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Optimizing Scene Detection of Engineering Videos to
Create TikTok Videos, Memes, Books, and Accessible Content

Abstract

To efficiently create books and other instructional content from videos and further improve accessibil-
ity of our course content we needed to solve the scene detection (SD) problem for engineering educational
content. We present the pedagogical applications of extracting video images for the purposes of digital
book generation and other shareable resources, within the themes of accessibility, inclusive education,
universal design for learning and how we solved this problem for engineering education lecture videos.
Scene detection refers to the process of merging visually similar frames into a single video segment,
and subsequent extraction of semantic features from the video segment (e.g., title, words, transcription
segment and representative image). In our approach, local features were extracted from inter-frame sim-
ilarity comparisons using multiple metrics. These include numerical measures based on optical character
recognition (OCR) and pixel similarity with and without face and body position masking. We analyze
and discuss the trade-offs in accuracy, performance and computational resources required. By applying
these features to a corpus of labeled videos, a support vector machine determined an optimal parametric
decision surface to model if adjacent frames were semantically and visually similar or not. The algorithm
design, data flow, and system accuracy and performance are presented. We evaluated our system using
videos from multiple engineering disciplines where the content was comprised of different presentation
styles including traditional paper handouts, Microsoft PowerPoint slides, and digital ink annotations.
For each educational video, a comprehensive digital-book composed of lecture clips, slideshow text, and
audio transcription content can be generated based on our new scene detection algorithm. Our new scene
detection approach was adopted by ClassTranscribe, an inclusive video platform that follows Universal
Design for Learning principles. We report on the subsequent experiences and feedback from students
who reviewed the generated digital-books as a learning component. We highlight remaining challenges
and describe how instructors can use this technology in their own courses. The main contributions of
this work are: Identifying why automated scene detection of engineering lecture videos is challenging;
Creation of a scene-labeled corpus of videos representative of multiple undergraduate engineering dis-
ciplines and lecture styles suitable for training and testing; Description of a set of image metrics and
support vector machine-based classification approach; Evaluation of the accuracy, recall and precision of
our algorithm; Use of an algorithmic optimization to obviate GPU resources; Student commentary on
the digital book interface created from videos using our SD algorithm; Publishing of a labeled corpus
of video content to encourage additional research in this area; and an independent open-source scene
extraction tool that can be used pedagogically by the ASEE community e.g., to remix and create fun
shareable instructional content memes, and to create accessible audio and text descriptions for students
who are blind or have low vision. Text extracted from each scene can also used to improve the accuracy
of captions and transcripts, improving accessibility for students who are hard of hearing or deaf.



1 Introduction

Recent advancements in educational technologies have made available many innovative approaches to
engage students with the course materials. In addition to standard-classroom teachings, efficient and reliable
educational tools have been developed to make the content more accessible to all students. ClassTranscribe is
an educational web application that is designed to offer accessible video-based lectures to engineering college
students. Equipped with user-friendly functionalities such as real-time speech-to-text transcription and
caption search, the video player was found to improve the final exam scores for students in a computer science
course, with the largest effect size for lowest scoring students[2]. One key feature ClassTranscribe offers is
the automatic generation of digital books, available in multiple formats (pdf,epub,html) which are composed
of lecture clips, slideshow text, and audio transcription content extracted from uploaded lecture videos. The
ePub format is an open standard format that can be further edited and transformed into other common
formats. The structure and chapters of the digital books were automatically extracted from the video scene
change detection model and a title detection algorithm. This functionality facilitates an alternative learning-
pathway to consume video-based content. However, despite these benefits, the digital book generation process
was limited to videos based on discrete slideshow content. If a lecture was recorded in a different format,
for example if the instructor’s talking face was included or content was constructed incrementally, the scene
detection model performed sub-optimally negatively affecting the quality of the generated digital books. Our
work aimed to address this limitation and create an improved scene detection method that was adaptable to
a wider range of lecture video recording formats employed in modern engineering education video content.

As a brief aside, an early question to the researchers was often “Why - Surely instructors just share
their slides as a pdf?” However, only a subset of instructors prepared traditional slides; others constructed
live content in editors, used document cameras, or employed a wide variety of sources during the lecture.
Even when instructors used Microsoft PowerPoint or equivalent, the linear slide sequence was an incomplete
representation of the presented material. In short, slides, and annotated slides were not an equivalent
learning resource to the recorded lecture video. We stress this is not just a technical limitation, rather that
from a student perspective, the slides if available and provided, did not meet the standard of an equivalent,
alternative learning pathway.

In this paper, we present and evaluate a new video scene detection framework, which was designed and
evaluated for a corpus of engineering educational video content, to facilitate automatic digital book gener-
ation and other instructional content. We also discuss the educational potential of digital book generation
under the motivation of providing accessible and inclusive education, in accordance with the principles of
Universal Design for Learning.

Scene detection refers to the task of partitioning visually similar and semantically related sequential
frames into groups, representing video segments. Then, subsequent operations can be applied to these seg-
ments individually to extract important semantic features, such as titles, key words, transcription segments
and images.

In our framework, features that indicate potential scene changes were extracted from each pair of se-
quential sample frames using metrics that represented multiple similarity comparisons between two video
frames. These features were based on the structure and text aspects of the image, and also by excluding the
estimated face and upper body area when a face was detected. The accuracy, performance and computation
resources needed for our platform were evaluated and optimized. By creating a corpus of labeled videos,
approximately 30, 000 entries of feature measurements were collected as training data. A support vector
machine was trained to determine the optimal parametric decision boundary to predict if a pair of adjacent
frames signaled a frame change. Experimental evaluation of the system was based on engineering lecture
videos from multiple disciplines. The testing videos used were a mixture of different presentation formats,
including hand-written notes, PowerPoint slides, digital ink annotations, and live code demos. For each
educational video, a comprehensive digital textbook comprising of the extracted lecture clips, slideshow text
and transcription content could be generated, with the scene detection framework serving as the backbone
of the generation process. Providing a equivalent learning resource to facilitate multiple learning pathways
is a principle of Universal Design for Learning, which is discussed in the background section. We also show
how this work improves accessibility and equity for students with visual impairments and students who are
hard of hearing or deaf.



The main contributions of this work are:

1. Identification of multiple causes why automated scene detection of engineering lecture videos is chal-
lenging and creation of a labeled corpus of videos representative of multiple undergraduate engineering
disciplines and lecture styles.

2. Creation of a set of image metrics which were then used as input to a support vector machine (SVM)-
based classification approach.

3. Evaluation of the accuracy, recall and precision of our SVM-based approach.

4. Creation of a performance optimization to obviate the need for GPU resources.

5. Subject to instructor permission, publication of a scene-labeled corpus of engineering video content to
encourage additional engineering education research in this area.

6. Publication of an open source scene-detection and extraction python tool to efficiently extract unique
images from lecture videos. We demonstrate how the output can then be the basis for additional
manual and automated activities to improve accessibility and equity, and can be used for content
creative remixing to improve student engagement.

The rest of the paper is organized as follows. Section 2 describes the general background of the problem
and its importance from a Universal Design for Learning perspective. Section 3 provides a formal problem
statement, describes the challenges and related works. Section 4 presents our scene detection framework,
along with its evaluation and optimization. Section 5 addresses the book generation application of the
scene detection framework. Section 6 provides students’ early feedback on the new book and note taking
opportunities based on this work. Section 7 describes accessibility and content remixing applications and
provides examples of both. Section 8 discusses future work and concludes this paper.

This is a relatively long and detailed paper; we also wanted to highlight that math, computation, heuris-
tics, optimization, and engineering-focused analysis and iterative design can all be employed together to
improve inclusivity, equity, and accessibility.

2 Background

2.1 Universal Design for Learning

Universal Design for Learning (UDL) is a set of educational design principles that seek to improve the
education accessibility and inclusiveness for course content and student assessment. A UDL course provides
varied and multiple learning pathways and modalities for a student to acquire course knowledge and skills.
For example, a student may learn a topic by attending lectures, asking questions, reading course notes, or
reviewing lecture videos, reading lecture transcript, or most likely, a combination of a subset of these items.
Instructors that adopt a UDL approach will usually ensure that their videos are accurately captioned, visually
described, and look for additional methods to provide further learning opportunities. The UDL approach
places a strong expectation of inclusivity, i.e. that educational technologies will support widely-accessible
content delivery methods that can benefit all students, including students with disabilities [12]. Accessible
content also helps international students with imperfect English, to obtain better learning results[6]. With
such a motivation, our work here aims to improve the automatic digital textbook generation feature in
ClassTranscribe, because digital textbooks provide an alternative learning pathway and provide equity i.e.,
help “level the playing field” particularly for students with attention, hearing and/or visual difficulties and
find it hard to learn from video-based resources.

2.2 Introduction to ClassTranscribe

ClassTranscribe is a new web-based video platform developed at the University of Illinois, and previously
introduced at ASEE [11] [1]. The goal of ClassTranscribe is to enable students to learn, search, review
the lecture videos efficiently and conveniently in an equitable and accessible interface. Designed to offer



Figure 1: An example scene change problem. A scene detector should identify change in information content
from one video frame to the next but ignore superfluous visual changes due to facial and hand movements.

accessible video lectures to engineering college students, ClassTranscribe is equipped with user-friendly
features, such as automated transcriptions, automatic digital book generation, and the ability to resume
watching a longer video when a student has difficulty focusing. ClassTranscribe also allows students to
search through transcriptions and to fix transcriptions errors efficiently. ClassTranscribe has been used as
an instruction tool for computer science classes and other engineering classes at the University of Illinois. This
includes multiple large-enrollment classes with more than 300 students. ClassTranscribe videos have been
watched by over 6, 200 students. With usage data available from the large number of users, ClassTranscribe
has also been used as educational research platform. This includes, for example, exploring the effects of
ClassTranscribe by students on improving learning outcomes [2] and characterizing how students utilize
transcription-search across the whole course content to find video content [25].

ClassTranscribe can create digital books from video content. The first stage of automatic digital book
generation is video segmentation based on scene changes, and all the subsequent processing is based on the
output from this stage. Thus, the eventual quality of the generated digital books depends on the accuracy
of the scene change detection during the video segmentation. To guarantee the quality and usefulness of
the generated digital books, an accurate and robust scene detection framework is needed. Nonetheless, such
scene change detection is a challenging task as the framework should be able to adapt to a wide range of
video lecture formats, and is discussed next.

3 Problem Description

3.1 The Scene Detection Problem

A video is composed of a series of images, or frames. Adjacent frames can be either similar or visually
different. Given a video, the objective is to find all the moments when neighboring frames change and
provide new information. Then, from either sides of the frame changes, locate the segments of repetitive
frames, and extract a representative frame, or scene, for each segment.

Figure 1 represents two typical scene changes in a video lecture of a college-level Computer Science
course. In the first example, the instructor switches from the camera view to the screen view. In the second
example, the professor changes the presentation material. Those two frames are examples of typical frames
for their corresponding segments.

3.2 Challenges in Scene Detection

Scene detection is a “diamond-in-the-rough” filtering problem because nearly all neighboring video frames
are not a scene change. The performance of an automated scene detector has two kinds of failure modes:
False Positives - incorrectly identifying a scene change - this would result in many superfluous visual images
being included in the digital book, effectively cluttering the book with unnecessary and similar images. False
Negatives - not detecting a scene change would cause visual information, e.g. a slide, to be excluded from
a digital book. For example, a naive scene detector that emitted an image every second of video lecture
content would produce nearly 4000 images for an hour content, with nearly all images being false-positives,



Figure 2: A scene detection challenge: Facial movement in the red box can mislead a pixel-based approach.

whereas only sampling the video every minute could miss important content (i.e. have false negatives). A
more sophisticated solution is required.

For the simplest slide-based content, a pixel-similarity approach is sufficient; specifically to average the
difference in brightness of each pixel from one frame to the next, and then compare the result with a threshold
value. This approach was employed in the initial version of ClassTranscribe. However it was impossible to
determine a reasonable threshold value that did not cause too many false negatives or false positives, and
thus was the motivation for the work described here.

By collecting multiple videos where the simple pixel-change described above failed we identified the
following common video elements in engineering education videos that caused scene detection to be a non-
trivial problem.

Firstly, the instructor’s face movement in the lecture created false negatives when only a pixel-similarity-
based approach was used. For example, in many lecture videos, the instructors’ face appeared in a rectangle
box at the edge of the screen, as indicated by the red box in Figure 2. Although the content in the
presentation stayed the same, the pixel changes from the instructors’ face movements caused the simple
scene detection algorithm to incorrectly declare a scene change. To address this, a face detection library
was used to locate the face on the screen, and compared structural similarity with the face pixels masked in
both frames. The mask area overrides the original pixel colors of both frames to the same color RGB value,
effectively removing the original pixel differences of the mask area from the similarity measure.

Slight scrolling of a presentation text page also misled the pixel-based similarity detector. In Figure 3,
the presenter scrolled up the page, as indicated by the upward movement of the red box. Although most of
the information stayed the same, all the pixels have shifted by some amount, which mislead the pixel-based
method to classify it as a scene change. To solve this issue, an Optical Character Recognition (OCR) lirbary
was used to detect text information in both frames and compared the text difference; this is discussed in
more detail later in the paper.

Incremental writing and typing were used when the presenter introduced a problem step by step. Figure 4
represents a typical example of this case, where the presenter typed the code one line at a time. An
optimal scene detector would extract only the first frame and last frame in this example. Scene detection



Figure 3: A scene detection challenge: Scrolling the page can mislead the pixel-based approach.

Figure 4: A scene detection challenge: Incremental Writing – An optimal detector would extract the start
and end frames and ignore unnecessary intermediate frames.

on incremental annotation is the subject of ongoing work and we look forward to reporting on our progress
in a future paper.

3.3 Related Works

In this section, we discuss some of the related work to video scene detection. Most of the existing
frameworks can be categorized into one of the three approaches: clustering approach, graph-based approach,
and learning-based approach.

Contemporary existing works based on clustering approaches transform video frames into a feature space.
Then, clustering algorithms are performed under the assumption that frames within the same scene have
close proximity in the feature space and will be clustered together. For instance, Baraldi et al. [5] and Panda
et al. [13] utilize a spectral clustering approach to group adjacent shots together.

Previous works also used a graph-based approach [15] [8] to represent a video shot as a node in a graph.
Then, graph partition algorithms are applied to find the best cuts that determine scene transitions. Further,
some works, such as [18], first construct Scene Transition Graphs, which considers a cluster of shots as a
node. Then cumulative confidence estimates are computed to find the optimal scene divisions.

More advanced frameworks also incorporate learning into the scene detection process. For instance,
Rotman et al. [17] proposed a learnable Optimal Sequential Grouping method, in which a fully connected
neural network is applied to the video content to learn the visual and audio embedding, and distance metrics
are computed from the embedding. Then, Optimal Sequential Grouping [16] is applied to calculate the scene
division probability. Further, Baraldi et al. [4] proposed a framework that learns a similarity measure using
a Siamese Neural Network and then performs spectral clustering based on the learned similarity matrix.

The majority of the existing works on video scene detection were designed for general purpose production
videos, and the ultimate goals vary widely based on the applications. However, to the best of our knowledge,
none of the existing frameworks are optimized toward educational lecture videos or modern engineering
educational videos. The method proposed in [5] has the most in common with our motivation and problem
context, as it also aims to improve re-using media content in an educational setting. However, the scene
detection method in [5] is not optimized for lecture videos and it takes a clustering approach, while our
method incorporates machine learning by training a support vector machine model that is more efficient and
robust.



4 Scene Detector Design

4.1 Algorithm Design

Our approach to the scene detection problem is to compare both structural and text disparity between
neighboring frames.

4.1.1 Candidate Frame

Modern popular video formats have a typical frame per second (fps) of 24 or 30. Thus, a medium-length
lecture of 50 minutes typically includes 72, 000 to 90, 000 frames. However, a large amount of those are
redundant and equivalent to the previous frame. For example, the video frames of a recorded Microsoft
PowerPoint presentation slides are identical to the previous frame for most of the lecture. To reduce compu-
tation time we assumed an upper limit on visual change in instructional videos. We assume instructors will
present material at a rate of no faster than 0.5 fps. In other words, the scene detector needed to process a
video frame from every 2 seconds of video content. For a lecture of 50 minutes, this is a sequence of approx-
imately 1, 500 frames. These frames were called candidate frames as they represented a list of frames that
may correspond to the end of one scene and the start of the next. For each candidate frame, the similarity
of successive candidate frames using multiple metrics was calculated. This analysis is described below.

4.1.2 Inter-Frame Structural Similarities

The first metric sim structural, computed the structural similarity index measure[23] [3] (SSIM ) for a pair
of adjacent frames. SSIM differentiates two images under visual similarity. Specifically, the measurement
considered the optical difference in luminance, contrast and structure. An algorithm from the skimage
package [19], was used for this purpose which returns a SSIM value between 0 and 1 for two images, with a
higher value emphasizing greater similarity.

4.1.3 Inter Frame OCR Similarities

Optical Character Recognition (OCR) is the process of recognizing and extracting from an image the text
that is either typed or handwritten and converting it into machine-readable text. For this work the extracted
text characters and additional meta-information - position, size and a self-reported accuracy measure - was
used.

Using the OCR text information from each image, we defined a new metric, sim ocr, which compared the
text difference between two adjacent frames. For two adjacent frames, sim ocr returns a value in the range
0 and 1, with 1 implying the text content in two images is identical and 0 representing dissimilar text. To
calculate sim ocr, Google’s Tesseract OCR[21] was used to extract a list of words together with geometric
information and a confidence value that estimated the correctness of the extracted text. The formula for
calculating sim ocr for a pair of successive frame FA and FB is summarized as follows,

sim ocr(FA, FB) =

∑
w=a∩b

(CA(w) + CB(w))∑
a

CA(a) +
∑
b

CB(b)

where a is a word that appears in OCR text of FA, and b is a word that appears in the OCR text of FB ,
respectively and w is a word that appears in OCT text of both FA and FB . CX(y) is the OCR confidence
value of the word y in the frame FX . If no words are detected in either frame, sim ocr is defined to be 1.
Thus, the metric is sensitive to the fraction of words that have changed between the two frames and words
that were identified with a high confidence by the OCR algorithm contribute more to the metric total. Other
measures are possible and may be worthwhile researching in the future. For example, edit distance, which
accounts for typographic changes required to convert one word into another, could be used to calculate a



Figure 5: Face Detection Result – with an upper body.

secondary OCR metric which may be useful for OCR output with low confidence and small single-letter
OCR errors.

4.1.4 Face Detection

To address the facial and body movement false-positive problem described previously, the presenters’
faces and bodies were automatically located in the frames and added to the pixel mask in the predicted
face and body position to calculate an adjusted sim structural value. A pre-trained Multi-task Cascaded
Convolutional Networks (MTCNN) [24] [9] was used to detect faces in all candidate frames. MTCNN was
selected for two reasons. First, MTCNN is a light-weight architecture, so its efficiency guarantees a lower
time consumption during scene detection. Second, MTCNN is trained on an image pyramid [24], and is able
to detect faces with varied sizes in the frames. This is an important aspect because corpus of lecture videos
included both large and small instructors’ faces with respect to the frame size.

To ignore pixel changes due to body movements we first observed that in the corpus of lecture videos
with the instructors’ bodies present, only the upper bodies appeared in the frames, as shown in Figure 5.
Thus, to simplify our model, only the upper bodies of the instructors were located and masked. Second,
when instructors’ faces appeared in the far left 20% or far right 20% of the video area, they were consistently
small head shots, as illustrated in Figure 6. So, only detected faces within the 20% - 80% horizontal range
of the frames were considered to also require upper body masking. To locate the upper bodies, for each
detected face, a new bounding box that was 3 times wide and 3 times long as the bounding box of that face
was constructed, according to standard proportions of human bodies for adults[7]. An example of the final
face and upper body mask is shown in Figure 5.

The mask was then used in the construction of a another metric, sim structural no face, which compared
the structural pixel difference between two adjacent frames after masking out the pixels inside all the upper-
body and face bounding boxes.



Figure 6: Face Detection Result – Face inside the blue rectangle without an upper body.

4.2 Model Training and Evaluation

4.2.1 Data

A set of 9 educational videos from ClassTranscribe’s database was selected to be representative of multiple
engineering disciplines and diversity of presentation styles. Using a sampling rate of 0.5 fps, all adjacent
frames in the 9 videos were manually compared and labeled as either a scene change (“real positive”) or not
scene change (“real negative”). Then, sim structural, sim ocr, and sim structural no face were computed for
each pair of adjacent frames.

Each pair of adjacent frames served as one sample. In total, there were 33, 244 labeled samples and the
three metrics were computed for each sample.

To encourage further research, we shared our labeled training data. The dataset is available at https:
//uofi.box.com/v/SceneDetection-ASEE2022-shared, along with the original video content subject to
the instructors’ approval. Please cite this paper if you use the data set.

4.2.2 Training a Support Vector Machine

For each pair of successive frames, there were three metrics, sim structural, sim structural no face, and
sim ocr. The objective was to train a classifier to discriminate if a pair of successive frames from a new
video was a scene change using the three metrics. The use of a Support Vector Machine (SVM) model was
selected because, 1) A supervised machine learning model is appropriate because real labels for all training
samples have been created, and 2) The small training set is too small for deep neural network approaches,
3) We expected the data to be linearly separable or nearly separable. 4) A SVM provides an intuitive
geometric interpretation that can visualized, whereas deep learning models provide no or little insight into
the classification output.

A SVM was modeled based on the three metrics of all training samples. A SVM model can fit a boundary
surface directly in the metric space, which best separates positive labels from negative labels in the training
samples. Figure 7 is an example of the SVM classifier modeled on the training samples, where darker, blue
points refer to real positive samples, lighter, orange points refer to real negative samples. The gray plane



Figure 7: SVM Visualization with on linear kernel. Darker blue points represent negative samples (i.e. not
a scene change); lighter, orange triangles represent positive samples; and the grey plane represents the best
separating surface.

refers to the boundary surface from the SVM model. For an unlabeled pair of adjacent frames, it is now
possible predict if it is a scene change based on its relative position using the 3 metrics i.e. if it is above or
below the gray plane of the SVM boundary surface.

To ensure the independence of the testing data from the training data, only one video was selected as
the testing set at a time. The Scene Detector was created from the other 8 videos, which were the training
set, then used to predict the frame labels for the test video frames. This process was iterated for all of the
9 videos.

There were many more negative samples than positive samples in our data because most of lecture
videos had a static presentation style with one slide change every several minutes, hence the number of scene
changes (positive) was fewer than that of stationary frames (negative). To address this imbalanced-training-
data issue, and to further account for our preference to have higher recall than precision metrics, the class
weight for positive data was set to be larger than that of negative data in the SVM model. In other words,
to counteract the abundance of negative samples in the metric space where training data is not separable,
there was a slight intentional bias for the SVM to favor correctness of the (fewer) positively labeled samples,
resulting in a more balanced prediction.

4.2.3 Kernel Function

To train a SVM on data that is not linearly separable in the original space, a non-linear kernel function can
be used to transform the space into a more desirable form. The most common kernel functions are linear,
polynomial, and radial basis function (RBF). Additional details on kernel functions and support vector
machines are described in [14]. Since the frame-similarity-measurement data was not linearly separable in
the metric space, in addition to the common linear kernel, the polynomial and RBF kernel were evaluated.



Metric Accuracy % Precision % Recall % F1 Score
sim structural 98.8 57.3 85.0 68.4
sim structural no face 99.4 74.1 92.8 82.4
sim ocr 97.4 18.2 21.7 19.8

Table 1: Results based on different metric setting. The best single-performing metric is
sim structural no face. This is not particularly surprising; this metric was designed as a direct improve-
ment over the original sim structural metric while sim ocr may not detect content changes in non-textual
images.

Kernels Accuracy % Precision % Recall % F1 Score
Linear 99.3 74.0 90.3 81.3
Polynomial 99.4 76.0 93.2 83.7
RBF 99.4 76.5 92.4 83.7

Table 2: Results using all metrics under different kernel functions. The Polynomial kernel using all 3 metrics
provided the best recall and similar precision to the RBF kernel.

The performance of using these kernels are presented in the next section.

4.2.4 Results

Table 1 presents the results based on the individual metric and all metrics using a linear kernel. The
individual metrics did not perform as well as using all 3 metrics (See Table-2). Table 2 presents the results by
combining all 3 metrics using the linear, polynomial and RBF kernels. Accuracy is the fraction of all correctly
labeled samples (both positive and negative). Due to the imbalance of real negative to real positive cases,
accuracy is less useful than the other 3 performance measurements. Precision is the fraction of correctly
labeled samples from samples that are predicted as positive. Thus a high percentage precision implies few
false positives - practically, this would result in a minimal clutter of unnecessary images in the digital book.
Recall is the fraction of correctly labeled samples from samples that are labeled as real positive. A high
percentage recall implies most real scene changes are identified i.e. there would be no missing slides in a
digital book. F1 is the harmonic mean of precision and recall, and can be used as general comparative
measure that equally balances precision and recall.

4.2.5 Discussion

The testing results show that an increase in the overall recall and precision after introducing all three met-
rics, which indicate the effectiveness of using OCR and Face Detection to supplement the original similarity
measure.

In the context of digital book generation, the ideal performance is to detect every real scene change
without cluttering the book with distracting false positives. To minimize the number of real positive samples
that are not detected, Recall is an useful measurement because it represents the fraction of detected positives
out of all real positives. A higher recall means fewer missed real positive images, and hence a better extraction
outcome.

From Table 2, among all the kernels, the polynomial kernel exhibited the optimal performance in recall.

Table 3 listed the accuracy performance of the best SVM model on each video. The model performed best
on video 6 because it involves less face movements and no handwritten annotations. The model performed
worst on video 8 because incremental handwritten annotations in the lecture caused excessive scene changes
detected.



Video Accuracy Precision Recall F1 Score Comments
1) 99.9 97.5 95.2 96.3
2) 99.2 69.0 91.8 78.8
3) 99.7 100.0 76.1 86.4
4) 99.8 100.0 88.4 93.8
5) 99.7 91.6 100.0 95.6
6) 100.0 100.0 100.0 100.0 Best result because of no annotations

and few face movements
7) 99.8 83.3 100.0 90.9
8) 95.6 34.8 97.4 51.3 Worst result due to large number

of handwritten annotations
9) 99.8 97.3 97.3 97.3

Table 3: Performance of the best SVM model for each video.

Computed Metrics Corpus Processing Time (seconds) Ratio Single lecture (seconds)
All 3 metrics 2,095 10.4% 311
Only sim structural 307 1.5% 45.6

Table 4: Time requirement for different metric computation strategies.

4.3 Optimization

4.3.1 Time Requirement

Although the model with all metrics has better correctness than the original scene detector, it required a
significant amount of additional compute time to calculate the two additional metrics. Table 4 is a summary
of the time requirement for metric computation in the 9 videos. The third column represents the ratio
of computation time dividing the total video length. The total video length is about 5 hours and a half
(approximately 20, 000 seconds). The fourth column represents the estimated computation time for a 50-
minute lecture using a 6-core Intel Core i5-11400 CPU. Although the GPUs would be able to achieve results
more quickly, fast CPU-based performance was desirable because university-owned GPU virtual machines
hosts are uncommon, modern GPUs are difficult to obtain, Amazon cloud GPU VMs are relatively expensive
(50+ cents/hour; $4K+ /year), whereas CPU-only VMs are readily available on older and/or free university
hardware.

The algorithm described so far required 30 CPU minutes (5 minutes of wall-clock time using a 6 CPU core
desktop machine) to complete the scene detection process for a 50-minute lecture. This was considered to be
unacceptably slow for inclusion into a video platform, such as ClassTranscribe that was designed to support
multiple courses. Though GPU resources would speed the computation, a processing time of approximately
1 minute was desired for a typical 50 minute lecture without using GPU resources. This was solved using
an early dropping technique, described in the next section.

4.3.2 Early Dropping

We describe here a technique to optimize the computation process using an Early Dropping technique
(also known as Short-circuiting or Early-exit), where a portion of a time-consuming calculation can be
obviated under some conditions. Briefly, the strategy is to use a metric(s) that is fast to compute to process
samples to determine if they are very similar or very dissimilar and only calculate the more expensive
metric(s) when more careful arbitration is required. Figure 8 plots the distribution of sim structural and
sim ocr metrics for all samples with the real positive and negative labels. For the majority of samples with
a real-negative label, the sim structural values are higher than 0.9. Therefore, for a unlabeled sample, if it
has a sim structural that is higher than a threshold, then the early dropping model prediction is that it is
not a scene change and hence computing sim ocr and sim structural no face can be avoided. In practice,



Figure 8: Distribution of sim structural and sim ocr values for samples using the real label. Darker blue
points representing negative samples (not a scene change) and lighter orange triangles representing positive
samples (a scene change).

a value of 1 is then used in place of calculating sim ocr and sim structural no face metrics for these cases.
Note early dropping was employed to exclude both similar and dissimilar cases, however for brevity this
paper only presents the details of the former.

To find the best value of the early-dropping threshold, experiments were performed on the 33, 244 samples
from the 9 videos. Different thresholds were evaluated for their associated error rate. The results are
summarised in Figure 9.

The Error rate refers to the fraction of the positive samples incorrectly dropped from all samples dropped-
as-negative. With a threshold of 0.96, the error rate remains small but it is still possible to drop a large
number of negative samples. Specifically, among all the frames with sim structural higher than 0.964,
only 0.00956% (3 out of 31, 372) were real positive frames. Therefore, we concluded a new frame with
sim structural higher than 0.96 will likely be a negative frame.

The same method was applied to drop samples with low sim structural as a positive. Then, the process
was repeated in section 4.2 with Early Dropping, and the performance is summarized in Table 5. The
Early Dropping technique had minimal change to the correctness measurements, but significantly reduced
the computation time. With Early Dropping, 31, 372 samples (94.4%) could be dropped from the full,
3-metric calculation, though in a production system, a more conservatively threshold might be used to
avoid potential over-fitting to the training set. Compared to the original algorithm the computation time
requirement decreased from 2, 095 seconds to 443 seconds, which was similar to the original processing time
for the single sim structural metric. With an improved ratio of 2.19% of processing time to video time, this
implied a 50-minute lecture would require about 66 seconds to complete the scene detection process. With
the improved accuracy and a 5-fold increase in performance of Scene Detection by using Early Dropping the
new revised algorithm was ready for inclusion into ClassTranscribe and potentially other video production
systems.



Figure 9: Dropped amount and error percentage of different sim structural thresholds. When increasing the
threshold, both the dropped amount and error rate decreased.

Computed Metrics Full Corpus Processing Time (seconds) Ratio Single Lecture Time (seconds)
Early Dropping 443 2.2% 65.8

Table 5: Time requirement for Early Dropping metric computation strategy.

The next section returns to one of our original motivations for automated scene detection - book creation.
We reiterate that digital book of recorded video content has the potential to provide an alternative, yet
equivalent high-quality learning method that can benefit all students but may particularly benefit students
with disabilities and students with limited access to IT video-capable resources or read online despite limited
internet availability in impoverished and rural areas. Using the approach described above it was possible to
create a digital book that automatically includes extracted images and transcribed text content from each
lecture video. Digital books can also be printed as physical books. For example, a book can be printed to
provide printed materials for incarcerated persons who have limited or no access to video content.

5 Digital book generation

5.1 Chapter Image

The scene detection algorithm segmented the video into separate visual scenes. A scene change could be
any visual or text content change that occurs during the video lecture, such as flipping a PowerPoint slide
or moving to a new page on hand-written notes. After scene detection, a video has been segmented into a
series of clips, each of which is defined as a chapter. Each digital book contained several chapters and each
chapter included generated images and text content.

To avoid scrolling artefacts the middle frame between two scene change points (two boundaries of the
clip) was selected as the exemplar frame of each scene.

In addition to visual content, the transcription of the audio clip inside each video scene segment was
transformed into a book-like format.



Figure 10: Examples of more challenging images for the Title Detection detection. The first one has a title
of 2 lines. The second one has a title on the right middle of the screen.

5.2 Chapters Title Generation

Using OCR output - the positional, text content, and size properties of the extracted text, and combined
heuristics to represent common slide layouts it was possible to suggest likely title text for each chapter.

First, a candidate word that had the maximum likelihood of being in a title sentence was located. Using
the Tesseract OCR[21] library, the coordinates of the bounding box for each word were extracted. Note,
simply finding the largest bounding box of the extracted text was an insufficient heuristic because the
bounding box varied depending on the presence of ascender and descender letters. For example, text of the
same font size with descenders, ascenders, or both (e.g., “gj”, “TP”, “Ty” respectively) would have a larger
bounding box than a word with neither (e.g., “can”).

The relative position of the word was also used to identify title words. The title sentence usually appeared
near the middle top of a presentation slide. Words were assigned a score based on font size, vertical and
horizontal location. After combing all three heuristics – font size, vertical position, and horizontal position
– candidate word that had the best combined score is selected. Please see the source code for full details.
Once a single word was identified as part of the title the algorithm searched for words in the same or nearby
line with a similar font size as that of the candidate word.

In the corpus of 9 videos this relatively simply heuristic-based algorithm was surprisingly robust, though
formerly evaluating this is outside the scope of this work. Figure 10 demonstrates two more-challenging
examples that were still successful for the title detection algorithm. The left image had a title of more than
1 line. The right slide had a slide with a title not centered on the left top, but on the right middle.

The predicted titles were then inserted into the beginning of each chapter. ClassTranscribe’s users were
able to edit the detected titles in case the suggested titles were inaccurate.

5.3 User Interface

Figure 11 and Figure 12 are examples of the user interface when editing the digital book. Figure 11
represents the Book Structure Editing Interface, where the user can combine and split the automatically
generated chapters. To be specific, there are altogether 4 working areas in this interface. Working area 1
is a bar of several buttons of useful functionalities, such as renaming the book, downloading the book, and
saving the current progress. Working area 2 is a preview of the current chapter structure with their titles.
In working area 3, users can further combine or split chapters accordingly if the Scene Detector does not
function as expected. Working area 4 is a preview of the images and text content of the currently selected
chapter.

Figure 12 represents the Chapter Editing Interface, where users can edit different content in the chapter.
In working area 1, users can add or remove images, change the title, and edit text content. The text content
is initially the transcript of the video segment that corresponds to the chapter or sub-chapter.

Course lecturers can simply upload a newly recorded video lecture to classtranscribe.illinois.edu



Figure 11: Digital Book Structure Editing Interface. The user is presented with the output of the scene
detector and can select which images should be used as new chapters or new sub-chapters.

Figure 12: Digital Book Chapter Editing Interface where content can be added and edited.



Figure 13: A two page sample from a digital book created from a lecture video.

and click “Create New Book” to generate a content-equivalent digital book from that video. Once the digital
books are generated, they can be immediately downloaded in a desirable format by clicking the button in
the bar. Popular download formats (pdf, html, and epub) are supported.

5.4 Sample Book

Figure 13 gives two example pages extracted from a generated book of a computer science course. The
digital book interface of ClassTranscribe, how the generated books were further enhanced to improve the
accessibility for students with disabilities, and a survey of student textbook needs are discussed in the
accompanying ASEE 2022 paper [10].

5.5 Limitations

Some lectures are hierarchically structured chapters that include sub-chapters. It is desirable to detect
the segment hierarchy, split each segmentation into sub-segment, and structure the book based on both
chapters and sub-chapters. The current scene detector implementation only suggests chapters and does not
create a hierarchy of sub-chapter content.

Of the corpus of 9 videos from the University of Illinois that were reviewed handwritten content that
used scrolling in digital notebook interface generated the most false positives (due to the limitations of pixel
similarity matrix and ability to extract reliable text from each slide). Optimizing scene detection for this
content style would benefit from additional research.

6 Content reuse, remixing and transformation: From TikTok and Memes to a equitable
pathway of accessibility for everyone

Scene detection allows new representations from existing lecture content. With the key moments ex-
tracted as individual image files in to single directory, additional content creation and applications become



possible. These include integration into larger platforms for the creation of an equivalent digital book (and
this is explored further in the ASEE 2022 paper [10]), and using a single image or all images as source for
creative content creation and accessibility-related applications.

As an example of a creative application we assembled short (approximately 10-second) animations of
lecture videos. We defined this as our “TikTok Video” experience because it was inspired by the short
videos on the social media website that has become popular format for sharing videos among students.
Lecture videos compressed to 10-seconds are not designed for learning the content but are a novel approach
to engage students using a video modality that they watch and share daily. The shell script to automatically
assemble a 10-second video is available at https://uofi.box.com/v/SceneDetection-ASEE2022-shared.

Memes are amusing popular image formats that typically contain a figure and title text, and are often
shared on social media websites, instant messaging, and phone applications. An image from the scene
detection output can be repurposed as a meme image by the addition of large-font text, or by inclusion
of an image into a standard meme format (for example, see Figure 14). The authors suggest the primary
utility of this method is to engage and inspire students. The authors note that memes are purely a visual
representation so it is important to provide an alternative text to describe the image.

Scene extraction also benefits students with visual and hearing difficulties, which we discuss next.

The ability to extract each scene from a video is advantageous to students who are hard of hearing or
deaf because it can improve the accuracy of captions and transcriptions. The ClassTranscribe video platform
performs automated text extraction using the OCR output from each scene which is used to create a set
of phrase hints. The phrases hints are sent along with the audio to Microsoft Azure Cognitive Services to
perform speech to text. The response is used to create captions and transcript of the audio stream. By
identifying domain words presented visually from the extracted scenes and creating phrase hints for the
speech to text service, the accuracy of the captions was improved (e.g., it could identify and correctly spell
words that were likely not part of the original training data, e.g., “Clausius–Clapeyron relation,” or was
more likely to correctly identify the spoken audio phrases that were also presented in text form in the video
e.g. “Electron Beam Microprobe Analyzer”).

Scene data provides a starting image data set for extended audio description and equivalent text gen-
eration too, which, if created, provide the semantic equivalent of the visual content for students with low
vision or who are blind. The scene image is converted into associated textual description (or multiple de-
scriptions of varying complexity). For example audio description text can then be later rendered as audio
by a volunteer narrating the text or by using automated text to speech technology. A full discussion of
enhanced audio description and is beyond the scope of this paper but the interested reader is referred to
[20]. Automated creation of a text description of images (e.g., “A bar graph” , “A circuit diagram”, do not
yet convey desired, useful and insightful pedagogical information. Thus, the creation of equivalent text and
audio descriptions is still a manual task that is often overlooked in course content creation; for example it
appears that faculty may equate the existence of captions, accurate or not, as sufficient to me accessibility
and equity goals. However, with the availability of scene images that can now be extracted from engineering
videos there are new opportunities – some authors of this paper suggest a mandate – to develop and share
inclusive educational practices that includes the generation of audio descriptions and equivalent textual con-
tent. For example, if the scene detection output includes an image from a video of an equation or computer
code then these items should be usable directly as an equation or editable and executable code, respectively.

7 Student Feedback

We demonstrated the new digital book feature to a small number (N=10) of engineering undergraduate
students from Physics, Computer Science and Neural Engineering. Their informal comments and feedback
included, “May save the time... It’s a good technique for preserving ... valuable lecture contents, which
is extremely helpful in a situation like pandemic ... shortens the time of students’ recitation of course
videos, and facilitates the collation of electronic notes. Moreover, the design of web interface is simple and
generous... reading a book is much more efficient than watching a video, and it’s easy to take notes by
copying the content directly to our notebook... It gives instructors an alternative and customized way to
teach, providing students with an auxiliary learning method... The digital book and the editing feature are



Figure 14: Example of a meme with large-font text juxtaposed with lecture content on the right into a single
shareable image. For accessibility, the accompanying caption, or the Alt-text description – which should be
accurate and succinct – could be, “Success-Kid meme and course slides; Ace the details - Ace the course.”

very useful for student for note-taking... The user interface is intuitive and easy to understand... Students
can save time with a condensed version of the lecture video”. All students shared positive opinions towards
the experience of editing and using digital books as a learning resources.

Some students suggested that 1) the layout of the output book is overly complicated and could be
improved, 2) more languages should be supported by the digital book feature, 3) drag and drop editing for
book structure should be supported, and 4) words extracted from speech recognition with low confidence
level should be highlighted so that users can easily identify and modify them when needed. We look forward
to reporting on students’ use of the digital books for learning in a future paper.

8 Conclusion and Future Work

This paper introduced a new approach to the scene detection problem which was optimized for common
types of engineering lecture videos. Scene detection that is fast and provides high precision and recall is an
important goal because it provides a foundational role for automatic digital textbook generation process and
other accessibility related processes. The trade-offs in accuracy, performance and computational resources
required were analyzed. An evaluation of our framework found 93.24% in recall, 76.09% in precision, and
99.47% in overall accuracy. Scene detection remains an open problem, however, for example there is room
for improvement for lecture videos that use incremental annotation using digital ink or chalk.

The scene extraction python tool is available as a source library on GitHub https://github.com/

classtranscribe/SceneExtractor-2022 and has also been embedded into the ClassTranscribe web appli-
cation where it was used to create digital books from existing lecture videos. The former extracts a sequence
of images from one or more videos into a local directory which can be further combined with other videos,
used as basis to create content-driven memes, or visual index, to further reach, engage and inspire students.
The image set can also be used to create audio descriptions and alternative text for students who are blind
or have low vision, to further make engineering courses more inclusive and accessible.

Our approach and open-source implementation are adaptable; they can also be embedded into other
video-based educational platforms and workflows. Finally, we hope the promising results of our work will
inspire more innovative advancements in creating inclusive, accessible educational environment for all stu-
dents.



Successful scene detection for engineering videos enabled the creation of equivalent digital book content,
which is of value from the perspective of Universal Design Learning, to support multiple learning path-
ways and modalities. We discussed and demonstrated other content transformations that scene detection
supported including phrase hinting and audio descriptions for equity and video and meme creation for en-
gagement and review. We encourage the ASEE community to adopt and explore the ideas and practices
outlined in this paper, in particular to find novel ways to remix and reuse content for engagement and acces-
sibility. Future research opportunities were also discussed including improving scene detection for scrolling
content, developing best practices for creating and using audio descriptions and equivalent content in engi-
neering courses, and research into optimizing the accuracy of automated caption and transcript generation
using phrase hinting from lecture content.

The ClassTranscribe video platform is available for use by instructors at other institutions to create
digital books; please email classtranscribe@illinois.edu for further information. We look forward to
discovering how the ASEE community and engineering students will use the scene extraction tool and the
ClassTranscribe web application both pedagogically and creatively.
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