 (6a—15) =60 

40a—24a-|~6o=6o 

i6a=o 
X- 0_.-Q 

16 u 
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BOOK XU 

Applications of Algebra* 

Solution of Algebraic Problems with One Unknown Quantity*. 

108* 

Algebraic problems are of such an infinite variety that, un¬ 

like ordinary arithmetical examples, they do not admit of a close 

classification. Many varied operations must be performed not 

only upon unknown quantities, but also upon symbols standing 

for unknown quantities (usually the last letters of the alphabet, 

x, y, z, /, etc.,) and while these quantities remain as yet unknown, 

the operations can only be indicated. 

General rules for the solution of such problems cannot be 

given, and it is only by careful and intelligent consideration and 

thought that each special problem can be framed in words and 

stated in algebraic symbols. The known and unknown quanti¬ 

ties must be so grouped and framed together that we can con¬ 

struct two expressions which are equal to each other, and then 

placing these on opposite sides of the sign of equality (=) we 

have framed our equation. 

It is in this matter of stating the problem that the real ability 

of the student must show itself. In the text books there are 

many examples given, which by careful study he may learn how 

to solve. In practical life, however, the problems which the 

engineer, the physicist, the electrician, and the business man, 

are all called to solve, are not mere examples stated in the con¬ 

venient terms of the text book, but are mingled with a number 
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of distracting conditions and surroundings which often require 

keen observation and clear judgment to disentangle them before 

a problem can be placed in mathematical form at all. 

When the equation expressing the relations between the 

known and unknown quantities is once stated the rules of the pre¬ 

ceding chapter may readily be applied. 

The matter of the statement of the equation, however, is a 

question of judgment and acute reasoning. These faculties can¬ 

not be created by study, but can be greatly developed and culti¬ 

vated by exercise and use. 

Here, as in all actual applications of mathematics, the 

mathematician must depend upon himself. He himself must 

be the judge of the validity of his conclusions, and separate the 

true from the false. 

Here it is that the beginner, who has not yet acquired the use 

of his own powers, nor learned to think and act for himself, must 

expect to find his greatest difficulties, but he must not be deterred 

or frightened off by any fears or lack of self-confidence. Practice 

and industry will soon develop a skill and facility of judgment 

which will render the work less and less difficult, and give con¬ 

stantly increasing confidence to the student in his work, Above 

all he must remember that success does not depend upon the 

number of examples which he may work out. A single problem 

carefully thought out and brought to a successful conclusion by 

one’s own unaided efforts, is worth a thousand hurried through in 

the same time with assistance from others. The examples here 

given are intended to show the way and point out the methods. 

The student will do well, however, after having carefully read 

them through, to work them out independently a second time 

without reference to the book at all. 

All mathematics consists of problems. The actual algebraic 

work, however, is by far the easier portion, since it requires little 

or no judgment, but only the exercise of care and accuracy, as is 

shown by the fact that many of the more complicated mathemat¬ 

ical operations can readily be performed by machinery. No 

machine, however, can ever be made to take the place of human 

judgment, and the training which is given to the mental faculties 

in the study of mathematics, will be found to strengthen the 

mind most effectively for all purposes and in all walks of life. 
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The problems which are merely stated, and involve the ap¬ 

plication of the rules of algebra, are only intended for beginners, 

but it is necessary to give some time at first to them, since he 

who cannot perform the simple operations involved in their solu¬ 

tion, can hardly expect to make rapid progress in mathematics. 

^ 09- 

Example i. There is a certain number, which when multi¬ 

plied by 2, and added to itself multiplied by 3, is equal to itself 

multiplied by 7 subtracted from 36. What number is it? 

Solution. Call the unknown number x, then 2x is twice the 

number, 3 a: three times the number, and yx is seven times the 

number. According to the question, we have 2x-j-^x is equal to 

yx subtracted from 36, so we may state the equation : 

2 x-\- 3 a—3 6-— 7 x 

Transposing yx to the left side, 

2 x-\- 3x-\~7 x= 3 6 

Collecting, 12 a—36 

Whence, x—3 

In order to prove the correctness of the work we may sub¬ 

stitute 3 for x in the original equation, to see if the two sides are 

then equal to each other. 

no. 
Example 2. What number is it, which when multiplied by 

10 is equal to itself added to 3 ? 

Solution. Let themumber be represented by a:, and from the 

conditions of the question we have : 

iox=x-\~3 

ioa-—a—3 

9X=3 
v=s—i 

93 

\\U 

Example 3/ Three persons, A, B. and C, have $36 to divide 

amongst them in such a proportion that B shall have twice as 

much as A, and C three times as much as B. How much should 

each one receive ? 



Solution. Let n: represent the amount which A receives. 

Then B’s share will be 2x, and C’s share 6x, and since all three 

shares must equal $36, we have the equation : 

x—|— 2 x—|—6x=3 6 

or, 9.1—36 

_r—4 

hence A A share— x—4. 

B's share=2v=8 

C’s share=6a:=24 

Total, 36 

U2. 

Example 4. $100 is to be divided between four persons, A, 

B, C, and D, so that their portions shall be in the proportion of 

3, 5, 8, and 4. What is the amount of each one's share? 

Solution. Let A A share =x. The proportions 3, 5, 8 and 4 

are the same as 1, -f, f and | (§65), and so we have, B’s share 

=J_r, C’s share =§v, and D7s share =§x, and hence : 

*+¥+¥-Mr==IO° 
or, -2^-= 100 

and, 2 ox—300 

x=i$, A A share. 

-|vV= 2 5, B's share. 

|v%-=40, C's share. 

±x=20, DA share. 

U3. 

Example 5. $6,000 is to be divided among three persons, 

A, B, and C, in such a manner that B is to receive three 

times as much as A, less $200 ; C, four times as much as B, but 

plus $200. What is the share of each? 

Solution. Let AA share be=.v, then B’s will be 3X—200, 

and CA share will be 4(3^—200)+200. We then have the equa¬ 

tion : 

X~\~3X—200—j—4 (3-r"-200)—[—200=6000 

Jf—(—3Jf—(— I 2X-800=6000 

16.v=68oo 

a—425 

Hence the shares will be : A, $425 ; B, $1075 ; andC,$4,5°°- 
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U4. 
« 

Example 6. A Greek went into the temple of Jupiter and 

prayed to the god that he would double his money for him. 

Jupiter did so, and in gratitude the man laid 2 oboli upon the 

altar as a gift. He then went with the remainder to the temple 

of Apollo, and prayed to him to double this remainder. Here 

also, his prayer was answered, and he left a gift of four oboli. 

When the Greek went to count his money he found that notwith¬ 

standing the repeated doubling, it was all gone ; how much did 

he have at first? 

Solution. Let x— the original number of oboli. Then 2x 

would be the amount after the first doubling, and since he gave 

2 oboli, the remainder would be 2x—2. This remainder when 

doubled by Apollo, would be 2 (2x—2), and as he gave up 4 

oboli, it made 2 (2x—2)—4. As he then had nothing left, the 

equation will be : 

2 (2X—2)—4=0 

whence 4x—4—4=0 ' 

4X—8 

X=2 

U5. 

Example 7. Divide the number 100 into two parts, so that 

the larger part divided by 6, and the smaller part divided by 4 

shall give equal quotients. 

Solution. At first it looks as if we had here iwo unknown 

quantities. If we knew one of them, however, we should know 

the other, since the second would be equal to the first, subtracted 

from 100. Suppose then, that we call the greater of the two 

numbers =x, we have for the other ioc-—x, and thus can express 

them both without using a second unknown symbol. We then 

have from the terms of the question : 

x— 10 0—x 
-6-“ T — 

Multiplying both sides by 12 we get : 

20=3 (100—x) 

20=300-30 

50,-300 

O’—60 

Since 0=60, the second number is ioo-:—60=40. 
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\\6. 
Example 8. Required to divide the number ioo into two 

parts, such that when one is divided by 5, and the other by 3, 

the sum of the quotients shall be equal to 24. 

Solution. Let x equal the first number, and 100—x= the 

second number. Then from the question we have : 

Multiplying by 3 • 5, we get : 

3^+500—5^=3 60 

-2X=-140 

x=yo (See § § 98 and 106). 

hence 70 is one number, and 100—70=30= the other. 

U7. 

Example 9. A man was asked how old he was, and replied : 

“When I am as many years over 100 as I now am under 100, 

I will be just twice as old as I am now.” What was his age ? 

Solution. Let a; be the required age. Then 100—x will be 

the number of years he lacks of being 100 years of age. If he 

were that many years over 100, he would ioo-)-(ioo—x). But 

this, according his statement, is just twice his present age, so it 

must be equal to 2x, hence the equation is : 

2 x= 1 oo-|-1OO-X 

3„V=200 

a;=66| 

U 8. 
Example 10. Some one asked Pythagoras how many pupils 

he had. He answered in the following enigmatical manner : 

Half of them study philosophy ; one-third study mathematics. 

If to the remainder, who keep silence, you add the three pupils 

I have with me, and which are not included in the foregoing, you 

will have just one-fourth of those who study mathematics and 

philosophy.” How many pupils had he? 

Solution. Let a: be the number of pupils, then f study phi¬ 
losophy, and study mathematics. These together make 

\x^-\x='lx, so that the remainder must equal \x. But if 3 be 

added to this remainder, it will equal \ of the number who study 



134 

philosophy and mathematics, i. e. \ of so we have for the 

equation : 
■*- 1 o — X • 5 -y 

5-4 
X gx , 5 
6 2 ¥ o 

Multiplying by 24 gives 

4.x—$x=—72 

—x——72 

or, multiplying both sides by —1, 

X=J2 

119* 

Example ii. A builder can build a certain wall in 6 days, 

and another can build it in 3 days. What time will it take them 

to build it if both work together ? 

Solution. The man who can do the work in 6 days must do 

of it in 1 day, while the second man can do J of it in 1 day. 

Both working together will then do 1% of the work in 1 

day. If then we make x — the number of days required to do 

the whole work (=1), we have : 

_JL_jr= 
1 8~l 

X= 

:I 

:2 

120* 

Example 12. A certain pool is to be pumped dry. One 

pumping engine is capable of removing the water in 30 days, 

another one can do it in 40 days, and a third can pump it out in 

20 days. How many days will be required if all three pumps 

work together ? 

Solution. Let us call the quantity of water =1. The first 

pump can remove this water in 30 days, hence -^th of it in 1 

day. In like manner the daily portion of the second is ^th and 

the third pump ^-th. All three pumps would then remove 

3V KV 1~2~V~tW °f ^e amount in one day. In x days the 

amount pumped would be TWr’ whence : 

1 3 
1 2 O' 

x= V 1_2_0- 

1 3 ' =9* 

*21* 

Example 13. A number of apples were to be divided among 

some children. In order that each child should have five apples, 
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two more apples would have been required. When each child 

received four apples, there were three apples left over. How 

many apples, and how many children were there? 

Solution. This question appears to have two unknown 

quantities, but one of them can be obtained from the other. 

Suppose we call the number of children=a\ If each were to 

have 5 apples, there would be two apples short; whence 

5_v—2— the number of apples. If each child had 4, there 

would be 3 apples over, hence \x-\-3 also= the number of 

apples. These two expressions must then be equal to each other, 

hence : 
5„v—2=4w+3 

5X—4X—5 

x—s 
There were then 5 children, and 5*5—2=4 • 5—)—3=23 apples. 

122* 

Example 14. In a certain assemblage, there were 3 times 

as many men as women. Later, 8 men with their wives left, and 

there were then in the remaining company, 5 times as many men 

as women. How many men, and how many women were there 

present in the first instance ? 

Solution. If we call the original number of women =w; the 

original number of men will be %xwhen 8 men and 8 women 

have gone, there will be remaining a:—8 women, and $x-—8 

men ; and since now the men are 5 times as many as the women, 

we have : 

3X—8=5 {x— 8) 

whence, —2x=—32 

x= 16 

16 women and 3X16=48 men. 

123* 

Example 15. A servant was to receive $135 a year and a 

suit of clothes. He left the situation after working 7 months, 

and received as his pay $67 besides the clothes. How much was 

allowed as the value of the clothes ? 

Solution. Let the value of the clothes be =x. I hen the 

pay for a year would be $135-)—T anc^ f°r one month= 
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and for 7 months =T^ (13 5—|—. But this amount will also be 

equal to $6y-\-x, whence we have : 

6 7-\-x=T\ (13$-\-x) 
multiplying by 12, 

804—(—12 jv==9 4 5—1— 7*^ 

$x= 141 

x=2 8-J- 

Remember that all the members of an equation must be of 

one and the same denomination. 

*24. 

Example 16. An employer took an apprentice, and they 

agreed that for every day the apprentice worked he was to re¬ 

ceive one dollar, but for every day he was absent he should pay 

a fine of 60 cents. After 80 days, they reckoned up their ac¬ 

counts and found that neither owed the other anything. How 

many days had the apprentice been at work ? 

Solution. Let at be the required number of days. Then 

80—x will be the number of days the apprentice was absent. 

His fine during that time would amount to —x)> an^ ^is 

earnings during a; days would be nr dollars, hence : 

60 (80—x) 
x---~=o 

100 

1 ox—4 8o-|-6jt’=o 

16^=480 

A—30 

*25. 

Example 17. A merchant bought 120 yards of cloth for 

$300. The seller, however, allowed him a discount from this 

$300, equal to the net cost of 20 yards to him. What was the 

amount of the discount in money ? 

Solution. Let the amount of the discount be =x. Then the 

120 yards cost 300—a;, and 20 yards cost 20^^r-=x, and since 

this is equal to a; also, we have : 

6 a:=3 GO—X 

yx=300 

X=\2§r 

or 
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\ 26- 
Example i 8. What number is it which has the following 

properties ? When it is multiplied by 3, and 11 subtracted from 

the product, the remainder then multiplied by 4, and then 6 

added to the product, and the sum multiplied by 5, the result 

will equal 50. 

Solution. In order to indicate all these operations by signs, 

two parentheses will be required. If we call a: the number, then 

we have 3a;—11, and 4 (3a;—n)-[-6 will be the sum. Now to 

indicate that this is to be multiplied by 5, we enclose it all be¬ 

tween parentheses again, and to avoid confusion, these latter are 

made in the form of brackets, thus : 5 [4($x—n)-f-6]=50. 

Now to relieve the unknown quantity from the parentheses, 

we remove first the inner and then the outer parenthesis (or vice 

versa). We will begin with the inner one and obtain first: 

5 [12a:—44+6]=50 

or 5 [12a;— 38]=5o 

Dividing both sides by 5 we have : 

12a'—38—10 
12^=48 

ar=4 

*27. 

Example 19. A market woman brought a basket of apples 

to market. She sold first one-half of them and half an apple. 

She next sold one-half of the remainder and half an apple; and 

then she sold one-half of what was left and half an apple. She 

then had 24 apples left. How many had she at first? 

Solution. Let x be the number of apples. After the first 

sale she had left \x—after the second sale x—|)—after 

the third sale she had left |[h(hx—h) — 2]—b and this must be 

equal to the 24 apples which were left, so we have : 

h [2 (bv b) b\ h~2^ 
Removing the inner parenthesis, we have : 

1 riy 1_11_1-21 
2l4'X 4 2 J 2- 

ob h[ix-—i]—i=24 

Then removing the outer parenthesis, 
1 sy _ 3 _ 1 ■ O 4 
8"1 8 2 ^4 

■S'-J48 

x= 199 
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128. 

Example 20. How great must the principal be, which at 5 

per cent, interest, brings in as much in 4 years, as $635 at 4%, 

brings in 7 years ? 

Solution. The money at 4 per cent, brings in $4 a year for 

every $100, hence y-f-^'4 is the yearly interest and fW'47 the 

total interest of the second investment. Now let x= the prin¬ 

cipal at 5 per cent., then x-J-o’5'4 must be the total interest of the 

first investment. But these two are equal to each other, so we 

have : 
_jL_ • r • a--6JL5, -a • >n 
10 0 5 4 i 0 0 4 / 

whence, ^=$889 

129* 

Example 21. What must be the rate of interest for $225 to 

bring in as much in 6 years, as $300 at 3will yield in 8 years? 

Solution. Let x be the required rate, and we have 
2.2_5 x • 5-3jO_0 • 7_ • g 
1 0 0~l u 1 0 0 2 u 

whence, 4 5-v=i 07 -4 

9-r= 56 
r-f)20/ a u 9/o 

130- 

Exalple 22. What must be the principal of an investment, 

which at 4%, for 5 years, makes $600 total, principal and 

interest ? 

Solution, Let x be the required principal. We then have 

T^g--4'5 for the interest at 4% for 5 years, and^+T^-’4'5 f°r 

the sum of principal and interest; 

hence, • 4 5=600 

x-\-%=600 
5x-\-x=300o • 

x=$s°° 

131- 

Example 23. A desires to send B by express $5100, but B, 

wishes the charge of 2% to be prepaid and deducted ; how much 

will B receive ? 
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Solution. Let the required amount be =x. The express 

charges will then be 3-^*2, and the total =x-\-T^* 2. But the 

total =$5100 hence we have : 

•r+TT¥'2 = 5IO° 

51 ^=5100.50 

a=5ooo 

132. 

Example 24. A wishes to send B $4900, but cannot prepay 

the charge of 2% at the office of sending. He desires to make 

the amount such that B will have $4900 clear after paying the 

charge of 2%. How much must he send? 

Solution. Let x be the required amount, then B must pay 

on it Tfo-‘ 2, hence : 

x—tU' 2=490o 

49^=4900*50 

^=5000 

133. 

Example 25. A man desires to obtain $30,000 insurance, on 

which the premium is 20%, but desires to make the amount of 

the insurance such as to include the amount of the premium also. 

How much will be the premium ? 

Let a: be the required amount. Then the total amount of 

the insurance will be 30,ooo-|-a;, and the premium on this will be 

3 0 0 0 0 + * 
100 20 

But this is equal to x, hence we have : 
-v—3.0 0 0 0+-)? • x— 100 zu 

4^^=30,000 

x=7 500 

134. 

Example 26. A courier who travels 25 miles a day has been 

dispatched 8 days, when another, traveling 45 miles a day, is 

sent after him. How many days will it take the second man to 

overtake the first ? 

Solution. Let a* be the number of days, then the second 

man will travel a distance of 45^ miles, while the first, who has 

had 8 days start, will have traveled 2$(x-\-8). At the time the 
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first is overtaken, both have traveled the same distance, hence 

the two expressions must be equal to each other, and we have : 

4 5X== 2 5 8) 
4^X—2^X-\-200 

20X—200 

x=io 

135* 
Example 27. The hour hand of a clock points to VI, and 

the minute hand to XII. When will the two hands be exactly 

together ? 

Solution. Let the time in hours, or fractions of an hour, 

which will elapse before the hands are together =x. The minute 

hand moves 60 minutes in an hour, and in x hours it will move 

6ox minutes. The hour hand moves over a space equal to 5 

minutes in one hour, and in x hours it will move over $x minutes. 

But it has to move over 30 minutes to reach the place where the 

minute hand now is. This gives the equation : 

6ox=30-j~5x 

for the two expressions must be equal if the two hands are 

together, whence : 

x=t6t of an hour—3 2t8t minutes 

and the hands would be together at 32T8T minutes after six o’clock. 

13 6. 

Example 28. Someone being asked what time it was, said 

the hour and minute hands were exactly together, between X and 

XI. What time was it ? 

Solution. The minute hand stood at XII when the hour 

hand was at X, and was then 10-5=50 minutes behind the hour 

hand, hence : 

Oox—^o-j-^x 
'V -10 

1 1 

The minute hand was therefore 41) minutes before the XII 

mark, and as the hour hand was at the same place the time was 

5^f minutes before XI. 

137* 

Example 29. A dog was chasing a rabbit. The rabbit was 

100 leaps ahead of the dog and made six leaps while the dog 



made 5 leaps. The dog, however, covered as much space in 7 

leaps as the rabbit did in 9 leaps. How many leaps would the 

rabbit make before the dog overtook him ? 

Solution. If we make x the required number of leaps, then 

ioo-^-x= the total number of leaps. Since the rabbit makes 6 

leaps while the dog makes 5, the dog will make | leaps while the 

rabbit makes 1. When the rabbit has made x leaps the dog has 

made leaps, in which time he has gone as far as the rabbit 

has in ioo-|-^ leaps. 

Before we can place the two quantities equal to each other, 

we must reduce the dog-leaps to their equivalent in rabbit-leaps. 

Now since 7 dog-leaps are equivalent to 9 rabbit-leaps, 1 dog- 

leap is equivalent to -f rabbit-leaps, and dog-leaps are equal to 

rabbit-leaps. We therefore have the equation : 

ij- ’ -jkv—: IOO—|—X 

15^=1402-1-14^ 

•V=i 400 

138* 

Example 30. A dealer has 2 grades of wine. The better 

grade sells for $1.50 a bottle, the second quality for 87J cents. 

He desires to make an intermediate grade by mixing the two in 

such a proportion as will make its value $1,121 a bottle. How 

much of each kind must he take to make 200 bottles? 

Solution. Let x= the number of bottles required of the 

better quality, then 200—x will be the number of bottles of the 

cheaper grade. Each bottle of the ^ grade is worth 1.50, and 

each bottle of the 200—x grade is worth 0.875, hence the value 

of the mixture is 1$ox-\-87.5(200-—x). But each bottle of the 

mixed wine is to be worth 112.5 hence the 200 bottles will be 

worth 112 . 5-(-200 which gives the equation : 

15ojt*—|— 87.5(200—x)=i 12.5X200 

30on;XI75(200—x)=22 5X200 

30ojp-[-3 5000—175.v=4 5000 

12 $x= 10000 

a;—80 

Hence 80 bottles of the better wine, and 20c—8c=i 20 bottles 

of the cheaper wine, will be required. 
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139- 

Example 31. The Fahrenheit thermometer has its scale 

divided from o° to boiling, into 212 degrees. The Centigrade 

thermometer starts at a point =32° on the Fahrenheit scale, and 

from this o° to boiling is divided into 100 degrees. When the 

mercury stands at 77 degrees Fahrenheit, what will it be in 

degrees Centigrade? 

Solution. Let x= required number of degrees C. Since the 

o° Centigrade scale starts at 320 Fahrenheit the same distance 

which is divided into 100 degrees Centigrade, is divided into 

212—32=180 degrees Fahrenheit, and hence 1 degree C is equal 

to degrees F, and x degrees C, is equal to J-jj-jj- x degrees C. 

But before we can make an equation we must find out how many 

Fahrenheit degrees 77 F. is above the Centigrade o°, and as the 

Fahrenheit degrees start 32 degrees F below the o C, we must 

subtract 32. Hence we have 

iUx =77—32 
18 =77o—320 

18 V =450 

a: =25 

hence, 770 F =25° C 

140- 

Example 32. A bicycle which is geared to 70 inches (i. e., 

is geared so that one revolution of its cranks propels it as far as 

one revolution of a 7° inch wheel), has 8 sprockets on the rear 

wheel and 20 sprockets on the crank wheel. Suppose the crank 

sprocket is to be changed so that the gear will be reduced to 63 ; 

what will be the number of sprockets in the new sprocket wheel, 

the rear sprocket remaining unchanged ? 

Solution. Let the required number of sprockets be =at. 

The ratio of the sprockets in the first case is 3¥°, and in the second 

case But in the first case the wheel revolves 70 times while 

in the second it revolves 63 times, and the lower gear gives it 

the lesser number of revolutions. Hence we have the equation 

1-70=3/ 63 

J0X=20'63 

yx= 126 

x=i 8 
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m. 
Example 33. A piece of lead weighing 23 pounds in the air, 

is found to weigh 21 pounds when immersed in water, so that 

we may say 23 pounds of lead loses 2 pounds in water, and that 

this proportion holds good for any weight of lead, i. e. 2 times 

23 pounds would lose 2X2=4 pounds in water. In the same way 

we find that 37 pounds of tin loses 5 pounds when weighed in 

water. If now we melt 23 pounds of lead and 37 pounds of 

tin together, the alloy will weigh 60 pounds, and it will, when 

weighed in water, lose 2—|—5=7 pounds. Knowing these facts, 

we have given a mass of alloy, composed only of lead and 

tin, which weighs 217 pounds, and is found to lose 26 pounds 

when weighed in water. How much tin does it contain? 

Solution. Suppose that the 217 pounds of alloy contains at 

pounds of tin, and hence 217—x pounds of lead. Now the 

alloy must have lost 5 pounds in water for every 37 pounds of 

tin it contained, or 5, and also have lost 2 pounds for every 

23 pounds of lead, 3V 5+--V7a~' 2, and the sum of these must 

equal the loss of 26 pounds. Hence we have : 

3T ' 5+-VV~' 2=26 

whence, 11 5jv-|~74'217—74^=23 -26-37 

4Ia:=6o68 
jv= 148 

Hence the composition contained 148 pounds tin and 69 

pounds lead. 

142* 

Example 34. King Hiero of Syracuse gave a goldsmith 16 

pounds of gold and 4 pounds of silver to make for him a crown. 

The completed crown weighed correctly 20 pounds, but the king 

suspected that the goldsmith had kept part of the gold, replacing 

it by an equal weight of silver.* He therefore requested the 

mathematician Archimedes to investigate the crown for him. 

Archimedes weighed the crown in water, and found it to lose i\ 

pounds. He also found that 21 pounds of pure silver lost 2 

pounds in water, and 20 pounds of gold lost 1 pound in water, 

and from these data he determined the amount of gold in the 

crown. How much gold did it contain? 
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Solution. Let the amount of gold =x, then 20—x= the 

silver. Then mus* he equal to the whole loss in 

water, or =ij pounds. Hence we have : 

* I o jLO. — *_1 
2Q\2 21 -4 

whence, x=i4T\ 

Hence, instead of 16 pounds of gold, the crown contained 

only i4T9-g pounds, the jeweler having stolen iT9-g pounds, and put 

m instead 4 pounds of silver, 5^-| pounds. 

*43. 

Example 35. A man is 58 years old and his son 18 years. 

In how many years will the father be twice as old as his son ? 

Solution. Let x be the number of years which must elapse 

until the age of the father is twice that of the son. The father's 

age at that time will then be 58-f-A:, and the sons age i8-\-x; but 

by the terms of the problem twice the son’s age will equal the 

father’s age and the equation will be : . 

2 (i 8—)—Jtr)=58—|— 

3 6“|— 2 AT= 3 8 —|—X 

X—22 

This is the correct solution, for 58-f-2 2=8o and i8-f-2 2=40. 

*44. 

Example 36. A man’s age is 58, and his son is 18 ; at what 

age is the father 3^ times as old as his son. 

Solution. Let a: equal the number of years which must 

elapse for the father to be sh times the age of the son, and their 

respective ages will then be 58-f-A; and 18—[—jv, and we have : 

3i (i8+a:)=58 -fn; 

63+3i*=58 +•* 
2 4-^=5 8—63 

jx=== 5 

x=—2 

This calculation gives a: a minus sign, which while perfectly 

correct requires some explanation. 

The* processes of calculation are perfectly logical, although 

they may in some cases appear to conflict with the conditions of 
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the problem. Such conflict, however, is only apparent. iThe 

real problem which we have solved is that of the conditions : 

31 (1 ^4" x)—5 S-\-x 
which simply means that x is equal to a number which, united to 

58 and 18 respectively, will make the former 3^ times the latter, 

regardless of whether these quantities are ages, pounds, miles or 

anything else. Now when a quantity comes out negative, the 

minus sign simply means that the actual magnitude found for x 

is to be subtracted instead of added to the given ages. It must 

therefore be remembered that in solving an equation we may 

determine not only the value of the unknown, but also its charac¬ 

ter, i. e., whether it is positive or negative. As already explained, 

to add a negative quantity is the same as to subtract a positive 

quantity, and hence if we subtract 2 from each of the ages we 

get 56 and 16, for the ages of father and son respectively, show¬ 

ing that the relation desired took place in the past instead of the 

future. 

145, 
Example 37. A man is 58 years old, and his son 18 years. 

How many years have passed since the father was six times as 

old as his son ? 

Solution. Let x be the number of years to be subtracted to 

make the father's age 6 times that of the son, and we have : 

58—a—6(18—x) 
5 8—x— 108—6x 

5x—5° 

x= 1 o 

Hence the father’s age was 58—10=48, and the son's, 

18—10=8 years. 

146, 
Example 38. Again, let the father be 58 and the son 18 

years, how much must be subtracted from both ages for the 

father to be three times the son's age ? 

Solution. Let the number of years to be subtracted =x, 

then the father’s age will be 58—x, and the son's age 18—a, and 

the equation will be : 
5 8—a—3 (18—x) 

58—A=54—3X 
2X=-4 
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‘ Here again we have a negative result, and as the problem 

was to find how much was to be subtracted, we must subtract 

minus 2, which is the same as adding plus 2, and the ages are 60 

and 20 years respectively. 

147* 

Example 39. What must be the value and sign of x, to sat¬ 

isfy the following equation ? 

2 5~]-4a:=7—2x 

Solution. We have : 6x=—18 

a ’==• 3 

Substituting this value —3=-x in the original equation, we 

get 

2 5+4 (—3 )=7—2 (—3) 

25—12=7+6 

This example shows, that the absolute sign of the unknown 

quantity can only be determined when it appears as an inverse 

factor, as will be explained hereafter, see §329, appendix. 
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Functions and Formulas. 

*48- 

In mathematical works, we often meet with the statement 

that a certain quantity is a function of one or more other quanti¬ 

ties. This expression means simply that there exists some defi¬ 

nite relation between the quantities named, the one depending 

upon the other (or others) according to some definite laws. 

Thus, for example, the distance to which a cannon ball may 

be fired depends upon several other quantities, such as the initial 

velocity, the size and weight of the ball, the composition and ex¬ 

plosive force of the powder, the angle of elevation of the gun, 

the length of its bore, the resistance of the air, the attraction of 

gravity, &c., &c. And since the distance is definitely affected by 

all these conditions, it is said to be a function of their values, 

depending upon them for its value. 

*49. 

In further explanation of the preceding paragraph the fol¬ 

lowing simple equation is given. 

What number is it, of which the sum of its 5th and 7th 

parts, is equal to 24. 

Solution. It is clear that the value of the required number 

(x), by the conditions of the question, is dependent upon the 

numbers 5, 7 and 24, or in mathematical language, is a func¬ 

tion of 5, 7, and 24, the relation being : 

3"4-T==24 
whence 7jv—|— 535 ■ 24 

12^=840 

X—'JO 
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Here we have readily found the required number to be x=jo, 

but the precise relation which it bears to the numbers 5, 7, and 

24, cannot be seen when they are thus collected, but must be 

otherwise expressed in the shape of what is called a formula, 

which simply means that the relations which the functions bear 

to each other must be placed in a definite form. In order to do 

this we must determine the value of x in the equation, not by 

performing the operations arithmetically, but by indicating them, 

while keeping the various quantities intact so that their relations 

are exhibited at one time before the observer in a formula. 

Thus we have from the equation : 

iH—t=24 
first clearing of fractions by multiplying both sides by 5 • 7 

7X-\~5X=5'7 ‘ 24 

then indicating the collection ot the coefficients of x, we get 

(7+5)-*—5-7'24 

whence x=--^r 24 
7+5 

Here we have a formula, which shows at a glance the man¬ 

ner in which the value of x depends upon 5, 7. and 24, this then 

is the formula tor the value of x, which expressed in words, is 

that to find x, we must multiply the three numbeis together and 

divide the product by the sum of the first two. 

150, 
It is easy to see that the law which shows how one quantity 

depends upon others is not determined by the absolute magnitude 

of the quantities, but by the relations which they bear to each 

other. Thus if it is asked what number it is of which the sum of 

the 3rd and 4th parts equals 21, we might state the equation and 

find the value of x as in the preceding paragraph. Instead of 

repeating the work, however, we have only to substitute in the 

final formula of that paragraph 21 for 24, and 3 and 4 instead of 

5 and 7, and obtain at once the required number =36. 

We may also express the law or conditions by which one 

quantity depends upon others, and find the simplest expression of 

their relations without losing their identity, by representing all the 

quantities by determinate symbols. Then stating the question as 
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an equation, we can reduce it to its simplest form to obtain the 

desired formula, (see § 82). 

The result which is obtained by the reduction of a general 

expression will clearly be the same, when letters are substituted 

for the numerical quantities, except that the arithmetical opera¬ 

tions will only be indicated instead of being performed, and by 

means of the reductions the actual amount of reckoning will 

finally be much reduced. 

Thus the preceding problems can be reduced to a general 

formula as follows : 

Let it be required to find a number such that its mth and nth 

parts added together shall equal a. 

Solution. Let x be the unknown, and m, n, and a the given 

numbers. The conditions of the problem stated as an equation 

are : 

x . x 
— —a 

7n n 

clearing of fractions by multiplying both sides by mn, we get : 

nx-j- mx=a m n 

Now adding the coefficients of x we have : 

(n-\-m) x—77171a 

and dividing by the coefficient of at we have : 

mna 
x= , 

m-\-n 

151* 

Example. Let it be required to divide the number 140 into 

two parts, so that they shall be in the proportion of 2:5. 

Solution. The parts must be in the proportion of 2 : 5, which 

is the same as 1 :-jj- (see § 63), and if we call one part x the other 

will be \x, whence we get the equation : 

a’4-|-a—140 
1 

2 a--)— 5 x== 280 

7^=280 

x=40= one part 

|o:=ioo= the other part. 

Example. Divide any number a, into two parts which shall 

be in the relation of m : 71. 
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• r 77 

Solution. The proportion m : n is the same as i :—, so that 
m 

fl 
if ^ be one part — x will be the other, whence : 

m 

n 
—x=a 
m 

multiplying by m, we get 

mx-\-nx=ma 

(m-\-n)x=:ma 

ma 
x=-j—=one part, 

m-\-n 
and the other part will be : 

n n ma na 

m m m-\-n m-\-n 

In order to prove the correctness of this work, we remem- 

71 
ber that the values for x and—xt added together should equal a. 

This is the case for we have : 

ma na  a (m-j-n) 

m-j-n'm-j-n m-j-n a 

152. 

Example. Divide a given number, a, into three parts, such 

that their relations shall be in the proportion of m\n\p. 

Solution. The proportions m \ n\p are the same as i : — :— 
mm 

and hence if x is the first part, the second part will be -—x, and 
m 

■p 
the third part will be - x, and since the sum of all three is equal 

to a, we have : 

, nx . px 
x~\ -=a 

m m 

In order to reduce this to a value for x, we first multiply the 

whole equation by m, which gives : 

[ m x-\- nx-\-px= m a 

Then collecting the coefficients of x, 

(m-j- n-\-p)x=ma 

whence, 
ma 

+n+p 
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which is the first part, and the second part= 

ma na¬ il n 
_'Y--•_■ t- 

in m m-\-n~\-p m-\-n-\-p 

and the third part — 

ma pa p p 
±_Y'——_*___ 

in in m-\-n-\-p ' m-\-n-\-p 

Thus, for example, suppose it is required to separate ioo 

into three parts which shall be in the relation of 2:5:3, we have 

in the above formulas : a=ioo, m=2, 11=5, ^>=3, anc^ the 

2 * I OO 2-IOO 
first part=—s,——-=20 

2+5+3 10 

, 5-100 
the second part=-=5° 

r 10 

3-100 
the third part=-=3° 

r 10 

i 53- 

Example. Divide the number 100 into two parts, such that 

when one part is divided by m=5, and the other part by 11=8, 

the sum of the quotients shall equal 17. 

Solution. Let x be one part and a—x the other part, and 

we have from the problem : 

x a—x_^ 

in' 11 

Multiplying both sides by mn, we get: 

nx-\-ma—mx=mnb 

Now separating the known from the unknown quantities : 

nx—mx=mnb—ma 

(n—in) x=m {rib—a) 

m (nb—a) 

n—m 

Subtracting this from a, to get the value for a—-x, we have : 

m {nb—a) 

a " ( n—m 

This expression for a—x can be further reduced as follows : 

a {11—m)—m {nb—a) 
a—x— 

11—m 
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an—am — mnb-\-am 
a—x=--L_ 

n—m 

an—mnb 
a—x=- 

n—m 

n (a—mb') 
a—x=— -i 

n—m 

In order to prove the above work to be correct we can add 

the expressions for x and a—x together, and see if they equal a. 

This proves to be the case since we have : 

m (nb—a) 71 (a—mb 

n—m 7i—m 

jmnb—ma-\~7ia—nmb 

7i—m 

_na—ma (n—m) a 
■— j-—:—a. 

71—m 7i-\- m 

154. 

Example. Suppose a number of payments are to be made 

at the termination of various periods of time ; i. e. a certain sum 

5, at the expiration of m months, another sum 5' at the end of 

771 months, a third sum s' at the end of m" months, &c. 

The creditor desires to receive the entire amount of all the 

payments at one time. At what time should 

this payment be made, in order that it should be the correct 

equivalent of the separate payments at different times ? (It is 

often customary to indicate quantities of the same kind by the 

same letter, using accent marks to distinguish the various items. 

Thus above the letter s is used to represent a sum of money, 

and the different sums by s, s', s", &c., while m, m\ m'\ &c., 

represent the various numbers of months.) 

Solution. In order to be able to state the question clearly, 

let us choose any monthly percentage, and say that the interest 

per month, i. e. the number of dollars returned by each $100 

pei month, shall = p. The total interest on a sum s for m 

months will then be ; and likewise the interest on a sum 
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s' will equal 
s' pm 

ioo 
and so on. The total amount which would 

then be paid the creditor would then be 

s" pm spm s'pm' 

IOO ' IOO IOO 

the amount of the interest in each case depending upon the 

length of time. Now the time at which the whole sum 

s" —j—... should be paid, to be of the equivalent value, we will call 

x, and this will also be the same time at which the interest on 

the total sum at the same rate p, would equal the sum of the in¬ 

terests on the different sums for the different times. We can 

therefore make the following equation : 

(s-j-s'-fs". . )px spm spm' 
ft , tt 

s pm 

IOO IOO IOO IOO 

p 
We see that all members have the factor-, which is evi- 

ioo 
dent also from the fact that the equality is true, whatever the rate 

of interest may be. We may then cancel this factor by multiply- 

p 
ing both sides by , and then by dividing both sides by 

s—j—s/—s " . . we get: 

sm-\-s'm'-\-s" m"-\- . . 

This may be also expressed in the following rule: Multiply each 

amount by its time, and divide the sum of the products by the sum 

of the amounts. The quotient will be the average time for the whole 

amount. 

Example. The four following amounts are to be paid at the 

expiration of the given times, without interest, viz.: $300 at 14 

days, $200 at 3 weeks, $150 at 2 months, and $100 at 28 days. 

What will be the average time if the total sum is to be all paid 

at once ? 

Here we have : 

S=300 s'=20o s"=150 S " = 100 

m= 14 m'= 21 m"= 60 m = 28 

s?n=4200 s'm'=4200 s"m"=gooo s'"m'"=28 00 

sm-fs'm'-\-s"m"-\-s m "' =20200 

s+s'-K'—H'"=75 o 

$SL=27 days, very nearly. 
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155. 
In all cases in which a quantity is only an apparent function 

of another, as a: and p, in the preceding example, the latter must 

disappear in the course of the reduction. For example, in the 

expression : 

x appears to be a tiinction of a, b, m and n; that is, its value 

appears to depend upon the values of these quantities. As a 

matter of fact, however, such is not the case. If we make x=$ 

the value of the expression will reduce to i§, no matter what 

values we give to a, b, m and n. This follows from the fact that 

the expression will reduce to ^ if we remove the parentheses. 

In the same way we find that the value of the expression: 

h(a~ 

is entirely independent of the value of b. 

t56. 

When one quantity is a function of several other quantities, 

each one of the latter is also inversely a function of all the 

others. For example, the amount of interest is a function of the 

principal, of the rate per cent., and of the time. Inversely, the 

time in which a given amount of interest has accrued is a func¬ 

tion of the amount of interest, of the principal and of the rate. 

If therefore, we can obtain an equation expressing the relation 

between any set of functions, expressed in symbols, we can re¬ 

duce this equation to expressions or formulas for the value of each 

function in terms of the others, and thus obtain a very clear idea 

of the relations existing between them. 

157 

Example. If the interest upon a given capital C, at a rate 

p, for n years, be added to the principal to form a new capital C', 

each one of these four quantities n, y>, C} and C', is a function of 

the other three. The value of each in terms of the other is to be 

expressed in formulas. 

ioo 
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interest for n years, and if we add this to the original capital C, 

we have for the new capital : 

C'=C4-—; 
1 IOO 

In order to obtain from this equation values for C, p> and n, 

we first multiply both sides by ioo, which gives 

ioo C-\-Cpn=\oo C' 

collecting the coefficients of C, 

(ioo-\-pn)C=iooC' 

dividing by the coefficient of C, 

C=- 
ioo C 

ioo +P n 
which gives a formula for the value of C. 

/ 

Again, from the equation, 

iooC-\-Cpn=iooC' 

we have Cpn—iooC—100C 

which divided by Cn gives 

ioo (C'—C) 

or divided by Cp gives 

P- 

n- 

Cn 

ioo (C'—C) 

Cp 

The required formulas therefore are : 

C'=C+ cpn 
1 IOO (0 

_ 100C" 
(2) C— 

ioo-|-pn 

iootC'-f-C) 

P~ Cn (3) 

100 (Cf-\-C) 
71- - 

cp 
(4) 

Example. What must be the principal which when added to 

its interest at 4J % for 6 years will give a capital of $762 ? 

Substituting in foimula 2, the values, n=6, p—€'=762 

we get : 
100-762 76200 

ioo-j-6-4j 127 

C— $600 
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How long must a principal of $600 remain at 5%, for the 

principal and interest to amount to $800 ? 

Here we have given C=600 ; p=5, C'=800, and n is re¬ 

quired. From formula 4, we have : 

100 (800—600) 
77--_-— 

5 • 600 

whence w=6§ years. 

Let us take another case. The distance which a bicycle 

travels for each revolution of the crank, is a function ot the 

number of teeth in each sprocket wheel, and also ot the circum¬ 

ference of the bicycle wheel. If we call the distance =d, the 

circumference of the wheel =c, the number of teeth in the large 

sprocket =Arand the number of teeth in the small sprocket =n, 

we can deduce formulas for the relations of these functions. 

The i?iore teeth the large sprocket wheel has the faster 

the small sprocket wheel will revolve for one revolution of 

the crank, because each tooth of the large sprocket drives one 

tooth of the small one. For the same reason, the fewer teeth 

the small sprocket wheel has, the faster it will revolve, under the 

same conditions. Hence the number of revolutions which the 

small sprocket will make for one revolution of the crank, will 

N 
be —i. e. if the large wheel has twice as many teeth the small 

n 
wheel will make twice as many revolutions, &c. Now if we call 

r the number of revolutions which the small sprocket and its 

attached wheel make, for one revolution of the crank, we have : 

—iV 

n 

The bicycle travels a distance equal to the circumference C, 

of the wheel, for every revolution, hence for r revolutions the 

distance will be 

d=Cr 

whence we get 

Placing these two values of r, equal to each other we have : 

d_N 

C 71 

or d?i=CN 
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CN 
whence d= 

71 
(0 

CN 

n=~r (2) 

dn 

° N (3) 

dii 

N-c (4) 

Examples. In a bicycle, the circumference C, of the wheel 

is 7^ feet, and the teeth in the sprocket wheels are N—21, n—9. 

How far will the machine travel for each revolution of the crank? 

Substituting these values in formula (1) we have : 

d_l±2l 

9 
Suppose we wish it to travel 22 feet for each revolution, and 

have 8 teeth on the small sprocket, and the same diameter 

wheel; how many teeth must be on the large sprocket? 

Here we have C~j\, n=8, d= 22, and these values in (4), 

gave : 

7i 

_2 2-8__^p 
2J2. j2_2. 
3 3 

22-8-2 
=-=24 teeth. 

22 

158* 
Examples. Reduce the following examples to give the 

expressions for the value of x. 

( I ) G.X-0—- 

1 m 

ax 

m 

bx c 

n a 

ax bx , 
—1-pc=o 

m n 

a . b 1 . 
== \~c 

X X X 

c—a 
a{a—x) 

a—|—x 
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(6) 

(7) 

(8) 

mx—(c—x)n 

m{2x—c 

a (dd—I—x^) . 
———-=ac-4- 

dx 

c h 

a 

d 

a-\-bx d-j-ex 

Answers, 

(i) X-- 
bm 

am—c 
(2) X-- 

nine 

a{an-\-bm) 

mn{ i—c) mn{c—i) ^ 

an—bm bm—an 

(4) *= 
a -\-b-\-i 

(5) x- 

(6) x—c ; 

cd—ah ah—cd 

^ ^ X bh—ce ce—bh ’ 

{?) ; 

a{2a—c) 

d 



BOOK XIV. 
i 

Equations of the First Degree 

With Several Unknown Quantities* 

*59* 

In nearly every case in applied mathematics and in mechan¬ 

ical and physical researches it is found that the investigations 

lead to expressions involving the relations of several unknown 

quantities and that from the relations of these to other known 

quantities several different equations can be deduced, in which 

the solution of the problem must satisfy all the equations at the 

same time. * 

For example, in the three following equations, the values of 

x, y, and z, when the equations are correctly solved, will satisfy 

the conditions of all three equations alike. 

x+jy+z=i4 (i) ) 
2xfsy—4z=i (2) V 
7x—2y-fsz=25 (3) ) 

These three equations, expressed in words, amount to the 

following : There are three numbers so related to each other 

that, (1) the sum of all three =14 ; (2) twice the first, plus five 

times the second, minus four times the third =1, and (3) that 

seven times the first, minus twice the second, plus three times 

the third shall =25. 

These conditions, when fulfilled, should give three numbers, 

which when substituted for .v, y, and 2, in the above equations 

will cause them to be true, or in other words will “satisfy” 

them. In the above case the values x=$,y=3, z—6, will satisfy 

the first and second equations, but will not satisfy the third. 
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To attempt to find by trial the true values for x, y, and z, 

which will fulfill all the conditions, would not only be most 

tedious and difficult, but also in many cases impossible, and 

hence we consider whether there may not be some general method 

by which several combined equations, with a number of unknown 

quantities may be directly solved. 

In fact there are a number of methods, of which we here 

give three, as most generally useful. The student Wall do well 

to try and think out additional methods for himself. 

160* 

First method. Elimination by substitution. 

Let the given equations be : 

x-\-y-\-z—14 (0 

2x-\-zy—42=1 (2) 

7x—2y-|-32=25 . (3) 

Now since any one of the unknown quantities (such as x) 

has the same value in all three equations, we could find its value 

from any of them if the values of the other two were known. 

If then we proceed with whichever of tfie three equations is the 

most convenient, and proceed to solve it just as if y and z were 

known quantities, we shall obtain an expression which will give 

the value of a; in terms of the other two unknown quantities. 

If then we “substitute” this expression in the place of x, when¬ 

ever it occurs in the other two equations, we shall obtain two 

new equations, containing only two unknown quantities, y and zy 

x being, as it is called, “eliminated." 

We can then take one of these new equations, and from it 

obtain a value for a second unknown, (such as y) in terms of the 

third unknown, and substituting this in the other equation obtain 

a new equation containing only 0. This we can solve, and then 

by substituting its value back in the preceding equations, find the 

other two unknown quantities. 

Applying this method to the above equations we have 

from (1) : 

x=ia —y—2 (O 

Now if we place the value for x in equations (2) and (3) we 



shall have eliminated x, thus : 

2 (14 —y—2)+54—42= 1 

7 (14—y—z)—2y-\-$Z=2 5 

which we then proceed to reduce, by removing the parenthesis 

and collecting the values of y and 0. Thus the first becomes : 

34'—60=27 

or y—20=—9 (4) 

and the second becomes : <^-[-42= 73 (5) 

Then from equation (4) we have : 

y=2Z— 9 (4') 

Substituting this value for jr in equation (5) we have : 

9 (22—9)+42=73 (6) 

which thus contains only z, and we find : 

220=154 

and 0=7 

Then substituting this value of 0 in (4') we get : 

T=2 ‘ 7—9=5 

and substituting these two values for y and 0 in (T) we have : 

^=14—5—7=2 

Hence x=2,y=5,0=7 

which values satisfy all three equations. 

\6U 

It is apparent that this method can be applied to the solution 

of any number of equations with the same number of unknown 

quantities. 

If, for instance, we have six equations with six unknown 

quantities, x, y, 0, /, v, w, we can reduce any one of the equa¬ 

tions to a value for x, and substitute this value in the five re¬ 

maining equations ; then reduce one of these five equations to 

a value for y, and substitute this value fory in the remaining four, 

&c., until the last equation is reduced and solved for the single 

remaining unknown quantity, and the others determined by re¬ 

verse substitution as before. The work is sometimes simplified 

if all the equations do not contain all the unknown quantities. 

In such cases it will be found best to eliminate first those quan¬ 

tities which appear in the fewest equations. 



162 

For example, suppose we have the four equations : 

-27J=I 3 

2y~\~ 3 i 

Sh—7^= 2 5 
37—62+5^=0 

Solving the first equation for x, we have : 

I 3-\-2V 
x=—-- 

(1) 
(2) 
(3) 
(4) 

(O 

Now on looking over the other equations we see that we 

cannot substitute this value of x, since x does not appear in any 

of them. We see, however, that 2 appears in the 3rd and 4th 

equations and solving (3) for 2, we get : 

„ Sb—2 5 
7 

(3') 

Substituting this in equation (4) we have : 

3.y- -6 ^——-+5 v—o 
7 

and removing the parenthesis, and clearing of the fraction, we 

get : 
217—307+150+3 5^=0 

—9T+3 5^=—! 5° (5) 

Next we take equation (2), and solving it for 7, we have : 

1—3V 7: 
z 

and substituting this value of 7 in (5) we obtain 

/i —3V' 
— 9 +3 5**=15° 

(2') 

(6) 

whence —9+272+700=—300 

9 70= —291 

v— —3 
Substituting this value in (2') we have : 

1—3 (—3)_!+9 
v Z 

This value of 7, in (3') gives : 

5-5—25 

— 3 

=0 

7 
and the value v——3, substituted in (T) gives : 

x- 
3+2 3-2i -z 3 

3 
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Hence the four quantities are : 

*=2l ; y=s ; *=o ; ^=—3. 

162* 

Second Method. Elimination by reduction. Suppose we 
have again the equations : 

x+y+3=l 4 (0 
2X~\-$y—42=1 (2) 
?X-2J/-\~3Z=2 5 (3) 

We solve all three of them for values of x, and obtain : 

x=iy—y—z (O 
! $y 4^ 

x=- 
2 (2') 

__25~\~2.y—32 

7 
(3') 

Now since a; has the same value in all, the three equations 

(T), (2'), (3') must all be equal to each other. 

We can therefore place any two of them equal to each other 

and thus obtain equations free from x. Thus : 

14—y—2= 

! 4 ~y—& 

1—5H"4S 

.25+2T—3Z 

7 

(4) 

(5) 

These new equations are now both solved for another un¬ 

known quantity, such asy, giving : 

y=—9+2z (4') 

73 — 43 
r- (5') 

These are also equal to each other and therefore we have : 

—9+2*: 
73— 43 

9 

from which we get 2=7, and by reverse substitution in (4') and 

(T) we get>'=5, and x=2. 

This method is also adapted for use with a greater number 

of equations and unknown quantities. 



For example, we may determine the values of x, y, z and v, 

from the following equations, thus : 

3 a:—22/= 13 

2>;+3^’=I 
iy—7Z=2 5 

5^+ah—62=0 

X- 
13+22/ 

32/ 

(0 

(2) 

,5J+-i5 

7 

3JH- 5^ 

(3) 

(4) 

Equating (i. e. placing equal 

of z, we have 

sy—2 5 

7 

to each other) 

3j+-52/ 

6 

the two values 

whence 

y= 
150+35^ 

9 

then equating the values ofy in (5) and (2), 

15°~t~35 v==l—3^ 

a 9 2 
and v=—3. 

This value in (1), and (2), gives x—2\ and y=5, and the 

valuej^s, substituted in (3), gives 2=0. 

163, 
Third Method. Elimination by Addition or Subtraction. 

This method is to be preferred to either of the others, when 

the coefficients of the same unknown quantity, are alike in two 

equations, or when they can readily be made so. It is generally 

preferable also, when the coefficients are letters. 

Since the values of the unknown quantities are not changed 

when all the members on both sides of an equation are multiplied 

or divided by the same number, it is usually easy to make the 
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coefficients of the same unknown quantity alike in two equa¬ 

tions. This being done, we have only to subtract one equation 

from the other if the signs of the quantities are alike, or add 

them together if the signs are different, and we obtain a new 

equation with the unknown quantity eliminated. In the same 

manner we can proceed with two more equations, and so from 

n equations obtain n—i equations and one less unknown quan¬ 

tity. By continuing in this way we proceed until we obtain but 

one unknown quantity, and then proceed as in the other methods. 

Taking again the same equations 

x+y+z=i 4 (i) 

2X~\~5J'—42=1 (2) 

7X—2jy~\~3z—25 (3) 
Multiplying equation (1) by 2, we have 

2JV-|-2JA-|—22=28 

and subtracting equation (2) from this, 

2 x-\- 2jy-\- 2 2= 2 8 

2X~\~ 5jv—42= 1 

gives —^y-j-6z=2 7 (4) 

Then again multiplying (1) by 7, and subtracting (3) we have 

7x+Zy+7*= 98 
7X—2y-j-32=2 5 

9T+4z=73 (5) 
We now examine (4) and (5) and see that if we multiply (4) 

by 3 it will givey a coefficient of —9, and then adding the two 

equations together gives : 

—81: (4') 

9y+ 42=73 (5) 

222=154 

Whence 2=7, and this value in (5) or (4') gives y— 5, and the 

values of y and 2 in (1) give x=2. 

Example. Find the values of x, y, z and v, from the follow¬ 

ing equations : 
3x—2^=13 (1) 

2y+?>v= 1 (2) 

(3) 
(4) 

sy—7Z=2 5 
3_y—6z-{-5v= o 
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The unknown quantity x appears in only one equation and 

hence cannot be eliminated. Sincejy and v occur in three equa¬ 

tions, and z only in two, it is manifestly simpler to eliminate z 

first. 

By multiplying the 3rd equation by 6, and the 4th by 7, we 

shall give z the same coefficient in both equations, since 67= 

7-6=42, and as the signs are alike, we subtract. The operations 

are as follows : 
$oy—4 2z =150 

21y—4 2 £—|— 3 5 o 

W— 35^=150 (5) 

Multiplying (5) by 2, and (2) by 9, and subtracting, we get: 

i8y-|-2 7Zfc= 9 

18y—70^=300 

gyz>=—291 

This value substituted in the other equations gives the other 

unknown quantities as before : 

X=2\ ; y= 5 ; z=0. 

164. 
Example. Find the values of x, y, z and v, from the follow- 

ing set of equations: 
r 

x-\- y-\- z-f- v=i6 0) 

■ 
—*+ y+2z+3v=33 (2) 

—6v= 0 (3) 

s. 

3A'—j— 4y- Z-2V——4 (4) 
Solution. Adding (1) and (2) together gives 

2T+32+4s—49 (5) 
eliminating x. Then multiply equation (2) by 3 and add it to 

equation (3), giving : 
7^4-92=66 (6) 

Then multiply equation (2) by 3 and add it to equation (4), 

and we get: 

7T-h 5^-h 7^=9 5 (7) 
We now have v only in two equations, and multiplying 

equation (5) by 7, and equation (7) by 4, and subtracting, we get: 

— i4_H-2=—37 (8) 
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Then multiplying equation (6) by 2 and adding it to equation 

(8), gives : 

192=95 (7) 
V 

Whence 2=5 ; from equation (6), y= 3 ; from equation (5), 

z>=7 ; and from equation (1) x=i. 

\65. 

When an equation contains only one unknown quantity, we 

can find from it a determinate value for the unknown. When, as 

we have just shown, we have n equations with n unknown 

quantities (n being any number), we can reduce them to one 

equation with one unknown, which can then be determined, and 

thus by reverse substitution enable us to find determinate values 

for the n unknown quantities. To do this we must have as 

many independent and non-contradictory equations as there are 

unknown quantities. 

For these reasons, problems which require the determination 

of any number of unknown quantities from the same number of 

independent equations, are called determinate problems. 

In the application of the above methods of elimination it is 

necessary to take all the equations into account. If, for instance, 

in the above examples, we had combined the first equation with 

the second, then the first with the third, and not including the 

fourth equation at all, we should have obtained these equations 

freed from x, but on proceeding farther we would have obtained 

a so-called identical equation, i. e., one which would have reduced 

to the obvious but useless statement that the unknown was equal 

to itself, or that 0=0. This error, which naturally follows from 

arguing in a circle, is one into which even expert mathematicians 

sometimes fall. 

\66. 
When we have not as many independent equations as there 

are unknown quantities, the problem is said to be indeterminate, 

and this occurs for the reason that the conditions of the problem 

admit of an indeterminate number of solutions. In such cases 

there will be as many unknown quantities left undetermined as 

there are equations lacking. 
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Suppose for instance we have the very simple equation : 

x-\-y— 12 

whence, x=i 2—y 
(0 

We see at once that unlessy be given we cannot determine x. 

Now if y cannot be determined from any other independent 

equation, the statement remains indeterminate. It tells us, how¬ 

ever, the relative values of x andy. Thus, iiy=i, jvwill=n; 

if y=2, x= io; if y=3, x=g, etc., etc., and any pair of these 

values will satisfy equation (i). 

Again, if it be required to solve the following two equations: 

(0 
(2) 

4x—\y—40=12 

4X-\-y—82^=48 

We get from equation (1) : 

I2+3T+4^ 
4 

Then subtracting equation (1) from (2) we have: 

4y—8 ^-[-40=36 

whence, y— g-\-2v—0 

This gives an equation in which two quantities are indeter¬ 

minate, and for any values which may be given to them, corres¬ 

ponding value for x and y will be found. Thus, if 0=1, v=2, y 

will =12 and x=i$; for 0=1, v=i,y will =10, andjv=n±, etc. 

A?iy four such values will satisfy equations (1) and (2). 

The theory of Indeterminate, or so-called Diophantine prob¬ 

lems, which treats of the properties of numbers and other 

profound subjects, is one of very great scope, and whole treatises 

have been written upon the subject, among which are the “Z)is- 

quisiiiones Arithmeticae,” of Gauss; the “Theorie des Nombres,” 

by Euler; Fermat; Legendre, and many others. We must here, 

however, limit ourselves to these few examples. 

Another point must be noted in this subject. The several 

equations from which several unknowns are to be determined 

must be truly independent, and not such that one can be derived 

from the other merely by an arithmetical operation. 

Thus the two equations : 

x-\-y=i 2 

2 nr—J— 2) '= 2 4 
(0 
(2) 

are not independent, since the second is merely the first multi¬ 

plied by 2, and the two equations really form but one. 
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In the same way the three following equations are not in¬ 

dependent : 4 

2x—z.y— 16 (0 
5—12y—52=47 (2) 

3^+52=17 (3) 

The third equation is contained in the other two, as will 

readily be seen, if we multiply the first by 4 and subtract the 

second. We thus have really only two equations and as there 

are three unknown quantities the problem is indeterminate. This 

identity of equations is often concealed so that it does not appear 

until the latter part of the calculation, when the last equation will 

be found to contain more than one unknown quantity. 

It is also necessary, if the problem is to be a determinate 

one, that none of the equations shall be contradictory. Thus in 

the two equations : 

2x+$y= 5 (0 
2-*+3T=I7 (2) 

there is an evident contradiction, since the sum of two quantities 

cannot at one and the same time be equal both to 5 and to 17. 

Finally, it sometimes occurs that there are many more 

equations resulting from the conditions, than there are unknown 

quantities. Such cases, although possessing much practical value 

and interest, involving the Theory of Probabilities, and the 

Method of Least Squares, belong to one of the most difficult 

portions of higher mathematics, and can only be referred to here. 

167. 

Problem. Let it be required to find two numbers, of which 

the sum is 12 and the difference 6. 

Solution. Let .v be one number and y the other, and we 

have from the conditions of the problem, the following independ¬ 

ent equations. 
x-\-y=\2 (1) 

x—y= 6 (2) 

Adding (1) and (2) together we get: 

2X—i8 

whence, x=g 

Subtracting (2) from (1), we have : 

2 y=6 

whence, y—3 
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The problem of finding two unknown quantities from their 

sum and difference, these latter being known, is one which often 

occurs. We find that one of the numbers is equal to one half of the 

sum plus the difference, and the other is equal to one-half of the 

sum minus the difference. 

Thus if we call the sum s, and the difference d, we have : 

X~\-J'=S 

x—y=d 

Adding (1) and (2) we have : 

whence, 

2 x—s—J—d 

s-\-d 

2 

Subtracting (2) from (1), we get: 

whence, 

2V=S- 

s- 
J- 

d 

d 

168, 

(1) 
(2) 

Problem. There are two heaps of coins, such that if 10 

pieces are transferred from the second to the first, the first will 

contain half as many pieces as the second. If, however, 30 

pieces be transferred from the first to the second, the second will 

contain 6 times as many as the first. How many pieces are in 

each heap ? 

Solution. Let the number in the first heap be =x, and that 

in the second heap —y. If we take ten pieces from the second 

heap,it will contain y—10, and the first will contain x-\-io pieces, 

and since the first then contains half as many as the second, we 

have : 

1 y—10 / x X-\-1 0= — — (I ) 
1 2 V 

If we take 30 pieces from the first and add them to the 

second, we have x—30 andjr-l-30, and since then the second has 

6 times the first we have : 

J>+3 o=6(a-—30) 

Transposing and collecting we get: 

2x—y——30 

6x—y— 210 

(*) 
(O 
(*') 



Subtracting (i7) from (2'), we have : 

4A'=240, a:=6o 

Multiplying (i7) by 3 and then subtracting it from (27), we have : 

2y=3°°, y=i 50 

\69* 

Problem. There is a fraction, such that if 1 be subtracted 

from both numerator and denominator, will equal -J, and if 4 be 

added to both numerator and denominator, will equal f. What 

is the fraction ? 

Solution. If x be the numerator and y the denominator, the 
oc 

fraction will be represented by -, and we have from the condi¬ 

tions : 
x—1 

y—1 

x-\~4 

'5 

-2l 
5 

Multiplying (1) by^y—1, and solving for x, we have 

y—1 
X-1: 

5 

y 1 

(0 

(2) 

(O 

Jl—-1-1 
5 

Multiplying (2) by and solving for x, 

2y-1-8 
x-\~4—- 

x- 

5 

2^+8 

5 

(2') 

—4 

Equating these two values for ju : 

H±8_4=^+i 
5 5 

whence, j’= 16 

and x=4 

x 
and the required fraction is 

170* 

Problem. A reservoir is so arranged that water can run into 

it from three separate pipes, A, B and C. When A and B are 
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both running, it is filled in 10 minutes; when B and C are run¬ 

ning, it is filled in 20 minutes; and when A and C are both run¬ 

ning, it is filled in 15 minutes. How long will it take for each 

pipe alone to fill it, and how long for all three running together ? 

Solution. Let the quantity of water held by the reservoir be 

equal to 1, (i. e., one thousand gallons, one ton, etc.) Since A 

and B can give this much in 10 minutes, they can give y1^- as much 

in one minute, and in the same time B and C give and A and 

C JL 
^ 1 5- 

If then we call the time for each pipe to fill the reservoir 

alone to be x, y and z minutes, we have A alone in one minute 

will give - part; B alone, - part; C alone, - part. Therefore A 

and B together will give in one minute —|—; B and C together. 
dc 

and A and C togethe 

1+1=JL 
x^y 10 

y z +“—2V 

i 1 X=-V 
x^z 15 

These give the equations : 

(0 

(^) 

(3) 

In these equations all the quantities appear as denominators, 

with the same numerator, and in such cases it is often more 

convenient to free the equations at once from fractions by sub¬ 

stituting for the fractions simple symbols, such as x', y', z, and 

then re-substituting the original values after the equations have 

been solved. In the present case, however, we will proceed as 

follows : 

Subtracting equation (2) from (1) we get: 

Adding (3) and (4) together : 

2 • -—JL 
x—60 

whence, 
1 

7 
x—120 
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Substituting this value of - in (i) and (4), we have : 
oc 

y=t!t’ an<^ ~z=ih) 

whence, x=i 7-^, >'=24, 2=120 

When all three pipes are open the flow per minute would be : 

Tiro + tIt + iio=Tih 
Whence, the time required to fill the reservoir would be 1 : TW= 

9t3^- minutes. 

The same result could have been obtained much more quickly 

by adding equations (1), (2) and (3) together, giving : 

2 I-2 +A=13 

x^V * 60 

Then dividing by 2 : 

~4-y+~=TW (4') 

Subtracting (1) gives 0, subtracting (2) gives x, etc. 

t7U 

Problem. A tank can be filled by the pipes A and B, in a 

minutes, by pipes B and C, in b minutes, by pipes A and C in c 

minutes. 

It is desired to derive a general formula by means of which 

one can determine the time required to fill the tank by each pipe 

alone, and by all together. 

Solution. Let x, y, and z be the times required for each pipe 

alone, then we have : 

V=l 
x y a 

w= y z 

X z c 

Subtracting (2) from (1), gives : 

1 1   1 1 

x z a b 

Adding (3) and (4) together gives : 

1 1 1 1 1 
2 —  -7—- x a b e 

(1) 

(2) 

(3) 

(4) 

ab-\-bc—ac 

abc 
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whence, —- = 
i 

x 

Hence we have 

ab-\~bc—ac 

2abc 

ac-\-bc—ab 

2abc 

ab-\-ac—be 

2abc 

2abc 

ab-\-bc—ac ’ 

2abc 

ac-\-bc—ab ’ 

2abc 

ab-\-ac—be' 

The time required for all three pipes to fill the tank will be 

i 

y 
i 

z 

X- 

y= 

x y 1 z 

and substituting the values found above for — — and — this 
x y z 

reduces to : 
2abc 

ab—j—ac—|—be 

M2. 

Problem. From the two equations given below, find the 

values for .v and y, in terms of a, b, c, m, and n. 

xy 

ax-\~by 
■rn 

3xy 
ex—by 

—n 

(1) 

(2) 

Solution. We will reduce both equations to the value of x, 

first clearing of fractions. From equation (i) we have : 

xy=a mx-X-b ?ny 

xy—a mx=b my 

(y—a m)x=b my 

, bmy 
whence, x=-— (i') 

y—am v 7 
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From equation (2) we have : 

3>xy=cnx—bny 

3xy—cnx——bny 

(3jV—cn)x=—buy 

—bny 
(*') X— 

Equating these two values of x : 

3y—cn 

bmy —bny 
(3) y—am 3y—cn 

Dividing both sides by the common factor by: 

m —n 

y—am $y—cn 

Then multiplying by the common denominator (y—am)(3y—cn), 

we have : 
3 my—cmn=—ny-\-amn 

3 my-\~ ny=a mnA^cmn 

(3m~\-n)y=mn{a-\-c) 

mn(a-\-c) 

^ 3m-\-n 

Substituting this value for_y in (T), we get : 

mn(a-\-c) 
bm '--——- 

3m-\-n 

mil (a-\-c) 

$m-\-n 
-am 

x— 

bmmn{a-\-c) 

3?n-\-n 

mn (a-\-c)—(3 m-\-ii) am 

3?n-\-n 

X mn 

bmmn{a-\-c) 

(a-\-c)—(3m-\-n)am 

x- 
bmn{a-\-c) bmn (a-\-c) 

an-\-cn—3am—an cn—3am 

Hence the required values are : 

bmn (a-\-c) 
x—-—1— 

cn—3am 

mn(a-\-c) 

3m-\rii 
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Such equations can often be solved much more simply by 

using skill in observation and inspection. Thus if we inverted 

equations (1) and (2), we would have : 

ax-\-by 1 

xy m ' 

cx—by 1 

n 
and 

by division we have 
3xy 

a b 1 

y ' x m 

c _b 

3X 
These may be separated into : 

1 1 1 7 1 1 a-V-b • —=— 
y x m y 

1 

n 

x n 

Now let us put ——u ; ——v. and these become 
x y 

av-\- bu= 

and cv—bu=z 

1 

m 

3_ 
n 

(A) 

Adding these together gives : 

ia~\~c) v=-j—— 
m n 

or, substituting the value of v, gives : 

(fl+c).±=V._3_ 
y m n 

and multiplying by mny gives : 

mn{a-\~c)=ny-\-3 my 

. mn(a-\-c) 
whence, y—-f—1—- 

n-y^m 

Since now v andjr are known, we obtain u from equation (a) 

and this gives us x, since u=—. 
DC 

i 73, 
Problem. Required to find, from the following equations, 

the values of a: andy in terms of a, b, c, d, m, and n. 

ax-\-by=c 

mx—ny=d 
(0 
0) 
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Solution. Multiplying (i) by ;z, and (2) by b, we get: 

a nx-\-bny=cn 

bmx—bny=bd 

Then adding these together we have : 

anx-\-b?nx=cn-\-bd 

or (a?i-\-bm)x—cn-\-bd 

cn-\-bd 
whence, x= 

an-\-bm 

(1') 

(2') 

In the same way, multiplying (1) by ?u, and (2) by a, and 

subtracting, we get : 

b my-\-any=cm—ad 

whence, y= 
cm—ad 

an-\-bm 



BOOK XV. 

Preliminary Ideas about Powers and Roots. 

Extraction of Square and Cube Root. 

174. 
When a number is multiplied by itself several times, this op¬ 

eration is indicated by writing above and to the right a small fig¬ 

ure denoting the number of times the multiplication is performed ; 

i. e. the number of times the main number is taken as a factor. 

Thus if the number 7 is taken five times as a factor we may 

write 7 7'7 7 7 or more briefly 7s. In the same way 3® means 

3-3-3, or 3 taken as a factor three times ; and cf=aacia. In gen¬ 

eral terms a1' means a taken as a factor n times.* 

175. 
Every such expression as 7s, 3®, E, an, &c., besides being the 

statement of the product of a number of equal factors, is also 

called a Power of the given quantity. The original number is 

called the Base or Root, while the small number at the upper 

right hand, which indicates how often the root is taken as a fac¬ 

tor, is called the Exponent of the power. 

In the expression 23; 2 is the root; 3 is the exponent, and 

the result of the actual multiplication 2 -2 *2=8, is the power. 

The student must be very careful not to confuse the expo¬ 

nent with the coefficient. For instance : 

E=a'a-a, but 

3 0 &—|—Cl—|—Cl. 

♦It -is quite common to use the letter n (i. e. number) as a symbol when any general 

number of times is to be indicated. 
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Powers are really simplified expressions for the multiplica¬ 

tion of like factors. 

176- 

Powers of different roots and exponents may have the same 

values. Thus 26=82=43=64 ; 34=92=81. 

Powers are named by stating the name of the base (or root) 

and the degree of the exponent. Thus, 64 is the sixth power of 

2, the second power of 8, and the third power of 4 ; likewise 81 

is the fourth power of 3, or the second power of 9, &c., &c. 

In general an is read a to the nth. power, or more briefly a to 

the nth ; thus, 76 is read 7 fifth ; a4 is read a fourth. The sec¬ 

ond power of a quantity is usually called the square, and the third 

power the cube. These terms are derived from their geometric 

significance. Thus, a2 is read, a square, and is equal to aa; a3 is 

read a cube, and —aaa. 

177- 

The converse of a power is a Root. That is, when the power 

is given, the factor of which the power is composed, is called its 

Root, and the determination of this factor is called the “extrac¬ 

tion ” of the root. If 7S=343, (i. e. 777=343) and we have 

given the power 343, and the number of times the factor is taken 

=3, and we wish to indicate the determination of the factor, we 

write : 

'J/343=7 

The quantity 343 is then called the base of the root (or also 

the power), while the 3 is called exponent of the root, or fre¬ 

quently the index of the root, (sometimes the degree of the root). 

The expression ^343, is read the 3rd root of 343. In the same 
6 

way 26=64, and ^64=2; which is read, “the sixth root of 

64=2.” 

The symbol is" called the “root” or “radix" symbol, 

sometimes the “ radical "symbol ; (Latin “radix" meaning root), 

and the quantity under it, or affected by it, referred to as the 

“ quantity under the ‘radical/” Sometimes for brevity an ex¬ 

pression covered by the symbol v/ is called as a whole “the rad¬ 

ical,” thus ^343 would be a “radical,” and 7 would be the “value 

of the radical, ” or its “ root. " 
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It is evident that powers and roots are the opposite of each 

other, and hence can be used to prove each other. Thus 
6 
^764=2, because the root 2 with the exponent 6 is equal to 64, 

or 26=64. 
4 

In the same way we see the v/81=3 is correct, because 

3'3 '3'3=81. 

178 

In writing the second root the exponent, or index, is usually 
2 

omitted, as being understood; so that we do not write vC hut 

simply vT and so whenever no index is given it is always under¬ 

stood to be the second root, or as it is always called, the 
2 2 

“square’ root. Instead of writing ^9=3 ; ^725=6, &c., we 

write s/g=3 ; ^25=5. 

The third root is usually called the “cube” root. Thus, 

>3/1000=10, which is read “the cube root of 1000 is =10. 

179* 

Every power of 1 is equal to 1. Thus i3=i*i*i=i ; and in 

general 1"= 1, (read 1 to the nth power=i). 

Conversely, every root of 1 is equal to 1. Thus v71 = i ; 
4 n 

N71—i • and in general x/1==i. 

180. 

In order to raise a fraction to a given power, the numerator 

and denominator are both independently raised to the required 

power. Thus, for example : 

(§)—“2=f; because (|)2=i §. 

(§)—“2=A; because (|)3=§•§ §. 

I3 
/IV— —1- for til3—1.1.1 
f2/ - ^ -8 > \2J -2 2 2* 

Likewise (f)2 

OiY=(iY=W- 
In general: 

■ifi. 
'2 5 

/9V—si • VT/ -1 6 f /1\4- 1 • U/ —"ST > 
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Conversely : to extract the root of a fraction, we must extract 

the root of both numerator and denominator independently. 

Thus : 

/ 4——2 . 

^~y9~s ’ 

3/ , 

Vi=i! ^/1A.=A • 
V 2 5-5 > 

v/i=1; 
A/81-9 • 
V' 1 6-¥ > 

A=t > n .a y/a 
** /> 11 

v6 

*8*. 

The higher the power to which a proper fraction is raised, 

the smaller the value becomes. Thus : 

(§)‘<(§)2 
Conversely, however, the higher the degree of a root which 

is extracted from a proper fraction the greater the value becomes. 

Thus, we have : 
4 2 4 2 

v'4f=§. and '/4f=f> and 
Hence it is readily seen that for numbers .greater than i, the 

higher the power the greater the value, and the higher the root 

the smaller the value. We also see that since every root of i is 

equal to i, that every root of a number greater than i, must also 
10 0 n 

be greater than i; for instance v/2>i, or in general, n/2>i. 

*82. 
When the numerator and denominator of a fraction are prime 

to each other, as or any power of it will also be a fraction 

of which the numerator and denominator are prime to each other, 

and is thus incapable of further reduction. (See §319.) 

No matter how often one multiplies a mixed number (such 

as 2J, 3§, i|, or their equivalent improper fractions, J, |, etc.) 

by itself, the resulting power will never become an unmixed 

whole number. Thus, for example : 

(2i)2=(F=fi=5rV; 

(2i)J=(i)s= W=1 Ift; 

(2i)4=(f)‘=s3W=25«f 
See Appendix, §§316 and 319. 
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m. 
When a root of a whole number is not an exact whole num¬ 

ber, neither can it be an exact mixed number, nor can it have 

any exact or complete value. Thus, for example, the s/4=2, 

^79=3, hence the square roots of all the numbers between 4 and 

9 must lie between 2 and 3, and hence be fractional numbers. 

But, according to the preceding paragraph, no mixed number 

multiplied by itself can give an exact whole number, such as 5, 

6, 7, 8. Hence the square roots of the numbers between these 

limits cannot be exact mixed numbers (that is, cannot be repre¬ 

sented exactly by either proper or improper fractions). In like 

manner, since \$/8=2 and ^27=3, the cube roots of all numbers 

between 8 and 27 must lie between 2 and 3, but cannot be exact 

mixed numbers, as none of these raised to the 3rd power can 

equal exact wdiole numbers. 

184. 

All roots between those which are exact whole numbers, such 

44 
as y/2, ^3..., $/2, ^3..., s/2, s/3..., &c., are therefore 

called irrational or incommensurable quantities, because no exact 

numerical values can be found for them; while s/l> \/4> \Z*, 

s/4^, \ch 8, &c., are called ralio?ial or commensurable quantities. 

Thus s/$i is a rational quantity, since it can be exactly 

divided by \, 9 times (and is therefore commensurable). Since 

s/\ •J=J we have the ratio 1 : as 1:9, and every rational 

quantity must bear an exact ratio, in some proportion to unity, 

or else it would be incommensurable. 

J85. 
4 

Although the irrational quantities such as s/2, ^2> V2, &c., 

cannot be exactly measured by unity theoretically, yet by use of 

decimal fractions, they can be expressed to any desired degree 

of precision within the limits of human conception. Thus the 

following quantities; 2.4494898 and 2.4494897, differ from each 

other by one ten-millionth. Multiplying each one of these by 

itself we have 
(2.44 94 898)2=6.00000028 

(2.4494897)^5.99999978 



The first square differs by less than one-millionth, from 6, 

and the second is even closer to the exact value. Although 

therefore there is no number which when multiplied by itself 

will exactly equal 6, yet in practice we take 2.44949, or still 

more precisely 2.4494897 as the square root of 6. If more 

decimals are required, they can be obtained by the method here¬ 

after explained in § 192. 

We therefore have approximately : 

5/6=2.4495, or more exactly 5/6=2.44948974. 

The method of finding these decimals by the aid of log¬ 

arithms ; that is, finding the power of any root, or conversely, 

the root of any given power, will be explained in Book XX. 

We must, however, here learn the detailed algebraic method 

of extracting the square and cube root. In Book XXI, we shall 

learn shorter and more convenient* methods by using tables of 

logarithms, but the following complete methods should also be 

thoroughly mastered. For this purpose the following principles 

must be very clearly understood. 

186* 

Suppose a quantity composed of any two parts, which parts 

we may call in general a and b, so that the whole quantity is a-fb. 

Now if this quantity is to be squared, or multiplied by itself, we 

have : 
a-\-b 

a—|—b 

cffi-ab 

ab-fb* 

a*-\-2 ab-\-P 

We see that this square consists of three members, namely: the 

square of the first part, twice the product of the first and second 

parts, and the squart of the second part. 

This little formula, which we have here given both in sym¬ 

bols and in words, is most important, and should be committed to 

memory and always borne m mind. By its use the square of any 

quantity composed of two parts may be obtained without the 

labor of performing the multiplication, thus : 

(x-\-a)2—x2-\- 2 ax-fa- 

ox, for example, (76)2=(7C-|-6)2=490c-{-840-|-36=5776 
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187. 
When a quantity composed of a number with zeros annexed 

is to be raised to any given power, the number is raised to the 

given power, and as many zeros annexed as there were in the 

original quantity, multiplied by the exponent. Thus, for example : 

8oo2=640ooo ; 2003—8000000; iooo2= 1000000. 

188. 
The square of any number of several figures, considered as a 

base, must have either twice as many figures as the base num¬ 

ber, or twice as many, less one. Thus the square of a five figure 

number, as 33592, must consist either of 2-5=10 figures or 

2 -5—1=9 figures, since it must be something between the squares 

of the smallest five and six figure numbers. That is, it must fall 

somewhere between (ioooo)2= 100000000, (i. e., 9 figures) and 

(1 ooooo)2= 10000000000, (i. e., 11 figures), so that it cannot have 

fewer than 9 figures or as many as 11 figures. 

The squares of all numbers composed of one figure, and the 

rational roots of all numbers composed of one and two figures, 

are contained in the multiplication table and are therefore as¬ 

sumed to be known. 

189. 
If we take any square number (i. e., any number of which 

the exact square root can be extracted) and starting at the right 

hand, point it off into portions of two figures each, the square 

root will have just as many figures in it as there have been por¬ 

tions pointed off in the original square number, Note that the 

last portion pointed off, that is the portion at the extreme left will 

have only one figure in it if the square number consists of an odd 

number of figures. 

Also the first figure of the square root of the number will be 

the square root of the portion pointed off at the extreme left of 

the original number. 

Thus in the number 80945678 we point it off thus 8o'94,56'78 

and see that there are four portions, hence there must be four fig¬ 

ures in its square root. Also the greatest square in the left hand 

period is 64, and ^64=8, so the first figure of the square root 

will be 8. 



Thus, we see that : 

81 00 00 00 =90oo2 
80 94 56 78 =8xyz2 (See §187) 

64 00 00 00 =8ooo2 

and the square root of 80945678 must lie somewhere between 

8000 and 9000, since 8000 is too small and 9000 is too large. In 

order now to find a method to determine the other figures x, y, 

and z we must first find the conditions by which this power is 

formed upon its base, or root, and then consider how the first 

and second figures, then the first two and the third, then the first 

three and the fourth, &c., are deduced, and so proceed from the 

first figure step by step to determine those which are unknown. 

190. 

Let us take any number composed of two, three, or four fig¬ 

ures; such, for example, as 76, 764, or 7643, and in squaring it 

we can at once by inspection separate it into two parts thus : 

762=(70—|—6)2 ; y6v=(7^o-\-4)2 

76432=(764o-j-3)2. 

If now we apply the formula 

(tf-|-$)2=<r2-]- 2 ab-\-b’i, 

to the first case, i. e. to (70-I-6)2 we have jo=a and 6=b, and the 

result will be : 

a b 
(70+6)2 

<**=49 
2 ab= 8 

762=57 76 

Having divided the power into two portions of two figures 

each (see §189), we observe that the square of the first (or left 

hand figure 72=#2), lies entirely in the left hand portion of the 

power; the double product of the first and second figures, 

(zab=2{yAr6) begins at the second figure of the first portion, 

while the square of the second figure (£2=62) lies entirely in the 

right hand portion of the power. 

In the same way, we have the square of a three-figure 

number i. e., 7642. 
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(760+4)2 

— 5776 00 
2ab= 60 80 

b2= 16 

7642— 58 36 96 

Here the square of the first two figures of the root form the 

first two portions of the power; the double product lies in the 

second and third portions of the power; and the square of the 

last figure of the root lies in the last portion of the power. 

(Portions are always here meant the portions, of two figures 

each, pointed off from the right, as explained in § 189.) 

For the square of a four-figure number such as 7643, we 

have : 

(7640+3)2 

a2— 583696 00 
2ab= 458 40 

b*= 9 

76432= 58 41 54 49 

In short, every “two-figure-' portion of a power, corres¬ 

ponds to a single figure of the square root; and since any 

number of poriions of the power cannot contain a larger square 

than the square of the corresponding number of figures of the 

root (counting from the left), we know that the greatest square 

root which is contained in the left hand period of the power, will 

be the first figure of the square root Likewise the greatest 

square root which is contained in the first two periods of the 

power will be the first two figures of the root, etc. 

\9\. 

From the preceding paragraph we can frame the following 

rules for the extraction of the square root: 

1. Separate the number, of which the square root is to be 

extracted, into portions or periods of two figures each, starting 

at the right and going toward the left; the extreme left hand 

period may contain one or two figures according as the number 
is odd or even. 

Find by inspection the greatest square number (a2) contained 

in the left hand period, and set its root down as the first figure (a) 
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of the required square root. Also write the square of this figure 

under the first period of the number and subtract it. 

2. Bring down to the remainder the first figure of the next 

period of the number, and divide this by twice the root already 

found (2a) and place the quotient (b) as the second figure of the 

root. Also multiply it (b) by twice the first figure of the root (2a) 

and subtract the product (2ab). 

3. Bring down to the remainder the second figure of the 

second period and subtract the square of the second figure of the 

root (P). 

If there are still more periods to the number, the rules 2 and 

3 are to be repeated, thus : 

4. Bring down to the remainder the first figure of the next 

period ; divide by twice the iwo figures of the root already found, 

taking them both together now as the part (a) of the root. The 

quotient will be the third figure of the root. In order then to find 

another figure of the root, we always divide by twice the root 

already found. It may appear that the quotient comes out too 

large, so that its square cannot be subtracted, but this will 

immediately be seen and the next smaller taken. 

The proof of the correctness of the work is the multiplica¬ 

tion of the root by itself, as the product should be the original 

number again. 

A few examples worked out and compared with the rules 

will make the latter quite clear. First a number of four figures : 

a b 

n/57;76=76 
a- 49 

2<2= I 4 ) 87 

2ab= 84 

36 
36 

Here we point off 5776 into two parts, 57 76, and hence the 

root must consist of two figures. Then see by inspection 

that 49 is the greatest square number contained in 57, 36=6' is 

too small, 64=82 is too large, so 49=72 is nearest. 

Subtracting 49 from 57, we have a remainder of 8. Bringing 

down the first figure of the next period, we get 87, and dividing 

this by twice 7, =2a, we see that it will go 6 times, that is 
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2^=84. Subtracting, we have 3 remainder, and bringing down 

the remaining figure 6, we have 36, and this is just equal to 

b2—^6. We thus really have : 

a2-\-2ab-\-b'1 

7o2-[-2 (70-6 )-j-62 

49004-840+36=5776 

Example 2. a 

a* 

abb 

\/58 36:96=764 
: 49 

2^=14 ) 93 
2Clb= 84 

b2= 
96 
36 

2(2=1 52 ) 609 
2ab= 608 

£2= 
b2= 

16 
16 

The above rules can easily be memorized either with or 

without the formula ai-\~2ab-\-b‘1. The work may also be greatly 

abridged, and the number of figures reduced to nearly one-half 

in the following manner. Instead of bringing down only the 

first figure of the second period, all the figures are brought down, 

the first one being separated from the rest by a comma, and the 

quotient multiplied directly by itself and by the divisor and both 

products subtracted at once, etc., as shown in the following ex¬ 
amples : 

a b 

\/577 6=76 (0 

a— 49 

(2) 

2(2, b= 14,6 ) 87,6 (87:14 = 7 

2ab-\-b2— 87 6 (=146-6 

v/58 36 96=764 
a2= 49 

r4,6 ) 93,6 (93 : 14=6 

87 6 (=146-6 

152,4) 609,6(609:152=4 

609 6 (=1524 -4 



(3) 

(4) 

189 

s/58 41 54|49=7643 

49 

14,6 ) 94,1 

87 6 

( 94 : 14=6) 

(=146 -6) 

152,4 ) 655,4 ( 655 : 152=4) 

609 6 (=1524-4) 

1528,3 ) 4584,9 (4584 : 1528=3) 

4584 9 (=15283-3) 

s/4 03 20 64=2008 

4 

400,8) 32064 

32064 

*92. 
Id order to extract the root of a square whose root is ir¬ 

rational, as s/6, for example, to any required number of decimal 

places, the following considerations must first be understood. 

We know that 6=ff{J=f$-§-g-§-, etc., etc., and from § 180, we have 

s/600 s/600 
s/6=s/finr= s/100 10 

.24_2 
TOT- 

The square of 600, in round numbers is =24 : 

s/6 00=24 

4 

4,4) 20,0 (20:4=4 

i76=(44-4 

34 

Hence the s/6=2.4 to the nearest tenth. Also : 

s/60000 s/60000 
/ f.  / f, 0 0 0 0—y_—y_ 

** s 1 0 0 0 0 s/10000 100 

Now the square root of 60000 in round numbers =244, hence 

s/6 is =2.44 to the nearest hundredth. 

Hence we see how we can extract the square root of any in¬ 

complete square number, correct to as many decimal places as 

may be desired. 
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The root is first extracted in whole units, and the decimal 

point placed after the units of the root. Then annex two zeros 

to the remainder, treating these just as if they formed a period of 

the number, and thus proceed to find the tenth ; then annex two 

more zeros to the remainder, and find the hundredth, and so pro¬ 

ceed until as many decimals have been found as are required. 

Thus, the ^283=16. 8226 as follows : 

\/2 83 = 16.8226 

I 

2.6) 18,3 (18:2=6,7 is too large ! ) 

15,6 (=26-6) 

32,8) 270,0(270:32=8) 

262 4 (=328-8) 

336.2) 760,0 (760:336=2) 

627 4 (=3362-2) 

3364.2) 87600(8760:3364=2) 

67284 (=33642-2) 

33644.6) 203160,0 
201867 6 

1292400 &c. 

Again we find v/2=i.4i42i. . . 

■y/ 2= 1.4142 

I 

2.4) IOO (10:2=4) 

96 (=24-4) 

28.1) 400(40:28=1) 

'28l (=281 -i) 

282.4) H9OO 

I 1296 

2828,2) 604OO 

56564 

28284.1) 38360,0 

28284 I 

10075900 &C. 
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When a square root is required to several decimal places the 

work may be much abridged by the following method. 

After the root has been extracted, say to three or four deci¬ 

mal places, it is only necessary to divide the remamder by twice 

the root already found in order to obtain two or three additional 

figures. This very convenient rule should always be remember¬ 

ed, and is based on the following principle: 

If in the expression 

(a-\- b)2=a2f- 2 ab-\~b“, 

b is a very small fraction, it is evident that b2 will be still 

smaller. 

Now if we call the part of the root already found=a, and 

the small fraction yet remaining to be found =b; we have the re¬ 

mainder, from our work already performed=2^-|-^2, and this 

divided by 2a (that is twice the root already found), will give us 

and since b2 is very small, and is also made still smaller by 

being divided by 2a, it may be neglected and the quotient of the 

remainder divided by 2a, taken as equal to b. This will best be 

illustrated by application to one of the preceding examples. 

x/2 83=16. 822 

1 

2,6) 183 

*56 

32,8) 2700 

2624 

336.2) 7600 

6724 

3364.2) 87600 

67284 

20316 

Now if we wish additional decimals, we have : 

16.822=# 

. ooovxyz—b 

.020316=^2ab-\-b‘i 
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And we have : 

(16.82 2)2-(-.0203 i 6-)-(.000 vxyzf 

ar -|- 2ab -(- b~ 

Whence : 

.020316 _ . .020316 
—0 very nearly=- ■ ^ =.0006038 

2a 33-644 

and, ^7283=16.8226038 correct to seven decimal 

places, of which the last four have been obtained merely by 

division. 
♦ 

It is evident that we can always obtain as many correct 

additional places as there are decimal places in the portion of the 

root already found. This is true because there will always be at 

least twice as many zeros in the square of any decimal as there 

are in the decimal itself. Thus if b were =. 009, b2 would =. 000081 

and hence the omission of If from the root would not produce a 

significant effect before the fifth decimal place. Likewise if b = 

.0009, b2 —.00000081 and as any smaller figure than 9 would 

produce a still smaller result, especially if divided by 2a, # always 

being larger than b, we can always depend upon finding as many 

additional decimals correctly by this method as have already been 

determined by the previous work. 

If we have a root to a certain number of decimals given, 

and desire additional decimals, but have not the previous work 

at hand, and so have not the remainder to work from, we pro¬ 

ceed as follows : Square the given root, and subtract the result 

from the given power. Divide this remainder by twice the given 

root, and the quotient will be the additional decimals, correct to as 

ma?iy more places as there were decimals originally given. 

Thus, suppose the square root of 774 is given as 27.820 

nearly; we can find it to at least three more decimal places, as 

follows : 

(27.8 2o)2=773.952400 

774—773.952400=0.047600 

0.047600 
and, =.0008555 

27.8204-2 

hence the more exact root is : 

^774=27.8208555, 

and in this case the seventh decimal is correct. 
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*93. 

4 

If we have a whole number with a decimal attached, we ex¬ 

tract first the square root of the whole portion, and then instead 

of annexing two zeros, we bring down two figures from the dec¬ 

imal. In this way we find v/312.506=17.677 

\/ 3l 12I* 5o|6o=i; 7.677 
1 

2.7) 212 

189 

34,6) 235,0 

207 6 

352.7) 2746,0 

2468 9 

3534.7) 27710,0 

24742 9 

296710,0 etc. 

In the same manner we find y/o.00465=0.068 as below : 

y/o. 00)46150=0.06819 

36 

12,8) 105,0 

102 4 

We have in fact: 

136,1) 260,0 

136 1 

1362,9) 123900 

122661 etc. 

v/o. 00465=^/3- 4650 - /4 6 5 0- 6 8 
000000 V 100 0 1 0 0 0 =0.068 

*94. 

In extracting the square root of a common fraction it is most 

convenient to convert the fraction into a decimal, or else to mul¬ 

tiply both numerator and denominator by the denominator, thus 

converting the denominator into a perfect square, and leaving 

only the root of the numerator to be extracted. 
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^-1=^/0.4 2 85 71=0.654 

or v/fV= ^ =0- 654 

In the same way : 

v/2|=n/2. 3750=1.541 or 

v'2l=v/^=x/«=^=i^=I.54I 

The following examples should be worked out in full by the 

student: 

^76807696=8764 

v/i 129969=1063 

v/3=x-732 °5 

N/ 5=2.23606 

y/8=2. 82842 

v/io=3.16227 

x/2 5. O4OOO5 7=5. OO3 99 

^725-1=5.07092 

\/f=0. 77459 

n/i3|=3-7I483 

v/J=o. 86602 

'/A=°-529i5 

■y/O. 0004=0. 02 

195. 

Extraction of the Cube Root* 

In applying the customary arithmetical method to the 

extraction of roots of higher degree than the second, the practi¬ 

cal difficulties increase very rapidly. Even the extraction of the 

cube root becomes such a tedious and fatiguing operation that 

even those who possess a great facility in numerical calculations 
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make practical use of the shorter methods explained in the fol¬ 

lowing chapters. There is, however, not the slightest difficulty 

in understanding the theory of the extraction of roots of higher 

degree, the method being quite similar to that of the extraction 

of the square root, already described. The following principles 

must first be explained. 

196. 

The cube of any number (or root) must have 3 times as 

many places of figures as the root, or 3 times as many less one, 

or 3 times as many less two. 

The cube of a four place number, such as 4356, must there¬ 

fore consist either of 12, 11, or 10 figures, since it must fall 

somewhere between the cubes of the next smaller and next 

larger simple numbers, i. e. between the cubes of 1,000 and 

10,000; one of which has the same number of figures as the 

given root, and the other, one more figure. But according to § 

187, the cube of 1,000 has 10 figures, and the cube of 10,000 has 

13 figures. 

The cube of any single place number, and conversely, the 

cube root of every perfect cube of 1, 2, or 3 place number, can 

be found from the following simple table, or reckoned mentally. 

Cube. 1 8 27 64 125 216 343 512 729 

Cube Root . . . 1 2 3 4 5 6 7 8 9 

This table is easily committed to memory and will be found 

most useful, especially in connection with the approximate 

method to be given hereafter. 

197. 

Now in order further to examine the construction of a cube 

root, we point off the number, of which the cube root is to be 

extracted, into periods of three places each, beginning at the 

right hand. Of course the extreme left hand period may contain 

one, two, or three figures, but the others will all consist of three 
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figures each. Now having separated the number thus into 

periods, we find that the root must consist of as many places as 

there are periods in the original number, and also that the first 

figure of the root will be the cube root of the first (or left hand) 

period. Thus if the number be 635478923, for instance, we see 

that the root must consist of three figures, and that the first one 

will be 8, because we get three periods of three figures each, and 

8 is the nearest cube root of the left hand period, thus : 

512 000 ooo=8oo3 

635 478 92$=8xy (§187) 

729 000 000—9003 

The cube root of 635478923 must therefore lie between 800 

and 900. In order now to derive a general rule by which we 

may determine the remaining figures x and jy, we must examine 

the conditions which govern the relations of the various figures 

of the root to those of the cube. 

198* 

If we take a binomial quantity, afi-b, and cube it, we obtain 

the following result: 

a~\~b 

afi-b 

a2-\-2abfi-b2 

afi-b 

az-\-2a“b-1— ab2 

jb+2a»+r 

{afi-by—a3-\-^a2b-\-^ab2-\-bz 

By keeping this formula in mind, we may apply it to the ex¬ 

traction of the cube root of any number, which for the purpose 

we divide into two parts, and in order to obviate the necessity 

for writing it down, we may frame it in words, as follows : 

The cube of any number (which has been separated into two 

parts) is composed of the following four parts : The cube of the 

first part, plus three times the product of the square of the first 
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multiplied by the second, plus three times the product of the first 

multiplied by the square of the second, plus the cube of the second 

part. 

In order to understand more readily the relations of the fig¬ 

ures to each other in applying this rule we shall divide the root 

into two such parts that the units shall form the second part and 

the balance of the number with a zero annexed, shall form the 

first part, thus for 74 we shall take 70-I-4, or for 748 we take 

740-j-8. We then have : 

74s=(7°+4) — 

L 

70—343 
3 7o2-4= 58 
370-4*= 3 

43= 

000=az 
800=$a‘2b 
360—^ah1 

64 =bz 

743=405 224 

And in like manner : 

7483=(740+8)3:= 

7403=405 224 000=<23 
3 7 402-8= 13 142 400=30^ 
3 740-82= 142 0 8o=^ab2 

83= 
c, 

512—bz 

7483=4i8 508 992 

And we can perceive from No. 1 the following facts : The 

cube of the first figure of the root lies in the first period of the 

number ; the triple product of the square of the first by the second, 

has one of its figures only in the second period, the triple pro¬ 

duct of the first by the square of the second, has two of its 

figures in the second period; while the cube of the second part 

lies entirely in the second period. 

We also see by §187 that when a cube number contains 

more than two periods, the first group of two, three or more 

periods cannot contain a greater cube than that of the corres¬ 

ponding two, three, or more figures of the root, and that the 

same relations exist between the other portions of the power and 

the root. We can therefore apply the formula az 

to extract the cube root of any number, no matter into how 

many periods it may be divided. 

199. 
Rule for the extraction of the cube root of any number : 

1. Point off the number into periods of three figures each, 
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starting from the right hand end. The left hand (or first) period 

may contain 1, 2, or three figures. 

2. Place for the first figure of the root the greatest root of 

which the cube is contained in the first period, and subtract its 

cube from the first period. 

3. Bring down to the remainder the first figure of the next 

period ; divide this by three times the square of the first figure of 

the root, and place the quotient as the second figure of the root. 

Multiply the quotient by 3 times the square of the first figure of 

the root, and subtract. (Note.—It is easy to make the mistake 

of taking the quotient too great, but this can readily be discov¬ 

ered by trial.) 

4. To the remainder annex the second figure of the second 

period, and subtract three times the product of the first figure of 

the root by the square of the second figure. 

5. To the remainder annex the remaining figures of the 

second period, and subtract the cube of. the second figure of the 

root. « 

If the original number was composed of more than two 

periods, the foregoing rules, 3, 4 and 5, must be applied repeat¬ 

edly, namely : annex to the remainder the first figure of the third 

period, divide by three times the square of the first two figures of 

the root already found, place the quotient as the third figure of 

the root, and proceed as in 3, 4 and 5. 

It will be apparent that the numerical work will become 

much greater with each additional figure of the root. 

The following examples will assist the student to understand 

the rules : 

^405 224=74 

a*=7*= 343 : : : 

3^—37—147) 622:: 

3^=3 72'4= 588 : : 

342 : 

3^—3 7'42= 336 • 

64 

^=64 
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^418 508 992=748 

a — 343 : : : •:: 

3a2=147) 755 
3d-b=3'f-\— 588 

1670: : : : 

3aP=3 7 ’42— 336: : : : 

13348 ::: 

b3=43= 64 ::: 

132849 : : 

3<z2J=3 74a,8= 131424 :: 

14259 : 

3^2=3 74-82= 14208 : 

512 

b3—83= 512 

The work is proved correct if the root when multiplied to¬ 

gether three times equals the number from which it has been 

extracted. 

200. 
The foregoing rules can be applied to the extraction of ir¬ 

rational roots to any desired number of decimal places. After 

the whole units of the root have been found, periods of three 

zeros are successively annexed, and the tenths, hundredths, etc., 

found, as in square root (see § 192). 

If the number consists of a whole number and a decimal, 

the method is the same, except three of the decimals are brought 

down instead of annexing three zeros, dhe process is the same 

for a number which is entirely composed of decimals. For a 

vulgar fraction it is most convenient either to convert it into a 

decimal fraction or to make the denominator a perfect cube by 

multiplying the whole of the fraction by the square of the de¬ 

nominator. 
The following examples will illustrate these various opera¬ 

tions : 
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$/g 007=20. 806 

a*= 8 

3^2=i 2) 10 

3^2=i 200) 10070 

2>a1b= 9600 

4700 

3^— 384o 

8600 

£3= 512 

3^=129792) 80880 

3^2== 12979200) 80880000 

etc. 

^2=1.25 

3^=3) 10 
3<223= 6 

40 

^ab‘i= 12 

280 

£3= 8 

3^=432) 2720 

7)a‘b= 2160 

5600 

3aP= goo 

47000 

33= 12 5 

etc. 

^/2. O57 600=1.2 

3^=3) IO 

?>cfb= 6 

45 
^ab‘— 12 

337 
etc. 
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yo.oc>7 040—0.19 

I 

3« —3) 60 
3a1 b= 27 

334 

3 ab2= 243 

910 

bz= 729 

1810 

etc. 

According to §194, yt^yo.S or yf=y 
4- 5-5 

5- 5-5 

yioo 

5 

The following examples should be worked out by the student: 

y 73I4327OI=9°I 

y 351=7.054004 

y 3=1.44224 

y 6§=i. 88207 

y 1367631=111 

^3/100=4 -641588 

\3/|=0. 90855 

>3/0.032768=0.32 

In addition to the above exact methods of extracting roots, 

there is a simple method of approximation which may be made 

as accurate as desired, and is so valuable that it should be learned 

by everyone. It is based on the simple process of factoring. 

The extraction of the square root of a number is simply the 

separating it into two equal factors. The extraction of the cube 

root of a number is the separation of it into three equal factors, 

etc., etc. 
Now it is easy by inspection to tell quite closely into what 

two factors (for square root) a number may be divided, which 

shall be nearly equal. Thus the number 120 may be separated 

into the factors 2 and 60, but these are very unequal; or into the 

factors 8 and 15, which are much nearer, or into 10 and 12, which 

are quite near. Now taking the factors 10 and 12, we see that 

10 is too small and 12 too large, and the desired factor must lie 

between them. So to find it approximately we add them togethei 

and divide by 2, thus 4Ji+J-2===^=i 1, and 11 is very nearly the 

true factor. This is the first approximation. 

Now to get the root much closer we simply divide 120 by 11 
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to find out exactly what one factor must be if the other = 11, and 

we have Jj-^-°-=io.90909. . so that the true root must lie some¬ 

where between 10.90909 and 11. We therefore add these together 

and divide by 2, thus : 

1_0.-JL0..{ML 1 == r 0. 9 5 4 5 . . . 

We find by actual calculation that the 120=10.95445, so 

that this simple method of inspection and approximation is as 

correct to within 0.00005 as the exact method. By taking the root 

above found and making a third approximation, the result would 

have been correct to many more places of decimals. 

The method may be put in the following rule : 

1. Find by inspection of what two nearly equal factors the 

number is composed. The arithmetical mean of these two factors 

(i. e., one-half their sum) will be the first approximation. 

2. Divide the number by this first approximation, carrying 

the division out to four or five decimal places. The arithmetical 

mean of the divisor and the quotient will be the second approxi¬ 

mation. 

This will usually give a correct answer to the fourth decimal 

place, but a third approximation, using the root last found as a 

divisor, will be found as accurate as any known process and can 

be relied on for any practical purpose whatever. 

Another example will show the general character of the rule. 

Example. Find W346.285, 

We see that io2=ioo, is too small for the root, 202=4 00 is 

much nearer, so we will try 20 for one factor and see what the 

other factor will be. 

7- 3142 5 

Hence the number is composed of the two factors 20 and 17.31425. 

These are not greatly different from each other and their mean 

will give a fairly close approximation : 

jjuJj_3_LAa.5_=I8.657i25 

Now the error in this probably lies beyond the second decimal, 

so we take 18.65 as the divisor for the second approximation, thus: 

3rt:fF=‘8.5676 

and the two factors are 18.65 and 18.5676, and their mean= 

_LB,JLSd^.&-£lL7 6 = I 8. 6088 
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The true root is 18.60873, so that the closeness of the second 

approximation is seen. 

Another example. Required ^7725892. 

Now iooo2= 1000000, which is too large. We try 800-= 

640000, and 9oo2=8ioooo, and see that the root must lie between 

them, and that it is nearer 810000 than it is to 640000. We there¬ 

fore take as our first trial divisor a number near 900, say 870. 

-7.2,5 BJLg—824 

s_lo+^4==35 2=first approximation. 

-r¥A^=85I-985 9 
_s5-2_+a-5.ux&JJL==851.992 95=second approxi¬ 

mation, correct to fifth decimal place. 

A similar method is applicable to the extraction of the cube 

root, and it is one of the advantages of this system that it is as 

simple for the higher as for the lower roots. 

To extract the cube root we have to separate the number into 

three equal factors. The rule may be at once stated, as follows : 

1.. Find by inspection of what three nearly equal factors the 

number is composed. The arithmetical mean of these (i. e., one- 

third their sum) will be the first approximation. 

2. Divide the number by the first approximation, and the 

quotient again by the first approximation. The two divisors and 

the quotient are then three very nearly equal factors, and their 

arithmetical mean will be the required root, very closely. This 

is the second approximation. 

A third approximation, using the second result as the divisor 

twice, and taking the mean of three new factors, will give a very 

accurate result, but this is rarely necessary. 

Examples. 

^725892= ? 

1 oo3= 1000000, so the root is something near 100. Let us 

try 90, for go3—f/2gooo. 

^H^=8o65 

and -2~m.-§=89.6 

and the three factors are go, 90 and 89.6, and their mean is : 
_ft.0 + 9 8.9 • 6.—g 9.8 6=fi rs t ap p r o x i m ati o n. 

Now .•11^=8078.03 
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and *$4^=89.8957 

and we have for the three factors : 

89.86, 89.86, and 89.8957 

and their mean will be : 

8_a^S_2_5JI—8 9.8719 

for the second approximation, correct to the fourth decimal place. 

A little practice will render the selection of the first triahroot 

a very simple matter, and the first approximation may often be 

made mentally, so that the actual work is not laborious. The 

method is also very easily remembered and the principle is appli¬ 

cable to the 4th, 5th, or indeed any root. It will be good practice 

to apply this method to the foregoing examples and compare the 

results with those obtained by the exact, but more laborious, 

process. 



BOOK XVI. 

Calculations with Powers and Roots in General. 

201. 
When it is desired to extract the root of a power the follow¬ 

ing short method of indicating the operation is used. The ex¬ 

ponent of the root is taken as the denominator and the exponent 

of the power as the numerator, to form a fractio7ial exponent. 
n 

Thus to indicate the rath root of am we may write y/am, and this 
m 

would be perfectly correct, but it is better to write an. In this 
2 

way we may write instead of ^C82, more briefly 83 (read 8 to the 
3. 

two-thirds power). Likewise we have y/az=^a2. Every quantity 

which has no exponent is considered to be its first power and 
i i 

may be so written; thus a—a1-, whence $/ci-=$/a}=a2>\ s/a=a2. 
m n \ n 1 

Conversely we have: xn =s/xm; xn=y/x; 53=\*C5, etc. 

This use of fractional exponents, due to Descartes, greatly sim¬ 

plifies the subject of calculations with roots and powers, and 

enables the operations to be much more clearly understood. 

202. 
When a quantity is written with a fractional exponent, it 

means that the quantity is divided into as many equal factors as 

there are units in the denominator, and that one of these factors 

is taken as many times as there are units in the denominator. 

It is evidently a matter of no consequence, in calculating 

with fractional exponents, whether the root is first extracted and 

the quantity then raised to the required power, or whether the 

power is first raised and then the root extracted. For instance : 
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8 3=N3/82=y64=4 

which is just the same as : 

83=(n3/8)2=22=4 

and in general: 
m n n 

a"=x/(am)=(s/a)m 

The correctness of this statement, so important in calculating 

with powers, may be demonstrated in the following manner : 

If we raise a given power, such as as, again to another 

power, the 4th for example, we indicate this operation thus (V)4, 

and we shall obtain a power of a higher degree, equal to that of 

the product of the two exponents. This is evident from the fact 

that we are taking the product of three equal factors, aaa=az, 

four times again, as a factor, thus aaa-aaa-aaa-aaa, which gives 

3*4=12 equal factors, or (as)4=a12. But we see that (a3)4 will thus 

be the same as (a4)3, or in general (an)m=(am)n. 

Now in order to show that in general 

(^r=C/K) 
we may consider the quantity a to be separated into n equal 

factors, or a—wn. Substituting wn for a, we have : 

(^a)m= (^/wn)m=wm 

and also 

v/ (am)=^/ {wnyn=1/ (wm)n=wm 

whence the general statement follows : 

(C^r=VK) 

203. 
When the numerator and denominator of a fractional ex¬ 

ponent, or, what is the same thing, the exponents of the power 

and the root, are both multiplied or divided by the same quantity 

the value of the expression remains unchanged. 

Thus we have : 
2 4_ 

643=646 

3 6 
y6v=x/644 
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In general : 
m mp 

a"=a” v 
v n p 

x/am=x/amp 

If, therefore, the quantity a is divided into p equal factors, 

and one of these factors again taken p times, we must obviously 

get the same result again. Thus, for example : 

(y 64)2=(y4 * 4'4)2=42=(2 • 2)2=24 

6 6 
and, (v/64)4=(v/2 • 2 • 2 • 2 • 2 • 2)4=24 

In general, since according to § 202, we may consider the 

quantity a as separated into np factors and wnp placed instead of 

a, we have : 

(^/a)m=( ^/wnp)m=(wp)m=wmp 

np np 

and, (y/a) mj>=( x/wnp)mp=wmp 

By the application of these principles a number of fractional 

exponents may be brought to a common denominator, and as 

will be seen in the following pages, many expressions very much 

simplified. 

These principles may also be used to combine a number of 

roots together without knowing their actual values, and also to 

6 
distinguish which of several values, such as N/3, ^5, 24, is 

the greatest or least. If we write these with fractional expo¬ 

nents, instead of using the root symbols, we have : 

1 4 6 6 

\/3=3 =3 =\S 3 2 7 

y5=54=5f=V52=V25 

6 -1. 1 6 
^24=24 b=24 6=v/24 

6 
and we see at once that v/3 is the greatest, and x/24 is the least 

of the three quantities. 

204* 
In order to multiply any powers of one base (or root) 

together it is only necessary to add the exponents. That is, the 

product of two powers of the same base is a power of that base 

of which the exponent is equal to the sum of the exponents of 
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the two factors. This is evident, when we consider that the 

product must consist of as many equal factors as there are in 

both multiplier and multiplicand taken together, thus : 

a\ a2=c?+2=al 

We see the truth of this, because 

Likewise : 

ah. a2=aaaaa. aa—a7 

.22 

rule 

34+32+3 —3: 
- .5 - ,3 ^. yy5-f-3-f 1-sy.9 

t-V vV - 

b15b15=l>™ 

Also when the exponents are fractional we have the same 

3. 2 3.-1—2. 1 
.1 7 . a' -a a 

since the one contains the 7th root of a, twice, and their 

product contains it five times as a factor. 

Examples: 

amar,=am+n; 

amanap=am+n+i> 

m+p m p m I y __ 

y 11 y 7?— /V*71 ,V/’ 71 
*/v */V ■■■ ■ »/V c/V 

71 n 271 
9- *?r' ^ 
^-'V* ^ ■— y 4^v -*/v -»/v 

vV A — - — 
•»H-1 

m m m-\-n 

x n x=x n + 1 =x n 

2abbz'$za2b=2'3’at,'a2‘b‘i’b—6albi (§89, 1) 

a\as—<^2—f-1 )=<^7—a6-j-a4 (§89, 2) 

3a:5(2a:4+4^+3)=6a:94- 12^6+9^ 

(a-1 )((23-[-a"-|-(2-|-I )=<24-1 (§89, 3) 

(a—bX<zs+a*b+ab2+b3)=a*— b* 

(a—b) 2 63 

(a2+b2) (a2—b2)=a4‘—(§91) 

The working out of the above examples will furnish the 

student with good practice in reduction, and none of them should 

be passed over if not understood. 
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205* 
In order to divide one power in a given base by another 

power of the same base, it is only necessary to subtract the ex¬ 

ponent of the divisor from the exponent of the dividend. 

This is the converse of the rule for multiplication, and the 

reason will readily be seen when we consider that any number 

of common factors in the divisor cancel the same number in the 

dividend. Thus we have : 

7—4. 
=8! f°r T.= 

87 8-8-8-8-8-8 *8 
8-8-8-8 

=8 -8 -8=83 

5 
a1 5.-3. 2 

also: 3=^ (see §203) 

because 
a 

a Way 

X 
likewise : —-=x .12 

x 

When the exponent of the divisor is greater than that of the 

dividend, the difference of their exponents is taken and the ex¬ 

ponent of the quotient is negative, i. e., has the minus sign 

prefixed ; 

a ^ 
Thus we have : —■== a^~^—a -3; 

a 

a 
a 

-a 
1 

1 2 

When therefore a negative exponent results from the 

division of one power of a root by another power of the same 

root, it simply indicates that the divisor consists of as many more 

factors than the dividend, as there are units in the negative 

exponent. 

A quantity with a negative exponent is therefore not itself 

negative, but is equal to unity divided by the same quantity with 

a positive exponent, thus : 
t _ 1 1 1 
1 . ^ 12- - a X 

a' x 
1 ; 

.lX 
X n- 

X 
.11 > 

I — 1-1-1 ■ 1 —1 — 1 , 
_ I I I 

- v/16 4 ,1 
162 
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This enables us to transfer a quantity from the denominator 

to the other numerator of a fraction, when so desired, merely by 

changing the sign of its exponent, thus, instead of: 

y 
we may write asx4jy~5 

If the dividend and divisor are equal to each other, the quo¬ 

tient is always equal to unity. Thus : 

a 

a 
-i : 

xr' 

x1 

But the above rule for division gives in such cases the ex¬ 

ponent o. 

a 1 
~n=a a 7 

_ _ n xn 
7 7=<?° ; —=x u= i 

A quantity with zero for an exponent is therefore always 

equal to i, and the mistake must not be made of supposing it to 

to be equal to o. Thus, we have : 

a°=i ; x*=i ; ^ ^ =i ; i°=i 

206. 
Since the rules given in the preceding paragraphs are quite 

general in their applications, they must apply as well to negative 

as to positive exponents, and this we see to be true from the fol¬ 

lowing examples : 

Multiplication. 

a1 v2_4==tf7_4==<23, because : 

i 
7 V7-4- a 1 •a -a 1. '.Q3 

a• 

a 3 -a 2=<z 3 2—a 5, because: 

iii 
a s.-a-2 

a3 a2 a5 
-CL 

Division. 

a 

a -4 
=a7 ( 4'=(211, because 

a 

a — 4 -CL 7 • 

CL‘ 
-CL7 • a4: -CL 11 

a -4 

a' 
—a 4 n'=a3, because: 

a 

a 

—4 

-7 

I I 

Za±:a + 

i a 
-a 

a‘ 
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General Examples: 

ama n=am~n 

a 
—m --a~n+m=am-n 

a 

am 11 • a"=am 

ama 1=am~1 

an rn~n 
- —an =a n 

a 

am~i 

a 

<2 

a 

2 m -a 

-a •«—l 

a 

a' 

rn~ 

a1' 

-a l—« 

w< ?i—m 

4 n —-<2 u 

ytn—n 
am-m+7,a» 

a 

4a56^cs 
=2aAb3 

2x6 ($x—4a;3)=6a;7—8a:9 

6a5 2 
-=_=2a- 4 
9a9 3<24 3 2abAc3 

(2^3^5—3<2<5-4) (5<^~2<53—(—^4)=io^8—|—2<rz4^9—15a~1b~1—3<23 

207* 
In order to raise any power to a higher power, multiply the 

exponent by the new exponent. Thus, to raise (tf4)3, we have : 

(,24)3=tf 13, because: 

(<24)3=<24 a4 ■ 4=<24 + 4+4=04'3=tf 1 2 

Likewise : 

(■a~3)2==a~6, for 

-3\ 2—a-3 (a-3) 
I I I 

a3 a3 
-a -6 

_3 6. 3 

(as)2—a8=a4, because: 

(as)2 = [(^/a)*]2=(</a)v=a 

In general therefore, we have : 

(am)n=amn 

[(am)n]p=a ~,mn i> 

m x n qM 

a 

’am\tl amn 

bn J bnn 
-n bn 

a 
2 \ 3 

a 
=a 2 
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208. 
If any root is to be extracted from any given power, the ex¬ 

ponent of the power is to be divided by the exponent of the re¬ 

quired root. If the division cannot be performed it is to be 

indicated. 

Thus : 
9 3 I 

\3/2<J = 2;{ = 23 ; 'V 42=4 “ ; 
-3 3 

\/5s—516; x/a3=a2 ; 

V 2 5 
■ 

In general : 

y/a1 5 =a 3 . 

n m n m-f- \ 

^/am=aTl ; y/a^=a~ir 

n m n m—n 

x/a~m=a~ * ; s/am~n =a 11 
n 2 « if a

 
V

. 
• 

•x
 

ft
 *0
 

II*
 *0
 II 

x/a2n=a2 ; x/a 4=a 2 . 

209. 
When it is required to raise the product of any factors to 

given power, each factor is raised to the required power sepa¬ 

rably. Thus, for example : 

(2 -3)3=23.33, for we have : 

(2 '3)s=2 -3 -2 -3 -2 -3 = 2 '2 -2 -3 -3 •3=23'3a' 

In general (abc)n=anbncn 

Examples: 

(a?Py=a9bw; (iT)2=ia2; 

{WaT=\a; (!\/tf)2=iK’ 

(iyxY= b)n=ab 

210. 
Conversely, if it is required to extract a root of a quantity 

composed of several factors, the root of each factor is extracted 

separately. 

When the radical sign stands before a parenthesis 

containing factors, the parenthesis may be dropped as unneces¬ 

sary, the sign being understood to apply to all the factors. 
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Instead of y(abc), we may write more briefly yabc. 

ya5b6c9—yas-yb6 -yc9=ab2c9 
n n n 

In general y ab=y a*yb 

The truth of these statements is apparent from what has 

preceded. 

A quantity, which, when raised to the ?ith power, gives 

the quantity ab, is the nth. root of ab. Now since, according to 
n n n n n n 

§ 209, (ya-yb)=ab, so, conversely y ab=y a' yb. 

Examples: 

ab2 
✓ . .2 ~ 3 . . 

y 
27 a9 3<2 
~W^2b2 

2IE 

(1) If we can separate any quantity under a radical sign, 

into two such factors that one of them shall have a rational root, 

we may extract the root of this factor and place it outside the 

radical simi as a coefficient of the other factor still under the o 

radical sign. Thus, for instance : 

n/45=V9‘5=3\/5 
In this way expressions containing roots, may often be 

simplified and collected. 

The term radical is often applied to a quantity of which a 

root is to be extracted, the term applying to the whole expression 

including the radical sign and the quantity under it. Thus : 
2 4 

ya ; y/a ; a4 ; ya3 ; ^/45 ; etc., may all be called radicals. 

Radicals are said to be similar when they have the same 

exponents and the same quantities under the radical sign, no 

matter how different the coefficients may be. Thus : 

y 2 ; 3^/2 ; \yz are similar, as also are yb, and $yb, or yab 

and 2yab : but 2^2 ; 2^2; or yah and yab, are dissimilar. 

Examples: 

y 18=y 9 ’2=y gy 2=3 v/2 ; 

\/ b y 4 * 2 y 4 y 2—2 y 2, 

ycfb—yayb; 

ya*b=ayb ; 



x/a4ibf>c2=y/ alRc^b—a^b^Cy/b ; 

$/24a7b—$/8‘3 •a^ab=2a1^/^ab ; 

2 y/18xy5=2 y/g •2x2y4y=6xy2y/2y ; 

(2) Conversely, factors without the radical sign, may be 

placed under it, if they are first raised to the power indicated by 

its exponent. 

Thus, for example : 

3\/2=y/32-2=y/i8 

2y/2 = y/4 ‘2 = y/8 

2 = y/ £ ‘2 = y/ 7} 

ay/b—f a2b 

a^/b—ycfb 
n n 

Xy/X—y/Xn+ 1 

Calculations With Roots. 

212. 
It is to be noted that the simplicity of an expression does 

not depend upon the degree of the exponents, but upon the 

fewness of its members and radical signs. When calculations 

are actually made with powers and roots, the operations are 

performed by means of logarithms, (as will shortly be explained) 

and in such cases the extraction of the 100th root involves no 

more labor than the extraction of the square root. 

(1) Addition a?id Subtraction of Roots. If the radicals are 

dissimilar, the operations can only be indicated, but if they are 

similar, or can be made similar we have only to add or subtract 

the coefficients, as the case may be. Thus : 

\/ 5~\-f6—x/ 5+^6 ; 2 fa—2>y/a=-2y/a—3^ a ) 

2f2-\~3f2=5f2 ; 2a\—5a%-\~^a%=3a% ’■> 
m to m 

ay/h—by/h={a—b)-\-y/h ; ax"—bxn=(a—b)xn ; 

\/8-|-n/ I 8=2 y/ 2-j~3y/ 2=5y/2 = x/$0 ; See § 2 11,2 ; 

2f27~3s/I 2=2y/9-3—3x/4 •3=6x/3—6^3=0 ; 

V 24-f'f 3=2V 3-^^ 3—3V 3=^/81. 

(2) Multiplication of Roots. The roots are first to be reduc¬ 

ed to the same degree (i. e., same exponent, see § 203). They 



can then be brought under the same radical sign, and the similar 

factors collected. The other factors without the radical must be 

multiplied together separately and their product placed outside 

the radical sign. 

Examples: 

y/a'^/b—x/ab ; ya• yb=yab ; 

x/3‘x/i2=6 ; Zx/ci'ZVb—bs/ab) 

y/a- y/a=a ; ay/b -by/a=abv7ab ; 

1 1 _3 2. 6 
y/a’$/b=a2 -b3= a(:' •bQ=\/a3b2 ; 

2 s/a*b,'$ y/ab=6a1b ; 

3i/a-5$/b=i5y/a3b2; 

n n n 

v/.vV-^"— s/x"'+1 ; 

3V5 V5=i5 ; 

a^/ (v/ a—|— y/ b^'==^a—|— y/ abj 

(v7 a~\-y/ b){>/ ci—y/ b) =ab ; (see § 180,2). 

(Vx-\-v'y){Vx-\-Vy)=(Vx-\-s/y?=xJr2-JxyJry, 

(See § 186). 

(3) Division. If the exponents of the radicals are alike, or 

can be made alike, the quantities can be immediately placed 

under the same radical sign. Thus : 

y/a a 

y/a 

/ ^ y 
y/a 

(see § 180, 2) 

2n/3___\/4 \3 
y/\ 2 v7 I 2 

ya 6 a2 

x/b=s/~b3 ; 

x/8 

x/i8 

2 v7 2 7 

V 
8 

I8: 

.4 

9' 
v '=§ ; 

3\/12 

—2. m—2 . /9—2 .3—j 
—3 v 12—3 v y— 3 2 

v74 5—v7 20 

v/! 
=y¥—y%(l=3—2= 

213. 
The general problem, of the raising of any polynomial 

quantity to any power, and conversely, the extraction of any 

root, belongs properly to the subject of Analysis, or Higher 

Algebra, where it can readily be solved by means of Newton’s 

Binomial Theorem. 
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For the present it will be sufficient to give the rules for the 

formation of the second and third powers. For the formation 

of the second power, the following simple law is applied. 

Suppose a-\-b-\-c-\-d. ., be any polynomial quantity. If we 

square this by actual polyplication, and write the successive 

products under each other, we have : 

—|—<5—j—c—|— c?—J—^—J— . 
Factors 

db-\-b2 -J-bc-\-bd-\-be-\-. . 

dC—|——j—C"- —|—CC?—|—<7^—J—. . 

dd'-\-bd-\-cd-\-d~-\-de-1-. . 

de-\-be-\-ce-\-de-\- e2-\~. . 

Comparing the successive lines we perceive by inspection 

the simple rule by which the square of any polynomial is ob¬ 

tained, namely : The squdre of d?iy foolynomidl qudntity consists 

of the squdres of eoch 77ie7nber dnd the double product of eoch 

me7nber by eoch of the others. If any members have minus signs 

it must be remembered that like signs produce plus, and unlike 

signs minus, and that the squares are therefore always positive. 

Thus : 

(c:—|—3—j—c)2==«^:2—j—32—(—C2—j— 2 dbf- 2 dC-\- 2 be ; 

{d—b—c)2=cr2—j—32—(—c2—2 db—2dc-\-2bc ; 

(df-by=d2+2db+b2 ; 

(x-\-d)2=x2-\-2dx-\-d2 ; 

(I —x) 2= i — 2 x-j-x2; 

(x+Yy=x'‘+Px+-Ti > 

(x— | d)2=x2—fixf ; 

(d—b)2=d2—2db-\-b2 ; 

(x—I )2=x2—2JT—|— I ; 

(x+l)W+x+I ; 

(x— ‘y=x2—px+-f-; 

(3ax-\~b)2=()d2x2~\-6abx-\-b2; 

lx—2 s/xyfy ; (xm-\-d)2=x2m-\- 2dxmfd2 ; (f(x—fy) 

x2—(d—x)2—x2—(d2f- 2dX-j-X2)=2 dX—d2 ; 

^ {a f—[b-\~(a—c)] [P—(a—cY]—ip~\~a—c) {p—d-\-c). 
(See § 91.) 

(2) In the same way we may derive a general law for the 

formation of the cube. The principle is the same, the square 

multiplied again by the base giving the cube, but the work is 

much more prolix, and as the only cube used in elementary 



2 I 7 

algebra is that of a binomial, we will here simply repeat the rule 

given in § 198, calling the attention of the student to the arrange¬ 

ment of the plus and minus signs, which had better be mem¬ 

orized. 

(x+yY=xz+3xy+3x/+/; 

(a—b)s=a3—3<223-f-3tf£2—b3; 

(am—bny=a3m—$a2mbn-y-samb?n—b3n. 

214. 

The rules for the converse problems, i. e., the extraction of 

the square and cube roots of polynomial quantities, follow 

from the preceding. An experienced student will rarely have 

occasion to use a rule, but will detect a root which can be 

extracted at the first glance. It is not often that the root can be 

exactly extracted, and the operation must generally be indicated, 

either by enclosing the expression in a parenthesis, preceded by 

the radical sign or followed by a fractional exponent, and treat¬ 

ing the quantity as if it were a monomial. 

For instance, the square root of the binomial a-\-b, is simply 
_ 1 

indicated, thus y/(a-\-b), or +a-\-b, or (a-\-b)2. Beginners must 

be careful not to confuse with \7+~v+ or a—b) with 

*/a—s/b, these expressions being by no means the same, as will 

be seen by the following numerical examples. 

n/i6-]-n/9=7, while \/(i6+9=5-) 

Also : 

i6-\-s/g=ig, while v/16+9=13. 

Again : 

^25—^716=1, while ^(25—i6)=3« 

The following points should be noted in regard to the ex¬ 

traction of roots ; every power of a monomial quantity is a mono¬ 

mial, but the square of a binomial quantity consists of three 

parts of which two are perfect and positive squares, while the 

cube of a binomial quantity consists of four parts of which two 

are perfect cubes. It therefore follows that no square root of a 

binominal quantity is possible, and that the square root of a tri¬ 

nomial quantity when a root is possible, must always be a bi¬ 

nomial. To find this root, take the square roots of the two per¬ 

fect squares of the trinomial and join them by the sign of the 
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third member. If this expression squared gives the original tri¬ 

nomial expression, it is the desired root; if it does not, the quan¬ 

tity has no rational square root. 

A similar rule can be formulated for cube root. (Compare § 

324). 

Examples: 

\/x2-j-2xy-j-y2==\// [x-\-y)2—x~\~y 

V9a:2—6xy-\-y2—\/(3X y)'—3x ~y 

\SX1 Arpx-\- p-£=\/(xJr I) —x+ 'i 

v/(i—2x-\-x2)=x/(i—x)2=i—a: 

n/x2 \Z==S^ (X § ) 3^ 

Incomplete ( y+^ax^x—V a2y-±ax-{-x2 
Squares ( y/a*+P=y/(t-\-b2 

V a2—b2—\/ (a-\-b)(a—b) 

V (a-\-b)\a—bf— (a-j-b)(a—b)=a2—b2 

\/(x4~yy=\/ {x-\-y)2 ~ ) s/ x-j-y 

v (x3+3xy+3yy2+y)=y(x+y)s=x^ry 

y' (a3—3^2a-|-3<2a2—x3)=y/ (a—x)s=a—-x 

y' (a-\-b3)==(a3-\-b3)i \ Incomplete 
, 7„N , , mi I Cubes 

y(a3—b3)=(a3—b3)s ) 

For the extraction of the square root of polynomial 

expressions see § 324. 

215* 

The following reductions and changes of form will often be 

found useful, and should be carefully studied : 

(1) When the denominator of a fraction consists of a single 

member under a radical sign, this quantity may be made rational 

by multiplying both numerator and denominator by such frac¬ 

tional power of the denominator as is required to make the 

power complete. Thus : 
6 6 

^3=^3V2=n/32V23 
v/2 y/2-^/2 2 

=W72; 
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3' \/3 3%/3 

\/3 v/3'v/3 3 
2 

« _a-b*_a 

vb b\b\ / ’ 

=s/3; 

2 2^/2 

y/2 y/2 y/2 

a 

=>/2; 

=%A*; 
y/(l 

a q1 S ./a 3/ =—=as=ya-, 
V a 3 

2 
,3. 

\/ a-\-x n/(2-j-jf- V" a—a* (<z-|-a;) {a—x) *S cf-\-x~ 

a—x a—x V a—x V a—x • v a—x 

(2). When the denominator of the fraction is composed ot 

two radicals the sign of one member must be changed. (§ 91). 

Examples: 

\/a~\->/x (-/a~\~x/x)(y/a-\-\/b)_(y/<2—(—-y/x)(y/a-\-y/b) ; 

y/ a—y/ b (v' ci—\/ b^(^y/ ci—[— */ b) 

a; x(y/x—y/y) 

a—b 

x{y/x—s/y 

\/x-\-y/y (\/x-j-Xy/y) (-/x—\/y) x y 

x x(a—y/x) x{a—y/x) 

Cl—|—y/x (ci—|—y/x){ll y/X) Cl  X 

(3). Radical quantities can always be reduced to a com¬ 

mon denominator, thus : 

ax (a~\~y/ax)y/ax—ax ay/ax ; 
y/ax— 

a—|—y/ x a—j— x a~\~x/ ax 

7 + 

x 
-g = --3=( 1-A.’2) 

(i—xy (1—x2)? (i—a:2) 2 

3 
2 

(4). Miscellaneous Reductions : 

y/yf(a%—x?)__ 3>V (a-\-x) (a—x) 

y*S a-\-x 
=3 \/ a—x ; 

yV a-\-x 

x+y X—y (x—y) (x-\-yf_ /x+/ . 

x—y^x-j-y (x—y)2 (x-\-y) x—y’ 

(a+x)m(a+xy=(a+x)m-n ; 



220 

(a+x)m 

(a-j-x) 
-=(a+x-y 

(” r+'TS ; 

•-(-£> 

y (<*8 —x3)=^y ^ i—7^^); 

am—xm 

V a2+x2=ax/fi+~'^; 

(\/a+\/Z>) (Va—y/b)—a—b ; whence we have : 

a—b 

y/a—y/b 

a—b 

=y/a-\-y/b; also 

=y/a—y/b ; 
y/ a—j-y/b 

X2-\-2X—3 X2-j-2X-j-I—4 (x-\-1); 

x2-\-^x~\~6 ^ —|—4^'—1—4 —1——2— 2 (jv—|— 2)2—J—x-^— 2 

X“—|—2X 3 (.V—|—I—|—(x—|—I 2 ) X 1 

X“—j- 5X—J— 6 {X~\~ 2 ) (x—j- 2—j— i) X—j—2 

2\6. 

In all calculations with powers and roots, most careful 

attention must be given to the signs. 

The conditions governing these may be reduced to five 

rules which we have intentionally postponed until the end of this 

book, and which are here now given : 

(1) Every power of a positive quantity is positive, thus : 

(Jra)n=^\-an 

For a negative quantity all the even powers are positive, and 

and all the odd powers are negative. This follows because the 

product of an even number of minus factors is plus, and the 

product of an uneven number of minus factors is minus, thus : 

(—3)— 9 for (—3)!=—3'— 3=+9 

(—3)3=—3 •—3 •—3=9-—3=—27 

(—3)——3 '—3—3 •—3=9- 9=81 
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If 71 is any whole number, then 2n is always even, and zn-\-1 

always odd, and we have in general: 

(—a)2"—-\-a2n ; and (—a)2n + 1 —— 

Examples : 

(—2)s=-8 ; (_a)*=i6 ; (—l)2=i; 

(—a)“=+aM; (—a)"=—a11; (—4)2—16. 

We must distinguish between —a2 and (—a)2=a2; —cr is read 

“minus a square,” (—af is read, “minus a squared,” or “the 

square of minus a.” In the same manner \dl is read “one-half 

a square,” while (|a)2 is read “the square of one-half a,” and is 

=\a\ 
(3) Conversely it follows that every odd root of a positive 

quantity must be positive, while every odd root of a negative 

quantity must be negative, thus : 

\3/(—f-8)=—j—2 y(—8)=—2 

y(—27)=—3 for +33+2 7, while (—3) ——27 

There is no quantity but +2 which can give +8 when 

cubed, and —2 is the only quantity which when cubed gives—8. 

In general we have : 

2ii+i 2« + l 

-a)-- | ya and : 

2n + 1 2»+l 
y/{—a)——x/a 

(4) Every even root of a positive quantity may be either 

positive or negative, since the even powers of both negative 

and positive quantities are positive. 

For example : 

(+3)2==(—3)2—+9 

and therefore \Z9==b3> (read “plus or minus three”). 
4 

Likewise y4=-J-2; 1 1 =—I—.3• 

In general we have : 
2 >1 2 n 
x/ a 

In the preceding examples, and in many of the following, 

the double sign (-J-) has, for sake of simplicity, not been used. 

In practice, however, the double sign should always be prefixed 

when an even root has been extracted, unless there is some other 
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means of determining whether the root is negative or positive. 

Sometimes it is possible to know this from given conditions, thus: 

v/—a •—<2=v/<22=v/(—af=z—a 

(5) Finally we have the case in which the radical sign with 

an even exponent stands over a negative quantity, as for example : 
4 

v/—4 ; y/—16 ; y/—a ; or since each root has the double sign, 

~~t~v/ 4 I —1~j etc. 

But since there is no number, either plus or minus, which 

when raised to an even power can have a minus sign, so it 

follows that no real root can be extracted from a negative quan¬ 

tity. Such roots can therefore only be indicated, thus, 
4 4 6 6 

y/-4 = y/-4; y/-Z)=.y/-5* y/-(l=y/-a\ 

for we can conceive of no quantity which when raised to the 

2nd, 4th, or 6th powers would give —4, —5, or —a. 

Such expressions therefore as y/—a, y/—a2, etc., are called 

imaginary quantities. See appendix, § 325, 326. 



BOOK XVTI. 

The Solution of Quadratic Equations* 

2X7* 

Definitions. In any equation, after the parentheses have 

been removed, and both sides cleared of fractions, if the un¬ 

known quantity does not appear in any higher power than the 

first degree, the equation is called a simple equation, or an equa¬ 

tion of the first degree. When the unknown appears in any 

higher power than the first, we have an equation of a higher de¬ 

gree, and the degree of an equation, is the same as that of the 

exponent of the highest power of the unknown which it con¬ 

tains. 

Higher equations are pure or mixed, according as they con¬ 

tain the unknown in but one degree or in several degrees. We 

have therefore the following classification, with examples : 

2X=b 

3x—7=14—x 

x2=g 
2x2-j- 16=-fn;2 

X“—|— 2X== I 6 

8—|w=6w2 

X3=2 7 
x3—|— i^—7x3=—^x3 

In general : 

xn—a 
axn -|- bxn=c—dxn 

xn-\-axn~1 =x-\-b 

Equations of the First Degree or Simple 
Equations. 

Pure Equations of the Second Degree or 
Pure Quadratic Equations. 

Mixed Quadratic Equations, containing the 
unknown quantity in the first as well as 
in the second power. 

Pure Equations of the Third Degree. 

Pure Equations of the nth. Degree. 

Mixed Equations of the nth Degree. 
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The general theory of equations of the higher degree belongs 

to the subject of Higher Algebra or analysis. In elementary 

algebra only pure equations and mixed quadratic equations are 

discussed. 

218* 

The solution of pure quadratic equations offers no difficulty. 

It is only necessary to clear the unknown quantities (a'3) from 

parentheses and fractions, collect them by the sign -J- on one 

side of the equation and then extract the square root of both 

sides. 
Reducing the pure quadratic equation to the general form : 

x2=q 

in which x is the unknown, and q the known or given quantity, 

and we have, by extracting the root : 

x/x2=x/q 

or x— | \/q (§216,4) 

Any value of the unknown, which, when substituted in the 

original equation, satisfies its conditions, is called a solution or root 

of that equation (§ 100). The pure quadratic equation has, there¬ 

fore, two roots, of equal value but opposite signs, namely : 

x=-\rs/q and x——y/q. 
Example i. What are the values for x in the following 

equation ? 
2a’2—3=69 

Solution : 2x*=72 

x2=s6 

n/36=±6 

The equation is satisfied equally well by -|-6 or —6 

Example 2. Find x, from the following equation: 

a;3 2x% sx2 
j+7 3 -g j53- 

Solution. First collecting all the members containing x3 to 

the left hand side, we have : 

x2 2x2 5 x3 

3 
160 

Multiplying by the common denominator 12, to clear of 

fractions : 
3a;2—8a:2— 1 oa'2=— 12 • 160 
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Collecting the coefficients of x2 : 

— 15 x2=— 12 • 160 

2 12-160 
x — =128 

X--t-y/l 28 

Whence x=-\-i 1.314 or—n.314 

Example 3. Required the value of x in terms of the 

quantities a, b, c, h, m, and n,. The relation of these quantities 

is given in the following equation. 

cx2 bx2 ax2 ab cx 

m ‘ n n ' c m 

Solution. Separating the terms containing the unknown 

from the known, we have : 

ax2 bx1 cx2 cx2 ab 

n n ' m ' m c 

Now multiplying by mn, the common denominator of the 

unknown terms, we have : 

27 21 2 {ab—ch) 
a mx—bmx 2 cnx“= m n -- 

or {am—bm-\-2cri)x2=mn 
{ab—ch) 

x 

whence x— | y/ 

mn{ab—ch 

c{am—bm-\-2cn 

7?in{ab—ch) 

c{am—b?n-\-2cn) 

Example 4. Find a number such that when 4 is added to it, 

and the sum divided by 3, the result shall be equal to 3 divided 

by the required number minus 4. 

Solution. If we call the required number x, we have from 

the given conditions, the equation : 

x~\~4__ 3 

3 x-—4 

Multiplying by the common denominator ${x—4) we have: 

0+4) {pc—4)=9 
x2—16=9 

X2=2 5 

x i5 
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It we take the + sign and substitute in the original equation 

we have : 
5+4_ 3 _ 

3 5—4 

If we take the — sign, we have : 

—5+4 3  

3 —5—4 

219, 

JL 
3 

Any pure equation of the nth degree may be solved in a 

manner similar to that above given for pure quadratic equations. 

It is only necessary to collect the nth powers of the unknown 

quantities on one side, and all the known quantities on the other 

side, and then extract the nth root of both sides; which can 

easily be done by means of a table of logarithms, as will be 

explained in §234. 
Since every pure equation of the nth degree has n roots, and 

hence n different values for Jt, which will satisfy it, it is ordinar¬ 

ily the custom to give only the real roots in elementary algebra. 

The other roots which give imaginary values can only be found 

by means of higher mathematics.* 

We can readily find the real value of x from the following 

equation, for example : 

^+^-7^=-K 

Transposing: 
„ 136 

—7X =— g j 

Collecting : 

17a:3 136 

3 — 81 

3-«3<>_ 8 

81.17 27 

a—\/2^=1 

*The equation x4—4x3—xz—i6x=i2, for example, has for roots; 1, 2, 

—2, and 3. The equation v3=S, has three roots; 2, —i + W—3, and 

— v/-|_3< The equation v4 — 4 has four roots: v/2, — \/2’ V —2 and 

— \/—2. 
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From the equation: 
v3 0 —j_3OJkr3 U_I0 

1 IO 
we have, x3(>= 

31 
3 0 

whence, x=y/{^) etc. 

(See §284) 

Mixed Quadratic Equations, 

220. 

1 

The solution of equations of this sort, (first discovered by 

an Arabian mathematician, Mohammed-Ben-Musa) involves the 

exercise of some judgment. 

All members containing the square of the unknown quantity 

must be collected into one member, as must also all members 

containing the first power of the unknown, and the equation so 

arranged that has only three members. The square of the un¬ 

known quantity without denominators or coefficients, and pre¬ 

ceded by a plus sign, is followed by the first power of the un¬ 

known with its coefficient, forming one side of the equation ; 

while the known quantities are collected on the other side. The 

equation will then have the form : 

sc2-]-px—q 

in which p and q are known, and may be either positive or neg¬ 

ative, fractional or whole numbers. 

For example, the following equation 

2X 
- —|— 1 o 5—l- 2 a:2—)—1 °—3x 

3 

may be brought into the required form as follows : 

3j*y 
4 

2X 
■2^+ - +3*=—4 

Multiplying both sides by 12 : 

par2—2 qav—j—8a:—|—3 6ar-——^ ‘ 12 

— 15 a:2-)-4 4 x=—3 

x 

1 5a:2—44^—3 

, 44 3 -— x= 
15 15 
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In a similiar manner the following equation may be re¬ 

duced : 
cx , hx2 hx ax1 . 7 
--=-\-d 
n m c n 

ax2 bx2 . cx 
collecting :-\- 

n ni n 

hx 
=d—c 

Clearing of fractions : 

macx2—nbcx2-1- m c2x— m nhx= mnc{ d—c) 

(mac—nbc)x2-\-m(c2—nh)x=mnc(d—c) 

m(c2—nil) mnc(d—c) 
X"-j- -j-r 'X=—r: — 

' c(ma—no) c{ma—nb) 

22J. 

After the mixed quadratic equation has been brought to the 

form : 
x-A-px—q (i) 

as shown in the preceding section, the two members on the left 

side must be considered as a portion of a square, i. e., as 

x2+ 2 • ±px=q 

We see now by inspection that the quantity which is lacking 

to make the left side a perfect square is the square of half the 

coefficient of n: (see §213), that is (-|)2, and we may add this to 

both sides of the equation without changing its value. 

We then have from equation (1) : 

*+p*+Q) =■f+? (2) 

This now has for its left side a complete square, of which 

the root is x-\~-f. We have now only to extract the square root 

of both sides of the equation, indicating the operation for the 

rio-ht hand side (see § 214) and we have an equation of the first 

degree. Thus from (2), we have : 

■*+f=±'/ (f +?) (see § 216,4) 

whence P x=— zhv7 
2 \ (f+o 

or bringing the quantities under the radical to the same denomi¬ 

nator, and extracting the root of the denominator : 

-p-j-sA p2+4q 

2 
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In order to make the above method of “completing the 

square,” as it is called, perfectly clear to the beginner, it must be 

again stated that the square of a binomial quantity is equal to the 

square of the first member, plus twice the product of the first by 

the second member, plus the square of the second member, or 

in a formula : 

(x-\-a)2=x2-\- 2 ax-\-a2. 

Now if we only had x2-\-2ax, and wished to find out what 

must be added to make the expression a complete square, we see 

that the coefficient of x in the second term, i. e., 2a, is double 

the second term of the required root x-\-a, and hence, if we take 

one-half the coefficient of x, i. e., one-half of 2a=a, and square 

it, and add it to the imperfect square x2-\-zax, we shall have the 

complete square x2-\-2ax-\-a2. As a2 added to both sides of the 

equation does not change the truth of the equality, we have a 

perfect right to do it, and as it does not introduce any unknown 

quantity on the right hand side, the solution of the equation is 

not hindered. 

222* 

Example i. What values of x satisfy the following equa¬ 

tion ? 

5x2—3°x—40 (1) 

Solution: First arranging the members according to §220, 

we have: 
5 a;2—30X— — 40 

x2—6x=— 8 (2) 

The coefficient of x is 6, and one-half this squared and added 

on both sides will complete the square, thus : 

x2—6 x—|— 9 " 9—8 

xz—6x-\~9=i (3) 

Extracting the square root of both sides: 

x—3=zLI (4) 

x=3 zb1 

The values of x are therefore 3—|— 1 =4 and 3—1=2, either of 

which will satisfy equation (1). It will also be seen that either 

of these values when substituted in equation (4) will give, when 

squared, equation (3). 
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223. 
Example 2. Find the values of a: from the following equa¬ 

tion 
2x 3 

—I—IO;j—I--2 A —|—IO 3 A 0) 

Solution: Arranging the numbers according to §220, we 

have : 

. 44 3 (2) 
A-A=- 

15 15 

Adding (ff)3 to both sides, to complete the square, we have : 

15 \l5S 15 1 
Extracting the square root: 

5 
(3) 

22 
-5=±'/ f~+3 't 

V 152 r5/ (4) 

In order to extract the square root of the right hand side of 

equation (4) we first collect into one member over a common 

denominator (§214). We therefore have : 

222 , , 22 , 3- 1 5 484 -f~ 45 529 
T -2 I 15   T 1-2 I- T _2  ' 
15 

Whence : 
15 l5 i5‘ 

22 =J2Q 

15 ^ I52 

22 -v/520 
A= —L- ^ 

15 15 

15 

A= 
2 2-b-A-v/ 529 

15 

22±23 
A= 

whence 

and : 

A 

15 

. 22+23. 

A= 

15 

22-23 

15 
1 5 

Example 3. 

224. 
Reduce the following equation to the values of a 

acx—bcx=ab—c2a2 (1) 
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Arranging in proper order : 

c“x“—|—c(ci—b)x—ab 

„ , a—b ab 
x2-\-a—— 

c c“ 

Completing the square : 

2C 

ab 
o 

C“ 

Extracting the root: 

a—b (a,—|— \ab 
x+ ==bv 

2C 4 c- 

y/ (<7—b)~—|— \ab 

2C 

Now taking the quantity under the radical sign and remov¬ 

ing the parentheses, we have : 

[a— b^~—j— <\ab=a"—2ab—j— b~—j— \ab 

=a2-\-2ab-\-b2 

=(a-\-b)- 

^ - a—b  \/ (a~\~by 
or 

2 C 

a 
:±- 

2 C 

whence 
a—b a—|—b b a—|—(a | b^ 

X 2C 2C 2 C 

If we take the upper sign, the value of x—of the lower 

sign, jv=—- either of which values will be found to satisfy 

equation (i). 

225* 

Example 4. The sum of $i6cco is to be divided equally 

among a certain number of persons. If there were two less 

persons, each share would be $4CCO greater; how many persons 

were there ? 

Solution. Let x be the number of persons, then the share 

16000 
of each will be- 

a: 
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/ 

If now there were two less persons the share of each would 

be ——— , and since each share would then be $4000 greater, 
JX' 2 

we have : 
16000 16000 . 

==-b4QOO 
X-2 X 

Dividing both sides by 4000 we have : 

x 4 =4+J —2 X 1 

Multiplying by x(x—2) to clear of fractions : 

4 x=4 x— 8-j-x2— 2 x 

x2—2 jv=8 

X2-2X—|— I ——9 

x 1 -_L3 

x=4 

We must here take the upper sign since x—i—3=—2 gives 

a negative value, which while it satisfies the equation, is an 

impossible solution of a problem requiring a positive number of 

people. This, then, is a question in which the correct sign is 

determined by outside considerations. (See §144). 

226* 

Example 5. A lady being asked her age, said 53 times my 

age exceeds the number 696, by the square of my age. How 

old was she ? 

Solution. Let x = the age, then : 

5Sx=6g6^-x2 

x2— 5 3 x=—6 9 6 

x*—53x~\~ (y) —■ 696 

x— 52=, 2i 
2 2 2 

X- 53=L5 

whence 

53—5 x=-=24 
2 

53H~5 
—29 or : 

2 
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As a matter of courtesy, of course the lower value would be 

chosen. 

Beginners often wonder at the fact that two answers can be 

obtained to one equation and think it a defect in the method. It 

is, however, no defect, both results being strictly correct, and as 

will be seen in the applications of algebra to geometry, giving 

relations which are identical in meaning for all possible cases. 

227. 
Example 6. A line, io inches long, is to be divided into two 

such parts that the smaller part shall bear the same proportion 

to the larger part, that the larger part bears to the whole length. 

What are the two parts ? 

Solution. Let x be the smaller part, and a—x the greater 
a_x 

part : a, being the length of the whole line. We then have- 

must give the same quotient as -——, and these two expres¬ 

sions must therefore be equal to each other. 

a—x a 

x a—x 

whence : (a—x){a—x)=ax 

a2—2 ax-\-x2=ax 

x2— 2 ax—ax=—a2 

x2—3 ax=—a2 

x3-3ax-f (— y) —^-d2 

3f\2=:5— 
2 ) 4 

_ 3^3=v/5^8 
2 2 

3a=b<2v/ 5 
x=- 

2 

whence: /3d-\/5 
x=al 

\ 2 

whence: jr=o. 382a: 

The smaller part is ^=0.382^ and the greater part : 

a—x=a—o. 3 82 a—=0.618a 

and since a equals 10 inches, ^=3.82 ins., and a—at=6.i8 ins. 

)=■<“*) 



Here we must use the lower sign (—), for we see that the 

use of the -|- sign for the root would make the desired part x, 

greater than the whole line, and hence the greater part a—x 

would come out negative. This is only impracticable, however, 

because we are considering a line, and if the problem were to 

divide the number io into two such parts, both solutions would 

be equally practicable. We may notice also that the value of x 

is irrational and can hence only be expressed approximately. 

228, 
Example 7. Required the values for x which shall satisfy the 

following equation : 
x2=2x~s (1) 

Solution. x2 — 2x——5 

x2-2X-\-l=—4 

x 1 =zt\/ 4 

X-1 ;dz \/ 4 

He e the root comes out an imaginary quantity, as it involves 

the squai root of a negative quantity (see §325), but it is none 

the less coi 'ect, as we see by substituting in the original equation: 

(I±v/-4)’=2(l±/-4)-5 

Removing the parentheses : 

i=b2N/(—4)—4=2H=2v/(—4)—5 

—3=t2\/—4=3±2\/—4 

229, 
Example 8. Determine the value of x in terms of a, b and c, 

in the following equation : 

be bx2 ax2 
— ax—c=~---bx 

a a b 

Solution. We have : 

ax2 bx2 be 
2— — ax——bx—c- 
0 a • a 

Multiplying by ab : 

a 2x2—b2x2—a2bx-\-ab2x=abc—b2c 

(a2—b2)x2—ab{a—b)x=bc{a—b) 
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ab r ab ~I 3 a2b2 . be 

a-\-bX ' L2(^+^)-I 4 {a~\-by ' a-\-b 

ab s/ a2b2-Ar4bc{a-\-b) 

2{d~yb') 2{a—|— 6) 

ab~hv^ a2b2-\-4bc (a-\-b) 

2 (a-\-b) 

230* 
When the unknown quantity appears in an equation with a 

fractional exponent or under a radical sign, the equation is called 

an irrational equation. An irrational equation may, however, be 

made rational by collecting all the radicals on one side and then 

raising both sides to the power indicated by the exponent of the 

root. This follows, because, of course, the value of the unknown 

or the truth of the equation, is not affected by the squaring, 

cubing, etc., of both sides of the equation. 

Thus with the equation : 

ax=b-\-\/ x 

ax—b— | y/-v 

Now squaring both sides, the radical sign disappears, 

because the square of -t-y/W is equal to x, and we have the 

rational equation : 
a2x2— 2 abx-)- b2—x 

whence : 
a2—x2— 2 abx—x=—b2 

x „2 (i+2 ab)v= 
a‘ 

b2 

x 
■ i —|— 2 ab 

2 a2 

(l-j-2^)1 

4cr 

x= 
i-\-2ab±\/(i-\-2ab)2—\a2b 

2 a‘ 

1-4-2 ab-\-V i—[—4 ab 
x=-+- 

2(2" 

If an equation has several iriational members, the foregoing 

operation must be repeated until they are one after the other 

made rational : as in the following equation : 

y/ 2ju—7==2—(—5—4x 
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Here we square both sides, and observing that in general 

(s/ a-\-b)2=a^\-b; also that {a-\-s/by=a2-\-b-\-2as/b \ and also that 

[as/ b—cY'—a2(P—c) 
We have : 

2 Jt*—j—7=4—5—4x-\-4s/ 5—4* 

6x—2=4 5—4x 

Now squaring again : 

3 6a;2—24 a"—(—4=80—64X 

36x4-40^=76 

x24-^x=4 a 

*+$—4= 

s/ 196 

"~9“ 

—5±*4 x 

whence the values of x are 

x=i and x=—-l_9 

23 E 

Equations of any higher degree, when they can be brought 

into the form 
x2r"-\-pxm=q 

can be solved in the same manner as quadratic equations. That 

is, when only two powers of the same unknown quantity appear, 

and the greater exponent is twice the lesser exponent, the equation 

can readily be converted into a true quadratic equation. 

Thus, suppose we call xm=z, then x*m=(xrny=zt, and 

substituting these in the equation : 

x2/,i4-pxm—q 

we get: z1-\-pz=q 

whence : z- 
-p~bv/ p2-f-4q 

Then substituting for z, its value xm, we get: 

—/>4=n/ p*+4q 

in f - 

X=v/(^ 
-p^zs/ p2-\-4 q ) 
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If the mih root is an even root the -j- sign must also be 

placed before it. 

232, 

Example. Divide the number 18 into two such factors that 

when each factor is squared, their sum shall be equal to 45. 
18 

Solution. Let a: be one factor, then — will be the other, and 
x 

jv4—(— 182=4 5 a;'2 

a;4—45ar=—324 

Now putting x~—z, and x4=z2, we have : 

22—4 52= —324 

2*—45 Z+(¥-)=^“-— 

£_45 - 
* 2 - 

V729 

45=t27 

X- =d=N/ 

Since we may take the two like or two unlike signs, there 

are four values possible for x, and these come in pairs of equal 

magnitude and opposite sign, as follows : 

for 

for 

for 

for 

+ + x—6 and 
18 

v=3 

H— x=3 and —=6 
X 

-+ 
y A and 

18 
L\s' —- U 

a; 

x=—3 and 
18 

233, 

X 

Example. Divide the number 12 into two such factors that 

the difference of their cubes=37. 



238 

I 2 
Solution. Let x be one factor, and the other, and we 

a; 
have 

a;3-v=37 
a;3 

12C 

xe—i23=37x* 

x6—37xs=i23 

Putting x3=z, and x6=x3 -x3=z2, we have ; 

z1—372=1728 

37iPV372+4 1728 

whence, a;3= 
37±n^828i 

whence, ^=>3/64=4, or x=y—27=—3 

and 

Examples : 

(0 

12 12 12  12 

a; 4 _01 ^ —3 

30 . 8 a:—3 
4-3=-- 

2x-j-i 9—4 a' 

(2) b= 
a—\/ a2—x5 

Ans. a:= 2 —4 

2Cly/b 

a v/ a2—x2 
Ans. a:— 

>+* 
9 7ft m 

(3) ^ 2a:2-]-4<2a;—b2=>/<2-j-a; Ans. x——az^z>/_2a2-\-b2 

Note.—In the above example (3) both sides should be raised 

to the 27?zth power (see §207). 

, . , 2X 
(4) 2x$/ x—=^—20 Ans. ar=—t—8 and 4-y/ —!25 

8 

In example (4) it should be written 2a:3—3a-3=20, and then 
2 

place x3—z, etc., as in §231. 

Quadratic Equations With Several Unknown Quantities* 

234* 

If, we have n equations, and n unknown quantities, and 

some or all of the equations are quadratic, each unknown must 

be determined by elimination. 

When there are more than two equations, however, the 

solution is only possible in certain favorable cases. 
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235* 

Example i. Suppose we have the sum of two quantities, 

a: and y, is equal to 5, and their product xy=p; s and p being 

known quantities, such as io and 24, how can the two unknowns, 

x andy, be determined from s and p ? 

Solution. We have : 
x—|—y=s (0 

II (*) 

Multiplying the first equation by x, we have : 

x2-\-xy=sx (3) 

Subtracting the second equation : 

x2=sx—p 

whence, x2—sx——-p 

szb"v^ s2—4 i 
x= 

2 (4) 

which substituted in (1) gives : 

s2—4 p 
y— 2 (5) 

The inverted sign (=F) in (5) means that when we take the 

upper sign for x we must take the lower for y, and vice versa. 

236* 

Example 2. Given the sum of two quantities and the sum 

of their squares, required to determine the quantities. We have: 

x+y=a (1) 

x*+S=b (2) 

Solution. The shortest way in this case is to square the 

first equation, and subtract the second from it. This gives : 

2 xy=a2—b (2) 

Then subtracting (3) from (2), we have : 

x1—2 xy-\-y2=2 b—a2 

and x—y=V 2b—a2 (4) 

From (4) and (1) we then have : (§ 167) 

<2zlzv/ 2b—a2 
x= 

2 

2 b—a2 

y= 
2 
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237, 

Example 3. Let the product of two quantities equal p, and 

the sum of their squares =a. Required the quantities in terms 

of a and p. 

We have : 
xy=p (1) 

x2-\-y2=a (2) 

Solution. If we multiply (1) by 2 we have 2xy=2p. If 

now we add this to the equation (2) we have : 
% 

x2-\-2xy-\y2—a-\-2p 

and if we subtract it, we have : 

x2—2 xy-\-y 2 =a— 2p 

whence, x-\-y—v a-\-2p 

and, x—y—\/ a—2 p 

-\z.sf <2-|- 2p±>/ a- 
whence, x=- 

-2p 

2‘ 

(3) 

(4) 

(5) 

and, y-- 
a-\-2p~F \/ a—2p 

Squaring equations (5) and (6) : 

(6) 

(See § 167) 

(See § 186) 

v2. 
a —|— 2 <rz—2py~2\S a2—4p2 tfztv'' a2—4 p‘ 

whence, x=y~s/ | az^1^a_| 

1 1 / i crF\/ cP—4 p } 
and, y=±s/ |-——-tc I 

238, 

Example 4. Given : 

$x+zy= 8 (1) 

4at2—3J/2===i 3 (2) 

Solution. Find the value of a: in (1) and substitute in (2), 

and we get: 

y=i, x—2 

or y=—and x=y2p- 
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239. 

*!1+-xy+y=7 (0 
y~\-jyz-\-z2= 19 (2) 
x2-\-xz-\-z2= 13 (3) 

Solution. Subtracting (2) from (1) and (2) from (3), we get: 

11 —12 x—\~y — z; 
•V—z 

and x4-y-\-z= 
x~y 

Equating these two values, we have : 

12 6 

x—2 x—y 

or, x—2y—z 

Substituting this value of a; in (3) and subtracting the result 

from (2) gives : 

y+2 
Z=--!- 

Substituting this value of 0 in (2), gives : 

y-¥S=-i 
whence, according to §231, we get : 

\ 

y=±2, 

*=±3, 

*=zkI> 

=± 

=± 

=ZF 

n/3 

7 

v/3 

5 

x/3 
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Series* 

\* Arithmetical Series* 

240* 

Any series of numbers in which we find the difference ob¬ 

tained by subtracting any of its members from the next following 

member to be a constant quantity, is called an Arithmetical Series, 

or Arithmetical Progression. Such a series is called an increas¬ 

ing or diminishing series, according as the successive members 

become uniformly greater or smaller. Examples of such Arith¬ 

metical Progression are : 

o, i, 2, 3, 4, 5- 3- • • (0 
5, 6, 7, 8, 9. 10. . . (2) 

4, 9, 14, 19, 24, 29. . . (3) 

8, 5, 2,—1,— 4,— 7 (4) 

In the first and second series the constant difference is 1, in 

the third it is 5, in the fourth, diminishing series it is—3. 

241* 

If we have the first member of an arithmetical series given, 

and also the constant difference, we can extend the series to any 

desired extent; the difference added to the second member will 

give the third, or, what is the same thing, twice the difference 

added to the first member will give the third, etc., so that to 

obtain the hundredth member it is just the same if we add the 

difference to the 99th member, or add 99 times the difference to 

the first member. 
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If, for example, the first member be 3 and the difference =4, 
we have : 

(1) (2) (3) (4) 10th Member 

3 3+4 3+2-4 3+3‘4 • . • 3+9 -4 
or, 3 *■7 

/ I I 15 • • • 39 

If 15 is the first member and —5 the difference : 

(1) (2) (3) (4) 20th Member 

15 l5~5 15—2 -5 I5—3'5 • • • J5—19-5 
or, 15 10 5 0 . . . —80 

242. 

In discussing arithmetical series the following five magni¬ 

tudes, and their corresponding symbols are used, namely : The 

first member =a, the difference =d, the last member t {terminus), 

the number of members =n (numerus), and finally the sum 

=s, of all the members added together. Each of these five mag¬ 

nitudes, a, d, /, n and s, is a determinate function of any three 

of the others, and if the latter are given in numerical values, the 

former can be readily determined from them, without any neces¬ 

sity for constructing the whole series. The most important prob¬ 

lems in this connection are the determination of the magnitude of 

any particular member, and the determination of the sum of the 

whole series. 

243. 
Problem. Let it be required to find a general formula by 

which the magnitude of any particular member of the series may 

be determined, when its number =n, (i. e., its place in the ser¬ 

ies) the first member =a, and the difference =d, are given. 

Solution. If the first member =a, the second member = 

a~\~d, the third —a-\-2d etc., and the nth member —i)d. 

If we put the magnitude of this nth member —t we have : 

i=a-^r{n—i)d (1) 

Example i. What is the 21st member of the series 5, 8, 11... 

Here a= 5 ; ^=3 ; 72=21, and : 

/=5+(2i—1)3 

=5+20.3=65 
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Example 2. What is the 100th member of the arithmetical 

series 10, 8J, 6|... etc.? 

Here a=10 ; d=—§; «=ioo 

/'= 10+ (100— 1) ( f) 

/=io—165=—155 

244* 

Problem. Let it be required to find a general formula by 

which, when the first member =a, the last member =/, and the 

number of members =n, are given, the sum =s can be deter¬ 

mined. 
Solution. If we remember that the series is formed by the 

constant addition of the difference to each successive member, 

we perceive that each member is greater, by the difference, than 

the next preceding member, hence that if we add together any 

two members which are equally distant from the two ends of the 

series, the sum will be always the same. That is, the sum of the 

first and last members will be exactly the same as the sum of 

the second and the next to the last, or the third and the third 

from the last, &c., &c. If, for example, we take the series 1, 3, 

5 7, 9, 11, 13, 15, 17, 19 and write it twice, the second time in 

the reverse order, and add the two together, we shall have every¬ 

where the same sum, thus : 

1 3 5 7 9 11 13 15 x7 J9 

19 17 15 13 11 9 7 5_3^_1 

20 20 20 20 20 20 20 20 20 20 

If we call the first member a, the last i, and the difference 

d, the second member is a-\-d, the next to the last i d, the third 

member is a-\-2d, the third from the last c 2d, whence . 

^2—j——j——j—/—^| 2d-\~t 2d, etc. 

If, therefore, we add the first and last members of the series 

together, and multiply the sum by the number of members, we 

shall have twice the sum of the whole series, and this divided 

by 2, must therefore be the sum of the series. The desired for¬ 

mula is therefore : 

s= (y+0 2 (o 
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Example i. What is the sum total of the first 1000 num¬ 

bers of the so-called “natural " series of numbers i, 2, 3, . . . . 

1000 ? 

Here a= 1, /=iooo, and n= 1000, whence: 

s=( 1 —j— 1000)1 500500 

Example 2. What is the sum of the following arithmetical 

series of ten numbers? 

6, 4, 2, o,—2,—4,—6,-8,—10, —12 

Here a=6, t=—12, n= 10 

s=(6—12) L°-=—30 

245, 

In any arithmetical series, we have for consideration, five 

quantities, <2, n, /, and s, and the relations of these are gn en in 

the two equations : 

—1 )d (0 

s={a-\-t) -- (2) 

Now since these quantities must have the same values in 

both equations for one and the same series, it follows that when 

for any series we have three of the five quantities given, we can 

determine the other two. This follows because we have t\\ o 

equations and only two unknown quantities. Likewise, if \\ e 

have four of the five quantities given, we can determine the re¬ 

maining one from the two equations, by eliminating the quantity 

which is not required, and the other one can then readily be 

determined. 

246, 

Example i. It is required to interpolate eight numbers be¬ 

tween 4 and 10, in such a manner that the whole shall form an 

arithmetical series. 

Solution. We here have given a—4, /= 10, n=10 and d is 

required. 

All four of these quantities are contained in equation (1) : 

t=a-{-(n—1 )d 
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and solving this for d, we get: 

d= 

whence, d- 

■a 

n—1 

10—4 
.2 
3 10—1 

and the reqired series is : 4, 4§, 5J, 6, 6§, 7J, 8, 8,§, 9J, 10. 

247* 
Example 2. A roof has on it 21 rows of tiles; in each row 

there is one more than in the preceding row, and there are 

588 tiles in all. How many are there in the first row? 

Solution. Here the given quantities are: 7i=21, d= 1, 

5=588, and a is required. These quantities are not all in either 

of the equations, but are in both of them together. The quan¬ 

tity /. being the one which does not enter into the problem, is to 

be eliminated. 

We have the original equations : 

t=a-\-(n—1 )d (1) 

71 

s==(aJr/)2 (2) 

and can eliminate /, by substituting its value from (1) in equation 

(2), which gives : 
5= [a-\-a-\-{n—1 )d] 

71 

whence, 
25 

n 

2 Cl 

—2a-\-(n—1 )d 

2S / w —(71—i )d 
71 

5 

71 

(71-1) d 

whence, a= 
588 (21—1) 

21 
. 1 = 118 

248* 
Example 3. In a given arithmetical series, we have the first 

member a=i6 ; the difference <7=33; and the sum 5=1600. 

How many members does it contain? 

Solution. The three given quantities a, d, and 5, and the 

required quantity ?i, are contained in both formulas : 

i=a-\-(n—1 )d 

•5=^—|— 
2 

(0 
(2) 
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and / is not required. Eliminating /, by substituting its value 

from (i) in (2), we have : 
n 

S= [<2—1— (7—|— ( 71-I )(7] 

This equation must now be solved for n. We have (§220) : 

2anA^n{ri— 1 )d=2s 

n*d-\-2a?i—dn=2s 

(2a—d)n 2 s 

' d =~d 

d—2 a 

?r 

n- 
2 d 

d—2a \ 2 2s 

2 d ) d 

Whence 
22—2 *i6 

]l~ 2-32 ( 32-2*i6\2 2-i6oo 

2-32 
+ 

32 

n-_ 
2 •1600 

:IO 
32 

249* 

Example 4. In an arithmetical progression the first number 

—a ; the difference d ; and the sum equals s. Required a general 

formula for the last number t. 

Solution. The required quantity /, appears in both equa¬ 

tions : 
t=a-\-(n—1 )d (1) 

s=(a+0~ (2) 

Eliminating the quantity n, which is not required, by 

taking its value from (1) and substituting it in (2) we have : 

/—a . 

”="ir+I 

whence : 
t—a-\-d 

s=(a+‘)' 2d 

an d : t——\d±>/2ds-\-(a—\dy 

II* Geometrical Series* 

250* 
A series in which we find that the quotient obtained by 

dividing any member into its next following member, is a 

constant quantity, is called a Geometrical Series. Such a series 

is called an increasing or diminishing series, according as the 
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I 

successive members become uniformly greater or smaller. The 

constant quotient is called the exponent of the series. Examples 

of geometrical series are as follows : 

3, 6, 12, 24, 48, 96. . . . 

9> 3’ 15 ijr> 2V' * * • 
1 1 1 _i_ _i 1 
2’ 4’ 8’ 16’ 3 IT’ 64 • ’ ‘ • 

In the first part of the above series, the exponent is =2, in 

the second it is J, this being a diminishing series, and in the 

third the exponent =J. 

25i. 

When the first member and the exponent of a geometrical 

series are given, the series can easily be constructed. The 

second member is obtained by multiplying the first by the 

exponent, the third is obtained by multiplying the second mem¬ 

ber by the exponent, or what is the same thing, by multiplying 

the first member by the second power of the exponent, etc., so 

that the 99th member multiplied by the exponent gives the 100th 

member, or the first member multiplied by the 99th power of 

the exponent also gives the 100th member. 

If for example the first member =2, and the exponent =3, 

we have the series : 

(I) (2) (3) (4) (5) (10th member) 

2 ; 2-3; 2 -32; 3 *33; 2*34- • .2’39. 

2; 6; 18 ; 54 ; 162 ;. . .393^6- 

If the first member =64, and the exponent we have for 

the series : 

(0 (2) (3) (4) (10) 

64; 64i; 64-(i)2; 64(4)3....64-(i)9.... 

or 64; 32; 16; 8;.i. 

252. 

In geometrical series, as in arithmetical series, there are five 

quantities with their symbols, to be considered, namely : the first 

member a, the exponent e, the number of members n, the last 

member /, and the sum s. 

Each of these five quantities is a determinate function of 

any three of the others, and if three of the five are given, the 

other two can be determined without requiring the series to be 

constructed. 
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The most important questions are the determination of the 

magnitude of any particular member, and the determination of 

the sum of all the members. 

253* 

Problem. Required to find the algebraic expression from 

which the value of any particular member t can be found, when 

we have given its number in the series =n, also the first mem¬ 

ber =a, and the exponent = e. 

Solution. According to § 251, the series is : 

(0 (2) (3) (4) (5)-■■•(«— 1) 

a ; ae ; ae2; ae3; ae'4;. . .. ae"-1 

whence: t=a.en~1 

or in words : In order to find the value of the nth ?nember of a 

geometrical series, raise the exponent to the n—1st power, and multi¬ 

ply it by the first member. 

If n is very large, the labor will be greatly reduced by the 

use of logarithms, as will be explained in Book XXI. Until 

then, we shall only give such examples as are easily solved 

without the aid of logarithms. 

Example. The first member of a progression is the 

exponent is 2 ; how large is the 9th member ? 

Solution. Here ^ = e=2, n= 9, and /, is required. 

t=a. e'1-1 
/ 1 29—* 1 os 1 

T5’¥# Z —4 

254* 

Problem. Required to find the formula from which the sum 

s, can be found (the “summation formula”), when we have 

given the first member a, the exponent e, and the last member t. 

Solution. The solution of this problem requires the exercise 

of a little judgment. If we call the sum of a geometrical pro¬ 

gression, such as a-j-ae-l~ae2-j-ae3-j- ../ equal to s, we have : 

s=a—(—ae—f-ae1—\-ae*—|— . . . —f- J-—|~~t (1) 
ea e 

Multiplying both sides of this equation by the exponent e, 

we have : 
, t 

es:==aef-ae~fi-aeafi-aeif - . . . —|-1— /—J—le (2) 
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Then subtracting equation (i) from equation (2) we get: 

es—s=le—a 

(e—1 )s=/e—a 

te—a 

e—1 

Expressed in words this is : To find the sum of a geo?nelmcal 

series, multiply the last member by the exfi07ie7it and subtract the first 

member, then divide this by the exponent less 07ie. 

This expression for “s” is important in subsequent work and 

should be carefully remembered. 

Example. What is the sum of the following progression : 

E i> i> 8’ tV 3V’ ¥¥> li'Z’ 5T2> toVt (see §329) 

Solution, a—1, e=\, /=Ts is required. 

te—a 

s- 

S- 

0T¥ A—I 
1_ 
2 

r 1 0 2 3' 
1 1 0 2'¥ 

255. 

2 0 4 7 
2 0¥8 
_1 

2 

From the following fundamental formulas of geometric series: 

t—a • e'l_1 I. 

te—a TT 
s—- 11. 

e—1 

we can determine formulas for the values of any of the quantities 

<2, e, n, /, s, when any three are given, in a similar manner to that 

shown in §245. Some of the resulting problems require the use 

of logarithms for their solution, others lead into mixed equations 

of the higher degrees, the solution of which is taught in Higher 

Algebra or Analysis. 

256. 

Geometrical series expressed in letters can be readily summed 

up by means of formula II. 

Thus suppose we have the series : 

b—|—bz—|—bz^—|—bz^—|—bz^—J-. . .-\-bzn~x 

in which b is the first term, bzll~l the last term, and z the exponent. 
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Substituting these for a, /, and b, 

ie—a 
s=- 

e—i 
we have : 

in the formula 

b-\-bz-\-bz“A-bz*-\-bz‘i-\-. . bztl~l= ^ 1 ^ 
2—i 

or of the series : 

(>n_T T_gn 

i+e+e‘+e'+e,-\-.. . =—g ; 

I-Jt'—[—Jt'2—1~Jt'3—|—JV'4—|— . . . -f ar2"= 

_x2n+l_I 

-X-1 

i-fa2,1+1 

i-fa; 



BOOK XIX. 

Logarithms. 

257. 

Before logarithms were discovered and complete tables of 

logarithms computed, practical arithmetic may be said to have 

come to a standstill. To-day, calculations, which in the time 

of Kepler required days and weeks for their completion, or were, 

to the great loss of mankind, abandoned because of the im¬ 

mense labor involved in their computation ; to-day, such calcula¬ 

tions may be made in a few minutes by the use of logarithms, 

even by the veriest beginner in mathematics. It has well been 

said that logarithms are to arithmetic what the steam engine is 

to mechanics. 

In order to obtain a clear notion of the principle on which 

logarithms are based, let us take any number, such as 2, for ex¬ 

ample, and raise it to a series of powers beginning from o, thus : 

1 = 2°, 2 = 2l, 4=22, 8=23, l6=24, etc. 

Then in order better to examine the relations which exist 

between these powers and their exponents, let us write them in 

vertical columns with a dividing line between. The base number 

2 and the sign of equality we may omit as being the same for all 

of the powers here given. Thus instead of 1=2°, 128=2', we 

shall write more briefly, 1 o, 128 7, etc. 
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Powers Exponents Powers Exponents Powers Exponents 

I 

1 

O 1024 IO 

no 

1
0

 
0

0
 

0
 20 

2 I 2048 I I 2097152 2 I 

4 2 4096 I 2 4194304 22 

8 3 8192 13 8388608 23 

16 4 16384 14 16777216 24 

32 5 32768 15 

64 6 65536 l6 

128 7 I3IO72 17 

256 8 262144 l8 

512 9 524288 l9 
1 

258. 

Now remembering the four fundamental rules for powers, 

(§ 204 to 208), 
am.ah=am+n (0 

—=am-n (2) 
aM 

(an)m=amn (3) 

n m 

y/am=an (4) 

we see how such a table of powers and exponents can be made 

of use. 
With the exception of addition and subtraction, any opera¬ 

tions desired upon any numbers in the first column can be greatly 

abridged if we take instead the corresponding exponents, and 

thus convert multiplication into addition, division into subtrac¬ 

tion, the raising of powers into multiplication and the extraction 

of roots into simple division. All these can be accomplished by 

such a simple, but invaluable table of powers and exponents. 

Example i. If two or more numbers, such as 128 and 512 

are to be multiplied together, we look for these factors in the 

first column, and take the corresponding exponents and add 

them together ; then find in the column of exponents one which 

is equal to their sum and opposite it will be the desired product. 

Thus we have it in our little table : 

Exponent of 128=7 
“ “ 512=9 

16 
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Opposite the exponent 16 we find the power 65536, which is 

the product of the two factors. 

The reason for this is readily seen. All the numbers which 

are in the first columns are powers of the same base number. 

Thus in the above example : 
I 28=27 

5 I 2 = 29 

But 128■ 512=27■ 29= 216 (see §204), hence that power of 2 

which has the exponent 16 must be the product of the given 

numbers, or 
128-512=65536. 

Example 2. Suppose it is required to divide any of the 

numbers in the first column by any other of these, we merely 

subtract the exponent of the divisor from the exponent of the 

dividend, and the power which corresponds to the resulting 

difference, will be the quotient. 

Thus we have : 

Because : 

2097152 

256 
=8192 

Exponent of 2097152=21 

“ “ 256= 8 

Difference 13 

8i92=power whose exponent is =13. 

This is the same as : 

20971 

256 
21-8=213=8i92 (see § 205) 

Example 3. If it is required to raise any quantity in the 

first column to any given power, we simply multiply the expo¬ 

nent in the table by that of the required power, and opposite the 

product we find the required power. Thus : 

i65=io48576 

We have: Exponent of 16=4 

Multiplied by 5 

20 

And the power whose exponent in the table is 20, is 1048576. 

For i6=24 

whence i 65=(24)5= 220=io48576 (see § 207) 
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Example 4. If it is required to extract the root of any num¬ 

ber in the first column, we simply divide the exponent of the 

given number by the exponent of the required root, and the 

power corresponding to the quotient is the required root. Thus: 

7 
v/2097i 52=8 

This follows because : 

Exponent of 2097152=21 

21 

Power whose exponent is 3, is 8, 

or 2097152=2^ 

7 7 21 
v/2097i 52=^221=2 7 =23 (See § 208) 

259. 

We see the great value even of such an imcomplete table as 

that given in the preceding paragraph, but its usefulness is very 

limited because of the great gaps which exist in it. If we desire 

to make calculations involving numbers between 2 and 4, 4 and 

8, 8 and 16, etc., we are unable to use the table, because it does 

not contain these numbers. 

When, however, these numbers are all introduced, and their 

corresponding exponents calculated, then the system becomes 

complete and is of the highest degree of utility tor all calcula¬ 

tions. Such a table is called a Table of Logarithms. The 

quantities in the first column are called the Numbers, while their 

corresponding exponents in the second column are called the 

Logarithms. We have also to discuss in this connection the base 

number upon which the exponents are calculated, and this will 

be referred to as the Base. 

Notwithstanding the great value of such tables of logarithms, 

no private individual could take the time and labor to calculate a 

table for himself. This gigantic work has, however, been very 

fully and accurately done already, and many excellent editions of 

logarithms published. 

The best tables are those calculated to seven decimal places, 

and the best of these are the magnificent foreign editions of 

Schron and of Bruhns. The American edition of Stanley is also 

good. For many purposes six decimals aie sufficient, and good 
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six figure tables are those of Loomis, published by Harper & 

Bros., and those published by Prof. Geo. W. Jones at Ithaca, N. 

Y. Very often five decimals are quite enough for ordinary calcu¬ 

lations and the five figure logarithms contained in Trautwines 

Tables, will be found very useful. 

Logarithms were invented in the early part of the 17th cen¬ 

tury by Baron Napier, of Merchiston, of Scotland. The first 

full table of logarithms was calculated shortly afterward by 

Henry Briggs, also of Scotland, the work requiring an entire 

year and the help of eight assistants. This table was to 14 

decimal places, and for all numbers up to 10,000. It was after¬ 

wards extended to all numbers up to 100,000, by Adrian Vlacq, 

a Hollander. Vlacq's tables were to 10 decimal places, and on 

these original tables, with many errors corrected, the modern 

extremely accurate tables are all based. 

260. 
It is evidently immaterial, so far as the principle is con¬ 

cerned, what number is taken as the base for a system of log¬ 

arithms. When the system is once made, the base is no longer 

used. In the little table in § 257 the base is 2. Any other num¬ 

ber may be taken, however, and the resulting system will be 

equally useful. Since the base may be chosen at will, all the 

tables above referred to, derived from the original tables of 

Briggs, have been calculated on the same base as our number 

system, i. e., 10. 

Logarithms calculated to the base 10, are called common 

logarithms, or sometimes, Briggs’ logarithms. There is also 

another, the so-called Natural System (also called Hyperbolic 

Logarithms), which, although not so convenient in practice is 

of the greatest importance in higher mathematics, and in steam 

engineering. 

In the following pages it is assumed that the student has 

provided himself with a good set of logarithmic tables, and as 

the following problems are all worked with seven-figure log¬ 

arithms, he had better procure a good set, such as Schron or 

Bruhns, although the cheaper sets will answer if these are not 

at hand. For the student of engineering or physical science it is 

very desirable that he should provide himself with a good set of 
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logarithms and acquire every possible facility in their use, and 

the familiarity which one obtains with the pages of a special, 

personal copy is such as to make it desirable that he should get 

at the beginning the set he intends to keep as his companion in 

all his subsequent scientific work. 

In nearly all sets of logarithmic tables instructions and ex¬ 

planations for their use are also given, but as these are not 

always expressed as clearly as might be desired, we will here 

proceed to explain them in a full and practical manner. No ex¬ 

planations, however, can take the place of frequent practical use, 

and the greatest facility in the use of such tables must be obtained 

by actual practice. 
/ 

261. 
In examining a set of seven-figure common logarithms we 

find among the various values the following, which will serve as 

an explanation : 

NUMBER LOGARITHM NUMBER LOGARITHM 

I O. OOOOOOO IO I. OOOOOOO 

2 O. 3OIO3OO i 

3 0.4771 213 99 '•99563s2 
4 O. 6020600 100 2.0000000 

5 O.69897OO 

6 0.7781513 999 2.9995655 

, 1000 3.0000000 

9999 3.9999566 

According to § 257 these numbers simply mean that i = io° ; 

301030 100000 
2 = IO°-30 1 0 3 0 = IO1 0 00 00= y/ io3 0 1030 

3=io°-4'?71 31 3, etc.; io=io1 ; 100— io2, etc. 

The Briggs logarithms are therefore nothing more than the 

exponents of those powers to which the number 10 must be 

raised in order to produce the corresponding numbers opposite 

them in the table. The sign of equality, and the base 10, are 

omitted from the tables to save room, and are always under¬ 

stood. We see that o is the logarithm of 1, since the only power 

of 10, which is equal to 1, is the oth power ; the logarithm of 2 
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is o.3010300, that being the power to which 10 must be raised, to 

equal 2 ; the logarithm of 10 is 1, since the 1st power of 10=10. 

Therefore we may write : 

log. 1=0.0000000; log. 10=1.0000000; log. 2=0.3010300 ; log. 

99—I-995^352’ etc- 

262* 

In the higher Analysis, short methods are derived by means 

of which a skilled computer can calculate logarithms very rap¬ 

idly. 

Since the student is not yet prepared to study those methods, 

we shall here explain the more tedious arithmetical method by 

which they may be calculated. This method is the one by 

which Briggs calculated his tables, the modern system of higher 

mathematics not having been invented in his time. 

In order to calculate the logarithm of any number, such as 

5, for example, we proceed as follows : 

The number 5, considered as a power of 10, lies somewhere 

between io°, and io1, since io°<5, and io1>5. 

Hence we think that it may be equal to 10 raised to the 

o—|—1 

2 

1 A 
=b power. We find by trial that io2—^/ 10=3. 1622776601. 

This is too small, for io2<5 ; so the logarithm must lie between 

the narrower limits of \ and 1, since io2< 5, and io1 > 5. In 

this manner we can reduce the limits narrower and narrower, by 

taking repeatedly the half sum of the greater and lesser expo¬ 

nents, and yet never have to extract a higher root than the square 
i_j_1 

root. Thus, suppose now we try the2 —=f power of 10. We 

have (§210) : 

3 3 1 
io3=n/io2= v/( io1-io2)=n/io'(3- i6227766°i)=5.6234I32 

1 3 
hence, io2<5, and io4>5 

Again : 
t_l_ 3 
2X-I A 5 3 1 

IO 2 =I08=V/I0^=V/(I0T-I02) = 

=v (5.623...) (3.1622...) =4.21695034 

A 3 
hence 108 ^5, and iot>5 
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Again : 

io1 6 y/ (10 s-io4)—v/(4- 2 169 . .) (5.623. . )=4.869675252 
H 13 

Again : 

10 ^^/(io16-iot)=5. 232991, etc. 

We thus see that the approximation is growing constantly 

nearer and nearer and after repeating the operation 22 times we 
2931693 

find that : ioTl 943°4=5.00000086, or =5 correct to the sixth 

decimal, and hence log. 5=}f 6989700, it being much 

more convenient to have the logarithm expressed as a decimal. 

Logarithms cannot be calculated with absolute exactness, 

because they belong to the so-called irrational quantities, of 

which the decimals are endless. 

263* 

If the original tables of Briggs and Vlacq had not already 

been calculated by the above tedious process, the work might 

have been greatly reduced by means of modern methods. It is 

only necessary in this way first to compute the logarithms of 

the prime numbers, since all the others can be derived from 

them by simple addition and multiplication. This follows, be¬ 

cause all composite numbers can be resolved into their prime 

factors. If we know the logarithms of the various factors of a 

number, we have simply to add the logarithms of the factors to¬ 

gether to obtain the logarithm of the product. Thus if we add 

together the logarithms of 2 and 3, we obtain the logarithm of 6. 

The reason for this is readily seen if we call log. 2 =a, and log. 

3=b, whence 2=10" and 3=10^ whence ioa-iob=ioft+b. 

By comparison with the table of page 257 we see how the 

addition of the logarithms of 2 and of 3 gives the logarithm of 

6, and we must observe carefully the following points. 

In the calculation of the original tables, more than seven 

decimal places were computed. Of these the first seven were re¬ 

tained, in the preparation of seven figure tables, and the last 

decimal was increased by 1 whenever the 8th decimal was 

greater than 5. For this reason exact dependence cannot be 

placed upon the accuracy of the last decimal. This variation 
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from exactness can, however, be neglected to a great extent in 

actual practice, since the influence of the last decimal of the log¬ 

arithm has such a slight influence upon the result as to be of 

little importance. If we have many logarithms to add together, 

or have to multiply a logarithm by a large number, the result 

will come out too large if the last figure is too large. But if, as 

is often the case, we have again to divide this resulting logarithm 

by another number, the error will again be reduced. In some 

tables, such as Schron's, there is a mark placed under the last 

decimal whenever it has been so increased, and by taking this 

into account a correction can be made when extreme accuracy is 

necessary. 

264. 

In the Briggs system of logarithms, of which the base num¬ 

ber is io, we have the logarithm of 10=1, and the logarithm of 

1=0, hence for all numbers between i and io, the logarithms 

must be greater than o and less than i, i. e., must be proper 

fractions. Also, since the logarithm of ioo is 2, the logarithms 

of all numbers between 10 and 100 must be >1 and <2, and 

must be mixed numbers, or consist of a whole number and a 

decimal. That portion of a logarithm which consists of a whole 

number, is called the characteristic, while the decimal part is 

called the mantissa, and as these names will frequently be used 

hereafter, care should be taken to remember them. In the com¬ 

mon system, the logarithms of all numbers except those which are 

even powers of 10, are mixed numbers, and the characteristic of 

any logarithm is always 1 less than there are figures in the number. 

For all numbers of one figure, the characteristic is o, for all 

numbers of two figures the characteristic is 1, for all 3 figure 

numbers it is 2, etc., etc. Since the characteristic of the log¬ 

arithm of any number can thus always be obtained at once by 

inspection of the number, it is unnecessary to have the char¬ 

acteristics in the tables ; and they are therefore omitted in order 

to save room. In looking in a table, therefore, such as Schron’s 

or Bruhn’s, we find only the decimal part of the logarithm, and 

must prefix the characteristic ourselves by the above rule. For 

example : 
log. 4571=3.6600112 

log. 4577=3.6605809, etc. 
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265. 

Since by adding together the logarithms of several factors 

we obtain the logarithm of their product, and since the log¬ 

arithms of all the simple units (io, ioo, 1000, etc.), have char¬ 

acteristics which are whole numbers, and mantissas=o, i. e., 

log. 1=0, log. io=i, log. 100=2, etc., it is clear that when any 

number is multiplied by io, ioo, iooo, etc., the mantissa of its 

logarithm remains unchanged, and only the characteristic is 

altered. 

If, therefore, we know the logarithm of 2, we know also 

the logarithm of 20=2-10, or of 200=2-100, etc. 

From the logarithm of 4 7, we have merely by changing the 

characteristic, the logarithms of 470, 4700, 47000, etc. 

Thus we find by reference to the tables : 

log. 
C ( 

c c 

2=0.3010300 ; also log. 

20=1.3010300 ; “ 

200=2.3010300; “ 

2000=3. 3010300 ; “ 

200000=5.3010300 ; “ 

47—1.6720979 

470=2. 6720979 

4700=3.6720979 

47000=4.6720979 

47000000=7.6720979 

266. 

The logarithm of a quotient, is obtained by subtracting the 

logarithm of the divisor from the logarithm of the dividend. 

For this purpose, also, we consider all fractions as expressions of 

division. It therefore follows that when any number is to be 

divided by 10, 100, 1000, etc., we simply reduce the character¬ 

istic of its logarithm by as many units as there are zeros in the 

divisor and leave the mantissa unchanged. 

Thus, for example : 

log. 4571=3.6600112 

whence, log. ^-J1=2.6600112 

log. = 1.6600112 

This follows because : 
JO 3-6600112 

4jULi=__io1'6 6 0 0 1 1 3. 
100 iq2 

267. 

From the foregoing paragraphs we can deduce at once the 

rule by which to find the logarithm of any whole number and 



decimal combined. Take first the characteristic belonging to the 

whole part of the number only. Then take from the tables the 

mantissa which corresponds to the number including the decimal 

poriio7i as if there were no decimal point present. Thus : 

4ifL=4 57-i ; -4tW=4 5-7I, etc. 
Therefore : log. 457.1—2.6600112 

“ 45.71=1.6600112 

“ 4.571=0.6600112 

268. 

When we have to find the logarithm of a whole number and 

common fraction, such for example as 36!, we may proceed in 

two ways. We may convert the fraction into a decimal and 

proceed as in the preceding paragraph, or we may convert it 

into an improper fraction, and then subtract the logarithm of 

the denominator from the logarithm of the numerator. 

Thus, since 365=36.75 =* 1f-1, we have: 

log* 3^|=log. 36-75=I-5652573 

or lo£r ,63=i loS- 147=2.1673173 
3 4 ( “ 4=0.6020600 

log. 147 = I. 5652573 

269. 

To take out the logarithms of proper fractions or of decimals 

from the table and determine their correct characteristics, we 

we must observe the following points : Since io°=i, the exponent 

for any quantity less than 1 must be smaller than o, and must be 

a proper fraction. Thus, for example ; 

10 xV’ 10 -^xinp (See § 205). 

The logarithms of all proper fractions must therefore be 

negative, and the smaller the value of the proper fraction the 

greater the absolute number of the corresponding negative log¬ 

arithm.* 

*When a f raction becomes infinitely small its negative logarithm must become infinitely 

large. A magnitude which becomes infinitely large, and can no longer be expressed by 

figures, is indicated by the sign 00 ; and a quantity which has become infiniiely small, so 

as to be indistinguishable from o, is represented by 4— These expressions also give rise to: 

I o~00 =.—1 . =Q==J_ 
10“ 00 

Therefore we have : log. o=‘ 00 (Read “infinite negative 
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In order to write the negative logarithm of a true decimal 

(i. e., a decimal without any whole number attached) acording to 

§ 266, we can unite the decimal with its proper denominator, and 

then subtract the logarithm of the denominator from the log¬ 

arithm of the numerator. 

Thus for example : 

o.0564=r£ffo 

log' 564= 2.7512791 

and log. 10000= 4.0000000 

hence log. 0.0564=—1.2487209 

m2 -7 5 1 2 7 9 1 
for 564 — ____=I02- 7 5 1 2 7 9 1 —4—— 
LtJl 1 0 0 0 0 io4 

j 0~ 1-2 48 7 2 0 9 

270* 

When a negative logarithm occurs, not as the final result of 

a calculation, but is to be added to or subtracted from other log¬ 

arithms, or the number corresponding to it is to be determined, 

it is then found much more convenient to separate the negative 

logarithm into two parts, of which one part (the mantissa) shall 

consist of a positive, proper decimal fraction, and the other part 

a negative whole number, connected to the positive part as a 

negative characteristic. 

A negative logarithm is easily brought into this form, by 

appending such a positive number, in connection with -f- and 

signs, as shall convert the logarithm into one with a negative 

characteristic, and positive mantissa. This is done in the fol¬ 

lowing manner : 

Suppose, for example, that we have : 

log. 0.0564=—1.2487209 

we may add 2 and subtract 2, by which operation the actual 

value of the logarithm will not be altered, but only its form 

changed. Thus : 
log. 0.0564=2—1.2487209—2 

Then collecting the first two members of the right-hand side 

together we have : 
log. 0.0564=0.7512791—2 

giving us the required form, in which we have the positive man¬ 

tissa with o for a characteristic, and also a negative whole number 
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(—2) for the negative characteristic. Instead of writing the 

negative characteristic after the mantissa, it is often written before 

it, in the usual place, but with the minus sign over the character¬ 

istic, in order to show that the whole number only is negative, 

and that the minus sign does not apply to the decimal portion, 
thus : 

log. 0.0564=2.7512791 

271. 

the denominator of a decimal fraction is equal to 1, with as 

many zeros appended as there are places in the decimal, thus : 

°-564=tVW; o.o564=TiUo> etc. 

W e therefore see that the characteristic of the logarithm of 

the denominator will be greater than that of the numerator by as 

many units as there are zeros between the decimal point and the 

first significant figure of the decimal. Thus in the fraction T%4_ 

the characteristic of the numerator will be 2 and that of the de¬ 

nominator will be 3; while for 0.0564=3!^-, the characteristic 

of the denominator will be 4, while that of the numerator will 
still remain =2. 

From these considerations we obtain a simple rule to find 

the logarithm of a proper decimal fraction from the regular tables. 

W e first find the logarithm of the number of which the decimal 

is composed, just as if the decimal point did not exist, and write 

it with a characteristic =0, and then append a negative charac¬ 

teristic of as many units as there are zeros in the decimal plus 1. 
Thus : 

log. 0.564=0.7512791 —1, or 1.7512791 

“ 0.0564=0.7512791—2, or 2.7512791 

0.00564=0.7512791—3, or3.75i279i 

This operation simply amounts to considering the decimal 

as a vulgar fraction with its corresponding denominator of 100, 

1000, etc., and then taking the logarithm of the numerator and 

subtracting that of the denominator, except that the subtraction 

is indicated instead of being performed. 
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272. 
In order to find the logarithm of a proper vulgar fraction, 

the fraction may be converted into a decimal and the logarithm 

found at once by the above rule. Thus we have : 

log- 0.4375=0-6409781—1 

or, =1.6409781 

Frequently it is more convenient to subtract the logarithm 

of the denominator from the logarithm of the numerator, as the 

following example shows : 

log. 7=0.8450980 

“ 16=1.2041200 

log. t76 = I- 6409780 

Here we have a positive mantissa, being the difference be¬ 

tween the two mantissas, while the characteristic is o—1=—1, 
as before. 

The practice of placing the characteristic in the usual place, 

with the negative sign over it, is much the more convenient in 

practice, and will be used altogether hereafter. 

Again we have : 

loo- i=l lo£- 3=0-4771213 
7 ( log- 7=0.8450980 

I.632O233 

Here the lower decimal is greater than the upper, and hence 

1 was borrowed from the unit's place, which gives —1 in the 

result. 

Again: , j_i_= ( log- 11 = 1.0413927 
¥771 j \0g 4771=3.6786094 

3-3627833 

Here the lower decimal is the greater, and i is borrowed 

from the unit s place of the subtrahend, leaving o, and then 

o—3=—3 for the negative characteristic. 

Whenever circumstances may require it, we can modify any 

logarithm by adding, at the same time, equal positive and negative 

characteristics. Thus : 

log. f= 1.6320233 

—6+6 

= —6+5.6320233 
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or log. f= 1.6320233 

—4+4 

—4+3-6320233 etc. 

The use of this will be seen hereafter. 

273* 

Bearing in mind the rules given in the preceding paragraphs 

we will now proceed to explain more fully the method of taking 

out from the tables the logarithms of any required numbers. 

If we open any table of seven figure logarithms, such as 

Schrdn’s, we see at the left of the page the column headed Num. 

(Numbers). Then following toward the right 10 columns, 

headed successively o, 1, 2, 3, 4, 5, 6, 7, 8, 9, and at the right a 

column headed P. P. (Proportional Parts). 

In some tables the column of numbers is simply headed N, 

and the column of proportional parts is headed, “Differences. ' 

(1) Turning now, for example, to the number 1267 in the 

column “Num." we find opposite 1267 in the column o, the logar¬ 

ithm .1027766, or with the characteristic, 3.1027766. We do not 

find the first three figures of the decimal repeated for every num¬ 

ber, but only printed in where they change, hence when there is 

a space for the first three figures those which are next above are 

to be taken. Likewise the succeeding columns contain only tour 

figures, and these are in each case to be preceded by the corre¬ 

sponding three figures printed in the o column. This saves the 

constant repetition of the first three figures, and economizes 

space very much. 

If a number contains only four figures its logarithm is found 

at once opposite to the number in the o column, but it the num¬ 

ber consists of five figures the fifth figure must be found in the 

column headings at the top of the page, and in the corresponding 

column and on the same horizontal line as the first tour figures 

will be found the proper logarithm. Thus we have : 

log. 1267=3.102 7766 

log. 12670=4.102 7766 

log. 12671=4.102 8109 

log. 12672=4.102 8452 

log. 12673=4.102 8974 

log. 12674—4.102 9137 

log. 12675=4.102 9480 

log. 12676=4.102 9822 

log. 12677=4.103*0165 

log. 12678=4.103*0507 

log. 12679=4.103*0850 
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Examining these we see that the logarithms of 1267 and 

12670 have the same mantissa, the characteristic being simply 

increased by 1. If the fifth figure, however, is greater than o 

we take out the last four decimals from the column headed by 

this figure, the first three figures of the mantissa remaining un¬ 

changed. In some cases, as log. 12677, the third figure also 

is changed, and this is indicated by an asterisk (*) in front of the 

fourth figure. When this * appears the first three figures of the 

mantissa are to be taken from the next line below in the zero col¬ 

umn. Thus when we look for the log. 12677 we have 102 in the 

o column, and *0165 in column 7, and the asterisk means that 

instead of 102 we must take 103 for the first three figures. In 

some tables a dot is used instead of an asterisk, and in others a 

dash (—), but the meaning is the same in all. 

We therefore have the following rule to take out the log¬ 

arithms of five figure numbers. 

First write the proper characteristic, then find the first four 

figures of the given number in the column “Num,” and opposite 

these in the o column find the first three figures of the mantissa. 

Then find the last four figures of the mantissa in the column 

headed by the fifth figure of the given number, on the same hori¬ 

zontal line as the first four figures were found. If there is also 

an asterisk here found, the third figure of the mantissa is to be 

increased by 1. 

If the given five figure number is multiplied or divided by 

10, 100, 1000, etc., the mantissa remains unchanged and the 

characteristic alone is altered. Thus : 

log. 22035=4.343113! 

log. 2.2035=0.343113! 
log. 33829=4.5292892 

log- 338-87=2.5300331 

log. 338.29=2.5292892 

log. 78.164=1.8930068 

log. 781640=5.8930068 

log. 0.049097=2.6910550 

log. 1.ion =0.0418268 

274* 

If we take out the logarithms of several successive five- 

figure numbers, and subtract them from each other, we find the 
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differences appear only in the last three figures, and that for 

some little space these differences are all equal to each other. 

Thus for example : 

log. 23740=4.3754807 Difference 

log. 23741=4.475499° i83 

log. 23742=4.3755173 i83 

log. 23743=4.3755356 183 

log. 33744=4-3755539 i83 

log. 23745=4.3755722 183 

We thus see that if we increase the number 23740 by 1, we 

increase the last 3 decimals of its logarithm by 183, and if the 

number 23740 increases 2, 3, or 4 units, we must add 2, 3, or 4 

times 183 to the last figures of its logarithm. 

Since this proportion exists for the increase of the number 

by units, it must also hold good for fractional parts of units, 

such as t20-, rfF, etc. - If, therefore, the number 23743, 

for example, is increased by TY, T20’ tito> elc-> then also WH1 

the last decimals of the logarithm be increased by y1^, T3F, y-j^-, 

etc., of the difference, namely by ^-183, or *183, etc. 

If therefore we know the difference between the logarithm 

of 23743 and the next logarithm, we can find the logarithms of 

23743to=23743-8 ; °r of 23743.85 ; or of 23743.859 etc., or of a 

number 10, 100, or 1000 times as great, such as 237438= 

10-23743.8 ; or 2374385=100-23743.85. 

Suppose for example that we have : 

log. 23743=4.3755356 

If now we add to the last decimals o*8 times the difference 

183, i. e., 
0.8-183=146.4, say 146 

We have : 4.3755356 

146 

log. 23743.8=4.3755502 
and log. 237438=5.3755502 

If we add 0.85 times the difference 183, we have: 

°-85'i83=i55-55, say 156 

and 4.3755356 

l56 
log. 23743.85=4-3755512 

and log. 2374385=6.3755512 etc. 
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In the best seven figure tables, such as Schron’s, this calcu¬ 

lation is rendered unnecessary, for in the column headed P. P. 

(at the extreme right) are given the products of the differences by 

the digits from 1 to 9, so that the amount to be added for any 

required number can be taken at once. 

Thus we find for 

!°g. 23743859=7.3755513 

in the following manner : 

The log. 23743=4.3755356 
then for the remaining figures we have : 

tVoV *1 8 3=(tV~!‘" rlo^TSTo)1 $ 3— 

=tV ^ 8 3+tVtV 18 3+At ' tV 18 3 

In the column of Proportional Parts we now find : 

tVi83=i46.4 

tVi83=9i - 5 hence TV*91.5=9*15 

To‘183=164.7 hence -i64. 7=1.647 

and we have : 1 log. 23743 . . . =4.3755356 

8 146.4 

5- 9-15 

9 1-645 

log. 23743.859=4.37555J3 

and log. 23743859=7.3755513 

or log. 237 •43859=2-37555i3 

In the same way we find the logarithm of 1275.8073. Thus : 

log. 1275.8 .. .=3.1057826 

o. . o 

7. 23.8 

3 J-°2 

log. 1275.8073=3.1057851 

275. 

When we desire to indicate the number corresponding to a 

given logarithm, we unite num. log: (i. e. numerus logarithmi.) 

Thus since log. 2=0.3010300 

We have inversely : 

num. log. 0.3010300=2 

which is read ‘‘the number for the logarithm o.3010300 is 2. 
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The method of finding the number from the table, when 

the logarithm is given, is easily deduced from the preceeding 

rules. 

(1) First look for the first three decimals of the mantissa 

in the column headed o. Then look across horizontally on the 

same line or on the next lines immediately below, for the last 

four decimals, in the column headed from o to 9. If these last 

four are not found here, look one line higher, in which case they 

must be preceded by an asterisk. If they are not found exactly, 

take the nearest value. We then have in column Num. the first 

four figures of the required number. We then examine the 

characteristic of the given logarithm and give our number as 

many whole places as there are units in the characteristic plus 1, 

and thus place the decimal point. 

If the logarithm has a negative characteristic, the number 

must all be a decimal, and there must be as many zeros placed 

at the left of the number as there are units in the characteristic 

less 1, and then the decimal point is placed. 

This gives us the number correct to five figures, and the 

method can readily be understood by the student if he will take 

his volume of tables and find the logarithms corresponding to 

the following numbers and vice versa. 

log. 22035=4.3431131 

num. log. 4.3431 131=22°35 

log. 666.42=2.8237480 

num. log. 3.8237480=6664.2 

log. 8.7707=0.9430343 

num. log. 6.9430343=8770700 

log. 0.92904=1.9680344 

num. log. 3.9680344=0.0092904 

log. 0.051001=2.7075787 

num. log. 0.0010411 = 1.0024 

(2) In order to find the additional figures when the exact 

value of the base decimals of the mantissa cannot be found in the 

table, we proceed as follows : 

First find the first three decimals of the mantissa in column o, 

as before. Then find in the other columns the 7iexi lower value 
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to the four last figures, and take the head of the column for the 

fifth figure, as before. 

Then subtract these next lower figures from the last four fig- 

ures of the given logarithm and look for the nearest value in the 

corresponding portion of the column of proportional parts. The 

figure in the P. P. column which corresponds to this difference 

most closely will be the sixth figure of the number, always taking 

the next lower value. Then subtract this lower value from the 

tabular proportion thus taken, and the proportion corresponding 

to this difference will give the seventh figure. With seven place 

tables this is as far as the result can be accurately carried, and if 

the characteristic demands another figure its place must be filled 

by a zero. 

An example will make the procedure clear. 

Required : Num. log. 7.3255512. 

We find in the table the next smaller logarithm is 7.3755356, 

hence: 
given log.=7.37555i2 

next smaller log. =7.3755356 

and its number= 23743000 

Difference 156 

In the column P. P. the next smaller value is 146.4, and the 

corresponding figure is 8. Then 156—146.4—9-6 which multi¬ 

plied by 10—96, and the next smaller value is 91.5, for which the 

number is 5. 

Hence: Num. log. 7-3655512=23743850 

Also: Num. log. 4-375551 2=23743 85 

This rule follows evidently from what has been said before. 

The reasoning is as follows : 

The difference between the given logarithm and that for a 

number smaller by 1 is 183. But the difference between the 

given logarithm and the next smaller logarithm is 156. There¬ 

fore we have the proposition : 

As 183:1 so is 156:^ 

x—j-ff—o. 85 

276* 

The following examples will answer for practice, and 

larger numbers will rarely occur in actual examples. The 8 and 
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9 figure numbers will vary slightly from exactness beyond the 

seventh decimal, as greater accuracy can hardly be obtained with 

seven place tables. 

The methods of using 5 and 6 figure tables of logarithms 

will readily be understood from what has been said above, and 

specific directions for the various editions will be found with 

them. 

Examples. 

(1) log. 370978=5.5693482 

(2) num. log. 3.8911459=7782.98 

(3) log- 8689836=6.9390116 

(4) num. log. 6.9720151=9375946 

(5) log. 200.36084=2.3018128 

(6) num. log. 0.0692746=1.172937 

(7) log. 0.07787009=2.8913707 

(8) num. log. 3.0911392=0.0012335 

(9) log. 4- 501000895=0.6533091 

(10) num. log. 0.0901392=1.230664 



BOOK XX. 

The Applications of Logarithms, 

277, 

In the following pages will be given examples and rules for 

the applications of logarithms, and among these, examples will 

be given of problems which without logarithms could only be 

solved with greatest difficulty, or in some cases could not be 

solved at all. 

278, 

To obtain the product of two numbers we add the logarithms 

of the factors ; the sum is then the logarithm of the product, 

which can be obtained from the table as explained m §258, 1. 

Stated as a general formula with letters for symbols we have : 

x=abc 

in which a, b, and c are factors and Jtr is their product : 

log. .r=log. (2-f-log. <5-J-d°g\ c 

Example. Find x from the following equation : 

^=823 • 1305 'f' (2.40067) (0.0067925) 

We have : 
log. 823 — 2 •9I53998 
log. 1305 =3 . II561O5 

log. -|=log. 0.4285714 -j •63202J§ 

log. 2.40067 =0. 2803198 Aou 127 

log. O.O067925 =3 8320296 

log. *=3 8753956 

•*=7505-776 
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279* 

In order to divide one number by another, subtract the log¬ 

arithm of the divisor from the logarithm of the dividend ; the re¬ 

mainder will be the logarithm of the quotient. 

If x=d in which a is the dividend, b the divisor and jv the 
b 

quotient then we have : 
log. jr—log. a—log. b. 

Example. Find x from the following equation : 

x= 
25-0035 

7123.0409 

log. 25.0035=1.3980008 

log. 7123.0409=3.8526653 

log. x=$. 5453355 

^=0.003510229 

In the subtraction we had to borrow 1, from the units place, 

and then o—3, gave 3 for the characteristic. 

If either the dividend or divisor, or both, consist of factors, 

we first find the logarithms of the factors, and add them, and 

then perform the subtraction. Thus : 

abc 

X=de 

log. .v=log. {abc)—log. (de) 

or log. A:=log. <2—[~log. ^-f-log. c—(log- ^“Hog- e) 

or log. a:=log. tf-j-log. 3-f-log. c—log. d—log. e 

Example. Find x from the following equation : 

0.035689-6.083769 

34 • 595'0.0050602 

We have for the numerator : 

log. 0.035689=2 .5525344 

log. 6-083769=0.7841727 

1.3367071 

for the denominator : 
log. 34 • 595=I • 539°133 

log. 0.0050602=3.7041677 

1.2431810 
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whence: 1-3367071 

1.2431810 

log. .*=0.0935261 

x=i . 240298 

280. 
In order to raise a number to 3. given power, the logarithm 

of the number is multiplied by the exponent of the power ; the 

product will be the logarithm of the power. (See § 258, 3). 

Thus : 

log. <z4=log. aaaa=log. a-f-log. a-}-log. tf-j-log. a whence log. a4 

=4 log. a. 
In general : 

log. an—n log. a 

or log. ax—x log. a 

Example i. Find x from the following equation : 

x=(i. 3504)22 
We have : 

log. 1.3504=0.1304624 

22 

2609248 
2609248 

log. .*=2.8701728 

.*=741.6052 

Example 2. Find x from the following : 

r—(2 6 0 d° 
^ \ 3 31 / 

log. 200=2.3010300 

log. 33I=2.5198280 (§272) 

1.7812020 

1 10 

log. .*=3.8120200 

*.-•=0.006486643 

Here we have the positive mantissa 

0.7812020X 10=7.8120200 

and the negative characteristic 1 x 10=10. 

hence log. *:= 3.8120200 
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281. 
In order to extract any given root we divide the logarithm 

of the number by the exponent of the root; the quotient will be 

the logarithm of the root. 

Thus (§258,4): 

and in general 

Example. 

5 b 
log. s/a=log. a5=|log. a 

log. y/a= - log. a 
n 

X= y/2 

log. 2=0.3010300 

7)0.3010300 

log. _v=o. 043004 3 

X—I .104089 

If we have to extract a root of a proper fraction, i. e., one 

of which the logarithm has a negative characteristic, we must 

add as many units to the negative characteristic as will make it 

positive and will also be exactly divisible by the exponent, also, 

of course, subtracting, the same number of units, in order that 

the value of the logarithm be not altered. V* e then divide both 

quantities by the given exponent, as follows : 

Example 2. Required : 
5 

o. 0375 

log. o 0375=2.5740313 

adding —5+5- 

5)—5+3-57403I3 

—1+0. 7148063 

log. ^=1.7148063 

x=o. 5185687 

282. 
If we have to multiply two or more factors together, which 

factors are also powers, we take the logarithms of the roots, and 

multiply them first by their respective exponents, and then add 
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the results, to effect the multiplication, as will appear by the fol¬ 

lowing examples : 

(1) x=a*b‘1—aaa. bb 

log. .v=log. <2—j—log. rt+log. <2-|-log. $-}-log. b 

or log. 3 log. a-\-2 log. b 

(2) ' x=am bncn 

log. x=m log. a-\-?i log. b-\-n log. c 

(3) x=an y/bnan bm 

log. x=±— log. a-j- U log. b 
^ n s 'm s 

283* 

It is evident that we can only obtain a product by means of 

logarithms when the factors are monomials. When the factors 

consist of several members, each factor must be considered as a 

single member, or if the various members are numbers they 

must be collected into single members before the logarithmic 

calculations are made. Thus, for example : 

(i) x=am(a-\-b)n 

log. x=m log. a-\-?i log. (a~\-b) 

and a-\-b must be determined before its logarithm can be taken. 

(H±> 
[ > (a—l y 

log. x—n log. [a-\-bm)—|—log. (a-\-b)—n log. (a—i) 

(3) x=='S(hlfr ttii) 

log. 3=0.4771213 
log. 1144=30584260 

3 4186953 

—5+5- 

5)—5+2.4186953 

num. log. —1+0.4837391=0.3046064 

which subtracted from 11=0.46875 
5 

gives if—1641436 
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log. 0.1641436=1.2152240 

—15+15 

15)—i 5—)— 14 2152240 

i-)-o. 9476816 

log. x—i. 9476816 

x=o. 886506 

284. 

Since we are able by means of logarithms, readily to extract 

any root whatever, it is also clear that we may use them to 

solve all pure equations of the higher degrees. Suppose, for 

example, that it is required to find the value of x, from the fol¬ 

lowing equation, (§ 219) : 

|o;11-[-o. 5oi=2jrn-|-6.05 

This is a pure equation of the irth degree. 

Collecting the values of x11, we have : 

|wn—2xn——o. 501-I-6.05 

—— 5- 549 
1 1 

x=s/—4 16175 

log. 4 16175=0.6192760 (n) 

o 6192760 (zz) 

(§ 2I(h3) 

log. X- 
11 

— =0 0562978 

x=—1.138407 

The (zz) appended to the logarithm means that the number 

to which it belongs has the minus sign. Since the logarithms 

of whole numbers are positive, and those of proper fractions 

are negative, it is evident that we cannot find in the tables, 

logarithms for negative numbers. In order therefore to work 

with logarithms for negative numbers, we consider the numbers 

as positive, and append the symbol (zz) to the logarithms, and 

give the negative sign to the result. 

285. 

By the use of logarithms it is often easy to determine the 

unknown quantity in an equation, when the unknown appears 

as an exponent. Suppose, for example, it is required to find 

what power of 2 will equal 64, we have the following equation : 

2^=64 
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Taking the logarithms of both sides, we have : 

x log 2=log. 64 

log. 64 1.8061800 
X—y^-=-= 6 

log. 2 o 3010300 

The student must be careful not to confuse with log. 
log. 2 

6/=log. 64—log. 2. In the latter case we subtract one logarithm 

from the other, but in the former case we divide the one by the 

other. In this latter case if desired we can consider the loear- 

ithms as ordinary numbers, taking again the logarithms of each 

of them from the table and subtracting the logarithm of the 

divisor from the logarithm of the dividend to obtain the logar¬ 

ithm of the quotient, and thus save the labor of the long divi¬ 

sion. 

In general, when : 
ax=b 

X log. <2=1 og. b 

log. b 

log. a 
Again if: x 

amx^n—Y—-ck—xc 

We have : 

rnx log. a-)y(n—--) log. b—{k—x) log. c'-f-log. d 

xrn log. a-\-n log. b—% log. b=k log. c—x log. c-|-log. d 

xm log. a—log. b-\-x log. c—k log. c-j-log. d—n log. b 

k log. c—]—log. d—11 log. b 

m log. <2—j—log. c—\ log. b 

286* 

Example i. Required x, from the equation : 
nix 

a.cmx—fi.c 2 —d 

Solution. In order to simplify the work let us temporarily 
mx 

represent the c 2 =z, whence cmx=z2, and we have (§ 231) 

az1—bz=d 

b-\-s/b--\-^ad 

2a 
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mx_ 

replacing z by its value c 2 , we have : 

b-\-s/b’lA-\ad 
c 2 = 

2 a 

mx 
“--S' ('±'/*‘+4“') 

m log. c 
•log. 

£b-^\/b‘i-^-\(xd \ 

2 a ) V 
Example 2. Find x, from the equation : 

a*+ 1 —b=o 
' ax 

Solution. Multiplying by ax, and then putting ax=z, we 

readily find, according to the method given in § 231 : 

•°g- [2 4) ] 
log. a. 

287- 

Example 3. Interpolate four terms between 2 and 8, so that 

all six terms shall form a geometrical progression. 

Solution. Given a—2, f=8, ?i=6, and e, required. 

We have from § 253 : * 

t=aeu~1 
whence : 

«-i t 
e=V 

a 

log. e= 
log. t—log. a 

n—1 

log. e= 
log. 8—log. 2 

n- 

e=i. 319508 

The series will therefore be : 

2; 2 -(1.319) ; 2 *(1.319)* > 2,(I-3I9)8; 2(I-3I9)4; 8- 

288. 

Example 4. It is related that Sissa, the inventor of chess, 

was requested by the Hindu Rajah Scheran, to demand a reward 

for his ingenious invention. Sissa modestly requested that he 

should have the sum of the number of grains of rice that could 



be counted by the squares of the chess board, if counted in the 

following- manner. On the first square was to be placed i 

grain, on the second square two grains, on the third square 4 

grains, on the fourth square 8 grains, &c., increasing in this pro¬ 

gression : i —|—2—]—4—j—8—[—16 . 263 ; that is doubling on each 

square the amount on the preceding square until the whole 64 

squares had been counted. The rajah was at first offended at a 

demand upon him so small as to be beneath his dignity, but 

ordered the gift to be made, when he was surprised to find it far 

beyond the power of himself or any other monarch. How much 

would the total be? 

Solution. Given a= 1, e=2, t— 263, and s required. 

We have from § 2 54 : 
te—a 

s= 
e—1 

2—1 

It will be close enough to assume : 

S=264 

whence log. 5=64 log. 2 

5—18446 7 5000000000000c 
t 

More exactly, the sum would be 

5=18446744073709551615 

The last figures cannot be found by means of logarithms, 

as they exceed the limits of any table which has ever been cal¬ 

culated. It is estimated that if the whole surface of the earth 

was under cultivation it would require the harvests of seventy 

years to equal this amount. 
1 

289* 

Example 5. A wine butt contains 100 gallons of wine, which 

we will call a. From this 1 gallon=3, is drawn, and an equal 

amount of water poured in. When the water and wine are 

thoroughly mixed the amount b is again drawn and replaced with 

water. After this operation has been repeated 20 times, how 

much wine remains ? 

Solution. The problem may be stated in the following 

manner: If 1 gallon is taken from 100 gallons and replaced by water 
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there must remain 99 gallons of wine, and the mixture will con¬ 

sist of y^o’99 of wine and T1^- of water. When the second 

draught is made, there will remain 99—j^-gg of wine and 

1—riro'i water. After the third draught there will be 

(99—t1l.-99) of pure wine, etc., etc. 

In general, therefore, if a= the original amount of wine, and 

b the amount of each draught, we have taken the proportion ^ 
a 

of the original amount the first time and left a— ^ =a—b in the 
a 

the vessel. After putting in the water, we take out the second 

time (a—b) of wine and there will remain : 

(a-b)- b (a-b)=a {a~ i)-Ka-b)Jb-Vf 
a a , a 

After the third time we have left: 

(a—by_b (a—by_(a—b)3 

a a a a~ 

After the fourth time 
(a—b)‘ 

a 
, etc. 

If x be the amount of wine remaining after the ?zth draught 

we have in general : 
(a—b)n 

x- 
a «— 1 

log. x—n log. (a—b)—(n—1) log. a 

If, as in the example: a= 100, b= 1, 72=20, we have 

log. .v=2o log. 99—19 log. 100 

„r=8i. 79072 



BOOK XXI. 

Compound Interest* 

290* 

When the interest on any capital is added to the principal to 

form a new principal upon which interest is again computed for 

the next period of time, the capital is said to be at Compound 

Interest. 

It is evident that at compound interest the capital must in¬ 

crease very rapidly, the rate of increase itself also increasing. 

Thus, for instance, if $100 is at 5 per cent, compound interest, 

we have at the end of the first year a capital of ioo-|-^-§-,5= 

$105 for the next year ; at the end of the second year this has 

grown to i05-j-^-g-|*5=$i 10J; at the end of the third year, to 

”°i+ 
1 io4- 

'5—I115( 
61 

etc. 
100 ' 8o‘ 

Cases of this sort constantly occur in commercial affairs, 

particularly in connection with Insurance, Savings Banks, Annu¬ 

ities, and similar financial operations, and the following methods 

will be found useful in solving the problems which arise. 

291* 

Problem. If we indicate the original capital by <2, the rate 

per cent, per year by />, the number of years by n, and the final 

total amount by A (^Accumulation), it is evident that each one 

of the four qualities A, a, p, and 71, is a determinate function of 

the other three. We shall therefore first derive the various equa¬ 

tions which show the relations existing between these four 

quantities. 

We shall first seek the expression for the function of A, 

from which by reduction we can then readily derive the others. 
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At the end of the first year the original capital, a, will have 

become : 

a-\- —%p=a( 1+ — 
1 100 \ 1 100/ 

That is, we obtain the total at the end of the first year if we mul¬ 

tiply the capital by i-|- P 
100 

At the beginning of the second year 

we have the new capital a (*+--) \ 1 100/ 
and at the end of the second 

P 
year this is again to be multiplied by I'4-IC^ so that the amount 

\ 2 

00 ) 
p \ 

wdl be : 

a( i+^-)+^±Tfv.p=a( ^ M f I+ A\=a( 1 + 
\ ‘ IOO/ ' IOO \ ' IOO/ \ ' IOO/ \ ' I 

Likewise at the end of the third year we have : 

cl ( i—1—— 1 , etc. 
\ 1 100 / 

and in general, at the end of n years the total will be : 

Ai- P ) or A=a(1+ P V 
V 1 IOO / V 100/ 

I p 
If, for sake of simplicity we set the expression Itioo=2> 

we have : 
A=a 'zn 

For p=l%, 0= 1.05; for p=4%, 0=1.04; for p=$±%, 

0=1.035, etc., so that 0 can instantly be given for any rate per 

cent. Taking the logarithms of both sides of the above equa¬ 

tion, we have : 

log. A=log. a-\- n log. 0 

log. <2=log. A — n log. a 

loe. A — log. a 

n 
log. 2=/ fc>' 

71- 
log. A — log. a 

log. 2 

(0 
0) 

(3) 

(4) 

292. 

Example i. What will be the amount of a capital of $6000 

at 5% compound interest for 16 years ? 



Solution. Given a=6ooo, n—io, 2=1.05, and A required. 

We have : 
A=az11 

log. 2=0.0211893 

16 

1271358 

211893 

0.3390288 

log. a= 3.77815J3 

log. A= 4.1171801 

A=$i3° 97-25 

If we subtract the original capital from the final total we 

can see how much the increase has been. Thus in the above 

example : 
13097:25—6000=^7097. 25 

or more than the original amount. 

293. 

Example 2. What must be the original capital, which at 

4.% compound interest, amounts to $300 in 10 years. 

Solution. Here we have: 2=1.04; n=to; .4=300; and a 

required. 

We have from equation (2) § 292 : 

log. a— log. A—n log. z 

log. 2=0.0170333 

10 

This value 

for 10 years. 

o. 170333° 

log. H=2.477I2I3 

log. £=2.3067883 

£=$202.67 

^202.67 is the discount value of $30o at 

294. 

Example 3. A capital of $900 increased in 12 years to 

$1100; what was the rate of compound interest? 
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Solution. Given A=noo ; a= 900; n= 12; p required. 

P 
We shall first find z=i-\——, and can then easily find p. 

1 100 J Jr 

We have from equation (3) § 291 : 

. log. A—lo«-. a 
log-. 0= -^- 

n 

log. A=3.0413927 

log. 12=2.9542425 

divided by 12)0.0871502 

log. 0=0.0072625 

z=i. 01686, say 1.017 

P=o. o 17= 1 

295. 

Example 4. How long a time must a capital of $600 re¬ 

main at 5% compound interest, in order to amount to $800 ? 

Solution. Given a=600 ; 0=1.05, A=8oo, n required. 

We have from equation (4), § 291 : 

A log, a 

log. 0 

log. A = 2.9030900 

log. ci= 2.7781513 

o. 1249387 

log. 0=0.02 I 1893 

o. 1249387 
71- 

0.02 I 1893 
=5.89 years. 

296. 

The following examples should be worked out by the stu¬ 

dent with the aid of his table of logarithms. 

Example i. What would be the increase in a capital of 

$2000 at 2% compound interest for 20 years ? 

Answer. $2971.88. 

Example 2. What is the present value of a capital, which at 

5% compound interest would amount to $1000 in 15 years? 

Answer. We must discount $1000 for 15 years, that is, find 

a capital a, which, at 15 years at 5%, would make a total of 

$1000. From formula (2) we find <*=$481.02. 1 
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Example 3. A money lender loaned $500 for years, under 

agreement that at the expiration of that time the borrower was 

to pay him $700. What rate of compound interest did this rep¬ 

resent ? 

Answer. Over 14 per cent. 

Example 4. What would be the amount of a capital of 

$6000 at 5%, for 10 years, the interest being compounded semi¬ 

annually, i. e., 2\% being added to the principal every six months ? 

Answer. Since the interest is added every six months, the 

number of times, ?i, in 10 years would be 20, i. e., n—20, and 

we take 2\% instead of 5%. These values give ^=$9831.70. 

297. 

When a given capital, such as $100, is at interest at a given 

rate, such as 6%, but the rate is computed every three months 

instead of yearly, it is not correct tb assume that the quarterly 

rate would be 1. 5%. If the interest is to be computed and 

compounded every quarter, it is evidently correct to assume the 

quarter-year as the unit of time, and hence we can find the 

correct rate from the formula, A—azn, by making the rate —x 

and n=4, whence : 

whence : i4- - =v/T.o6=i.01467 
100 

and .#=1.467% instead of 1.5%. 

Example. Suppose a capital of $20000 at 5% compound in¬ 

terest, what would be the amount at the end of i2\ years? 

Answer. Here a— 20000, 2=1.05, n— 12J, and from : 

log. H=log. 20000—12^ log. 1.05 

we get: ^=$36804.10 

If we had taken the amount first for 12 whole years and then 

|% for the remaining half-year, the difference would have been 

about $11. 

298. 

Problem. It is desired to find the number of years required 

for a given capital at a given rate of compound interest, to 

double, triple, etc., itself. 
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Solution. Let a be the original capital, js^= ra=the 

number of times the capital is to be multiplied, and n the 

required number of years. We then have for the total amount 

for any given multiplier m, 
, A—ma 

whence az"=ma 

or dividing both sides by the common factor a : 

z'l—m 

n log. 0=log. m 

log-, m 
n=T-- 

log. z 

We see therefore that the required time in which a capital a 

shall be increased ra-fold, is a function of the rate per cent., and 

is entirely independent of the amount of the capital a. The 

same time is required for one dollar to double itself as would be 

required for a million dollars. 

Example. How many years would be required for a given 

capital to double itself, at 5% compound interest ? 

Answer. Here m=2, and 0=1.05, whence 

11- 
log. 2 

'log. 1.05" 

o. 3010300 
= 14.2 years. 

0.0211893 

In the same way we find that for 4%, the time required for 

doubling is between 17 and 18 years; at 3% it is about 23.4 

years. 

299* 

Problem. Suppose that a capital a, in addition to the com¬ 

pounding of its interest has a certain amount added to it at the 

end of every year, so that the interest for the following year is 

also computed upon this additional amount. It is required to 

find an expression by which the increase can be determined at 

the end of any given number of years. 

P 
Solution. Let a be the original capital, s=(i+-—), £=the 

extra amount added at the end of every year, n= the number of 

years, and A— the required total at the end of n years. 

At the end of n years the original capital would have be¬ 

come azn ; the amount added at the end of the first year would 

have been at interest one year less, or n—1 years, and hence. 



considered by itself, it would have become b’z"~x ; likewise the 

same amount b, added at the end of the second year would have 

become b'z' 2, etc. Ihe addition at the end of the next to the 

last year would have earned only one year's interest, and the 

amount added at the end of the last year would have earned no 

interest at all. Indicating- the sum of the various amounts, we 
have for the total : 

A^asr+bsT-'—bf-'+dz"-9 +. . .-\-bz+b 

This series we now desire to collect into one single expres¬ 

sion. We see that all the terms except the first one (azn) form a 

geometrical series, in which, reading backward, b is the first 

term, z the exponent, and bzn~x is the last member. We then 

have for the sum, according to § 256 : 

bz1l~x • z—b bz"—b b{z11— 1) 

z—1 z—1 0—1 

If we, therefore, put this expression for the sum of the 

series, we have : 

whence : 

A=az 

A b(zn—1) 
a—-—-- ' 

zn~zn(z— 1) 

i=(A—af ) (*—1) 
Zn-1 

log. [A(z— i)-j-b]~ log. [a(z— i)_K] 

log. z 

(>) 

(2) 

(3) 

(4) 

The expression for the value of 0 is not given because it 

leads to a very complicated equation of a high degree. 

300. 
If in the above formula (1) the extra amount added each 

year is equal to the original capital, so that we have b=a, the 

equation can be still further simplified. Putting a for b, we have : 

whence : 
A(z—i) 
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and 
[A{z—i)-j-<z]— log. a 

log. 0 

301. 
If, instead of adding a constant amount b, at the end of each 

year, a constant amount b is subtracted, and a formula is re¬ 

quired for the total at the end of n years ; we have under these 

conditions, at the end of the 

1st year : az—b 

2nd year : [ciz—b)z—b—az2—bz—b 

3rd year : az3—bz2—bz—b 

10th year : azw—bz9—bzs—. . .—bz—b 

or in general at the end of the ?zth year : 

A=azn—(bz>,-1-j-bz,,~2-j-bz"-3-l- . . .-j-bz+b) 

Again we have a geometrical progression in the parenthesis, 

and substituting for this the expression for its sum, we have : 

A—az"— 
z—1 

A jJ>{zn—1 ) 
zn 'zn(z-1 ) 

1) 
s”-i '•5; 

log. [A(z— 1)—6]— log. [a(z—0—3] 

" log7 s — u) 

If the amount b, which is withdrawn at the end of each 

year, be less than the yearly amount of interest on the original 

capital, the total amount A, will evidently increase every year. 

If, however, the amount withdrawn be greater than the yearly 

interest, the total will evidently be smaller every year, and in the 

course of time will become o. If the operation is continued 

still further, the relations of debtor and creditor will be reversed. 

302. 
If the amount b, which is withdrawn yearly, will exhaust 

both capital and interest in n years, we must have in formula (1) 

of the preceding paragraph, A—o, whence the two members of 

the right hand side must be equal to each other, and 

2—1 
(0 
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From this equation, when of the four quantities a, b, n and 

2, any three are given, we can find the fourth, § 299. 

We have 

11- 

b (2n—1) 
a=—-—-— 

2n (2— I) (2) 

h_a (2—1)2" 

(3) 2n-1 

log. b—log. [b—a (0—1)] 

(4) iog. 2 

303. 
Example 1. What will be the total amount of a capital 

ot $5000, at 5(Y compound interest for 25 years, if $200 is added 

to the principal at the end of each of the 25 years ? 

Solution. Here a==^ooo, b= 200, 0=1.05, ^=25. We have 
from § 299 : 

A^+^=Z£) * 

log. 2= 0.02 I 1893 

2 5 

1059465 

423786 

log. 025= 0.5297325 

*2 — 3-386355 

*(025—1)= 2.386355 

log- O25—1)= 0.3777350 

log. b— 2.3010300 

Sum= 2.67876 50 

*log. 0—1= 2.6989700 

Diff.= 3-979795° 

(2n—1) 
= 9545-42 

304. 

log. 225= 0.5297325 

log. <z= 3.6989700 

Sum= 4.2287025 

az25= 16931.77 

a225= 16931.77 
,(zn—1) 
° = 9545-42 

.4= $26477. 19 

Example 2. Suppose a capital of $5500 at \\% compound 

interest. What will remain at the end of 30 years, if $100 is 

taken out at the end of each year ? 

*The binomial quantities (z — i) and zn —i) must be reduced to single quantities before 

their logarithms can be taken. 
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Solution. Here 

have from § 301: 

a— 5500, £=300, £=1.045, 

A (?—'■0 

2-1 

72=30. We 

log. £=0.0191163 

30 

log. £30=o.5734890 

23 — 3-74532 

£3n— 1 — 2.74532 

log. (£30 i)==o.4385930 

log. <£=2.4771213 

2-9i57143 

log. (£—1)=2.6532125 

4.2625018 

£ 
(s30— 1 

£-1 
y=I 8302. 13 

log. £30=O. 5734890 

log. 22=3.7403627 

4-3i385i7 

27£3°= 20599.2 6 

£ 
(330—0 

£— I 

183O2.I3 

A= $2297.13 

305. 
Example 3. A capital of $6000 at 2^% compound interest 

for 10 years, has been reduced by yearly withdrawals, to $1000. 

How much has been withdrawn each year ? 

Solution. We have given A=iooo, 

77= I O. 

From § 301 : 

6=(az”—A) 
(z—l) 

(*"—I) 

£=1.025, <2=6000, 

10 log. £=0.1072390 

log. 27=3.7781513 £10- 

£10=I. 2800859 

— 1=0.2800859 

3-8853903 log. (27£10— A)—3.8248100 

27£10= 7680.514 log. (z- "0=2.3979400 

H= 1000.000 2. 2227500 

27£10-A— 6680.514 log. (210- — i)=i-44729T3 

log. £=2.7754587 

£=$596.30 
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306. 
Example 4. A capital of $30000 is at 5% compound inter¬ 

est, and $3500 is withdrawn every year. In how many years 

will the entire amount be withdrawn ? 

Solution. We have : 

<2=30000, <5=3500, 0=1.05 

From § 302 : 

n=J°g- |2—a(s—0] 

log. 0 

0-1=0.05 

<7=30000 

a (0—1 )=i 500 

b =3500 

b—a (0—1 )=2000 

log. 6=3.5440680 

log [6—a (0—1)]=3-3010300 

0.2430380 

log. 0=0.0211893 

0.2430380 

0.0211893 
= 11.47 

or about 11J years. 

307. 
Example 5. A man having an annuity of $200 a year for 

25 years desires to sell it in order to obtain the principal. Sup¬ 

posing the rate of interest to be 3\%, what is the present value 

of the annuity ? 

Here we have required to find a capital, <2, which, together 

with its interest at 3\% for 25 years, would just be exhausted by 

yearly withdrawals of $200 for the same length of time. We 

have from § 302 : 

in which 6=200, 0=1.0375, 77=25. 
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log. z~o.oi 59881 

25 

799405 

3*9762 

log. 226= 0.3997025 

zTo= 2.510166 

z25—1= 1.510166 

log. (z25—1)= 0.1790247 

log. b— 2.3010300 

2.4800547 

log. z2h= 0.3997025 2.4800547 

log. (0—1)= 2.5470313 2.9737338 

2-973733s log- «=3-5063209 

#=$3208.64 

308. 
Example 6. A man pays $50 a year during a certain num¬ 

ber of years to an insurance association in order to secure for his 

widow a life pension of $200 a year. The man died after having 

paid for 20 years (=n) and his widow survived him 8 years 

(=m) during which she received the pension. How much did 

the association make, or lose; the rate of interest being 4% 

(2=1.04) ? 

Solution. We must compute the value of each of the ac¬ 

counts backward independently. The first payment of $50 made 

by the man was bearing interest for n-\-m years, and its final 

value was therefore azn+m. The second payment was at interest 

for one year less, and hence its value =azn+m~1, etc. The last 

payment was at interest m-j-i years, and its value =azm+1. In 

like manner the value b, of the first year’s pension after m years 

was —bzm, and the value of the last year's pension —bz. 

We therefore have for the total value the sum of the first 

series less the sum of the second, or : 

A=azn+m-j~azr,+m-1-j-azn+m~2-j- . . . azm+1—(bzm +bzm+x+. . .-}-bz) 

Summing up both series we have : 

A = 
az >1-}-r/i -az m-\-x bzm -z—bz 
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A= 
azm+1 (z"—i)—bz(zm —i) 

0-1 

The first number of the numerator might have been found 

also in the following manner : The amount of a capital composed 

of n payments of a, at the beginning of each year would be, at 

the end of n years equal to - 
az{zn—i) 

for m years more, it would become 

The formula may also be written : 

A=[azm(zn—i)—b(zm—i)] 

Now, if this capital stands 

azm+1(zn—i) 

2—i 

In the given example, a= 50, b=200, 72=20, 777=8, and 

2=1.04, and these values give in the example a gain for the in¬ 

surance association of $202. 

It is also easy to derive a formula for the case in which the 

payments are made semi-annually, or one for the case in which 

the premiums were paid at the beginning of the year and the 

■pension payments at the end of the year, etc. 

Such a great variety of cases occur in this branch of mathe¬ 

matics, bearing on legal, political and commercial matters, that 

only the fundamental principles can here be shown. We shall 

therefore close this book with two more difficult problems for 

those who desire to go more deeply into the subject. 

309, 
Problem. What is the present value a, of a series of yearly 

payments which form a geometrical progression of which the 

first member—b, and the exponent=e : that is, the first payment 

=b, the second—be, and the third=fo2, and the nih=ben~1 ? 

The payments to increase or diminish in the ratio 1 : e, in which 

e may be greater or less than unity. 

P 
Solution. Let 0 be — i-T , p being the rate of interest. 

100 

At the end of the 77th year the value of the 

1st payment =bz"~1 

2d payment =be-z"~2 
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payment —ben~2mz 

n payment =ben~l 

The total value of the sum of all the payments from the 

beginning of the first year for n years, will be equal to azn. 

Whence we must have : 

azn=bzn ^-\-be'Zn 2-\-be2-zn~3-\-. . . -\rben~‘2‘-z-\-ben~x 

The right hand side of this equation forms a geometrical 

6 
series of which bzn~x is the first term, ben~l the last term, and 

the exponent, and hence, according to § 256 the sum will be 

equal to 

be"~1-—bzn_1 
2 bea—bzn 

e e—2 
— 1 

2 

We therefore have : 

ben bz" 
az- 

and 

a- 
b(e"~z") _ 

zH(e—2) 

[OH 

3i0. 

Problem. What is the present value a, of a series of yearly 

payments forming the arithmetical progression b, 2b, 33, 4b. . . nb, 

for each year being greater than the preceding by b ? 

Solution. Let a be the present value, and 2= 14- ^ , as 
100 

before, and we have : 

azn—bzn )—2$2,<—2—}—3^2,l—3—|—.. .-|-(n—i)^2-|-^3 

rPhe right side of this equation consists of a combination of 

arithmetical and geometrical progressions, which may be separ¬ 

ated into as many geometrical progressions as there are members, 

and these summed up separately. We can divide each term into 

as many parts as there are units in its numerical coefficient, thus: 

2 bz11 2=bzn 2-j-bzu 2; 31hz11 3=bzn—3—(~bzn—3—)— bz1'~8, etc., whence: 
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az 

bzn- -*+30—,+^a"“4+. . —|—$02—|—$0—j—^ c) 

bz"~ -*Jrbzn-s+ten-/l-f • . -\-bz2-\-bz-\-b (2) 

bzn-s-\-bzn~4-\-. . -f bz2+bz+b (3) 

bz™ 3—|— . . —]—^02—[—<^0—|—^ (4) 

+• . +bz2-\- bz+b (5) 

+• . -f bz*+bz-\-b (0 

+ 

+. 
-\-bz2-\-bz-\-b (n—2) 

-j-bz-\-b (n—i) 

-H (n) 

Each horizontal line forms a geometrical series, of which the 

exponent=0, and the sums of the series are : 

bzn~x 'z—b 
(0= 

(2)= 

(3)= 

:b(zU-i) 
0-1 

bzn~2 ‘z—b $(0"_1— i) 

0—i 0—i 

bzu~3 ‘z—b b (zn~2— i) 

0—i 0—i 

/ x r • 7 , 7 bzl'z—b b(z3—i) 
(n—2)=bz“-\-bz-\-b= - — -= ^—-— 

0 X ** ~ 0— I 

{n—i )—bz-\-b= 
bz *0—b b (02— i) 

0—i 0—i 
(§ 9!>2) 

/ \ /, b-s—6 b(z—i) 
(n)=b =-=— 
V ' 0-I 0-1 

Placing in the above equation, instead of the various series, 

their respective sums we have : 

az"= —— (zn—1)4- b (0,i~1—i)-f. . .+ b z-—1)+ b (z— i) 

b 
az — 

azn= 

_ 6 - fz”—I+2”-1—1+. . . .+z!— 1+2— l) 

^ (V+2"-'+. . .+25+2— (I + I + I. .. + !)) 

The sum of the series (i + I + I+ • • - + 1) in the parenthesis, 

is equal to n, because there are n members, and the sum of the 

other geometrical series is : 
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Zn'Z — z z(zn—1) 

0-1 0-I 

Substituting these values, 

b r 
azn—- - 

. L 
whence 

b r 
(7= ; 

*"(*—oL 

we have : 

—Z—(z"—1)—n I 

(0—1)0 1 
--—-n 

0—1 J 

1 

In computing compound interest for long periods of time it 

is desirable to have log. 0 to more than seven decimals, other¬ 

wise there may arise errors in the last figures, due to the multi¬ 

plication of the final error. The following table gives the logar¬ 

ithms of 0 to 10 decimals for all values of 0 which are likely to 

occur in practice : 

1 he logarithm of 0 should be taken from the table below, and 

multiplied by n, to give n log. 0, and then seven places taken 

tor use with the regular seven place logarithms in the rest of the 

calculation. If the eighth figure is greater than 5, the seventh 

figure should be increased by unity. By using these logarithms 

the final result may almost invariably be depended upon to the 

last cent. 

10 Place Logarithms for z. 

1.0025 .00108 43813 
1.0050 .00216 60618 
1.0075 .00324 50548 
1.0100 .00432 13738 
1-0125 •00539 50319 
1.0150 .00646 60422 
1-0175 .00753 44179 
1.0200 .00860 01718 
1.0225 .00966 33i67 
1.0250 .01072 38654 
1.0275 .01178 18305 
1.0300 .01283 72247 

I-°325 .01389 00603 

1-035° .01494 03498 
T-°375 .01598 81054 
1.0400 •01703 33393 

z LOGARITHM 

1.0425 .01807 60636 
1.0450 .OI9II 62904 

1.0475 .02015 4°3][6 

1.0500 .02118 92991 

T-0525 .02222 21045 
1-0550 .02325 24596 

1-0575 .02428 03760 
1 0600 .02530 58653 
1.0625 .02632 89387 
1.0650 .02734 96078 
1.0675 .02836 78837 
1.0700 

■02938 37777 
1.0725 •03039 73009 
1.0750 .03140 84643 
1.0775 .03241 72788 
1.0800 •03342 37555 
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3tt. 

Note to §i. The almost universal decimal system evidently 

had its origin in the primitive method of counting on the ten 

fingers. This is, however, not absolutely certain, since in some 

instances other bases have been found in use by savage nations. 

Thus if the primitive capacity for counting only extended origin¬ 

ally to four, the next number would be named “four and one/' 

then “four and two, four and three,-' etc. Aristotle tells of a 

people among the ancient Thracians, who counted in this man¬ 

ner, and similar instances have been found by modern anthro¬ 

pologists to exist among savage tribes at the present day. A 

tribe in the vicinity of Senegal, called the Jalos, have five as the 

base of their system of counting, thus : 

ben niard niet guyanet guiron guiron ben 

(one) (two) (three) (four) (five) (five-one) 

Accounts of many other systems used by the Hebrews, 

Greeks, Romans and other nations will be found in Montucla's 

Histoire des Mathematiques, Vol. I, pp. 45 and 375, also in Klii- 

gel's Maihem. Worlerbuch, 5 Theil. p. 1166. A very interesting 

article on “Primitive Number Systems" by Levi L. Conant, 

Ph. D., is found in the Smithsonian Report for 1892, p. 583-594, 

giving also many references to other works. 

3J2- 

Note to § 6. It is evident that any number may be chosen 

as the base of a number system, and that simple expressions 

involving: no more characters than there are units in the base of 
o 
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the system, can then be formed. If, for instance, four be 

chosen as the base of a number system, then the first rank of 

numbers would contain four units instead of ten, and the second 

rank, sixteen units instead of one hundred, etc. We should then 

have only the four figures r, 2, 3, o ; and with these, forming the 

so-called Tetradik, all possible numbers could be expressed. In 

this system the unit is four times greater than the one on its 

right, and since four units of any rank make one of the next 

higher rank, we must indicate four units, or one of the first rank, 

by 10 ; five by 11 ; six by 12 ; seven by 13, and eight, being tivo 

units of the first rank, by 20; nine =21 ; eleven —23 ; twelve 

=30 ; fifteen =33 ; sixteen, as four units of the first rank, as one 

unit of the second rank or =100 ; seventeen =101, etc., etc. 

In the same way we may take two as the base number, and 

then have the very simple rule that two units of any rank form 

one of the next higher rank, when we should be able to indicate 

all numbers by the two symbols 1 and o ; thus, one =1 ; two, 

being a unit of the next rank, =10 ; three —n ; four being two 

units of the first rank, =100; five =110; seven =111 ; eight, 

being two units of the second rank, = one of the third rank — 

1000 ; nine =1001 ; ten =1010, etc. This system was formerly 

used by the Chinese, except that instead of a o, they used a short 

dash (—). 

From the practical use of this system to exhibit the peculiar 

properties of numbers, Leibnitz sought to deduce a basis for 

creation, by means of which the Jesuit Grimaldi might convert 

the Chinese to Christianity. 

In like manner we may use the number twelve as a base, and 

in this case it is necessary to have two simple symbols for ten and 

eleven, such for example as a and [3. We then write, nine=9 ; 

ten=cr ; eleven=//; and twelve being the unit of the first rank= 

10: thirteen=i 1 ; twenty-three—ifi ; twenty-four=2o, &c. At 

one time this system, the Duodekadik, was seriously considered 

instead of the existing, or Dekadik ; originally on the curious 

ground that because there were twelve apostles, there should be 

twelve numbers. More recently this system has been urged for 

the practical reason that twelve contains a greater number of 

factors than ten, which would simplify reckoning to some extent. 

This reasoning did not seem to offer sufficient advantage to com¬ 

pensate for the inconvenience of abandoning the existing system, 
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although the dozen=i2, and the gross=i 21 2=144 are firmly 

fixed in many branches of trade. 

We see, therefore, that an endless variety of number sys¬ 

tems might be suggested, and it is really a matter of surprise 

that the ancient Greeks, especially such a brilliant mathematician 

as Archimedes, never thought of any such number system. 

In order to compare the various systems, they are here 

given in the form of a diagram : 
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I I I I I I I I I I I 

1 10 
2 2 2 2 2 2 2 2 2 2 

11 

1 0 3 3 3 3 3 3 3 3 3 

IOO I I 10 4 4 4 4 4 4 4 4 

IOI I 2 11 1 0 5 5 5 5 5 5 5 

I IO 20 12 1 1 10 6 6 6 6 6 6 

I I 1 2 I 13 I 2 11 10 7 7 7 7 7 

IOOO 22 20 13 12 11 10 8 8 8 8 

IOOI IOO 21 14 13 12 11 10 9 9 9 

IOIO IOI 22 20 14 13 12 11 10 a a 

IOI I 102 23 2 I 15 • 4 *3 12 11 1 0 P 

I IOO I IO 30 22 20 15 14 lS 12 11 1 0 

The question may be asked, as to which of these systems is 

the best. This is largely a matter of custom. Any system may 

be made practical, and the claims of the Dekadik, our existing 

decimal system, are due to its universal use and consequent ad¬ 

vantages of custom. It is only the unfamiliarity which prevents 
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us from being able to write any of the systems readily, and use 

them in reckoning. 

One thing is evident, the larger the base of the number sys¬ 

tem, the more difficult and larger is its multiplication table, but 

also the more rapid are the calculations. The Chinese Dyadik 

system required no multiplication table at all. 

It is quite easy to convert a number, expressed in one sys¬ 

tem, into the equivalent expression in any other system. For 

example, suppose we have the number 210232 in the tetradik sys¬ 

tem (base=4), to be converted into our decimal system, we have 

only to multiply each figure by 4 as many times as indicated by 

the rank in which it stands. The first figure at the right is in the 

oth rank, and hence contains the exact number of units indicated ; 

the second figure is in the first rank, and hence e\mry unit equals 

4 of the decimal system ; the third figure is of the second rank, 

and hence contains 4-4=16 units, &c. Hence the number 210232 

in the tetradik system =2350 in the common or decimal system, 

as follows : 

2= 2 

3'4= 12 
2 • 16= 22 

1024 236 64 16 4 1 _ ^ ° 

2 10 2 2 2 ] Z- c 
3 I -256= 256 

2'- 1024 = 2048 

2350 

In the same manner we find the number ioioii in the dya¬ 

dik system (base=2) is equal to 43 in the common system. 

Thus : 

32 

I O I O 

I- 1 
I -2 = 2 

0-4= 0 
i-8= 8 

0 -i 6= 0 
1 -32= 32 

43 

If, on the contrary, it is desired to convert a number from 

the common system into another, such, for example as the num¬ 

ber 2350 into its equivalent expression in the tetradik system, 

we must divide by the base number 4. 

The first quotient gives the number of units in the first rank, 

and the first remainder, the number of units in the oth rank ; 
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the second quotient gives the number of units of the second 

rank, and the second remainder belongs to the first rank, etc. 

Thus, for example : 

44444 

235° 587 146 36 9" T 

2 3 2 O 1.2 

and 2350 (dekadik)= 210232 (tetradik). 

Also : 

43 21 10 5 2 1 

1 1 o 1 o 1 

and 43 (dekadik)= 101011 (dyadik) 

The mechanism of the four fundamental rules is alike in all 

systems. In addition, in the tetradik system, for example, we 

carry one unit to the next rank for every 

lower rank, etc., as shown below : 
four units in the next 

Addition, 

Dyadik. Tetradik. Duodekadik. 

10101001 301202 167/589^ 

1111001 I33i12 /72 920:1 

Sum: 101100010 1100320 25 

Subtraction, 

Dyadik. Tetradik. Duodekakik. 

100100010 1100230 25 o:8/57/3 

1111001 301202 (Dq 2a 1 

Remainder : 10101001 133112 167/789 a 

Multiplication, 

Dyadik. Tetradik. Duodekadik. 

10111 2302 g/3oa 

1011 213 4/83 

10111 2011 2 25926 

10111 2302 91192 

IOII10 112 10 33834 

IIIIIIOI 1230132 40/?9o,46 
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Division* 

Dyadik. Tetradik. 

1011) 11111101 (1011 2302) 1230132 (213 

10111 11210 

100010 10313 

10111 2302 

IOI I I 20112 

101 I I 20112 

When a number contains only two different figures, it is easy 

to see at a glance by what numbers (composed of the same two 

figures) it is divisible. Thus, for example, we see at once that 

the number 95959595 is divisible by 95 and by 9595. 

In the dyadik system, all numbers (including the remainder 

after a subtraction), are composed of the two symbols 1 and o, 

whence Leibnitz based on this system his theory of the divisi¬ 

bility of numbers. Thus, for example, the number iooiooiooioo, 

is divisible by 100, 1001, 10, 11, etc. If, therefore, we trans¬ 

form a number into the dyadik system we can readily find its 

factors, and then transform these back into the common system. 

For example, the number 31393, written in the dyadik system 

= 11110110100001, and we see at once that it is divisible by 111 

(=7; by 1101 (=13); by 10001 (=17); and by 10011 (=19). 

(See Lambert's Mathe. Schri/ten). 

313* 

Note to § 10. The statement that the order of the two fac¬ 

tors of a product may be chosen at will is easily proved in the 

following manner : It is undoubtedly just the same whether we 

take the factor b, a times, or take each unit in b, a times. It is 

also evidently just the same, when we take unity a times, or take 

a one time, that is : a-i = i-a—a. If now we take the number of 

units in b, a times, we must have taken a itself b times. In 

other words, if we separate b into its units : 

(1 (i —|— i —|— i —]— i —|— i . . . )=#—|— ci—|— a—j— ci-^—ci—|— . . .=b'<i. 

Thus : 4‘5=4(i-[-i-}-i-f-i4-i)=4-}-4+4+4+4=5’4 

This law is perfectly general, and may be extended to any 

number of factors, since the product of two factors can be ex- 
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tended to three ; from three to four, etc. Thus we have • 

a'bc=a'cb—bc'a—cb-ci, if in the proceeding demonstration, we 

take first the two factors a and b, and then the two factors be and 

d. But we have ab'c—a'bc, for it is certainly just the same 

whether we multiply a and b, and then ab by c, or b by c, and 

then be by a. Likewise we have bc-a=b-ca, and finally: 

abc=acb=cab=cba—bca=bca, etc. 

314. 

Note to § 24. The numbers 2 and 5 are contained in 10 

without a remainder; likewise 2-2 = 4, and 5 5=25 are contained 

in 10.10=1000. 

In order now to prove that a number such as 276, for exam¬ 

ple, is exactly divisible by 2 because its last figure is so divisible, 

we must consider the number to be divided into two parts thus : 

270+6=27-io+6. We have always the first part divisible by 2 

because it is always a multiple of 10, while the last figure is di¬ 

visible by 2 from the given condition, therefore, the sum must be 
divisible by 2, thus: ^=21io±6,= a.7_io._^|=27.5_|_3> In the 

same way we have it for 5, and also for 2-2=4 ; 2-2-2=8, etc., 

when the last two, or last three figures are divisible by 2 or 5. 

Thus, for example, in the case of the number 1484, it is divisible 

by 4 because the last two figures are divisible by 4, thus : 

1AJLA—1A0 0 + 8.4..— 141 00 | s 4 
4 4 4 1 4 

or, 675 is divisible by 5, because its last figure is divisible by 5, 
thus : 

-S-7£=AiO ±_5._JLilUL _i_ _8_4 
5 5 5 4T 

Any number may be separated into the following parts : 

Each figure multiplied by as many nines as there are figures fol¬ 

lowing, plus the sum of all the figures, thus : 

6453=6 -999+4 -99+5 *9+(6+4+5+3) 

=6-999+4 ’99+5'9+18 

because we have : 

6453=6000-1-400+50+3=6 -IOOO+4 -100+5 'IO+3 

Now since 1000=999-1-1, 100=99-1-1, etc., we have also: 

6000= 6(999+1)= 6 *999—|—6 

400= 4(99+1)= 4-99+4 

50= 5(9+0= 5-9+5 

3= 3 = 3 

6453=6-999+4 "99+5 *9+i8 
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If, therefore, the sum of the figures forming the number 

6453, is divisible by 3 or by 9, all the members of the right hand 

side of the above equation are so divisible, and therefore the 

number itself is divisible by 3 or 9, thus : 

6 4 5_3_6'9 9 9 -4- 4'9 94-5‘9~r(fi + 4 + 3_L3l 
9 9 

315. 
Note to §29. According to the rule given in §29, we find 

the greatest common factor of 72 and 168 to be 24. 

That the number 24, found by this rule is really a common 

factor, and also the greatest common factor of these two num¬ 

bers, is readily seen if we represent the numbers 72 and 168 by 

lines. Taking any suitable length as a unit, then a line 72 times 

as long (a-b) will represent the number 72, and a line 168 times 

as long (c-g) will represent the number 168. 

72 36 72 7 72 
a-b h-k c-d-e—g 

If now we set off ab twice along eg, the remainder eg=24, 

however many times it may go into ab without a remainder, 

must also divide exactly into cd, de and eg (the latter being equal 

to itself). Any greater length, such as hk—36, which may divide 

into ab, and therefore into cd and de, cannot divide the shorter 

line eg, and therefore cannot divide the whole line cg= 168 with¬ 

out a remainder. 

The same is evidently true no matter how many times the 

smaller number is contained in the greater. 

316. 
Note to §§ 28, 52, 182. 

Theorem. If p is a prime number and a and b any two 

whole numbers, neither one of which is divisible by p without 

a remainder, then will their product a-b not be divisible exactly 

by p. 

Proof 1. If a number a is divisible by a prime p without a 

remainder, then when we decompose a into its prime factors, p 

will be found among them. 

If, on the contrary, two (or more) numbers, a, b, taken sep¬ 

arately, are not divisible by a prime number p, it cannot be con¬ 

tained in their product a-b, because neither of these containing 

it among their prime factors can bring it as a factor into their 
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product. It also tollows that because a composite number is 

equal to the product of all its prime factors, that a number a 

cannot be separated into various sets of prime numbers. 

Proof 2. If both factors a and b are greater than p, divide 

one of them, such as b, by p, calling the quotient =m, and the 

remainder —r, this latter necessarily being smaller than p. We 
then have : 

b r 
z=mA~ or b=mp-\-?' 

a 

(0 

Multiplying both sides by ~ we get 

ab ar 
—z=.ma-1- 

P ' P 

cib 
If now ab were divisible by p, — would be a whole num- 

P 

ber and, since ma is a whole number, this would require — to be 
P 

a whole number also, that is, exactly divisible by p. In order 

to show the impossibility of this, divide p by r, calling the quo¬ 

tient =m' and the remainder —r', giving : 

p=m'r~\-?-> 

Multiplying this by a we have : 
P 

a- 
,ar 

-7U —■■ 
P 

ar 

P 

If, now, ar were divisible by p and 
77i ar 

P 
a whole number, 

ar 
then, also, — must be a whole number, since the total right side 

of the equation is equal to the whole number a. 

But that ar is not exactly divisible by p, may be shown by 

dividing r by p, calling the quotient —tti", and the remainder 

=r". By continuing this operation successively the remainders 

r, r\ r", r , etc., must grow smaller and smaller, and finally ==i. 

If, therefore, ab were divisible exactly by />, then, also, ar, 

ar, ar", ar. . .a-1 be divisible by p, but this last is equal to a 

itself, which, by the conditions of the theorem, is not exactly 

divisible by p. 

If none of three factors a-b-c is divisible by a prime number 

p, then the product abc is not divisible by p. This follows from 
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the foregoing, for we have crb not divisible by p, and if we put 

A =ab, then Ac is not divisible by p, nor is Aa=abc, etc. This 

theorem is a most important one in arithmetic and leads to many 

others. 

3X7. 

Note to § 32. According to the preceding paragraph there is 

no prime number other than 5 or 2 (such as 3, 7, etc.), nor any mul¬ 

tiple thereof (such as 2-3; 47; etc.), or in short, no number 

which cannot be separated into factors of 2 and 5, which will di¬ 

vide 10; 10-10=100; 10• 10• 10.=1000, etc., without a remainder. 

It therefore follows that no fraction of which the numerator and 

denominator are prime to each other, can be exactly expressed 

' by a decimal fraction if its denominator does not contain the 

factors 2 and 5. It is also evident that in such cases the decimal 

must be periodical, i. e., the same figures must return repeatedly 

in the same- order. 

If, for example, we convert \ into a decimal by dividing 7 

into 1.000. . it is evident that since none of the remainders can 

be as great as 7, they must be some of the figures 1, 2, 3, 4, 5> 6, 

and at the most there can only be six different kinds of remain¬ 

ders. Therefore, necessarily, some one of them must repeat 

itself, and the decimal then also be repeated. 

Thus for example : 

\i=o. 142857142 

^—3 -1=3(0.14285714 )=o. 42857142 

We see, therefore, at least, that the greater possible number 

of places in the repeating decimal must be one less than there 

are units in the denominator. In order, however, to determine 

the exact number of places of a repeating decimal we must apply 

the principle referred to in § 166. Thus, for example, every frac¬ 

tion of the form ———, contains n periodical decimals, as fol¬ 
io”—1 

lows : 
11 11 . 
-.=-=0.111...;——= =0.0101, etc. 

io1—1 9 io2—1 99 

318. 

When a periodical decimal is given, it is easy to find the cor¬ 

responding vulgar fraction. We put s= the periodical fraction, 
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and multiply the equation by io, or ioo, or 1000, choosing such 

multiplier as will make a whole number plus the periodical frac¬ 

tion. We then subtract the first equation from the second, and 

thus obtain a value for s without decimals, as below : 

Let 5=0. 1515. . . 

Multiply by 100 : 
1005=15.1515 

5= 0.1515 

Again let : 

99s=i 5 

c-1 5- 5 
*-9 9-33 

5= O.32 I 32 I 

10005=321.321321 

5= O.32 I32 I 

9995=32 1 
O-3 2 1-1 0 7 
* 9 9 9 3 3 3 

If the repeating period does not begin immediately after the 

decimal point, we first multiply by such number as will bring the 

expression to the desired form, and then proceed as above. 

Thus we have : 
s=o. 25300300. . . 

1005=25.300300. . . 

1000005=25300.300300. . . 

1005= 25.3OO3OO. . . 

Again : 

999005=25275 . . . 

25275- • • _ 337 

99900. .. “1332 

5=2.64242 . . . 

105=26.4242 . . . 

10005=2642.4242 . . . 

105= 26.4242 .. . 

9905=2616 

2616 436 

990 165 

319. 

Note to § 182. There is no power of a vulgar fraction, 

reduced to its lowest terms (such as J-) which will equal an 



3IO 

exact whole number. For, if we separate the denominator into 

its prime factors, such as , we see that not only the num- 
4 2-2 

erator 9, but also no power of 9, such as 9-9*9-9, etc., (see §316) 

is divisible exactly by 2 ; therefore, it cannot be exactly divisible 

by any multiple of 2, such as 2-2=4. 

We also have the converse. If the nih root of a whole 

number N, cannot be expressed in an exact whole number, 

neither can it be expressed exactly by any fraction. For if such 
a 

a fraction were possible, we should have : 

the exact whole number N; which according to § 316, is impos¬ 

sible. The decimals of an irrational root must therefore extend 

indefinitely, without periods of repetition. 

320. 

The Theory of Positive and Negative Quantities. 

Note to §§ 74-79. It must first be noted that the theory of 

equations is based upon the idea of opposed magnitudes, and 

that the rules by which equations are solved must be founded 

upon the applications of equations to actual cases. The theory 

of positive and negative quantities, although first practically used 

in the solution of equations, should really be considered separ¬ 

ately, being properly independent of the equations, and actually 

dependent upon the original conditions of the problem. 

From the nature of the case this theory must be abstract in 

the highest degree, and apparently artificial. An entirely clear 

understanding of the subject can only come after many practical 

applications and explanations. This note, therefore, can hardly 

be made thoroughly intelligible to beginners, but at the same 

time is really necessary for subsequent study. The correctness 

of the rules here given follows of itself, and agrees fully with 

what has already been said in connection with the subject of 

equations, to which reference is also made. 

(1) Addition. The idea of addition must be considered as 

consisting of the collection of several separate parts into a 



whole ; in which act of collection we must take into account 

the agreement and the opposition of the various parts. It will 

then be clear that if all the parts are in agreement with each other 

the sum will be of the same sense, so to speak, as are the separate 

parts and this will be indicated by their having the same sign. 

If, however, the various parts are opposed to each other we must 

first take the sum of the positive parts, and also the sum of the 

negative parts, and then the smaller of these two sums will can¬ 

cel an equal value of the opposing sum, and the balance will 

remain, representing the sense of the greater sum, and prefixed 

by its corresponding sign. 

Although this magnitude, in a narrow sense, is a remainder, 

yet as the result of the collection of a number of parts into a 

whole, is properly a sum, or more precisely an algebraic sum, 

and although the collection of the parts involves an actual sub¬ 

traction, yet the total performance is really an algebraic addition, 

as must be admitted, when the subject is broadly considered in 

its most general form. We therefore see, also, that the axiom 

that a whole is greater than any of its parts, applies only to 

magnitudes of the same sign.* 

(2) Subtraction. In many cases, especially in the state¬ 

ment of a problem, or the formation of an equation, it occurs 

that one quantity is to be subtracted from another of opposite 

sign ; or the subtrahend is greater than the minuend, so that the 

act of subtraction, in its narrow sense of taking one quantity 

away from another, cannot actually be performed. In order to 

permit the calculation to proceed, and enable the succeeding 

operations to be correctly performed, we must consider the sub¬ 

ject in a broader light, and hence think of the more general 

definition of subtraction, as follows : Subtraction consists in find¬ 

ing that magnitude by which the subtrahend differs from the 

minuend ; i. e., that quantity which united to the subtrahend will 

give the minuend. This quantity is then the real difference, or 

in other words the algebraic difference, obtained, as we have 

already seen, by changing the sign of the subtrahend and then 

taking the algebraic sum with the minuend. I hese easily 

remembered facts are entirely general, as will be seen by 

*A popular statement of the above may be found in the settling of an estate, in which 

the sum total of the property is found by taking the difference ot the assets and liabilities. 
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examining the following examples, which include every possible 

case : 

Minuend +8 —8 —8 +8 + 2 —2 -2 —[— 2 

Subtrahend + 2 —2 -j-2 -2 +8 —8 +8 —8 

(-) (+) (-) (+) (-) (+) (-) (+) 

Difference +6 —6 -IO —j— 10 —6 +6 —10 4-10 

It is evident here that the resulting differences (notwithstand¬ 

ing the fact that the signs of the subtrahends have been changed) 

will give the minuends again when they are added to their 

respective subtrahends. 

It is, therefore, exactly the same, whether a quantity is sub¬ 

tracted, or whether its sign is changed a?id it is then added. 

By the help of equations the truth of this rule can be made 

apparent 

If we consider the subtrahend combined with the minuend 

twice—once as it is, and once with the sign changed—the value 

of the minuend will evidently remain unchanged, and an equa¬ 

tion can be stated, thus : 

Minuend. —|—8=—|—8—2—}— 2 

Subtrahend. —2— —2 

Difference. 10 =—j—8—[—2 

We then, as above, take away from the right side—2 (i. e., 2 

negative units) and hence must add -j-2 to the other side in order 

that the truth of the equation shall be maintained. In like man¬ 

ner we have : 

— 8=—8—[-2—2 

Subtracting -)- 2= -j-2 

—10=—8—2 

And : 

—2=—2—8—(—8 

Subtracting —8= —8 

-|-6=—2—(—8 

(3) Multiplication. The rule for the influence of the signs 

in the multiplication of opposed quantities is readily deduced 

from the conditions. 

If both factors have the same sign the product is always pos¬ 

itive, but if the factors have different signs the product is 
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negative. In other words : Like signs give plus and unlike signs 

give minus. 

Here we l^ave to consider what the multiplication by a nega¬ 

tive quantity really means. 

The sign prefixed to the multiplicand signifies the sense (or 

we may say, the direction), in which the multiplicand is to be 

taken. If we take a positive quantity in its opposite sense, it 

becomes negative ; as for example, -f-8 taken once in the oppo¬ 

site sense, becomes—8 ; -f-8 taken twice in the opposite sense 

becomes —16, etc. Therefore: —i *—f-8==—8; —2 *—(—8=—16, 

etc. But if we take a negative quantity again in the same sense, 

the second negative overcomes the first * and gives a positive 

result. Thus : —8 taken once in the same sense, gives -f-8 ; or 

taken twice in the same sense gives -}-i6, etc., or —i •—8=—f-8 ; 

—2-—8r=—|— 16, etc. 

Now, if we take a negative quantity, once, just as it is, i. e., 

multiply it by —i, we get the quantity unchanged. That is, 

-|-i'—8=—8; or if we take it twice we get —16, etc. The 

same is true of —j—i •—j—8=—|—8 ; -f-2 *—(—8=-j— 16, etc. We append 

a few examples. 

Multiplicand +9 —9 +9 — 9 
Multiplier +3 +3 —3 _O 

0 

Product +27 —27 —27 4-27 

We have for the general definition of multiplication, appli¬ 

cable alike to whole numbers or fractions, whether positive or 

negative, the following : Multiplication consists in treating one 

quantity, the multiplicand, exactly the same as unity is treated by the 

other quantity, the multiplier.f 

For example, in |--| we have in the case of the multiplier J, 

the fourth part of unity taken three times, therefore, we must in 

the multiplication have the fourth part of f taken three times ; 

that is we have j5-g taken three times, and J j=3 
In the product —3 -8 we have unity taken three times in the 

negative sense, and therefore we must have also 8 taken three 

*Justasin English two negatives make an affirmative. “I have not nothing=I have 

something. ” 

fThis definition is given in Thibaut’s Arithmetic, and in Cauchy’s “ Cours d’Analyse.” 

It does not apply to irrational or imaginary quantities.” 
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times in the negative sense, or —3 -8=—8—8—8=—24. In 

the same way —3-—8=—f—8—]—8—j—8=32. 

(4) Division. The rule for the division of opposed quan¬ 

tities follow from the rule for multiplication, namely : if the 

dividend and the divisor have the same signs, the quotient will 

be positive, but if they have different signs the quotient will be 

negative. In other words : Like signs give plus, unlike signs 

give minus. The quotient must always be a quantity which 

when multiplied by the divisor, will give the dividend. For 

example : 

+8 
+2 

+8 

.-[-4 ; because —|—4 2=—(—8 

:—4; because—4'—2 =+8 

because —4 ‘-j-2=—8 

=-)-4 ; because -[-4 ■— 2 

321. 
Note to §92. (1) From the multiplication 

nomial quantities we obtain a relation which may 

to simplify the division of polynomials. If, for 

multiply 5ac—|be by ,jax-\-4bx, we have : 

5 ac—Uc } 
7ax+iix \ factors 

of two poly- 

often be used 

example, we 

3 5 a2 ex—K^-abcx 

4 abcx—b2cx 

35 a2cx— |- abcx—T8^b2cx 

Now it is evident that this product is divisible by either of 

the two factors by the multiplication of which it has been pro¬ 

duced. 

Let us now take the reverse case, and assuming the result to 

be unknown, divide 35(Lex—|abcx—^b2cx by 5ac—\bc. 

It is clear that the quotient will contain more than one mem¬ 

ber, because the dividend contains more members than the 

divisor ; also that one member of the quotient must be a quan¬ 

tity which, when multiplied by the whole divisor, will at least 

give one member of the dividend. From these considerations 
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we deduce the following rule : Divide one member of the divi¬ 

dend (say 35a2cx) by one member of the divisor, (say 5ac) and (o %(l *cx \ 
—--—yaxj as one part of the desired quo¬ 

tient ; then multiply this by the entire divisor and subtract the 

product from the dividend. The same operation repeated upon 

the remaining portion of the dividend will give the second num¬ 

ber of the quotient, etc., as the following example will show : 

5 ac—\bc 3 5 a2cx— -| abcx- 
3 5 <Pcx— K^abcx 

-j%b2cx 7 ax—|— bx 

4 abcx- 
4 abcx- 

PJjlCX 1 5' 
P^Jfcx 

It is clear that if the first time we divide 35a*cx by 5ax, that 
. . 35 a2cx 

the quotient^-=nax. 
5ac ' 

Also $ac is evidently contained in the first number of the 
. 4 abcx 4 

remainder --=-bx times. 
5ac 5 _ 

If, instead of dividing the first member of the dividend by 

5ac, we had divided the second or third member, the resulting 

quotient would have been a fraction, which would not have been 

so convenient. It therefore follows that the arrangement of the 

members of the dividend is not a matter of indifference. The 

members of both dividend and divisor should be so arranged that 

they stand in the orders of the ascending or descending powers 

of one and the same symbol. The reason for this arrangement 

will appear if we multiply together two factors which are so 

arranged. In the preceding example, both dividend and divisor 

were arranged according to the descending powers of a, namely, 

a~, a\ a°, in the dividend, and a1, a0, in the divisor, and also 

according to the descending powers of b, i. e., b°, bl, b2. 

For practice work out the following indicated divisions : 

a2—b2—ac-\-bc . , 
- —a-\-b—c 

a—b 

7^+*+6 

-6 : 

.,4 -x 
v2 

v-2 
-X- 

x4—Xs—7 x2-\- x-\- 6 

*+1 

x*-\-ax-\-b 

x-j-a 

=x3—2 jc2— 5 x-\- 6 

■X—]— 

x—|—a 
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(2) According to §§254, 256, in the following geometrical 

series : 
an~lfall~2x-\-an~3x2-\-aJr~ix3-\- . . . -\-xx~1 

JC 
in which an~x is the first term, x'^1 the last term, and the expo- 

a 
_d11 

nent, the sum will be-. This gives us directly the law : 
Cl' 

Any expression 0/ the form x'1—-a" must be divisible by x—-a without 

a remainder, n being any whole number. Thus we have directly as 

a result of the above rule : 

alfr=a,-\-a6+6‘‘ ; 
a—b 

a*—P 
~a £ —cdfcfb-fatf -\-bz ; 

_j 
..v —I—X —I—X —I—X—I- I. 

a:— 1 1 1 1 1 

(3) Ihe expression an—bn is also divisible by a-\-b, without 

a remainder, when n is an even number, but not otherwise. The 

expression a‘'-\-b" is also divisible by a-\-b without remainder 

when n is an odd number, but not otherwise. 

322* 

Note concerning Proportions, etc. (i) When two quanti¬ 

ties, a and b, have the same ratio to each other as two other 

quantities, c and d, so that a divided by b gives the same quo¬ 

tient as c divided by d, we can form from these two factors of 

equal value the following equation : 

a c 

b d 

Such a equation is called in the older phraseology, a Propor¬ 

tion, and written, instead of as above : 

a:b=c:d 

This is read, a is to b, so is c to d ; that is, a is divided by b as 

often as c is by d. The quantity a is called the first term, and 

the quantities b, c, and d, the second, third and fourth terms, 

respectively ; also a and d are called the extremes, and b and c 

the mean terms, or briefly, the means. Thus we have for the 

our quantities 2, 4 ; 3, 6 the following proportion : 

2:4=3-'6, or f=f. 



If the two middle terms are alike, as a:b=b:d the proportion 

is a co7itinual one, and the quantity b is said to be a mean pi'opor- 

tional to the other two. 

Thus we have 3 is to 6 as 6 is to 12, or 

3 : 6=6 : 12 

and 6 is a mean proportional between 3 and 12. 

If the four terms of a proportion are undenominate numbers, 

or are all of the same denomination we have the followfine 

relations ; applications of which will be found in Geometry. 

If : a : b=c : d, or 3 : 6=2 : 4 

we have also : ad=bc, or 3-4=6-2 
Cl c 

Proof. From - =—, we have, by multiplying both sides 

by bd, 
ad=bc 

If one term in a proportion is unknown, it can easily be de¬ 

termined. 

If, for example, it is required to find x in the following pro¬ 

portion : 

3 : 5=9 •• x 
we have from the above proof, the product of the extremes is 

equal to the product of the means, or : 

3-^=5 '9 
whence: x=r^= 15 

Likewise, if: 
3 : x=g : 15, 9^=45, and x=s 

x : 5=9 •’ 15> 15-^=45> and x=3 
ac 

a : x=b : c, bx=ac, and x= _ 

In this way, also, we find the mean proportional between 

two given quantities is equal to the square root ot their product. 

Thus, if we are required to find the mean proportional between 

the following quantities : 3 and 12 ; 5 and 2 ; a and b ; we have: 

3 :x=x:i2, whence ^=36, and x— \ 6 

5 : x=x : 2, whence .r2=io ; x= y/io=-t-3-162 . . . 

a : x=x : b, whence x1=ab, and x=s/ab 

The problem to divide a quantity a, in continuous proportion 

means to divide a into two such parts that the smaller part shall 

be to the larger part, as the larger part is to the whole quantity. 
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a : b=c : d ; 15 : 3=20 : 4 

(2) In every proportion the relation of the terms can be 

reversed. Thus, in the proportions 

a c 

b =d 
we can write also : 

, , b d 
0 : a—a : c ; =— ; 3 : 1 s=4 : 20 

a c 0 J 

(3) In every proportion the relation of the first term to the 

third is the same as that of the second to the fourth. Thus, in 

the proportions : 
cl C 

a : b—c : d : = ; 3 : 6=9 : 18 
b d 0 y 

7 7 ci b 
a : c—b : d ; == ; 3 : 9=6 : 18 

£ CL 
we have also : 

(4) In every proportion, the relation of the sum or differ¬ 

ence of the first two terms is to either the first or second term, 

as the sum or difference of the last two terms is to the third or 

fourth term. Expressed in symbols : 

a : b=c : d 

a-±-b : g=c-\-d : c ; 

or a-\-b ; b=c-\-d : d ; 

Proof. We have from : 

a c 

or 8 

10 

or 6 

2=12 : 3 

2=15 : 3 
2=9 : 13 

a 

b^1 

d 

l±Ior b 
Also 

a ±1= 
d 

-4-i or 
c a 

or 

a±b 

b 

b-±-a 

a 

a-\-b 

c-\-d 

d 

d-^-c 

c 

c~\—d 

a 

323. 
When several ratios are equal to each other, the sum of all 

the first terms will be to the sum of all the second term as any 

first term is to its second term. Expressed in symbols, we 
have, if : 

A : a=B : b=C: c=D : d=B: e, etc,, 
then will : 

A-\-B-\-C-\-D-\-E. . . : a-\-b-\-c-\-d-\-e. . .—A : a=B : b, etc. 
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Proof. Call the common value of all the ratios =<?, and we 

have from the first series : 

A . B 
—e; A—ae: 7 

a b 

C D 
—e; C=ce; 7 

c d 

=e ; B=be; 

—e; D=d ; 

A+B+C+D+. . . =0e-{-fo=.■ • • 

^4 —|——|— C7—|—-Z^—J— . . z==(a-\-b-^-c-\-d-{-. . .)e 

A+B+C+B+ . . . A B 
-e——= 7 = etc. 

a b ^—j—<5—|—<7—|——|— . . . 

If, therefore, several fractions are equal to each other, then 

also each fraction is equal to the fraction of which the numerator 

and denominator are equal to the sums of all their numerators 

and denominators, thus : 

2. 
3' 

• 8_- 

1 2' 

•4-14- 
6-2 1" 

.6- 

’9" 
.2+8+4+14+6. 
3 + 12+6+2 1 + 9' 

•34 
51 

324. 
Note to § 214. If it is required to extract the square root of 

a polynomial expression which is in the form of a complete 

square, we must follow the same rule as with numbers, i. e., 

proceed according to the formula : 

; see §191. 

Thus, for example : 
a 

abb 
y/ (4 x4— 12 ax3-\- 2 9 a2x2—3 oa3x-j- 2 5 a4= -j- (2 x2—3 ax-j- 5 a2) 
d2-=\x4 

2>i b 

4X2, —Zax — 12ax3-\-2ga2x2 

2 ab-\-b2= —i2ax3-\-ga2x2 

2a 1 

4X2—6ax, 5 a2 2 oa2x2—3 o<23-)- 25^ 

2ab-\-b2=2oa2x2— 3oa3x-\-()ax4 

A similar principle holds good for cube root. 

325. 
4 

Note to §216. Magnitudes such as y/—4; V—a\ V—a, in 

which the root symbol with an even exponent stands before a nega¬ 

tive quantity, are called by some mathematicians impossible quan¬ 

tities, but by others they are termed imaginary quantities ; for 



32° 

although no root can be extracted in numerical terms, yet such 

expressions can be used in connection with the so-called real 

quantities (that is those which can be numerically expressed with 

more or less degree of exactness), and many calculations which 

would otherwise be very tedious and difficult, be thus greatly 

simplified. The term impossible is certainly incorrect when ap¬ 

plied to such quantities, for they are certainly not impossible in 

the sense in which we would regard, for example, such expres¬ 

sions, as a triangular circle, or a circular triangle, etc. The name 

imaginary quantities, is, however, not much better. It seems to 

imply something which can be formed in the imagination, but 

not in reality, such as “ castles in the air. ” But it will be found 

that the class of magnitudes of which we are speaking, can 

exist not only in the imagination, but also in reality, hence the 

unsuitability of this name. The word “imaginary” in fact, is 

applied properly, not to the quantity itself, but only to the 

numerical extraction of the root, which latter has no real existsnce, 

so that we can say correctly that the numerical value of it is 

imaginary. 

If this peculiar class of magnitudes is to be named, the title 

suggested by Gauss is far better, namely, lateral quantities, since 

this conveys a definite meaning.* 

For the present we must consider these expressions as if 

they were actual results, that is, as symbolical quantities, just as 

any other symbol, and we can then apply to them without diffi¬ 

culty the same rules and methods as to the so-called real quantities. 

The calculations with lateral quantities may often be simpli¬ 

fied by separating the expression under the radical sign into two 

factors, one factor being the quantity itself with reversed sign, 

and the other factor being —i, and then indicating the root of 

each factor separately, §211. 

Thus we have, for example : 

—4=4(—1), whence: 

sf—4=s/ 4(—1)=2\/—1 

%/—5=v/5(—i)=\/5n/—1 

v/—9=v/9(— 1)=3v/— I 

\/—a=V a(—i)=x/ax/—1 

-i: 1 his matter will be more fully discussed in Lubsen’s Analysis. 
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Each lateral quantity may therefore be considered as the 

product of two factors, of which one is a real quantity, and the 

other is y/—i, which latter we may consider as a special kind of 

unit, and to which we must apply the same methods and rules as 

to any other symbolical unit. Gauss suggested that the expres¬ 

sion y/—i be represented more briefly by “ i, " and hence ^y/—1 

by ±i. 

We must consider also the difference between the even and 

the odd powers of y/—1, as these are by no means alike. We 

have : 

(V—i)1==V-—1 

(\/— 1 )2—\/ (—71)(—1)—n/ (—1 )2== 1 (§216) 

or, (y/—1 )*=[(—i)2] —(— 1)—— 1 

(V—1)3=(\/— i)2 V—1=(— i)v/—1=—W—1 

(n/—I)—(n/—I)2(n/—I)—(—J)(—I)==I 

or, (>/—1 )"=[(—1 )4]4=(—1 )2=i 

(n/—1) ~(\/—i)4V—1=1 s/—1=V—I 

We see, therefore, that the first power of y/—i=v/—1, the 

second power =■—1, the third power =—y/—1, and the fourth 

power =1, beyond which these expressions repeat themselves. 

If, therefore, we let n be any whole number other than o or 1, 

we have in general : 

(y/—i)4rt=i, or iin— 1 

(y/—iyn+-——1} or f4'i+2=—1 

(y/—i)4"fl=v/—1, or iin+1=i 

(^/—i)4n+8=—y/—1, or f4ft+s——i 

326. 
Examples. 

(1) \/—i-f-3\/——!—5 W 1 

\/—4-f-W—9—2*y—I_f"3v/—I==5 W—1 
y/-a-\-y/-b-y/-C=(y/ d~\-y/ b~\~ y/ c)y/—1 

a.y/—4—W—a“=2dy/—1—ay/—i=ax/—1 

(2) y/—a-y/—b=y/ay/—i-y/b-y/—i=—y/ab (§216) 

s/—3 V—I 2= y/36= 6 (§216) 
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(a) Each of the combined real and lateral expressions may 

be called a “complex-' quantity. An example of such a “com¬ 

plex''- quantity is 2-[-3%/—1. If we represent the real portion by 

a, and the factor or coefficient of the lateral quantity by b, every 

complex expression may be reduced to the form : a-\-by/—1, or 

a-\-bi. 

Examples. 

(3) 4+ 6\/  I 6—|—2 = 6—|— I Oy/ I 

3+3v/—9—3—2n/—4=o+5n/i=5n/—1 

c1—|—by/— i —|—a—b y/— 1—2 a 

(4) (a~\~by/—1) {<2—by/—1 )=tf2-[-Zv §91. 

(ci—|—by/—i /—a1—bcl-\-2aby/—1 § 186. 

{a—by/—i )2—cf—b2—2 aby/—1 

(x-\-a-\-by/—1) (jv-f-a—by/—1 )=(a--)-<2)2-[-^ 

(b) It will be shown in analysis, that as many different 

roots can be extracted from positive or negative unity, or from 

any given quantity, as there are units in the exponent. 

Thus, for example, there are three different quantities which 

raised to the 3d power will equal 8 ; four different quantities 

which, raised to the fourth power will equal 1, etc. This we 

will only mention here, giving also the following examples : 

(_|~2)3=8 

(-i + v/-3)3=(-i)8+3(-i)V-3+3(-i)(x/-3)2+(v/-3)s= 

= !— 3x/—3+9—3v/—3=8 (§ 213,2) 

(—1—v/—3) — +1—3\/—3+3%/—3+9=8 

whence : ^8—2 ; =—1 + \/—3 ; ——1—\/—3 

i4=i ; (—i)4=i ; (y/—i)4=i ; (—v/—04=i 

whence : 

y/—I 
1 

\/—i 

y/i = i ; = i ; 

6y/-I 

n/—9_3n/—i_Ti . 
y/—4 2 y/ I 2 ’ 

-y/-j- I . 

—v/— 

+ V7—1 

<2 y/-I & 

by/—I b 

I 

I-= 
y/-I y/-I-y/-I -I 

a a (a—y/—b) a“—ay/b'y/—1 

a-\-y/—b (a-j-y/—b) (a—^—b) c?-\-b 
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a-\-by/—i (a-\-b</—i) (a-\-t>x/—i)_a2—b2-\-2aby/—i 

a—by/—i (a—by/—\){a-\-by/—i) or-^b2 

327. 
When it is required to square a binomial numerical expres¬ 

sion of the form y/ay-y/b it is evident that we shall obtain, in 

general, a binomial expression of the form Ay~y/B, consisting 

of a rational and an irrational part. Thus, for example : 

(v/2 + n/3) — 5+2n/6=5 + n/24 

(>/ 5—\/ 3)2—8—2 v/15=8—v/6o 

Conversely, the square root of a numerical expression of the 

form Ay~y/B, will in general be an expression of the form 

y/aAz.\/b, in which, according to circumstances, one of the parts 

may be rational. The rule by which these roots may be found, 

is readily deduced. We have : 

\/(5+\/24 )=Vx-\-s/y 

whence: 3-\-y/2 4=x-\-y-\-2y/xy 

Now, if we seek such values of x and y as shall make the 

rational and irrational members of each side of the equation 

equal to each other we shall have : 

(1) ■*•+>’= 5 
(2) 2K/xy=x/24 

whence : x2-\- 2 xy-\-y2= 25, an d 4 xy— 2 4 

Subtracting we get : 

x2—2xy-\-y2— 1, whence : 

(3) x—y=±i 

From (1) and (3) we have x—3, y=2, and hence : 

\Z(5~I~\/ 24)—>/ 3~\~ 2 

In order to find ^(zb^dz^—or> for example, v/(—3+ 

v/—16), we proceed as follows : 

Let: x/(—3+\/—l6)=\/x-{-s/—y 

whence: —3+>/—16=x—y-\-2x/—xy 

(1) x—y=—3 Xs— 2xy+y==9 

(2) 2^—xy=s/—i6 4-xj—16 

x2-\- 2 xj '-j-y2= 2 5 

(3) 5 

From (1) and (3) we have : x=i ; y=4, whence : 

\/(—3~bv/—i6)—i-{-2y/i 



324 

328* 
In some especial cases fractional algebraic expressions, 

when the numerical values are substituted for their symbols, 

reduce to the expression -g-, which we must be careful not to con¬ 

found with o, or to consider as meaningless. 

In order to show that -§- may be a real expression, and that, 

in general, for each special substitution it has a special meaning, 

let us multiply the numerator and denominator of the algebraic 

expression : 
b(a-\-b) 

a 

by a—b, by which we do not alter its value. We then have : 

b (a-\-b) b (a-\-b) (a—b) 

a a {a—b) 

or 
b (a+b) J (d—b2) 

a a (a—b) 

Both of these last expressions must give the same value 

when any numerical values are substituted for the letters. If we 
, 7 , bia+b) J(a2+b2) „ .r 
let a=4, 6=2, we have —3, and—1 ' =3. But it we 

a a (a—b) 

7 b (a-\-b) _ . bid2—b2) . 
put a=4, b=4, we get: W——8, and W-_r-=-£-j}=#. 

CL CL (CL 0 j 

Again, if we take a= 5, b= 5, we get for the first expression 

= 10, and for the second =-g. 

We see therefore that for certain relations between a and b 
bid2_b2) 

(in this case when a=b) that the fraction W-A gives the inde- 
v ’ a(a—b) & 

terminate expression and also that the value of this expression 

depends upon the values of a and b. Thus if a= 5, b= 5, then 

-g—10 ; if <2=3, <5=3, then-g=6, etc. 

In the above instance we see that we can readily avoid the 

introduction of the cause which makes the expression 

reduce to 4, by reducing it to the form 

b(a*—b2) 

a(a—b) 

Such a reduction 
a 

is, however, not always possible, and we must then consider the 

expression -g as indeterminate, or else determine its value in some 

other way. 

In the higher mathematics the expression -g often appears, 

but no regular rule has been deduced by which its value can be 
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determined. In elementary algebra, therefore, it is sufficient to 

remember that the expression -g- is not determinate, but may have 

at one time one value and at another time a different value. 

The formula for the summation of a geometrical series is : 

a (en—i) 
s=——-— 

e—i 

In the*case when e=i (and the series therefore =a-\-a-Ara-\- 

. . .) the sum evidently becomes na, while the value obtained 

from the formula is : 

The expression -y-——^ becomes ={g- when a=i, but it 
a 

is also easy to see that for a— i, if we multiply numerator 

and denominator by \/(8-|-<2)-|-3, thus : 

[v/(8+^)—3] [n^(^+<2)+3]. a—1 

(tf2—I) [v/(^_f*<2)+3] (^2—0 [*/(8+a) +3] 

v/ (8-f~a) —3 1 _ 

a-—1 (^+0 [(8—f-3 ] 
whence 

329* 
There exist in nature many mathematical researches which, 

we cannot fail to realize, extend into the realm of the infinite. 

The capacity of the mind, as well as the body, has its limits, 

and it must be admitted that there is a multitude of phenomena 

which extend beyond these limits. For example, no man can 

consider time, or space, as other than infinite (i. e., endless). 

Although all mathematical investigations in which the relations 

of the infinite are concerned, belong properly to the so-called 

analysis of the infinite, yet there are among them some cases 

which permit elementary discussion, and since these cases 

appear in some branches of applied mathematics (such as Me¬ 

chanics and Geometry), we shall here briefly glance at them. 

We must here ask the reader's indulgence and assistance in our 

attempts to illustrate this subject ; for that which belongs to the 

mind cannot be grasped by the hands, and in discussing such 

subjects it is easy to argue in unending circles and make the 

matter darker than ever, by futile attempts at explanation. 
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Let us first consider the following geometrical progression : 

i+4+8+rV • • pr- 

It is evident that in this series the terms become continually 

smaller and smaller, and that n can be taken so large that—— 
2 

will be smaller than we can describe, or even conceive. 

If we sum up, according to § 254, some of the firs*t members 

of the series we see that the value will be almost exactly the 

same for a billion terms as for a million terms. In both cases 

the sum is almost equal to unity. No matter how many terms 

we give the series, its sum can never equal unity, and in no case 

can it possibly be greater than unity. 

These facts, perhaps curious to the beginner, we can readily 

deduce in the following manner. For any number of terms n, 

no matter how great the number, we have ——for the last term, 

and hence can apply the general formula for the sum : 

te—a 

e—1 

in which for the case under consideration a=.\ ; e—\ ; i———. 
2 

Substituting these values we have : 

11 11 11 

2n 2 2 2 2 2 
(§ 254) 

from which, multiplying the numerator and denominator by 2, 

we have : 
1 

We therefore see that s can never be greater than 1, but can 

be brought so nearly equal to unity that the difference shall be 

smaller than any assignable quantity ; for the greater n becomes, 

the smaller will * be. 
2n 

We now ask : how far must the series • • be carried, 

or how great must n be conceived, in order that this difference 

—- shall become so small that we shall be unable to assign any 
2n 

smaller value to it ? 



327 

Answer. No matter how small a magnitude may be con¬ 

ceived, yet since any actual quantity must be conceivable, we 

can conceive a smaller one. In order to make „ so small that 
2n 

no smaller value can be assigned to it, brings us to the infinitely 

small. This, then, is a real “non-plus-ultra," a “thus far and 

no farther/' for if there were any “beyond," there could be no 

infinity. We are therefore compelled to admit that n must be 

infinitely great, (represented by oo ), whence ^ =a^ , and con¬ 

sider the series as practically endless. So long as the terms of 

the series can be conceived as growing smaller and smaller, so 

long the series itself (that is, the number of its terms) cannot be 

actually considered as infinite. The idea of an infinite quantity 

is in every case a mental conception which is itself without 

limit, forming a thought to which no limits can be set, and this 

it is which is sought to be conveyed by the word infinite. 

It is therefore evident that if we for a moment consider the 

number of terms of the series: J.. . n , as infinitely 
2 

great, there is bound up with this conception also the conception 

that the last term must be infinitely small ; that is, so small that 

it cannot be conceived any smaller. 

Again, if we conceive n as infinitely great, we must neces¬ 

sarily also conceive the series as extending to infinity, and there¬ 

fore actually not divisible so that we could take, for instance, 

half of its terms. Against this latter view, the ordinary reason¬ 

ing will, however, be apt to rebel. This objection will disappear, 

however, if we do not consider oo as a number, that is, a collec¬ 

tion of units, but rather as the absence of number—a quantity so 

great that it cannot be made any greater. It we hold fast to this 

point, that infinity cannot possibly be exceeded or increased, we 

must see that the terms of this infinite series, -g—J— 4H” • • • > n°t 

only approximately, but actually, must reach o in value, for its 

terms must extend until they become smaller than any value 

which it is possible to assign. But a quantity so small that no 

value can be assigned to it, and which cannot be further sub¬ 

divided, is not a real magnitude at all. In order, however, not 

to cut the thread of our investigation or lose connection with the 

argument, such a constantly diminishing value is considered as 

always being a real value, and in order to be able to use it in 
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calculations it is expressed by ^ , by which is meant an infinitely 

small quantity (an indivisible magnitude, a differential, fluxion, 

etc.; the beginning or ending, without actual magnitude itself, 

but which have been, or will be, a real magnitude). 

Concerning the form we shall study by and by. The 

subject cannot be pursued here further, as it belongs to the In¬ 

finitesimal Calculus (Differential and Integral), which forms in 

itself a branch of higher mathematics, requiring a separate 

treatise. * 

We shall here show by examples, however, that the members 

of a constantly diminishing geometrical series become ultimately 

really, not approximately, indivisible, and that hence the infinite¬ 

ly small quantity is really a magnitude, which, being no longer 

capable of subdivision, is properly placed equal to zero. 

(i) Suppose we consider the lifetime of a man as unity. 

Then suppose \ of this to elapse, then let one-half of the remain¬ 

ing half, or \ of the whole, pass, and so on to infinity, we have 

J-f-J—f-J-j-. . .—f—Qo • But if the man's life is to end, we must 

consider the last member of the series as a mere instant, a 

moment, which cannot be sub-divided into smaller parts. 

If it were not so, since time is a continuously passing quan¬ 

tity, there would still always be a small amount of time remain¬ 

ing, i. e , the man would live forever, which, besides being con¬ 

trary to our experience of nature, is also contrary to our original 

premise that the life should terminate at a definite period of time. 

All real quantities have the common property that each is 

composed of innumerable similar parts, and is therefore capable 

of being subdivided. If it were not so we could not conceive 

any unit or scale by which these quantities could be measured, 

neither could they be represented by numbers; in short we would 

be without the conception of quantity. If then the last instant of 

time, in the above illustration, cannot be further divided into any 

conceivable smaller periods of time, it is evident that such an in¬ 

divisible or infinitely small quantity, , if it cannot exist in the 

imagination, and cannot be used interchangeably with zero, at 

least cannot be used in comparison with real values. 

Hence it is clear that the usual expression : A quantity can 

become smaller than any assignable value, is practically the same as 

*See Lubsen, Infinitesimal Calculus. 
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saying that an infinitely small quantity is no longer capable of 

sub-division. 

Any assignable amount of time must have duration, as well 

as beginning and ending. An instant, however, has no assign¬ 

able duration ; its beginning and its ending coincide, and hence 

instantaneity is non-divisible. Notwithstanding the fact that, be¬ 

cause of this indivisibility, an instant can have no magnitude, 

yet it is certainly different from an absolute nullity or zero. No 

man can conceive of the passing of an actual zero, but every 

one can conceive of the nondivisible and nonmeasurable instant. 

The greater the number of terms summed up of the series 

*+*+»+•••. the smaller will be the difference by which the 

sum differs from unity. Since this difference becomes smaller as 

the number of terms increases, and as it becomes ultimately 

smaller than any assignable value, it is evident that i is not only 

the limit which the sum cannot exceed, but it is actually the true 

sum of the whole infinite series. For, we get 5=1 — ^ , and 

since the member -2ay is indivisible and may be considered =0, 

therefore, s= 1. We see, therefore, that a thing may be con¬ 

sidered infinite in one sense, and yet real in another. The above 

' series is infinite, with regard to the number of its terms, while 

its sum has the very definite value of 1. 

It may be noted that in this series each term is equal to the 

sum of all the following terms : 
i_i 1 11_1 1 
2-4“8“l 6 • • • 00 

i—i—I— 1_I_J— 1 
4— 81 1()T3 2 ’ • * CO 

Beginners sometimes think they find an inconsistency in 

this fact, since because each term is twice as great as the next 

following term, which we have said may be considered equal 

to o, should when doubled, give the next to the last term, etc., 

and hence all the terms may thus be proved equal to o. 

This reasoning involves the error of assuming that the last 

term of an infinite series can have any assignable value. Such a 

series may be compared to a circle, which is absolutely without 

end. 

All such infinite series may be summed up. 

^—|—^—|—3^7—1— - • • 

i+21(T+8lT+ • 

Thus we have 
I _l 

00 2 
1 — 4 

00 -T E 

_1 _2 
CO -3 
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(2) According to the rule in §318 we have for the value of 

the endless periodical decimal 0.3636. . .=T4T, namely : 

5=0.363636 (1) 

ioos=36. 363636 (2) 

995=36 
o-3 6.-_4_ 
3 9 9 1 1 

Although the correctness of this rule is undoubted, yet the ob¬ 

jection has been made by some that the series of decimals in the 

second equation, on account of the moving of the decimal point, 

is not the same as that in equation (1), and that equation (2) 

should properly have two decimal places fewer than (1). This 

would make the difference between the two decimal portions not 

=0. The argument is made that no matter if both decimals be 

extended to infinity, the one which started with two more deci¬ 

mals would always have two more. This, however, is a false 

conclusion. The difference between the finite cannot be meas¬ 

ured by two steps. The infinite can neither be increased or 

diminished by the addition or subtraction of any finite quantity. 

Both series of decimals, when extended to infinity, are equal to 

each other (00 ±a—oo ). 

The truth of the operation can be made evident by reversing 

the operation, thus : 

5=xx=°-3636 • • • 

1005=36^=36.3636. . . 

qqs=36=36.0000. . . 

(3) Looking at the matter in another light, we may consider 

the period of the fraction as a geometrical series, and proceed to 

find its sum. We may take the period as terms of such a series, 

in which T3^- is the first term, is the exponent, and the num¬ 

ber of terms =», so that the last term will be ^ =0, we then 

have : 

5=0.3636. 

1 
whence: s=°° 

- 36 I _ 3 6_L_3J]__L_ 
• • —1 00T1000 oT 100000 01 • 

• _1_36_ Q- 3 6 
1 0 0 1 0 0_^ 100_3 6_ 4 
_1 1 9 9 T9 11 
100 1 100 

330. 
Under the title “Mathematical Sophisms," a volume of falla¬ 

cies has been published at Vienna (1850) by Herr Viola ; the book 
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containing no explanation of the fallacies. We give here a pair 

of the most deceptive of these fallacies with explanations. 

Herr Viola shows how one may prove that 4 is greater than 12. 

It is admitted that : 

+7> + 5 

now add : —8=—8 

then multiply : —4=—4 

4 > 12 

The assumption is here made is that because “ equals added 

to equals, give equals,” therefore equals added to unequals, give 

unequals, with the inequality on the same side of the sign. 

This statement is by no means general, but is only true for 

the special conditions in which the addition or subtraction of 

equals to or from the inequality, gives the members of the ine¬ 

quality the same sign as before, (Example 1) : 

(1) (2) (3) 

+7>+5 +7>+5 ~I-(—5 

—4=—4 8— 8 —6=— 6 

+3> + i —1<—3 +-— 

If the signs become changed the direction of the inequality 

sign must be reversed, (Example 2). 

If the signs come out different on both sides (Example 3) no 

comparison of value is possible, and the sign of inequality be¬ 

comes meaningless, because we cannot compare articles of a dif¬ 

ferent kind, and can no more say that -f-3 is greater than —2 

than we can say that 3 minutes are greater than 2 dollars. 

The signs -|- and — are here “ denominations ” (§ 144). An 

absolute number has no sign whatever. A false idea, formerly 

too current, that a negative quantity was smaller than a positive 

quantity, or even smaller than o, arose from the ideas of creditor 

and debtor, so that that the saying arose of a debtor that he owns 

less than nothing. The debtor might well wish his debts to be 

smaller than nothing, but mathematics does not deal with wishes. 

A quantity smaller than zero is impossible. 

331* 
The following fallacy was intended to demonstrate that all 

numbers are equal. 
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Suppose a^>b, and also a—b=c, we then have : 

(a—b) (a—b)=(a—b)c 

or a2—2ab-\-b2—ac—be 

adding : —ac-\-ab—b2= —ac-\-ab—b2 

a2—ab—ac=ab—b2—be (2) 

or a{a—b—c)=b(a—b—c) (3) 

whence : a=b 

Explanation. From the expression a—b—c, we have 

ab—b~=bc. We have, therefore added to both sides of equation 

(1) the quantity—ac-\-bc, and equation (2) thereby becomes 0=9. 

We also see that in equation (3) a—b—c—o, and the equation, 

therefore is really a-o—b'O. 

But when o is a factor in any product the entire product be- 

comes=o, notwithstanding the other factors, because zero can¬ 

not be increased by multiplication, neither can any arithmetical 

operation affect its value. 

332, 
In the following manner it was attempted to prove that five 

is equal to four. 

Let x—[—z g 

then (a'-|-z){x—z)=g(x—z) 

and x2—z2=gx— 9 z 

adding z2—9 x=z2—gx 

x2—gx—z2— gz 

completing squares by adding 8^, we have : 

x2-gx-j- ^-=z2—gz-\- 

or (^—1)2=(^—f)2 (1) 

JC—I=z—|- (2) 

x=z 

Equation (1) is false. This will be seen by substituting the 

values for x and z, (i. e., 4 and 5) which are really known, 

though ostensibly sought, we see that the root of the leftside is 

positive and the root of the right side is negative, =—J. 

Equation (2) should properly be written : 

whence we simply get again : 

x-\-z=g 
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% 

t 

The rule “equals treated equally give equals” is always 

true, but it by no means always follows that quantities which 

when treated alike give equals, are therefore in themselves equal. 

We know that 

(+^)2—(—°y 
both sides being equal to -|-a\ but it does not follow that 

—|—(2= (l 

333. 
We shall close with the following puzzle. There is an equa¬ 

tion with one unknown quantity but with no root! 

If we have : 

i—{-n/ x—i—-f-v'' x—4 

we get, according to § 230 : x—$ 

But this value of x, when substituted in the equation, fails 

to satisfy it, although it is clearly derived from the equation. 

The reason for this puzzle lies in the fact that the equation is 

originally a false one, and no true conclusion can be drawn from 

false premises. The falsity of the equation can be seen by in¬ 

spection, before beginning to attempt its solution. It is apparent 

that .* cannot be any positive number greater than 4, for in such 

case : 

\/ x-— 1 > \/ x—4 

Neither can x be greater than 4, or less than 1, or be negative, 

since a “lateral"' or imaginary quantity cannot be equal to a real 

one. We see, for the same reasons, that x cannot be either a 

lateral or a complex quantity. How then can the value jv—5 be 

obtained from the equation ? 

We have just seen above that quantities which when treated 

alike give equals, are not always themselves equal. If we take 

for the double signs of the roots (§216) the lower or negative ones, 

we have a possible equation, namely : 

1—-s/ jc—1——>/ x—4 

which equation is satisfied by x—$. It must be remembered 

that in all arithmetical operations the symbols of mathematics, 

like the letters of the alphabet, should never be used to promote 

thoughtless deceptions, but should be made to serve their true 

purpose of recording existing and possible knowledge. 
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