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Abstract	

There	are	many	continuous	quantitative	dimensions	in	the	physical	world.	Philosophical,	
psychological	and	neural	work	has	focused	mostly	on	space	and	number.	However,	there	
are	other	important	continuous	dimensions	(e.g.,	time,	mass).		Moreover,	space	can	be	
broken	down	into	more	specific	dimensions	(e.g.,	length,	area,	density)	and	number	can	be	
conceptualized	discretely	or	continuously	(i.e.,	natural	versus	real	numbers).	Variation	on	
these	quantitative	dimensions	is	typically	correlated,	e.g.,	larger	objects	often	weigh	more	
than	smaller	ones.	Number	is	a	distinctive	continuous	dimension,	because	the	natural	
numbers	(i.e.,	positive	integers)	are	used	to	quantify	collections	of	discrete	objects.	This	
aspect	of	number	is	emphasized	by	teaching	of	the	count	word	sequence	and	arithmetic	
during	the	early	school	years.	We	review	research	on	spatial	and	numerical	estimation,	and	
argue	that	a	generalized	magnitude	system	is	the	starting	point	for	development	in	both	
domains.	Development	occurs	along	several	lines:	(1)	changes	in	capacity,	durability	and	
precision,	(2)	differentiation	of	the	generalized	magnitude	system	into	separable	
dimensions,	(3)	formation	of	a	discrete	number	system,	i.e.,	the	positive	integers,	(4)	
mapping	the	positive	integers	onto	the	continuous	number	line,	and	(5)	acquiring	abstract	
knowledge	of	the	relations	between	pairs	of	systems.	We	discuss	implications	of	this	
approach	for	teaching	various	topics	in	mathematics,	including	scaling,	measurement,	
proportional	reasoning,	and	fractions.		
	



3 
 

Thinking	About	Quantity:	
The	Intertwined	Development	of	Spatial	and	Numerical	Cognition	

	 A	challenge	in	modern	air	travel	is	getting	luggage	onto	planes	reliably	and	cheaply.	
Different	airlines	have	different	regulations:	only	two	bags,	total	luggage	taking	up	a	
specified	volume,	each	bag	no	more	than	a	certain	weight,	and	so	on.	However,	often	there	
are	few	consequences	of	variations	in	these	regulations,	because	the	dimensions	of	
number,	volume	and	weight	are	correlated.	For	example,	three	suitcases	are	likely	to	take	
up	more	volume	than	two	suitcases	and	they	also	probably	weigh	more.	But	number,	
volume	and	weight	are	not	perfectly	correlated.	Consider	the	situation	of	a	traveler	
carrying	four	small	bags,	each	containing	a	few	light	items	of	clothing.	She	will	be	penalized	
by	a	number	rule,	but	fare	well	under	a	volume	or	weight	rule.	On	the	other	hand,	a	traveler	
carrying	one	medium-sized	suitcase	filled	with	books	would	fare	well	under	a	number	or	
volume	rule,	but	be	penalized	by	a	weight	rule.	By	adulthood,	most	of	us	understand	these	
trade-offs,	and	know	that	various	quantitative	dimensions	are	distinct,	even	if	correlated,	
and	that	they	can	vary	in	occasionally	surprising	ways.	But	how	do	we	reach	this	point?	
How	and	when	do	distinct	dimensions	of	quantity	become	differentiated?	Very	different	
answers	to	these	questions	have	been	given	over	the	years,	and	the	differences	among	
these	approaches	touch	on	many	of	the	most	challenging	issues	in	the	contemporary	study	
of	cognitive	development.		

A	classic	approach	came	from	Piaget	(1952),	who	argued	that	true	quantification	is	
not	observed	at	all	in	infancy	and	preschool,	and	emerges	during	the	elementary	school	
years.	He	observed	that	children	cannot	measure,	even	in	a	rough	way,	e.g.,	they	cannot	
judge	the	relative	heights	of	two	towers	of	blocks	if	one	tower	is	on	the	floor	and	the	other	
tower	is	on	a	table.	In	the	spatial	domain,	he	reported	that	young	children	encode	space	
only	topologically.		In	his	conservation	of	number	task,	he	found	that	children	say	that	the	
number	of	objects	in	a	line	of	objects	changes	when	the	objects	are	spread	out,	and	the	
length	of	the	line	increases	while	the	density	decreases;	children	often	focus	on	length,	
disregarding	both	density	and	number.	However,	despite	these	striking	(and	replicable)	
observations,	Piaget’s	view	of	the	development	of	quantitative	reasoning	is	no	longer	
widely	accepted,	for	many	reasons.	One	vital	issue	is	that	he	vastly	underestimated	the	
strength	of	the	starting	points	for	cognitive	development	(e.g.,	Gelman	&	Baillargeon,	1983;	
Newcombe,	2013).		

There	are	two	contrasting	contemporary	approaches	to	quantitative	development,	
both	of	which	embrace	strong	starting	points.	One	view	builds	on	the	idea	of	a	generalized	
magnitude	system	extending	across	various	dimensions	of	continuous	quantity	(e.g.,	
Petzschner,	Glasauer	&	Stephan,	2015;	Walsh,	2003)	to	postulate	that	infants	begin	with	
this	system	(e.g.,	Lourenco	&	Longo,	2011;	Mix,	Huttenlocher	&	Levine,	2002).	In	this	view,	
development	consists	of	increasing	precision	in	estimation,	differentiation	of	the	correlated	
dimensions,	formation	of	the	discrete	number	system,	in	part	but	not	entirely	through	
acquisition	of	culturally-transmitted	symbol	systems	(e.g.,	Mix,	Huttenlocher	&	Levine,	
2002)	and	eventual	remapping	of	the	quantitative	dimensions	with	formal	specification	of	
how	they	are	related.	An	alternative	view	is	the	core	knowledge	view,	which	holds	that	
infants	begin	life	with	separable	modules	that	form	the	core	components	of	mature	
quantitative	cognition,	with	two	of	these	distinct	modules	involving	number	and	space,	
namely	the	approximate	number	system	(ANS)	as	well	as	the	geometric	module	(e.g.,	
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Dehaene	&	Brannon,	2011;	Gallistel	&	Gelman,	1992;	Spelke	&	Kinzler,	2007).	In	this	view,	
development	depends	largely	on	the	acquisition	of	culturally-transmitted	symbol	systems,	
notably	language,	and	on	increasing	precision	in	the	ANS.	The	aim	of	this	paper	is	to	make	a	
case	for	the	first	view	and	to	explore	its	implications	for	education	and	instruction.	In	
unfolding	this	story,	we	also	critique	the	core	knowledge	proposal	regarding	number,	while	
indicating	ways	in	which	elements	of	that	approach	are	potentially	compatible	with	our	
own.	The	hypothesis	of	a	geometric	module	is,	however,	discussed	(and	questioned)	
elsewhere	(Twyman	&	Newcombe,	2010).		

	
Origins	and	Development	of	Spatial	Estimation	

	
Spatial	estimation	is	the	basis	for	eventual	coordination	of	various	quantitative	

dimensions,	so	knowledge	concerning	its	developmental	trajectory	is	crucial.	Research	on	
this	topic	has	largely	concentrated	on	length	(or	distance),	in	response	to	Piaget’s	claim	
that	spatial	coding	is	topological,	and	hence	non-metric,	for	the	first	decade	of	life.	As	
researchers	developed	new	techniques	to	study	infants	and	toddlers,	his	conclusion	was	
called	into	question,	and	new	ways	of	conceptualizing	spatial	location	coding	and	
developmental	change	were	proposed.	More	recently,	convergences	and	points	of	contact	
among	these	different	views	of	quantitative	development	have	become	apparent.		
	
Early	Spatial	Estimation	
	

Children	remember	spatial	location	metrically,	at	least	in	simple	tasks.	For	example,	
children	between	the	ages	of	18	and	24	months	can	search	accurately	for	an	object	hidden	
in	a	5-foot	long	sandbox,	first	touching	the	sand	only	3	to	4	inches	from	the	correct	location	
(Huttenlocher,	Newcombe	&	Sandberg,	1994).	Once	toddlers	move	around	the	box,	errors	
get	larger,	but	children	are	still	reasonably	accurate,	far	better	than	Piaget	would	have	
predicted	(Newcombe,	Huttenlocher,	Drummey	&	Wiley,	1998).	Even	5-month-olds	look	
longer	at	hiding-and-finding	events	in	a	30-inch	long	box	when	objects	emerge	from	
locations	8	to	12	inches	away	from	the	hiding	location	rather	than	where	they	had	
disappeared	(Newcombe,	Huttenlocher	&	Learmonth,	1999;	Newcombe,	Sluzenski	&	
Huttenlocher,	2005).	Infants	are	also	sensitive	to	vertical	as	well	as	horizontal	extent,	as	
shown	by	their	reactions	to	containers	that	were	¼	and	¾	filled	with	bright	red	liquid		
(Gao,	Levine	&	Huttenlocher,	2000).		

Metric	coding	is	not	the	only	way	to	code	spatial	location,	however.	Categorical	
location	is	also	important	because	it	is	easy	to	remember,	e.g.,	people	are	more	likely	to	
know	that	their	keys	are	somewhere	on	the	coffee	table	than	to	know	exactly	where	they	
are.	In	an	influential	model,	Huttenlocher,	Hedges	and	Duncan	(1991)	proposed	that	fine-
grained	estimations	are	combined	with	memories	for	the	spatial	category	in	which	a	
location	appeared,	according	to	a	Bayesian	combination	rule.	Initial	experiments	involved	
the	location	of	a	dot	in	a	circle,	in	which	the	spatial	categories	are	the	quadrants	defined	by	
horizontal	and	vertical	axes.	Subsequent	work	extended	the	model	to	maps	(Newcombe,	
Huttenlocher,	Sandberg,	Lie	&	Johnson,	1999),	photographs	of	real-world	scenes	(Holden,	
Curby,	Newcombe	&	Shipley,	2010)	and	the	three-dimensional	world	(Holden,	Newcombe	
&	Shipley,	2013).	Applied	to	thinking	about	development,	this	model	suggests	that	toddlers’	
bias	patterns	for	search	in	the	sandbox	may	index	the	early	availability	of	Bayesian	
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combination	of	categorical	and	fine-grained	metric	information.	Specifically,	search	is	
biased	toward	the	center	of	the	box,	suggesting	that	toddlers	use	the	sandbox	as	a	category	
(Huttenlocher	et	al.,	1994).		
	
Developmental	Change	
	 Research	on	infants’	and	children’s	coding	of	location	in	terms	of	length	and	height	
has	not	simply	shown	early	competence.	The	studies	also	delineate	several	lines	along	
which	children	change	from	a	less	accurate	or	less	flexible	representational	system	to	a	
more	mature	one.	One	set	of	changes	involves	improvements	in	the	Bayesian	system.	While	
infants	seem	to	encode	both	metric	and	categorical	location	and	to	combine	them,	they	do	
none	of	this	in	an	optimal	way.	First,	the	capacity	and	durability	of	the	system	is	limited.	
When	more	than	one	object	is	hidden	at	a	time	in	the	sandbox	paradigm,	or	there	is	a	
longer	waiting	period,	they	do	poorly.	The	ability	to	remember	two	objects,	or	one	object	
for	two	minutes,	develops	only	gradually	over	the	preschool	years	(Sluzenski,	Newcombe	&	
Satlow,	2004).		Second,	when	there	are	two	dimensions	to	consider	(e.g.,	radial	distance	
and	angle)	rather	than	just	one,	children	cannot	coordinate	categorical	and	metric	coding	
until	about	9	years	of	age	(Sandberg,	Huttenlocher	&	Newcombe,	1996).		Third,	the	spatial	
categories	used	become	smaller	with	age,	and	hence	more	informative;	adjustment	by	a	
smaller	category	draws	estimates	to	a	prototype	value	closer	to	the	actual	location.	Sub-
division	of	a	space	into	more	than	one	category	appears	between	4	to	8	years,	depending	
on	the	size	of	the	space,	and	results	in	a	distinctive	bias	pattern	in	the	sandbox	best	
described	as	a	quintic	function	(Huttenlocher	et	al.,	1994;	see	Figure	1	showing	spatial	
memory	in	10-year-old	children	in	the	sandbox	task).		

	
Figure	1	

	
	

A	second	set	of	changes	in	early	spatial	representation	involves	the	fact	that	
providing	an	enclosing	frame,	such	as	a	sandbox	or	a	container,	is	essential	for	infants’	
success	in	metric	estimation	(Duffy,	Huttenlocher,	Levine	&	Duffy,	2005;	Huttenlocher,	
Duffy	&	Levine,	2002).	That	is,	infants	rely	on	intensive	(or	proportional)	coding	using	a	
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perceptually-available	standard	against	which	to	estimate	extent,	and	cannot	succeed	
without	it.	This	reliance	on	relative	coding	of	amount	extends	through	the	preschool	years	
and	into	early	elementary	school	(Duffy,	Huttenlocher	&	Levine,	2002;	Huttenlocher	et	al.,	
2002;	Huttenlocher,	Levine,	Ratliff,	2010;	Vasilyeva,	Duffy	&	Huttenlocher,	2007).	The	
ability	to	code	extent	in	the	absence	of	a	salient	perceptual	standard,	or	extensive	coding	of	
amount,	only	begins	to	emerge	at	age	4	or	5,	and	is	more	fully	developed	by	age	8	or	so	
(Duffy	et	al.,	2005;	Vasilyeva	et	al.,	2007).	The	change	from	an	intensive	to	an	extensive	
coding	system	is	not	all-or-none,	but	rather	entails	the	addition	of	the	flexibility	to	use	
extensive	coding	when	appropriate.	Each	system	is	relevant	in	some	situations	and	for	
different	mathematical	calculations,	as	illustrated	in	Figure	2.			

	
There	is	an	important	educational	implication	of	the	fact	that	intensive	coding	is	

available	early:	it	is	exactly	what	is	needed	for	intuitive	scaling	and	proportional	reasoning.	
In	fact,	soon	after	children	become	able	to	appreciate	symbolic	representations	at	all	(for	
an	overview,	see	DeLoache,	2011),	3-year-old	children	can	use	a	small	representation	of	
the	sandbox	to	locate	toys	buried	in	the	sandbox	(Huttenlocher,	Newcombe	&	Vasilyeva,	
1999).	Initially,	finding	hidden	objects	using	a	map	or	model	is	harder	than	placing	visible	
objects	in	accord	with	a	map	or	model,	but	this	difference	passes	quickly	(Huttenlocher,	
Vasilyeva,	Newcombe	&	Duffy,	2008).	Indeed,	four-year-olds	can	use	a	small-scale	
representation	to	find	objects	in	larger-scale	spaces	when	there	is	only	a	small	difference	in	
scale	(1:6);	by	5	years,	children	succeed	even	when	the	difference	is	more	dramatic	(1:19.2;	
Vasilyeva	&	Huttenlocher,	2004).		Precision	in	scaling	tasks	proceeds	regularly	and	
sequentially	from	3	to	5	years,	and	can	be	assessed	with	paper-and-pencil	tasks	(Frick	&	
Newcombe,	2012).		But	even	later,	at	least	through	age	10,	a	larger	scaling	factor	results	in	
lower	accuracy	on	a	proportional	matching	task	(Boyer	&	Levine,	2012).		Performance	
seems	to	be	supported	by	proportional	perceptual	estimation—roughly	a	quarter	of	the	
way	across	on	a	map	implies	roughly	a	quarter	of	the	way	across	on	a	referent	space	
(Möhring,	Newcombe	&	Frick,	2014).		These	findings	suggest	that	scaling,	one	of	the	

INTENSIVE (proportional) EXTENSIVE (amount)
Varies with changes in 
amount  (x < 2x)

1/2
= 1/2

X
2X

Constant with changes in
amount  (1/2=1/2)

<
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important	aspects	of	mathematical	development	according	to	recent	mathematical	
standards,	can	and	should	be	supported	by	preschool	play	activities,	such	as	using	maps	to	
solve	maze	puzzles	(Jirout	&	Newcombe,	2014).		

	
Origins	and	Development	of	Numerical	Estimation	

	
Infants	have	been	found	to	encode	size,	area,	contour	length	and	volume	as	well	as	

distance	(Brannon,	Lutz	&	Cordes,	2006;	Hespos,	Dora,	Rips	&	Christie,	2012).	They	also	
encode	time	(Addyman,	Rocha	&	Mareschal,	2014;	Brannon,	Suanda	&	Libertus,	2007)	and	
speed,	a	ratio	of	distance	and	time	(Möhring,	Libertus	&	Bertin,	2012).	But	no	domain	has	
attracted	more	interest	than	number,	in	which	reconsideration	of	Piaget’s	claims	of	
protracted	development	began	four	decades	ago,	but	about	which	there	continues	to	be	
considerable	controversy.	Initial	experiments	on	number	focused	on	preschool	children	
(e.g.,	Gelman,	1972),	but	experimenters	soon	began	to	study	infants.	
	
The	Innate	Number	Hypothesis	

	
The	core	knowledge	view	is	that	infants	spontaneously	notice	and	process	discrete	

number	because	humans	are	naturally	wired	to	perceive	it	(e.g.,	Feigenson,	Dehaene	&	
Spelke,	2004;	Gallistel	&	Gelman,	1992;	Spelke	&	Kinzler,	2007).	While	the	first	reports	of	
sensitivity	to	number	involved	numbers	within	the	subitizing	range	from	1	to	4	(e.g.,	
Starkey,	Spelke	&	Gelman,	1983),	subsequent	work	involved	larger	numbers	that	involve	a	
separate	system	often	called	the	approximate	number	system	(ANS)	(e.g.,	Xu	&	Spelke,	
2000;	Xu,	Spelke	&	Goddard,	2005).		Because	accumulating	evidence	shows	that	small	and	
large	number	representations	differ	at	both	the	behavioral	and	the	neural	levels	in	infants	
as	well	as	adults	(e.g.,	Cordes & Brannon, 2009; Hyde	&	Spelke,	2008,	2011),	the	appearance	
of	strong	starting	points	in	both	systems	is	interesting	and	important	(Carey,	2009).	

There	are,	however,	several	reasons	to	suggest	that	the	findings	in	these	studies	may	
show	sensitivity	to	continuous	magnitude	rather	than	discrete	number	(Cantrell	&	Smith,	
2013;	Leibovich	&	Henik,	2013;	Mix	et	al.,	2002).		Cantrell	and	Smith	(2013)	offer	an	
exceptionally	clear	recent	review	of	the	voluminous	literature.	They	argue	that	“discrete	
quantity	in	the	environment	is	correlated	with	other	stimulus	dimensions;	as	the	number	of	
discrete	elements	in	a	set	increases,	other	perceptual	properties	change	as	well,	and	
although	one	might	control	one	of	these	properties	in	any	one	experiment,	all	of	them	
cannot	be	controlled	simultaneously”	(p.	332).	While	there	are	various	ways	of	attempting	
to	control	for	these	correlated	dimensions,	none	of	them	is	perfect,	and	in	fact	Cantrell	and	
Smith	(2013)	note	that	each	method	has	its	own	distinctive	drawbacks.	Thus,	the	
demonstrations	of	infant	sensitivities	to	discrete	number,	both	small	and	large,	could	
reflect	the	operation	of	a	quantification	mechanism	that	attends	to	correlated	quantitative	
dimensions	in	the	world.	In	fact,	work	with	adults	provides	evidence	that	adults	may	
persist	in	using	correlated	visual	cues	in	number	judgment	tasks	(Gebuis	&	Reynvoet,	
2012a,	b).		

While	one	possible	rebuttal	point	is	that	number	is	easier	to	process	than	other	
dimensions	of	quantity,	such	as	area	(Cordes	&	Brannon,	2008;	Libertus,	Starr	&	Brannon,	
2014),	there	are	conflicting	reports	about	judgments	of	area	(Odic,	Pietroski,	Hunter,	Lidz	&	
Halberda,	2013)	and	it	is	not	clear	these	studies	ruled	out	other	variables,	such	as	contour	
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length	(Clearfield	&	Mix,	1999;	Mix,	Huttenlocher,	&	Levine,	2002).	Importantly,	Cantrell	
and	Smith	(2013)	do	not	claim	that	any	single	spatial	dimension	(e.g.,	area)	trumps	
number,	or	underlies	number.	Instead,	the	idea	is	that	there	are	a	host	of	quantitative	
variables	so	correlated	with	one	another	as	well	as	with	discrete	number	that	babies	may	
not	initially	disentangle	them,	or	do	so	only	weakly	and	with	difficulty.	The	natural	
prediction	of	this	position	is	that	adults,	children	and	(perhaps	especially)	infants	should	all	
show	cross-dimensional	generalization.		
	
A	Generalized	Magnitude	System	

	
Both	adults	and	preschool	children	have	in	fact	been	found	to	link	number	and	space	

(e.g.,	de	Hevia	&	Spelke,	2009;	Hurewitz,	Gelman	&	Schnitzer,	2006;	Soltesz,	Szucs	&	Szucs,	
2010),	although	there	are	dissenting	opinions	(e.g.,	Anobile,	Cicchini	&	Burr,	2013).		There	
are	a	variety	of	kinds	of	evidence.	For	example,	behaviorally,	children	between	2	and	4	
years	show	very	similar	Weber	fractions	for	number	and	area	with	similar	growth	patterns	
for	each,	and	they	apply	the	word	“more”	accurately	in	both	number	and	area	contexts,	
beginning	at	the	same	ages	(Odic	et	al.,	2013;	for	slightly	different	results,	see	Odic,	
Libertus,	Feigenson	&	Halberda,	2013).		In	adults	as	well,	there	is	evidence	of	links	between	
number	and	space,	both	from	these	studies	and	from	neuroimaging	studies,	where	it	has	
been	shown	that	topographic	field	maps	based	on	non-numerical	sensory	information	and	
discrete	number	cannot	be	disentangled	(Cohen	Kadosh	&	Walsh,	2009;	Gebuis,	Gevers	&	
Kadosh,	2014).		

Research	with	infants	using	looking	time	paradigms	also	suggests	a	generalized	
magnitude	system.		Infants	form	expectations	about	number	based	on	length	and	temporal	
duration,	as	well	as	vice	versa	(de	Hevia	&	Spelke,	2010;	Hyde,	Porter,	Flom	&	Stone,	2013;	
Lourenco	&	Longo,	2010;	Srinivasan	&	Carey,	2010).		Moving	beyond	space,	number	and	
time	to	the	auditory	dimension,	infants	may	show	cross-modal	transfer	when	using	pitch	
(Dolscheid,	Hunnius,	Casasanto	&	Majid,	2014),	although	Srinivasan	and	Carey	found	no	
transfer	between	length	and	loudness.		

Collectively,	these	findings	make	a	strong	case	for	a	generalized	magnitude	system	
that	is	present	in	infancy	and	persists	into	adult	life.	Further	work	is	needed	to	specify	for	
what	dimensions,	and	whether	some	dimensions	are	primary.		Intriguingly,	space	is	
arguably	the	best	candidate	for	“basic”	status,	if	there	is	a	basic	dimension.	Children	can	
map	length	to	number	and	(partially)	length	to	brightness,	but	they	do	not	seem	to	relate	
brightness	to	number	(de	Hevia,	Vanderslice	and	Spelke,	2012).	Along	similar	lines,	human	
adults	show	larger	effects	of	space	on	time	than	time	on	space,	although	symmetric	effects	
appear	in	rhesus	monkeys	(Merritt,	Casasanto	&	Brannon,	2010).		
	

Developing	Understanding	of	Discrete	and	Continuous	Number	
	
	 If	quantitative	thinking	begins	with	a	generalized	magnitude	system,	children	must	
overcome	several	obstacles	to	achieve	a	mature	understanding	of	quantity,	some	of	which	
are	included	in	a	developmental	model	proposed	by	Leibovich	and	Henik	(2013).	Specific	
challenges	include:	(1)	differentiating	the	correlated	dimensions;	(2)	understanding	the	
positive	integers,	which	allow	for	the	determination	of	exact	set	size;	(3)	using	and	
coordinating	the	approximate	and	symbolic	number	systems;	(4)	mapping	the	positive	
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integers	onto	notions	of	continuous	or	approximate	quantity,	in	order	to	deal	with	
mathematical	topics	that	involve	continuous	quantity,	such	as	measurement	and	any	topic	
involving	the	rational	numbers;	and	(5)	systematically	mapping	the	differentiated	
continuous	dimensions	onto	each	other,	to	understand	abstractly	the	relation	between,	for	
example,	surface	area	and	volume.	
	
Differentiation	of	Dimensions	

	
Because	the	idea	that	infants	begin	with	a	generalized	magnitude	system	has	only	

recently	been	taken	seriously,	there	is	little	evidence	bearing	directly	on	the	issue	of	how	a	
generalized	magnitude	system	differentiates	into	distinct	dimensions	over	developmental	
time.	Cantrell	and	Smith	(2013)	suggest	a	Signal	Clarity	hypothesis,	in	which	the	correlated	
quantitative	dimensions	proceed	from	an	integral	to	a	separable	state	(cf.	Garner,	1974).		
Such	a	developmental	sequence	has	been	studied	already	at	other	ages	and	with	respect	to	
different	kinds	of	stimuli	(e.g.,	Smith	&	Kemler,	1978).	Some	of	the	predictions	of	Signal	
Clarity	have	already	been	confirmed,	e.g.,	Cantrell	and	Smith’s	Hypothesis	1,	the	
malleability	of	the	Weber	fraction	(Odic,	Hock	&	Halberda,	2014),	and	new	research	is	
appearing	(Cantrell,	Boyer,	Cordes	&	Smith,	2015).	Dramatic	cases	of	inverse	correlation	
might	be	especially	helpful	for	children	learning	to	differentiate	different	dimensions	of	
quantity,	e.g.,	when	100	ants	take	up	much	less	space	than	1	elephant.		The	approach	is	
broadly	compatible	with	ideas	about	statistical	learning,	which	has	been	extensively	
studied	in	other	domains	(e.g.,	Aslin	&	Newport,	2012).	Much	more	research	is	needed,	
however,	to	understand	how	statistical	learning	supports	differentiation	of	quantitative	
dimensions,	if	indeed	it	does.		
	
Identifying	Discrete	Number	and	Mapping	the	Count	Words	

	
Counting	ability	precedes	discrete	quantification	in	object-based	tasks	

(Huttenlocher,	Jordan	&	Levine,	1994;	Mix,	Huttenlocher	&	Levine,	1996).	The	initial	stages	
of	counting	system	acquisition	may	involve	acquiring	the	meanings	of	the	words	one,	two	
and	three,	and	then	learning	the	cardinal	principle,	i.e.,	that	each	successive	number	in	
one’s	count	list	refers	to	a	set	size	that	is	one	more	than	the	previous	number	(Carey,	2009;	
Wynn,	1990).	Because	the	small	numbers	map	to	numbers	within	the	subitizing	range,	
whose	conceptual	representations	may	depend	on	object	files	and/or	formation	of	easily-
recognized	shapes	(e.g.,	Carey,	2009;	Choo	&	Franconeri,	2014),	it	is	tempting	to	conclude	
that	mapping	small	numbers	to	corresponding	count	words	is	easy,	but	that	is	not	the	case.	
The	words	one,	two	and	three	are	not	acquired	simultaneously	but	rather	slowly	and	
sequentially	over	an	extended	time	period	(e.g.,	Mix,	2009;	Wynn,	1990).		

	There	is	a	considerable	literature	at	this	point	concerning	whether	the	count	words	
are	initially	mapped	to	the	ANS	(or	AMS),	to	a	separate	system	in	which	the	small	numbers	
are	maintained	as	object	files,	or	to	both.	An	influential	paper	by	Le	Corre	and	Carey	(2007)	
supported	the	importance	of	the	initial	mapping	to	an	object-based	system	(enriched	by	
linguistic	quantifiers)	acquisition	of	a	cardinality	principle	based	on	that	acquisition,	and	
only	subsequent	mapping	of	the	count	words	to	the	approximate	system.	Other	papers	have	
provided	evidence	for	mapping	to	an	analogue	system	before	acquisition	of	the	cardinality	
principle	(e.g.,	Wagner	&	Johnson,	2011)	although	there	are	doubts	(e.g.,	Negen	&	Sarnecka,	
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2015).	It	is	possible	that	mapping	of	small	and	large	number	words	onto	quantity	may	
occur	independently	of	each	other,	with	approximate	mapping	of	larger	count	words	to	
large	sets	being	related	to	the	child’s	age	rather	than	to	their	mapping	of	smaller	count	
words	to	small	sets	(Gunderson,	Spaepen,	&	Levine,	2015).		In	this	case,	the	mapping	of	
large	number	words	to	large	sets	might	occur	for	some	children	prior	to	acquiring	the	
cardinal	principle,	and	for	others	after	acquiring	the	cardinal	principle.	Yet	another	view	is	
that	a	step-by-step	process	of	mapping	to	an	object-based	system	eventually	transfers	to	an	
analogue	system,	perhaps	based	on	the	fact	that	the	count	words	seem	to	apply	to	both	
(e.g.,	Spelke	&	Tsivkin,	2001).	In	support	of	this	view,	a	key	turning	point	may	occur	for	
children	who	know	three	as	well	as	one	and	two,	who	then	acquire	or	can	be	trained	to	use	
four	in	a	fashion	that	generalizes	(Huang,	Spelke	&	Snedeker,	2010;	Mix,	2009).	Thus,	1,	2	
and	3	in	the	object-file	system	may	be	progressively	mapped	to	their	count	words	by	
associative	mechanisms,	then	4	may	also	be	associatively	mapped,	but	to	distributions	in	
the	approximate	system.	Once	the	associative	system	is	included,	with	the	addition	of	4,	
generalization	and	inference	is	possible.	Finally,	5-	to	7-year-old	children	may	become	able	
to	relate	the	larger	count	words	to	the	approximate	system	using	structure	mapping	
(Sullivan	&	Barner,	2014).	Eventually,	conceptual	understanding	of	numerical	relations	
appears	to	move	away	from	associations	between	numerical	symbols	and	their	concrete	
referents	and	move	to	associations	among	numerical	symbols	(e.g.,	Lyons,	Ansari	&	Beilock,	
2012),	a	view	that	is	consistent	with	theories	of	symbol	grounding	(e.g.,	Lakoff	&	Nunez,	
2000).		
	
Development	of	the	Approximate	and	Symbolic	Number	Systems	

	
The	core	knowledge	view	proposes	that	the	ANS	is	innately-specified	(e.g.,	Gallistel	

&	Gelman,	1992),	but	investigators	working	within	this	tradition	have	also	investigated	
individual	differences	and	malleability	in	the	ANS.	They	have	reported	evidence	that	
individual	differences	in	ANS	precision	are	linked	to	mathematics	achievement	(e.g.,	
Halberda,	Mazzoco	&	Feigenson,	2008;	Mazzoco,	Feigenson	&	Halberda,	2011;	Starr,	
Libertus	&	Brannon,	2013),	that	culture	and	education	enhances	ANS	precision	(Piazza,	
Pica,	Izard,	Spelke	&	Dehaene,	2013),	that	ANS	precision	waxes	and	wanes	within	a	session	
depending	on	the	individual’s	history	of	making	easy	or	difficult	judgments	(Odic,	Hock	&	
Halberda,	2014)	and	that	symbolic	arithmetic	can	be	improved	by	ANS	training	(Hyde,	
Khanum	&	Spelke,	2014;	Park	&	Brannon,	2013).	However,	an	alternative	point	of	view	is	
that	facility	with	symbolic	number	—	not	proficiency	with	nonverbal	processes—predicts	
later	mathematical	achievement	(e.g.,	Bartelet,	Vaessen,	Blomert	&	Ansari,	2014;	Gobel,	
Watson,	Lervag	&	Hulme,	2014;	Lyons	&	Beilock,	2011;	Szucs,	Devine,	Soltesz,	Nobes	&	
Gabriel,	2014).	This	conclusion	is	supported	by	a	recent	review	(De	Smedt,	Noel,	Gilmore	&	
Ansari,	2013).		

One	way	to	reconcile	these	suggestions	is	to	posit	that	the	ANS	influences	
mathematical	achievement	by	exerting	an	influence	on	the	early	development	of	symbolic	
number	abilities.	Data	are	accumulating	to	support	this	argument.	For	example,	a	mediation	
analysis	of	longitudinal	data	within	the	preschool	age	range	showed	that	ANS	acuity	did	not	
predict	mathematics	achievement	with	symbolic	mediators	in	the	model	(vanMarle,	Chu,	Li	
&	Geary,	2014).	Indeed,	the	relations	may	change	developmentally,	with	the	ANS	important	
in	preschool	and	early	elementary	school	in	supporting	learning	of	symbolic	arithmetic,	but	
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later	overshadowed	in	importance	by	knowledge	of	the	symbolic	system.	Findings	that	
symbolic	and	nonsymbolic	systems	are	correlated	in	younger	children	but	not	older	
children	or	adults	provide	support	for	this	view	(Fazio,	Thompson,	Bailey	&	Siegler,	2014;	
Gilmore,	Attridge,	De	Smedt	&	Inglis,	2014).		
	
Number	Lines:	Mapping	the	Positive	Integers	onto	Continuous	Quantity	

	
Our	argument	so	far	suggests	that	children	in	elementary	school	have	both	a	

continuous	quantity	estimator	and	an	increasingly	robust	and	separate	system	of	discrete	
number,	which	they	are	beginning	to	link	to	symbolic	representations.	However,	in	some	
cases,	continuous	quantity	and	discrete	number	may	compete,	as	we	shall	explore	in	the	
next	section.	In	addition,	the	two	systems	need	to	be	coordinated,	as	when	placing	numbers	
on	a	number	line	that	spans	some	range,	such	as	0	to	10	or	0	to	100.		If	the	numbers	are	
placed	correctly,	they	should	be	evenly	spaced,	resulting	in	a	perfectly	linear	relation	
between	number	and	position.	Performance	on	these	number	line	tasks	has	now	been	
extensively	studied	(e.g.,	Opfer	&	Siegler,	2007;	Siegler	&	Opfer,	2003;	Thompson	&	Opfer,	
2008).	Children	initially	tend	to	space	small	numbers	farther	apart	than	they	should	be,	and	
bunch	together	the	larger	numbers,	a	pattern	of	responses	best	fit	by	a	logarithmic	
function.		Responses	shift	to	a	more	mature,	linear	function,	but	the	logarithmic-to-linear	
shift	depends	on	the	number	range.		Although	7-year-olds	respond	linearly	on	the	0	to	100	
number	line,	they	respond	logarithmically	on	the	0	to	1,000	number	line.		By	9	years	of	age,	
children	respond	linearly	on	the	0	to	1,000	number	line,	but	respond	logarithmically	on	the	
0	to	10,000	number	line,	and	so	on.		Number	line	performance	is	associated	with	better	
subsequent	learning	and	performance	in	mathematics	more	generally	(e.g.,	Booth	&	Siegler,	
2006;	Ramani	&	Siegler,	2008;	Schneider,	Grabner	&	Paetsch,	2009),	and	children	with	poor	
number	line	performance	are	more	likely	to	have	mathematics	learning	disabilities	(Geary,	
Hoard,	Byrd-Craven,	Nugent	&	Numtee,	2008).			

While	the	descriptive	facts	about	developing	number	line	representations	are	
reasonably	clear,	there	are	many	differing	interpretations	of	the	effects.	Siegler	and	
colleagues	conceptualize	the	logarithmic-to-linear	shift	in	terms	of	representational	
change.		When	errors	are	logarithmic,	the	underlying	representation	itself	is	skewed,	based	
on	an	approximate	sense	of	quantity	that	distorts	and	compresses	larger	nonverbal	
quantities.		However,	a	second	possibility	is	that	the	data	reflect	the	existence	of	two	(or	
more)	linear	segments	of	knowledge	about	certain	ranges	of	numbers,	each	with	its	own	
slope	(e.g.,	one	slope	for	the	numbers	within	a	child's	counting	range,	and	a	different	slope	
for	larger	numbers,	outside	the	child’s	counting	range;	different	slopes	for	different	areas	of	
the	count	list	based	on	different	levels	of	familiarity	and	fluency)	(Ebersbach,	Luwel,	Frick,	
Onghena	&	Verschaffel,	2008;	Landy,	Charlesworth	&	Ottmar,	2014;	Lourenco	&	Longo,	
2009;	Moeller,	Pixner,	Kaufmann	&	Nuerk,	2009).		A	third	possibility	is	that	number	
placements	are	based	on	proportional	reasoning	using	the	endpoints	of	the	line,	sometimes	
in	connection	with	use	of	the	midpoint,	therefore	obeying	a	cyclic	power	law.	This	model	
can	also	generate	the	logarithmic-to-linear	shift,	but	in	addition	predicts	that	seemingly-
linear	patterns	actually	contain	subtle	deviations	from	linearity,	as	seen	in	Figure	3,	Panels	
B	and	C	(Barth	&	Paladino,	2011;	Slusser,	Santiago	&	Barth,	2012).		
	
Figure	3	
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Only	the	third	explanation	explicitly	emphasizes	the	spatial	aspect	of	the	number	

line	task.	But	the	large	literature	on	the	spatial-numerical	association	of	response	codes	
(SNARC)	effect	certainly	suggests	linkages,	as	do	other	findings	regarding	space	and	
number	such	as	the	fact	that	preschool	spatial	skills	longitudinally	predict	number	line	
accuracy	(Gunderson,	Ramirez,	Beilock	&	Levine,	2012;	for	an	overview	of	space-number	
effects,	see	McCrink	&	Opfer,	2014).	Along	these	lines,	it	is	striking	that	the	patterns	in	
Figure	1	and	Figure	3,	Panel	C	appear	identical.	The	quintic	function	reflects	the	division	of	
a	range	of	numbers	into	halves,	which	would	aid	scaling	and	proportional	reasoning.	
Because	scaling	and	proportional	reasoning	are	likely	to	be	especially	challenging	for	
unfamiliar	number	ranges,	aspects	of	the	second	explanation	(that	responses	differ	based	
on	fluency	in	a	given	numerical	range)	can	even	be	integrated	with	the	third	(that	
responses	are	proportional).		

There	is	evidence	in	support	of	this	line	of	thought.	Adults	who	respond	linearly	on	a	
2,000	to	3,000	number	line	respond	logarithmically	for	the	same	range	of	quantities	placed	
on	a	1,639	to	2,897	number	line	(Hurst,	Monahan,	Heller	&	Cordes,	2014).	Adults	also	
respond	logarithmically	with	unfamiliar	symbolic	number	formats	(Chesney	&	Matthews,	
2013)	and	with	large	or	even	fictitious	numbers	defining	the	right	end	of	the	line	(Rips,	
2013).	Similarly,	even	first	grade	children	are	sensitive	to	the	number	line	endpoints	on	the	
0-100	task,	suggesting	an	early	application	of	proportional	reasoning,	and	older	children	
(up	to	5th	grade)	achieve	greater	accuracy	by	mentally	imposing	a	mid-point	anchor	
(Rouder	&	Geary,	2014).	Further,	children	perform	better	when	given	a	line	without	a	
rightmost	boundary,	and	when	provided	with	a	measurement	unit	(Cohen	&	Sarnecka,	
2014).	

The	number	line	is,	of	course,	a	cultural	invention,	although	arguably	one	that	
leverages	the	deep	associations	between	space	and	number.	(For	contrasting	views	of	how	
unschooled	indigenous	people	use	number	lines,	see	Dehaene,	Izard,	Spelke	&	Pica,	2008,	
and	Nunez,	Cooperrider	&	Wasserman,	2012).	But	people	have	great	difficulty	in	
understanding	magnitudes	that	are	outside	their	experience,	both	very	big	magnitudes,	as	
in	billions	of	dollars	or	sizes	of	planets,	and	very	small	magnitudes,	as	in	nanoseconds	or	
sizes	of	atomic	particles	(Landy,	Silbert	&	Goldin,	2013).	This	barrier	is	a	real	challenge	to	
understanding	politics	and	economics	(e.g.,	the	federal	budget)	and	also	science,	where	
many	quantities	are	outside	the	range	of	human	experience	(e.g.,	nanoseconds,	light	years).	
One	way	to	address	problems	with	number	lines	of	this	kind	is	to	nest	time	scales	that	
students	do	understand	to	build	other	scales	using	techniques	of	analogical	learning	
(Resnick,	Shipley,	Newcombe,	Massey	&	Wills,	2012);	the	crucial	goal	is	to	establish	salient	
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markers	on	the	otherwise	difficult-to-understand	continuum.		
	

Discrete	and	Continuous	Number	
	

	 The	 theoretical	position	presented	so	 far	suggests	 the	possibility	 that	 learning	 the	
discrete	 number	 system	 could	 overshadow	 the	 use	 of	 continuous	 magnitude,	 and	 thus	
interfere	with	important	kinds	of	mathematical	learning.	In	this	section,	we	show	that	in	fact	
there	 is	 evidence	 for	 such	 interference,	 in	 three	 different	 and	 important	 areas	 of	 early	
mathematics:	 learning	 to	measure,	 learning	 to	 think	about	proportions	and	probabilities,	
and	learning	to	calculate	with	fractional	quantities.	These	difficulties	occur	despite	the	fact	
that	discrete	number	and	continuous	quantity	seem	to	have	common	developmental	origins	
in	a	generalized	magnitude	system	and	that	number	and	proportions	have	common	neural	
coding	schemes	(Jacob,	Vallentin	&	Nieder,	2012).	The	challenge,	it	seems,	is	to	coordinate	
these	systems	once	discrete	and	continuous	quantities	are	differentiated.	
	
Learning	to	Measure		

	
Piaget	was	correct	when	he	observed	that	young	children	find	it	difficult	to	measure.	

Surveys	of	the	mathematical	abilities	of	American	children	consistently	show	difficulties	in	
understanding	ruler	measurement,	which	persist	at	least	through	the	fourth	grade	(e.g.,	
Gonzales,	Williams,	Jocelyn,	Roey,	Kastberg	&	Brenwald,	2008).	Consider	the	sample	test	
item	shown	below,	in	which	children	are	shown	a	crayon	and	a	ruler,	but	the	crayon’s	left	
end	is	not	at	the	zero	point.	When	children	are	asked	to	select	a	number	that	captures	the	
length	of	the	crayon	from	the	4	response	choices	shown,	some	of	them	simply	report	the	
number	at	one	end	(i.e.,	5	in	the	example	below),	or	(in	a	slightly	more	sophisticated	
fashion)	count	the	hash	marks	on	the	ruler	from	initial	to	final	(i.e.,	4	in	the	example	
below).	These	problems	have	been	shown	in	experimental	settings	as	well	as	national	
assessments	(Huttenlocher,	Levine,	&	Ratliff,	2011;	Levine,	Kwon,	Huttenlocher,	Ratliff	&	
Deitz,	2009;	Solomon,	Vasilyeva,	Huttenlocher,	&	Levine,	under	review).	Teaching	
measurement	effectively	is	an	important	target	of	instruction	because	the	persistence	of	
difficulties	into	late	elementary	school	poses	challenges	to	instruction,	for	example	in	
science	classes	and	labs	that	assume	that	children	understand	measurement	and	units	of	
measure.		

Consistent	with	the	theoretical	framework	outlined	in	this	article,	Solomon	et	al.’s	
(under	review)	findings	show	that	children’s	problems	in	measurement	are	at	least	
partially	attributable	to	the	difficulty	of	thinking	about	discrete	units	in	the	context	of	a	
continuous	measurement	instrument	such	as	a	ruler.		Children’s	strong	impulse	to	count	
something	that	looks	like	a	discrete	object	gets	in	the	way	of	learning	to	count	the	spatial	
intervals	demarcated	by	these	numbers.	Interestingly,	kindergarten	and	second	grade	
children	perform	much	better	on	misaligned	problems	when	the	units	are	discrete	objects	
(adjacent	pennies)	that	make	clear	what	the	countable	unit	should	be,	exactly	because	
children	are	used	to	counting	objects.	Other	techniques	leveraging	this	insight	have	
recently	been	devised	to	teach	measurement	more	effectively	in	the	early	grades	by	
utilizing	misaligned	ruler	problems	and	emphasizing	that	the	relevant	countable	units	are	
spatial	extents,	even	though	those	units	do	not	look	like	discrete	objects	(Congdon,	Gibson,	
&	Levine,	2013;	Levine,	Kwon,	Huttenlocher,	Ratliff,	&	Deitz,	2009).		
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Proportional	and	Probabilistic	Reasoning		
	 	

In	learning	to	measure,	elementary	school	children	have	difficulty	conceptualizing	
continuous	spatial	intervals	as	countable	units	of	measurement	because	they	are	focused	
on	the	idea	of	numbers	as	enumerating	a	set	of	discrete	objects.	In	proportional	reasoning,	
there	is	a	similar	problem.	When	countable	units	are	salient,	children	as	old	as	5th	graders	
have	difficulty	concentrating	on	spatial	extent	when	they	should	do	so.	For	example,	
consider	the	two	problems	shown	below,	in	which	people	are	asked	to	select	which	of	the	
two	alternatives	best	matches	a	standard.	Adults	and	children	both	do	well	with	the	
problem	at	the	left	where	length	is	quite	salient	and	they	can	use	an	intuitive	perceptual	
strategy	based	on	intensive	coding;	these	problems	are	very	similar	to	scaling	problems	
although	the	cover	story	for	the	task	is	typically	quite	different.	Adults	also	do	well	with	the	
problem	at	the	right,	but	children	often	say	that	the	correct	answer	is	the	alternative	that	
shows	2	units	because	the	standard	has	2	units.	Children	are	seduced	by	this	error	until	
they	are	8	or	9	years	of	age	(Boyer,	Levine	&	Huttenlocher,	2008;	Boyer	&	Levine,	2012).		
	

	

 

Correct Hash-mark	
Error 

Random Read-off	
Error 
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The	same	pattern	is	seen	in	probabilistic	reasoning.		Children	were	shown	two	

donut-shaped	forms	that	were	divided	into	red	and	blue	regions,	each	with	a	spinner	in	the	
center.	Their	task	was	to	decide	for	which	donut	the	spinner	was	most	likely	to	land	on	one	
color	or	the	other.		Performance	on	this	task	was	above	chance	by	age	6	years,	but	only	
when	the	different	colored	regions	were	presented	as	continuous	amounts.		When	the	red	
and	blue	regions	were	divided	into	several	equal-sized,	bounded	units,	children	performed	
worse	and	did	not	begin	to	succeed	until	10	years	of	age	(Jeong,	Levine	&	Huttenlocher,	
2007).		Again,	the	continuous	task	is	easier	because	these	quantities	can	be	mapped	onto	
approximate	magnitude	representations	more	readily,	and	the	task	with	units	is	hard	
because	of	children’s	impulse	to	count	anything	that	is	countable	and	to	erroneously	base	
their	responses	on	these	counts.			

Overall,	the	developmental	challenge	is	to	impose	discrete,	countable,	equal-size	
units	onto	continuous	amounts	and	to	know	which	system	to	use,	when,	and	how.		Formal	
instruction	in	proportional	and	probabilistic	reasoning	may	be	helped	by	building	on	
children’s	intuitions	about	continuous	amounts	and	intuitive	proportional	reasoning	and	
then	provide	strong	analogies	to	these	same	amounts	with	discrete	units	imposed	(Boyer	&	
Levine,	in	press).		
	
Understanding	Fractions	
	

Just	as	for	proportional	reasoning	and	measurement,	children	struggle	to	see	
fractions	in	terms	of	countable	units.		One	indication	is	that	they	initially	ignore	portion	size	
in	tests	of	fraction	comprehension.		For	example,	when	dividing	sets	of	different	sized	
“candies”	among	recipients,	children	doled	out	an	equal	number	of	candies	with	no	regard	
for	size,	even	when	it	would	have	been	straightforward	to	equate	the	total	amount	for	each	
recipient	by	allocating	the	small	and	large	candies	in	a	2:1	ratio	(Frydman	&	Bryant,	1988;	
see	Sophian,	Garyantes	&	Chang,	1996,	for	a	similar	pattern	of	findings	with	different	
materials).		Children	also	exhibit	a	whole	number	bias	when	interpreting	written	and	
spoken	fraction	names.		Specifically,	they	tend	to	match	fraction	names	to	pictures	that	
show	the	cardinal	number	of	pieces	for	both	the	numerator	and	denominator	(e.g.,	a	picture	
of	3	shaded	and	5	unshaded	parts	to	represent	the	fraction	name,	"three-fifths"	rather	than	
the	correct	choice	of	3	shaded	and	2	unshaded	parts)	(Mix	&	Paik,	2008;	Paik	&	Mix,	2003).	

Despite	these	difficulties,	studies	that	show	children	readily	acquire	the	meanings	of	
common	fractions,	such	as	one-half,	but	are	limited	to	demonstrating	this	understanding	on	
tasks	that	require	an	approximate	sense	of	ratio,	such	as	matching	equivalent	fraction	
pictures	(Spinillo	&	Bryant,	1991),	estimating	the	results	of	additions	and	subtractions	
(Mix,	Levine,	&	Huttenlocher,	1999),	or	completing	pictorial	analogies	based	on	equivalent	
fractions	(Singer-Freeman	&	Goswami,	2001).		This	approximate	ability	emerges	years	
earlier	than	children	can	complete	more	precise,	symbolic	fraction	tasks.		Young	children	
also	can	use	approximate	comparisons	to	make	equal	shares	of	continuous	amounts	by	
comparing	the	sizes	of	the	shares	(Hunting	&	Sharpley,	1988;	Miller,	1984)—procedures	
not	too	far	removed	from	conventional	measurement.		Perhaps	competence	on	these	
nonverbal	tasks	reflects	children’s	ability	to	recruit	generalized	magnitude	representations	
as	referents	at	the	same	time	they	have	difficulty	understanding	of	the	referents	for	fraction	
symbols	(i.e.,	unit	counts).	
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This	pattern	is	also	evident	in	research	showing	that	children	perform	intuitive	
fraction	tasks	better	when	the	quantities	are	continuous	(i.e.,	spatially	contiguous),	rather	
than	discrete	(i.e.,	unitized).		Hunting	and	Sharpley	(1988)	found	that	35%	of	4-	to	7-year-
olds	successfully	divided	a	clay	sausage	in	half,	but	only	11%	of	the	same	children	did	so	for	
a	deck	of	12	cards.	This	is	noteworthy	because	units	come	for	free	in	discrete	sets—units	
that	could	support	more	precise	divisions	than	one	could	achieve	for	unmeasured,	
continuous	amount.		Yet,	children	performed	better	without	the	built-in	units,	perhaps	
because	they	based	their	responses	on	magnitude	representations	and	these	continuous	
quantities	were,	thus,	easier	to	map.	

Finally,	there	is	evidence	that	adults	and	11-	to	13-year-old	children	can	represent	
the	meanings	of	fraction	symbols	as	magnitudes	on	a	mental	number	line	(DeWolf,	
Grounds,	Bassok,	&	Holyoak,	2014;	Schneider	&	Siegler,	2010;	Siegler,	Thompson,	&	
Schneider,	2011).			This	mapping	is	based	on	a	rough	estimate	of	the	absolute	quantity	
represented	by	a	fraction,	rather	than	precise,	part-whole	relations	based	on	unit	measures.		
Such	a	representation	appears	to	be	quite	effortful	but	unlike	erroneous	strategies	such	as	
simply	comparing	numerators,	supports	accurate	performance.	

Taken	together,	these	studies	suggest	that	adults	and	children	map	fraction	
meanings	to	their	quantitative	referents	in	a	holistic	way.		However,	holistic	mappings	only	
go	so	far.		Recognizing	physical	situations	that	can	be	called	“half,”	is	not	the	same	as	
mapping	a	numerator	and	denominator	onto	their	specific	referents.		To	achieve	this	
mapping,	children	need	to	understand	measurement	units	and	how	these	units	represent	
the	hierarchical	relations	between	parts	and	wholes,	as	well	as	the	way	the	numbers	of	
units	and	their	sizes	are	represented	in	symbolic	fractions.	Although	rough	part-whole	
concepts	emerge	by	preschool	in	nonverbal	tasks,	children	struggle	to	master	fraction	
notation	throughout	the	elementary	grades	and	into	adolescence	(National	Mathematics	
Advisory	Panel,	2008;	Post,	1981).		Even	when	they	attain	some	competence,	it	is	often	
based	on	rote	application	of	procedures	and	whole	number	confusion.		For	example,	
Kerslake	(1986)	observed	that	approximately	1	in	5	students	between	the	ages	of	12	and	
15	years	erroneously	claimed	that		1/3	+	1/4		=	2/7.		Understanding	the	generalized	
magnitude	system	and	its	differentiation	during	development	may	be	a	key	part	of	gaining	
a	deep	understanding	of	units	and	fractions	(Schneider	&	Siegler,	2010).	

In	particular,	it	may	not	be	clear	to	children	that	the	numerals	in	fractions	stand	for	
counts.		That	is,	the	denominator	stands	for	the	number	of	divisions	of	the	whole	that	were	
made	to	yield	equal-sized	units,	and	the	numerator	stands	for	the	number	of	these	equal-
sized	pieces	in	the	total	quantity.		This	failure	to	interpret	fraction	symbols	in	terms	of	
measurement	units	has	been	long-recognized	as	a	major	obstacle	to	understanding	
(Baroody	&	Hume,	1991;	Behr,	Harel,	Post,	&	Lesh,	1992;	Steffe,	1988)	and	may	be	rooted	in	
the	same	challenges	of	separating	and	integrating	number	and	spatial	extent	noted	
previously,	for	measurement	and	proportional	reasoning.		Importantly,	recent	research	
suggests	that	successfully	navigating	this	integration	is	more	predictive	of	subsequent	
success	in	mathematics	(e.g.,	algebra)	than	knowledge	of	magnitudes	per	se	(Booth	&	
Newton,	2012).	

Indeed,	recent	evidence	demonstrating	a	connection	between	early	fraction	ability	
and	later	achievement	(e.g.,	Siegler,	Thompson	&	Schneider,	2011;	Siegler,	Duncan,	et	al.,	
2012)	seems	to	be	based	on	facility	with	this	mapping—the	mapping	of	numerals	to	units	
(Hecht	&	Vagi,	2010;	Siegler,	2009;	Sophian,	2007.		In	these	studies,	early	fraction	ability	
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was	measured	various	ways,	such	as	matching	written	fractions	to	their	pictorial	
representations,	judging	which	of	two	written	fractions	represents	the	larger	quantity,	and	
placing	written	fractions	on	a	number	line,	but	all	required	children	to	interpret	written	
fraction	symbols	in	terms	of	the	number	and	size	of	units	represented,	and	to	do	so	for	
fractions	beyond	the	range	that	is	typically	acquired	intuitively	(e.g.,	beyond	¼	and	½).		
This	is	an	important	sense	in	which	the	kind	of	fraction	understanding	that	is	being	
assessed	differs	from	the	tasks	used	to	demonstrate	earlier	emerging	competence	with	
fractions,	and	may	be	the	critical	reason	they	are	both	relatively	challenging	and	also	so	
predictive.	
	

Conclusion	
	

Magnitude	estimation	begins	with	a	strong	starting	point,	namely	a	generalized	magnitude	
system	that	allows	for	many	different	kinds	of	judgment	about	the	numerical,	spatial	and	
physical	world.	However,	the	dimensions	are	not	sharply	differentiated,	estimation	is	
imprecise,	and	estimation	is	relative.	Preschool	children	can	use	these	systems	to	perform	
simple	scaling	tasks	and	to	reason	numerically,	sometimes	even	about	fractional	quantities.	
The	challenges	of	the	school	years	are	to	decrease	reliance	on	perceptually	available	
standards,	to	learn	formal	systems,	such	as	measurement	devices	and	calculation,	sort	out	
which	dimensions	of	magnitude	are	relevant	for	which	problems,	understand	fractions,	and	
(ideally)	learn	how	to	reason	about	very	small-	and	very	large-scale	magnitudes.	
Understanding	how	development	occurs	can	allow	for	tailoring	mathematical	education	to	
build	on	children’s	natural	strengths.			
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