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 37 
Abstract 38 

In this article, we review approaches to modeling a connection between spatial and 39 
mathematical thinking across development. We critically evaluate the strengths and 40 
weaknesses of factor analyses, meta-analyses, and experimental literatures. We examine those 41 
studies that set out to describe the nature and number of spatial and mathematical skills and 42 
specific connections between these abilities, especially those that included children as 43 
participants. We also find evidence of strong spatial-mathematical connections and transfer 44 
from spatial interventions to mathematical understanding. Finally, we map out the kinds of 45 
studies that could enhance our understanding of the mechanisms by which spatial and 46 
mathematical processing are connected and the principles by which mathematical outcomes 47 
could be enhanced through spatial training in educational settings. 48 
  49 
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Introduction 50 
Spatial ability contributes to performance in science, technology, engineering, and 51 

mathematics (STEM) domains even controlling for verbal and mathematical abilities (Wai, 52 
Lubinski, & Benbow, 2009; Shea, Lubinksi, & Benbow, 2001). In addition, spatial reasoning task 53 
performance has been found to correlate with mathematical task performance (e.g. Dehaene, 54 
Spelke, Pinel, Stanescu, & Tsivkin, 1999), suggesting that spatial reasoning skills overlap with, 55 
and could be necessary for, mathematical reasoning skills (Tosto, et al., 2014). One correlation 56 
supported by cognitive and developmental research is between representations of numerical 57 
and spatial magnitudes. Spatial skills have been found to correlate with numerical magnitude 58 
representations across broad age ranges, from preschoolers (Gunderson, Ramirez, Beilock & 59 
Levine, 2012) to adults (Sella, Sader, Lolliot, & Cohen Kadosh, 2016). Further, spatial and 60 
numerical magnitude representations have overlapping neural representations (Holloway, Price 61 
& Ansari, 2010; Piazza, Pinel, Le Bihan, & Dehaene, 2007).  In this article, we review evidence 62 
for the connections between spatial and mathematical skills across development that has been 63 
gleaned from factor analyses, meta-analyses, and experimentation. We then suggest productive 64 
ways to elucidate spatial-mathematical connections and discuss ways that modelling could be 65 
used to improve mathematics learning. 66 

Factor Analysis 67 
Both spatial and mathematical ability have been investigated since the early days of 68 

psychological science using factor analytical methods that sought to map the “structure of the 69 
intellect” (Spearman, 1927; Thurstone, 1938). This research showed a connection between 70 
spatial and mathematical domains, yet the mechanisms by which training spatial thinking can 71 
promote mathematical thinking are still not well understood. Across various factor analyses of 72 
spatial skills that have been conducted in adults, the most consistent finding is that there are 73 
multiple spatial skills, such as spatial visualization (imagining transformations) and spatial 74 
relations and spatial orientation (perceiving object position and angle) (Michael, Guilford, 75 
Fruchter, & Zimmerman, 1957; Lohman, 1988; Carroll, 1993; McGee, 1979). Factor analyses 76 
carried out on mathematical measures over various ages have revealed latent factors that do 77 
not appear to be specific to mathematics (e.g., deductive reasoning and adaptability to a new 78 
task among 10th grade students, Kline, 1960; abstraction, analysis, application among 79 
elementary school students Rusch, 1957). These studies are notable in that some theorists have 80 
found evidence of a spatial factor in mathematics (e.g. Kline, 1960; Werdelin, 1966) and others 81 
have argued that there is a spatial sensorimotor intelligence factor important to mathematical 82 
reasoning (Coleman, 1956; Skemp, 1961; Aiken, 1970).  83 

Separate but correlated spatial and mathematical thinking factors  84 
While many studies have found evidence of connections between spatial and numerical 85 

tasks in young children, only recently have studies explored the factor structure of their spatial 86 
and mathematical skills. Mix and colleagues (2016, 2017) have used factor analyses to examine 87 
the connections among a broad range of mathematical and spatial tasks in elementary school 88 
age children. Mix, et al. (2016) administered a battery of tasks that had the greatest likelihood 89 
of showing spatial-mathematical connections based on the literature included those between 90 
(1) spatial visualization and complex mathematical relations, (2) form perception and symbolic 91 
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reasoning, and (3) spatial scaling and numerical estimation (Thompson, Nuerk, Moeller, & 92 
Cohen-Kadosh, 2013; Landy & Goldstone, 2010; Slusser, Santiago & Barth, 2013, respectively). 93 
These tasks were included in order to identify underlying variables that connect spatial and 94 
mathematical domains in kindergarten, third and sixth grades.  95 

Between kindergarten to sixth grade range, all spatial tasks loaded together on a single 96 
factor, as did mathematical tasks (Mix, et al., 2016;2017 However, there was a moderate 97 
correlation between the two factors (rs = 0.50–0.53), even when controlling for verbal ability, 98 
suggesting that although the spatial and mathematical domains are distinct, there is a 99 
significant relation between these domains. Even though verbal ability accounted for a 100 
significant portion of variance in mathematical skills in each grade tested, spatial skills 101 
accounted for a greater proportion of variance (Mix, et al., 2016). Cross-loadings between the 102 
spatial and mathematical factors and tasks in the two domains also indicate specific 103 
connections. In kindergarteners, mental rotation was significantly related to the mathematical 104 
factor, whereas in sixth graders visuospatial working memory and form copying were 105 
significantly related to the mathematical factor. One possible explanation for the change in 106 
cross-loadings over development is that mathematical thinking relies at first on dynamic, 107 
object-focused spatial processes (mental rotation) and later on more static, memory-related 108 
spatial processes (visuospatial working memory and visuomotor integration). 109 

Strengths and limitations of factor analysis evidence 110 

Factor analysis is a useful tool for isolating the source of correlations and removing 111 
measurement error  (Bollen, 1989) as well as for testing competing theories (Tomarken & 112 
Waller, 2005; Gerbing & Hamilton, 2009). However, factor analysis requires a large number of 113 
participants over a breadth of tasks in a domain to achieve a stable structure (Hair, et al., 1995; 114 
MacCallum, Widaman, Zhang & Hong, 1999). The biggest limitation of factor analysis lies in the 115 
theorist; interpretation of results is a large part of proper factor analysis because the results do 116 
not uniquely point to any single interpretation of the meaning of the underlying latent variables 117 
that are revealed (Rummel, 1970; Armstrong & Soelberg, 1968).  Thus, when relations do 118 
emerge from factor analysis, other methods must be used to establish mechanisms underlying 119 
these relations. 120 

Meta-Analytic and Experimental Studies 121 
In addition to factor analyses, researchers have tackled the question of how the 122 

domains of space and math are connected through targeted experimental studies and meta-123 
analyses. In this section, we outline prominent theories about the divisions in each domain and 124 
evidence for correlations between spatial and mathematical skills. Understanding these 125 
theories is important because they can help us to understand which particular facet or type of 126 
spatial thinking is linked to a particular type of mathematical thinking. 127 

One comprehensive meta-analysis of spatial skills training by Uttal and colleagues 128 
(2012) assumed a 2X2 typology supported by behavioral (Newcombe & Shipley, 2005) and 129 
neurological evidence (e.g. Chatterjee, 2008). Specifically, relations between objects are 130 
processed differently than relations of feature within an object (the extrinsic-intrinsic division). 131 
Further, spatial information conveyed by a static viewing of objects and scenes is processed 132 
differently than movements and transformations of these objects and scenes (the static-133 
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dynamic division). In their factor analysis testing the 2 × 2 typology, (Mix, et al., under review) 134 
found evidence for distinct spatial factors for tasks involving within object (intrinsic) vs. 135 
between object (extrinsic) information, but did not find support for spatial tasks separating 136 
according to the static-dynamic distinction (Mix, et al., under review). Echoing this finding, 137 
Kozhenikov et al. found evidence that some children process spatial information intrinsic to 138 
objects better (object visualizers) whereas others process spatial information that involves 139 
between object relationships better (spatial visualizers) but did not find that these groups of 140 
children differed in their ability to process dynamic and static imagery (Kozhevnikov, Kosslyn, & 141 
Shepherd, 2005).   142 
The number and nature of basic mathematical skills that underlie mathematical thinking are 143 
also in question. For example, a distinction has been made between core number systems that 144 
represent exact and approximate number (Carey, 2004; Feigenson et al., 2004), between core 145 
systems for approximate number and ratio (Matthews and Hubbard, 2017), and between core 146 
approximate number system and exact number ability enabled by symbolic knowledge 147 
(e.g., Carey, 2004). However, the debate about the systems that characterize mathematical 148 
thinking has taken on a more pragmatic turn than those concerning spatial thinking. For 149 
instance, there are direct educational implications to whether core mathematical skills facilitate 150 
later symbolic mathematical understanding and achievement and how the latter might affect 151 
the former (e.g., Feigenson et al., 2013; Schneider et al., 2017) or whether mathematics is 152 
better taught through concepts or procedures (e.g., Schoenfeld, 1985), or abstractly or 153 
concretely (e.g., Kaminski et al., 2009). Researchers also debate which kinds of early 154 
mathematical skills relate to later mathematical achievement (e.g., understanding 155 
patterns, Rittle-Johnson et al., 2017; thinking symbolically, Schneider et al., 2017, or one's 156 
ordinal vs. absolute sense of number Lyons et al., 2014). These debates raise interesting 157 
questions about the connection between spatial skills, early mathematical skills, and later 158 
mathematical achievement. For example, does a particular type of spatial skill relate to 159 
children's ability to learn particular early mathematical skills more quickly, and are these the 160 
early mathematical skills that relate most strongly to later mathematical achievement? 161 
 162 
What skills are used in both spatial and mathematical problems? 163 

Certain connections between specific spatial skills and mathematical skills have been 164 
observed (e.g., visuospatial working memory and computation, Raghubar et al., 2010) whereas 165 
others have not (e.g., between disembedding shapes from scenes and parsing information in 166 
charts, Clark, 1988) with little explanation as to why this is the case (for a review of these 167 
connections see Mix and Cheng, 2012). One frequently observed connection is between mental 168 
rotation and various math skills, across age and development and with a variety of different 169 
mental rotation task characteristics (Table 1). However, little is known about the processes that 170 
account for this connection, or whether there are other spatial-mathematical connections that 171 
may be even stronger. Thus, this correlational type of evidence fails to provide support for the 172 
theory that certain specific spatial skills are particularly important for mathematics 173 
achievement nor how they enable better performance and learning of specific mathematical 174 
skills. Answers to these questions are of high importance to successfully incorporating spatial 175 
learning into mathematical curricula. 176 
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 Moving beyond correlational studies, studies that have measured the impact of training 177 
mental rotation on specific mathematical skills, have not yielded consistent findings, with some 178 
finding evidence of transfer (e.g., Cheng and Mix, 2014; Lowrie et al., 2017) and some not 179 
finding such evidence (Hawes et al., 2015b; Xu and LeFevre, 2016). There is little explanation, 180 
and as of yet no meta-analysis, to compare these cross-domain training studies or determine 181 
the overall effectiveness of training any individual spatial skills to improve mathematical 182 
reasoning. In the next section, we argue that modeling and testing the processes involved in 183 
performing specific spatial and mathematical tasks can help us understand the connections 184 
between these two domains. 185 
 186 

Cognitive Process Models 187 
Cognitive process models provide an account of the mental processes engaged when 188 

performing a specific task. What cognitive process or processes actually drive performance on a 189 
spatial task? Answering this question would also allow us to understand the mechanism that 190 
accounts for the connection between spatial skills, like mental rotation, and performance on 191 
mathematical tasks such as missing term problems (Cheng and Mix, 2014). This in turn would 192 
inform educational efforts to improve spatial thinking in ways that would be most helpful to 193 
mathematical thinking. 194 

What is known about the processes used for spatial skills? Various studies have 195 
supported substantive divisions between particular kinds of spatial skills, e.g., the intrinsic-196 
extrinsic divide separating tasks such as mental rotation from perspective taking (Huttenlocher 197 
and Presson, 1973; Kozhevnikov and Hegarty, 2001). However, studies with kindergarten 198 
through sixth grade children also show a great deal of overlap among a wide range of spatial 199 
skills (Mix et al., 2016, 2017a). Further, certain spatial skills, notably mental rotation and 200 
visuospatial working memory, have been found to cross-load onto a mathematical factor at 201 
particular grade levels. An important next step is to examine process models of spatial skills and 202 
how they are manifested (or not) on mathematical tasks, as illustrated below regarding mental 203 
rotation. 204 

A process view of mental rotation Mental rotation was first described based on the 205 
finding that time to simulate the rotation of an object was related to the angle through which 206 
the object was rotated (Shepard and Metzler, 1971). Cognitive process models, supported by 207 
empirical studies, reveal that mental rotation actually involves multiple, non-obvious sub-208 
components. Behavior is best fit by a model that involves carrying out small, successive, 209 
variable transformations, rather than a single rotation (Provost and Heathcote, 2015) and 210 
empirical work suggests that individuals actually rotate just one part of the object rather than 211 
all parts of the whole object (Xu and Franconeri, 2015). Further, modeling shows that the type 212 
of mental rotation problem influences the process that is engaged; when rotating complex 213 
stimuli, participants tend to be slower (Bethell-Fox and Shepard, 1988; Shepard and Metzler, 214 
1988), which has been fit by computational models of mental rotation where task relevant 215 
features of the object are focused on and task irrelevant features are ignored (Lovett and 216 
Schultheis, 2014). Participants also frequently err in problems with complex stimuli by selecting 217 
the mirror image of the correct choice that is rotated to the same degree as the correct choice 218 
(e.g., among children Hawes et al., 2015a,b), a pattern of data that is explained by a model that 219 
parameterizes “confusability” between the target and its mirror (e.g., confusing a “d” for a 220 
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“b,” Kelley et al., 2000). Relatedly participants tend to use a fast flipping transformation akin to 221 
matching features for simple, 2D stimuli, which models of mental rotation have taken this into 222 
account (Kung and Hamm, 2010; Searle and Hamm, 2012). The varied components described by 223 
these models make clear that mental rotation is not a simple process, and that there are many 224 
steps needed to succeed at a mental rotation task. 225 

Each of these modeled components of mental rotation performance has a potential role 226 
to play in the observed relationship between mental rotation and various mathematical skills 227 
over the course of development. If spatial constructs are actually based on wide-ranging 228 
processes it opens up the hypothesis space to determine the source of connections between 229 
spatial and mathematical thinking. Rather than a simple connection between two monolithic 230 
skills, there are numerous possible connections based on the components of each, and possibly 231 
even multiple ways a spatial skill can act in a single math problem. The work of figuring out 232 
which components are critical to the observed relation between spatial and mathematical skills, 233 
while daunting, is needed in order to unpack what otherwise are opaque connections. 234 

To take one example, Gunderson et al. (2012) observed a predictive relationship 235 
between young children's mental transformation skill and their number line estimation. 236 
Individual differences in mental rotation performance could have arisen as a difference in any 237 
of the components identified above: the ability to carry out rotations, to focus on relevant 238 
spatial information, or to carry out non-rotational stimulus matching. Similarly, the number line 239 
estimation task, where participants are asked to determine the position of a number along a 240 
labeled line, could be decomposed into several components as well (e.g., accessing a 241 
representation of a number's magnitude when cued by its symbol, ordering those magnitudes 242 
precisely on a continuous number line, spatially subdividing the line at salient 243 
landmarks, Siegler and Opfer, 2003). Any or all of these components might be the source of the 244 
connection between number line estimations and spatial skill (see Figure 1). By designing 245 
studies that control for and model the components of both spatial and mathematical tasks, it 246 
should be possible to identify and understand the mechanisms that explain links between 247 
spatial and mathematical thinking. This approach compliments and enriches the work focused 248 
on looking at the latent structure of skills, while not dwelling on an explanation of any one task 249 
but focusing on explaining important connections between latent skills. 250 

 251 
Educational Implications 252 
Meta-analyses provide strong evidence that training spatial skills in the laboratory result 253 

in significant improvements and transfer to other spatial skills (Uttal et al., 2013). However, 254 
evidence is more mixed about training spatial skills to improve mathematical skills (e.g., Cheng 255 
and Mix, 2014; Hawes et al., 2015b; Simons et al., 2016; Lowrie et al., 2017). Broader training 256 
regimes in and out of the classroom have helped to improve mathematics performance in 257 
multiple age groups (e.g., Witt, 2011; Sorby et al., 2013; Bruce and Hawes, 2015), and more 258 
generally, spatial thinking has been shown to be a significant predictor of STEM outcomes, even 259 
controlling for mathematical and verbal thinking (Wai et al., 2009). 260 

One finding substantiated by factor analyses and interventions is that spatial skills are 261 
more closely related to novel mathematical and scientific content than to STEM skills that are 262 
more familiar (Stieff, 2013; Mix et al., 2016), suggesting that it may be particularly important to 263 
provide students with spatial scaffolding when students are learning a new mathematical 264 
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concept. Another set of findings suggests that providing students with a repertoire of spatial 265 
tools, such as gesture, rich spatial language, diagrams, and spatial analogies, (Newcombe, 266 
2010; Levine et al., 2018) can facilitate their spatial thinking. Moreover, these tools, as well as 267 
3-D manipulatives (Mix, 2010) have been found to facilitate learning mathematical concepts 268 
(e.g., Richland et al., 2012; Verdine et al., 2014; Hawes et al., 2017; Mix et al., 2017b). An 269 
overarching principle to guide the use of spatial thinking and tools in education is that 270 
supporting spatial thinking and learning beginning early in life may result in improvements in 271 
mathematics understanding, based on the general connection between spatial and 272 
mathematical factors as well as evidence that training particular spatial skills shows some 273 
transfer to mathematics skills. A promising avenue for future work is not just to support spatial 274 
thinking in general, but to show students how they can use this kind of thinking to solve 275 
particular kinds of mathematical problems (Casey, 2004). 276 

 277 
Conclusions 278 

In this review, we critically evaluate the contributions of the factor analytic method to 279 
identifying and elucidating the connection between spatial and mathematical thinking across 280 
development. We highlighted a central gap in our knowledge—understanding the mechanisms 281 
connecting spatial and mathematical skills—which can be better addressed through targeted 282 
experimental studies that are informed by process models than by factor analytic studies. The 283 
findings that can emerge from this approach are important for increasing our basic 284 
understanding of why spatial and mathematical thinking are connected. They also hold promise 285 
for informing educational efforts to increase mathematical achievement by strengthening 286 
spatial thinking by training spatial skills, by encouraging the use of spatial tools, and by showing 287 
children how they can deploy these skills and tools to solve particular kind of mathematical 288 
problems. 289 
  290 
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