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PREFACE. 

MAN Cannot but behold with gratitude and delight, the multi¬ 
plied benefits and amazing objects which surround him on all 
sides, contributing equally to his wants and pleasure. This plea- 
sure, however, is greatly increased in propoition as the nature, 
utility, and number of these objects are known and understood ; 
and this knowledge is only attained from a cultivation of those no¬ 
ble powers with which the mind of man is gifted, and which so 
eminently distinguish him from the brute creation. 

The savage that ranges our forests in common with the brute ; 
that at the same fountain satisfies his thirst, and eats of nature’s 
fare, whatever his taste or appetite craves ; that seems no way dis¬ 
tinguished from the animals with which he associates, than by the 
figure of his species; has still within him the seeds of those noble 
acquirements which exalt and dignify human nature. Yes, this 
same savage enjoying similar advantages with a Cicero, a Demost¬ 
henes, or a Newton, might become their rival; but those seeds, 
from a want of cultivation, must remain for ever buried in oblivion. 
Such is the picture of uncultivated man, whom, in his wild and 
savage state, the mines of Peru cannot enrich, or whose wants 
the most fertile regions of the earth cannot lessen In the 
midst of profusion he is indigent, and in the unequal conflict with 
those animals, whose master he was destined to be, must often be¬ 
come a prey to their superior strength and ferocity. 

It is evident, then, that an acquaintance with the elements of 
science is intimately connected with our necessities, no less than 
with our future progress, advancement, and eminence ; and that in 
proportion as we neglect the acquirement of this knowledge, we 
approximate to the state of the rude, uncutti- ated savage It is 
well known, that Great-Britain and France respectively owe more 
to the successful cultivation and application of the sciences, than 
they do to the valour of their armies, or to the strength of their 
marine. 

Among all the branches of science within the compass of hu¬ 
man acquirements, there are few that unite greater importance 
and utility, than that which exhibits and explains the phenom¬ 
ena of the earth, our destined habitation, and more pleasure, 
than that which traces the evolutions of those immense orbs that 
decorate the heavens, and investigates the unerring laws by which 
they are regulated and governed : for there is nothing which so 
much excites our attention and curiosity, which unites in itself so 
much grandeur and magnificence, and which produces in the soul 
so much sublimity and admiration, as the contemplation of those 
prodigies which that immense vault surrounding the habitation of 
man exhibits to our view. And if there be some in whom this grand 
spectacle excites no emotion, it is because they are too much ab¬ 
sorbed in those artificial wants or necessities which they create to 
themselves ; veluti fie cor a> as batiust says, qua nutura firona} af 
que ventri obedenlia fmxit. 
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It is in the heavens that the Creator has chiefly manifested his 
greatness and majesty. It is here that the Sovereign Wisdom 
shines with the greatest lustre, and that the sublime ideas of order 
and harmony reign. In this immense host of celestial bodies all is 
prodigy and magnificence : all is regularity and proportion: all 
announce a power infinitely fertile in the production of beings, in¬ 
finitely wise in their arrangement and destination. 

But this magnificent spectacle is not thus exposed to our con¬ 
stant view, to be the object of an idle admiration, or a fruitless con¬ 
templation ; it is much more connected with the wants and ad¬ 
vantages of the inhabitant of the earth. It is in the heavens that 
we have found the means of arresting time in the rapidity of its 
course : of regulating our seasons, and fixing those interesting 
epochs, from which the Historian and Cbronologer date the most 
important events The form, the extent, the exact position of the 
different parts of the earth we inhabit, and its situation in the im¬ 
mense expanse, is attained only by the assistance of Astronomy. 
If we now traverse the ocean with so much security and skill, it is 
principally owing to this science which has furnished the means of 
ascertaining our place, at any time, in this trackless element. Thus 
by the interposition of the heavens the most distant nations hold 
their correspondence: extensive deserts, immense oceans, seas, and 
unknown countries are explored, and their riches transported to 
other countries destitute of these resources. In a word, it is to 
this science that Columbus owed the greatest discovery that human 
ingenuity has ever made, and that he has been able to add a new 
world to the old. 

It is not only in enlarging the sphere of human knowledge, and 
contributing to the wants and conveniences of man that Astronomy 
is useful; it has also dissipated the alarms occasioned by extraor¬ 
dinary celestial phenomena, and destroyed many of the errors aris¬ 
ing from our true relation with nature. Such are the obligations 
we have to this science ; such the benefits which it has conferred 
on society; such the services it has rendered the human mind. 
This sublime science then, claims a right to our esteem and res¬ 
pect, and without doubt, there is not among human sciences another, 
more worthy to engage our attention, and better calculated to oc¬ 
cupy and amuse our leisure moments. 

It is no objection to it that it has often been made the unwilling 
instrument of impiety in the hands of the impious, or of an absurd 
science in the hands of the Astrologer; for the greatest benefits 
conferred on man are susceptible of abuse. To put a stop to these 
growing evils, Emperors have passed their edicts and enforced 
their decrees, to expel those impious pretenders from cities that 
became the scenes of theirTolly and impiety, and some who de¬ 
served a better fate were unhappily involved in their number. The 
irreligious Philosopher and the impious of the day, will ascribe 
many of these unhappy occurrences to the religious prejudices and 
ignorance of those times; but with no more reason than those 
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have, who charge this science with supporting impiety, though o£ 
all others the least calculated to afford it any support If history 
has any truth in it, history affirms that it was in houses dedicated 
in those days to piety and religion, that the most precious remains 
of science were preserved, and that it is from them they have been 
principally handed down to the present time. 

To trace this science to its origin, and point out the various al- 
terations and improvements it has received, the long series of dis¬ 
coveries which it presents, and the illustrious authors who have 
contributed to them, would far exceed the limits of a preface. It 
will be sufficient to observe, that the origin of Astronomy com¬ 
mences its date with that of Agriculture and of Society itself. 
There is still an immense difference between the first view of the 
heavens, and the view by which, at present, we comprehend the past 
and future state of the system of the world. It is, however, to the 
improvements in the past and present age, that we are principally 
indebted for this developement of the most important and curious 
discoveries in this system ; and such of those authors as have been 
most successful, and have particularly excelled in this respect, have 
been consulted in the following compendium. Their works have 
been also pointed out to direct the choice of the student, and exhi¬ 
bit their superior advantages and excellence. 

Among the inconveniencies attending our public places of edu¬ 
cation, it is no small one, that many of those works which are the 
standard of elegance and perfection, are inaccessible both to the 
Student and Master, in consequence of the difficulty of procuring 
them from Europe, and their too great expense to bp introduced 
into Schools. To remedy, in some measure, this inconvenience, 
the author of the present work has undertaken to draw up an entire 
course of Mathematics and Natural Philosophy (if his avocations 
will suffer him to continue) principally for the use of the Students 
belonging to the JVew-Yorlc Literary Institution. And conceiving 
that this course, undertaken more from necessity than choice, 
would asssist him no less than others occupied in the education 
of youth, he has been induced, principally from this motive, to 
make this introduction public. 

The present treatise on the Use of the Globes and Practical As¬ 

tronomy is complete in itself, and detached from the contemplated 
course, the author having immediate and urgent necessity for its 
use ; and being a subject uniting extensive utility with pleasure and 
ornament, no pains have been spared, in calculating it for these im¬ 
portant objects, as far as his hurry in drawing it up wrouId allow. 

Each problem is illustrated with several examples, and their de¬ 
monstration or calculation, See- given in notes at the bottom, in or¬ 
der to make it more fully answer the end of an elementary trea¬ 
tise on practical astronomy, and to adapt it to academies and places 
of public education in general, where this branch ot science is now 
considered as one of the most entertaining and necessary. 



VI PREFACE. 

Many new and important problems will be found in this, in addi¬ 
tion to those found in other treatises; and which likewise are per¬ 
formed on the globes, by methods generally entirely new, and found 
in no other treatise; which cannot but render this work extremely 
interesting to those who are capable oi relishing the beauties of 
science, and of appreciating its value. Many important fables 
are inserted in the course of the work, as well as figures to illus¬ 
trate the demonstrations, &c. and it is no small recommendation 
to it that these figures were cut by the celebrated Dr. Anderson. 
There are also given, besides a complete account of the Solar Sys¬ 
tem, the elements and iavvs of the planet’s motions, their phe¬ 
nomena, their principles, &c a full investigation of the nature and 
motion of Comets, the doctrine of Eclipses, the Tides, the Gene¬ 
ral laws of Motion, Gravity, &c enriched with many discoveries 
and late improvements from Hcrschel, Vince, Maskelyne, La 
Lande, Laplace, Dtdambre, Sec. 

The work bein^ printed close, and the notes (which are of con¬ 
siderable length) being in small type, this treatise must contain 
more matter than any other of the size and nature in print; so 
that in one volume >f moderate size, besides the Treatise on the 
Globes, an entire course of Astronomy is given, including both the 
calculations, and the geometrical and physical part ; and the au¬ 
thor does not believe that he has omitted any thing of importance} 
that has any particular relation to these subjects. 

The teacher will immediately perceive that the work is calcu¬ 
lated for three distinct classes of students. The first is, of those 
who are supposed to be unacquainted with the principles of Mathe¬ 
matics, and who may read the definitions and all the problems on 
the globes, contained in the 2d and 3d parts. The second class, 
who are supposed to have some knowledge of Geometry and Trig¬ 
onometry, may read the notes on the definitions and problems on 
the giobes, and perform the problems by calculation ; they may 
also read some select parts of the 4th part, particularly those rela¬ 
tive to the order and motion of the planets in the solar system. 
The third class, supposed to be somewhat acquainted with the ele¬ 
ments of the Conic Sections, Algebra, and the first principles of 
Fluxions, may continue the 4th part This last class, by finishing 
the elements of Fluxions, will obtain any further ktio vledge in 
Physical Astronomy that may be necessary, being the most proper 
place for fully investigating this abstruse subject. 

The author in presenting this work to the public, is equally re¬ 
gardless of its censure or praise, as I is object is neither emolu¬ 
ment nor celebrity. His whole aim in the undertaking was to 
lighten the burden of the Teacher and to improve the student If 
by comprising in a comparatively small compass all that is useful 
and necessary either on the Globes or in Astronomy, lie succeed 
in this, his object will be fully attained. 

Distance from the press and hurry in the execution, have pro¬ 
duced some few errors, most oF which are found in the errata at 
the end. 
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PRACTICAL ASTRONOMY, &c. 
IN THE 

DEFINITION AND USE OF THE GLOBES. 

PART r. 

DEFINITIONS, toV. 

1. A globe or sphere, is a round solid body, having every 
part of its surface equally distant from a point within it, called the 
centre. It is formed by the revolution of a semicircle round its 
diameter, which remains fixed. 

2. The terrestrial globe* is an artificial representation of the 
earth, having the different countries, empires, kingdoms, chief 
towns, seas, rivers, &c» truly represented on it, according to their 
relative situations on the real globe of the earth. 

* If a map of the world be accurately delineated on a spherical ball, its 
surface will represent the surface <?rthe earth. For the highest hills are so 
inconsiderable with respect to the bulk of the earth, that they take off no 
more from its spherical figure, than grains of sand do from the spherical 
figure of an artificial globe. The diameter of the earth is about 7964 miles. 
Chimborazo, one of the Andes, considered the highest mountain in the 
world, is about 20,282 feet or nearly 4 miles high. The radius or semi¬ 
diameter of the earth is about 3982 miles, and that of an 18 inch globe 
9 inches : hence we have this proportion 3982m : 3986m :: 9 in. : 9.009 in. 
Now by taking the radius of the artificial globe from this, the remainder 
.009=Ti5~?r=TTT of an inch, nearly, which is the elevation of the highest 
peak of the Andes on an 18 inch globe. That the globe of the earth is 
spherical, or nearly so, appears 1. From its casting a spherical shadow on 
the moon, whatever be its position, when it is eclipsed. 2. From our seeing 
the further, the higher we are elevated on its surface. 3. From our first 
seeing the tops of mountains, the masts of vessels, &c. when we advance 
towards them in any direction. 4. From its having been sailed round from 
east to west by several persons ; and that in whatever direction a ship sails, 
the stars are elevated above the horizon as man}7 degrees as the vessel sails 
towards them, and those behind depressed in like manner. Thus in sailing 
from the equator towards the north pole one degree, the pole star is elevat¬ 
ed 1°; in sailing 2°, the pole is elevated 2°, &c. so that if there were a star 
exactly in the pole, its height would always indicate the number of degrees 
a place is from the equator or its latitude. This phenomenon could not 
possibly take place unless the globe was round. 5. From the length of 
pendulums vibrating in the same time in different parts of the world, being 
always as the force of gravity (Emerson’s Tracts, part 1. prop. 27.) that is, 
as the distance from the earth’s centre (Newton’s Principia. b. 3, prop. 6.) 
But the increase of gravity or weight in passing from the equator to the 
poles is as the square of the sine of the lat. (Newton, b. 3, prop. 20.) so 
that the equator is something higher than the poles, the diameters being* as 

A 
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3. A great circle of a sphere is any circle on its surface, whose 
centre is the same as the centre of the sphere. Its plane divides 
the sphere into two equal segments called hemispheres. 

Note. The plane of a circle is the surface included -within its circumference. 

4*. A lesser circle is that whose centre is different from the cen¬ 
tre of the sphere. Its plane divides the globe into two unequal 
segments. 

5. The axis of a sphere is the fixed straight line about which 
the generating semicircle revolves. The axis of the earthy is an 
imaginary straight line passing through its centre, and upon which 
it is supposed to turn. The axis of the artificial globe is a line 
which passes through its centre from north to south, and is repre¬ 
sented by the wire on which it turns * 

6. The poles of a great circle of the sphere, are the two points 
equally distant from any part of the circumference of that circle.— 
The poles of the earth are the extremities of its axis, at the earth’s 
surface ; one of which is called the north or arctic pole : the other 
the south or antartic pole The celestial poles are the imaginary 
points in the heavens corresponding to the terrestrial poles, or the 
extremities of the earth’s axis produced to the heavens.f 

7. The diameter of a sphere is any straight line which passes 
through the centre, and is terminated both ways by the surface of 
the sphere. 

8. The circumference f of a sphere is any great circle described 
on its surface. 

230 to 229—And the pendulum indicates not only this small difference, but 
even the difference made in the height of mountains ; for a pendulum that 
vibrates seconds in a valley, will not vibrate seconds exactly when carried 
to the top of a mountain. Now if the semi-diameter of the equator be 3982, 
the polar semi-diameter will be 3964.6. For 230 : 229 :: 3982 : 3964.6 
nearly. Hence the radius or semidiameter of the earth at the pole, is 
shorter than the semidiameter at the equator by 17 j miles nearly. But 
this difference is so imperceptible on the largest globes, that it is not 
thicker than the paper and paste on the surface. For suppose the diam¬ 
eter of a globe at the equator be 18 inches, then 230 : 229 :: 9 : 8 

§1-0 the polar semidiameter ; therefore the difference is of an inch, 
the flatness of an 18 inch globe at each pole ; a difference less than the 23d 
part of an inch. Hence though the earth be not strictly speaking a globe, 
yet no other figure can give so exact an idea of its shape. And a lecturer 
who informs his hearers that it is in the form of a turnip or orange, gives a 
very false idea of its true figure. Though 7964 be generally assumed for 
the earth’s diameter, it is however probably something less. 

* The diurnal motion of the earth on its imaginary axis is from west to 
east, and is the cause of the apparent motion of the heavens from east to 
west. This phenomenon of the earth is not unlike that of a large vessel 
carried along the current of a river, in which the passengers imagine them¬ 
selves at rest, and that the banks and objects on shore, which are at rest, 
are actually in motion. 

f The poles of the earth are the same as those of the equator. The poles 
are 90® distant from the great circle to which they belong. 

f The circumference of every circle is divided into 360 equal parts called 
degrees, each degree into 60 equal parts called minutes, each minute into 
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9. The equator* is a great circle of the earth equidistant from 
the poles, which divides the globe into two equal hemispheres, 
northern and southern. 

10. Latitude of a place f on the terrestrial globe, is its distance 
from the equator north or south. 

60 equal parts called seconds. Sec. The length of a degree is therefore differ¬ 
ent in different circles, and on the equator is 60 geographical or 69} English 
miles nearly. It varies in the respective parallels of latitude towards each 
pole, in the direct proportion of the cosine of the latitude, or which is the 
same as the semidiameter of the respective circles. The utility of finding 
the length of a degree, in order to determine the magnitude and figure of 
the earth is apparent, and may be rendered familiar to a learner thus ; sup¬ 
pose the latitude of New-Yorkbe 40° 43', and that a person travels due north 
until the latitude be found 41" 43', then he will have travelled a degree, and 
the distance between the two places will be its length. Mr. Richard Nor¬ 
wood in 1635 measured the distance between London and York, and found 
it equal 905751 feet London measure, and observing the difference of lati¬ 
tude to be 2° 28' found that 1 degree was equal 367196 feet. M. Picard 
found by a trigonometrical survey, that the distance of the “ Pavilion de 
Malvoisme” south of Paris, to the steeple of the cathedral of Amiens, re¬ 
duced to the meridian, was 78907 toises. He found also by astronomical 
observation, that the distance of these places was 1° 22' 58" ; hence 
1° 22' 58" : 78907 :: 1° : 57064 toises the length of a degree. The as¬ 
sumed distance (in the late French measures) from the equator to the north 
pole, established on the measure of a degree of the meridian equally distant 
from both, is 30794580 feet, which divided hy 90 gives 342162 feet or 57027 
toises. Now as 5280 feet make a mile, therefore 367196-4-5280=69.54 
(or 69}) miles nearly, whieh multiplied by 360 produces 25034 the circum¬ 
ference of the earth ; hut the circumference of a circle is to its diameter as 
355 to 113; hence 355 : 113 :: 25034 : 7965 miles the earth’s diameter 
according to Norwood’s measure. Again; as 811 French feet are equal to 
864 English feet, or 107 to 114 nearly, hence 107 F. f. : 114 E.f. :: 342162 
F. f. : 364546 English feet, which divided by 5280 gives 69.04 English 
miles, the length of a degree, according to the late French measure. Now 
342162X360=123178320 French feet the circumference of the earth, and 
811 : 864 :: 123178320 : 131228188 English feet =24853.82 miles the cir¬ 
cumference, and 355 : 113 :: 24853.82 : 7911.2, the diameter in English 
miles. According to Picard the circumference is 24871.5 miles, and diam¬ 
eter 7916.8 miles. It was Picard’s measure that Sir Isaac Newton has fol¬ 
lowed in Iris principia, making the number of toises in a degree=57060 
by taking the distance between Malvoisine and Amiens 1° 22' 25". See his 
principia book, 3 prop. 19. 

* The equator, so called from its dividing the earth into two equal parts, 
is, when referred to the heavens, termed the equinoctial, because when the 
sun appears in it, the days and nights are equal all over the world, viz, 12 
hours each. This circle is also by mariners called the line. On this line is 
found the rt. ascension, oblique ascension, oblique descension, ascensional 
difference, longitude of places, semidiurnal and nocturnal arches, planetary 
hour, distinction between north and south latitude of places, difference of 
longitude, most exact and equal measure of time, &c. 

f Difference of latitude is the nearest distance between any two parallels 
of latitude shewing how far the one is to the north or south of the other, and 
difference of longitude is the nearest distance between any two meridians 
either east or west.. If the latitude be in the northern hemisphere, it is call¬ 
ed north latitude, if in the southern, south latitude. The greatest latitude 
that a place can have N. or S. is 90°, and the greatest longitude E. or W* 
is 180°. 
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11. Longitude of a place, is its distance from the first meridian, 
reckoned on the equator towards the east or west. 

12. Parallels of latitude, are small circles drawn on the terres¬ 
trial globe, through every ten degrees of latitude parallel to the 
equator, 

13. The tropics* * * § are two lesser circles parallel to the equator, 
at the distance of 23° 28' from it ; the northern is called the 
tropic of Cancer, the southern the tropic of Capricorn. 

14. The polar circles are two lesser circles, parallel to the equa¬ 
tor, at the distance of 66° 32' from it, or 23° 28' from each pole, 

15. A zone f is a portion of the surface of the earth contained 
between two lesser circles, parallel to the equator ; they arefve in 
number, one torrid, two temperate, and two frigid. 

16. The torrid zone\ is the space contained between the two 
tropics, and is 46° 56' broad. 

17. The temperate zones § are the spaces between the tropics 
and polar circles, in both hemispheres. They are each 43° 4' broad. 

18. The frigid zones are the spaces included within the polar 
circles. 

19. Amphiscii || are the inhabitants of the torrid zone, so called 
because they cast their shadows both north and south at different 
times of the year. 

20. Heteroscii is a name given to the inhabitants of the tempe¬ 
rate zones, because they cast tlieir shadows at noon only one way 

21. Periscii are those people who inhabit the frigid zones, be¬ 
cause their shadows, during a revolution of the earth on its axis, 
are directed towards every point of the compass. 

* So called from the Greek word trepo, to turn, because when the sun 
comes to either tropic, it begins to return again towards the other. 

•j- So called from zone or zona, a girdle, being extended round the globe 
in that fox*m. It is similar to the term climate, for pointing out the situation 
of places on the earth, but less exact, as there are only five zones, whereas 
there are 60 climates, as will be seen in its proper place. 

i This zone was called by the ancients Torrid, because they conceived 
that being exposed to the perpendicular or direct rays of the sun, the heat 
must be so great, and the country so barren and parched, as to render it 
entirely uninhabitable. But this idea has long since been refuted. The sun 
is perpendicular twice in the year to every part of this zone. 

§ These zones were called temperate by the ancients, because, meeting 
the sun’s rays obliquely, they enjoy a moderate degree of heat, the sun be¬ 
ing never perpendicular to any part of them. The breadth of the temperate 
zones increases a little every year, whilst that of the torrid and frigid zones 
decrease in the same proportion, owing- to the annual decrease of the ob¬ 
liquity of the ecliptic. 

j| When the sun is vertical or in the zenith, which happens twice a year, 
they are then called ascii, or shadowless, because at that time they have no 
shadow. 

1[ Thus the shadow of an inhabitant of the north temperate zone always 
falls to the north at noon, because the sun is then directly south; and an in¬ 
habitant of the south, temperate zone casts his shadow towards the south at 
noon, because the sun is due north at that time. These distinctions are 
however rather trifling. 
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22. The anted * are those who live under the same meridian, 

and in the same latitude, but on different sides of the equator. 
23. Peried f are those who live in the same latitude, but in op¬ 

posite longitudes. 
24. Antipodes \ are those inhabitants of the earth, who live dia¬ 

metrically opposite to each other. 
25. Meridians § are great circles passing through the poles, and 

cutting the equator at right angles. 

* The antocci have the same hours, but contrary seasons of the year; thus 
when it is noon with one, it is noon with the other, &c. But when it is sum¬ 
mer with one, it is winter with the other, &.c. consequently the length of the 
days with one, is equal to the length of the nights with the other; the sun when 
in the equinoctial rises and sets to the one at the same time that it rises and 
sets to the other, &c. Those who live at the equator have no antoeci. 

f The pericEci have their seasons of the year at the same time, and also 
their days and nights of the same length with each other ; but when it is 
noon with the one it is midnight with the other, and when the sun is in the 
equinoctial, he rises with one when he sets with the other. Those who live 
under the poles have no periceci. Their difference of longitude is 180°. 

t The antipodes have both their latitude and longitude different, and con¬ 
sequently both their seasons and hours ; so that when it is summer with one 
it is winter with the other ; when it is twelve o’clock in the day with one it 
is twelve at night with the other. They have like seasons, and the same 
length of days and nights, but at different times. When they stand, their 
feet are towards one another, and their heads opposite. Hence that part of 
the heavens which appears over the head of one, seems to be beneath or un¬ 
der the feet of the other; and therefore, when we speak of tip or do-wn, we 
speak relatively and only wh*1 regard to ourselves ; for no point, either in the 
heavens, or on the surface of the earth is above or belo-Wy but only with res¬ 
pect to ourselves. Upon whatsoever part of the earth we stand, our feet is 
always nearly directed towards the centre, and our head towards the sky; 
in the latter case we say up, in the former down. 

§ These are so called from the Latin word meridies, midday, because 
when the sun is on any of these meridians, it is then noon or 12 o’clock, in 
all places under that meridian. Every place on the globe is supposed to 
have a meridian passing through it, though on most globes there are but 24, 
the deficiency being supplied by the brass meridian, which is therefore called 
the universal meridian. They are drawn through every 15° of the equinoc¬ 
tial, and are therefore sometimes called hour circles, the reason of which is 
evident; for if 360°, the number of degrees in a circle, be divided by 24, the 
hours in one day, the quotient 15° will give the number of degrees corres¬ 
ponding to each hour. Geographers assume one of these meridians as the 
first, commonly that which passes through the metropolis of their own coun¬ 
try, but the general practice is, to reckon longitude from the meridian of 
Greenwich observatory in England. The brazen meridian is divided into 
360 equal parts, called degrees, these are again supposed to be divided into 
60 equal parts, called minutes, and these into 60 equal parts, called seconds, 
&.c. to thirds, fourths, fifths, &c. On the globes, however, the degrees are 
seldom subdivided into fewer parts than quarters. In the upper semicircle 
of the brass meridian, the degrees are numbered from 0 to 90 from the equa¬ 
tor towards the poles, and are generally used in finding the latitude of places , 
On the lower semicircle they are numbered from 0 to 90, reckoning from the 
poles towards the equator, and are principally used in elevating either of the _ 
poles to the latitude, &c. 
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26. The brazen meridian (or universal meridian) is the brass 
circle in which the artificial globe turns. 

27. The first meridian is that from which geographers begin to 
count the longitude of places. 

28. Hour circles,* or horary circles, are the same as the meri¬ 
dians ; they are supplied by the brass meridian, the hour circle and 
its index. 

29. The hour circle or index, is a small circle of brass fixed to 
the north pole, and on which the hours of the day are marked 

30. The ecliptic \ is that great circle in which the earth per¬ 
forms its annual motion round the sun, or in which the sun seems 
to move round the earth once in a year. 

31. Signs of the ecliptic are the 12 equal parts into which it is 
divided. The signs and the days on which the sun enters them are 

* These circles are drawn through every 15° of longitude reckoning from 
any meridian, for the reason given above, but on Cary's globes they are 
drawn through every 10°, as on a map, though without answering any useful 
purpose. As 15° correspond to an hour, 4 minutes of time must correspond 
to each degree, 2 minutes to half a degree, 1 minute to one quarter of a de¬ 
gree, &c. (see Keil’s astr. lect. 18.) On some globes the index, which points 
out the hours, has two rows of figures on it, others but one. On Bardin’s new 
British globes, there is an hour circle at each pole numbered with two rows 
of figures. On Cary’s there is but one hour circle placed under the brass 
meridian at the north pole, marked with only one row of figures, and is 
therefore more convenient, as it answers every purpose to which a circle of 
this kind can be applied, without that confusion generally arising from two 
rows of figures. On Adams’ common globes there is but one index; but on 
liis improved globes the hours are counted by a brass wire with two indexes 
placed over the equator. On many of the globes fitted up by Jones, the hour 
circle is calculated to slide on the brass meridian, for the conveniency of 
pointing out the bearings of places, &c. These circles are however of little 
consequence, as the equator and quadrant of altitude will answer every pur¬ 
pose to which they can be applied. 

j- The ecliptic (so called, because the eclipses of the sun and moon can 
happeh only in the plane of this circle) makes an angle of 23° 28' with the 
equinoctional, one half being in the northern hemisphere, and the other in 
the southern. The spring and autumn signs being in the northern hemis¬ 
phere, are therefore called northern signs ; the other six, or the summer and 
-sinter signs, being in the southern, are for the same reason called southern 
signs. The spring and autumnal signs are likewise called ascending signs, 
because when the sun is in any of these signs, his declination is increasing; 
the summer and winter signs are called descending signs, because when the 
sun is in any of them, his declination is decreasing. Each of these signs is 
divided into 30°, &c. and in whatever sign and degree the sun is, that point 
is called the sun’s place. The day of the month corresponding to the sun’s 
place is likewise commonly marked on this circle. The equinoctial point 
aries is that point from which the sun’s place or longitude is reckoned, with¬ 
out any regard to the constellations themselves, which, on account of the 
precession of the equinoctial points, are now a whole sign advanced from 
west to east, or according to the order in which the signs are reckoned. Be¬ 
sides the sun’s place or longitude, his apparent and annual motion, stars 
longitude, poetical rising and setting, increase and decrease of days, culmi¬ 
nating degree, eclipses of the sun and moon, distinction of north and south 
latitude of the stars, ike. are also found on this circle- 
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as follows, according as they are represented on Cary’s globes. 
The beginning of each day is to be taken. 

Spring signs. 
V Aries, the ram, 21st of March. 
& Taunis, the bull, 20th of April. 
H Gemini, the twins, 21st of May. 

Autumnal signs. 
& Libra, the balance, 23d of Sept. 
ITL Scorpio, the scorpion, 23d of Oct. 
2 Sagittarius, the archer, 22d of Nov. 

Summer signs. 
15 Cancer, the crab, 21st of June. 
St Leo, the lion, 23d of July. 

Virgo, the virgin, 23d of August. 
Winter signs. 

VS Capricornus, the goat, 22d of Dec. 
Aquarius, the water-bearer, 20th 

of January. 
X Pisces„ the fishes, 18th of Feb. 

32. The equinoctial points* are Aries and Libra, where the eclip¬ 
tic cuts the equinoctial. 

33. The solstitial pointsf are Cancer and Capricorn. 
34. The colures\ are the two meridians passing through the 

equinoctial and solstitial points. The one called the equinoctial, 
and the other the solstitial colure. 

35. The horizon § is a great circle, which separates the visible 
half of the heavens from the invisible. It is distinguished into 
two kinds, the sensible and the rational. 

* The point aries is called the vernal equinox, and the point libra the 
autumnal equinox. When the sun is in either of these points, the days and 
nights are equal on every part of the globe. 

f When the sun is in or'near these points, the variation in his meridian, 
or greatest altitude, is scarcely perceptible for several days, because the 
ecliptic, near these points, may considered nearly parallel to the equinoc¬ 
tial, and hence in these points, the sun does not perceptibly vary his decli¬ 
nation for some days. When the sun enters the beginning of cancer, all the 
inhabitants on the north side of the equator have their longest day, and those 
in the southern hemisphere their shortest. When he enters capricorn, the 
inhabitants of the northern hemisphere have their shortest day, and those in 
the southern their longest. The learner must notice, that when the sun en¬ 
ters cancer, all the inhabitants within the north polar circle have constant day, 
and those within the south polar circle constant night, but when the sun 
enters capricorn, the reverse happens. They are called solstices from the 
circumstance of the sun’s standing still, or having no motion when he is in 
either of these points, hence said to be stationary (solis statio.) 

t These colures divide the ecliptic into four equal parts, and mark the 
four seasoris of the year. In the time of Hipparchus the equinoctial colure 
is supposed to have passed through the middle of the constellation aries.— 
Hipparchus was born at Nicaea, a town of Bythinia in Asia minor, about 75 
miles S. E. of Constantinople, now called Isnic ; he flourished between the 
154th and 163d olympiads, or between 160 and 135 years before Christ. He 
foretold eclipses, and as Pliny remarks, was the first who dared to number 
the stars for posterity, and reduce them to a standard. He gave a catalogue 
of 1022 stars, and rendered many other important services to astronomy. 

§ Horizon takes its name from the Greek word orizon fjiniensJ because 
it defines or bounds our view. The sensible horizon extends only a few 
miles ; thus at the height of 6 feet, the utmost extent of our view on the 
earth, or sea, would be 2.42 miles ; at 20 feet 4.4 geographical miles, &c. 
In general, if h be the height of the eye above the surface of the sea, and d 

the diameter of the earth in feet, then s/d-f-hy^h will nearly shew the- 
greatest extent to which a person can see, or the diameter of the sensible 
horizon, the centre being supposed at the eye, (Euclid, 36 prop. 3b.) This 
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36. The sensible or apparent horizon is that circle that termi¬ 
nates our view, where the sky, and the land or water, appear to 
meet. 

37. The rational or real horizon, is an imaginary circle, whose 
plane passes through the centre of the earth, parallel to the plane 
of the sensible horizon. 

38. The wooden horizon is that circular plane circumscribing 
the artificial globe., which represents the rational horizon on the 
real globe. 

39. The cardinal points of the horizon, are the east, west, north 
and south points.* 

40. " The cardinal points in the heavens, are the zenith the nadir, 
and the points where the sun rises and sets. 

41. The cardinal points of the ecliptic are the equinoctial and 
solstitial points, which mark out the four seasons of the year ; and 
the cardinal signs are Aries, 25 Cancer, Libra, and 
Capricorn. 

42. The Zenith is a point in the heavens exactly over our heads, 
and is the elevated pole of our horizon. 

determines the apparent rising, setting, &c. of the sun, stars, planets, &c. 
The rational horizon determining their real rising, setting, &c. The wooden 
horizon respecting the rational horizon on the real globe of the earth, is di¬ 
vided into several concentric circles. On Bardin’s new British globes they 
are arranged in the following order : the 1st circle marked amplitude, is 
numbered from the east towards the north and south, from 0 to 90°, and 
from the west towards the north and south in the same manner. The 2d 
circle marked azimuth, is numbered from the north and south points of 
the horizon towards the east and west from 0 to 90°. The 3d circle repre¬ 
sents the 32 points of the compass. The degrees belonging to these may be 
found in the circle of amplitude. The 4th circle contains the twelve signs 
of the Zodiac. The 5th, the degrees corresponding to each sign, each com¬ 
prehending 30°. The 6th contains the day of the month corresponding to each 
degree. See. of the sun’s place in the ecliptic. The 7th contains the equation 
of time, the sign -f~ shews that the clock is faster than the dial by so many 
minutes, the sign — that it is slower, and the number of minutes in the dif¬ 
ference is expressed opposite the corresponding days of the month. The 
8th circle contains the twelve calendar months of the year, &c. These cir¬ 
cles are in the same order on Cary’s globes, except that of the equation of 
time, which is represented on a vacant part of the globe between the tro¬ 
pic’s, nearly in the shape of the figure 8- The days of the month being 
marked in the curve of the figure, and the time or equation on a small scale 
drawn through that point where the curve of the figure intersects, in a di¬ 
rection parallel to the equator. 

Though the rising and setting* of the stars respect the rational horizon, and 
the place of observation reduced to the earth’s centre, yet it holds true of 
the sensible horizon, the spectator being placed on the earth’s surface, on 
account of the great distance of the fixt stars, the semidiameter of the earth 
being no more than a point at that immense distance. 

* The east is that point of the horizon where the sun rises when in the 
equinoctial, and the west is the point directly opposite on the plane of the 
horizon, or where the sun sets when the days and nights are equal: the 
south is 90° distant from the east or west, and is that point towards which 
the sun appears at noon, to those situated in north latitude, and the north 
is that point of the horizon directly opposite to the south. 
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43. The nadir is a point in the heavens opposite to the zenith, 
or directly under our feet, and is the depressed pole of our horizon. 

44. The mariners compass is a representation of the horizon, 
which is divided into 32 equal parts, and is so called from its being 
used to ascertain the course of a ship at sea. 

45. The variation of the compass* * * § is the deviation of its points 
from the corresponding points in the heavens, or the angle formed 
between the true and magnetic meridian, and is reckoned towards 
the east or west. 

46. Azimuth or vertical circles are imaginary circles passing 
through the zenith and nadir, cutting the horizon at right angles.t 

47. The azimuth of any object in the heavens is an arch of the 
horizon, contained between a vertical circle passing through the 
object, and the north or south points of the horizon. 

48. The prime vertical is that azimuth circle, which passes 
through the east and west points of the horizon4 

49. The altitude of any object in the heavens is an arch of a 
vertical circle, contained between the centre of the object and the 
horizon. 

50. The zenith distance of any celestial object is an arch of a 
vertical circle, intercepted between the centre of the object and 
the zenith. 

51. Thz meridian altitude, or meridian zenith distance, is the 
altitude or zenith distance, when the object is on the meridian. 

52. The polar distance of any celestial object, is an arch of the 
meridian, contained between the centre of that object and the pole 
of the equinoctial 

53. The quadrant of altitude is a thin slip of brass, one edge of 
which is divided into degrees, &c. equal to those of the equator, 
and is used to find the distances of places, &c. on the earth, and the 
distances, altitude, &c. of bodies in the heavens. 

54. The amplitude of any object in the heavens, is an arch of 
the horizon contained between the centre of the object, when ris¬ 
ing or setting, and the east or west points of the horizon. Or it 
is the number of degrees which the sun or a star rises from the 
east and sets from the west. § 

* See the note to definition 54 and problems 49 and 50, part 2d. 
| The altitudes of the heavenly bodies are measured on these circles; 

they may be represented by the quadrant of altitude screwed in the zenith 
of any place and moving the other end along the wooden horizon of the 
globe. These circles are always at right angles to the horizon. 

i This is always at right angles both with the brazen meridian and ho¬ 
rizon. 

§ In our summer the sun rises to the north of the east and sets to the 
north of the west; and in the winter it rises to the south of the east and 
sets to the south of the west. The amplitude and azimuth are in point of 
utility, much the same ; the amplitude shewing the bearing of any object 
when it rises or sets, from the east or west points of the horizon, and the* 
azimuth the bearing of any object when it is above the horizon, either from 
the north or south points thereof. They are generally useful in determining’ 

•B 
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55. Time* is that succession in the existence of beings, which 
have a beginning and will have an end, and is measured by the mo¬ 
tion of some moving body. It is distinguished into years, months, 
weeks, days, hours, minutes, &c. 

5 6. Time is either absolute and relative, true and apparent, or 
mathematical and common. Absolute, true, and mathematical ti?ney 
of itself and from its own nature flows equably, without regard to 
any thing external, and by another name is called duration ,* rela¬ 
tive, apparent, and common time, is some sensible and external 
measure of duration, by means of motion, whether accurate or un¬ 
equal, and is commonly used instead of true time. 

57. The equation of time\ is the difference between the abso¬ 
lute and relative time, or it is the difference of time shewn by a 
well regulated clock and a correct sun dial. 

58. Apparent noon is the time when the sun comes to the meri¬ 
dian, viz. 12 o’clock, as shewn by a correct sun dial. 

the variation of the magnetic needle. For if the observed and true ampli¬ 
tudes be both north or both south, their difference will be the variation ; but 
if one be north and the other south, their sum will be the variation. In like 
manner if the true and observed azimuth, be both east or both west, their 
difference will be the variation ; if otherwise, their sum will be the variation. 
The variation is easterly, when the true bearing is to the right hand of the 
magnetic bearing, but westerly when to the left hand ; the observer being 
supposed to look directly towards the point representing the magnetic 
bearing. 

* What time is in itself, or what its physical essence is, no philosopher 
can fathom or define, but this we know, and it is the most important know¬ 
ledge for us, if reflected on, that it hurries us to that eternity in which time 
has no existence, and that every moment may be the last_“ momentum a 
quo tota pendit aternitaeIf then it be necessary to consider time, as it re¬ 
gulates our seasons, is it not more necessary to consider it, as it relates to 
an immortal existence towards which it imperceptibly hurries us. Truths 
of this nature are better calculated to expand our ideas, and point out to us 
that state which has no termination or limits, and in which we are destined 
to enjoy a dignified existence, than those whose objects are as fleeting as 
time itself; for as soon as futurity begins to expand its extensive prospects, 
then we see the vanity of what the world sets such a value on, and learn 
to value those things alone which are immortal. 

\ The equation of time arises from two principal causes, the sun’s unequal 
motion in the ecliptic, describing the southern signs in less time than the 
northern, the difference amounting to about eight days; and from the obliqui¬ 
ty of the plane of the ecliptic to that of the equator. For the space between 
tvvo meridians, or hour lines on the ecliptic will not, in consequence, be al¬ 
ways the same as the space between the same meridians on the equator, 
the difference being- sometimes greater, sometimes equal, and sometimes 
less ; but as the sun in consequence of this difference, takes sometimes less, 
sometimes more than 24 hours, in revolving from any meridian, until his 
return to the same again, it thence follows that the hours shewn by a well 
regulated clock, must be different from those shewn by a true sun dial, and 
hence the equation of time. If the sun performed its annual revolution in 
the plane of the equator, there would be no equation except what arises 
from the difference in his annual motion, (see prob. 22, part 2d, lveil lect . 
25, Ferguson, chap. 13, or Mayer’s tables, published by Nevil Maskclyne, 
and note to prob. 8.) 
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59. True op mean noon is the middle of the day, or 12 o’clock, 
as shewn by a well regulated clock, adjusted to go 24 hours in a 
mean solar day. 

60. An hour is a certain determined part of the day, and is 
either equal or unequal. An equal hour is the 24th part of a mean 
natural day, as shewn by well regulated clocks, &c. unequal hours 
are those measured by the returns of the sun to the meridian, or 
those shewn by a correct dial. Hours are divided into 60 equal 
parts called minutes, a minute into 60 equal parts called seconds, a 
second into 60 equal parts called thirds, &c. 

61. A true solar day,* is the time from the sun’s leaving the 
meridian of any place on any day, till it returns to the same me¬ 
ridian on the next day Or it is the time elapsed from 12 o’clock 
at noon, on any day, to 12 o’clock at noon on the next day, as shewn 
by a correct sun dial. 

62. A mean solar day,f is the sfiace of time consisting of 24 
hours, as measured by a clock or time-piece. 

63. The astronomical or natural day,\ is the time from noon to 
noon, as shewn by a correct dial, and also consists of 24 hours. 

* A true solar day is subject to a continual variation, arising from the ob¬ 
liquity of the ecliptic and the unequal motion of the earth in its orbit; the 
duration thereof sometimes exceeds and sometimes falls short of 24 hours, 
as taken notice of in the note on the equation of time. The variation is the 
greatest about the 1st of November, when the solar day is 16' 15" less than 
24 hours, as shewn by a well regulated clock. 

f There are in the course of a year as many mean solar days as there are 
tnie solar days, the clock being as much faster than the sun dial on some 
days of the year, as the sun dial is faster than the clock on others, as may be 
seen by consulting the analemmaor the circle on which the equation of time 
is marked on the globes. Thus the clock is faster than the sun dial from the 
24-th of December to the 15th of April, and from the 16th of June to the 31st 
of August; but from the 15th of April to the 16th of June, and from the 31st 
of August to the 24th of December, the sun dial is faster than the clock. 
When the clock is faster than the sun dial, the true solar day exceeds 24 
hours ; and when the sun dial is faster than the clock, the true solar day is 
less than 24 hours ; but when the clock and sun dial agree, viz. about the 
15th of April, 16th of June, 31st of August, and 24th of December the true 
solar day is exactly 24 hours. (See the table annexed to problem 21.) 

t This is called a natural day, being of the same length in all latitudes. 
It begins at noon, because the increase and decrease of days, terminated by 
the horizon are very unequal among themselves; which inequality is like¬ 
wise augmented by the inconstancy of the horizontal refractions (see § 183 
Ferguson’s Astronomy) and therefore the astronomer takes noon, or the mo¬ 
ment when the sun’s centre is on the meridian, for the beginning of the day. 
The hours are reckoned in numerical succession from 1 to 24. Navigators 
begin their computation at noon 24 hours before the commencement of the 
astronomical day, reckoning their hours from 1 to 12; the first 12 hours are 
marked A. M. f ante meridiemJ or forenoon, the second P. M. f post meri¬ 
diem. j or afternoon. All the calculations in the nautical almanac are adapt¬ 
ed to astronomical time. The declination, 8cc. there calculated, is adapted to 
the beginning of the astronomical day, or to the end of the sea day; it being 
at the end of the sea day, that mariners want the declination, to determiner 
their latitudes. 
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64. The artificial day, is the time elapsed between the sun’s ris¬ 
ing and setting, and is variable according to the different latitudes 
of places. Night, is the time from sun setting to sun rising, and 
varies in like manner. 

65. The civil day,* like the astronomical or natural day, consists 
of 24 hours, but begins differently, according to the customs of dif¬ 
ferent nations. 

66. A siderceal dayy is the interval of time from the passage of 
any fixed star over the meridian, till it returns to it again ; or it is 
the time which the earth takes to revolve once round its axis, and 
consists of 23 hours, 56 minutes, 4? seconds. 

Note. Though -we suppose the earth to turn on its axis once in 24 hours from 
west to east, yet its exact revolution is as above, making about 366 revolutions 
in 365 days. But as the sun advances about 1° in its orbit daily,a which cor¬ 
responds to about 4f of time, the clay is properly taken 24 hours, because the 
earth has to advance 1° more on its axis to have the sun over the sa?ne meridian 
as on the preceding day. 

**The ancient Babylonians, Persians, Syrians, and most of the eastern na¬ 
tions, began their day at sunrising, which custom is followed by the modern 
Greeks. The ancient Greeks, Jews, &c. began their day at sunsetting, and 
this custom is observed by the modern Austrians, Bohemians, Silesians, Ital¬ 
ians, Chinese, &c. The Arabians begin their day at noon like the astrono¬ 
mers. The more ancient Jews, together with the ancient Egyptians, Ro¬ 
mans, &c. began their day at midnight, and this custom is followed by the 
Bnglish, French, Germans, Dutch, Spanish, Portuguese and Americans. 
The famous astronomers Hipparchus, Copernicus, and some others, began 
their day in like manner from midnight. Those who begin their day at 
sun rising-, have this advantage, that their hours tell them how much time is 
already past since sun rising; and they who reckon their hours from sun 
setting, know how long it is to sun setting; and hence they may proportion 
their journies and labours for that time. But both have this inconvenience, that 
their midday and midnight happen on different hours, according to the seasons 
of the year. The Babylonians, &c. reckoned 24 hours in order, from sun ris¬ 
ing to its rising again, hence called Babylonish hours. In Italy, &c. where they 
reckon their day from sun setting, they likewise reckon 24 hours in order: 
these hours are hence called Italian hours. The Jews and Romans formerly 
divided the artificial days and nights each into 12 equal parts; these are 
termed Jewish hours, and are of different lengths, according to the seasons of 
the year. This method of computation is now in use among the Turks, and. 
the hours are styled the first hour, 2d hour, &c. of the day or night, so that 
midday always falls upon the 6th hour of the day. These hours were also 
called planetary hours, because in each of these hours one of the seven planets 
was supposed to preside over the world. The first hour after sun rising on 
Sunday was allotted to the Sun, the next to Venus, the 3d to Mercury, and the 
rest in order to the Moon, Saturn, Jupiter and Mars. By this means, on the 
first hour of the next day, the moon presided, and so gave the name to that 
day; and thus the seven days had names given to them respectively, from 
the planets that were supposed to govern on the first hour. 

s- 

a The earth revolves round the sun in 365f days nearly, and the ecliptic 
consists of 360°, hence 365f D : 360° :: ID : 59* 2, the daily mean mo¬ 
tion of the earth in its orbit, or the apparent mean motion of the sun, in a 
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67. A week,* is a system of seven days, each of which is dis¬ 
tinguished by a different name, 

68. A month, is properly the space of time the moon takes to 
perform one revolution round the earth, and is either astronomical 
or civil. 

69 The astronomical month, is the time in which the moon 
passes through the zodiac (or that zone in which are the 12 con¬ 
stellations or signs, through which the sun passes.) This month is 
either periodical or synodical. 

70. The periodical month, is the time intervening, in a revolu¬ 
tion of the moon, from her leaving any point until her return to 
the same, and is equal to 27 days, 7h. 43' 5". 

71. The synodic month, or lunation, is the time between the 
moon’s parting with the sun at a conjunction, until her return 
again, or the time between two new moons, and is equal to 29d. 
12h. 44' 3". 

72. The civil tnonths, are those which are framed for the uses 
of civil life, and are different, as to their names, number of days, 
and times of beginning, in different countries.! 

* A week is the most ancient collection of days that ever was, as is evi¬ 
dent from the sacred writings. The Jews always made use of this collection, 
and every other nation since the establishment of Christianity, wherever it has 
been received. All nations that have any notion of religion, set apart one 
day in seven for public -worship. The Jews observe Saturday, or the seventh 
day of the week, for their Sabbath °v day of rest, being that appointed in the 
3d commandment under thel^w. But the day solemnized by Christians, is 
Sunday or the first day of the week, being that in which our Saviour rose from 
the grave, and on which the apostles afterwards used more particularly to as¬ 
semble together, to perform divine worship. The French had adopted a cal¬ 
endar entirely new, soon after the abolition of royalty in 1792 ; “ But from the 
rapidity with which every thing is there returning to the ancient customs (says 
a late writer) it is probable that in a short time it will be discontinued.” This 
has accordingly since taken place, which shews no less the truth of the asser¬ 
tion, than the futility of the project. 

f Thus the first month of the Jewish year fell, according to the moon, in 
our August and September, old style; the 2d in September and October, &c. 
The first month of the Egyptian year began on the 29th of our August: the 
first month of the Arabic and Turkish year began the 16th of July: the first 
month of the Grecian year fell according to the moon in June and July ; the 
2d in July and August, &c. For a further account of these, see Ferguson’s 
Astronomy, chapter 21. 

The names, both of the weeks and months, which are now adopted in civil 
use, originated among our heathen ancestors, and, as well as the names of 
the constellations in the heavens, alluded to some part of their idolatrous wor¬ 
ship, or to their gods. The months, as will be shewn in the following note, 
for the most part, took their names from some of these g’ods. The Jews, 
before the Babylonish captivity, reckoned their twelve months in numerical 
order, 1st. 2d. 3d. &c. Sometimes, however, besides these ordinal names, 
they distinguished some of their months by particular appellations, alluding 
to the season, &c. Thus the 1st month was called Abib (Exod. 13, v. 4.) 
the 2d. Zius (3 Kings 6, v. 1 &. 37.) the 7th. Ethanim (3 Kings 8, v. 2.) the 
8th. Btd, &c. Where the first Abib signifies the month of new corn, &c. This 
month answers to the JVisan of the ancient Syrians (whose months, with 
little variation, the Hebrews adopted after their captivity.) The Phanemoth 
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73. That space of time in which the sun describes one sign, or 

30° of the ecliptic, is also called a solar month, and is about 30| 

days. 

74. A year* is properly the space of time measured by a revo¬ 

lution of the sun in the ecliptic, and is of several kinds. 

of the Chaldeans and Egyptians, the Elaphebolion of the Athenians, the Xan- 
thikos of the Macedonians and other Grecian states, with the Maccabees and 
all Syria, the Muharram of the Arabs and Turks, the Martins of the Pagan 
Romans and our March. (See Censorinus, &c.) July and August, among 
the old Romans, were called Quintilis and Sextilis, and hence, except a few 
of their first months, they agreed with the ancient Jewish reckoning. 

The days of the week were also called, by all the idolatrous nations, after 
the names of the planets, and these after the names of their pretended gods. 
Thus the first day was called Dies Solis (the sun being the principal lumina¬ 
ry) the 2d. Dies Lunje ; the 3d. Dies Martis; the 4th. Dies Mercurii; the 
5th. Dies Jovis; the 6th. Dies Veneris, and the 7th. Dies Saturni. The Saxons 
called the days of the week by the name of the idol which on that day they 
particularly worshipped. Thus the first day was called Sunday, from then- 
worshipping the sun on that day ; the 2d. Monday, from their worshipping 
Diana, or the moon ; the 3d. Tuesday, from their idol Tuisco or Tew, the 
Saxon name of Mars ; the 4th. Wednesday, from Woden or Odin, another of 
their idols ; the 5th. Thursday, from their idol Thor, the Saxon name of Ju¬ 
piter or Jove ; the 6th. Friday, from Friga or Frigidag, supposed to be the 
Venus of the Saxons, and the 7th. Saturday, Saeter or Saetor, an idol by them 
then worshipped. For this reason some reject their names, but in general 
all the modern Europeans adopt them, to avoid that confusion in their calen¬ 
dar resulting from the introduction of new names. The Jews, however, called 
the days of the week Sabbaths. In St. Mark, c. 16, v. 2, the first day of the 
week is called Una Sabbatorum, and in v. 9, Prima Sabbati. In St. John, c. 
20, v. 1, the first day of the w-eek is called Una Sabbati. In St. Luke, c. 18, 
v. 12, twice in the week is called Bis in Sabbato, Sec. The Latin church 
called the days of the week Ferice (holidays or days of rest.) Thus Feria 
prima (Sunday) Feria secunda (Monday) &c. Feria being the same as Sab¬ 
bath, which signifies rest or cessation. These latter denominations of the 
days of the week, evidently allude to the six days, in which God created the 
world, ordering the 7th to be a day of rest, from which the others, therefore, 
took their name. And hence this division of the week is anterior to all others. 

* Or a year is that period of time in winch all the variety of seasons 
return and afterwards begin anew. The ancient Romans divided the year 
into twelve calendar months, to which they gave particular names, as 
follows : January from Janus, the most ancient king of Italy, to whom the 
people dedicated this month. February from the latin word Februo, to 
purify. In this month the ancient Romans, particularly the priests of Pan, 
made use of purifications and sacrifices for the ghosts of the dead.— 
March from their god Mars, to whom this month was kept sacred. April 
from Aperio, to open or unfold, because in this month the spring begins 
to disclose ail the beauties of the vegetable creation; or as some suppose 
from the Greek appellation of Venus. May from Maia, or Mains, a hea¬ 
then goddess, to whom this month was kept sacred. June from the hea¬ 
then goddess Juno, or as some say from Juvenis a youth, as nature, in 
this month, appears in the vigour and bloom of youth. July from Julius 
Ctesar, the Roman general. August from Augustus Ccesar, the first Roman 
emperor. September, October, November, and December, from Septem, 
Octo, JYovem, and Decern; these months in the Roman calendar, being 
the 7th, 8th, 9th, and 10th months, their year beginning on March and 
ending on February. (See Adams Roman Antiquities, page 327.) April, 
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75. A solar or tropical year, is the time measured by the sun in 
the ecliptic, in passing from one equinox or solstice, until it re¬ 
turns to the same again, and is equal to 365 days, £ hours, 48 mi¬ 
nutes, 48 seconds. 

76. A sydereal year is the space of time which the sun takes, in 
passing from any fixed star, till it returns to the same again, arid 
consists of 365 days, 6 hours, 9 minutes, 8 seconds. 

77. The civil year is the common or political year, established 
by the laws of a country, and is either lunar or solar. 

June, September, and November, has each 30 days, February in common 
years has 28 days, but in leap year 29. Each of the rest has 31 days.— 
The year is also divided into four quarters, viz. Spring, Summer, Autumn 
and Winter. These quarters are properly made when the sun enters into 
the equinoctial and solstitial points of the ecliptic ; but in civil uses they 
are differently reckoned, according to the customs of several countries. 

The year used by the ancient Grecians and Homans did not exactly 
agree with the motion of the sun, and hence their Winters, Summers, 
and in general their seasons, were found every year to differ considera¬ 
bly, so that the same seasons did not uniformly happen in the same 
months, as in a well regulated calendar shored be the case. They there¬ 
fore proposed the rising and setting of the stars instead of this erroneous 
calendar, not doubting that the sun returning to the same place in respect 
of the same fixed star, did not come to the same place again in respect to 
the equinoxes or solstices ; that is when the same star should rise or set 
cosmically, achronically, or heliacally, the same seasons should again 
return. And hence we find such use made by the antients, of what is 
called the poetical rising and setting of the stars. In time, however, this 
method was found erroneous, and is now almost entirely out of use, owing 
to the precession, or rather recession of the equinoctial points, not then taken 
notice of. The difference between a solar and sidereal year being 20° 24', 
and as the sun returns to the equinox every year before it returns to the 
same point in the heavens, the equinoctial points have therefore a slow 
motion backwards. The sun apparently describing the whole ecliptic or 
360° in a tropical year; hence we have this proportion, 365|d : 360° :: Icl 
: 59' 8" 2. the daily mean motion of the earth, or the apparent mean mo¬ 
tion of the sun in a day, and therefore tbe sun in 20' 24" of time, describes 
50f". For Id : 59' 8" :: 20' 24" : 50?" the precession of the equinoxes, 
nearly corresponding to what JVexvton makes it, as derived from physical 
causes, (prop. 39, b. 3, of his principia.) This slow motion of the sun 
in receding from the equinoctial points, every year, is called the preces¬ 
sion of the equinoxes, and is performed from east to west, contrary to the 
order of the signs, which is from west to east. Now 50?" : lyr. 360° : 
25791 years, the time in which the equinoctial points would perform one 
revolution. Hence in 2149 years the stars would appear to recede 30° 
or 1 sign backwards. In the time of Hipparchus, the equinoctial points' 
were fixed in Aries and Libra ; but now these signs are 30° to the east¬ 
ward, 8cc. so that Aries is nowin taurus, taurus in gemini, &c. hence the 
rising and setting of the stars, at particular seasons of the year, as describ¬ 
ed by later writers, such as Hesiod, Eudoxus, Pliny, &c. do not answer 
their description. 

The anticipations of the seasons is not however owing to the precession 
of the equinoctial and solstitial points in the heavens, which can only effect 
the apparent motions, places and declinations of the fixt stars ; but to the 
difference between the civil and solar year, which is 11' 12" (commonly 
reckoned 11' 3'.) From this difference it would happen that in 129 years 
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78. The lunar year is the time measured by twelve synodic re¬ 
volutions of the moon, and consists of 354 days, 8 hours, 48 mi» 
nutes, and 36 seconds. 

there would be a difference of one day in the time of the equinoxes, and 
therefore a difference of 10 days in 1260 years, the time between the 
Nicene Council, A. D. 325 and 1585, when Pope Gregory, 13th reform¬ 
ed thtr Julian calendar. Hence the vernal equinox happening the 21st of 
March in the time of the council of Nice, in the year 1582 it was found 
to happen on the 11th. That the equinox might therefore be reduced to 
its former place, 10 days were suppressed in the month of October in the 
year 1582, and the 5tli day was called the 15th, and thus the 11th day of 
the March following, being the time of the equinox, became the 21st as 
in the time of the council of Nice, which fixed the time of keeping Easter. 
At the time that Caesar with the assistance of Sosigines reformed the cal¬ 
endar, the vernal equinox happened on the 25th of Mkrch. Besides the 
above, another correction was found necessary, that the same seasons 
might be kept to the same times of the year, as one day every fourth 
year, according to the Julian intercalation, was found too much. For this 
purpose the bissextile day in February, at the end of every century of 
years not divisible by 4, was to be omitted, and these years reckoned as 
common years (every 4th year according to the Jlilian or civil account 
being bissextile or leap year.) Thus the 17th, 18th, 19th centuries, or the 
years 1700, 1800, 1900, &c. which according to the Julian account would 
he leap years, were to be reckoned as common years, (17, 18, 19, &c. 
not being divisible by 4) and to retain the bissextile day at the end of 
those centuries divisible by 4, as the 16th, 20th, 24th, See. or the years 
1600, 2000, 2400, &c. By this correction the difference between the 
civil and solar accounts will differ no more than. 2 hours in 400 years, and 
in less than 5082 years will not amount to a whole day, at the end of 
which time a newr correction for this day will become necessary. With¬ 
out these changes, the seasons in time would be entirely reversed with re¬ 
gard to the months of the year. It was Julias Caesar who first ordained 
that one day should be added to February, every 4th year, by causing the 
24th to be reckoned twice ; and because this 24th day was the 6th 
('sextilisJ before the Kalends of March, there were in this year two of 
these sextiles, and hence this year was called bissextile. This being 
corrected, was thence called the Julian year, afterwards the Gregorian, 
from the farther corrections of Pope Gregory. This Gregorian year is 
now received in almost every country where truth or exactness is regard¬ 
ed, and from hence is called the Civil year. The Civil year thus correct* 
ed took place in different countries of Europe at different times, and was 
not adopted in England until A D. 1752, at which time a correction of 
11 days became necessary, the 3d of September being called the 14th. 
—This is now called the New Stile, as the Julian is called Old Stile. 
The year 1700, happening between the time of the correction by Pope 
Gregory, and that made by the British, this year in the Gregorian ac¬ 
count was considered as a common year, and thus a day was omitted, 
■which in the Julian was not; and as the Gregorian account omitted 10 
days in the beginning, the English omitted 11, to make their’s agree with 
the former. And moreover, as the year 1800 was a common year, there 
is now 12 days difference between the old and the new style, "it is almost 
needless to mention, that in 1752, the United States were British colonies, 
and hence the corrected account or new style was here adopted at the 
same time, and is the account now in use. 

The beginning of the year in different countries is no less various than 
its form : but a further detail would be inconsistent with the plan of this- 
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^9. The cjvil solar year, or julian year, is a period of 365 days, 
6 hours, but the common years contain only 365 days, and every 
4th year or bissextile 366 days. 

80. A cycle,* is a period of time, after ^hich the same pheno- 
mena of the celestial bodies begin to occur again, in the same order. 

abridged introduction. Those who wish to see more on this subject, may 
consult Gregory, Keil, Ferguson, Ewing, or Vince’s astronomy, or vol. 3 
of Ozinam’s Mathematical Recreations. 

* In the cycle of the sun the return of the days, &c. does not differ 1® 
in 100 years, and the leap years begin their course again with respect to 
the days of the week on which the days of the month fall. In the cycle of 
the moon the new and full moons return, &c. within hours of the time 
in which they happened on the same days of the month, 19 years before ; 
hence in 312 years this difference increases to a whole day, so that this 
cycle can only hold for that time, and hence for the next 312 years the 
golden number ought to be placed one day earlier in the calendar. This 
correction is however made at the end of whole centuries, and hence at 
the end of 300 years the new moon is advanced l day for 7 times succes¬ 
sively, that is, during 2100 years. To account for the odd 12£ years, they 
deferred putting the moon forward to the end of 400 years, making a pe¬ 
riod of 8X312^ = 2500 years. The indiction was established by Constan¬ 
tine in the year 312, The year of our Saviour’s birth according to the 
vulgar era, was the 9th year of the solar cycle, or the 1st year of the lu¬ 
nar cycle ; and the 312th year after his birth was the 1st year of the 
Roman indiction. Therefore to find the year of the solar cycle add 9 to 
any given year of Christ, and divide the sum by 28, the quotient will 
give the number of cycles elapsed since his birth, and the remainder the 
cycle for the given year ; if nothing remains, the cycle is 28. To find the 
lunar cycle, add 1 to the given year of Christ and divide the sum by 19, 
the quotient is the number of cycles in the interval, and the remainder 
the cycle for the given year : if nothing remains, the cycle is 19. For the 
indiction, subtract 312 from the given year of Christ, divide the remain¬ 
der by 15, the remainder after this division is the indiction for the pre¬ 
sent year. 

The ancients formed the cycle of the moon, by taking any year for the 
cycle and observing all the days in which the new moon happened through 
the year, and placing the number 1 against each day ; in the 2d year of 
the cycle they placed the number 2 against each day in which the new 
moon happened as before ; the 3d year the number 3, &c. through the 
whole 19 years. These numbers corresponding to one cycle, were fitted 
to the calendar to point out the new moons in every future cycle, and 
from their great use were written in gold, and thence called golden num¬ 
bers. The whole day gained in 312 years, which since the council of 
Nice in 325 has since been neglected, causes the golden numbers to be 5 
days higher in the old style, or 7 days lower in the new, than they were 
at the abovementioned council, and ought to be so placed in the calendar. 
Since 1800 there are 12 days difference between the old and new style. 
The golden number is not, however, so well adapted to the Gregorian as 
the Julian calendar. The golden number is the same as the lunar cycle, 
and found in the same manner. Thus to find the golden number for 1812, 
1812-j-l-r-19 = 95 and 8 over ; hence 8 will be the golden number. Any 
other year will answer as well as the current year, by adding its own 
golden number to it, and proceeding as above with the difference between 
both years. 

In the calendar it is usual to mark the seven days of every week with 
the first 7 letters of the alphabet, calling the first of January A, the 2d 

C 
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81. The cycle of the sun, is a period of 28 years, which being 
completed, the days of the month return in the same order to the 
same days of the week ; the sun’s place to the same signs and de¬ 
grees in the ecliptic, &c. 

82. The cycle of the moon, or metonick cycle, called also the 
golden number, is a revolution of 19 years, which being completed, 
the new and full moons return to the same days of the month, &c. 

B, the 3d C, the 4th D, the 5tli E, the 6th F, the 7th G, the 8th A again, 
and so on through the year; and whatever letter corresponds to the first 
Sunday of January, will answer to every Sunday in a common year, and 
is therefore called the dominical letter. 

A common year contains 52 weeks and one day, therefore the first and 
last days of a common year fall on the same day of the week ; hence if 
any year begins on Sunday, the next will begin on Monday, Scc. but this 
order is interrupted by the leap years ; February having one day more 
than in common yearsi: so that the dominical letter for March and the 
rest of the year, will be the letter preceding that which served for Janu¬ 
ary to the 24th of February ; leap years having therefore two dominical 
letters. The dominical letter is thus found: to the given year add ^th 
of it, for the leap years contained in it (neglecting the fractions if any) 
and from the sum subtract 7 for the 18th century (or from 1800 inclusive 
to 1900) 8 for the 19th and 20th centuries, 9 for the 2lst century, 10 for 
the 22d century, 11 for the 23d and 24th centuries ; because the three 
years 2100, 2200, and 2300 will not be leap years, &c. divide the remain¬ 
der by 7, and the remainder after this division will give the dominical let¬ 
ter, reckoning from the last G towards the first A. If 0 remains, the 
dominical letter will be A; if 1 remains, the dominical letter will be G ; 

if 2 remains, the dominical letter will be F, Sec. thus 4’ 
Ui o, 5, 4, 5, 2, 

where the figures or remainders, correspond to the dominical letters 
above them. Hence to find the dominical letter for 1807, it will be 1807 

^.Z. —7=2251 (rejecting the remainder) which being divided by 7, 

will leave a remainder of 4 corresponding to D the dominical letter re 
quired, and counting back from D to A, thus (I)) Sunday, Saturday, Fri¬ 
day, Thursday, which corresponds to A, the day on which the year began 
To find the dominical letter for 1812, proceeding as above, we shall find 
a remainder of 4, which corresponds to D, but as 1812 is a leap year, it 
has two dominical letters, that is E, the letter preceding D, counting from 
G, which answers for January and February to the 24th, and D the rest 

of the year. To find the dominical letter for 1910, we have 1910-f-—— 

8=2379, which divided by 7 leaves a remainder of 6 corresponding to B 
the dominical letter for that year, which therefore will begin on Satur¬ 
day The dominical letters for 1996, a leap year, are GF ; this year will 
therefore begin on Monday, Sec. (see a table of the dominical letter to 
the year 4000 in Ferguson’s Astronomy, pa. 398, 8th ed.) 

The difference between a solar and lunar year, which is 10 days 21h. Gf 
12" (defs. 75 and 78) or nearly 11 days, constitutes the epact. When the 
solar and lunar years begin together, the epact for that year is 0 or 29 ; 
the 2d year the epact is ll ; the 4th, 33 : but when the epact exceeds 30, 
an intercalary month is added, making the lunar year consist of 13 months, 
and hence at the beginning of the 4th year the epact is 3, the 5th, 14, &c. 
all the varieties happening in 19 years, or one lunar cycle, except the cor¬ 
rections made at the end of centuries, &c. to allow for which the follow¬ 
ing rule must be observed in calculating the epact for any year from 1800 
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83. The cycle of indie tion, is a period of 15 years, but has no 
reference to the celestial motions. 

84. The Dionysian jieriod., is the number of years that arises 
by multiplying the cycles of the sun and moon together, and con¬ 
sists of 532 years. 

to 1900 Multiply the golden number for the given year by 11, and the 
product divide by 30, then subtract 11 from the remainder, the last re¬ 
mainder will be the epact If 11 cannot be subtracted, 30 must be added 
to the remainder, and then 11 subtracted as before. Thus to find the 
epact for 1810; the golden number for 1810 is 6, this multiplied by 11 
gives 66, which divided by 30, leaves a remainder of 6 ; hence 6-{-30— 
11=25 the epact required. To find the epact for 1812, the golden num¬ 
ber is 8 ; hence 8xll~H30 leaves a remainder of 28, and 28—.11=17 the 
epact required. The epact may be found thus, without the golden num¬ 
bers. Divide the given year by 19, multiply the remainder by 11, the 
product will be the epact if it does not exceed 29, but if it exceeds 29, 
divide 30 into it, and the remainder will be the epact. Ozanam in his 
math, recreations, gives the following rule : multiply the golden number 
by 11, and take the number of days retrenched by the reformation of the 
calendar, from the product ; that is, 11 days if the year be between 1700 
and 1800, 12 if between 1800 and 1900, 13 if between 1900 and 2100, &c. 
divide the remainder by ,30, the remainder after this division will be the 
epact. Between 1800 and 1900 this gives the epact 1 day less than the 
former methods, between 1900 and 2100 two days less, &c. The former is 
however used in the present calendar. But this method will sometimes 
differ from the true epact (which is the ag-e of the moon for any year, on 
the 1st of January exclusively, or at the end of the preceding year ; or the 
number of days since the last mean new moon) the annual epact being too 
great. 

From the dominical letter, the day of the week on which any day of a 
given month falls, may also be found. When the days of the week are 
marked by the seven first letters of the alphabet, the letter A is always at 
the first day of January and October ; B at the first of May; C at the first 
of August; D at the first of February, March and November ; E at the 
first of June ; F at the first of September and December ; and G at the 
first of April and Julyi Hence each letter in the following order, A, 1), 
D, G, B, E, G, C, F, A, I), F, marks the first day of each month in the 
year: and the same letters mark the 8th, 15th, 22d, and 29th days of the 
month. If the dominical letter be A, the first of J anuary and October 
will be Sundays ; the firstof May marked B, will be Monday; the first 
of August marked C, will be Tuesday ; the firstof February, March, and 
November, being marked with D, will be Wednesdays ; the first of June 
marked E, will be Thursday; the first of September and December mark¬ 
ed F, will be Friday ; and the 8th, 15th, 22d, and 29th of the month, will 
be on the same days of the week. In the same manner may these days 
be found when the dominical letter is any other besides A; and hence 
any day of the year. Tables for this purpose are given in most books of 
practical astronomy. 

Besides the annual epacts, there are monthly epacts commonly called 
the numbers of the months, which are the moon’s age on the first day of 
every month when the solar and lunar years begin together, and are thus 
found : divide the number of days between the first of January and the 
first day of any month by 29$, the remainder will be the number for that 
month. Thus the epact for January is 0, for February nearly 2, for March 
in common years 0, but in leap years 1, &c. 
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85. The Julian period, is the number of years that arises from 
the product of the cycles of the sun, moon and indiction, viz. 
28X19X15=7980 years, 

86. Positions of the sphere, are its situations with respect to the 
horizon, and are principally three, right, parallel and oblique. 

The number for the month being given, the moon’s age on any day is 
thus found: to the epact for the year add the days of the month, and the 
number for ihe month, the sum, if it does not exceed thirty, is her age ; 
but if it exceed thirty, take 30 from it, and the remainder is the moon’s 
age, if the month has 31 days ; but in months of 30, subtract only 29, ex¬ 
cept when it is leap year. Thus to find the moon’s age on the 28th of Jan¬ 
uary, 1811 ; here the epact 6+28=54 and 34—30=4 days the moon’s 
age, one day less than in the nat. almanac. For the 28th of April, 1811, 
>ve have 6+2+28=36 and 36—29=7 agreeing with the nat. aim. For 
1812, to find the moon’s age on the 20th of April, we have epact 17+3+ 
20=40 and 40—30 (the year being bissextile) =10 days, agreeing also 
with nat. aim. Whenever accuracy is required, recourse must however 
be had to Astronomical calculation. 

If the moon’s age be multiplied by 5 and divided by 6, the quotient is 
the hours, and the remainder multiplied by 12 the minutes, nearly, :when 
the moon comes to the meridian, reckoning from noon ; if to this be added 
the time of tide on the days of new and full moon at that place, the sum 
will give the time of high water there. The tides at any place happen 
always when the moon is in the same position with respect to the meri¬ 
dian of the place. Thus at London it is always high water when the 
moon is S. W or 3 hours past the meridian ; at New-York when she is 
S. E. or 3 hours before noon ; at Sandy-H0ok when she is E S. E. or 

hours before noon, &c. (See the table pa. 142 of Hamilton Moore’s 
Navigation, 10th ed.) 

This rule is sufficiently exact for common use, and no rule of calcula¬ 
tion can be given that will always produce an exact answer, as the time 
of high water depends so much on the winds, swell of the sea, &c. at the 
time. The mean motion of the moon from the sun in a day is 12° 11' 
26/' 7. For according to Mayer, the sun’s daily mean motion is 5S' 8" 3, 
and that of the moon 13° 10' 35" the difference of which is the above. 
Now 15° : lh. or 60' :: 12° 11' 26" 7 : 407 8. Hence if the moon’s age 
be multiplied by 49.8 and divided by 60, or multiplied by 5 and divided 

by 6 as above £ being nearly equal -f) the quotient will give the 

moon’s southing nearly. For more accurate methods see the note to ex. 
8, prob. 18, part 3d, or prob. 39, part 3. 

From the above rules the method of finding on what day Easter Sunday 
falls in any year, is very simple. At the Council of Nice, Easter Sunday 
was fixed on the first Sunday after the full moon, which happens on or 
next after the 21st of March, and therefore it must always fall between 
the 21st of March and 25th of April. The method is this ; find the day 
of full moon on or next after the 21st of March, and then find what day 
of the wreek the full moon is on, and the next Sunday will be Easter Sun¬ 
day. The moon’s age being given, subtract it from the day of the month ; 
or the day of the month increased by 30, the remainder will give the day 
on which nexo moon falls. If to this 7\ days (or rather 29$-r-4) be added, 
the mean time of first quarter is given ; add 15 days (or 29^-f-2) for 
mean full moon and 22^ days nearly, for the third quarter. Thus to find 
Easter Sunday in the year 1811, the moon’s age on the 2lst of March W'as 
27 days, hence 21 + 30—27=24 the day of the month on which new moon 
takes place, and 24+ 15=39 and 39-—31 = 8 ; hence full moon fell on the 
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&7. A right sphere* is that position of the earth, where the equa¬ 
tor passes through the zenith and nadir, the poles being in the ra¬ 
tional horizon. 

88. A parallel spheref is that position of the earth, where one 
pole is in the zenith and the other in the nadir; in which case 
the equator coincides with, and all its parallels are parallel to 
the horizon. 

89. An oblique sphere\ is when the rational horizon cuts the equa¬ 
tor obliquely, which is the case with all parts of the earth, except 
those under the poles and the equinoctial. 

8th of April, which being Monday, the Sunday following, or the 14th of 
April, was Easter Sunday. To find Easter in the year 1812. Here the 
moon’s age on the 21st of March will be 9 days (this being leap year) 
and 21—9=12 the day on which new moon will fall ; hence 12-f-i5=27 
the day on which full moon will fall (the Nautical Aim. gives it l6f after 
12 on the night of the 27th) which being Friday, the 29th of March will 
therefore be Easter Sunday, &c. 

The Nautical Aim. gives the moon’s age one day later than here, pro¬ 
bably making the epact the age of the moon on the 1st of January inclu¬ 
sively, or astronomical time, the above calculation being adapted to civil 
time. 

The feast of Easter regulates the moveable feasts of the whole year.—- 
Thus the 1st Sunday after Easter is Lois Sunday ; Rogation days com¬ 
mence 35 days after Easter ; Ascension Thursday is the Thursday follow¬ 
ing, or the 40th day after Easter ; the feast of Pentecost, commonly call¬ 
ed Whitsuntide, is *10 days after, or the 50th day after Easter ; on the Sun, 
day after, or 56 days after Easter, the feast of the Holy Trinity is cele¬ 
brated ; and the Thursday following, or 11 days after Pentecost, or 60 days 
after Easter, is the feast of Corpus Christi. The 9th Sunday before Easter, 
or 63 days before it, is called Septuagesi?nay the 8th or following Sunday, 
which is 56 days before Easter, Sexagesima, the 7th or 49 days before 
Easter is called Qumquagesima, and the Wednesday following, Ash JVed- 
ilesday, the 1st Sunday of Lent is called Quadragesima, the 5th Sunday' of 
Lent is called Passion Sunday, the 6th or the Sunday before Easter, Palm 
Sunday. The other Sundays in Lent and those after Easter are called by- 
other names, as Reminescere, Laetare, Judica, Misericordia, Jubilate, &c. 
Advent Sunday does not depend on Easter, but on the feast of St. Andrew, 
which is on the 30th of November, being the nearest Sunday to this feast. 
Christmas day is always on the 25th of December. The first of January 
or new year’s day, is the feast of the Circumcision of our Lord, the 6th of 
January is the feast of the Epiphany, or manifestation of Christ to the 
Gentiles, Sec. 

* The inhabitants who have this position of the sphere, live at the equa ¬ 
tor. It is called a right sphere, because all the parallels of latitude cut; 
the equator at right angles, and the horizon divides them into two equal 
parts, making equal day and night. 

f The inhabitants who have this position of the sphere (if there be any) 
live at the poles. It is called a parallel sphere, because all the parallels 
of latitude are parallel to the horizon. In this position of the sphere the 
sun appears constantly above the horizon for six mouths. 

t So called from the parallels of latitude cutting the horizon obliquely 
In this position of the sphere, the days and nights are of unequal lengths, 
the parallels of latitude being divided unequally by the rational horizon.. 
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90. A Climate* in a geographical sense, is a part of the surface 
of the earth, contained between two lesser circles, parallel to the 
equator ; and of such a breadth, that the longest day in the parallel, 
nearest the pole, exceeds the longest in that nearest the equator, by 
half an hour in the torrid and temperate zones > or by one month 
in the frigid zones. 

* There are therefore 24 climates between the equator and each polar 
circle, and 6 climates between each polar circle and its pole. The climates 
between the polar circles and the poles were, in a great measure, unknown 
to the ancient geographers; for Ptoiomy does not give an exact computa¬ 
tion of the parallels as far as the polar circles itself. They reckoned only 
seven climates north of the equator. The middle of the first northern cli¬ 
mate they made to pass through Meroe, the metropolis of the Ethiopians, 
built by Cambyses, on an island in the Nile, of the same name, nearly under 
the tropic of cancer; the second through Syene, a city of Thebais, in Upper 
Egypt, near the cataracts of the Nile; the third through Alexandria; the 
fourth through Rhodes ; the fifth through Rome, or the Hellespont: the sixth 
through the mouth of the Borysthenes, or Dnieper ; and the seventh through 
the Riphaean mountains, supposed to be situated near the Tanais or Don 
river. The southern parts of the earth being in a great measure unknown, 
the climates received their names from the northern, and not from any par¬ 
ticular places. Thus the climate which was supposed to be at the same 
distance southward, as Meroe was northward, was called Antidiameroesy 
or the opposite climate to Meroe ; Antidiasyenes, was the opposite climate to 
Syenes, &c. The following- table exhibits the climates from the equator to 
the poles, with their latitudes, breadth, &c. The twenty-four first are the 
climates between the equator and polar circles ; the six last those between 
the polar circles and poles. 
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u i5§ 51 59 2 57 19 21$ 65 22 32 29 5 82 59 

10 17 54 30 2 31 20 22 65 48 26 30 6 90 

46' £ 
2° 15' t 
3 32 S 
4 35 S 
5 !?S 
7 1 s 

For the method, of constructing this table, see the note to problem 29, part 2d. 

In tables of this kind, it is usual to give the names of the principal places 
situated in these respective climates, but these the learner may easily find 
on the globes (by prob. 3.) or without the globes on a map. Although it 
appears that all places situated in the same parallel of latitude are in the 
same climate, yet we must not infer from thence that they have the same 
atmospherical temperature. Large tracts of uncultivated lands, sandy de¬ 
serts, elevated situations, woods, morasses, lakes, winds, &c have a con- 
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91. The right ascension of the sun or a star, is an arch of the 
equinoctial between the first point of aries and the meridian, or cir¬ 
cle of declination, which passes through the centre of the star, 
and is reckoned from west to east, round the globe. Declination is 
their distance from the equinoctial north, or south. 

92. Oblique ascension is an arch of the equator between the be¬ 
ginning of aries and that point of the equinoctial which rises with 
the sun, or a star, in an oblique sphere, and is reckoned as the 
right ascension. 

93. Oblique descension, is that degree of the equinoctial, which 
sets with the sun or a star. 

s:devable effect on the atmosphere. In New-Britain the climate, even about 
the mouth of Haye’s river, between Lake Winipeg and Hudson’s Bay, and 
in only lat. 56 or 57® N. is, during winter, so excessively cold, that the ice 
on the river is seven or eight feet thick. Port wine freezes into a solid 
mass, and even brandy coagulates, which only happens with a cold of —7° of 
Farenheit; and what is contrary to the ordinary course of nature, the cold 
seems to increase every year, in these northern regions. (See Martin’s essay 
towards a natural and experimental history of the various degrees of heat in 
bodies.) This shews that the seasons owe much of their mildness to culti¬ 
vation* The climate between Edinburgh and Aberdeen, in Scotland, is the 
same as the above, but no such extremes of heat and cold are perceived there. 
In Canada, in about the latitude of Paris, and the south of England, the 
winter is so severe from the latter end of November to April, that the St. 
Lawrence and other rivers are frozen over, and the snow all this time lies 
generally about 5 feet deep. During a great part of the summer, on the 
western coast of America, it is extremely hot, and what is more astonishing, 
and in which we cannot sufficiently admire the wise dispensations of Provi¬ 
dence, is, that in the higher latitudes, such as 59 and 60 degrees, the heat 
of Julv is frequently greater than in lat. 51°, which heat seems necessary for 
the growth and maternity of corn, &c. during their short summer, &c. (See 
Wirvterbotham’s America or Kerwin’s ingenious work, entitled an estimate 
of the temperature of different latitudes.) The heat on the western coast of 
Africa, after the wind has passed over the sandy desert, is almost suffocat¬ 
ing; but after the same current of air has passed over the Atlantic ocean, it 
is cool and refreshing to the inhabitants of the Caribbean or West-India 
islands. On the eastern coasts of America, and even beyond the Allegany 
mountains, the seasons are not so variable or subject to so great extremes 
of heat and cold as on the western. It cannot be doubted but mountains have 
a great effect on the temperature of the countries to which they belong', by 
stopping the course of certain winds (as the Allegany stops part of the trade 
winds, and probably increases the force of the N. W. and other winds re¬ 
flected from their sides) by forming barriers to the clouds, by cooling the 
atmosphere from the snow on their summits, or by reflecting* the sun’s rays 
from their sides, and likewise by serving as elevated conductors to the elec¬ 
tricity of the atmosphere. Hence on the Alps, the Andes, &c. the travel¬ 
ler experiences, even in summer, all the four seasons of the year. The cli¬ 
mates in the United States are by late geographers divided into four princi¬ 
pal regions, &c. (See Spafford’s geog\ ch. 6.) The winds having not only 
a considerable influence on the seasons, but also produce many other phe¬ 
nomena, as currents in the ocean, &c. A general theory of them deduced 
from facts would therefore be a desideratum. Our limits are too contracted 
to specify any in our present undertaking: in the philosophical part of oui; 
course, we shall consider this subject more fully. See a piece written by 
the author of this introduction, signed ,T. W. and published in the Mercantile 
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94. The ascensional difference is the difference between the 
right and oblique ascension or descension, and shews how long the 
sun rises or sets- before or after the hour of six. 

95. The six o'clock hour line is that great circle passing through 
the poles, which is 90° distant, on the equator, from the meridian 
or 12 o’clock hour circle * 

96. Culminating point of the sun, or star, is that point of its 
orbit, which, on any given day, is the most elevated ; or that point 
in which it is at 12 o’clock, or when on the meridian. 

97. single of position, between two places, on the terrestrial 
globe, is an angle at the zenith of one of the places, formed by the 
brass meridian and the quadrant of altitude, passing through the 
other place, and is measured on the horizon. 

98. Rhumbs are the divisions of the horizon into 32 points, call¬ 
ed the points of the compass. A rhumb line is the way a ship de¬ 
scribes, while she sails on any point of the compass, and cuts all 
the meridians in the same angle.f 

99. Course is the angle which the rhumb, or ship’s way, makes 
with the meridian. 

100. Crepusculum, or twilight, is that faint light which we per-, 
ceive before the sun rises, and after it sets.f 

Advertiser of Nov. 1st, 1809, in New-York, where the theory of some im ¬ 
portant phenomena of this nature is experimentally illustrated. Observa¬ 
tions, similar to that made by Dr. Franklin, on the course of a N. E. storm, 
(Philosophical letters, pa. 38.) would throw much light on this subject. Its 
velocity was 100 miles an hour. 

* The sun and stars are on the eastern half of this circle 6 hours before 
they come to the meridian, and on the western half 6 hours after they have 
passed the meridian. 

f A rhumb line, properly speaking, is a spiral curve drawn on the earth’s 
surface, as above described, and which, if continued, will never return on it¬ 
self so as to form a circle, except it happens to be clue east or west, or due 
north and south; these can never be right lines on any map, except the 
meridians be parallel to each other, as in Mercator’s and the plane chart, 
unless the parallels and meridians : hence it is only on these charts that the 
bearing can be easily found. By the compass if a place A bear due east 
from a place B, the place B will bear due west from A: but if the bearing 
on the globe should be measured by the quadrant of altitude, as some di¬ 
rect, this would not be the case, for the angle thus measured on the globe 
by the quadrant, is the angle of position between the places. 

f The twilight is supposed to end in the evening or begin in the morn¬ 
ing, when the sun is 18° below the horizon. Tire twilight in the morning 
and evening, arises both from the refraction and reflection of the sun’s 
rays by the atmosphere. Some suppose that the reflection principally 
arises from the exhalations of various kinds, with which the lower parts 
of the atmosphere are charged, for the twilight lasts until the sun is 
further below the horizon in the evening than it is in the morning when 
it begins; and in summer it is longer than in winter, which phenomena 
seem to confirm the above supposition. The greater heat also from the earth 
may have its share in producing this effect, by resisting the rays of light 
and changing their direction; many phenomena and experiments might 
be adduced to prove this latter supposition : and it is to this medium of 
heat or light, that the particles of the atmosphere, very probably, owe 
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101. Refraction is that change in the elevation of any celestial 
object, caused by the earth’s atmosphere.* 

102. Parallax, is the difference between the altitude of any ce¬ 
lestial object, seen from the earth’s surface, and the altitude of the 
same object, seen at the same time from the earth’s centre ; or the 
angle under which the semidiameter of the earth would appear as 
seen from the object. 

103. Eclipse of the sun, is an occultation of the whole or a part 
of the face of the sun, occasioned by the moon’s interposition 
between it and the earth. 

104. Eclipse of the moon is a privation of the light of the moon, 
caused by the earth’s interposition between the sun and moon. 

105. Diurnal arch is the arch described by the sun, moon or 
stars, from their rising to their setting. The sun’s semidiurnal 
arch, is the arch described in half the length of the day. 

106. Nocturnal arch, is the arch described by the sun, moon, 
or stars, from their setting to their rising. 

107. Circles of perpetual apparition, are those in an oblique 
sphere as much distant from the elevated pole, as the place itself 
is from the equator. They are the greatest of all those that con¬ 
stantly appear, and are such that all the stars inclosed within them 
never set. 

108. Circles of perpetual occultation, are those opposite the for¬ 
mer, and within which all the stars that are contained never rise. 

their elasticity. Its remaining in gross bodies in a latent state, may 
cause them to produce the same effects in proportion to its density, &c. 
These properties, if fully investigated, might lead to important discove¬ 
ries. 

* When a ray of light passes out of a vacuum into any medium (or 
fluid substance) it is found to deviate from its right line course towards a 
perpendicular to the surface of the medium, through which it enters ; 
and if the medium be of different densities, the ray will continually de¬ 
flect from its former direction, and describe a curve. From its being thus 
continually broken, it is said to be refracted. Now as the earth is sur¬ 
rounded by a body of air called the atmosphere, into which the rays of light, 
enter from a vacuum, or at least a very rare medium, and as in approach¬ 
ing the earth’s surface the density of the atmosphere continually increa¬ 
ses, the rays entering it obliquely will therefore be refracted, and des¬ 
cribe a curve ; and hence the apparent place of the body from which the 
light proceeds, must differ from its true place. But where the ray enters 
perpendicularly, there can be no refraction, and the less oblique the ray 
is, the less will be the refraction ; (from a principle in optics, that the 
angle of incidence is equal to that of reflection ;) hence it happens, that 
at noon the refraction of the sun is the least, because it has then its great¬ 
est altitude, and the nearer the horizon it is, the greater will be its re¬ 
fraction. At the horizon the refraction is the greatest, and this is called 
the horizontal refraction : and hence also the refraction is least in the 
torrid zone and greatest at the poles. The property of refraction being' 
to elevate the body from which the light proceeds, it must therefore be 
subtracted from the observed altitude. From this property it follows, 
that the sun and moon will sometimes appear of an oval figure near the 
horizon; for the lower limbs being more refracted than the upper, the 

D 
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109. The fixed stars* are so called from, their being observed 
to keep, nearly, the same apparent distance, with respect to each 
other. 

perpendicular diameters will be less than the horizontal, which is not af¬ 
fected by refraction: for the diameter of the sun being supposed 32', then 
the mean refraction of the lower limb when it just touches the horizon, 
will be 33', but the altitude of the upper limb being then 32', its refrac¬ 
tion is only 28' 6", the difference of which is 4' 54", the excess of the di¬ 
ameter parallel to the horizon above the vertical diameter. The refraction 
is also variable according to the different densities of the air, and hence 
we can sometimes see the tops of mountains, steeples, &c. which at other 
times are invisible, though we stand in the same place. 

The ancients were not unacquainted with these effects of refraction. 
Ptolemy mentions a difference in the rising and setting of the stars in 
different states of the atmosphere, but makes no allowance for it in his 
computations. Archimedes observed, that in water the refraction was in 
proportion to the angle of incidence. Alhctsen, an Arabian, in the 11th 
century, found the distance of a circumpolar star, from the pole, to be 
different when observed above and below the pole, and such as ought to 
arise from refraction. For suppose a circumpolar star passes through 
the zenith, and its distance from the pole be then observed, this will be its 
true distance, if its distance be again observed when on the meridian be¬ 
low the pole, this latter distance will be its distance affected by refraction, 
the difference between which and the former will be the refraction at the 
lower altitude. Snellius first observed the relation between the angles of 
incidence and refraction; but Tyco Bralie was the first who constructed a ta¬ 
ble, though incorrect, for that purpose. Cassini in 1660 published another 
more correct, and Mayer in his tables has given another much more ac¬ 
curate. Modern astronomers have bestowed much attention on this sub¬ 
ject, the niceties in the present improved state of astronomy requiring the 
greatest accuracy. 

* By star, in astronomy, is understood any body which shines in the hea¬ 
vens whether it emits or reflects light; the latter are called planets or wan¬ 
derers, because they do not observe the same position among themselves : 
the former are called fixed, for the reason above given ; though strictly 
speaking, they have several motions among themselves, which only a lapse 
of many ages can render preceptible (see part 4th) the principal is, that 
motion caused by the precession of the equinoctial points, their longitudes 
from thence increasing yearly 50-j''. This likewise causes a variation in their 
rt. ascentions and declinations: their latitudes are also subject to a small 
variation. The nutation or change of the earth’s axis, the aberration of 
light, &c. have some effect in changing the places of the stars. 

The fixed stars are divided into six classes, from their apparent various 
magnitudes. Those that appear largest (occasioned probably from their 
being nearer to us than the first) are called stars of the Is? magnitude; the 
next to them in lustre, stars of the 2d magnitude; and so on to the 6th, 
which are the smallest that are visible to the naked eye. Besides these, 
there are an inconceivable number which are not visible without the 
help of a telescope, and these are called telescopic stars. The distinction 
of stars into six classes or degrees of magnitude, is commonly received by 
astronomers: there is however no rule for classing the stars but by the esti¬ 
mation of the observer; for in reality there are as-many orders of stars as 
there are stars, few of them being exactly of the same bigness and lustre; 
and hence some astronomers reckon those stars of the first magnitude, which 
others reckon to be of the second. 
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110. The jioetical rising and setting of the stars, is that particular 
rising and setting of the stars referred to the sun by the ancient 
poets ; whence called poetical. Thus, when a star rose at sun 
setting, or set with the sun, it was said to rise and set archroni- 
cally : when a star rose with the sun, or set when the sun rose, it 
was said to rise and set cosmically : when a star first became visible 
in the morning, after having been so near the sun as to be hidden 
by the splendour of his rays, it was said to rise heliacally : and 
when a star first became invisible in the evening on account of its 
nearness to the sun, it was said to set heliacally. 

111. A Constellation* is a collection of stars in the heavens, re¬ 
presented on the surface of the celestial globe, and contained 
within the out lines of some assumed figure, as a ram, a lion, a 

a dragon, i?c. 
112. The Zodiac is a space which extends about 8° on each side 

of the ecliptic, within which, the motion of all the planets (ex¬ 
cept Ceres and Pallas lately discovered) are performed. It is so 
called from the figure of the animals described in it, to represent 
the twelve signs, commonly called the 12 signs of the zodiac, 
(zodion in Greek signifying an animal.) 

* The division of stars into constellations is of great antiquity, as Job 
makes mention of Orion, Arcturus and the Pleiades. In the writings of Ho¬ 
mer, Hesiod, &.c. many of the constellations are mentioned. The ancients 
took the figures which represent them from the fables of their religion, and 
the moderns still retain them to avoid the confusion resulting from intro¬ 
ducing new ones ; as this, or some similar division of the stars is necessary, 
in order to direct a person to any part of the heavens which he wants to 
point out, or in which any particular star is situated. The whole heavens is 
almost thus divided into constellations. Those stars which could not be 
brought into any particular constellation, were called unformed stars. These 
constellations are ranged in order on the surface of a celestial globe, and 
their names are to be learnt by inspection, as also their forms and disposi¬ 
tion. On Bardin’s globes all the figures, &c. are painted, but on Cary’s there 
are only the boundaries or limits of the constellations given. The Revd. Mr. 
\ybllaston has published in 1789 a general catalogue of the stars, arranged 
in zones of north polar distance, and adapted to January 1, 1790. 

The following tables contain all the constellations on the JVew 
British Globes, with the number of stars, double stars, clusters, 
clusters and nebulae, and nebulae, according to the latest observa¬ 
tions. The number of the stars in each constellation in the first 
column is taken from Flamstead, except those marked thus*. 
Those in the other columns are taken from Cary’s celestial globe, 
according to their respective degrees of magnitude, 8cc The con¬ 
stellations in the zodiac are 12. The northern constellations on 
Bardin’s globe are 34, on Cary’s 30. The southern constellations 
on Bardin’s are 47, on Cary’s 45 : amounting in all, on Bardin’s 
globe to 93 ; on Cary’s to 87. The respective magnitudes are de¬ 
noted by the numbers 1,2, 3, &c. double stars by two dots, thus .. ; 
clusters, thus +7* ; clusters and nebulae, thus ; nebulae, thus * 
All those less than the 6th mag. are only visible with the telescope. 
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CONSTELLATIONS IN THE 
ZODIAC. 

jVo. of 
starsfr. 
Flam- 
stead, 
&c. 

J\umber of stars, double stars, clusters, 
&c.from Cary’s globes, -with their res¬ 
pective magnitudes, 

1 2 
oi o. 

.. _i 
4 5 6 7 8 

' 
9 

du 
• • 

clu | 
4 

44 

c. n 

1. Aries. The ram. 66 1 i 2 6 22 15 4 6 11 

2. Taurus. The bull. 141 1 1 4 8 23 60 51 21 43 17 o O 1 
3. Gemini. The twins. 85 1 9 4 7 13 27 29 6 9 16 5 
4. Cancer. The crab. 83 8 11 48 30 5 11 5 2 
5. Leo. The lion. 95 2 2 6 15 12 47 17 14 h- 

t 11 1 15 
6. Virgo. The virgin. 110 l 6 10 16 71 16 12 5 12 2 50 
7. Libra. The balance. 51 1 3 12 4 27 6 12 4 2 
8. Scorpio. The scorpion. 44 2 11 10 4 29 3 4 O O 4 
9. Sagittarius. The archer. 69 5 10 12 59 23! 16 9 1 5 10 

10. Capricornus. The goat. 51 o O 3 7 44 8! 15 8 5 .1 
11. Aquarius. The water-bearer. 108 4 7 28 59 9! 8 1 6 1 1 
12. Pisces. The fishes. 113 1 5] 28 63 19| 15 10)14 1 

NORTHERN CONSTELLATIONS. 

1. Ursa minor. The little bear. 24 1 o 4 6 4 5 2 
2. Ursa major. The great bear. 87 1 

(T) 
o 7 13 31 37 13 1 7 8 

3. Draco. The dragon, 80 4 7 12 25 32 O o 9 
4. Cepheus. 35 3 6 13 22 

o 
O 10 

5. Cassiopeia. 55 5 6 8 38 5 1 8 2 
6. Camelopardalus. The camelopard. 58 6 25 42 9 10 
7. Auriga. The charioteer. 66 1 1 9 20 26 5 1 14 4 3 
8. Lynx. The lynx. 44 3 15 25 12 8 
9. Leo minor. The little lion. 53 1 5 10 39 4 3 

10. Canes venatici. The greyhounds. 25 1 1 7 15 2 O O 1 
11. Coma berenices. Benerice’s hair. 43 13 13 17 6 1 7 1 1 21 
12. Bootes. 54 1 7 10 18 30 7 13 1 14 2 
13. Corona borealis. The northern 

crown. 21 1 1 5 1 9 5 7 1 
14. Hercules. 113 9 19 36 46 12 18 2 
15. Lyra. The harp. 21 1 2 2 1 6 12 10 1 
16. Cygnus. The swan. 81 1 6 11 16 49 1 23 Q o 1 
17. Vulpecula et anser. The fox and j 

the goose. 35 5 13 21 O O 4 1 
18. Sagitta. The arrow. 18 4 15 12 2 1 
19. Delphinus. The dolphin. 18 5 .1 2 11 o O 1 2 
20. Equuleus. The little horse. 10 1 4 1 5 4 
21. Pegasus. The flying horse. 89 3 O O 9 14 51 11 1 8 2 
22. Lacerta. The lizard. 16 o O hr 

t 7 r> O 1 
23. Andromeda. 66 o O 2 12 15 34 2 11 8 
24. Triangulum. The triangle. 16 O O 1 7 4 4 1 
25* Musca borealis. The northernfiy. 4 1 2 1 2 
26. Perseus et Caput Medusae. Bead 

of jyfeclusa. 59 2 4 10 14 31 9 1 1 16 1 
27• Serpens. The serpent. 64 1 9 5 3 40 9 4 1 
28. Ophiucus vel serpentarius. 74 1 5 10 9'42 23 10 1 

o O 8 3 5 
29. * Taurus Poniatouski. Tonia- 

tousleds bull. 16 o O 1 12 i 5 2 
30. Aquila. The eagle, and Antinous. 71 1 9 7] 14 38 o O 9 i! 15 5, r* 
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J\To. of Number of stars, double stai 's, clusters, 

ttarsfr. &c. from Cary’ Globes. with their 
SOUTHERN CONSTELLA- Flam- resp ective magnitudes. 

TIONS. sfpnrl t du clu c.n neb 
CSC. 1 2 

O o 4 5 6 7 8 9 4* -f & 

1. Cetus. The -whale. 97 2 7 13 11 66 9 1 3 7 l 3 
2. Eridanus. The river Po. 84 1 1 11 27 20 57 2 1 8 i 3 
5. Orion. 78 2 4 3 15 18 36 2 2 1 28 6 2 1 
4. Monoceros. The unicorn. 31 7 7 12 1 5 14 2 
5. Cams minor. The little dog. 14 i 1 3 9 1 6 o O 
6. Hydra. 60 1 13 16 45 2 1 9 3 
7- Sextans. The sextant. 41 1 6 36 1 1 1 1 2 
8. Crater et hydra. The cup, &c. 31 10 9 14 1 4 1 

o O 
9. Corvus. The cro-w. 9 

o 
O 2 2 2 1 

10. Centaurus. The centaur. 35 2 1 6 10 14 100 1 1 1 5 
11. Lupus. The -wolf. 24 3 3 18 29 
12. * Norma. The rule or square. 12 3 26 
13. * Circinus. The co?npasses. 4 1 1 8 1 

14. * Triangulum australe. The 
southern triangle. 5 1 2 1 16 1 

15. Ara. The altar. 9 o O 3 1 30 1 1 

16 * Telescopium. The telescope. 9 3 6 30 2 

17. Corona australis. The south, crown. 12 
cr 

10 

18. Indus. The Indian. 12 1 1 2 54 
19. * Microscopium. The microscope. 10 1 12 

20. Piscis australis. The southernJish. 24 J 2 5 9 19 
21. Grus. The crane. 13 1 2 2 6 41 

22. Toucana. The American s'0086- 9 1 2 5 58 1 

23. Phoenix. 13 1 l 3 7 63 
24. * Apparatus sculptoris. The 

sculptor’s apparatus. 12 5 29 1 

25. * Fornax chemica. The furnace. 14 2 43 
26. * Horologium. The clock. 12 2 39 1 
27. * Cela sculptoria. The engraver’s 

tools. 16 4 18 
28. Lepus. The hare. 19 

o O 7 3 13 2 2 
29. Cams major. The great dog. 31 1 4 o 

7 7 36 O 
O 1 1 1 15 4 

30. Columba. The dove. 10 1 1 , 2 4 53 i 
31. * Equuleus pictorius. The paint- 

er’s horse or easel. 8 1 39 
32. Argo navis. The ship Argo. 64 2 4 9 12 37 289 6 2 1 11 2 2 
33. * Pixis nautica. The mariner’s 1 

compass. 4 2 13 
34.* Antlia pneumatic a. The air pump. 3 2 18 
35. * Crux. The cross. 5 1 2 1 1 1 12 

36.* Musca australis. The southern fly. 5 4 17 1 

37. * Apus vel avis Indica. The bird 
of Paradise. 11 2 16 

* 
38. * Pavo. The peacock. 14 1 2 3 4 80 
39. * Octans. The octant. 43 1 6 64 
40. Hydra, or the water snake. 10 2 

o O 2 38 1 
j41. * Reti cuius. The net. 10 1 O 5 17 
t42. * Dorado. The sword fish. 6 1 1 4 24 
43. * Piscis volans. The flying fsh. 8 6 8 3 - 

. 44. * Chameleon. 1 10 6 35 

45. * Mons mensze formis. The ta- 1 

ble mountain. i 30 ( 31 1 
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Some of the stars in the above tables inserted in the column of double 
stars, are marked triple, quadruple, &c. on the globe, but this distinction 
was thought unnecessary in the tables, as the globes may be consulted.— 
These double stars, &c. are useful in trying the goodness and magnifying 
power of telescopes. The constellations on Bardin’s globes, and not marked 
on Cary’s, will be found among the following observations. Changeable 
stars not taken notice of in the following remarks, may be seen on the globe, 
and likewise those which have disappeared, as the letters indicating them are 
not inserted on the globe. See part 4th. 

The following observations on the different constellations collected from 
various authors, may not be uninteresting. 

The constellations in the zodiac appear to relate to the motion of the 
sun, or to refer to the climate and agriculture of those nations to whom the 
zodiac owes its origin, and are therefore Chaldean or Egyptian Hieroglyph¬ 
ics, intended to represent some remarkable occurrence in each month.— 
Thus the spring signs were distinguished for the production of those ani¬ 
mals which were held in the greatest esteem, viz. the sheep, the black cat¬ 
tle, and the goats ; the latter being the most prolific, were represented by 
the figure of Gemini, afterwards so called from the two brothers Castor and 
Pollux, placed in this constellation by the Greek philosophers. The retro¬ 
grade motion of the sun in the tropic of Cancer, was represented by a Crab, 
which is said to go backwards. The heat that usually follows in the next 
month, is represented by the Lion, an animal remarkable for its fierceness, 
and which at this season was frequently impelled, through thirst, to leave 
the sandy deserts, and make its appearance on the bank of the Nile. The 
sun entered the 6th sign Virgo, about harvest time, which season was there¬ 
fore represented by a virgin, or female reaper, with an ear of corn in her 
hand. When the sun enters Libra, tine days and nights are equal all over 
the world, and seem to be an equilibrio like the arms of a Balance. Au¬ 
tumn, which produces fruits in great abundance, brings with it its variety 
of diseases. This season is represented by that venomous animal the Scor¬ 
pion, which wounds with its sting in its tail as it recedes. The fall of the 
leaf was the season for hunting, and the stars which marked the sun’s path 
at this time, were represented by a huntsman or Archer, with his arrows 
and weapons of destruction. 

The Goat, which delights in ascending some mountain or precipice, is 
the emblem of the winter solstice, when the sun begins to ascend from the 
southern tropic, and gradually to increase in height for the ensuing half 
year. 

Aquarius, or the water-bearer, is represented by the figure of a man, 
pouring out water from an urn, an emblem of the dreary and uncomfortable 
season of winter. 

The last of the zodiacal constellations was Pisces, or a couple of fishes* 
tied back to back, representing the fishing season. The severity of the 
winter is over, the flocks do not afford sustenance, but the seas and rivers 
arc open and abound with fish. 

Aries is thought by some to be the ram, whose fleece was of gold, that 
carried Phryxus and his sister Ilelle through the air on his back, when 
they fled to Colchis from the persecution of their step-mother Ino. The 
fable of the flight of Phryxus to Colchis on a ram, is explained by some, who 
observe, that the ship on which he embarked was called by that name, or 
carried on her prow the figure of that animal. The fleece of gold is ex¬ 
plained by the immense treasures which he carried from Thebes. He was 
afterwards murdered by his father-in-law JEtes, who envied him this trea¬ 
sure, which gave rise to the famous Argonautic expedition under the com¬ 
mand of Jason. (See Lempriere.) Others imagine that this constellation 
was first formed from Jupiter appearing to Hercules, or as some say to 
Bacchus, in the deserts of Lybia in Africa, in the form of a ram ; and shew- 
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cd him a fountain, when, with his army, he suffered extremely for want of 
water. Whence the temple of Jupiter Ammon was erected in this place¬ 
ts Arietis, 2d mag", is the principal star in this constellation. 

Taurus. Some say that this was the animal, under the figure of which 
Jupiter carried away Europa, daughter of Agenor, king of Phzenicia, to the 
Island of Crete ; from whom Europe, according to some, has derived its 
name. (See Lempriere or Chompre.) She is supposed to have lived 1552 
years before the Christian JEra. See Ovid’s Met. lib. 8. The meaning of 
this allegory according to some, is, that the ship in which Europa was car¬ 
ried, was in the shape of this animal, or according to others, that the mas¬ 
ter was called Taurus, &c. &c. Aldebaran, 1 Mag. the Pleiades and the 
Hyades are in this constellation. 

Gemini. In this constellation are two remarkable stars called Castor (1) 
or Apollo, and Pollux or Hercules (2) They were sons of Jupiter by Leda, 
the wife of Tyndarus, king of Lacedaemon. They accompanied Jason in his 
expedition to Colchis. See their history in Lempriere ; also Ovid, lib. 6. 

Cancer. Some say this was made a constellation by Juno, as he went by 
her order, and bit the foot of Hercules when he attacked the Lernean 
Hydra, and was killed by him. 

Leo, is supposed to be the famous lion killed by Hercules on mount 
Cithaeron. This huge monster preyed on the flocks of Amphitryon, his 
supposed father, and laid waste the adjacent country, until at length killed 
by tills hero. Others suppose it to be the Nemean line killed by Hercules 
(which was his first labour) and which Juno placed among the stars:— 
Hegulus (1) and @ or Deneb, 2 mag. are in this constellation. 

Virgo. This constellation, according to some, took its rise from Astrea, 
a daughter of Astreus, king of Arcadia ,* or according to others, of Titan, 
Saturn’s brother by Aurora. Some make her daughter of Jupiter and 
Themis, and others consider her the same as Ilhea, wife of Saturn. She 
was called Justice, of which virtue, according to some, she was the goddess. 
She lived upon the earth as the poets mention, during the golden ago, which 
they often call the age of Astrea, but the wickedness and impiety of man¬ 
kind droye her to heaven in the iron ages, and she was placed among the 
constellations of the zodiac under the name of Virgo. She is represented 
as a virgin, with a stern but magestic countenance, holding a pair of scales 
in one hand, and a sword in the other. The scales is the Libra in the next 
sign : others give the office to Themis. See Libra. Others, in fine, con¬ 
sider Erigo?ie as the Virgo we here speak of. She was daughter of Ica- 
rius, an Athenian, who hung herself when she heard that her father was 
killed by some shepherds whom he had intoxicated, and was changed into 
the constellation Virgo. Icarius, as some say, was changed into Bootes, and 
the Dog Mara, by which Erigone was led to discover where her father was 
buried, was changed into the star Canis or Sirius. Spica virginis and vin- 
demiatrix 1 and 3 mag. are the principal stars in this constellation. 

Libra, from Themis (filia Caeli et terrze) the goddess of Justice; she is 
also represented with a balance in one hand, and a bandage on her eyes, 
and sometimes with a sword in the other hand. Jupiter made her the god¬ 
dess of law and peace, and placed her balance among the constellations. She 
had an oracle in Bxotia, near the river Cephisus. Others consider Astrea as 
the goddess of Justice, &c. See Virgo. Zuben-el-Chamali of the 2 mag. is 
the principal star. 

Scorpio. According to Ovid, Orion died of the bite of a Scorpion, which 
the earth produced to punish his vanity in boasting that there was not on 
earth any animal which he could not conquer : on account of which, Jupiter 
placed the Scorpion in the heavens. See Ovid’s Delp. pa. 42, notes, &c. 
Lempriere, Orient When Orion sets, Scorpio rises. Antares, X m. is in 
this const. 
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Sagittarius, took its name from Chiron, the famous Centaur (half man 
and half horse) so called from his skill in chirurgery. He was the son of 
Philyra and Saturn, who changed himself into a horse to escape the inqui¬ 
ries of his wife Rhea. He was famous for his knowledge of music, medi¬ 
cine, and shooting. He was the master of Achilles, iEsculapius, Hercules, 
Jason, Peleus, Eneas, &c. Hercules, when in pursuit of the Centaurs, 
wounded him in the knee with a poisoned arrow. Chiron, on account of' 
the excruciating pain, begged of Jupiter to deprive him of immortality : he 
was therefore placed by the god among the constellations under the name 
of Sagittarius. Hesiod in Scuto. Ovid, lib. 2, &,c. See Newton’s Chro¬ 
nology. Some take this to be Crotus a son of Pan and Eupheme, the nurse 
of the muses. 

Capricornus. This is supposed to be the goat Amalthea which fed Jupi¬ 
ter with her milk, and with whose skin he afterwards covered his shield.— 
Jupiter placed this goat among the constellations, and gave his shield to 
Pallas, who placed upon it Medusa’s head, which turned all those who fixed 
their eyes upon it into stones. Some maintain that it represented Pan, who 
changed himself into a goat, at the approach of Typhon. Pan was the god 
of shepherds, of huntsmen, and of all the inhabitants of the country. Homer 
makes him the son of Mercury by Dryope ; some give him Jupiter and 
Calisto for parents. Lucian, Hyginus, &c. maintain that he was the son of 
Mercury and Penelope, the daughter of Icarius and wife of Ulysses, &c. 
Though extremely deformed, the multiplicity of his amours was little infe¬ 
rior to those of Jupiter, and -was therefore thought •worthy to he ranked among 
the gocls. The worship, and the different functions of Pan, are derived from 
the mythology of the ancient Egyptians. This god was one of their eight 
great gods, who ranked before the other twelve whom the Romans called 
consentes. His statues represented him as a goat, which is the emblem of 
fecundity, and they looked upon him as the principle of all things ; his horns 
represented the rays of the sun ; his ruddy complexion and vivacity express¬ 
ed the brightness of the heavens ; the star which he wore on his breast was 
the symbol of the firmament, and his legs, feet, and tail, being those of a 
goat, denoted the inferior parts of the earth as woods, plants, &c. When 
the gods fled into Egypt, in their war with the giants. Pan changed him¬ 
self into a goat, an example that was followed by all the rest. As Pan usual¬ 
ly terrified the inhabitants of the neighbouring country, it is from him that 
kind of fear which is only ideal, has received the name of panic fear. 

Jlquarius. This is the famous Ganymede, a beautiful youth of Phrygia, 
son of Tros, King of Troy, or according to Lucian, son of Dardanus. He 
was taken up to heaven by Jupiter as he was tending his father’s flocks on 
mount Ida, and he became the cup bearer of the gods in place of Hebe ; 
hence made the constellation Aquarius or the water-bearer. The principal 
star in it is Scheat, 3 mag. 

Pisces. These are thought to be the fishes which carried Venus and Cu¬ 
pid over the Euphrates, when they fled the pursuit of the giant Typhon ; 
others think that they were the dolphins who carried Amphitrite to Neptune, 
and others that they were the dolphins that carried the famous musician Arion, 
to Taenarus, having leaped into the sea when the sailors attempted to mur¬ 
der him for his riches. These two last opinions, however, rather relate to 
the constellation Delphinus. 

THE NORTHERN CONSTELLATIONS. 
Ursa Minor and Ursa Major, are said to be Calisto and her son Areas. 

Calisto or Helice, was daughter of Lycaon, king of Arcadia, and one of 
Diana’s attendants. She was seduced by Jupiter; and Juno in revenge 
changed her into a she bear, and her son Areas into a little bear : but Ju¬ 
piter, fearful of their being hurt by the huntsmen, made them constellations. 
Some consider Areas the same as Bootes. (See Bootes.) The ancients also 
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represented each of these constellations under the form of a wagon drawn 
by a team of horses; and the country people, at the present, sometimes call 
Ursa Major by the name of Charles's Warn : in some places it is called the 
plough, which it resembles. There are two remarkable stars in Ursa Major 
called the pointers, because an imaginary line drawn through them, will 
pass over the pole star in the tail of the little bear. These stars are the 
hindmost in the square of the wain, or dubhe and 0- The great bear is also 

sometimes called Maenalis Ursa, from a mountain in Arcadia. In this con* 
stellation is the pole star, 2d mag. 

Draco. There are various accounts given of this constellation; Some re¬ 
present it as the watchful dragon which guarded the golden apples in the 
garden of the Hesperides, near mount Atlas in Africa, and was slain by 
Hercules, being his eleventh labour. Juno, who presented these apples to 
Jupiter on the day of their nuptials, took Draco up to heaven, and made a 
constellation of it as a reward for its fidelity. These Hesperides who were 
three sisters, are considered by Varro as having immense flocks of sheep, 
and that the ambiguous Greek word rnelon, which signifies an apple and a 
sheep, gave rise to the fable, and that Draco was their shepherd. Others 
that this Draco, in the famous war with the giants, was brought into combat 
and opposed to Minerva, who seized it in her hands, and threw it, twisted as 
it was, into the heavens round the axis of the earth, before it had time to 
unwind its foldings. Others imagine that it was the dragon killed by Cad¬ 
mus when in search of his sister Europa, and which he had slain by the as¬ 
sistance of Minerva. This was the dragon from whose teeth, sowed in a 
plain, armed men suddenly sprung from the ground, &c. Some suppose the 
dragon to be a king whom Cadmus conquered, and the teeth his soldiers. 
See Lempriere. The principal star is Rastaben, 2 mag. 

Cepheus was a king of Ethiopia, father of Andromeda, by Cassiopeia. He 
was one of the Argonauts who accompanied Jason to Colchis in quest of the 
golden fleece. In this const, the principal star is Alderamin, 3 mag. 

Cassiopeia was the wife of Cepheus and mother of Andromeda. She 
boasted herself to be fairer than Juno and the Nereides. Neptune at the 
request of these, punished the insolence and vanity of Cassiope by sending a 
huge sea monster to ravage Ethiopia. The wrath of Neptime could only be 
appeased by exposing Andromeda, tied to a rock, to be devoured by thi.c5 
monster; but Perseus mounted on Pegasus, with the head of Medusa, 
changed this monster into a rock, delivered Andromeda, and obtained of 
Jupiter that Cassiope might have a place among the stars. Some suppose 
Cetus (see Cetus) to be the monster sentto devour Andromeda. Shedir or 
Schedar, 3 mag. is the principal star. 

Camelopardalus is one of the new constellations formed by Hevelius : this 
animal is described in various natural histories. (See Monoceros.) 

Auriga is represented on the celestial globe by the figure of a man in a 
kneeling or sitting posture, with a goat and her kids in his left hand, and a 
bridle in his right. There are various accounts given of this constellation. 
Some suppose it to be Erichthonius, the fourth king of Athens, and son of 
Vulcan and Minerva, who is said to have invented chariots, and the manner 
ef harnessing horses to draw them ; some, however, take this Erichthonius to 
be Bootes. Others think that Auriga was Mirtilus, a son of Mercury and 
Phietusa. He was charioteer to (Enomaus, king of Pisa, in Elis, and so ex¬ 
perienced in riding and in the managing of horses, that he rendered those of 
(Enomanus the swiftest in all Greece; his infidelity to his master proved 
fatal to him at last, but being a son of Mercury, lie was made a constella¬ 
tion after his death. It has been supposed that the goat and her kids refer 
to Amalthaea, daughter of Melissus, king of Crete, who, in conjunction with 
her sister Melissa, fed Jupiter with goat’s milk. It is moreover said, that 
Amalthaea was a goat called Olenia, from its residence at Ole nus, a town of' 
Peloponesus. Capella 1 mag. is the principal star. 

E 
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Lynx, one of Hevelius’ constellations, composed of the unformed star*' 
of the ancients, between Auriga and Ursa Major. 

Leo Minor, was formed by Hevelius out of the unformed stars of the 
ancients, and placed above Leo, the zodiacal constellation. Mythologists 
are not agreed whether the latter be the Nemaean lion slain by Hercules* 
as this constellation was among the Egyptian hieroglyphics long before 
this exploit of Hercules. Nemea was a town of Argolis, in Peloponnesus. 

Canes Venatici, these are Asterion et char a, the two greyhounds held in 
a string by Bootes: they were formed by Hevelius out of the unformed 
stars. Cor Caroli a double star of the 3d magnitude is in this constellation. 

Coma Berenices, is composed of the unformed stars between the lion’s 
tail and Bootes. Berenice was the wife of Ptolemy Evergetes.' When 
Ptolemy went on a dangerous expedition, she vowed to dedicate her hair 
to the goddess Venus if he returned in safety. Some time after Conon, 
an astronomer of Samos, to make his court to Ptolemy, publicly report¬ 
ed that the queen’s locks were carried away by Jupiter, and were 
made a constellation. Conon, according to Lempriere, flourished 247 
years before Christ. He was intimate with the celebrated Archimedes. 

Evergetes was a surname signifying- benefactor, which Ptolemy re¬ 
ceived from the Egyptians, on account of carrying back 2500 statues of 
their gods, which Cambyses had carried away into Persia when he con¬ 
quered Egypt. This title was also given to Philip of Macedonia, to anti- 
g-onus Boson, to the kings of Syria and Pontus, and to some of the Ro¬ 
man emperors. 

Bootes, also called Bubulcus, is supposed to be Icarus the father of Eri- 
gone, who was killed by shepherds for inebriating them. Others maintain 
that it is Areas or Arctophylers, son of Jupiter and Calisto. (See ursa 
minor, &c.) Bootes is represented as a man in a walking posture, grasp¬ 
ing in his left hand a club, and having his right hand extended upwards* 
holding the cord of the two dogs Asterion and Chara, which seem to be 
barking at the great bear; hence Bootes is sometimes called the bear 
driver, and the office assigned him is to drive the two bears round the 
pole. Arcturus 1 and Mirach 2 mag. are the principal stars. 

Corona borealis is a beautiful crown of seven stars, given by Bacchus, 
the son of Jupiter, to Ariadne, the daughter of Minos, second king of 
Crete and Pasiphae. Bacchus is said to have married Ariadne after she 
was basely deserted on the Island of Naxos, by Theseus, king of Athens, 
whom she had delivered from the labyrinth of Crete, after having con 
quered the Minotaur. After her death the crown which Bacchus had 
given her, was made a constellation. This crown is called by Virgil 
Gnossia Stella, because Ariadne was born at Gnossus. The principal stat¬ 
in it is Alphecca 2 magnitude- 

Hercules is represented on the celestial globe with a club in his right 
hand, the three headed dog Cerberus in his left, and the skin of the Ne- 
maean lion, thrown over his shoulders. This Hercules was the son of 
Jupiter and Alcmena, and generally called the Theban. He was a scholar 
of Chiron the centaur, and accompanied Jason in the Argonautic expedi¬ 
tion. Ninus, son of Belus, was however the Hercules of the Chaldeans. 
He founded the Assyrian monarchy, and was therefore the Jupiter of the 
Assyrians. He caused the same honours to be paid his father Belus in 
Babylon, as to the creator of the universe, and established his worship 
wherever he extended his conquests. The Grecians afterwards followed 
the example, and worshipped him under the title of Jupiter; and the hea¬ 
then world formed to themselves no less than 300 gods of this name. 
The worship of Jupiter became universal. He was the Ammon of the 
Africans, the Belus of Babylon (for Ninus after his death was called Her¬ 
cules, the son of Jupiter) the Osiris of Egypt, See. An account of his wor 



DEFINITIONS, ttV. 35 
skip is given in the sacred writings. .See the remarks at the end of the 
constellations. Ras. Algethi 3 mag. is situated in the head of Hercules. 

Lyra was at first a tortoise, afterwards a lyre, because the strings of 
the lyre were originally fixed to the shell of a tortoise. It is asserted 
that this is the lyre which Apollo or Mercury gave to Orpheus, and with 
which he descended the infernal regions in search of his wife Euridice. 
Orpheus after death received divine honours ; the muses gave an honour, 
able burial to his remains,, and his lyre became one of the constella¬ 
tions. Pythagoras and his followers represent Apollo playing upon a 
harp of seven strings, by which is meant (as appears from Pliny, lib 2. c. 
22, Macrobius 1. c. 19. and Censorinus c. 11.) the sun in conjunction with 
the seven planets, for they made him the leader of that septenary chorus 
and moderator of nature, and thought that by his attractive force he act¬ 
ed upon the planets in the harmonical ratio of their distances ; and 
hence they called the sun Jupiter’s prison, alluding to the force with 
which he retains the planets in their orbits. Pythagoras made this 
discovery from observing, as he passed by a smith’s shop, that the sounds 
of the hammer* were more acute or grave, in proportion to their weight, 
and from thence found that the sound of strings were as the weights sus¬ 
pended, Sec. see Macrobius lib. 2- insomn. scip. c. 1. or Doctor Gregory’s 
preface to his astronomy. Pythagoras was born at Samos ; he travelled in¬ 
to Egypt and Chaldea, where he gained the confidence of the priests, and 
was initiated into their mysteries, learned their symbolic writing, the na¬ 
ture of their gods, &c. and acquired a knowledge of the true system of 
the world. Pythagoras distinguished himself by his discoveries in geo¬ 
metry, astronomy, and mathematics in general, and invented the demon¬ 
stration of the 47 prop, of the 1st book of Euclid. He was the first 
who supported the doctrine of Metempsychosis, or the transmigration of 
souls into different bodies. He founded a sect in Italy called the Italian. 
The most learned and eloquent men of the age, the rulers and the legis¬ 
lators of all the principal towns of Greece, Sicily, and Italy, boasted in 
being the disciples of Pythagoras. See Lempriere. Lyra 1. and jg a 

quadruple star of the 3 mag. are the most remarkable stars in this con¬ 
stellation. 

Cygnus is fabled by the Greeks to be the swan, under the form of which. 
Jupiter deceived Leda, or Nemesis, the wife of Tyndaris, king of Sparta. 
Leda was the mother of Pollux and Helena, who was the cause of 
the Trojan war ; and also of Castor and Clytemnestra. The two former 
were deemed the offspring of Jupiter, and the others claimed Tyndarus 
as their father. Some, however, supposed that this constellation derived 
its name from Cycnus, a son of Mars by Pelopea, who' was killed by 
Hercules. Others that it was Cycnus, whom Achilles smothered, his 
darts having no effect on him ; but was immediately changed into a swan, 
he. Arided 2. Albireo 3, and two stars that sometimes are invisible, at 
other times of the 3d mag. are the most remarkable stars. 

Vulpecula and Jlnser was made by Hevelius out of the unformed stars 
Sagitta the arrow, is supposed to be one of the arrows of Hercules, 

with which he killed the eagle or vulture that perpetually knawed the 
liver of Prometheus, who was tied to a rock on Mount Caucusus by order 
of Jupiter. 

Delphinus, the dolphin, was placed among the constellations by Neptune, 
because by means of a dolphin he obtained Amphitrite, his wife. 

Equulus, the little horse, sometimes called eqnisectio, the horse’s head, 
is supposed to be the brother of Pegasus; some take him to be the horse 
which Neptune struck out; of the earth with his trident, when he disputed 
with Minerva for superiority, and which some confound with Pegasus. 

Eegasjis, a winged horse, sprung from the blood of Medusa after Per¬ 
seus had cut oft'his head. He received his n^me from fiis being born, 
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according to Hesiod, near the sources (Pege) of the ocean. According 
to Ovid, he fixed his residence on mount Helicon, where, by striking the 
earth with his foot, he produced a fountain called Hippocrane. He be¬ 
came the favourite of the muses ; and being tamed by Neptune or Mi¬ 
nerva, he was given to Bellerophon, son of Glaucus, king of Ephyre, to 
conquer the Chimaera, a hideous monster that continually vomited flames ; 
it had three heads, that of a lion, a goat, and a dragon. The fore parts 
of its body were those of a lion, the middle that of a goat, and the hinder 
parts those of a dragon. It lived in Lycia in the reign of Jobates, by 
whose orders Bellerophon was sent to destroy it. The Chimaera is sup¬ 
posed to be a burning mountain in Lycia, whose top was the resort 
of lions, on account of its desolate wilderness ; the middle, which was 
fruitful, was covered with goats, and at the bottom, the marshy ground 
abounded with serpents ; and that Bellerophon was the first who made 
his habitation on it. Plutarch says that it was the captain of some pirates 
who adorned their ship with the images of a lion, a goat, and a dragon. 
After the destruction of this monster, Bellerophon attempted to fly to 
heaven. This presumption was punished by Jupiter, who sent an insect 
to torment Pegasus, which occasioned the melancholy fall of his rider.— 
Pegasus continued his flight up to heaven, and was placed by Jupiter 
among the constellations. From the Chimaea and Orthos, a dog with 
two heads which belonged to Geryon, and which Hercules killed, sprung 
the sphinx and lion of Nemea. In this const, are the stars Markab 2, 
Sheat Alperas 2, and Algenib, 3d mag. 

Lacerta, the lizard, was added by Hevelius to the old constellations. 
Andromeda is represented on the celestial globe by the figure of a wo¬ 

man almost naked, having her arms extended, and chained by the wrist 
of her right arm to a rock. She was the daughter of Cepheus, king of 
Ethiopia, by Cassiope. Cepheus, by the advice of the oracle of Jupiter 
Hammon, exposed Andromeda tied to a rock, near Joppa, now Jaffa in 
Judea (according to Pliny) to be devoured by a sea monster, to preserve 
his kingdom, but she was rescued by Perseus. (See Cassiopeia.) Pliny 
says that the skeleton of the huge sea monster, to which she had been 
exposed, was brought to Rome by Scaurus, and carefully preserved. The 
fable of Andromeda and the sea monster, is explained, by supposing that 
she was courted by the captain of a ship who attempted to carry her 
away, but was pi’evented by another more successful rival. The star mark¬ 
ed a 2, Mirach 2, and Almaach 2, are the principal in this constellation. 

Triangtdum. A triangle is a well known figure in geometry; it was 
placed in the heavens in honour of the most fertile part of Egypt, being 
called the delta of the Nile, from its resemblance to the Greek letter of 
that name A- The Nile, anciently called iEgyptus, flows through the 
middle of Egypt, in a northerly direction, and when it comes to the town 
of Cercassorum, it divides itself into several streams, and falls into the 
Mediterranean by seven channels or mouths; the island which these 
several streams form is called Delta. The invention of geometry is usual¬ 
ly ascribed to the Egyptians, so called, as some think, from iEgyptus son 
of Relus and brother of Danaus, and it is asserted that the annual inun¬ 
dations of the Nile which swept away the bounds and landmarks of es¬ 
tates, gave rise to it, by obliging the Egyptians to consider the figure and 
quantity belonging to the several proprietors. The Nile yearly overflows 
the country, and it is to those regular inundations that the Egyptians are 
indebted for the fertile produce of their lands. It begins to rise in the 
month of May for 100 successive day9, and then decreases gradually for 
the same number of days. If it does not rise as high as 10 cubits, a fa¬ 
mine is generally expected ; but if it exceeds this by many cubits, it is 
of the most dangerous consequences ; houses are overturned, the cattle 
are drowned, and a great number of insects are produced from the mud. 
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which destroy the fruits of the earth. As it very seldom rains in Egypt, 
the cause of the Niles overflowing, is the heavy rains which regularly 
fall in Ethiopia in the months of April and May, and which rush down 
in torrents upon the country, and lay it all under water. 

JkTusca Borealis. This is a new constellation supposed to be formed in 
opposition to Musca australis, which see. 

Perseus et Caput Mudusx. Perseus is represented on the celestial globe 
with a sword in his right hand, the head of Medusa in Ills left, and wings at 
his ancles. Perseus was the son of Acrisius and Danae. He was no sooner 
born, than he was thrown into the sea, with his mother Danae, but being 
driven on the coast of the island of Seriphos, one of the Cyclades, they 
were found by one Dictys, a fisherman, and carried to Polydectes, the king 
of the place, who intrusted them to the care of the priests of Minerva’s tem¬ 
ple. Here he promised the king to bring him the head of Medusa. To 
equip him for this arduous task, Pluto, the god of the infernal regions, lent 
him his helmet, which had the power of rendering its bearer invisible. Mi¬ 
nerva, the goddess of wisdom, furnished him with her buckler, which was 
as resplendent as glass; and he received from Mercury wings, and the to¬ 
lar ia, with a short dagger made of diamonds; or, as some say, he received 
the telaria or kerpe from Vulcan, which was in form like a scy the. Thus 
equipped he began his expedition, and traversed the air, conducted by the 
goddess Minerva. Having discovered Medusa, he cut off her head, and 
from the blood which dropped from it in his passage through the air, sprung 
innumerable serpents, which is said to have ever since infested the sandy 
deserts of Lybia: from the same blood sprung Chrysaor with his golden 
sword, and the horse Pegasus, which immediately flew to Mount Helicon, 
though Ovid says Perseus was mounted on him when he freed Andromeda. 
Medusa was one of the three Gorgons, who were daughters of Phorcys and 
Ceto; their names were Stheno, Euriale, and Medusa ; all immortal except 
the latter. They were represented with snakes on their heads, instead of 
hair, with yellow wings and brazen hands; their bodies were also covered 
with impenetrable scales, and their very looks turned all those who beheld 
them into stones. Medusa, according to some, was celebrated for the beauty 
of her locks, but having, with Neptune, violated the temple of Minerva, that 
goddess changed her locks into serpents. Perseus in gratitude to Minerva, 
placed her head on her aegis or shield, where it retained the same petrifying 
power as before. It was afterwards placed among the constellations. (See 
Lempriere.) Diodorus and others suppose that the Gorgons were a warlike 
race of women near the Amazon, whom Perseus, with the help of a large 
army, totally destroyed. The principal stars in it arc a 2, and Algol 2. 

Serpens is also called Serpens Ophiuci, being grasped by the hands of 
Ophiucus. (See Serpentarius.) 

Serpentarius, also called Ophiucus or Opheus, is supposed byr some to be 
Hercules, who before he had. completed his eighth month, squeezed two 
serpents to death, which Juno sent to devour him. Some, however, take 
him to be JEsculapius, son of Apollo by Coronis. He was taught the art of 
medicine by" Chiron, and was physician to the Argonauts. He was consider¬ 
ed so skilful in the medical power of plants, that he was called the inventor 
as well as the god of medicine. iEsculapius was represented with a large 
heard, holding in his hand a staff, round which was wreathed a serpent; his 
ether hand being supported on the head of a serpent. Serpents were more 
particularly sacred to him, not only as the ancient physicians used them in 
their prescriptions, but because they were the symbols of prudence and 
foresight, so necessary" in the medical profession. Cicero reckons three of 
this name, (de nat. Deor. 3, c. 22.) The most remarkable star in this 
constellation is Has Alhagus. 

Jiquila et Antinous. Aquila is supposed to be Merops, a king of the* 
island of Cos, one of the Cyclades ; he was changed into an eagle (Ovid, 
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met. 1.) and placed among the constellations. Antinous was a youth of 
Bithynia, in Asia Minor, a great favourite of the emperor Adrian, who 
erected a temple to his memory, and placed him among the constellations. 
Antinous was armed by Hevelius with a bow and arrow. Alt air or Atair 1, 
is situated in this constellation. 

Taurus Poniatowski was so called in honour of Count Poniatowski, a 
polish officer of great merit, who saved the life of Charles XII. of Sweden, 
at the battle of Pultowa, a town near the Dnieper, about 150 miles south 
east of Kiow ; and a second time at the island of Rugen, near the mouth of 
the river Oder. 

Scutum Sobieski was so named by Hevelius, in honour of John Sobieski, 
king of Poland. Hevelius was a celebrated astronomer, born at Dantzick ; 
his catalogue of fixed stars was entitled Firmamentum Sabieskianum, and 
dedicated to Sobieski. 

Mons Mcenalus, the mountain Msenalus in Arcadia, was sacred to the god 
Pan, and much frequented by shepherds : it was covered with pine trees, 
whose echo and shade has been much celebrated by all the ancient poets : 
it received its name from Mcenalus, a son of Lycaon. It was made a con¬ 
stellation, and placed by Hevelius under the feet of Bootes. 

Cor Caroli is a star in the neck of Chara, and was so denominated by 
Sir Charles Scarborough, physician to king Charles II. in honour of king 
Charles I. 

Triangulum Minus. This constellation was made by Hevelius, of the 
unformed stars between Triangulum Boreale and the head of Aries. 

THE SOUTHERN CONSTELLATIONS. 

Cetus is pretended by the Greeks to be the sea monster, which Neptune, 
brother to Juno, sent to devour Andromeda. In this are Menkar 2. Baten 
Kailos 3, and Mira, which is sometimes of the 2d. mag. and sometimes in¬ 
visible. The period of its variations is 334 days. 

Eridanus, the river Po, called by Virgil the king of rivers, was placed in 
the heavens for receiving Photon, whom Jupiter struck with thunderbolts, 
when the earth was threatened with a general conflagration, through the 
ignorance of Phaeton, who had presumed to be able to guide the chariot of 
the sun. According to the poets, while Phaeton was unskilfully driving the 
chariot of Ills father, the blood of the Ethiopians was dried up, and their 
skins became black, a colour which is still preserved by the greater part of 
the inhabitants of the torrid zone. The territories of Libya were also 
parched up, according to the same tradition, on account of their too great 
vicinity to the sun, and ever since Africa, unable to recover her original 
verdure and fruitfulness, has exhibited a sandy country and uncultivated 
waste. Phrcton, according to the Mythologists, was a Ligurian prince, who 
studied astronomy, and in whose age the neighbourhood of the Po was 
visited with uncommon heats. From his love of astronomy, he was called 
a son of the sun, or Phoebus and Clymene ; or as others say, of Aurora and 
Tithonus or Pausanias. The river Po is sometimes called Orion’s river.— 
The most remarkable star in it is Achernar 1. 

Orion is represented on the globe by the figure of a man with a sword in 
his belt, a club in his right hand, and the skin of a lion in his left ; he is 
said by some authors to be the son of Neptune and Euriale, and that he had 
received from his father the privilege and power of walking over the sea 
without wetting his feet. Others make him son of Terra, like the rest of 
the giants, according to Diodorus. Orion was a celebrated hunter, supe ¬ 
rior to the rest of mankind, by his strength and uncommon stature. He 
built the port of Zancle, and fortified the coast of Sicily against the fre¬ 
quent inundations of the sea, with a mound of earth called Pelorum, on 
which he built a temple to the gods of the sea. Others say that Jupiter, 
Neptune, and Mercury, as they travelled over Rxotia, met with great hospi- 
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lality from Hyrieus, a peasant of the country, who was ignorant of their 
dignity and character. When Hyrieus had discovered that they were 
gods, he welcomed them by the voluntary sacrifice of an ox. Pleased 
with his piet^, the gods promised to grant him whatever he required, 
and the old man who had lately lost his wife, and to whom he had made 
a promise never to marry again, desired them, that, as he was childless, 
they would give him a son without obliging him to break his promise.— 
The gods consented, and ordered him to bury in the ground the skin of 
the victim ; nine months after he dug the skin, and found a beautiful 
child, which he called Orion, ab urina, quia Dii urinam in pellem redderant> 
ex qua procveatus. Ovid says that the name was changed from Urion to 
Orion. Orion was buried in the island of Delos, and after his death was 
made a constellation. According to the ancient poets, this constellation 
never rises or sets without great storms, and hence he is called nimbosus 
Orion by Virgil, and tristis Orion by Horace. Authors who explain this 
fable say, that Orion was a great astronomer and disciple of Atlas. The 
stars Betelgeux 1, and Rigel 1, are in this constellation. 

JMonoceros, the unicorn, was composed by Hevelius, according to most 
authors, of those stars which the ancients had not comprised within the 
outlines of the other constellations. According to Doctor Gregory (astr. 
b. 2, pr. 22 ) this constellation, together with the Camelopard, was first 
described by Bartschius on his globe of four feet diameter, and afterwards 
retained by Hevelius. 

CanisMinor, according to the Greek fables, was one of Orion’s hounds.... 
Some suppose it to refer to Anubis, an Egyptian god, with the head of a 
dog ; others to Diana, the goddess of hunting; others to Acteon, who was 
changed by Diana into a stag and devoured by his own dogs, &c. Others 
are of opinion, that the Egyptians were the inventors of this constellation, 
and as it rises before the dog star Sirius, whicli in the dog-days was so 
much dreaded, it is properly represented as a little watchful creature, 
giving notice of the others approach; hence the Latins have called it 
Antecanis, the star before the dog. The most remarkable star in it is 
Procyon or Algomeiza 1. 

Hydra is the water serpent which, according to the fable of the poets, 
infested the neighbourhood of the lake Lerna in Peleponesus. It had 
several heads, and as soon as one was cut off, two immediately grew in 
its place, if not prevented by fire. It was one of the labours of Hercules 
to kill this monster, which he effected with the assistance of Iolaus, king 
of Thessaly. It was in the gall of this Hydra that Hercules dipt his ar¬ 
rows, the wounds inflicted by which were incurable and mortal. The 
general opinion is, that the Hydra was a multitude of serpents which in¬ 
fested the marshes of Lerna. Cor Hydros is in this constel. a triple star 
2 mag. There is another constellation of the same name near the south 
pole. 

Sextans, called also Sextans Uranice, is a mathematical instrument well 
known to mariners. This constellation was formed by Hevelius, of the 
unformed stars between Leo and Hydra. Urania was one of the muses, 
daughter of Jupiter and Mnemosyne, who presided over astronomy. She 
was represented as a young virgin, dressed in an azure coloured robe, 
crowned with stars, and holding a globe in her hands, and having many 
mathematical instruments placed around. 

Crater, according to the mythologists, is the cup or pitcher of Aqua¬ 
rius. Alkes, 4 mag. is its principal star. 

Corvus, according to the Greek fables, was made a constellation by 
Apollo. This god being jealous of Coronis, the daughter of Phlegyas and 
mother of iEsculapius, sent a crow to watch her behaviour ; the bird per¬ 
ceived her criminal partiality to Ischys, the Thessalian, and acquainted 
Apollo with her conduct. Some think that this Corvus was the daughter 
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of Coromeus, king of Phocis, changed into a crow by Minerva, when flying 
before Neptune. 

Centaurus. The Centauri were a people of Thessaly, half men and half 
horses. The ancient people of Thessaly were famous for their skill in 
taming horses, and their appearance on horseback was so uncommon a 
sight to the neighbouring states, that at a distance they imagined the man 
and horse to be one animal. When the Spaniards landed in America, 
and appeared on horseback, the Mexicans had the same ideas ; and sim¬ 
ilar ideas were excited when they saw their vessels expand their wings 
and fly along the surface of the ocean. Plutarch and Pliny are however 
of opinion, that such monsters have really existed. The battle of the 
Centaurs with the Lapithse is famous in history. This constellation is by 
some supposed to represent Chiron, the Centaur ; but as Sagittarius is 
likewise a Centaur which some contend to be Chiron, it is probable that 
Theseus is represented by this constellation. Among the principal stars 
in this constellation, the most remarkable is a double star marked cc 1 of 

the 1st, and a 2 of the 4th mag. 
Lupus is supposed to be Lvcaon, king of Arcadia, celebrated for his 

cruelties. He was changed into a wolf by Jupiter, because he offered 
human victims on the altars of the god Pan. (See Ovid, met. 1.) Some 
suppose that this king, to try the divinity of Jupiter, who once visited 
Arcadia, served up human flesh on his table, and that it was Areas, son 
of Calisto, who thus became the victim of his impiety, and was served up 
for Jupiter ; for which horrid crime Jupiter punished him by metamor¬ 
phosing him into a wolf. 

Norma, the square, a well known instrument, is a new constellation 
made of the unformed stars between Lupus and Ara. 

Circinus, the compasses, an instrument known for its extensive utility, 
is a new constellation formed near the Centaur, in allusion to the neigh¬ 
bouring constellations. 

Triangulum Australe is a new constellation formed near the constella¬ 
tions Circinus and Norma. The three foregoing constellations are placed 
near Ara, the altar, the two former being useful to the practical artist, 
and the latter being the foundation of many important sciences ; Euclid, 
as is well known, chmmencing his elements with this figure. The oracle 
of Apollo, at Delplios, being consulted about a raging pestilence which 
desolated Athens, answered, that the pestilence would cease, if his altar, 
which was of a cubical form, were doubled. To execute the orders of 
the oracle, a knowledge of the properties of such solid bodies became 
necessary, and this gave rise to a great part of the geometry of solids. 

Ara, the altar, is supposed by some to be the altar on which the gods 
swore before their combat with the giants ; but from the observation on 
the last constellation, it is more probable that it was Apollo’s altar at 
Delphos. 

Telescopium, a well known optical instrument, is a new constellation 
formed near Ara. 

Corona Australis, a new constellation formed near Sagittarius. 
Indus, the indian, is a new constellation formed to commemorate the 

original inhabitants of the new world. 
Microscopium, an optical instrument for distinctly viewing minute ob¬ 

jects, is a new constellation formed between Sagittarius and Piscis Aus¬ 
tralis. 

Piscis Australis, is supposed by the mythologists to be Venus, who 
transformed herself into a fish, to escape from the giant Typhon. (See 
Pisces.) Fomalhaut 1, is in this constei. 

Grus, the Crane, a new constellation formed near Piscis Australis, in 
allusion, perhaps to the cranes, against which the Pygmies, a race of 
dwarfs said to be no more than one foot high, was accustomed yearly to 
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make war; or perhaps in allusion to their princess Geraria; who was 
changed into a crane, for boasting herself fairer than Juno. 

Toucana or Touchan, the American goose j a new constellation near 
Indus. 

Phoenix, the Phenix, a new constellation near Eridanus. This was the 
name of a fabulous bird worshipped among the Egyptians. 

Apparatus sculptoris, is a new constellation between Cetus and Phccnix. 
Fornax chemica, a new constellation formed out of Eridanus. 
Horologium, a recent constellation formed near Eridanus. 
Cela sculptoria, Columba J\'oachi, or Noah’s dove, Equuleus pictoriu 

Pixis nautica, and Antlia pneumatic a, are all new constellations. 
Lepus, the hare. This constellation is formed near the great dog, which, 

from the motion of the earth, seems continually to pursue it. 
Canis major, according to the mythologists, is one of Orion’s hounds. 

The Egyptians, who carefully watched the rising of this constellation, 
and by it formed their judgment of the swelling of the Nile, called the 
bright star Sirius, the centinel or watch of the year ; and represented it, 
according to their hieroglyphic manner of writing, under the figure of a 
•dog. The Egyptians called the Nile Siris, and hence, some are of opinion, 
they derived the name of their deity Osiris. This Osiris was son of Jupiter 
and Niobe, and king of Egypt, who is said not only to have civilized his 
own subjects, but also to have civilized and polished many other nations. 
To perform this task, he left bis own kingdom, accompanied by his bro¬ 
ther Apollo, and by Anubis, Macedo and Pan ; and left the management 
of affairs to Isis or Io, his wife, and his faithful minister Hermes or Mer¬ 
cury ; and the command of his troops at home to Hercules. At his re¬ 
turn, he was murdered by his brother Typhon, and his body was thrown 
into the Nile. The Egyptians worship him under the titles of Apis, Sera- 
pis, &c. Historians take him to be JHizraim, eldest son of Cham, the third 
son of Noah, who, in the division of the world, received Africa for his 
lot. He was worshipped by the Egyptians under the title of Hammon or 
Jupiter Hammon. The dog star Sirius, is of the 1st mag. and the most remark¬ 
able, not only in this constellation, but in the heavens, being the largest 
and brightest, and therefore considered the nearest to us of all the fixed 
stars. 

Argo Navis, the ship Argo, which carried Jason and his Argonauts to 
Colchis, in quest of the golden fleece. Some say that this vessel was built 
at Argos, from whence it derived its name; others derive it from one Ar¬ 
gos, who first proposed the expedition ; others because it carried Gre¬ 
cians, commonly called Argives ; and others, from the Greek word argos, 
swift. She had 50 oars, and, according to some, a beam in her prow, cut 
in the forest of Dodona, which gave oracles to the Argonauts. After the 
expedition, she was drawn ashore at the isthmus of Corinth, and conse¬ 
crated to the god of the sea; and afterwards made a constellation by the 
poets. Canopus 1 mag. is the principal star. There is another marked 
?) remarkable only with the telescope, from its containing 9 other stars 

in the neighbourhood of a nebeculous cluster, &c. 
Crux, the cross. There are four stars in this constellation forming a 

cross, by which mariners, sailing in the southern hemisphere, readily find 
the situation of the antartic pole, by means of the stars a and y which, 

nearly point in this direction. This is a new constellation, and formed, no 
doubt, in honour of that instrument on which the Son of God redeemed 
mankind. Venerable Bede gave Christian names to the signs of the zo¬ 
diac, and Julius Schillerus has followed the example in his Cesium Stella- 
tum, or Starry Heavens, published in 1627. But later astronomers think 
that the ancient names ought to be retained, to avoid confusion, and to 
preserve the ancient astronomy. They will also afford so many monu¬ 
ments of the folly and stupidity of the most enlightened nations, in the ar- 

F 
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tide of religion, when carried away by the current of their passions, and 
the violence of human depravity. In these constellations we find some of 
the gods of the heathens, it is true, placed in the heavens, to whose mon¬ 
strous vices so much incense has been offered, under the veil of an ab¬ 
surd religion, but a veil, however, too transparent to hide their guilt. 
The most abandoned men became the most powerful divinities; worship¬ 
ped with sacrifices, addressed with prayers and supplications, and their 
vices at length became the objects of adoration. The light of the gospel 
dispelled these dark shades of infidelity; the wisdom of the Son of God 
raised man from this state of abasement and folly; the arms which he 
made use of, was the cx*oss on which he suffered; and wherever this is 
planted, these idols must fall. The humility of the cross is an antidote 
to the pride of man, the sufferings of the cross an antidote to his pas 
sions. 

JMusca australis, a new constellation, formed between Crux and Apus- 
Apus, vel Avis Indie a, a new constellation, near Pavo. This bird is a 

native of the Molucca Islands. 
Pavo, the peacock, one of the new constellations near the south pole. 

This is often called Junonia avis, Juno’s bird;; this goddess being repre¬ 
sented as drawn through the air in her chariot by these birds. Juno, be¬ 
ing the wife of Jupiter, became queen of the gods, of the heavens, &c. and 
is famous for her severity to the mistresses and illegitimate children of 
her husband Jupiter, whom she at length abandoned on account of his 
debaucheries. This goddess employed Argus, who had an hundred eyes, 
two of which only slept at a time, to watch Io, one of Jupiter’s mistresses. 
She afterwards put the eyes of Argus on the tail of the peacock. 

Octans, the octant, a well known marine instrument, one of the new con¬ 
stellations surrounding the antartic pole. 

Hydra, a new constellation near the south pole, in which the remarks.* 
ble ncbecula minor is situated. 

Heticidus, the net, is a new constellation, formed between Horologium 
and Dorado. It is sometimes called Reticulus rhomboidalis. 

Dorado, or Xipliias, the sword fish, a new constellation, formed round 
the pole of the ecliptic. 

Piscis volans, the flying fish, a new constellation formed out of the ship 
Argo. 

Chameleon, a new constellation near the south pole. 
JMons mensi formis, or table mountain, a mountain at the Cape of Good 

Hope, well known to mariners. In this constellation the greatest of the 
nebula, called by sailors the Magellanic clouds, is situated. 

Hobur Caroli, or Charles’ oak, was so called by Dr. Halley in honour of 
the tree in which Charles II. saved himself from his pursuers, after the 
battle of Worcester. It was made out of the unformed stars between the 
ship Argo and Centaur. This constellation is not on Cary’s globe. Dr 
Halley went to St. Hellena in the year 1676, to make a catalogue of such 
stars as do not rise above the horizon of London. 

The reader may not be a little surprised to find us dwell so long upon 
these fables of the ancients,this masquerade of folly, which exhibits nothing 
but a chaos of fiction, without order or connection; where we find the same 
heroes presented under different names, the same actions at different 
times, and though sometimes true, at other times destitute of foundation, 
and worthy only of contempt. A slight acquaintance with these chimeras 
of the poets, and the mythology of the Pagans, was however deemed, not 
only necessary in understanding these authors, but also, being the founda¬ 
tion of much of the ancient astronomy, considered as not foreign to a 
work of this nature, and as useful in conveying an idea of the pretended 
wisdom of those ancient nations, who were the inventors of them, or who 
misapplied their original use and meaning. 
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The mystical or allegorical sense of these fables in a philosophical or 
historical view, conveyed an obscure explanation of some of the ordinary 
operations of nature, or the inventions or exploits of some of these pre¬ 
tended gods. In a religious sense, they served as a cloak for vice, and in 
a political sense, they served to keep a superstitious people in subjection * 
to those whose interest it was to conceal their mysteries. 

The different parts of nature were portioned out to those whose know¬ 
ledge was the greatest, or who were most successful in investigating the 
properties of these parts, and applying that knowledge to the advantage 
of mankind : and lest these persons, who were afterwards converted into 
deities, should be thought mortal, their names were changed, and others 
were given to them expressive of their rank among the gods. Uranus, 
Auranos, or the Heavens, was considered by them as the oldest of the 
gods ; and Tithea, Tellus, Terra, or the Earth, his wife, by whom he had 
the Titans. The chief of these was Saturn or Time, who is said to have 
disputed superiority with his father; as these heathens probably thought 
nothing anterior to time. He married Ops or Terra, also called Rhea or 
Cybele. She was therefore called the mother of the gods, who were 
nothing else in reality but sons of the earth, or mortals. Saturn, consi¬ 
dered then the most remote of the planets, was called after the name of 
this god; and hence the planet Herschel has, for the same reason, ob¬ 
tained the name of Uranus, from modern astronomers, being more remote 
than Saturn. Saturn is represented as a cruel god, who devoured his 
own children, in allusion to time, which at length destroys every thing ; 
and hence human sacrifices were offered to him, by the ignorant and su¬ 
perstitious Pagans. Jupiter, however, the most illustrious of his off¬ 
spring, escaped his fury, and afterwards dethroned him for attempting to 
take away his life, and thus became sole master of the empire of the 
world, which he divided with his brothers- He reserved the heavens and 
the earth for himself, which, according to the poets, he filled with his 
natural children, as he became a Proteus to gratify his passions. The 
empire of the air he gave to Juno, his wife, that of the sea to Neptune, 
and constituted Pluto king of the infernal regions. He was called Jupi- 
ter, or Jove, in allusion to the Jehovah of the Jews ; as the Chaldeans, 
who were so recently descended from Noah’s son, could not be entirely 
ignorant of the supreme being. The planet Jupiter is so called from this 
god, being the largest of the planets, and the next in order after Saturn. 
The three next planets, Mars, Venus and Mercury, the offspring of Jupi¬ 
ter, were emblems of war, pleasure and science, which this god was so 
famous for. The sun was called the prison of the gods, which shews that 
they had some idea of the force of gravity which retains the planets in 
their orbits ; it was therefore an emblem of Jupiter, who held all the other 
deities in subjection. Science, which conveyed the mysteries of these 
gods and their pretended knowledge, was indicated by Mercury, who, 
from his rapid velocity in its orbit, represented their messenger, and 
hence he was painted with wings, &c. The goddess of love, or rather 
lust, was represented by Venus, from its beautiful appearance, and its 
remaining alone with the sun, the emblem of Jupiter, when all the other 
luminaries disappeared. War was represented by Mars, from his fiery 
or bloodlike appearance, &c. 

That the Chaldeans were the first who under these fictitious titles deified 
their kings, their warriors, their philosophers, &c. is now universally allow¬ 
ed. It is well known that Cham, one of Noah’s sons, received Africa for 
his portion, and made Egypt the chief seat of his residence. His name 
signifies Calor or JYiger, and Chamo, signifies Terra Cham or Egyptus, so 
called therefore from Cham. His offspring Chanaan was cursed on account 
of his immodest behaviour to his father. Nemrod, his grandson, founded 
the Babylonish empire, and is supposed to be the Saturn described above. 



44 DEFINITIONS, Wc. 

Ills cruel nature, agreeing with that of Saturn, who devoured his own chil¬ 
dren ; as Nemrod hunted his subjects, as others hunt wild beasts. Uranus., 
or Ccelum, is supposed to allude to Cham, as these proud nations wished to 
derive their origin from heaven, and not to acknowledge their gods as the 
children of men. Belus, according to most authors, was the son of Nem¬ 
rod, and second king of Babylon. Belus signifies JJommans, from Bel, 
which in the Syriac language signifies the sun, the ruler of the solar sys¬ 
tem. He was the first among the Chaldeans that cultivated astronomy, and 
hence was honoured with the title of Jupiter or Jove, from his superiority 
in the knowledge of this science, which obtained him so eminent a station 
in the heavens. His son Ninus set up his father’s image, and caused his 
people to worship it. Ninus was therefore probably the first that attempt¬ 
ed to pay those honours to a man (and an impious man too) that was only 
due to God himself. Other nations followed the example, each bestowing 
the same honours and marks of distinction on their founders, and ranking 
them in the number of the gods. Hence Ninus, the Hercules of the Chal¬ 
deans, being a great warrior, becomes the Jupiter of the Assyrians, whose 
empire he founded. The Greeks and Romans had likewise their Jupiters, 
their Hercules’s, their Junos, their Venuses, their Mercuries or Minervas, 
&c. which the mythologists so often confound with each other, and hence 
tile confusion in the accounts that we have of them. The tower .of Babel, 
begun by Nemrod, was converted into a temple, in which Belus was wor¬ 
shipped. The priests of Belus applied themselves to the study of astrono¬ 
my, and placed in the heavens, among the number of their deities, all those 
that distinguished themselves either by their valour, their knowledge, or 
their vices, or that supported them in their superstition. Hence arose the 
numerous gods of the Chaldeans, the Egyptians, the Grecians, &c. and 
hence the rapid increase of idolatry almost all over the world ; every na¬ 
tion being desirous of claiming an alliance with, and of boasting their de¬ 
scent from the gods. I shall mention here one circumstance that will throw 
some light on the nature of these pretended deities, and account for their 
vast number and increase. The famous tower of Babel was composed of 
eight pyramidal towers raised one above another, in the highest of which 
was a magnificent bed, where the priests daily conducted a woman, who, 
as they said, was honoured with the company of the god. (For more parti¬ 
culars see Joseph, ant. Jud. 10. Herodot. 1. c. 181, &c. Strabo. 16. Ar¬ 
rian. 7. Diodorus 1, &c.) Hence so many sons of Jupiter, so many he¬ 
roes, so many Gods, &.c. The pretended worship of these priests, their re¬ 
ligious ceremonies, &c. were all calculated to support and gratify their in¬ 
famous passions ; and there was no place, from which modesty was more 
industriously banished than from these ceremonies. They even gave every 
vice its own god, to support the worship of it. We need not, therefore, be 
surprised at tire rapid increase of idolatry, or at the description given of 
this impious Babylon by different authors. (See Curtius. lib. 5. c. 5.) The 
sacred writings also point out its abominations, and exhibit it, as an exam¬ 
ple for posterity, of the folly of those who abandon their maker, and even 
their reason, to gratify then* passions ; and of the ridiculous pride of man 
in desiring to be honoured as God. 

The history of these gods became at length so obscure, and the human 
mind so blind and corrupted, that the sun, moon, stars, &c. and at length 
serpents, crocodiles, onions, &c. became objects of veneration and worship. 
And this worship, extravagant as it may seem, became the worship of the 
learned as well as the ignorant, except among the few whom God selected 
from among these idolators, who retained a knowledge of him, an esteem 
for the dignity of human nature, a recollection of the glorious end to which 
the true religion points the hope of man, and a reverence for that being 
alone, who called all other beings out of nothing. This chosen people was 
Abraham and his posterity. 
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113. The Galaxy, via Lactea, or Milky way, is a whitish lu¬ 
minous tract, which seems to encompass the heavens, sometimes 
in a double, but generally in a single path, varying in breadth from 
about 4 to 25 degrees.* 

114. Bayer’s Characters. This is a useful invention of denot¬ 
ing the stars in every constellation, by the letters of the Greek and 
Roman alphabets ; setting the first letter in the Greek alphabet 

What a contrast would the true knowledge of God, handed down by these 
venerable patriarchs and prophets, and displayed in its full splendour in the 
gospel, afford, compared with the abominable mysteries of the Pagans (and 
the impious absurdities of those who in modern times have copied their ex¬ 
ample) traced to their origin, if modesty could permit the reading of them, 
or our contracted limits a more ample detail. 

Who could believe that the most enlightened part of modern Europe, 
could afford anew, these scenes, so degrading to civilized man, and to human 
nature ; that amid the acclamations of the polite, the accomplished, the en¬ 
lightened citizens of Paris, the prostitutes of this city should be carried 
nudis corporibus on triumphal cars, together with several youths in the same 
savage degradation ! That dressed and decorated as became the solemnity of 
the occasion, the citizens should march in solemn procession, accompanied 
with the greater part of the youth of the city, crowned with chaplets of 
flowers, emblematic of their being disciples of the goddess of reason, whom 
they conveyed in such pomp to be worshipped in her temple. (Sometimes 
the Cathedral church de notre dame !) When this age of science and of 
Christianity, affords so humiliating a picture of the abuse of reason, and of 
man, under the dominion of false philosophy, have we not reason to exclaim 
with the philosophic Cicero, O tempora ! O mores ! ! ! 

Every age then affords monuments as testimonies to the value of that re¬ 
ligion, in which nothing is left to the vanity of human speculation, but by 
Its own divine constitution conducts man to a greatness above his nature, 
to that dignified and immortal existence, alone worthy the nobility of a ra¬ 
tional being, the greatness and hopes of an immortal soul—monuments that 
will for ever decide the question in favour of those amiable virtues emana¬ 
ting from the practice of the Christian religion, and the spirit which it 
breathes ; when contrasted with the folly of impious or philosophic man, 
adoring those idols which are the objects of his brutal passions, or overturn¬ 
ing those laws which forbid the commission of his crimes. 

* The milky way comes properly under the head of constellations, being 
composed of an infinite number of small stars, which causes that whiteness 
from which it derives its name. It passes through Cassiopeia, where it is 
nearest to the north pole, then through Perseus, Auriga, Taurus, the feet 
of Gemini, Orion’s Club, Monoceros, part of Canis Major, the ship Argo, 
ltobur Caroli, Crux, the feet of the Centaur, Musca Australis (where it ap¬ 
proaches nearest to the south pole) Circinus, Norma, Ara, and Scorpio, where 
it divides into two parts. The eastern branch passes through the tail of 
Scorpio, the bow of Sagittarius, Scutum Sobieski, the feet of Antinous, 
Aquila, Sagitta, Vulpecula, and Cygnus. The western branch passes through 
the tail of Scorpio, the right side of Serpentarius, Taurus Poniatowski, 
Sagitta, Anser arid Cygnus, where it meets the foregoing branch, and ends 
in Cassiopeia, where Manillas beg-ins the description of it. 

Manilius Caius was a celebrated mathematician and poet of Antioch, who 
wrote a poetical treatise on Astronomy, of which five books are extant, 
treating of the fixed stars. The age in which he lived is not known, though 
some suppose that he flourished in the augustan age. 

There are other lesser divisions of the galaxy, which may be seen in . 
Hevelius’s firmament. 
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to the principal star in each constellation, @ to the second in mag¬ 
nitude, and so on in order i and when the Greek alphabet is finish¬ 
ed, the first letters a, b, c, &c. of the Roman alphabet is used.* 

115 Nebulous or cloudy, is a term applied to certain fixed stars, 
smaller than those of the 6th magnitude, which only shew a dim, 
hazy light, like little specks or clouds. NebuU is when several 
of these form a Cluster.f 

116. The Solar Systemf is that part of the universe § which 
consists of the sun, planets, and comets. 

* John Bayer, of Augsburg, in Swabia, published in 1603, an excellent 
work entitled Uranomctria, being a complete celestial atlas of all the con¬ 
stellations, in which the stars are denoted as above. Succeeding astrono¬ 
mers have adopted this useful method of describing the stars, and enlarged 
it by adding the numbers 1, 2, 3, &c. in order, when any constellation 
contains more stars than can be marked by both alphabets. These figures 
are also sometimes placed above the Greek letter, especially where double 
stars occur ; for though many stars may appear single to the naked eye, yet, 
when viewed through a telescope of considerable magnifying power, they 
appear double, triple, See. Thus in Dr. Zach’s Tabulae Motum Solis, we 
find y'Tauri, 0 Tauri, y Tauri, Tauri, Tauri, &c. 

The following Greek alphabet is inserted for the use of those who are 
unacquainted with the letters ; the capitals are however seldom used. 

Name. Sound. Name. Sound. 
A a. Alpha a N V Nu n 
B £ S Beta b X X 
r y f Gamma g O o Omicron o short. 
A ct Delta d Yl 7r<m P p 
E £ Epsilon e short. PCP Elio r 

zfC Zeta z 2 T f Sigma s 
II V) Eta e long. T rl Tau t 
© $ 0 Theta th r v Upsilon u 
I t Iota 

• 

i <j> <p Phi ph 
K x Kappa k Chi ch 
A X Lambda 1 *4 Psi ps 
M i* Mu m 12 Omega o long. 
j Dr. Herschel has discovered no less than 1250 of these nebulae : there 

were only 103 known to former astronomers. He has shewn that the milky 
way is a continued nebulae. There are two remarkable nebulae near the 
south pole, called by sailors the magellanic clouds, which resemble in 
brightness the milky way. The number of stars in these nebulae exceed 
conception. 70 stars have been reckoned in the Pleiades, no less than 2500 
in the constellation Orion; and Herschel, in some of his observations on the 
milky way, found that by allowing 15' for the diameter of his field of view, 
a belt of 15° long, and 2° broad, which he had often seen pass before his 
telescope in an hour’s time, could not contain less than 50,000 stars, large 
enough to be distinctly numbered. 

t By system is meant a lucid body, with some number of opake bodies 
situated within the sphere of its influence, and round which the others re¬ 
volve. 

§ By the universe we understand the whole material creation. The Greeks 
called it Topan, signifying every thing, and the Latins Inane, the void. See 
the fourth part of this work. 
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117. The sun is that lucid body, situated nearly in the centre 
of the solar system. 

118. Planets are opake* bodies similar to our earth, which 
perform their motions round the sun, in certain periods of time. 
They are divided into primary and secondary. 

119. The primary planets f are those which regard the sun as 
their centre of motion. There are 9 primary planets, distinguish- 
ed by the following characters, and names, according to their 
proximity to the sun, viz. £ Mercury, $ Venus, 0 Earth, 
% Mars, Juno, Pallas, o Ceres, ^ Vesta, % Jupiter, 
*2 Saturn, # Herschel or Uranus. 

120. The secondary planets, called Satellites or moons, arc 
those bodies which are attendants on the primary planets, and re¬ 
gard them as the centres of their motion ; as the moon which re¬ 
volves round the earth, the Satellites of Jupiter which revolve 
round Jupiter, &c. There are 18 secondary planets, of which the 
Earth has one, Jupiter four, Saturn seven, and Uranus six. 

121. The orbit of a planet is the imaginary path which it de¬ 
scribes round the sun. The earth’s orbit is the ecliptic. The 
real motion of all the planets in their orbits round the sun is from 
west to east, or according to the order of the signs on the ecliptic. 

122. The nodes are the two opposite points, where the orbits 
of the primary planets cut the ecliptic, and where the orbits of 
the secondaries cut the orbits of their primaries. That node is 
called ascending, where the planet passes from the south to the 

* Opake bodies are such bodies as do not shine by their own light, or 
which only reflect the light received from another body, as the planets 
which reflect the light received from the sun. 

f The planets are so called from Planeta, a wanderer, because they 
change their positions in the heavens, with regard to the other bodies, 
which are called fixed, for a contrary reason. Uranus, Juno, Pallas, and 
Ceres, were recently discovered, and obtained their names in conformity 
to the names given to the other planets by the ancients. 

Uranus was discovered by Dr. Herschel, in 1781. La Place, in B. 1 
c. 9, vol. 1, of his Astronomy, observes, that Flamstead, at the end of the 
last century, and Mayer and Le Monnier, in this, had observed it as a 
small star. 

On the 1st of January, 1801, M. Piazzi, astronomer royal at Palermo, 
in Sicily, discovered Ceres, generally called Ceres Ferdinanda (or rather 
Fernandea) the latter name being added in honour of Ferdinand IV. king 
of the Two Sicilies. It is of the 8th mag. and consequently invisible to 
the naked eye, nor is it confined within the ancient limits of the zodiac. 
It is called by some astronomers an asteriod. 

On the 28th of March, 1802, Dr. Olbers, of Bremen, discovered Pallas, 
and on the 29th of March, 1807, at 21 min. after 8, mean time, he dis¬ 
covered another, which he called Vesta. This last, in size, appears like 
a star of the 5th mag. 

On the first of September, 1804, Mr. Harding, of Lilienthal, in the 
duchy of Bremen, discovered the planet Juno. It appears like a star of 
the 8th mag. These four last satellites are all so nearly at equal dis¬ 
tances from the sun, that it is not as yet ascertained, with certainty, which 
of them is nearest to or most remote from it. 
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north side of the ecliptic; and the opposite point, where the planet 
appears to descend from the north to the south, is called the de¬ 
scending or south node. The ascending node is marked thus 
and the descending node thus ?S, The straight line which joins 
the nodes is called the line of the nodes. 

123. Aspect of the stars or planets, is their situation with respect 
to the sun or each other. There are five aspects, viz. 6 Conjunc¬ 
tion, when they have the same longitude, or are in the same sign 
and degree with the sun ; ^ Sextile, when they are two signs or 
a sixth part of a circle distant; □ Quartile, when they are distant 
three signs, or a fouth part of a circle ; A Trine, when they are 
four signs, or a third part of a circle from each other ; and <? Op- 
position, when they are six signs, or half a circle from each other. 

The Conjunction and Opposition, particularly of the moon, are 
called the Syzygies,* and the quartile aspect the Quadrature. 

124. The apparent motion of the planets is either Direct, Sta¬ 
tionary, or Retrograde. Direct is when a planet appears to a 
spectator on the earth to perform its motion from west to east, or 
according to the order of the signs. A planet is Stationary when, 
to an observer on the earth, it appears, some time, in the same 
point of the heavens; and Retrograde when it apparently goes 
backward or contrary to the order of the signs. 

125. Aphelion, or Aphelium, is that point in the orbit of a planet 
which is furthest from the sun. This point is also called the higher 
Apsis. 

126. Perihelion, or Perihelium, is that point in the orbit of a 
planet, which is nearest to the sun. This point is called the lower 
Apsis. 

127. Apogee, or Apogaeum, is that point in the orbit of a planet, 
the moon, Sec. which is furthest from the earth. 

128. Perigee, or Perigaeum, is that point in the orbit of a plan¬ 
et, the moon, Sec. which is nearest to the earth. 

129. Apsis of an orbit, is either its aphelion or perihelion, apo¬ 
gee or perigee, and the straight line which joins the higher and 
lower apsis is called the line of the Apsides. 

130. Eccentricity of the orbit of any planet, is the distance be¬ 
tween the sun and the centre of the planet’s orbit. 

131. Geocentric latitudes and longitudes of the planets, are their 
latitudes and longitudes as seen from the earth. 

132. Heliocentric latitudes and longitudes of the planets, are the 
latitudes and longitudes as they would appear to a spectator, situa¬ 
ted in the sun. 

133. True Anomaly of a planet is its angular distance at any 
time, from its aphelion or apogee. Mean Anomaly is the angular 
distance at the same time, and from the same point, if it had mov¬ 
ed uniformly with its mean angular velocity. 

* So called from the Greek word Suzugia, Conjitnctio, Zugos signify’ 
mg jugum, a yoke, or pair. 
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134. Equation of the centre is the difference between the true 
and mean anomaly; this is sometimes called the firosthafiheresis. 

135. The mean place of a body is the place where it would 
have been if it had moved with its mean angular velocity (on sup¬ 
position that the body in motion does not move with an uniform 
angular velocity about the central body.) The true place of a 
body is the place where the body actually is at any time. 

136. Equations, are corrections which are applied to the mean 
place of a body to get its true place. 

137. Argument, is a term used to denote any quantity by which 
another required quantity may be found. Thus the argument of a 
planet’s latitude is its distance from the node, because it is upon 
that the latitude depends. 

138. The elongation of a planet from the sun, is its angular dis¬ 
tance from the sun when seen from the earth ; or the angle form¬ 
ed by two straight lines drawn from the earth, the one to the sun, 
and the other to the planet. 

139. The curtate distance of a planet from the sun or earth, is 
the distance of the sun or earth from that point of the ecliptic 
where a perpendicular to it passes through the planet. 

140. A Digit, is the twelfth part of the apparent diameter of the 
sun or moon. 

141. Disc, is the face of the sun or moon, such as they appear to 
a spectator on the earth ; the sun and moon appearing as circular 
planes, though they are in reality spherical bodies. 

142. Occultation of a star or planet, is when they are hidden 
from the sight by the interposition of the moon or some other 
planet. 

143. Aberration, is an apparent motion of the celestial bodies, 
occasioned by the earth’s annual motion in its orbit, combined with 
the progressive motion of light. 

G 



PROBLEMS 
PERFORMED BY THE 

TERRESTRIAL GLOBE. 

PART II. 

PROB. I. 

To find the latitude and longitude of any given place. 

'Rule. Bring the given place to the graduated side of the 
brazen meridian, which is numbered from the equator ;* the de¬ 
gree over the place is the latitude (definition 10.) and the degree 
on the equator, cut by the brass meridian, is the longitude (def. 11.) 

Example 1. What is the latitude and longitude of Washington 
city ? t 

Answer. Lat. 38° 53' north. Longitude 77° 14J' west. 

* Whenever a place is brought to the brazen meridian, the graduated 
edge which is numbered from the equator towards the north or south pole 
is always understood, unless the contrary be mentioned. 

-j- The latitude and longitude of this city is not, as yet, so correctly as¬ 
certained as might be expected, and therefore it cannot be made the basis 
of any accurate or important calculations or tables. This being therefore a 
point of such public utility, its importance must appear evident to every Ame¬ 
rican citizen, who has the most superficial knowledge of these matters, and 
feels an interest, not merely for science, but for the reputation and growing 
importance of his country. 

Various methods are given by different authors, for finding the latitudes 
and longitudes of places on the earth, the substance of which is given in the 
course of this work, with some new and important methods not published 
in any other treatise, together with the principles on which they are found¬ 
ed. See problems 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, &c. 
part 2d. and problems 19, 20, 21, 22, 23, 24, 25, 26, 27, &c. part 3d. with 
the notes, &c. to these respective problems. For finding a star or planet’s 
transit over the meridian, see probs. 8 and 39, part 3d. 

The principal difficulty in any of the methods for finding the latitude, is 
to find the correct altitude, and when necessary, the time of the body’s tran¬ 
sit over the meridian. To obtain these requisites, various instruments have 
been contrived ; the most useful of which on land, for want of a good hori¬ 
zon, are the astronomical and mural quadrants, and a good transit instru¬ 
ment. These are fully described in Vince’s treatise on Practical Astrono¬ 
my. But at sea, the best instruments are Godfrey’s quadrant, commonly 
called Hadley’s quadrant, and a good sextant, which is preferable to the 
foregoing instrument. These are sufficiently described in the various books 
on Navigation, particularly in M*Kay, Norie, Hamilton Moore, Bowditch’s 
American Practical Navigator, &c. 

There is also a circle of reflection or repeating circle (now sometimes 
called the astronomical circle) described in the latin part of Mayer’s tables, 
published by Nevil Maskelyne, and after him by different authors, which 
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2. What is the latitude and longitude of New-York ? 
Arts. Lat. 40° 42' 40" N. and long. 74° 1' W. 

Note. The long, of New-York, from a solar eclipse observed in June. 
1806, is found to be 74° F west of Greenwich ob. See pa. 60 of the Nauti¬ 
cal Almanac, 1811 or 1812, published in New-Bfunswick, New-Jersey, un¬ 
der the direction of Mr. John Garnett. 

3. Required the 
Amsterdam, 
Aleppo, 
Algiers, 
Baltimore, 
Barcelona, 
Batavia, 
Bencoolen, 
Berlin, 
Boston, 
Breslaw, 
Buenos Ayres, 
Cadiz, 
Cairo, (Grand) 
Calcutta, 
Canton, 

latitudes and longitudes 
Cape of Good Hope, 
Charlestown, 
Constantinople, 
Copenhagen, 
Dantzic, 
Delhi, 
Dresden, 
Dublin, 
Edinburg, 
Fez, 
Funchal, 
Greenwich, (obs.) 
Halifax, 
Hamburg, 
Ispahan, 

of the following places ; 
Lexington, 
Lima, 
Lisbon, 
London, 
Madrid, 
Paris, 
Pekin, 
Petersburg, 
Philadelphia, 
Quito, 
Rome, 
Stockholm, 
Tripoli, 
Vienna. 

at sea is a very useful and accurate instrument, and by a method easily 
practised, may be used with equal advantage on land, being lately much 
improved and adapted for astronomical observations in general. The me¬ 
thod consists in bringing the image of the sun, &c. (in the same manner as 
it is brought to the edge of the horizon at sea) to coincide with its image 
reflected from a basin of water, quicksilver, molasses, or any reflecting 
surface parallel to the horizon ; half the sum of the angle thus found, will 
be the altitude required. 

Thus let S represent the sun’s place, A the 
reflecting surface, placed parallel to the hori¬ 
zon BH, C the place of the spectator, and Cd 
the height of his eye. Now it is evident that ^ 
the arch SB, being described from the centre 
A, will be the altitude of S above the horizon. 
If the image of the sun be then brought by the 
instrument to the point B, the altitude will be 
pointed out by the index ; but to have the image 
of the sun (now at B) to coincide with the reflected image at A, it is evi¬ 
dent that it must be brought to the point t, where it meets with the reflect¬ 
ed ray As ; and an eye placed in any part of the line As, where the ray is 
reflected, will observe the image of the sun, brought by the instrument to t, 
in this direction. But as the angle of incidence SAB is equal to the angle 
of reflection sAH (prop. 9. cor. 2. Emerson’s tracts, or his optics B. 1. 
prop. 10.) that is to BAt (15 Eucl. 1. B.) the arch St, which is the mea¬ 
sure of the angle observed by the instrument, is double of SB ; therefore 
half of St, without any allowance for the height of the eye, above the re¬ 
flecting surface, will be the altitude required. 

Though it be evident that no allowance is to be made for the height of 
the eye above the reflecting surface, as an eye placed in any part of the line 
As will observe both images coincide in the direction At, there is, however, 
rigorously speaking, an allowance to be made for the height of the sped a- 
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2. Find all the places on the globe which have no latitude, 
3. What is the greatest latitude a place can have ? 

tor or bason at A above the level of the sea, &c. or the true horizontal lev¬ 
el ; it being evident that the more elevated the point A is above this level, 
the less will the altitude be. For if a be taken as the reflecting surface, 
the arch Su, which is double of Sr, will be less than St. 

But this will make so small a difference even on the tops of the highest 
mountains, that it may be always neglected except when very great accura¬ 
cy is required. For in the sun’s altitude the whole semidiameter of the 
earth will only make a difference of 8" 83 even at the horizon ; hence the 
semd. of the earth : the height of the mountains, &c. :: 8" 83 : the correc¬ 
tion of the horizontal alt. which will also diminish in proportion to the height 
of the object. And even for the altitude of the moon thus found, scarce 
any allowance must be made for the height of the mountain, &c. though 
its mean horizontal parallax amounts to 571 39'r. For 3956 miles the earth’s 
sem. diam. : 1 mile, the supposed height of a mountain :: 57' 39'" : 0" 82, 
not amounting to 1" even at the horizon, when the height of the mountain 
is 1 mile ; and this will diminish in the proportion of Rad : cosine apparent 
altitude. Hence this method may be successfully practised in any situation 
on land, care being taken that the reflecting surface be not agitated by the 
wind, Sec. to prevent which several contrivances may be made use of, which 
the skill and ingenuity of the observer will suggest. 

A good observer ought to be well acquainted with the elementary princi- Jfles of Geometry, Astronomy, Mechanics, and Optics, to be able to adjust 
lis instruments with skill, and in every circumstance to apply them to the 

best advantage, and allow for every defect or error, &c. that may take 
place. Hadley’s quadrant or the sextant, will answer equally well on land, 
as the above instrument, when the altitude of the object does not exceed 
half the number of degrees marked on them. The learner must also take 
notice that the glass through which the sun’s reflected image, in the water 
or on the reflecting surface, is observed, must be coloured to preserve the 
eye from injury, and to render the sun’s image more distinct by destroying 
the effects of irradiation. 

There are likewise various methods given for finding the longitude, the 
most useful of which are the following : 1st. Having the time of the moon’s 
southing at Greenwich, or at any other place whose longitude is known, ob¬ 
serve the time of the moon’s southing at the place of observation, by help 
of a correct meridian line, and a good clopk or time piece, exactly adjusted 
to meantime, or 24 hours in a day ; (see notes to prob. 29 and 39, part 3d.) 
find the difference of these times, then say as the difference of the times of 
the southing of the sun and moon in 24 hours : this difference :: 360° : cliff, 
longitude ; this difference added to the longitude of the known place, if 
the time of southing there be later, or subtracted if sooner, gives the longi¬ 
tude of the place of observation. Where exactness is required, the motion 
of the moon from the sun in 24 hours, must be taken from the Nautical Al¬ 
manac, or from correct astronomical tables, the latest and best of which 
are Mr. de Lambre’s new tables of the sun, &c. and Mr. Burg’s new tables 
of the moon, published in 1806 by the French board of longitude, and since 
translated and published by Vince. The difference of the times of the sun 
and moon’s southing, at a medium, is about 48 minutes daily. The south¬ 
ing of any celestial body is found by a transit instrument, or by suspending 
two plummets in the meridian line, the lower end of each being immersed 
in a basin of water to prevent their swinging. When the object comes in a 
straight line with the threads of these plummets, viewed with the naked 
eye, a small hole made with a pin through a sheet of paper, or with a tele¬ 
scope, it is then on the meridian. 



THE TERRESTRIAL GLOBE. 53 

4. What is the greatest longitude a place can have ? 
5. Find all those places which have no longitude. 

The longitude maybe also found by the meridian transit of a fixed star, 
allowance being made for the sun’s right ascension, Sec. 

Solar and lunar eclipses afford another method, by converting the differ¬ 
ence of times between their beginning, middle, or ending, as observed in 
the place whose longitude is required, and the same times calculated or 
rather observed in any other, whose longitude is correctly ascertained ; the 
difference of times converted into degrees, Sec. of longitude, will give their 
difference of longitude, from which the required longitude is found. 

Eclipses of Jupiter’s satellites are however much preferable oil land, be¬ 
cause they happen almost every day, and the times of their happening* arc 
more correctly and easily found. This time should be found very accurate¬ 
ly, as an error of one second in time, will produce an error of fifteen seconds 
in the longitude. (For 4 min. : 1° :: 1" : 15") The first satellite is the 
most proper for determining the longitude. Its emersions are not however 
visible from the time of Jupiter’s conjunction with the sun to the time of 
his opposition, and its immersions are not visible from Jupiter’s opposition 
to his next conjunction. The positions or configurations of Jupiter’s satel¬ 
lites as they appear at Greenwich, are laid down in page 12th of the month 
in the Nautical Almanac, for every night when visible. The times of their 
eclipses happening at the meridian of Greenwich, are found in page 3d of 
the Nautical Almanac for every month. These eclipses must be observed 
with a good telescope, and a well adjusted pendulum clock, that beats se¬ 
conds or half seconds. The telescopes proper for observing the eclipses of 
Jupiter’s satellites, as Nevil Maskelyne remarks, are common refracting 
telescopes from 15 to 20 feet, reflecting telescopes of 18 inches or 2 feet, 
focal length, and telescopes of Mr. Dolland’s construction, with two object 
glasses from 5 to 10 feet, or which are still more convenient, those of 46 
inches focal length, and 3§ inches aperture, constructed with three object 
glasses, which are as manageable as reflecting telescopes, and perform as 
much as those which he makes of 10 feet with two object glasses. The 
manner of adjusting the clock, and an explanation of the configurations of 
the satellites, will be given in part 4th. 

At sea the principal method of finding the longitude, is by computing the 
distance between the moon and the sun, or some principal fixed star ; from 
which their altitudes being given, the required longitude is found. The 
principles of this method are demonstrated in the notes to prob. 28 and 
29, part 3d. The reader is also referred to M‘Kay’s treatise on the longi¬ 
tude, his treatise on Navigation, to Norie or Bowditch’s improvements on 
Hamilton Moore, or to the Nautical Almanac for 1812, revised by John Gar¬ 
net, New-Jersey. Mayer in the beginning of his tables gives also a method 
of finding the same under the title of JWethodus Longitudinum promota et 
Additamentum, Mr. Delamar in Philadelphia, has likewise lately favoured 
the public with some very useful methods in the practice of this important 
problem. 

Another method of finding the longitude is with a time piece. If the 
time piece could be depended on, this method would be by far the most 
easy and expeditious. For if set to mean time in any place whose longitude 
is known, it would point out the difference of times between this place and 
any other place to which a person arrives, which converted into de¬ 
grees, Sec. would be the difference of longitude required. The watch 
should be kept going’, and not changed the whole time during the journey 
or voyage ; or if changed, allowance should be made for it. 

The last method I shall take notice of here is that of the variation chart, 
introduced by the celebrated Doctor Haley. On this chart are drawn curve. 
Smcs which represent the variation in almost every degree of longitude.—• 
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6. Find all places those which have neither latitude nor longi¬ 
tude.* 

7. Find all those places that have the greatest longitude. 
8. Find those places that have the greatest latitude and longi¬ 

tude. 
9. Find those places that have all possible degrees of longitude? 

reckoned from the same meridian. 

PROB. 2. 

To find any place on the globe, the latitude and longitude of which 
are giv en. 

Rule. Find the longitude of the given place on the equator,! 
(problem 1.) and bring it to the brazen meridian ; then under the 
given latitude found on the brass meridian is the place required. 
(Def. 10.) ‘ - 

As this chart is so familiar to mariners, it needs no farther description here. 
This would also be an easy and expeditious method of finding the longi¬ 
tude, could the variation and its yearly change be once exactly ascertained 
in the different parts of the world. 

An attempt has likewise been made of rendering the magnetic needle 
useful in finding the latitude. In the year 1580 it was discovered by one 
Robert Norman, a compass maker in England, that the needle had a cer¬ 
tain inclination in a contrary direction to the inclination of the earth’s axis ; 
this discovery being communicated to others, it was found that at the equa¬ 
tor it has no inclination, being there parallel to the plane passing through 
the earth’s axis or to the horizon ; but that it depresses one end if we re¬ 
cede from the equator towards either pole ; the north end, if we advance 
towards the north, and the south end if we go towards the south. This in¬ 
clination was found to vary in proportion to the distance from the equator, 
and was therefore thought to correspond to the latitude : but the poles of 
the earth varying from those of the needle, and continually changing, be¬ 
sides many other latent causes, prevent its theory from being sufficiently 
known, and render the task of making' the necessary experiments to ascer¬ 
tain the phenomena, rather discouraging in the present state of science, so 
that nothing conclusive can as yet be deduced from it. The reader will 
find more particulars on this subject in Cavallo’s treatise on Magnetism. 

* As all places lying under the equinoctial or on the equator have no la¬ 
titude, and all places situated on the first meridian have no longitude., 
therefore that point on the globe where the first meridian intersects the 
equator, has neither latitude or longitude. Again, as the latitudes of pla¬ 
ces increase as their distance from the equator increases, and their longi ¬ 
tudes increase as their distance from the first meridian increases, it follows 
that the greatest latitude a place can have is 90°, and the greatest longi¬ 
tude 180°, which being- half the circumference of the globe, no two places 
can be at a greater distance from each other than 180°. 

f On Adam’s globes there are two rows of figures above the equator.— 
When the place lies to the right hand of the meridian of London, the longi¬ 
tude must be reckoned on the upper line ; when it lies to the left hand, it 
must be reckoned on the lower. On Cary’s globes, on which are also two 
lines, the longitude being reckoned from the meridian of Greenwich, 
when the longitude is east, the upper line is used, but when west, the low¬ 
er. The figures under the equator in this globe indicate the half hours and 
quarters, and the dots the minutes. There are two rows of hours on each 
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Example 1. Find that place whose latitude is 32° 25' 40" N. 
Longitude 63° 35' 40" west from Greenwich. 

jins The most northerly part of the Island of Bermudas. 
3. Find those places whose latitudes and longitudes are as fol¬ 

lows : 
Latitudes. Longitudes. 

52° 22' 45" N. 4° 45' 30" E. 
31 11 20 N. 30 15 30 E. 
52 32 30 N. 13 26 E. 
30 2 30 N. 31 15 15 E. 
33 55 15 S. 18 29 E. 
48 50 14 N. 2 19 E. 

Latitudes. Longitudes. 
42® 23' 15" N. 70° 58' 0" W. 

4 56 10 N. 52 16 0 W. 
41 0 0 N. 28 22 30 E. 
51 28 39 N. 0 0 0 
12 1 15 S. 76 55 30 W. 
39 55 16 N. 116 21 30 

PROB. 3. 

To jind all those places that are in the same latitude or longitude 
with any given place. 

Rule. Bring the given place to the brazen meridian,* and mark 
the point over it; then all those places under the same edge of the 
meridian, between both poles, are in the same longitude (def. 11.) 
and all those places passing under the mark are in the same lati¬ 
tude. (def. 10.) 

Example 1. Find all those places that have the same, or nearly 
the same latitude or longitude as New-York. 

Ans. Montreal, Heneaga island, the western part of St. Domin¬ 
go, St Martha, Guamanga, La Conception, &c. in S. America, are 
nearly in the same longitude ; and Madrid, Naples, Constantinople, 
Pekin, See. nearly in the same latitude. 

2. What places have the same or nearly the same latitude as the 
following places: London, Petersburg, Rome, Philadelphia, and 
Lima ? 

3. Find all those places that have nearly the same longitude 
as the following places: Paris, Archangel, Naples, Boston, and 
Mexico, in North America. 

4. What inhabitants of the earth have their days of the same 
length as those of Philadelphia ? 

5. What inhabitants of the earth have the same seasons of the 
year as those of London l 

side of the equator, reckoned all round from aries both ways ; the one to¬ 
wards the right hand or east, is carried to XXIV, to this the minutes, &c. are 
adapted. The other, which is reckoned towards the left hand or west, is 
counted only to XII, and then begins I, II, III, &c. again. These lower 
lines are useful in finding the difference of times between any two meridi¬ 
ans, or for shewing how much sooner or later the time is in one place than 
in another. One is fitted for astronomical, the other for ci vil time. Bardin’s 
new British globes have also two rows of figures above the equator, but the 
lower line is always used in reckoning the longitude. 

* It will answer equally as well to bring the given place to the horizon, 
and count the degrees from the east or west points, &c. 
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6. Find all those places that have their longest day the same as 
at Petersburg. 

7. When it is noon at Baltimore, what inhabitants of the earth 
have the same hour ? 

8. When it is noon, midnight, or any other hour in Boston, find 
all those places that have the same hours respectively. 

PROB. 4. 

To find the difference of latitude and difference of longitude between 
any two places, 

FOR THE DIFFERENCE OF LATITUDE. 

Rule. Find the latitude of both places (prob. 1.) and the num¬ 
ber of degrees between them, reckoned on the brazen meridian, 
will be the difference of latitude. (Note to def. 10.) 

Or find both latitudes ; (prob. 1.) then if they be of the same 
name, that is both north or both south, their difference is the dif¬ 
ference of latitude ; but if they be of different names, that is one 
north and the other south, their sum will be the difference of lati¬ 
tude. 

FOR THE DIFFERENCE OF LONGITUDE. 

Ride. Find the longitude of both places (prob. 1.) and the num¬ 
ber of degrees between them, reckoned on the equator, will be 
their difference of longitude. (Note to def. 10.) 

Or, find both longitudes as before, then if they be of the same 
name, that is both east or both west, their difference is the differ¬ 
ence of longitude ; but if they be of different names, their sum 
will give the difference of longitude. 

Note. If this last sum should exceed 180°, take it from 360, and the re¬ 
mainder will be the difference of longitude. 

For the difference of longitude in time. Bring one of the places 
to the brazen meridian, and set the hour index to 12 ; then bring 
the other place to the meridian, and the hours, &c passed over by 
the index, will be the difference of longitude in time, as required. 
The same may be found more correctly on the equator, by taking 
the sum or difference of the times corresponding to the longitudes 
on the equator, instead of the longitudes themselves. 

Eocamfile i. What is the difference of latitude and difference of 
longitude between Philadelphia and Greenwich observatory ? 

Ans. Diff. lat. 11° 3i' 45". Diff. long. 75° 8' 45". 
Note 2. If one of the places have no latitude or no longitude, the lati¬ 

tude or longitude of the other will be the difference. 

2. What is the difference of latitude and difference of longitude 
between Paris and Greenwich observatories ? 

Ans. Diff. lat. 2° 38' 25". Diff. long. 2° 19'. 
3. What is the difference of longitude in time and degrees be¬ 

tween Paris and Gottingen observatories l 
Ans. Diff. of longitude in degrees 7® 32' 45". In time 30® 11'. 
Note 3. For exactness in these problems, consult the table of latitudes 

and longitudes at the end of the work- 
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4?. Find the greatest difference of latitude and difference of lon¬ 
gitude between any two places 

5. Required the difference of latitude and longitude between the 
following places ? 
London and New-York, 
Goa and Rome, 
Constantinople and Quito, 
Petersburg and Vienna, 
Dublin and Boston, 
Charlestown and Pekin, 
Pekin and Lima, 

Note 4. The difference of lat. or difference of long, between two places 
being given, and if one of the places be also given, the other is given by ad¬ 
ding or subtracting this difference, according as the place is north or south, 
east or west of the given place. 

Thus, for the latitude. 1. If the latitude of Washington city be 38° 53' 
N. and the difference of lat. between it and New-York be 1° 49f, then 38° 
53'-f-l° 49'*= 40° 42;, the lat. of New-York, being northward of the given 
place. 

2. The lat. of Washington being 38° 53' N. and the diff between it and 
that of St. Domingo 20°' 33', then 38° 53'—20° 33'= 18° 20', the lat. of St. 
Domingo, being southward of Washington. 

3. The lat. of Washington being as above, and the diff. of lat. between it 
and Lima, in south lat. being 50° 54', then 50° 54'—38° 53'= 12° 1', the lat. 
of Lima. The difference of lat. in this case being the sum of both latitudes, 
the lat. of either is evidently found by taking the lat of the other from the 
diff. of lat. 

Again, for the longitude. 1. If the longitude of Washington city be 75° 
14' 22" W. of Greenwich observatory, and the diff. of long, between it and 
New-York be 1° 13' 22", required the long, of New-York. Here 75° 14' 22" 
—1° 13' 22"—74° 1', New-York being eastward of Washington. 

2. The longitude of Washington city being given as above, and the diff. of 
long, between it and New-Orleans being 14° 52' 8", then 75° 14' 22"-f~ 14° 
52' 8"=90° 6' 30", the long, of New-Orleans, being west of Washington. 

3. If the long, of Washington be as above, and the difference of longitude 
between it and Paris observatory be 79° 33' 22"; then 79° 33' 22"—77° 14' 
22"=2° IS'. Paris being situated in east long, and the sum of their longi¬ 
tudes from Greenwich being the difference of longitude. 

' PROB. 5. 

To find the antseci, fiericeci, and antipodes of any filace. 

Rule. Bring the given place to the brass meridian, and find 
its latitude (prob. 1.) then under the same meridian, in the same 
degree of latitude, in the opposite hemisphere, you will find the 
antoeci. (Def. 22.) The globe remaining in the same position, set 
the index to 12, and turn the globe on its axis until the other 12 

comes to the meridian (or until the index points to it) then under 
the latitude of the given place you will find the perioeci (def. 23.) 
and under the same meridian, in the same degree of latitude, but 
in the opposite hemisphere, you will find the antipodes, (def. 24.) 

H 

Edinburgh and Baltimore, 
Washington City and Jerusalem, 
Hamburg and New-Orleans, 
Cape of Good Hope and Canton, 
Calcutta and Philadelphia, 
Havanna and Gibraltar. 
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Or thus, 

Place both poles in the horizon, and bring the given place to 
the eastern part of the horizon ; then, if the place be in north lati¬ 
tude, observe how many degrees it is to the northward of the east 
point of the horizon ; the same number of degrees reckoned to the 
southward of the same point will give the antoeci; an equal num¬ 
ber of degrees counted from the west point of the horizon towards 
the north will shew the periceci ; and the same number of degrees 
counted towards the south from the west, will point out the anti¬ 
podes 

If the place be in south latitude, the same rule will serve, by 
reading south for north, and the contrary. This method is the 
same in effect as the above. 

Example 1. Required the antoeci, periceci, and antipodes of Ber¬ 
mudas l 

Ans. The antoeci is in Paraguay, a little S. E. of Cordova, or N. 
W. of Buenos Ayres ; the perioeci is near Yopgyong, N W. of 
Nankin, in China; and the antipodes is near Binning’s land, in 
the S. W. part of New Holland. 

2. Required the antoeci, perioeci, and antipodes of the following 
places; Constantinople, Rome, London, Cape of Good Hope, 
Quito, Buenos Ayres, Kingston, and Skalholt. 

3 A person sailing in lat. 5l^° south, and long. 180°. Where 
Was his antipodes ? 

Note. Those places situated on the equator have no antoeci, and their pe- 
ricEci are their antipodes ; and those places at the poles have no periceci, and 
their antoeci are their antipodes. 

4. Required those places whose seasons are directly contrary to 
those of New-York (that is summer with one being winter with 
the other, &.c ) but whose hours are the same (that is mid-day with 
one being midnight with the other, 8cc.) 

5. Required those places whose seasons are the same as those of 
Philadelphia, but hours contrary ? 

6. Required those places whose seasons and hours are contrary 
to those of Washington city ? 

For the three last problems see notes to definitions 22, 23, 24. 

PROB. 6. 

The hour of the day at any particular place being given, to find the 
corresponding hour (or what o*clock it is at that time) in any 
other place. 

Rule, Bring the place where the time is given to the brass 
meridian, set the index to the given hour; then turn the globe 
till the other place comes to the meridian, and the index will point 
put the time required. 

Or, Having brought the given place to the meridian, as before, 
set the index to 12 ; then bring the other place to the meridian, 
*tnd the hours passed over by the index will be the difference of 
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time between both places. If the place where the hour is sought 
be to the east of the other, the time there is so much later, if to 
the west, the time is so much earlier. Hence, in the former case, 
you add the diff. to the given time, in the latter you subtract. Thus 
a place 15° to the eastward of another, has the sun on its meridian 
an hour earlier than the latter place ; therefore 12 o’clock in the 
former place is but 11 o’clock in the latter ; and 12 o’clock in the 
latter place is 1 o’clock in the former, &c. 

WITHOUT THE HOUR CIRCLE. 

Find the difference of longitude between the two places (prob. 
4.) and turn it into time by allowing 15° for every hour, and 4 
minutes of time to every degree, &e. The difference of longi¬ 
tude in time will be the difference of time between the two places, 
with which proceed as above. 

Example 1. When it is 7 o’clock in the morning at Philadel¬ 
phia, what hour is it at London ? 

Ans. Twelve o’clock at noon ; the difference of time being five 
hours nearly, and London to the east of Philadelphia. 

Or, The difference of longitude between both places is 759 13'. 
Now 75°-i-l5=5 hours and 13'x4=52, hence 5h. 0' 52"-f7h.:=s 
12h. O' 52", or 52" after 12 o’clock. 

Note. Degrees of longitude multiplied by 4 produce minutes of time, 
and minutes multiplied by 4 produce seconds of time, &c. and minutes and 
seconds of time divided by 4 give degrees and minutes of longitude, &g. 

2. When it is 7 o’clock in the morning in London, what o’clock 
is it at Philadelphia ? 

Ans. 2 o’clock in the morning, or 7h.—5h. 0' 52"= lh. 59' 8". 
3. When it is 2 o’clock in the afternoon at Greenwich observa¬ 

tory, what o’clock is it at Baltimore l 
Ans. 8h. 52' 40" in the morning. The difference of longitude 

is 76° 50', which multiplied by 4=307' 20"=5h. 7' 20". 12-f-2 
= 14; hence 14h.—5h. 7' 20"=8h. 52' 40", or 52' 40" after 8 
in the morning at Baltimore. The same answer will be found, if 
5li. 7' 20", the difference of longitude in time, be counted back¬ 
wards from 2 o’clock in the afternoon, as Baltimore is to the west 
of Greenwich observatory. 

4. When it is noon at Paris, what hour is it at Quito ? 
5. When it is 10 o’clock in the morning at Kingston in Jamai¬ 

ca, what hour is it at Petersburg ? 
6. When it is 1 o’clock in the afternoon in Washington city, 

what o’clock is it in Canton ? 
7. When it is midnight in New-York, what o’clock is it in Lon¬ 

don, in Madrid, in Rome, in Vienna, in Calcutta, and in Botany 
Bay ? 

8. My watch being well regulated at Dublin, and when I arrived 
at Philadelphia it was 5 hours faster than the clocks there. I want 
to know whether it gained or lost during the voyage, and how 
much ? 



PROBLEMS PERFORMED BY 60 

9. Are the clocks in Philadelphia faster or slower than those at 
Calcutta, and how much ? 

10. Being at sea in lat 10* 45'N my watch, which was adjust¬ 
ed for the meridian of Greenwich, was by observation found to be 
4h. 4 minutes too slow. Required the place of observation and 
its longitude ? 

Ans. Trinidad in the West-Indies. 
11. Being at sea in the year 1806, on the 16th of June, I observ¬ 

ed the beginning of an eclipse of the sun at lOh. 16' 12" in the 
forenoon, apparent time, and found that by an Almanac calculated 
for New-York, in longitude 74° l' W. from Greenwich, the be¬ 
ginning of the eclipse there, happened at 9h. 39' A. M. app. 
time. The latitude of the place of observation was 32° 15' N. 
required the place and its longitude ? 

Ans. The place is near the western part of the Island of Ber¬ 
mudas, and its longitude 64° 43' W. from Greenwich. See the 
following problem. 

PROB. 7. 

The hour of the day being given in any jilacc, to find all the jilace& 

on the globe where it is then noon, or any other given hour. 

Rule. Bring the place to the meridian, and set the index to the 
given hour in that place j turn the globe until the index points 
out any other given hour ; all the places that are then under the 
brazen meridian, are those places required.* 

Note. This method is attended with some confusion, if there be more 
rows of figures than one on the hour circle ; to remedy which, the folio wing- 
methods are given. The same must be observed with respect to the pre¬ 
ceding and some of the following problems. 

* This rule is manifest from what is said in the preceding problem, from 
which, or from this prob. the following observations are evident. 

1. If a ship set out from any port and sail round the earth eastward until 
she arrives at the same port again, the people in that ship will gain one en¬ 
tire day, in their reckoning, at their return. If they sail westward, they 
will lose one day or reckon one day less. 

2. Hence if two ships sail from the same port, the one eastward, and the 
other westward, until they arrive again to the place from which they de¬ 
parted, they will differ two days in their reckoning ; the one reckoning one 
day less, the other one day more than those who remained in the port. If 
they sail-twice, they will differ four days from each other, and two from 
those who remained in the port. If three times, six days, &c. 

3. If the vessels sail the one northward and the other southward, no dif¬ 
ference will appear in their reckoning, nor will they differ from those who 
reside at the port; the difference in time being in proportion to the change 
made in their longitude east or w'est. 

4. As the distance of meridians near the poles is very small, an inhabitant 
situated within 5 or 6 miles, &.c. of either, may make the same changes in 
his actual account of time, as the ship mentioned in the first remark, or may 
keep pace with the sun during his apparent diurnal revolution round the 
earth. Whoever is curious to see more of these remarks, may consult a 
small mathematical miscellany, publishod by Samuel Fuller. 
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Rule 2. Bring the given place to the meridian, and set the in¬ 
dex to 12 ; then, if the hour at the required places be earlier than 
the hour at the given place, turn the globe eastward until the in¬ 
dex has passed over as many honrs as are equal to the given differ¬ 
ence of time ; but if the hour at the required places be later than 
the hour at the given place, turn the globe westward until the in¬ 
dex has passed over the given difference of time ; and in each 
case all the places required will be found under the brass meri¬ 
dian. 

WITHOUT THE HOUR CIRCLE. 
Rule 5. Find the difference of longitude in time (prob. 4.) 

reduce it to minutes, &c. these minutes divided by 4 will give de¬ 
grees of longitude ; if there be a remainder after dividing by 4* 
reduce it to seconds, and add the seconds in the difference of lon¬ 
gitude, if any : this sum again divided by 4, will give minutes or 
miles of longitude. Now, if the hour at the required places be 
earlier than the hour at the given place, the required places lie as 
many degrees to the westward as are equal to the difference of 
longitude ; but if the hour at the required places be later than the 
hour at the given place, the required places lie as many degrees 
to the eastward of the given place, as are equal to the difference of 
longitude. 

Note. Whenever we direct the globe to be turned, we mean on its axis, 
either east or west. 

Examples. 1. When it is 12 o’clock in the day at London, 
where is it 8 o’clock in the morning, at that time ? 

Answer. If London be brought to the meridian, and the index 
set to 12 o’clock (or 12 o’clock brought under the meridian) the 
globe being then turned until 8 o’clock comes under the meridian, 
or until the index points to 8, all the required places will then be 
under the meridian; as, Cape Canso, Martinico, St.Lucia, Trini¬ 
dad, &c. the mouth of the river Oronoko, a part of Amazonia, 
Paragay, See. the Falkland Islands, &c. 

Or, bring London to the brazen meridian, and set the index to 
12 as before ; turn the globe eastward until the 8 o’clock hour 
line comes under the meridian, or until the index has passed over 
4 hours. Then under the brass meridian all the places required 
will be found as above. Or, (without the hour circle.) The dif¬ 
ference of longitude between London and the required places, is 
4 hours or 240 minutes, which divided by 4 gives 60° the differ¬ 
ence of longitude. (=4X15.) Now as the hour at the required 
places is earlier than at London, they lie 60° westward of it.— 
Hence all the places situated in 60° west longitude from London, 
are the places required and will be found by prob. 3, as above. 

2. When it is 2 o’clock in the afternoon at London,, where is it 
half past 5 in the afternoon ? 

Ans. The places sought will be found as above (in method 1st) 
to be the Caspian sea, western part of Novazembla, the island of 
Socotra, eastern part of Madagascar, fkc. 
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Turning the globe westward (the time being later than at the 
given place) until the index has passed over 34- hours, London 
being brought to the brazen meridian, the places will be found 
as above by 2d method ; or, by the 3d method, the difference of 
longitude in time being 3i hours or 52° 30'. The required pla¬ 
ces, therefore, lie so many degrees to the east of London. 

3. When it is 5 o’clock in the afternoon at Madrid, where is it 
noon ? 

4. When it is half past 5 in the morning at Pekin, where is it 
noon ? 

5. When it is noon at Delhi, where is it 6 o’clock in the morn¬ 
ing ? 

6. When it is 5 o’clock in the morning at Philadelphia, w’here 
is it 5 o’clock in the evening ? 

7. When it is noon at New-York, where is it midnight ? 
8 Being at sea in lat. 42° north, when it was 9 o’clock in the 

morning by the time piece, which shews the hour at Washington 
city (77° 43' W. long.) and finding by a correct celestial obser¬ 
vation, that it was 11 o’clock in the morning at the ship, in what 
longitude was the vessel ? 

9. When it is 10 o’clock in the morning in New-York, find all 
those places that have the same hour. (Prob* 3.) 

Note. On Cary’s globes the hours are marked on the equator to every 
minute, particularly on his large globes, and adapted to the meridian of 
Greenwich observatory. Hence any place being brought to the meridian, 
the hours, &c. on the equator will point out the time to the minute that the 
sun will come to the meridian of the place sooner or later than to the meri¬ 
dian of Greenwich. Any other place may be taken instead of Greenwich, 
and the hour* will answer equally as well, by taking the difference of times 
in each place. 

PROB. 8. 

The day of the month being given to find the sun’s place ^ or his lon¬ 

gitude in the ecliptic, and his declination 

Rule. Look for the given day in the circle of months on the 
horizon, and opposite to it in the circle of signs, are the sign and 
degree which the sun is in that day. (Def. 31.) Find the same 
sign and degree in the ecliptic, on the surface of the globe, and 
bring the degree of the ecliptic thus found to that part of the bra¬ 
zen meridian which is numbered from the equator towards the 
poles, then that degree of the meridian which is over the sun’s 
place, is the declination required. (Def. 91.) 

OR BY THE ANALEMMA.* 

Bring the analemma to the brass meridian, and the degree, cut 
on it, exactly above the day of the month, is the sun’s declination 

* The Analemma is properly an orthographic projection of the sphere on 
the plane of the meridian, and is a useful invention for shewing by in¬ 
spection the time of the sun’s rising and setting, the lengths of days and 
nights, the points of the compass on which the sun rises and sets, the be- 
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turn the globe until the point of the ecliptic corresponding to the 
day passes under this degree of the sun’s declination, that point 
will be the sun’s place or longitude for the given day. 

Note 1. If the sun’s declination be north, and increasing', the sun’s place 
will be between Aries and Cancer. If the declination be decreasing-, his 
place will be between Cancer and Libra. If the declination be south, and 
increasing, it will be between Libra and Capricorn. If decreasing, between 
Capricorn and Aries. 

The sun’s longitude and declination are given in the 2d page of every 
month in the Nautical Almanac for every day in the month. The method of 
accurately calculating them for any time, is given in prob. 3d and 9th of 
Mayer’s tables, published by Nevil Maskelyne. 

The sim’s place, &c. on the latest globes, viz. Bardin’s and Cary’s, is 
adapted to the year 1800. 

Example 1. What is the sun’s longitude and declination on the 
22d of February ? 

Ans. The sun’s place is 4L® in Pisces, declination 10° S. 
2. What is the sun’s place and declination on the 15 th of April l 
Ans. 25^® in T, declination 10° N. 
3. Required the sun’s place and declination for the first day of 

each month. 
4. Required the sun’s place on the following days : 

January 10, April 2, July 12, October 29, 
February 13, May 10, August 5, November 22, 
March 15, June 15, September 30, December 31. 

ginning and end of twilight, 8tc. but the Analemma on the globe is a nar¬ 
row slip of paper, the length of which is equal to the breadth of the torrid 
zone. It is pasted on some vacant place on the globe, between the two tro¬ 
pics, and is divided into months and days of the month, corresponding to 
the sun’s declination for every day in the year. It is divided into two parts ; 
the right hand part begins at the winter solstice or December 22d. and is 
reckoned upwards towards the summer solstice or June 21st. where the 
left hand part begins, which is reckoned downwards in a similar man¬ 
ner, or towards the winter solstice. On Cary’s globes the Analemma 
somewhat resembles the figure g, being drawn in this shape for the 
convenience of shewing the equation of time by means of a straight 
line which passes through the middle of it. It begins at the tropic of 
Cancer with the 24th of December, at which time there is no equation of 
time, thence towards the opposite tropic January, February, &c. during 
which months the clock is faster than the sun, to the 15th of April, at which 
time the clock and $un are equal, and therefore no equation of time ; from 
thence it continues April, May, &,c. during which the clock is slower than 
the sun to the 16th of June, nearly, at the tropic, at which time the clock 
and dial are again equal, thence returning in the order of the months from 
July to the 31st of August, the clock is too fast ; at the 31st of August the 
equation is again nothing from thence to the 24th of December, reckoning 
towards the southern tropic, the clock is too slow, &c. And if any day on 
the Analemma be brought to the brass meridian, th,e degree cut on the line 
which crosses the middle of the Analemma, will show how much the clock 
is fast or slow. The equation of time is placed on the horizon of Bardin’s 
globes corresponding to the respective days of the month. (See note to def. 
57, 6l} and 62, and also, prob. 22.) 
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Note 2. The sun’s place being- given, the day of the month corresponding 
is found in the outer circle or calendar of months, &c. on the horizon. On 
Cary’s globes the days are likewise marked on the ecliptic. 

Note 3. The declination being given, the corresponding months and days 
are found by observing the two points of the ecliptic that come under the 
declination, which will be the sun’s place corresponding. 

5. On what clay of the month does the sun enter each of tha 
signs ? (See def. 31.) 

Note 4. The earth’s place, as seen from the sun, among the fixed stars, 
is always in the sign and degree opposite the sun’s place. Thus when the 
sun is 10° in aries, the earth is 10° in libra, and so of any other. The sun 
in reality having no motion (at least to produce this phenomenon) but the 
earth by revolving on its axis every 24 hours from west to east, causes an 
apparent diurnal motion of all the heavenly bodies from east to west: (Dr. 
Kiel, lect. 26.) In like manner by revolving round the sun in a year, the 
sun seems to pass over the same signs in the heavens which the earth has 
passed, and in the same direction. But the sun being in the centre, it is 
plain that in whatever sign the earth is, as seen from the sun, the sun must 
be in the sign diametrically opposite as observed from the earth. The phy¬ 
sical causes, &c. of these phenomena, is given by Newton in his principia, 
and after him by the writers on physical astronomy and the laws of centre- 
petal forces, as Dr. Gregory in his astronomy, McLaurin in his fluxions and 
view of Newton’s philosophy, Emerson in his fluxions, tracts, and in his as¬ 
tronomy, Simpson, and others ; and lately in France, the celebrated La 
Grange, De la Place, La Lande, De Lambre, &c. In Germany, Mayer in 
his theory of the moon, &c. Mr. Burg, of Vienna, has lately in his tables 
constructed principally on the observations of Nevil Maskelyne, much im¬ 
proved this subject. 

Note 5. The declination for every day is given in page 2 of the month in 
the Nautical Almanac, or it may be found by having the sun’s meridian alt. 
given, see note to prob. 42, from which and the obliquity of the ecliptic, the 
sun’s place or longitude is found by Napier’s rule, thus : As sine greatest 
clecl. : sine present decl. :: Rad. : sine longitude from aries. This longitude 
is likewise given in page 2 of the N. A. as also the sun’s rt. ascension, the 
equation of time, &c. (For the sun’s greatest declination or obliquity of the 
ecliptic, see note to prob. 49.) To find the sun’s longitude at any time dif¬ 
ferent from noon, say as 24h. is to the hour from noon reckoned by the me¬ 
ridian of Greenwich, so is the daily variation of the sun’s longitude to a 
fourth number, which added to the longitude at noon, gives the longitude 
for the given time ; if the time be that of a place differing in longitude from 
Greenwich, it must be reduced to it. In like manner proportion may be 
made for any of the other articles in the Nautical Almanac. 

PROB. 9. 

To rectify the globe for the latitude, zenith, and suji's place ; and 
to place it agreeably to the corresponding situation of the earth, or 
the four quarters of the world. 

1. For the latitude. If the latitude be north, elevate the north 
pole as many degrees above the horizon as are equal to the latitude* 

* The reason of this method is evident from the latitude of the place being 
always equal to the height of the elevated pole above the horizon. (D. 
Gregory’s astr. b. 2, prob. 7.) On any part of the earth we shall always sec 
•one half of the heavens, or 90° from the vertex to the horizon in every di- 
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but if the lat. be south, elevate the south pole, until the degrees 
upon the meridian below the pole cuts the horizon, and then the 
globe is rectified for the latitude. 

2. For the zenith. Having elevated the pole to the latitude, 
the same number of degrees reckoned from the equator towards 
the elevated pole will give the zenith or vertex of the place. (To 
this point the graduated edge of the quadrant of altitude is fixed.) 

3. Bring the sun’s place in the ecliptic (prob. 8.) to the meri¬ 
dian, and set the hour index to 12 at noon, or bring the upper 12 
to the graduated edge of the brazen meridian, and the globe is then 
rectified for the sun’s place. 

4. Lastly, by means of the mariners’ compass attached to the 
globe, let the intersection of the planes of the meridian and hori¬ 
zon be placed in the meridian line by the compass (allowing for 
variation, if necessary) so that the elevated pole of the globe may 
point towards the elevated pole of the world. Then the different 
points of the compass on the globe will point to the corresponding 
bearings on the earth, &c. 

Note. The same method will answer for the Celestial globe. 

Example 1. On the 10th of May it is required to rectify the 
globe for the lat. 40®, the sun’s place, zenith, &c. to fix the quad¬ 
rant of alt. and to place the meridian north and south, as on the 
globe of the earth. 

2. Rectify the globe for the lat. of Washington city, the zenith, 
and sun’s place, on the 1st of June, &c. 

PROB. 10. 

The month and day of the month being given, to find those places on 
the globe to 'which the sun will be vertical, or in the zenithr on that 

day, 

Eule. Find the sun’s declination for the given day (prob. 8.) 
and mark it on the brass meridian; then the globe being turned 
on its axis, all those places which pass under this mark will have 
the sun vertical on that day.* 

rection, if our view be not intercepted by hills, &c. Therefore to an ob¬ 
server on the equator, the poles of the heavens would appear in his hori¬ 
zon ; and if he advance from the equator towards either of the poles, he 
will see that pole towards which he advances rise as many degrees above 
the horizon as he advances towards it from the equator : so that to an in¬ 
habitant at the poles, the corresponding pole would appear in his vertex. 

The 2d rule is evident; for the height of the pole is equal to the dis¬ 
tance of the equator from the vertex, both being equal to the complement 
of the latitude, or what the latitude wants of 90°. In applying the 4th 
rule, the globe must be placed on a plane parallel to the horizon. 

* The reason of this rule is evident, for the distance of the sun from 
the equinoctial or his declination, is equal to the distance of those places 
from the same or their latitude, and therefore the sun, on that day, must 
pass over the parallel of latitude passing through those places. 

I 
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OR BY THE ANALEMMA. 
Bring the analemma to the brass meridian, then the degree 

over the given day is the sun’s declination, with which proceed as 
above. 

Example 1. Find all the places on the earth to which the sun 
will be vertical on the 15th of April. 

Ans. It will be nearly vertical to Carthage, Porto Bello, Carora, 
Barcelona, &c in South-America; to the island of Trinidad ; to 
all that part of Africa under the parallel of 10°; the northern ex¬ 
tremity of the island of Ceylon ; the mouths of the Cambodia of 
Japanese river (nearly) Parago, Negros, &c. in the Philippine 
islands, &c. 

2. Find all those places where the sun is vertical on the 9th of 
May. 

Ans. St. Anthony, one of the Cape Verd islands, Antigua, St. 
Kitts in the West-Indies, Acapulco, Anatajan in the Ladrone 
islands, Manilla in the Philippines, the southern parts of Pegu, 
Golconda, the southern parts of the great desert in Africa, 8cc. 

Note. In solving this problem, it is more natural to turn the globe from 
west to east, as in the last example, because those places to the eastward 
have the sun first on their meridian, and thence in order towards the west. 

3. Find all the places to which the sun will be vertical on the 
following days, viz. 21st of March, 21st of June, 23d of Septem¬ 
ber, and 22d of December. 

4. Find all the places of the earth where the inhabitants have no 
shadow when the sun is on their meridian on the 1st of May. (See 
note to def. 19.) 

PROB. 11. 
A place being given in the torrid zone, to find those two days of the 

year on which the sun will be vertical there. 

Rule. Bring the given place to the brass meridian, and mark 
the degree of latitude that is exactly over it; turn the globe on its 
axis, and observe what two points of the ecliptic pass under that 
latitude: These points will be the sup’s place corresponding to 

By finding where the sun was vertical on any day, the limits of the tor¬ 
rid zone were discovered by the ancient geographers. For, knowing that 
an object will project no shadow where ihe sun is vertical, they observed 
the most northerly place where objects cast no shadow when the sun’s de¬ 
clination north was greatest; the distance of which place from the equa¬ 
tor, gave them the limits of the northern tropic, and consequently half the 
breadth of the torrid zone. But in accurately determining the aforesaid 
place, though their method was correct, they found themselves, notwith¬ 
standing, considerably embarrassed, as on the same day no shadow was 
cast for a space of no less than 300 stadia; the reason of which is, that 
the apparent diameter of the sun being about 3lT°f a degree at this time, 
seemed to extend itself over as much of the surface of the earth, and to 
be vertical to every place within that space. But this difficulty might be 
easily overcome by taking the middle of the space in which objects wert^ 
found to project no shadow, as this would give the place where the sun’s 
centre v/as then'Vertical, and consequently the tropic Required, 
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the two days required, which days are found on thq horizon exactly 
opposite to the sun’s place. (See notes 2d and 3d. prob. 8.) 

OR BY THE ANALEMMA. 
Bring the analemma to the brass meridian, upon which, exactly 

undcr the latitude of the given place (found by prob. 1.) will be 
the two days required. 

Example 1. On what two days of the year will the sun be verti¬ 
cal at Batavia, in the island of Java ? 

Ans. On the 4th of March, and on the 8th of October. 
2. On what two days of the year will the sun be vertical at the 

following places 
St. Helerta, 
Gondar in Abyssinia, 
Goa, 
Columbo in Ceylon, 

St- Antonio, Cape verd islands, Achen, 
3. If the sun be vertical at a certain place on the 15th of April, 

how many days will elapse before he is vertical a second time at 
that place ? 

Note. The sun’s declination on those days is equal the latitude of the 
respective places. ("See note to prob. 1.) 

Kingston in Jamaica, 
St. Domingo, 
Fort Royal in Martinico, 
Barbadoes, 

* 

Borneo, 
Manilla, 
Otaheite, 
Owhyhee> 
Lima. 

PROB. 12. 

The day of the month and the hour at any place being given, to find 
where the sun is vertical at that hour. 

\ 

jRule. Find the sun’s declination (prob. 8.) bring the given 
place to the brass meridian, and set the index to the given hour; 
then turn the globe westward if the hour be given in the forenoon, 
or eastward if the hour be given in the afternoon, until the index 
points to 12 ; the place then exactly under the sun’s declination is 
that required. . , 

Or: Having found the sun’s decl. as before, bring the given 
place to the brass meridian, and set the index of the hour circle to 
12 (or bring 12 to the meridian.) Then turn the globe as above 
directed, as many hours as the given time is from noon, and the 
place under the sun’s declination will have the sun that moment 
in the zenith. 

Or : Find the longitude of the given place (by prob. 1.) and rec¬ 
kon, on the equator (eastward if the time be given in the fore¬ 
noon, or westward if the time be given in the afternoon) as many 
degrees as are equal to the given time from noon, converted into 
degrees (see the note to prob. 6.) this will give the longitude of 
the place required. Then having the latitude of the place (being 
equal to the sun’s declination) and the longitude, the place is given 
by prob. 2. 

Example 1. When it is 15 minutes after 8 in the morning at 
New-York, on the 30th of April, where is the sun, at that time, 
vertical ? 
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Ans. Cape Verd. Here the globe must be turned towards the 
west, the time being given in the forenoon. 

Or by the last method- The given time before 12 o’clock is 
3 hours 45 minutes, which converted into degrees (by note to 
prop 6.) gives 56° 15', the difference of longitude, or the number 
of degrees the place is eastward from New-York, the hour being 
given in the forenoon. This difference therefore, subtracted from 
the longitude of New-York, which is 74° l' W. (see note 4, 
prob 4.) gives 17° 46', the longitude of the place required; and 
under the sun’s declination for the present day is the latitude. 
(Note to prob. 10.) Hence the place is given, by prob. 2, and 
corresponds to Cape Verd nearly.* 

2. When it is 4 o’clock in the afternoon at London, on the 18th 
of August, where is the sun vertical ? 

Ans. Here the given time is 4 hours past noon ; hence the globe 
must be turned eastward until the index has passed over 4 hours, 
then under the sun’s declination you will find Barbadoes, the place 
required. 

3. When it is half past one o’clock at the Cape of Good Hope, 
on the 5th of February, where is the sun vertical ? 

Ans. At St. Helena. 
4. When it is 20 minutes past 5 o’clock in the afternoon at Phi¬ 

ladelphia, on the 18 th of May, where is the sun vertical ? 
5. When it is 8 minutes past 8 in the morning at Petersburg, 

on the 6th of June, where is the sun vertical ? 

PROB. 13. 
To find the time of the sun’s rising and setting, and the length of the 

day and night at any filace. 

Rule.f Elevate the north or south pole to the latitude of the 
place (according as it is north or south) by prob 9. Bring the 
sun’s place for the given day (found by prob. iO.) to the brass me- 

* If the time in Example 1st. was given, 8 hours, 13 minutes, 32 sec¬ 
onds, the longitude of Cape Verd would come out 17° 33', as it ought. 
But the hour circles, in general, are not divided into parts less than a 
quarter of an hour, and therefore such exactness was unnecessary. On 
Cary’s large globes, however, the index is divided into parts, each cor¬ 
responding to 5 minutes. The index or hour circle on these globes hav¬ 
ing but one row of figures, and being placed under the brass meridian, 
renders them much more convenient and less liable to perplex beginners. 
When more exactness is required, the hours, and the degrees of longi¬ 
tude corresponding, &c. should be found on the equator, on which every 
quarter of a degree corresponds to one minute of time. It is upon a 21 
inch globe of Cary’s, that most of these problems have been tried 

f The reason of elevating the pole thus, may be seen in the note to 
prob. 9. The reason of bringing the sun’s place to the meridian, and of 
setting the index to twelve, is because the sun is always on the meridian, 
or north and south (see note to def. 25.) at 12 o’clock. The reason of 
bringing the sun’s place to the eastern part of the horizon, to find his 
rising, is because the sun rises towards the cast, and the contrary reason 
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ridian, and set the hour circle (or the index) to twelve ; then turn 
the globe eastward until the sun’s place comes to the eastern part 
of the horizon, and the index will shew the time of sun rising. In 
like manner bring the sun’s place to the western part of the hori¬ 
zon, and the index will shew the time of sun setting ; then double 
the time of sun rising, it will give the length of the night; and 
double the time of sun setting, it will give the length of the day; 
or, the time of sun rising taken from twelve, will give the time of 
sun setting, and -vice versa. And the length of the night taken 
from twenty-four, will give the length of the day, and the contra¬ 
ry, Sec. Also, half the length of the day, gives the time of sun 
setting, and half the length of the night, the time of sun rising. 
(See the note at the bottom.) 

By the same rule the length of the longest day in all places not 
in the frigid zones may be found. For in north latitudes, the 
longest day is when the sun is in the beginning of cancer, that is 
on the 21st of June; and in south latitudes, the longest day is when 
the sun enters capricorn, which is on the 22d December.* There¬ 
fore to find the longest day, in the northern hemisphere, not ex¬ 
ceeding 24 hours, bring cancer to the meridian, and proceed as in 
the rule. 

OR, 
Rule 2. Find the sun’s declination (prob. 8.) and eleVate the 

north or south pole, according as the latitude is north or south, as 
many degrees above the horizon as are equal to this declination ; 
bring the given place to the brass meridian, and set the index to 
twelve; turn the globe eastward until the given place comes to 
the eastern part of the horizon, and the number of hours passed 
over by the index will be the time of sun setting; whence the 
time of sun rising, and the length of the day and night is found as 
above. 

Note. The time of sun rising and setting may be found independent 
of the globe by the following rule : To the tangent of the latitude add the 
tangent of the declination, the sum rejecting radius will be the log. co’. 
sine of an arch, which reduced to time, will be the time of sun rising, the 
lat and decl. being of the same name, or the time of its setting if of dif¬ 
ferent names. (See note to prob. 8, part Sd. where the demonstration 
of this rule is given.) 

holds for bringing it to the western part, because the sun sets there. It 
is likewise evident that the index passes over as many hours as the time 
from 12 o’clock to the sun’s rising or setting. Now as the sun rises as 
many hours before twelve as it sets after twelve, it is evident that the 
time of sun rising subtracted from 12, must give the time of sun setting, 
and vice versa. Again, as the hours are reckoned from 12 o’clock in the 
night or midnight, it is plain that the hour indicating sun rising must also 
indicate half the length of the night, and that therefore its double must be 
the length of the night; for the same reason the hour indicating sun set¬ 
ting must also indicate half the day, as the hours are reckoned from 12 
o’clock or midday, and therefore its double must be the length of the day. 

* The longest day in both hemispheres, is placed on the 21st of June 
and 22d of December. But as the sun varies from the equinoxes about 
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OR BY THE ANALEMMA. 
Elevate the pole to the latitude of the given place, as above ; 

bring the middle of the analemma* or the 16th of June, or 25th 
of December, corresponding to it, to the brass meridian, and set 
the index of the hour circle to twelve ; turn the globe westward 
until the day of the month on the analemma comes to the western 
part of the horizon, and the number of hours passed over by the 
index will be the time of the sun’s setting, &c.; which being giv¬ 
en, the rest is easily found as above. On Cary’s globes the given 
day must be brought to the brass meridian, and not the middle of 
the analemma except on the above days. 

Note. If the day of the month on the analemma be brought to the 
eastern or western part of the horizon respectively; those hour circles 
placed under the brass meridian, and with only one row of figures, will 
always point out the hour of sun rising or setting, the prob. being per¬ 
formed as in the last rule. 

Examples. 1. What time does the sun rise and set at New- 
York on the 10th of May, and what is the length of the day and 
night ? 

Ans. The sun rises at 4h. 56m. or 56 minutes after 4 o’clock, 
and sets (12h.—4h. 56m.=) 7h. 4m. or 4 minutes after seven, 
and therefore the length of the day (7h. 4m.X2) is 14 hours, 8 
minutes, and hence 24h—14h. 8m. (=4h. 56m.X2) «=9h. 52m. 

2. What time does the sun rise and set at Dublin on the 11th 
of March, and what is the length of the day and night ? 

Ans. Sun rises 6h. 20min. sets 5h. 40min. length of the day 
is llh. 20min. and length of the night 12h. 40min. 

3. What time does the sun rise and set at New-York on the 
21st of June, and what is the length of the day and night ? (On 
this day the sun enters Cancer, and makes the longest day in the 
northern hemisphere, &c.) 

Ans, Sun rises 4h. 32m. sets 7h. 28m. longest day 14h. 56m. 
shortest night 9h. 4m. 

4. At what time does the sun rise and set at the following pla** 
ces, and what is the length of the day and night, on the respective 
days mentioned ? 

Washington City, 1st of May, Cape Horn, 1st of June, 
London, 17th of July, Petersburg, 20th of Oct. 
Pekin, 10th of May, Constantinople, 1st of Jan. 

50i" yearly, or 1° in 71.6 years (see note to def. 74, &c.) in the course of 
some time the longest day will not happen on these days, the sun reced¬ 
ing backwards from cancer and capricorn 50^", as above, every year. Now 
as the sun’s mean motion in the ecliptic is 59' 8".2, we have this propor¬ 
tion, 1° : 71.6 years :: 59' S".2 : 70.56 years, or 70 years 6 months 22 days, 
the time in which the equinoctional points will recede one day from their 
present place in the ecliptic. 

* One of the meridians passes through the middle of the analemma on 
Cary’s globes, and this meridian passes through the 16th of June and 
24th of December, at which times the clock and sun are equal. (See 
the remark on the analemma prob. 8, part. 2d.) 
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5. At what time does the sun rise and set at every place on the 
surface of the globe on the 21st of March, and likewise on the 
23d of September ? 

6. Required the length of the longest day and shortest night at 
the following places : 

Washington, Paris, Botany Bay, 
London, Vienna, Boston, 
Dublin, Madrid, Charleston, 
Edinburgh, Prague, Buenos Ayres, 
Petersburg, Copenhagen, Cape of Good Hope. 

7. At what hour does the sun rise and set, at any time of the 
year to all the inhabitants of the equator, and what is the length 
of the day and night ? 

8. Required the length of the shortest day and longest night, at 
the following places : 

Quito, 
Mexico, 
St. Helena, 
Lisbon, 

9. How much longer is the 21st of June at Halifax than at 
Mexico ? 

10. What is the difference between the 22d of December at 
Boston, and Cape Horn ? 

11. At what time does the sun rise and set at the South Cape, 
in Spitzbergen, on the 31st of March, and 30th of April ? 

Note. On the 30th of April in the last example, the learner will easily 
perceive that the sun does not set at all on that day, as his place, during 
an entire revolution of the globe on its axis, remains the whole time 
above the horizon. 

Philadelphia, 
London, 
Quebec, 
Lima, 

Rome, 
Baltimore, 
Georgetown, near> 
Washington City. 3 

PROB. 14. 

The month and day of the month being given, to find those places 
'where the sun does not set, and likewise where he does not rise on 
the given day ; or to find where the sun begms to shine constantly 
without setting, and also where he begins to be totally absent. 

Rule * Find the sun’s declination for the given day. (prob. 8.) 
Count the same number of degrees towards the equator from the 

* The reason of these rules is very clear. For on the 21st of March and 
23d of September the sun is on the equinoctial, and therefore enlightens the 
globe exactly from pole to pole : hence as the earth turns round its axis, 
which terminates in the poles, every place on the surface of the globe will 
equally go through the light and the dark, and thus make equal day and 
night in every part of the earth. But as the sun declines from the equator 
towards either pole, he will enlighten as many degrees round that pole as 
are equal to his declination from the equator, so that no place within that 
distance of the pole will then go through any part of the dark, and conse¬ 
quently the sun will not set to any part of this space. Now as the sun’s de¬ 
clination is northward from the 20th of March to the 23d of September, he 
must constantly shine rqund the north pole during that time, and from thence 
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north and south poles, then all those places that pass under the 
degree where the reckoning ends, are the places required. If the 
declination be north, then to those places near the north pole and 
under the declination, the sun will not set, and to those places at 
the same distance from the south pole, the sun will not rise, and 
the contrary if the declination be south. 

Or : The globe may be elevated according to the sun’s declina¬ 
tion ; then, when turned on its axis, to those places which do not 
descend below the horizon, in that frigid zone near the elevated 
pole, the sun does not set on the given day, and to those which do 
not ascend above the horizon in that frigid zone adjoining to the 
depressed pole, the sun does not rise on the given day. 

Note 1. Both these methods are the same in effect; the latter, however, 
seems to be more natural, the former more convenient. The learner will 
also observe, that when the decl. of the sun becomes equal to the comple¬ 
ment of the lat. (or what it wants of 90°) and they are both of the same 
name, the sun does not descend below the horizon, but at midnight passes 
the meridian again, so as to touch the horizon exactly at the north or south 
(according to the lat.) and thus continues to circulate, gradually rising higher 
above the horizon (in proportion as his decl. exceeds the comp, of the lat.) 
until he arrives to his greatest declination, from which he continues to de¬ 
scend in like manner, until he again reaches the horizon ; that is, when his 
deck becomes equal to the comp, of lat. as before. But when the deck be¬ 
comes less than this, he will descend below the horizon in proportion, &c. 

This problem is performed by the analemma in the same man¬ 
ner, the only difference being to find the sun’s declination by it, 
and then proceed as above. 

Examples, 1. Find all those places in the north frigid zone, 
where the sun does not set on the 20th of May, and those places 
in the south frigid zone, where he does not rise on the same day. 

gradually to that space included between the pole and the arctic circle in 
proportion as his declination increases, so that on the day in which he is in 
Cancer, his declination being then 23° 28', he will shine so many degrees 
beyond the pole, or to the polar circle, and. therefore to all that space within 
the north polar circle the sun will not set during that day (21st June.) In 
like manner, from the 23d of September to the 21st of March inclusively, the 
sun constantly shines round the south pole. Sec. And hence the same phe¬ 
nomenon will take place at this pole as at the north. So that when the sun 
is on the equator, it evidently shining as far as both poles, will here make 
the days equal to those in any other part of the hemisphere then enlighten¬ 
ed, or equal to 12 hours, for the reason given above (or because the sun be¬ 
ing" over the equator, all the parallels from the equator to the poles are di¬ 
vided equally, and must therefore be 12 hours enlightened, and 12 hours in 
the dark, as the earth performs her revolution in 24 hours.) Now the sun 
advancing towards the south until his declination is supposed 10°, it is evi¬ 
dent that the space within 10° of the south polar circle must be enlightened 
the whole time of the sun’s revolution ; and equally as evident that the space 
within 10° of the north pole must be in the dark : so that when it is day in 
the one, it is night in the other, and the contrary. But as the sun takes half 
a year from its crossing the equator until its return again, therefore at each 
pole the day and night must each be half a year long. (We do not here 
speak of natural days of 24 hours, but of artificial days, or the time which 
the sun remains above the horizon ;) and from the poles to the polar circles, 
the length of their day is proportional to the sips.’s declination. 
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Arts. All places within 20° of the north pole (or within the lat. 
70°) will have constant day ; and those (if any) within 20° of 
the south pole, will have constant night. 

2. Whether does the sun shine over the north or south pole on 
the 30th of September, and where is there constant day and con¬ 
stant night on that day ? 

3. What inhabitants of the earth have their shadows directed to 
every point of the compass during a revolution of the earth on its 
axis, on the 10th of June. (See def. 2 t.) 

4. How far does the sun shine over the south pole on the 2d of 
February, and what places have perpetual darkness on that day ? 

Note 2. By perpetual darkness is only meant the absence of the sun, and 
not of that faint light called twilight, Aurora Borealis, &c. With regard to 
perpetual darkness, &c. the learner will easily observe, that every part of 
the world partakes of an equal share, and consequently of an equal share 
of day-light. The wisdom of the Creator is here displayed in a wonderful 
manner, by causing the twilight, Aurora Borealis, &c. to supply the ab¬ 
sence of the sun during the long winter nights near the poles (as will 
be seen hereafter) and thus enabling the inhabitants to carry on their 
work, which they would otherwise be unable to perform during this gloomy 
season. 

PROB. 15. 

The month and day of the month being given at any place (not iy. 
the frigid zones) to find what other day of the year is of the same 
length. 

Rule. Find the sun’s place in the ecliptic for the given day, 
(by prob. 8.) bring it to the brass meridian, and observe the degree 
over it; turn the globe on its axis, until some other point of the 
ecliptic comes under the same degree of declination, and the day 
of the month corresponding, found on the horizon, will be the day 
required. 

OR BY THE ANALEMMA, 

Look for the given day of the month, and opposite to it will be 
the day required. 

OR WITHOUT A GLOBE, 

Find how many days the given day is before the longest day, the 
same number of days will the required day be after it, and the con¬ 
trary. The same may be found by counting the number of days 
between the 21 st of March and the given day, and reckoning the 
same number from the 22d of September backwards, and on the 
same side of the equator ; the day on which the reckoning ends, 
is that required, and the contrary if the given day be after the 
longest.* 

* The reason of this rule is evident, as any two days of the year which 
are of the same length, will be equally distant from the longest or shortest 
day, or from the days corresponding to the sun’s entry into Aries and Li¬ 
bra ; the sun’s declination, to w hich the length of the day is proportional, 
being equal on both these days. 

K 
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Example 1. What day of the year is of the same length as 
the 15th of April ? 

Ans. The 27th of August. 
2. What day of the year is of the same length as the 20th of 

August ? 
3. If the sun rises at 4h. 20m. in the morning at Dublin, on 

the 9th of May, on what other day of the year will it rise at the 
same hour ? 

4. If the sun set at seven o’clock in the evening at London, on 
the 24th of August, on what other day of the year will the sun 
set at the same hour ? 

5. If the sun’s meridian altitude be 90° at Barbadoes, on the 
24th of April, on what other day of the year will the meridian al- 
titude be the same ? 

6. If the sun’s meridian altitude be 51° 35' at London, on the 
25th of April, on what other day of the year will the meridian 
altitude be the same ? 

PROB. 16. 

The length of the day at any place being given to find the sun’s de¬ 
clination and day of the month. 

Rule 1. Bring the given place to the brass meridian, and set 
the index to twelve, turn the globe on its axis until the index has 
passed over as many hours as are equal to half the length of the 
day, keep the globe from revolving on its axis, and elevate or de¬ 
press one of the poles until the given place exactly coincides with 
the horizon ; then the distance of the elevated pole from the hori¬ 
zon will be the sun’s declination ; this declination being marked on 
the brass meridian, the two points of the ecliptic, which pass un¬ 
der it, correspond to the days required, and may be found on the 
circle of months on the horizon. 

Note. It is more convenient to turn the globe eastward, as the brazen 
meridian is graduated on that side, and as the learner should generally 
stand at that side in performing his problems. 

OR, 

Rule 2. Bring the meridian passing through Aries* to the 
brass meridian, elevate the pole to the latitude of the given place, 
and set the index to twelve ; turn the globe eastward until the in¬ 
dex has passed over as many hours as are equal to half the length 
of the day, and mark where the meridian passing through Aries 
is cut by the eastern part of the horizon ; bring this mark to the 
brass meridian, and the degree over it is the sun’s declination, 
with which proceed as above. 

* Any meridian will answer the purpose as well as this ; but as this on 
Cary’s and most globes is graduated like the brass meridian, the point cut 
by the horizon will be the sun’s declination, and therefore there is no neces¬ 
sity of bringing it to the brass meridian. The meridians passing through 
libra, Cancer, and Capricorn, are also marked on Cary’s globes, and may 
therefore be used in the same manner. 
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THE SAME BY THE ANALEMMA. 
Bring the middle, or the meridian* passing through the middle, 

of the analemma to the brass meridian, elevate the pole to the lati¬ 
tude, and set the index to twelve ; turn the globe eastward until 
the index has passed over as many hours as are equal to half the 
length of the day, then observe the point in the middle (or in the 
brass meridian, passing through the middle) of the analemma, that 
is cut by the horizon, the days opposite to it are those required, 
and if the point be brought to the brass meridian, the degree over 
it will be the sun’s declination. 

Example 1. What two days of the year are each fourteen hours 
long at New-York ? 

Ans. The 6th of May and the 6th of August. 
2. What two days of the year are each 16 hours long at London ? 
3. What two days of the year are each 9 hours long at Boston ? 
4. On what two days of the year does the sun set at 7 o’clock at 

Copenhagen ? 
Note. Having the sun’s rising or setting, the length of the day. Sec. is 

given by prob. 13. 
5. On what two days of the year does the sun rise at 4 o’clock 

at Petersburg ? 
6. What is the sun’s declination when the sun rises at 5 o’clock 

in Washington city ? 
7. What two nights of the year are each 10 hours long at Am¬ 

sterdam ? 
8. Required the sun’s declination and day of the month, when 

the length of the day is 14 hours, 44 min. at Georgetown, District 
<of Columbia, latitude 38° 55' north ? 

PROB. 17. 
The length of the longest day at any place, not within the polar cir~ 

clesy being given, to find the latitude of that place ; or which is the 
same, to find in what latitude the longest day is of any given 
length less than 24 hours. 

Rule. Bring the beginning of cancer or capricorn to the me¬ 
ridian (according as the latitude is north or south) and set the in¬ 
dex to twelve ; turn the globe westward on its axis, until the index 
has passed over half the number of hours given ; then elevate or 
depress the pole until the sun’s place (viz. cancer or capricorn) 

* On Cary’s globes, the analemma resembling the figure g, the meridian 
passes through the point of intersection, as also through those days at the 
top and bottom on which the equation of time is nothing. But on other 
globes, the analemma being a narrow slip of paper, is drawn parallel to the 
meridian, and therefore either of its sides, or rather the line passing through 
the middle, will answer. The days cut by the horizon (as Keith says in 
his treatise on the globes) are not the days required, but those days cor¬ 

responding to the point cut on this line, and opposite to each other, as is 
evident, unless the middle of the analemma on Bardin’s globes be mad* 
use of. 
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comes to the horizon, and that elevation of the pole will shew the 
latitude. This method will answer for any other day, the sun’s 
place being used instead of cancer or capricorn. 

OR BY THE ANALEMMA. 

Bring the analemma to the brass meridian, as before directed, 
and set the index to twelve ; turn the globe westward until the in¬ 
dex has passed over half the number of hours, the day of the month 
being made to coincide with the horizon, by elevating or depressing 
the pole, this elevation will then shew the latitude. 

Example 1. In what degree of north latitude, and at what places 
is the length of the longest day 16 hours ? 

Ans. In latitude 49°, and in all other places that have this lat. 
the day will be of the same length. 

2. In what degree of south lat is the longest day 17 hours ? 
3. In what lat. north does the sun set at 5 o’clock on the 10th of 

April ? 
4. There is a town in Norway, where the longest day is five 

times the length of the shortest night, what is its name ? 
5. In what latitude north is the 20th of May 16 hours long i 
6. In what lat. north is the night of the 15 th of August 10 hours 

long ? 
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The length of the longest day from the equator to the polar circles is 
found by the following proportion: 

As radius : to tangent 23° 28' :: so is tangent latitude : to sine of the 
ascensional difference, which converted into time, will give the time the 
sun rises or sets before or after six o’clock, from which the length of the 
longest day is given by prob. 13. For the reason of this rule see note to 
prob. 49. 

The length of the longest day from the polar circles to the poles, may be 
found thus : 

Find the complement of the latitude, which consider as the sun’s declina¬ 
tion, find the sun’s places corresponding to this declination (north and south, 
as directed, prob. 19.) from a Nautical Almanac, with which proceed as 
directed in that prob. or without the Almanac the sun’s longitude may be 
thus found : 

As sine of the greatest declination 23° 28', 
To sine of the present declination. 
So is Radius, 
To sine of the sun’s longitude. 

The day corresponding to this longitude may be found in the Nautical 
Almanac, and the hours, minutes, &c. by allowing 59' 8" 3 for the sun’s 
daily motion, 2' 27" 8 for every hour, 2" 5 for a minute, &c.—or rather by 
taking the difference between the corresponding and preceding day, from 
the Nautical Almanac for the sun’s daily motion, and. then allowing pro¬ 
portional parts. 

The longitude given by the preceding rule may be reckoned from Aries 
the contrary way, and also from Libra both ways, to find the four places of 
the sun required in prob. 19. By applying these principles, the above ta¬ 
ble taken from Fuller’s treatise on the globes, may be rendered more cor¬ 
rect, it being rather old. This author and some others have given this ta¬ 
ble, without any principles of calculation. 

PROB. 18. 

The latitude and day of the month being given, to find how much 
the sun's declination must increase or decrease, to make the day 
an hour longer or shorter than the given day.* 

Rule. Elevate the pole to the given latitude ; bring the sun’s 
place, for the given day, to the brass meridian, and set the hour 
index to twelve ; turn the globe westward until the sun’s place 
comes to the horizon, and observe the hours passed over by the 
index ; then if the days be increasing, turn the globe westward un¬ 
til the index has passed over half an hour more; the point of the 
ecliptic then cut by the horizon, will correspond to the sun’s place, 
where the day is an hour longer, See. and hence the decl. is found, 
(prob. 8.) But if the days be decreasing, turn the globe eastward 
until the index has passed over half an hour, the point of the eclip* 

* Note. The prob. may become general for any time corresponding to 
the length of the longest day in any place, if instead of half an hour, the 
globe be turned until the index passes over half the time that the required 
day is to be longer or shorter than the given day, and then proceeding as 
before. The latitude of the place, on the longest or shortest day, must ad¬ 
mit of the given increase or decrease in the day required, otherwise the 
rules will not hold. Those places within the polar circles are not here con- . 
sidered. 
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tic then cut by the horizon, will shew the sun’s place when the 
day is an hour shorter than the given day. 

OR, 

Find the sun’s declination for the given day, and elevate the pole 
to that declination ; bring the given place to the brass meridian, 
and set the index to twelve, turn the globe eastward until the given 
place comes to the horizon ; then if the days be increasing, con¬ 
tinue the motion of the globe eastward, but if decreasing, west¬ 
ward, until the place comes a second time to the horizon, the last 
elevation of the pole will shew the sun’s declination required. 

OR BY THE ANALEMMA, 

Proceed as above, only instead of the sun’s place, bring the ana- 
lemma to the brass meridian, and use the day of the month on the 
analemma instead of the sun’s place. 

Example 1. How much must the sun’s declination vary, that the 
day at New-York may be increased one hour from the 13th of 
March, 1810. 

Am. On the 13th of March the sun’s decl is 3° south, and the 
sun sets at 50 minutes past 5. Now when the sun sets at 20 min. 
after 6, his declination will be found to be about 5° 40' north, near¬ 
ly, answering to the 4th of April. Hence the sun must cross the 
equator, and make his declination 5° 40' N. and in 22 days the 
day has increased one hour. 

2. How much must the sun’s decl. vary that the day at London 
may decrease one hour, in length, from the 26th of July 1 

Ans. The sun’s decl. on the 26th of July (1807 or 1811, &c.) is 
19° 38' north, and the sun sets at 49' past seven (see note 1 to 
prob. 14.) When the sun sets at 19' after 7, his declination will 
be found to be 14° 43' north, answering to the 13th of Aug. Hence 
the declination has decreased 5° 55', and the days have decreased 
1 hour in 18 days. 

3. How much must the sun’s declination vary from the first of 
Oct. that the day at Petersburg may decrease one hour ? 

4. How much must the sun’s decl. vary from the 10th of April, 
that the day at Skalholt may increase two hours. (See the note at 
the bottom of page 77.) 

PROB. 19. 

A place being given in the north frigid zone, to find the length of the 
longest day and longest night there, or ('which is the same) to find 
•what number of days of 24 hours each the sun constantly shines 
upon it, how long he is absent; likewise the first and last day of his 
appearance, and the number of days of 24 hours each that he will 
there rise and set. 

Rule. Find the complement of the latitude, or what it wants of 
90°, and reckon an equal number of degrees from the equator on 
the brass meridian north and south, and mark the points where 
the reckoning ends ; then bring the first quadrant of the ecliptic, 
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that from aries to cancer, to the brass meridian, and observe 
what point of it passes under the above mark ; this point will give 
the sun’s place when the longest day commences, or the first day 
on which the sun will constantly shine without setting. The globe 
being then turned westward until some point in the second quarter 
of the ecliptic coincides with or falls under the same mark, this 
point will give the sun’s place when the longest day ends, and the 
day corresponding to it will be the last day on which the sun will 
constantly shine without setting ; the number of natural days be¬ 
tween these two, will be the length of the longest day in the given 
place. The motion of the globe being continued westward, mark 
the next point of the ecliptic, in the 3d quadrant that comes under 
the mark on the brazen meridian, south of the equator; this point 
will give the sun’s place corresponding to the last day of his ap¬ 
pearance above the horizon or the beginning of the longest night; 
next find that point in the 4th quadrant of the ecliptic that comes 
under the mark south of the equator, and it will be the sun’s place 
when the longest night ends ; lastly, the number of days between 
the end of the longest day and the beginning of the longest night, 
together with the number of days from the end of the longest 
night to the beginning of the longest day, will be those days on 
which the sun will rise and set alternately every 24 hours. 

Note. Though it be more natural to have the globes rectified for the 
latitude, and that the points of the ecliptic cut the meridian at the horizon 
in the north and south points, in the same order as above, yet the above 
method is more convenient in practice. The learner will easily perceive 
that both methods are the same in effect, but the reason of the rule will 
appear more evident from the latter method, as the rising, setting, &c. of 
the sun, will be seen on the horizon of the globe in the same manner as in 
the horizon on the earth, corresponding to the place whose latitude is giv¬ 
en. The application of this method is left to the learner. The problem is 
not applied to the south frigid zone, this zone being uninhabited (at least 
we know of none) however the rule is general, reading south for north, &c. 
and proceeding as above. 

The time when the longest day or night begins being known, their end 
may be found, as the beginning and end of either are equally distant from 
the solstice that intervenes, that is, the beginning of the longest day is the 
same number of natural days from the succeeding solstice that the end of the 
longest day is after it, &c. The number of days which the sun alternately 
rises and sets, is also found by adding the length of the longest day and 
longest night together, and taking their sum from 365 days. 

The reason of reckoning the complement of the latitude from the equator 
is evident, as it must always be equal to the sun’s declination, when the 
longest day commences and ends there. For when there is no declination, 
then the longest day commences or ends at the pole. When there is 10° 
north declination, then the longest day commences or ends in the parallel 
of 80° distant 10° from the pole, because the whole of that parallel will then 
be in the illuminated hemisphere, &c. 

OR BY THE ANALEMMA. 

If the place be in the north frigid zone, the two days on the 
analemma, that pass under the complement of the latitude north 
pf the equator on the brass meridian, will be the beginning and 
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end of the longest day, and those two days that pass under the 
complement of the latitude south of the equator, will be the be¬ 
ginning and end of the longest night; from which the rest is given 
as above. The contrary will answer for the south pole. 

Example 1 What is the length of the longest day and longest 
night at the North-cape, in the island of Maggeroe, latitude 71° 
10' north ; the first and last day of his appearance, and the num¬ 
ber of days that he rises and sets there ? 

A?is. The complement of the lat or what it wants of 90», is 18° 
50', this being marked on both sides of the equator on the brass 
meridian, the four points of the ecliptic that pass under it will cor¬ 
respond to the 15th of May, 28th of July, 14th of November, and 
26th of January. Consequently the longest day begins on the 15th 
of May, and ends on the 28th of July, and is therefore 74 natural 
days long (that is the sun does not set during 74 revolutions of 
the earth on its axis.) The longest night commences on the 14th 
of November, and ends on the 26th of January, and is therefore 73 
days long. The sun will rise and set alternately from the 26th of 
January to the 15 th of May, which is 109 days from the end of the 
longest night to the beginning of the longest day; and also from 
28th of July to the 14th of November, which is also 109 days 
from the end of the longest day to the beginning of the longest 
night. The learner will observe, that on jhe 26th of January the 
upper edge of the sun will just touch the horizon, and again de¬ 
scend below it; the next day it will advance a little higher, &c. 
increasing the day by little and little, until the sun crosses the 
equator, when the day and night will be exactly equal; then after 
crossing the equator, the day will become longer than the night, 
and will continue increasing, in proportion to the sun’s declination 
until the 14th of May, at which time the day will be exactly 24 
hours. The same observation will hold, vice versa, with regard to 
those days on which the sun rises and sets from the 28th of July 
to the 14th of November. The length, therefore, of the longest 
day is 74 days, of the longest night 73*, and the number of days 
that the sun rises and sets is 218, making in all 365 days, 

2. What is the length of the longest day and longest night in 
the northeast land in Spitzbergen, under the parallel of 80° ; when 

* Here there is a difference of one day between the longest day and long¬ 
est night, owing to the obliquity of the ecliptic and the eccentricity of the 
earth’s orbit. (See notes to def. 57 and 61.) Fuller and Keith in their re¬ 
spective treatises on the globes, make this difference amount to 4 days, and 
each reckons the lat. of the north cape 71° 30—But accuracy in these mat¬ 
ters cannot be obtained on globes ; the learner, however, should be cau- 
tiored against errors, and not to trust too much to instruments where cal¬ 
culation, &c. is not applied. The above prob. has been tried on one of 
Cary’s globes of nearly two feet diameter. Some authors make the lat. of 
this cape 71° 3Sf (Yyse’s Geogr. pa. 47 of the introduction, where he makes 
a difference of 7 days between the longest day and longest night.) If more 
accuracy be required in this problem, tables of the sun’s motion, &e. mar 
be consulted. See Vince’s Tables lately published. 
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4o they begin and end, and how many days does the sun rise and 
set there ? 

Ans. The longest day begins on the 15th of April, and ends on 
the 27th of August. The longest night begins on the 18th of Oc¬ 
tober, and ends on the 22d of February. Hence the rest is easily 
found as above. 

3. What is the length of the longest day and longest night at 
Ice-cape in Novazembla, lat. 76i° N. and how many days does 
the sun rise and set there ? 

4>. What is the length of the longest day and longest night at 
the north and south poles ; when they do commence, and what is 
the difference between the length of the summer and winter half 
3rear at both poles ? 

PROB. 20 

Any number of days not exceeding 186f in norths or 178J in south 
latitude, being given, to find in what latitude the sun does not set 
during that time. 

Rule. Count half the number of days from the 21st of June, 
or the 22d of December (according as the place is in north or 
south lat.) eastward or westward on the horizon, and find the 
sun’s declination corresponding to the days where the reckoning 
ends (by prob 8.) the same number of degrees reckoned from 
either pole, on the brass meridian, will give the latitude required. 

OR BY THE ANALEMMA. 

Count half the number of days from the 21st of June or 22d of 
December, &c. towards the equator, the sun’s declination corres¬ 
ponding to the day on which the reckoning ends, will be the com¬ 
plement of the latitude. 

Note. In the same manner can be found the latitude, in which the sun 
does not rise for any time less than 178 natural days, in north, or 187 in 
south latitude (the longest absence of the sun at the poles consisting of so 
many days) by reckoning half the number of natural days from the 22d of 
December, in north, or 21st of June, in south latitude, and proceeding as 
above. If the end of the longest night and beginning of the longest day be 
given, and the number of days between them be found, reckon half that 
number from aries on either side, and the sun’s declination, corresponding 
to the place where the reckoning ends, will be the complement of the lati¬ 
tude where the sun will rise and set before and after the vernal equinox only 
so many days. In the same manner we may proceed reckoning from libra 
for the autumnal equinox, the end of the longest day, and the beginning of 
the longest night being given. The longest day at the north pole reckoning 
from the 21st of March inclusive to the 23d of September, is 187 days; but 
on account of refraction the sun will remain longer visible above the horizon. 

Example 1. In what degree of north latitude, and in what 
places, does the sun continue above the horizon during 134 natural 
days ? 

Ans. Half the number of days being 67, which reckoned to¬ 
wards the east from the 21st of June, will answer to the 15th of 
April, or reckoned towards the west, to the 27th of August; o» 

L 
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either of which days the sun’s declination is 10° north ; conse? 
quently the latitude is 80° north, and the places all those passing 
under this parallel of latitude 

2 Where is the longest day 74 days or 1776 hours ? 
3 In what degree of north lat. does the sun continue above the 

horizon 90 days or 2160 hours ? 
4. In what degree of north lat. is the longest night 1752 hours 

long ? See the last note for this and the following prob. 
5. In what degree of north lat. does the sun alternately rise and 

set no more than 54^ days, both before and after the vernal 
equinox ? 

PROB. 21. 

To find how much any number of days in one month, is longer or 
shorter than the same ?iumber in another month. 

Rule Find the sun’s place for the beginning and ending of the 
given days in one month, bring these places to the brazen meridian, 
and mark the corresponding degrees on the equator cut by the brass 
meridian ; the two points, on the equator, will be the sun’s right as¬ 
cension, and the number of degrees between these points converted 
Into time (by the note to prob. 6.) will give the length of the days 
In that month In the same manner find the right ascension of the 
sun for the beginning and ending of the given days in the other 
month, and convert it into time as before ; if this time agrees 
with the former, the given days in one month are 'equal to the 
same number in the other ; but if not, their difference in time 
(or in degrees converted into time) will show the difference. 

jExample 1. How much longer is the number of days from the 
1st to the 20th of August inclusively, than the same number from 
the 1 st to the 20th of September ? 

Ans. The right ascensions corresponding to the beginning and 
20th of August, are 130|° and l49|o the difference of which is 
19°, and the right ascensions corresponding to the beginning and 
120th of September, are 159|° and 177-|° respectively, the difference 
of which is 18°. Now the difference between this and the former 
is 1°, which in time is 4 minutes, the excess of the given num¬ 
ber of day s in August above those in September. 

Note. The right ascension is here reckoned from the beginning of the 1st 
day in each month, or from the last day in the preceding month. 

2. Find how much longer or shorter the month of January is 
than that of May ? 

3. How much longer or shorter is the month of September than 
that of November ? 
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PROB. 22. 

To find the hart of the equation of time which defiends on the ob¬ 
liquity of the ecliflic, and also the true equation.* 

Rule. Find the sun’s place in the ecliptic, and bring it to the 
brass meridian ; count the number of degrees from aries both on 
the equator, and the ecliptic to the brass meridian, the difference 
converted into time is the equation depending on the obliquity of 
the ecliptic. If the number of degrees on the ecliptic exceed those 

* The difference between a well regulated clock and a good sun dial, will 
always give the equation of time ; it is therefore necessary we should point 
out the manner of regulating these instruments and the principles on which 
this difference depends, the equation of time being necessary, not only in 
civil affairs, but also in almost every part of practical astronomy, and abso¬ 
lutely necessary in the important problem of determining the longitude, &c. 

A pendulum clock is the best measure of time as yet discovered ; but from 
the expansion or contraction of the materials by heat or cold, which vai ies 
the length of the pendulum, from which, as well as from the imperfection of 
the workmanship and other accidental causes, the time indicated by the best 
clocks must be subject to irregularity. Hence it becomes necessary that wa 
should be able, at any time, to ascertain how much it is too fast or too slow, 
and at what rate it gains or loses ; and for this purpose we must compare 
it with some motion which is uniform, or whose variation, if it be not uni¬ 
form, can be ascertained. Now as the earth revolves uniformly on its axis, 
the apparent diurnal motion of the fixed stars must be uniform, and is there¬ 
fore considered as most proper to ascertain the variation above mentioned. 
If a clock be therefore adjusted to go 24 hours from the passage of any fixed 
star over the meridian, until it returns to the same meridian again, it is said 
to be adjusted to sidereal time, and its rate of going may, at any time, be de¬ 
termined, by comparing it with the transit of any fixed star, and observing 
whether the interval be exactly 24 hours; if not, the difference will be what 
it has gained or lost during that time ; or if the apparent right ascension of 
a known star when it passes the meridian, be observed, and this right ascen¬ 
sion be compared with the right ascension shewn by the clock, the differences 
will be the error of the clock. In this latter case the clock must begin its 
motion from Oh. 0' 0" at the moment that the first point of aries is on the 
meridian ; then, when any star comes to the meridian, the clock will shew 
the apparent right ascension of the star, allowing 15° for lh. because, when 
subject to no error, it will then shew how far the point aries is from the 
meridian. The error, if any, is found and allowed for as follows: let the 
apparent right ascension of aldebaran, for example, be 4h. 23' 50" at the 
same time that its transit over the meridian is observed by the clock to be 
4h. 23' 52", then the error of the clock is 2" more titan it ought to be. If 
similar observations be made with other stars, and the mean error taken, 
the error, at the mean time of all the observations, will be more accurately 
found. These observations being repeated every day, we shall get the rate 
of the clocks going, or how fast it gains or loses. It may not be unworthy 
of remark here, though not its proper place, that the error of the clock, 
and the rate of its going being thus ascertained, if the time of the true tran¬ 
sit of any star or planet be observed, and the error of the clock, for the time, 
corrected, the right ascension of the star or planet will be given ; this being 
the method by which the right ascension of the sun, moon and planets are 
regularly found in observatories. 

If we adjust a clock with the sun, or to go 24 hours from the time the sun 
le&'es the meridian on any day until he returns to the same meridian again, 
which interval is a true solar day, the clock will soon vary from the sun. 
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on the equator, the sun is faster than the clock ; if equal, the clock 
and sun agree ; if less, the clock is faster than the sun, 

TO FIND THE TRUE EQUATION. 

Look on the horizon, in Barden’s globes, and corresponding to 
the day of the month, you will find the equation required. On Ca- 

even in the supposition that it is good and goes uniformly, and will not indi¬ 
cate 12 when the sun comes on the meridian. This inequality depends on 
the itwo following causes. The 1st arises from the obliquity of the ecliptic, 
or its inclination to the equator. Let the sun and an imaginary star com¬ 
mence their motion at aries, and move through equal spaces in equal times, 
the sun in the ecliptic, and the imaginary star in the equinoctial; at the 
end of every degree let both bodies be brought under the brass meridian on 
the globe, and it will be found that they will never come to the meridian 
together, except at the time of the equinoxes and on the longest and 
shortest days, or the solstices ; and that from the equinox to the next tropic 
or solstice, the apparent time, or the time shewn by the sun, precedes the 
true, or the time shewn by the imaginary star, or a clock regulated to mean 
solar time, because then the degrees in the ecliptic exceed those on the 
equator (at the equinox, the ratio is that of radius to cos. of the obliquity of 
the ecliptic) and that from the solstices to the equinoxes, the true time 
precedes the apparent (for a contrary reason) the proportion of the degrees 
on the equator to those on the ecliptic being as It. to cos. obi. at the sol¬ 
stices. The 2d cause on which this inequality depends, is the unequal mo¬ 
tion of the earth in its orbit, being slower in its aphelion or greatest dis¬ 
tance from the sun, and quicker in its perihelion or least distance. This 
part of the equation of time is found from the distance of the sun at any 
time from the apogee, reckoning round with the sun (or from the point 
where it commences its motion, and not to this point) being its mean «?zo- 
maly. For as the earth describes equal areas in equal times by lines drawn 
from the sun to its orbit (see prob. 1. sec. 2. Newton’s prin. B. I. timers, 
eenterp. forces prob. 11. Greg. astr. prob. 11 or part 4th of this treatise) 
the sun’s motion is therefore slower in its apogee, and increases in velocity 
to its perigree where it is swiftest, and from thence decreases until it comes 
to its apogee again. If we now suppose the sun to revolve round the earth, 
instead of the earth round the sun, the effect being here the same, and the 
explanation easier on this supposition ; and that the sun departs from its 
apogee or aphelion, whilst an imaginary star departs from thence at the 
same time with the mean angular velocity of the sun (or to perform its mo¬ 
tion in the equinoctional, supposed here to coincide with the ecliptic, as its 
obliquity is not considered) so as to describe an equal arch every 24 hours, 
it will then be evident that the imaginary star will gain on the real sun, 
and every day advance more to the east, and therefore that the sun will 
come to the meridian first; and hence that the apparent time will precede 
the true. But before the sun comes to its perihelion, or perigee, it is plain, 
from the above general law, that it will move quicker than the imaginary 
star, but will not be able to overtake it until they are both in conjunction, 
which will take place in the perigee after the sun has performed half its re¬ 
volution, and hence from the apogee to the perigee, the apparent time will 
precede the true. Now the sun and star departing together from the peri¬ 
gee, the sun’s velocity will be greater than the star’s, so as to advance more 
to the eastward, and therefore to come later to the meridian, until they are 
both in conjunction again, or in the apogee, the point from whence their 
motion commenced, and hence from perigee to apogee the true time will 
precede the apparent. There are then but two points in which their mo¬ 
tions will be equal between the apogee and perigee (see Emerson’s centr. 
forces cor. 9 prop. 16 sect. 2d.) and but two points in which they will 
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ry’s globes, bring the day of the month on the analemma to the 
brass meridian, under which on the scale drawn through the ana- 
lemma parallel to the equator, you will find the number of minutes, 
&c. required. The scale indicates whether the equation be fast or 
slow. 

come to the meridian together, viz. at the perigee and apogee ; and hence 
while the sun is describing the first 6 signs of the anomaly, the imaginary 
star, which shews the mean time or the time by the clock, being more to 
the east than the sun (which shews the apparent time, or time shewn by a 
sun dial) comes to the meridian later, and shews the apparent time greater 
than the mean. Hence in these 6 signs, to find the equation depending on 
this cause, the difference between the mean and apparent time must be ta¬ 
ken, which subtracted from the apparent time, will give the mean time, or 
added to the mean time, will give the apparent. While the sun is in the 
last 6 signs of its anamoly, the mean noon precedes the apparent, for the 
reason given above, and hence the difference between the motion of the 
imaginary star and the sun, or the difference between the sun’s mean and 
true motion, converted into time, must be added to the apparent time to 
give the mean, and vice versa. 

Now as both the above causes conspire to make the inequality before nor 
ticed, or the equation of time, it is evident that when both are faster or slow¬ 
er, their sum is the true equation of time ; but when one is faster and the 
other slowrer, their difference is the true equation. 

To compute this equation, let 
APLS be the ecliptic, ALm the 
equator, A the beginning of aries, 
P the sun’s apogee, S any given 
place of the sun ; draw Sx> perpen¬ 
dicular to the equator, and take A«=AP. Now when the sun departs from 
P, let the imaginary star depart from n with the sun’s mean motion in longi¬ 
tude or in right ascension, or at the rate of 597 b" 2 in a day (365fd. : Id. 
:: 360° : 59' 8" 2) and when n passes the meridian, let the clock be adjusted 
to 12 as described above ; take nmczzYs, and when the star comes to m, 
the sun if it moved uniformly with its mean motion, would be at s, but let 
S be the sun’s place at that time, and let S, and consequently v, be on the 
meridian, then as the imaginary star at that instant is at mt mv is the equa¬ 
tion of time. Let a be the mean equinox, or the point where the equinox 
would have been if it moved uniformly backwards with its mean velocity, 
and draw az perpendicular to AL; then z on the equator would have coin¬ 
cided with a if the equinox had moved uniformly ; therefore the mean right 
ascension from z must be reckoned. Now mv=aAv~Am; but Am= Az-f 
zm and Az=AaXcos. ciAz for the small triangle aAz being considered as 
right lined, it will be rad. : «os. aAz (23° 28') :: Aa : Az or using the nat.’ 
sines, &c. 1 : .9172919 :: A a : Az, hence Az=Aa X .9172919 or cos. aAz, 
but .9172, &c.ac=^ nearly, whence Aw—aAz-j-m; and therefore mv=^ 

Av—zm—_Li Aa. Now Ax> is the sun’s true right ascension, zm the mean 

right ascension, or mean longitude, and Aa (Az) is the equation of the 
equinoxes in right ascension, hence the equation of time is equal to the differ¬ 
ence of the sun’s true right ascension and its mean longitude corrected by the 
equation of the equinoxes in light ascension. When Am is less than Av, mean 
time precedes the apparent, but the apparent precedes the mean when Am 
is greater. For as the earth revolves on its axis in the direction Av, or in the 
order of right ascension, that body whose right ascension is least, comes to 
the meridian first; that is, when the sun’s true right ascension is greater . 
than its mean longitude corrected as above, the equation of time must be 
added to the apparent, to get the mean time, and when it is less, it must be 
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Examfile 1. What is that part of the equation of time which de¬ 
pends on the obliquity of the ecliptic on the 17th of July, and what 
is the true equation ? 

Am. The degrees on the ecliptic is less than those on the equa-" 
tor by two nearly, which in time is 8 minutes, and hence the sun, 

subtracted. But to convert mean time into apparent, we must subtract in 
the former Case, and add in the latter. 

The following tables were constructed on the above principles. The first 
gives the equation resulting from the obliquity of the ecliptic alone, the 2d 
the equation depending on the eccentricity of the earth’s orbit or the sun’s 
mean anomaly, and the 3d the true equation, or the equation resulting from 
both these causes. 

TABLE I. 
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3 -TU # 6. "1- 7. /• 8. 
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1 0 19 8 8 33 0 8 34 5 
2 0 39 7 8 42 9 3 23 6 
o O 0 59 5 8 52 2 8 12 1 
4 1 19 2 9 0 9 S 0 0 
5 1 38 8 9 8 Li 7 47 1 
6 l 58 O O 9 16 o O 7 33 7 
7 9 17 7 9 23 1 7 19 6 
8 2 37 0 9 29 2 7 5 0 
9 2 56 1 9 34 6 5 49 8 

10 3 15 0 9 39 4 6 34 1 
11 3 33 7 9 43 5 6 18 0 
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15 4 15 9 9 52 7 5 8 1 
16 5 o o 2 9 53 3 4 49 5 
17 
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18 5 36 8 9 52 ] 4 11 i 
19 5 53 1 9 50 5 3 51 4 
20 6 9 0 9 48 1 «.> 31 4 
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O 11 1 
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as depending on the obliquity of the ecliptic is 8', or rather 7', 49", 
slower than the clock. The true equation is 5 min 41 seconds 
slower: hence the equation depending on the sun’s mean anomaly 
or the sun’s distance from the apogee is 7', 49",—5', 4l",=3', 
8", sun slower, See 

2. On what days of the year is the true equation of time noth¬ 
ing, and also the equation depending on the obliquity of the eclip¬ 
tic. 

TABLE II. 
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5. What is the equation of time depending on the obliquity of 
the ecliptic and the eccentricity of the earth’s orbit, respectively, 
on the 27th of October ? 

Note. Here as before, the equation depending on the ecliptic, and like¬ 
wise the true equation being found, their difference will give the equation 
depending on the earth’s eccentricity, &c. 

4. What is the equation of time when the sun is in the begin¬ 
ning of taurus ? 

TABLE III. 

D
av

s.
 Jan. Feb. March. April. J\Iay. June. July. Aug 

Add Add Add Add Sub. Sub. Add Add 

1 3' 32" 9 13'51" 
O O 12' 36" 6 3' 55" 7 3' 6" 3 2' 3 6" 5 3' 21' 1 5' 56"! 

2 4 1 3 13 59 3 12 24 2 3 37 4 3 13 8 2 27 4 O o 32 6 5 52 4 
3 4 29 4 14 6 6 12 11 o O 3 19 

r> 
O 3 20 6 2 18 0 3 43 8 5 48 1 

4 4 57 1 14 13 0 11 58 0 O 1 3 3 26 9 2 8 1 3 54 8 5 43 2 
5 5 24 5 14 18 6 11 44 3 2 43 5 3 32 6 l 57 8 4 5 5 5 37 *7 ( 
6 5 51 5 14 23 5 11 30 1 2 25 9 o O 37 7 1 47 2 4 15 8 5 31 6 

7 6 18 0 14 27 5 11 15 6 2 8 6 O 42 o 
O 1 36 3 4 25 8 5 25 0 

8 6 44 1 14 30 8 11 0 6 1 51 5 n 
O 46 2 1 25 0 4 35 4 5 17 8 

9 7 9 7 14 33 3 10 45 o 
O 1 34 C 3 49 6 1 13 5 4 44 7 5 10 0 

10 7 34 8 14 34 9 10 29 7 1 18 0 3 52 4 l 1 7 4 53 6 5 1 6 
11 7 59 o 

O 14 35 8 10 13 7 1 1 7 3 54 6 0 49 7 5 2 0 4 52 6 
12 8 23 2 14 36 0 9 57 5 0 45 7 3 56 2 0 37 5 5 9 9 4 43 0 
13 8 46 6 14 35 n 

O 9 40 9 0 29 9 O 
O 57 2 0 25 2 5 17 4 4 32 9 

14 9 9 4 14 33 9 9 24 1 0 14 5 3 57 7 0 12 7 5 24 4 4 22 2 
15 9 31 5 14 31 8 9 7 0 s: ibO 6 3 57 7 add 0 0 5 30 9 4 10 9 
16 9 52 9 14 28 9 8 49 7 0 15 

o 
O 3 57 0 0 12 8; 5 36 9 3 59 1 

17 10 13 6 14 25 2 8 32 1 0 29 7 3 55 8 Q 25 6 5 42 4 o 
O 46 8 

18 10 33 6 14 20 8 8 14 4 0 43 7 3 54 1 0 38 5 5 47 3 3 33 9 
19 10 52 9 14 15 7 7 56 4 0 57 

o 
O 

o 
O 51 9 0 51 4 5 51 6 n 

O 20 5 
20 11 11 4 14 9 9 7 38 3 1 10 6 3 49 1 1 4 O 

o 5 55 4 3 6 7 
21 11 29 2 14 n 

O 4 7 20 0 1 23 5 3 45 8 1 17 2 5 58 6 2 52 o 
O 

22 11 46 1 13 56 2 7 1 6 1 35 9 o 
O 42 0 1 30 0 6 1 o 

O 2 37 5 
23 12 2 3 13 48 3 6 43 1 1 47 9 3 37 7 1 42 8 6 3 4 2 22 2 
24 12 17 7 13 39 9 6 24 6 1 59 4 3 32 8 1 55 6 6 4 9 2 6 5 
25 12 32 2 13 30 8 6 5 9 2 10 5 3 27 4 2 8 2 6 5 8 1 50 4 
26 12 45 9 13 21 1 5 47 2 2 21 1 o 21 6 2 20 8 6 6 1 1 34 0 
27 12 58 8 13 10 8 5 28 5 2 31 2 3 15 O 

O 2 33 2 6 5 9 1 17 1 

28 13 11 0 12 59 9 5 9 8 2 40 8 3 8 5 2 45 4 6 5 1 0 59 9 
29 13 22 

o 
O 12 48 5 4 51 2 2 49 9 3 1 2 2 57 5 6 O 

O 7 0 42 O 
O 

30 13 32 8 4 32 6 Q 58 4 2 53 4 3 9 4 6 1 7 0 24 4 
31 13 42 4 4 14 1 2 45 2 5 59 2 0 6 o 

/W 

In the 1st table the signs of the 1st and 3d quarters of the ecliptic are at 
the top, and the degrees at the left hand. The signs of the 2d and 4th 
quarters are at the bottom, and the degrees at the right hand. When the 
sun is in the former signs, it is faster than the clock, but when in the latter, 
slower. Thus when the sun is in 15° of 8 or rr^ it is 9' 52" 7 faster than, 
the clock, or the apparent time is faster than the mean ; but when the sun 
is in 20° of 25 or V5 it is 6' 34" 1 slower than the clock. The 2d table is 
applied in like manner, according to the respective sign ar.d degree of the 
sun’s anomaly. Thus when his anomaly is 2 signs 13°, or when the sim is 
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PROB. 23. 

To shew at one view the length of day and night, in all places 
upon the earthy at any given time; and to explain how the 
vicissitudes of day and night are really madey by the motion of 
the earth on its axis, in 24 hours, the sun standing still. 

The sun being at an immense distance from our globe, the rays 
of light emitted from it may therefore be considered as parallel, 
and hence it will always illuminate one half of the globe, or that 

TABLE III.—Continued. 

Sub 

jir 2s. 13° distant from his apogee, 
S the equation of time depending 

■ ^ on this cause is 7m. 18" 8, when 
in 9s. 29° the equation is 6m. 39^ 

---S 7, &c. 
l'J38"^S The 3d table is constructed, 
it) 15 0 ^ from the two first, and contains 
9 51 2 ^ the equation of time for leap years, 
9 26 7 but particularly calculated for the; 
9 1 7 S year 1812. From this however 
8 36 2 ^ the equation of time may be nearly 
8 10 ]I found for common years as fol- 
7 43 6 ^ lows : 1st. When the equation in- 
7 16 7 S creases and the clock is faster than 
6 49 o ) the sun, or the sign is add. ti.ke 
6 21 6 ^ the difference between the equa- 
5 53 5 tion of the given and preceding 
5 25 1 S days : then add of this differ- 
4 56 3 ^ ence for the 1st year after leap 
4 27 3 s year, % for the 2d. and ^ for the 
3 58 - S 3d. from the 1st of January until 
3 28 8 S the equation begins to decrease, 
2 59 2 ^ but at other times of the year, in 
2 29 5 t this case subtract $ of the differ- 
1 59 6 S ence for the 1st. ^ for the 2d. and 
1 29 7 S £ for the 3d year after leap year. 
0 59 8 s 2d. When the clock is faster or 
0 29 8 S the equat. to be added, and the 

add 0 2 S equation decreases; take the differ-. 
0 30 2 S ence of the equations for the giv- 
1 0 1 (j en and preceding days as before, 
1 29 8 c then add £ this difference for the 
1 59 4 S 1st. £ for the 2d. and $ for the 
2 28 9 ^ 3d, year after leap year. 
2 58 1 ^ sq. when the equation increas- 
3 27 1 es and the clock is slower, or the 

equat. to be subtracted ; take % of 
the difference, &c. found as above, and subtract it for the 1st year, ^ for 
the 2d. and £ for the 3d. after leap year. 4th. and last case, when the 
equation decreases, and the clock is slow (or the equat. to be subtracted) 
add £ of the difference, &c. for the 1st year, £ for the 2d. and | for the 
3d. after leap year. Thus to find the equat. of time on the 14th of January, 
1811, being the 3d. after leap year : from table 3d. above the diff. between 
the equat. on the 13th and 14th days, is 22" 8, £ of which is 5" 7, which, 
in this case is to be added to 9" 4, the sum is 9' 15" 1 the equation 
for the 14th of Jan. 1811, agreeing to the decimal with that given in the 

M 

Sept. Oct. JVbv. 

a 
Q Sub. Sub. Sub 

t 0' 12" 3 10' 21" 4 1C ;4" 8 

2 0 31 1 10 40 2 16 15 4 
o O 0 50 1 10 58 6 16 15 3 

4 19 3 11 16 7 16 14 3 
5 1 28 8 11 34 4 16 12 5 
6 1 48 6 11 51 8 16 9 9 

7 2 8 5 12 8 7 16 6 4 

8 2 28 7 12 25 3 16 2 1 
9 2 49 0 12 41 4 15 57 0 

10 3 9 5 12 57 1 15 51 1 
11 3 30 1 13 12 4 15 44 3 
12 3 50 9 13 27 2 15 36 7 
13 4 11 7 13 41 5 15 28 3 
14 4 32 7 13 55 3 15 19 0 
15 4 53 7 14 8 5 15 9 0 
16 5 14 8 14 21 2 14 58 1 

17 5 35 9 14 33 4 14 46 3 

18 5 57 0 14 45 0 14 33 8 
19 6 18 1 14 55 9 14 20 4 
20 6 39 2 15 6 2 14 6 2 

21 7 0 2 15 15 9 13 51 2 
22 7 21 1 15 24 9 13 35 4 
23 7 41 9 15 33 3 13 18 7 
24 8 2 6 15 40 9 13 1 3 
25 8 23 1 15 47 8 12 43 1 
26 8 43 4 15 54 0 12 24 1 
27 9 3 5 15 59 4 12 4 4 
28 9 23 4 16 4 0 11 43 9 
29 9 43 0 16 7 9 11 22 7 
30 10 2 3 16 11 0 11 0 8 
31 16 13 3 
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hemisphere turned towards it, while the other will remain in dark¬ 
ness. If the gobe be therefore elevated according to the sun’s de¬ 
clination, it is evident that the sun will illuminate all that hemis¬ 
phere which is above the horizon, that the wooden horizon itself 
will be the circle terminating light and darkness ; and that all 
those places below it are wholly deprived of the solar light. The 
globe being fixed in this position, those arches of the parallels of 
latitude which are above the horizon, are the diurnal arches (def. 
105) and shew the length of the day in all those latitudes, at that 
time of the year, corresponding to the declination for which the 
globe was rectified; the remaining parts of those parallels, which 
are below the horizon, are the nocturnal arches (def. 106) which 
shew the length of the night in those places at the same time. (The 
length of the diurnal arches may be found by reckoning how ma¬ 
ny hours are contained between any two meridians or any two pla¬ 
ces cutting the same parallel of latitude, in the eastern and western 
parts of the horizon. Or if these two places be brought to the 
brazen meridian respectively, and marking the two points then cut 
on the equator by the meridian, the number of degrees between 

nautical almanac for 1811. Again to find the equat. for the 23d of June, 
1811. Here the differ, is 12" 8, -f of which is 9" 6, hence 1' 42" 8—9" 
6=1' 33" 2 the eq. required ; that given in the naut. aim. is 1' 33" 8. 
These methods are therefore sufficiently exact for almost any purpose. The 
other rules are applied in the same manner. 

The rule given by Me. Kay in his complete Navigator in the explanation 
of table 29th. holds only in a few particular cases, though given as general. 
It is therefore only calculated to lead into innumerable errors. 

The equation of time being applied to the apparent time (or time shewn 
by a dial, &c.) according to its title in the table, will give mean time, or 
the time shewn by a watch or clock; but the contrary method is to be 
used to turn mean time into apparent. Thus, on the 20th of March the 
equation is V 38" 3 additive to the apparent time, which shews that the 
sun or dial is slower than the clock or watch, and therefore 12 o’clock by 
the dial is I2h. 7' 38" 3, by the watch ; on the contrary, 12 o’clock by the 
watch is llh. 52' 21" 7, by the sun or dial; and it is worthy of remark, 
that this is the instant when the sun’s meridian altitude ought to be ob¬ 
served, in order to find the latitude. 

The best tables of the equation of time will not hold for many years. 
For the sun’s apogee has a progressive motion, the equinoctial points a 
regressive motion, the obliquity of the ecliptic continually varies, and 
even the sun’s longitude at noon, at the same place, is different for the 
same days on different years, and as it is for apparent noon the equation 
is computed, it must therefore be computed anew every year, when great 
exactness is required. 

The sun’s apogee, according to Mayer, in the year 1716, was 8° of can¬ 
cer, and in 1771, 9° of cancer, which gives its motion equal to 1° in 55 
years, or nearly 1' 5" 45, every year. Delambre (tab. 1.) makes the sun’s 
apogee, in 1800, 3s. 9° 29' 3", and in 1820, 3s, 9° 49f 46", the difference 
between which is 26' 43", the mot. of the apogee in 20 years, or V 2n 15, 
yearly. For more information on the equation of time, consult Delambre’s 
tables, pa. 14, 15, 16, 17, and pa. 30, 31, 32, he. notes; and the articles 
there referred to in La Lande’s astronomy. It may be necessary to add, 
that the 1st table is calculated for the obliquity 23° 27' 54", and that the 
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these two points, on the equator, converted into time (note to 
prob. 6 ) will give the length of the day, and the number of de¬ 
grees between the same points reckoned on the other part of the 
equator, converted into time in like manner, will give the length 
of the night. The globe being again fixed in the same position as 
before, all those places that are in the western semicircle of the 
horizon will have the sun rising (For the sun standing still in 
the zenith or vextex, or over that degree of the brazen meridian 
corresponding to its declination, appears easterly, and 90° distant 
from the zenith of all those places that are in the western semicir¬ 
cle of the horizon (definitions 42 and 50) and consequently is then 
rising in those places.) If we now take any particular place on 
the globe and bring it to the meridian, and then bring 12 marked 
on the hour circle to the meridian (the index must be set to the 
lower 12. if it be fixed on the outside of the brass meridian) the 
globe being then turned on its axis, until the aforesaid place comes 
to the western side of the horizon, the index will then shew the 
time of sun rising in that place. Turn the globe again from 
west to east, and the index will shew the progress made in the day, 
every hour, and in every place on the globe, by the real motion of 
the earth on its axis. When they come under the brass meridian 
they have their noon, and the sun has then its greatest altitude be- 

correction annexed to this table is calculated for a second in the variation 
of this obliquity ; and that the 2d table is calculated for the year 1800, 
and may be adapted to any other year, by diminishing 1" 2 for every 100 
years, according to Delambre. Nevil Maskelyne, in the nautical aim. for 
1813, assumes the mean obliquity of the ecliptic for the beginning of that 
year 23° 27' 51" 3, and its mean secular diminution 42" 6. 

All the elements, &c. from which these tables are calculated, such as 
the sun’s mean longitude mean anomaly, obliquity of the ecliptic, true 
right ascension, &c. are easily found from Mayer's tables, or rather from 
Delambre's, translated by Vince. These tables, rendering these calcula¬ 
tions, and that of the nautical almanac itself, a mere arithmetical or me¬ 
chanical operation, which any schoolboy can become acquainted witii in a 
few weeks. The learner must however notice, that, as the equation of 
time is computed for apparent noon, or when the sun is on the meridian, 
and as the time of apparent noon in mean solar time, for which we com¬ 
pute, can only be known by knowing the equation of time, it follows, that 
to compute the equation on any day, the equation must be assumed the 
same as it was four years before on that day, from which it will differ but 
very little. This will give the apparent time sufficiently exact for the 
purpose of computing the equation. Where great exactness is required, 
the operation may be repeated. Thus, if it be required to find the equation 
for the 10th of March, 1816; the equation for the 10th of March, 1812, 
being 10^ 29" 7, to be added to apparent noon, to give the corresponding 
mean time ; hence the computation must be made from the tables for 
March 10th, at Oh. 1U 29" 7. In the month of January and February, in 
leap year, one day must be taken from the given time before the compu¬ 
tation is made. When the equation 4 years before is not given, the equa¬ 
tion may be computed accurately enough for noon mean time, particular¬ 
ly if the operation be repeated. 

That the learner may understand the reason of the above, he must ob¬ 
serve, that as a meridian of the earth, when it leaves m (in the foregoing 
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ing equal to the number of degrees between the place and the hori¬ 
zon, rtckoned the nearest way. The motion of the globe being 
still continued easterly, the sun will seem to decline westward, 
until, as the places successively come to the eastern part of the 
horizon, the sun appears to set in the western part.* 

Example 1. To find the length of the day and night in all places 
on the earth on the i 6th of April, and to shew how they are caus¬ 
ed, &c. 

fig.) returns to it in 24 hours, it may be considered, when it leaves that 
point as approaching a point 360° distant from it, at which it arrives in 
24 hours The relative velocity, therefore, with which a meridian accedes- 
to or recedes from in, is at the rate of 15° an hour, and consequently 
Wht-n the meridian passes through v, the arc vm reduced into time at the 
rate of 15° to an hour, will give the equation at that instant. The equa¬ 
tion of time is therefore computed for the instant of apparent noon, or 
When the sun is on the meridian. 

If the place be situated east or west from the meridian of Greenwich, 
allowance must he made for the difference of longitude in time. 

The above note, &c. though rather long, inu-f not, however, be unwel¬ 
come to students who desire accuracy on that subject, and wish to pene¬ 
trate deeper than the surface of those branches of science which they 
make their study, in order to become useful to the community and to 
themselves. 

* From the foregoing solution it will appear, that all those places upon 
the earth which differ in latitude, have their days of different lengths, ex¬ 
cept when the sun is in the equinoctial, being longer or shorter, in propor¬ 
tion to that part of the parallel that is above tlie horizon; if the entire of 
the parallel be above the horizon, it is evident that there is constant day, 
but if no part appear above the horizon, that there is constant night. Those 
places that are in the same latitude have their days of the same length, but 
commencing sooner or later, according as the places differ in longitude. It 
will likewise appear, that the arches of those parallels which are above the 
horizon in north latitude, are equal to those below the horizon in south lati¬ 
tude, and therefore when the inhabitants of north latitude have the longest 
day, those in south latitude have the longest night, and vice versa, the arches 
of the parallels in south latitude which are above the horizon being equal to 
those in north latitude which are below. In this problem, as in all others 
where the pole is elevated to the sun’s declination, the sun is supposed to 
be fixed, and the earth to revolve on its axis from west to east. If a small 
brass ball fixed upon a strong wire, be contrived to screw on the brazen me¬ 
ridian like the quadrant of altitude, this ball placed over the sun’s declina¬ 
tion at a considerable distance from the globe, will represent tlie real sun, 
and assist tlie young student in more easily comprehending’ the problem. 
Such contrivances, however, to boys of genius, who at one glance can com¬ 
prehend such problems, will appear childish and unnecessaiy, but the teach¬ 
er, from experience, will find that there are few who does not stand in need 
of such. The learner will perceive that tlie 2d problem above is calculated 
to shew the positions of the earth with regard to tlie sun, that are most re¬ 
markable, such as the equinoxes and solstices, from which will be seen, at 
one view, when the days and nights are equal all over the world, and tlie 
comparative lengths of the longest and shortest. When the si in is in the 
equinoxes, the poles are placed in the horizon, the sun having then no de¬ 
clination, but when the sun is in either solstice, the pole is elevated 23° 28*, 
the north pole if it be the summer solstice, and the south pole if the winter 
solstice. 
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Ans. On the i 6th of April the sun’s declination is 10° north, 
the north pole being therefore elevated 10°, the sun will then illu¬ 
minate all those places above the horizon, See being fixed over 
the meridian at 10° of declination. The globe being then fixed 
in this position, the arches of the respective parallels ot latitude or 
the diurnal arches will be as follow : In the parallel of 20° N. there 
are 12i meridians on Bardin’s, or 1S| on Cary’s globes, which 
answer to 188° on the equator, or to 12 hours 32 minutes. In the 
parallel of 40° N. there are 197|°, which are equal to 19^ meri¬ 
dians of Cary’s, or 13£ of Bardin’s globes, or 13 hours and 10 mi¬ 
nutes. In the parallel of 60° N. there are 211°, which corres¬ 
pond to 21-Jg. on Cary’s, or 14Th. on Bardin’s globes, or 14 hours 
4 minutes; and so on, for any other latitude. It is plain, also, that 
if the above degrees be taken from 360°, the meridians on Cary’s 
globes taken from 36, or those on Bardin’s, or the hours, from 
24, the remainders will give the degrees, meridians, or hours re¬ 
spectively, corresponding to the length of the night in each of the 
above respective latitudes. In the same manner the length of the 
day is found in any parallel of south latitude ; thus in the parallel 
of 60° south, there are 145°= 14£ mer. on Cary’s, or 9| on Bar¬ 
din’s;^ h. 40 min See If we now bring any particular place, as 
Washington, to the brazen meridian, then all those places in the 
eastern horizon will have the sun setting when it is noon at Wash¬ 
ington, all those in the western will have the sun then rising, and 
all those places under the brass meridian will have noon; and the 
height of the sun in these respective places under the meridian, 
will be equal to their distance from the nearest horizon ; thus, in 
latitude 10° N. the sun is vertical; in any latitude less than 10° N. 
the sun appears north ; in 20°, 40®, and 60° north, the meridian 
altitude is 80°, 60°, and 4?0° respectively, the sun appearing due 
south ; and in 60° south latitude, the meridian altitude is 20°, See. 
The index being now set to ’2, and Washington brought to the. 
western part of the horizon, the hours past over by the index, or 
the hours pointed out by it taken from 12, will shew the time of 
sun rising there, namely, half past five nearly ; the globe being- 
then turned eastward, the index will shew the progress of day and 
night in each place. Thus, when the index has passed over two 
hours, to all those places that were at the western horizon with 
Washington, it will be then two hours after sun rise, and to those 
places that were at the eastern horizon, it will be two hours after 
sun set, Sec. ; when Washington comes to the eastern horizon, the 
sun will then set at half past six, nearly. The length of the night 
will be pointed out by the index, if the motion of the earth be con¬ 
tinued eastward, until Washington again appears in the western 
part of the horizon, See. 

Xote. If the meridian be drawn through every 15° of the equator, twice 
the number reckoned from the horizon to the brass meridian will give the 
length pf the day, 
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2. Required the length of the day and night, &c. as above, in 
all places on the globe, on the following days ; 10th of March, 
21st do. 19th of May, 2 1st of June, 23d of July, 23d of Septem¬ 
ber, and 21st of December ? (See the next prob ) 

PROB. 24. 

To exjilain in general the alteration of seasons, or length of the days 
and nights, in every part, of the earthy caused by the earth's an¬ 
nual motion in the ecliptic. 

jRule. Rectify the globe for every degree of the sun’s decli¬ 
nation from the equinoxes (or any other point of the ecliptic) un¬ 
til the sun returns to the same point again, the different portions 
of the parallels of latitude, which are above the horizon, corres¬ 
ponding to each degree of elevation, will give the length of the 
day in each respective latitude, as in the last problem. 

Note. The last problem is only a particular case of this; what is required 
here in general being there required only for one day, and the method of 
performing this, therefore, differs in nothing from that given in the last 
problem but in the different elevations of the pole. We shall here there* 
fore more particularly solve the problem for the most remarkable positions, 
the equinoxes and solstices, as the method of performing the problem for any 
other point in the ecliptic, corresponding to any day in the year, or to any 
degree of the sun’s declination, is the same as in the last problem, only ob¬ 
serving, that when the declination is south, the south pole must be elevated. 

For the Equhioxes. At this time the sun having no declination, 
the two poles of the globe must be placed in the horizon ■, then 
the point aries on the equator being brought to the eastern part of 
the horizon, the point libra will be in the western point, and the 
sun will appear setting to the inhabitants of Greenwich, and to all 
the places under the same meridian (if the first meridian pass 
through Greenwich) from this position let the globe be gradually 
turned on its axis towards the east, the sun will then appear to 
move towards the west, and to be setting, as the different places 
successively enter the dark hemisphere ; the motion of the globe 
being continued until Greenwich comes to the western edge of the 
horizon, the moment it emerges above the horizon, the sun will 
then appear to be rising in the east If the motion of the globe be 
continued eastward, the sun will appear to rise higher and higher, 
and to move towards the west ; when Greenwich comes to the 
brass meridian, the sun will appear at its greatest height, and af¬ 
ter Greenwich has passed the meridian, the sun will continue its 
apparent motion westward, and gradually diminish in altitude, un¬ 
til Greenwich comes to the eastern part of the horizon, when the 
sun will again be setting. During the revolution of the earth on 
its axis, every place on its surface has been twelve hours in the 
dark, and twelve hours in the enlightened hemisphere, and there¬ 
fore the days and nights arc equal all over the world. For all the 
parallels ot latitude are divided into two equal parts by the horizon. 
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and in every degree of latitude there are 90° between the eastern 
part of the horizon and the brass meridian, or nine meridians on 
Cary’s, which are equal to six on Bardin’s globes, and correspond 
to six hours, which is half the length of the diurnal arch ; and 
hence the length of the day in every latitude, when the sun is in 
the equinoxes, is twelve hours. The meridian altitude of each 
place, found as in the foregoing problem, will be exactly equal to 
the complement of their latitudes. Thus the meridian altitude of 
the sun at Greenwich will be 38° 31' 21", at Philadelphia 50° 3' 6", 
at Boston 47° 36' 45", at Washington city 51° 7', (in each of 
the above places the sun will appear south, when on the meridian) 
at Quito 89° 46' 43", at the Cape of Good Hope (the town) 
56° 4' 45". In both these places the sun will appear north when 
on the meridian. At the equator the sun’s altitude is 90°, and is 
there consequently vertical. But at the poles the sun having no 
altitude, will therefore appear in the horizon, and as its altitude 
varies very little during the space of 24 hours, it will appear to 
glide the whole day along the edge of the horizon, until it comes 
to the same point again ; but as its declination increases, it will 
rise gradually above the horizon, describing a kind of spiral in the 
heavens, until it reaches its greatest altitude 23° 28', from which 
it returns in the same gradation until it appears again in the hori¬ 
zon at the next equinox. At the contrary pole it will descend be¬ 
low the horizon in the same manner, and at the equinoxes the sun 
will rise and set at six o’clock to all the inhabitants of the earth 
except at the poles. 

As the sun now advances from aries towards the next tropic, or 
summer solstice, if we gradually elevate the north pole, according 
to the progressive alterations made in the sun’s declination, by his 
motion in the ecliptic, we shall find the diurnal arches of all those 
parallels that are in the northern hemisphere, continually increase ; 
and those in the southern hemisphere continually decrease, in the 
same proportion as the days increase and decrease in those respec¬ 
tive places. We shall likewise see the entire of those parallels 
where constant day begins round the north pole, gradually elevat¬ 
ing above the horizon, whilst those round the south pole, where 
constant night commences, are depressed in the same manner.— 
Let us for example observe the sun when his declination is 10° 
north, the same phenomena will take place as described in the 
solution of example the 1st. in the foregoing problem. Moreover, 
the globe remaining in this position, the meridian altitude of the 
sun in all those places whose latitude is north, will be equal to the 
complement of the latitude, or what it wTants of 90°, added to the 
sun’s declination, this being their distance from the nearest hori¬ 
zon ; and the meridian altitude of the sun in all those places hav¬ 
ing south latitude, will be the complement of the latitude made, 
less by the sun’s declination. To those in 10° north latitude, the 
sun will appear vertical, and to the southward of those whose lati¬ 
tude is more than 10° north. But to those in south latitude, the 
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sun will appear to the northward, and likewise to those within the 
parallel of 10° north. Thus the meridian altitude of the s m at 
Greenwich will now he 48° 31' 21". at Philadelphia 60° 3' 6", 
at Washington 6!° 7', at Quito 79° 46' 4i", at the Cape Town 
46° 4' 4j". Hence it appears that as the sun’s declination in¬ 
creases northward, the meridian altitude of the sun, to those in 
north latitude, increases, and to those in south latitude lessens 
in the same proportion. Thus when his declination is 20° north, 
the meridian altitude at Greenwich is 58° 31' 21", but at Quito 
is 69° 46' 43". Now as the sun’s greatest declination cannot ex¬ 
ceed 23° 28', his greatest altitude at Greenwich cannot exceed 
61° 59' 21", at Philadelphia 70° 3l' 6", Sec. On the contrary, 
the least meridian altitude at Quito cannot be less than 66° 18' >3", 
nor at the town of the Cape of Good Hope less than 32° 36' 45", 
&c. The contrary rule must be observed when the declination is 
south. From what has been here said, it appears how the sun’s 
meridian altitude may be found at any place, on any given day, by 
having his altitude on some preceding day, and a correct table of 
the sun’s declination. But to proceed : The globe remaining still 
in the same position, we shall find that the lower part of the 80th 
parallel of longitude just touches the horizon, and that therefore 
all the space between this and the pole is in the illuminated hem¬ 
isphere, or has constant day, the beginning of constant day light 
being then at this parallel. From this parallel to the equator, and 
from thence to the 80th parallel of south latitude, the days grad¬ 
ually shorten ; the upper part of this parallel just touching the 
horizon, therefore total darkness commences there, and all the 
places between this and the south pole have constant night. It 
holds likewise universally, that whatever be the length of the day 
in north latitude, the night will be equally long in the same lati¬ 
tude south, vice versa, and that at the equator the days and nights 
are always equal. In the same manner we may reason with regard 
to any other degree of the sun’s declination until he is advanced to 
the tropic of cancer. 

For the summer solstice. The summer solstice, in north lati¬ 
tude, happens on the 21st of June. On this day the sun enters 
cancer, at which time his declination is greatest, being 23° 28'. 
The globe being elevated to this decimation, bring cancer to tne 
brass meridian, over which, in the point where cancer intersects 
it, let the sun be supposed to be fixed at a considerable distance 
from the globe, whilst the globe remains in this position, the equi¬ 
noctial point aries will appear in the western part of the horizon, 
and the opposite point libra in the eastern . hence, the equator 
being divided into two equal parts, the one half in the illuminated 
and the other half in the darkened hemisphere, it will therefore 
appear that the day and night at the equator is of the same length, 
that is, 12 hours long each. From the equator to the arctic cir¬ 
cle, the diurnal arches will exceed the nocturnal, or the days will 
be longer than the nights. All the parallels of latitude within this 
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north polar circle, will be above the horizon, and therefore all the 
inhabitants within it will have no night. From the equator to the 
antarctic or south polar circle, the nocturnal arches will exceed the 
diurnal, or the night will be longer than the day. All the paral¬ 
lels of lat. within the south polar circle will now be below the ho¬ 
rizon, and the inhabitants, if any, will have twilight or dark night. 
If instead of cancer, aries or the first meridian be brought to the 
brass meridian, the meridians passing through the respective pla¬ 
ces at the horizon, will (on the equator on which the hours are 
marked) point out half the length of the day. If no meridian on 
the globe passes through any given place, its meridian may be 
found by bringing the place to the brass meridian. The globe re¬ 
maining in this position, the sun will have its greatest or least me¬ 
ridian altitudes according as the places are situated N or S of the 
tropic of cancer in the enlightened hemisphere ; this altitude may 
be found as before. - From this position, if the north pole be 
now continually depressed as the sun’s declination lessens, until 
both poles are again in the horizon, the days and nights decrease or 
lengthen until the sun arrives at the equinoctial again, in the same 
gradations as before, from aries to capricorn, &c. 

From the autumnal equinox to the winter solstice (which to the 
inhabitants of north latitude happens on the 22d of December, at 
which time the sun enters capricorn) the same alteration of seasons, 
of day and night, &c. will take place, and in the same gradation, to 
all the inhabitants of the southern hemisphere, as was observed be¬ 
fore to have taken place, while the sun performed his apparent mo¬ 
tion in the ecliptic, from aries to cancer. By now elevating the south, 
pole in the same manner for the sun’s declination as before the 
north pole was elevated, the same phenomena will appear in suc¬ 
cession, until the sun advances to capricorn. Here as at the sum¬ 
mer solstice, the days at the equator will be twelve hours long, but 
the equinoctial point aries will now be in the eastern part of the 
horizon, and libra in the western. From the equator to the south 
pole, the seasons, 8cc. will be as before in the summer solstice, in 
the northern hemisphere (exclusive of the variation made by the 
earth’s distance from the sun being now at her nearest) the greatest 
meridian altitudes of the sun will now be in south latitude, and the 
least in north ; the reverse of what they were when the sun was in 
cancer. Thus at Greenwich the sun’s greatest altitude will be 15° 
2' 21", instead of 61° 59' 21", &c. Hence it appears, that the 
difference between the sun’s greatest and least meridian altitudes 
at any place in the temperate zone, is equal to the breadth of the 
torrid zone, viz. 46° 56'. The difference between the sun’s great¬ 
est and least altitude at the poles, is equal to the sun’s greatest de¬ 
clination ; his altitude or depression at either pole being always 
equal to the declination. Moreover the sun’s altitude at the pole 
never varies, as in other latitudes, for at the poles the sun while 
visible is always on the meridian, &c. &c. 

N 
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PROB. 25. 

To place the globe in the same situation with respect to the poles of 
the equinoctial, as our earth is to any of its inhabitants, so as to 
shew at one view the length of the days and nights in any particu¬ 
lar place, at all times of the year * 

Rule. Rectify the globe according to the latitude of the place ; 
then those parts of the parallels of declination which are above the 
horizon, are the diurnal arches, and those parts which are below 
the horizon are the nocturnal arches. Hence the length of the 
days and nights at any time of the year may be determined, as in 
the preceding problems, by finding the number of hours contained 
between the two extreme meridians, which cut any parallel of de¬ 
clination, in the eastern and western parts of the horizon. 

We shall exemplify this rule, by placing the globe in its more 
remarkable positions, such as the right, oblique and parallel. (See 
definitions 87, 88 and 89.) 

For the right sphere. Here the given place must be on the 
equator, and the globe rectified for 0° of latitude, or both poles of 
the globe must be placed in the horizon, then the north pole on 
the globe will correspond to the north pole of the heavens, and all 
the heavenly bodies will appear to revolve round the earth from 
cast to west, in circles parallel to the equinoctial, according to their 
different declinations.t When the sun is in the equinoctial, he will 

* In this problem and in all others, where the pole is elevated to the lati¬ 
tude of a given place, the earth is supposed to be fixed, and the sim to move 
round it from east to west. When the given place is brought to the brass 
meridian, the wooden horizon is the true rational horizon of that place, but it 
does not separate the enlightened part from the dark, as in the two preced¬ 
ing problems; however, there is nothing unnatural in elevating the pole to 
the latitude of the place on the earth. For, as Keith remarks, in the note to 
prob. 22d of his treatise on the globes, this is placing the globe in its true 
situation respecting the heavens and the fixed stars. The pupil who wishes 
to make himself master of the globes, must endeavour to comprehend why 
he sometimes elevates the pole to the latitude of the place, and at other 
times to the sun’s declination. A little perseverance and diligence will soon 
remove every difficulty, and he should be well convinced, that, notwith¬ 
standing the exertions of the most eminent masters, without close applica¬ 
tion and attention on his side, nothing but a superficial knowledge of any 
subject can be obtained. 

f The ecliptic being- drawn on the terrestrial globe, young students are 
often led to imagine that the daily apparent motion of the sun round the 
earth is performed in the same oblique manner. To correct this false prin¬ 
ciple, we must suppose the ecliptic to be transferred to the heavens, where 
it properly points out the sun’s apparent annual path among the fixed stars. 
As the sun, in receding from or advancing towards the equinoctial every day, 
alters, a little, his declination; if we therefore suppose all the torrid zone to 
be filled up with a spiral line or thread, having as many turns, or a screw 
having as many threads as the sun is days ingoing from one tropic to another, 
and these threads at the same distance from one another on the globe as the 
sun alters his declination, in one day, in all those places over which it passes; 
this spiral line or screw will represent the apparent paths described by the 
sun round the earth every day, in passing from one tropic to another. Thus, 
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fee vertical to all the inhabitants situated upon the equator, and his 
apparent diurnal path will be over that line : when the sun has any 
declination, as 10° N. for example, his appareig diurnal path will 
be from east to west, nearly along that parallel. When he comes 
to the tropic of cancer, his diurnal path in the heavens will be along 
that line, and he will be vertical to all the inhabitants on the earth 
in latitude 23° 28' north. The inhabitants on the equator will al¬ 
ways have 12 hours day and 12 hours night, notwithstanding the 
variation of the sun’s declination, from north to south, or from 
south to north, because the parallel of latitude, which the sun ap¬ 
parently describes for any day, will always be cut into two equal 
parts by the horizon ; all the stars will here be 12 hours above the 
horizon from rising, and 12 hours below it from their setting ; and 
in the course of a year an inhabitant on the equator may see all the 
stars in the heavens. Those which are at or very near the pole, 
will always nearly remain in the same point of the heavens, and 
the circles which the stars describe in their apparent diurnal revo¬ 
lutions, will be greater in proportion as they are distant from the 
poles, or approach nearer the equator. The sun’s greatest meri¬ 
dian altitude at the equator will be 90°, and the least 66° 32', the 
altitude of any celestial body being here always equal to the com¬ 
plement of its declination, or its distance from the equinoctial. 
Hence the stars that are situated in the equinoctial, will be always 
vertical to the inhabitants of the equator, and the meridian altitude 
of any others will be always equal to the complement of the paral¬ 
lel of latitude where they are vertical, or to the complement of their 
declination. Those at the pole, in a right sphere, will have no al¬ 
titude, for the same reason, and will therefore appear in the horir 
zon. (Here we do not consider the effects of refraction, parallax, 
See.) During one half of the year an inhabitant of the equator will 
see the sun due north at noon, and during the other half it will be 
due south when on the meridian. 

For the oblique sphere,* If from the right position we gradual¬ 
ly elevate the pole (the north for example) according to the dif- 

if the thread be fastened at the point capricorn, and wound round the globe 
towards the right hand or the equator, by turning the globe from east to 
west, until we arrive at cancer, it will point out the paths described by the 
sun daily, from the winter to the summer solstice. But if the tliread be 
wound towards the left hand from cancer, until we come to capricorn again, 
it will describe the sun’s path from the summer to the winter solstice, or the 
remaining half year. But, as the inclinations of those threads to one another 
are but small, especially near the tropics, we may suppose each diurnal 
path to be one of the parallels of latitude drawn, or supposed to be drawn 
upon the globe, as above. 

* Every inhabitant of the earth, except those who live upon the equator 
and at the poles, has an oblique sphere, and hence the globe must be recti¬ 
fied for every latitude accordingly. But by elevating and depressing the 
poles, for every latitude according to the situation of the places which are 
given, the student may imagine that the earth’s axis moves northward or 
southward just as the pole is elevated or depressed. This is however a mis¬ 
take, as the earth’s axis has no motion, except a kind of libratory motion. 
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ferent latitudes from the equator towards the elevated poles, the 
lengths of the diurnal arches will continually increase, until we 
come to a parallel of latitude as far distant from the equator as the 
place itself is from the pole. This parallel will just touch the ho¬ 
rizon, and all the celestial bodies that are between the parallel of 
declination corresponding to this in the heavens and the pole of 
the equinoctial, never descend below the horizon. While we thus 
gradually elevate the globe to the different latitudes, the diurnal 
arches in the southern hemisphere continually diminish in the 
aame proportion, that those in the northern hemisphere increased, 
Until we come to that parallel which is so far distant from the equi¬ 
noctial southerly, as the place itself is from the north pole. The 
upper part of this parallel in the heavens, just touches the horizon, 
and all the stars that are between it and the south pole, never ap¬ 
pear above the horizon. Here all the nocturnal arches of the 
Southern parallels are exactly of the same length as the diurnal 
arches of the corresponding parallels north ; and hence every 
place on the surface of the earth equally enjoys the benefit of the 
sun, in respect of time, the days at one time of the year being ex¬ 
actly equal to the nights at the opposite season 

Thus, the latitude of Washington city being 38° 53' N if 
Washington be brought to the meridian, and the north pole ele¬ 
vated 38° 53* above the horizon, then the wooden horizon will be 

Which is called its nutation, and which has no relation to that conceived above, 
nor can it be represented by elevating or depressing the pole. During the 
earth’s annual revolution round the sun, the axis always remains parallel to 
itself, and the poles always point to the same star or point in die heavens, the 
whole semidi ;meter of die earth’s orbit causing no sensible change or devia¬ 
tion in the earth’s axis. Dr. Bradley having- found from a series of accurate 
observations on the stary draconis, that its annual parallax or the angle under 

which the eemidiameter of the earth’s orbit would appear as seen from y 
draconis, did not amount to a single second. The precession of the equi¬ 
noxes, the aberration of light, &c. causes also some small change in the 
earth’s axis, &c.; but nothing compared to that motion conceived in elevating 
the poles, &c. In going from the equator towards either pole, our horizon 
varies ; thus when we are on the equator, both poles are in the horizon, the 
northern point of the horizon representing the north pole, being opposite the 
north pole in the heavens, &c, If we advance 10°, for example, northward, 
the north point of our horizon is 10° below the pole, &c. Now the wooden 
horizon on the terrestrial globe is immoveable, otherwise it ought to be ele¬ 
vated or depressed, and not the poles ; but whether the pole be elevated or 
the horizon depressed, the appearance will be exactly the same. Though 
the wooden horizon be the true horizon of the place for which the pole is 
elevated, it does not however separate the enlightened hemisphere from the 
dark. For instance, whfen the sun is in aries, and Washington at the meri¬ 
dian, all the places on the globe above the horizon beyond those meridians, 
which pass through the east and west points thereof, reckoning towards the 
north, are in darkness, although they are above the horizon, and all places 
below the horizon between the same meridians and the southern point of 
the horizon, have day light, notwithstanding they are below the horizon of 
Washington. Thus the meridians passing- through 14° E. and 166° W. lon¬ 
gitude from Greenwich, will be the boundaries of light and darkness. 
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the true horizon of Washington : and if the artificial globe be pla¬ 
ced north and south, by a mariner’s compass or a meridian line, it 
will have exactly the same position, with respect to its axis, as the 
real globe has in the heavens Now if we imagine lines to be 
drawn through every degree of the sun’s place parallel to the equa¬ 
tor, or rather through every 59' 8" 3, the sun’s apparent daily 
mean motion, these lines will give the sun’s diurnal path on any 
given day.* By comparing these diurnal paths with each other, 
they will be found to increase in length from the equator north¬ 
ward, and to decrease from the equator southward, therefore when 
the sun is north of the equator, the days are increasing in length, 
and when south of the equator, decreasing. When the sun is in 
the tropic of cancer, the day is nearly 14 h. 40 min. at the equa¬ 
tor 12, and when the sun is at the tropic of capricorn, the day has 
decreased to 9 hours 20 min. nearly. The meridian .altitude of the 
sun, for any day, may be found by reckoning the number of degrees 
from the parallel in which the sun is on that day, towards the hori¬ 
zon, on the brass meridian. Thus when the sun is in that parallel 
which is 10° north of the equator, his meridian altitude at Wash¬ 
ington will be 61° 7', and is equal to the complement of the lati¬ 
tude added to the sun’s declination. If the declination be south, 
it must be subtracted from the complement of the latitude to find 
the sun’s meridian altitude. The lower part of that parallel of de* 
clination which is 51° 7' from the equinoctial northerly, just touches 
the horizon ; and all the stars between this parallel and the north 
pole, never set at Washington. In like manner the upper part of 
the southern parallel of 5i® 7', just touches the horizon, and all 
the stars that lie between this parallel and the south pole are never 
visible in this latitude. If we now rectify the globe for the lati¬ 
tude 66° 32' north, we shall find, that when the sun is in cancer, 
he just touches the horizon on that day, without setting to the in¬ 
habitants of the arctic circle, remaining 24 hours complete above 
the horizon ; and when he is in capricorn, his centre would just 
appear in the horizon were it not elevated on account of refraction, 
about an entire diameter above the horizon, and would not rise 
again for the space of 24 hours. When the sun is in any other 
point of the ecliptic, the days are longer or shorter according to 
his distance from the tropics. All the stars that lie between the 
tropic of cancer and the north pole, never set in this latitude , and 
those between the tropic of cancer and the south pole never rise. 
If we elevate the globe still higher, the circle of perpetual appari¬ 
tion (see def. 107) will be nearer the equator on one side, as will 
that of perpetual oculation (see def 108) on the other. If for 
example the globe be rectified for the lat. 80° N. the sun’s decli¬ 
nation being 10° N. he will then begin to revolve above the hori- 

* On Adams* globes such lines are drawn through every degree of the 
meridian within the torrid zone, parallel to the equator; these will nearly 
represent the. sun’s diurnal path on any given day. 
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zon without setting, in an oblique direction, just touching it in the 
north point, and at the south being elevated 20* above it ; during 
his progress from this point in the ecliptic to the tropic of 25, and 
his return again to the same degree of declination, he never sets. 
In like manner when his declination is 10° S. he is just seen at 
noon in the south point of the horizon, and during his progress 
from this point to the tropic of capricorn, and his return again to 
10° S. deck he remains below the horizon ; the time of his being 
invisible or below the horizon, being as long as the time he appear¬ 
ed visible at the opposite season of the year. 

For the parallel sphere. The north pole being now elevated 90 
above the horizon or to the zenith, then the equator or equinoctial 
will coincide with the horizon, and the parallels of latitude will 
consequently be parallel to it; those in the northern hemisphere 
being above, and those in the southern hemisphere below it. When 
the sun enters aries, that is on the 21st of March, he will be seen 
by the inhabitants of the north pole (if there be any) to glide along 
the edge of the horizon, and as his declination increases, he will 
increase in altitude until he comes to the tropic of 05, forming a 
kind of spiral as before described, from this tropic until his return 
to the autumnal equinox on the 23d of September, his altitude wilt 
again also gradually decrease in proportion as his declination de¬ 
creases. From the vernal to the autumnal equinox, or during the 
summer half year, the sun will therefore appear above the hori¬ 
zon, and make constant day ; and consequently the stars and plan¬ 
ets will be invisible during that time. The sun’s altitude at any 
time, or at any hour of the day, will be always equal to his decli¬ 
nation, and his greatest altitude cannot exceed 23° 28', at which 
time he will have arrived to the tropic of cancer. When the sun 
just enters the sign libra, he will again appear to glide along the 
edge of the horizon, after which he will entirely disappear until 
his arrival again at aries or the vernal equinox ; hence during six 
months, from the autumnal to the vernal equinox, there will be 
constant night at the north pole. But though the inhabitants at 
this pole will lose sight of the sun at the autumnal equinox (or a 
short time after, on account of refraction, See. which is very great 
near the poles) yet the twilight will continue for nearly two months, 
for the sun will not be 18° below the horizon until he enters the 
20th of scorpio (as may be seen by observing on the globe the sun’s 
place corresponding to 18° on the brass meridian below the hori¬ 
zon, as the quadrant of altitude cannot be conveniently screwed 
'over the pole) so that dark night will only continue from the 12th 
of November to the 29th of January, during which time the sun 
will be more than 18° below the horizon ; and even then the light 
of the moon and of the aurora borealis, increased by the reflection 
from the snow, supplies, in a great measure, the absence of the 
sun in this inclement region. The inhabitants at the north pole 
can, at any time of the year, only see those stars that are situated in 
the northern hemisphere, and the greater part of these will be in- 
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visible except from about the 12th of November until the 29th of 
January, during which time the sun will be 18° or more below the 
horizon. The planets when they are in any of the northern signs, 
will also be visible, and together with the stars will appear to have 
a diurnal revolution round the earth from east to west, as the sun 
appeared to have when above the horizon. 

The moon is likewise above the horizon during fourteen revolu¬ 
tions of the earth on its axis or half a lunation, and at every full 
moon which happens from the autumnal to the vernal equinox, the 
moon is in some of the northern signs, and therefore visible at the 
north pole ; for the moon being in that sign which is diametrically 
opposite to the sun, at the time of full moon, and the sun while in 
the southern signs being below the horizon, the moon must there¬ 
fore be above the horizon at this time, while in any of the northern 
signs. When the sun is at his greatest depression below the ho¬ 
rizon, which happens when he is in capricorn, the moon is then 

full at cancer. The new moon being in capricorn, her first quarter 
will be in aries, and the third in libra. Now the beginning of aries 
being the rising point, cancer the highest, and libra the setting 
point, the moon rises at her first quarter in aries, has her greatest 
height when full in cancer, and sets in her last quarter in libra, 
being visible for fourteen days, or during her passage from aries to 
libra. Thus the north pole is supplied one half of the winter time 
with constant moon light in the sun’s absence, and the inhabitants 
there are only deprived of her light from her 3d to her 1 st quarter, 
while she gives but little light, and can therefore be but of little or 
no service to them. * 

Many other useful observations might be added here, were not 
these three last problems already rather long, and therefore dis¬ 
couraging to beginners. But their utility in giving a general idea 
«f the seasons, kc. in every part of the world, deserve their parti¬ 
cular attention, as they will here learn, in the most easy and enter¬ 
taining manner, how these happen from the regular motion of the 
earth and its various positions. The following observations, de¬ 
duced as collaries from the preceding problems, may be no less 
worthy the readers perusal. 

1. When the north pole was in the zenith, the equator just 
touched the horizon, and as the pole was depressed, the equator 
was raised the same number of degrees above the horizon, whence 
it follows that the elevation of the equator above the horizon is al¬ 
ways equal to the complement of the latitude or what it wants of 
90°. 

2. The sensible horizon of a place changes as often as we change 
the place itself. 

3. Every place on the earth, in respect to time, equally enjoys 
the benefit of the sun’s light, and is equally deprived of it: that 
is, the whole time that the sun is above the horizon of any place, is 
equal to all the time taken together, that he is above the horizon 
of any othei;, being about, 6 months annually. The same may be 
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said of the time that he is below the horizon, and the days at one 
time is equal to the nights at the opposite season in any place* Here 
the effect of refraction, twilight, aurora borealis, Sec. is not consider¬ 
ed, nor the difference of time in which the sun is passing through 
the northern and southern signs, being seven days longer in the 
former than in the latter. These latter causes being considered, 
the inhabitants at or near the north pole, have in consequence more 
light in the course of a year than any other inhabitants on the earth. 
But what it gains in duration, it loses in the intensity of the sun’s 
light or heat, from the same causes and the obliquity of the sun’s 
rays, and the quantity.and the density of the atmosphere through 
which they have to pass. (See Simpson’s Fluxions, vol. 2. prob. 
32 and 33.) For the article aurora borealis, &c. see Ree’s Cyclo¬ 
pedia, anew edition of which is now printed in New-York, or the 
Encyclopedia. Simpson makes the proportion of the heat receiv¬ 
ed at the equator, to that received at the pole during one year, as 
17 to 7, nearly. 

4 In all places of the earth, except under the poles, the days 
and nights are each 12 hours long at the equinoxes, that is on the 
21st of March and 23d of September, at which time the sun has 
no declination. 

5. In all places situated on the equator, the days and nights are 
always equal, viz. 12 hours each. 

6. Jn all places between the equator and the poles, the days and 
nights are never equal, but when the sun enters the equinoctial 
points <y> and 

7. In all places lying under the same parallel of latitude, the days 
and nights at any particular time of the year are always equal ; 
that is, the days in one place are equal to the days in the other, at 
the same time, See. 

8. The nearer any place is to the equator, the less is the differ¬ 
ence between the days and nights, and the more remote the greater. 

The increase of the longest days does not however bear any re¬ 
gular proportion to the increase of the latitude. For if the longest 
days increase equally, that is half an hour, an hour, See. the lati¬ 
tudes increase unequally, as is evident from consulting a table of 
climates. (See the table in the note to def. 90.) 

9. The twilight is shortest at the equator, and increases from 
there to the poles, where it continues the longest. 

10. To all places situated within the torrid zone, the sun is ver¬ 
tical twice a year, to those under each tropic once, but to those in 
the temperate and frigid zones it is never vertical. 

11. In all places between the equator and polar circles, the sua 
rises and sets alternately every twenty-four hours. 

12. At all places between the polar circles and the poles, the 
sun appears a certain number of natural days without setting, and 
at the opposite season of the year disappears for nearly the same 
length of time ; and the nearer the place is to the pole, the longer 
the sun continues without setting, and the contrary. 
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13. Between the end of the longest day and beginning of the 
longest night, in the frigid zones, and between the end of the lon¬ 
gest night and beginning of the longest day, the sun rises and sets 
alternately every 24 hours, as at other places on the earth. 

14 At all places situated exactly at the polar circles, the sun 
when he is in the nearest tropic, appears 24 hours without setting, 
but when in the opposite tropic, he does not rise for the same 
length of time ; but at all other times of the year rises and sets as 
in ether places. 

15. In all places situated in the northern hemisphere, the lon¬ 
gest day and shortest night take place when the sun is in the nor¬ 
thern tropic ; and the shortest day and longest night when the sun 
is in the southern tropic. The contrary must be observed with 
respect to those situated in the southern hemisphere 

16. All places situated under the same meridian as far as the 
globe is enlightened, have noon or any other hour at the same time, 
and those situated on the same parallel of latitude have the same 
seasons and are in the same climate. 

17. At the north pole none of the stars ever rise or set, but 
move round it in circles parallel to the horizon, and have therefore 
always the same altitude. (The small yearly variation of about 
50", owing to the procession of the equinoxes, is not here taken 
notice of.) 

18. At all places on the earth, except the poles, all the points 
of the compass may be distinguished in their horizon : but from 
the north pole every place is south, and from the south pole every 
place north. Consequently there is no distinction of noon or meri¬ 
dian at the poles, or rather the sun is constantly on the meridian 
during six months in each. And although the winds in any other 
place may blow from any point of the compass, at the poles they 
can only blow from one ; that is, at the north pole from the south, 
and at the south pole from the north. 

19. When the sun’s declination is greater than the latitude o£ 
any place, the sun will come twice to the same azimuth or point 
of the compass in the forenoon, and twice to a like azimuth in the 
afternoon, at that place : that is, the sun will go back twice every 
day while his declination continues to be greater than the latitude, 
which can only happen between the tropics, or in the torrid zone. 
Thus suppose the globe rectified for the lat. of Port Royal, in Ja¬ 
maica, which is 18° north, and the sun in any point of the ecliptic 
between 21° of taurus and 9° of leo, suppose the beginning of 
gemini, and the quadrant be set to any degree between 12° and 21° 
from the east northward on the horizon, at 18° for example, the 
globe being then turned westward on its axis, the sun will rise in 
the horizon about 3|° north of the quadrant, and thence ascending 
will cross it towards the south at an elevation of about ll°, and 
thence advancing until his azimuth be about 80° nearly, from the 
north, from which azimuth circle it will return again towards the 
north, until, at an elevation of about 82°, and consequently before 

o 
v 
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it comes to the meridian, it will again cross the quadrant, and pass 
over the meridian about 2° north of Port Royal. In like manner 
if the quadrant be set about 18° north of the west, the sun will 
pass over the edge of it twice as it descends from the meridian to¬ 
wards the horizon, in the afternoon. 

20. At all places situated on the equator, the shadow at noon, of 
any object placed perpendicular to the horizon, fails towards the 
north for one half of the year, and towards the south the other half. 
The nearer any place is to the torrid zone, the shorter the meri¬ 
dian shadows of objects will be. When the sun is perpendicular, 
there is no shadow, and when his altitude is 45°, the shadow of any 
perpendicular object is equal to its height (Euclid, 6 prob. 1 B.) 
as the sun inclines towards the horizon, the shadows lengthen, &c. 

21. At the equator the sun always rises in the east, and sets in 
the ‘ west points of the horizon ; hut the more distant any place 
(situated in the temperate or torrid zones) is from the equator, the. 
greater will be the rising and setting amplitude of the sun, or his 
distance from the east or west points of the compass. At the 
poles the sun always performs his revolutions round the horizon as 
before remarked.* 

* The utility of such general observations as the foregoing, will be readily 
perceived by those who retain a relish for the study of history, geography, 
&c. and take a pleasure in contemplating the wisdom of the Creator in ail 
the phenomena which nature exhibits. They might be rendered much 
more extensive and interesting, but these few remarks will enable the in¬ 
genious student to pursue them at his leisure. I shall however make here 
one more remark, which will open an extensive field for speculations of this 
nature, to those who have a taste or inclination for them. That in all the 
primary planets similar phenomena take place, as they have almost all been 
found to revolve on their axis, and to have an atmosphere the same as the 
earth ; but the axis of Mars and Jupiter are not inclined to the planes of 
their orbits, and hence in these the seasons will be always the same, that is, 
a constant spring. In all the ethers the seasons, &c. will vary as on the 
earth. The terrestrial globe with a few additional circles, or even a move- 
able ecliptic, might be contrived so as to exhibit the greater part of their 
phenomena; but die instrument best calculated for this purpose is an orrery, 
the use of which is so generally known, that it is unnecessary for me, in a 
treatise calculated for the globes alone, to enter into any description of it. 
(See its description in the Philadelphia edition of the Encyclopedia, article 
Orrery or Astronomy, in Low’s Encyclopedia, printed in New-York, or lice’s 
Cyclopedia- also in Ferguson’s Astronomy or Fuller’s Treatise on the Globes.) 
The famous Rittenhouse, of Philadelphia, has considerably improved this 
useful instrument. Those made by Messrs. Vm. & S. Jones, London, being 
on a small scale, are recommended for cheapness and utility. Besides the 
appearances of the superior planets, the stationary and retrograde appear¬ 
ances of the inferior planets are neatly illustrated by them. A learner who 
is but slightly acquainted with the elementary principles of mathematics, 
will, however, have little or no use for such instruments, calculated only to 
help the conceptions of beginners, as at one glance he can conceive infinitely 
more than such machines cun represent, and calculate the phenomena which 
they exhibit to a degree of exactness at which he can with no instrument 
ever arrive. Such readers are referred to the 2d vol. of Dr. Gregory’s as¬ 
tronomy, where the elements of comparative astronomy are given by this 



THE TERRESTRIAL GLOBE. 107 

PROB. 26. 

The day of the month being given, to find when the morning and 
evening twilight* begins, its duration and end, at any place on 
the globe. 

Rule. Rectify the globe for the latitude, zenith, and sun’s 
place (prob 9.) and screw the quadrant of altitude upon the brass 
meridian over the given degree of latitude, and set the hour index 

able master. It is from principles alone, and not from any machinery, that 
a learner can obtain a complete or general knowledge of any branch of 
science. 

* This phenomenon is caused by the reflection of the sun’s rays which 
fall on the higher parts of the atmosphere after sun setting or before he 
rises. If there were no atmosphere, the sun would shine immediately be¬ 
fore his setting as bright as at noon, but the moment after his setting, we 
should have as great darkness as at midnight. This is one of the innu¬ 
merable instances in which the wisdom of the Creator appears in provid¬ 
ing for the conveniences of man, in this element alone. The height at 
which the atmosphere is supposed capable of reflecting the sun’s light, so 
as to render it visible to us, is, at a medium, about 49 or 50 miles. Now, 
if a straight line drawn from an object, situated at this height, to the suit, 
just touches the surface of the earth, the sun at that instant will be 18® 
below the horizon (see the demonstration in Keil’s astronomy, lect 20, or 
in Keith’s treatise on the globes, note, pa. 107) which is the limit of the 
sun’s depression below the horizon to have any of its light reflected to 
us. This particle of the sun’s light in passing from that part of the at¬ 
mosphere where it is first reflected, will be continually bent from the right 
line in which it would otherwise proceed, were the atmosphere equally 
dense, as is fully demonstrated by the writers on optics, and this proper¬ 
ty, called the refraction of light, increases the twilight, as the property of 
refraction is always to elevate the object from which the light is reflect¬ 
ed ; and whether it be the light of the sun, moon, or stars, whether it be 
native or reflected, intense or weak, &c. the refraction is the same, pro¬ 
vided the medium through which it passes remain the same. But as the 
atmosphere continually varies, particularly towards the poles, the limits 
given above will also vary in the same proportion. And the variation, 
even during one day, and in the same place, is so sensible, that the even¬ 
ing twilight is found to continue longer than the morning twilight, owing 
to the expansion of the atmosphere during the day, and consequently to 
its greater height. The more oblique the sun’s rays, the greater the re¬ 
fraction or reflection. When the rays fall perpendicular, then there is no 
refraction, because the rays, if reflected at all, are reflected back in the 
same direction. All these properties are accounted for from mechanical 
principles, and may be easily applied to the motion ©f light in the atmos¬ 
phere with the assistance of a thermometer and barometer, the law of its 
expansion being given. Dr. Coles has demonstrated that if the altitudes 
of the air be taken in arithmetical proportion, its rarity will be in geome¬ 
trical proportion. But to enter into any investigation of these principles, 
would far exceed our prescribed limits in this introduction (see Mayer’s 
tables, prob, 13, and Scholia.) we shall however give an example which 
shews how much the refraction is affected by the density of the atmos¬ 
phere. In the year 1682, the Dutch navigators who wintered in Nova- 
zembla, in lat. about 75° north, saw the sun 17 days before he could have 
been seen were there no atmosphere, or were it not endowed with this 
refractive power. It is owing to this property in the atmosphere, of re¬ 
flecting the sun’s light, that the sky is always illuminated while the sim 
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to twelve, then turn the globe westward until the sun’s place comes 
to the western edge of the horizon, the hours passed over by the 
index will give the time of sun setting or the beginning of the 
evening twilight ; continue the motion of the globe westward un¬ 
til the sun’s place coincides with 18° on the quadrant of altitude 
below the horizon, or the opposite point be 18° above the horizon 
in the eastern part of it, the time passed over by the hour circle 
after sun setting, will be the duration of evening twilight, and the 
index will point out the time of its ending. In like manner, if the 
sun’s place be brought to the eastern horizon, the beginning, du¬ 
ration and ending of morning twilight may be found, its beginning 
being when the sun is 18° below the horizon, and ending the same 
as sun rising. 

Note. When the sun’s place does not extend 18° below the horizon, or 
the opposite point in the ecliptic, 18° above it, the twilight will continue 
the whole night. 

OR THUS, 

Find the sun’s declination for the given day (prob. 8) and ele¬ 
vate the north or south pole, according as the declination is north 
or south, to this declination ; screw the quadrant of altitude in the 

shines, for without this property, or were there no atmosphere, the whole 
heavens, except that part in which the sun appeared, would be as dark as 
at midnight, and the smallest stars, as in a clear night, would be visible ; 
nor would our artificial lights be of any service to us during the absence 
of the sun. M. I)e Saussure when on the top of Mount Blanc, which is 
elevated 5101 yards above die level of the sea, and where the atmosphere 
must therefore be more rare than on the surface of the earth, says, that 
the moon shone with the brightest splendour in the midst of a sky as black 
as ebony. (Append, vol. 74, Monthly Review.) The sun’s atmosphere 
likewise shines after the sun is set, and increases the light reflected by 
our atmosphere. In the northern regions, the sun, when visible, rises and 
■sets with a large cone of yellowish light, the stars appear of a fiery red¬ 
ness, owing to the density of the atmosphere, and the aurora borealis 
spreads a thousand different lights and colours over the whole firmament. 
Taking 18° at a medium for the limits, beyond which the sun being de¬ 
pressed below the horizon, there is no twilight, the prob. may be solved 
by spherical trigonometry, thus : The comp, of the lat- the compl. of the 
sun’s declination, and the arch formed by the quadrant of alt. between the 
sun’s place, and the zenith (being always equal 90°-Jr 18°=108) form a 
triangle, the three sides of which are given to find the angle included by 
tire meridian passing through the zenith, and the meridian passing through 
the sun’s place depressed below the horizon as above, which converted in¬ 
to time, will give the end of evening twilight, reckoning from 12 o’clock. 
The time of sun setting (found by prob. 13 or the annexed note) taken 
from the above, will give the duration of evening twilight, the rest i3 

found in the same manner. See the proportions for calculating this and 
similar probs. investigated in lect. 20th of Keil’s astronomy, or more cor¬ 
rectly in article 2206 and 2241 of La Land’s astronomy, 3d edit. See also 
Gregory’s astronomy, b. 2. probs. 39 and 41 and Scholium. The reader is 
also referred to P. S. Laplace’s astronomy, b. 1, ch. 14, vol. 1, where he 
w ill find many important and interesting observations on this subject. This 
useful work, together with the same author’s Celestial Mechanics, are trans¬ 
lated into English, by J. Pond, F. R. S. now Astronomer Royal, and pub 
lisfied in London, in 1809. 
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zenith, bring the given place to the brass meridian, and set the in¬ 
dex to 12 ; turn the globe eastward until the given place comes to 
the horizon, and the hours passed over by the index will shew the 
time of sun setting, or the beginning of evening twilight; continue 
the motion of the globe eastward until the given place coincides 
with 18° on the quadrant of altitude below the horizon, or until 
the opposite point of the ecliptic be 18° above the western part of 
the horizon, the time passed over by the index, from sun setting, 
will be the duration of evening twilight, &c. The morning twi¬ 
light is nearly of the same length, and found in the same manner. 

OR BY THE ANALEMMA. 

Elevate the pole to the latitude as before, and screw the quad¬ 
rant of altitude in the zenith ; bring the middle of the analemma 
(corresponding to the 16th of June, be. on Cary’s globes) to the 
brass meridian, and set the index to 12 j turn the globe westward 
until the given day of the month on the analemma comes to the 
western part of the horizon, and the index will shew the beginning 
of the evening twilight ; continue the motion of the globe west¬ 
ward until the day of the month coincides with 18° on the quadrant, 
as before, and the index will point out when twilight ends, the time 
between the beginning and ending of which is the duration. To 
find the morning twilight, bring the day of the month to the east¬ 
ern part of the horizon, and proceed as before. 

Examfile 1. Required the beginning, end, and duration of 
morning and evening twilight at Washington city, on the 21st of 
March ? 

Ana. The sun sets at 6 o’clock, and rises at 6. The evening 
twilight ends at half past seven, and the morning at half past four, 
its duration being therefore one hour and a half. 

2. What is the duration of twilight at London on the 19th of 
April ; what time does dark night begin, and what time does day 
break in the morning ? 

Ana. The sun sets at 2 minutes past 7, and rises 58 min. after 
four ; the duration of twilight is 2 hours 17 min. and hence even¬ 
ing twilight ends at 19 min. past nine, and morning twilight be¬ 
gins, or day breaks, at 41 min. past two. 

3. Required the beginning, end, and duration of morning and 
evening twilight at Philadelphia, on the 1st of August ? 

4. Required the beginning, end, and duration of morning and- 
evening twilight at Buenos Ayres on the 10th of March ? 

5. Required the same as above, in the following places, on the I st 
of January, New-York, Lima, Cape of Good Hope, and Canton ? 

6. Required the beginning and end of morning and evening twi¬ 
light at the north pole on the 1st of March, and likewise on the 2d. 
of February \ 
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PROB. 27. 

To find the beginning, end, and duration of constant day or twilight 
at any place.* 

Rule. If the complement of the latitude be greater than 18°, 
subtract 18° from it, and the remainder will be the sun’s declina¬ 
tion (north if the place be in the northern hemisphere, &c.) when 
total darkness ceases. But if the complement of the latitude be 
less than 1 8°, their difference will be the sun’s declination, of a 
contrary name with the latitude, when the twilight begins to con¬ 
tinue all night. Observe what two points on the ecliptic corres¬ 
pond to this declination, the day of the month corresponding to 
that point in which the sun’s declination is increasing, will be that 
on which constant twilight commences, and the day corresponding 
to that point in which the sun’s declination is decreasing, will be 
the last day or end of constant twilight. 

Note 1. When the sun has 18° south declination, constant twilight com¬ 
mences, &c. at the north pole, as is plain from the above, the days corres¬ 
ponding to which are found as in the rule. 

Note 2. If after subtracting 18°, the remainder be greater than 23° 28', 
the sun’s greatest declination, there can be no constant twilight at that place, 
as is evident. Hence between the latitude 48° 32' and the equator, there 
can be no constant twilight. 

Examples. 1. When do the inhabitants of London begin to hav6 
constant day or twilight, and how long does it continue ? 

jins. The latitude of London being 51° 31' N. hence 90°— 
5lo 3i'—18°=20° 29' the sun’s declination, the two days corres¬ 
ponding to which (found by note 3, prob. S.) are the 23d of May 
and 20th of July. So that on the 23d of May constant twilight be¬ 
gins, and on the 20th of July it ends ; hence its duration is nearly 
two months. 

2. What is the duration of twilight at the north pole, and also 
the duration of dark night there l 

jins. The two points corresponding to the sun’s declination 18° 
south (see note 1.) are the 12th of November and 29th of Janua¬ 
ry, between which days the sun is 18° below the horizon ; hence 
the duration of total darkness is 78 days ; the twilight continues 
from the 23d of September (the time of the autumnal equinox 
when the sun first disappears) to the 12th of November, the be¬ 
ginning of total darkness, being 50 days ; and from the 29th of 
January (the last day on which total darkness ceases) to the 21st 
of March (the vernal equinox, when the sun again begins to ap¬ 
pear and the longest day commences) being 51 days. Hence 
there are 186 days constant day, 101 days twilight, and only 78 
days dark night at the north pole, and even during this short period, 
the moon and aurora borealis shine with uncommon splendour, as 
oefore remarked. 

* See the Trigonometrical Solutions of this prob. in lcct. 20th, Iveil’s As¬ 
tronomy. See also Vince’s Astronomy, 8vo. articles 94, 96, 97 and 98. 
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3. Can there be constant day or twilight at Washington city at 
any time of the year ? 

Ans. The lat. of Washington city being 38° 5 3' N. hence 90°— 
38° 53'=51° 7' the complement, and 51° 7'—18°=33° 7', which 
being greater than 23° 28', there can never be constant day or 
twilight in this latitude. 

4. When do the inhabitants of Petersburg cease to have constant 
day or twilight, and how long does their dark night continue ? 

5 How long do the inhabitants of the north cape in Lapland, 
enjoy the benefit of constant twilight, and how long does their dark 
night continue ? 

6. When does constant twilight begin and end, and what is its 
duration in Ice Cape, the most northern part of Nova Zembla? 

PROB. 28. 

The month, day, and hour of the day at any place being given, to find 
all those places on the earth, where the sun is then rising, setting, 
where it is noon, that particular place where the sun is vertical, 
where it is daylight, twilight, darknight, midnight, where the twi¬ 
light then begins and where it ends, the height ofi the sun in any 
part ofi the illuminated hemisphere, also his depression in the ob¬ 
scure hemisphere. 

Rule. Elevate the north or south pole to the sun’s declina¬ 
tion for the given time, according as it is N. or S. (probs. 1 and 8) 
bring the given place to the brass meridian, and set the index to 
12 ; then if the given time be before noon, turn the globe west¬ 
ward, if in the afternoon, eastward as many hours as the given 
time precedes or is after noon : the globe being kept in this posi¬ 
tion ; then all those places along the eastern edge have the sun 
setting, those under the brass meridian above the horizon, have 
noon, that particular place under the sun’s declination on the brass 
meridian, has the sun vertical, all those places within 18° below the 
western edge of the horizon, have morning twilight, those within 
18° below the eastern edge of the horizon, have evening twilight. 
In the former, twilight begins 18° below the horizon, and ends at 
the horizon in clear day : in the latter twilight begins at the hori¬ 
zon, and ends 18° below it in dark night. The sun’s altitude in 
any place in the enlightened hemisphere, is equal to the height of 
that place abore the horizon, reckoned on the brass meridian, on 
which its meridian altitude is found, or on the quadrant of altitude 
screwed in the zenith. Its depression below the horizon, is equal 
to the depression of the place, or the altitude of its antipodes ; to 
those between the eastern part of the horizon and the meridian, 
the sun will appear westward, having crossed their meridian ; to 
those between the meridian and the western part, the sun will ap¬ 
pear towards the eastward, not having as yet passed their meridian. 

This problem may be solved by taking the globe out of the 
frame, and fastening a strong thread to the latitude of the place on 
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the brass meridian ; then suspending it in the sun shine', anil 
-bringing the place to the brass meridian or to the zenith, and fixing 
the meridian north and south, by a meridian line or compass, the 
elevated pole of the globe will then point to the elevated pole in 
the heavens, and the whole globe will correspond, in every respect, 
to the position of the earth itself, in respect of the sun. 

If then a pin, or bit of wire be erected perpendicularly (on a hol¬ 
low basis of wood, cork, wrax, See.) in the middle of the enlight¬ 
ened hemisphere, it will project no shadow, which shews that the 
sun is vertical to that place If this place be brought under the 
brass meridian, the degree over it will be its latitude, and the sun’s 
declination at the given hour. Then all those places under the 
brass meridian have noon or midnight, according as they are in the 
illuminated or dark hemisphere.* Those on the westward (or 
right hand when our face is turned towards the sun if situated N. of 
the place where it is vertical) have their morning, for with them 
the sun is ascending from the east, and those in the semicircle 
bounding light and darkness westward, will have the sun rising, 
those towards the eastward have evening, for with them the sun is 
descending towards the west, and those situated between the en¬ 
lightened and dark half of the globe eastward, have the sun setting. 
All those countries within the sun shine have day, all those in the 
shade have night or twilight. On the east side of the globe is 
seen those places where night comes on, and on the west where 
the darkness is dispelled by the approaching day In those places 
round the elevated pole, where it is sun shine while the globe is 
turned round, there is constant day until the sun decreases in de¬ 
clination. At the opposite pole within the polar circles, where it 
is dark while the globe is revolved on its axis, there will be con¬ 
stant night until the sun decreases in declination. The number of 
degrees that the sun shine reaches beyond either pole, will be his 
declination N or S. The difference of longitude between any 
place situated in the semicircle, separating the enlightened from 
the darkened hemisphere, and any other place on the globe, re¬ 
duced to time, will give the time before or after sun rising or sun 
setting, according to the situation of the place. If any place bp 

* When we here speak of dark hemisphere, we mean that in the shade or 
on which none of the sun’s rays fall but by reflection ; it being evident that 
no part of the globe, thus suspended in the sun shine, can be in the dark, 
which evidently shews the great utility of the reflecting principle in the at¬ 
mosphere : for otherwise that part of the artificial globe on which the direct 
rays of the sun do not fall, would be as dark as if placed in a dung-eon 
where no ray of light could have access : but the twilight on a small globe, 
for this reason, cannot be ascertained by this method, and the limits of light 
and shade is very doubtful. The experiment succeeds best in a dark room, 
where the sun’s rays are admitted through a hole in the window shutters. 
The best time for performing the prob. is when the sun is rising or setting, 
or on the meridian, as the shadow of the brazen meridian will not then pre¬ 
vent the fight of the sun from illuminating the hemisphere over which it is 
perpendicular. Noon is however preferable. 
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brought to the brass meridian, the number of degrees between it 
and the circle bounding light and darkness, will be the sun’s meri¬ 
dian altitude that day ; if the index be set to 12, and the globe 
then turned on its axis until any given hour comes under the meri¬ 
dian, the nearest distance in degrees between the given place and 
the shaded hemisphere, will give the sun’s altitude for that liouf. 
If pins be erected perpendicularly on different parts of the globe, 
their shadows will be projected the same way as the shadows Of 
the inhabitants of those respective places ; some pointing to the 
north, some to the south, some to the west) others to the east, &c. 
and some projecting no shadow at all. 

If a narrow slip of paper be placed round the equator, and di¬ 
vided into twice 12 hours, beginning at the meridian of your place, 
and counting westward : the 6 o’clock mark being brought under 
the brass meridian, the sun at noon will then shine on this meridi¬ 
an, and the hours marked on the paper at the east or west part of 
the equator, or at the circle bounding light and shade, will indicate; 
the time of the day in that place : thus at 12 o’clock the two 12’s 
will be in the circles bounding light and shade ; at one, the two 
one’s, &c. In the evening, or at night, it may be seen in the same* 
manner, if the moon shines, what nations are illuminated by her 
light, where she is rising and setting, the various projections of 
her shadow, where she is vertical, See. and to which of the poles 
she does not set that night. Her meridian alt. or alt. for any giv¬ 
en hour, may be found in the same manner as the sun’s found 
above, with this difference, that when the given place is brought 
to the brass meridian, the index must be set to the time of her 
passing the meridian that night. 

Example 1. When it was 15 minutes after 5 o’clock in the 
morning, at Washington city on the 16th of April, 1811, where 
was the sun then rising, setting, &c. &c. 

Ans. On the 16th of April the sun’s declination Was 9° 58' 42'' 
N. or 10° nearly, therefore elevate the north pole 10° above the 
horizon, and as the given time is 5 hours 15 minutes, in the morn¬ 
ing, 12 h.—5 h. 15 m.=6 h. 45 m. what it wants of noon ; hence 
Mie globe must be turned westward until the index has passed over 
6 h. 45 m. The globe being fixed in this position, then, 

The sun is rising from the'north west to the south east parts of 
Hudson’s Bay, at Burlington, N. Jersey, the eastern part of the 
Island of St. Domingo, near Porto Cabello in S. America, St. 
Christopher on the Amazon R. near Sta. Cruz. Buenos Ayres, 
east of the Falkland Islands, &c. 

Setting, between the Lena and Indighirka rivers in Siberia, near 
Chynian in Chinese Tartary, the mouth of the Blue River east 
of Nanking, the eastern part of the Islands of Borneo and Java, 
the western extremity of N. Holland, See. 

JVoon, at the eastern part of Spitzbergen, North Cape, the north¬ 
ern extremity of the Gulf of Bothnia, Revel on the Gulf of Fin- 
taud, the eastern part of Prussia, Gallicia, Hungary, &c. the wes- 

F 
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tern part of the Archipelago, the middle of Negropont, east of 
Athens, the middle of the desert of Lybia, Bornou, Mossel Bay 
in Caffraria, east of the Cape of Good Hope, &c. 

Vertical, in lat. 10° N. long. 24° E. about the middle of the 
Ethiopic mountains. 

Morning twilight, at Prince William’s sound, near Beering’s 
bay, part of the Stony Mountains, Gulf of Mexico, Merida in New- 
Spain, Gulf of Papagaya, along the Pacific ocean, &c. 

Evening twilight, at Gore’s island, south of Beering’s strait, 
Beering’s island, east of the Japonese islands, the western part of 
New-Guinea, Van Diemen’s and Nuyt’s land in New Holland, the 
Southern ocean, &c. 

Midnight, at the western extremity of N. America, Owhyhee 
Island, Pacific ocean, west of the Society islands, &c. 

Day, in all Europe, Africa, and Asia, except a small portion of 
the eastern part: in Labrador, Newfoundland, Nova-Scotia, New- 
Brunswick, part of Canada, and the New-England states in N. 
America, all that part of the West-Indies and South America, 
comprehended between the eastern part of St. Domingo and 
Buenos Ayres, 8cc. towards the east, Sandwich land, &c. 

Night. The remaining part of North and South America be¬ 
low the circle of twilight, Kamtschatka, the Carolinas, New-Gui¬ 
nea, New-Britain, See. the eastern part of New-Holland, New- 
Hebrides, New-Zealand, Sandwich islands, the greater part of the 
Pacific ocean, See. 

The sun*s alt. at Petersburg is nearly 40°, at Cairo 69°, at Cal¬ 
cutta 28i°, at London 44-1°, &c. 

Those inhabitants situated at the northern extremity of the Island 
of Ceylon, at Cochin, &c. will see the sun due west: those in the 
same parallel of lat. west of the brass meridian to the horizon, will 
see it due east; from Tartary, Persia, See. it will appear towards 
the S. W. from Madagascar towards the north west ; from the 
western part of Candia island due south ; from Mossel Bay in 
Caffraria due north ; from Lisbon, Fez, &c. towards the S. E. 
from St. Helena, &c. towards the N. E. &c. 

2. When it is four o’clock in the afternoon at Washington on 
the 21st of January, where is the sun rising, setting, See. &c. 

jins. The sun’s declination being nearly 20° south, the south 
pole must be therefore elevated 20° above the horizon : and as 
the given time is 4 o’clock in the afternoon, the given place being 
brought to the brass meridian, and the index set to 12, the globe 
must be turned eastward 4 hours. Then the sun will be 7'ising at 
Berring’s straits, B erring’s island, Van Diemen’s land, &c.— 
setting in Hudson’s Bay, James’ island, the western extremity of 
Nova-Scotia, the eastern part of South America, &c. Noon at the 
eastern extremity of King G. 3d’s Archipellago, east of Marquesas5' 
island, Sec. vertical lat. 20° south, long. 136 W. near Whitsun¬ 
day, island of Wallis, &c. The other places are easily found by 
following the directions in the rule. 



THE TERRESTRIAL GLOBE. 115 

3. When it is 6 o’clock in the morning at London, on the long¬ 
est day, where is the sun then rising, setting, &c. 

4. When it is 12 o’clock at Philadelphia, on the 10th of Decem¬ 
ber, where is the sun then rising, setting, &c. 

5. When it is 10 o’clock in the afternoon at Cape Horn, on the 
21 st of March, where is the sun then rising, setting, &c 

6. When it is midnight at Washington on the 4th of July, where 
is the sun rising, setting, &c. 

PROB. 29. 

To find in what climate any given place on the globe is situated.* 

Rule. If the place be not in the frigid zone, find the length of 
the longest day in that place (prob. 13, or the rule annexed) from 
which subtract twelve hours ; the number of half hours in the re¬ 
mainder will shew the climate. (Def. 90.) 

* This problem may be calculated by the following proportion : 
As tangent of the sun’s greatest declination 
To radius or sine of 90°, 
So is sine of the sun’s ascensional difference 
To tangent of the latitude not within the polar circles. 

Thus suppose the ascensional 45^ 

As tangent of 23° 28' - 9 63761 
To radius ----- 10 
So is sine of 3° 45' - - 8 81560 

To tangent lat. 8° 45' - 9 17793 

As the ascensional difference converted into time always shows how much 
before or after six the sun rises or sets, and as at the end of the 1st climate 
the sun rises a quarter of an hour before 6, or sets f after 6; and in every cli¬ 
mate forward to the polar circles the sun rises J of an hour earlier and sets 
i later than in the preceding : and moreover, as the longest day is found by 
doubling the time of sun setting, it will therefore follow, that if 6 hours be 
taken from half the length of the longest day, the remainder converted into 
degrees will give the ascensional difference. Hence the ascensional differ¬ 
ence for the first climate, or where the day is 12£ hours long, is 15 minuteq 
of time (before and after 6, which makes the half hour) equal to 3° 45'; for 
the 2d. climate 30 minutes =7° 30'; for the 3d. 45 min.=11° 15'; for the 
4th. 1 hour =15°, &c. Hence the reason of taking 3P 45* above. From 
these principles the climates from the equator to the polar circles in the ta¬ 
ble annexed to def. 90 were calculated, the remaining part of which cor¬ 
responding to rule 2, above, may be constructed as follows: 

The beginning and end of the longest day being equally distant from the 
solstice intervening (see note prob. 19.) reckoning half the number of days 
which the sun shines constantly without setting, from the 21st of June, both 
before and after it; find the sun’s declination corresponding to those two 
days in the Nautical Almanac, or in a table of the sun’s declination, half the 
sum of which taken from 90°, will give the latitude. The reason of which 
is plain, as the complement of the latitude is always equal to the sun’s de¬ 
clination when the longest day begins or ends within the polar circles. (See 
note to prob. 19.) And as this declination is equally distant from the point can¬ 
cer, in which the sun is on the 21st of June, the method is evident. ITojn the 
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2. If the place be within the polar circles, find the length of the 
longest day at the given place (by prob. 19) and if that be less 
than 1 month or 30 days, the place is in the twenty-fifth climate 
or the first within the polar circle ; if more than 1 month and less 
than 2 months or 60 days, the place is in the 26th climate or 2d 
within the polar circles, &c. 

Examfile 1. In what climate is Washington city* and what 
other remarkable places are situated in the same climate ? 

Am, The longest day at Washington city is 14 hours 44 min. 
Bence I4h. 44 m.—)2h.=2h. 44 m. which multiplied by 2= 
5 h. 28 m. or 6 half hours nearly : hence Washington is in the 
6th climate north of the equator. And as the breadth of this cli¬ 
mate extends from latitude 36° 31' to 41° 24'N. all those pla¬ 
ces within these two parallels are in the same climate, viz. in the 
United States, Richmond, Baltimore, Philadelphia, Lexington, 
Frankfort, Trenton, New-York, New-Haven, &c. In Europe, 
Lisbon, Madrid, most of the islands in the Mediterranean, Naples, 
Ancient Greece, the islands in the Archipellago, Constantinople, 
See. In Asia, Bursa, Smyrna, the southern parts of the Caspian 
Sea, Samarcand, Pekin in China, the southern parts of the Japan 
Isles, &c. 

2. In what climate is the North Cape in the island of Maggeroe, 
latitude 71° 10' north ? 

Ans The length of the longest day is 74 natural days, which dit 
vided by 30, gives 2 months 14 days for the quotient, and hence 
the place is in the 3d climate within the polar circle, or the 27th 
climate reckoning from the equator. As the breadth of this cli¬ 
mate extends from 69° 33' to 73® 5' (see the note and table an¬ 
nexed to definition 90) the space contained within these paral¬ 
lels in Greenland, Baffin’s Bay, the northern part of Siberia, the 
southern part of Novazembla, See. is in the same climate. 

3. In what climate is Dublin, and what other places are situated 
in the same climate ? 

variation of the sun’s declination, it is plain that no table can answer exactly 
for every year, as the declination for that year ought to be taken from the 
Nautical Almanac, or from tables constructed for leap years and the three 
following years. A mean of these declinations has been taken in construct¬ 
ing the 2d part of the table alluded to, in order to have it correspond to every 
year as near as the nature of the problem can admit. Ricciolus (an Italian 
astronomer and mathematician, born at Ferrara, in 1598) in his Astronomia 
Reformata, published in 1665, makes an allowance for the refraction of the 
atmosphere, -in his tables of climates. He reckons the increase of days by 
half hours from 12 to 16; by hours from 16 to 20 ; by 2 hours from 20 to 
24 ; and by months in the frigid zones ; making the number of days in each 
month in the north frigid zone something more than those in the south. But 
tjie refraction of the atmosphere is so variable, as to render such a table of 
no material advantage. In fact the division of places by their parallels of 
latitude, and length of their longest days, &c. being the most accurate and 
useful, renders all others, such as zones, climates, See. of little comparative, 
advantage. 
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4. In what climate is that part of N. E. land in Spitzbergen, 
situated in 80° lat. N. ? 

5. In what climate is Cape South, in New Zealand ? 
6. In what climate is Cape Horn situated ? 

PROB. 30. 

To find the breadths of the several climates from the equator to 
the poles. 

Rule. 1. For the northern hemisphere, elevate the north pole 
23° 28' above the horizon, bring cancer to the meridian, and set 
the index to 12 ; turn the globe eastward on its axis until the index 
has passed over a quarter of an hour ; observe that particular point 
of the meridian passing through libra which is cut by the horizon, 
and at the point of intersection make a mark with a pencil ; con¬ 
tinue the motion of the globe eastward until the index has passed 
over another quarter of an hour, and make a second mark as be¬ 
fore ; proceed in this manner until the meridian passing through 
libra will no longer cut the horizon, the several marks * brought 
to the brass meridian will point out the latitudes where each cli¬ 
mate ends, from the equator to the polar circles ; the difference of 
which will give the breadth of each climate. 

2. For the climates from the polar circles to the poles. Find 
the latitude corresponding to the length of the longest day in each 
climate, namely, one month, two months, &c. (by prob. 20.) 
These will be the latitudes where each climate ends, and hence 
their difference will be the breadth of each climate. (See note to 
def. 90.) 

Example 1. What is the breadth of the 6th climate, and what 
remarkable places are situated within it ? 

Ans. The 6th climate extends from 36° 31' to 41° 24' N. the 
difference of which is 4° 53', which is the breadth required, and 
all places situated within this space, are in the same climate. See 
Example 1 of the preceding prob. 

2. What is the breadth of the 27th climate ? 
Ans. The 27th climate is situated between 69° 33' and 73® 5', 

hence its breadth is 3° 32'. 
3. What is the breadth of the 2d, 5th, 9th, 23d, 25th, and 30th 

climates respectively, and what remarkable places are situated with¬ 
in each of them ? 

* On Cary’s and Adam’s globes the meridian passing through libra being 
divided into degrees, &c. in the same manner as the brass meridian ; the 
horizon will therefore cut this meridian in the several degrees answering to 
the end of each climate, and hence on these globes the above marks become 
unnecessary. 
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PROB. 31. 

To find the distance between any two filaces on the globe. 

Rule. As the shortest distance between any two places on the 
earth is an arch of a great circle contained between the two places* 
(the earth being considered a sphere) therefore, lay the graduated 
edge of the quadrant of altitude over the two places so that the di¬ 
vision marked 0 may be on one of them, the degrees on the quad¬ 
rant between the two places will give their distance. If these de¬ 
grees be multiplied by 60, the product will give the distance in 
geographical miles : or by 69A f the product will give the distance 
in English or American miles. 

Or, Extend a pair of compasses between any two places ; this 
extent applied to the equator will give the number of degrees be¬ 
tween them 

If the distance between the places should exceed the number of 
degrees on the quadrant, stretch a piece of thread or narrow rib¬ 
band over them ; this extent applied to the equator, from the fir;,t 
meridian, will shew the number of degrees between them, or both 
places may be brought to the horizon, and the degrees on the hori¬ 
zon will give their distance. This method will answer when their 
distance is greater or less than 90°. 

* See Emerson’s Trigonometry, cor. 2. prop. 13. b. 3. 

•j- According to the late French adopted measures, the length of a degree 

in English miles is 69.04 or 69^ miles. See note to definition 8. To give 
the learner some idea of the variation in the length of a degree on the 
earth’s surface, the following tables, &c. are inserted. 

S 

% 

S 

$ 
s 

s 
s 

Alcan la¬ 
titudes. 

0° C S 

or* 18 S 

39 12 N 
43 N 
44 44 N 
45 N 

47 40 N 
49 23 N 

52 44 

66 20 

Toises 

56888 
56979 
57069 
57028 

57091 
57074 

57300 

57422 

Observer’s names and year. Places. 

Condamine, Bouguer and Go¬ 
din, in 1736 and 1743. 

De la Caille, 1752. 

Mason k Dixon, 1764& 1768. 
Boscowich k Le Maire, 1755. 
Beccarius, 1768. 
Cassini, the Father, 1739 and 

1740. 

Liesganig, 1768. 
Maupertuis and Cassini, 1739 

and 1740. 
Norwood, 1635. 

Maupertuis, Camus, Clairaut, 
1736 and 1737. 

Near Quito. 
Near the Cape of Good 

Hope. 
In North America. 
In Italy. 
Lombardy. 
From Collioure to Pa¬ 
ris observatory, thence 
to Dunkirk, distance 

in all 8° 31' ll"f. 
Germany, near Vienna. 

Between London and 
York, difF. lat. obs. 2°28'. 
At the extremity of the 
Gulf of Bothnia. 

* 
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Example 1. What is the nearest distance between Bermudas 
attd Ferro Island in the Canaries ? 

JDistance in degrees = 39} 
60 

39| 
694 

or, 39| 
70 

60x3_ 23*° 
4 

19} 
351 

234 
A5 =34} 
is.— 17T 
4 — 1 * T 

70X3_ 
* 4~ 

2730 
521 

r 

Geographical miles 2385 
39|_ 

a 

2782i 

m 
,39|X69=:2742| 

English miles. 
2762} Eng. miles. 2762} 

Newton takes it for 
S' Length of a degree from the S JV£. Louguer, S granted in forming his 
5 theory of gravity. Newton's1} an ingenious £ table, that from lat. 483° 

A.' n Of! A Q 7l ft /*■* ^ f A A 0-1° - O f ATP AP 5 

s 

i 

principia, prop. 20, b. 3. 
ss 

mathematici¬ 
an of France y 

to 49^°, is 57060 toises, 
according to Picard ; 
he found that in Paris 
the length of a pendu¬ 
lum to vibrate seconds 
is 3 feet 8^ lines, or ra¬ 

ther 8-f lines, and that 
under the equator a pen¬ 
dulum vibrating in the 
same time will be 1,087 
lines shorter. But the 
length of pendulums be¬ 
ing as the force of gravi¬ 
ty, that is as the versed 
sine of double the lat. or 
as the square of the right 
sine of the same, the 
construction of the table 
is manifest. This is on 
supposition that the 
earth is homogeneous1, 
but that it is not is well 

known. (See Clairault’s treatise on the figure of the earth.) Other observ¬ 
ations were made by the following persons : By Eratosthenes, of Cyrene, in 
Egypt, 270 years before Christ, who makes a deg.=250900 stadia, or 66493 
toises; by Hipparchus, of llhodes, 140 years A. C. who makes it 275000 
stadia, or 73142 toises ; Possidonius, of Alexandria, in Egypt, 60 years A. C. 
240000 stadia, or 63833; Strabo and Ptolemy, in Egypt, in the year 135, 
makes it 180000 stadia=,47875 toises; Almaimon, an Arabian king, with 
his mathematicians, in the plains of Mesopotamia, in 800, makes it 43270 
toises ; Fernell, from Paris to Amiens, in 1550, makes it 56746; Snell, in 
Holland, makes it 55021 toises ; Iticciolus and Grimaldus, in Italy, in 1661, 
make it 629000 toises ; Picard, in France, in 1670, makes it 57060 toises; 
Cassini the younger, in 1700, makes it 57292 toises ; La Place, from an arch 
measured at the equator, and another between Dunkirk and Mountjoy, de¬ 
termines that the polar diameters of the earth is less than the equatorial, by 

TIT Part of the latter, and that a fourth part of the eclipticmeridian=f5l3074Q 

Lat. 
Length of 
a deg. on 
the merid. 

Lat. 
Length of S thus corrects 
a deg on £ the foregoing 
the merid. ^ table. 

deg. toises. deg. toises. S Lat. Toises. 
0 56637 47 57022 ? 0° 56753 
5 56642 46 57035 ^ 10 56776 

10 56659 48 57048 S 20 56843 
15 56687 49 57061 S 30 56946 
20 56724 50 57074 > 40 57072 
25 56769 55 57137 C 45 57139 
30 56823 60 57196 S 50 57206 
35 56882 65 57250 S 60 57332 
40 56945 70 57295 > 70 57435 
41 56958 75 57332 s 80 57530 
43 56971 80 57360 S 90 57525 
43 56984 85 57377 S 
44 56997 90 57382 > 
45 57010 s 
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2. What is the nearest distance between the island of Barbadoes 
and St. Helena ? 

jins. The distance in degrees is 60io : hence 60^X60=3630 

geographical miles, or 60^x70—^1=4204^ English miles. The 

reason of this last method is evident, as 70—£=69|. For al¬ 
though 69^ be not correct, this number is however generally used 
for the length of a degree. 69 should however be always used in 
preference. See the note to def. 8, and prob. 35. 

toises. The toise being used for the measure in Peru, and reduced to a 
temperature of 16f* of a mercurial thermometer, divided into 100° from the 
freezing point to that of water boiling, under a pressure equivalent to a co¬ 
lumn of mercury, 76 centimetres or 30 inches English measure in height. 
Within these few years an arch has been measured extending from Dunkirk 
to Barcelona, and the degree whose middle is lat. 45° has by this means 
been found =57029 toises. At the equator likewise some of the members 
of the academy of sciences has found a deg. of the meridian ^56753 toises, 
and in Lapland, about the lat. 66° 20', they found it to be 57458. From all 
which it is evident, that the degrees of the meridian gradually increase 
from the equator to the poles. 

From these latter data and the rules of mensuration, the equatorial di¬ 
ameter is found equal 3271267, and the polar 3261461 toises, the differ¬ 

ence being 9769 toises=58614 French feet, equal 56647-j14;:?g English feet, or 
something less than 10^ English miles. (3 feet English being equal to 3 
feet If inches French, and 6 feet equal one toise, or 12 inches English or 
American equal 12 inches 9 lines 3f points French measure, 12 points being 
equal to a line, 12 lines an inch, &c.) 

From the difference observed in the length of a degree of the meridian in 
the above tables, it is evident that the surface of the earth is of no regu¬ 
lar form. It is known that there are rivers on its surface, which run from 
their sources from 2000 to 3000 miles and upwards, before they discharge 
themselves into the sea, and that frequently these rivers have cataracts or 
water falls of considerable height; (the falls of Niagara, for example, is 273 
feet perpendicular height, including 65 feet fall in the chasm, and 58 for the 
half mile above the catai’act.) Therefore it must be admitted that the part 
of the earth at the fountain head of such rivers is considerably higher than 
where they discharge themselves into the ocean ; because if the earth were a 
perfect plane, or a perfect sphere, the water at the fountain head of rivers 
could not possibly flow to any other place, or in any direction in preference 
to another, except westward from the motion of the earth on its axis. There¬ 
fore to ascertain its figure to as much exactness as the nature of the tiling 
can admit, the exact length of a degree in the various parallels of latitude, 
as well as a degree on the meridian, the elevation of countries above the 
level of the sea, the motion and direction of rivers, of currents in the ocean, 
&.c. should likewise be ascertained. And yet if it be admitted that at the 
equator the earth is higher than at the poles, we may ask how it happens 
that the greatest rivers in the world flow towards or parallel to the equator, 
and generally in an easterly direction, while many others have their direc¬ 
tion towards the poles. Thus the Amazon flows towards or parallel to the 
equator, while the La Plata flows towards the south pole. The Oronokc 
in some places directs its course westward, then northward, and afterwards 
eastward, declining in each winding from the equator. The Mississippi 
and all the rivers in the United States, and within that latitude as far as the 
southern ocean, flow almost universally towards the equator, while the St. 
Lawrence and others direct their course towards, the north. In the eastern 
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3. What is the nearest distance between the island of Barbadoes 
and Bermudas, in Geographical and English miles ? 

4. What is the shortest distance between Washington city and 
London ? 

hemisphere, the Senegal and Gambia flow westward, the Niger takes its 
course in an easterly direction parallel to the equator, while the Nile, the 
source of which is nearer the equator, flows towards the north ; on the con¬ 
trary, the Euphrates, the Indus, the Ganges, &c. and all the rivers in India 
beyond the Ganges, direct their course towards the equator. Those in China, 
&a eastward. The Danube, Dniper, Don, Volgo, &c. likewise flow towards 
the equator, whilst the Oby, Enissey, Lena, &c. which have their sources 
further south, direct their courses towards the north. Hence the great ir¬ 
regularity in the surface of the land indicated by these rivers. Nor is the 
sea without a similar or perhaps greater, as any one that considers the phe¬ 
nomenon of the gulf stream alone, may clearly perceive. First, it directs its 
course towards the north as far as the banks of Newfoundland, thence east¬ 
ward towards the Azores, again it directs its course towards the equator, 
changes its direction about the Cape Verd islands, where, impelled by the 
trade winds, in a direction parallel to the equator west, it is forced again, 
into the Gulf of Mexico, its mean velocity being about 3 miles an hour* 
From these phenomena it is evident, that the earth can have no regular 
figure, and as it deviates but little from a circular figure (see note to def. 1) 
our calculations are not the less certain when we consider it as such. St- 
Pierre in his Studies of Nature shews that the above measures of a degree, 
&c. tend as much to prove the excess of the polar diameter above the equa¬ 
torial as the contrary. Hence, simple as this problem may appear in theory, 
on a superficial view, yet when applied to practice, the difficulties which oc¬ 
cur are almost insurmountable. And granting even that the earth is a per¬ 
fect sphere, much of the difficulty would still remain. For in sailing across 
the ocean, or in travelling through extensive and unknown countries, without 
any other guide than the compass, with such a guide it is plain that we can¬ 
not take the shortest rout, as measured by the quadrant of altitude (an arch 
of a great circle being the shortest distance between two places on the 
globe, as before observed) because the rhumb lines must always cut the 
meridians in the same angles, and this cannot happen in sailing or travelling 
by the compass, unless the places be situated directly north and south of 
each other, or upon the equator. 

To render these observations more intelligible to the young student, 1st, 
Let two places be situated in lat. 50° N. and differing in longitude 48° 50', 
which will nearly correspond with the lands end and the eastern coast of 
Newfoundland. Now there are given the complement of the lat. —40°, and 
the angle formed by the two meridians passing through both places equal 
48° 50', to find the distance between both places in an arch of a great cir¬ 
cle ; but as the triangle formed by both complements of lat. which are 
equal, and the required arch, is therefore Isosceles, a perpendicular let fall 
from the given angle bisects the base, and also the vertical angle (Emer¬ 
son’s Trigonometry, prob. 14. cor. 2. B. 2.) Hence there is given the hy¬ 
potenuse =40° and angle at the vertex =24° 25' to find the base or half the 
distance ; and therefore by Baron Napier’s rule (see Simson’s Trig, at the 
end of his Euclid. Emerson’s, prob. 28. B. 3. or Keith’s.) Rad. x Sine 
of ^ the distance = Sine 40° X Sine 24° 25' (being the cosines of the 
opposite extremes.) And therefore rad. : sine 40° :: sine 24° 25' : sine 
base or half the distance =15° 24' 33" 3, hence the whole distance —30^ 
49' 6" 6=1849.11 geographical miles, or 2127.7 English (allowing 69.04 
miles to a deg. See note to def. 8) But if a ship steer from the lands end 
directly westward in lat. 50° N. until her difference of longitude be 48p 50', 

Q 
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5. What is the shortest distance between Washington city and 
the junction between the Mississippi and Missouri ? 

6. What is the extent of Europe in English miles from Cape 
Matapan in the Morea, lat. 36° 35' N. to the north cape in Lap- 

then by parallel sailing, rad. : co. sine 50° :: dtff. longitude 2930 miles : 
the distance — 1883.4 geograpliical, or 2167.16 English miles, which last 
distance is greater than the former, on the arch of a great circle by 34.29 
geographical, or 39.46 English miles. Those who. are acquainted with 
Spherical Trigonometry and the principles of Navigation, particularly great 
circle sailing, know that it is impossible to conduct a ship exactly on the 
arch of a great circle, except, as before observed, on the equator or meri¬ 
dian ; for in this example, she must be steered through all the different 
angles from N. 70° 49' 30" W. to 90° ; and continue sailing from thence 
through all the same variety of angles until she arrives at the intended place, 
where the angle will become 70° 49' 30", as at first. For as the comple¬ 
ments of 50°, together with the distance, form an Isosceles triangle, as before 
observed, the angles at the base being equal, is found by Napier’s rule thus: 
rad. X sine co. 40°=tangt. co. 24° 25' X tangt. co, course. Hence co. 
tangt. 24° 25' : co. sine 40° :: rad. : co. tangt. of the angle at the base= 
70° 49' 30" as above. But as this is the angle which the ship’s way makes 
with the meridian, it is equal to the course required. In the same manner 
may the course be found for any other point in the parallel between the 
land’s end and the meridian which bisects the distance. Thus, if instead 
of 24° 25', the distance from the vessel to this perpendicular be 18° (for ex.) 
the course will then be 76° 1' 22", &c. 

2. Suppose it were required to find the shortest distance between the Li¬ 
zard, lat. 49° 57' N. Ion. 5° 21' W. and the Island of Bermudas, lat. 32° 25' 
N. and Ion. 63° 35' W. Here there are given the complements of both lati¬ 
tudes, and the difference of longitude 58° 14' (which is equal to the angle 
formed by the two meridians passing through the Ju 
two given places) to find the distance in an arch 
of a great circle. Let PL=co. lat. Lizard =40° 3', 
PB=co lat. Bermudas=57° 35' the angle LPB = 
58° 14' (P being the pole) to find the distance LB. 
Draw LI perp. to PB, then by Napier’s rtile rad. 
X co. sine LPI=co. tang. PL X tang. PI. Hence 

co. tang. 40° 3' : rad. :: co. sine 58° 14' : tang. PI 
=23° 52' 15", therefore IB = PB—PI=33° 42' 45". P 

The sides LI, LB may be found in like manner or shorter, thus : Co. s 
PI 23° 52' 15" : co. sine BI 33° 42' 45" :: co. sine PL 40° 3': co. sine LB 
(Emerson’s Trig. cor. 2. prop. 28. b. 3) =45° 52' 5" the shortest distance be¬ 

tween the two places, equal 2752TV geographical or 3166.73 English miles 
(allowing 69.04 miles to a deg.) Now for a ship to sail on this arch, be¬ 
tween the Lizard and Bermudas, she must sail from the Lizard S. 89° 10' 
46" W. (being the angle which the ship’s way LB makes with the meridian 
PL, or the angle PLB) and gradually lessen this course so as to arrive at 
Bermudas on the rhumb bearing S. 50° 46' 2" W. which is the angle that 
the ship’s way makes with the meridian PB passing through Bermudas, or the 
angle PBL, But this, though true in theory, is impracticable, and there¬ 
fore the course and distance must be calculated by Mercator's sailing. The 
direct course by the compass being S. 67° 59' 45" W. and the distance upon 
that course 2807.68 geographical or 3230.7 English miles, which is greater 
than the former by 55.6 geographical or 63.97 English miles. 

The shortest distance between any two places, the lat. and long, of which 
are given, may be found in the same manner as LB has been calculated 
above, and that whether the perpendicular falls within or without LB,L£s 
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land, lat. 71° 10'N. the places being situated nearly due north 
and south ? 

Note. 1. Here the difference of lat. is nearly equal the distance. See 
the notes at the bottom. 

7. What is the shortest distance between Quito, in longitude 
77° 55' W. and Macapa, in longitude 51° 20' W. both situated 
nearly under the equator ? 

Note. 2. Here the difference of longitude is nearly the distance. 

8. What is the shortest distance between the town of St. Do¬ 
mingo and Cape Horn ( 

9. What is the breadth of North-America from Sandy-Hook, in 
lat. 40° N. and that part of the coast of New-Albion in the Pacific 
ocean in the same parallel ? (See the notes and table to prob. 35.) 

10. Suppose the track of a ship to Batavia be from New-York 
to Bermudas, thence to St Anthony, one of the Cape Verd islands, 
thence to St. Helena, thence to the Cape of Good Hope, thence 
to the Isle of France or Mauritius, thence to the headland west¬ 
ward of Bantam, thence to Batavia ; how many English miles from 
New-York to Batavia, on these different courses ? 

PROB. 32. 

A place being given on the globe to Jind all those places that are at 
the same distance from it as any other given place.* 

Rule. Extend the quadrant of altitude between both places, 
so that the division marked 0 may be on the given place from 

although it be more convenient to have the perp. always fall on the longest 
side as in the above calculation. But when we want to find the distance be¬ 
tween any two places whose lat. and long, are known, in order to travel or 
sail from one place to the other, on a direct course by the compass, the fol¬ 
lowing methods must be used: 

1. If the places be situated on the same meridian, or have the same lon¬ 
gitude, their difference of latitude (found by prob. 4) will be the nearest 
distance between them in degrees, and the places will be exactly north and 
south of each other. 

2. If the places be situated on the equator, their difference of longitude 
will be the nearest distance in degrees, and the places will be exactly east 
and west of each other. 

3. If the places be situated in the same parallel of lat. they will be direct¬ 
ly east and west of each other, and their difference of longitude (found by 
prob. 4) multiplied by the number of miles which make a degree in the 
given lat. (see the table annexed to prob. 35) will give the distance. 

4. If the places differ both in their latitudes and longitudes, the distance 
between them, and the point of the compass on which a person must travel, 
or a vessel sail from the one to the other, must be found by Mercator's sail¬ 

ing, as in navigation. 

* A general solution to this prob. may be obtained from prob. 2d. sect. 1. 

vol. 2. of Simpson’s Fluxions. Thus let A = fluxion of the angle of position 

between the given place >and that required. B = flux, of the diff. long. 

and F = flux, of the complement of the lat. of the place required. D = 
comp. lat. of the given place, C = the angle of position between the re* 
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which the distance is reckoned, move the quadrant round, keep¬ 
ing 0 on the quadrant in its first position, all those places that pass 
under the degree of distance, observed to stand over the other 
place, will be the places required. The globe may be also recti¬ 
fied for the given lat. and the quadrant screwed in the zenith, &c. 

Or, Wi .h the extent between both places, describe, with a pair 
of compasses, a circle, the centre of which is the first given place, 
tall those places in the circumference of this circle, will be those 
required. 

If the extent between both places should exceed the length of 
the quadrant, or the extent of a pair of compasses, stretch a piece 
of thread over both places, with which describe a circle as before. 
Or both places being brought to the horizon, turn the globe on the 
notch in the direction of the meridian, and the horizon will point 
out the places required 

Examfile 1. Find all those places that are at the same (or near¬ 
ly the same) distance from Washington city, as Portau Prince in 
St. Domingo. 

jins. Kingston in Jamaica, Cape Catouche in New-Spain, An¬ 
tonio in Mexico, the mouth of Haye’s river, the island and strait 
of Bell Isle, at the mouth of the river St. Lawrence, St. John’s 
in Newfoundland, See. 

2 Required all those places that are at the same distance from 
Paris as London ? 

3. Find all those places that are at the same distance from Lon¬ 
don as Paris ? 

4. Find all those places that are at the same distance from Con¬ 
stantinople as Naples i 

quired place and the given place ; then, co. sec. D : sin. B :: A : F and 
o • 

sin. F : co. tang. C :: F : B; that is 1st. as the secant of the given latitude, 
to sine of the difference of longitude (assumed at pleasure) so is the altera¬ 
tion in the angle of position between the given place, and that required, to 
the alteration in the complement of lat. of the place required. 2d. As the 
co. sine of the lat. required, to co. tangent of its angle of position with the 
given place, so is the alteration in the lat. of the place required, to the al¬ 
teration in the difference of longitude. From either of which theorems the 
required places may be found. If the difference of longitude be assumed, 
and any degree of position, the difference of lat. is given, and therefore the 
place itself. (Theo. 1.) If the diff. of lat. be assumed and any degree of 
position, the diff. of long, is found. (Theo. 2.) The difference of latitude 
N. or S. or the diff. of long. E or W. can never exceed the distance be¬ 
tween the two given places. The section alluded to in Simpson’s Fluxions, 
which treats of the fluxions of spherical triangles, is extremely useful in a 
great variety of cases in Practical Astronomy, Geography, and Navigation, 
which are calculated with much more labour by other methods. 
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PROB. 33. 

Given the latitude of a filace and its distance from a given place, to 
find that place the latitude of which is given.* 

Rule. If the distance be given in English or geographical 
miles, reduce them to degrees (by allowing 60 geographical, or 
691 English milesf to a degree) then place 0 on the quadrant of 
alt upon the given place, and move the other end eastward or 
westward, according to the position of the place east or west, until 
the degrees of distance cut the given parallel of lat. under the 
point of intersection is the place required. 

Or, Having taken the degrees of distance from the equator with 
a pair of compasses, with this extent, and one foot of the compas¬ 
ses on the given place, with the other intersect the given parallels, 
the point of intersection will be the place required, and will be 
east or west as before If none of the parallels on the globe pass 
through the given place, you may describe one with a fine pencil, 
by holding it over the lat and turning the globe on its axis. This 
prob. may be also performed by means of the horizon. 

Example 1. A place in lat. 32° 25'N is 2752-| geographical 
miles westward from the Lizard in England, required the place ? 

Ans. 2752$ ~ 60 == 45° 52$'; this on the quadrant will extend 
from the Lizard to Bermudas in the given parallel west ; hence 
Bermudas is the place required. 

2. A place in W. long, and 13°N. lat. is 3660 geographical 
miles from London, required the place ? 

3. A place in lat. 60° N. is 1320$- English miles from London, 
and is situated in east longitude ; required the place ? 

4. A place in lat. 53° 34' N. is distant from Washington city 
4002 Eng. miles ; required the place ? 

PROB. 34. 

Given the longitude of a place and its distance from a given place to 
find that place, the longitude of which is given. 

Rule. Convert the degrees into minutes as before, and apply 
0 on the quadrant of alt. to the given place, as in the foregoing 
prob. move the other end northward or southward (according as 
the required place lies north or south of the given place) until the 
degrees of distance cut the given longitude, and under the point of 
intersection you will find the place required. 

Or, Bring the longitude of the place required to the brass meri¬ 
dian, then take the degrees of distance from the equator with a pair 

* The reason of this and the following problem is too evident to need ail}' 
explanation. 

f Though we sometimes make use of 69$ Eng*, miles to a degree, yet the 
learner is advised to make use of 69, or where greater exactness is requir¬ 
ed, of 69.04, in preference. See note to def. 8, or notes to prob. 35 and 36 
following. 
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of compasses, and with one foot in the given place, under the 
point where the other cuts the brass meridian, you will find the 
place required. 

If the given place be west of the place required, the meridian 
passing through the place required, instead of the brass meridian, 
must be used ; but if no meridian pass through it, one may be 
described with a fine pencil by bringing its longitude under the 
brass meridian. 

Example 1. A place in north lat. and long. 70<> 58' W. is 817 
English miles north eastward of Charlestown in South Carolina ; 
required the place ? 

Ans. 817-t-69| or 1634—139 = 111° nearly ; hence the place is 
Boston, 

2. A place in north lat. and 77° 10' west long, is 3675 Eng. miles 
towards the south west from Greenwich observatory ; required 
the place ? 

3. A place in longitude 5° 49' W. is distant from Barbadoes 
3630 geographical miles south eastward ; required the place ? 

4. A place in longitude 63° 36' W. is distant from Ferro island 
2762f English miles, and lies in a north westerly direction from 
it ; required the place ? 

PROB. 35. 

To find how many miles make a degree of longitude in any given 
parallel of latitude. 

Buie. Lay the quadrant of alt. parallel to the equator between 
any two meridians in the given lat. which differ in longitude 15° 
fer Bardin’s, or 20° for Cary’s globe, the number of degrees in¬ 
tercepted between them multiplied by 4 for Bardin’s, or by 3 for 
Cary’s, will give the length of a degree in geographical miles. 

Or, Take the distance between two meridians which differ in 
long. 15° for Bardin’s, or 20° for Cary’s globes, in the same par¬ 
allel of lat. with a pair of compasses ; apply this distance to the 
equator, and observe how many degrees it makes, with which pro¬ 
ceed as before. The distance between 10° on Cary’s globe mult, 
by 6, will likewise give the miles required. 

Example 1. How many geographical and American miles make 
a degree in the latitude of Philadelphia ? 

Ans. The lat. of Philadelphia is nearly 40° N. The distance be¬ 
tween two meridians, in that lat. which differ 15° in long, is 111°, 
or 15-}° if the meridians differ 20°. Now 11^x4* or 15^x3=46 
geographical miles for the length of a degree of longitude in the 
latitude of Philadelphia, which multiplied by 1.16 (because 60 : 
69-| :: 1 : 1.16 nearly) gives 53.36 English miles, the length of 
a degree ; or 15° : ll^o 69|- : 53.36,* 

* The reason of this is evident from this principle, that the distance or 
num. of degrees contained between any two meridians on the equator, is to a 
similar arch or distance between the same meridians in any parallel of hut. 
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.2, How many miles make a degree in the parallels where the 
following places are situated : 

Boston, Washington, Savannah, Kingston in Jamaica, London, 
Paris, Petersburgh, Skalholt, North Cape, and the most northern 
part of Spitzbergen ? 

as the length of one degree on the equator, to the length of a degree in this 
parallel. For similar arches have the same proportion to the whole circum¬ 
ferences (Lemma 2. Simson’s trig, or Emerson’s geom. cor. to prop. 19. b. 4.) 
and therefore to one another. (Eucl.b. 5. prop. 15.) Thus in the above lat. of 
Phil, two places which differ 15° on the equator, differ only 11^ such de¬ 
grees in this parallel ; hence 15° : 11^° :: 60' : 46', or 15° : 60m. :: 11^° : 46, 
but 15 : 60 :: 1 : 4, hence the reason of multiplying 11^ by 4, &c. If in¬ 
stead of 15° we take 20°, then 20 : 60 :: 1 : 3, or 10 : 60 :: 1 : 6, Sec. But 
since the quadrant of alt. will measure no arch truly but that of a great cir¬ 
cle, and that a pair of compasses will only measure the chord of the arch, 
and not the arch itself, it follows that the preceding rule is not mathemat¬ 
ically true, though sufficiently correct for practical purposes. When greater 
exactness is required, recourse must be had to calculation or the following 
table. 
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The length of a degree is here given =69.07 English miles. But as has 
been shewn in the note to def. 8, 69.04 is more correct; moreover an arch 
about the lat. 45°, which is a mean of that which has been lately measured 
from Dunkirk to Barcelona, gives the length of a degree equal 57029 toises 
=342174 French feet, or 364559.2 English feet (see note def. 8) =69.04 
English miles as above ; and as 45° is a mean between the lat. at the equa¬ 
tor and at the poles, 69.04 E. miles is properly taken as the mean length of 
a degree. This table having been found ready calculated in Keith’s Trea- 
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PROB. 36. 
To find at what rate per hour the inhabitants of am) given place are- 

carried from west to east, by the revolution of the earth on its axis. 

Rule. Find how many miles make a degree of longitude in 
the given latitude (by the preceding prob. or the table annexed) 
which multiplied by 15 for the answer.* 

tise on the globes, pa. 173, it was thought unnecessary, for so trifling a dif¬ 
ference, to repeat the calculation, as any one may perform it at pleasure. 

Thus in the lat. 60° a degree =30 geog. miles, or JbX69.Q4__69.Q4—^ ^ 
60 2 

English miles, differing only of a mile from that given in the table, for 
thex-e it ought to be 34.53. Hence also appears, that in practice we may consider 
69 English miles in a degree, which will make the calculations much easier ; 

for ^^^34.5, differing only jq miles from the truth. If we make use 

of 691 miles 30 geog. miles will equal ^5—^2?—34.75 E. miles, &c. 

The above table is thus calculated, radius : co. sine lat. of any parallel :: 
any given portion of the equator, as 1° : to a similar poi’tion of the given pa¬ 
rallel. For let EQ l'epresent the equator, P tlxe 
pole, B any given place on the meridian QP; 
then the arch BQ is the lat. of B, and BP its com¬ 
plement, and BC drawn perpendicular to the semi- 
diameter PA, will be the co. sine of the lat. of 
B,to the i*adius AQ. Now as similar arches are 
as the radii of the circles of which they are arches 
(Emerson’s geom. b. 4. prop. 8.) Therefore AQ : 
CB :: as any part of the circumference EQ : to a 
similar part of the parallel DB. 

All the properties of parallel sailing will follow from the same principle 
(the earth being considered as a perfect sphere.) Thus the difference of 
longitude between any two places, in an arcli of the equator, and the dis¬ 
tance between these places, if under the same parallel, is a similar portion of 
that parallel; hence as rad. : co. s. lat. :: diff. long. : distance; and by inver¬ 
sion co. s. lat. : R. :: dist. : diff. long'. Also as diff. long. : dist. :: R. : co. s. 
lat. whence it likewise follows, that co. s. of any given lat. : co. s. of any 
other lat. :: as any given position of the first parallel : any given poi'tion of 
the second ; and lastly, any portion of a given parallel : a similar portion of 
any other : co. s. lat. of the 1st : co. s. of the 2d. 

By considering the three first terms of any of the above proportions as 
given, the 4th is given, and can be performed on the globes in the same man¬ 
ner as the above. The learner can therefore here find an agreeable exercise 
in performing all the cases in parallel sailing by help of the globe alone. To 
give the problems here in detail, would be contrary to our intended brevity 
in this introduction. 

* The reason of this rule is evident; for if n — the number of miles in a 

deg. then 24 hours : 360° X n :: 1 hour : — 15 n. the rule as 
24 

above. This rule is on a supposition that the earth turns on its axis from 
west to east in 24 hours ; but it has been observed in def. 66, that it re¬ 
volves on its axis in 23 h. 56 m. 4 s. but this trifling diff. is scarce worth 
observing. The learner must not however foi’get, that it takes exactly 24 
hours, for any place on the earth’s surface, to perform its diurnal revolution 
fi’om under any mei’idian, or any point in the heavens, until it comes exact¬ 
ly under that mer. or point again. (Note to def. 66.) 

From the following tables the length of a degree given in the preceding 
table, may be reduced to the measures of other countries, which will often 
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Examjile 1. At what rate per hour are the inhabitants of Phila¬ 
delphia carried from, west to east by the revolution of the earth on 
its axis 

he of use to the learner, particularly in Geography, History, constructing 
Maps, &.c. The first of these tables is collected from Dunn’s Atlas ; the 
second from Danville as given by Ozanam, vol. 3. of his Mathematical rec¬ 
reations ; the third from vol. 1st. of Ozanam. (Montucia’s Edition.) 

TABLE I. 

Length of a degree. 

60 Geographical miles. 

69^ Or rather 69-Jj Eng. miles. 
20 Marine leagues. 
50 Scotch miles. 
54£ Miles 14 poles, Irish. 
15 Dutch miles or 20 Marine. 
15 Common leagues of Germany. 
20 Common miles of Lithuania. 
18 Statute miles of Prussia. 

^ 13£ Hungarian miles. 
? 25 Common French leagues. 
S 12 Leagues of Switzerland. 
S 60 Italian miles. 
£ 17$ Common Spanish leagues, 
d 87^ Turkish miles. 
S 66 do. Berri. 
S 50 Common miles of Piedmont 
S 65 Venetian miles. 

ss 
s 
% 

s 
s 
s 
s 

l 

Length of a degree. 

o o 
OJ 

21 f Turkish agash. 
18-| Parasangs of Persia; 
56£ Arabian miles. 
50 do. in some places. 
105 Wersts of Russia. 
37£ Indian coss’s. 
250 Common lis of China. 

Jeribi. great measured coss 
of India. 

^ 34 Japanese leagues. 
S 75 Ancient Roman miles. 
S 80 Grecian miles. 
? 671 Stadia of Herodotus. 
2 533 Egyptian stadia. 
S 22£ Italian or 30 Arabian travel 
S ling leagues, 
t 60,000 Geometrical paces. 

i 
S 
S 

$ 
5 
i 
s 
s 
s 
s 
s 

Ancient and modern measures. < Ancient and modern measures. 

£ Loises. 

S Olympic stadia} Ancient C 944 
S Lesser stadia > Greece. ) ~3. 
S Least do. j 
/ Egyptian schene 
^ Parasang of Persia 
S Roman mile (milliare) 
S Stadia of Judea or Rez. 
J Mile do. (or Berath) 
S League of ancient Gaul 
S German league (rast.) 
£ Arabian mile 
^ French mile 
S Fr. small league 30 to a deg. 1902 
S Do. mean 25 to a degree 2283 
£ Do. great 20 to a degree 2853 
c German miles 12£ to a deg. 4536 
S Do. 15 to a degree 3800 
S Swedish mile 5483 
^ Danish mile 

50£ 
3024 
2268 
756 
76 

5691 
1134 
2268 
1084 
1000 

3930 

Toises. 
English mile or 1760 yards 826 
Scotch mile 1147 
Irish mile 1052 
Spanish league of 5000 vars 2147 
Do. common 17^ to a deg. 3261 
Italian or Roman mile 768 
The mile of Lombardy 848y 
Venetian mile 992 
The league of Poland 2850 
The ancient vverst of Russia 656 
Modern do. 
Turkish agash 
The little coss of India 
Tlie great coss 
The g'au of Malabar 
The Xari or Nali do. 
The lis of China 
The pu equal 10 lis 

547 
2536 
1342 
1542 
6000 
900 
295 

2959 

S 
S 
S 
S 
s 

* 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
s 
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Am. The lat. of Philadelphia is nearly 40°, in whicli parallel-si 
degree of long = 46 geogr. or 53 36 English miles (prob. 35) 
hence 46x 15 = 690 and 53.36X 15 = 800 4 therefore the inhabi¬ 
tants of Philadelphia are carried 690 geographical or 800 English 
miles per hour. 

Note. The geometrical pace is 5 Roman feet, 1000 of which = 1 mile 

= 8 stadia = 400 cubits of 1 foot 9^ inches English ; 30 stadia = a para- 

sang = 2188* English feet. The toise is 6 French feet. But as the foot 
differs in various countries, the following table will give the learner an idea 
of this variation. As the length of the toise is given in Paris feet, we shall 
compare all the other feet to it. It is divided into 12 inches, each inch into 
12 lines, and each line into 10 parts ; hence the foot will be 1440 of these 
parts. We shall therefore consider the foot of other countries under both 
these denominations, that is, in parts, and in inches, lines, &c. 

ANCIENT FEET. 

jParts. Ft. 
The ancient Roman foot = 1306 = 0 

Grecian and Ptolemaic 1364 
Grecian Phyleterien 1577 1 

Archimedes, or probably that of Syracuse &. Sicily 986 
The Drusian 1473 1 

Macedonian 1567 1 

Egyptian 1920 1 

Hebrew 1637 1 

Natural 1100 
Arabic 1480 1 

Baby Ionic 1546 1 

or 1534 1 

MODERN FEET. 

The foot of Paris 1440 1 

Amsterdam 1253 
Antona and Eccles. states 1732 1 
Altorf (Underwald) 1047 
Anvers or Antwerp 1270 
Augsburg 1313 
Avignon and Arles 1200 
Aquileia (Venice) 1524 1 
Basle 1276 
Barcelona 1340 
Bologne 1682 1 
Bourg. (Bress and Bugey, Switz’d.) 1392 
Berlin • 1340 
Bremen 1290 
Bergame 1933 1 
Be san£on 1372 
Brescia 2108 1 

Bruges 1013 
Brussels 1219 
B re si aw 1520 1 

China, tribunal of maihematics. 1523 1 
The imperial foot 1420 
Cologne 1220 
Chambery (and Savoy) 1496 1 
Copenhagen 1448 

Constantinople 
C2966 
£1575 

2 
1 

in. li. pts. 
10 10 6 
11 4 4 
117 
8 2 6 
0 3 3 
10 7 
4 0 0 
17 7 
9 2 0 
0 4 0 
0 10 6 
0 9 4 

0 0 0 
10 5 S 

2 5 2 
8 8 7 

10 7 0 
10 11 3 
10 0 0 

0 8 4 
10 7 6 
11 2 0 
2 0 2 

11 7 2 
11 2 0 
10 9 0 
4 13 

11 5 2 
5 6 8 
8 5 3 

10 1 9 
0 8 0 
0 8 3 

11 10 0 
10 2 0 

0 5 6 
11 9 8 

0 8 6 
115 
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By the table. In lat 40° a degree of long. = 45.96 geogr. or 
52 85 English miles. Hence 45.96x15 = 689.4 and 52.85x15 = 
792.75, consequently the inhabitants in this parallel are carried 
6891 geogr. or 793 English miles per hour, by the earth’s revolu¬ 
tion on its axis. The latter result is the most correct. 

MODERN FEET. 

Parts. Ft. in. li. pts. 
foot of Cracow =? 1580 = 1 1 2 0 

Dantzic 1247 10 4 7 
Dijon 1392 11 7 2 

Delft (Holland) 739 6 1 9 
Denmark 1415 11 9 5 
Dordrecht 1042 8 8 2 
Edinburgh 1485 1 0 4 5 
Ferrara (Italy) 1779 1 2 9 9 
Florence 1345 11 2 5 
Francfort on the Maine 1260 10 6 0 
Franche Comte 1483 1 1 2 

rt i) 
Genoa (Le Palme) 1098 9 1 8 
Geneva 2592 1 9 7 2 

Grenoble and Dauphin 1512 1 0 7 2 

Halle (on the Elbe, Up. Sax.) 1320 11 0 0 
Harlem 1267 10 6 7 
Hambourg 1260 10 6 0 
Heidelberg (Palat ) 
Inspruck (Cap. of Tyrol) 

1220 10 2 0 
1488 1 0 4 8 

Leyden 1382 11 6 2 

Leipsic 1397 11 7 7 
Liege 1276 10 7 6 
Lisbon 1287 10 8 7 
Leghorn 1340 11 2 0 
Lombardy, Sec. 1926 1 4 0 6 
London 135I| 11 3 1 
Lubeck (Holstein) 1260 10 6 0 
Lucca (Italy) 2615 1 9 9 5 
Lyons and Lyonnois, Ferez, 8ic, 1512 1 0 7 2 

Lorraine 1292 10 9 2 

Madrid 1237 10 3 7 
Malta (Le Palme) 1207 10 0 7 
Marseilles and Provence 1100 9 2 0 
Malines 1017 8 5 7 
Mentz 1335 U l .5 
Mastricht (on the Meuse) and the low 

countries 1238 10 3 8 
t..., Cpied decimal 
M,lan ^ pied aliprand 

1155 
1926 1 

9 
4 

7 
0 

5 
6 

Modena 2812 1 11 5 2 

Monaco 1042 8 8 2 
Montpellier (Le Pan) 1050 8 9 0 
Moscow 1255 10 5 5 
Mantua (La Brasse) 2055 1 5 1 5 

Munich 1280 10 8 0 
Naples (Le Palme) 1164 9 8 4 

Nuremberg 
1346 
1226 

11 
10 

2 

2 
6 
6 

Padua 1899 1 3 9 Q 
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2. At what rate per hour are the inhabitants of the following 
places carried from west to east, by the earth’s revolution on its 
axis ? 

Boston, New-York, Washington city, Quito, Cape Horn, Mad¬ 
rid, London, Petersburg, Skalholl, Spitzbergen. 

Note. If the velocity per hour be multiplied by any given number of 
hours, the velocity for that time is given. 

MODERJf FEET. 

Parts. Ft. in. li. pts. 

t of Parma = 2526 = 1 9 0 6 
Pavia 2080 1 5 4 0 
Prague 1336 11 1 6 
Palermo 1010 8 5 0 
The Rhine or Rhinland 1382 11 6 2 
Riga 1260 10 6 0 
Rome (Le Palme) 990 8 o O 0 
Rouen (as Paris) 1440 . 1 0 0 0 
Seville (Andalusia) 1340 11 2 0 
Stetin (in Pomerania) 1654 1 1 9 4 
Stockholm 1450 1 0 1 0 

Strasbourg ^^ntry 
1292 
1309 

10 
10 

9 
10 

2 
9 

Sien (common foot) 1674 1 1 11 4 
Toledo 1237 10 3 7 
Turin (Piedmont) 2265 1 6 10 5 
Trent 1622 1 1 6 2 
Valladolid 1227 10 2 7 
Warsaw 1580 1 1 2 0 
Venice 1537 1 0 9 7 
Verona 1510 1 0 7 0 
Vienna, in Austria, 1400 11 8 0 
Vienne (Dauphine) 1430 11 H 0 
Vicenza (Estates of Venice) 1535 1 0 9 5 
Wessel 1042 8 8 2 
Ulm (Swabia) 1117 9 O 

O 7 
Urbino (Italy) 1570 1 1 1 0 
Utrecht 1001 8 4 1 
Zurich 1323 11 0 

o 
O 

the learner sees that there are few countries but differ in the 
length of their foot; and as almost all of them reckon 12 inches (digits) 

to their foot, the inch must be no less variable. Thus 1440 : 135lf (or 

864 : 811) :: 12 inches : 11 in. 3 li. if pts. Paris measure, the length of an 

English or American foot. On the contrary 1351f : 1440 ::l2in. : 12in. 9 
li. 4 pts the length of a Paris foot in English measure, and so on for anv 

other country. Hence the English inch, foot. Sec. is Jff of the Paris, and 

the Paris inch, foot, &c. is |4t of the English, &c. According to the late 
Trench measures, the old French foot = 12.78933 English inches, and 
their metre equal 0,513074 toises =39.371 English inches, or 3.281 feet. 
5130740 toises being the length of 90° or a quarter of the meridian. The 
metre is also equal to 443.296 lines, or 3 feet 11.296 lines, or 0.841 aunes 
of Paris. See tables of the comparison between the ancient and modern 
measures in France, published in Paris, by order of the Minister of the 
Interior, 8tc. &c. or La Place’s System of the World, vol. 1. b. 1 ch. 12. 
where this subject is handled with that accuracy for which this author is 
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3. How many geographical miles are the inhabitants of Madrid 
carried, in 24 hours, more than those of Petersburg, by the earth’s 
revolution on its axis ? 

4. At what rate per hour are the inhabitants of the north pole 
(if any) carried, by the earth’s diurnal motion on its axis ? 

PROB. 37. 

To find the hearing of one place from another. 

Rule. If the places be situated on the same rhumb line, that 
rhumb line is their bearing ; but if not, lay the quadrant of alti¬ 
tude over both places, and the rhumb line, that is the nearest of 
being parallel to the quadrant, is their bearing. 

Note 1. As the parallels of lat. are real east or west, and the meridians 
north and south rhumb lines, hence those places situated in the same parallel 
are east or west, and those on the same meridian north and south, from 
each other. 

Or, If the globe have no rhumb lines* drawn on it, make a 
small mariner’s compass, and apply the centre of it to any given 

particularly remarkable. The treatise on arithmetic by Theveneau, or 
L’arithmetique par le Cen. Prevost-Saint-Lucian may be consulted. It re¬ 
mains only to add, that the new French linear measures are the millime¬ 
tre, centimetre, decimetre, metre, decametre, hecatometre, chilometre, 
myrcometre, each of which is 10 times the value of the foregoing; the 
millimetre being 0.039371 English miles. The centimetre is printed wrong 
in the table in the beginning of the English edition of La Place’s Astrono¬ 
my, 9.39371 being given for 0.39371. The decimetre =0.30784, the cen¬ 
timetre 0.36941 inches, and the millimetre 0.44330 lines, all the other 
measures being in proportion. The length of a degree in the above tables 
should be corrected by these measures, in the same manner as 694 Eng¬ 
lish miles was changed to 69.04, &c. Thlis 69^ : 69.04 :: 50 Scotch m. : 
49.669 m. The length of the metre above given was found from the arch 
of the meridian contained between Dunkirk and Barcelona, the length of 
which is 9° 40' 25".6, equal to.551584.70 of the iron toise used at the equa¬ 
tor at the temperature 16£°, the quadrant being divided into 100°, com¬ 
pared with the arch measured in Peru. The above arch from Dunkirk 
to Barcelona in Spain, is the result of Delambre and Mechain’s measures ; 
the astronomical and trigonometrical observations being made with a re¬ 
peating circle, which gives great precision in the measure of angles. The 
above 9° 40' 25 '6, is given 6° 40' 26"2t in the English translation of La 
Place. Hence, whoever uses this work should take the precaution of 
making the calculations over again, as there are many errors in the Eng- 
lish measures. The other different measures, &c. of the respective conn 
tries will be given in the Treatise of Arithmetic, at present nearly ready 
for the press. The utility of the above table in a mercantile view, no less 
than in a geographical, will atone for its uncommon length, considering 
our contracted limits. The length of the note to prob. 31st precluded the 
tables from being inserted there as their proper place. 

* Neither Cary’s or Bardin’s globes have any rhumb lines on them. On 
Adams’ globes there are two compasses drawn on the equator, one on a 
vacant place in the Pacific ocean, between America and New Holland ; 
the other in the Atlantic, between Africa and South America. Each point 
of either of these compasses will serve as rhumb lines. The compass 
may be easily made by describing a circle on a sheet of paper, or on a 
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place, so that the north and south points may coincide with some 
meridian, the other points will shew the bearings of all the cir¬ 
cumjacent places, to the distance of more than 1000 miles, if the 
central place be not far distant from the equator. 

Note 2. The latitudes and longitudes of two places being given, tl>e 
course and distance are given, by this and prob. 31. 

Examjile 1. What is the bearing between the Lizard and the 
island of Madeira ? 

Am. S. S. W. 

card, hr. with a radius of any convenient length, and then dividing its 
circumference into 32, or each quadrant or 4th part into 8 equal parts, 
and annexing to ea<#i part its appropriate name found on the horizon of 
the globes. Any two lines drawn through the centre, at right angles to 
each other, may be first considered the E. W N. h S. lines. These points 
may be again divided into halves, quarters, he. or each quadrant into 90°, 
he. The bearing is however found much more correct from Mercator's 
sailing•, by the following proportion ; Meridional difference of latitude : 
radius :: difference of longitude : tangent course. Here the diff lat. and 
diff. long, are both considered as given. The meridional parts are ready 
calculated in books on navigation, in tables constructed for that purpose. 
See McKay’s Treatise on Navigation, Hamilton Moore’s, improved by Bow - 
ditch, Norey, requisite tables, or Robertson’s Navigation. When no ta¬ 
ble of meridional parts is at hand, the defect may be supplied by the fol¬ 
lowing rules: The length of the meridian line for the given lat. accord- 

radius 
ing to Wright’s projection is equal to 7915.705 X log. i comT lat. 

(Emerson’s Math. prin. of Geography, Art. Navigation, cor. 3. prop. 4.) 
Or thus. To half the given lat add 45°, and find the logarithmic tangent 
of the sum, and divide it by 7915.7, the quotient will be the meridional 
parts required, for the sphere. If the meridional parts for the spheriod be 
required, they may be found thus; As rad : sine lat. :: 30 : x; then this 
number subtracted from the meridional parts for the sphere, will give the 
meridional parts answering to the spheriod. (Simpson’s Fluxions, vol. 2. 
sect. 11. prob. 29, and cor.) But the course may be found thus independ¬ 
ent of the meridional parts. In the Philosophical Transactions, No 219, 
it is demonstrated, that the meridional line on Mercator’s chart, is a scale 
of the logarithmic tangents of the half complements of the latitudes ; that 
these logarithmic tangents, of Mr. Briggs' form, are a scale of the dif¬ 
ferences of longitude, upon the rhumb which makes an angle of 51° 38'9" 
with the meridian; and that the differences of longitude on different 
rhumbs, are to one another, as the tangents of the angles which these 
rhumbs make with the meridian. Hence, 

As the difference of the log. tangts. of the ■§ complements of the latin 
tudes of any two places, 

To the difference of longitude between these places, 
So is the tangt. of 5i° 38' 9" (log. 10.1015104) 
To the tangent of the course. 
All the cases in Mercator's sailing may be solved by this rule. See Ew¬ 

ing’s Synopsis, 4th ed. pa 243. In his Mercator’s sailing there are given 
other methods for finding the meridional parts, taken from Robertson’s 
Navigation, 2d ed. pa. 532. In Emerson’s treatise above quoted, there 
are given a variety of examples in sailing on the principles both of the 
sphere and spheriod, with the investigation of all the rules, he. 

The learner will remark, that Bowditch’s Treatise on Navigation has 
been lately improved and published in England. 
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2. What is the bearing between the Lizard and St. Mary’s, one 
of the western islands ? 

Ans. S. 47° 54/ W. 
3. Required the bearing between Washington city and any of 

the following places : 
Amsterdam, Annapolis, Berlin, Boston, Brussels, Charlestown, 

Copenhagen, Dublin, Edinburgh, Lisbon, Madrid, Paris, Phila¬ 
delphia, Rome, Stockholm, Vienna, and New-York ? 

4. Required the bearing between Philadelphia and Madrid ? 
5. Required the bearing between Lima and Washington city ? 

PROB. 38. 

To find the angle of position between any two places. 

Rule. Rectify the globe for the lat. of one of the given places 
(prob. 9) bring that place to the brass meridian, and screw the 
quadrant of alt. in the zenith, or degree over the given place ; then 
extend the graduated edge of the quadrant over the other given 
place, and the degrees on the horizon, between the graduated edge 
of the quadrant and the brass meridian, reckoning towards the ele¬ 
vated pole,* will be the angle of position between that place, for 
which the globe was rectified, and the other given place. 

Note. All those places that are under the edge of the quadrant, have the 
same angle of position. 

* Some choose to reckon the angle of position towards the nearest part 
of the brass meridian, as in the 2d example above, where 89° is given in 
place of 91°. It is.of little consequence which method is used. 

The angle of position between two places is a different thing from their 
bearing, the latter being determined by a spiral line or loxodromic (from 
loxos, oblique, and dromos, a course) called a rhumb line, which makes 
equal angles with all the meridians through which it passes ; but the 
former by a great circle passing through the zenith of a given place, and 
another whose position from the former is required, in the same manner 
as the azimuth is found in astronomy. That the angle of position is there¬ 
fore essentially different from the bearing, except when the places are on 
the equator, or upon the same meridian, is sufficiently manifest. But sim¬ 
ple as it may appear, it has been the cause of various disputes among 
writers on the globes; some contending that the angle of position between 
two places is very different from their bearings, while others suppose that 
they are the same. Hence a further illustration of this matter may be 
deemed necessary for young students. By attending to the method given 
in the above rule of finding the angle of position, we shall find that the part 
of the quadrant of alt. included between both places, forms the base of a 
spherical triangle, the two sides of which are the distance of both places 
from the elevated pole, or the complements of the latitudes of the two 
places, when they are on the same side of the equator, or the complement 
of one of the places and the latitude of the other added to 90° (or its 
complement taken from 189°) when the places’ are on different sides of 
the equator; and that the vertical angle, included by both sides, and 
formed at the elevated poles, is their difference of longitude, the angles 
at the base of the triangle, being the angles of position between the two 
places respectively, which are therefore easily calculated by the method 
given in the note to prob. 31. Thus,- 
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Example 1. What is the angle of position between Washington 
city and Dublin ? 

Am. Nearly 48° from the north towards the east. The follow- 
ing places have nearly the same angle of position from Washing* 
ton, viz. Harwick in England, Antwerp, Cologne, Temeswar, 
Aleppo, &c. 

2. What is the angle of position between London and Prague ? 
Am. Nearly 91° reckoning from the north towards the east, or 

89°, reckoning from the south towards the east. The southern 

1. When the two places arc situated on the same parallel of latitude. 

Let the two places be the Land’s end, and the eastern coast of New¬ 
foundland (as given in the note referred to above) the lat. of which is 
nearly 50° N* and diff. of long. 48° 50'; the complement of both latitudes 
is therefore 40°, and hence the triangle is Isosceles, the sides being each 
40°, and the vertical angle 48® 50', from which the base or the arch of 
nearest distance measured by the quadrant of alt. will be =30° 49' 6"6, 
and the angles at the base, or the angles of position each =70° 49' 30" 
(the triangle being Isosceles.) If we now take the middle point in the 
arch of distance, on the quadrant of alt. its distance from the elevated 
pole will be 37° 23', and hence its lat. =52° 37' N. and the meridian pas¬ 
sing through this point will be at right angles to the arch of distance be¬ 
tween the two places. An indefinite number of points being now taken 
along the edge of the quadrant of alt. between the two places, the angle 
of position between the Land’s end and each of these points, will be 70° 
49' 30" from the north westward. But if it were possible for a ship to 
sail by the compass on the arch of a great circle passing through these 
places, indicated by the edge of the quadrant of alt. her latitude would 
continually increase from the Land’s end until she had sailed half her dis¬ 
tance to the other place, or from 50° to 52° 37' N. and her course would 
vary from 70° 49' 30" to 90°. But in sailing the other half of the distance 
to the eastern coast of Newfoundland, her lat. would continually decrease 
from 52° 3?' N. j,to 50° N. and her course must vary from 90° to 70° 49' 
30" westward. But were the ship to sail along the parallel of lat. passing 
through both places, her course would then be invariably due west.— 
Hence it follows, that when the places are situated in the same parallel of 
lat. their angles of position can never represent their true bearing by the 
compass, unless when they are on the equator, where their angle of po¬ 
sition would be invariably 90 degrees. 

2. If the two places differ both in latitudes and longitudes. 
Let L represent a place in lat. 50° X.B a place in lat. 13° 30' N. (see 

the fig. in note to prob. 31) and let their difference of longitude BPL— 
52° 58', the angle of position between L and B will be found by Spher. 
Trigonometry =S.68° 57' W. and the angle of position between B and L 
will be N 38° 5' E. ; whereas the direct course by the compass from L to 
B, by JVIercator’s sailing, is S. 50° 6' W. and from B to L it is N. 50° 6'E. 
If any number of points be taken in the arch LB, the angle of position 
between L and each of these points will be invariable, being eachssGS0 
5V, while the angles of position between each of these places and L are 
continually diminishing. If a ship were, therefore, to sail from L in a 
S. 68° 5V W. course by the compass, she would never arrive at B ; and 
were she to sail from B on a N. 38° U E. course by the compass, she 
would never arrive at L. 

Hence the angle of position, in any case, can never represent the bear¬ 
ing, except, as before remarked, the places be on the equator, or on the 
meridian. 
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extremity of the Caspian sea, the mouths of t*e Indus, Bombay, 
the southern extremity of the island of Ceylon, &c* have nearly 
the same angle of position. 

3. What is the angle of position between Dublin and Washing¬ 
ton eity ? 

Ans. 78° nearly, reckoning from the north westward. 
4. Required the angles of position between New-York and the 

following places : 
Petersbu"gh, Copenhagen, London, Paris, Constantinople, Cairo, 

Cape Verd, Bermudas, St. Domingo, Cape Nicholas do. New 
Orleans, Mexico, and the East Cape in Bhering’s strait. 

PROB. 39. 

The distance of two f daces situated on the same meridian, and their 
angles of position with a third place, being given, to find that 
place, with its nearest distance from each of the other two. 

Rule. Rectify the globe for the lat. of the first place, and 
screw the quadrant of alt. in the zenith, bring the given place to 
the meridian, extend the quadrant to the degree on the horizon 
which is equal to its position from the third, draw a line along the 
graduated edge of the quadrant; then elevate the pole to the lat. 
of the second place, bring it to the meridian, and screw the quad¬ 
rant over it, which extend, as before, to the degree on the horizon 
which is equal to its position from the third ; the intersection of the 
quadrant with the line drawn before, will give the third place re¬ 
quired ; the distance of which from the former two is found as in 
prob. 31 st. 

Example 1. The distance between Madrid and Edinburgh, situ¬ 
ated on the same meridian, is i5° 33/=933 geographical miles ; 
and the angle of position with a third is 5 3|° nearly, and of the 
latter 66° from the south nearly; required the place, with its 
nearest distance from each of the former ? 

Ans. The required place is Vienna, its distance from Madrid 
=922, and from Edinburgh 847 geographical miles, nearly.* 

* This prob. may be calculated as follows : Let M re¬ 
present Madrid, E Edinburgh, and V the required 
place ; then there are given the distance ME between 
the given places = 933 miles, the angle ME V = the 
angle of position between Edinburgh and the place V 
required = 66°, and EMV the angle of position be¬ 
tween Madrid and the place V = 53£°, to find the 
sides VE,VM, the distance of the required place from 
each of the former. Hence by spherical trigonometry, 
we have as cosine of half the sum of the two angles of position : cosine of 
half their difference :: tangt. of half the distance of the given places E and 
M : tangt. of half the sum of the sides VE,VM (the required distances.) 
And sine of half the sum of the angles of position : sine of half their differ¬ 
ence :: tangt. of half the given distance (EM) : tangt. of half the difference 
of the required distances ; then to half the sum add half the difference, and 

S 



138 PROBLEMS PERFORMED BY 

2. The distance between Halifax, in lat. 44° 40' N. and the 
north-east part of Margarita island, in the West-Indies, lat. 11° 10‘7 
N both situated nearly under the same meridian, being equal to 
33° 36' or 2016 miles, and the angle of position of the former 
with a third being equal 62° from the south, and of the latter with 
the same place 75 ; required the place, with its nearest distance^ 
from each of the foregoing places ? 

PROB. 40. 

Given the course and distance, to Jind the latitude and longitude 
come to, the place left being known. 

Rule. Mark the given rhumb in the lat. of the place left, 
bring that mark to the meridian which passes through the long, 
left, convert the distance sailed into degrees, take one degree 
from the equator, in a pair of compasses, and turn it over on the 
rhumb as often as there are degrees in the given distance, and 
where the reckoning ends will be the place required, whose lat. 
and long, is found as in prob. 1. 

Note. If the rhumb does not pass through the given place, find the lon¬ 
gitude of the place where the reckoning ends, and the number of degrees 
between this and the longitude of the first mark on the rhumb line, will be 
the difference of longitude, whence the long, come to is found by note 4. 
prob. 4. Where no rhumb lines are given, a small mariner’s compass made 
on paper, will answer.* 

Example 1. A ship from Cape Clear, in lat. 51° 18' N. and 
long. 11° 15' West, sails S. E. ~ S. 480 miles; required the lat. 
and long, come to ? 

Ans. The place required is in lat. 45° 22' N. and long. 3° 9' W, 
2. A ship from New-York or Sandy-Hook light-house, in lat. 

40° 28' N. long. 74° 7' W. sails E. N. E. 1200 geographical miles; 
required the lat. and longitude the ship is in ? 

you have the side opposite the greater angle of position given or the sid£ 
VM, and from half the sum, take half the difference, and you have the side 
opposite the lesser angle given, or the side YE. 

Note. That half the sum of the required sides will be of the same affec¬ 
tion as half the sum of the given angles, and the contrary. 

In the above prob. the bearing may be made use of instead of the angle 
of position, when the given distance is small. 

* If a small compass, made of paper, be used, it may be always easily 
placed N. and S. by the meridians on the globe, or rather the brass meri¬ 
dian ; but as it may be difficult to place the centre on the given place exact¬ 
ly, a quarter or half of the compass will answer better. 

The solution of the prob. on the principles of Mercator’s sailing, is as 
follows : 

ltad. : cos. course :: distance : difference of latitude, and 
Rad. : tangt. course :: meridional diff. of lat. : difference of longitude. 

The difference of latitude and difference of longitude being thus given, 
the latitude and longitude arrived at may be found by the method given in 
note 4. prob. 4th. part 2. 

To enter into the investigation of the principles on which the above pro¬ 
portions are founded, would be foreign to our intended plan. 
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3. A ship from the Lizard, in lat. 49° 57' N. long. 5° 21' W. 
sails S. 47° 51' W. 1162 miles ; required the lat. and long, of the 
place the ship is in ? 

PROB. 41. 

Both latitudes and course given, to find their distance and difference 
of longitude.* 

Rule. Turn the globe on its axis until the given rhumb cuts 
the brazen meridian in the lat left, there mark the rhumb under 
the given degree of lat. and observe the degree of the equator cut 
by the brass meridian ; then turn the globe until the same rhumb 
cuts the meridian in the lat. come to, under which on the rhumb 
make a mark as before ; the number of degrees between these 
two marks, reckoned on the equator, will give their difference of 
longitude; and the distance is found by taking a degree of the 
equator in a pair of compasses, and extending it on the rhumb, be¬ 
tween the two marks, as often as possible, the number of degrees, 
thus measured, being converted into miles, will give the distance 
required. 

Note. If the globe has no rhumb lines described on it, a compass made 
of paper may be used as in the foregoing problems; in which case the rhumb 
will cut the meridian passing through the given place, or the lat. left, with¬ 
out first turning the globe. The shorter the radius of such a compass is, 
the more correct will the distance be ; in which case it will be often neces¬ 
sary to find different centres in the same rhumb, kc. 

Examfile 1. A ship from the Lizard, in lat. 49° 57' N. makes 
her course S. 39° W. and then by observation is in lat 45° 31' N. 
required her distance run and longitude in ? 

Ans. The difference of longitude being 5° 21' W. and the long, 
of the Lizard equal 5° 15' W. hence the long, is 10° 36' W. and 
the distance is 342 miles. 

2. A ship from Bayonne, in lat. 43° 29' N. and long. 1° 30' W. 
sails N. W. A N. until by observation she is in lat. 51° 31' N. re¬ 
quired the distance run and longitude come to. 

* The proportions for calculating this prob. are as follow: 
Rad. : secant course :: diff. lat. : distance, 
Rad. : tang, course :: meridional diff. lat. : diff. long. 

In the same manner may other problems in navigation be performed on 
the globes, the above being well understood. 

For the sake of readers not in the habit of using the Nautical Almanac, it 
may not be improper to remark, that in pa. 96 of the Naut. Aim. for 1813, 
revised by John Garnett, there is a table for correcting the middle latitude, 
which renders the calculation by this method more expeditious, and as ac¬ 
curate as in Mercator’s sailing. There is also in pa. 168 of the same alma¬ 
nacs, for 1812 and 1813, a table, shewing, very nearly, the difference be¬ 
tween a ship’s direct course in a great circle, and that found by Mercator’s, 
or mid. lat. sailing. (See the note to prob. 38, part 2.) 
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PROB. 42. 

To find the meridian altitude of the sun, on any dayf at any giv¬ 
en place. 

Rule. Elevate the pole to the latitude of the given place, 
bring the sun’s place to the meridian, and the degree over it will 
be the declination, the number of degrees reckoned from which 
to the horizon, will give the meridian altitude required.* 

Or, Elevate the pole to the sun’s declination, bring the given 
place to the brass meridian, and the number of degrees between 
it and the horizon, will be the meridian altitude required.f 

OR BY THE ANALEMMA. 

The globe being rectified to the latitude, bring the given day 
found on the analemma to the brass meridian, the number of de¬ 
grees between which and the horizon will be the alt. required. 

Example 1. What is the sun’s meridian altitude at New-York, 
on the i 0th of May ? 

Ans. 66° 56'. 

* See note to prob. 1. and prob. 25. f See prob. 24. 
If the learner be not accustomed to use the quadrant or sextant of reflec¬ 

tion, and yet wish to perform this prob by observation, lie may use a com¬ 
mon quadrant with a plummet. These are to be had at the instrument 
makers, with lines, sometimes drawn on them, for finding the hour of the day, 
the sun’s azimuth, 8cc. or they may be easily made of wood or slate suffi- 
ciently correct, where exactness is not required. It would however be bet¬ 
ter to have a quadrant, or rather semicircle, immoveable in the place of the 
meridian, and divided into degrees and their lesser parts, according to art 
(using' either the nonius, as in Hadley’s quadrant, or a scale divided diagon¬ 
ally) and having an index moveable on its centre, furnished with telescopic 
sights. But whoever wishes to use the improved astronomical circle, will 
have, with a good telescope and watch, all the astronomical apparatus ne¬ 
cessary. 

Note. The complement of the lat. added to the sun’s declination, where 
they are of the same name (that is both north or both south) or subtracted 
when they are of different names (that is one north and the other south) 
will give the sun’s meridian altitude. 

The declination being a necessary requisite for solving this prob. is found 
in the 2d page of every month in the Nautical Almanac. (See the Nautical 
Almanac, published with important additions, under the direction of John 
Garnett, New-B runs wick, New-Jersey, where the daily difference of decima¬ 
tion is given to reduce it to the meridian of Greenwich, &c.) The declina¬ 
tion maybe obtained by knowing the meridian altitude and latitude of the 
place, for as the co. lat. -f- sun’s deck = sun’s mer. alt. (when the deed, and 
lat. are of the same name) hence in tins case, sun’s decl. = mer. alt. — co. 
lat. Again, when the deck and lat. are of different names, co. lat. — deck 
= mer. alt. hence declination = co. lat. — mer. alt. This latter only 
takes place when the complement of the lat. is greater than the declination; 
when less, the contrary sign must be used. The deck and mer alt. being 
given, the lat. may be found from the same equations; thus, in the 1st equa¬ 
tion, co. lat. = mer. alt. — sun’s deck &c. In the same manner from va¬ 
rious other problems, a variety of conclusions may be drawn, with only a 
slight knowledge of the nature of equations in Algebra. 

The Nautical Almanac is tilso lately published by E. M. Blunt, in New- 
York. 
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2. What is the sun’s meridian altitude at Washington city, on 
the 21st of June ? 

jim-. 74° 35'. 
3. What is the sun’s meridian altitude at Philadelphia, when 

the days and nights are equal ? 
4. What is the sun’s greatest altitude at New-York ? 
5. What is the sun’s meridian alt. at Quito, on the 22d of De¬ 

cember ? 
6. What is the sun’s greatest meridian alt. at Cape Horn ? 

PROB. 43. 

To find the sun's altitude by filacmg the globe in the sunshine. 

Rule. Make the plane of the horizon on the globe truly level 
or horizontal, then erect a needle perpendicularly over the north 
pole, or in the direction of the axis of the globe, and having turned 
the pole towards the sun, move the brass meridian until the needle 
casts no shadow ; then the arch of the meridian between the pole 
and the horizon, will give the sun’s altitude. (See prob. 28.) 

Or in general, Turn the north or south pole towards the sun, 
erect a needle, as before directed, towards the earth’s centre on that 
part of the brass meridian where it will cast no shadow, and the 
degrees between it and the horizon will be the altitude required. 

PROB. 44. 

Tu find the sun's altitude for any time at any given /dace, inde¬ 
pendent of the foregoing method. 

Rule. Rectify the globe for the latitude, screw the quadrant 
of altitude in the zenith, bring the sun’s place for the given time 
to the brazen meridian, and set the index to 12 ; turn the globe 
on its axis until the index points out the given hour, extend the 
graduated edge of the quadrant of altitude over the sun’s place, 
and the degree cut on it will be the sun’s altitude.* 

Or, Elevate the pole to the sun’s declination, screw the quad¬ 
rant of alt. in the zenith, bring the given place to the brass meri¬ 
dian, and set the index to twelve ; then if the given hour be in the 
forenoon, turn the globe westward, but if in the afternoon, east¬ 
ward, as many hours as the time is before or after twelve ; extend 
the quadrant of alt. over the given place, and the degree cut on it 
will be the sun’s altitude.t 

* The reason of this method is evident from what is said In prob. 25. 
f The reason of this rule is clear from what is delivered in prob 24. 
The prob.may be solved in numbers thus ; the lat. day, and hour being 

given. 
1 Rule. Here, to find the altitude, there are given the complement of the 

lat. the hour angle (or the angle formed between the brass meridian and 
the meridian passing through the sun’s place) and the complement of the 
sun’s declination. The learner will perceive that with these the comple- 
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Examfile 1. What is the sun’s alt. at New-York, on the 10th of 
May, at 6 o’clock in the morning ? 

Ans. 11nearly. 
2. What is the sun’s alt. at Washington city, on the 21st of 

June, at 3 o’clock in the afternoon ? 
Ans. 51i°. 
3. What is the sun’s altitude at Philadelphia, on the 21st of 

March, at 10 o’clock in the morning ? 
4. What is the sun’s altitude at Quito, on the 1st of January, at 

1 o’clock in the afternoon ? 

PROB. 45. 

?’o find all those /daces where the sun has the same altitude as 
any given place, at any give?i time. 

Rule. Find where the sun is vertical at the given time (by 
prob. 12) mark this place, and find its distance from the given 
place (by prob. 31) find all those that are at the same distance 
from it as the given place (by prob. 32) these will be the places 
required. 

Example 1. When it is 15 minutes after 8 in the morning at 
New-York, on the 30th of April, required all those places where 
the sun, at that moment, will have the same altitude as in New- 
York ? 

Ans. The place where the sun is then vertical being Cape Verd, 
those places that are at the same distance from it as New-York are 
Quebec, Moskitto Cove in west Greenland, the middle of the gulf 
of Bothnia and Finland, near Mecca, the middle of Abyssinia, Cape 
Volta in Caffraria, the western part of St Domingo, Cumberland 
Harbour in Cuba, St. Salvador in the West Indies, &c. 

ment of the sun’s altitude will form a triangle, whose two sides and the 
included angle are given, to find the base, or the complement of the sun’s 
altitude. Hence rad : cos. hour angle :: cot. latitude : tang, x, the seg¬ 
ment between the pole, and a perpendicular from the zenith on the meri¬ 
dian passing through the sun’s place; then cos. x : s. lat. :: cos. remain¬ 
ing segment (comp. decl. less x) to sine altitude required. (See Emer¬ 
son’s Trig. b. 2. sec. 4. case 8. or Simson’s Euclid general, prop, case 4, 
he. Sp. Trig.) 

2 Rule. Here the brass mer. the meridian passing through the given 
place, and the quadrant of alt. form a spherical triangle, the two equal 
sides of which, or the complement of the decl. and co. lat. and the in¬ 
cluded angle (or hour angle) are given, to find the third side, or comple¬ 
ment of the sun’s altitude, which is found exactly as above. The hour 
angle is converted into degrees by allowing 15° for every hour. 

* As a ray of light from the sun, conceived at an infinite distance from 
the earth, will make equal angles with the tangent touching the globe at 
each of the above places, which represents their horizon, and that the 
altitude of the sun is its height above the horizon, hence the reason of 
the rule is evident. The same reasoning is applicable to several other 
problems where the sun’s alt. is required. 

/ 
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2. When it is 4 o’clock in the afternoon at London on the 18th 
of August, find all those places where the sun will then have the 
same altitude as in London ? 

3. Find all those places where the sun will have the same alti¬ 
tude as at Philadelphia, at 12 o’clock the 21st of March ? 

PROB. 46. 

To fnd the sun’s altitude at any filace in the north frigid zone, 
where the sun does not descend below the horizon, when it is mid¬ 
night at any filace in the temperate or torrid zones, on the same 
meridian. 

Rule. Elevate the pole to the lat. of the place in the frigid 
zone, bring the sun’s place to the brass meridian, and set the in¬ 
dex to twelve ; turn the globe on its axis until the other twelve 
comes to the meridian, and the number of degrees between the 
sun’s place and the horizon, counted on the brass meridian towards 
the elevated pole, will be the altitude required. 

Or, Elevate the pole to the sun’s declination for the given day ; 
bring the place in the frigid zone to that part of the brass meridian 
which is numbered from the pole towards the equator, and the num¬ 
ber of degrees between it and the horizon will be the sun’s altitude. 

Example l. What is the sun’s alt. at the South Cape in Spitz- 
bergen, in lat. 76d° N. when it is midnight at Naples, on the lOtfi 
of May ? 

Ans. 4 degrees. 
2. What is the sun’s altitude on the 21st of June at the North 

Cape in Lapland, when it is midnight at Adrianople in Turkey in 
Europe ? 

3. What is the sun’s altitude at the northwest part of Spitzber- 
gen, latitude nearly 80°, when it is midnight at Cagliari in Sar¬ 
dinia ? 

PROB. 47. 

To place the terrestrial globe in the sunshine, so as to represent the 
natural position of the earth. 

Rule. Place the globe north and south by the mariner’s com¬ 
pass (allowing for variation, if any, see note to prob. 49) or by a 
meridian line,* bring the place where you are situated to the me¬ 
ridian, and elevate the pole to its latitude ; then the globe will 
correspond in every respect to the situation of the earth itself. 
All the circles, See. on the globe will correspond to the same 
imaginary circles, &c. in the heavens ; and each town, kingdom, 
state, &c. will point out the position of the real one which it re¬ 
presents, &c. See probs. 24 and 25. 

* The method of drawing a meridian line is shewn in several of the fol 
lowing problems, but more particularly in prob. 75, part 2. 
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PROB. 48. 

The latitude and day of the month being given, to find the hour 
of the day when the sun shines. 

Rule. 1, Place the wooden horizon of the globe truly level or 
parallel to the horizon of the place, and the brazen meridian due 
north and south ; elevate the pole to the Iat. bring the sun’s place 
to the brass meridian, and set the index to 12 ; fix a needle perpen¬ 
dicularly over the sun’s place in the ecliptic, turn the globe on its 
axis until the needle casts no shadow, and the index will point out 
the hour 

Or, The globe being placed horizontally, due north and south, 
and rectified for the lat. as before ; then if a long pin be fixed per¬ 
pendicularly on the brass meridian, in the direction of the axis, and 
in the centre of the hour circle, and 12 on the hour circle be 
brought to the meridian, the shadow of this pin will point out the 
hour of the day. 

Note. If the place be in north lat. and the decl. be N. the sun will shine 
over the north pole ; but if the declination be more than 10° south (nearly 
the radius of the hour circle) the sun will not shine upon the hour circle at 
the north pole. 

Or, The equator being divided into 24 equal parts from the 
point aries, on which place the number 6, and then westward on 
the other points 7, 8, 9. ; 0, 11, 12, 1, 2, &c. to 6, which will fall 
on the point libra, 7, 8, &c. to 12, then again 1, 2, &c to 6 ;* then 
place the globe horizontal, north and south, and rectify as before; 
bring aries to the meridian ; observe the circle which is the bound¬ 
ary between light and darkness, if westward of the brass meridian, 
and it will intersect the equator in the given hour in the morning ; 
but if eastward, it will intersect the equator in the given hour in 
the afternoon. 

Or, Having placed the globe as before, and the point aries being- 
brought to the meridian ; tie a small string round the elevated 
pole, stretch its other end beyond the globes, and move it so that 
the shadow of the string may fall upon the depressed pole ; its 
shadow on the equator will then give the hour. 

* The antartic circle on Adams* globes is thus divided, by which the 
problem may therefore be solved. 

The altitude of the sun (which is equal to the number of degrees between 
the needle placed as above when it casts no shadow and the horizon, reckon¬ 
ing on a verticle circle) and the lat. and day of the month being- given, the 
solution by spherics may be as follows : 

Cos. decl. X cos, lat. : R2 :: sine | X co. decl. ~j- co. lat. -f- co. alt. X 

sine i X co. decl. -{- co. lat. — co. alt. : cos. ^ h2 (h being the hour angle) 
which converted into time, will give the time from apparent noon. (See the 
note to prob. 31. part 3.) 
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PROB. 49. 

The latitude of the place and day of the month being given, to find 
the sunfs amplitude, right ascension, oblique ascension, oblique 
descension, ascensional difference, cwrf time of rising and setting * 

Buie. Elevate the pole to the given latitude ; bring the sun’s 
place to the brass meridian, and the degree cut on the equator, rec¬ 
koned from aries eastward, will be the sun’s right ascension. The 
globe being then turned on its axis, until the sun’s place comes to 
the eastern part of the horizon, the degree of the equinoctial 
cut by the horizon, reckoning from aries as before, will be the 
sun’s oblique ascension, and the degree cut on the horizon, rec¬ 
koning from the east, will be the sun’s amplitude at rising. The 
globe being now turned again on its axis, until the sun’s place 
comes to the western part of the horizon, the degree on the equi- 
noctional cut by the horizon, reckoning from aries eastward, as 
before, will be the sun’s oblique descension, the degree cut on 

* To perform this prob. by calculation, the learner will first perceive that 
the sign and degree of the sun’s place reckoned from aries, or the sun’s lon¬ 
gitude, the obliquity of the ecliptic (or its inclination with the equator) or 
the sun’s declination, are requisite to find the sun’s rt. ascension. The sun’s 
rt. ascension, longitude, and declination, forming a right angled spherical 
triangle. Now the obliquity of the ecliptic may be found thus : let the sun’s 
least distance from the vertex about the summer (or winter) solstice be ob¬ 
served ; this distance subtracted from the lat. of the place, when the place 
is nearer to the pole than the sun is, or added when the sun is nearer, will 
give the greatest declination of the sun, or the obliquity required, allowance 
being made for refraction, &c. particularly if the observation be made at the 
winter solstice. If the solstice should not take place when the sun is on the 
meridian (as it generally happens) allowance must be made. The error, 
however, is not worth observing here, as it never arises to more than 4" 
when greatest, that is, when the solstice happens at midnight, being equal 
to what the sun’s declination, 12 hours before or after the solstice, wants of 
its greatest declination. Professor Mayer in his Solar and Lunar Tables, 
gives a method of calculating this obliquity, having found from observations 
made with an excellent mural quadrant, at both solstices, in 1756, 57, and 58, 
that the mean obliquity of the ecliptic in the beginning of 1756, was 23° 28' 
16", and the decrease in 100 years is about 46" ; whence the mean obliquity 
for any other year, month, or day, may be easily found by proportion. Thus 
the mean obliquity for the beginning of 1811 is 23° 27' 50" 7 ; now to find 
the true obliquity, the nutation, 8cc. must be found as directed in prob. 4 of 
Mayer’s, which is here =—9" 6 ; so that the true or apparent obliquity for 
the beginning of 1811 was 23° 27' 4l"!, agreeing nearly with the Nautical Al¬ 
manac for 1811. The greatest nutation according to Mayer is S"6. From a 
like calculation it will be found, that the obliquity varies considerably in the 
space of one year. For on the first of January, 1811, according to the Nau¬ 
tical Almanac, the obliquity was 23° 27' 41"8; on the 1st of April 23° 27 *' 
42"7 ; on the 1st of July 23° 27* 4l"8 ; on the 1st of October 23° 27' 42"/ j 
and on the 31st of December 23° 27' 41"9. (See prop. 34 of Emerson’s Cen¬ 
tripetal forces. The reader is also referred to La Grange or De La Place’s 
Physical Theories, or to Mayer’s, printed in London in 1770, under the di¬ 
rection of Nevil Maskelyne, A. R.) For the beginning of 1811, N. Maske- 
lyne makes the mean obliquity 23° 27' 50"9, and corrects it by Ins folio ta¬ 
bles 31 and 32. For the beginning of 1813, lie makes it 23° 27' 51"3, and 
makes the secular variation 42"6. For more information on this subject, &c. 

T 
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the horizon, reckoning from the west point of it, will be the sun’s 
amplitude at setting, and the difference between the sun’s right 
ascension and oblique ascension, or descension, or which is the 
same, the time between the index at either of these positions and 
the hour of six, is the ascensional difference, which in the former 
case must be converted into time (by prob. 6) then if the sun’s 
declination and the lat. of the place be both of the same name, that 
is both north or both south, the sun rises before, or sets after six, 
by a space of time equal to the ascensional difference ; but if the 
latitude and sun’s declination be of contrary names, that is one 
north and the other south, the ascensional difference will shew how 
long the sun rises after* six, or sets before six. 

Note 1. The ascensional difference reduced into time, and added to or 
Subtracted from 6 o’clock, gives the length of half the day or semi-diurnal 
arch, the complement of which to a semicircle, or to 12 hours, will give the 
length of half the night or semi-nocturnal arch .* or the time of the sun’s con¬ 
tinuance above the horizon, may be found by reckoning the number of hours 
on the upper part of the hour circle between the places where the index 
pointed when the sun’s place was at the eastern and western parts of the 
horizon, or by prob. 13. See also probs. 23, 24, 25. 

Note 2. From this prob. and prob. 8, the learner will observe that the me¬ 
thod of finding the sun’s right ascension and declination in the heavens, is 
the same as findingthe latitude and longitude of a place on the earth, with 
this difference, that the rt. as. is reckoned quite round the globe. 

Consult Mason’s Tables of 1780, Wargentine’s Tables published at the end 
of the Nautical Almanac for 1779, La Land’s Astronomy, 3d edition, for 
1792, where accurate tables of the sun, moon, aud planets, and of the eclip¬ 
ses of Jupiter’s satellites are given ; these being constructed principally by 
Delambre on the best observations, and on the Physical Theories of M. La 
Grange and M. De La Place, founded on Newton’s Theory of Gravity. But 
the late lunar tables of Mr. Burg of Vienna, constructed principally on the 
observations ofMaskelyne, is looked on by this astronomer as the most cor¬ 
rect. Mayer’s tables and precepts of calculation are given in the Philadel¬ 
phia edition of the Encyclopedia. These observations being- useful to di¬ 
rect the study and choice of the young astronomer, we think it necessary to 
caution him, at the same time, against several remarks found in some of 
these works, tending to favour impiety, and impose on superficial minds. 
We shall make it a particular study in our intended course, to point out the 
dangerous tendency and falsehood of such principles, assumed, for the most 
part, without a shadow of proof. And thus we hope to be able to present 
our young students with the most valuable observations and improvements of 
past ages, without any danger to the more valuable deposit which, as Chris¬ 
tians, enlightened by truths far more important, more consoling and sublime, 
they are in possession of. For truth is always consistent with itself. But 
to proceed. 

Having now obtained the obliquity of the ecliptic, or the sun’s greatest 
declination, and the present declination being obtained by note to prob. 42 
(see prop. 8.) the rt. ascension is found by this proportion, Rad. : co. t. sun’s 
greatest declination :: tangt. present decl. : sine rt. ascension. (Napier’s 
rules.) Now to find the oblique ascension, amplitude, &c. the learner will 
observe, that the globe, being placed as above directed for finding the am¬ 
plitude, Sec. the amplitude reckoned on the horizon, the sun’s declination, 
and the ascensional difference, form a right angled spherical triangle, and 
the inclination of the plane of the equator with the horizon being equal to 
the complement of the lat. is also equal to the opposite vertical angle (Emer- 
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Example 1. Required the suri's amplitude, right ascension, ob¬ 
lique ascension, oblique descenslon, ascensional difference, and 
time of rising and setting at New-York, in lat. 40° 42' 4?0", on the 
21st of June ? 

Ans. The sun’s amplitude at rising and setting is 3pi°, the right 
ascension is 90°, oblique ascension 68°, ascensional difference 22°, 
or lh. 28'. Hence 6— lh. 28' = 4h. 32' = time of suri rising, 
and 6 -f lh. 28' = 7h. 28', time of sun setting. 

son’s Trig. cor. 2. prop. 3. b. 3) or the angle formed by the arches express¬ 
ing the amplitude and the ascensional difference ; hence we have these pro¬ 
portions ; Rad. : tangt. lat. :: tangt. decl. : sine of the ascensional difference; 
which subtracted from the right ascension, when the declination is north, 
or added when the decl. is south, will give the oblique ascension when the 
place is in north lat. but when the declination is north, the as. diff. must be 
added, &c. when the lat. is south. The oblique descension, &c. is found in 
like manner. Again, to find the amplitude, it will be cos. lat. : sine decl. :: 
rad. : sine ampl. (Napier’s rule, as above.) 

It may not be improper to remark here, that the point of the compass on 
which the sun rises and sets being known, the magnetic amplitude is given, 
being equal to the distance from this point to the east or west points of the 
horizon respectively ; and that the difference between this magnetic ampli¬ 
tude and the true amplitude found above, is the variation of the compass, if 
both be of the same name, that is both north or both south; but if they be 
of different names, that is one north and the other south, their sun is the 
variation. To know whether the variation be east or west, this rule must be. 
observed ; the observer’s face being turned towards the sun ; then if the 
true amplitude be to the right hand of the magnetic, the variation is easter¬ 
ly, but if to the left hand, westerly. The variation may be also found by 
taking the sun’s alt. in the morning, and at the same time its bearing, and 
likewise in the afternoon when its alt. is the same ; the middle point will be 
the meridian, the difference between which and the N. and S. points of the 
compass, will be the variation. If in place of taking equal altitudes of the 
sun, the points of the compass on which it rises and sets be observed, then 
half the difference will be the variation as before. The instrument calcu¬ 
lated to make this observation writh, though not generally very exact, is an 
azimuth compass, for the description and use of which the reader is referred 
to McKay’s Complete Navigator, or the Encyclopedia. The astronomical 
circle answers the purpose of an azimuth compass, transit instrument, theo¬ 
dolite in surveying, 8tc. and is extremely exact. In New-York the variation 
for 1810 was about 3° west. (See definition 45.) In Washington city the va¬ 
riation for 1811 is nearly 0 ; along the coast of the United States the varia¬ 
tion ^decreasing. As the declination of the sun at rising or setting differs 
from his declination at noon, found in the Nautical Almanac, and. in the 
former is used in finding the amplitude by calculation, the following propor¬ 
tion is necessary; as 24 hours is to the hours from sun rising, so is the daily 
variation of declination to a fourth number, which must be added or sub¬ 
tracted according as the declination is increasing or decreasing, 8tc. In the 
same manner proportion may be made for the right ascension, ike. Allow¬ 
ance must also be made if the meridian differ from that of Greenwich. 

The longitude of the sun is easily found by prob. 3, 8 or 10 of Mayer’s 
tables, &c. his hourly motion by prob. 6, rt. ascension by prob. 7, declina¬ 
tion by prob. 9, sun’s parallax by prob. 12, and refraction by prob. 13 ; the 
two last articles being necessary in finding the correct alt. of the-sun. How¬ 
ever the learner is desired to make use of Burg and lielambre's tables trans¬ 
lated and corrected by Vince, and lately published in England, being the 
most valuable now extant. These are the tables, at present, principally used 
in calculating the Nautical Almanac. 
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2. What is the sun’s amplitude, right ascension, oblique as¬ 
cension and descension, ascensional difference, and time of rising 
and setting at Washington city, on the 10th of May i 

3. On the 21st of December, what is the sun’s amplitude, right 
ascension and declination, oblique ascension and descension, sun’s 
rising and setting, and length of the day and night at London ? 

Note. At the vernal equinox the sun has no amplitude, rt. ascension or 
declination, no oblique ascension or descension, and therefore no ascensional 
difference ; it rises and sets at six, making the days and nights each equal 
12 hours all over the world. 

PROB. 50. 

The latitude, day, and hour being given, to find the sun’s azimuth 
and his altitude. 

Rule. Rectify the globe for the lat- zenith, and sun’s place 
(prob. 9) then the number of degrees between the sun’s place and 
the vertex is the sun’s meridional altitude. The index being then 
set to 12, turn the globe eastward* if the time be in the forenoon, 
or westward if the time be in the afternoon, as many hours as the 
time is before or after 12 o’clock ; the quadrant of altitude being 
then extended over the sun’s place, the degrees cut by it on the 
horizon, reckoning from north to south, will give the azimuth, and 
the degrees from the horizon to the sun’s place, reckoned on the 
quadrant of alt. will give the sun’s altitude. 

OR BY THE ANALEMMA. 

Rectify the globe as before ; bring the middle of the analemma 
to the brass meridian, and set the hour circle to 12 ; then the 
globe being turned as before, bring the graduated edge of the 
quadrant of alt. to coincide with the day of the month on the ana¬ 
lemma, and the number of degrees on the horizon, cut by the 
quadrant, as before, will be the azimuth, and the number of degrees 
from the horizon, where the day of the month cuts the quadrant, 
will be the altitude. 

Exa?np,le 1. What is the sun’s altitude and his azimuth at New- 
York, on the I Oth of May, at 9 o’clock in the morning ? 

Ans. The alt. is 45|°, and the azimuth 107-4° from the north, 
or 724-° from the south. 

2. What is the sun’s altitude and azimuth at Boston, on the 10th 
of June, at 6 o’clock in the morning, and also his meridian alti-' 
tude ? 

* Whenever the pole is rectified for the lat. the proper motion of the 
globe is from cast to west, and the sun is on the east side of the brass me¬ 
ridian in the morning', and on the west in the afternoon ; but when the pole 
is elevated for the sun’s declination, the motion is from west to east, the 
place being on the west side of the meridian in the morning, and on the 
east side in the afternoon. 
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3. What is the sun’s azimuth and altitude at St. Domingo, at 7 
o’clock in the morning, and also at a quarter pa9t 10, on the 10th 
of June ?* 

4. Required the time of the sun’s appearing twice on the same 
azimuth, both in the forenoon and in the afternoon, at Barbadoes, 
on the 20th of May ? 

5. Being at sea, in lat. 57° N. on the 13th of August, I observ¬ 
ed that the azimuth of the sun was 40° i 4' from the south, at half 
past 8 o’clock in the morning, what was the sun’s alt. his true 
azimuth, and the variation of the compass? (See the notes.) 

6. On the 14th of January, in lat. 33° 52' S. at half past three 
o’clock in the afternoon, the sun’s magnetic azimuth was observed 
to be 63° 51' from the north ; required the true azimuth, variation 
of the compass, and the sun’s altitude ? 

PROB. 51. 

Given the latitude, day and hour, as in the last prob. to find the de¬ 
gression of the sun below the horizon, and his azimuth at any hour 
of the night. 

Rule. Rectify the globe for the latitude, zenith, and sun’s 
place, as before ; take that point in the ecliptic exactly opposite to 

* Whenever the declination of the sun exceeds the lat. and both are of 
the same name, the sun will appear twice in the forenoon, and twice in the 
afternoon, on the same point of the compass, at all places in the torrid zone ; 
and will cause the shadow of an azimuth dial, to go back several degrees. 
In this example the sun’s azimuth at 6 is N. 68° E.; at 7, N. 71° E.; at ^ 
past 7, 72° from the north ; at 8, 73°; at 8£, 7o\°; at 9, 73£°; at 9£, 72^° 
at 10, 71*° ; at 10 J, 71° ; at 11, 61^° ; and at 11£, 39° from the north. 

To perform the prob. by calculation, the learner will observe on the globe, 
that the complement of the latitude reckoned on the brazen meridian, the 
complement of the altitude reckoned on the quadrant of alt. and the com¬ 
plement of the sun’s declination reckoned from where the quadrant cuts the 
ecliptic in the sun’s place, to the pole (the globe being rectified, &c. as above, 
and turned until the index points at the given hour) form a spherical trian¬ 
gle ; that the angle formed by two of these sides, i. e. the comp, of the lat. 
and the comp, of the deck is the hour from noon converted into degrees, &c. 
and that the azimuth is the angle formed by the comp, of the lat. and com¬ 
plement of the altitude. This being premised, the azimuth is found as fol¬ 
lows : conceive a perpendicular arch to be drawn from the sun’s place ou 
the brazen meridian (the giobe being rectified, &c. as above) then will rad. : 
cos. hour angle :: co. tangt. deck :: tangt. x, a fourth arch or segment of 
the base (or base produced) between the pole and perpendicular on the mer. 
which being therefore given, the remaining segment, between the zenith and 
perpendicular, is given, which call y; then sine x : sine y :: co. tangt. of the 
hour angle : co. tangt. of the azimuth south; which if reckoned from the 
north, is greater or less than a quadrant or 90°, according* as the perpendi¬ 
cular falls north or south of the zenith. (See Emerson’s Trig. b. 3. part 4, 
case 7.) To find the altitude. Sine azim. : s. 90° tz deck :: s. hour angle : 
cos. altitude. (See prob. 9. part 2.) From this prob. the variation of the 
compass may be obtained, being the difference between the true azim. and 
tire magnetic, or azim. observed by a compass. 
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the sun’s place, and find its altitude and azimuth as in the preced¬ 
ing prob. and these will be the depression and azimuth requiied. 

Example. What is the sun’s depression and azimuth at New- 
York, on the 12th of November, at 9 o’clock at night ? 

Ans. The alt. will be the same as in ex. 1, of the preceding, 
and the azimuth likewise the same ; but reckoned contrary, that 
is, 72\° from the north, or 107-|o from the south. In the same 
manner may any of the examples in the foregoing problem be 
changed and performed. 

PROB. 52. 

Given the latitude, the sun's place and altitude, to Jind the su?i’s 
azimuth and the hour of the day. 

Rule. Rectify the globe for the lat. zenith, and sun’s place, 
and set the index to twelve ; turn the globe eastward or westward 
(according as the altitude is given in the forenoon or afternoon) 
until the sun’s place coincides with the given degree of altitude on 
the quadrant ; then the hours passed over by the index, will shew 
the time from noon, and the quadrant will point out the azimuth 
on the horizon, as before. 

OR BY THE ANALEMMA. 

The pole being elevated for the lat and the quadrant screwed in 
the zenith as before; bring the middle of the analemma to the 
brass meridian, and set the index to 12 ; turn the globe as before, 
moving the quadrant, at the same time, until the day of the month 
coincides with the given altitude; the hours passed over by the in¬ 
dex will give the time, and the azimuth will be found on the hori¬ 
zon as before. 

Example 1. At what hour of the day in the forenoon of the 21st 
of June, is the sun’s altitude 30° at New-York, and what is his azi¬ 
muth ? 

Ans. The time from noon is 7 hours 20 minutes, and the azL 
muth 83^° from the north towards the east. 

Note 1. This prob. is performed more accurately with the hours on the 
equator than with the hour circle. On Cary’s twenty-one inch globes the 
hours, quarters and single minutes are marked on the equator, and the half 
minutes maybe also distinctly pointed out. In performing the problem, the 
learner should make the 0 on the quadrant coincide with the horizon, by 
drawing the end of the quadrant tight with one hand, adjusting it at the 
same time to the lat. and turning the globe with the other. 

2. At what hour on the 21st of March, in the afternoon, is the 
sun’s altitude 221°, and what is his azimuth ? 

3. On the 10th of May the sun’s altitude at Washington city 
was observed 40° 25'; required the hour of the day and sun’s azi¬ 
muth, the observation being made in the forenoon ? 

4. In New-York, on the 10th of March, having observed that 
the shadow of a perpendicular object was exactly equal to its 
height, it is required from hence, to find the hour of the day when 
the observation was made, supposing it to have been made in the. 
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morning, the point of the compass on which the shadow was pro¬ 
jected, and the sun’s azimuth ? 

Note 2. The length of the shadow of perpendicular objects is equal to 
their heights when the sun’s alt. is 45°, as appears from ihe 6th and 13th 
problems of the 1st book of Euclid; and the point of the compass is shewn 
by the quadrant of alt or azimuth circle, for though in reality this be the 
sun’s position, yet in the small compass of our horizon, it agrees accurately 
enough with the bearing. 

PROB. 53. 

Given the latitude, the sun's place and his azimuth ^ to fnd his alti¬ 
tude and the hour of the day. 

Rule. Rfxtify the globe for the lat. screw the quadrant of alt. 
in the zenith, bring the sun’s place to the brass meridian, and set 
the index to twelve ; then the quadrant being set to the azimuth 
on the horizon, turn the globe until its graduated edge meets the 
sun’s place, the degree cut on the quadrant will be the altitude, 
and the index will point out the hour.* 

* Here the complement of the altitude, the complement of the latitude, 
and the sun’s declination subtracted from or added to 90°, according as it 
is of the same or of a different name from the latitude, will form a triangle, 
and the acute angle included between the brass meridian and the quadrant 
will be the azimuth ; if this fall within the triangle, it will be the angle in¬ 
cluded between the comp, of the alt. and comp, of the lat. but if it be with¬ 
out the triangle, its supplement, or what it wants of 180°, will be the angle 
included by the above sides. There are therefore given two sides, and the 
angle opposite one of them, to find the third side, which is the comp, of the 
alt. and the angle opposite to it, or the hour angle included between the 
brazen meridian, and the meridian passing through the sun’s place, which 
may be thus found, first letting fall a perpendicular from the pole on the 
quadrant of altitude produced, if necessary; Rad. : cos. azimuth :: tangt. co. 
lat. : tangt. of a 4th arch, which call x; then sine lat. : cos. x :: 90° 
decl. : cosine of another arch which call y, then the difference between x 
and y will be equal to the complement of the alt. when the perpendicular 
falls without the triangle, and their sum when the perpendicular falls 
within. Moreover, if 90° iz decl. and the angle formed by the arch x 
and co. latitude be of the same affection (that is each less or each greater 
than 90°) y will be less than a quadrant or 90°; but if these angles be of 
different affections, that is one less and the other greater than a quadrant, 
y will be greater than 90° ; all which the learner will easily understand on 
the globe. Now to find the hour angle it will be sine $0° — deck : s. azi¬ 
muth :: sine co. altitude : sine hour angle from 12. 

Thus, in the 1st example above, Rad. : cos. azim. 65° :: co. tan. lat. 4Grj 
43' : tang, x 26° S'; and s. lat. 40° 43' : cos. 90° — 23° 28' — 66° 32' : cos 
y 56° 43', hence y — x = 56° 43' — 26° 9' = 30° 34', the complement of 
the alt. and therefore the alt, is 59° 26', as above. Now to find the hour 
angle we have sine 66° 32' : sine az. 65° :: cos. alt. 59° 26' : sine hour angle 
from 12 =? 30° 9' or 2h. 0m. 36 seconds ; hence 12h. — 2h. O' 36" = 9h. 59 
24", or 59 min. 24 seconds after 9 in the morning. 

The learner must take notice that the deck is added to 90° when in the 
triangle, the opposite angle is greater than 90° or the supplement of the azi¬ 
muth, but subtracted if the op. angle be less than 90°, or equal to the azi¬ 
muth, or according as the arch of the meridian between the pole and the 
sun’s place, is greater or less than 90° 
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This prob. and the following may be performed by the analem- 
ma, nearly in the same manner as the foregoing. 

Example 1. On the 2ist of June, in lat 40° 43' N. the sun’s 
azimuth in the morning was 65° from the south ; required his alt. 
and the hour of the day, when the observation was made ? 

jins. Alt. 59° 26', and the time 9h 59' 24". 
2. On the 4th of July, in lat. 38° 53' N. the sun’s azimuth in the 

morning was 70° from the south ; required the alt. and hour ? 
3. In lat. 5 l-y° N. the sun’s azimuth from the south, in the even¬ 

ing, was 40°, on the 22d of Dec. required the alt. and hour ? 

PROB. 54. 

Given the sun's altitude and azimuth, to find the sun's place and 
the hour of the daip the latitude being known. 

Ride. Rectify the globe for the latitude, screw the quadrant 
of altitude in the zenith, and set the graduated edge of the quad¬ 
rant to the given azimuth on the horizon ; then turning the globe 
on its axis, that point of the ecliptic which cuts the altitude will be 
the sun’s place, the quadrant being kept in the same position ; 
bring the sun’s place to the brazen meridian, and set the index to 
twelve, then turn the globe again until the sun’s place cuts the 
quadrant of alt. and the index will point out the given hour.* 

Example 1. In lat. 40° 43' N. the sun’s altitude in the forenoon, 
being 59° 26', and his azimuth from the south 65° ; required the 
sun’s place, and the hour of the day ? 

jins. The sun’s place is the beginning of cancer, and the hour 
nearly 10 o’clock. 

* To perform this prob. by calculation, there are given the complement 
of the latitude on the brass meridian, the complement of the altitude on 
the quadrant of alt. and the angle included by these sides, which is equal 
to the sun’s azimuth if acute or less than 90°, or its supplement if obtuse 
or greater than 90°, to find the opposite or third side which is always — 
90°-4- the declination (from which the declination will be given) and the 
hour angle or the angle included at the pole, between the brass meridian 
and the meridian passing through the sun’s place ; the declination being 
therefore given, and the obliquity of the ecliptic, or sun’s greatest de¬ 
clination, the sun’s place is given by note 5, prob. 8. 

Now to find the declination we have these proportions, having let fall a 
perpendicular as in the preceding prob. then, rad. : cos. azim. :: tang. co. 
lat. : tang, x, and the difference between the complement of the alt. and 
x = y. Whence cos. x : s. lat. :: cos. y■ : cos. 90* decl. Then as 
the compl. alt. -f- x, and the angle included by the given sides are of 
the same or different affection, 90° ~ deck is greater or less than a quad¬ 
rant. The declination being from thence given, we have sine obliq.of the 
ecliptic or greatest deck : s. present decl. :: rad. : s. longitude from 
aries ; if the sun’s place be nearer libra, the result will be the same, reck¬ 
oning the degrees from libra, or taking the supplement of what the above 
proportion gives. 

The hour angle is found as in the preceding problem. 
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2. In lat. 51-J N. the sun’s alt in the forenoon was 40<>, and his 
azimuth 60° from the south ; required the sun’s place, and the 
hour of the day ? 

3. In latitude 60° N. the sun’s alt. in the morning was 9°, and 
his azimuth 70° from the north; required the sun’s place, and 
hour of the day when the observation was made ? 

Note. In these and similar problems, there are two days of the year 
which will answer these conditions, both equally distant from the longest or 
.shortest day. 

4. In lat. 30° S. the sun’s alt. in the morning was 28°, his azi¬ 
muth being 80° from the south ; required the sun’s place, and the 
hour of the day ? 

5. In lat. 30° N. required the two days of the year in which the 
sun’s altitude in the afternoon will be 30°, and his azimuth 79° 
from the north, and the hour when the observation is to be made ? 

PROB. 55. 

The day of the month being given, to find the sun’s altitude, azimuth, 
the latitude of the place, and hour of the day, by placing the globe 
in the sunshine. 

Rule. Place the globe upon a truly horizontal plane, in a north 
and south direction, by the compass (or a good meridian line) fix 
a needle perpendicularly over the sun’s place in the ecliptic for the 
given day (found by prob. 8.) bring it to the brass meridian, and 
set the index to twelve, move the globe until the index casts nn 
shadow, in any direction ; then the degree of the brass meridian 
cut by the horizon is the latitude, the index will point at the hour, 
and the quadrant of alt. being applied to the zenith and extended 
over the sun’s place, the degree then cut by the sun’s place will 
be the altitude, and the azimuth will be found on the horizon as 
before. 

PROB. 56. 

The latitude of the place being given, to find the sun’s declinatio7i} 
his place in the ecliptic, his altitude, azimuth, and hour of the day* 
by placing the globe in the sunshine, as above. 

Rule. Place the globe horizontally, and also north and south, 
as above, and elevate the pole to the given latitude ; then the num¬ 
ber of degrees which the sun shines beyond the north pole, is his 
declination north. If the sun do not shine beyond the north pole, 
his declination is as many degrees south as the enlightened part is 
distant from the pole ; if the sun shine exactly as far as the pole, 
the sun is then on the equinoctial line, and consequently has no 
declination. The sun’s declination being thus found, his longitude 
is given, and the day of the month corresponding (by prob. 8. note 
3.) next fix a needle perpendicularly in the parallel of the sun’s de¬ 
clination for the given day, and turn the globe on its axis until the 
needle pasts no shadow ; the globe being then fixed in this position, 

. ■ U 
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screw the quadrant of alt in the zenith, bring the graduated edge 
to coincide with the sun’s place, or the point where the needle is 
fixed, the degree cut by the needle will be the sun’s altitude, and 
the degree on the horizon will give the azimuth. The hour may 
be foijnd as in the preceding prob. 

PROB. 57. 

The latitude of the filace and the day of the month being given, tofnd 
when the sun is due east or west. 

Rule. Elevate the pole to the given lat. screw the quadrant 
6f alt. in the zenith, bring the sun’s place, for the given day, to 
the brass meridian, and set the index to twelve, move the quadrant 
of alt until 0 on it coincides with the east point of the horizon ; 
the quadrant being held in this position, turn the globe on its axis 
until the sun’s place comes to the graduated edge of the quadrant; 
the hours passed over by the index will be the time from noon 
when the sun is due east, and at the same time from noon he will 
be due west.* 

Or, This may be performed by the analemma in the same man¬ 
ner, only instead of bringing the sun’s place to the meridian, you 
bring the analemma there, and then the day of the month on the 
analemma to the graduated edge of the quadrant. 

Example 1. On the 2:st of June, in latitude 40° 43', required 
when the sun is due east or west i 

Ans The sun is due east at 41 min. 8 seconds after 8 in the 
morning, and due west at 18 min. 52 sec. after 3 in the afternoon. 

2. In latitude 5 1*-° on the 19th of May, at what hour will the 
sun be due east and also due west ? 

Ans. The hour angle from '2 is 4h. 54m. the time that the sun 
is west; hence i2h. — 4h. 54m = 7h 6m. the time that the sun 
is due east. The alt. may be found at the same time as in prob. 
59. Here it is 25° 26'. 

3. At what hours will the sun be due east and west at Washing¬ 
ton city, on the 21st of June and 22d of December, and what will 
his alt. be at the same time, on the 21st of June ? 

* Here the brass meridian, quadrant of alt. and the meridian passing 
through the sun’s place, form a right angled triangle, two sides of which 
are given, viz, the complement of the latitude, and the distance from the 
elevated pole to the sun’s place, or 90° il decl. (For the day of the month 
being given, the declination is given prob. 8.) to find the included angle or 
hour angle, which converted into time, will give the hour from noon, at 
which the sun is due east or west. Hence from Napier’s rule, we have this 
proportion ; Rad. : co. tan. lat. co. tangt. 90° Th decl. : cosine hour angle 
from noon. Thus, in ex. 1. Rad. : co. tan. 40° 43' :: co. tang'. 90° — 23° 28' 
= 66° 32' : cosine hour angle = 59° 43' = 3h. 18m. 52 seconds, the lime 
when the sun is west; and therefore 12h. — 3h. 18m. 52s. == 8h. 41m. 8s. 
when the sun is due east. 

The alt. may be found by this proportion ; Rad. : sine 90° z*l decl. :: sine 
hour from noon : cosine alt. Thus in cx. 1. Rad. : s. 66° 32'.:; s. 59° 48’ : 
CQS. 37° 37', the ait. required. 
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4. At what hours will the sun be due east and west, at every 
place on the surface of the globe, on the 21st of March and 23d of 
September ? 

5. At what hours is the sun due east and west at Lima, on the 
2 2d of December ? 

PROB. 58. 

The declination and meridian altitude of the sun being given, tafnd 
the latitude of the filace.* 

Rule. Mark the declination on the brazen meridian ; then 
count as many degrees from this mark on the brass meridian, as is 
equal to the given latitude, reckoning towards the south, if the sun 
was south of the observer, or towards the north, if the sun was 
towards the north ; bring the degree where the reckoning ends, 
to coincide with the horizon, and the number of degrees the ele¬ 
vated pole is from the horizon, will be the latitude required. 

Or, The latitude may be thus found without a globe : subtract the 
altitude of the sun’s centre (corrected for dip, or height of the eye, 
and refraction, if necessaryt) from 90°, the remainder is the zenith 

* The reason of this prob. is evident from the operation. 
f The height of the eye above the level of the horizon, or the sea, and re¬ 

fraction, both tend to elevate the sun above its true height, and therefore 
the sum of both must be subtracted from the observed altitude. 1'he fol¬ 
lowing table will answer the learner’s purpose sufficiently. If more exact¬ 
ness be required, McKay’s Treatise on Navigation, Mayer, or other authors 
may be consulted. 

s 
Surfs semid. S 

16'18" ij 
16 J ‘ ' 

S ^ 
dip. Alt. refr. alt. refr. alt. refr. alt. re fr. 

, Paral. 
in alt. 

\ 1 V 0 0° 0' 33' 0" 3°s 13' 6" 17° 3' 4" 37° 1'16" ; 0° |gff 

S 2 1 4 0 5 32 10 3# 12 27 18 2 54 38 1 13 ! 4 9 
V o 
? ° 1 7 0 10 31 22 4 11 51 19 2 44 39 1 10 ! 8 9 

s 4 1 9 0 15 30 35 H 11 18 20 2 35 40 1 8 ; 12 9 

S 5 2 1 0 20 29 50 44 10 48 21 2 27 41 1 5 T6 8 
s 7 2 5 0 25|29 6 4$ 10 20 22 2 20 42 1 O O !20 8 

s 9 2 9 0 30,28 23 5 9 54 23 2 14 43 1 1 ’24 8 

S 12 
0 

O 3 0 35| 27 41 9 8 24 2 8 44 0 59 *28 8 

s 15 3 7 0 40 27 0 6 8 28 25 2 2 45 0 57 132 7 
S 18 4 1 0 50 25 42 65 7 51 26 1 56 46 0 55 :36 7 
5 21 4 4 1 0 24 29 7 7 20 27 1 51 48 0 51 40 6 
< 25 4 8 1 15 22 47 8 6 29 28 1 47 50 0 48 44 6 
S 30 5 2 1 30 21 15 9 5 48 29 1 42 55 0 40 48 6 
S 35 5 6 1 45 19 51 10 5 15 30 1 38 60 0 33 52 5 

40 6 0 2 0 18 35 11 4 47 31 1 35 65 0 26 56 5 
? 50 6 7 2 15 17 26 12 4 23 32 1 31 70 0 21 160 4 
? 60 7 4 2 30 16 24 13 4 3 33 1 28 75 0 15 164 4 
S 70 8 0 2 45 15 27 14 3 45 34 1 24 80 0 10 :68 3 
S 80 8 5 3 0 14 36 15 3 30 35 1 21 85 0 5 i 80 2 
> 90 9 0 3 15 13 49 16 3 17 36 1 18 90 0 0] 90 0 

Jan. 1 
25 

Feb. 1 
25 

Mar. 13 
Apr. 1 

25 
May 1 

' 25 
June13 
July 25 
Aug 13 
Sept. 1 

25 
Oct. 1 

25 
Nov. 1 

25 
D,ec. 1 

25] 

16 
16 
16 
16 
16 

16 S 
15 S 

11 \ 
2S 

55 S 
15 54 > 
15 49 ? 
15 46 S 
15 48 S 
15 50 J 
15 54 C 
16 OS 

2S 
8S io 2 

15? 
i6S 

18 \ 

16 
16 
16 
16 
16 
16 

The learner will observe that there are here four tables, separated from 
each other by the double lines. Tlie 1st contains the dip of the horizon in 
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distance, which is north, if the zenith be north of the sun, or south, 
if the zenith be south ; take the sun’s declination out of the Nauti¬ 
cal Almanac, or any good table, for the time and place, and ob¬ 
serve whether it be north or south ; then if the zenith distance and 
declination be both north or both south, add them together ; but if 
the one be north and the other south, subtract the less from the 
greater, and the sum or difference will be the latitude, of the same 
name with the greater. 

Note 1. If the alt. be taken by reflection from a basin of water, &c. al¬ 
lowance must be made for refraction. (See note to prob. 1.) 

Example l. On the 17th of October, 1805, the meridian alt. of 
the sun’s centre was 28° 51', the observer being north of the sun ; 
required the lat of the place of observation ? 

jins. Here the declination is 9° 15' south, which being marked 
on the meridian, and 28° 51' reckoned from this mark towards the 
south, the reckoning will end at 38° 6', which being brought to 
the horizon, the north pole will then be elevated 51<> 54?', which 
shews the lat. to be so many degrees north. 

BY CALCULATION. 

90« — 23° 51' S. (the sun’s alt. at noon) = 61° 9' N. the zenith 
distance, from which the sun’s declination 9° 15' S. being subtract¬ 
ed, leaves 51° 54' N. the lat. required. 

minutes and decimal parts, for the feet in the 1st column corresponding t® 
the height of the eye. The dip is a vertical angle contained between a hori¬ 
zontal plane passing through the eye of an observer, and a line from his eye 
to the visible unobstructed horizon. As this increases the alt. it must be 
subtracted; but added, if a back observation with a Hadley’s quadrant or 
sextant be used. 

The 2d table contains the refraction in alt. of any celestial body corres¬ 
ponding to the degrees and min. of altitude given in the table. It is adapt¬ 
ed to 29.6 inches of the barometer, and 50° of Fahrenheit’s thermometer ; 
as this increases the alt. of objects, it must likewise be subtracted. It also 
affects the distances of the sun and moon, or stars, and must therefore be 
allowed for. If the atmosphere, &c. should vary, allowance is to be made 
when great precision is necessary. (See tab. 32 of Mayer, or Delambre in 
his tables annexed to La Land’s Astronomy, where the hor. refr. is 6"2 less 
than in Mayer, Delambre making it 32'53ff8. 

The 3d table contains the sun’s parallax in alt. that is, the difference be¬ 
tween the sun’s places as seen from the surface, and the centre of the earth 
at the same time. This table, except the two last numbers, is calculated to 
every 4th degree. As the parallax always diminishes the apparent altitude, 
it must be added to the observed alt. to find the true, or the alt. observed 
from the earth’s centre. 

The 4th table contains the sun’s semidiameter in minutes and seconds, 
corresponding to the days of the month opposite, the semidiameter being 
the angle under which it appears, as seen from the earth, is necessary to re¬ 
duce the observed alt. of the sun’s upper or lower limb to that of its centre. 
It is also useful to astronomers to ascertain the exactness of the scale of their 
micrometers, by comparison with the measure of the sun’s horizontal diam¬ 
eter. This is practised principally in solar eclipses, when the distance of 
the cusps, or the versed sine of the uneclipsed part, has been measured with 
the micrometer. It is likewise used in finding the distance of the sun and 
moon’s centres, when their nearer limbs are brought in contact, &,c. When 
great accuracy is required, proportional parts for the dip, refraction, paraL' 
Sax, and semidiameter, may be taken. 
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2. On the 30th of May, 1808, the meridian alt. of the sun’s cen¬ 
tre was observed to be 49° 25', the observer being south of the 
sun; required the latitude ? Ans. 18°45,S. 

BY CALCULATION. 
90o — 49° 25' S. = 40° 35' S. the zenith distance, the difference 

between which and the sun’s declination 21° 50' N. is 18° 45' S. 
the lat. sought. 

Note 2. The table of the sun’s declination, and its change for periods of 
four years, is given before the table of the lat. of places at the end of the 
book. 

3. On the 10th of May, 1808, the sun’s meridian alt. was ob¬ 
served to be 40° south of the observer ; required the latitude ? 

4. On the 12th of July, 1810, the sun’s meridian alt. was ob¬ 
served to be 50° 30' north of the observer ; what was his latitude ? 

5. On the 24th of February, 1809, the meridian alt. of the sun’s 
lower limb was 38° 40', the observer being north of the sun, and 
height of his eye equal 18 feet; required the latitude of the place 
of observation ? 

By help of the foregoing table, this may be performed thus : 
Obs. alt. sun’s lower limb 38° 40' S. 90°—38° 51/= 51° 9/ N. zenith dist. 
Sun’s semidiameter 
Dip for 18 feet 
Refraction 

-f 16 
— 4 
— 1 

Sun’s declin. 24th Feb. 
Zenith distance 

9° 30' S. 
51 9 N. 

Latitude 41° 39 N. 
True alt. sun’s centre 38° 5if 

6. On the 10th of December, 1810, the upper limb of the sun 
was observed appearing in the south part of the horizon, height of 
the eye 16 feet ; required the latitude ? 

BY CALCULATION. 
Obs. alt. sun’s upper limb 0° 0' S. 90° -{- 53' = 90° 53' N. zenith distance 
Semidiameter — 16 22 54 S. declination 
Dip for 16 feet — 4 - 
Refraction — 33 67° 59' N. latitude. 

Depression of the sun’s cen. 0° 53' S. 

7. May 10th, 1808, in longitude 60° W. the meridian alt. of the 
sun’s lower limb, by a back observation, was 40° 1 O', the observer 
being north of the sun, and height of the eye 27 feet ; required 
the latitude ? 

BY CALCULATION. 
Obs. alt. sun’s up. limb 40° 10' 
Semidiameter — 16 
Dip + 5 
llefraction — 1 

True alt. sun’s centre 39° 58' 

Sun’s decl. 10th May 17° 39' N, 
Variation of decl.* -f- 3 

Reduced declin. 17 42 N.. 
Zenith dist. 90° — 39° 58'= 50 2 N. 

Latitude 67° 44' N. 

* When the longitude is different from that of Greenwich observatory, 
the difference of longitude must be converted into time, and reduced to 
that of Greenwich (by prob. 6 ) the variation of declination, during this 
time, may then be found by this rule ; as 24 hours : hour from noon 
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8. At a certain place where the clocks are three hours slower 
than at Greenwich, the meridian alt. of the sun’s lower limb on the 
21st of March, was observed to be 32° 15', the observer being 
north of the sun, and the height of his eye 17 feet; required the 
place ? 

9 Suppose that on the 4th of June, 1812, a ship in longitude 
53° E. was distant about three quarters of a mile from land, at noon-, 
the lower limb of the sun being brought down to the line of sepa¬ 
ration between the sea and land, the alt. was 46° 19', the observer 
being south of the sun, and height of his eye 20 feet; required the 
latitude ? 

BY CALCULATION. 

Obs. alt sun’s lower limb 46° IP Sun’s declination 
Semidiameter -f- 16 
Dip* — 15 
Refraction — 1 

Variation of decl. 

True alt. sun’s centre 46° IS1 

Reduced decl. 
Zenith dist. 

Latitude 

22° 27' N. 
0 1 

22 26 N. 
43 41 S. 

21° 15' S. 

reckoned by the meridian of Greenwich :: the daily variation of the sun’s 
declination : a fourth number, which must be added to, or subtracted 
from the deck for the given day at Greenwich, according as the reduced 
time is before or after twelve, and the declination increasing or decreas¬ 
ing. If the time be in the forenoon, and the deck increasing, the variation 
must be subtracted; but if the time be in the afternoon, the variation must 
be added; again, if the reduced time be in the forenoon, and the declina¬ 
tion decreasing, it must be added, but the contrary, if the reduced time 
be in the afternoon. Thus in ex. 7. the difference of long = 60° =*= 4 
hours, and as the place is W. of Greenwich, the time reduced to the me¬ 
ridian of Greenwich is 4 o’clock in the afternoon. Now the deck for the 
10th of May is 17° 35', and for the 11th 17° 54', their diff. is 15' increas¬ 
ing; hence 24 h : 4h. 15' : 2' 3</' which must be added, because the 
time is in the afternoon and the deck increasing, (see table 26 in M'Kay’s 
Navigator.) When great exactness is required, the deck must be taken 
from the Nautical Almanac, where its daily variation is also given. 

ft 
* If the land intervenes, and the 

sun’s limb be brought in contact 
with the line of separation of the sea 
and land, the dip will be considera¬ 
bly increased, and will become great¬ 
er in proportion as the land is ap¬ 
proached. In this case the distance 
to the water’s edge is to be found ; 
with this distance and the height of 
the eye above the level of the water, 
the dip is found from the annexed 
table, or it may be calculated as fol¬ 
lows : 

In the annexed figure, let A re¬ 
present the place of the observer, 
AB the height of his eye above the 
level of the horizon, BD the diame¬ 
ter of the earth — 7911.2 Eng. miles 
or 417H36 feet, (note to def. 8) E 

S 

\ 
S 
s 

s 
s 
s s 
s 
s 
s 
s 

# 

Dist. of Height above the sea in feet. 
L L4r / L LI/ * / • 

sea mil 5 10 15 20 25 30 35 40 

* 11' 22' 34' 45' j6' 68' 75' 9 o 

i 6 11 17 22 28 o4 39 45 

$ 4 8 12 15 19 25 27 30 
1 0 4 6 9 12 15 17 20 23 
i i 3 5 7 9 12 14 16 19 

i i 3 4 6 8 10 11 14 15 
2 0 2 3 5 6 8 10 11 12 
2 § 2 3 5 6 7 8 9 10 
3 0 2 o 

O 4 5 6 7 8 8 
3 i 2 o 

O 4 5 6 6 7 7 
4 0 2 o 

O 4 4 5 6 7 7 
5 0 2 o 

o 4 4 5 5 6 6 
6 0 2 O 

O 4 4 5! 5 6 6 
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PROB. 59. 
The length of the longest day at any place, not within the polar circles, 

being given, to find the latitude of the place. 
Rule. Bring the beginning of cancer or capricorn to the brass 

meridian (according as the place is in N or S. latitude) and set 
the index to twelve ; turn the globe westward until the index has 

the place where the sea and land are separated, AE (or 
BE, which is nearly equal to it) the distance from the 
observer to E ; draw BH from B perpendicular to BD, 
to represent the horizon, and AIv parallel to it. Then 
the angle HLF = KAE (29. E. 1.) is the dip or depres¬ 
sion of the object below the horizon, and is equal ACG, 
each of the last being complements of C AG to 90°; AE 
being' produced to F, and from C the centre CG being 
drawn perpendicular toEF. Again AB X AI3=AE X AF 
(Eucl.cor. prop. 06. b. 3) and therefore AE : AB :: AD : 
AF; (16 E. 6.) hence EF = AF— AE is given, and as 
CG bisects EF in G (3 E. 3) AG = AE-f-EG is given. 
Now in the right angled triangle ACG, the two sides AC, AG are given, to 
find the angle ACG, the dip required. Thus AC : AG :: Rad. : sine ACG. 
The following method is no less accurate, and in practice extremely sim¬ 
ple ; AL differing very little from BE, the distance of land in miles, and the 
angle ALB == KAE or HLF, that is equal the dip required, we have this pro¬ 
portion, AL : AB :: Rad. : sine of the dip. Thus let the observer’s distance 
BE or AL = 2 sea or geographical miles = 12151 feet nearly (a sea or geo¬ 

graphical mile being = == 88X69.04 = 6075.52 feet, allow¬ 

ing 69.04 Eng. miles to a deg. See notes to def. 8 and prob. 35) and 
height of his eye AB = 20 feet. Then, 

As AL 12151 - - 4.0846120 This rule in-words is, as the distance 
To AB 20 - - 1.3010300 from the observer to -where the suv 
So is radius, 10.0000000 touches the horizon, is to the height of 

•-his eye, so is radius, to the sine of the 
To sine dip. 5' 4GV 7-2164180 angle of depression or dip. 

The dip may be also found thus : join CE, then in the triangle ACE 
there are given the three sides AC, AE ( — BE nearly) and EC to find 
the angle B\E, whose complement is the depression required. 

But the most correct manner of calculating the dip is as follows : Let 
EM be drawn perpendicular to AC. Now as the length of the arch BE, 
which is the measure of the angle ACE is given, in geographical or sea 
miles, each of which corresponds to a minute of a degree, the angle ACE 
is therefore given, and hence CM, ML are each given, and as CA is 
given, AM is therefore given ; hence in the triangle AME the angle 
AEM, which is the true dip, is likewise given. 

The difference between AM and AB, or BM, is what the surface of the 
earth at E falls below the horizontal or true level at B ; and hence this 
latter solution may be useful to the practical surveyor, engineer, he. This 
level varies as the square of the distance nearly. (See quest. 4 in the 
Diary for 1795 published by Hutton.) 

If from the centre B, with the distance BI, a circle SHIrc be describ¬ 
ed, and S be the sun’s place, then SH will represent his true altitude, HI 
the dip, when the visible horizon is unobstructed, as in the 1st table, Hw 
the dip when the sun’s limb is brought in contact with any other part ot 
the visible horizon, in a vertical circle, as at E : when Hn = HS the dip 
is equal to the true altitude, in which case if the sun’s image be made to 
coincide with its reflected image from the water or any horizontal reflect- 
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passed over as many hours as are equal to half the length of the 
day ; elevate or depress that pole until the sun’s place (cancer or 
capricorn) comes to the horizon ; the elevation of the pole will 
then shew the latitude.* 

Note 1. The prob. may be performed in the same manner for any other 
day, by bringing1 the sun’s place to the meridian, and proceeding as above. 

Or, Bring the middle of the analemma to the brass meridian, 
and set the index to 12 ; turn the globe westward until the index 
points out the hours, &c. as before ; elevate or depress the pole 
until the day of the month coincides with the horizon ; this eleva¬ 
tion will give the lat. required. 

ing surface, the angle measured on the quadrant or sextant will be double 
the true alt. of the sun ; the angle of incidence being equal to the angle 
of reflection, or the angle formed by a line from S. to E. and ME pro¬ 
duced, will be equal the angle AEM, &c. See note to prob. 1. Hence 
we have here several methods of finding the lat. on land near the sea 
shore, a river, lake, 8cc. or from any reflecting surface. 

If no land intervenes, then the angle ACI is the dip, as given in the 1st 
table, AI being drawn to the extremity of the visible unobstructed horizon, 
in which case EF will vanish, E will coincide with I, CG will become = Cl 
= the semid. of the earth at right angles to the tangent AI at the point I. 
(cor. 16. Eucl. 3.) whence we have this proportion ; AC : Cl :: Rad. : sine 
ACI the dip required ; or, as AC : Cl :: Rad. : sine CAI the complement of 
Which is the required depression. 

More useful observations might be made here, but our contracted lim¬ 
its would not permit : what we have said is however sufficient to give the 
learner an idea how useful geometrical principles are in inquiries of this 
nature, and how necessary their study is for those who wish to be more 
than superficially acquainted with the nature and foundation of the most 
useful arts and inventions in general. 

* This prob. is calculated thus : the complement of the sun’s declina¬ 
tion, the lat. reckoned from the elevated pole to the horizon, and the 
included angle, or the supplement of the hour angle or half the length 
of the day, form a right angled spherical triangle, the circular parts be¬ 
ing the sun’s declination, the comp of the included angle between the 
brass meridian and the meridian passing through the sun’s place, and 
latitude, of which this angle is the middle part (see Simson’s Trig, at the 
end of his Euclid, pa. 26) then by Napier’s first rule, rad. X co. sine of 
the included angle at the pole = tangt. decl. X tang, latitude, whence 
(16 E. 6.) tangt. sun’s decl : rad :: co. sine of the ang'le included be¬ 
tween the meridian passing through the sun’s place and brass meridian : 
tangt. latitude. Thus in ex. 1. the hour angle = 7h. 30 min = 112° 30' ; 
the supplement of this = 180°.—112° 30' =* 67° 30' = the angle includ¬ 
ed between the meridian passing through cancer and the brass meridian, 
the sun’s declination being here greatest = 23° 28'; hence tangt. 23° 28' : 
rad. :: co. sine 67° oQt : tang, latitude 41° 24' required. 

In the same manner may the lat. be calculated for any other time, tak- 
jng the sun’s declination for the given day, instead of his greatest decli¬ 
nation 23° 28'. 

The reason of the rule is evident ; for when the globe is rectified to the 
lat. and the sun’s place brought to the meridian, if then the globe be 
turned on its axis until the sun’s place coincide with the horizon, the in¬ 
dex in this revolution will pass over half the length of the day ; hence, 
vice versa, if the distance between the brass mer. and where the sun cuts 
the horizon be made equal to half the length of the diurnal arch, by ele¬ 
vating or depressing the pole, the elevation thus found must be the lati¬ 
tude. The same reasoning will answer for any other prob. performed in 
a similar manner. 
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Examfile L In what degree of north lat. and at what places is 
the length of the longest day 15 hours ? 

Ans. In lat. 41° 42', and at all those places situated on or near 
that parallel. 

Note 2. The prob. may be performed much more correctly by help of the 
equator than of the hour circle. 

2. In what degree of south lat. and at what places is the long¬ 
est day 13|- hours ? 

3 In what degree of north lat is the length of the longest day 
twice the length of the shortest night ? 

4. In what degree of south lat. is the longest day three times the 
length of the shortest night ? 

5. In what lat. is the 10th of May 14 hours 15 min. long ? 
Note 3. The minutes are marked on the equator of Cary’s large globes.— 

The lat. may be here N. or S. 

6. In what lat. north does the sun set at 7 o’clock, on the 10th 
of August ? 

7. In what lat. south does the sun rise at 5 o’clock, on the 31st 
of January ? 

8. In what lat. N. is the night of the 4th of July 9 hours long t 

PBOB. 60. 

Given the sun's declination and amfilitude, to find the latitude. 

Rule. Elevate the north pole to the complement of the am¬ 
plitude, screw the quadrant of alt. in the zenith, and bring the be¬ 
ginning of aries to the brass meridian ; then bring the degree on 
the quadrant of alt. which is equal to the declination, to coincide 
with the equator, and the degree cut on the equator, reckoned 
from aries, will be the latitude required.* 

* Here the complement of the decl. on the quadrant, the complement of 
the altitude reckoned on the brass meridian, and the lat. reckoned on the 
equator, form a right angled triangle, and hence the lat. is thus found ; 
S. ampl. :-rad. :: s. decl. : cos. latitude ; thus, in the 1st ex. S. ampl. 32° : 
rad. :: s. decl. 23° 28' : cos. lat. 41° T. 

To understand how this rule was formed, let the globe be rectified to any 
given latitude, and the sun’s place brought to the horizon ; then the angle 
formed by the amplitude, sun’s declination, and that part of the equator in¬ 
tercepted between the horizon and the meridian passing through the sun’s 
place, form a right angled sp. triangle, and the angle included between the 
equator and amplitude, in this triangle, is equal to the complement of the 
latitude, whence in this triangle it will be S. ampl. : R. :: s. decl. : cos. lat. 
the same as above. If we now conceive the sides of the triangle which re¬ 
present the decl. and ampl. to be produced to the brass meridian, another 
triangle formed from the compl. of the decl. the compl. of the amplitude, 
and the latitude, reckoned from the pole to the horizon, will be delineated 
on the globe, from which the first rule above is formed. The second rule 
is manifest from the globe being rectified to the lat. he. 

From the triangle formed at the horizon by rectifying the globe, &c. other 
methods may be deduced of solving the prob. Thus, bring the beginning 
of aries to the brass meridian ; from aries on the equator reckon as many 
degrees as are equal to the decl. then with the amplitude in the compasses, 
and one foot in this point, cross the equinoctional colu*e, and mark the de- 

w 
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OR THUS, 

Find the sun’s place corresponding to the given declination, and 
bring it to the eastern or western part of the horizon (according as 
the eastern or western amplitude is given) elevate or depress the 
pole until the sun’s place coincides with the given amplitude on the 
horizon ; the elevation of the pole will be the lat. sought. 

Examfile 1. The sun’s amplitude was observed to be 32° from 
the east towards the north on the 21st of June ; required the lat. ? 

Am. 41° N. nearly. 
2. In May when the sun’s declination was 18<> north, the rising 

amplitude was observed to be 30^° from the east towards the 
north ; required the lat. ? 

Ans. 51^° N. 
3. When the sun’s declination was 10° south, his setting ampli¬ 

tude was 13° from the west southward ; required the latitude ? 

PROB. 61. 

Given two obsei'ved altitudes of the sun, the time between them, and 
the sun*s declination, to find the latitude. 

Rule. Take the complement of the first alt. from the equator 
(or any great circle on the globe which is divided into degrees, See.) 
in your compasses, and with one foot in the sun’s place, and a fine 
pencil, or a pen with ink, in the other, describe an arc on the sur¬ 
face of the globe ; then bring the sun’s place to the meridian, and 
set the index to the hour at which the first altitude was taken, or 
mark the degree of the equator under the brass meridian ; turn 
the globe eastward until the index has passed over as many hours 
as are equal to the time between the two observations, or until the 
equator has passed over as many degrees, See. as the elapsed time 
converted into degrees ;* (by prob. 6) then under the sun’s de* 

gree cut on it; elevate this pole to the degree, and screw the quadrant of 
alt. in the zenith ; extend the quadrant over the degree of decl. marked on 
the equator, and the degree then cut on the horizon, reckoned from the 
nearest pole, will be the complement of the latitude, as is evident. Or if the 
decl. be marked on the colure, from aries, and with the ampl. in the com¬ 
passes as before, and with one foot on the colure where the reckoning ends, 
cross the equator with the other, and mark the degree thus cut; bring this 
degree to the brass meridian; screw the quadrant over it, and bring both 
poles to the horizon ; extend the quadrant over the degree of decl. on the 
colure; the degree then cut on the horizon will be the complement of the 
lat. as before. This method follows from the same principle. 

* The elapsed time is found to a minute of time on Cary’s large globes, 
on the equator. Any two points in the parallel of the sun’s declination for 
the time, distant from each other by the interval of the elapsed time, may be- 
taken. If the declination varies much during the elapsed time, the comple¬ 
ment of the second alt. must be set off from the parallel in which the sun is 
at that time, the variation of the declination being found by the proportion in 
the latter part of the note to prob. 49. 

To perform this prob. by calculation, join the zenith, or point where the 
two circles representing the complements of the alt. intersect each other, 
and the apparent places of the sun at each alt. represented on the paiahel of 
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filiation on the brass meridian mark the place on the globe ; take 
the complement of the second altitude in your compasses, and 
with one foot in this mark, describe another circle intersecting the 
former ; the point of intersection will be the zenith of the place, 
which being brought to that part of the brazen meridian which is 
numbered from the equator towards the poles, will give the lati¬ 
tude required. 

Note. The respective altitudes may be corrected in this prob. as in the 
foregoing problems, when necessary. 

Examjile 1. June 4, 1810, in north latitude, the corrected alti¬ 
tude of the sun at 29 minutes past 10 in the forenoon, was 65° 24', 
and at 31 min. past 12, the correct alt. was 74° 8'; required the 
latitude ? 

Ans. The sun’s declination was 22° 27' N. the elapsed time was 
2h. 2m. = 30° 30'; the complement of the first alt. was 24° 36', 
of the 2d, 15° 52', and the lat. sought 36° 57' N. 

declination, through each of the sun’s places, and the zenith, let meridians be 
drawn with a fine pencil, by means of the brass meridian, then will the figure 
be projected on the surface of the globe. In this figure it will be seen that 
the complement of the latitude and the sun’s declination at each alt. added 
to or subtracted from 90°, form with the complements of the altitudes, two 
triangles respectively, and that the angles at the pole, included by the com. of 
the sun’s decl. and com. of the lat. reckoned on the meridian passing through 
the zenith, are the hour angles counted from 12. From either of which tri¬ 
angles, two sides and an angle being given, the third side, which is the 
complement of the latitude, may be found by the following proportions, first 
letting fall a perpendicular on the meridian passing through the zenith or 
given lat. from the sun’s place at either of the altitudes. Rad. : cos. hour 
angle before or after 12 :: tangent 90° the sun’s decl. : tangt. x or distance 
between the pole and the perpendicular; and sine 90°— the decl. : cos. av:: 
sine alt. : y the distance between the zenith and perpendicular ; then x — y 
=* complement of the lat. required. (See Emerson’s Trig. b. 3. sect. 4. case 
3, oblique spher. tri.) To know whether the declination is to be added or 
subtracted; when the lat. and decl. are of the same name, add ; when they 
are of different names, subtract. In the above solution either of the lati¬ 
tudes above will answer. (See prob. 61.) If the watch be not adjusted so 
as to give the time at which each of the observations was made, though suf¬ 
ficiently correct to measure the elapsed time, then the following method will 
answer. In the annexed figure, let P represent the pole, Z the zenith, EQ 
the equator, HO the horizon, A and B the two 
places of the sun when the altitudes were taken; 
then in the triangle BP A there are given AP, 
BP the complement of the sun’s decl. and the 
angle BPA the elapsed time, or the time be¬ 
tween the two observations converted into de-Tj-i 
grees to find the side AB, and the angles ABP 
or BAP. In the triangle AZB there are given 
AZ the complement of the first alt. BZ the 
compl. of the second alt. and the side AB, to 
find the angles ABZ or BAZ, and from thence 
the angles ZAP or ZBP; then in the triangle 
ZPA or ZPB, two sides, and the included angle, that is, the angle ZAP or 
ZBP, are given to find ZP, the complement of the lat. required. When the 
altitudes are equal, or that the sun is on the equinoctial, the calculations is 
more simple. If the altitudes be equal, or AC =, BD, and the sun’s decltna* 
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2. Given the sun’s declination 12° 16' N. his alt. in the fore- 
noon at lOh. 24m. was 49° 9', and at lh. 14m. in the afternoon his 
alt. was 51° 59'; required the latitude ? 

jins. 47° 20' north. 
3. The sun’s declination being given 11° 7' N the alt. at lOh. 

2m. ii) the forenoon was 46° 5s', and at 1 lh. 27m. in the forenoon 
the second alt was 54° 9'; required the latitude ? 

jins. 46° 27' north. 
4. Being at sea when the sun was on the equator, I observed 

that at l o’clock, P. M the correct alt. of the sun’s centre was 28° 
53', and at 3 o’clock, P. M. the alt. was 20° 42' ; required the 
latitude ? 

Ans. The lat was 60° north. 
5- If on February 24, 181 «, at 38m. past 12 in the afternoon, 

the correct alt of the sun’s centre be observed 36° 5', and 46m. 
past 2, the alt. be 24° 19', the lat. is required ? 

6 Oct. 17, 1820, at 32m past 12, the alt. of the sun’s lower 
limb being supposed equal to 28° 32', and at 41 m. after 2, the 2d 
alt equal 19° 25', height of the eye 12 feet; required the lati¬ 
tude? Ans. 5l°31' N. 

PROB 62. 
Given the sun*s declination, his altitude, and the hour of the day, to 

fnd the Latitude. 
Rule. Find the sun’s place in the ecliptic ; from this place 

with the complement of the alt. describe an arc (as in the last 
prob.) bring the sun’s place to the brass meridian, and set the in¬ 
dex to 12 ; then if the time be in the forenoon, turn the globe 
eastward, but if in the afternoon, westward, as many hours as the 
given hour is before or after twelve ; the degree on the brazen 
meridian, cut by the arc before described, will be the latitude re¬ 
quired. 

The examples given in the foregoing prob. will answer this, 
taking one of the altitudes and time corresponding, instead of both 
altitudes. If the lat. found by making use of both altitudes sepa- 

» 

tion remain nearly equal (a A = 5B) then the middle time between the ob¬ 
servations is the time of his being on the meridian. If this prob. be per¬ 
formed on shipboard, and that the ship is under sail, an allowance must be 
made for the alteration in lat, (See McKay, Blunt, Norey, Moore, or Robin¬ 
son’s Navigation, or the principles of navigation in Emerson’s Math. Princ. 
of Geog. prop. 17, or Citizen Dulague’s Lessons on Navigation, revised by 
Cit. Prudhomme of Rouen.) McKay remarks, that Hues in his Treatise on 
the Globes, published in 1594, solved this prob. on the globes ; the substance 
of Keith’s solution in prob. 52 of his Treatise on the Globes is the same as 
the above, and differs little from Fuller’s solution of the same prob. in his 
Treatise on the Globes, published in Dublin, in 1732, prob. 35 astron. See 
other authors mentioned by McKay in pa. 158 of his Navigator, Amer. edit. 
The methods given in most of the books on Navigation, are but approxima¬ 
tions, and consequently the answers obtained by such methods generally dif¬ 
fer something from those found by the above, and it is very seldom that the 
altitudes and times are given correct, the examples mostly given at random, 
feeing seldom truly limited. 
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vately in the same example, agree with each other, the question is 
truly stated, otherwise not. 

In ex. 2, prob. 61, the lat. is found from both 
altitudes separately, thus : let P, in the annexed 
figure represent the pole, A and S, the sun’s ap. 
places at each of the altitudes, PZB the meridian 
passing through the zenith Z or the given place, b 
AZ the complement of the first altitude = 40° 51', 
APZ the hour from noon = 12h.— lOh. 24m. = 
Ih. 36m. =24°, and AP the complement of the 
sun’s declination = 77° 44'. For the second alt. A* 
SZ = its comp. = 38° 1', SP comp. decl. = 77° 44', and SPZ hour angle 
after noon = lh. 14m. == 18° 30'. 

Rad. 
Cos. APZ 24° 
Tangt. PA 77° 44' 

Tang. PB 76° 37' 

10.0000000 
9.9607302 

10#626887 

10.6234189 

Cos. PA 77° 44' 
Cos. PB 76° 37' 
Cos. AZ 40° 51' 

Cos. BZ 34° 30' 
PB —BZ = ZP = 42° 7'.. 90°—42° 7' = 47° 53', 

the lat. for 2d observation. 

Rad. 10.0000000 Cos. PS 77° 44' 
Cos. SPZ 18° 30' 9.9769566 Cos. Yb 77° 5' 
Tang. PS 77° 44' 10.6626887 Cos. SZ 38° 1' 

Tan. Yb 77° 5' 9.6396473 

Cos. 5Z 34° 
Yb—bZ = 43° 5' and 90°—43° 5'= 46° 55'. 

9.3272811 
9.3644852 
9.8787656 

19.2432508 

9.9159797 

9.3272811 
9.3493429 
9.8964334 

19.2458763 

9.9185952 

The examples given to illustrate the last problem, were selected from 
McKay and Hamilton Moore’s Treatises on Navigation. To point out the 
errors unnoticed in most of these, calculated as directed in those authors, 
the preceding calculation was given. Mariners and others will therefore 
judge for themselves, whether the common method of double altitudes, at¬ 
tended with so much uncertainty, so much labour and tedious calculations, 
be of any real advantage. The method given in this prob. for finding the 
lat. will answer every purpose of the double altitudes, with only a single al¬ 
titude and the time being given. 

For a further illustration of this valuable problem, the following examples 
are given. 

In north latitude, when the sun’s declination was 13° 45' N. his alt. at 8h. 
39' 33" in the forenoon was 36° 53', and at 9h. 39' 33", or one hour after, the 
alt. was 45° 53'; the lat. by either of the observations independent of the 
other, is required ? 

Latitude from the 1st altitude. 

Here AP = 76° 15', AZ = 53° 7', the hour 

angle, APB = 12h. — 8h. 39' 33" = 3h. 20m. 

27s. == 50° 7' nearly; hence. 

Rad. 10.0000000 
Cos. 50° 7' 9.8070114 
Tang. 76° 15' 10.6113688 

Cos. 76° 15' 
Cos. PB 69° 7' 
Cos. 53° 7' 

Tang. PB 69° 7' 10.4183802 

9.5760034 
9.5520184 
9.7782870 

19.3303054 

r 
Cos. BZ 25° 49' 9.9543020 



166 PROBLEMS PERFORMED BY 

Hence 69° 7' — 25° 49' = 43° 18' and 90° —43° 18' = 46° 42', tlie lati¬ 
tude required. 

Here SP == 76° 15', 
33s. = 2h. 20m. 27s. = 

Rad. 
Cos. 35° 7' 
Tang. 76° 15' 

Tang. Pb 73° 21' 

Latitude from the 2d altitude. 
SZ = 44° 7', the hour angle SP6 = I2h. — 9h. 39m. 
= 35° 7' nearly. 
10.0000000 
9.9127440 

10.6113688 

10.5241128 

Cos. 76° 15' 
Cos. P6 73° 21' 
Cos. SZ 44° 7' 

9.3760034 
9.4571618 
9.8560784 

19.3132402 

Cos. Z5 30® 3' 9.9372368 
Hence 73° 21'—30° 3' = 43° 18' and 90° — ZP 43° 18'= 46° 42', the 

latitude required the same as above. 
This last example is taken from Dulague’s Lessons on Navigation, revised 

by Prudhomme (pa. 196) the answer by the IjLouble alt. being there given 
as above. The learner will there find more examples where the time is 
given to seconds, without which this prob. by any method, will seldom suc¬ 
ceed, as 30" of time, if rejected, correspond to 7^' of a degree, and this is 
the principal reason why the examples in McKay, Moore and others, will 
not agree with accurate calculation. The learner will perceive that the lat. 
is here found by either of the altitudes, whereas the common method re¬ 
quires both. Whence the principal advantages of this method are, 1st. 
That there is nothing to do with elapsed time or variation of declination, ex¬ 
cept in reducing the declination to the meridian of the place. 2d. That: 
there is no alteration of latitude from the vessel’s sailing during the time 
between the observations. 3d. That the operation consists in the two sim¬ 
ple proportions given above (which become more simple when the sun is 
due east or west, when on the equator, when the observation is made at 6 
o’clock, &.c. or by tables which may be easily adapted to it.) 4th. That the 
observation may be made at any time of the day, &c. The same method 
will answer by having the time and the altitude of any star when the de¬ 
clination is known, the time of its passage over the meridian being also giv¬ 
en, which is found by prob. 8, part 3d. for the difference of time will be 
the horn* angle APB or SP6, in the above fig. A or S being the star’s place. 

The principal difficulty in the practice of this prob. consists in determin¬ 
ing the time exactly, and hence the observer ought to be provided with a 
good time piece well regulated; when this is not the case, the method by 
double altitudes with the intermediate time, will then become useful, as the 
watch requires no regulation to measure the elapsed time. See the fore¬ 
going problem. 

PROB. 63. 

£riven the surds amjilitude and ascensional difference, to find the lat¬ 
itude and sun*s declination * 

Rule. Elevate the pole as many degrees above the horizon 
as are equal to the ascensional difference ; screw the quadrant of 

* The learner will observe, that when the prob. is performed by the first 
rule, the ascensional difference reckoned on the brass meridian, the ampli¬ 
tude on the quadrant, and the declination on the equator, form a right an¬ 
gled triangle ; and that the angle included between the quadrant of alt. and 
brass meridian, or between the amplitude and as. diff. is equal to the com¬ 
plement of the latitude : hence, by Napier’s rules, we have these propor¬ 
tions ; Rad. : c.o. tangt. amplitude :: tang, ascen. diff. : sine latitude. And 
for the deck Cosine as. diff. : cosine amplitude :: rad. : cosine declination. 
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alt. in the zenith, and bring the beginning of aries to the brass me¬ 
ridian ; then number on the quadrant of altitude from 0 the com¬ 
plement of the sun’s amplitude, and move the quadrant until that 
number cuts the equator; the degree then cut on the horizon, 
reckoning from the east or west points, will be the latitude, and 
the degree cut on the equator will be the sun’s declination. 

Or, If the day of the month be given, find the sun’s place in the 
ecliptic (by prob 8) bring this place to the brass meridian, and 
then mark the sun’s right ascension on the equator; reckqn as 
many degrees from this on the equator as are equal to the ascen¬ 
sional difference, and elevate or depress the pole until this point 
comes to the horizon ; the elevation of the pole will then be the 
latitude required. The deck will be found as in prob. 8. 

Note. In north lat. when the sun is in the first and second quarter of the 
ecliptic, the oblique is less than the right ascension, in which case the as. 
diflf. is to be subtracted from the right; but when the sun is in the 3d and 
4th quarters, the oblique as. is greater, and hence the as. diff. is to be added 
to the right as. to find the oblique. "When the sun has north decl. he is in 
the 1st or 2d quarters of the ecliptic, but in the 3d or 4th when he has south. 

The ascensional difference is always equal to the time the sun rises or 
sets before or after 6 o’clock, converted into degrees. 

Example 1. On the 10th of May, the sun’s amplitude at rising 
was 23° 45', and the ascensional difference 16°; required the lati¬ 
tude and declination i 

Ans. Lat. 40® 40' N. deck 17° 47' nearly. 
2. On the 4th of April, the sun’s amplitude was 8°, and the as¬ 

censional difference 4|° ; required the latitude and declination ? 
3. On the 21st of June, the sun’s amplitude was 39°, and the as¬ 

censional difference 31^° ; required the latitude ? 
4. On the 10th of August, the sun’s amplitude was 221°, and 

he rose 3 minutes before 5 ; required the latitude ? 
5. On the 20th of October, the sun sets 17 minutes after 5, his 

setting amplitude being 16° ; required the latitude ? 

PROB. 64. 

Given the sun’s declination and hour at east, to find the latitude. 

Rule. Elevate the pole to the sun’s declination, and screw 
the quadrant of alt. in the zenith ; then reduce the time after 6, of 
the sun’s being due east, into degrees and minutes, and reckon the 
same number on the horizon from the east towards the south ; 
bring the quadrant of altitude to that degree on the horizon, and 

If we now perform the prob. by the second rule, it will be seen that when 
the sun’s place is made to coincide with the horizon, and likewise the ob¬ 
lique ascension, by elevating or depressing the pole, &c. that the amplitude, 
ascensional difference, and sun’s declination, form a right angled triangle, si¬ 
milar to that before described, and that the inclination of the equator with 
the horizon, or the angle formed by the amplitude and ascen. diff. is equal 
to the complement of the lat. hence the calculation will be exactly the same 
as above. From tills last method the reason of the. foregoing method is 
therefore manifesf. 

\ L 
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the degree then cut on the quadrant by the equator, will be the 
complement of the latitude required.* 

Note. Unless the sun’s decl. be of the same name with the latitude, 
he cannot be seen in the east. 

Examfile 1. On the 10th of May, the sun was observed in the 
cast at 7 o’clock in the morning; required the latitude ? 

Ans. 5 1° N. nearly 
2. On the 4th of July, I observed the sun due east at 8 o’clock 

in the morning ; required the latitude ? 
3. On the 21st of June, the sun was observed due east at 7 

hours 30 minutes in the morning ; required the latitude ? 

PROB. 65. 

Given the sun's declination and azimuth at six, to Jind the latitude 
and altitude. 

Rule. Elevate the pole above the horizon as many degrees as 
are equal to the complement of the given azimuth, screw the 
quadrant of altitude in the zenith, bring the beginning of aries to 
the brass meridian; then from 0 on the quadrant reckon the com¬ 
plement of the sun’s declination, and bring that degree to the equa¬ 
tor ; the degree then cut on the horizon by the quadrant, reckoned 
from the N. or S. will be the complement of the latitude, and the 
degree of the equator cut by the quadrant will be the sun’s altitude 
at six.f 

* Here the learner will observe, that the complement of the alt. on the 
quadrant, the degrees corresponding to the time after the sun was due 
east, and that part of the equator between the edge of the quadrant 
and the horizon, form a right angled spherical triangle, and that the an¬ 
gle formed by the equator and horizon, is the complement of the declina¬ 
tion : hence to find the lat we have, from Napier’s rule, this proportion ; 
’Fang, sun’s decl.: Rad :: sine hour after 6 : Co Tan lat. Thus in ex. 1. 
Tan! decl. 17° 3CJ : R. :: sine 15° : Co. T. lat =50° 5j 

Or thus, If we suppose the globe elevated to the lat. the quadrant of alt. 
screwed in the zenith, and extended over the sun’s place so as to cut the 
east point of the horizon; then the angle formed by the brazen mer and 
the merid. passing through the sun’s place, is equal to the time from the 
sun’s being due east to 12, converted into degrees, the complement of 
which to 90° is the distance from the meridian passing through the sun’s 
place, to the east point of the horizon, reckoned on the equator, or the 
time from 6 until the sun is due east. this time being therefore given, 
and likewise the sun’s decl. the angle formed by the equator and the 
quadrant of alt. at the east point, being equal to the latitude, is likewise 
given. 'Fhe right angled triangle thus formed is solved by the above pro¬ 
portion, which shews the truth of the method. 

f The globe, quadrant, &.c. being placed as directed in the rule, it will 
then be seen, that the complement of the azimuth, reckoned on the brass 
meridian from the equator, the sun’s decl. reckoned from the zenith on 
the quadrant, and the sun’s alt. reckoned from aries on the equator, to 
the point where it is intersected by the quadrant, form a right angled 
triangle ; and that the angle formed by the complement of the azimuth 
reckoned on the brass meridian, and the decl. reckoned on the quad.ant, 
is equal to the latitude : Whence by Napier’s theorems we have these 
proportions ; Rad. : co. tang. decl. :: co. tang, azira. : cos. latitude. And 
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Example I. The sun’s azimuth at 6 o’clock, on the 21st of June, 
Was 71° 30' from the north ; required the latitude and sun’s alti¬ 
tude ? 

Ans. Lat. 40° N. and the sun’s altitude is 15° nearly. 
2. The sun’s azimuth on the 10th of May, at 6 o’clock in the 

morning, was 78-i0 from the north ; required the latitude and al¬ 
titude ? 

3. The sun's azimuth at 6 o’clock in the evening, on the 20th of 
April, was 82£° from the north ; required the latitude and altitude ? 

PROB. 66. 

Given the sun's declination and altitude at east, to Jind the latitude. 

Rule. Elevate the pole to the cdmplement of the sun’s given 
altitude, screw the quadrant in the zenith ; bring the beginning of 
aries to the brass meridian ; reckon on the quadrant of altitude 
from the horizon upwards, or from 0, as many degrees as are 
equal to the sun’s declination ; bring the point where the reckon¬ 
ing ends to the equator, and the degree cut on the equator will be 
the complement of the latitude sought.* 

Sine azim. : rad. :: cos. decl. : cosine altitude. Thus in the first example 
above, Rad. : co. t. 23° 2S' :: co. t. az. 71° 30' : cos. lat. = 39° 35'. Again 
S. az. 71° 30' : rad. :: co. s. decl. 23° 28' ; cos. alt. 14° 42'. 

If we suppose, as in the foregoing problem, the globe to be elevated to 
the latitude, the sun’s place being then brought to the meridian, the index 
set to 12, and the quadrant of altitude screwed in the zenith, and that 
the globe is turned on its axis eastward, until the index points to six ; 
and that the quadrant is extended over the sun’s place, we shall then have 
the azimuth on the horizon, the complement of which with the sun’s de¬ 
clination, and altitude marked on the quadrant, will form a right angled 
spherical triangle as before. And as the meridian passing through the 
sun’s place always coincides with the east point of the horizon at 6, the 
angle formed by the sun’s declination and complement of the azimuth, on 
the horizon, will be always equal to the latitude. The triangle thus 
formed being in every respect equal to that described above, is therefore 
calculated in the same manner, and shews no less the truth of the rule 
than the method of forming it. 

The learner may also observe, that in the triangle formed according to 
the above rule, of the sun’s decl. azimuth at 6, altitude at 6, or the lati¬ 
tude of the place, any two being given, the rest are given, and may be 
found by the globe in the same manner as the above. Thus the sun’s deck 
and altitude at six being given to find the latitude, we have this propor¬ 
tion ; Sine decl. : rad. :: sine alt. : sine latitude. As these right angled 
spherical triangles are solved by Napier’s Theorems, being the most gen¬ 
eral and the simplest that has ever been discovered, the learner should be 
well acquainted with their use, and also with the practice of the 16th pro¬ 
position of the 6th book of Euclid, in alternating, in versing, &c. the differ¬ 
ent proportions, as with very little labour many new and useful conclusions 
will thus arise, and on which the learner may try his own invention, in ex¬ 
ercising them on the globes. 

* Here the quadrant of alt. the brass meridian, and the equator* form 
a right angled spherical triangle, the three sides of which are the com¬ 
plement of the sun’s alt. on the brass meridian, the complement of the de¬ 
clination on the quadrant, and the complement of the latitude on the eqvia- 

X 
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Or, With a pair of compasses take as many degrees as are equal 
to the given alt. from the equator ; bring the beginning of aries to 
the horizon ; with one foot of the compasses in the point aries ex¬ 
tend the other towards the zenith ; then elevate or depress the 
pole until the other point of the compass extends to the parallel of 
the sun’s declination ; the elevation of the pole will then be the 
latitude required ; which will be of the same name with the sun’s 
declinatian. Or the quadrant of alt. being extended from aries (or 
the east point of the horizon) through the point where the compass 
cuts the parallel of decl. will point out the lat. on the equator. 

tor; to find the latter of which, we have this proportion ; Sine altitude : 
Rad:: sine decl.: sine lat. Thus in ex. 1, sine 29° : Rad:: s 17° 39' : s. 
lat. =38° 43'. 

To understand how the rule has been formed, the pole must be elevated 
to the supposed latitude, the quadrant of alt. screwed in the zenith, and 
then brought to coincide with the east point of the horizon ; the sun’s place 
corresponding to his declination being then brought to coincide with the 
graduated edge of the quadrant, it will be seen that the meridian passing 
through the sun’s place or the sun’s declination, the number of degrees 
from where this meridian cuts the equator to the east point of the hori¬ 
zon, and the sun’s alt. form a right angled triangle, and that the angle 
contained by the equator and quadrant is equal to the lat. Hence we have 
this proportion; s. alt. : Rad. :: s. decl. : s. lat. being exactly the same as 
the above. Moreover the sides of this latter triangle, representing the de¬ 
clination and altitude, being produced to the brass meridian, will form 
another right angled triangle, whose sides will be the complement of the 
altitude, the compl. of the decl. and the compl. of the latitude ; this latter 
triangle being that formed by the above rule, shews how the rule itself 
was formed. What is here said will be useful in assisting the learner’s 
invention in investigating new rules or problems, and the teacher will find 
the advantage of thus teaching Practical Astronomy on the globes. 

The second rule is but representing the triangle, found by the latter 
method on the globe. It may likewise be represented on the brass meri¬ 
dian, the equator, and quadrant of alt. thus ; from the point aries count 
on.the meridian passing through it, as many degrees as are equal to the 
decl. from the point where the reckoning ends, with the number of de¬ 
grees equal to the alt. in the compasses, extend the other leg to the equa¬ 
tor, and the same triangle as above will be formed; and the angle formed 
by the equator and decl. will be the lat. as before. Hence we have ano¬ 
ther method of solving the prob. by the globe as follows : bring both poles 
to the horizon, screw the quadrant of alt. over the point aries ; turn the 
globe westward until the point cut on the equator by the compasses (with 
the extent of the alt ) comes to the brags meridian ; extend the quadrant 
over the sun’s decl. marked on the equinoctial colure, and the degree cut 
by the quadrant on the horizon, reckoning from the nearest pole, will be 
the lat. required. The decl. might also be set off from aries on the equa¬ 
tor, and with one foot of the compasses in this point, intersect the equi¬ 
noctial colure with the other (the compasses being extended to the lat.) 
the triangle thus formed will be the same as the foregoing, and the angle 
formed by the colure and sun’s alt. will be equal to the lat. If then the 
pole be elevated to the degree of the colure cut by the compasses-, the 
quadrant screwed in the zenith and extended over the decl. marked on, 
the equator (aries being brought to the brass mer.) the degree then cut 
on the horizon, reckoned from the nearest pole, will be the lat. required , 
which will always be of the same name with the decl. 

1 
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Examjde 1. The sun’s altitude when east was observed equal to 
29°, and his declination 17® 39' N. required the latitude ? 

Ans. Lat. 38° 43' north. 
2. On the 21st of June, the sun’s alt. when east was observed 

equal to the sun’s declination ; required the latitude ? 
3. On the 20th of April, the sun’s alt. when west was 10° ; re¬ 

quired the latitude ? 
4. The sun’s altitude when east, on the 20th of October, was 

observed equal to 15°; required the latitude ? 

PROB. 67. 

Given the sun's azimuth and altitude at six, to find the latitude and 
sun's declination. 

Rule. Reckon on the equinoctial colure, from the equator, as 
many degrees as are equal to the altitude, and on the equator from 
aries as many degrees as are equal to the complement of the azi¬ 
muth ; bring the point on the equator where the reckoning ends to 
the brass meridian ; bring both poles to the horizon ; screw the 
quadrant of alt. in the zenith, and extend it over the degree marked 
on the colure ; then the degree cut on the horizon reckoned from 
the west, will be the lat. and the number of degrees on the quad¬ 
rant, between the colure and the equator, will give the declination. 

Note. If the degrees be reckoned on the equator from aries westward, 
then the degree cut on the horizon, reckoned from the east, will be the la¬ 
titude. This is the most convenient manner of performing the prob. 

Or, Reckon the degrees equal to the compl. of the azimuth on 
the colure as before, and the degrees equal to the alt. on the equa¬ 
tor from aries eastward ; elevate the pole to the given amplitude ; 
screw the quadrant in the zenith, and extend it over the degree 
marked on the equator ; the degree then cut on the horizon, reckon¬ 
ing from the brass meridian, will give the latitude ; and the num¬ 
ber of degrees on the quadrant between the colure and equator, 
will be the declination as above.* 

Example 1. The sun’s altitude at 6, being equal 12°, and his 
azimuth from the south 76|° ; required the latitude and sun’s de¬ 
clination ? Ans. 42° 19' N. 

Note. While the sun is in the northern signs, it always rises before 6 in 
northern latitudes, and does not rise until after 6 in southern latitudes ; 
the contrary is to be observed when he is in the southern signs ; hence it 
is always known whether the latitude be north or south. 

* To understand the above rules, let the globe be elevated to the sup¬ 
posed latitude ; screw the quadrant in the zenith, and bring its graduated 
edge to coincide with the azimuth on the horizon ; then the alt. on the 
quadrant will cut the parallel of the sun’s deck for the given time ; and as 
the mer. passing through this point coincides with the east or west point 
of the horizon, its inclination with the horizon will be the lat. required. 
Hence the alt. com. of the azimuth, and declination, form a right angled, 
triangle, and the angle formed by the decl. and co. azimuth, is the alt. 
required. This triangle transferred to the equator and brazen meridian, 
gives the above rules. The proportion for calculating the lat. is the fol¬ 
lowing; Tang. alt.: Rad. :: Co Sine azimuth: Co. Tangt. latitude. Thus 
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2. The sun’s altitude at 6, was observed equal 174-°, and his 
azimuth 74° from the north ; required the latitude and sun’s de¬ 
clination ? 

3. Required the latitude) when the sun’s observed alt. at six was 
13°) and his azimuth from the north 70|p l 

PROB. 68. 

Given the sun's declination, altitude, and azimuth, to find the lati~ 
tude and the hour of the day. 

Rule. Elevate the pole to the given altitude, screw the quad¬ 
rant of altitude in the zenith, and bring it to coincide with the given 
azimuth on the horizon; then turn the globe on its axis until the 
sun’s place comes to the graduated edge of the quadrant, and the 
degree cut on it will be the latitude required.* 

Example 1. On the 10th of May, the sun’s alt. being 44°, when 
his azimuth from the south was 75° ; required the latitude ? 

Ans The sun’s declination for the given day being 17° 39', cor- 
responding to 20 of taurus, the latitude is therefore 40° 27' N. 

2. On the 21 st of June, the sun’s alt. was 50°, when his azimuth 
from the south was 63° ; required the latitude ? 

3. The sun’s alt. on the 20th of October, was 36°, and his azi¬ 
muth from the south 26° $ required the latitude ? 

PROB. 69. 

Given the $1411*6 declination and amplitude, to find the latitude. 

Rule. Count from the beginning of aries on the equator as 
many degrees as are equal to the sun’s declination, and mark the 
point where the reckoning ends; then vrith the sun’s amplitude in 

in ex. 1, Tang. alt. 12° : Rad.:: Co. S. azimuth 76° 30': Co. Tangt. lat* 42® 
19'. The declination may also be found thus ; Rad : cos. alt.:: s azimuth : 
COs. decl. In ex. 1, R. : cos. 12° :: s. 76^° : cos. clecl. 17° 59'. 

* The reason of this rule is thus shewn; having found the latitude as 
above, elevate the pole to this latitude; screw the quadrant of altitude in the 
zenith, and set it to the given azimuth on the horizon ; then the compl. of 
the latitude on the equator, the complement of the altitude on the quadrant , 
and the distance between the sun’s place and the elevated pole, form an ob¬ 
lique spherical triangle, and the angle included by the compl. of the lat. and 
compl. alt. is the given azimuth, or its supplement. Now the triangle formed 
by the above rule being similar and equal to this in every respect, with this 
difference, that the complement of the lat. is reckoned on the quadrant, and 
the complement of the alt. on the brass meridian, shews the truth of the 
rule, and whence it is derived. The method of calculating the prob. is as 
follows : let fall a perpendicular from the pole on the co, lat. or quadrant of 
alt. produced, &c. then R. : cos. azimuth :: co. tang. alt. : tang, x, and sine 
alt. : cos. x :: cos. 90° r± decl. : cos. y. Then if the perpendicular falls with¬ 
in, the difference between x-\-y will be the compl. lat. But if x-\-y be 
greater than 180°, x-\-y — compl. lat. See note to prob. 53. 

Thus in ex. 1. Rad. : cos. 75° :: co. tang. 44° : tang. x~ 15° 35'; and sine 
alt. 44° : cos. ar 15° 35':: cos. 90°—17° 39'=?= cos. 72° 21': cos. y— 65° S'. 
Hence y—49° 33' = compl. lat. and therefore the latitude is 40° 27', as 
required. 
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the compasses and one foot on this mark, intersect the equinoctial 
colure with the other; elevate the pole to the degree cut on the 
colure ; screw the quadrant of alt. in the zenith, and extend it over 
the degree marked on the equator ; the degree then cut on the 
equator, reckoning from the nearest pole, will be the complement 
of the latitude required.* 

Or, Reckon on the equinoctial colure from aries, as many de¬ 
grees as are equal to the declination, with the sun’s amplitude in 
the compasses, and one foot on the colure where the reckoning 
ends, intersect the equator with the other ; then bring both poles 
to the horizon ; screw the quadrant in the zenith, and extend it 
over the degree cut on the coluve ; the degree then cut on the ho¬ 
rizon by the quadrant, will be the latitude required. 

Example 1. On the 31st of May, the sun’s rising amplitude 
from the east towards the north, was 30°; required the latitude ? 

Ans. The sun’s declination being 21° 56', the latitude is found 
equal 41° 40' N. 

2. When the Sun’s declination was 23° 28' N. his rising ampl. 
was 40° from the east towards the north ; required the latitude ? 

3. When the sun’s declination was 20° south, his rising ampli¬ 
tude was 23° 30' from the east towards the south ; required the 
latitude ? V 

PROB. 70. 

The day and hour being given, when a solar eclipse will happen, to 
find where it will be visible. 

Rule. Find the place where the sun is vertical at the given 
hour, by prob. 12; then at all places within about 35°f of this 
place, the eclipse may be visible, especially if it be a total eclipse. 

Note. Where exactnes is required, the centre of the penumbra or shade 
should be found ; then if from this centre with the distance or number of 
degrees corresponding to the semidiameter of the penumbra, a circle be de¬ 
scribed on the globe, all those places within this circle will have the eclipse 
visible at that time ; the nearer they are to the centre of the penumbra, the 
greater will the eclipse be. 

* This and the following rule is found in the same manner as the rules 
given in the foregoing problems, thus ; elevate the pole to the supposed 
latitude, or the lat. found as above, and bring the sun’s place to the hori¬ 
zon ; then the sun’s declination, amplitude, and that part of the equator 
included between the horizon and the meridian passing through the sun’s 
declination, will form a right angled triangle, similar and equal in every 
respect to that found by the above rules, &c.; and the angle formed by 
the equator at the horizon, and the sun’s amplitude, will be the comple¬ 
ment of the latitude. Hence this proportion. Sine ampl. : Rad:: sine 
decl. : cosine latitude. Thus in ex. 1, Sine 30° : Rad. :: sine decl. 21° 
56': Co. s. lat. 41° 40?. 

To know whether the lat. be N. or S. if the sun’s amplitude increase 
when in the northern signs by elevating the north pole, or decrease when 
in the southern signs, the lat. is N. If the contrary take place, the lati¬ 
tude is south. 

j Keith in his Treatise on the Globes, in solving this problem, says, that 
11 places within 70° of the place where the sun is vertical, may have the 
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Ex am file 1. On the 3d of April, 1791, there was an eclipse of 
the sun ; its beginning was at Oh. 17m. middle at Ih. 46m. and end 
at 3h. 9m. as observed in Greenwich. Where was this eclipse 
visible ? 

Ans. It was visible in every part of Europe, a great part of Asia, 
Africa and America. It was annular along the central track of the 
penumbra, as in Iceland, for example, at their 12 o’clock. It was 
no where total, because the sun’s apparent diameter exceeded the 
moon’s at that time 

If the central track of the penumbra be represented on the globe, 
and lines be drawn at each side of it at the distance of half the di¬ 
ameter of the penumbra, the portion of the earth involved in the 
shadow, during the eclipse, will be represented on the globe. 

2. On the 17th of September, 181 i, there will be an eclipse of 
the sun, its beginning will be at 12h. 35m. greatest obscuration at 
2h. 17m. and end at 3h. 5 lm. apparent time at New-York ; where 
will this eclipse be visible ? 

For more examples, consult the Nautical Almanacs or Ephemerides. See 
also part 4th. where the subject is more fully treated. 

PROB. 71. 
The day and hour being given when a lunar eclifise will happen^ to 

find all those places on the globe to which the same will be visible. 

Rule. Find the sun’s place for the given time, elevate the pole 
which is most remote from the sun to this declination, bring the 
place where the hour is given to the brass meridian, and set th6 

eclipse visible if it be total; but this is evidently false, as the semidiameter 
<5f the penumbra or distance from the centre of the shade, is only about 35°. 
This may be shewn as follows : 

Let the mean apparent diameter of the sun be taken equal 32' 3*, the 
mean apparent diameter of the moon equal 31' 7". Let BAC be the 
earth, L the moon, 
AIB half the angle 
of the cone (sup¬ 
posing the moon to 
be in its node, and 
the centres of the 
sun,moon andearth 
to be in a straight 
line) this will be 
equal to the semidiameter of the sun = If/1" nearly. Now the semidiameter of 
the moon being about .2692 semidiameters of the earth, we have Sine 16' 1" : 
rad. :: .2692 : 57.781 semidiameter of the earth = LI. The mean distance 
of the moon from the earth is also given (see part 4) equal 60.3 of the 
earth’s semidiameters ; hence TI — 57.781 -j- 60.3 — 118.081. But TB = 
1 : TI, 118.08 :: sine TIB, 16' 1" (7.6682967) : TBI or IBN = 33® 17' 23". 
But as IBN=ITB4-TIB; hence 33° 17' 23"=16' 1"=33° 1' 22". the dou¬ 
ble of which is the arch CB=66° 2' 44", the portion of the earth’s surface 
covered by the penumbra. When the sun is nearest the earth, and the moon 
in her apogeon or greatest distance from the earth, this arch is then about 
70° 50', therefore the truth of the above remark is evident. If the centre 
of the sun, moon, and earth be not in a right line, or if the moon be not in 
>ts node, then the shadow will fall obliquely on the ^artli, as represented by 
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index to 12; then if the given time be in the forenoon, turn the 
globe westward, but if in the afternoon, eastward, as many hours as 
the time is before or after noon ; then the place exactly under the 
sun's declination will be the antipodes of that place where the moon 
is vertically eclipsed. The globe being kept in this position, set the 
index to 12, and turn the globe until the index has passed over 12 
hours; then all those places above the horizon will have the eclipse 
visible, to those places along the western edge of the horizon the 
moon will rise eclipsed, to those along the eastern edge, she will 
set eclipsed,* and to that place directly under the zenith or that deg. 
on the brass mer. 90° from the horizon, the moon will be vertical¬ 
ly eclipsed.t 

Note. As lunar eclipses continue for a considerable time, they may be 
visible in more places than one hemisphere of the earth; for, owing to the 
earth’s motion on its axis during the time of the eclipse, the moon will rise 
in several places after the eclipse began ; hence if the prob. be performed 
lor the beginning and ending of the eclipse, the limits of those places where 
the eclipse will be visible, will be determined. 

Examfile 1. On the 10th of March, 1811, the beginning of an 
eclipse of the moon, at New-York, was at 13m. after 12 at night, and 
the end 48 min. after 2 in the morning, apparent time ; where was 
it visible ? 

Am. The sun's deck being 4° 26' S. to which the north pole 
being elevated, and New-York brought to the meridian ; then the 
time being taken i In. 47m. before noon, and the prob. performed 
as directed in the rule, it will be found that the eclipse will then be 
visible in all America, almost the whole of Europe, and about one 
half of Africa. The moon will rise eclipsed in the beginning, 
near Bhering’s strait, the Fox islands, and west of Sandwich islands. 
She will set eclipsed between Wardhus and the North Cape, in 
Revel, Riga, the middle of Prussia, and Hungary, in Cephalonia, 
the middle of Congo in Africa, &c. and she will be vertical near 
Santa Fe in New Granada, 4° 26' north from the equator. If the 
prob be performed for 2h 48' in the morning, or 9h. 12' before 
noon, we shall find that the moon will rise eclipsed in the eastern 
part of Siberia, the sea of Jesso, east of the Ladrone islands, near 
the middle of the New Carolinas, between Solomon’s isles and 
New Zealand, 8cc. That she will set eclipsed at the eastern part 
of Iceland, eastward of the Azores, at St. Antonio, in the Cape 

» 

the plane CB, in which case the distance of the sun from the moon being 
found, the rest can be easily calculated. When the moon is not in her node, 
then SLo passing through the moon’s centre will differ from Sa;T passing 
through the earth’s, as in the figure. 

The reader is referred to part 4tli for a fuller elucidation of these proper¬ 
ties in the doctrine of eclipses. 

* The rising and setting of the moon eclipsed is for the given particular 
hour. See the answer to ex. 1st. 

f Keith in his solution to this prob. says, that the moon will be vertically 
eclipsed under, the sun’s declination, which is evidently an error, as it ought 
to be under the degree of declination which is equal to that of the sun, rec¬ 
koned on the brass meridian on the contrary side of the equator. This mis¬ 
take would produce an error equal double the sun’s declination. 
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Verd islands, between Sandwich land and the island discovered by 
La Roche. The eclipse will be vertical in about 117° W. long, 
and in lat, 4° 26' N. And hence the eclipse will be visible in all 
that space between where the sun rose eclipsed at the end of the 
eclipse, and where she appeared setting at the beginning of the 
eclipse, which space is considerably more than a hemisphere. In 
all those places between where she rose eclipsed at the beginning 
and ending of the eclipse, she will successively rise eclipsed ; in 
those places between where she appeared eclipsed at setting in the 
beginning and end of the eclipse, she will set successively eclipsed, 
and consequently in almost all Europe, &c. In the parallel 4° 26' 
N. of the equator, and from long. 74° W. to long. 117° W. she 
will be successively vertically eclipsed. 

2. On the 22d of August, 1812, the beginning of an eclipse of 
the moon will be at lh. 10', the middle at 2h. 58i', and the end at 
4h. 47', Greenwich apparent astronomical time j where will the 
eclipse be visible, &c. at each of these times ? 

More examples may be found in the Naut. Aim. or in common almanacs. 

PROB. 72. 

To find when an C clips e of the sun or moon is likely to happen in 
any year. 

Rule 1. Find the place of the moon’s nodes, the time of new 
moon, and the sun’s place at that time by the Naut. Aim. or an 
ephemeris ;* then if the sun be within 17° 21' 27", or nearly 17® 
of the moon’s node, there will be an eclipse of the sun. 

2. Find the place of the moon’s nodes, the time offull moon, and 
the sun’s place or longitude at that time, by the Naut. Aim. or 
any good ephemeris ; then if the sun’s longitude be within 11° 34' 
of the moon’s node, there will be an eclijise of the moon. 

Example 1. In 1812, on the 26th of February, at 17 hours 51 
minutes astronomical time, or at 5lm. after 5 in the morning of 
the 27th civil apparent time at Greenwich, there will be full moon, 
at which time the place of the moon’s node will be 5s. 8° 9', and 
the sun’s longitude 11s. 7° 33', or X 7° SS*; will there be an 
eclipse of the moon at that time ? 

* This prob. may be solved, though not very accurately without an 
ephemeris, thus : If the place of the moon’s nodes be given for any parti¬ 
cular year, its place for any other year may be easily calculated ; the mean 
annual variation according to Mayer, being 19° IS' 45"i, or according to 
I.a Land, its diurnal motion being 3' 10" 638603696. The time of new and 
full moon may be found by the note to definition 80, and the sun’s pLcc 
tor the given time may be found on the globe. 

Dr. Halley remarks, that in the period of 223 lunations, there are 18 
years, 10 or 11 days (according as there are 5 or 4 leap years) 7h. 43-J-'; 
that if we add this time to the middle of any eclipse observed, we shall 
have the return of a corresponding one, certainly, within lh. 30'; and that, 
by the help of a few equations, the like series may be found for several 
periods : hence the time when an eclipse may be expected, can be easily 
found by this rule. For other methods see part 4th, 
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Ans. The moon’s node being 5s. 8° 9', the opposite node will be 
11s. 8° 9'; hence 1 is. 8° 9'— 1 Is. 7° 33; = 36', the distance of 
the sun from this node; hence there will be a total eclipse; for 
when the sun is in one of the moon’s nodes at the time of full 
moon, the moon is in the opposite node, and the earth is directly 
between them, in which position the shadow of the earth will fall 
directly on the moon, and produce a total and central eclipse. 

2. On the 3d of November, 1808, there was a full moon, at 
which time the place of the moon’s nodes was 7s. 12° 18', and the 
sun’s longitude 7s. 10° 55'; was there an eclipse of the moon at 
that time ? 

3. On the 17th of September, 1811, there will be a new moon 
at 57m after 6 in the afternoon, Greenwich time, at which time 
the place of the moon’s node will be 5s. 16° 27'-, and the sun’s lon¬ 
gitude 5s. 23° 56' 39" ; will there be an eclipse of the sun at that 
time ? 

Ans. The distance of the sun from the node being 7° 29' 39", 
there will therefore be an eclipse. 

4. On the 5th of September, 18 12, at 22m. after 7 in the after¬ 
noon at Greenwich, there will be a new moon, at which time the 
place of the moon’s node will be 4s 28° l', and the sun’s longitude 
5s. 13° 0' 35" ; will there be an eclipse of the sun at that time i 

5. On the 27th of March, 1812, at 12h. 16m. astronomical time 
at Greenwich, there will be a full moon, at wrhich time the place 
of the moon’s node will be 5s 6° 35', and the sun’s longitude 7° 
11' 14" ; will there be an eclipse of the moon at that time ? 

PROB. 73. 

The time of an eclifise of any of the satellites of Jufiiter being give?!, 
to find those filaces on the earth where it will be visible. 

Rule. Find the place where the sun is vertical at the time of 
the eclipse; (found by prob. 12, part 2.) bring this place to the 
brass meridian, elevate the pole to the place where the sun is ver¬ 
tical, and set the hour circle to 12 ; then, 

1. If Jufiiter be in consequentia or rise after the sun,* draw a 
line with a black lead pencil, or with ink, along the eastern edge of 
the horizon ; this line will pass over all those places where the sun 
is setting at the given time ; take the difference between the right 
ascension of the sun and Jupiter, and turn the globe westward on 
its axis, until as many degrees of the equator pass under the brass 
meridian as are equal to the difference ; keep the globe from turn¬ 
ing on its axis, and raise or depress the pole until its elevation be 
equal to Jupiter’s declination ; the globe being again fixed in this 
position, draw a line with a pencil along the eastern edge of the 
horizon; the eclipse will then be visible to every place between 
these lines, that is from sun setting until the time of Jupiter’s set¬ 
ting. 

* Jupiter rises after the sun, or is an evening star when his longitude 
is greater than the sun’s longitude. 

Y 
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2. If Jup.iter be in antecedenda or rise before the sun.* Having 
rectified the globe as before, &c. draw a line along the western 
edge of the horizon ; this line will pass over all those places where 
the sun is rising at the given hour ; then elevate the pole accord¬ 
ing to Jupiter’s declination, and turn the globe eastward on its axis, 
until as many degrees of the equator have passed under the brass 
meridian, as are equal to the difference between the sun’s and Ju¬ 
piter’s right ascension ; the globe being fixed in this position, draw 
a line along the western edge of the horizon ; then the space con¬ 
tained between this and the former line, will comprehend all those 
places upon the earth where the eclipse will be visible, between the 
time of Jupiter’s rising and the rising of the sun. 

Example I. On the 1 st of May, 1812, there will be an emersion! 
of the first satellite of Jupiter at 14' 33" past 6 in the afternoon, at 
Greenwich ; where will the eclipse be visible ? 

Ans. In this ex. the longitude of Jupiter will exceed that of the 
sun, and therefore Jupiter will rise after the sun, or be an evening 
star. His declination will be 23° 30' north, and his longitude 3 
signs 5° 18' by the Nautical Almanac ; the sun’s longitude will be 
Is. 11° 9' 43", and his rt. as 38° 43' 48", and decl. 15* 11' 24" N. 
Jupiter’s rt. as. may be found by the note to prob. 2, part 3, or 
more easily, but not so correctly, by the Globe. For if his longi¬ 
tude in the ecliptic be brought to the brass meridian, his place will 
be under the degree of his declination nearly,! and his right ascen¬ 
sion will be found on the equator In this ex. Jupiter’s rt. as. will 
be found by the globes nearly 933.°, his lat. being 4' north. The 
eclipse will be visible in all those places in Europe, Asia and Afri¬ 
ca, eastward of a great circle passing through those places where 
the sun sets at the given time, at Cagliari, Florence, Prague, Dant- 

* Jupiter rises before the sun, oris a morning star, when his longitude 
is less than the sun’s longitude. 

f The emersion and immersion of a satellite, are terms used principally 
in the Nautical Almanac, to signify the appearance or disappearance of the 
satellites of Jupiter, &c. The immersion is the instant of the disappear¬ 
ance of a satellite by entering into the shadow of its primary planet, and 
the emersion is the instant of its appearance or emerging from the shadow. 
They generally happen when the satellite is at some distance from the 
bodjr of Jupiter, except near the opposition of Jupiter to the sun, when the 
satellite approaches nearer to his body. The immersions and emersions 
take place on the west side of Jupiter, before his opposition to the sun, 
but on the east side after the opposition. If a telescope be used which re¬ 
verses objects, this appearance will be directly contrary. Before the op¬ 
position the immersions only of the first satellite are visible, and after the 
opposition the emersions only. The same is generally the case with re¬ 
gard to the 2d satellite ; both the phenomena of the same eclipse are fre¬ 
quently observable in the two outer satellites. The longitude from Green¬ 
wich is found, by taking the difference between the observed time and 
that found in the ephemeris, and converting it into degrees, &c. In part 
4th this subject will be more fully entered into. The eclipses of Jupiter’s 
satellites are set down in the lower part of pa. 3, in the Naut. Almanac. 

f This is on supposition that Jupiter performs his motion in the ecliptic* 
and as he deviates but little from it, the solution by this method, on the 
glob<^ will be sufficiently accurate. 
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$ic, Revel, Sec. to another great circle passing through the western 
part of Madagascar, the eastern part of Arabia, Little Thibet, the 
middle of Siberia, Sec. nearly, and therefore not visible in Green* 
wich, &c * 

2. On the 18th of January, 1811, there was an emersion of the 
1st satellite of Jupiter at 32' 10" after 5 o’clock in the evening ; 
where will it be visible? Jupiter’s longitude being is. 21° 2V, lat. 
52' S. and decl 17° !7'N. and the sun’s right ascen. 299° 54' 33", 
and decl 20° 37' 15" 5 south. 

3. On the 19th of August, 1812, there will be an immersion of 
Jupiter’s 1st satellite at 40' 26" after nine o’clock in the morning, 
Jupiter’s longitude being then 3s. 26° 40', lat. 15' N. and decl. 21° 
5', and the sun’s right ascension 148° 22' 45", and deck 12° 47' 32" 
north ; where will it be visible ? 

4. On the 21st of December, 1812, at 31' 34" after one in the 
morning, there will be an immersion of Jupiter’s 2d satellite, his 
longitude being then 4s. 8°, lat. 36' N. and decl 18° 5i' N. and 
the sun’s right ascension 269° 2' 24", and decl. 23° 27' 21"; where 
will this immersion be visible ? 

PROB 74. 

To exjilam the fiheno?ne?io?i of the Harvest Moon, 

Definition 1. In north latitude, the full moon which happens at, 
or is nearest to, the autumnal equinox, is called the harvest moon.f 

* To know if an eclipse of any of the satellites of Jupiter will be visible 
at any place, the Naut. Aim. directs to find whether Jupiter be 8° above 
the horizon of the place, and the sun as much below it. This observation 
may be easily applied to the above examples. 

f As the sun is in virgo, and libra in our autumnal months, and as the 
moon can never be full but when she is opposite to the sun, therefore the 
moon is never full in the opposite signs pisces and aries, but in these two 
months. This remarkable rising of the moon is not observed but in har¬ 
vest, or in September and October, when the moon is in pisces and aries. 
For although the moon is in these signs twelve times in the year, it is only 
about the autumnal equinox that her orbit is nearly parallel to the horizon, 
so that there is very little difference in her rising for several nights. In win¬ 
ter these signs rise at noon, at which time the moon is in her first quarter, 
being only a quarter of a circle distant from the sun, so that when the sun 
is above the horizon, the moon’s rising is neither perceived or regarded. 
In spring these signs rise with the sun, because the sun’s place is then in 
them ; but as the moon changes, oris new moon in them at that time, she 
is therefore invisible. In summer these signs rise about midnight, and the 
sun being then three signs or a quarter of a circle before them, the moon 
is in them about her third quarter, at which time she rises so late, and 
gives so little light, that her rising passes unobserved. In autumn these 
signs being opposite the sun’s place, rise when the sun sets ; and as the 
moon is then in opposition or at the full, her rising becomes very remark¬ 
able. 

This phenomenon becomes more remarkable the farther the place is from 
the equator, if not beyond the polar circles; for in this case the angle 
which the ecliptic makes with the horizon, gradually diminishes when 
pisces and aries rise. 
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Def. 2. The harvest moon in south latitude, is the full moon 
which happens at or near the vernal equinox.* 

Rule 1. For north latitude. Elevate the north pole to the lati¬ 
tude of the place ; mark the point aries in the ecliptic, and also 
every 12°f on each side of that point, until there be 12 or 13 marks ; 
bring that mark nearest to pisces to the eastern part of the horizon, 
and set the index to 12 j the globe being then turned westward on 
its axis, until the other marks come to the horizon successively ; 
then the intervals of time between the marks coming to the hori¬ 
zon, will shew the difference of time between the moon’s rising 
every day. These marks being brought to the western edge of the 
horizon in the same manner, the diurnal difference of time between 
the moon’s setting may be found. 

Thus in New-York, the diurnal difference of time in the moon’s 
rising, in pisces, aries, &c. is 26', 27', 28', 29', &c. and the diurnal 
difference in her setting is 60', 61', 62', 63', &c The cause of 
this difference arises from the different angles which the ecliptic 
makes with the horizon; for those parts or signs which rise with 
the smallest angles, set with the greatest, and the contrary. Thus 
in the above case, the point aries makes only an angle of with 
the horizon, when it rises, but when it sets, it makes an angle of 
72^.°. In equal times whenever this angle is least, a greater por¬ 
tion of the ecliptic rises than when the angle is larger ; therefore 
when the moon is in those signs which rise or set with the smallest 
angles, she rises or sets with the least difference of time, and with 
the greatest difference in those signs which rise or set with the 
greatest angles, from which the whole is evident.^ 

2. For south latitude. Elevate the south pole to the latitude of 
the given place ; mark the point libra and every 12 degrees of the 

* In northern latitudes the autumnal full moons are in pisces and aries, 
and the vernal full moons in virgo and libra ; but in southern latitudes the 
reverse takes place, the seasons being contrary. Now as virgo and libra 
rise at as small angles with the horizon, in southern latitudes, as pisces and 
aries in northern latitudes, the harvest moons are therefore as regular on 
one side of the equator as on the other, only that they happen at contrary 
seasons of the year. 

f The reason that 12° is marked, is because the moon gains nearly 12° 
on the sun every day ; for the moon’s daily mean motion is 13° 10'' 35'', and 
the sun’s 8"3, the difference of which is 12° 11; 26" 7. The solution 
is on supposition that the moon remains constantly in the ecliptic, which is 
accurate enough for illustrating the prob. otherwise the moon’s place may 
be marked on the globe at the time of full moon, and a few days before 
and after it, by having her lat. and long, or rt. ascen. and decl. given ; 
which may be found from the Nautical Aim. or any good ephemeris. See 
the investigation of this prob. given in page 128 of Vince’s Astronomy, 8vo 
or in ch. 16, pa. 203 of Ferguson’s Astronomy, 8th ed. 

f As there is a complete revolution in the moon’s nodes in about 18 years 
8 months, all the varieties of the intervals of the rising and setting of the 
moon will happen within that time. The following table extracted from 
pa. 216 of Ferguson’s Astron- will shew in what years the harvest moon’s 
are the least, and the most beneficial with regard to the times of their 
rising, from 1811 to 1861. The columns of years under L, are those in 
which the harvest moon are the least beneficial, because they fall about the 
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ecliptic, preceding and following that point, as before ; bring that 
mark which is nearest to virgo to the eastern edge of the horizon, 
and set the index to i 2; then turn the • globe westward until the 
other marks come to the horizon successively, and observe the 
hours passed over by the index (or rather on the equator) the in¬ 
tervals of time between the marks coming to the horizon, will be 
the diurnal difference of time between the moon’s rising, See. If 
these marks be brought to the western edge of the horizon in like 
manner, the diurnal difference of the moon’s setting may be found, 
&c. as in the preceding part of the problem, 

PROB. 75. 

To draw a meridian line ujion a horizontal filane. 

Rule 1, From a correct altitude of the sun find the time of the 
day (by the note to prob. 48, or 52, part 2d ) and set a well regulat¬ 
ed w'atch to that time ; then suspend a plumb line so that the sha- 

descending node ; and those under M are the most beneficial, because 
they fail about the ascending node. 

L L L L M M M M INI 
1811 1827 1833 1848 1816 1822 1837 1843 1858 
1812 1828 1834 1849 1817 1823 1838 1853 1859 
1813 1829 1844 1850 1818 1824 1839 1854 1860 
1814 1830 1845 1851 1819 1825 1840 1855 1861 
1815 1831 1846 1852 1820 1835 1841 1856 
1826 1832 1847 1821 1836 1842 1857 

In this instance of the harvest moon, as in innumerable others, which 
astronomy points out, the beneficence and wisdom of that intelligent be¬ 
ing who presides over the universe, discover themselves. Here we see 
the wandering course of the moon so ordered, as to bestow more or less 
light on those parts of the earth, where their circumstances and seasons 
render it more or less necessary and serviceable. Wherever we cast our 
eyes, we see that all is formed and regulated with design, that every 
thing has its particular use, that every thing proclaims the boundless wis¬ 
dom, and witnesses the most attentive hindness of the maker. If at times 
(says De Feller, in his Philosophical Catechism) those visible beings oc¬ 
casion some physical evil, the reason and understanding given to man, 
supply him with means to escape tlje evil or to remedy it ; and besides, 
what are those physical evils compared with the benefits attending them, 
the services they render, and the virtues they occasion? Even Voltaire 
himself, the great champion of every error, acknowledges, that “ In 
the system that admits of a God, there are only difficulties to get over ; but 
in all other systems there are absurdities to swallow.”—” What idea, says 
De Feller, could make amends for that of God ; an idea so vast in itself, and 
so rich, that begets and fosters so many others, that of duty, that of jus¬ 
tice, that of charity ! And what shall we say of the great, the exalted 
sentiments that flow from those ideas; the voice of conscience, the study 
of the law of God, the knowledge in detail, and upon principle of his com¬ 
mandments, &c of the many obligations of a good Christian, of the pious 
practices that occupy the soul, and with unction ineffable, render it happy 
in every situation of life. Heavens ! what a void must not the loss of all 
this leave behind it, in the soul and the life of man ! and is it not quite 
natural, we should become triflers and fools, in the same proportion as we 
become irreligious:’* 
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clow of it may fall on the plane, and when the hour hand of the 
watch is at 12, the shadow of the plumb line will be the true me¬ 
ridian.* 

Rule 2. Describe several concentric circles on a horizontal plane 
(as a board, &c.) In the centre of these circles fix a pin or 
straight wire perpendicular to the plane ; observe, in the forenoon, 
when the extremity of the shadow exactly touches the respective 
circles, beginning with the outermost, and mark these respective 
points on the circles. In the afternoon mark where the extremity 
of the shadows cuts the same circles as before, beginning with the 
innermost; then with a pair of compasses bisect the arch between 
the two marks on any of the circles; a line drawn from the centre 
to that point, will be a true meridian line.f If the pin be not per¬ 
pendicular, let the circles be described from the top of it, and pro¬ 
ceed as before.f 

Rule 3. Find when the pole star and the star alioth in the great 
bear are in the same plumb line, or have the same azimuth, by 
means of two plummets suspended at a considerable distance, with 
their ends in vessels of water, to keep them steady ; the line be¬ 
tween the two plummets or this line produced, will be the meri¬ 
dian, sufficiently exact. Any two stars that have the same right 
ascension, will answer the same purpose. 

Rule 4. Having* the time of the northing of the star alioth, or 
the northing or southing of any other star or planet from astrono- 

* The most proper time of the year to perform both this and the follow¬ 
ing rule, is about the solstices, because then the sun’s declination does not 
sensibly vary for several days. 

As there are various methods of finding the hour of the day (most of which 
are given in parts 2d and 3d of this work, particularly in the notes) and con¬ 
sequently of regulating the watch ; hence there are as many different me¬ 
thods of performing this prob. Moreover from the true and magnetic azi¬ 
muth or amplitude being given, the variation of the compass may be found, 
and hence a meridian line may be traced out by the compass. This prob. 
being’ necessary for fixing dials, is therefore given in this place. 

| The board may be a foot or more in breadth, and the circles about a 
quarter of an inch or J an inch from each other. The pin or wire ought to 

be about -g- of an inch thick, with a round blunt point, or well defined head like 
the head of a pin, and of such a length that the shadow may fall within the in¬ 
nermost circle, at least four hours, in the middle of the day. This method is 
not, however, capable of very great accuracy, as the shadow is scarcely ever 
well defined. If however the mean of the several meridians, so found, be 
taken, the meridian thus found will be sufficiently accurate for all common 
purposes. 

t In describing these circles, one end of a wooden ruler may be placed on 
the top of the wire, and with a sharp pointed iron pin, or wire, in the other 
end of the ruler, circles may be described. The same prob. may be perform¬ 
ed by means of a small hole in a window-shutter, through which the sun 
shines, circles being described on the floor, with the hole as their common 
centre. Or if the casement of a window on which the sun shines at noon be 
perpendicular to the horizon, the shadow cast by it, on the floor, will trace 
out the meridian. Various other methods and contrivances will easily pre¬ 
sent themselves. 
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mical tables (see prob. 8. and 39, part 3d ) A line drawn from the 
observer towards the respective star or planet, at the time of its 
northing or southing, will trace out the meridian required. Or 
when the pole star and alioth, or any two stars having the same or 
opposite rt. ascensions, be in the same azimuth, set the watch to 
the time of their northing or southing, according as they are north 
or south of the observer, and next day at 12 o’clock, by the same 
watch or clock, draw a meridian line by the shadow of a plumb 
line hung in the sun.* 

GNOMONICAL OR DIALLING PROBLEMS 

SOLVED BY THE GLOBES. 

Fundamental firinctfiles, observations, &c. 

Dialling, or the art of making dials, is founded entirely on as^ 
tronomy. For the lines on a dial which shew the hours, are the 
intersections of the respective circles with the plane of the dial; 
and the projection of these hour lines, is the same as the projection 
of the sphere upon the plane of the dial. And hence the con¬ 
struction of dials depends on the projection of the sphere, particu¬ 
larly the gnomonic projection, where the circles are projected into 
right lines. The principles of this projection Emerson has given 
at large, in his treatise on the projection of the sphere (see his 
Tracts.) As the art of measuring time is of the greatest impor¬ 
tance, so the art of dialling, until the invention of clocks and 
watches, was held in the greatest estimation. And although at 
present we are furnished with these machines, yet as the best of 
them are often out of order, and that in general, they are liable to 
stop and go wrong, that unerring instrument, a true sun dial, will 
be always useful to correct and regulate them. 

Suppose the globe of the earth as represented in the annexed 
figure, to be transparent, with hour circles or meridians, &c. drawn 
upon it, and that it revolves round a real axis NS, which is opake, 
and casts a shadow ; then it is evident that the shadow of this axis 
will fall upon every particular meridian or hour line, when the sun 
comes to the plane of the opposite meridian, and will therefore 
shew the time in all those places on that meridian. Now if any 

* To take away the star’s rays, look through a small hole in a thin plate, 
or piece of paper. Any line drawn parallel to the meridians found as above, 
will also be meridians ; hence when those found above will not answer, others 
may be easily drawn. When the meridian line is intended to be the basis 
of any nice astronomical calculations or observations, it must be traced out, 
very accurately, by the 1st rule, then two poles may be erected at a consi¬ 
derable distance from each other, with marks to render them visible, 8cc. 
For making these observations, the astronomical circle or circle of reflection 
is the most proper instrument. An artificial horizon may be made with mo¬ 
lasses, quicksilver, See. When this circle cannot be had, a Hadley’s quad¬ 
rant, or rather sextant, will answer. In performing the observations a calm, 
place must be selected. 
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opake plane be imagined to pass through the centre of this trans¬ 
parent globe, the shadow of half the axis NC will fall upon either 
side of this intersecting plane. 

Let HORI represent the plane 
of the horizon, RN the elevation 
of the pole or lat. of the place ; 
then while the sun is above the 
horizon, the shadow of the axis 
CN will fall upon the upper side 
of the plane HOR. When the 
edge of the plane of any hour cir¬ 
cle as K, I, &c. points directly to 
the sun, the shadow of the axis, 
being coincident with this plane, 
will mark the respective hour 
lines on the plane of the horizon 
HOR; and hence the hour line 
on the horizontal plane, is a line 
drawn from its centre, to the point wThere this plane intersects the 
meridian, opposite to that on which the sun shines. Now as the 
sun’s apparent motion about the earth’s axis is at the rate of i 5°, an 
hour (nearly) let the shadow of the earth’s axis be supposed to be 
projected into the meridian opposite to that in which the sun is, 
and then this meridian will move at the rate of 15° an hour. (See 
Emerson’s Dialling, sect. 1. prop. 1. and cor. See.) Let ZNRSH 
represent a meridian on the surface of the earth, SCN the earth’s 
axis, Z the place of the spectator, being also the pole of the hori¬ 
zon HORI; let the meridians N1S, N~S, kc. be drawn so as to 
make angles with the mer NRS of 15°, 30°, See. respectively; then 
supposing NR the meridian into which the shadow of CN is pro¬ 
jected at 12 o’clock, Nl, N2, N3, Sec. are the meridians into 
which the shadow is projected at 1,2, 3, See. of the clock, and these 
shadows will be projected on the plane HORI into the lines CR, 
Cl, C2, C3, See. and the angles NCl, NC2, See. will be the angles 
between the 12 o’clock line CR, and the hour lines of 1,2, 3, Sec. 
Hence in the right angled triangle NRl, we have NR the lat. of 
the place (See the last note to problem 19, part 3d. art. 1.) and 
the angle RNl = 15°, and therefore, by Nafiier's rule, Co. 
tang. 15° (or hour angle) : rad. :: s. lat. NR : tang. Rl the hour 
arch, which is the measure of the angle RCI; or Rad : sine NR 
(the lat.) :: tang. 15° : tang. Rl ; or tang. 30° : tang R2 or angle 
RC2, &c. (Simson’s Spher Trig, annexed to his Euclid prop. 17.) 
in the same manner by either of these proportions, the arch R3, 
R4, kc. may be found, and hence a table of the hour angles for 
any lat. may be easily calculated. In the foregoing elucidations we 
made the earth’s axis the gnomon, and considered the shadow as 
projected upon the plane HORI But as it is the same thing 
whether a dial be drawn upon any given plane, or upon the plane 
of the great circle of the sphere which is parallel to it. (Emerson’s 

CL 
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Dialling, cor. 3. prop 1. sect. 1.) Let the plane arbh be drawn 
parallel to HORI at Z, this plane will represent the sensible hori¬ 
zon, on which let ZP be drawn parallel to CN, and let its shadow 
be projected on the plane arbh in the same manner as the shadow 
of CN is projected on the rational horizon HORI, and the hour 
angles rl, r2, &c. be calculated in the same manner ; this will be 
an horizontal dial, ZP will be its 'gnomon, and the lines Zl, Z2, 
See. ihe hour lines required. For at the immense distance of the 
sun, ZP may be considered as coinciding with CN. If at the other 
side of r, arches rl 1, rlO, r9, &c. be made equal to rl, r2, r3, Sec. 
respectively, and lines be drawn from Z to these points; these 
will be the hour lines for the forenoon. Moreover, the hour lines 
may be continued from 6 towards H as far as may be necessary, by 
laying off from 6 to 7, the same distance as from 6 to 5, &c and also 
from I towards H, by producing 5C, 4C, 3C, Ike. The reason of 
which see in Emerson’s Dialling. 

Again, Let ABD be an opak-e 
vertical plane, or great circle, per¬ 
pendicular to the plane HBNZ 
(and therefore to the horizon atZ) 
and passing through the centre of 
the globe. Here the globe being 
supposed transparent as before, 
while it revolves on its axis SN, 
it is evident that the shadow of 
the part of the south end of the H | 
axis CS, considered as opake, 
will always fall on the plane ABD, 
and mark out the hour as in the 
horizontal dial Then for the 
same reason as before, if the an¬ 
gles BSl, BS2, BS3, See. be 15°, 
30°, 45°, &c the shadow of SC will be projected into the lines Cl, 
C2, C3, See at the hours of 1,2, 3, See. of the day ; and the angles 
BCl, BC2, Sec. will be measured by the arches Bl, B2, &c. Hence 
in the right angled triangle BSl,BS = ZNco. lat. or dist. ofZ 
from the pole N, and the angle BSl = 15° ; therefore by Napier’s 
rule as before, we have Co. tang. 15° (or hour angle) : rad. :: cos. 

lat. :: tang. Bl the hour arch. Or by Simson’s Spher. prop. 17, 
Rad. : sine SB, the co. lat. :: tang. 15° : tang. Bl. In the same 
manner B2, B3, &c. may be found, making use of 30°, 45°, &c. 
respectively, in place of 15°. Now if rLabc be a place coinciding 
with the plane ABD, and st be parallel to CS, st will project its 
shadow on the plane ILabc in the same manner as CS on the plane 
ABD, for the same reason as for the horizontal dial; hence the 
hour angles from the 12 o’clock line, are computed by the same 
proportion. This is a vertical south dial. Hence also it appears 
that the surface of every dial whatever, is parallel to the horizon of 
some place or other upon the earth, in which place it would be* 
^ome a horizontal dial; and that if a dial be taken to any other lali= 

Z 
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tude different from that for which it was made, it will indicate the 
apparent time truly, if placed parallel to its former situation. 
Moreover as the angle SCB = £sZ (29 Eucl. 1.) = the arch ZN = 
co lat. and that the lat. of H or R is = co. lat. of Z, it follows that 
the elevation of the stile or gnomon above the dial’s surface, when 
it faces the south, is always equal to co. lat. of the place, or equal 
to the lat. of the place whose horizon is parallel to its surface. In 
the same manner the hour lines may be calculated, when the sha¬ 
dow is projected upon a plane, in any other position. See sect. 1 
of Emerson’s Dialling. 

Remark. It appears from the above observations, as the whole 
earth is but a point in comparison of the heavens, that if a small 
sphere of glass be placed on any part of the earth’s surface, having 
an opake axis parallel to the axis of the earth, and such lines upon 
it, and such a plane within it as above described; it will shew the 
hour of the day as correctly as if it were placed at the earth’s cen¬ 
tre, and the whole body of the earth were as transparent as crystal. 

PROB. 76. 

To make a horizontal dial for any latitude. 

Rule. Elevate the pole as many degrees above the horizon as 
are equal to the given latitude ; bring aries to the brass meridian, 
and set the index to 12 ; then turn the globe westward until the in¬ 
dex has passed over 1, 2, 3, 4, 5 and 6 hours successively, and 
mark the degree cut on the horizon by the equinoctial colure, at 
each respective hour, reckoning from the north or south points, 
these will be the distances of the hour lines from noon until 6 
o’clock at night: And as the hour of 1 and 11,2 and 10, 3 and 9, 
&c. are equally distant from noon, the hour arches for 1, 2, 3, &c. 
in the afternoon, will serve for those of 11, 10, 9, &c. in the fore¬ 
noon. Or the globe may be turned eastward until the index has 
passed over 11, 10, 9, &c on the index, and the degrees cut by the 
colure on the horizon marked as before. The hours on the equator 
will answer rather better than those on the hour index. If the 
half hours, quarters, &c. be brought to the meridian, in the same 
manner, the colure will mark the hour arches, See. corresponding 
on the horizon.* 

* The reason of this rule is evident from what is said in the preceding ob¬ 
servations. For the latitude of the place, the hour arch on the horizon, and 
the arc of the colure between the elevated pole and the horizon, form a right 
angled triangle, similar to that described in the observations on the horizon¬ 
tal dial, from which the rule is derived. 

From the above rule it appears, that there is no absolute necessity of hav¬ 
ing meridians drawn through every 15° on Cary’s g'lobes, as the hour index, 
or the hours marked on the equator, are abundantly sufficient, though some, 
late authors imagine the contrary, owing to their manner of solving the. 
problem. If however the meridians be drawn through every 15°, the whole 
of the hour arches maybe seen atone view on the horizon, without any mo 
lion of the globe on its axis, which is much more convenient. 
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Examfile 1. To make a horizontal dial for New-York in latitude 
•40° 43' N. 

The pole being elevated to the lat. and the point aries brought to 
the meridian ; then the hour arches from 12 will be 9° 55', 20° 38', 
33° 7', 48° 29', 67° 40' and 90° for the hours I, II, &c to VI res¬ 
pectively ; or reckoning from the east towards the south, they will 
be 22° 20', 41° 31', 56° 53', 69° 22', 80° 5' (the compl. of the for¬ 
mer) for the hours VI, V, &c. to I, reckoning from VI o’clock 
backwards to XII.* 

2. To make a horizontal dial for London in lat. 5 i|° N. 
3. To make a horizontal dial for Philadelphia in lat. 39° 57' N. 

* It is not necessary in the above solution to give the distances further 
than VI, for the distances from XII to VI in the forenoon, are the same as 
from XII to VI in the afternoon ; and if the hour lines be continued through 
the centre of the dial, they will point out the opposite hours. 

The following table calculated for the lat. 40° 43' by the following pro¬ 
portion, Rad. : sine lat. tang, hour angle : tang, hour arch (see the forego¬ 
ing principles, &c.) contains the hour arches, halves, quarters, he. from 
xn to vi. 
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The horizontal dial may be constructed geometrically, as follows. 

s 
s 
5 

s 

Take any point C for the centre, and draw CS or 
C12 for the meridian or 12 o’clock hour line, C6 at 
right angles to it, for the 6 o’clock hour line; take 
Cc equal the thickness of the stile or gnomon, and 
draw cs parallel to CS. Now from the centre C or c 
with the radius of some line of chords, describe a cir¬ 
cle ; then on the arch of this circle lay off the hour 
arches 9° 55', 20° 38', &c. on each side of the 12 
o’clock hour line, together with the half hours and 
quarters, as in the above table. Lastly, make the an¬ 
gle SC? = the lat. =40° 43' for the stile, which is to be placed perpendicu¬ 
lar to the plane of the dial, the dial is then finished. To erect it, the line 
€12 must be placed in the meridian (found by the last prob.) so that the 
12 may point towards the north ; then the gnomon Ct will exactly point to 
the north pole. The dial plane must be placed horizontal with a level, and 
then the dial is fit for use. 

If the edge of the stile has no considerable breadth, and is in the same 
place with the substile CS, no allowance is necessary, so that C may be taken 
as the centre of both semicircles, &c. Various hours, ornaments, tables of 
the equation of time, he, may be inserted on those dials, and different in- 
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PROB. 77. 

To make an erect south dial for any latitude. 

Rule. Elevate the pole to the complement of the latitude 
(the south pole it the lat. be north, &c ) bring the point aries to 
the brass meridian, and set the index to 12 ; then turn the globe 
eastward or westward until each hour, &c. on the equator or on 
the hour circle, comes successively to the meridian ; then the 
colure passing through aries will point out, on the horizon, the dis¬ 
tance of the respective hour arches, or hour lines from the me¬ 
ridian 

Or, If the meridian be drawn through every 15°, as on Bardin’s 
globes, aries being brought to the brass mer. the meridians pas¬ 
sing through every 15° will point out the hour arches on the ho¬ 
rizon.* 

Example 1. To make an erect south or vertical dial for New- 
York, lat. 4-0° 43' N. 

The south pole being elevated 49° 17', and aries brought to the 
mer. then the globe being turned on its axis, the colure will inter¬ 
sect the horizon in the following degrees : 1 i° 29', 23° 38', 37° 10', 
52° 42', 70° 32', and 90° for the hours I, II, 8cc. to VI ; or XI, X, 
See. to VI; or if you count from the east towards the south, they 
will be 0°, 19° 28', 37° 18', 52° 50', 66° 22', and 78° 31', for the 
hours VI, V, &c. to I; or VI, VII, &c. to XI.f 

2. To make an erect south dial for Washington city, lat. 58° 
53' north. 

struments, scales, &c. used in their construction, for which the learner is 
referred to Emerson’s Dialling, Ferguson’s Lectures, Ozanam’s Mathemati¬ 
cal Recreations, Jones’s Dialling, &c. 

Emerson in his Dialling (schol. to prob. 7, sect. 2) remarks, that if a ho¬ 
rizontal dial be made for a place in the torrid zone, to shew the hour by the 
top of the perpendicular stile *S, whenever the sun’s declination exceeds the 
lat. of the place, the shadow of the gnomon will go back twice in the day, 
once in the forenoon, and once in the afternoon. (See the note to ex. 3. 
prob. 51. part 2.) The greater the difference between the lat. and the sun’s 
decl. the further will the shadow go back. The same will take place with 
respect to any star, &c. the declination of which is greater than our latitude. 

In the 38th chap, of Isaias, it is related, that the shadow on the dial of 
«,!chaz was brought back ten lines or degrees, in confirmation of a promise 
made by Isaias to Ezechias, king of Juda, that his life should be prolonged 
15 years. This was truly, as it was then considered, a miracle, being con¬ 
trary to the established laws of nature ; as Jerusalem, where the dial was 
erected, was not in the torrid zone, and therefore the shadow could not 
possibly go back from any natural cause. Whatever incredulity may object 
to this, it is certain that that Being who framed the laws of nature, can sus¬ 
pend their operations, or change them at his pleasure; as in the present 
case, to reward the piety of a virtuous prince, and exhibit to the world the 
efficacy of fervent and humble prayer. 

* The reason of both these methods will appear from the observations in 
the beginning. 

f The arches for the half hours, quarters, &c. may be found by the set 
method above in the same manner as the hour lines. The following tabic 
contains the hour arches, halves and quarters, from XII to VI. It is ealeu- 
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PROB 78. 
To find the hour lines on the plane of any dial, by one position of the 

globe. 

Rule. If the meridians do not pass through every 15°, draw 
them with a black lead pencil or ink, by bringing every 15° on the 
equator to the brass meridian, &c. then elevate the pole as many 
degrees above the horizon as are equal to the latitude ; bring aries 
to the brass meridian ; all the other meridians will then cut any 
circle representing the plane of a dial, in the number of degrees on 
that circle, that each respective hour line is distant from the 12 
o’clock hour lines passing through the same circle. 

PROB. 79. 
To find in what part of the earth any dial plane, which is not hori- 

zontal in a given latitude, will become horizontal. 

As every plane, whatever be its situation, is parallel to the hori* 
zon of some place on the earth, hence a dial, though not horizontal 
in one place may become so in another, and the horizontal dial 
made for the latitude of this place, will be the same as the former; 
thus, For an erect direct south or north dial* Find the co. lat. of 

iated by the following proportion ; R: Cos. lat.:: tang, hour angle: tang, hour 
arch. The hour angles are omitted, being the same as those in the table in 
the note of the foregoing prob. The reason of the rule is given in the pre¬ 
ceding observations. 
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The geometrical construction of this dial being the same as for a horizontal 
dial, made for the complement of the lat. or in ex. 1, for lat. 49° 17', the me¬ 
thod given for constructing the horizontal dial (note to prob. 76) will answer 
for this. The point C, or the centre, may be taken near the top of the plane 
of the dial. The forenoon hours are to be numbered towards the west, and 
the afternoon hours towards the east; and the angle for the stile must be 
made = co. lat. See the preliminary remarks. The two dials described in 
this and the foregoing prob. are the most useful, and therefore the most 
common. 

To find whether a wall be due south for a vertical south dial, erect a gno¬ 
mon perpendicularly to it, and hang a plumb line from it; then the watch 
being adjusted to apparent time, if when it points out 12 o’clock the shadow 
of the gnomon coincides with the plumb line, the wall is due south. 

* An erect vertical dial is that which is drawn on a plane perpendicular to 
the horizon \ but a direct dial faces the east, west, north, or south points of 
the horizon. 
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the given place, then the horizontal dial made for any place in this 
lat. having its longitude the same as the given place, will be the 
erect direct north or south dial required 

Thus an erect dial under the pole will be an horizontal dial under 
the equinoctial; an erect dial in lat. 30° will be a horizontal dial in 
lat. 60°, &c. and the contrary. 

For an erect declincr * The globe being rectified to the given 
latitude, bring the given place to the brass meridian ; reckon the 
declination on the horizon, from the north or south; that place on 
the globe, opposite the point where the reckoning ends, will be the 
place required. Thus an erect decliner, which in New-York de¬ 
clines 60° from the south towards the east, will be horizontal in 
lat. 22-t° S. long. 3° W. If it declines 90° from the south towards 
the east or west, it will become a horizontal dial on the equator in 
long. 18° E. or 162° W. &c. If the plane declines eastward, the 
sun will come later to the meridian of it, than to the meridian of 
the place where it becomes a horizontal dial; or sooner if the plane 
declines westward, by as many degrees or by as many hours, mi¬ 
nutes, See. as are equal to the difference of longitude. 

For a direct recliner,f the complement of the plane’s reclination 
will be the latitude, where it becomes a horizontal dial in the same 
longitude. 

For a declining recliner. Rectify the globe for the given lat. 
bring the given place to the brass meridian ; screw the quadrant of 
alt. in the zenith, bring the quadrant to coincide with the degree 
of the plane’s declination on the horizon, and count from the hori¬ 
zon on the quadrant the degrees of the plane’s reclination, under 
which mark the place on the globe, this will be the place required, 
where the declining recliner will become a horizontal dial, and its 
latitude and longitude may be found by the globe. The difference 
of longitude changed into time, will give the difference that the 
sun makes between the two meridians. 

The learner can have no difficulty in applying the above princi¬ 
ples when understood, to any kind of dial and for any latitude. For 
more information, the treatises on dialling before referred to, may 
be consulted. The demonstration of the above properties are given 
in sect. 1. Emerson’s Dialling. 

* A declining dial is a dial that faces none of the cardinal points, but de¬ 
clines towards the east or ivest, and an inclining dial is that whose plane 
makes oblique angles with the horizon ; the inclination is the angle which it 
makes with the horizon. 

I The reclination of a plane is the angle it makes with a vertical plane, or 
the number of degrees it leans from you, being the plane’s distance Irom the 
zenith ; and the declination of a plane is an arch of the horizon contained be¬ 
tween the plane and the prime vertical, or between the meridian and plane 
perpendicular te the dial plane, and is always reckoned from the south or 
north. 
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The inclination, reclination and declination of a plane, may he thus. 
found. 

1. To fnd the inclination of a plane. Let 
AB be a plane inclined to the horizon HR ; to 
this plane let the quadrant CDE be applied so 
that the plummet CF may touch its edge, or 
the surface of the quadrant; then the arc DF D 
will be the measure of the plane’s inclination 
or the angle BAIL Draw AG perpendicular 
to HR, then because CF is parallel to AG, II R 
the angle ACF = CAG (29 E. 1.) but DCE = GAH, both being 
right angles, therefore the remainders are equal or DCF — BAIL 
Q. E. D. 

2. To fnd the reclination of a plane. Let 
AB be the reclining plane, and AG perpen¬ 
dicular to HR, the hor. will represent the 
prime vertical; then the angle BAG will be 
the plane’s reclination. Draw IC perp. to 
AB, and apply the quadrant CDE to this 
perp. then will the arc DF, or the angle 
DCF, be the measure of the reclination. For H A R. 
in the rt. angled A AIK the angles AKI -f-1AK = 90° = DCE \ 
but because CF is parallel to GA, the angle ECF = AKI (29 E. 1) 
therefore DCF = KAI. Q. E. D. 

3. To fnd the declination of any plane. Let 
ABDE be a piece of board, See whose surface is 
a rt. angled parallellogram, on which let the cir- 6 
cte xv be described. On the centre C let a per¬ 
pendicular pin or wire be erected, and place the 
plane AD in a horizontal position, with the side 
AB applied to the dial plane ; observe when the 
shadow of the top of the pin is atv in the fore- 
noon, and at x in the afternoon, on the same day, (see prob- 75) 
let the diameter FG bisect xv, and draw FH parallel to AB, it is 
evident that the angle GFH will be the angle of declination re¬ 
quired. 

Or, If the square box of an azimuth compass be applied to the 
dial plane (i. e. the north side of the box to a south plane, and the 
south side to a north plane) so that the box be kept horizontal; 
then the needle will point out the plane’s declination, regard being 
had to the variation. For other methods see Emerson, Sic. When 
great exactness is required, the problems on the azimuth, &c. wib 
afford the learner various astronomical methods, &c. 



PROBLEMS 

PERFORMED BY TIIE 

CELESTIAL GLOBE. 

PART III. 

PROB. 1. 

To find the right ascension and declination of the sun or a star * 

Rule. Bring the sun’s place in the ecliptic, or the star, to the 
brass meridian ; then the degree which is over the sun’s place, or 
the star, on the meridian, is the declination, and the degree of the 
equinoctial, cut by the brass meridian, reckoning from aries east¬ 
ward, is the right ascension. 

* The right ascensions and declinations of the moon and the planets, must 
be found from astronomical tables or from a good ephemeris, as they cannot 
be represented on the globe on account of their continually changing their 
places in the heavens. In the 4th page of the month in the Nautical Alma¬ 
nac, their longitude, latitude, declination, and passage over the meridian, 
are given ; and hence as their longitude is given, their rt. ascension may be 
easily found, by calculation. The declination of the sun or a star may be 
thus observed; when the sun is nearer to the equator than the place, the dif¬ 
ference between the complement of the altitude (or the zenith distance) of 
the sun or star Will give the declination. (See notes to prob. 8 and 48, part 
2.) The decimation being given, die proportion for determining the sun’s 
rt. ascension is given in the note to prob. 49, part II. 

To find the right ascension of a star by observation. With a good pendu¬ 
lum clock adjusted, that the hand may run through the 24 hours in the time 
that a star leaving the meridian will come to the same meridian again 
(which time is equal to 23h. 56' 4" 1, taking for unity the mean astronomical 
day, being- less than the natural day by the space the sun moves through in 
the mean time eastward.) The clock being thus adjusted, when the sun is 
in the meridian, set the hand or index to 12; observe when the star comes 
to the meridian, and then observe the time shewn by the clock; this time, 
or the hours, minutes and seconds described by the index, turned into de¬ 
grees and minutes of the equator, will give the difference between the right 
ascension of the sun and star; this difference added to the right ascension 
of the sun, will give the right ascension of the star. 

If the dial plate on the clock, instead of being divided into 24 hours, be 
divided into 360°, and tlieir sexagesimal parts, and if at the moment the 
sun is on the meridian, the index be placed to the number of degrees and 
minutes the sun’s rt. ascension then consists of, the index will then point 
out the right ascension of the star, when it comes to the meridian. By know¬ 
ing the right ascension of one star, we may from it find the rt. ascensions of 
all the others which are visible, by finding the difference of the time of their 
coming to the meridian, which converted into degrees and minutes of the 
equator, will give the difference of their right ascensions. Or the declination 
and right ascension of one star being given to find the right ascension of an¬ 
other whose distance from the former and its declination are given. As the 

« 
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Or, Place both poles in the horizon, bring the sun’s place, or 
star, to the eastern part of the horizon ; then the degree cut on the 
horizon, from the east, northward or southward, will be the decli¬ 
nation, north or south, and the degree on the equinoctial, from 
aries to the horizon, reckoning as before, will be the right ascension. 

Example 1. Required the right ascension and declination of 
Aldebaran in Taurus ? 

Ans. Right ascension 66° & 45", declination 16° 5' 50". 
2. Required the right ascension and declination of the following 

stars ? 
a, Acherncr in Eridanus 
cc Alioth in the Great Bear 
a. Arcturus in Bootes 
y Algenib in Pegasus 
y Algorab in the Crow 
oc Antares in Scorpio 
a Atair in the Eagle 

» Belelgeux in Orion 
y Bellatrix in Orion 

::;l: cc Capella in Auriga 
cc Menkar in Cetus 
a Procyon in the Little Dog 
cc Regulus in Leo 
cc Syrius in Canis Major 

PROB. 2. 

The right ascension and declination of the sun, a star, the moon, a 
planet, or a comet being given, to find its place on the globe * 

Buie. Bring the given right ascension to the brass meridian, 
and under the given declination, you will find the place of the 
planet or star required. 

complements of the declinations and the given distance between the two 
stars form a spherical triangle, and that the angle at the pole included by 
the circles of declination passing through both stars, is equal to the differ¬ 
ence of their right ascensions ; this angle being therefore given, the differ¬ 
ence of the star’s right ascensions is given, and must be added to, or sub¬ 
tracted from, the right ascension of the given star, according as the circle of 
declin. passing through it, is east or west of the circle passing through the 
other. If it cannot be subtracted, 360 must be added to the other, and then 
the difference of rt. ascensions must be subtracted from the sum. 

The rt. ascension and decl. of a star may be also thus found ; having the 
latitude of the place, the hour from noon, and the sun’s right ascension, 
together with the altitude and azimuth of the star given. For there are 
given the complement of the alt. the complement of the latitude, and the an¬ 
gle included by these sides ; being the star’s azimuth, or what it wants of 
180°. Hence the star’s decl. and the arch of the equator between the brass 
meridian and the circle of decl. passing through the star, is given, by the 
rule in the note to prob. 54, part 2 ; and as the hour of the day is given, 
the arch of the equator intercepted between the meridian and circle of decl. 
passing through the sun, is likewise given. The sum of these arches if the 
sun and star be on different sides of the meridian, or their difference if on 
the same side, will give the difference of the right ascensions of the sun and 
star, from which the right ascension of the star is known. The decl. is 
found as in the note prob. 54. Many other methods could be given, but 
our contracted limits would not permit. (See Gregory’s Astronomy, b. 2. 
sect. 5. Keil’s Astronomy, Lecture 19th. Vince’s Astronomy, or notes to 
prob. 8th. part 2d.) 

* As the latitudes and longitudes of the planets are given in pa. 4 of the 
month in the Nautical Almanac, their right ascensions and declinations from 

A a 
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This may be performed on the horizon as the foregoing. 

Note. The star’s right ascension may be given in time, or in degrees, 
both being marked on the equinoctial. 

Example 1. Required the star whose declination is 30° 40' 39" S, 
and right ascension 22h 46m. 33s or 341° 38' 15" ? 

Ans. Fomalhaut in the southern fish. 
2 On the 21 st of April, 1811, the moon’s right ascension was 

9° 58' 9", and her declination 2° 53' north ; required her place 
on the globe for that time ? 

Ans. In pisces between the star £ and the equator. 

thence may be thus found ; the complement of the lat. (or the lat. -f- 90°) the 
compl. of the decl. and the distance between the poles of the equator and 
ecliptic form a spherical triangle, two of the sides of which are given, viz. 
the distance of both poles, and the compl. of the lat. 8tc. and likewise the an¬ 
gle included by them at the pole of the ecliptic, being equal to the distance 
of the given planet in longitude, from the colure, reckoning on the ecliptic. 
Hence to find the decl. Had. : cos. angle at the pole of the ecliptic :: tangt. 
co. lat. (or 90°-{- lat.) : tangt. x from the pole of the ecliptic; then the sum 
or difference of x and 23° 28' = ?/, and cos. x : cos. y :: sine lat. : sine decl. 
The declination being then given, the right ascension is thus found ; Co. sine 
decl. : sine angle at the pole of the ecliptic, or distance of the star in longi¬ 
tude from the solstitial colure :: cos. lat. or sine 90° -f- lat. : sine angle at the 
pole of the equinoctial, or the angle formed by the colure and compl. of the 
decl. This angle being equal to the distance, in right ascension, from the 
given planet to the colure, whence the right ascension is easily found. (See 
the note to the following problem.) 

The declinations of the planets are given in pa. 4 of the Nautical Almanac, 
but not their right ascensions. In the same manner may the right ascen¬ 
sions and declinations of any of the fixed stars be obtained, from their lati¬ 
tudes and longitudes being given. 

On the 1st of May, 1811, the latitude of Jupiter, as seen'from the earth., 
was 31' south, and liis longitude 2s. 5° 49' or 65° 49', from which his rt, 
ascerlsion and decl. is thus found; Rad. : cos. angle at the pole of the eclip¬ 
tic, 90° — 65° 49'= 24° 11':: tang. 90° 31' or 89° 29' : tang, x, 90° 34'; and 
cos. ar 90° 34' or 89° 26' : cos. y, 90° 34'—23° 28'= 67° & :: sine lat. 31' : 
sine decl. 20° 47' N. agreeing with the Nautical Almanac. Again, cos. decl. 
20° 47' : sine 90°—65° 49' = 24° 11' :: sine 90° 3T or 89° 29'’: cos. right as¬ 
cension 64° 1'. 

The annual variation of the stars in right ascension and decl. owing to the 
precession of the equinoxes, which, according to La Place, is 50" 1 annually, 
and also to the nutation of the earth’s axis, is not considered in these prob¬ 
lems. See La Place’s Astronomy, vol. 1. b. 1. ch. 11. or Ills treatise of Ce¬ 
lestial Mechanics, where the laws of these phenomena are investigated, and 
agree with observation, as Nevil Maskelyne remarks, to surprising exactness. 

The learner will also find all the problems relative to the latitude, longi¬ 
tude, right ascension and declination of the planets or stars, solved from ac¬ 
curate tables in Mayer. In the 3d edition of La Land’s Astronomy, accu¬ 
rate tables of the places of the planets, and of Jupiter’s satellites, are given. 

In the above calculations where greater exactness is required, the seconds, 
&c. must be used, for which purpose Taylor's tables of logarithmic sines and 
tangents will be useful, as they are calculated to seconds; Gardner’s or. 
Hutton’s may also answer. 

For the annual alteration of declination and right ascension of a fixt star 
through the precession of the equinox, or alteration of longitude, see the 
theorems in Simpson’s Fluxions, vol. 2. sect. 1. prop. 2. 
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3. Required those stars, whose right ascensions ancl declinations 
are as follow ? 

RIGHT ASCENSIONS. DECLINATIONS. 
in time. in degrees. 

12h. J 5m. 38s. — 183° 5 4/ 30" 69° 59' 26" S. 
13 14 40 — 198 55 0 10 6 43 S. 
16 17 9 1 244 17 15 25 58 23 S. 
18 30 10 = 277 32 30 38 36 25 N. 
20 34 36 — 808 39 0 44 34 21 N. 
22 46 33 — 141 88 15 30 40 39 S. 
22 54 5 — 343 .6 15 27 0 8 N. 
22 54 48 — 343 42 0 14 8 3 N. 

2 57 ac 44 15 13 57 40 N. 
52 8 . 13 2 0 89 9 52 N. 

4. On the first of December, 1810, the moon’s right ascension 
was 320° 28', and her declination 11° 45' S. ; required her place 
on the globe ? 

5. On the 1st of May, 1805, the declination of Venus was 11° 
41' N. and her right ascension 31° 30' ; find her place on ihe 
globe ? 

6. On the 19th of January, 1805, the declination of Jupiter was 
19° 29' S. and his right ascension 238° ; required his place on 
the globe ? 

PROB. 3. 

To fnd the latitude and longitude of a given star,* 

Rule. Bring the north or south pole of the ecliptic to the me¬ 
ridian (according as the star is on the north or south side of the 
ecliptic) elevate the pole 661° above the horizon ; screw the 

* The latitudes and longitudes of the planets must be found from astrono¬ 
mical tables, from the Nautical Almanac, or from any good ephemeris ; or 
their right ascensions and declinations being given (see the table at the end 
of this work) their latitudes and longitudes may be found as follows : Bring 
the star to the brass meridian, and draw with a pen and ink, or rather with 
a fine pencil, a circle of declination from the pole of the equator through it; 
then if no circle of latitude pass through the star, draw by the help of the 
quadrant of altitude a circle of latitude from the pole of the ecliptic through 
it, as before, and intersecting the former at the given star ; then the comple¬ 
ment of the declination, the compl. of the latitude of the star (or the lat. + 
90°) and the distance between the pole of the equator and ecliptic, which is 
equal to the sun’s greatest declination, or the obliquity of the ecliptic, will 
form a spherical triangle, two sides of which, viz. the comp, of the decl. of 
the star, and the distance of both poles are given, together with the angle 
formed at the pole of the equinoctial between the arch of the solstitial co¬ 
lure passing through both poles, and the arch representing the compl. of 
the decl. being" equal to the distance of the star in right ascension from the 
colure or its supplement; from which the complement of the latitude is 
found thus : Conceive a perpendicular arch let fall from the given star to 
the colure ; then it will be Rad. : cos. angle at the pole of the equinoctial 
formed by the colure, and compl. decl. :: co. tang, deck : tang, x, the dis¬ 
tance between the pole of the equinoctial and the perpendicular, the sum or 
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quadrant of altitude in the zenith, keep the globe from revolving 
on its axis, and move the quadrant until its graduated edge comes 
Over the given star ; then the degree on the quadrant, cut by the 
star, will be its latitude, and the sign and degree cut by the quad¬ 
rant, on the ecliptic, will be its longitude. 

Or, Place one end of the quadrant on the given pole of the 
ecliptic, and move the other end until the star comes to its gradu¬ 
ated edge ; then the number of degrees reckoned on the quadrant, 
between the ecliptic and the star, will be the latitude, and the 
number of degrees on the ecliptic, reckoning eastward from the 
point aries to the quadrants will be the longitude. 

Example 1. Required the latitude and longitude of Aldebaran, 
in Taurus ? 

Ans. Lat. 5° 29' S. longitude 2 signs 7° or 7° in Gemini. 
2. Required the latitudes and longitudes of the following stars i 

a, Altair in the Eagle ;;*.!• Rastaben in Draco 
Scheat in Pegasus ;;*< Arc turns in Bootes 

a, Fomalhaut in S. Fish 0, Rig el in Orion 

f -c j'xj'sf'S'K*' iff: 

^ A table of the longitudes of the nine principal fixed stars ^ 
made use of in the JVautical Almanac, for determining S 

the longitude, calculated for the beginning of the year ^ 
1809, with their latitudes for the mid. of the same year. S 

S 
S 
s 
s 

1 
s 
s 
s 
s 
s 
s 

v \rietis 

Aldebaran 
Pollux 
Regulus 
Spicavirg. 

? Antares 
^ a Aquilae 

S Fomalhaut 
^ o^Pegasi 

Hi'- 

Longitude beg. 
of 1809. 

Is. 4° 59' 31" 0 

27 7 10 4 
3 20 34 44 5 
4 27 10 27 8 

0 31 7 
5 44 1 

9 29 4 55 8 

11 1 10 21 6 
11 20 49 33 6 

6 21 
’ 8 7 

Annual \Latitude middle 
increase, j of 1809. 

Annual ^ 
variation. S 

50" 271 9° 57' 37" 5 N 

28 48 7 S. 
15 

50 204 
49 470 
50 004 
50 059 
50 141 
50 870 

5 
6 
0 
o 

4 
29 

40 
27 

2 
32 
18 

35 
13 
22 
59 

50 
50 

717|21 
133119 

6 26 
24 46 

7 N, 
5 N, 
8 S. 
3 S. 
4N. 

7 S. 
9 N. 

180 s 

0 317 S 
+o 

-f0" 

. _ 280 £ 
+ 0 200 s 
-fO 080 S 
+0 167 > 
. A Q*ro } 

difference of which, and the distance between both poles, will give y, the 
distance between the pole of the ecliptic and the same perpendicular; then 
cos. x : cos. y :: sine decl. : sine latitude. 

Now to find the longitude, we have this proportion ; Cos. lat. of the star 
or sine 90° -f-lat. : sine angle at the pole of the equinoctial :: co. sine decl. : 
sine angle at the pole of the ecliptic, formed by the solstitial colure and 
compl. lat which will give the distance in longitude reckoned on the eclip¬ 
tic from the circle of lat. passing through the given star to the next solsti¬ 
tial colure, if the angle be greater than 90°, but its supplement if less ; 
from which the longitude of the star is given. This will appear plainer by 
having the globe with the figure delineated on it as directed above ; the fol¬ 
lowing example will render the method more evident. The right ascension 
of Aldebaran being given, 66° 6' 45" or nearly 66° 7\ and his declination 
16° 5' 50" or 16° 6' nearly, for the year 1800 ; his latitude and longitude are 
required. Here we have Pad. : cos. 90°—66° 7r= 23° 53':: co. tang, deck 
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PROB. 4. 

The latitude and longitude of the moon, a star, or a planet, fezVig* 
given, £o /z/ace on Me g/ofie 

i?w/e. Bring the north or south pole of the ecliptic to the brass 
meridian, according as the latitude is north or south, elevate the 
pole 66^° ; screw the quadrant in the zenith, over the elevated 
pole, and extend it over the given longitude in the ecliptic ; then 
under the given latitude, on the graduated edge of the quadrant, 
you will find the star, or the place of the moon or planet. 

Example 1. Required the star whose longitude is 3s. 22° 56", 
and latitude 15° 58' south ? 

Ans. Procyon in the little dog. 
2. On the 1st of May, 1811, at noon, the moon’s longitude was 

4s. 20* 35' 30", and her latitude 2° 57' 20" ; required her place 
on the globe ? 

3. Required the stars which have the following longitudes and 
latitudes ? 

Longitudes Latitudes. Longitudes. Latitudes. 

3s. 11° 14' 39° 33' S. :*:• 3s. 17° 22' 10° 4'N. 
6 20 57 2 3 S. > 11 25 25 41 N. 
9 28 51 29 is n. 2 6 53 2 59 S. 
4. On the 1st of December, 1811, the longitudes and latitudes 

of the planets will be as follows ; required their places on the 
globe ? 

Longitudes. Latitudes. 

$ Mercury 8s. 15° 23' 1° 35' S. 
$ Venus 8 21 1 0 35' S. 
% Mars 10 10 31 1 24' S. 

% Jupiter 3 4 2 0 16' S. 
k Saturn 8 26 43 0 55' N. 

¥ Herschel 7 20 21 0 18' N. 
Note. In the above and in most other examples, the geocentric places of 

the planets are made use of, or their places as seen from the earth’s centre, 
being more convenient for a spectator on the earth than their heliocentric or 
true places, as seen from the centre of the sun. The learner must also take 
notice, that the planets’ places are given for the meridian of Greenwich. 

16° 6' :: tangt. x =: 72° 29'. In this case, therefore, y =» 72° 29' + 23° 28’ 
= 95° 57'. Whence Cos. x 72° 29' : cos. y 95° 57' or its suppl. 84° 3' 
sine decl. 16° 6' : sine lat. 5° 29' as above. Again, for the longitude it will 
be, sine 90° + 5° 29' = 95° 29' or sine suppl. 84° 31' : sine angle at the pole 
of the equinoctial 180°—-23° 53' — 156° 7' or its sup. 23° 53' :: cosine deck 
16° 6': sine angle at the pole of the ecliptic s= 23°. Now as the right as¬ 
cension is in the first quadrant from aries, the longitude is in the same ; 
hence 90° — 23° = 67° = the longitude of Aldebaran agreeing witli that 
given in the Nautical Almanac, reduced to the year 1800. 

In this manner the places of the stars in general are calculated, and a 
catalogue of them is made. In like manner the latitude and longitude being 
given, the right ascension and declination arc found. See the note annexed 
to the foregoing problem. 
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PROB. 5. 

The latitude of a /dace being given, to find the amplitude of any star, 
its oblique ascension, and descension, its ascensional difference, and 
time of its contmuance above the horizon.* 

Hule. Elevate the pole to the given latitude* bring the given 
star to the eastern part of the horizon ; then the degrees between 
the star and the east point of the horizon will be its rising ampli¬ 
tude, and the degree of the equinoctial cut by the horizon will be 
the oblique ascension. The globe being kept in this position, set 
the hour index to 12 ; then turn the globe westward, until the 
given star comes to the brass meridian, and the hours passed over 
by the index will be the star’s semidiurnal arch, or half the time of 
its continuance above the horizon ; the degree cut on the equinoc¬ 
tial by the brass meridian, will be the star’s right ascension, the 
difference between which and the oblique ascension is the ascen¬ 
sional difference.. The setting' amplitude, and oblique descension, 
are found by continuing the motion of the globe, until the star comes 
to the western part of the horizon, &c. 

Example 1. Required the rising and setting amplitude of Pro- 
cyon, its oblique ascension and descension, ascensional difference, 
and diurnal arch, at New-York ? 

Ans. The rising ampl. is 7° to the north of the east, the setting 
amph 7° north of the west ; oblique ascension i07-|o2 oblique de- 
«cension 117°; right ascension being 112° 12', the ascensional 
-dift is therefore 5° nearly ; the semidiurnal arch is 6h. 20m. and 
hence the time of its continuance above the horizon is 12 hours 
40 minutes. 

2. Required the rising and setting amplitude of Sirius at Phila¬ 
delphia,^ also its oblique ascension and descension, ascensional and 
descensional difference, and the time of its continuance above the 
horizon ? 

3. Required the rising and setting amplitudes of Aldebaran, 
Arcturus, Rigel, Regulus and Deneb ; together with their oblique 
ascensions and descensions, ascensional differences, and their semi¬ 
diurnal arches at London ? 

PROB. 6. 
The latitude, day of the m.onth, and hour being given ; to place the 

globe in such a position as to represent the heavens, at that time, 
as seen from the given place ; in order to find out the relative 
situations and names of the constellations and visible stars. 

Rule Elevate the pole to the given latitude ; place it north 
and south (by the compass, allowing for variation, if any, or by a 
meridian line) bring the sun’s place in the ecliptic to the brass 
meridian, and set the index to 12 ; then if the time be in the af- 

.q ^ or method of calculating this problem, see the notes to problem 
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ternoon, turn the globe westward, but if in the morning, eastward, 
as many hours as the given time is after or before noon, the globe 
being fixed in this position ; then every star on the globe will cor¬ 
respond to the same star in the heavens, and a perpendicular erect* 
ed over any of them, will point out the same star in the heavens. 

By this means the constellations and remarkable stars may be 
easily known. All those stars which are on the eastern side of the 
horizon are then rising ; all those on the western side are setting ; 
all those under the brazen meridian are on the meridian of the 
place at the given hour ; those stars between the south point of the 
horizon and the north pole, have their greatest altitude, if the lati¬ 
tude be north, but those stars between the north point of the hori¬ 
zon and the south pole, are at their greatest altitude if the latitude 
be south. That star in the zenith, if any, is vertical, and if the 
sun’s place be brought to the brass meridian, below the horizon, 
all those stars above the horizon whose declinations are equal to 
the given latitude, will be vertical successively, and visible in the 
given place. 

Note. The globe should be taken into the open air or near a large win¬ 
dow, on a clear night, where the view on the surrounding horizon is not 
intercepted by different objects ; a small observatory erected on the top of 
a house where the roof is flat, or nearly so, would best answer the purpose. 

PROB. 7. 

The latitude of a place, day of the mouthy and hour being given ; to 
find what stars are rising, setting, on the meridian, l?c. 

Rule. Rectify the globe for the given latitude ; bring the 
sun’s place to the meridian, and set the index to 12 ; then if the 
time be in the forenoon, turn the globe eastward, but if in the af¬ 
ternoon, westward, until the index has passed over as many hours 
as the time is before or after noon ; then all the stars at the east¬ 
ern semicircle of the horizon will be rising, those at the western 
semicircle will be setting, those under the graduated edge of the 
brass meridian, above the horizon, will be culminating or on the 
meridian ; all those that are above the horizon will be visible, and 
those below it invisible, at the given time and place ; if the globe be 
turned on its axis from east to west, those stars that do not descend 
below the horizon, never set at the given place, and those which 
do not come above the horizon, never rise. These circles of per¬ 
petual apparition or occultation may be found by describing circles 
on the globe, parallel to the equinoctial, at a distance from it equal 
to the complement of the latitude. 

Example i. At 10 o’clock in the evening in New-York on the 
10th of May, required those stars that are rising, setting, on the 

- meridian, &c. ? 
Ana. Altair in the eagle is rising ; Spica in virgo, the two stars 

mizar and alcor in the tail of the great bear, and £ in Cassiopeia, are 
nearly on the meridian ; Procyon is about 6° above the western 
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point of the horizon, the star marked y in gemini, is nearly set¬ 
ting, &c. 

2 On the 16th of November, at 4 o’clock in the morning, at 
New-York, what stars are rising, setting, on the meridian, See. 

Am. Arcturusis after rising about 5° above the E. N. E part; 
of the horizon, Procyon is on the meridian, Pollux is near the me¬ 
ridian, and Castor after passing it ; in Andromeda, and mirac in 
Cetus, are near the western part of the horizon, Sec. 

3. On the 9th of February, when it is 9 o’clock in the evening 
at London, what stars are rising, on the meridian, setting, Sec. ? 

4. Required those stars that never set in the latitude of New- 
York, and at what distance from the equinoctial is the circle of 
perpetual apparition ? 

5. Required those stars that never rise at Cape Horn, and those 
that never set at Copenhagen ? 

6. Required those stars that are always above the horizon at the 
north pole, and also those that cannot be seen there ? 

7. How fir must an inhabitant of New-York travel southward 
to lose signt of Arcturus ? 

8. In what parallel of latitude do those reside to whom Sirius is 
never visible but when in their horizon ? 

9. In what latitude do those reside to whom Aldebaran is always 
vertical when on their meridian ? 

Note. When the decl. of the star is equal to the lat. of the place, the 
star will be always vertical in that lat. when on the meridian. 

PROB. 8. 

To find, at what hour any star or planet will rise, come to the 
meridian, and set at any given place * 

Pule. Elevate the pole to the given latitude, bring the sun’s 
place in the ecliptic to the brass meridian, and set the index to 12 ; 
then bring the star or planet’s place to the eastern part of the hori- 

* The apparent time of the transit of any star over the meridian is thus 
found ; subtract the sun’s right ascension in time at noon from the star’s 
right ascension in time, increased by 24 hours, if necessary; the remain¬ 
der is the apparent time of the star’s passing the meridian nearly ; from 
which the proportional part of the daily increase of the sun’s right ascen¬ 
sion, for this apparent time from noon (corrected by the longitude you 
are in or difference of longitude from Greenwich) being subtracted, the 
remainder will be the correct time of the star’s passing the meiidian. 

The apparent time of a star’s rising or setting is found by applying its 
semidiurnal arch answering to its declination, and the latitude of the 
place, by subtraction or addition, to the time of its transit over the meri¬ 
dian. The semidiurnal arch is thus found ; the complement of the lati¬ 
tude of the place, the complement of the star’s declination, and the dis¬ 
tance from the vertex to the point where the star rises or sets (which is 
always equal 90 ) forming a quadrantal triangle, are given, to find the an¬ 
gle at the pole of the equinoctial formed by the brass meridian, or meri¬ 
dian of the place, and the circle of declination passing through the star, 
which will be the semidiurnal arch required. Or the deck of the star, its 

i 



THE CELESTIAL GLOBE. 201 

zon, and the index will point out the time of the star’s rising ; 
turn the globe westward until the star, or planet’s place comes to 
the brass meridian, and the index will shew the time of the star’s 
coming to the meridian of the place ; continue the motion of the 
globe westward until the star or planet’s place comes to the west¬ 
ern part of the horizon, and the index will shew the time of its 
setting. 

Note 1. The time may be more accurately found on the equator, always 
reckoning the hours between the meridian passing through the sun’s place 
and the brass meridian, for the time before or after noon when the star or 
planet rises, sets, &.c. 

If the sun’s place be to the east of the brass meridian, the star or planet 
will rise before noon, but if to the west, the star or planet will rise in the 
afternoon. 

Example 1. At what time will Sirius rise, come to the meri¬ 
dian, and set at New-York, on the 2d of November ? 

Am. It will rise at 9 o’clock in the evening, come to the meri¬ 
dian at 2 in the morning, and set at 7 in the morning. 

2 On the 13th of May, 1811, the longitude of Jupiter was 2 
signs 8° 31;, and his latitude 30' south ; at what time did he rise,r 
culminate, and set at Greenwich, and whether was he a morning 
or an evening star ? 

Am. He rose at 5 o’clock in the morning, came to the meridian 
at 5 min. after 1 in the afternoon, and set about 10 minutes after 9 
at night. Jupiter was here an evening star, because he set after 
the sun. 

amplitude, and what the semidiurnal arch reckoned on the equinoctial ex¬ 
ceeds or wants of 90° (according as the deck is of the same or a different 
name with the lat.) and the angle in this triangle included by the equi- 
noctional and amplitude, or the inclination of the equinoctial to the hori¬ 
zon, is the comp, of the lat. of the place ; whence by Napier’s rule, Rad. : 
tangt. lat. :: tang. decl. : sine of an angle which added to or subtracted 
from 90°, according as the star’s deck is of the same, or a different name 
from the latitude. (This gives the investigation of the note in prob. 13, 
part 2d.) 

The apparent time of a planet’s passing the meridian may be found 
thus ; let the planet’s right ascension, the preceding noon or midnight, 
be calculated from its longitude and latitude (by note to prob. 2) and 
turned into time ; subtract the sun’s right ascension in time, the same 
noon or midnight from it, the remainder will be the time of the planet’s 
passing the meridian nearly, which call x; take the difference of the. 
sun’s daily or half daily variations in right ascension in time, if the planet 
be progressive in right ascension, or the sum if it be retrograde, which 
call y ; then say as 24b. y or 12h. — y : 24-h. or 12h. (according as 
the daily or half daily variation is used) :: x i to the time of the planet’s 
passing the meridian. The sign -f* is to be used if the planet’s progres¬ 
sive motion in right ascension be greater than the sun’s ; in any other case 
the sign — is to be made use of. Where accuracy is required, the 2d differ¬ 
ences of the right ascension should be allowed for, and the difference of 
longitude, if for any other meridian different from that of Greenwich. 
See the method of allowing for these differences at the end of the Nauti¬ 
cal Almanacs for 1811, 1812 or 1813, published by Mr. John Garnett, 
See also Emerson’s differential method in his Conic Sections. 

B b 
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Note 2. When a planet rises or sets after the sun, it is then an evening 
star, but when it rises or sets before the sun, it is a morning- star. 

3. At what time does Aldebaran rise, set, and come to the meri¬ 
dian of Philadelphia, on the 4th of July ? 

4. On the 1st of October, 1311, the longitude of Venus will be 
6s. 4° 36', and her latitude 1° 22' N. at what time will she rise, 
set, and come on the meridian of Greenwich, and whether will she 
be a morning or an evening star ? 

5. On the first of June, 1812, the longitude of Mars will be 
2s. 27° 37', and his latitude 54' north ; required the time of his 
rising, coming on the meridian, and setting at Greenwich ? 

6. The longitude of Saturn on the first of November, 18)3, will 
be 9s. 14a 24', and his latitude 6' N. ; required the time of his 
rising, culminating, and setting at Greenwich l 

PROB. 9. 

To find on what day of the year a given star will be upon the 
meridian, at any given hour. 

Rule. Bring the given star to the meridian, and set the index 
to 12 j then turn the globe westward or eastward, according as the 
time is in the forenoon or afternoon, as many hours as the given 
time is from noon ; the brass meridian will then cut the ecliptic 
in the sun’s place corresponding to the time required, which may 
be found on the horizon. 

Example 1. On what day of the month does Sirius come to the 
meridian of New-York, at 4 o’clock in the morning ? 

Ans. The time being 8 hours before noon, the globe must there¬ 
fore be turned 8 hours towards the west, the point of the ecliptic 
then intersected by the brass meridian, will be 12° of Scorpio, 
answering nearly to the 4th of November. 

2. At what time of the year will Regulus in Leo come to the 
meridian of Philadelphia, at 9 o’clock at night ? 

Here the time being 9 hours after noon, the globe must there ¬ 
fore be turned 9 hours towards the east ; then the ecliptic will be 
intersected by the brass meridian in 15j° of Aries, corresponding 
to the 5th of April, nearly. 

3. At what time of the year does Procyon come to the meridian 
of London, at 4 o’clock in the afternoon ? 

4. At what time of the year does Arcturus come to the meri¬ 
dian of Dublin, at 10 o’clock at night ? 

5. At what time of the year does Alcyone in the Pleiades come 
to the meridian of Washington city at noon,* or when the sun is 
on the meridian ? 

* If the given star comes to the meridian at noon, the sun*s place will 
be found under the brass meridian without turning the globe ; if the star 
comes to the meridian at midnight, the globe may be turned eastward or 
westward until the index has passed over 12 hours. When the time is 
given for the meridian of any other place, it must be reduced to that evf 
the given place by prob. 6, part 2. 
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6. At what time of the year does Lyra in the harp, come to the 
meridian of Boston, at midnight ? 

7. On what day of the month, and in what month, does Spica 
in Virgo come to the meridian of New-York, when the sun is on 
the meridian of Constantinople ? 

8 Having observed Aldebaran in Taurus pass the meridian of 
George Town College, on the Potomac, when it was 8 o’clock in 
the morning, by a time piece set to the meridian of Greenwich ob¬ 
servatory ; required the month and day when the observation was 
made ? 

PROB. 10. 

Given the latitude, day of the month, and hour, to find the alti¬ 
tude and azimuth of any given star * 

Rule. Rectify the globe for the given latitude, screw the 
quadrant in the zenith, bring the sun’s place for the given day to 
the brass meridian, and set the index to 12 ; then if the given 

The reason of the rule is evident, as the sun always comes to the meri¬ 
dian at 12, and that it is distant from the meridian, on which the sun is 
at the given time, as many hours as are equal to the time that the star 
culminates before or after noon. This time is equal to the difference of 
the sun and star’s right ascensions ; when their right ascensions are equal, 
they are on the meridian at the same time, that is at 12 o’clock. Hence 
the problem may be easily solved by calculation. 

* Here the day of the month being given, the sun and stars right ascen¬ 
sions and declinations are given (by prob. 1. part 2.) Moreover the comple¬ 
ment of the latitude of the place, the compl. of the star’s altitude, and the 
compl. of his declination, or his distance from the elevated pole of the equi¬ 
noctial, form a spherical triangle. Now the sun and star’s right ascensions 
being given, their difference is given, or the distance between the sun and 
star reckoned on the equator ; and as the distance of the sun from the meri¬ 
dian is given in time, and consequently in degrees, being equal to the hour 
from noon, the distance of the star from the same meridian is also given, being 
equal to the remainder of the difference of their right ascensions, or equal 
to the angle formed at the pole by the brass meridian, or meridian of the 
place, and the circle of declination passing through the star. Therefore in 
the above triangle there are given two sides, viz. the comp, of the latitude, 
and comp, of the declination of the star, and the angle included by these 
sides, or the distance of the star in right ascension from the meridian, to find 
the third side or compl. of the alt. And as the angle included by the compl. 
of the lat. of the place and the compl. of the alt. of the star, is the star’s azi¬ 
muth or its supplement, according as the north or south point of the horizon, 
from which the azimuth is reckoned, is of the same or a different name from 
the elevated pole. Hence to find the azimuth we have the following pro¬ 
portions ; Had. : cos. angle at the pole, or dist. of star in rt. ascension from 
the mer. :: tangent dist. of the star from the pole, or 90° zt decl. : tangt. x, 
the distance from the pole of the equinoctional to the perpendicular let fall 
from the star to the meridian of the place, the sum or difference between 
which and the distance between the zenith and pole (according as the perpen¬ 
dicular falls towards the zenith or in a contrary direction from the pole) call 
y; then sine x : sine y :: co. tang, angle at the pole, or distance of the star in 
right ascension from the meridian : co. tang, azimuth. Again, sine azim, : 
sine distance of the star from the pole, or 90°±^- dec!. :: sine angle at the 
pole : cos. altitude. 
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time be in the morning, turn the globe eastward, but if in the af¬ 
ternoon, westward, as many hours as the time is before or after 
noon ; keep the globe in this position, and move the quadrant of 
altitude until its graduated edge coincides with the centre of the 
given star ; the degree then cut on the quadrant, reckoned from 
the horizon, will be the altitude, and the degree on the horizon, cut 
by the quadrant, reckoning from the north or south, will be the 
azimuth required. 

Example 1. Required the altitude and azimuth of « Arietis at 
Philadelphia, when it is 5 o’clock in the morning of the 23d. of 
September ? 

Ans, The alt. is 47°, and the azimuth nearly 78-1° from the 
south towards the west. 

2. Required the altitude and azimuth of Altair in the Eagle, at 
New-York, when it is 9 o’clock in the evening of the 21st of June ? 

Ans. The alt. is 20° 22', and azimuth 83° 23' from the south 
towards the east. 

3. Required the altitude and azimuth of Lyra in the harp, at 
Washington city, at 3 o’clock in the morning of the 21st of March ? 

4. Required the altitude and azimuth of Procyon on the 10th of 
February, at 9 o’clock in the evening at London ? 

5. On what point of the compass does the star Algol in Perseus 
bear at New-York, on the 10th of August, at 10 o’clock in the after¬ 
noon, and what is his altitude ? 

Note. The points of the compass are reckoned the same way as the 
azimuth, allowing 11° i5' to each. 

PROB. 11. 

The latitude, day of the month, and the altitude of any known star 
being given, to find the hour of the night and the star's azimuth. 

Rule. Rectify the globe for the latitude, screw the quadrant 
of altitude in the zenith, bring the sun’s place for the given day 
to the brass meridian, and set the hour index to 12 ; bring the 

Thr, in ex. 2. the sun’s right ascension = 90° his distance from the me¬ 
ridian or ioon = 9 hours = 135°. Alt air’s right ascension in time — 19h. 
41' 1" = 295° 15' nearly. (•- • hair’s distance from the meridian in 

right ascen. = 295° 15' — 9o°-f-155° = 70° 15', the angle at the pole 
formed by the co. lat. and circle of declination passing through the star, and 
the star’s declination is 8° 21' S"N. or 8° 21' nearly ; hence rad. : cos. 70° 
15' :: tang. 90°—8° 21' =81° 39' or cot. 8° 21' : tang, x 66° 31'. Whence 
66° 31' — 49° 17' (co. lat.) = 17° 14' = y; then s. x 66° 31' : s. y 17° 14' 
:: cot. 70° 15' : co. tang, azimuth 83° 23'. Again, s. azim. 83° 23' : s. dist. 
of the star from the pole, or cos. decl. 8° 21' :: s. 70° 15' : cos. alt. 20° 
22^' nearly. 

The learner will observe, that the places of the stars on our newest globes 
are calculated for the year 1800, to which we have therefore adapted most 
of our calculations, &c. 

The calculation of prob. 50, part 2d. is performed in the same manner as 
the above. The variation of the compass may be obtained from this prob. in 
the same manner as in prob. 50 above alluded to. 
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quadrant of altitude to the side of the brass meridian, east or west oil 
which the star was situated when observed, turn the globe west¬ 
ward until the centre of the star cuts the given altitude on the 
quadrant; then the hours which the index has passed over, will 
shew the time from noon when the star has the given altitude, and 
the quadrant will intersect the horizon in the required azimuth * 

Examfile 1. The star Altair in the Eagle on the 21st of June, 
at New-York, was observed to be 20° 22i' above the horizon, and 
east of the meridian ; required the hour of the night and the star’s 
azimuth ? 

Ans. The sun’s place being brought to the meridian, and the 
globe turned westward until the star cuts 20° 22' east of the me¬ 
ridian, the index will then have passed over 9 hours, and the star's 
azimuth, indicated by the quadrant, on the horizon, will be 83° 23' 
from the south towards the east. 

2. The altitude of a Arietis was observed 47° at Philadelphia, on 
the 23d of September, the star being west of the meridian; re¬ 
quired the hour and the star’s azimuth ? 

Ans. Here the globe being turned westward until the star cuts 
the given altitude on the quadrant, west of the meridian, the index 
will have passed over i 7 hours corresponding to 5 o’clock in the 
morn, and the azim. from the south towards the west is 79° nearly. 

* The prob. being performed as directed in the rule, the complement 
of the latitude of the place, the complement of the star’s altitude, and the 
complement of its declination, will form a spherical triangle, and as the 
three sides are given, the angles are therefore given. Now the angle 
formed by the quadrant of alt. and the brass meridian is equal to the 
star’s azimuth, and the angle formed at the pole, by the circle of declina¬ 
tion passing through the star and the brass meridian, is the distance of the 
star from the same meridian; and as the sun and star’s right ascensions 
are given, their difference is therefore given, from which, if the distance 
of the star from the meridian be taken, the remainder is the distance of 
the sun from the meridian, which converted into time, will give the hour 
required. Thus in example 1. The comp, of the lat. = 49° 17', the 
comp of the alt. = 69° 38', and the comp, of the star’s decl. = 81° 39'. 
Hence by spherical trigonometry we shall have this proportion, tang. A co 
lat. 24° 38' : tang, of half the sum of the com. of the deck (81° 39') and com. 
of the alt. (69° 37$') = 75° 38' :: tang, of half the difference of the co. 
of the deck and co. of the alt. = 6° Of' : tang, cc = 41° 53'. (See Em¬ 
erson’s frig. b. 3. sect. 4. case 11.) Hence 41° 53' -f- 24° 38' (half the 
co. lat. nearly) ~ 66° 31'; then by Napier’s 1st rule, 11 : tang. 66° 31' :: 
tang, decl of the star 8° 21' : cos. 70° 15', the angle formed at the pole 
by the brass meridian and circle of declination passing through the star, 
or the star’s distance from the meridian. Now the sun’s right ascen. is 
90°, and the star’s 295° 15', the diff. is therefore 205° 15', from which the 
distance of the star from the meridian being taken, the remainder 135° 
— dist. of the sun from the mer. = 9 hours; hence the time is 9 o’clock 
in the evening. 

To find the azimuth, the sines of the sides of spherical triangle being 
as the sines of the angles opposite to them, it will be sine co. alt. 69° 377/ 

sine co. deck 81° 39' :: sine 70° 15' : sine azimuth 83° 237/ nearly, as 
required. The azimuth or its supplement will be found by this latter 
proportion. 
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3. The altitude of Lyra at Washington city, on the 21st of 
March, was observed 50° east of the meridian ; required his azi¬ 
muth and the hour ? 

4. The altitude of Deneb in the Lion’s Tail, on the 28th of De¬ 
cember, at London, was observed 40° when east of the meridian ; 
required its azimuth and the hour ? 

PROB. 12. 
The latitude, day of the month, and azimuth of a star being given, to 

find the hour of the night and the star's altitude. 

Buie. Elevate the pole to the given latitude, screw the 
quadrant in the zenith, bring the sun’s place in the ecliptic for the 
given day to the brass meridian, and set the hour index to 12 ; 
bring the graduated edge of the quadrant to coincide with the giv¬ 
en azimuth on the horizon, and keep the quadrant in this position ; 
turn the globe westward until the given star comes to the gradu¬ 
ated edge of the quadrant, then the hours passed over by the in¬ 
dex will be the time from noon, and the degrees on the quadrant, 
reckoning from the horizon to the star, will be the altitude.* 

Examjile i. On the 21st of June at New-York, the azimuth of 
Atair in the Eagle was observed to be 83° 23|', from the south to¬ 
wards the east; required the hour of the night and the star’s alti¬ 
tude ? 

Ans. The globe being turned on its axis, the index will pass 
over 9 hours, corresponding to 9 o’clock in the evening, and the 
star’s altitude will be 20° 22'. 

2. On the 23d of September at Philadelphia, the azimuth of 
Arietis was 79° from the south towards the west; required the 
hour of the night and the star’s altitude ? 

3. On the 8th of October, the azimuth of the star marked 0 in 
the shoulder of Auriga, was 49° from the north towards the east; 
required its altitude at London, and the hour of the night ? 

* In this, as in the two preceding problems, the compl. of the lat. the 
compl. of the star’s alt. and compl. of his decl. form a spherical triangle, 
two sides of which, viz. the co. lat. and the co. decl. are given, and the 
angle opposite the co. decl. is the azimuth or its supplement ; hence 
the other parts of the triangle may be found, by case 2, b. 3, sect. 4, 
Emerson’s Trig. Thus in ex. 1. s. co. decl. 81° 39' : s. co. lat. 49° 17* :: 
s. azim. 83° 23^' s. x 49° 33' — the angle opposite the co. lat. ; then s. 
81o 39' — 49° 17' 1r0 81° 39'+ 49° 17* + 
----- 16° 11' : s. --- =*= 65° 28' :: tang. 2 2 
96° 37'—49° 33' , , 
--- = 23° 32' : co. tang, half the hour angle, or half the dis¬ 

tance of the star from the meridian 35° 8'; hence the whole distance is 
70° 16', and therefore the hour of the night is found as in the last note. 
96° 37' is the supplement of the azimuth nearly, or 180°—83° 23' = 96° 
37' = the angle opposite the co. decl. N' w to find the altitude, it will 
be s. x. 49° 33' : s. 70° 16' :• s. co. lat. 49° 17' : s. cobalt. 69° 38'; hence 
the alt. is 20° 22'. The results in this and the foregoing notes would ex¬ 
actly agree if the seconds were retained, but as the calculations are given 
only to illustrate the prob. such nicety was considered unnecessary. 
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PROB. 13. 

The latitude, day of the mouthy and two star's having the same 

azimuth, being given, to find the hour of the night * 

Rule. Elevate the pole to the given latitude, screw the quad¬ 
rant of altitude in the zenith, bring the sun’s place in the ecliptic 
to the brass meridian, and set the hour index to 12 ; turn the globe 
westward on its axis, until the two given stars coincide with the 
graduated edge of the quadrant of altitude ; and the hours passed 
over by the index, will be the time from noon. The common azi¬ 
muth will be found on the horizon. 

Example 1. At what hour at New-York, on the 22d of Septem¬ 
ber, will Capella in Auriga and Castor in Gemini, have the same 
azimuth, and what will that azimuth be ? 

Ans. In turning the globe westward, &c. the index will pass 
over 13^ hours before the stars coincide with the quadrant, they 
will therefore have the same aximuth at a quarter past one in the 
morning, and the azimuth will be 63d° from the north towards the 
east. 

2. At what hour at London on the 1st of May will Altair in the 
Eagle, and Vega in the Harp, have the same azimuth, and what 
will that azimuth be ? 

3. At what hour will Arcturus and Spica Virginis, have the 
same azimuth at Paris, on the 20th of April ? 

4. At what hour will Arcturus and cc Zuben el C. of Libra, have 
the same azimuth at Boston, on the 21st of June ? 

5. At what hour at Philadelphia will Procyon and Sirius have 
the same azimuth, on the 21st of March ? 

Note. When the two stars have the same right ascension, they will 
have the same azimuth when on the meridian, and as the star’s passing 
the meridian is found by prob. 8, the hour is therefore given. If a cor¬ 
rect table of those remarkable stars which have the same right ascension 
were given, and the times of their passing the meridian of any remarka¬ 
ble place, as that of Greenwich or Paris observatory, this would afford an 
easy method of finding the hour of the night, as every star is on the me¬ 
ridian of any place at the same hour. It would also afford a method of 
finding a meridian line. See. 

* This prob. may be thus calculated; let S, s 
be the two stars, P the pole, Z the zenith, EQR 
a portion of the equator, and O the sun’s place. 
In the triangle SPs there are given SP, $P the 
complements of the star’s declinations, and the 
angle SPs, the difference of the star’s right as¬ 
cension; hence the angle at S and s, and the 
side Ss, are given, and therefore the angle ZSP, 
the supplement of PS.?, is given. Now in the 
triangle PsZ or PSZ, there are given sP or SP, the angles at s or S, and 
ZP the complement of the latitude; hence the angle PZS, = the suppl. 
of the azimuth, and therefore the angle QZS the azimuth are given, and 
likewise the angle sVZ or SPZ, the distance of the stars from the meri¬ 
dian PQ is given ; but as the angle sPE or SPR, the difference between 
the sun and the stars right ascensions respectively, are given, therefore 
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PROB. 14. 

The latitude, day of the month, two stars that have the same 

altitude, given, /o j6«c/ Me /207/r q/* the night * 

Rule, Rectify the globe for the latitude, zenith and sun’s 
place, (prob 9 part l) turn the globe westward until the two giv¬ 
en stars coincide with the given altitude on the quadrant, or until 
the two stars oe at the same distance from the horizon, if the alti¬ 
tude be not given ; then the hours passed over by the index will 
be the time from noon, when the two stars will have that altitude. 

Example l. At what hour at New-York, on the 20th of July, will 
Belelgeux in Orion, and Castor in Gemini, have each 5° of alti¬ 
tude ? 

Ans. At 45 min after 3 in the morning. 
2. At what hour at London on the 2d of September, will Markab 

in Pegasus, and a in the head of Andromeda, have each 30° of alt. ? 
3. At what hour at Philadelphia on the 18th of January, will Al- 

tair in the Eagle, and Fomalhaut in the southern Fish, have each 
12° of altitude ? 

4 At what hour at Dublin, on the 15th of May, will r> Benetnach 
in the tail of the Great Bear and y, in the shoulder of Bootes, have 
each 5 6° of altitude ? 

w * 

See Emerson’s Algebra, prob. 160. 

Z 

the remaining angle QPR, the distance of the sun from the meridian is 
given, which converted into time, will give the hour required. 

In like manner when two stars in one azimuth are given, and the alti¬ 
tude of either being given, the latitude of the place may be easily found 
on the globe, or by calculation thus ; if the altitude of S be given, its com¬ 
plement SZ is given, and in the triangle SPs, SP, sP, and the angle SPs are 
given, hence the angle PSs and its suppl. PSZ are given. Again, in the 
triangle ZSP, SP, SZ, and the angle at S are given, hence ZP, which 
is the compl. of the latitude, is given, 
page 448. 

* The prob. may be thus solved by 
Trigonometry, the altitude being giv¬ 
en ; let S, s be the two stars, P the 
pole, and Z the zenith ; then in the tri¬ 
angle SPZ or sPZ, the three sides are 
given, and the angle ZPS, or ZP3, the 
distance of the stars S, or s, respective¬ 
ly, from the meridian, from which the 
hour may be found as in the notes to 
the last problems. From the solution P 

it is evident, that the alt of one star alone is sufficient to determine the 
hour when the lat. is given. When both altitudes are given, the lat. and 
hour may be found thus ; in the triangle SPs, SP, sP, the complements of 
the stars decl. and the angle SP,s, the difference of their right ascensions 
are given, and hence the side S.?, and the angle PSs, are given. Again, in 
the triangle ZSs, the three sides are given, and therefore the angle ZSs 
is given, consequently the angle ZSP is given, and therefore ZS the co. 
alt. and SP being given, ZP the co lat. is also given. When neither of 
the altitudes are given, the solution becomes rather tedious and trouble¬ 
some. 



THE CELESTIAL GLOBE. 209 

5. At what hour, at George Town on the Potomac, will Aldeba- 
ran, and Algol in Perseus, have each 17^° of altitude, on the 31st 
of March ? 

PROB. 15. 

Given the azimuth of a known star, the latitude of the place ^ and the 
hour ; to find the star's altitude, and the day of the month.* 

Rule. Rectify the globe for the latitude, screw the quadrant 
of altitude in the zenith, bring the graduated edge of the quadrant 
to the given azimuth on the horizon, turn the globe until the star 
coincides with the quadrant, and set the index to 12 ; then if the 
time be in the forenoon, turn the globe westward, but if in the af¬ 
ternoon, eastward, until the index has passed over as many hours 
as the given time is from noon ; the degree then cut on the eclip¬ 
tic by the brass meridian will correspond, on the horizon, to the day 
of the month required. The altitude of the star when brought 
to the graduated edge of the quadrant, will be the degree on it, cut 
by the centre of the star. 

Example 1 At Washington city at 9 o’clock at night, the azi¬ 
muth of Aldebaran was by observation 89° from the south towards 
the west ; required its altitude and day of the month ? 

Ans. Its altitude is 26°, and the day is the 21st of March ; as the 
time is 9 hours past noon, the globe must be turned as many hours 
towards the east, &c. 

2. At Philadelphia at 5 o’clock in the morning, the azimuth of a. 
Arietis was 79° from the south towards the west ; required its al¬ 
titude and the month and day when the observation was made ? 

Ans. As the time wants 7 hours of noon, the globe must be 
turned 7 hours westward ; the altitude of the star will be found 
47°, and the time the 23d of September. 

3. At London, at 10 o’clock at night, the azimuth of Spica was 
observed 40° from the south towards the west ; required its alti¬ 
tude and the day of the month ? 

* Here the compl. of the lat. the co. of the decl. of the star, and the co. 
of its altitude, form a spherical triangle, two sides of which, viz. the co. 
lat. and co. deck of the star, and an angle opposite one of them, that is 
the angle opposite the co. deck being the azimuth of the star or its sup¬ 
plement, or what it wants of 180° ; from which the distance of the 
star from (he meridian will be found exactly as in the note to prob. 12 of 
the preceding. And as the hour is given, the distance of the sun from the 
meridian, or the angle formed by the circle of declination passing through 
the sun, and the brass meridian, is given, being equal to the time from 
noon converted into degrees ; hence the distance of the star from the me¬ 
ridian being added to that of the sun, will give the difference of their rt. 
ascensions, and as the rt. as. of the star is given, the right ascension of the 
sun will be therefore given. Now as the obliquity of the ecliptic is given, 
the sun’s longitude may be easily found by Napier’s rule, and hence the 
corresponding day may be found from an ephemeris or the globe. The 
application of these remarks is left as an exercise for the learner, in cal¬ 
culating the above examples. 

V. c. 
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4. At Dublin at 2 o’clock in the morning, the azimuth of £ Pe¬ 
gasus or scheat, was 70° from the north towards the east; requir¬ 
ed its altitude and day of the month ? 

PROB. 16. 

The latitude of the filace, day of the months and hour of the day be» 
ing given, to fnd the Nonagesimal degree* of the eclifitic, its al~ 
titude and azimuth, and the Medium Cali, idc. 

Buie. Rectify the globe for the latitude, zenith and sun’s 
place (by prob. 9.) then if the given time be in the forenoon, turn 

* The nonagesimal degree of the ecliptic, so called from its being the 
90th degree reckoning from the horizon on the ecliptic, is the most ele¬ 
vated point of the ecliptic above the horizon, and is measured by the an¬ 
gle which the ecliptic makes with the horizon at any elevation of the pole, 
and is equal to the distance between the zenith of the place and the pole 
of the ecliptic. It is frequently made use of in the calculation of eclipses. 
The medium cali, or midheaven, is that point of the ecliptic which is on 
the meridian. 

From the 22d of December to the 2.1st of June, the nonagesimal degree 
of the ecliptic is east of the meridian; and from the 21st of June to the 
22d of December, it is west of the meridian. 

The globe being rectified as above, then the day of the month being 
given, the sun’s right ascension for the given time, may be found in the 
Nautical Almanac (see notes to problems 42 and 49) and therefore its 
distance from the equinoctial point, which is above the horizon, is given ; 
moreover, as the hour is given, the sun’s distance from the meridian of the 
place, or the brass meridian, is given, and hence the distance from this 
meridian to the next equinoctial point is given. Now as the obliquity of 
the ecliptic is given (note to prob. 49) the degree cut on the ecliptic by 
the brass meridian,! or the medium cceli or midheaven will be given (by Na¬ 
pier’s rule.) Again, as the number of degrees from the elevated equi¬ 
noctial point to the brass meridian is given, its complement, or the dis¬ 
tance from the equinoctional to the horizon, on the equator, is given, and 
the inclination of the equator with the horizon is the complement of the 
latitude. Hence in the spherical triangle formed by the equinoctial or 
equator, the ecliptic, and the horizon ; two angles, viz. the obliquity of the 
ecliptic, and the co. lat. and one side, that is the dist. on the equinoctial to 
the horizon from the elevated equinoctial point, and therefore the angle 
opposite the given side, is given (by Napier’s rules, or by case 10, s. 4, 
b. 3, Emerson’s Trig.) the suppl. of which, or the inclination of the eclip¬ 
tic with the horizon is the nonagesimal degree required. Thus in ex. 1, 
the sun’s rt. ascension is 90°, and is 90° distant from libra, the elevated 
eq. point; and as the hour from noon is 3h. 45'= 56° 15', its compl. 33° 
45', is the distance of the meridian from the point libra. Hence by Na¬ 
pier’s rule, Tang. 33° 45' : r. :: cos. obi. eclip. 23° 28' : co. tang. 36° 4\ 
the distance from libra to the medium cadi, reckoning backwards, which 
therefore corresponds with 23° 56' of leo. Again, 90° — 33° 45' = 56° 15' 
dist. from libra on the equator to the horizon, and 90° — 51£° = 38^° co. 
lat. ; hence, letting fall a perpendicular from the point libra, on the hori¬ 
zon, it will be R. : tang. 38^° :: cos. 56° 15' : 66° 1C', the angle formed at 
libra by the equinoctial and perpendicular; from which the obliquity ©f 
tire eclip. being taken, the rem. 42° 42' is the angle formed at libra by 
the ecliptic and perpendicular ; then S. 66° : s. 42° 42' :: cos. 38^° : cos. 
54° 32f, the inclination of the ecliptic to the horizon, or the nonagesim&f 
degree required. 
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the globe eastward, but if in the afternoon, westward, until the in¬ 
dex has passed over as many hours as the time is before or after 
noon ; reckon 90° on the ecliptic from the horizon, eastward or 
westward, the point where the reckoning ends will be the nona¬ 
gesimal degree, and the degree of the ecliptic, cut by the brass 
meridian, will be the medium coeli: the graduated edge of the 
quadrant being brought over the nonagesimal degree, will point 
out its altitude, and its azimuth will be then seen on the horizon. 

Example 1. On the 2 ist of June, at 45 minutes past 3 o’clocl^ 
in the afternoon at London, required the point of the ecliptic which 
is the nonagesimal degree, its altitude and azimuth ; the longitude 
of the medium cceli, and its altitude, See. 

Ans. The nonagesimal degree is 10° in Leo, its altitude is 54|°, 
and its azimuth 22® 30; from the south towards the west or 
S. Sr W. The midheaven or point of the ecliptic under the brass 
meridian is nearly 24° in leo, and its altitude above the horizon is 
52°. The right ascension of it is 146°. The rising point of the 
ecliptic is 10° in scorpio, and the setting point 10° in taurus. If 
the quadrant of alt. be extended over the sun’s place, the sun’s alt. 
will be found equal 38|°, and his azimuth 78|° from the south to¬ 
wards the west, or W. by S nearly. 

2. At New-York on the 10th of May, at 10 o’clock at night, re¬ 
quired the point of the ecliptic, which is the nonagesimal degree, 
its altitude and azimuth ; the point of the ecliptic, which is the mid¬ 
heaven, &c. See. 

3. At Philadelphia on the 25th of October, at 4 o’clock in the 
morning, required as in the last example, &c. 

4. At George Town College on the Potomac, in lat. 38° 55; 
N. required the nonagesimal degree of the ecliptic, the medium 
cceli, &c. 

PROB. 17. 

Given the latitude, day^ and hour, together \with the altitude and az¬ 
imuth of a star, to find the star.* 

Rule. Rectify the globe for the latitude, zenith and sun’s 
place, as before, and turn the globe eastward or westward (accord¬ 
ing as the time is in forenoon or afternoon, as many hours as the 
time is from noon ; keep the globe in this position, and bring the 
graduated edge of the quadrant to the given azimuth on the hori- 

* As the star is given, when its right ascension and declination are given; 
hence the right asc. and deck may be thus calculated. The prob. being 
performed as directed in the rule, it will be found that the comp, of the 
lat. the comp, of the star’s deck and the comp, of its alt. form a spherical 
triangle, two sides of which, viz. the co. lat. and co. alt. are given, and the 
included angle being the star’s azimuth or its supplement, from whence 
the other side, or the co. decl. and the angle included by this and the 
brass meridian, or the distance of the star from the meridian passing 
through the zenith of the place, will be given ; now as the hour angle is 
given, the distance of the sun from the meridian is given, and hence 
the distance from the sun to the star, reckoning on the equator, or th^ 
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zon ; then under the given altitude on the quadrant, you will find 
the star required. 

Exa.mp.le 1. At New-York on the 21st of June, at 9 o’clock in 
the afternoon, the altitude of a star was 20° 22', and its azimuth 
33° 23' from the south towards the east ; required the star ? 

Am. Altair in the Eagle. 
2. At Washington city on the 21st of March, at 9 o’clock at 

night, the altitude of a star was 26°, and its azimuth 89° from the 
south towards the west ; required the star ? 

3. At Philadelphia at 5 o’clock in the morning of the 23d of 
September, the altitude of a star was 47°, and its azimuth 79° from 
the south towards the west ; required the star ? 

4. At London, on the 22d of December at 4 o’clock in the 
morning, the altitude of a star was 50°, and its azimuth 37° from 
the south towards the east ; required the star’s name ? 

PRCB. 18. 

The latitude and day of the month* being given> to find the meridian 
altitude of any star or planet. 

Rule. Rectify the globe for the given latitude ; then, 
For a star. Bring the given star to the meridian, and the 

degrees between the star and the horizon will be the altitude re¬ 
quired. 

For the moon or a planet. Find the latitude and longitude, or 
the right ascension and declination of the planet, for the given time, 
in the Nautical Almanac, a good ephemeris, or from astronomical 
tables, and mark its place on the globe (as in prob. 4th or 2d) 
bring this place to the brass meridian, and the number of degrees 
between the point on the meridian over it, and the horizon, will be 
the altitude required. 

OR WITHOUT THE GLOBE. 

The declination of the star or planet at the time of its passing 
the meridian, added to or subtracted from the complement of the 
lat. according as they are of the same or a different name, will give 
the meridian altitude required. 

Example 1. What is-the meridian altitude of Aldebaran in tau- 
rus, at the New-York Literary Institution, York or Manhattan 
Island, lat. 40° 46' N. ? 

difference of their right ascensions is given, and as the sun’s right ascen¬ 
sion is given, therefore the star’s right ascension is also given. The ap¬ 
plication of these principles to the above examples, must now be familiar 
to the learner, and is left for his exercise. 

* The day of the month need not be attended to when the meridian alt. 
of a star is required, as the meridian altitudes of the stars on the globe, 
are invariable in the same latitude. Their places may be taken out of the 
ephemeris for noon without any sensible error. Their annual variation 
in decl &c. should, however, be allowed for, where accuracy is required : 
and the right asc. and decl. of the planets, reduced to the given time and 
place, in the same manner as the moon’s, in the following notes. 
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Ans. 65® 20'. Or comp, of the lat. is 49° 14', decl. of Aldebaran 
for 1800 was 16° 5; 43" or 16° 6' nearly; hence the comp, of 
the lat. -f* 16° 6' = 65° 20', as before. 

2. What is the meridian altitude of Procyon at London ? 
3. What is the meridian altitude of Arcturus in Bootes, at 

Washington city ? 
4. On the 1st of June, 1812, the longitude of Jupiter will be 

3s. 9° 20', and latitude 7' north, or his declination will be 23° 15' 
north ; what will his meridian altitude be at Philadelphia i 

5. On the 1st of August, 1811, the longitude of Mars was 8 
signs 0° 8', and his latitude 3° 3' south, or declination 23° 10' 
south ; required the meridian alt. at Greenwich ? 

6. On the 1st of April, 1810, the longitude of saturn, was 8s. 
15° 17', and lat. 1° 45' north ; what was his meridian altitude at 
Paris observatory ? 

7. On the 22d of December, 1812, at the time of the moon's 
passing over the meridian of Greenwich, her right ascension will 
be 142° 53' 13", and declination 14° 37' north ; required her 
meridian altitude at Greenwich ?* 

Ans. Comp. lat. «== 38° 31' 20" N. decl. 14° 37' N. = 53° 
8' 20" mer. alt. required. 

8. What will the moon's meridian altitude be at New-York, in 
longitude 74° 0' 45" W. from Greenwich, lat. 40° 42' 40" N. on 
the 1 6th of October, 1812; her right ascension at the time of 
passing the meridianf being 339° 37' 56", and declination 9° 33' 
south i 

Ans. The com. lat. = 49° 17' 20' N. *— decl. = 9° 33' S. = 
39° 44' 20" mer. alt. required. 

* By the Nautical Almanac the moon will pass over the meridian of 
Greenwich obs. on the 22d of December, 1812, at 30 min. after 3 in the 
morning (or on the 21st of December, 15h. 30m. astronomical time.) 

140° 59' 1" j)’s rt. asc. at midnight, Dec. 21st. Decl. 15° 4' N. 
147 30 35 do. at noon, Dec. 32d. Decl. 13 32 N. 

6 31 34 increase in 12 hours. Decrease in 12h. 1 32 
As 121i. : 3h. 30m. :: 6° 31' 34" : 1° 54' 12"; hence 140° 59' 1" + 1° 54' 

12" = 142° 53' 13" moon’s rt. asc. at 15h. 30m. 
Again, 12h. : 3h. 30m :: 1° 32' : 27' ; hence 15° 4' — 27' = 14° 37', the 

moon’s decl. at 15h. 30m. 
If greater accuracy be required, consult the theorems at the end of the 

Nautical Almanac for 1812 or 1813, published by J. Garnett. 
f To find the time of the moon’s passing the meridian of a given place, dif¬ 

ferent from that of Greenwich. Take the difference between the time of 
the moon’s passing over the meridian of Greenwich on the given day, and 
the day preceding or following*, according as the place is to the east or 
west of Greenwich; then say, as 24 hours is to this difference, so is the 
difference of longitude in time, to a number of minutes and seconds, 
which must be added to the time of the moon’s passage over the meridian 
of Greenwich, if the place be west, or subtracted if east of Greenwich ; as 
the moon in the latter case will come to the meridian sooner than in the 
former. Thus on the 16th of Oct. 1812 (exam. 8) the moon will come to' 
the meridian of Greenwich at 9 hours, and on the 17th at 9h. 55m. the 
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PROB. 19. 

The meridian altitude of a known star or filanet being given to 

find the latitude. 

Rule. Bring the given star, or the place of the planet,* to the 
brass meridian, count the number of degrees in the given altitude 
(corrected!) on the brass meridian, from the star or planet’s place, 
towards the south part of the horizon if the latitude be north, or 
towards the north part of the horizon if the latitude be south, and 
mark where the reckoning ends ; elevate or depress the pole un¬ 
til this mark coincides with that part of the horizon towards which 
the altitude was reckoned ; then the elevation of the pole above 
the horizon will be the latitude required. \ 

difference is 55m. Hence 24h. : 55m. :: 4h. 56' 3" (the difference of lon¬ 
gitude in time) : 11' 18" 4, which as the given place is west of Green¬ 
wich, must be added to 9 hours ; whence 9h. 11m. 18.4 seconds, is the time 
the moon will come to the meridian of New-York on the 16th of Oct. 1812. 
Now to find her right ascension and decl. corresponding to this time ; 
first reduce it to that of Greenwich, and proceed as above. Thus 9h. 11' 
18" 4 -f- 4h. 56' 3" = 14h. V 21" 4, the time at Greenwich ; then, 

338° 23' 20" 1) ’s rt. asc. at midn. Oct. 16th. Decl. 9° 56' S. 
345 25 4 do. at noon, Oct. 17th. Decl. 7 46 S. 

7 1 44 increase in 12 hours. Decrease in 12h. 2 10 
As I2h- : 2h. 7' 27' 4 :: 7° 1' 44" ; 1° 14' 35" 9 ; hence 338° 23' 20" 4. 1° 

14' 35" 9 =• 339° 37' 55" 9, moon’s rt. as. at 14h. 7' 21" 4 at Greenwich. 
Again, 12h. : 2h. 7' 21" 4 :: 2° 10' • 22' 53" 6 ; hence 9° 56'_22' 59" 6= 

9° 33' 0" 4, the moon’s decl. corresponding to 2h. 7' 21" 4 after midnight. 
The above method of calculating the time of the moon’s coming to the 

meridian is a sufficiently near approximation ; more accurate methods are 
given in the Nautical Almanacs for 1812 and 1813, revised by John Gar¬ 
nett, New-Brunswick. 

Having the time of the moon’s coming to the meridian or southing, the 
hour of the night by the moon shining on a sun dial, may be found thus ; 
count how many hours and minutes the shadow on the dial wants of 12 
o’clock, subtract them from the time of her southing for the hour of the 
night. But if the shadow be after 12, add these hours and minutes on the 
dial to the time of her southing, rejecting 12 if it exceed it, and you have 
the hour of the night. 

methods are a,so g^en ^ the Nautical Almanacs for 1812 and 
181o, for finding the moon’s decl. rising and setting. The longitude from 
her meridional distance, &c. See the note to prob. 19. 

The places of the planets when on the meridian maybe calculated from 
the Nautical Almanac, when accuracy is required, in the same manner as 
that of the moon in the notes to prob. 18. But as their places vary less than 
that of the moon, they maybe taken from the almanac for noon, without any 
sensible error, by only taking proportional parts for the daily variation. 

T observed altitude of a star may be corrected for dip and refraction. 
By the tables given in the note to prob. 58, part 2. 

t It is evident that when the star is brought to the brass meridian, and 
the pole elevated or depressed until the star is at the same distance from the 
nearest part of the horizon as its altitude was observed to be, the globe 
will then be in the same position with regard to the horizon, as the earth it¬ 
self ; the height of the pole above the artificial horizon of the globe, being 
equal to the height of the real pole above the horizon of the earth ; but the 
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Or, The declination of the star being given, or that of the plan¬ 
et (from the Nautical Almanac) reduced to the time and meridian 
of the place of observation (by note to prob. 18) then the sum or 

height of the pole above the horizon, is always equal to the latitudey therefore 
the truth of the rule is evident. The demonstration of this property with 
the others that follow, may not be unworthy the readers perusal. 

1. The height of the pole above the 
horizon is equal to the latitude. Let 
HR represent the horizon, EQ the 
equator, Zthe zenith, and P the pole; 
then ZE — thelat. and PE = ZR be¬ 
ing each equal 90°; hence ZP, which 
is common to both, being taken 
away, EZ will remain = PR. Again, 
2. Half the sum of the greatest and least 
alt. of a circumpolar star will give the 
latitude. For if vw be the circle de¬ 
scribed by the star, v being the great¬ 
est, and. w the least alt. then as Pv= 

Pw, PR = Rv+Rw X 3. The lat. 
?nay be also thus foimd; Let eOt be the 
ecliptic; then when the sun comes to 
ey eli will be its greatest meridian alt. its decl. being then greatest ; but 
when the sun comes to ty ts being the parallel described on that day, HI 

will then be the least mer. alt. Now Ee being = Es, He -f- Hs X $ = HE 
the co. lat. 4. The inclination of the ecliptic to the equator, is equal to half the 
dijf. of the sun*s greatest and least meridian altitudes. For EOe the obliq. of 

the ecliptic — £ X He — Hs, or h se — Ee. 5. The alt. of that point of the 
equator which is on the meridiany or the angle which the equator makes with 
the horizon, is equal to the compl. of the latitude. For EH is the measure of 
the angle EOH, because EO and HO are each == 90°, and EH is the compl. 
of EZ, which is equal the lat. 6. As the apparent time is generally found 
by the alt. of some celestial body, hence if this latitude be wrong, the time 
must also be wrong. Now the error in cdt. being given, the error in time may 
be thus found; let mn be parallel to the horizon, and nx represent the error 
in alt. then the body being supposed at m instead of xy as the time is calcu¬ 
lated on supposition that there is no error in the declination, the angle 
mPxy or the arc qry measures the error in time. Now the triangle nmx being 
small, the sides may be considered as right lines ; then by trig, it will be 
nx : xm :: sine nmx : R. and xm : qr :: cos. rx : R. (by note to prob. 35, 
part 2.) hence multiplying the corresponding terms, and cancelling xm from 
the two first, nx : qr :: sine nmx X cos. rx : R2 (Emerson’s Geom. propor. 

7i cc X R ^ 
prop. 18.) Therefore qr = “r-3-; but the angle Pa-Z = nmx. 
y 1 ' * sine nmx X cos. rx 0 ’ 
nxm being the compl. to both ; also sin. PxZ or ?imx : sin. PZ :: sin. xZP : 
sin. Pa; or cos. rx, (Emerson’s Trig', b. 3, prop. 29) hence sin. nmx X cos. 
rx — sin. PZ X sin. xZP; and therefore qr — nx X R2a sine PZ X sin. 
xZP — ?ix X R -r- cos. lat. X sin. azim. 

The error is therefore least at the prime vertical, or the vertical circle 
which cuts the meridian at right angles; and hence all altitudes for the pur¬ 
pose of obtaining the time, oug'ht to be taken as near this circle as possible. 
The following ex. will illustrate this latter rule. In lat. 40° 43', if the error 
in alt. at an azimuth 50° be 2^, then qr — 2' X l2^r- ,7579 X ,766— 3' 445 
of a degree = 13" 78 in time. The perp. ascent of a body is likewise quick¬ 
est when on the prime vertical; for nx varies as the sine of the azim. when 
qr and the lat. are given, and the azimuth is then 90°. 

Z 

EE 
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difference of the zenith distance and decl. of the star or planet, 
according as they are of the same or a contrary denomination, will 
be the latitude required. 

Note. The true alt. taken from 90° gives the zenith distance, which 
is north, if the observer be north of the star or planet, otherwise south. 
If the object be in the opposite meridian, or between the elevated pole 
and the horizon, at the time of observation, then the sum of the true alt. 
and the compl. of the declination or polar distance, will be the latitude. 
If the alt. be negative, or the centre of the object be below the horizon, 
it must be subtracted from the polar distance to find the latitude. 

Examfilc 1. In what degree of north latitude is the meridian al¬ 
titude of Aldebaran 65° 20' ? 

Am. In lat. 40° 46' N. 
2. In what degree of north lat. is the meridian altitude of Mirach 

in Bootes 70° ? 
3. In what degree of north lat. is Procyon 90° above the hori¬ 

zon, or vertical when it culminates ? 
4. In what degree of north lat. will the meridian altitude of Ju¬ 

piter be 58° on the first of June, 1813, its longitude being then 
4s. 5° 19', and lat. 42' north, or declination 19° 38' north? 

7. The time when the appar. diurnal motion is perp. to the horizon is thus 
found; let vw be the parallel described by the star, and let the vertical 
circle Z/« touch it at y; then when the star comes to y, its motion will be per¬ 
pendicular to the horizon. Now VyZ being a rt. angle, we have by Napier’s 
rule, R. X cos. ZPy = tang. Py X cot. PZ, or R X cos. distance of the star 
from the meridian = cot. decl. X tang. lat. and hence R. : cot. decl. :: tang, 
lat. : cos. hour angle, or star’s distance from the meridian. The time of the 
star’s coming to the meridian being known, the time required will from 
thence be given. 8. As the time of the sun’s semidiameter passing the me¬ 
ridian serves to reduce an observation of a transit of the preceding or sub¬ 
sequent limb over the mer. to that of the centre, when only one limb was 
observed, the following- method of finding the time in which the sun passes 
the meridian or horizontal wire of the telescope, may have its use. Let mx 
be the diameter of the sun in seconds — d" estimated on the arch of a great 
circle ; then the seconds in mx considered as a lesser circle, must be in¬ 
creased in proportion as the radius is diminished, the angle being inversely 
as the radius where the arc is given ; hence Pa? or cos. decl. rx : R. :: d" 
the seconds in mx of a great circle : to the seconds in mx of a lesser circle 
eu — the seconds in qr, or in the angle qVr; therefore qVr = d" cos. decl. 
(rad. being 1.) = d" X sec. decl. = the time of the sun’s passing over a 
space equal to its diameter, or of passing the mer. Hence 15" in space (be¬ 
ing 1" in time) : d" X sec. decl. in space :: 1" in time : the seconds of pass¬ 
ing the mer. in time = d" X sec. decl. -f- 15". The sun’s diameter in rt. 
ascen. being = qr will be = d" X sec. decl. If it be taken = 32' or 1920", 
and his decl. = 20°, its diam. in rt. as. = 1920" X 1,064 = 34' 2",88. The 
same will hold for the moon if d" be its diam. If nx (in the foregoing part of 
the note) = d'r the sun’s diam. qr — d" X R2 -J- cos. lat. X sin. azim. hence 
time of describing qr or of the sun’s ascending or descending perpendicu- 

d" R2 
larly a space = its d.am. will be X cos. bt. x sin.azim. *" = 33' 

— 1980", the horizontal refraction, then 1980"-i- 15" — 132"; hence 132" 
X R2 “4- cos. lat. X sine azim. is the acceleration of the sun by refraction, 
at rising, &c. (See Vince’s Astron. 8vo.) Other useful principles could be 
deduced from the foregoing, but our limits would not permit their insertion. 
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5. In what degree of latitude will the meridian altitude of the 
moon be 53° 8' 20" south of the observer, on the 22d of Decem¬ 
ber, 1812, astronomical time ? 

PROB. 20. 

Given the day of the month and the hour when any known star 
rises or setsy to find the latitude of the place. 

Eule. Bring the sun’s place in the ecliptic for the given day 
to the brass meridian, and set the hour index to 12 ; then turn the 
globe eastward or westward, according as the time is in the fore¬ 
noon or afternoon, as many hours as the time is from noon ; ele¬ 
vate or depress the pole until the centre of the star coincides with 
the horizon ; then the elevation of the pole will be the latitude 
required.* 

Example 1. In what latitude does Altair in the Eagle rise at 10 
o’clock in the evening, on the 10th of May ? 

Jns. 41° 35'. 
2. In what latitude does Mirach in Bootes rise at half past 12 

o’clock at night, on the !0th of December ? 
3. In what latitude does £ Rigel in Orion set at 4 o’clock in the 

morning, on the 21st of December ? 
4. In what latitude does <3 Capricorni set at 11 o’clock at night, 

on the 10th of October ? 

* The prob. being performed as directed in the rule, then the co. lat. co. 
decl. of the star, and its distance from the vertex («=90°) form a quadrantal 
spherical triangle. Now as the sun and star’s right ascensions are given, 
their difference is given, and as the hour is given, the sun’s distance from 
the meridian is given, therefore the star’s distance from the meridian or the 
angle formed, at the pole, by the co. lat. and the co. decl. of the star, is 
likewise given ; and as the star’s decl. is given, and the dist. of the star from 
the zen. = 90°, there are two sides, and the angle opposite one of them giv¬ 
en to find the third, which is the co. lat. required. This may be solved more 
easily as follows ; the co decl. of the star (or the decl. -f* 90°) the lat. reck¬ 
oning on the brass meridian, from the elevated pole to the horizon, by pro¬ 
ducing* one of the sides of the former triangle, and the arc of the horizon, 
between the star and the point of the horizon, north or south, corresponding 
to the elevated pole, form a right angled sp. triangle, the hyp. of which, 
viz. the co. decl. of the star (or the decl. + 90°) and the angle formed at 
the pole between this side and the brass mer. (being the supplement of the 
distance of the star from the meridian) are given to find the lat. Thus in 
ex. 1. at 10 o’clock in the evening, the sun is 10 hours or 150° distant from 
the mer. Now the sun’s right ascension on the 10th of May (suppose 1812) 
will be 3h. 8' 38" 4, and Altair’s rt. as. 19h. 41' 38" 3, the difference of 
which is nearly 16h. 33'; hence 16h. 33' — lOh. = 6h. 33' = 97° 30' 45" 
Altair’s distance from the mer. the supplement of which is 180°=97° 30'45" 
= 82° 29' 15", the angle formed at the pole, and as the star’s decl. will 
then be 8° 23', the com. of which is 81° 37', hence the comp, of the angle 
at the pole or 7° 30' 45" being middle part, and the decl. or 8° 23', and the 
lat. adjacent extremes, we have by Napier’s rule, r. X sine. 7° 30' 45" = 
tang. decl. 8° 23' X tang. lat. therefore tang, decl, 8° 23' : R sine, 7° 
30'"45" : tan. lat. 41° 35'. 

Dd 
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PROB. 21. 

The altitudes of two known stars being given, to find the latitude 
of the place. 

Rule. With one foot of a pair of compasses extended on the 
equinoctial to the complement of each star’s altitude successively, 
and placed in the centre of each star respectively, describe arches 
on the globe with a black lead pencil, fixed in the other leg of the 
compasses ; these arches will intersect each other in the zenith ; 
the zenith being then brought to the brass meridian, the degree 
over it will be the latitude required * 

Example l. Being at sea, I observed the altitude of Aldebaran 
to be 51° 45', and at the same time that of Castor in Gemini equal 
76° 40' ; required the latitude ? 

Ans. With an extent of 38A° (=90°—51-f0) taken from the 
equinoctial (or any great circle on the globes which is divided into 
degrees) and one foot of the compasses in the centre of Aldeba¬ 
ran, describe an arc towards the north ; then with 13° 20' (90°— 
76° 40') in the compasses, and one foot in the centre of Castor, 
describe another arc crossing the former ; the point of intersection 
will be the zenith of the place, which being brought to the brass 
meridian, will give the latitude 42° nearly. 

2. The altitude of Capella being observed 30°, and at the same 
time that of Aldebaran 35°, the latitude being north; required the 
latitude ? 

3. The altitude of Markab in Pegasus, was 30°, and that of AI- 
tair in the Eagle at the same time was 65° ; required the latitude 
supposing it north ? 

4. In north latitude the altitude of Procyon was observed to be 
50°, and that of Betelgeux in Orion, at the same time was 58° ; 
required the latitude ? 

5. In south latitude the altitude of Betelgeux was 67i°, and 
that of Aldebaran 60|° ; required the latitude ? 

PROB. 22. 

Two known stars being observed, the one on the meridian, and the 
other on the east or west part of the horizon, to find the latitude 
of the place. 

Rule. Bring the star which was observed on the meridian of 
the place, to the brass meridian ; keep the globe from turning on 
its axis, and elevate or depress the pole until the other star comes 

* Let Z be the zenith, P the pole, S, s the places of the star (see the fig, 
in note to prob. 14) then in the triangle sPS, there are given the sides *P, 
SP the co. declinations, and the angle sPS, the diff. of rt. ascensions ; hence 
Ss the distance of the stars, and the angle sSP are given. And in the triangle 
ZSs, all the sides are given to find the angle ZSs ; hence the angle PSZ is 
given. Then in the triangle ZSP two sides ZS and SP, and the included 
angle are given, and therefore ZP is given, which is the co. lat. required - 
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to the eastern or western part of the horizon ; the elevation of the 
pole will then be the latitude required.* 

Examfile 1. When P roc yon was on the meridian, Arcturus in 
Bootes was rising ; required the latitude ? 

Ans. 23° north. 
2. When the two pointers of the Great Bear marked a and /?, 

or Dubhe and (2 were on the meridian ; Vega in Lyra was rising ; 
required the latitude ? 

3. When £ Leonis was on the meridian, the Pleiades were set¬ 
ting ; required the latitude ? 

4. When the star marked f3 in Gemini was in the meridian, e in 
the shoulder of Andromeda was setting ; required the latitude ? 

5. In what latitude is ce. or Canopus, in the ship Argo, rising, 
when a in Phoenix is on the meridian ? 

6. In what latitude is Achernar in Eridanus on the meridian, 
when Procyon is rising ? 

PROB. 23. 
Given two altitudes of a star, and the time between them, to find 

the latitude. 

Rule. Take the complement of the first altitude in a pair of 
compasses, from the equinoctial (or any other great circle on the 
globes which is divided into degrees, &c.) and with one foot on 
the given star, describe an arch with the other (having a pencil 
fixed in it) in a contrary direction to that in which the star was ob¬ 
served ; then bring the star to the brass meridian, and set the in¬ 
dex to 12 (or any other hour) or mark the point on the equinoctial 
cut by the brass meridian ; turn the globe eastward on its axis 
until the index, or the point marked on the equinoctial, has pass¬ 
ed over as many hours as are equal to the time elapsed between 
the two observations, allowing 15° 2' 28" to every hour, or add¬ 
ing 9" 85 of time to every hour,t and mark the point on the par¬ 
allel of the star’s declination then under the brass meridian ; take 
the complement of the next altitude in the compasses, and with 
one foot in this point, describe with the other an arch intersecting 
the former ; the point of intersection will be the zenith of the place, 
which being brought under the brass meridian, will give the lati¬ 
tude required, f 

* The prob. being performed as directed in the rule, then the distance 
between the star which is at the horizon and the mer. towards the elevated 
pole, reckoning on the horizon, the lat. on the mer. or dist. of the pole from 
the horizon, and the star’s co. decl. form a right angled sp. A, one side of 
which, viz. the co. decl. and the angle at the pole, included between the 
brass meridian and circle of decl. passing through the star, which is at the 
hor. being equal to the supplement of the difference of the star’s rt- ascen¬ 
sions, are given ; hence the third side is given, and may be found by Na¬ 
pier’s rule. 

f A sidereal day being 23h. 5& 4", hence 23h. 56' 4" : lh. :: 360° : 15° 2’ 
27" 9, &c. 2' 27" 9 = 9.85 seconds of time. 

f This prob. may be performed by trigonometry in the same manner as 
prob. 61, part 2, (see the note to this prob.) thus ; A and B being the places1 
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Examfile 1. On the 31st of April in the afternoon, the altitude 
of Procyon was observed to be 44° 30', and one hour after its alti¬ 
tude was 51° 31', it being southward of the observer; required 
the latitude ? 

Ans Here the complement of the first altitude is 4 5° 30' with 
this extent in the compasses, and one foot in the centre of the 
given star, describe an arch towards the north ; then the given star 
being brought to the meridian, and the index to 12; turn the 
globe eastward 1 hour 9" 83 or 15° 2' 28" on the equinoctial, 
and mark the point under the declination of Procyon on the brass 
meridian ; from this point as a centre, and with the complement of 
the 2d altitude = 38 30' in the compasses, describe a second 
arch intersecting the former ; the point of intersection brought to 
the brass meridian will give the latitude 41 0 N. nearly. 

2. In north latitude on the 1st of April, in the evening, the alti¬ 
tude of Sirius was observed to be 30°, and one hour 15 minutes 
after his altitude was 19j° ; required the latitude of the place of 
Observation ? 

PROB. 24. 

Given one altitude of a star, and the time at which the altitude 
was taken, to find the latitude. 

Rule. With the complement of the given altitude in the com¬ 
passes, taken from the equinoctial (or any other great circle on the 
globe divided into degrees, &c.) and one foot in the centre of the 
given star, describe an arch with the other, in a direction contrary 
to that in which the star appeared when observed ; bring the sun’s 
place in the ecliptic to the brass meridian, and set the hour index 
to 12 ; then if the time be in the forenoon, turn the globe east¬ 
ward. but if in the afternoon, westward, as many hours as the time 
is before or after noon ; the degrees then cut by the arch on the 
brass meridian, will be the latitude required.* 

Note. The observed altitude must be previously corrected for the height 
of the eye and refraction. The same method will also answer for any planet, 
its declination being given; the observed altitude being first corrected for 
the height of the eye or dip of the horizon, refraction and parallax. See 
the note to prob. 19. 

Of the star at the respective altitudes (see the note to prob. 61, above al¬ 
luded to) then in the isosceles sp. A APB, AP or BP the co. decl. of the 
star, and the £_ APB, being the elapsed time reduced into degrees (by al¬ 
lowing 15° 2* 28" to every hour) are given, hence the /_ PAB and the side 
AB is given ; and in the sp. A ABZ, AZ, BZ, the com. of the altitudes and 
the side AB are given, hence the /_ BAZ is given, from which the angle 
PAB being taken, the angle PAZ will be given; and in the triangle AZP, 
PA, AZ, and the angle at A are given; hence the side ZP, which is the 
complement of the latitude required, is given. 

* This prob. may be calculated in the same manner as prob. 62, part 2. 
For the time of the star’s passage over the meridian may be found by prob. 
8, part 2, the difference between which and the time at which the alt. was 
taken, will be the distance of the star from the mer. or the hour angle, or 
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Example 1. At 9 o’clock in the evening on the 21st of March, 
the altitude of Deneb in Leo, was 47° ; required the latitude of 
the place of observation ? 

Ans. 41° 50' N. nearly. 
2. At 10 o’clock in the evening on the 22d of December, the 

altitude of Procyon was 27° in north latitude ; required the lat. ? 
3. On the 1st of January, 1810, in north latitude, the correct al¬ 

titude of Jupiter at 9 o’clock in the evening was 37° 15', its latitude 
being 1° 18' S. and longitude Os. 15° 48' ; required the lat.? 

4. On the first of November, 1810, the altitude of Venus at 6h. 
30' in the evening was 10° 35', being towards the S. W. of the 
observer, height of the eye being 30 feet above the level of the 
horizon ; the longitude of Venus being 8s. 24° 30', and latitude 
4° 7' S ; required the latitude of the place, allowing also for 
parallax and refraction ? 

5. In north latitude on the 17th of October, 1810, the altitude 
of the lower limb of the moon, taken by a Hadley’s quadrant, at 3 
o’clock in the morning, was 61°. Her right ascension being 87° 
31', and declination 18° 14' N. ; required the latitude, allowing 
for semidiameter, refraction, parallax and dip of the horizon; 
height of the eye being 20 feet ? 

PROB. 25. 

The altitudes of two stars having the same azimuth, and that azi¬ 
muth being given, to find the latitude of the place.* 

Rule. Place the graduated edge of the quadrant of altitude 
over both stars, so that each star may be exactly under its given al- 

the angle APZ, &c. See the fig. in the note to prob. 62. But as this time is 
sidereal time, it must be converted into degrees, by allowing 15° 2' 27" 9. to 
an hour. (See the note to the foregoing prob.) 

Or, The prob. may be calculated as follows ; find the sun’s rt. asc. from 
the Nautical Almanac or some good table, and likewise the star’s rt. ascen. 
(see the table at the end of this work) their sum or difference will be the 
distance between the sun and the star reckoning on the equator (see note to 
prob. 12, part 3) convert the given time of observation into degrees, allow¬ 
ing 15? to an hour ; this will give the sun’s dist. from the mer. in degrees, 
the difference between which and the dist. between the sun and star will 
give the dist. of the star from the mer. or the angle APZ, &c. as above 
This angle being given, and the star’s decl. and alt. the calculation is the 
same.as that in the note, prob. 62, as above quoted. Thus in ex. 1, the 
sun’s rt. ascen. (the year being supposed 1812) will be 28" 4 in time, or 
(j" of a degree, and the star’s rt. as. 174° 52'; hence their cliff*, is nearly 
174° 45', and the dist. of the sun from the mer. being' 9 hours or 135°, the 
dist. of the star is therefore 39° 45'. Now AP the co. decl. = 74° 22' 40", 
AZ the co. alt. = 43°, and the angle APZ = 39° 45'; hence R. : cos. 39° 
45' :: tang. 74° 22' 40" : tang. PB 70° 1', and cos. 74° 22' 40" : cos. 70° 1':: 
cos. 43° : cos. BZ 21° 51', and 70° 1' —21° 51' =: 41° 50' the co. lat. there¬ 
fore the lat. is 41° 50' as above. 

* In calculating this prob. it will be seen that the altitude and azimuth of. 
either of the stars alone would be data sufficient to solve the prob. For in 
the triangle PZS or PZ* (see the fig. in the note to prob. 13, part 3) ZS or 
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titude on the quadrant ; the quadrant being held in this position, 
elevate or depress the pole until the division marked 0 on the 
quadrant, coincides with the given azimuth on the horizon, the 
elevation of the pole will then be the latitude. 

Example 1. The altitude of Aldebaran was observed 45° 45' 
when that of Sirius was 30', their common azimuth, at the same 
time, being 674° from the south towards the east or E. S. E. 
nearly ; required the latitude ? 

jins. 40° 46' N. nearly. 
2. The altitude of Arcturus was observed to be 40°, and that of 

Cor Caroli 68° ; their common azimuth at the same time being 
710 from the south towards the east ; required the latitude ? 

3. The altitude of cc Dubhe was 40°, and that of yin the back of 
the Great Bear 29~° ; their common azimuth at the same time 
being 30° from the north towards the east ; required the latitude ? 

4. The altitude of Vega or a in Lyra, was observed to be 70°, 
and that of a in the head of Hercules 39i° ; their common azi¬ 
muth at the same time being 60° from the south towards the west; 
required the latitude ? 

PROB. 26. 

Given two known stars having the same azimuth, and that azimuth 
being given, together with the altitude of one of the stars, to find 
the latitude of the place.* 

Rule. Place the graduated edge of the quadrant of altitude 
over both stars, so that the star whose alt was taken may be un¬ 
der the same altitude on the quadrant ; then proceed as in the 
foregoing problem. 

Note. This problem being similar to the foregoing, the examples there 
given will answer this, taking one of the altitudes instead of both. 

PROB. 27. 

Given the altitudes of two known stars observed at different times, 

and the interval of time between the observations, to find the la¬ 

titude. 

Rule. With the complement of the first altitude (taken from 
the equinoctial) in the compasses, and one foot in the centre of the 
star whose altitude was first taken, describe an arch ; bring the 
star whose altitude was next taken to the brass meridian, set the 

Zs, the co. alt. SP or sV, the co. decl. of the stars, and the common azim. 
SZP or sZP are given, therefoi’e the side ZP is given, the compl. of which 
is the lat. required. Or the prob. may be calculated without the azimuth, 
thus ; in the triangle SPs, Ss the difference of the co. altitudes, and SP, $P 
are all given, hence the angle PSs is given, and therefore its supplement 
ZSP is given. Again in the triangle ZSP, ZS and SP, and the included an¬ 
gle are given to find ZP, which "is therefore given. 

* For the solution of this prob. by trigonometry, see the note to the fore¬ 
going problem. 
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index to 12; mark the star’s declination on the brass meridian, 
and also the point cut by the meridian on the equinoctial, or the 
star’s right ascension ; turn the globe eastward on its axis until 
the index has passed over as many hours as are equal to the inter¬ 
val of time between the two observations, together with 9" 83, 
added for every hour of solar time, or until the point marked on 
the equinoctial passes over as many degrees as are equal to the 
same interval, allowing 15° 2' 28" for every hour ; then mark the 
point on the globe under the degree of the star’s declination on the 
brass meridian, from this point as a centre, with an extent in the 
compasses (taken from the equinoctial as before) equal to the 
complement of the second altitude, describe another arch intersect¬ 
ing the former ; the point of intersection will give the zenith, 
which being brought to the brass meridian, the degree over it will 
be the latitude required.* 

Example 1. In north latitude December 20th, 1806, the true 
altitude of Menkar in Cetus was 43° 38', and Ih. 18m. after, 
the altitude of Rigel was 29° 51'; required the latitude ? 

Ans. With an extent of 46° 22' (== 90°— 43° 38') taken as 
directed in the rule, and one foot of the compasses in the centre of 
Menkar, describe an arch with a fine pencil fixed in the other ; 
then Rigel being brought to the meridian, and the index set to 12, 
or mark the equinoctial as directed ; turn the globe eastward lh. 
18'-f 13", the equation = lh. 18' 13", the interval or sidereal 
time, or until the point marked on the equinoctional has passed 
over 19° 33' 12" (for lh. : 15° 2' 28" :: lh. 18' : 19° 33' 12") 
mark the point on the globe under 8° 26', the declination of Rigel, 

* Let A, B be the two known stars, Z Cl..^ 
the zenith, and P the pole. Now if the 
time at which either of the observations 
was made be given, the altitude of one of 
the stars will be sufficient to determine 
the lat. For let the alt. of A and the time 
at which it was taken, be given ; then the 
distance of the star from the meridian, or A. 
the angle APZ will be given (see the note 
to prob. 24, part 3) and AZ the co. alt. and 
also AP the co. decl. of the star are given; B 
therefore ZP the co. latitude is given. 

If only the interval of time between the observations be given, the prob. 
may be thus calculated; let A be the place of the star A, when the first 
observation or its alt. was taken, and a its place when the second observa¬ 
tion was made, or when the alt. of B was taken; hence the angle A Pa will 
be the elapsed time, or the interval between the two observations, which is 
converted into degrees by allowing 15° 2' 27/; 9 to every hour. But the an¬ 
gle aPB being equal to the difference of the star’s right ascensions, is there¬ 
fore given, and hence the angle APB = aPB — aPA is given. Now in the 
triangle xVPB, the two sides AB, BP = the co. decls. and the included angle 
are given, therefore the side AB and the angle BAP are given. Again, in 
the triangle AZB, there are given AZ, BZ the co. alts, and the side AB, 
hence the angle BAZ is given, and therefore PAZ = BAZ — BAP is given. 
Lastly, in the triangle PAZ, PA, AZ, and the included angle are given, and 
therefore PZ is given, the compl. of which is the lat. required. 
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from this point with an extent of 60° 9' (= 90° — 29° 51') de* 
scribe another arch as before, inserting the former ; the point of 
intersection being brought to the meridian, will give the latitude 
49° o2i' nearly 

2. In north latitude on the 21st of March, 1810, at 9 o’clock at 
night, the correct altitude of Cor Hydrae, or Alphard, was 41° 
15', its right ascension being 139° 33' 42", and declination 7° 50' 
20" S and one hour after the altitude of Deneb was 571°, its right 
ascension being t74° 50' 22", and declination 15° 38' 5" N.;'re¬ 
quired the latitude • 

PROB. 28. 

To Jznd the distance* of the stars or filanets from each ether 
in degrees, ttfe. 

Rule. Extend the quadrant of altitude between any two stars 
or the given places of the planets, so that the division marked 0 
may be on one of them, the degrees on the quadrant between that 
and the other star or planet’s place will shew their distance, or the 
angle which these stars or planets subtends as seen by a spectator 
on the earth, or rather as been from the earth’s centre. 

* In order to find the correct distances of celestial objects, it is necessary 
to determine their altitudes, which may be accurately found by an astrono¬ 
mical quadrant (for the description and use of which, see Vince’s Practical 
Astronomy, which contains the description of the construction and use of all 
astronomical instruments, 1 vol. 4to.) or by a good Hadley’s quadrant, a sex- 
tant, or by a repeating circle or circle of reflection. The apparent altitudes 
being thus found, the true alt. may be found by allowing for the height of 
the eye and refraction if a fixed star; for the height of the eye, refraction, 
and parallax, if a planet; and if the sun or moon for their semidiameter, ac¬ 
cording as the upper or lower limb was taken. A small allowance is also to 
be made for the aberration of light, as will be shewn in part 4. 

From the observed and corrected altitudes, and the observed distance be¬ 
tween the two objects, the true distance may be thus computed ; 

Let Z be the zenith, S the apparent £ 
place of the sun or a star, s the true place, 
M the apparent place of the moon ; m its 
true place; then in the triangle ZSM, 
there are given SM, the apparent distance, 
SZ, ZM the complements of the apparent 
altitudes to find the angle SZM. Let fall 
from M the perpendicular MP or Mp ; 
then, 
™ A ZM -h MS . P 
Tang. £ ZS : tang. --- :: tang. 

ZM coMS 
— 2-: tan§‘- 

If 5 ZS be greater than x, the perpendicular falls within as MP ; if less, 
without as Mp. Then -J ZS -f* x = ZP or Zp, and | ZS cca? s= SP or Sp. 
Moreover if ZS -f- SM be less than 180°, the perpendicular falls nearest to 
the lesser side, but if ZS -J- SM be greater than 180°, the perpendicular 
falls nearest the greater side ; this being premised, then by Napier’s rule? 

Had. : tang. ZP or Zp :: co. tang. ZM : co. sine angle at Z, 
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The same may be performed by a pair of compasses, as is man¬ 
ifest. 

Example 1. What is the distance between Betelguex in Orion, 
and Castor in Gemini ? 

Ans. 37|°. 
2. What is the distance between Procyon and Capella ? 
3. On the 2d of January, 1812, at midnight, the moon’s right 

ascension will be 15 1° 39' 59", and her distance from the north 
pole 79° 17' ; required her distance from Spica Virginia ? 

Ans. 51° 20'. 

4. On the 19th of March, 1812, Jupiter will be exactly in the 
ecliptic, and his longitude will be 2s. 27° 24' ; required his dis¬ 
tance from the sun, and from each of the following stars, viz. Al- 
debaran, Rigel, Betelgeux, Sirius, Procyon, Castor, Pollux, Ca¬ 
pella, the Pleiades ; and also from the moon, whose right ascen¬ 
sion at midnight will be 89° 45' 21", and declination 18° 34' N. ? 

Now in the triangle sZm, there are given the angle Z, and sZ, mZ, to find 
am the true distance ; hence it will be, , 

Rad. : cos. Z. :: tang*. Zm. : tang. Zx the distance between Z and a perp. 
let fall from m ; then Zs a> Zx = sx. And cos Z,x : cos. Zm :: cos sar : cos. 
sm, the correct distance required. As sx and the angle at Z are of the 
same or different affection, sm is greater or less than a quadrant. 

The learner will also observe, that the mark cc denotes the difference of 
those quantities between which it is placed. 

Example. On June 29, 1793, the complement of the sun’s apparent alt. or 
his apparent zenith distance ZS was 70° 56' 24", the comp, of the moon’s 
app. alt. or app. zenith distance ZM was 48° 53' 58", their app. distance 
SM was 103° 29' 27", and the moon’s horizontal parallax was 58' 35"; their 
true distance calculated by the above method, will then be 103° 3' 18", as 
required. 

The sun’s place being given, together with the moon’s lat.and long, their 
distance may be thus found : The diff. of long, of the sun and moon, the 
moon’s lat. and the dist. between the sun and moon (represented on the 
globe) will form a right angled spherical triangle, the sides of which are 
given, viz. the diff. of longitude and moon’s lat to find the third side, which 
is the true distance between the sun and moon. Whence, making use of 
Baron Napier’s rule, we have this proportion; Rad. : co. sine diff. long. :: 
co. sine moon’s lat. : co. sine true distance required. The rule given in page 
147 of the Nautical Almanac for 1813, is, in substance, the following; log. 
co. sine diff. long■ between the sun and moon -f- log. co. sine moon’s lat. =r log. co. 
sine true distance, which is evidently an error, as appears from the above 
proportion, as it ought to be, log. co. s. diff. long, -f- log. co. s. moon’s lat. —■ 
rad. — log. co. s. true distance. 

The Nautical Almanac above alluded to, is that revised by Mr. John Gar¬ 
nett, New-Jersey, a work which deserves every encouragement, from its ex¬ 
tensive utility, and the many important additions made by the Editor. (The 
error above noticed must evidently have been an oversight, or omission in the 
printer.) The Nautical Almanac for 1813 is the first distinguished with that 
considerable advantage of having the accurate Lunar tables of Mr. Burg, 
and the late improved Solar tables of M. Be Lambre, made use of in its cal¬ 
culation. These tables are corrected and improved by the Rev. Samuel 
Yince of Cambridge, and published in English. He has adapted them to 
astronomical time, those of Mr. Burg and De Lambre being adapted to civil 
time ; so that the year, in the latter, commences at the midnight with which 
the last day of the former year ends, and in Vince’s 12 hours later, he. 

E e 



226 PROBLEMS PERFORMED BY 

PROB. 29. 

Given the true distance of the moon from the sun or a starf and the 
time at •which the observation was made, to find the corresponding 
time ar Greenwich, and the longitude of the place of observation. 

Rule. Mark the moon’s path on the globe for the noon and 
midnight preceding and following the time of observation (by 
probs. 2 and 4. part 3d. ) and also the moon’s places for every three 
hours during this interval of time, by taking proportional parts : if 
it be the distance of the moon from the sun that is given, mark the 
sun’s place in the ecliptic, corresponding to the times in which 
the moon’s respective places were marked in its orbit ; then find 
the true distances of the moon from the sun or star, which are 
next greater, and next less than the true distance deduced from 
observation (either with a pair of compasses applied to the sun’s 
places or the centre of the star, and to the corresponding places 
of the moon at the same time ; or taken from the Nautical Alma¬ 
nac) and the difference of these distances (which call D) will give 
the access of the moon to, or recess from, the sun or star in three 
hours ; then take the difference between the moon’s distance at 
the beginning of that interval, and the distance deduced from ob¬ 
servation (which call d) and say, D : d :: 3h. : to the time the 
moon is approaching to, or receding from, the sun or star by the 
quantity d ; which added to the time at the beginning of the inter¬ 
val, gives the apparent time at Greenwich, corresponding to the 
given correct distance of the moon from the sun or star ; the dif¬ 
ference between which and the apparent time at the place of ob¬ 
servation, will be the difference of longitude in time, which may 
be easily reduced into degrees, &c. 

Example 1. Suppose that on the 14th of May, 1812, in latitude 
40° 42' 40" N at 6h 3' 57" apparent time in the afternoon, the 
correct distance of the sun and moon’s centres was 52° 30' 40" ; 

For other methods of finding the distances of celestial objects, see Vince’s 
Complete System of Astronomy, or McKay’s Treatise on Navigation, &c. 

As the learner may be at a loss to determine the parallax of any of the 
celestial bodies, the following remarks may be necessary. 

Observations prove that the diameter of any of the fixed stars is less than 
6, and therefore that they have no sensible parallax. The parallax of the 

sun resulting from the observations of the transit of Venus in 1761 and 1769, 
is 8" 8 The horizontal parallax of the moon is given in pa. 7 of the month 
in the Nautical Almanac for every noon and midnight, or it may be calcu¬ 
lated from probs. 16 and 17 of Mayer’s tables. A table of the reduction of 
latitude and moon’s horizontal parallax, for the spheroidical figure of the 
earth, is also given in page 12 of July in the Nautical Almanac for 1812. 

In general the distance of a phenomenon, from the earth : to the semi¬ 
diameter of the earth :: cos. apparent altitude of the body : sine of the pa¬ 
rallax. See Gregory’s Astronomy, b. 2, sect. 7, or Vince’s Astronomy, 8vo. 
ch. 6, where several methods are given. The parallax varies inversely as 
the distance. De Lambre, in his calculations, makes use of 8" 6 for the sun’s 
horizontal parallax. See his tables annexed to the 3d edit, of La Land’s 
Astronomy. The distances, &c. of the planets will be given in part 4. 
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required the apparent time at Greenwich, and the longitude of the 
place of observation ? 

Ans. True distance of the moon from the sun is 52° 30' 40^ 
Do. by Naut. Aim. on May 14th at 9h. 51 29 25 
Do. by do - - at midnight 53 1 17 

d — 1 1 15 
D = 1 31 52 

Hence 1° 31" 52" : 1° 1' 1£" :: 3h. : 2 hours, which added 
to 9 hours gives 11 hours, therefore lih — 6h. 3' 57" = 4h. 
56m. 3s. which in degrees is 74° O' 45", the longitude of the 
place of observation, and is west of Greenwich, as the time in 
Greenwich is later. 

2. Suppose that on the 15th of May, 1812, in latitude 39° 57' N. 
at 9 o’clock in the afternoon apparent time, the distance of the 
moon’s centre from Regulus was 26° 24' 27" ; required the appa¬ 
rent time at Greenwich, and the longitude of the place of obser¬ 
vation ? 

Ans, True dist. of the moon from Regulus by obs. 26° 24' 27" 
True dist. by Naut. Aim. on May 15 at midnight 27 29 1 

Do. - - - - - at 15 hours 25 52 56 

d = 1 4 34 
D = 1 26 5 

Then 1° 36' 5" : 1° 4' 34" :: 3h. : 2h. 0' 57" 5, which 
added to 12 hours, gives l4h. 0' 57" 5 ; hence l4h 0' 57" 5— 
9h. =* 5h. 0' 57" 5, the diff. of longitude in time, which in de¬ 
grees is 75° .4' 22", west of Greenwich. 

3. On June 29, 1793, in latitude 52° 12' 35", the sun’s altitude 
in the morning was by observation 19° 3' 36", the moon’s altitude 
was observed to be 41° 6' 2", the sun’s declination at that time 
was 23° 14' 4", and the moon’s horizontal parallax 58' 35" ; to 
find the apparent time at Greenwich, and the longitude of the place 
of observation ? 

Ans. True dist. of the moon from the sun (note to prob. 28) 103° 3' 18* 
Do. by Naut. Aim. on June 29, at 3h. 103 4 58 
Do. - - - on June 29, - 6h. 101 26 42 

d=0 1 40 
D=1 38 16 

Now 1° 38' 16" : 1' 40" :: 3h. : Oh. 3' 3" which added to 3h. 
gives 3h. 3m. 3s. the apparent time at Greenwich. 

Now to find the apparent time at the place of observation, we 
have the sun’s alt. 19° 3' 36", its refraction 2' 44", and parallax 
8", hence its altitude was 19° 1', and therefore its true zenith dist. 
was 70° 59' ; also the co. decl. was 66° 45' 36"; hence by the 
note to prob 48. part 2d, or by the globes, the hour angle is found 
equal 88° 37' 44" in time equal 5h, 54' 30" 9, the time before 
apparent noon, or 18h. 5' 29" 1 on June 28th. Hence 29d. 3h. 
3m. 3s. the app. time at Greenwich, less 28d. I8h, 5m. 29s. the 
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app. time at the place of obs. gives 8h. 57' 34" = the diff. of 
meridians or diff*. long, in time, which in degrees is 134° 22' 31", 
the long, of the place of obs. west of Greenwich. 

PROB. 50. 

To find what stars lie in or near the moon’s path, or what stars 
the moon can eclipse, or make a near approach to. 

Rule. From the longitude and latitude of the moon, or her 
right ascension and declination, taken from the Nautical Almanac, 
or any good ephemeris, mark the moon’s places on the globe, for 
several days (by problems 2d. and 3d. part 3d.) then by extending 
the quadrant of altitude or a thread, over these places, you will 
nearly find the moon’s path, and consequently those stars that lie in 
her way, or that she can make a near approach to.* 

Example 1. What stars were in or near the moon’s path on the 
16th, 17th, 18th, and 19th of May, 1810 ? 

16th. })’s right ascension 206° 47' declination 9° 42' S. 
17th. m - <■» 220 43 - 13 14 S. 
18th. m m m 235 

250 
22 - 16 3 S. 

19th. - - • 38 - - 17 53 S. 
Ans. Zuben el Chamali, Zuben ha Krabi, (3 in Libra, &c. 
2. On the 4th, 5th, 6th, 7th, and 8th of September, 1812, what 

stars will be near the moon’s way ? 
4th: 3)*s longitude 4s. 27° S' 40" latitude 0° 11' 3" S. 
5th. - - 5 9 17 19 - 0 56 22 N. 
6th. - - 5 21 22 14 - 2 0 22 N. 
7th. - - 6 3 20 6 • 2 58 22 N. 
8th. m <m - 6 15 12 51 . 

O 
O 48 9 N. 

PROB. 31. 

The latitude of a place being given, to find the time of the year at. 
which any known star rises or sets achronically, that is, when it 
rises or sets at sun setting. 

Rule. Elevate the pole to the latitude of the place, bring the 
given star to the eastern part of the horizon, and then mark the 
point of the ecliptic at the western edge, or the point of the eclip¬ 
tic that sets when the star rises, the day of the month correspond¬ 
ing to this point will give the time when the star rises at sun set, 
or when it begins to be visible in the evening. The globe being 

* The situation of the moon’s orbit for any particular day may be found 
thus ; find the place of the moon’s ascending node in the Nautical Almanac ; 
mark that place and its antipodes (being the descending node) on the globe ; 
take the middle between these two points, and make two marks 5° S' 49' 
(= the inclination of the lunar orbit to the plane of the ecliptic) on the north 
and south sides of the ecliptic ; so that the northern mark may be between 
the ascending and descending node, and the southern between the descend¬ 
ing and ascending node ; a thread extended through these fdur points, wilV 
shew the position of the moon’s orbit. 
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then turned westward on its axis, until the star comes to the west¬ 
ern edge of the horizon, observe the degree of the ecliptic cut 
by the western part of the horizon as before, the day of the month 
answering to that degree, will shew the time when the star sets 
with the sun, or when it ceases to appear in the evening. 

Example 1. At what time does Arcturus rise and set achroni- 
cally at Ascra* in Boeotia ; the latitude of Ascra, according to 
PtoJemy, being 37° 45' N. ? 

Ans. When Arcturus is in the eastern part of the horizon, the 
twelfth degree of Aries will be at the western, which answers to 
the 1st of April,! the time when Arcturus rises achronically ; Arc¬ 
turus will set achronically on the 30th of November. 

* Ascra is a small village in Bceotia at the foot of Mount Helicon, where 
Hesiod lived, and was probably born, hence called Ascreus. (Virgil Eel. 6, 
70, and Georg. 2, 176.) Strabo says that he came with his father Dio from 
Cuma, a city of Eolis, opposite to Lesbos, now called Taio Nova. Some are 
of opinion that he lived before the time of Homer, as his style is more rude 
and simple ; others that he was cotemporary with Homer (this is the com¬ 
mon opinion. Rollin’s Anc. Hist. b. 5, art. 9) and others that he lived after 
Homer. Velleius Paterculus, who lived in the time of the three first Roman 
emperors, says, in his abridgment of the Roman History, that he lived 120 
years after the time of Homer. However, as Carolus Ruieus Soc. Jesu, the 
learned commentator on Virgil, remarks, 4 Ids adhuc pendet.’ (See New¬ 
ton’s Chronology.) 

f If we allow for the star’s refraction, which at the horizon is about 35', 
the time will nearly correspond to the 31st of March, and then Arcturus 
would rise achronically in lat. 37° 45' N. about 99 days after the winter sol- 
tice. Hesiod, in his Opera et Dies, lib. 2, verse 185, says. 

When from the solstice sixty wintry days. 
Their turns have finished, mark, with glitt’ring rays. 
From ocean’s sacred flood, Arcturus rise. 
Then first to gild the dusky evening skies. 

Hence (supposing Hesiod to be correct) there is, between the time of 
Hesiod and the present time, a difference of 39 days in the achronical rising 
of this star; and as a day answers to about 59/ 8" of the ecliptic (note to def. 
66) 39 days will answer to 38° 26' 12", and therefore the winter solstice in 
the time of Hesiod was in 8° 26' 12" of aquarius. Now the precession of the 
equinoxes being about 50^" in a year, we have 50^" : 1 year :: 38° 26' 12" ; 
2753 years nearly, since the time of Hesiod ; so that (the places of the stars 
on the globe being adapted to the year 1800) he must have lived 953 years 
before Christ by this mode of reckoning. Homer, according to most chro¬ 
nologies, lived 907 years before Christ. Lempriere, in his Classical Diction¬ 
ary, says that Hesiod lived at the same time. Herodotus however (lib. 2, 
c. 53) says that Homer wrote 400 years before his time, that is 340 years 
after the destruction of Troy, which happened 1184 years before Christ, so 
that, according to Herodotus, Homer lived 844 years before Christ. 

The above calculation was made without reflecting that the same allow¬ 
ance should be made for the sun’s refraction, which would make the time 
nearly correspond to the 30th of March, giving the astronomical rising of 
Arcturus about 98 days after the winter solstice ; differing from the same in 
Hesiod’s time 38 days ; which answers to 37° 27' 4", or 7° 27' 4" of Aqua¬ 
rius. Hence 504." : ly. :: 37° 27' 4" : 2683 years ; therefore 2683 —1300=: 
883 years. This might be rendered more accurate by strict calculation. 
Keith in his treatise on the Globes, makes the time of Ilesiod 990 years be¬ 
fore Christ. From the whole we see that there is a strong probability of his be- 
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2. At what time of the year does Aldebaran rise and set achron* 
ically at Athens, in latitude 38° 5' N. ? 

3. When does Sirius rise achronically in New-York, and at what 
time of the year does it set achronically ? 

4. When does Procyon rise at London when the sun is setting, 
and when does he set at sunset ? 

PROB. 32. 

The latitude of the place being given^ to find the time of the year at 
•which any known star rises or sets cosmically, that is, rises or 
sets at sun rising. 

Rule. Elevate the pole to the given latitude, bring the given 
^tar to the eastern part of the horizon ; then the day of the month 
corresponding to the degree of the ecliptic cut by the eastern part 
of the horizon, will give the time when the star rises with the sun ; 
bring the star to the western part of the horizon, the sign and de¬ 
gree of the ecliptic, then intersected by the eastern part of the 
horizon as before, will point out on the horizon the time when the 
star sets cosmically, or at sun rising. 

Example 1. At what time of the year do the Pleiades set cos¬ 
mically at Miletus* in Ionia, in lat. 37° N. according to Ptolemy, 
and at what time of the year do they rise with the sun there ? 

ing cotemporary with Homer. What we have here said may to some seem 
rather tedious, but the learner will derive much information from it in simi¬ 
lar calculations, as the ancients made frequent use of the poetical rising and 
setting of the stars. 

This and the following problem may be 
solved by trigonometry, as follows ; let HO 
represent the horizon, HZO the mer. iEQthe 
equinoctional, EC the ecliptic, CY1 the point 
aries, or the intersection of the equinoctial and 
ecliptic, S the point of the ecliptic which rises 
with the star, and o the point of the equator ; 
then in the triangle ^oS, we have ^o, the 
oblique ascen. of the star, the angle at CY3, the 
obliquity of the ecliptic,and the angle ^oS, 
the height of the equator above the horizon 
(being equal to the co. lat. Note to prob. 19) 
or its supplement; hence is given, and 
therefore the point S of the ecliptic, which 
rises with the star, or the star’s long, is given, the time corresponding to 
which, found by the Nautical Almanac, or the globe, will be the time when 
the star rises cosmically. The angle ^So, is the angle which the ecliptic and 
horizon make at the rising point. When the sun is in the sign and degree 
opposite the point S, the star will then rise achrosiically. In a similar the 
time is found when the star sets cosmically or achronically.. 

* Miletus, the birth place of Thales, was situated in Asia Minor, on 
the coast of the Egean sea, near the borders of Caria, south of Ephesus, 
and southeast of the island of Samos, or six miles to the south of the mouth 
of the river Mccander. This city, as Pliny remarks, was sometimes called 
Pithyusa, Anactoria and Lelegis; now called Melaxo or Melasso. Il was 
formerly famous for its wool. 
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Ans. The Pleiades rise with the sun in lat. 37° N. on the 11th 
of May, and they set at the time of sun rising on the 21st of No¬ 
vember.* 

Thales laid the first foundation of philosophy in Greece, and founded 
the Ionian school, where he taught the sphericity of the earth, the ob¬ 
liquity of the ecliptic, and the true causes of the eclipses of the sun and 
moon. He had exactly foretold the time of the eclipse of the sun, that 
happened in the reign of Astyages, king of Media, of which mention is 
made in llollin’s Anc. Hist. He also discovered the solstices and equi¬ 
noxes, divided the heavens into five zones, and recommended the division 
of the year into 365 days. When he travelled into Egypt, he discovered 
an easy and certain method of determining the exact height of the pyra¬ 
mids, by observing the time when the shadow of a perpendicular body 
was equal in length to the body itself. His life, as well as that ot the 
other wise men, is written by Diogenes Laertius. 

* Pliny (in his Natural History, b. 18, c. 25) says, that Thales deter¬ 
mined the cosmical setting of the Pleiades to be 25 days after the au¬ 
tumnal equinox. Supposing this observation to be made at Miletus, there 
will be a difference of 35 days in the cosmical setting of this star ; hence 
Id : 59' 8" of the ecliptic :: 35d.: 34° 29' 40", which in the time of Thales will 
make the equinoctial colure pass through 4° 29' 40' of scorpio ; and 50f": 
ly. :• 34° 29' 40" : 2471 years since the time of Thales Hence Thales 
lived 2471 — 1800 = 671 years before Christ, by this mode of reckoning. 
This time will however be lessened, by allowing for refraction, &c. Sir 
I. JYewton, in his chronology, makes it 596 years before Christ; most 
chronologers make it 600 years. According to Lempriere in his Classical 
Dictionary, he died in the 96th year of his age, about 548 years before the 
Christian era. The remarkable eclipse predicted by Thales happened in 
the 545th year before Christ. See Ferguson's Astronomy, page 25. 

Some affirm that Thales taught that one intelligent being presides over 
and governs the universe. Many of the heathen philosophers came to the 
knowledge of this truth by the light of reason alone ; but among the 
whole there was not one that did not worship the ridiculous Gods of his 
country with the vulgar, the knowledge of whom in other respects they 
so much despised, so that we find Socrates, the wisest among them, at his 
dying moments ordering his friend to sacrifice a cock to Esculapins. 

This is another unanswerable argument in favour of that knowledge 
which the Christian possesses of the true God, contrasted with that which 
a proud, shallow, presumptuous philosophy affords. To him that is desti¬ 
tute of this knowledge, the glimmering ray of human science will yield 
but little assistance, in dissipating the darkness that surrounds him—Its 
frigid rules is but a feeble support to resist the violence of human de¬ 
pravity. No light, therefore, but that of the gospel, could dispel the 
darkness of infidelity in which man was involved ; no power but that of 
religion could resist his lawless passions. 

The notions which the heathens had of a providence of immortality, and 
other truths of a similar nature, were, according to most authors, the ef¬ 
fects of a tradition as old as the world, and derived from revelation ; but 
its feeble light was almost extinguished among them, and hence arose 
their superstition and folly. It is true, the impiety of philosophers have 
too often been attributed to the sciences which they profess, but with as 
much reason as the immorality of some Christians is attributed to the re¬ 
ligion which they pretend to practice. Iloth evils originate in the cor¬ 
ruption of the human heart. 

The province of philosophy, rightly understood, is extensive and im¬ 
portant. There is no employment more innocent—none more ingenious, 
»nd to those who have a taste for science, more amusing—none, in fine. 
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2. At what time of the year will Procyon rise with the sun, and 
also at what time will he rise when the sun rises, at Washington 
city ? 

3. At what times of the year will Regulus rise with the sun, and 
also set when the sun rises at Petersburg in Russia ? 

that lead to more important and useful discoveries, than guided by ma¬ 
thematical principles and the result of laborious experiments, patiently 
to investigate the phenomena and laws of nature, and apply them to those 
useful purposes for which they are adapted. Conducted by this science, 
vve contemplate with pleasure and advantage those stupendous bodies that 
exist around us, guided by more stupendous but unerring laws—our fa¬ 
culties and conceptions are thereby expanded, and our mind has some¬ 
thing to employ it that bears no small proportion to those noble powers 
which it possesses. We delight in the beauty and universal harmony 
which we perceive in these new scenes of wonder which every moment 
open to our view, from the smallest atom—from the blade of grass which 
we trample under foot, to the remotest world which we contemplate. No¬ 
ble and extensive as the human intellect is, between these two extremes 
its shallow line of reason is soon exhausted. Here man, however, traces 
the omnipotence, the wisdom and goodness of a being infinitely his own 
superior ; from his works he feels a desire of being more acquainted with 
him, and this being, having destined man for himself, nourishes the de¬ 
sire. Thus far philosophy may conduct us, thus far its horizon extends, 
beyond which there is nothing but shadows and delusion. Religion opens 
here a brighter prospect, and like the sun which banishes the light of ail 
other luminaries, will have no other light to conduct us but its own • 
Here futurity developes its extensive prospects, immortality, and not this 
short span of existence—eternity, not time, arrest our attention. Here 
omnipotence itself stoops to our assistance—infinite wisdom guides, and 
informs us of the true source of our condition and misery, and the good¬ 
ness of this omnipotent being generously affords and points out the reme¬ 
dy. He exhibits the happiness of heaven as a reward for the good, and 
the torments of hell as punishments for the Mucked—He enlightens and 
gives us a more intimate knowledge of his nature and of our duty towards 
him—calls himself by the endearing name of Father, and calls us by the 
loving and exalted title of children; thus indicating our dignity, and the 
point in which alone our true nobility consists. These truths are estab¬ 
lished on divine authority, confirmed by miracles—by human testimony as 
far as human testimony could go, and by their own internal evidence and 
necessity.—From the nature of truth they are immutable, and not subject 
to presumptuous innovation or versatile fancy. They are truths not in the 
province of philosophy to teach—truths far more important, interesting, 
and noble, and a mind possessed of all other wisdom and knowledge un¬ 
der the sun, that views them not in this light, is, after all, neither intelli¬ 
gent or wise. 

We have already seen (remark after the constellations) how civilized and 
learned men can act when withdrawn from the salutary restraint of religion; or 
when guided by a false philosophy, and under the influence of unrestrained, 
licentious passions. Their deeds bear awful testimony to the feeble efforts 
of reason in establishing vain systems of fancied superiority, in opposition to 
that established by unerring wisdom, whose benignant influence argues its 
origin, and shews that no reformation is wanting to it, that no substitute 
can ever supply its place. 
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PROB. 33. 

To find the time of the year when any given star rises or sets helia¬ 
cally, or when a star becomes first visible after emerging from the 
sun's raysj in the morning before sun rising, or invisible in the 
evening, on account of its nearness to the sun. 

Rule. Elevate the pole to the latitude of the given place ; 
screw the quadrant in the zenith ; bring the quadrant to the east¬ 
ern edge of the horizon, and move it until the star intersects it 
12° below the horizon, if the star be of the first magnitude ; 13° 
if the star be of the 2d mag.; 14° if the star be of the 3d, &c.* 
The point of the ecliptic cut by the quadrant, will shew the day of 
the month on the horizon, when the star rises heliacally. The 
given star being brought to the western edge of the horizon, and 
the quadrant of alt. being moved until intersected by the star as 
before ; the point of the ecliptic then cut by the quadrant will 
give the day of the month when the star sets heliacally. 

Example 1. At what time of the year does- sirius, or the dog 
star, rise heiiacally at Alexandria, in Egypt, in lat. 31<> 114' N. \ 
and when does it set heliacally at the same place ? 

Ans. On the 4th of August f and 23d of May. 

* According to Ptolemy, stars of the first mag. are seen rising and setting 
when the sun is 12° below the horizon, stars of the 2d mag. when the sun 
is 13° below the horizon, &c. reckoning 1° for each mag. For the brighter 
a star is when above the horizon, the less the sun will be depressed before 
it becomes visible. 
| The ancients reckoned the dog days from the heliacal rising of sirius, 

and their continuance to be about 40 days. Hesiod remarks, that the hottest 
season of the year (or the dog days) ended about 50 days after the summer 
solstice. In the note to prob. 31, it is shewn that the winter solstice, in the 
time of Hesiod, was in about 8° 26' 12" of aquarius, and consequently the 
summer solstice was in the same degree of leo. Now from the above it ap¬ 
pears that sirius rises heliacally when in 12° of leo (corresponding' to the 
4th of Aug.) and as 59' 8" or 1° nearly corresponds to a day, sirius rose 
heliacally about 4 days after the summer solstice ; and if the dog days con¬ 
tinued 40 days, they ended about 44 days after the summer solstice. In our 
almanacs the dog days begin on the 3d of July, which is 12 days after the 
summer solstice, and end on the 11th of August, which is 51 days after the 
summer solstice ; their continuance is therefore 39 days. 

The dog days of the moderns have therefore no reference to sirius or the 
dog star, for as it varies in its rising and setting according to the latitude of 
places, it could therefore have no influence, or indicate no change in the 
temperature of the atmosphere. However as this star rose heliacally at the 
commencement of the hottest seasons in Egypt, Greece, &c. in the infancy 
of astronomy ; and at a time when astrology referred almost every thing to 
the influence of the stars, it was natural for those people to imagine that 
the heat, &c. was the effect of this star’s influence, &c. A few years ago 
the dog days were reckoned in our almanacs from the cosmical rising of pro- 
cyon, viz. on the 30th of July, and continued to the 7th of September ; but 
are now very properly altered, and made to depend on the summer solstice, 
and not on the variable rising of any particular star whatever. 

The solution of the prob. by trigonometry, may be as follows; let S (see 
the fig. in the note to prob. 31, part 3) be the point of the ecliptic which 
-ises with the star, and let © be the place of the sun in the ecliptic, so that 

F f 
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2. At what time does Aldebaran set heliacally at New-York ? 
3. At what time of the year does Arcturus rise heliacally at 

Washington city ? 
4. At what time does Procyon rise and set heliacally at London ? 
5. How many years will elapse from 1310, before Sirius will 

rise heliacally on Christmas day, at Cairo, in Egypt, allowing the 
precession of the equinoxes to be 50i seconds ? 

PROB. 34. 

The latitude of the /dace and day of the month being given, to find 
all those stars that rise and set achronically, cosmically, and 
heliacally.* 

Rule. Rectify the globe for the latitude : then, 
1. For the achronical rising and setting. Bring the sun’s place 

in the ecliptic to the western edge of the horizon ; then all the 
stars along the eastern edge will rise achronically, and those along 
the western will set achronically. 

2 For the cosmical rising and setting. Bring the sun’s place 
to the eastern edge of the horizon ; then all the stars along that 
edge of the horizon will rise cosmically, and those along the west¬ 
ern edge will set cosmically. 

3. For the heliacal rising and setting. Screw the quadrant of 
alt. in the zenith, turn the globe eastward until the sun’s place 
cuts the quadrant 12° below the horizon ; then all the stars of the 
1st magnitude along the eastern edge of the horizon will rise helia¬ 
cally ; and by continuing the motion of the globe eastward until 
the sun’s place intersects the quadrant in 13°, 14°, 15°, &c. below 
the horizon, you will find all the stars of the 2d, 3d, 4th, &c. mag¬ 
nitudes, which rise heliacally on that day. By turning the globe 

the arc OR of the circle of depression may be 12° or 13°, &c. according as 
the star is of the 1st, 2d, &c. magnitude ; then in the right angled triangle 
8R0, RSO, the angle formed by the ecliptic and horizon (note to prob. 
31) and the side RO = 12° or 13°, he. are given, and therefore the side S0 
is given, which added to ‘Y’S, gives the arc ^O, and the point Q or the 
sun’s place when the star rises heliacally. The star’s heliacal setting may 
be found in like manner. 

* The principal use of this and the foregoing problems, is to illustrate 
several passages in the ancient writers, as Hesiod, Virgil, Columella, 
Ovid, Pliny, &c. These different risings and settings of the stars were 
called poetical, because principally used in the writings of the poets. The 
knowledge of these poetical risings and settings of the stars was muck 
esteemed by the ancients, as it served to adjust the times set apart for 
their civil and religious duties, and to mark the seasons proper for the 
several parts of husbandry, the time of the overflowing of the Nile, he. 
their knowledge of astronomy being too limited to adjust the length of 
the year, Sec. The knowledge which the moderns have acquired of the 
motions of the heavenly bodies, renders such observations unnecessary,, 
as an almanac answers every purpose of the husbandman. 

This problem being the reverse of the three foregoing, the solution by 
trigonometry is performed in a similar manner, and is left for the learn¬ 
er’s exercise. 
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westward in a similar manner, and bringing the quadrant to the 
western part of the horizon, you will find those stars that set helia- 
cally. 

Example 1. What stars rise and set achronically, cosmically, 
and heliacally at New-York on the 4th of December ? 

Ans. For the achronical, &c, Aldebaran, &c. will rise achronic¬ 
ally. Arcturus, &c will set achronically. 

For the cosmical, See. /3 in Lupus will rise cosmically, &c. An- 
tares will be near the eastern horizon. Algol in Perseus will set 
cosmically, See. Betelgeux will be near the western horizon. 

For the heliacal, &c. Arided in Cygnus will rise heliacally, 
£ in Serpens will set heliacally, &c. 

2. What stars rise and set achronically at Petersburg on the 10th 
of May ? 

3. What stars rise and set cosmically at Washington city on thjt 
5th of April ? 

4. What stars rise and set heliacally at Philadelphia on the 4th 
of July ? 

5. What stars rise and set achronically, cosmically, and heliacal¬ 
ly at London on the 7th of October ? 

PROB. 35. 

The latitude of the filace and the day of the month being given) to fnd 
what planets will be above the horizon, after sun setting. 

Rule. Rectify the globe for the given latitudes, bring the 
sun’s place to the western part of the horizon, or to 10 or 12 de¬ 
grees below it ;* then all the planets whose places are in the hem¬ 
isphere above the horizon, will be visible after sun setting, whose 
places may be found in an ephemeris for that day and month ; if the 
motion of the globe be continued westward until the sun’s place 
comes within 10° or 12° of the eastern part of the horizon, all the 
planets that were above the horizon during this motion, will be 
visible, and fit for observation on that night. 

Example 1. Were any of the planets visible at New-York when 
the sun had descended 10° below the horizon, on the I st of Janua¬ 
ry, 1811, their latitudes and longitudes being as follow : 

Latitudes. 

$ 2° 6' 
$ 4 12 
% 1 29 

Longitudes. 
S. 9s. 23o 20' 
N. 9 4 48 
N. 6 28 32 

3) ’s latitude at midnight 1° 0' 58" S. long. Os. 11° 33' 1". 
Ans. Mercury was near the horizon, Jupiter and the moon 

were visible. 

Latitudes. 
% 0« 57' S. 
k 1 17 N. 
$ 0 2i N. 

Longitudes. 
Is. 21° 45' 
8 20 20 
7 17 41 

* The planets are not visible until the sun is a certain number of de¬ 
grees below the horizon, and these degrees are variable according to the 
apparent magnitudes and brightness of the planets. Mercury becomes 
visible when the sun’s depression is about 10° ; Venus when the sun is 5° 
below the horizon ; Mars when the sun is at 11® 3(7; Jupiter at 10°; Ssf- 
twrn at 11° ; and Herschel at 17$°. 
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2. What planets will be above the horizon at New-York on the 
1st of December, 1812, and what planets will be visible during 
that night, or before the sun is within 10° of the eastern part of 
the horizon ; their latitudes and longitudes being as follow 

Latitudes 
£ 2° 22' S. 
2 2 9 N. 
% 1 2 N. 
D’s lat. at midnight 4° 59' 

Longitudes. 
8s. 26o 59' 
6 28 21 

6 24 45 

Latitudes. 
% o° 32' n. 
h 0 3i N. 

I;:;; 4 0 14 N. 
2?" N. long. 7s. 

Longitudes. 
4s. 9° 0' 
9 6 52 
7 24 40 
11® 24' 27". 

PROB. 36. 

The latitude, day, and hour being given, to find what planets will be 
visible, or above the horizon, at that hour. 

Rule. Rectify the globe for the latitude ; bring the sun’s 
place to the meridian, and set the index to 12 ; then turn the globe 
eastward or westward, according as the time is in the forenoon or 
afternoon, as many hours as the time is before or after 12 ; fix 
the globe in this position, and from the latitudes and longitudes of 
the planets found in the Nautical Almanac, see whether any of 
them be in the hemisphere which is above the horizon ; such 
planets will be visible. 

Example 1. Were any of the planets whose places are found 
from example 1st of the foregoing prob visible at 9 o’clock in the 
evening, at New-York, on the ist of January, 1811? 

Ans. Jupiter and the moon were visible. 
2. Will any of the planets whose latitudes and longitudes are 

given in ex. 2, last prob be visible at Philadelphia at 4 o’clock in 
the morning of the 1st of December, 1812 ? 

PROB. 37. 

Given the latitude of the place and day of the month, to fnd how 
long Venus rises before the sun when she is a morning star,* and 
how long she sets after the sun when she is an evening star. 

Rule. Rectify the globe for the given latitude ; find the lati¬ 
tude and longitude of Venus in an ephemeris, and mark her place 
on the globe ; bring the sun’s place for the given day to the brass 
meridian ; then if the place of Venus be to the eastward of the 
meridian, she is an evening star, or rises after the sun, but if to 
the westward, she is a morning star, or she rises before the sun. 

When Venus is an evening star. Turn the globe westward 
until the sun’s place comes to the western part of the horizon, the 
index will then shew the time of sun setting ; the motion of the 
globe being continued westward until Venus comes to the edge of 

* Venus is a morning star from inferior to superior conjunction, and an 
evening star from superior to inferior conjunction. 
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the horizon, the index will shew when Venus sets; the differ¬ 
ence between which and the time the sun sets, will shew how long 
Venus sets after the sun. 

When Venus is a morning star. Find the time of sun rising 
(prob. IS. p 2d.) and also the time that Venus rises (prob. 8, 
part 3d.) the difference between these times will shew how long 
Venus will rise before the sun. 

Note. Tke same rule will answer to shew when any of the planet3 
rises before the sun and sets after him; and how long. 

Example 1. On the 1 st of November, 1810, the longitude of 
Venus was 8s. 24° 30' lat. 4° 7' south ; will she be a morning 
or an evening star ? If she be a morning star, how long will she 
rise before the sun at New-York ; if an evening star, how long 
will she shine after sun set ? 

Ans. Venus was an evening star ; the sun set at 5h. 10' or 10 
minutes after 5, and Venus 7h. 20 min. or 20 min. after 7 ; 
hence Venus set 2h. 10' after the sun. 

2. On the 19th of November, 1812, Jupiter’s longitude will be 
4s. 9°, or 9° in Leo, latitude 29' north ; will Jupiter be a morning 
or an evening star ? If a morning star, how long will he rise be¬ 
fore the sun ; if an evening star, how long will he shine after 
sun set ? 

3. On the 13th of October, 1812, the longitude of Venus will 
be 5s. 3° 40', and latitude 36' south ; will Venus be then a morn¬ 
ing or evening star ? If a morning star, how long will she rise 
before the sun ; if an evening star, how long will she shine after 
sun set ? 

4. On the 1st of April, 1812, Saturn’s longitude will be 9s. 
7° 50', and latitude 52' N. will he be a morning or an evening 
star, &c. 

PROB. 38. 

To find all those places on the earth to which the moon will be nearly 
'vertical on any given day. 

Rule. Take the moon’s latitude and longitude for the given day 
from an ephemeris, and mark the place corresponding to them, 
on the globe (by prob. 4.) bring the place to the brass meridian, 
and observe the degree over it; then all those places having the 
same or nearly the same latitude, will have the moon vertical when 
on their respective meridians. 

Or, Those places whose latitudes are equal to, and of the same 
name with her declination for the given time (found in the Nauti¬ 
cal Almanac) will have the moon successively vertical on the given 
day. 

Example i. On the 20th of December, 18 10, the moon’s lon¬ 
gitude at midnight was 6s. 20°, and her latitude 1° 5'N. ; requir¬ 
ed the places to which she will be nearly vertical that day l 
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Ans. From the moon’s latitude and longitude, her declination is 
found nearly 7° south ; hence the places are the Sunda Isles, Solo¬ 
mon’s Isles, Sana in Peru, Olinda in Brazil, Congo, and Lower 
Guinea in Africa, &c. 

Note 1. When the declination is given, the prob. may be performed by 
the terrestrial globe alone, being the same as prob. 10, part 2. 

Note 2. The places where any of the planets will be vertical, are found 
in the same manner. 

2. On the 1st of November, 1812, the moon’s longitude at mid¬ 
night will be 6s. 14° 54' 25", and her latitude 3° 46' 32" ; re¬ 
quired the places to which she will be nearly vertical when on 
their meridian that day ? 

3. On the 9th of November, 1811, the moon’s declination at 
midnight will be 8° N. j required where she will be vertical that 
day ? 

4. On the 7th of December, 1811, Jupiter’s longitude will be 
3s. 3° 20', and latitude 15' south ; to what places will he be ver¬ 
tical that day ? 

5. On the 21st of October, 1813, the declination of Herschel 
will be 19° 11' south ; where will he be vertical on that day ? 

6. Required those places where the moon will be vertical when 
she has her greatest north declination, and also her greatest decli¬ 
nation south ? 

7. Required those places to which Venus will be vertical when 
she has her greatest north declination, and required that declination ? 

PROB. 39. 

To find the time of the moon’s southings or coming to the meridian 
at any given place, on any given day of the month. 

Rule. Elevate the pole to the given latitude ; find the moon’s 
latitude and longitude, or her right ascension and declination from 
the Nautical Almanac or a good ephemeris, and mark her place 
on the globe (by prob. 2 and 4) bring the sun’s place to the brass 
meridian, and set the hour index to 12 ; turn the globe westward 
until the moon’s place comes to the meridian, and the hours pass¬ 
ed over by the index, will shew the time from noon when the moon 
will be on the meridian. 

OR WITHOUT THE GLOBE. 

Find the moon’s age by the note to def. 80, which multiply by 
.81* (-joV) an^ the product will be the hours and decimal parts of 
an hour, which multiply by 60 for minutes. 

OR CORRECTLY, THUS, 

Take the difference between the sun and moon’s right ascension 
in 24 hours ; (found by the Nautical Almanac) then say as 24 h. 

* The synodic revolution of the moon being according to La Place, 29d. 
12h. 44' 2" 8, or nearly 29A days, we have as 29^d. : 24h. :: Id. : .81h. near¬ 
ly. Hence the reason of the rule is manifest. 
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less this difference to 24 h. so is the moon’s right ascension at 
noon diminished by the sun’s, to the time of the moon’s southing. 

Note 1. When the sun’s right ascension is greater than the moon’s, 24 
hours must be added to that of the moon before you subtract. 

Example 1. At what time on the 10th of March, 1811, did the 
moon pass over the meridian of Greenwich,* the moon’s right 
ascension being 172° 10' 48", and her declination 2° 55' N. at 
noon ? 

Ans. By the globe the moon came to the meridian at half an 
hour after 12 at night. 

By the note to def. 80. The moon’s age is 16 days ; hence 16 X -81 = 
12.96 hours <= 12h. 57m. by this method. 

By using the Nautical Almanac— 
Sun’s rt. as. at noon, 10th March, = 23h. 19' 46" 3 
Ditto 11th do. = 23 23 27 0 

Increase of motion in 24 hours 0 3 40 7 

Moon’s rt. asc. at noon, 10th March, = 172° 10' 48" 
Ditto 11th do. = 183 41 27 

Increase in 24 hours 11 30 39 

and 11° 30' 39" = 47' 2" 6 (note to prob. 6, part 2) hence 46' 2"6 — 3' 40" 7 
= 42' 22" nearly, the moon’s motion in 24 hours exceeds the sun’s. Moon’s 
right asc. 172° 10' 48" =* llh. 28' 43" 2, to which 24h. being added, we have 
35h. 28' 43" 2, from which the sun’s rt. asc. 23h. IS7 46" 3, being taken, 
leaves 12h. 8' 57" nearly. Now 24h. — 42' 22" = 23h. 17' 38" : 24h. :: 12h. 
8' 57" : 12h, 31m. the true time of the moon’s passage over the meridian at 
night, agreeing with the Nautical Almanac. 

2. At what hour on the 5th of February, 1810, did the moon 
pass over the meridian of Greenwich, the moon’s right ascension 
being 161° 9', and declination 4° 48' north? 

3. At what hour on the 31st of December, 1811, will the moon 
pass over the meridian of Greenwich, her declination at noon be¬ 
ing 17° 7'N and right ascension 120° 34' 6"? (Her right as¬ 
cension the following day will be 133° 23' 41" ; that of the sun’s, 
in time on the 31st 18h. 39' 7" 5, and on the 1st of January, 1812, 
18h. 43' 32" 8.) 

4. On the 22d of August, 1812, at what hour will the moon 
pass the meridian of Greenwich ; her right ascension being 329° 
37' 48", and declination 12° 13' south? 

Note 2. To find the time of the moon’s southing or coming to the meri ¬ 
dian of any place, different from that of Greenwich. See the note to ex. 8, 
prob. 18th, part 3d. 

* The time of the moon’s transit in Greenwich is found* calculated in page 
7 of the month in the Nautical Almanac. 
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PROB 40. 

The latitude of the place, day of the month, and time of high water 
at the full and change of the moon being given, to find the lime of 
high water on the given day. 

Rule. Find the moon’s southing by the foregoing prob (or the 
note to prob. 18th, part 3d ) to which add the time of high water 
at the full and change of the moon,* and the sum will give the 
time of high water in the afternoon. If the sum exceed 12 hours, 
subtract 2 h 24 min. from it, and the remainder will give the 
time of high water in the morning ; but if the sum exceed 24 h. 
take 24 h. 48 min. from it, and the remainder will give the time 
of high water in the afternoon. 

Or, Find the moon’s age, and opposite to it in the following ta¬ 
ble (l st) take out the time in the right hand column correspond¬ 
ing to it, to which add the time of high water at the full and change 
of the moon, and the sum will shew the time of high water in the 
afternoon. If the sum exceed 12 h. or 24h. proceed as above. 

on THUS, 
Find the moon’s horizontal parallax,! and the time of her com¬ 

ing to the meridian, for the given time and place ; from the fol¬ 
lowing table (2d) take out the correction corresponding to this 
time, and apply it, as the table directs, to the result; add the time 
of high water at the full and change of the moon (found as direct¬ 
ed above) and the sum will be the time of high water in the after¬ 
noon. If the sum exceed 12 or 24 hours, proceed as directed in 
the first rule. 

Example 1. Required the time of high water at London bridge 
on the Sth of June, 1811. The moon’s right ascension at that 
time being 277° 21' 2 ", and her declination 13° 26' south ? 

Ans By the globe. The moon came to the meridian at 14 
hours, or in the morning at 2h. 

Time of high water at the full and change at London 3 

Time of high water in the morning 5 hours. 

By rule 2d. The moon’s age is 18, the time answering to which 
in table 1, is 13h. 54' 

Time pf high water at full and change at London, 3 0 

Sum 16 54 
Subtract 12 24 

Time of high water in the morning 4 80 

* This is given in the table of the latitude and longitude of places found 
at the end of this work. 
| The moon’s horizontal parallax for noon and midnight, and the time of 

her coming to the meridian of Greenwich, is found 'in page 7 of the month 
in the Nautical Almanac, and the latter time may be reduced to any ether 

, meridian by the note to prob. 18. The moon’s parallax maybe reduced to any 
other meridian by taking proportional parts, and allowing 15° for every hour. 
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J&y the Nautical Almanac. The moon will come to the meridian 
at 14 hours, her horizontal parallax at midnight will be 
59' 35" ; hence for 14 hours and parallax 6O', the corres¬ 
ponding correction from tab. 2 to be subtracted, is Oh. 13* 

From 

Difference 
Time of high water at full and change. 

Subtract 

Time of high water in the morning, 

14 0 

13 47 
3 0 

16 47 
12 24 

4 23 
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2 Required the time of high water at London on thelOtfoof 
May, 1812, the moon’s right ascension being 41° 50' 15", and 
declination 11° 16' north? 

3* Required the time of high water at New-York on the 4th of 
July, 1811, the right ascension of the moon at Greenwich being 
256° 39' 6", and her declination 17° 49' south. (The moon 
passes the meridian of Greenwich on the 4th of July, at lOh. 41'f 
and on the 5th at 1 lh. 39'. Her horizontal parallax being nearly 59'.} 

4. Required the time of high water at Boston on the 1st of Oc¬ 
tober, 1813, the right ascension of the moon at Greenwich being 
264° 26' 59", and declination 19° 50' south; also her passage 
over the meridian of Greenwich on the 1st of October, being at 
5h. 19', and on the 2d. at 6h. 8', and her hor. parallax at noon 
on the 1st of October, at Greenwich being 54' 17", and at mid¬ 
night 44' 26" ? 

PROB. 41. 

To describe the apparent path of any given planet or comet, 
among the fxed stars.* 

Rule. Find the planet’s geocentric latitude from an ephemeris 
or from page 4th of the month in the Naut. Aim. or if a comet;. 

In table 1st if l£f be added for each hour to the daily correction, the 
sum will be nearly the correction for that time. 

In table 2d the distance of the sun from the earth might be also allowed 
for, but being so small, it is here neglected. See McKay’s Treatise on 
Navigation, tables 5th and 6th. The principles on which these tables are 
constructed, will be given in part 4th, article tides. See also chap. 5, l>. 
1, of McKay’s Navigation. 

* To perform this prob. on a plane or on paper. Draw a straight line to 
represent the ecliptic, and divide it into any number of convenient equal 
parts. At the ends of this line draw perpendiculars, and on each of them 
set off eight or ten of those equal parts northward and southward of the 
ecliptic ; through every one of these parts draw straight lines parallel to the 
ecliptic, and others perpendicular to these, through the divisions on the 
ecliptic, these lines will represent the zodiac. Then mark the geocentric 
lat. and long, (as above) on this zodiac, beginning at the right hand of the 
ecliptic line, and proceeding- towards the left, as the stars appear in a con¬ 
trary order in the heavens, to what they appear on the surface of the globe ; 
because in the heavens we see the concave part, and are supposed in the 
centre of the sphere, but on the globe we see the convex, and are suppos¬ 
ed to be situated without the sphere of the stars, &c. To describe the 
principal fixed stars and the constellations near which the planet or comet 
passes, the sides of the map or the degrees of lat. and also the degrees, &e. 
on the ecliptic, must be extended so as to take in their latitudes and longi¬ 
tudes. Their lat. and long, must be set off, in a similar manner, from the 
right to the left. In this manner you will have a complete representation 
of the heavens with the positions of the several stars, constellations, &c. as 
they appear to a spectator on the earth. Hence this manner of delineating- 
the stars is useful in learning their places, &e. 

The places of the stars may be laid down in like manner, from their right 
ascensions and declinations, by drawing a portion of the equinoctial in place 
of the ecliptic, &c. 
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imd Its place by observation or from tables constructed for that 
purpose ; mark those places on the globe for every month, or for 
several days in each month ; these marks connected will be the 
path required. 

Examqile. Describe the path of the planet Jupiter for the year 
I S 12, the latitudes and longitudes being as follow : 

Jan. 1st. 
Longitudes. 
3s. 0° V 

Latitudes. 
0° 11' S. 

— 19th. 2 27 53 0 8 S. 
Feb. 1st. 2 26 48 0 6 S. 
March 25th. 2 27 58 0 1 N. 
Apr. 1st. 2 28 44 0 1 N. 
—. 13th. 3 0 20 0 3 N. 
— 25th. o 

O 2 13 0 4 N. 
May 1st. 3 3 15 0 4 N. 
—. 13th.' o 

J 5 28 0 6 N. 
— 25 th. 3 7 52 0 7 N. 
June 1st. 3 9 20 0 7 N. 
— i3th. 3 1 1 54 0 8 N. 

25th. 3 14 34 0 9 N. 
July 7 th. 3 17 15 0 10 K. 

19th. 3 19 56 -0 12 N. 
Aug. 1st. 3 22 50 o 13 N. 
— 13th. 3 25 26 0 14 N, 

25th. 3 27 56 0 16 N. 
Sept. 7th. 4 0 28 o 17 N. 

25th. 4 3 38 0 20 N. 
Oct. 7th. 4 5 26 0 22 N. 
— 25th. 4 7 32 0 25 N. 

Nov. 7th. 4 8 32 0 27 N. 
— 25th. 4 9 4 0 31 N. 

Dec. 7th. 4 8 50 0 33 N. 
—- 25th. 4 7 37 0 37 N. 

Ans. January 1st. Jupiter will be near n in Gemini. On the 
near a small star marked h. On March 25th. its motion will be re¬ 
trograde. On the 13th of April its motion will be again forward, 
and so continue to the 25th of November, when its motion will 
again become retrograde. On July 7th. it will be near £in Gemini. 
On Oct. 7th. it will be near £ or Asellus Australis in Cancer, &c. 

PROB. 42. 

To illustrate the precession of the equinoxes * 

Rule. Elevate the north pole 90° above the horizon, the 
equinoctial will then coincide with the horizon ; bring the pole of 

* The sun returning to the equinox every year, before it returns to the 
same point in the heavens, shews that the equinoctial points have a retro¬ 
grade motion from east to west. The cause of this motion was unknown 
until JYeu'ton (prob. .39, b. 3. of his pr'mcipia) had proved, that it is produced. 
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the ecliptic (or that point on the globe where the circular lines 
meet) to coincide with that part of the brass meridian which is 
numbered from the pole towards the equinoctial, and mark the 
point over it * consider this mark as the pole of the world, and let 
the equinoctial be considered as the ecliptic, and the ecliptic as the 
equinoctial ; then turn the globe gradually on its axis from east 
to west, and the equinoctial points will move the same way, and 
will describe one revolution round the globe, in the same time 
that the pole of the world (here represented by the pole of the 
ecliptic) will describe a circle round the pole of the ecliptic (here 
represented by the extremity of the earth’s axis.) Now as the 
equinoctial points move backwards, or from east to west, at the 
rate of 50i" in a year, or 1° in 71 64 years, this circle will be de¬ 
scribed in 25791 years. (See the note to def. 74.) In this time the 
pole of the heavens will also describe a circle, the semidiameter 

by the Combined actions of the sun and moon on the protuberant matter 
about the earth’s equator ; and that this protuberant matter was caused by 
the revolution of the earth on its axis, which gives the earth the figure of 
an oblate splieriod, flat towards the poles, and elevated towards the equa¬ 
tor. (Prob. 19. b. 3. prin. see Fenn’s System of the Physical World, pa. 61. 
see also the demonstration of this curious phenomenon in prob. 26. sect. 3. 
Emerson’s Fluxions.) Thus (as La Place remarks) every part of nature is 
linked together, and its general laws connect phenomena with each other, 
which, in appearance, have not the most remote analogy. 

Hipparchus was the first (as Ptolemy informs us ch. I b. 7. of his Alma¬ 
gest) who observed this motion of the stars of the zodiac, by comparing his 
own observations with those which Aristillus and Timocharis had made in 
Alexandria about 155 or 160 years before ; and Ptolemy, by comparing- his 
observations with those of Hipparchus, found that all the stars had a simi¬ 
lar motion, and as well as Hipparchus estimates it at 1° in 100 years. (See 
his Almagest, ch. 2d and 3d.) In the year 128, before J. C. Hipparchus 
found the longitude of Spica Virginis to be 5s. 24°, and in 1750 its long, 
was found 6s. 20° 21*, the diff. of which is 26° 21*. In the same year he 
found the longitude of Cor Leonis to be 3s. 29° 50', and in 1750 it was 
4s. 26° 21', the difference of* which is 26° 31'. The mean of these two 
gives 26° 26' for the increase of long, in 1878 years, or 50'' 40"* yearly for 
the precession. Albategnius, from the places of regulus, observed by Mene- 
laus and himself at the distance of 785 years, makes the precession 1° in 
66 years. (Chap. 52 of his book of the knowledge of the stars.) By compar- 
ing the observations of Albategnius in the year 878 with those made in 1738, 
the precession is found to be 51" 9'". Ulugh Heigh (in the preface to his 
tables) makes the precession 1° in 70 solar years. Tycho Brahe (in his 
Progymn, b. 1.) makes it 1° 25' in 100 years, or 51" yearly. (Tycho’s tables, 
as also the Rudolphine, are given at the end of Nicholas 5)creator’s Astron¬ 
omy, latin ed. 1676.) From a comparison of 15 observations of Tycho with 
as many made by Be la Caille, the precession is found to be 50" 20'". 
Copernicus, who considered this motion unequal, makes the mean equal 
1° 23' 40" 12'" in 100 years, and Ricciolus 1° 23' 20" in the same time.— 
Street in his Astronmia Carolina, makes it 1° 20'. Bulialdus in his Astronomia 
Philolaica 1° 24' 54", and Ilevelius 1° 24' 46" 50"', in 100 years. The first 
star of Aries, marked was at the beginning of the year 1701, according 

to Ilevelius, in 29° 0' 5B'f of Aries. La Land, from the observations of 
Be La Caille, compared with those in Flamstead's catalogue, makes the 
secular precession 1° 23f 45", or 50" 25 in a year. 
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of which is equal to the obliquity of the ecliptic or 23° 28', anti 
hence it varies its position a little every year. If from the pole of 
the world or the above mark on the brass meridian, the comple¬ 
ment of the lat. be reckoned upwards (which for New-York, for 
example, is 4 9° 17') and the point where the reckoning ends be 
marked, this mark will be exactly over the lat. New-York will 
therefore be under 64° 11' on the brass meridian, reckoning from 
the southern point of the horizon or from the equator And when 
12895| years, being half one entire revolution of the equinoxes, are 
completed which may be known by turning the globe half round, 
or until the pole comes under the opposite degree on the meri¬ 
dian or Aries from the western to the eastern point of the horizon) 
that point of the heavens which is now 2° 2r north of the zenith 
of New-York, will be the north pole, as may be seen by the pole’s 
distances from the mark over 64° 11' on the meridian This is 
on supposition that the obliquity of the ecliptic, See. will not alter 
this period, See. 

In the same manner it will be found, that in all those places 2° 
2\* north of New-York, or in lat. 43° 4', the north pole will, in 
the same time be in their zenith, and all those places still farther 
north, will have the pole in their zenith before this period or 
before 12895| years would be expired. 

Hence likewise we see that the pole is advancing towards the 
present equinoctial, See. 

For a further illustration of this prob. see Keifs Astronomy, 
lect. 8, or La Place’s Astronomy, b. 4, ch. 13. 

Besides this motion of the equinoctional points, or the pole, there is 
another called the nutation, which depends on similar principles. If the 
pole of the equator be supposed to move upon the circumference of a 
small ellipsis, tangent to the celestial sphere, whose centre, which may 
be regarded as the mean pole of the equator, describes uniformly every 
year (154" 63) 50" 1 of the parallel of the ecliptic on which it is situated; 
the greater axis of this ellipses, always tangent to the circle of latitude, 
and in the plane of this great circle, will, according to La Place, subtend 
an angle of about (62" 2) 20" 15, and the lesser axis an angle of (46" 3) 
15". La Place determines the situation of the real pole of the equator up¬ 
on this ellipsis thus ; let a small circle on the plane of this ellipsis be sup¬ 
posed concentric with it, and its diameter equal to the greater axis of 
the ellipsis ; let a radius of this circle move uniformly with a retrograde 
motion, so as to coincide with that half of the greater axis nearest to the 
ecliptic, every time that the mean ascending node of the lunar orbit coin¬ 
cides with the vernal equinox. From the extremity of this moveable ra¬ 
dius, let a perpendicular fall upon the greater axis of the ellipsis ; the 
point where this perp. cuts the circumference of the ellipsis, will be the 
place of the real pole of the equator; this motion of the pole is called its 
nutation. Dr. Maskelyne, by examining the observations of Bradley, the 
first discoverer of this nutation, makes the quantity (62" 2) 20" 15 ( = 58"6) 
=*= 18" 98, which differs but (3" 6) 1" 16 from the result found by the tides. 
This phenomenon being better determined by the tides, induced La Place 
to take (58" 2) 18" 85 as more correct. See the laws of these motions in 
ch. 13, b. 4, of his Astronomy. 

The phenomena of the precession and nidation throws great light on the 
figure of the earth, supposed elliptic, as its ellipticity or compression 
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Remark. The period of the revolution of the equinoctial 
points, or 25791 years, was called by the ancients a platonic year, 
and they imagined that when this period would be completed, the 
world was to begin anew, and the same series of things return 
over again. This idle notion, however, had no other foundation 
than in their imagination. Whenever we find this sportive faculty 
permitted to wander unrestrained, its excursions are, in general, 
more characteristic of extravagant fictions, than the imaginary ex¬ 
ploits of a Don Quixote and his squire Sancho ; though many of 
our prime philosophers have always shewed an unaccountable dis¬ 
position to give into extravagancies not warranted by reason or com¬ 
mon sense, if they only served to support some favourite opinion 
or fancied system. In this case truth must always suffer, and be¬ 
come the victim of folly and prejudice. Hence as McLaurin re¬ 
marks, “ False schemes of natural philosophy may lead to atheism, 
or suggest opinions concerning the deity and the universe, of most 
dangerous consequence to mankind ; and have been frequently em¬ 
ployed to support such opinions.,, (View of Newton’s Philoso¬ 
phy. See an account of the Indians or Brahman’s division of 
time, See. in Bartolomeo’s voyage to the East-Indies, ch. 9.) 

appears from them not to exeed ; Bouguer making it Delam- 

bre, table 94, makes it ; most astronomers before him making it fys* 
And although the meniscus, or protuberance at the equator, was supposed 
solid, &c. in these investigations, the fluidity of the ocean will not change 
the conclusions, as La Place proves in this remarkable theorem : “ What¬ 
ever be the law of the depth of the ocean, and 'whatever the figure of the sphe¬ 
roid which it covers, the phenomena of the precession and nutation will be the 
same as if the ocean formed a solid mass with the spheroid.** The mean ob¬ 
liquity of the ecliptic would be constant, if only the sun and moon acted 
on the earth, but from the action of the other planets, this is subject to 
constant variation, and the same cause produces in the equinoxes a direct 
annual motion of (G"5707) 0"1849. From the actions of the sun and moon 
alone, the precession, according to La Place, would be (155" 20) 5G"2848, 
which diminished by the above quantity gives 50" 1 nearly. 

The variation in the motion of the equinoxes changes the duration of 
the tropical year, the latter diminishing as the former augments; so that 
at present the actual length of the year is (12") 3" 888 less than in the time 
of Hipparchus. But this variation has its limits, and La Place finds that 
they would be about (500") 2' 42" (a) but that the action of the sun and 
moon reduces it to (120") 3S"88. (See Emerson’s Centripetal Forces, prop. 
34, sect. 3.) The length of the tropical year at present is 365d. 5h. 48" 
48", from which the length of a sidereal year may be found by this pro¬ 
portion ; (taking the precession of the equinoxes 50" 25) 360° — 50" 25 : 
360° :: 365d. 5h. 48' 48" : 365d. 6h. S' ll^"the length of a sidereal year. 

The mean length of the day, according to this theory, may be supposed 
constant, as La Place has shewn in the chapter above quoted, and re¬ 
marks that this is an important result for astronomy, as it is the measure 
of time, and of the revolutions of the heavenly bodies. 

For more information on this curious subject, consult Simpson*s Miscel¬ 
laneous Tracts; D’Alambert’s Jtecherches sur la Precession des Equinoxes? 
Euler, Mem. de Berlin, tom. 5, 1749 ; La Place’s Celestial Mechanics, he. 

f a) The translator of La Place makes the above 500"= 27'. 
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OF 

ASTRONOMY. 

PART IV. 

OF THE SOLAR SYSTEM. 

Having in the preceding part of this work given the learner a 
comprehensive view of the most useful and interesting parts of 
practical astronomy, we shall in this fourth part endeavour to give 
him a general idea of those bodies that exist around us, and of the 
admirable laws by which they are connected and governed. 

The view of the heavens—the innumerable bodies that, from 
our distant habitation, appear on a serene night, like so many lamps 
that ornament the firmament—the fixed appearance of some, while 
others seem destined to no permanent station, must at all times 
have attracted the attention of mankind, and engaged the most 
learned in the investigation of their nature. 

At first sight their confused, and sometimes insulated appear¬ 
ance, exhibit no traces of order or regularity ; but on examination 
we are astonished to find, amid such magnificent profusion and 
awful grandeur, such harmony, such order and connexion ; and 
jnust conclude that a fabric so immense, and at the same time so 
well proportioned in all its parts—so complicated, and yet directed 
by laws so simple, evidently points out the wisdom of an architect 
as far above our limited conceptions, as that power necessary to 
eall the universe into existence. 

Who has ever considered without emotion those operations and 
laws which combine and regulate the distant parts of the world, 
and so admirably display the greatness, the watchful providence of 
that intelligent Being who presides over the magnificent scene. 
What sublime and awful grandeur does this august temple of the 
Deity exhibit. Thousands of worlds obey his voice and observe 
his laws. Here the mind is struck with man's little schemes of 
insignificant and fleeting greatness, when it sees that kingdoms, 
nations, and the whole earth itself, dwindles into an atom, when 
compared with the majestic greatness of the heavens. While, on 
this extensive scale, we contemplate nature in all her perfections, 
while we behold every part so exactly corresponding to its end, the 
moral disorder which we witness in man, from an abuse of the 
freedom and the reason which he possesses, strikes us more ford- 
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bly, points out our weakness, humbles our pride, and force us to 
have recourse to and rely on that beneficent Being who sometimes 
permits partial evils for greater good. Such extensive views of 
the immense grandeur and magnificence of creation call the mind 
from all its little cares and vanities to higher destinies and nobler 
views, and brings us more and more acquainted with that Being, 
whom, from his works alone, we learn to venerate and obey. 

If then (as De Feller remarks, Philosophical Catechism, vol. 1, 
pa. 138) “ If the thought of God’s existence and of our own im¬ 
mortality enlivens all nature ; if without that thought all would be 
drowned in silence, and in the disconsolate prospect of death and 
eternal naught, it is chiefly in the sublime regions of the stars that 
it displays that enlivening power. Bright and powerful luminaries, 
it is that thought that heightens and dignifies the lustre you shed, 
it is by that thought that you dispel the horror of the midnight 
hour, that you adorn the heavens and charm the earth. While 
you fix my eyes by the radiance and purity of your beams, the 
liveliness of my faith, the sweetness of my hope, excite in my soul 
the most delightful emotions !. ..Cheerless philosophy, where you 
see nothing but sparks, scattered at random over the vast expanse, 
I see, I hear, the most eloquent, the most indefatigable panegyrists 
of the Deity.” The Atheists* books, says the same author, with 
all that philosophy can do to render them fashionable, are cold, 
melancholy performances, they rise only when they borrow the 
language that confutes their errors. It has been attempted (says 
a modern writer) to represent the Atheist as a sage, with whom 
upon the extinction of faith, reason is become omnipotent (New 
Philosophical Thoughts) would it not be better to define him a 
man over whom reason and faith have lost all their power ? Will 
it not even be too much for him to be allowed a place in the class 
of human beings ? Like us, I know, he raises his looks towards 
heaven ; but like the brute, whose eyes are fixed on the earth, he 
can discover no connection between it and the Supreme Being.— 
Heaven has given him that sublime countenance that bespeaks in¬ 
tellect, and perhaps he was made, like man, to possess it to a cer¬ 
tain degree, but like the brute, he no where can perceive any 
traces of it. With the faculty of thinking, he received at his birth, 
privileges far superior to that of instinct: but is it not the animal 
senses alone he takes for his guides ? Like man, in short, he en¬ 
joys the gift af speech ; but like the brutes, he either never ex¬ 
amined nature, or nature never answered him. The sun may go 
on illuminating the world, and rolling from east to west his reful¬ 
gent orb : to the brightness of day may succeed the sable majesty 
of night, ushered in by thousands of radiant stars, hailing with ju¬ 
bilee the greatness of their maker ; the Atheist is deaf to the heav¬ 
enly concert, though sounding from end to end of the glorious 
march : millions of living creatures may people our woods and 
lawns, may soar into the region of the air, may breathe in the 
ocean’s deep gulfs, and perpetuate their various species from age 
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to age * never will they be able to raise his thoughts to the author 
of life. The constant and regular return of the winter frosts and 
vernal blooms, of glowing summers and mild maturing autumns* 
announce to mankind, the God of wisdom and providence ; but 
order and regularity tell him no more than chaos and confusion —. 
Earth may renew her clothing ; she may dress herself out in her 
richest attire ; he will gather her fruits, and ascribe them to 
chance. Insensible in the midst of the great theatre of the uni¬ 
verse ; he never will hear that potent voice, that cries out so dis¬ 
tinctly : It is God that made us. (Ipse fecit nos, et non ifisi nos.) 
Is he then that being that was destined to contemplate nature ? Is 
he, while his heart is begirt with ice, and his mind palsied with 
the apathy of stupidness, is he, I say, qualified to judge of the or¬ 
der, the variety, the riches of all kinds she displays to his view j 
and by the beauty, the magnificence, and the aggregate of the 
work, to raise his thoughts to the power and wisdom of its author V 

The deeper we penetrate into ihe works of this great Author, 
the contemplation of which forms the delight of thinking beings, 
the more our thoughts are elevated above this little spot on which 
we are at present confined—the more we despise the trifling pur¬ 
suits of mortals—the more we pride ourselves in our relation with 
him, whose goodness has performed so much for us—who gave 
us such a distinguished place in the scale of beings—endowed us 
with faculties capable of knowing him, and contemplating such 
stupendous prodigies of his immense power. Hence we are led 
to form this pleasing deduction, that minds capable of such deep 
researches, possessed of qualities so noble and extensive, could not 
be the ephemeral productions or victims of a day, like the vegeta¬ 
ble that perishes, but destined to a nearer approach, to a more ex¬ 
tensive knowledge of the great Author of the universe, when time 
throws off those shackles that retain us in our banishment, and our 
immortal part is called to a country and state of existence worthy 
its nature, and the wisdom and goodness of its Creator. 

Hence the knowledge of this august and amiable Being is the 
only science worthy the noble powers and faculties of . the soul of 
man—his service the only service which is truly dignified and 
honourable—and the enjoyment of him the only possession that 
can satisfy the boundless desires and the noble and aspiring pas¬ 
sions implanted in man; a strong argument that he is destined, 
one day, to enjoy that happiness, when this transitory and imper¬ 
fect view of nature and every thing that occupies and deceives us 
here, passes away, and our immortal country and state of existence, 
presents to our view its more sublime and extensive prospects.— 
These are the pleasing, the important deductions we should draw 
from viewing the majesty of the heavens—the noble sentiments 
that should guide and influence our conduct—sentiments which 
suit well the character of a Christian, who knows the indispensible 
obligations he is under of serving God, and the greatness ©f the 
glory which accrues from his service. 

H h 
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Convinced of and impressed with these truths, the contempla¬ 
tion of the works of creation will be no less delightful than useful 
in conducting us to a knowledge of that infinite Being whom we 
are so apt to forget. A knowledge which draws the line of dis¬ 
tinction between rational beings and the brute creation. 

CHAP. I. 

OF THE SUN. 
With a liberty common to all mankind, the astronomer, like a 

skilful architect, who, to examine the workmanship of a building, 
inspects the different apartments, and takes his point of view from 
different stations ; selects his position in various parts of the uni¬ 
verse, and there considers the phenomena. Among the innume¬ 
rable bodies that appear in the heavens, the sun claims the chief 
place in our system and our first consideration. 

To give the young student an idea of the magnitude of this im¬ 
mense body, we find by observation, that if its centre coincided 
with the centre of the earth, it would fill the whole orbit of the 
moon, and its surface extend as far again.* The sun is situated 
near the centre of the orbits of all the planets, and revolves on its 
axis in 25 days, 14 hours, 8 minutes. This revolution is deter- 

* The diameter of the sun, as seen from the earth, appears at a medium 
under an angle of 32' or 1920", and the parallax of the sun or the angle un¬ 
der which the earth’s semidiameter appears as seen from the sun, is found 
from the latest transit of Venus, equal to 8" 8, and hence the whole diame¬ 
ter would appear under an angle of 17" 6. Therefore the proportion be¬ 
tween the sun’s diameter and that of the earth, is as 1920" to 17" 6 or 

— 109 nearly ; and as the magnitudes of spherical bodies are as the 
cubes of their diameters (Euclid prop. 18. b. 12. of Emerson’s Geom. prop. 
18. b. 7.) 1093 = 1295029, the number of times the sun is greater than 
the earth. Again, 109 X 7911 = 862299, the number of miles in the sun’s 
diameter, that of the earth being 7911 nearly. (See note to def. 8.) 

Now to find the distance of the moon. 
Let MC represent its mean distance from 
the centre of the earth C, AC, or CB the 
earth’s semi diameter, and the angle AMC 
the moon’s horizontal parallax, which at 
the mean radius of the earth, according 
to La Land, is 57r 1". Hence, 

As sine 57' 1" 
To Radius * 
So is AC 3956 

To CM 238533 

The diameter of the sun being 862299 miles, and the distance of the moo# 
from the earth only 238533 miles, it follows that the sou’s diameter is near 
ly 4 times this distance, and hence the truth of the above assertion. 

A 

- 8.2197069 
- 10. 

3.5972563 

5.3775494 
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mined'from. the motion of certain spots * on its surface, which first 
appear on the eastern extremity, then advance towards the mid¬ 
dle, and at length to the western edge, where they disappear. 
When they have been absent nearly as long as they were visible 
they appear again as at first, finishing their entire circuit in 27 

days, 12 hours, 20 minutes. Hence to an observer placed in the 

* Black spots of an irregular form are observed at the surface of the sun, 
whose number, magnitude, and position, are very variable.—They are often 
very numerous, and of considerable extent; sometimes, though rarely, the 
sun has appeared pure and without spots for several years together. 

It is doubtful by whom these spots were first discovered. Scheiner, a 
German Jesuit and professor of Mathematics in Ingolstadt, Galileo in Borne, 
David Fabricius, and Harriot, each seemed to have discovered them about 
the year 1611, and as telescopes were then in use, it is probable that each 
might make the discovery independent of the other. These spots are 
supposed to adhere to the sun’s body, and hence its rotation has been dis¬ 
covered. 

M. Cassini determined the time of rotation from observing the time in 
which a spot returns to the same situation on the sun’s disk, or to the cir¬ 
cle of latitude passing through the earth. This time from a great number 
of observations, he determines to be 27d. 12h. 2(/, and the mean motion of 
the earth in that time being 27° 7' 8", we have this proportion ; 360°4,27° 
7' 8" : 360° :: 27d. 12h. 20' : 25d. 14h. 8' the time of the sun’s revolution 
on its axis, the motion of the spots being supposed uniform. Their motion 
is from west to east. 

When the earth is in the nodes of the sun’s equator, and consequently in 
its plane, the spots appear to describe straight lines : this happens about the 
beginning of June and December. As the earth recedes from the nodes, 
the path of a spot grows more and more ecliptical until the earth is 90° 
from the nodes, which takes place about the beginning of September and 
March, at which time the ellipsis has its lesser axis the greatest, and is then 
to the greater axis as the sine of the inclination of the solar equator to ra¬ 
dius. Hence the inclination of the solar axis to the plane of the ecliptic is 
found to be 7§°, or rather this is the angle which the axis of the sun makes 
with the axis of the ecliptic, or a perpendicular to its plane which passes 
through the sun’s centre. Most of the spots appear always within the com¬ 
pass of a zone, whose breadth, measured on the solar meridian, extends 
between 29° 42' and 30° 36/ ; they have sometimes, however, been seen 
29° 36', and in July 5th, 1780, M. de la Land observed one 40° distant 
from the solar equator. 

There have been various opinions respecting the nature of these spots,. 
Scheiner supposed them to be solid bodies revolving round the sun, near its 
surface. But if they were not on the sun’s surface, they would be longer 
visible than invisible, which is not the case. Moreover, if they revolved 
about the sun like the planets, their motion would necessarily be in a plane 
passing through its centre, which seldom happens. Galileo compared them 
to smoak and clouds, as they varied their figures, increased and sometimes 
disappeared. Hevelius appears to be of the same opinion in his Cometo 
graphia, pa. 360. The permanency of most of the spots is however an ar¬ 
gument against this hypothesis. J\f. de la Hire supposes that they are 
solid bodies which swim on the sun’s surface, and which are sometimes im¬ 
mersed in the liquid of which he conceives the sun’s surface composed.— 
La Lande supposes that the sun is an opake body covered with a liquid 
fire, and that the spots arise from the opake parts like rocks, which are 
sometimes raised above the surface by the alternate flux and reflux of the 
liquid igneous matter of the sun. Dr. JVilsonf professor of Astronomy at 
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sun, all the planets and fixed stars will appear to revolve from east 
to west in the space of 25 A of our days nearly, exclusive of the 
motion which the planets have in their orbits. The northern pole 
of this revolution will be in that place which an observer, situated 
on the earth, would refer to the tenth degree of pisces, and in lati¬ 
tude between 83° and 84° north, near the stars 3" or n- in Draco. 
The south pole will be in the 1 Oth degree of Virgo, in latitude be¬ 
tween 83° and 84° south, near the star « in equuleus pictorius. 
Besides these apparent motions arising from the motion of the sun 
on its axis, the planets will be observed to have regular and proper 
motions in their orbits round the sun, and all from the west to¬ 
wards the east. These motions are performed nearly in the same 
plane* at least not differing more than 7° or 8°. An observer in 
the sun will also find, that if he compares any planet with the fixed 
stars, it will sometimes go slower and sometimes swifter, he will 
therefore conclude that it is sometimes nearer and sometimes fur¬ 
ther off. This will also appear more evidently from the change of 
jts apparent diameter. He will likewise observe some perform 
their revolution in less time than others, and if he has any idea of 
the laws of gravity,* he will refer this difference of velocity to its 
proper cause, which is the different distances of these respective 
bodies. But these distances he cannot so easily observe as if si¬ 
tuated on the earth, as on the latter, from its motion, he can select 
several stations at great distances from each other. 

We have observed that the motion of the planets round the 
sun is not uniform, being subject to very perceptible inequalities, 
the laws of which form one of the most important objects of as¬ 
tronomy. 

Glasgow, opposes La Land, and is of opinion that the spots are excavations, 
or deep caverns in the luminous matter of the sun, the bottom of which 
forms the dark spot or umbra formed in the middle. (See the Phil, trans. 
1774 and 1783.) La Place in his Astr. vol. 1. b. 1. c. 2. remarks that they 
are eruptions in the sun’s body, of which our volcanoes form but a feeble 
representation, as they are almost always surrounded by a penumbra, which 
is enclosed in a cloud of light more brilliant than the rest of the sun, and in 
the midst of which the spots are seen to form and disappear. Dr. Halley 
was of opinion that the spots are formed in the atmosphere of the sun. Dr. 
Herschel supposes the sun to be an opake body, surrounded by a very gross 
atmosphere. He says that if some of the fluids which enter into its compo¬ 
sition, should be of a shining brilliancy, while others are merely transparent, 
any temporary cause which may remove the lucid fluid, will permit us to 
see the body of the sun through the transparent ones. See the Phil, trans. 
for 1795. Some of these spots have been observed whose diameter exceed 
6 or 7 times that of the earth. Dr. Herschel on April 19, 1779, saw a spot 
which measured 1' S,f, OG in diameter, which in length is near 30600 miles. 
(For 8", 8 : F 8", 06 :: 3956 : 30596.) This was visible to the naked eye. 
For the phenomena of the spots as described by Schemer and Hevelim, see 
Yince’s Astronomy, 8vo. pa. 136. Besides the dark spots upon the sun, 
there are also parts of the sun called Facul<e, Lucili, &,c. which are brighter 
than the general surface ; these abound most in the neighbourhood of spots,, 
or where spots had been recently observed. 

* These general laws will be given after the solar system. 
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Kepler conceived the ingenious idea of comparing the figure of 
the orbit of the planets with that of an ellipsis,* in one of the foci 
of which he placed the sun ; and the innumerable observations we 
have since had, besides the important and numerous discoveries of 
Newton, leave no doubt concerning the truth of the hypothesis. 

Besides this useful discovery, Kepler has made two others no 
less important, and which all observations and physical reasoning 
concur to establish, viz. that 

The planets, by radii drawn from the sun to their respective cen¬ 
tres, describe areas round the sun, proportional to the time of de¬ 
scribing them ; and that 

The squares of the times in which the planets revolve round the 
sun, are to each other as the cubes of the greater axis of their orbits. 

Newton, in his discoveries, has extended the same laws to the 
secondary planets revolving round their respective primaries. 

The sun is not, however, exactly the centre of the planets’ mo¬ 
tions, but rather the centre of gravity of the whole system ;f but 

* If the two ends qf a thread be tied together, and placed round two pins 
fastened in a sheet of paper, on a table ; then the thread being uniformly 
stretched by a black lead pencil, carried round by an even motion of the 
hand, will trace out an ellipsis, and the points where the pins were fixed are 
called its foci; the longer diameter is called the transverse, and the shorter 
the conjugate. In describing the ellipsis the ends of the string might be 
fastened to the pins. The nearer the pins are, the more the ellipsis will ap¬ 
proach a circle, and the further they are apart, the more eccentric will the 
ellipsis be. When the ends of the thread are fastened to the pins, the 
length of the thread ought to be equal to the length of the transverse di¬ 
ameter. 

It is a known property of the ellipsis, that the sum of two lines drawn 
from the foci to meet in any point of the cure, is equal to the transverse di¬ 
ameter ; hence other constructions by compasses, S^c. will arise. For which 
and the properties of this figure, see Simpson, Emerson, Hamilton, Milncs, 
Simson, Vince, or other writers on the conic sections. 

f The centre of gravity of a system of bodies is that point round which, if 
the bodies were suspended, they would remain in equilibrio in any position. 
(They may be conceived to be suspended by inflexible levers, or in any 
other manner, from this centre.) 

This centre may be thus found ; let the line ACB 
be supposed an inflexible lever, considered without 
weight, and let the two bodies A and B be suspend¬ 
ed on the ends of the lever; take the point C in AB 
so that AC : BC :: B : A, then C will be the centre 
of gravity between A and B. For if the bodies A 
and B be made to vibrate about the immovable point 
C, A and B will describe the arches Aa, Bb, which 
will be as the velocities of the bodies, and also as the 
radii AC, CB of the circles ; and hence their velocities are as the radii.— 
Therefore vel. A : vel. B :: AC : C’B, or as B : A (by supposition) whence 
A X vel. A — B X vel. B. But as these products represent the quanti¬ 
ty of motion of these bodies (see the laws of motion, next section) which 
being equal, the bodies will therefore remain in equilibrio round the centre 
C, which is therefore the centre of gravity required. Again, if A and B be 
now supposed to act in C, and E another body, the centre of gravity of these 
three bodies will divide CE in D, so that CD : DE :: E : A -f* B, &c. 

,..b 

A C / 

D' 

-# 

B 
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as this centre is generally within the body of the sun, and can never 
be at the distance of more than the length of a solar diameter from 
its centre, the sun is therefore generally considered by astronomers 
as the centre of the solar system. The sun is however agitated by 
a small motion round the true centre of gravity, owing to the va¬ 
rious attractions of the surrounding planets. 

As the sun revolves on its axis, his figure, like the rest of the 
planets, is supposed not to be strictly in the form of a globe, but of 
an oblate spheroid (a figure formed by the revolution of an ellipsis 
round its shortest axis or conjugate diameter) and therefore flat 
towards the poles. 

An observer placed in the sun can have no vicissitude pf day and 
night, yet the fixed stars and planets will make unequal arches 
above and below the horizon, as they decline towards either pole, 
as it happens to the inhabitants of the earth. He will see no sha¬ 
dow or eclipse, but to an eye on the surface of the sun, when the 
planet is in the horizon, its satellite will sometimes appear in the 
penumbra of it, or the penumbra of the satellite may appear cast 
on the disk of the primary planet, which will be known by the co¬ 
lour being something duller. But the whole diameter of a prima¬ 
ry planet will appear so small to an observer in the sun, unless as¬ 
sisted by very powerful telescopes or some other substitute, that 
these appearances can scarce be observed. 

At the sun the diameter of Saturn (as laid down by Dr. Gregory 
in book 6th of his Astronomy) subtends an angle of 18", that of 
Jupiter of about 40", that of Mars only 8", of Venus an angle of 
28", and of Mercury 20", Hugens makes the diameter of Jupiter 
near 54", and that of Saturn without his ring 27". 

The apparent diameters of bodies diminishing as the distance in¬ 
creases, an observer on the earth will therefore form an estimate 
of the relative change of the sun’s distance ; in like manner an ob¬ 
server in the sun will form an idea of the planets’ variation in their 
respective distances ; and as the sun’s apparent diameter is greater 
in the beginning of January than hi the beginning of July, it fol¬ 
lows that the sun is nearer to our earth in the winter than in the 
summer. The greatest apparent diameter of the sun, as given in 
the Nautical Almanacs for 1811 and 1812, on the 1st of January, 
is 32' 35" 6, and the least on the 1st of July is 51' 31", the mean 
between which is 32' 3" 3. La Place in his Astronomy (b. 1, c. 1) 
makes the apparent diameter of the sun, when the velocity of the 
earth is greatest, equal 6035" 7,* when the velocity is least, equal 

Hence if by this method we find the centre of gravity between the sun 
and Mercury, between this centre and Venus, between this centre again 
and the earth, and so on to the remotest planet (their quantities of matter 
being given) the last centre will be the centre of gravity of the whole sys¬ 
tem, and the focus of all the planetary orbits. But this will seldom differ 
much from the sun’s centre. 

* In La Place’s astronomy the quadrant is divided into 100°, each de¬ 
gree into 10G', and each minute into 10G", &c. Hence a degree in the 

sexagesimal arithmetic adopted in this country is equal 1-|° of this cem 
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5836" 3, and its mean diameter 5936". He says that these quan¬ 
tities should be diminished a few seconds to allow for the effect of 
irradiation, which dilates a little the apparent diameters of lumi¬ 
nous bodies. 

The mean apparent diameter of the sun being taken about 32% 
and if we take the sun’s mean distance from the earth to be 95 

millions of miles,* its real diameter will be 862299 miles, as before 

in the ensuing part of this work, when we have a necessity for quoting 
La Place, use his own measures, and give their value in the margin, as 
the reduction of them in the English translation is replete with faults.—* 
The above three numbers are thus given in the margin of the English 
translation, 32' 35", 6, 28' 49", and 30.42, 25. 

As the apparent diameter of the sun is greatest near the winter solstice, 
least near the summer solstice, and nearly at a mean in the equinoxes, its 
apparent diameter may be easily found at any other time sufficiently cor¬ 
rect by proportion. 

The apparent diameters of the planets are found by a micrometer placed 
in the focus of a telescope ; or the apparent diameter of the sun may be 
measured in a dark room, by means of the projection of his image through 
a circular aperture. From these apparent diameters, and the respective 
distances from the earth, their real diameters may be determined thus : 

Let M in the foregoing figure represent the earth, AB the sun’s diame¬ 
ter, the angle AMC the apparent semidiameter of the sun =* 16', and MC 
the distance of the sun from the earth ; to find AB the true diameter, it 
will be. 

Rad. 
To tang. 16' 
So is 23464.5 

10.0000000 
7.6678492 
4.3704112 

To 109.2095 2.0382604 

Hence 109.2095 X 2 = 21S.419, which multiplied by 3956, gives 86406 
3;564, the diameter of the sun ; the cube of which divided by the cube of 
7911, will give the number of times the sun is greater than the earth. 

In the above calculation 23464.5 is taken in place of 23405 (see ch. 2) 
hence 23464.5x3956 = 92825562 miles. 

* If in the figure for determining the distance of the moon, &c. (pa. 250) 
we suppose M to be the sun, AC the earth’s semidiameter, and the angle 
AMC the sun’s horizontal parallax 8" 65, the distance MC is thus found; 

As tang. AMC S" 65 . 5.6219140 
To rad. or sine ACM - 10.0000000 
So is one semid. of the earth AC - - 0.0000000 

To 23882.84 semidiameters - 4.3780860 

We have here taken the sun’s parallax at its mean distance S" 65 ac¬ 
cording to Mr. Short, who has taken incredible pains in calculating it 
from the best observations made on the transits of Venus in 1761, an ac¬ 
count of which is given in the philosophical transactions for 1762 and 
1763. But from the transit of Venus in 1769, compared with the former, 
the parallax is found to be 8,( 8. 
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determined, and its magnitude 1295029 times that of the earth ; 
the diameter of the earth being only 7911 miles, the sun’s diame¬ 
ter will be 109 times as great. 

Besides the planets and fixed stars, an observer in the sun will 
discover other bodies of a different nature, called comets, on account 
of their hairy appearance, as seen from the earth. These are carried 
in very eccentric orbits round the sun, sometimes approaching 
near his body, and at other times going off to immense distances 
from it These comets will appear to be carried among the fixed 
stars, some in one direction and some in a contrary, in orbits 
whose planes are very much inclined to that of the ecliptic, al¬ 
though they regard the sun, or rather the centre of gravity of the 
solar system, as the focus of their motions. 

What we have here said is upon supposition that an observer in 
the sun is not prevented by its atmosphere (which from late expe¬ 
riments we have reason to conclude is very gross*) from seeing as 

Mr Short by taking the semidiameter of the earth 3985 miles, makes 
the earth’s mean distance 95173127 miles. But if the earth’s semidiam¬ 
eter be 3956, the earth’s mean distance from the sun will be 23882.84 X 
3956 = 94480515 miles. Ilence in round numbers it is sometimes taken 
about 9500U000 miles, although it is probably less. La Place taking the 
parallax 8, makes the sun’s mean distance 23405 times the radius of 
the earth ; hence 23405 X 3956=92590180 English miles, the sun’s mean 
distance from the earth. There must, however, be some mistake in La 
Place’s calculation. (See ch. 2d ) 

* Bouguer, by some curious experiments on the intensity of light on 
different parts of the sun’s disk, found that this light was more intense at 
the centre than near the limb. Two equal and very small portions of the. 
sun’s surface seen from the earth, one at the centre of the disk, and the 
other near its edge, appear to occupy different spaces, which are to each 
other as radius to the co. sine of the arc of the great circle, which sepa¬ 
rates these two parts on the sun’s surface ; this makes the intensity of 
light increase in this proportion inversely from the centre to the edge of 
the sun’s disk. Bouguer has however found the reverse. In comparing 
the light of the centre with that of a point distant from the limb by a 
quarter of the semidiameter, he found the intensities of these two lights 
in the proportion of 48 to 35 This difference indicates a thick atmos¬ 
phere round the sun, which weakens its light. 

It follows from the preceding results and from the experiments of Bou¬ 
guer, that the intensities of the light of a star seen from the surface of 
the sun at the zenith, is reduced 0.24065, and that the sun deprived of 

its atmosphere would appear 12-| times more luminous. A horizontal 
stratum of air at the temperature of 0 or zero, the thermometer being 
divided into 100° from the freezing to the boiling point of water, and under 

the pressure of a column of Mercury, Gme‘ 76 ought to have .53548 me* 
(metres) of thickness, to weaken light in the same degree as the sun’s 
atmosphere- This is on supposition that at equal densities the transparen¬ 
cy of the sun’s atmosphere is the same as that of the air, but of this we 
are ignorant. Bouguer’s experiments deserve also to be repeated in dif¬ 
ferent aspects of the solar disk. 

La Place in his astronomy (b. 1, c. 2.) remarks, that the faint light 
which is visible particularly about the vernal equinox, a little before the 
rising or after the setting of the sun, and which is called zodiacal light, 
is supposed to be produced from the reflexion of this atmosphere. The 
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far, and as freely as an observer on the earth sees on a clear night, 
when the moon does not shine. If this be not the case, he maybe 
unable to trace several of the phenomena which we have mention¬ 
ed ; but if he sees them at all, he will observe them as we have 
described them. 

CHAP. II. 

OF MERCURY. 
We will now transfer our solar observer from that station whefe 

the motion of the planets are regular, to the earth, his own habita* 
tion, where the phenomena will appear something different From 
this point of view the planets will not observe the equal description 
of areas in equal times as round the sun, but will sometimes ap¬ 
pear to move towards the east, at other times towards the west, 
and sometimes to remain stationary or without any motion. 

Let a body revolve in the pe- 
riphery of the circle A, B, C, Jf. 
D, E, F, &c. and move through 
equal arches AB, BD, DE, EF, O .■G—j-g.. 

X>~JE 

D 

&c. in equal times ; and let an 
eye, in the plane of this circle, 
view the motion of the body 
from O. When the body moves from A to B, 
its apparent motion will be measured by the 
arch LM, or the angle LOM; while it moves 
from B to D, its apparent motion is determined 
by the arc MN, which is less than the former, 
though described in the same time, when it 
comes to E, it will still be observed in the same 
point N ; hence during the time that it describ¬ 
ed the arch DE, it was stationary at N. The motion of the body 
being continued in its orbit, when it comes to F, it will appear in 
L, and to have gone backward or retrograde the arc NM, and 
when it comes to G, it will appear in L, where it appeared before 
when in A. In like manner when it comes to H, it will appear in 
P, and at I it will appear at Q, where it will seem stationary, 
while it describes IK. At K it will again go forward as before, 
and with unequal motions describe the arch QN. This unequal 
motion is evidently owing to the eye being placed at O, without 
the orbit ABD, Sec. of the body, while the revolving body regards 
C as the centre round which it regularly revolves. If the eye at 

fluid which transmits it to us is extremely rare, since the stars are visi¬ 
ble through it; its colour is white, and its apparent figure that of a cone 
whose base is applied to the sun The length of the zodiacal light some¬ 
times subtends an angle of 100°, but the atmosphere of the sun does not 
extend to so great a distance, and cannot therefore be the cause of this 
light. The true cause is still unknown. 
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O be in motion during the revolution of the body in the orbit ABD, 
&c. it will retard or accelerate its motion according as it moves 
in the same or a contrary direction. This explains the phenomena 
of Mercury or Venus* motions in their orbits, which are within the 
orbit of the earth. 

If the eye be now placed within the orbit of the body at O, as in 
the 2d fig. but not in the centre; while the body describes the arch 
AB, it will seem to move quicker than while it describes its equal 
CD, which is more distant, because the angle AOB, by which it 
forms an idea of the motion of the body, is greater than DOC. In 
this case, however, the body will never appear stationary or retro* 
grade, but will always appear to move forward, though with very- 
unequal motions. But if the point O be in motion, then the phe¬ 
nomena will be different. If the motion of the eye at O be equal 
to the motion of the body and in the same direction, the body will 
appear stationary; if the motion be greater, the body will appear to 
go backward, if less, forward, &c. 

This last case explains the phenomena of the motions of Mars, 
Jupiter, Saturn, Herschel, &c. round the earth, in orbits which are 
therefore without the orbit of the earth. The two former planets 
are therefore called inferior or rather interior planets, and the lat¬ 
ter superior or rather exterior planets. 

Plence these appearances prove that the planets do not regard the 
earth as their centre of revolution, but that they in reality revolve 
round the sun, as we have before described. Two of the planets. 
Mercury and Venus, never recede from the sun beyond certain 
limits, the others are occasionally separated from him by all the 
angular distances possible. 

Of all the planets Mercury is nearest to the sun, and the least of 
those whose magnitudes are accurately known. He performs his 
periodical revolution round the sun in 87 days, 23h. 15m. 43"6.* 
His greatest elongation is 28° 20', and least 17° 36', the mean of 
which is 22° 58', and his distance! from the sun is 35933619.76 
miles. 

* For the method of finding the planet’s periodical revolutions, see the 
following note. 

f The distance of Mercury, or any other planet from the sun, may be 
found by Kepler’s rules given in chap. 1 ; thus, the squares of the periodic 
times being always as the cube of their mean distances ; or which is the 
same, divide the square of the time in which any planet revolves round 
the sun by the square of the time of the earth’s revolution, the cube root 
of the quotient will give the relative distance of the planet from the sun, 
which multiplied by the earth’s mean distance from the sun, will give the 
planet’s mean distance required. 

For Mercury. The earth’s periodic revolution is 365d. 5h. 4Sr 48" 
3155692b7, the square of which is 995839704797184 (a constant divisor for 
all the planets) and 23464.5 the distance from the earth to the sun in 
semidiameters, will be a constant multiplier. (Tang. 8"'8 (log. t. =p 
5.6295869) : rad. (log. 10.0000000) :: 1 semidiameter (log. == 0.0000000, 
: 23464.5 semid. (log. 4.3704131) see notes, ch. 1) 87d. 23h. 15m. 43" 6 
=sa 7600543" 6, the square of which is 57768263015500,96, which divided 
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fcy the former square, gives .058009600076417, the cube root of which is 
.38711, nearly, the distance of Mercury from the sun, supposing the dis-. 
tanee of the earth from the sun to be an unit or 1. Hence .38711 x 
23464.5 r=» 9083.34, which mult by 3956, the radius of the earth, gives 
35933693.04 miles, the mean distance of Mercury from the sun. (See 
table 102 of Delambre, pa. 113, 8cc Paris edition.) 

The distance of Mercury or any inferior planet from the sun, may also 
be found by their elongations. If S represent the sun, E 
the earth, and M Mercury, and EM a tangent to Mercu¬ 
ry’s orbit; then the angle SEM will be the greatest 
elongation of the planet from the sun, which angle, if the 
orbit were circular and the sun in the centre, would be 
found by saying ES : SM :: Rad. : sine SEM. But as 
the orbits are elliptic, the angle EMS will not be a right 
angle, unless the greatestelongation happen when the plan¬ 
et is in one of its apsides. The angle SEM is also sub¬ 
ject to variation in proportion to the variation of SE and 
SM. The greatest angle SEM happens when the planet 
is in its aphelion, and the earth in its perigee, and the least, when the 
planet is in its perihelion, and the earth in its apogee. M. de la Lande 
■finds these elongations equal 28° 2(/ and 17° 36' respectively, the mean, 
of which is 22° 58'. But Laplace makes the greatest and least elonga¬ 
tions of Mercury = 32° and 18°, or in our measures = 28° 48/ and 16° 
12' respectively, the mean of which is 22° 30' Now in the triangle SEM 
taking the angle SEM = 22° 30*, the distance of the earth from the sun 
SE 23464.5 of the earth’s semidiameters, and SME is a right angle *• 
hence rad. : SE 23464 5 log. = 4.3704113 :: sine 22° 30' = 9.5828397 
log. 3.9532510 ■= 8979.5 nearly, which multiplied by 3956 gives 35522902 
miles, tht distance of Mercury from the sun by this method; but an er7 
ror of a few minutes in the elongation will make a considerable differ¬ 
ence ; for taking 22° 58' instead of 22° 30', vve find 9155.8 semidiameters 
nearly, = 36220344.8 miles. (See La Land’s Astronomy, 3 ed. 1792. art. 
1142.) 

The distances SE, SM being given, the angle SEM and MSE are also 
given, the former of which is the greatest elongation of the planet, and 
the latter the angle of commutation or heliocentric distance of the planets 
(or which is the same, the common mutation or angular distance of any 
two of the planets among themselves, as seen from the sun.) But this is 
on the supposition of circular orbits ; however the prob. may be solved 
nearly in the same manner, the elliptic figure being considered. For'the 
angle SME being given, and the distance SM, 
and moreover the angles AStf, ASM, MSE 
(nearly equal to the same in circular orbits) 
the , angle ASE will be known, and also SE 
will be known in magnitude, from which the 
rest will be given as before. Here the great¬ 
est elongation changes according to the dif¬ 
ferent distances of the point M from the aphe¬ 
lion of its orbit; foritisgreatestin a in its aphe¬ 
lion, less in p its perihelion, and a mean in the 
mean longitude. It is also various, the place M 
of the inferior planet remaining the same, according as the superior is situa¬ 
ted in E or e, &c. Laplace remarks that the length of an entire oscilia-, 
lion of Mercury, or return to the same position relatively to the sun, varies 
from 106 to 130 days, that the mean arc of its retrogradation is about 
15° (*= 13° 30') and its mean diameter 23 days ; but that, in different 
retrogradations there is a great difference in these quantities. 

By observing two heliocentric places of an inferior planet, its periodic 
time may be nearly found, though it is more accurate to observe the 
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The eccentricity of Mercury’s orbit* is estimated at one-fifth of 
its mean distance from the sun Vince makes the eccentricity of his 
orbit 7955.4 parts of the mean distance of the earth from the sun, 

planet when twice successively, in the same node, that is when the planet 
nas no latitude, the time between these observations will be the planets' 
periodic time, as the motion of the nodes will vary but little during- this 
short period The conjunctions of the inferior planets are also proper for 
discovering their periods, for then they appear in the same point of the 
heavens to an observer, either in the sun or on the earth ; if the planet 
be nearer than the sun, it will appear in opposite points. The superior 
planets When in opposition to the sun, also appear in the same point of the 
heavens or the ecliptic, when seen from the earth, as if observed from 
the sun, and hence their geocentric and heliocentric places agree. If any 
of them be then observed, and the time marked, and the same observa¬ 
tion be made when it comes to its next opposition, the arch which the 
planet seen from the sun, has in the elapsed time described, will be thus 
discovered; then say as that arch : the whole circumference :: the time 
between the two oppositions : a fourth which will give very nearly the 
periodic time of the planet. The planet can never be observed in the 
ecliptic from the earth, which is in the plane of the ecliptic, except when 
it is also in the ecliptic,1 and consequently in its node. 

The daily mean motion of Mercury, according to Delambre, is 4° 5' 33" 
or 4° 5' 34", his mean hourly motion 10' 14", in a minute 10", and in a 
second 10'", &c. 

The hourly motion of Mercury in miles may be thus found ; taking the 
mean dist. from the sun =35933693.04, this multiplied by 2, gives 71867 
386 08 = diameter of Mercury’s orbit, which multiplied by 3 1416, gives 
225778580.109; hence as 87d. 23h. 15'43" : 225778580.109 :: Hi. : 
106940 miles, the hourly motion of Mercury 

* In order to describe a planet’s orbit, or to find its position and ec¬ 
centricity, the planets’ heliocentric place or its place as seen from the 
sun, and its distance from the sun, must be obtained. Dr. Halley gives 
the following ingenious method of finding these requisites, with no other 
data than the periodic time of the planet. 

Let KLB be the orbit of the earth, S the sun, P 
the planet, or rather the point in the plane of the 
ecliptic on which a perpendicular let fall from the 
planet meets that plane ; when the earth is in K, ob¬ 
serve the planet’s geocentric longitude (this is calcu¬ 
lated in pa. 4 of the month in the Nautical Almanac) 
and having the theory of the earth, its place in the 
heavens, or the apparent longitude of the sun is giv¬ 
en (found also in pa. 2 of the. month in the Nautical 
Almanac, and its hourly motion, pa. 3.) and hence 
the angle PKS is given. The planet after complet¬ 
ing an entire revolution, returns again to the same 
point P, at which time the earth being supposed at L, observe the angle 
PLS the planet’s elongation from the sun. Now the times of the observa¬ 
tions being given, we have the places K, L of the earth in the ecliptic 
given, and consequently the angle LSK and the sides LS and SK ; 
Wherefore we shall have the angles SKL and SLK, and the side LK. 
The angles PKS, PLS being likewise known, the remaining angles PKL, 
PLK will be known. Hence in the triangle PKL, two angles and the side 
LK being given, the side PL is given; and having the side PL and LS, 
and the angle PLS, the angle LSP is given, which determines the heliot 
centric place and its distance from the node according to the ecliptic, 
and likewise the side SP is given. But as the tangent of the geocentric 
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supposing this distance 100000. Laplace taking half the greater 
axis of the earth’s orbit or its near distance = 1.000000, makes 
half the greater axis of Mercury’s orbit or his mean distance = 
O. 387100, and the proportion of his eccentricity to this mean dis¬ 
tance for the beginning of the year 1750 = 0.205513, and the seat- 

latitude, is to the tangent of the heliocentric, so is the curtate distance of 
the planet from the sun, to its curtate distance from the earth. By ob¬ 
servations the planet’s g-eocentric latitude is found, wherefore its helio¬ 
centric latitude is given. (These are given in the Nautical Almanac. 
The method of finding these will be given in chap. 4.) The heliocentric 
lat.of the planet being thus found, and also its curtate distance from the 
sun, its true distance can be easily found. (See the note, page 264, &c.) 
Three heliocentric places of the planet and the corresponding distances 
from the sun being thus found, we shall find from thence the form of the 
orbit and the position of the apsides, by describing an ellipsis that wifi 
pass through three given points. 

Let the three given places of the H 
planet be L, M and N, and S the sun’s 
place or the given focus ; join LN, and (J- 
produce it to B, so that SL : SN :: LB 
: NB ; also join MN, and produce it to 
D, so that SM : SN :: Ml) : ND; join 
BD, and from S and L let-fall the per¬ 
pendiculars SE, LF, and divide SE in 
P, so that LF : LS :: EP : FS, and also 
make EA : AS in the same ratio. Then AP will be the axis, and the mid¬ 
dle point C the centre, A and P the vertices, and Cs being taken = CS, a 
will be the other focus: whence the ellipsis may be easily described. 

From M and N let fall the perpendiculars MG, NH on DB; then by 
construction SL : SN :: LB : NB, that is by sim lar triangles, as LF : NH, 
and permutatio SL : LF :: SN : NH. Again by construction SM : SN :: 
MD : DN, that is by sim. triangles, as MG : NH, hence permut. SM : MG 
:: SN : NH ; also SP : PE :: SL : LF (by constr.) that is as SN * NH, or 
as SM : MG, and therefere BD is the directrix of the ellipsis, in which 
are the points N, M, L, and whose focus is S, and vertices A and P. (Emer¬ 
son’s Conic Sections, b. 1, prob 29, or Milnes, part 4, prop. 9.) This 
prop, is demonstrated nearly in the same manner in Emerson, prop. 85, 
1). 1, Vince’s Ast. c 13, Keil’s Ast- lect. 26, Gregory’s Ast. prop 29, b. 3, 
or Newton’s Principia, prop- 21, b. 1. Schol. Newton remarks, that when 
EP is greater than, equal to, or less than PS, the figure thus described 
will be either an ellipsis, a parabola or an hyperbola; the point A in the 
first case falling on the same side of the line BD, as well as the point P ; 
in the second going off to an infinite distance, and in the third failing on 
the other side of the line BD. 

As a calculation is preferable to any construction; it may be drawn from 
the foregoing investigation. Thus, to find NB we have, by division, SL — 
SN : SN :: LB — NB or LN NB, but the three first tprms are given, be¬ 
cause the points N, S and L are given in position, or NS, SL and the an¬ 
gle NSL are given, and hence NL is given, NB is therefore given — 

SN X LN, A^.n tQ find ND we haye SM_SN : SN :: MD — ND or 
SL — SN 

MN : ND == 
SN X MN. 

(Eucl. 17, 5.) PS and AS are found in the 
SM — SN 

same manner. Moreover in the two triang-les NSL, NSM, two sides and 
the included anj 
sun, and the degi 

5v M are given, jmcf the angles LNS, SNM, and therefore the angle LNM 

+UUIXUVC1 111 LHC IWU LJL IcilJg 1V.9 jLAI O 1-4 J j.* ±v± 9 tow rtllU 

igles are given (being the distances of the planet from the 
agrees between its observed places in its orbit) hence NL, 
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lar increase of this proportion or its increase for 100 years = 
0.000003369.* The place of Mercury’s aphel. for the beginning of 
1750,according to Vince, was 8s. 13° 33' 58", and its motion in lon¬ 
gitude in 100 years 1° 33' 45". Mercury’s greatest equation, ac¬ 
cording to the same author, is 23° 40'. (See def 133, p. 2.) Ac¬ 
cording to Laplace, the longitude of the perihelium in 1750 was 
(81°.740l) 73° 33' 57"9, and its secular direct motion (1735"5) 9* 
22" 3. Delambre,tab. 97, makes the place of Mercury in 1810, 9s. 
23t>32', the place of his aphelion 8s. 14° 30' 14", the place of its node 
Is. 16° 4' 1", the motion in longitude of the aphelion in i00 years 
1° 33' 45", and of the nodes 1° 12' 10", both increasing; hence 
his place at any other time may be found. (These places are set 
down to mean time in Delambre’s tables.) The mean longitude 
of a planet seen from the sun, is found by adding its mean motions 
to the ejiochy or its place for any given year. The longitude of 
the aphelion taken from the mean longitude of the planet, will give 
its mean anomaly, and the contrary, &c. In finding the planet’s 
place or his longitude reckoned from the apparent equinox, the 
nutation (see note to prob. 42, part 3) must be applied as given by 
Delambre, table 11, page 29. His apparent diameter is very va¬ 
riable. It is a minimum or the least when the planet in a morning 
immerges i..to the solar rays, or when in the evening it disengages 
itself from them ; it is at its maximum, or the greatest, when it 
immerges into the sun’s light in an evening, or when it again be¬ 
comes visible in the morning. Its mean apparent diameter, ac¬ 
cording to Laplace, is (21" 3) 6" 9 or nearly 7", and his apparent 

and its vertical opposite angle BND, henCe ND and NB being given, the 
angle BDN is given, therefore in the right angled triangle DHN, the hy- 
pot. DN, and the angle at 1) are given, hence NH is given. Join SH then 
in the triangle SIIN, NH, NS are given, and also SNH (= suppl LNS —■ 
BNH or 180° — LNS — BNH) hence SH the angle, NHS, NSH and SHE 
are given ; therefore in the right angled triangle SHE, SE is given, hence 
we know SA and SP ; for HN : NS :: EA : AS and by division HN — NS : 

NS :: EA— AS or ES : AS = 
NS X ES 

HN—NS' 
Again, HN : NS :: EP : PS and 

(Eucl. 18, 5.) HN -f NS : NS :: EP -f- PS or ES : PS = 
NS X ES 

HN-hNS 
Hence 

PS and SA being given, their sum or AP is given, and half their differ¬ 
ence is the eccentricity SC. Lastly in the triangle SsL, we have the sides 
Ss, SL (for AP—SL andsL=sL. Emerson’s Conics, prop. 1, b. 1) to find tiie 
angle LSA the distance of the aphelion from the observed place L; in the 
same manner the distance of the aphelion may be found from the observed 
places M and N. 

In the year 1740, on July 17, August 26, and September 6, M- de la 
€culle found three distances of Mercury (the mean distance being 10000> 
as follows ; SL = 10351,5, SN = 11325,5, SM = 9672,166, the angle.LSN 
= 3s. 27° O' 36*, NSM = 44° 40' 4". From whence its eccentricity (by- 
calculating as directed above) is found = 2099.75, the place of its aphe* 
lion 8s. 13° 51' 14", and the greatest equation = 24° o' 5". The above 
scheme must be fitted for these distances by the rules given for construct¬ 
ing the ellipsis. (See other methods in Vince’s Complete System of As* 
tronomy, and also his Elements of Astronomy* 8vo ) 

* See tables 101, 102> he. of Delambre. 
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diameter as seen from the sun is about 17" 8 nearly. His real 
diameter is therefore about 3105 miles,* and his magnitude nearly 
16| times less than that of the earth. 

It was no doubt difficult at first to recognize the identity of 
the two stars which were alternately seen in the morning and in 
the evening, to depart from and return to the sun, but as the 
one never shewed itself until the other disappeared, it was found 
to be the same planet which thus oscilated on each side of the 
sun; its position, apparent diameter, and retrograde motion, 
confirming this conjecture, and agreeing with the laws of its 
motion afterwards discovered. In general these laws are very 
complicated, they do not take place in the plane of the ecliptic, 
sometimes the planet departs from it, 4° 30' being its greatest 
geocentric latitude, or its greatest distance from the ecliptic, as 
seen from the earth ; but this distance as seen from the sun 
amounts to 7°, being his greatest heliocentric latitude, and equal 
to the inclination of the plane of its orbit to that of the ecliptic. 
Its secular variation, according to Laplace, is (55"09) 17" 50. 
The place of the nodes being the point of intersection of the 
orbit of the planets and the ecliptic ; the place of Mercury’s as* 
sending node,f or its longitude at the beginning of 1750, was 
Is. 15° 20' 42" 8, or taurus 15° 20' 43" nearly. Hence the de- 

* The mean distance of the earth from the sun being 23464.5 semidiame¬ 
ters, and Mercury’s mean distance 9083.3214 semidiameters, the difference is 
14381.1786, the distance of Mercury from the earth; and as the magni¬ 
tudes of bodies vary inversely as their distances nearly, we have by inverse 
proportion 23464.5 : 6" 9 :: 9083.3214 : 17" 8 nearly, the apparent diameter 
©f Mercury as seen from the sun. Now taking the mean apparent diameter 
©f the sun 3 S', and its real diameter = 864065.5, we have 32': 6"9 
864065.5 : 3105.23 miles the diameter of Mercury. 

The diameter of Mercury may be also thus found; let S in the annexed 
figure represent the sun’s place, SC Mercury’s mean distance = 9083.32 
semidiameters of the earth nearly, and the angle CSM, the apparent semi¬ 
diameter of Mercury as seen from the sun = 8* 9 nearly; then 

Sine SMC «= 89° 59' 54" 5 10.0000000 
Sine CSM = 8"9 5.6247021 s^__--—|C 
So is 9083.32 semid. 3.9582446 ' --- 

To .38278 — 1.5829467 

Hence .38278 X 3956 = 3028.5 miles, differing a little from the above. 
The mean diameter of Mercury is measured "when he has his greatest 

elongation from the sun, his greatest diameter may be thus found by the in¬ 
verse rule of proportion; 23464.5 : 6"9 :: 14381.2 :: 11"2 nearly, and his 
least thus ; 23464.5 : &' 9 32547.8 (= 23464.5 -f- 9083.3) : 4" 9 nearly. 

Now if the cube of the diameter of the earth be divided by the cube of 
the diameter of Mercury, the quotient will give the number of times the 
earth’s magnitude exceeds that of Mercury. For the magnitudes of bodies 
are as the cubes of their diameters. (Eucl. B. 12 p. 18.) Hence 31053 ; 

79ii3 
79113 :: 1 : 16.5 nearly,the number of times the earth is greater 

olOO 3 

than Mercury. 
f The nodes and inclinations of the orbits of the planets, &c may be 

thus det^rmhici. First to find the position of the line of the nodes. 
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scending' node was in scorpio 15° 20' 43". The motion of the 

nodes is found by comparing their places at two different times, 
from whence the motion of Mercury’s nodes in i 00 years is found 
to be 1° 12' i0" according to Vince. Laplace makes the side¬ 
real and secular motion of the node upon the true ecliptic diminish 
(2332.90 seconds) 12 min. 35" 8. 

In the annexed figures (adapted to an inferior and superior planet) let 
S represent the sun, TV the 
earth’s orbit, Nn the line of 
the nodes of the planet. Let 
the earth be in T, from which 
let the planet P be observed, 
when in the ecliptic, and 
therefore in its node P ; next 
after one revolution let the 
planet be observed again in the same node, the earth being in t; draw the 
straight lines ST, PT, St, Pt Then in the A (triangle) ST.r, there are 
given the /. (angle) £ST by the theory of the earth (see chap. 4) and time 
between the observations (the motion of the earth in this time is also 
found in the Nautical Almanac, that of the sun being given) and STP the 
observed elongation of the planet from the sun, and ST the distance of the 
earth from the sun ; therefore Sar is found, and also xt; St the distance 
of the earth from the sun at the second observation being given (this dis¬ 
tance can always be found from page 3 in the Nautical Almanac, or prob. 
5 of Mayer’s Tables, the log. there given being adapted to the mean dis¬ 
tance 1; their index is increased by 10 when it is negative, which must be 
allowed for-) Again, in the A tx¥, the /_ ta:P = To:S is given, and the 
AS/P the elongation in the second obs. is given, and likewise tx, hence 

is given Lastly, in the A SzP. ?S, ?P and the Al^S are given, and 
therefore SP is given, whicli is the planet’s distance from the sun when in 
its node; the A*SP is also given, and therefore the position of the point 
P is given, the point t being the place of the earth as seen from the sun 
at the second obs. and hence the position of n is given, and therefore the 
position of the line of the nodes N» is given. 

If the place of the nodes found by the ancients be compared with that 
found by the moderns, its motion will be given. 

If a planet be observed twice in any point of its orbit, as seen from 
the earth, the place of the planet as seen from the sun, and its distance 
from the sun, are found in the same manner. 
Having the motion of the nodes and the pe¬ 
riodic time of the planet, and moreover its 
place being given for any year, its place for any 
other year may be easily found. Now the posi¬ 
tion of the line of the nodes being given, the 
inclination of the planet’s orbit to the plane of the 
eclipticy can be found thus ; let S represent the sun, 
NB« the ecliptic among the fixed stars, NArc the 
planet’s orbit, as seen from the sun among them, 
and NSn the line of the nodes. The earth comes 
twice in the year to this line, and as the mean time of its coming to it is 
given, let the geocentric place A of the planet P be observed at this time 
(or found in page 4 of the Nautical Almanac, or calculated by Delambre’s 
Astronomical Tables, translated by Vince. See notes to prob. 1 and 3, 
part 3) and let the latitude thus found be AB, an arch perpendicular to 
the ecliptic, and longitude °PB. Now as the longitude of the sun 'Y’N is 
known, the difference of these longitudes NB is known. Renee in the. 
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The latitude of Mercury is greater when retrograde and nearest 
the earth, and less when direct and remotest from it. Moreover 
if it be in its lower conjunction, or most retrograde and nearest 
the earth, and at the same time in or near one of its nodes, it will 
be directly between the observer and the sun. If it be at a consi¬ 
derable distance from a node, it will pass the sun to the northward 

right angled spher. A ANB rt. angled at B, AB, NB are given, and there¬ 
fore the / ANB the measure of the inclination required will be known. 

Th e inclination of the plane of the planet’s orbit to the plane of the eclip* 
tic being thus found by observation, the heliocentric place of the planet and 
his distance from the sun may be found, whenever the planet is in opposi¬ 
tion to, or conjunction with the sun thus ; let S repre¬ 
sent the sun, T the earth, P the planet in its orbit, 
NB the ecliptic among the fixed stars, NA the inter¬ 
section of the planet’s orbit with the sphere of the fixed 
stars, N the node; then SN will be the line of the 
nodes, the sun being in the plane of the orbit of each 
planet. Let A and B be the planet and earth’s places 
respectively, as seen from the sun among the fixed 
stars ; and as the planet is either in opposition to the 
sun, as in fig. 1st. or in conjunction with it, as in fig. 
2d. the arch AB will then be the circles of latitude, 
and therefore perpendicular to the ecliptic. Hence in 
the spher, rt. angled A ABN, the A ANB, and BN 
(found as above) are given, therefore AB and AN are given ; but AB is the 
heliocentric lat. and AN is the distance of the planet in its orbit from the 
node N, as seen from the sun, and therefore the heliocentric place A of 
the planet P is given. Moreover in the A PST there are given ST from 
the theory of the earth, and the /_ PTS the lat. by observation or geo¬ 
centric lat. or its complement to a semicircle, and also the heliocentric lat. 
PST, therefore PS and PT, the distances of the planet from the sun and 
earth respectively, are given. 

The same may be found for any other aspect of the planet thus ; let P 
be the planet, NS the line of its nodes, and t-, 
the angle PTB be its apparent or geocentric 
latitude as seen from the earth in T ; let the 
plane of this latitude be produced until it cuts 
the plane of the orbit of the planet in PN, and 
the plane of the ecliptic in the right line BTN. 
Draw PB perp. to NB, and erect TO prep, to 
the same, then (prop. 38, Euclid 11.) TO will 
be perpend, to the plane of the ecliptic, be¬ 
cause the plane of the lat. PNB is perp. to the 
plane of the ecliptic. Let fall TE perp. to NS 
or NS produced ; join OE, which is perpendi¬ 
cular also to NS, and the A OET will be equal 
to the inclination of the planes of the orbit of 
the planet and of the ecliptic. In the A NST 
there are given ST, the A TSN by the theory 
of the earth, and the given place of the node, and the A NTS by observa¬ 
tion, being the elongation of the planet from the sun, computed in the eclip¬ 
tic, or its complement to two rt. ahgles, therefore TN, NS and the A TNS 
will be given. In the A TEN rt. angled at E, NT and the A TNE are 
given, and hence TE is given. In the A OTE rt. ang. at T, TE and TEO 
the inclination of the planes of the orbit of the planet and of the ecliptic 
(found as above) being given, OT is given. In the A OTN rt. ang. at T, 
OT and TN are given, hence the /_ ONT is given. In PNT are given 

K k 



266 OF THE SOLAR SYSTEM. 

or southward. But if it be most direct, and at its greatest distance - 
from the earth, and at the same time in or near a node, it will be 
covered by the sun ; if otherwise situated than near its node, it 
will pass on one side of the sun. When it is nearer the earth and 
near its node, it is seen in the interval of its disapparition in the 
evening, and reapparition in the morning, projected like a black 
spot on the disk of the sun on which it describes a chord. 

These motions of the inferior planets may be thus explained ; 
let ABC be the orbit of an inferior planet, 
and S the sun, the circle LMO the zo¬ 
diac in the heavens ; let the earth be now 
supposed in T, and the inferior planet in 
A, near its superior conjunction with the 
sun , a spectator in T will then evidently 
see the planet at A in the point L. If the 
earth had no motion, the inferior planet, 
while describing the portion AB of its or¬ 
bit, would appear to have described the portion of the zodiac LM. 
But in the mean time the earth is in motion, so that when the in¬ 
ferior planet is in B, the earth is in the point of its orbit H, from 
which the planet in B appears in N. Hence Venus has appa¬ 
rently moved further eastward from the earth’s motion. But when 
the planet comes to C, the earth has moved on to G, and then the 
planet is seen in the point of the zodiac O, GO touching its orbit 
in C, in which position its apparent motion is nearly equal to the 
apparent motion of the sun or direct. From this position let the 
planet move from C to A, and the earth in the same time from G 
to K, from which the planet will be observed in the zodiac in P, 
but as it was before observed in O, it will appear to have gone 
retrograde or backwards in the zodiac, through the arch OP, or 
to have moved westward contrary to the order of the signs ; and 
as the planet was direct in C, there must be some point of its or¬ 
bit between C and A where it appeared stationary, or without 
any motion. Let the planet now be in E, and the earth at the 

NT, the L. TNP and PTN the geocentric lat. of the planet or its comple 
ment to two right angles, therefore NP is given. In the A NPB rt. ang. 
at B, the side NP and i_ PNB being given, PB and NB will also be given. 
In BNS, NB and NS and the £ BNS are given, hence NSB the heliocen¬ 
tric longitude of the planet computed from its node, and the side SB are 
given. Then in the A PBS, rt. ang. at B, PB, BS being known, PS the 
distance of the planet from the sun, and the angle PSB, which is its helio¬ 
centric latitude, will be given. Lastly, in the A PNS all the sides being 
given, the angle NSP is known, being the heliocentric distance of the plan¬ 
et in its orbit computed from the line of the nodes NS. The mean distance 
of the earth from the sun maybe taken as the measure in finding the plan¬ 
et’s distance. 

If by this method we find out two other heliocentric places of the planet 
and the distances from the sun, having likewise the focus of its orbit, which 
is the sun’s centre, an ellipse may be described passing through the given 
points, as before shewn, which will be the orbit of the planet. The learner 
will notice that SB is called the curtate distance of the planet from the sup 
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same time in F, from this point the planet will be seen in Q, and 
will appear to have moved further backward from P towards the 
west. But when it is seen again in a line that just touches its or¬ 
bit, its motion will be direct or towards the east, between which 
and the former place the planet will be stationary as before. The 
earth having now come to D, and the planet to C, it will seem to 
have described the arch QR, and its motion to be quicker east¬ 
ward. Hence when the planet is in its sufierior conjunction with 
the sun, its motion is always eastward, or according to the order 
of the signs, but when it is in its inferior conjunction, its motion 
is westward or contrary to the order of the signs. In the former 
case it will seem to go forward, in the latter backward or in a con¬ 
trary direction.* 

* Here might be shewn how to find the position of a planet when sta¬ 
tionary, the time of the station, See. but as these are subjects of curiosity 
rather than matters of any real practical utility, the learner is referred to 
lecture 27 of Keil’s Astronomy, or to ch. 15 of Vince’s Astronomy, 8vo. 

Vince in his Astronomy observes, that the place and time of the oppo¬ 
sition of a superior or the conjunction of an inferior planet, are the most 
important observations for determining the elements of their orbits, be¬ 
cause at that time the observed is the same as the. true longitude, or that 
seen from the sun ; whereas if observations be made at any other time, 
the observed must be reduced to the true longitude, which requires the 
knowledge of their relative distances, which, at that time, are supposed 
not to be known. 

The conjunctions of the inferior planets may be thus determined; find 
the diurnal motion of the planet from the sun, and also the diurnal angular 
motion of the earth ; the difference of these motions is the relative diur¬ 
nal motion, or the quantity by which the planet recedes every day from the 
earth, as observed by a spectator in the sun. Thus the mean motion of 
the earth in a day is 360° divided by 365d. 5h. 48m. 48s. or 365.242d.e=s 
59' 8" 3, and that of Mercury 360°-i-87d. 23h. 15m. 43" 6 or 87.96925d.= 
4° 5' 32"4, the 'difference of which is nearly 3° & 24". Hence 3° 6' 24" : 
360° :: 1 day : 115.88 days, the time wherein Mercury having left the 
earth will return to her again, or the time between two conjunctions of 
the same kind. The mean conjunctions of Venus is found in like manner 

thus ; her daily mean motion is 360° -S- 22d. 16h. 49' l(/6or 224*.700814*dt 
= 1° 36' 7"6 and 1° 36' 7"5 — 59' 3"3 = 36' 59"3. Hence 36' 59"3 : 360 :: 
1 day : 583.96 days. This will also give the time between any two simi¬ 
lar stations as two mean oppositions, &c. 

These mean conjunctions, &c. are computed by the planets’ mean 
motion, or on the supposition that they move equably in circular orbits ; 
but as they really move in elliptic orbits, in which their motions are con¬ 
stantly variable, it may happen that the true conjunctions may differ a few 
days from the mean ; however by having the mean conjunction given, the 
true conjunction is thus found ; compute by astronomical tables the true 
places of the earth and the given planet, at the time of mean conjunction, 
found as above, from which their angular distance as seen from the sun 
will be given. Now the angular motions of the planets being given for 
any time, for example for four hours, the difference of these motions will 
give the access of the planet to, or its recess from, the earth in four 
hours. Then as this difference of motion : angular distance of the earth 
and planet :: 4 hours : the time between the mean conjunction and the 
true conjunction required. 
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These transits* of Mercury are real annular eclipses of the sun, 
from which we discover that the planet borrows its light from it. 
Wher.' we observe it with a good telescope, it presents phases to 
us similar to those of the moon, directed in the same manner to¬ 
wards the sun, the variations of which, according to its relative 
position and the direction of its motion, throw great light on the 
nature of its orbit. 

In his superior conjunction, or at the opposite side of the sun, 
that side of Mercury which is towards it, is likewise towards the 
earth, and when visible he appears nearly round. He never ap¬ 
pears quite round, as he is either hidden by the sun’s body, or the 
sp endour of his rays, and therefore to us invisible ; sometimes he 
appears in the form of a half moon, and sometimes a little more 
or less than half his disk is seen. When he is in his inferior con¬ 
junction, or between the sun and the earth, the whole of his en¬ 
lightened side is turned from the earth towards the sun, and hence 
he appears when seen on the sun’s surface, like a dark spot, as has 
been observed before.f 

The above proportion for finding the mean conjunction, &c. may be 
thus expressed in general; let P = the periodic time of a superior pla¬ 
net, p = that of an inferior, t = the tune required; then, proceeding as 

above, vve have t = And this will hold general for any two simi¬ 

lar stations. (See the note, page 24.) 
* The method of finding these transits and some other things of a simi¬ 

lar nature, will be given in the next chapter. 
f To exhibit these phases of the 

planets at any time; let S be the sun, 
E the earth, P an inferior planet, aYb 
the plane of illumination perpendicu¬ 
lar to SP, cYd the plane of vision per¬ 
pendicular to EP ; draw ae perp. to 
cd; then ca is the breadth of the visi¬ 
ble illuminated part, whose breadth 
to the eye is ce, the versed sine of cYa 
or SPZ, SPc being the complement of 
each. Now the circle cad will be pro¬ 
jected into the right line cd, as its 
plane passes through the eye, but the circle which is the boundary between 
the illuminated and darkened part of the planet, being seen obliquely, will 
be an ellipsis (Vince’s Con. Sect. p. 36, or Emerson’s Project, of the Sphere, 
sect. 1, prop. 4.) hence if cmdn represent the projected hemisphere of the 
planet, which is next to the earth, mn, cd two diameters perpendicular to 
each other ; make ce equal the versed sine of SPZ or cPa, and describe the 
ellipsis'men, then mcncm will represent the visible enlightened part, as it ap¬ 
pears at the earth ; and from the property of the ellipsis (Emerson’s Con. 
Sect. b. 1, prop. 73 and cor. 2) Pm or Pc : Pe :: the semicircle men : the 
semi-ellipsis men; and by the nature of proportion Pm : Pc — Pe or ec :: the 
area men : men—men or mcne. That is the semidiameter : the versed sine of 
cYa :: half the •whole disc : the visible enlightened part. 

Hence the planets Mercury and Venus, will have the same phases from 
their inferior to their superior conjunction, as the moon has from the new to 
the full; and the same from the superior to the inferior conjunction as the 
moon from the full to the new. Mars will appear gibbous in quadratures, tfs 
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As Mercury is always in the neighbourhood of the sun, and that 
his apparent diameter is so very small, he is seldom seen, and only 
appears a little after sun-set and again a little before sun rise. The 
light and heat which this planet receives from the sun, is computed 
to be about seven times greater than the light and heat which is re- 

the angle cP« or its complement will differ considerably from a rightcangle, 
and its versed sine therefore from the diameter. In Jupiter, Saturn and 
Jferschel, the angle SPZ never differs so much from 180° as to make these 
planets appear gibbous, and hence they always appear full orbed. 

If P represent the moon; then as EP is small compared with SE, SP, 
these lines will be very nearly parallel, and the /__ SPZ nearly equal SEP; 
hence, the visible enlightened part of the moon varies nearly as the versed sine 
of her elongation from the sun. 

The following prob. of finding the position of Venus when brightest, on 
supposition that her orbit, together with that of the earth, were circular, 
was proposed by Dr. Halley, and solved by him in the Phil. Trans, numb. 
349, and may be equally applied to Mercury. 

Draw Sr perp. to EPZ, and take a =a SE, b = SP, x = EP, ^=Pr; then 
b—y == the versed sine of SPr (to the rad. SP, as will be evident by de. 
scribing a circle from the centre P with the distance PS, &c.) which, from 
the above, varies as the illuminated part; and as the intensity of light varies 
inversely as the square of its distance (see the following note) the quantity 

of light received at the earth varies as ^— tL ; but (Euclid. 12 n. 
° X2 xi X* 1 

2 bi) a 2 62 x2 -J- 2xy; hence y = 
a 2 — b 2 — x2 

2x 
this value of y be¬ 

ing substituted in 
_6 a2 — b2— 

_ x2 2a3 

the above expression, we get the quantity of light 
2bx— a2 -J- b2 -Lx2 . 

— = --a---I- = a maximum, whose 

fluxion 
2£x 2xx -f- 2a?3 — 6x2xX2bx— a2 -f- b2 -f- #2 

4 x 6 

_ 4 b a?3 x 4- 4 x*x — 12 5 x3x -4- 6«2 a.’2 a? — 6 b2 x2 x — 6 x4 x _ 

4a:6 

a2 — 62 X 6x2x — 8 6 x3 x — 2x4x 

4a:6 
= 0. Hence, clearing it of frac¬ 

tions, and dividing by 2a:2a:, we get a2—b2 X 3 — 4bx — x2 = 0, by 

transp. x2 -f- 4bx = 3a2 —3b2, which solved gives x = ^/3a2^-b2—2b. 
If we apply this equation to Mercury, a = 1, b = .3871 nearly (as cal¬ 

culated pa. 259) and hence x = 1.00058 ; then by trigonometry a : x~p5 :: 

x— b : ~-— == .85131 nearly, = the difference of the segments of the 
a 

a 
base SE made by a perpendicular from P ; then - -f- 

.85131 
= the great¬ 

er segment, and - — .42565 = .07435. 
2 

Hence the following proportions ; 

As 4 = .3871 : .07435 :: radius : cosine ESP = 78° 55' 35", and x =s= 
1.00058 : .92565 :: rad. : cos. SEP = 22° 14' 9". Rut the angle ESP at the 
time of the planet’s greatest elongation is about 67°, See. Hence Mercury 
is brightest between his greatest elongation and superior conjunction, and 
'at this time his elongation will be 22° 14' 9", 
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ceivcd by the earth,* the solar disk as seen from Mercury being se¬ 
ven times greater than it appears to us But the light and heat on 
this planet are more or less intense in proportion to its distance 
from the sun. This distance is very variable, the orbit of Mercury 
.being more eccentric than any other planet. 

The accelerating gravity of Mercury towards the sun is also sc^ 
Ven times greater than on the earth. 

It has not as yet been discovered by observation whether Mercury 
revolves upon its axis, and therefore we are ignorant whether it 
has the vicissitude of day and night, and still more so of their length. 
But as all the other primary planets perform this motion on their 
axis, from analogy it is extremely probable that Mercury is subject 
to the same law. We are also ignorant whether it has different 
seasons, because these depend upon the inclination of the axis of 
its rotation to the plane of the orbit, which it describes about the 
sun ; but this is also unknown. 

To an observer in Mercury, all the primary planets that we know 
would be superior, and appear as Mars, Jupiter, See, do to us ; and 
it is unknown to us whether the inhabitants of Mercury (if any) see 
any inferior planet ; if not, the argument deduced from the phases 
of such planets to establish the true system of the world, will be 
wanting to them : for these phenomena clearly prove, that the pla¬ 
nets move round the sun ; but although we can observe no planet 
inferior to Mercury, it does not however follow that there are none, 
for Mercury itself is seldom seen by us ; and a planet that would be 
much inferior to it, would never be visible on account of its nearness 
to the sun. 

CHAP. III. 

OF VENUS. 
Venus, the next planet in order, offers the same phenomena as 

Mercury, with this difference, that its phases are much more sen¬ 
sible, its oscillations or elongations much more extensive, and their 
period more considerable. Her orbit, including that of Mercury, 
her periodic time must be greater. According to the latest and 
best observations, the sidereal revolution of Venus round the sun 
is 224d. 16h. 49m. 10.5888 sec.f Her greatest elongation, accord¬ 
ing to La Land, is 47° 48', and least 44° 57'; her greatest, accord¬ 
ing to Laplace, is (53°) 47° 42', and least (50°) 45° ; the mean of 

* Light or heat, so far as it depends on the sun’s rays, decreases in pro¬ 
portion as the square of the distances of the planets from the sun. (Fergu¬ 
son’s Astro, art. 169, Smith’s Optics, b. 1. art. 57, or E,merson’s Optics, b. 
1, prob. 6, and corollaries.) The same may be easily proved of any virtue 
or fluid substance flowing from or to a centre. See Gregory’s Astronomy, 
b. 1. prop. 48. 

f The method of finding the periodic time is given in the notes in chap 
2 prob. 9. See also chap. 7. 
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these last is 46° 21'. The mean length of its entire oscillation is 
584 days.* Here it may be asked why Venus necessarily remains 
a longer time to the eastward or westward of the sun than the whole 
time of her entire revolution ; but when we consider that the rela^ 
tive motion of Venus is greater than her absolute motion, because 
while Venus is moving round the sun, the earth is performing its 
motion round the sun the same way, the question is therefore ea¬ 
sily answered. The retrogradations of Venus commence or end 
when the planet, approaching the sun in the evening or receding 
from it in the morning, is distant from it according to Laplace 32°, 
in our measures 28« 48'. f The mean arc of its retrogradation is 
about (18°) 16° 42'. The distance | of Venus from the sun is found 
from its elongation equal 67165759.2 miles, and from its periodic 
time 67435662 67 nearly. 

The eccentricity of the orbit of Venus, according to Vince or 
La Land, is 498, the mean distance of the earth from the sun being 
100000 of these parts. Hence her eccentricity in miles is 462271.3 
nearly § 

According to Laplace Venus’s mean distance from the sun is 
0.723332,11 the earth’s being 1 or an unit; proportion of the eccen¬ 
tricity of the semimajor axis for the beginning of the year 1750 

* When Venus appears -west of the sun, she rises before him in the morn¬ 
ing, and is called the morning- star: when she appears east of the sun, she 
shines in the evening after sun set, and is then called the evening star : 
being alternately morning and evening star each 292 days. 

f Here we must again notice, that these numbers are given wrong’ in the 
English edition of Laplace’s Astronomy, 28° 4S' being given 27° 48', and 
16° 42', 16° 12;. 

t The distance of Venus from the sun may be found in the same manner 
as that of Mercury, in chap. 2d. Thus in the triangle SEM (pa. 259) let 
M now represent Venus, and the angle SEM be taken equal 46° 21'.— 
Hence rad. : s. 46° 21' :: 23464.5 : SM 16978.2 the distance of Venus from 
the sun in semidiameters of the earth, which multiplied by 3956 gives 
§7165759.2 miles. 

The same by the periodic times, 8cc. 224 d. 16 h. 49 m. 10.6 sec. = 
19414150" 6 the square of which is 376909243519480.36, which divided by 
995839704797184 (see the note pa. 259) gives 378473843879 nearly, the cube 
root of which is .7254. Hence .7264 X 23464.5 X 3956 =* 67435662.6748 
miles, the mean distance of Venus from the sun by Kepler’s rule and ex¬ 
tremely near the above, considering the great difference in the principles 
©f calculation, and that an error of a few seconds in the elongation will 
make a considerable difference. This is a strong proof of the truth of Kep¬ 
ler’s laws and of the copernican system. The dist. of Venus from the sun, 
and her periodic time being given, her hourly motion may be found as in 
the note pa. 9. for Mercury, thus ; 67435662.67 X 2 = 134871325.34 = 
tiie mean diam. of her orbit, which multiplied by 3.1416 gives 423711755.688 
miles its circumference ; then 224 d. 16 h. 49' 10" 6 : 1 h :: 423711755.688 
: 78569 miles the hourly motion of Venus. 

§ For 100000 : 498 f: 92825662 miles the earth’s mean distance from 
the sun : 462271.29876. 

|j If ,723332 be multiplied by 92825562 miles, the earth’s mean distance 
(see note, pa. 255) the result will be 6714369,9.4 nearly, the mean distance 
(•if Venus according to I .aplace.. 
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= 0.006885 ; and the secular diminution of this proportion 
0.000062905. 

The place of Venus’s aphelion for the beginning of »750, ac¬ 
cording to Vince, was 10s. 7° 46' 42", and its motion in longi¬ 
tude for 100 years 1° 21'. Its greatest equation is 47' 2(>"— 
According to Laplace the longitude of the perihelion for 1750 was 
(141° 9759) equal 127° 46' 4l" 9 or 7° 46' 4l" 9 in Leo, the 
sidereal retrograde motion in 100 years (699" .07) equal 3' 46 "4.* 

Delambre makes the place of Venus in the beginning of 1800, 
4s. 25° 9' l", of her aphelion 10s. 8° 36' 12", and of her node 
2s. 14° 52' 8", and makes the secular variation of the aphelion 
1° 21', and of her node 5 t' 40". Her daily mean motion, accord¬ 
ing to the same author, is 1° 36' 8", her hourly motion is 4', her 
motion in one minute 4", and in one second 4"', &c. 

The apparent diameter of Venus continually varies, which 
proves that her distance is no less variable. Her distance from the 
earth being the least at the moment of her transit over the sun’s 
disk, her apparent diameter will then be the greatest, and will de¬ 
crease until she arrives at her superior conjunction, where her di¬ 
ameter will be the least. The position of the earth in its orbit will 
also vary it a little. By having the apparent diameter and the planet’s 
distance from the earth at any time, its apparent diameter cor¬ 
responding to any other distance may be easily found, as it varies 
nearly in proportion to the distance. The greatest diameter of Ve¬ 
nus at a medium, is about 58".f Her real diameter is therefore 
7301.7 miles, and her magnitude is in proportion to that of the earth 
as 1 : 1.2742. 

* Newton in the Scholium to prob. 14, b. 3. of his Principia, says, that by 
the theory of gravity the aphelions of the planets near the sun, from the ac¬ 
tion of those more remote, move a little in consequentia in respect of the 
fixed stars, and that in the sesquiplicate proportion of their several dis¬ 
tances from the sun ; so that if the aphelion of Mars in the space of 100 
years be carried 33' 20", in consequentia in respect of the fixed stars, the 
aphelions of the earth, of Venus, and of Mercury, will, in a hundred years, 
be carried forwards 17' 40", lO 53", and 4' 16" respectively. See this 
property demonstrated in Emerson’s comment on the Principia, pa. 83. 

f Mr. Bliss at Greenwich in 1761, June 6th, from three good observa¬ 
tions of Venus on the sun’s disk, finds its diameter 58". Mr. Short in 
London makes it 58", and the diameter of the sun 31' 33" 24". The 
above observations were made nearly at the same time. Laplace makes 
the diameter of Venus (177") 57" 3 at the moment of her transit. Hence 
at a medium the diameter is taken equal 5S7. Now the mean distance of 
the earth from the sun being 23464.5 semidiameters, and that of Venus 
16978.2 semidiameters ; hence the difference 6486.3 semidiam. is the dis¬ 
tance of Venus from the earth, and therefore inversely, 16978.2 : 6486.3 
:: 58" : 22" 1, the apparent diameter of Venus as seen from the sun.— 
(The distance of Venus from the earth being here taken to correspond 
with its greatest diameter.) A.nd again, 23464.5 : 6486.3 :: 58'' : 16", 
her apparent diameter at the distance of the sun from the earth, or her 
mean apparent diameter. Laplace makes this (51" 54) 16" 6. Now 
31' 33" 4 (the sun’s ap. diam.) 16" :: 864065.5 (the sun’s real diam. in 
miles) : 7301.7 miles the diameter of Yenu-s. 
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Venus does not perform her revolution round the sun exactly in 
the plane of the ecliptic, but sometimes deviates from it several de¬ 
grees. At the beginning of 1750, the inclination of the plane of her. 
orbit to that of the ecliptic, was, according to Laplace (3°.7701) 
3° 23' 35", and the secular variation of this inclination to the true** 
ecliptic (13"80) 4"47 increasing. The distance of this planet from 
the ecliptic, as seen from the earth or its geocentric latitude, will 
sometimes exceed the inclination of its orbit. In the Nautical Al¬ 
manac for 1812, Aug. 13, it is made 7° 41'. 

• The longitude or place of the ascending node of Venus was 74° 
26' 18", or 14° 26' 18" in Gemini, and the descending node was 
therefore in the opposite sign and degree. The motion of the nodes 
in 100 years, according to Vince, is 51' 40". Laplace makes 
the sidereal and secular motion of the node on the true ecliptic 
(—5673"60) 30'38"2 decreasing.! 

All the primary planets, except Mercury and Uranus or Her- 
schel, are found to have a rotary motion on their axis, or like the 
earth a diurnal motion; and from analogy we conclude that these 
planets observe the same universal law, though at present not 
within the reach of observation ; no telescope possessing sufficient 
magnifying power to exhibit this phenomenon in these two planets, 

Or the diameter may be found by trigonometry, in the same manner as 
that of Mercury has been found pa. 263, using the angle 11" in place of 
8" 9, and taking Venus’s mean distance 16978 2 semidiameters of the 
earth; thus. 

As sine (90°—11") 89° 59' 49" . . 10.0000000 
To sine 11" . 5 7269676 
So is 16978.2 semid. ^ 4,2298916 

To .90544 semid. 1.9568592 

Hence .90544 X 2 X 3956 = 7163.84 miles the diameter of Venus, 
by this method, which would more nearly agree with the above if the de¬ 
cimal parts of the seconds, &c. were retained. 

Now the cube of the earth’s diameter divided by the cube of the diam* 
„ „ , 79113 

eter of Venus, will give the proportion of their magnitude thus ;*^3Q| ^ 

= 1.2742 or log. 79113 — log. 7301.7s = 0.1052575, the number cor¬ 
responding to which is 1.2742. 

* The true ecliptic is the ecliptic corrected, or when allowance is made 
for the secular variation. See the note to prob. 49, part 2d. In the same 
manner the obliquity of the planet’s orbit to the plane of the ecliptic, at? 
any time, and its secular variation being given, its obliquity at any other 
time may be found, as is evident. See the method of finding it by obser¬ 
vation, &c. part 4th. ch. 2d. pa. 264, note. 

f The secular motion of the nodes being given, their place for any timy 
may be found ; and the periodic revolution of the planet round the sun 
being also given, and its distance from the node, its distance at any other 
time may from thence be easily found. Bui the inclination of its orbit to* 
that of the ecliptic being given, its place in the true ecliptic or longitude, 
and its distance from it or latitude may be easily found, in the same man¬ 
ner as the right ascension and declination of the sun is caUulate*! ; $v 
the solution of a right angled spherical triangle. 

LI 
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the one being too near, and the other too far removed from the 
Sun. The cause of this interesting phenomenon is not yet discov¬ 
ered ; but from the numberless improvements in natural sciences, 
it is very probable that in a short time it will develope itself, and 
probably from its connection with the law of universal gravity, it 
will throw new light on that intricate subject. 

Galileo in 1611, was the first that observed this phenomenon in 
Venus. In 1666 M. Cassini discovered a bright spot upon her 
straight edge when dichotomised, similar to those on the moon’s 
surface, and found the time of its sidereal motion to be 23h. 16'. 
In 1726 Bianchini, from some observations on Venus, asserted in 
his Hesfieri et Phosjihorinova hhenomena, that the time of her rota¬ 
tion was 24-J days, that her north fiole answered to the 20th degree 
of Aquarius, and was elevated 15° or 20° above its orbit, and that 
her axis continued parallel to itself. M. Cassini, the son, makes it 
about 23h 2i>'. Schroeter,* from several continued observations of 
the variation of her horns, and of some luminous points towards the 
edges of the dark parts, has confirmed Cassini’s result, which had 
been disputed before He fixes the duration of her rotary motion 
at 23b. 21' 7" 2, and like Cassini has found that the equator of Ve¬ 
nus makes a considerable angle with the ecliptic. He has also con¬ 
cluded the existence of high mountains on her surface, from his ob¬ 
servations, and the law by which her light varies from her enlighten-* 
ed to her dark side. (Phil. Trans. 1795.) He supposes the planet 
surrounded with an extensive atmosphere, the refracting power of 
which differs but little from that of the earth. The cusps or horns 
appeared sometimes to run 15° 19' into the dark hemisphere, and 
hence he computes that the height of the atmosphere, to refract such 
a quantity of light, must be 15 156 Paris feet, or 16146.4 English. 
But this must depend on the nature and density of the atmosphere, 
of which we are ignorant. (Phil. Trans. 1792 ) Dr. Herschel 
agrees with M. Schroeter, that Venus has a considerable atmos¬ 
phere : he has published in the Phil. Trans, for 1793, a long series 
of observations on this planet, from which he concludes, 1. That 
the planet revolves on her axis, but that the period and the position 
of the axis are uncertain ; 2. That the planet has a considerable 
atmosphere ; 3. That there are probably hills and inequalities up¬ 
on her surface, although he has not been able to see much of them, 
owing, perhaps, to the density of her atmosphere ; and 4. That 
this planet is somewhat larger than the earth, instead of being 
less, as former astronomers imagined. 

* Schroeter, a learned astronomer of Lilienthal, in the Duchy of Bre¬ 
men. Among others he has published a new work on the height of the 
mountains of Venus, some of which he makes upwards of 23000 toises, 
which is more than seven times the height of ChimboraCo, in South 
America. He says that in the moon there are mountains 1000 toises higher 
than Chimborazo. But Dr. Herschel, considers the height of lunar 
mountains in general as greatly overrated, and estimates them at no 
more than half a mile perpendicular height. 
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M. De la Hire observed with a telescope 16 feet long, mountains 
in Venus higher than the moon ; but the difficuhy of observing 
those as well as the spots, particularly in northern latitudes where 
the atmosphere is so dense, renders the result very doubtful. 

Venus surpasses in brightness all the other planets and stars, and 
is sometimes so brilliant as to be seen in the day with the naked 
eye.* The light and heat which she receives from the sun, are 
about double to what the earth receives f 

The inclination of the axis of Venus to that of her orbit, is, ac¬ 
cording to most astronomers, about 75°, which is 51° 32' greater 
than the inclination of the equator and ecliptic. This is a singular 
circumstance, and must cause a great variety in the seasons of Ve¬ 
nus. Ferguson remarks that the north pole of her axis inclines 
towards the 20th degree of Aquarius, our earth’s to the beginning 

* The equation investigated pa. 269, being here applied to Venus, we 

have a — 1, b — .7254 (pa. 271) then ^ 3a2 -f b* — 25 = 1.8778 — 
1.4508 = .427; lienee the angle ESP (Venus being supposed at P, see the 

h 2   o'2 

fig. page 268) = 22° 8' 26". For a : b -f- x :: b—x : —-- = .343876 
a 

nearly, = the diff. of the segments of the base a or SE, made by a perp. 

from P ; then ~ = .6719 nearly, = the greater segment; and 
2 2 

c — — .3281 nearly, = the lesser segment. Hence the following 

proportions ; As b = .7254 : .6719 :: rad. : co. sine ESP = 22° 8' 26"; and 
x = .427 : .3281 rad. : cq. sine SEP = 39° 47' 2/" = the elongation of 
Venus from the sun, when brightest. The angle ESP at the time of the 
planet’s greatest elongation is 43° 4(/, according to Vince ; and therefore 
Venus is brightest between her inferior con junction and greatest elongation. 
The angle SPZ is also equal ESP -f- SEP (Eucl. 1, prop. 32) = 61° 55f 53" 
or 61° 56' nearly, the versed sine of which is 0.53 nearly, radius being uni¬ 
ty ; hence the visible enlightened part : the whole disk :: 0.53 : 2 (note to 
pa. 268, or art. 195, Vince’s Ast.) Venus therefore appears a little more than 
dth illuminated, and answers to the appearance of the moon when 5 days 
old. Her diameter is here about 39", and therefore the enlightened part is 
about 10" 25. At this time Venus is bright enough to cast a shadow at 
night. This appearance of Venus takes place about 36 days before and af¬ 
ter her inferior conjunction with the sun. For suppose Venus in conjunction 
with the sun, and when seen from the sun to depart from the earth at the 
rate of 37' in 1 day (Vince) we have 37' : 22° 8' 26" :: Id. : 36 days nearly, 
the time from conjunction until Venus is brightest. De Lambre makes the 
daily mean motion of Venus 1° 36' 8", and that of the earth = 59' 8"3 ; 
hence 1° 36' 8"— 59' 8" 3 = 36' 59" 7, nearly equal 37', as above. 

Vince remarks, that wrhen Venus is brightest, and at the same time is at 
her greatest north latitude, she can then be seen with the naked eye at any 
time of the day, when she is above the horizon ; for when her north latitude is 
the greatest, she rises highest above the horizon, and therefore is more easily 
seen, the rays of light having to pass through a smaller portion of the at¬ 
mosphere, in proportion as Venus is elevated. This takes place once in 8 
years, Venus and the earth returning to the same parts of their orbits after 
that interval of time. 

f This is found by dividing the square of the earth’s distance from the 
jiun, by the square of the distance of Venus from the sun. See the note, pa. 270 
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of Cancer. Consequently the northern parts of Venus have «mw- 
mer in the signs, where those of our earth have winter, and vice 
versa. That the artificial day at each pole of Venus is 112^. of 
our natural days.* The sun’s greatest declination on each side of 
the equator of Venus amounts to 7 5° ;f hence her tropics are only 
15° from her poles, and her polar circles 15° from her equator.— 
The tropics of Venus are therefore between her polar circles and 
her poles, contrary to what those of the earth are. 

The day in Venus making so considerable a part of her year, the 
sun will therefore change his deck so much in one day, that if it 
be vertical to any place in the tropic, the next day it will be about 
26° from it; and in one day he will remove from the equator about 
36^°. So that the sun changes his deck 14° more at a mean rate 
in one day on Venus, than in a quarter of a year on the earth4 

If the inhabitants about the north pole of Venus fix their south 
or meridian line, through that part of the heavens where the sun 
has his greatest altitude, or north declination, and call those the 
east and west points on the horizon, which are 90° from that point 
where the meridian cuts the horizon ; then the following remark¬ 
able phenomena will take place. The sun will rise 22^° north of 
the east, and advancing 1121° (90° -{- 22^°) as measured on the 
horizon, he will cross the meridian at an altitude of 121° ; then 
making an entire revolution without setting, he will cross it again 
at an alt. of about 48|° ; at his next revolution he will come to his 
greatest alt. and deck and cross the meridian at an altitude of 75° ; 
and distant from the zenith of the place 15°. Again, he will de¬ 
scend in the same spiral manner, first crossing the meridian in an 
angle of 48|°, next in an angle of 12 J°, and advancing from thence 
1121°, he will set 22^° north of the west ; so that after having 
made 4-f revolutions above the horizon, he will descend below it to 
Exhibit similar phenomena at the south pole. 

The polar inhabitants of Venus, like those of our earth, have 
but one day and one night, each of half a year long, or one half of 
Venus’s annual revolution. On Venus, however, the difference 

'* Or rather half of her annual revolution (see page 270) the sun being- 
visible at her poles during- this time. 

f Whatever problems we have performed on the terrestrial globe relative 
to the sun’s greatest deck 23° 28', &c. may be applied to Venus, on suppo¬ 
sition that the greatest declination is 75°. 

t If any point be taken on the equator of our common globes, and another 
be taken, in a lesser circle drawn 15° from either pole, at the distance of 
90° east or west of the former, and through these points a great circle be 
drawn, with the quadrant of alt. by which it may be also divided into de¬ 
grees ; this will represent the ecliptic of Venus, and hence the above phe¬ 
nomena may be easily pointed out on the globe. 

The great variation in the sun’s deck seems to be providentially ordered, 
to prevent the great effects of the sun’s heat, which on Venus is twice as 
great as on the earth (pa. 275) as lie can shine perpendicularly on the same 
place but a short 4pjr, and on that account the Ideated places have time to 

cool. 
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between the heat of summer and the cold of winter, and also be¬ 
tween midday and midnight,is much greater than on the earth, the 
sun’s daily variation and the change of his declination and altitude 
being much greater on Venus than on the earth. When the sun 
is in the equinoctial, or over the equator of Venus, one half of his 
disk appears above the horizon of the north pole, and one half 
above the horizon of the south pole, his centre being in the hori¬ 
zon of both poles ; and when he descends below the horizon of 
one, he ascends above the horizon of the other in the same propor¬ 
tion. Hence, in the course of a year, each pole has one spring, 
one autumn, a summer as long as both, and a winter equal in 
length to the other three seasons. 

At the polar circles of Venus, the seasons are nearly the same 
as at the equator, the distance between both being 15° ; but the 
winters are not so long, nor the summer so short. The same 
seasons also happen twice a year. 

At Venus’s tropics, the sun continues about 15 of our weeks 
without setting, in summer, and as long without rising in winter. 
While his declination is more than 15°, he does not set to the in¬ 
habitants of the adjacent tropic, nor rise to the inhabitants of the 
other. The seasons are also, at her tropics, nearly the same as at 
her poles ; the difference being similar to that at the polar circles. 

At her equator the days and nights are equal, each being about 
1 If hours long. The diurnal and nocturnal arches are here how¬ 
ever veiy unequal, particularly when the sun’s declination is great¬ 
est ; for at this time his meridian alt. is sometimes double his 
midnight depression, and at other times the reverse. At her 
equator there are two winters, two summers, two springs, and two 
autumns every year, owing to the obliquity of the sun’s rays when 
his declination is greatest, being equal to that in the latitude 51® 
32' (75° — 230 28'j on the earth at the winter solstice. But 
every winter at the equator is double the length of the summer, 
the four seasons returning twice in that time, that is in days. 

From the quick change in the sun’s declination, the sun’s ampli¬ 
tude at rising and setting will differ considerably ; and hence no 
place has the forenoon and afternoon of the same day equally long, 
unless at the equator or at the poles. 

Where the sun crosses the equator or equinoctial of Venus in 
any year, he will have 9° deck from that point on the same day 
and hour the following year ; and will cross the equator 90° more 
to the west. This phenomenon will make the equinoxes of Venus 
a quarter of a day, or about 6 of our days later every year, and 
hence in four annual revolutions the sun will pass vertically in the 
same places,* Sec. &c. 

* Many other observations could be made here, but the above are suf¬ 
ficient to enable the learner to pursue the subject at his leisure, and, in a 
similar manner, to examine the phenomena of the other planets, and exhibit 
them on the globe, independent of an orrery or any other instrument. The 
investigation of these curious phenomena, and their representation on the*. 
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Venus, when viewed through a telescope, exhibits all the pha¬ 
ses of the moon from the crescent to the enlightened hemisphere, 
though she is seldom observed perfectly round. Previous to the 
rising of the sun in the morning, when she begins to disengage 
herself from the sun’s rays, she is seen under the form of a cres¬ 
cent, at which time her apparent diameter is at its maximum, be¬ 
ing then nearer to us than the sun, and almost in conjunction with 
him. In proportion as she recedes from the sun, her crescent aug¬ 
ments and her apparent diameter diminishes. When she departs 
from the sun about 45°,she returns towards him again, during which 
time her enlightened hemisphere is increasing, and her apparent 
diameter diminishing, until she is again immersed, in the morning, 
in the solar rays. She is then further from us than the sun ; the 
hemisphere which is turned towards the sun is also towards us, 
and therefore Venus appears full. Her apparent diameter is then 
a mininum or the least possible. Here Venus disappears for some 
time, after which she re-appears in the evening, and produces, in 
a contrary order, the same phenomena as before. Her crescent 
diminishes, and her apparent diameter increases as she advances 
from the sun, and her enlightened hemisphere is turned from the 
earth. At about 45° distance from the sun, she returns again to¬ 
wards the sun, her crescent diminishing, and apparent diameter 
increasing, until she again plunges into the sun’s rays. 

These phenomena evidently prove that Venus’s orbit is within 
that of the earth, and that she revolves round the sun, which is near¬ 
ly in the centre of her orbit. These results obtained from observa¬ 
tions of the phases and apparent diameter of Venus combined with 
the earth’s annual motion round the sun, explain also, in a natural 
manner, the alternate, direct, and retrograde, motion in longitude 
of, this planet, also her complicated motion in latitude ; and the 
same is true of Mercury. (See page 257.) 

During the interval between Venus’s disappearance in the even¬ 
ing and her re-appearance in the morning, she is sometimes seen 
moving on the disk of the sun, in the form of a dark round spot. 

Dr. Halley remarks, that when at St. Helena, observing the 
stars about the south pole, he had an opportunity of observing 
Mercury passing over the sun’s disk, which he observed with the 
greatest degree of accuracy, by means of a telescope 24 feet long, 
and found the time of the ingress and egress without being subject 
to an error of 1". The lucid line intercepted between the dark 
limb of the planet and the bright lirnb of the sun being visible to 
the naked eye, and the small dent made in the sun’s limb by Mer¬ 
cury’s entering the disk, appearing to vanish in a moment. From 

globes, must afford no small pleasure to those who are well acquainted with 
what we have delivered in parts 2d and 3d; as these phenomena afford 
ample scope for inquiry and investigation, and every moment present new 
scenes of wonder to the mind. These inquiries likewise bring us more ac¬ 
quainted with the variety of those curious and admirable laws displayed in 
the mechanism of the universe; 
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this he concluded that the sun’s parallax might be accurately de¬ 
termined by such observations, from the difference of the times of 
the transit over the sun at different places upon the earth’s sur¬ 
face,* provided Mercury were but nearer to the earth, and had a 
greater parallax from the sun. But the difference of these paral¬ 
laxes, and therefore the difference of times is so small, that the 
difference of the parallaxes is always less than the solar parallax 
sought; and hence Mercury was considered unfit for this pur¬ 
pose. Venus was therefore selected, for its parallax being near¬ 
ly 4 times as great as the solar parallax ; and therefore produc¬ 
ing a considerable difference between the times at which Venus 
will be seen to pass over the sun at different parts of the earth, so 
that the accuracy of the conclusion will be proportionably increas- 

* For the method of finding the horizontal parallax of Venus by observa¬ 
tion, and from thence by analogy, the parallax and distance of the sun and 
of all the planets from him. See Ferguson’s Astronomy, ch. 23, art. 2. 

The following will give the learner a sufficient 
idea of the nature, &c. of a parallax. Let C be 
the earth’s centre, A the place of a spectator on 
its surface, V any object, ZH the sphere ot the 
fixed stars, to which the places of all the planets, 
&c. are referred, Z the zenith, and H the sensi¬ 
ble horizon; through the object V conceive the 
lines AVf, CVw to be drawn, then t is the place 
of the object as seen from the surface of the 
earth or its apparent place, and t its place as seen 
from the earth’s centre C, or its true place, and 
the arch tu, the distance between the apparent 
and true place, is the parallax of the object, and 
is measured by the angle t\u. The apparent place of the object observed 
at the horizon is H, and its true place is s, the horizontal parallax is there¬ 
fore Hs measured by the angle Hw, and is greater than any other parallax 
tu. At the zenith Z, the parallax is nothing, for here there is no difference 
between the true and apparent place. That the angle AVC measures the? 
parallax is thus shewn; the angle ZAY = ZCV -f- AVC (32 E. 1) AVC is 
therefore the difference in the zenith distances or places of the body, as 
seen from the centre and surface of the earth, or the angle under which the 
diameter of the earth appears, as seen from the object or body V. Now 
to find this angle we have this proportion, CV : VA :: sine VAC : sine AVC 

, . . CA X sine VAC 
(Simson s Trig. prop. 2) ;= — - ^ ^-. Now as CA is constant, the 

earth being supposed a sphere, the sine o f the parallax varies as the sine oj 
the apparent zenith distance directly, and the distance of the body from the cen¬ 

tre of the earth inversely, or as Hence appears why the parallax 
v V 

is greatest at the horizon, and nothing at the zenith. If the object be at an 
indefinitely great distance, it has no parallax; the apparent places of the 
fixed stars are not therefore altered by it. The parallax depresses an ob¬ 
ject in a vertical circle, t being the apparent and u the true place. The 
parallax varies as the sine of the apparent zenith dist. or 1 : x :: y : ay, x 
being the appar. zen. dist. and y the horizontal parallax, radius being 1, 
To ascertain the parallax at all altitudes, it must therefore be found for 
some given alt. For different methods by which this is performed, see 
Keil’s Ast. lect. 31 or Vinces, AsC 8vo. ch. 6, pa. 54, &a 
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ed, and not liable to any error greater than a small part of a second. 
(See Motte’s abridgment of the Phil. Trans, vol. 1. pa. 243.) 
The transits of 1761 and 1769 affording every opportunity of put¬ 
ting these observations into practice, astronomers were therefore 
sent from England, France, &c. to the most proper parts of the 
earth, to observe both those transits, and the results of their obser- * 
vations give the parallax to a great degree of accuracy. 

If the plane of the orbit of Venus coincided with the plane of 
the ecliptic, she would pass directly between the earth and the sun 
at each inferior conjunction, and would then appear like a dark 
spot on the sun for about 7i hours, but like the moon’s, Venus’s 
orbit only intersects the ecliptic in the nodes, and therefore one 
half of it is on the north and the other half on the south side of the 
ecliptic. Hence Venus can never be seen on the sun but at those 
inferior conjunctions which take place in or near the nodes of her 
orbit. At all other conjunctions she passes either above or below 
the sun, and is invisible, her dark side being then turned towards 
the earth. 

The mean time from conjunction to conjunction of Venus being 
known (see pa. 275*) and the time of one mean conjunction, the 
time of all the future mean conjunctions will be given. If those 
which happen near the node be therefore found,! and the geocen¬ 
tric latitude of the planet be then computed ; if it be less than the 
apparent semidiameter of the sun, there will be a transit of the 
planet at that time. 

* The conjunctions of any number of planets, in circular orbits, may be 
p p 

thus calculated ; Let ■ -- = the time in which two superior planets 

would meet from one conjunction to the next (see the note pa. 268.) and let 
V equal to the periodic time of an inferior planet, taking the planets in 

Pj) Vh 
- ' X V —j- — Y order, then by a like process, as in the note pa. 268. 

PpY 

P/J—V X P—p- 
ppy 

X Q. divided by 

P " ’ P—P 

In like manner it will be found for a fourth, that 

P/>VQ 
the time 

Pp—V X P—p ' Yp\— Q X Pp—V X P—p 

required, Q being taken in order after V. Whence the g'eneral law is mani¬ 
fest. In the same manner oppositions, &c. may be calculated. 

dbis calculation may also be applied to elliptic orbits, provided the for¬ 
mula for the daily revolution be substituted for the daily angular velocity. 

t Vnce in his Astronomy determines the periods when such conjunctions 
happen, in the following manner ; let P = the periodic time of the earth, 
P = that of Venus or Mercury ; now that a transit may happen again at the 
same node, the earth must perform a certain number of complete revolutions 
in the same time that the planet performs a certain number, for then they 
must come into conjunction again at the same point of the earth’s orbit, or 
nearly in the same position with respect to the node. Let the earth perform 
x revolutions, while the planet performs y revolutions, then will Pa' = py ; 
hence a y — p & P. Now P = 365.256, and for Mercury p — 87.968 j 
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The following new method of computing the effect of parallax, in 
accelerating or retarding the time of the beginning and end of a tran¬ 
sit of Venus or Mercury over the surfs disk, was given by the late 
Nevil Maskelyne, astronomer royal in Greenwich, and inserted here 

for the sake of those who wish to know the principles of this interesting 
phenomenon, life* The fig. relates particularly to the transit of Venus 
which happened in 1769. 

Let SN repre¬ 
sent the sun, C its 
centre, P the north 
pole of the equinoc¬ 
tial, PC a meridian 
passing through the 
sun, Z the zenith of 
the place ADB£5 
the relative path of 
Venus, ^3 being the 
place of the de¬ 
scending node ; A 
the geocentric place 
of Venus at her 
ingress, B at her 
egress, and D at her nearest approach to the sun’s centre, as seen 
from the centre of the earth, and b the apparent place of Venus at 

P 
P 

87.968 

365.256 
(by resolving it into its continued fractions. (See Trail's 

Algeb. Appendix No- 1, &c.) ■§T’ 2V it’ TSJ\ t£T> &c- ^at is 1, 6, 7, 
13, kc. revolutions of the earth are equal to 4, 25, 29, 54, &c. revolutions 
of Mercury, approaching still nearer to equality the further the series is 
carried. The first period, or that of 1 year, is not sufficiently exact; the 
period of 6 years will sometimes bring on a return of the transit at the 
same node ; that of 7 years will bring on the transit’s return more frequent¬ 
ly ; that of 13 still more frequently, 8cc. There was a transit of Mercury 
at his descending node in May, 1786; hence all the years at which the 
transit may be expected to happen at that node, will be found by con¬ 
tinually adding 6, 7, 13, 33, 46, &c. to it. In November, 1789, there was 
a transit at the ascending node ; hence by adding the same numbers to 
this year, the years at which it may be expected to happen, at the same 
node, will be found. The following years 1799,1832, 1845,1878, 1891, &c. 
are the years for the transit to happen at the descending node ; and 1802, 
1815, 1822, 1835, 1848, 1861, &c. at the ascending node. For Venus 

rt0/f „ . p 224.7 8 235 713 _ 
P = 224.7; hence £ = ^^56 = 13’ TT^q’ &c* Kence the Pe" 382' 1159 
riods are 8, 235, 713, &c. years. The transits at the same node will 
therefore sometimes return in 8 years, but oftener in 235, and still oftener 
in 713 years. In 1769 there was a transit of Venus in June, at the de¬ 
scending node ; the next transits at the same node will be in 2004, 2012, 
2247, 2255, 2490, 2498, 2733, 2741 and 2984. In 1639 a transit hap¬ 
pened at the ascending node in November; the next transits at the 
same node will be in 1874, 1882, 2117, 2125, 2360, 2368, 2603, 2611, 
2846 and 2854. These transits are found by continually adding the pe- 
riods, so as to find the years when they may be expected, and then com- 

M TU 
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the egress to an observer whose zenith is Z ; draw 6aZ, then a is 
the true place of Venus, when the afi/iarent place is at £, and bn 
is the parallax in altitude of Venus from the sun ; and the time of 
contact will be diminished by the time which Venus takes to de¬ 
scribe aB. Through b draw xybnB parallel to AB, meeting ZB 
produced in E, and Bra, Ax tangents to the circle, and let CD 
be perpendicular to AB. Now in the figure a6EB, the sides may 
be considered as rectilinear, on account of their smallness; and 
from the magnitude of ZB compared with Ba, BE may be consider¬ 
ed as parallel to ab, and hence q6EB may be considered as a paral¬ 
lelogram ; aB may be therefore taken equal £E, Now 6E = Era 
4- bn, according as E falls without or within the sun’s clisk BNS ; 

and En : EB :: sine EBra = cos. CBZ (because CBn is a right an¬ 
gle. 18 Eucl. 3) : sine BraE *= sine raBD orraBt5 (29Eucl. l)= cos. 
CBD ; (Simson’s Trig, prop 2) hence En x cos CBD = EB X 

cos. CBZ (16 Eucl. 6) and therefore En = 
EB x cos. CBZ 

Now- 
cos. CBD 

Bra2 Bra2 
- — very 
ny AB 4 

as bn X ny = Bra2 (36 Eucl. 3) hence bn = 

nearly; but Bra : BE :: sine BEra = sine ZBD (29 Eucl. 1) : sine 
BE X sine ZBD 

BraE = cos. CBD ; hence Bra =-- — ^— ,and squaring both 
cos. CBD 

sides Bra^ = 
BE2x sine ZBD2 

therefore bn-. 
BE2 x sine ZBD2 

cos. CBD2 ' .” AB x cos CBD2 
Let/z = the horizontal parallax of Venus from the sun ; then, as 
the parallax varies as the sine of the apparent zenith distance, we 
have Rad. or 1 : sine Z6 ::/z : BE (note pa. 279) = f1 X sine Zb 
=/z x sine ZB ; hence aB = 6E = Era -f- bn (and substituting the 

, i1 X S^ne ZB x cos. CBZ , . . 
value of BE) =--- + /* X sine ZB2 x 

sine ZBD2 

AB x cos. CBD2 
sine ZBD2 x sec. CBD* 

cos. CBD 

]i x sine ZB x cos. CBZ X sec. CBD 4* fiz 

X sine ZB2 X 
AB 

(For the secant of an 

1 
arch is as the cos. reciprocally, or sec. =-*) Hence the parallax 

cos. 
consists of two parts, one of which varies as /z, and the other as 

puting the shortest geocentric distance of Venus from the sun’s centre at 
that time, when their conjunction takes place; if this distance be less than 
the semidiameter of the sun, there will be a transit. 

The periods of the planets made use of above, are as given by Vince. La¬ 
place makes the sidereal revolutions of Mercury, Venus, and the earth, 
8r.969255, 224.700817, and 365.256384 days respectively. 

* The radius being a mean proportional between the cos. and sec. (Cor. 
2, def. 9, Simson’s Trig.) hence Rad.z = cos. X sec. and rad. being 1, we- 

havfe sec. = —See b. 1, prop. 1, Emerson’s Trigonometry, 
cos. 
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/i2, the remaining quantities being the same. Let those quan¬ 
tities multiplied by ji = v, and those multiplied by }i2 = w ; 
let tn — the time in which Venus, by her geocentric relative 
motion, takes to describe the space /?, and let m be the relative 
horary motion of Venus; then to find this motion we have 

, „ „ ll X 3600" , 
m : fi :: 1 hour or 3600" : tn = —--. Hence to find 

m 

the time of describing aB, we have fi : Ji X v -f- Ji2 X w :: t: 

tv -f tfmy where by substituting the values of v and w, the time of 

^describing cB, or the effect of parallax in accelerating or retarding 
the time of contact is given ; the upper sign is to be used when 
CBZ is acute, and the lower sign when obtuse. If CBZ be a 
right angle very nearly, but obtuse, it may happen that nE may be 
less than nb, in which case nE is to be taken from nb, according to 
the rule. The principal part, wE of the effect of parallax, will 
increase or diminish the planet’s distance from the sun’s centre, 
according as the angle ZBC is acute or obtuse ; but the small part 
bn of the parallax will always increase the planet’s distance from 
the centre ; hence the sum or difference of the effects, with the 
sign of the greater is to be taken, with respect to the increase or 
decrease of the planet’s distance from the sun. The second part 
of the correction in the transits of Venus for 1761 and 1769, did 
not exceed 9" or iO"of time, where the nearest approach of Ve¬ 
nus to the sun’s centre was about 1 O'. In the transit of Mercury, 
the first part of the parallax will be sufficient, unless the nearest 
distance be much greater. 

If the mean horizontal parallax of the sun be taken = 8"83, 
then it appears by calculation from the above expression, that the 
total duration at Wardhus was lengthened by parallax 11' 16"88, 
and diminished at Otaheite by 12' 10"07 ; the computed difference 
of the times is therefore 23' 26"95, but the observed difference 
was 23' 10" (see Vince’s Complete System of Astronomy, ch. 25.) 

The correct parallax may be therefore accurately found as fol¬ 
lows : as the observed difference of the total durations at Ward¬ 
hus and Otaheite is 23' 10", and the computed difference, from 
the above given parallax, is 23' 26" 95, the true parallax of the 
sun is less than the assumed. Let the true parallax be to the 
assumed as 1 —r to 1 ; then, from the foregoing expression, the 
first part of the computed parallax will be lessened in the ratio of 

1 — r; 1, and the second part in the ratio of 1 —r2 : 1, or of 
1 — 2r : 1 nearly. All the first parts in the above expression, viz. 
406"05, 287"05,341"48, 382"47,inall 1417"05,combine the same 
way to make the total duration longer at Wardhus than at Otaheite. 
With respect to the second parts, the effects at Wardhus were 
— 7"31 and— 8"91 ; and at Otaheite 1 "63 and 4"49, in all 

— 10" 10. Hence 1417"05 X 1 —r — 10" 10 X 1 — 2r = 1390", 
the excess of the total duration at Wardhus above that at Otaheite, 

or 1417"05 — 10" 10— 1390" = 1417"05 ~ 2Q"20 X r, and r *=■ 
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__ = 0.0121. Therefore the sun’s mean horizontal paral- 
1396"85 _ 
lax = 8"83 X l —0.0 121 = 8"72316. The mean horizontal pa¬ 
rallax of the sun is therefore assumed == 8J". 

Hence the semidiameter of the earth : its distance from the 
sun :: sine 8^": rad. :: 1 : 23575. Now the semidiameter of the 
earth, according to the late French measures, being 3956 miles ; 
hence the earth’s distance from the sun is 23575 X 3956 — 
93262700 miles. (See note to def. 8.) 

The effect of the parallax being determined, the transit affords 
an easy method of finding the difference of the longitudes of two 
places where the same observations were made; thus, compute 
the effect of parallax in time, and reduce the observations at each 
place to the time, if seen from the centre of the earth, and the 
difference of time is the difference of longitudes required. For 
ex. the times at Wardhus, at which the internal contact would take 
place at the earth’s centre, are 9h. 40' 44" 6, and 21h. 38' 25" 07, 
the difference of which is 12h. 2' 19" 53 = 180° 34' 53", the dif¬ 
ference of longitude between Wardhus and Otaheite. From the 
mean of 63 results from the transits of Mercury, Mr Short found 
the difference of longitude between Greenwich and Paris = 9' 15", 
and from the transit of Venus in 1761 = 9' 10" Mayer makes it 
9' 16", Delambre 9' 20", and from trigonometrical calculation 9' 
IS" 8, in time. 

The transit of Venus also affords an accurate method of finding 
the place of the node. For from the observations of Mr. Ritten- 
house at Norritonor Norristown, within 18 miles N. W. of Phila¬ 
delphia, the least distance CD was observed to be 10' 10" ; hence 
drawing CV perpendicular to C£5, cos DCV = 8° 28' 54" : rad.:: 
CD 10' 10" : CV 10' 17" the geocentric latitude of Venus at the 
time of conjunction ; and 0,72626 (the dist. of Venus from the 
sun*) : 0.28895 (her distance from the earth): : CV 10' 17" : 4' 5" 
the heliocentric latitude CV of Venus.t (Now considering C&V 
a rt. angled triangle, we have tang. V£2C 3° 23' 35" (see pa 273) 
; rad. : : CV 4' 5" : C£<£ 1° 8' 52", which added to 2s 13° 26' 34" 
the place of the sun, gives 2s. !4° 35' 26" for the place of the as¬ 
cending node of the orbit of Venus For the beginning of 1800 
Delambre makes it 2s. 14° 52' 8", and its secular variation 51'40" 
(see pa. 272.) 

Vince determines the time of the ecliptic conjunction as fol¬ 
lows ; let the difference of longitudes (d) of Venus, and the sun’s 
centre be found for any time (t) ; and also the apparent geocentric 
hourly motion (m) of Venus from the sun in longitude ; then say 
jn : d : : 1 hour : the interval between the time (t) and the con¬ 
junction, which interval is to be added to or subtracted from t, 

* This distance, &c. differs a little from that given in the notes pa. 271, 
which see, the above being taken from Vince. 

t The angle subtended by CY is inverse!}' as the distance from CV. 
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•according as the observation was made before or after the conjunc¬ 
tion. In the transit for 1761 at 6h. 31/ 46", apparent time at Pa- 
ris, M. de la Land found d = 2' 34"4, and m = 3' 57"4 ; hence 
3' 57"4 : 2' 34"4 : : lh. : 39' l", which subtracted from 6h 31' -16", 
because at that time the conjunction was past, gives 5h 52' 45" 
for-the time of conjunction from this observation. The latitude 
at conjunction may be also thus found. The horary motion of 
Venus in lat. being 35"4 ; hence 60' : 39' i" : : 35"4 : 23", the 
motion in lat. in 39' 1", which subtracted from 10' 1"2, the ob¬ 
served lat. at 6h. 31' 46", gives 9' 38"2 for the latitude at the 
time of conjunction. 

CHAP. IV. 

OF THE EARTH, 
AJYD ITS SATELLITE, THE MO OK 

We now come to describe the earth, that part of the System by 
far the most interesting for us, as it is that which we are destined 
to inhabit, and of the phenomena of which we are therefore more 
intimate observers. 

Its figure, as composed of land and water, has been already 
proved to be spherical or nearly so ;* but here it becomes neces¬ 
sary to enter a little more into the detail of those arguments on 
which this important truth is founded. 

The first notions that mankind probably formed of the earth 
were, those which arose from the immediate suggestion of the 
senses ; but by comparing the phenomena together, and examin¬ 
ing the nature of the senses themselves, correcting and assisting 
them ; and by a proper application of geometrical and mechanical 
principles, the scheme of nature soon appeared very different from 
that which is presented to a vulgar eye. At first sight the surface 
of the earth appears of an unbounded extent, the clouds, me¬ 
teors, moon, planets, sun and stars of every degree of magnitude, 
appear in one azure surface, concave towards the earth, which 
latter was therefore taken as its centre. It is to sight, as M‘Laurin 
remarks,t that we owe our knowledge of the different parts of the 
system, those objects that are near us falling under the other 
senses only : but admirable as this sense is, it has its imperfec¬ 
tions. Vision depends upon the picture of external objects form¬ 
ed on the retina,\ together with a judgment of the understanding 
acquired by habit and experience ; which is so immediately con¬ 
nected with the sense, that it is impossible, by an act of reflection, 
to trace it, or when it is erroneous, suddenly to correct it. If vi¬ 
sion depended on the picture only, then equal pictures upon the 

* See the note to def. 2, and also to prob. 31, part 2. 
f View of Newton’s Philosophy, 4to. pa. 223. 
+ Retina is the dark coat at the bottom of the eye, on which objects are 

painted. 
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retina would suggest ideas of equal magnitudes of the objects ; 
and if the smallest fly was so near that it could cover a distant 
mountain from it, the fly ought to appear as large as the moun¬ 
tain. But, by habit, we have acquired a faculty of correcting this 
opinion, or idea of apparent magnitudes or distances ; and this, 
with a quickness of thought almost inconceivable. Hence we see 
how many fallacies may arise in vision: for as often as we are mis¬ 
taken in our notion of distance, so often must a corresponding 
error be produced in our idea of the magnitude of the object. 

Thus we would imagine that the moon was of no greater mag¬ 
nitude than about two feet in diameter, if we were not certain, 
from other sources, that her magnitude is immensely greater. 
Those objects that are seen in the same direct line, would, if at a 
considerable distance from the observer, appear equally distant, 
as both coincide on the retina ; those that are beyond the reach of 
distinct vision, would also appear equally distant, as the clouds, 
the moon, the sun, See. did we not perceive that the clouds, in 
passing between us and the moon, concealed it from our view, 
and that the moon obscures the sun when in conjunction with him. 
Moreover, a distant body that is in motion, but in a direct line from 
the eye to the object, will appear at rest, and a body at rest may 
appear in motion, from our imperceptibly advancing from it, as is 
the case with passengers in a vessel sailing along the shore, or 
from land, or of the earth with regard to the sun. Hence as our 
knowledge of the system must be founded upon the real figures, 
magnitudes and motions of the bodies of which it is composed, 
so, rejecting the prejudice produced by our senses, we must, from 
the apparent phenomena, produce such an account of the real 
act as may be consonant to reason, and the nature of the objects 
under consideration. 

The simplest proof that we have of the globular figure of the 
earth, is from her shadow projected on the moon in a lunar eclipse. 
For this shadow being always bounded by an arc of a circle, it 
hence follows, that the earth, which projects the shadow, must be 
of a spherical figure, since no other figure but that of a sphere, 
when turned in every position with respect to a luminous body, 
can cast a circular shadow ; and that if there were any considera¬ 
ble irregular protuberance on the surface, or any remarkable an¬ 
gle, this would necessarily, at some time, appear by the shadow. 
We have another proof equally evident in our seeing the further 
the higher we are elevated. For if the earth was a plane, we 
could see as far on its surface when no object intervened, as at 
1000 miles above its surface ; but at one or two miles above the 
earth’s surface we can see much farther, even with the naked eye, 
than on its surface, and this is true of any part of the earth ; 
moreover the proportion between the distance seen and the height 
of the spectator above the surface of the earth, will answer to no 
figure but that of a sphere, or an oblate spheroid, elevated a 

i 
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little towards the equator.* Likewise the calculation of eclipses, 
of the places of the planets, and in general, all astronomical cal¬ 
culations, are made on the supposition of the earth’s spherical 
figure, and all answer the times, when accurately calculated. 
When an eclipse of the moon takes place, it is observed by those 
who live eastward sooner than by those who live westward; and 
astronomers have found by frequent experience that, for every 15° 
difference of longitude, an eclipse begins so many hours sooner to 
those who live eastward, and later to those who live westward; 
but eclipses would happen at the same time at all places, were the 
earth a plane, nor could one part of the world be deprived of the 
light of the sun while another enjoyed the benefit of it. The ele¬ 
vation of the stars, and particularly the N. pole star, in travelling 
or sailing towards the north, in N. lat. and the depression of 
those towards the south, clearly prove that the earth is circular 
from N. to S. and the voyages of the circumnavigators sufficiently 
prove that the earth is round from east to west. The first who 
attempted to circumnavigate the globe was Magellan, a Portu¬ 
guese, who, on the 10th of August, 1519, sailed from Seville, in 
Spain ; in 1522 his ship returned again to St. Lucar, near Seville, 
on the 7th of September, not having altered its direction, during 
this time, towards the north or south, except as compelled by the 
winds or intervening land. Sir Francis Drake was the next, who, 
in 1577, performed the voyage in 1056 days; afterwards Thomas 
Cavendish performed it in 777 days, in the year 1586. Lord An¬ 
son, Captain Cook, La Perouse, &c. 

These arguments clearly prove that the earth is round or nearly 
so, though common experience shews us that, mathematically or 
strictly speaking, it is not a sphere, from the mountains, valleys, 
&c seen on its surface ; but these no more prevent its spherical 
figure, than grains of dust on an artificial globe, (note to def. 1.) 
Moreover from the properties of the pendulum, this truth has 
received further confirmation, (see note to def. 1.) though it ap¬ 
pears that the earth is not truly spherical, but rather in the form 
of a spheroid, and this is also confirmed by the different measures 
made use of to determine this important point. (See the note to 
prob. 31, part 2d.) 

The earth being thus discovered to be globular, and from the 
discoveries of the circumnavigators and others, that it had inhabi¬ 
tants on every side of it, it followed, that some must have their 
heads directed towards that part of the heavens where the feet of 
the others would point, if the line were continued through the 
earth, or that their feet must be directly opposite to each other, 
while each one considered himself upright: but this difficulty 

* Although St. Pierre endeavoured to prove that the earth is more ele¬ 
vated towards the poles, yet his reasoning is fallacious (as is evidently 
proved in the Philadelphia edition of the translation of his works) and 
contrary to the known laws of the general gravitation of matter and the' 
effects of the rotary motion of the earth. 
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vanished as soon as the general laws of gravity were discovered? 
and that it was found that all heavy bodies tended to the centre ot 
the earth, by a force equal to the quantity of matter in them, and 
therefore that on every part of the surface of the earth bodies were 
kept in their natural positions, without a possibility of falling off, 
by means of this law. 

No sooner was this law and the globular figure of the earth dis¬ 
covered by analysis, than innumerable phenomena and important 
discoveries were unfolded by the direct method of synthesis. 
Hence followed the whole doctrine of the sphere, the motion of 
the planets, comets, See. and those admirable laws set forth in the 
writings of Newton and his commentators. 

This globe being circumscribed and limited as it is, it was na¬ 
tural that some should undertake accurately to discover its dimen¬ 
sions. It is probable that the first attempts were made at a period 
anterior to those of which history has preserved the record, and 
that the results have been lost in the physical and political changes 
which the earth has experienced. The labours of the moderns 
have, however, been, no doubt, more successful on this head, 
from the accuracy of their instruments ; the following, collected 
chiefly from Laplace, will exhibit the most accurate result of their 
observations. 

The elevation or depression of the stars, gives the angles which 
verticals, elevated at the extremity of the arc passed over, form 
at their point of contact; for this angle is evidently equal to the 
difference of the meridian altitudes of the same star, less the angle 
which the arc described would subtend at the centre of the star j 
and we are certain from observation, that this is insensible. It 
was then only requisite to measure this arc. It would be a long 
and tedious operation to apply our measures to so great an extent; 
it is a much more simple process to connect its extremities by a 
chain of triangles, to those of abase of 12 or 15,000 feet, and 
considering the precision with which the angles of these triangles 
may be determined, its length can be obtained very exactly. It 
is thus that the arc of the terrestrial meridian which crosses 
France from Dunkirk to Mountjoy, near Barcelona, has been 
measured; that part of this arc whose amplitude is equal to the 
hundredth part of a right angle, and whose central point corres¬ 
ponds to (5l-|°) 461°, is equal to 100179 metres. 

Of all the re-entering, or curve lined, &c. figures, the spherical 
is the most simple, since it only depends on a single element, 
the size of its radius ; and hence for the facility of calculation, 
this form was attributed to the earth But the figure of the earth 
is the result of those laws, which modified by a thousand circum¬ 
stances, might alter it sensibly from a sphere. Inevitable errors 
of observation left doubts on this interesting phenomenon, and the 
Academy of Sciences, in which this great question was anxiously 
agitated, judged with reason, that the difference of the terrestrial 
degree, if it really existed, would be principally manifested in the 
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Comparison of the degrees at the equator and towards the poles. 
Academicians from France, and others from different parts of 
Europe and America, have measured degrees of the meridian in 
different parts of the world, and their measures incontestibly prove 
that the earth is not perfectly spherical, from the increase of the 
degrees from the equator to the poles (see note to prob 31.) The 
ellipse being next to the circle, the most simple of the re-entering 
curves, the earth was considered as a solid formed by the revolu¬ 
tion of an ellipsis about its shorter axis ; and its compression in 
the direction of the poles, is a necessary inference from the ob¬ 
served increase of the meridional degrees from the equator to the 
jjoles. The radii of these degrees being in the direction of grav¬ 
ity, are, by the law of the equilibrium of fluids, perpendicular to 
the surface of the sea, with which the earth is in a great measure 
covered They do not tend as in a sphere, to the centre of the 
Ellipsoid. They have neither the same direction nor the same 
length as radii, drawn from this centre to the surface, and which, 
except at the equator, and at the poles, cut it every where ob¬ 
liquely. The point of contact of two adjoining verticals, is the 
centre of the small terrestrial arc which they comprise between, 
them ; if this arc were a straight line, these verticals would be 
parallel, or would only meet at an infinite distance; but in pro¬ 
portion as they are curved, they meet at a distance so much the 
shorter. Thus the extremity of the shorter axis being the point 
Where the ellipse approaches more to a straight line, the radius of 
a degree at the pole, and consequently the degree itself, is of its 
greatest length ; but the contrary takes place at the extremity of 
the greater axis of the ellipse. At the equator, where the curv¬ 
ature is the greatest, the degree in the direction of the meridian 
is the shortest. Passing from the second to the first of these ex¬ 
tremes, the degrees augment, and if the ellipse is but little flat¬ 
tened, their increase is very nearly firofiortional to the square of the 
sine of the latitude. 

The measure of two degrees in the direction of the meridian, 
is sufficient to determine the two axis of the generating ellipse, 
and consequently the figure of the earth, supposing it elliptic. If 
this be the hypothesis of nature, the same proportion should bc 
found very nearly between the two axes, the degrees of France, 
of the north, and of the equator, being compared two by two; but 
this comparison gives differences which it is difficult to attribute 
to errors of observation alone. The excess of the axis of the* 

i 

equator above that of the pole, taken as unity, is called the com¬ 
pression or ellipticity of the elliptic spheroid ; now the degrees of 
the north, and of France give for the ellipticity of the earth? 
but the degrees of France and at the equator, give -j^, and hence 
it appears that the earth differs sensibly from an ellipsoid. There 
is even reason to believe that it is not a solid of revolution, and 
tha't its two hemispheres are not equal at each side of the equator. 
The degree measured by La Caille, at the Cape of Good Idope, 

Nn 
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in the southern latitude of 33° 18' 32"4, has been found to b« 
greater than the degree in France, Pennsylvania, and Italy ; but it 
ought to be smaller than all these degrees, if the earth were a re¬ 
gular solid of revolution, formed of two similar hemispheres. 
Every result leads us to conclude that it is not the case. (See 
Laplace.) 

The figure of the earth being extremely complicated, it is im¬ 
portant to multiply the measures of it in every direction, and in as 
many places as possible. We may always, at every point of its 
surface, suppose an osculatory ellipse, which sensibly coincides 
with it, to a small extent round the point of contact. 

Terrestrial arches measured in the direction of the meridian 
and perpendicular to it, compared with observations of latitudes, 
and of the angles which the direction of the extremities of these 
arches form with their respective meridians, will give us the na¬ 
ture and position of this ellipsoid, which may not be a solid of 
revolution, and which varies sensibly at great distances. 

The operations which Delambre and Mechain have executed in 
France to obtain the length of the metre, determine very nearly 
the osculatory ellipse of that part of the earth, the latitude being 
observed at three intermediate points. Two bases of more than 
12000 metres have been measured, the one near Melun, the other 
near Perpignan. And the correctness of the observations is con¬ 
firmed from this circumstance, that the base at Perpignan deduced 
from that at Melun, by a chain of triangles which unites them, 
does not differ of a metre from its measurement, though the 
distance which separates the two bases is more than 900,000 
metres. 

The principal results of this important operation, as given by 
Laplace, are as follows: 

OBSERVED LATITUDES. 

Mountjoui 
Carcassone 
Evaux 
Pantheon at Paris 
Dunkirk 

Decimal. 
45° 958281 
48 016790 
51 309414 
54 274614 
56 706944 

Sexagesimal. 
41° 2 i' 45" 
43 12 54 
46 10 42 
48 50 49 
51 2 10 

Arc of the terrestrial meridian comprised between Mountjoui and 
Carcassone 205621.3 metres, Evaux 534714.5 metres, Panthe¬ 

on 831536.4 metres, and Dunkirk 1075058.5 metres. 
The, comparison of these results evidently indicates a diminu¬ 

tion in the terrestrial degrees from the pole to the equator ; but 
the law of this diminution seems very irregular If however the 
ellipsoid, which satisfies these measures nearer than any other, be 
required, it is sufficient only to alter the observed latitudes about 
(4i") 0"324. 

The compression is then T^, the semiaxis of the pole parallel 
to that of the earth, is 6344011 metres, and the degree corres¬ 
ponding to the mean parallel, is 99983.7 metres. An error of 
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0"324, though very small, is not admissible, considering 
the great precision of the observations; but this ellipsoid may at 
ieast be considered as osculatory to the surface of the earth in 
France at (51°) 45° 54' of latitude, and suppose that it coincides 
with it to an extent of (5° or 6°) 4* 30' or 5° 24' round the point 
of osculation. It gives 100716.9 metres, for the degree perpen¬ 
dicular to the meridian, at (56° 3144) 50° 40' 58"6 latitude, and 
by a very exact operation, lately performed in England, it has 
been found to be 100700.5 metres. This agreement proves that 
the action of the Pyrenees and other mountains in the south of 
France, has had very little influence on* the latitudes observed at 
Evaux, Carcassone and Mountjoy, and that the great compression 
of the osculatory ellipse depends on attractions much more ex¬ 
tended, the effect of which is felt in the north as well as the south 
of France, and even in England, Italy, and Austria: for the de¬ 
grees, which have been carefully measured, are very nearly the 
same as on the ellipsoid. 

Whatever be the nature of the terrestrial meridians, it is evi¬ 
dent, as their degrees diminish from the poles to the equator, 
that the earth is flattened in the direction of its poles, or that the 
axis of the poles is less than the diameter of the equator. To 
explain this, let the earth be supposed a solid of revolution ; then 
it is evident, that the radius of the degree at the north pole, and 
the series of all the radii from the pole to the equator, which by 
the supposition continually diminish, form, by their consecutive 
intersections, a curve which at first touches the axis of the pole, 
and afterwards separates from it, its convexity being constantly 
turned towards it, and raises itself towards the pole, until the ra¬ 
dius of the meridional degree takes a direction perpendicular to 
the first; it will then be in the plane of the equator. If this ra¬ 
dius of the polar degree be supposed flexible, and that it involves 
successively the arc of the curve which we have considered, its 
extremity will describe the terrestrial meridian, and the part of it 
intercepted between the meridian and curve, will be the corresr 
ponding radius of the degree of the meridian. This curve is 
what geometricians call the e-volute of the meridian. Let us now 
consider the intersection of the diameter of the equator with the 
axis of the pole, as the centre of the earth. The sum of the two 
tangents to the evolute of the meridian drawn from this centre, 
the one following the axis of the pole, and the other the diameter 
of the equator, will be greater than the arc of the evolute which 
they include between them Now the radius drawn from the cen¬ 
tre of the earth to the north pole, is equal to the radius of the 
polar degree, less the first tangent; the semidiameter of the 
equator is equal to the radius of the degree of the meridian at the 
equator, more the second tangent. The excess of the semidiam¬ 
eter above the terrestrial radius of the pole, is then equal to the 
sum of these two tangents, less the excess of the radius of the 
polar degree above the radius of the degree of the meridian at the 
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equator ; this last excess is the arc itself of the evolute, which is 
less than the sum of the extreme tangents. The excess then of 
the semidiameter of the equator above the radius, drawn from the 
Centre of the earth to the north poie, is positive. It can be prov-? 
ed in the same manner that the excess of the semidiameter of the 
equator above the radius, drawn from the centre of the earth to 
the south pole, is positive The whole axis of the poles is there¬ 
fore less than the diameter of the equator, or, which comes to the 
same thing, thre earth is flattened in the direction of the poles. 

Considering every portion of the meridian as a small arc of its 
qsculatory circumference, it is easy to see that the radius drawn 
from the centre of the earth to that extremity of the arc which is 
nearest to the pole, is less than the radius drawn from the same 
centre to the other extremity. From whence it follows, that the 
terrestrial radii increase from the poles to the equator, if, as all 
observations indicate, the degrees of the meridian augment from 
the equator to the poles The difference of the radii of the de*- 
grees of the meridian from the pole to the equator, is equal to 
the difference of the corresponding terrestrial radii, more the ex¬ 
cess of twice the evolute above the sum of the two extreme tan¬ 
gents, which excess is evidently positive : thus the degrees of 
the meridian increase from the equator to the poles in a greater 
proportion than the diminution of the terrestrial radii. These 
demonstrations are equally applicable, if the northern and southern 
hemispheres were not equal and similar, and it is easy to extend 
them to the supposition of the earth not being a solid of revolution. 

It is however remarkable, that the observations made in the 
northern hemisphere, give the evolute of the meridian from (43? 
to 73°) 3§° 42' to 65° 42', very little different from that of an 
ellipsoid of compression, and of which the mean degree is 
99983.7 metres. For this ellipsoid nearly satisfies the measures 
lately made in France, the degrees measured in Italy and Lap- 
land, and that which has been measured in England perpendicu¬ 
lar to the meridian. It also represents the degree of the meri¬ 
dian measured in Austria at (53°) 47° 42' of latitude, and which 
Liesgamg has found to be 100114.2 metres. Finally, it agrees 
with the degree of the longitude measured in France at (48° 4') 
43° 33' 36'* latitude, and of which Cassini and La Caille have 
fixed the length at 72003.5 metres. 

Curves have been constructed at the principal places in France, 
on the line which has been considered as the meridian of the ob¬ 
servatory of Paris, traced in the same manner as this line, with 
this difference only, that the first side, always tangent to the sur¬ 
face of the earth, instead of being parallel to the plane of the 
celestial meridian of Paris, is perpendicular to it. It is by the 
length of these curves, and by the distance from the observatory 
to the points where they meet the meridian, that the position of 
these places is determined. This labour, the most useful to Ge- 
dgraphy which has yet been performed, is a model (as Laplace 
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remarks) which every enlightened nation will, no doubt, hasten 
to imitate. 

We shall now proceed to another point no less worthy of at* 
tention, that is, the diurnal motion of the earth on its axis, a phe¬ 
nomenon which has been so clearly elucidated by the astrono¬ 
mers of the last and present age, that, though contrary to the 
direct testimony of our senses, the variety of strong and forcible 
arguments in confirmation of this motion, must effectually dis¬ 
sipate every doubt, and gain the assent of every impartial in¬ 
quirer. 

When we reflect on the diurnal motion to which all the hea¬ 
venly bodies are subject, we cannot but recognize one general 
cause which moves and regulates them, or causes them appa¬ 
rently to revolve round the earth. If we consider that these bo¬ 
dies are insulated, with respect to each other, and placed at very 
different distances from the earth, that the sun and the stars are 
at much greater distances from it than the moon, and that the 
variations in the apparent diameters of the planets, indicate great 
alterations in their distances ; and that moreover the comets tra¬ 
verse the heavens freely in all directions, it will be difficult to con¬ 
ceive that it is the same cause which impresses on all bodies a 
common motion of rotation. But since the heavenly bodies pre¬ 
sent the same appearance to us, whether the firmament carries 
them round the earth, considered as immoveable, or whether the 
earth itself revolves in a contrary direction ; it seems much more 
natural to admit this latter motion, and to regard that of the hea¬ 
vens as only apparent. 

The earth is a globe whose diameter is only 7911 2 English 
miles, as we have shewn in the note to def. 8, part 1 ; the sun, 
as we have seen, is incomparably larger ; the earth then, which 
is but a point in comparison of the sun, must turn on its axis in 
a certain time, or else the sun, stars, Sec. revolve round the eaith 
in nearly the same time. Is it not then infinitely more simple to 
attribute to the globe we inhabit, a motion of rotation on its own 
axis, than to suppose in masses so immense and so remote as the 
sun and stars, such an extremely rapid motion as would cause 
them to revolve in one day round the earth ? 

But let us suppose that the sun does actually revolve round the 
earth. Now it is a known principle in the laws of motion (which 
will be shewn afterwards) that if any body revolve round another 
as its centre, it is necessary that the central body be always in the 
plane in which the revolving body moves, whatever curve it de¬ 
scribes (Emerson’s Astr. p 11.); therefore the diurnal path of 
the sun. in moving round the earth in a day, must always describe 
a circle which will divide the earth into two equal hemispheres. 
But this never happens but at the equinoxes, when the sun rises 
exactly in the east and sets exactly in the west; for in our sum¬ 
mer the sun rises to the north of the east, and sets to the north 
of the west, and when on the meridian, it is nearer to us than 
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the equator, its declination being north ; in the winter it rises to 
the south of the east, and sets to the south of the west, ^and when 
on the meridian, is further from us than the equator, and there¬ 
fore in both cases its diurnal path divides the globe into two une¬ 
qual parts; consequently the sun does not move round the earth. 

Moreover we have seen that the pole of the equator seems to 
move slowly round that of the ecliptic, from whence results the 
precession of the equinoxes. If the earth be immoveable, the 
pole of the equator must be likewise immoveable, as it always 
corresponds to the same point of the terrestrial surface; the 
ecliptic therefore moves round these poles, and in this motion 
carries all the heavenly bodies with it. Thus the whole system, 
or rather the whole universe, composed of so many bodies, dif¬ 
fering from each other in their magnitudes, motions, and distan¬ 
ces, would be again subject to a general motion, which disap¬ 
pears, and is reduced to a simple appearance, if we suppose the 
terrestrial axis to move round the poles of the ecliptic. 

It is no argument against the earth’s diurnal motion, that we 
are not sensible of it; a person on the earth can no more be sen¬ 
sible of its undisturbed motion on its axis, than a person in the 
cabin of a ship, on smooth water, can be sensible of the ship’s 
motion when it sails along, or turns gently and uniformly round. 
Carried on with a velocity which is common to every thing that 
surrounds us,* we are in the case of a spectator placed in a ship 
that is in motion. He fancies himself at rest, and the shores, 
the hills, and all the objects placed out of the vessel, appear to 
him to move. But on comparing the extent of the shore, the 
planes, and the height of the mountains, with the smallness of 
his vessel, he recognizes that the apparent motion of these ob¬ 
jects, arises from his own real motion. The innumerable stars 
which occupy the celestial regions, are, relatively to the earth, 
what the shores and the hills are to the vessel; and the same rea¬ 
sons which convince the navigator of the reality of his own mo¬ 
tion, prove to us the motion of the earth. 

These arguments are likewise strengthened by analogy. We 
find that the sun, and those planets on which there are visible 
spots, turn round their axis ; and this motion is always from •west 
to east, similar to that which the diurnal motion of the heavens 
indicate in the earth. 

There is one effect of the motion of bodies on their axis,f 
which will enable us to judge with certainty whether this rotation 
takes place with regard to the earth. By the laws of the gravi¬ 
tation of matter, we comprehend that the centrifugal force which 
tends to remove every particle,pf a body from its axis of rotation, 
should flatten the earth at the poles, and elevate it at the equator; 
for as the equatorial parts move with the greatest velocity, they 

* Laplace’s Astr. vol. 1, B. 2, ch. 3. 
f Ferguson’s Astronomy, Art. 116. 
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Will therefore recede furthest from the axis of motion, and in¬ 
crease the equatorial diameter. That our earth is really of such 
a figure, we have sufficiently proved in the foregoing articles. 
This proof receives additional strength from the doctrine of pen¬ 
dulums, as is sufficiently proved in Prop. 20. B. 3, Newton’s 
Principia (see note to def. 2.) And as the earth is therefore high¬ 
er at the equator than at the poles, the fluid parts, or the sea, 
which naturally seeks its level, would rush towards the polar re¬ 
gions, and leave the equatorial parts dry, if the centrifugal force 
at the equator did not prevent it. 

This centrifugal force, or the tendency that bodies receive 
from the earth’s rotary motion, should likewise diminish the 
force of gravity, or the weight of bodies at the equator; and 
hence at the poles the gravity is the greatest, owing to this force 
being nothing, and moreover that, from the flatness of the earth 
at the poles, bodies are nearer to the earth’s centre, where the 
force of the earth’s attraction is accumulated. We find, from 
experience, that a pendulum which vibrates seconds near the 
poles, vibrates slower near the equator, which shews that it is 
lighter or less attracted there ; for as we have remarked before 
(note to def. 2) the length of pendulums vibrating in the same 
time, in different parts of the world, are as the force of gravity, 
or weight of bodies on the earth’s surface. Every thing then 
leads us to conclude, as Laplace remarks, that the earth has really 
a motion of rotation, and that the diurnal motion of the heavens 
is merely an illusion produced by it. An allusion similar to that 
which represents the heavens as a blue vault, to which all the 
stars are fixed, and the earth as a plane on which it rests. 

But some are apt to imagine* that if the earth turns eastward 
(as it must from the phenomena) a ball thrown perpendicularly 
upwards in the air, must fall considerably westward of the place 
it was projected from; but as the gun or whatever it was pro¬ 
jected from, partakes of the earth’s motion, it must fall exactly 
in the same place. A stone dropped from the top of the main¬ 
mast of a ship, will fall on the deck, if it meet with no obstacle, 
as near the foot of the mast when the ship sails as when it has no 
motion ; but persons on shore would observe the ball to describe 
a curve, if the vessel was sailing, as it partook of two motions, 
one in the direction of gravity, and the other in the direction of 
the vessel. (See the laws of motion, after this system.) If an inverted 
bottle full of liquor be suspended from the ceiling of the cabin, 
and a small hole be made in the cork to let the liquor drop 
through on the floor, the drops will fall just as far forward on the 
floor when the ship sails as when she is at rest. 

It is moreover objected from the Scriptures, that at the com¬ 
mand of Joshua the sun stood still, and that therefore it must 
have had a previous motion. But those who bring forward this 

* Ferguson’s Astr. Art. 12b See also Keil’s Astr. l.ect 
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objection, know little of the spirit of the Scriptures, and as little 
of the idiom of language. The Scriptures were not given us to 
teach us profound lessons of philosophy or astronomy, but to teach 
us how to lead a virtuous life ; and what is more common, even 
in the writings of the most accurate philosophers and astronomers, 
than these expressions, the sun rises, the sun sets, though they 
know at the same time that the sun has no such motion at all; and 
were they to make use of more correct expressions, they would be 
as unintelligible to the generality of men, as Joshua would, in a 
similar case, be to the Jewish people*. 

* Although the motion of the earth on its axis be established beyond the 
possibility of doubt, its cause has, however, never been investigated; nor 
can it be deduced from any law consequent of the gravitation of matter. 
We shall, however, offer a few remarks on it, rather as conjectures than as 
principles, on which any new theories or systems could be established. The 
reasoning from strict analogy is conclusive, and the reasoning from analogy 
in this case, favours a good deal our remarks. It is a general law observed 
by all the planets, that they perform their revolutions round the sun, al¬ 
ways in one and the same direction, that is, in the direction in which it re¬ 
volves on its axis ; that all the primary planets, as far as observations could 
be made on them, are found to have gross atmospheres surrounding them, 
and are also observed to have a motion on their axis, all in the same direc¬ 
tion as the motion of the earth on its axis ; that the secondary planets are 
found to have little or no atmosphere, and also that they do not perform 
similar revolutions on their axes, as they are found always to keep the same 
side turned towards their primary planets. Does it not then follow, that 
there is some regular cause for these phenomena, which are so constant 
and so regular ? It seems to have no connection with the laws of gravity, 
and the cause of gravity itself being occult, prevents our forming any just 
notions of it. The only agent that we can observe is light or heat (for heat, 
caloric, 8cc. whether latent or not, I look upon to proceed from the same 
principle, though differently modified; this is proved from the writings of 
many able chymists.) For from the lavrs and nature of light, the phenom¬ 
ena of the motion of bodies can be accounted for on mechanical principles. 
It is well known, that as a body, it acts on others, and has a momentum 
proportional to its velocity and quantity of matter; but as its velocity is so 
very great, and its particles so exceedingly small, this momentum is not 
easily appreciated : in consequence of this law, it. displaces those particles 
of the atmosphere on which its influence is exerted, and causes a rarefac¬ 
tion ; it also repels bodies, but as it is bent into a curve, or refracted in pass¬ 
ing from one medium into another, its force, or momentum, may be thus 
exerted on the side of a body opposite to that from which it was emitted, 
and thus cause an attraction, or motion of the body towards that from which 
the effluvia of light is emitted, similar to those phenomena produced by the 
electric fluid, &c. &c. This being premised, let us now consider the phe¬ 
nomenon of the sun’s daily apparent motion. We shall find that that part 
of the atmosphere, over which the sun is perpendicular, is more rarefied 
than any other, and as the different parts of the earth over which the sun 
is perpendicular, pass successively under the sun in a direction from ivest 
to east, the whole hemisphere on the east side of the sun, will have its at¬ 
mosphere more rarefied than the hemisphere west of the sun; and hence 
on the east side, the rays will act more directly and meet with less resist¬ 
ance, than when acting through the dense atmosphere on the west, and 
therefore a motion of the earth on its axis must be the consequence of this 
difference of action. This explication is strengthened from analogy, be¬ 
cause all the primary planets have a similar rotation, and are also found to 
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The diurnal revolution of the earth on its axis being thus es¬ 
tablished, we shall proceed to that of its annual motion round the 
sun. For we must suppose the sun, accompanied with the planets 
and satellites, in motion round the earth ; or the earth, with the 
other planets, See. to revolve round the sun. The appearances of 
the heavenly bodies, as seen from the earth, are the same in both 
hypotheses; but the latter is to be preferred, for the following 
reasons. 

have an atmosphere; and the secondary planets, which have no such mo- 
tion, are found to be destitute of an atmosphere, or if they have any, it is 
so rare as to be insensible as well as its effects. But the rotation above 
described could not take place, unless the earth had received a primary 
impulse in the direction in which it revolves, and as this direction is the 
same in all the planets, the impulse could not be fortuitous, but must be 
regulated by some constant and regular law. Now as the sun, which emits 
the light, is found to have a motion of rotation in this direction, it is in this 
that the cause of the direction of the planets’ rotation is to be looked for. 
Already an extensive field for speculation is open to our view, and innume¬ 
rable questions present themselves. The sun has an atmosphere and a 
similar motion is this motion produced in a similar manner ? What gives 
this direction to the sun’s rotary motion ? Whence the sun’s light, or why 
not long since exhausted, being emitted into spaces from which it can never 
return ? These are questions too arduous to be discussed in the compass of 
a note ; but we cannot pass them over in silence. With regard to the firsts 
we must, according to one of the first rules in philosophy, assign the same 
causes to the same natural effects, as far as possible. And hence whatever 
produces the motion of the earth, a similar cause must produce that of the 
sun. But whence this cause ? Here we are embarrassed, and can produce 
no satisfactory solution. This we know, that as all bodies gravitate towards' 
each other, in proportion to the quantity of matter which they severally 
contain, all the bodies in the universe would tend to that part where the 
attraction was the greatest, or to one general centre, unless counterbalanced 
by a centrifugal force; and the stars must have such a centre, or we mustr 
admit of creation in infinitum. That the stars have, in reality, some such 
centre, and also a periodic revolution around it, analogy and observation 
both concur to prove. Many of the stars are found to have motions, which 
cannot be accounted for from any other cause; and others are at too great 
a distance, in the immense expanse, to have their motions sensible. From* 
analogy, w'e see the distant Herschel, from which the sun appears not 
much greater than a star, or the still more distant comet, no less than 
Mercury, regard the sun as the centre of their motion; is it not then ra¬ 
tional to conclude, that the sun and stars observe a similar law, and revolve 
about some common centre? The secondary planets revolve round their- 
primaries as their centres; and both primaries and secondaries regard the 
sun again as their center, and hence the sun, together with both primaries 
and secondaries, may regard another body as their centre, &c. It is no 
objection to say, that such a centre, or such an immense body, has never 
been observed, for t he whole solar system, at the distance of some of the stars., 
would appear no greater than a point. If then this centre has really an ex¬ 
istence, its magnitude must be immensely great beyond conception, or its na¬ 
ture must be different from all those bodies that we have any knowledge of. 
For in the solar system, the economy of this system requires, that the sun 
should be much greater than all the other bodies, that they might regard him 
as their centre ; and this we find to be the case. Hence if the stars have a 
common centre, the magnitude of the body, placed in this centre, must 
exceed that of all the stars put together; for the aggregate of their attract 

O o 



298 OF THE SOLAR SYSTEM. 

The masses of the sun, of Jupiter, Saturn, and Herschel, are 
considerably greater than that of the earth ; hence it is much 
more simple to have the latter revolve round the sun, than that 
the whole solar system should revolve round the earth. Moreo¬ 
ver, by the laws of centripetal forces (given after this system) if two 
bodies revolve round each other, they perform their revolutions 
round their common centre of gravity (Newton’s Principia, B. 1. 

tions on it in one direction, lessened by their aggregate in the opposite, 
acts as one body, and a greater body or mass of matter can never revolve 
round a lesser, according to the present laws of nature. And as the sun 
dispenses light, &c. to the solar system, and regulates the motions of those 
bodies that exist around it, it is probable that this immense body supplies 
the whole system of the universe with that light, kc. with which every part 
of it is replete, and regulates, as a main spring, the motions of the whole 
machine. What an idea does this give of the universe! But an idea the 
most simple and consonant to the present laws of nature, and uniting unity 
and simplicity in the design, with magnificence and awful grandeur in the 
execution. An idea, which shews the universe to be the work of one intel¬ 
ligent, sublime Being, who formed and presides over the magnificent struc¬ 
ture. And so far is this system from being at variance with the account 
which Moses has given us of the works of creation, that it seems to ema¬ 
nate from the pen of the sacred historian. We read in the 1st ch. of Gen. 
that (t in the beginning God created heaven and earth,” where, by the word 
earth, is meant, according to most interpreters, all that opake matter which 
enters into the formation of the different bodies of the universe. Next 
God created light, (v. 3) afterwards the firmament, (v. 7) or all that space 
in which bodies are placed; then were those lights made in the firmament 
of heaven to be for signs, and for seasons, kc. (v. 14) and to give light upon 
the earth, (v. 15) or those stars which we call fixed, because their motions 
are not sensible, and which, no doubt, are destined to perform the same 
functions as our sun. We see, moreover, that the matter of which the sun 
is composed, is dense and heavy like that of the earth, that it must receive 
a supply of light from some source to preserve the same uniform splendour, 
if we except the effects of some spots on its surface (which also shew that 
parts of it are opake) and that therefore it is only calculated to reflect or 
emit that light, heat, &c. more copiously: an effect which the planets, from 
their opacity and contexture, as well as their inferior magnitude, are not 
calculated to produce. We see, moreover, that those bodies whicli are 
nearest the sun, receive most of its light and heat, and that those that are 
at the greatest distance from him, receive very little more than we do from 
some of the largest of the stars. Now, reasoning from analogy, if we 
suppose the body above described to occupy the centre of the universe, and 
to be the fountain of light and heat to the whole universe, those bodies that 
are nearest this, must enjoy more of its light and heat; others that are more 
remote, may be at a loss to know, unless by analogy, whether there be such 
a body in the universe, as is the case with us; and others may be so re¬ 
mote, as to receive little of its light or heat, and thus remain almost buried 
in a continual night. If we carry our ideas a little further, we shall And 
nothing but an immense void, where a ray of light has never penetrated. 
This is ultimately the view of nature which the present system of philoso¬ 
phy, or the general gravitation of matter, developes—-a system, which swal¬ 
lows up, from its immensity, the feeble powers of our reason, and leaves u§ 
nothing to build on but conjecture. This is then the utmost stretch of phi- 
losophy; it may unfold this system, but it can go no further. Forever 
would it leave us ignorant of our destination, and the great end of our be¬ 
ing, did not the author of nature dissipate our doubts, and point them ov 
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v>rop. 57 ; or prop. 20, sect. 2, Emerson’s Centr. Forces) and it is 
evident, that if the two bodies be of equal magnitude and density, 
the centre of gravity will be equidistant from each body (see the 
note p. 253 ;) but if they be of different magnitudes, the centre 
of gravity will be proportionally nearer the greater body. If the 
earth, therefore, remain at rest while the sun revolves round it, 
its magnitude must be vastly greater than that of the sun ; it being 

to us by means worthy his infinite wisdom. The magnificence which we 
behold in creation, is worthy the Great Author ; but all this magnificence is 
one day to vanish—and hence, by his example, he would point out the van¬ 
ity of all created things, and call our attention to higher destinies and re¬ 
gions. It is not then the magnitude or multiplicity of those orbs that should 
challenge our estimation ; they may excite our astonishment, and produce 
an awful respect for their Creator; but they are nothing more than inani¬ 
mate heaps of matter, incapable of knowing that being that called them 
into existence, and destined one day to perish. Of all the beings then that 
the universe exhibits to our view, we find only man possessed of that im¬ 
mortal principle destined to survive the wreck of matter, and capable of 
knowing, serving, and enjoying that great Being that called it into exist¬ 
ence. One immortal soul is therefore more precious in the sight of its Cre¬ 
ator, than all those vast orbs that roll their immense masses through the 
expanse of heaven; and hence we need not wonder that he has done so 
much for its preservation. To examine the question, whether those bodies 
are inhabited as well as our earth, would be a futile as well as useless in¬ 
quiry, as it is evident we can never, in our present state of existence, know 
any thing of the matter. The Creator (as De Feller remarks) undoubtedly 
could, for his own glory, and to display the treasures of his wisdom and 
power, do great and beautiful things without any reference to man, or to 
any rational creature. This is the opinion of many learned writers, and 
particularly of St. Augustine, St. Thomas, Petavius, Leibnitz, 8tc. and the 
sacred writings declare, that Universa propter semet ipsum operatus est JJom- 
inus. Prov. 164. “God,” says Hugens (Plurality of Worlds, ch. 8) “is 
himself the spectator of the works he has created ; and who can doubt, but 
that he who made the eye can see very well, and delights in doing so ? In¬ 
quire no further. Is it not for that that lie created man, and all that is 
contained in the universe ?” Pythagoras’s music of the celestial spheres, is 
an allegorical expression of the pleasure which intellectual beings take in 
viewing them. Young, in his Night Thoughts (Night 9th) considers the 
stars as grand refulgent thrones, on which the ministers of the Eternal sit 
in majestic state, executing throughout the universe the decrees of his love 
or his vengeance. But to spare the mind of man from amusing itself with 
vain systems and philosophic dreams, religion saves for it this useless waste 
of time, and calls it to more important studies. It points out all that is ne¬ 
cessary as regards our own destination. To reject this knowledge, because 
it does not point out the destination of beings which it would be useless for 
us to know, and of whose existence we are perfectly ignorant, would be 
folly in the extreme. To say that the Christian religion is unphilosophical, 
is equally frivolous. It advances no one principle contrary to the known 
established laws of nature ; and while absurd systems of philosophy and 
false schemes of nature inundated the world, a few expressions in the sa¬ 
cred writings contained more sound sense, and genuine philosophy, than all 
those reveries. Let any of these philosophers solve those important ques¬ 
tions found in the book of Job, or shew that they import any thing contrary 
to the true system of nature. “ Hast thou considered the breadth of the earth ? 
Tell me if thou knowest all things ? Where is the way where light dweUeth, and 
where is the place of darkness ? (ch. 38, v. 18, 19). It cannot be here the 



OF THE SOLAR SYSTEM. 300 

contrary to the laws of nature for a heavy body to revolve round a 
lighter one, as its centre of motion ; for the lighter one must be 
at a greater distance from the common centre of gravity, and must 
have a greater velocity to counterbalance the attraction of the 
other. Now the sun is found, from observation, not only to ex¬ 
ceed the earth in magnitude, but so far to exceed the magnitudes 
of all the planets in the solar system, that the common centre of 
gravity of the whole is almost constantly within its body, so that 
its motion round the common centre of gravity of the whole sys¬ 
tem, is scarcely perceptible to the nicest observers. The earth, 
therefore, and all the planets, must revolve round the sun. 

The analogy of the earth with the other planets (as Laplace re¬ 
marks, Astr. B. 2, ch. 3) confirms the hypothesis of its annual 
revolution. Like Jupiter it revolves on its axis, and is accompa¬ 
nied by a satellite. An observer on the surface of Jupiter would 
conclude that the solar system was in motion round him, and the 
magnitude of that planet would render this illusion less improba¬ 
ble than for the earth. Is it not, therefore, reasonable to suppose, 
that the revolution of the solar system round us, is likewise only 
an illusion ? Let us examine the phenomena of the earth and the 

darkness produced by the absence of the sun, or the light caused by his 
presence, that is meant, for then the question would be too trifling, being- 
proposed by God himself. It is in this book that we find this remarkable sen¬ 
tence, “ He (God) stretched out the north over the empty space, and hang- 
eth the earth upon nothing” (ch. 26, v. 7.) What more philosophical than 
the latter part of this sentence ? We also find in it, speaking of the wicked, 
this no less remarkable sentence : “ He shall drive him out of light into dark¬ 
ness, and shall remove him out of the -world” (ch. 18, v. 18.) We find the 
same idea, expressed on a similar occasion, in St. Matthew. “ And the un¬ 
profitable servant cast ye out into the exterior darkness. There shall be weeping 
and gnashing of teeth.” (ch. 25, v. 30. see also ch. 8, v. 12. ch. 22, v. 13.) 
Until philosophers point out that this exterior darkness, &,c. has got no ex¬ 
istence—until they bring us intimately acquainted with the extremes of 
nature, their arguments against the sacred writings, drawn from their 
knowledge of a little corner or point of the universe, must not only be in¬ 
conclusive, but ridiculous and vain. It is with a view of shewing the folly 
of shallow philosophers, who pass the bounds of their knowledge to attack, 
incontestible truths, that the above remarks have been made—to shew 
how little we know as yet of the system of the universe, and the design of 
the Author of this sublime structure, in its formation—and to induce those 
who are in possession of the most sublime philosophy that man can learn, 
I mean the Christian religion, to appreciate that sacred treasure, and de¬ 
spise those vain systems that have no other support but the imaginations of 
their authors. 

The remarks that have been made on the system of the universe are not 
novel. They are deductions strictly drawn from Newton’s Philosophy. 
And either this Philosophy, now universally received, must be false, or the 
general conclusions cannot be denied. The remarks are therefore princi¬ 
pally calculated for those who are versed in the principles of this Philoso¬ 
phy, as a superficial view of the system of nature, may produce notions 
unfavourable to religion and to sound philosophy. What is offered is, how¬ 
ever, offered with that diffidence and distrust, which every conjecture or 
hypothesis ought to inspire, that is not the result of accurate observation, 
cr stript calculation. 
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planets from the sun’s surface. All these bodies will appear to 
move from west to east; this identity, therefore, indicates a mo¬ 
tion of the earth ; but that which proves it, evidently is the law 
which exists between the times of the revolutions of the planets 
and their distances from the sun. They perform their motions 
round it slower in proportion as their distances are greater, and in 
such a manner, that the squares of the periodic times are propor¬ 
tional to the cubes of their mean distances (Principia, Phenomenon 
5, B. 3.) From this remarkable law, the length of a revolution 
of the earth, supposing it in motion round the sun, to correspond 
with the earth’s distance, should be exactly a sidereal year, as is 
really the case ; this, therefore, is an incontestible proof that the 
earth moves like the other planets, and is subject to the same 
laws. Another argument, still more incontestible, is the follow¬ 
ing, that the force of gravity, which balances the centrifugal force 
in the other planets, and retains them in their respective orbits, 
should likewise act on the earth ; and that the earth must, there¬ 
fore, oppose to this action the same centrifugal force. Hence the 
consideration of the celestial motions, as observed from the sun, 
leaves no doubt of the real motion of the earth. 

An observer on the surface of the earth, has another evident 
proof in the phenomenon of the aberration (Laplace, B 2, ch o) 
which is a necessary consequence of it. Roemer, about the end 
of the 17th century, observed that the eclipses of the satellites of 
Jupiter happened sooner about the oppositions of this planet, and 
later towards the conjunctions ; this led him to conjecture, that 
light was not transmitted instantaneously from those bodies to the 
earth, but took a perceptible interval of time to traverse the di¬ 
ameter of the sun’s orbit. Now, Jupiter being nearer to us in his 
oppositions than conjunctions, by a distance equal to the suns 
orbit, the eclipses ought therefore to happen to us sooner in the 
first case than in the latter, by the time which the light takes to 
traverse the sun’s (or rather the earth s) orbit; and the letai elation 
of these eclipses so exactly correspond to this law, that it is im¬ 
possible to refuse assent to it. It is therefore iound, that light 
takes about 8' 7"5 in passing from the sun to the earth, at its 

mean distance. 
A star near the constellation Zlrtzco, that passed near the zenith, 

was observed by Messrs. Molyneux, Rradieyand Cri aham^ with an 
instrument contrived by the latter, with a view of discoveiing its 
parallax. They soon discovered that the star did not always ap¬ 
pear in the same place in the instrument, but that its distance from 
the zenith varied, and that the difference of its apparent places 
amounted to 21" or 22". This star was y draconis, near the pole 
of the ecliptic. They made similar observations on other stars, 
and found a like apparent motion in them, proportional to the la¬ 
titude of the star. This motion was by no means such as could 
result as the effect of a parallax; and it was some time before 
they could discover any method of accounting for this net\ an » 
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strange phenomenon ; but Dr Bradley, at length, resolved all its 
variety in a satisfactory manner, by the motion of light and the 
annual motion of the earth compounded together. For as the 
earth describes 59' 8" of her orbit in a day = 3548", and that 
light comes from the sun to us in 8' 7"5, we have this proportion, 
24 hours or 86400" : 8' 7"5 or 487"5 : : 3548" : 20" very near, 
the aberration of light or the change in the star’s place ; and this 
is what Dr. Bradley has made it. And hence it affords as sensi¬ 
ble a demonstration of the motion of the earth round the sun, as 
the increase of degrees and the force of gravity in passing from 
the equator to the poles, afford of the revolution of the earth on 
its axis. We shall give the principles of the aberration of light 
more at large when we come to treat of the fixed stars. 

It is objected against the annual motion of the earth, in its orbit 
round the sun, that if it really had such a motion, the annual pa¬ 
rallax of the ttars, or the angle under which the diameter of the 
earth’s orbit would appear, as seen from a fixed star, should make 
a considerable difference in the position of the star observed at two 
different times ; but it is never found to make the least difference, 
though observed with our nicest instruments. To understand this 
more clearly, as the axis of the earth keeps always parallel to it¬ 
self, it would follow, that if it pointed to any star at one time of 
the year, in six months after it ought to point to another, distant 
from the former by the angle under which the whole diameter of 
the earth’s orbit appears from the star ; but it is found not to de¬ 
viate a single second from its former position. Now this objec¬ 
tion, the most forcible that has been brought against the earth’s 
motion, vanishes when we come to consider the immense distance 
of the fixed stars, of which we may form an idea thus: if we 
should suppose the distance between us and a fixed star to be di¬ 
vided into 1000 equal parts, and that a spectator, after having 
passed over 999 of those parts, should view it from the last divi¬ 
sion, or at part of the whole distance, it would not appear 
larger than to the naked eye ; because a telescope that magnifies 
1000 times, though it will render it brighter, will not sensibly 
magnify its diameter, Herschel’s 20 feet telescope magnified 
460 times, and his 40 feet telescope magnified some thousand 
times ; and Herschel confirmed the above assertion. Hence the 
immense distance of the fixed stars, indicated by these observa¬ 
tions, so far from being an objection against the earth’s annual 
motion, rather confirms it. 

The earth’s annual motion round the sun being thus established, 
we shall now shew how the quantity of this motion is estimated. 
We know, as the earth regards the sun as the centre of its mo¬ 
tion, that in whatever part of the heavens the earth actually is at 
any time, the sun must be directly in the opposite point at the 
same time ; and that therefore, if the sun’s place be observed in 
the heavens, the opposite point is the place of the earth ; now as 
the earth advances round the sun, the sun will seem to perform a 
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similar motion in the heavens, and hence, if we compute this ap¬ 
parent motion of the sun among the fixed stars, it will give the 
earth’s real motion round the sun. 

From comparing the sun’s right ascension every day, with the 
right ascensions of the fixed stars lying to the east and west, the 
sun is found constantly to recede from those on the west, and ap¬ 
proach those on the east; its apparent annual motion is therefore 
found to be from west to east, and as the earth performs a similar 
motion in an opposite part of the heavens, the earth’s real motion 
must also be from west to east. The interval of time from the 
sun’s leaving any fixed star, until its return to the same star again, 
is called a sidereal year, being the time in which the sun com¬ 
pletes its apparent revolution among the fixed stars, or in the 
ecliptic. But the sun, after it leaves either of the equinoctial 
points, returns to it again sooner than it returns to the same fixed 
star; and this interval is called a solar or trofiical year, because the 
time of the sun’s leaving one equinox until its return to it again, 
is equal to the time from its leaving one tropic until its return 
again. This solar or tropical year, is that on which the return of 
the seasons depends. 

To jind the length of a sidereal year. On any day when the 
sun passes the meridian, take the difference between its right as¬ 
cension, when on the meridian, and that of a fixed star; call this 
difference (a) and when the sun returns to the same part of the 
heavens the next year, compare its right ascension with that of 
the same star, for two days, that is, when their difference (d) of 
right ascension is less, and also when greater (e) than the differ¬ 
ence (a) before observed ; then e — d is the increase of the sun’s 
right ascension in the time t; and as the increase of right ascen¬ 
sion may be considered uniform for a small time, we have e — d 
: a — d : : t : T the time in which the sun’s light ascension is 
increased from the sun’s place, when the difference d of his right 
ascension, and that of the star, was less than a. This lime T 
being therefore added to the time of the observed right ascension 
of the sun, when the quantity d was found, will give the time 
when the sun is at the same distance a from the star, as when ob¬ 
served the former year ; and the interval of these times is there¬ 
fore a sidereal year. About March 25, June 20, September 17, and 
December 20, is the best time for these observations, as the sun’s 
motion in right ascension is then uniform. 

If, instead of repeating the second observations the following 
year, there be an interval of several years, and if the observed 
interval of time, when the difference of the right ascensions of 
the sun and star was found to be equal, be divided by the number 
of years, the length of the sidereal year will be given more ex¬ 
actly. 

On April 1st, 1669, at Oh. S' 47" mean solar time, M. Picard 
observed the difference of longitude between the sun and Procyon 
to be 3s, 8° 59; 36", which is the most ancient observation of this 
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kind, the accuracy of which can be depended on. (See Hist. Ce* 
leste, par M. le Monnier, p. 37.) On April 2d, 1745, M de la 
Caitle found, by taking their difference of longitude on the 2d and 
Sd, that at 11 h. 10' 45", mean solar time, the difference of their 
longitudes was the same as at the first observation. Now a^the 
sun’s revolution is nearly 365 days, it is manifest that it made 76 
complete revolutions, in respect to the same fixed star, in the 
interval between the two observations, or in 76 years, Id. I lh. 
6' 58". In these 76 years, there were 58 of 365 days, and 18 
bissextiles of 366 days each ; hence in the interval, there were 
27759 d. 1 lh. 6' 58", which being divided by 76, the quotient is 
365 d 6h. 8' 47", the length of a sidereal year. According to 
Laplace, the length of a sidereal year is 365 256384 days, or 
365 d 6h. 9' ll"5776, which is the most accurate, being com¬ 
puted from the best observations. 

To find the length of the Solar or Tropical Year. Take the me¬ 
ridian altitude a of the sun, on any day when it is nearest to the 
equinox ; then the following year, let its meridian altitude be taken 
on two days, as follow: one when its altitude m is less than 
and next when its altitude n is greater than a ; then n — m is the 
increase of the sun’s declination in 24 hours. Also when the de¬ 
clination has increased by the quantity a — m, from the time when 
the meridian alt. m was observed, the declination will then be¬ 
come a ; and as the increase of the declination may be considered 
as uniform for one day, we have this proportion, n — m : a — m 
: : 24h. : the interval from the time the sun was on the meridian 
on the first of the two days, until the sun has the same declina¬ 
tion a, as at the observation the foregoing year ; hence this time 
being added to the time when the sun’s altitude m was observed, 
will give the time when the sun’s place in the ecliptic had the 
same situation, in respect to the equinoctial points, which it had 
at the time of observation the preceding year; the interval of 
these times is the length of a tropical year. 

If, as in the method for determining the sidereal year, there be 
an interval of several years between the observations, and that the 
interval between the times when the declination was found to be 
the same, be di'ided by the number of years, the length of the 
tropical year will be obtained more exactly. 

On the 20th of March, 1672, M. Cassini, the father, observed 
the meridian alt. of the sun’s upper limb to be 41° 43', at the 
Royal Observatory at Paris ; and on March 20, 1716, M Cassini, 
his son, observed the mer. alt. of the upper limb to be 41° 27' - 0", 
and on the 2 1st, to be 41° 51'; the difference of these two latter 
altitudes was then 23' 50", and of the two former 15' 50" ; hence 
23' 50" ; 15' 50" : : 24h : I5h. 56' 39"; therefore, on March 
20, .716, the sun’s declination, at I5h. 56' 39", was the same as 
on March 20, 1672. Now the interval between these two obser¬ 
vations was 44 years, of which 36 consisted of 365 days, and 10 
of 366 each, that is in all, 16070 days; hence the whole interval 
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between the equal declinations was 16070d. I5h. 56' 39", which 
divided by 44, gives 365 d. 5h. 49' 0" 53"', the length of a tro¬ 
pical year, from these observations. The length of a tropical 
year, or the return of the sun to the same equinox, from the best 
observations, as given by Laplace in his Astronomy, is 365.242222 
or 365 d. 5h. 48' 47"98. Hence the sidereal year exceeds the 
tropical by 0.014162 of a day. The equinoxes have therefore a 
retrograde motion in the ecliptic, or in a direction contrary to that 
of the sun, by which they describe every year an arc equal to the 
mean motion of the sun in the interval of 0.014162 of a day; 
hence Id. : 0.014162 d. : : 59' 8"3 : 50" 151, the precession of 
the equinoxes. 

The precession of the equinoxes being given, and also the length 
of a tropical year, the length of a sidereal may be dasily found, as 
shewn in the note to prob 42, part 3d. 

There is another year, called by astronomers the anomalistic 
year, and is the time from the sun’s leaving his apogee until his 
return to it again. Now the progressive motion of the apogee in 
a year, according to Vince, is 1 1"75, and hence the anomalistic 
must exceed the sidereal year by the time the sun takes in moving 
over 11 "75 of longitude at its apogee; but the sun’s motion in 
longitude, when in its apogee, is 58' 13" in 24 hours; hence 
5S' 13" : 11"75 : : 24h. ; 4' 50"6384, which added to S65 d. 6h. 
9' 11"5776, gives 365 d. 6h. 14' 2"216, the length of the anom¬ 
alistic year. The motion of the apogee here given, is that deter¬ 
mined by M. de la Lande, from the observations of M. de la Hire, 
and those of Dr. Maskelyne, agreeing also with Cassini’s determi¬ 
nation. M. Laplace makes the sidereal and secular motion of the 
earth’s perihelion (3671"63) 19'49" 60812, which gives 11 "89S 
yearly. Delambre makes the mot. of the apog. in a year 62" which 
includes the precession, See. Mayer makes it 66". 

The longitude of the earth’s perihelion at the beginning of 
1750, according to Laplace, was (309° 579') 278° 37' 15"96. The 
mean longitude of the earth, reckoning from the mean vernal 
equinox at the epoch of the 31st December, 1749, at noon, mean 
time at Paris, was (311° 1218) 280° 0' 34"632. 

In accounting for the cause of the planets* revolutions round 
the sun, philosophers had recourse to various hypotheses. The 
ancients invented their solid orbs, and Descartes vortices ; but 
both were imaginary fictions, void of proof. Newton was the first 
that built his explanations on actual experiment and observation, 
and fully investigated the laws of motion resulting from the grav¬ 
itation of matter. He seemed possessed of all that could qualify 
him for this arduous task ; and the innumerable mathematical the¬ 
orems and inventions which he discovered in his inquiries will, pro¬ 
bably for ever, remain the greatest monument of human ingenuity. 

The substance of Newton’s discoveries, relative to the cause of 
the planets’ motions, we shall give here, principally collected from 
Cote’s preface to Mottc’s translation of the Principia. That we 

PP 
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may begin our reasoning from what is most simple and nearest to 
us, let us first consider what is the nature of gravity with us on 
the earth. All agree, that every circumterrestrial body gravitates 
towards the earth ; that no bodies really light are to be found, as 
experience shews ; that those bodies which are relatively light, 
are not really so, but apparent only, and arising from the prepon¬ 
derating gravity of the contiguous bodies, or the fluids in which 
they are immersed ; that all bodies gravitate towards the earth, 
and the earth in like manner towards bodies ;* * * § that the action of 
gravity is mutual and equal on both sides; that the weights of bo¬ 
dies, at equal distances from the centre of the earth, are as the 
quantities of matter in the bodies ;f this is proved from the equal 
acceleration of all bodies that fall from a state of rest by the force 
of their weights, the resistance of the air being taken away; and 
this is yet more accurately proved from the doctrine of pendu¬ 
lums ; that the attractive forces of bodies, at equal distances, are 
as the quantities of matter in the bodies ;f and that therefore the 
attractive force of the entire bodies arises from, and is compound¬ 
ed of, the attractive forces of the parts,§ so that terrestrial bodies 
must attract each other mutually, with absolute forces, that are as 
the matter attracting. This being the nature of gravity on the 
earth, the following will shew what its nature is in the heavens. 

Every body perseveres in its state, either of rest or of uniform¬ 
ly moving in a right line, unless it is compelled to change that 
•state by other forces impressed ;|| and hence it follows, that bodies 
that move in curve lines, and therefore continually deflect from 
the right lines that are tangents to their orbits, are, by some con¬ 
tinued force, retained in those curve lined paths. Now, as the 
planets move in curve lined orbits, there must be some force ope¬ 
rating, by whose repeated actions they are perpetually made to de¬ 
flect from the tangents. 

It is a mathematical principle, the demonstration of which we 
shall give when we come to treat of the doctrine of centripetal 
forces, that all bodies that move in a curve line described in a 
plane, and which by a radius drawn to any point, whether quies¬ 
cent, or any how moved, describe areas about that point propor¬ 
tional to the times, are urged by forces directed towards that 
point.lf Since then all astronomers agree, that the primary plan¬ 
ets describe about the sun, and the secondary planets about their 
respective primaries, areas proportional to the times, it follows, 
that the forces by which they are deflected from the rectilinear 
tangents, and made to revolve in curve lined orbits, are directed 
towards the bodies that are situated in the centres of the orbits, 

* Principa Scholium after the laws. 
f Principia, B. 3, prop. 6. 
i Principia, B. 1, prop. 69, cor. 3, and prop. 7, B. 3, 
§ Principia, cor. 1, prop. 7, B. 3. 
II Principia, Law 1, B. 1. 
1! Principia, B. 1, prop. 2. 
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This force tnay therefore not improperly be termed centripetal in 
respect of the revolving body, and in respect of the central body 
attractive, whatever cause it may be imagined to arise from. 

The following is also mathematically true ; that is, if several 
bodies revolve with an equable motion in concentric circles, and 
the squares of the periodic times be as the cubes of the distances 
from the common centre; the centrifugal forces will be recipro¬ 
cally as the squares of the distances * * * § Or if bodies revolve in or¬ 
bits t.'iat are nearly circles, and the apsides of the orbits rest, the 
centripetal forces of the revolving bodies will be reciprocally as 
the squares of the distances ; and both these cases hold in all the 
planets, as observations fully testify. 

From what has been hitherto said, it is evident that the planets 
are retained in their orbits by some force perpetually acting upon 
them ; that that force is always directed towards the centre of 
their orbits ; that its efficacy is augmented in proportion as the 
centre is approached, and diminished as its distance increases from 
the centre ; and that it is augmented in the same proportion as the 
square of the distance is diminished, and diminished in the same 
proportion as the square of the distance is augmented. Now, by 
making a comparison of the centripetal forces of the planets and 
the force of gravity, we shall find that they are, in effect, of the 
same kind ; for to have them of the same kind, it is only neces¬ 
sary that both observe the same laws, &c. 

Let us therefore first consider the centripetal force of the moon, 
being nearest to us. The rectilinear spaces which bodies, let fall 
from rest, describe in a given time at the very beginning of the 
motion, when the bodies are urged by any forces whatsoever, are 
proportional to the forces (as will be shewn after the solar sys¬ 
tem.!) Hence the centripetal force of the moon, revolving in its 
orbit, is to the force of gravity at the earth’s surface, as the space 
which, in a very small particle of time, the moon, deprived of all 
its centrifugal force, and descending by its centripetal force to¬ 
wards the earth, would describe, to the space which a heavy 
body would describe, when falling by the force of its gravity near 
the earth, in the same given particle of time. The first of these 
spaces is equal to the versed sine of the arch described by the 
moon in the same time,f because that versed sine measures the 
translation of the moon from the tangent, produced by the centri¬ 
petal force, and may therefore be computed, the periodic time of 
the moon, and its distance from the centre of the earth being 
given § The last space is found by experiments of pendulums, 

* Principia, B. 1, prop. 4, cor. 6, and B. 3, prop. 2, also cor. 1, prop. 
45, B. 1. 
| Principia, B. X, Lemma 10, cor. 3. 
i Principia, B. 1, sect. 2, prop. 1, cor. 4. 
§ The mean distance of the earth from the moon being taken — 

238533 miles (see the note p. 250 ,) hence, the moon’s orbit being nearly 
circular, its diameter is 477066 miles, and its circumference 477066 x 
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as shewn by Mr. Hugens.* Therefore by making a calculation, 
we shall find that the first space is to the latter, or the centripetal 
force of the moon revolving in her orbit, to the force of gravity at 
the surface of the earth, as the square of the semkliameter of the 
earth, to the square of the semidiameter of the orbit. But by what 
has been shewn before, the very same ratio holds between the 
centripetal force of the moon, revolving in its orbit, and the cen¬ 
tripetal force of the moon near the earth’s surface. Therefore, , 

3.1416 = 1498750.5456. Now the moon’s sidereal revolution is 27 d. 7h. 
43' 1]/' = 2360591*; hence this proportion 2360591* : 1' or 60*: : 1498750. 
5456 miles : 38.0942 miles the moon will describe in 1', which is nearly 
equal to the tangent of 1' to her orbit. But as the secant of the same arc 
of lr less the radius, gives her distance fallen towards the earth in her 
orbit by the power of gravity in 1', we have rad.2 or 2385332 x tang.2 or 
38.0942* = secant2 = 56837993540.16807364, the square root of which 
is 238533.0030418 miles nearly, from which the semidiameter of the orbit 
being subtracted, and the remainder .0030418 being multiplied by 5280 
(the feet in a mile) gives 16.060704 feet, the moon’s descent in 1' in her 
orbit towards the earth, by the force of gravity. This may be also cal¬ 
culated from Cor. 9, prop. 4, B. 1, Principia. If we now divide the 
moon’s distance from the earth 238533 miles, by 3956 miles, the earth’s 
semidiameter, there will result 60.29 nearly, the moon’s distance in semidi¬ 
ameters of the earth. Now as the gravity of the moon increases in propor¬ 
tion as the square of her distance from the centre of the earth decreases 
(Emerson’s Tracts, prop. 13, p. 23;) hence her gravity at the surface of 
the earth would be 60.29 X 60.29 =* 3634.8841 times greater, and there¬ 
fore at the earth’s surface the moon would fall towards the earth, or de¬ 
flect from its tangent 3634 8841 X 16.06 =» 58376.238646 feet in 1'; hence 
as the spaces described by falling bodies are as the squares of the times 
of falling (Emerson’s Tracts, prop. 13, p. 23) the same power would 
carry the moon 60 X 60 = 3600 times less space in 1* than in 1', and 
therefore 58376.238646 -t- 3600 = 16.215 feet, the space the moon would 
fall in 1" at the earth’s surface. This might also be computed from the 
equal description of areas, whatever be the distance of the body. Now 
to compare this with the gravity of terrestrial bodies, found by the pen¬ 
dulum: by a very accurate experiment, Borda has found that the length 
of pendulums vibrating seconds, at the Observatory at Paris, and reduced 
to a vacuum, is 0.741887 metres, or 29.208833077 English or American 
inches. The seconds here used by Borda must be those adopted in the 
French measures ; and as they divided the day into 10 hours, the hour 
into 10C’, and the minute into 10C*; hence the number in the day, French 
measure, is 10000G*, but in our division of the day it is 86400*, conse¬ 
quently 86400 : 100000 or 108 : 125 : : 1* (English or American) : P'1574 
Paris nearly. Now as the lengths of pendulums, describing similar arch¬ 
es, are as the squares of the times of vibration (Emerson’s Tracts, prop. 

25) we have this proportion; 1*: 1*1574* or P 33957476 : : 29.208833077 
inches : 39.127315559 inches nearly, the length of a pendulum vibrating 
seconds, in our measures, in the latitude of Paris, half of which is 
19.5636577795 inches. And as the square of the diameter of a circle : the 
square of its circumference : : half the length of a pendulum : the space 
described by a falling .body in the time of one vibration (Emerson’s 
Tracts, prop. 24, cor. 5) hence this proportion; 12 ; 3.14162 or 9.86965056 
: : 19.5636, &c. : 193.086465959, &c. inches = 16.09 feet nearly, the space 

* Newton’s Principia, B. 3, prop. 4 
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the centripetal force near the surface of the earth, is equal to the 
force of gravity; and hence these two forces are identically the 
same. For if they were different, these forces united would cause 
bodies to descend to the earth with twice the velocity produced by 
the force of gravity alone. Hence it is evident, that the force 
which retains the moon in its orbit, is the force of terrestrial grav¬ 
ity extending to it. And it is reasonable to suppose that this vir¬ 
tue should extend to vast distances, as we find no sensible diminu¬ 
tion of it on the tops of the highest mountains. Now as the moon 
gravitates towards the earth, so the earth, on the other hand, 
gravitates towards the moon, which is also confirmed from the 
phenomena of the tides and the precession of the equinoxes; 
which arise from the actions of the sun and moon on the earth. 
Hence also we discover by what law the force of gravity decreases 
at great distances from the earth; for as gravity does not differ 
from the moon’s centripetal force- and that this is reciprocally 
proportional to the squares of the distances ; it follows, that it is in 
that same ratio the force of gravity decreases. We do not con¬ 
sider here the small deviations arising from the actions of the sun 
and planets. 

In like manner the same reasoning may be applied to the pri¬ 
mary planets. The revolutions of the primary planets round the 
sun, and of the secondary planets round their respective primaries, 
are phenomena of the same kind with the revolution of the moon 
round the earth ; and as it has been found that the centripetal 
forces of the primary planets are directed towards the centre of 
the sun, and those of the secondaries to their respective primaries, 

that bodies fall in a second on the earth’s surface, differing but little 
from that calculated from the moon’s motion. Owing to the earth’s cen¬ 
trifugal force, the gravity of bodies is diminished at the earth’s surface, 
in advancing from the poles to the equator, nearly as the versed sine of 
double the lat (Newton’s Principia, prop. 20, B. 3) and the moon’s grav¬ 
ity is also diminished by the sun’s action. Laplace gives this diminution 

part. B. 4, ch. 1. Newton makes this something different. Prop. 3, 

B. 3, Principia. When these quantities are allowed, the forces will come 
out very nearly equal; and hence the force of gravity on the earth’s sur¬ 
face, is the same force which retains the moon in her orbit. 

djr* We must remark here, that the division of the day above men¬ 
tioned, is taken from p. 162, of Laplace's Astronomy, vol. 1, as translated 
by J. Pond; and that this must be the division used by Bor da, as no other 
would correspond to the length of this pendulum. Tins circumstance I 
have discovered in making the above calculations ; and hence, wherever 
Laplace makes use of seconds of time, it must be the above division that 
he adopts, though he no where mentions it. This is very necessary to be 
known by those who make use of Laplace’s works, as his translator, J. 
Pond, takes no notice of it. He makes the seconds of time the same as 
the seconds of a degree, according to the division of the quadrant adopt¬ 
ed in France, which, besides the other errors in reducing the French 
measures, is a source of error, in the translation, through the whole 
work. See p. 173, vol. 1. of the translation, &c. 
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in the same manner as that of the moon is directed towards the 
earth ; and that moreover all these forces are reciprocally propor¬ 
tional to the squares of the distances from the respective centres, 
as we have shewn to be the case with the moon ; we must there¬ 
fore conclude, that the nature of all these forces is the same. 
Therefore, as the moon gravitates towards the earth, and the earth 
again towards the moon, so also the secondary planets gravi- 
tate towards their primaries, and the primary planets again towards 
their secondaries ; and in like manner, the primary planets to¬ 
wards the sun, and the sun again towards the primary planets. 
Hence the action of gravity is mutual between the sun and all the 
planets ; for the secondary planets, while they accompany the pri¬ 
mary, revolve at the same time with the primary round the sun. 
And Newton further confirms this general gravitation of matter 
from the inequalities of the moon, See. the theory of which is 
clearly explained in the 3d Book of his Principia Hence also we 
conclude, from analogy, that the gravitation of matter is universal, 
and that therefore the whole solar system gravitates towards the 
fixed stars, and the fixed stars towards the solar system. The 
motions of the comets evidently shew, that the action of the sun, 
or its attractive virtue, is propagated op all sides to prodigious dis¬ 
tances ; for from the discoveries of the penetrating Newton, it is 
now evident, that the comets describe oonic sections round the 
sun, having their foci in the sun’s centre, and by radii drawn to 
the sun, describe areas proportional to the times; and also that 
the forces by which they are retained in their orbits, respect the 
sun, and are reciprocally proportional to the squares of the distan¬ 
ces from his centre * 

The foregoing conclusions are grounded on this axiom or rule, 
laid down by Newton in the beginning of the 3d Book of his Prin¬ 
ciples, and now received by all philosophers, viz, that u to the 
same natural effects we must, as far as possible, assign the same 
natural causes.” For no one can doubt, if gravity be the cause of 
the descent of a stone in Europe, that it is also the cause of the 
like descent in America. If in Europe the attraction of the earth 
be propagated to all kinds of bodies, and to great distances, can 
any one doubt that the same happens in America or in China, &c. ? 
If this rule were not admitted, then nothing could be affirmed of 
the properties of bodies in general. The nature of particular 
things being known from observations and experiments, from 
these, as from certain data, we judge of the nature of such bodies 
in general. And hence, as we find that all bodies, whether on the 
earth or in the heavens, are heavy, as far as we can make any 
experiments or observations on them, we must therefore allow, 
that gravity is found in all bodies universally. In like manner all 
bodies, that come under our observations, are extended, movea- 

*" Principia, Jl. 3, prop. 40, and corollaries 
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ble, and impenetrable ; and from thence we conclude, that all bo¬ 
dies, even those we have made no observations on, are extended, 
moveable, and impenetrable. In like manner all bodies, that we 
have made any observations on, are found to be heavy * hence we 
conclude, that weight is a universal property of all bodies in gen¬ 
eral. Hence the gravity or weight of the fixed stars can no more 
be denied, though not as yet precisely observed, than their exten¬ 
sion, mobility, or impenetrability, which no one will deny, though 
these qualities are no less out of the reach of observation. 

It is thus that, from strict analogy, we can apply the knowledge 
which we obtain of bodies from experiments and observations on 
the earth, to those that we can have no such access to ; and as 
Newton remarks (Rule 4th, B. 3, Prin.) “ In experimental phi¬ 
losophy, we are to look upon propositions, collected by general 
induction from phenomena, as accurately or very nearly true, not¬ 
withstanding any contrary hypotheses that may be imagined, till 
such time as other phenomena occur, by which they may be either 
made more accurate, or liable to exceptions.” 

As the earth performs its motion round the sun in an orbit 
which is not circular but elliptical, having the sun in one of the 
foci, it follows, that the earth must at some times approach near¬ 
er to the sun than at others, and will therefore take more time in 
describing that half of its elliptic orbit, in whose focus the sun is, 
than the other, in consequence of that general law, first observed 
by Kefiler, that is its describing equal areas round the sun in equal 
times. It is in our winter that the earth is in that part of its orbit 
where its velocity is greatest; and hence astronomers observe, 
that the earth is more rapid in the winter half of its orbit, than in 
the summer by about 7 or 8 days. It follows also, that in the win¬ 
ter we are nearer the sun than in summer, although in winter the 
season is colder and more inclement; but this phenomenon is ea¬ 
sily explained from the sun’s rays falling more perpendicularly on 
us in summer than in winter,3* from their acting on the same 
place a longer time,f the days being longer in summer than in 
winter, and from their passing through a more dense and exten¬ 
sive part of the atmosphere. That the sun is actually nearer to 
us in winter than in summer, is also proved from the increase of 
his apparent diameter in this season,| as observed by all astrono¬ 
mers. The unequal motion of the earth in its orbit, will be more 
fully explained afterwards. 

* Thus the heat in the torrid zone, is not caused from that part of the 
earth being nearer the sun, but from the sun’s rays being darted perpen¬ 
dicularly on it, and through a comparatively small portion of the atmos¬ 
phere. 

f In the northern regions, the accumulation of the sun’s heat is so 
great during their short summer, that it is sufficient for vegetation, &c, 
which takes place in these inclement regions, much quicker than in more 
temperate latitudes. 

? See the table, p. 155. 
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The earth's axis makes an angle of 23° 28' with a perpendicular 
to the plane of the ecliptic, or its orbit, and keeps always the same 
oblique direction during its annual course ; the north pole is there¬ 
fore turned,towards the sun during one part of the earth’s revolu¬ 
tion, and the south pole is turned towards it, in like manner, dur¬ 
ing the other; and this is the cause of the different seasons, as 
»pring, summer, autumn, and winter. If a small ball of wood, or 
any other substance, be procured, having the ecliptic, the equator, 
the tropics, polar circles, and a few meridians, delineated on it, 
and also a small wire passing through the poles of the equator ; 
if this ball be carried round a lighted candle placed on a table, ei¬ 
ther in a circle, or in the curve of an ellipsis, having the candle 
placed in one of the foci, and the axis of the earth, during the 
motion, be always kept parallel to itself, the enlightened part of 
the earth will exhibit the different seasons in a pleasing and satis¬ 
factory manner. If the 12 signs be delineated on the ellipsis or 
circle, a line drawn from the ball through the candle will point 
out, on the opposite side of the curve, the sun’s place, corres¬ 
ponding to that of the earth, pointed out by the ball.* 

We shall now give the theory of the earth*s motion, or rather 
the theory of the planets* motions in general, in elliptic orbits, 
about their common focus. This has been given by various au¬ 
thors, as Sir Isaac Newton, in his Principia, Dr. D. Gregory, 
Keil, and others, in their respective treatises on astronomy ; but 
the most concise is that given by Vince in his Astr. from which 
we shall collect most of what we shall give on this subject. 

As the orbits, which are described by the primary planets re¬ 
volving round the sun, are ellipses, having the sun in one of the 
foci, and as each planet describes about the sun equal areas in 
equal times, it is from these principles that we shall deduce such 
consequences, as wiii be found necessary in our inquiries respect¬ 
ing their motions From the variation in the planets’ distances 
from the sun, and their describing equal areas in equal times, it 
is evident that they must move with unequal angular velocities 
round the sun The principal proposition, therefore, on which 
the planets’ theory depends, is the following. The periodic time 
of a planet, the time of its motion from its aphelion, and the eccen¬ 
tricity of its orbit being given ; to find its angular distance from 
its aphelion, or its true anomaly, and its distance from the sun, 
This problem was first proposed by Kepler, and has therefore ob¬ 
tained the name of Kepler*s Problem. (See Keil’s Astr. Lect. 23 
and 24.) Kepler knew no direct method of solving the problem* 
and therefore performed it by long and tedious trials. 

* See part 2d, where this Subject is fully elucidated on the globes. 



OF tHE SOLAR SYSTEM. 

Let AEB be the ellipse described by 
the planet round the sun at S in one of 
its foci, AB the greater axis, EC half 
the lesser axis, A the aphelion, B the 
perihelion, P the planets* place, AVB 
a circle, C its centre. Let NPI be 
drawn perp. to AB, join PS, NS and 
NC, on which produced let fall the 
perp. ST. Now let a body be supposed 
to move uniformly in a circle from A 
to Q with the mean angular velocity of 
the body in the ellipsis, whilst the bo¬ 
dy moves in the ellipse from A to P ; 
then the angle ACQ is the mean, and 
the angle ASP the true anomaly ; the 
difference of these two angles is called 
the equation of the planets* centre, or 
the periodic time in the ellipse or circle (the periodic time being 
equal in both by supposition) and t = the time of describing AP or 
AQ ; then, as the bodies in the ellipse and circle describe equal 
areas in equal times about S and C respectively, we have 

area AQC : area of the circle : : t : py and 
area of the ellipse : area ASP : : p : t; also 
area of circ. : area of ellip. : : area ASN : ASP ;* 

hence area AQC : area ASP : : area ASN : area ASP; therefore, 
area AQC = area ASN ; take away the area SNC which is com¬ 
mon to both, and the area QCN = SNC ; but QCN = i QN x 
CN ; therefore ST = QN Now if t be given, the arc AQ will 
be given ; for as the body in the circle moves uniformly, it will be 
p : t : : 360° : AQ. In this manner, the mean anomaly for any 
given time may be found, the time when the planet was in the 
aphelion being given ; and therefore, if ST or NQ be found, the 
Z_ NCA, which is called the eccentric anomaly, will be given, from 
whence, by one proportion, as we shall presently shew, the Z_ ASP 
the true anomaly will be given. The prob. is therefore reduced to 
this ; to find a triangle C'ST such, that the Z_ C -f- the degrees of 
an arc = ST may be equal to the given Z ACD. M. de la Cailley 
in his Astronomy, gives an expeditious method of performing 
this by trial, as follows : Find the arc of the circumference of 
the circle AQB that is equal to CA, by saying as 3.1416 : 1 :: 
180° : 57° 17' 44"8 = the number of degrees in an arc *= CAj 
hence CA : CS : : 57° 17' 44"8 : the degrees of an arc = CS. 
Now assume the Z. SCT, multiply its sine into the degrees in CS, 
and to the product add the Z_ SCT, and if the sum be equal to the 
given angle ACQ, the supposition was right; if not, add or sub¬ 
tract the difference to or from the first supposition, according as 

* Vince’s Conic Sect. 2d ed. prop. 7 of the ellip. cor. 3 anil 4 

Qq 
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the result is less or greater than ACQ ; this operation being re¬ 
peated, a few trials will give the accurate value of SCT. The 
degrees in ST may be most readily obtained by adding the loga¬ 
rithm of CS to the log. of the sine of the angle SCT, and lessen¬ 
ing the index by 10, the remainder will be the log. of the degrees 
in ST. Having thus found the value of the arc AN, or the angle 
ACN, we shall now show how to find the angle ASP. 

Let v be the other focus, and let AC = l ; then SP2 — Px>2 *= 
•uS* -f- 2 t/S X vi (Eucl. 12 prop. 2 B.) = (vS -f 2 t>I) X '<yS = 
(2 Cv -f 2 x>I) X 2 SC = 2 Cl X 2 SC ; hence SP -j- Pv : 2 Cl : s 
2 SC : SP — Vv (because the difference of the squares of two 
quantities, is equal to the rectangle of their sum and difference) 

or 2 : 2 Cl : : 2 SC : SP — 2 — SP,* or dividing by 2, 1 : Cl : : 
SC : SP — 1 ; hence SP = 1 + CS X Cl = 1 + CS x cos. 

A ACN. But | "7 C°S-W5 = tanS- i ASp2 (see vince’s Trig. 
1 -f cos. ASP 

art. 94) also SP, or 1 -f CS X cos. ACN : rad. = 1 : : SI, or CS 
4* Cl or CS -f- cos. ACN : cos. ASP (Vince’s Trig. art. 125) = 

CS-f cos. ACN TT _ 1 —cos. ASP 
1 + CSX COS. ACN' Hence tans- s ASP (= 14. cos. ASP ) 
)+CSx<ios.ACN— CS—cos.ACN 1—CS-fcos. ACNxCS—1 

1+CSxcos.ACN+CS-f cos. ACN — i -fCS+cos. ACN-fCS+t 
SB — cos ACN X SB l — cos. ACN SB 

— SA + cos. ACN xSA=l + cos. ACN * SA ~tang-* ACN* 
SB I 1 

X — (Vince’s Trig. art. 95.) hence SA2 : SB*:: tang.p ACN: 

tang, i ASP, therefore we get ASP the true anomaly required. 
Examfile, Required the true place of Mercury, on August 26, 

1740, at noon, the equation of the centre, and his distance from 
the sun. 

According to la Caille, Mercury was in its aphelion on Aug. 9, 
at 6h. 37'. Hence on Aug. 26, it had passed its aphelion 16d. 
17h. 23'; therefore 87 d. 23h. 15' 32" (his periodic rev.) : 16d. 
17h. 23' : : 360° : 68° 26' 28" the arc AQ or mean anomaly. 
Now, according to la Caille, CA e CS :: 1011276 : 211165 :: 57° 
17' 44"8 : llo 57' 50" = 43070 seconds, the value of CS reduced 
to the arc of a circle, the log. of which is 4.6341749. Also 68° 
26'28" = 246388"; and assuming the L SCT = 60° = 216000", 
the operation to find the L ACN will be as follows : 

* The reason of taking 2 for SP -f- is> because from the property of 
the ellipse (Emerson’s Con. Sect. prop. 1, B. 1) the sum of the lines SP, 
drawn to any point P of the curve, is always equal the transverse axis AB 
=*= 2 AC; but as AC in this case = 1, AB, or SP -f, Fv = 2. 
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4.6341749 
9 9375306 log. of * - 216000 de 6 

4.5717055 ------ 37300 

253300 
24638$ 

6912 as b 
4.6341749 -- 
9.9287987 . 209088 = a — i = 58° 4; 48" =c c 

4.5629736 . 36557 

245645 
246388 

743 as d 
4.6341749 -- 
9.9297694. 209831 = c -f dm* 58° 17? 11" * e 

. - ■ . \ 

4.5639443 . 36639 

246470 
246388 

82 as/' 
4.6341749 --- V_ 
9.9296626 - --  209749 

4.5638375 . 36630 
1 _ 

246379 
246388 

9 as h 

Hence, as the difference between the value deduced from the 
assumption and the true value, is now diminished about nine times 
every operation, the next difference would be 1"; hence h -f g 
— \n as 58° 15' 57" the true value of the angle ACN the eccentric 
anomaly. Hence, from the proportion laid down above, the true 
anomaly is found by logarithms, thus: 
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Log. tang. 29^ 7' 58i" - - - 9.7461246 
i log. SB = 800111 - - * - 2.95 15751 

12.6976997 
A log. SA = 1222441 - - - 3.0436141 

Log. tang. 24° 16' 15" - - - 9.6540856 

Hence the true anomaly is 48° 32' 30'. Now the aphelion A 
was in 8s. 13° 54' 30", therefore Mercury’s true place was )Qs._ 
2° 27'; hence, from what we have shewn above, 68° 26' 28" — 
48° 32' 30" = 19° 53' 58", the equation of the centre. Also SP 
ss= i -j- GS X cos Z- ACN = 1.10983, the distance of Mercury 
from the sun, the radius of the circle, or the planets’ mean dis¬ 
tance being unity. Vince remarks, that the above method of com¬ 
puting the eccentric anomaly, appears to be the most simple and 
easy of application of all others, and capable of any degree of 
accuracy. From the same method, we are able to compute, at 
any time, the place of a planet in its orbit, and its distance from 
the sun. . . 

As the bodies Q and P were supposed to depart from A at the 
same time, and will coincide again at B, AQB, APB being each 
described in half the time of a revolution ; and as the planet moves 
with its least angular velocity at 4 for as AC is its greatest dist. 
from the sun, the arc which it describes must be proportionally 
smaller, to have the areas described in the same time equal; 
therefore from 4 to B, or in the first six signs of anomaly, the 
angle ACQ will be greater than ASP, or the mean will be greater 
than the true anomaly; but from B to A, in describing the other 
half or its orbit, or in the last six signs, as the planet at B moves 
with its greatest angular velocity, being nearest the sun, the true 
will be greater than the mean anomaly When the equation is 
greatest in going from A to B, the mean place is before the true 
place by the equation, and in the remaining half of the orbit, the true 
place is before the mean place by the equation ; hence from the 
time the equation is greatest, until it becomes greatest again, the 
difference between the true and mean motions is twice the equa¬ 
tion. From apogee to perigee, the true and mean motions are the 
same. 

There is another piethod ascribed to Seth Ward, Professor of 
Astronomy, at Oxford, which, though less accurate than the me¬ 
thod given above, yet, as in many cases it serves as a useful ap¬ 
proximation, and renders the calculation more simple and easy, 
we shttll here briefly explain it. . ' 



OF THE SOLAR SYSTEM. 317 
Ward assumed the angular velocity about the 

focus v to be uniform (the sun being supposed in 
the other focus S) and therefore made it represent 
the mean anomaly. Let vV be produced to r, and 
make Pr = PS ; then in the triangle Sur, rv -f- 
Sv : rv — S<y : : tang | of the angles vSr -f "urP 
: tang. half their difference vSr—i/rS (Emer* 
son's Trig prop 6, B. 2, or Simson’s prop. 3) but 
4- (rv -f- vS) = i AB = A-^; (for rv = 
SP + Pv — AB) and \ (rv — x>S) = \ AB — irS 
= ->B ; likewise tang. | the sum of the angles vSr 
-f x>rS = tang, £ L. Az/P (Eucl. p. 32, B. 1) and 
tang. $ diff. of the angles z>Sr —vrS = (Pr being = PS) tang. \ 
diff of the angles v*r>r — PSr (Eucl. 5, B. 1) = tang. £ ASP ; 
hence the aphelion distance : perihelion dist : : tang, of £ the mean 
anomaly : tang £ the true anomaly. This is called the simple ellip¬ 
tic hypothesis. In the earth’s orbit, which is nearly circular, the 
error is never greater than 17" ; the error is greater in the orbits 
of Mars and Mercury, and hence Bulialdus corrects this theory to 
adapt it to these planets (see KeiPs Astr Lect. 24.) In the orbit 
of the moon, the error may amount to F 35 By Ward’s hypo¬ 
thesis, the computed place is more backward than the true, for 
90° from the aphelion and perihelion, and for the other part it is 
more forward. x 

That Ward's hypothesis of the uniformity of the angular velo¬ 
city about the locus v is not true, may be shewn as follows : 

From the centre S at the distance SV = 

AC X CE^ ^or so that SV may be a mean pro¬ 
portional between the semi-transverse AC, and 
semi-conjugate CE of the ellipse AEB) de¬ 
scribe the circle zV ; then the area of this cir¬ 
cle will be equal the area of the ellipse (seeE 
Vince’e Con. Sect. Ellip. pr. 7, cor. 5) let a bo-y 
dy be supposed to move with a uniform motion 
through the periphery of the circle, in the same 
time that the planet performs one revolution in 
the ellipse ; and let the body and the planet 
commence their motion at the same time, the 
planet from A and the body from z, so that the planet may de¬ 
scribe AP in the same time that the body describes zv ; then the 
angle zSv is the mean, and ASP the true anomaly. Take p inde¬ 
finitely near P and join SP, and draw Pr, po, perpendicular to S/z, 
FP respectively; then Pr = po; but the angle PFp varies as 
po* pr 
pp = — ; but the area PSp is given in a given time ; therefore 

* The angle VFp increases in proportion as po increases, all other cir¬ 
cumstances remaining the same ; and it diminishes in proportion as PF 
increases, po remaining constant, or is inversely as PF; hence when both 

■tfary, die angle VFp varies as £ - 
gr. 
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Pr varies as ; hence the angle PF/q described in a given time, 

varies as PF -f PS> which is not a constant quantity. Now the 
i ,» 

angle VF/i : L. PSJi : : PS : PF : : pp x PS : P82 : andas equal 
areas are described in equal times in the circle and ellipse about 

i $ 

S, the angular velocity in the circle, about S, is equal SV2- 

Therefore the angular velocity about S is greater or less than the 
mean angular velocity, according as PF X PS is less or greater 
than SV*, or than AC X CE. Also, the angular velocity about S, 
is the same in similar points of the ellipse in respect to the centre, 
or at equal distances from the centre. From the above investiga¬ 
tion, the greatest equation of the centre may be found, the dimen¬ 
sions of the orbit being given. For while the angular velocity of 
the body in the circle, is greater than that of the planet in the el¬ 
lipse, about S, the equation will increase, the planet and body 
commencing their motion from A and z together; when the an¬ 
gular velocities are equal, the equation is then greatest; and this 

i i » 

takes place when SP*= SV2 — AC x CE> or when AC X CE 
= SP2 ; hence SP is given- Let this value ofSPbe represented 
by SV, then as SV is known, FV (= 2 AC — SV) will be given ; 
and as SF is given, we can find the angle FSV, the true anomaly. 
Hence (see the fig. p. 313) by what we have shewn in determining 

x i 
the angle ASP (p. 314) SB : SA2 : : tang. £ true anomaly : tang. 
$ eccentric anom. ACN, or tang. £ SCT ; and as SC is given, ST 
or its equal NQ is likewise given ; now to convert this into degrees, 
we have this proportion, rad. or 1 : NQ : : 57° 17' 44"8 : the de¬ 
grees in NQ, which added to or subtracted from the angle ACN, 
gives ACQ the mean anomaly; the difference between which and 
the true anomaly, is the greatest equation. The equation at any 
other time may in like manner be found, SP being given. 

The greatest equation being given, the eccentricity, and there¬ 
fore the dimensions of the orbit may be found. For, as is plain 
from the last article, the equation is greatest when the distance is 
a mean between the semi-transverse and semi-conjugate of the 
elliptic orbit, and therefore in orbits nearly circular, the body must 
be nearly at the extremity of the conjugate or minor axis, and hence 
the angle NCA or SCT will be nearly a right angle, ST will be 
therefore nearly equal to SC; and also the angle NSA nearly 
equal PSA. Now the angle NCA — NSA (or PSA) = SNC, 
and QCA— NCA = QCN ; these being added, we have QCA 
— PSA = QCN -f SNC = 2 QCN nearly (NC being nearly pa¬ 
rallel to QS) that is, the difference between the true and mean 
anomaly, or the equation of the centre, is nearly double the arc 
QN, or double ST, or very nearly twice SC. Hence 57° 17' 48"8 
: half the greatest equation : : rad. 1 : SC the eccentricity. If the 

* This and similar properties will be demonstrated in the laws of motion. 
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orbit be considerably eccentric, compute the greatest equation to 
this eccentricity; then as the equation varies nearly as SC, we 
have this proportion ; as the computed equation : the eccentricity' 
found : : given greatest equation : true eccentricity. 

Thus, if with la Caillet we suppose that Mercury’s greatest 
equation is 24° 3' 5" (see p. 262) then 57° 17' 44"8 : 12® l' 32"5 
: : 1 : .209888 the eccentricity very nearly. Now the greatest 
equation, computed from this eccentricity, is 23° 54' 28"5 ; hence 
23° 54' 28"5 i 24° 3' 5" : : .209888 : .21 1 165 the true eccentri¬ 
city. jDelambre makes the eccentricity of Mercury 79855.4, his 
mean dist. being 38710. By taking the mean distance of the earth 
from the sun 100000, Vi nee makes the eccentricities and greatest 
equations of the planets as follow ; Mercury eccen. 7955 4, great- 
equat. 23° 40'; Venus eccen. 498, gr. eq. 47' 20"; the Earth 
eccen. 1681.395, gr. eq. 1° 55' 36"5 ; Mars eccen. 14183.7, gr. 
eq. 10° 40'40" ; Jupiter eccen. 25013.3, gr. eq. 5° 30' 38"3 ; 
Saturn 53640.42, gr. eq. 6° 26' 42"; and Herschel eccen. 90804, 
gr* eq. 5° 27' i 6". M. Delambre, in his tables annexed to La Landers 
Astr. 3d ed. makes the greatest equations of the planets for the 
respective years, as follow; Mercury 23° 39' 39" tab. 101 ; Venus 
47' 20", tab. 108, year 1780; Earth 1° 55' 2"4, tab. 5, year 1780 ; 
Mars 10° 40' 39", tab. 115, year 1770 ; Jupiter 5° 30' 37"7, tab. 
124, 1750 ; Saturn 6° 26' 4l"7, tab. 147, 1750 ; Herschel 5° 2l' 
2"7, tab. 165, year 1780. In these tables, Delambre gives the 
equation and its secular variation, for every degree of the planets’ 
mean anomaly. Laplace, taking the mean distance of the earth 
from the sun = 1, makes the proportion of the eccentricities of 
the semi-major axes, for the beginning of the year 1750, as fol¬ 
lows ; Mercury 0.205513, Venus 0.006885, the Earth 0.016814, 
Mars 0.093808, Jupiter 0.048877, Saturn 0.056223, Uranus or 
Herschel 0.046683. He gives the secular variation of this pro¬ 
portion as follows ; the sign — indicates a diminution. Mercury 
0.000003369, Venus — 0.000062905, the Earth — 0.000045572, 
Mars 0.000090685, Jupiter 0.000134245, Saturn — 0.0002615 53. 
Herschel — 0 000026228. 

The eccentricity and true anomaly being given, the mean ano¬ 
maly may be readily found by a direct solution, as follows; the 
eccentricity being given, the ratio of the transverse and conjugate, 
or the major and minor axes, which is the ratio of NI : PI (Em¬ 
erson’s Conic Sect. prop. 19, B. 1) is given; for as AC, CS are 

given (see the fig. p. 313) we have GC = (SG2— bC2) ^ = 

(AC -f SC X AC — SC) L Hence the angle ASP being given, 
we have PI : NI : : tang. ASP : tang. ASN ; therefore in the tri¬ 
angle NCS, NC, CS, and the angle CSN are given, and therefore 
the angle SCN is given by Trig, the supplement of which is the 
angle ACN or SCT ; hence in the rt. angled triangle STC, SC 
and the angle SCT are given, therefore ST, which is equal NQ, 
is given ; this arc, being the measure of the equation, may be 
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found by this proportion ; rad. : ST : : 57° 17' 44"8 : the degrees 
in NQ, which added to ACN, gives ACQ, the mean anomaly. 

The mean hourly motion of a planet being given, the hourly motion 
ih its orbit may be found in the following manner : 

The planets* hourly motion in its orbit, is found immediately 
from what we have shewn above in the correction of Ward's The¬ 
ory ; for it appears from thence, that the angles PS/?, VS; de¬ 
scribed by the planet at P in the ellipse, and the body V in the 
circle in the same time, are as SV2 : SP2, or as AC X CE : SP2 
(seethe fig. p 317) hence PS/? = VS; X AC X CE-- SP2, which 
is the hourly motion of a planet in its orbit, the angle VS; being 
the mean motion of the planet in an hour. For greater accuracy 
SP must be taken at the middle of the hour. Tables of the plan¬ 
ets* hourly motions in their orbits may be thus easily computed. 

OF THE MOON. 

The moon being the nearest celestial body to the earth, and, 
next to the sun, the most remarkable and interesting in our sys¬ 
tem ; interesting not only from its resplendent appearance, but 
also from its various phases, which afford us a measure of time 
so remarkable, that it has been primitively in use among all peo¬ 
ple. Ancient history testifies, that the Hebrews, the Greeks, the 
Romans, and in general all the ancients, used to assemble at the 
time of new or full moon, to testify their gratitude for its manifold 
uses. It is no wonder, therefore, that the ancient astronomers 
were always attentive to discover its motions ; and their observa¬ 
tions, handed down to succeeding astronomers, enable them to 
settle her mean motion more accurately than could be done by 
modern observations alone. It was from the observations of some 
ancient eclipses, that Dr. Halley discovered an acceleration in her 
mean motion 

The proper motion of the moon in her orbit, is, like the sun or 
rather the earth, from west to east; and her place being compared 
with the fixed stars in one revolution, she is found to describe an 
orbit inclined to the ecliptic ; her motion also appears not to be 
uniform ; and the position of her orbit, and the line of its apsides, 
are observed to be subject to a continual change. These and 
other phenomena we shall explain in the following remarks. 

The mean motion of the moon is found thus : observe her place at 
two different times, then the mean motion during this interval is 
given, on supposition that the moon had the same situation with 
regard to her apsides during each observation ; if not, it will be 
sufficiently exact, if the interval of the times be very great. 
Hence the moon’s places, at a small interval of time from each 
other, being compared, we get the mean time of a revolution 
nearly ; and then at a greater interval, the mean time of her revo- 
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hition is obtained more correctly. The moon’s place may be de¬ 
termined directly from observation, or deduced from an eclipse. 

M. Cassini, in his Astronomy, p 294 (as Vince remarks) ob¬ 
serves that on Sept. 9, 1718, the moon was eclipsed, the middle 
of which eclipse happened at 8h 4', when the sun’s true place 
was 5s 16° 40'. Having compared this with another eclipse, the 
middle of which was observed at 8h. 32', on August 29, 1719, 
when the sun’s place was 5s. 5° 47', the interval gives 354 d 28', 
in which the moon made 12 revolutions and 349® 7' over ; hence 
354 d. 28' being divided by 12, rev. -f 349° 7' part of a revolution, 
or 354.0125 days divided by 12.96947685 = 27 d 7h. 6' 7 for the 
time of one revolution. From two eclipses, in 1699 and 1717, 
the time was found to be 27 d. 7h. 43' 6". 

The moon was observed to be eclipsed at Paris, on Sept. 20, 
1717, the middle of which eclipse was observed at 6h. 2'. And 
Ptolemy remarks, that a total eclipse of the moon was observed 
at Babylon, on March 19th, 1720 years before Christ, the middle 
of which was at 9h. 30' at that place, or 6h. 48' at Paris. The 
interval of these times was 2437 years, 147 days less 46', of which 
609 were bissextiles; this being divided by 27 d. 7h. 43' 6", gives 
a little more than 32585.5 revolutions. Now the difference of the 
sun’s places, and therefore of the moon’s,* as observed at both 
observations, was 6s. 6° 12'; therefore the moon had made 32585 
revolutions, 6s. 6' 12' in the interval of 2437 y. 174 d. — 46', 
which gives 27 d. 7h. 43' 5" for the mean time of one revolution. 
This determination is very exact, as the moon was at each time, 
very nearly, at the same distance from her apside. Her mean di¬ 
urnal motion is therefore 13° 10' 35", and her mean hourly mo¬ 
tion 32' 56" 27"'5. M. de la Land makes her mean diurnal 
motion 13° 10' 35"02784394. Delambre in his tables (tab. 28) 
has it 13° 10' 35". This is the mean time of a revolution with 
respect to the equinoxes. 

The annual precession of the equinoxes being 50l", or nearly 
4" in a month ; hence the moon’s mean revolution must be great¬ 
er with respect to the fixed stars, than with respect to the equinox, 
by the time in which she describes 4" with her mean motion, 
which is about 7". Hence the time of a sidereal revolution of the 
moon is 27 d. 7h. 43' 12". Laplace makes the length of her si¬ 
dereal revolution at the commencement of 1750 = 27 d. 321661- 
18036, or 27 d. 7h. 43' ll"5 nearly. 

The acceleration of the moon, before taken notice of, though 
but little sensible, since the most ancient recorded eclipse will be 
developed in progress of time, as Laplace remarks, though an 
immense number of ages would be necessary to determine it by 
observations. The discovery of its cause has, however, antici- 

* The place of the moon at the eclipse is here taken the same as that 
of the sun, which is not accurate unless when the eclipse is central; fiwr 
this long interval it is, however, sufficiently accurate. 
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pated this immense length of time, and Shewn that this accelera¬ 
tion is periodical. 

Laplace, whose penetration has enabled him to discover most 
of the secular variations in our system, from his profound investi¬ 
gations, and strict application of the laws of gravity, has elucidated 
this as well as many other intricate subjects, in so satisfactory a 
manner, that much of our observations on the moon will therefore 
be collected from him, as time would not permit, at present, our 
entering deeply into their investigation. 

The moon moves in an elliptic orbit, in one of whose foci the 
earth is situated. Her radius vector, or a line drawn from her to 
the earth, describes about this point equal areas in equal times. 
The eccentricity of her orbit is 0.0550 :368, her mean distance from 
the earth being taken as unity ; which gives for the greatest 
equation of her centre (7° 0099) 6° 18' 32"076. The lunar peri¬ 
gee has a direct motion, that is, in the same direction as the mo¬ 
tion of the sun, and the length of its sidereal revolution is 3232. 
46643 days or 8 y. 312 d. I ) h. 11' 39"552. 

If the place of the moon be observed as often as possible during 
a whole revolution, and the true and mean motions be compared, 
the difference will be double the equation If there should hap¬ 
pen to be found two observations, where the difference of the true 
and mean motions is nothing, the moon must then have been in 
her apogee in the one, and in her perigee in the other, as is evi¬ 
dent from the theory of the planets* motions, given in chap. 4. 
Mayer makes the greatest eccentricity 0.05503568, and \h.zgreat¬ 
est equation corresponding 6° 18' 31 "6. In his last Tables, pub¬ 
lished by Mr Mason, under the direction of Dr. Maskelyne, he 
makes it 6° 18' 32". Delambre, in his Tables (tab. 50) makes it 
6° 18' 31 "6. 

The place of the apogee may be thus determined, from M. Cas¬ 
sini's observations ; the greatest equation = 5° 1' 44"5 ; hence 
57° 17' 48"8 : 2° 30' 52"25 : : AC = 1000C0 : CS = 4388 (see 
p. 319) = the moon’s eccentricity at that time. This eccentricity 
is, however, subject to a variation, being the greatest when the 
apsides are in the syzygies, and least when in the quadratures. 
Now let v be the focus in which the earth is situated (see the 
small fig. p. 317) then taking BSP for the mean anomaly, BvP 
being the true anomaly, their difference SPx> (Eucl 32, B. 1) is 
the equation of the orbit, which equation is here 37' 50"5 ; and as 
PS = Pr, the angle x^rS = 18' 55"25 ; hence (Trigonom.) vS = 
8776 : vr = 200000 : : sine vrS = 18' 55"25 : sine vSr or its 
supplement BSr, = 7° 12' 20", from which let vrS — 18' 55"25 
be taken, and we have BuP = 6° 53' 25" = the distance of the 
moon from its apogee ; to this let the true place of the moon = 
2s. 19° 40' be added, the sum gives 2s. 26° 33' 25" for the place 
of the apogee on December 10, 1685, at lOh. 38' 10" meantime 
at Paris. Hence this may be considered as an epoch of the place 
of the apogee. 
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The mean motion of the apogee may be thus determined ; let its 
place be found at different times, and let the difference of these 
places be compared with the interval of the time between. In 
performing this, the observations must be first taken at a small 
distance from each other, as we might be deceived in a whole re¬ 
volution ; then those observations at a greater distance may be 
compared. Thus the mean annual motion of the apogee is found, 
according to Mayer, = 40° 39' 50" or Is. 10° 39' 50", its monthly 
motion = 6^41", its hourly mot. =*= 17", &c. Delamhre makes 
its annual motion = Is. 10° 39' 50"5,* in a month 6' 41", &c> 

To determine the place of the moon's nodes. The moon’s place 
is directly opposite to the sun in a central eclipse of the moon, and 
hence the moon must then be in her node ; if the true place of 
the sun be then found by calculation, or rather by observation, the 
opposite sign and degree, &c. in the ecliptic, will be the true 
place of the moon, and consequently the place of her node. 

M. Cassini, in his Astr. p. 281, says, that on April 16, 1707, 
a central eclipse was observed at Paris, the middle of which took 
place at 3h. 48' apparent time. Now the sun’s true place calcu¬ 
lated for that time, was Os. 26° 19' 17" ; hence the place of the 
moon’s node was 6s. 26° 19' 17". The moon, at that time, passed 
from north to south lat. and therefore this was the descending 
node. The place of the node is always ready calculated in the 
astronomical tables, with its mean motion. 

The place of the nodes may be also determined as in p. 264. 
The mean motion of the nodes may be determined, by finding the 
place of the nodes at different times, from which its motion, in 
the interval, will be given ; the greater the interval the more ac¬ 
curate will the motion be discovered. Mayer and Delamhre, both 
make the mean annual motion of the nodes 19° 19'43". The 
motion of the nodes is westward, contrary to the order of the 
signs. The length of their sidereal revolution, according to La¬ 
place, is 6793.3009 days, or I 8 y. 223 d. 7h. 13' 17"76. Their 
motion is subject to several inequalities, of which the greatest, 
according to Laplace, is proportional to the sine of double the 
angular distance of the sun from the ascending node of the lunar 
orbit, and at its maximum amounts to (1° 8105) 1° 40' 46"02. 

The moon’s nodes being those points where the lunar orbit cuts 
the orbit of the earth, or the ecliptic ; and the angle formed by 
the planes of these orbits, the same as the inclination of the orbit 
of the moon to the ecliptic, we shall now shew how to find this 
inclination. When the moon is 90° distant from her nodes, it is 
evident that she has then her greatest latitude, and that this lati¬ 
tude will measure the inclination of her orbit, in the same manner 
as the sun’s greatest declination measures the inclination of the 

* As Delamhre (tab. 27) only gives the moon’s mean motion and mean 
anomaly for entire years, it is necessary to remark, for the learner’s sake, 
that if the mean anomaly be taken from the mean motion, the remainder 
will give the motion of the apogee. 
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equator and ecliptic. Hence if, when the moon is 90° from her 
nodes, her right ascension and declination be observed, and from 
thence her latitude be computed (see the note to prob. 3, part 3d) 
this will be the inclination of her orbit for that time. If similar 
observations be made for every distance of the sun from the earth, 
and for every position of the sun in respect of the moon’s nodes, 
the inclination at those times will be observed. It appears, from 
these observations, that the inclination of the moon’s orbit to the 
ecliptic is variable, and that the least inclination is about 5°, which 
takes place when the nodes are in the quadratures; and the great¬ 
est about 5° 18', which is found to happen when the nodes are in 
the syzygies The inclination is also found to depend on the sun’s 
distance from the earth Laplace makes the inclination (5°.7188) 
5° 8' 48"9. He makes the greatest inequality in its variation 
(0° 1631) 8'48"444, and remarks, that it is proportional to the 
cosine of the same angles oh which the inequality of the motion 
of the nodes depends. 

The moon would always describe the same ellipse, in her revo¬ 
lution round the earth, if this revolution were not disturbed by the 
action of the sun ; the principal axis of her orbit would remain 
invariable, her periodic times would be the same, and the inclina¬ 
tion of her orbit to the ecliptic, as well as the place of her nodes, 
Would remain fixed; but from the sun’s action, her motions be¬ 
come subject to so many irregularities, that to establish her theory, 
and calculate her place truly, is one of the greatest difficulties in 
physical or practical astronomy. These irregularities are, how¬ 
ever, evidently connected with the sun’s position 

The moon’s motion being examined for one month, it will be 
found that it is subject to an irregularity which sometimes amounts 
to 5° or 6°, but that every 14 days this irregularity disappears.* 
If these observations be continued for different months, it will 
also appear that the points where the inequalities were the great¬ 
est, were not stationary, but advanced forwards about 3° in a month, 
so that, in respect to the apogee, the moon’s motion was about 
less than her absolute motion ; and hence the apogee’s progressive 
motion has been discovered. This first inequality, or equation of 
the orbity was determined by Ptolemy, from three lunar eclipses 
observed at Babylon, in the years 719 and 720 before J. C. by the 
Chaldeans; he found it amounted to 5° 1'when greatest. But 
he soon found that this would not account for all the irregularities 
of the moon, as her distance from the sun, observed both by Hip.- 
parchus and himself, sometimes agreed with this inequality and 
sometimes did not. He found that this first inequality would give 
the moon’s place sufficiently correct, when the apsides of her orbit 
were in the quadratures; but that when the apsides were in the 
syzygies, he discovered that there was a further inequality of 2-|°, 
which, in this case, made the whole inequality amount to about 

* Vince. 
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71°. This second inequality is called the evection, and arises from 
the variation of the eccentricity of the moon’s orbit Hence Pto¬ 
lemy found that the moon’s inequality varied from 5° to 7-|° and 
at a mean was therefore 6° 20x. Mayer makes it 6° 18' 3i"6. It 
is therefore extraordinary, how Ptolemy, in a point of so delicate 
a nature, should have determined this to so great a degree of 
accuracy. > 

Laplace makes the evection (1°4902) 1° 20' 28x'248, and re¬ 
marks, that it is proportional to the sine of double the mean an¬ 
gular distance of the moon from the sun, minus the mean angular 
distance of the moon from the perigee of its orbit. In the oppo¬ 
sitions and conjunctions of the moon with the sun, it is confounded 
with the equation of the centre, which it constantly diminishes, 
and hence the ancient astronomers, who only determined the ele¬ 
ments of the lunar theory by means of eclipses, with a view of 
predicting these phenomena, always found the equation of the 
centre less than the truth, by the whole quantity of the evection. 

There is another inequality observed in the moon, which is 
called the variation ; this inequality disappears in eclipses, or in 
the conjunctions and oppositions, and could not have been discov¬ 
ered from the observation of those phenomena. It also disappears 
in those points where the sun and moon are distant from each 
other 90°. It is at its maximum, and amounts to 35' 40"992, 
when their mutual distance is 45° ; from whence it is inferred, 
that it is proportional to the sine of double the mean distance from 
the sun. 

The last inequality which we have to observe, is that known by 
the name of the annual equation, caused by the moon’s motion 
being accelerated when that of the sun is retarded, and the con¬ 
trary. The law of this inequality is exactly the same as that of 
the equation of the centre of the sun,* but with a contrary sign; 
at its maximum it is (0° 2064) ll'8"736. This inequality in 
eclipses becomes confounded with the equation of the centre of 
the sun, and in calculating the instant of these phenomena, it is 
indifferent whether these two equations be considered separately, 
or the annual equation of the lunar theory be suppressed to augment 
the equation of the sun’s centre. This is one principal reason 
why the ancient astronomers gave too great a value to this last 
equation, and assigned too small a value to the equation of the 
sun’s centre affected by the evection. 

The following exhibits, at one view, the revolutions of the moon} 
of its apogee and nodes, as determined by M. de la Lande. 

d. h. ' ' 
Tropical revolution ------ 27 7 43 4,6795 
Sidereal revolution - -- -- - 27 7 43 11,5259 
Synodic revolution ------ 29 12 44 2,8283 

* 'File equation of the sun’s centre at its maximum, according to La¬ 
place, was in 1750, equal (2° 1409) 1° 55' 36//516. The method of finding 

in given in p,. 313, 
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Anomalistic revolution - - - 
Revolution in respect to the node 
Tropical revolution of the apogee 
Sidereal revolution of the apogee 
Tropical revolution of the node 
Sidereal revolution of the node 
Diurnal motion of the moon > 

in respect to the equinox $ 
Diurnal motion of the apogee - 
Diurnal motion of the node 

d. h. ' " 
. - 27 13 18 33,9499 
- - 27 5 5 35,605 

8y. 311 8 34 57,6177 
8 312 11 i 1 39,4089 

18 228 4 52 52,029$ 
18 223 7 13 17,744 

13° 10' 35",02784394 

- 0 6 41, 069815195 
- 0 3 10, 638603696 

JVevil Maskelyne finds, from the new Tables of M. Burg and 
Delambre, that the mean longitude of the moon, at the middle of 
the year 1813, including the secular equation and new equation of 
180 years, will be 9s. 0° 25'48"2 ; mean anomaly with secular 
equation 7s. 25° 59', and the supplement of the node with the 
secular equation 7s. 8° 13' 15"6. 

The apparent diameter of the moon varies in a manner analogous 
to her motions. This diameter may be measured at the time of 
full moon, by a micrometer placed in the focus of a telescope, or 
it may be measured by the time of its passing over the vertical 
wire of a transit telescope ; but this must be within one or two 
hours of the time of full moon, before the visible disk is sensibly 
changed from a circle. The diameter may be thus found from 
the time of its passing over the meridian ; let d" = the moon’s 
horizontal diameter, c = sec. of her declination, and m = the 
length of a lunar day, or the time from the moon's passage over 
the meridian on the day of observation, to the time of her passage 
over the meridian, on the next day. Then (art. 8 of the last note 
to prob 19, parts, p 216) cd" = the moon’s diameter in right 
ascension; therefore 360° : cdu :: m : the time (2) of passing the 

meridian; hence d" = 360° x If the time be observed when 
cm 

the limb of the moon comes to the meridian, the time when the 
centre comes to it can be found, by adding to or subtracting from, 
the time when the first or second limb comes to the meridian, half 
the time of the moon’s passage over the meridian. 

Albategnius made the diameter of the moon vary from 29' 30" 
to 35' 20", and hence found the mean = 32' 25". Copernicus 
found the diameter to vary from 27' 34" to 35' 38, and therefore 
the mean to be 31' 36". Kef tier made the mean diameter 31'22". 
M. de la Hire made it 31' 30". M. Cassini made the diameter 
from 29' 30" to 33' 38". La Lande, from his own observations, 
found the mean diameter = 31' 26", and the extremes from 29' 
22", when the moon is in apogee and conjunction, to 33' 31" 
when in perigee and opposition. The mean diameter here taken 
is the arithmetic mean between the greatest and least; the diam¬ 
eter at the mean distance being 31'7". Delambre, in his tables 
(table 91) gives the extreme horizontal diameters 29' 30" and 33' 



OF THE SOLAR SYSTEM. 327 

30" respectively ; and also its augmentation in every degree of 
altitude corresponding to its respective horizontal diameters, and 
corrects these altitudes of refraction by tab. 93 (see articles 1510, 
2247, and 2248, La Lande’s Astr. 3d ed.) Laplace makes the 
apparent diameter at the moon’s greatest dist. = (5438") 29' 21", 
912, and at her least dist- = (6207") 33' 3l"068. Taking the 
apparent diameter at her mean distance =31' 7", her real diam¬ 
eter is found to be 2159 07 miles,* and her magnitude is about 

of the magnitude of the earth. 
When the moon appears in the horizon, she is then an entire 

semidiameter of the earth more distant from a spectator on the 
earth’s surface, than when she appears in the zenith ; hence it 
follows, that her apparent diameter must augment in proportion 
as her altitude increases from the horizon. Let C be the ceiitre 
of the earth, A the place of a spectator on its 
surface, Z his zenith, M the moon ; then, as 
the sides of triangles are as the sines of their 
opposite angles, we have sine CAM or its suppl. 
ZAM : sine ZCM :: CM : AM = CM X sine 
ZCM -r- sine ZAM ; but the apparent diameter 
varies inversely as its distance » hence the appa¬ 
rent diameter will vary as sine ZAM divided by 
sine ZCM, the moon’s distance from the centre 
of the earth being supposed constant. Now in 

* In the fig. p. 250, let M represent the place of the earth, AB the 
31" 7" 

moon, the angle AMC half its semidiameter = ——— = 15' 35"5; hence 

the angle MAC = 90° — 15f 33"5 = 89° 44' 26"5. MC is the moon’s 
distance from the earth e= 238533 miles (see p. 250.) Now conceive a 
straight line to be drawn from M to B, then in the triangle AMB it 
will be 

As sine Z. A = 89° 44' 26"5 - - - 9.9999956 
To sine AMB 31' 7". 7.9567133 
So is the dist. MB = 238533 - - - 5.3775494 

13.3342627 
To AB the moon’s diam. 2159 07 - - 3.3342671 

The diameter might also have been thus calculated ; rad. ? sine 15' 35n5 
: : MA : AC the moon’s semidiameter. Or it might be calculated in the 
same manner as the diameter of Mercury has been calculated in the first 
part of the note, p. 263. s 

Now the cube of the earth’s diameter 3*7911 divided by the cube of 
3 

the moon’s diameter = 2159.07 will give the proportion of their mag¬ 

nitudes : thus, log. 79113— log. 2159.07* = 11.6946942 — 10.0028013 
= 1 6918929; the number corresponding to this log. is 49.19, which 
shews that the magnitude of the earth is something more than 49 times 
that of the moon. 

Keith, in his Treatise on the Globes, has calculated the diameter of 
the moon in a similar manner, but makes the angle at A, from data the 
same as the above, with respect to the angles, F» 89° 59' 44<'26^", and 
hence all his conclusions, resulting from these erroneous premises, must 
ke false. 
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tlie horizon, taking sine Z \M sine ZCM as equal to unity or 
one, we have this proportion ; 1 : sine ZAM -f- sine ZCM, or 
s. ZCM : s, ZAM,* or cos. true alt. MCH (a) : cos. apparent ait* 
MAA (6) : : the horizontal diameter to the diameter at the appa¬ 
rent alt. b. Hence the horiz, diam. : its increase : : cos. a : cos. 

b — a = 2 sine £ a -f- 2 b X sine £ a — £ b rad. being 1 (Emer¬ 
son’s Trig. B. 1, prop. 3, cor. 4, or Vince’s Trig. art. 111.) 
Hence (16 Eucl. 6) the increase of the semidiameter = hor. 

semid. X (ja+^)x sine From ^expression) a 

cos. a 
table of the increase of the semidiameter for any horizontal diam¬ 
eter, may be easily constructed ; and for any other horizontal se¬ 
midiameter, the increase will vary in the same proportion. 

The moon's fiarallax is the next subject that requires our con¬ 
sideration. Various methods have been given by authors, but the 
following are the principal. 

First method. Let the meridian altitudes of the moon be taken 
when she is at the greatest north and south latitudes, and let these 
altitudes be corrected for refraction ; then if there were no paral¬ 
lax, the difference of these corrected altitudes would be equal to 
the suni of the two latitudes of the moon ; hence the difference 
between the sum of the two latitudes, and the difference of the 
altitudes, will be the difference between the parallaxes at the two 
altitudes. Now from thence to determine the parallax itself, let 
S be the sine of the greatest, and s of the least, apparent zenith 
distance, and P, /*, the sines of the corresponding parallaxes ; 
then, as the parallax varies as the sine of the zenith distance, 
when the distance is given (see the note, p. 279) we have S : s :: 

P : fi; hence S — s : s : : P — /i : /i = ~ (17 Eucl. 5) 

the parallax at the greatest altitude. As the above calculation is 
on supposition that the moon is at the same distance in both ob¬ 
servations, which will generally not be the case ; one of the obser¬ 
vations must be reduced to what it would have been had the distance 
been the same as the other, the parallax being inversely as the 
distance (note, p 279 ) If the moon pass through the zenith of 
one of the observers, the difference between the sum of the two 
latitudes and the zenith dist at the other observation, will be the 
parallax at that altitude. 

* For 1 X sine ZAM = 

Eucl. 6) 

s. Z \M 

s. ZCM 
X sine ZCM therefore. See. (16 
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Second method, for any planet. Let the 
planet P be observed from two places A, B, 
in the same meridian ; then the angle APB 
is the sum of the two parallaxes at both 
places. The parallax APC or sine APC =s 
hor. par. X sine PAL (p. 279) and parallax 
BPC or s. BPC = hor. par. X sine PBM ; 
hence hor. par. x (s. PAL -f s. PBM) = 
APB ; therefore hor. fiar. =± APB divided 
by the sum of these two sines. If the me¬ 
ridians of the places differ, the variation of 
the planets’ declination, in the interval of the passages over the 
meridians of the two observations, must be known.* 

Third method, answering for any 
planet. Let EQ be the equator, P 
the pole, Z the zenith, v the true 
place of the planet, and r the appa¬ 
rent place as depressed by the pa¬ 
rallax in the vertical circle ZA; 
let the circles of declination Pva, 
Prb, be drawn ; then ab is the pa¬ 
rallax in right ascension, and rs in 
declination. Now vr : vs : : rad. 
1 : sine vrs, or Zx>P (see Vince’s 
Trig. art. 125) and vs : ab :: cos. 
va : rad. I (see the note to prob. 35, part..2) hence vr i ab n cos. 
va : sine Zx^P ; therefore ab =*vr x sine ZvV cos. va ; but vr 
= hor. fiar. x s. vZ (note, p. 279) and the sides of spher. trian¬ 
gles being as the sines of the angles opposite to them, s. vZ : s. 
ZP :: s. ZPv : ZvP = s. ZP X s. ZPv s. vZ. Hence, by 
substitution ab =hor.par. X s. ZP X s. ZPz>. -r- cos. va. There¬ 
fore, for the same star, the parallax in right ascension varies as 
the sine of the hour angle, where the hor. fiar. is given. The hor» 
parallax is also = ab X cos. va -j- s ZP X s. ZPv. 

The apparent place b on the equator, is to be east of a, the true 
place, for the eastern hemisphere, or that hemisphere east of the 
meridian, and therefore the right ascension is increased by the 
parallax ; but in the western hemisphere, b lies to the west of c, 
and therefore the right ascension is diminished. Hence, if the 
right ascension be taken before and after the meridian, the whole 

* Ex. On Oct. 5, 1751, M. de la Caille observed Mars to be V 25/r8 be¬ 
low the parallel x in Aquarius, at the Cape of Good Hope, and to be 
distant from the zenith. On the same day, at Stockholm, Mars was ob¬ 
served to be 1° 57'7 below the parallel of and his zenith distance to, 
be 68° 14'. Here then the angle APil = 3lt'9, and the sines of the ze¬ 
nith distances being 0.4226 and 0.9287, the horizotital parallax was 23/'b, 
If the ratio of the distance of the earth from Mars and the sun respec¬ 
tively, be given, the sun’s hor. parallax will therefore be given, the pa¬ 
rallaxes of the planets bmng inversely as their distances. (Mote, p, 279.) 

S s 

H 
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change of parallax in right ascension, between the two observa¬ 
tions, is the sum s of the two parts before and after the meridian, 

and therefore = - X S the sum of the sines of the two hour 
cos. va 

angles, and the hor par. = sX cos. va sin. ZP X S. There is 
no,parallax in rt. as. on the mer for then the value of abr shewn 
above, is nothing, as the angle Z^P vanishes. As the spher. A 
vrs is rt. angled at s, rs, the parallax in decl. may be easily found 
by JVapier's rules. 

In the application of the above investigations, the rt. as. of the 
planet when it passes the mer. compared with that of a fixed star, 
must be observed, as then there is no parallax in rt. as. Let the 
diff of their rt. ascensions be again observed, 6 hours after, and 
let the change of the diff. d between the apparent rt ascensions 
of the planet and star, during that time, be observed. Again, to 
obtain the planets’ true motion in rt. as. let its rt. as. be observed, 
when it passes the mer. for 3 or 4 days ; then, if in this interval 
of time, its motion in rt. as. between taking the rt. ascensions of 
the star and planet on and off the mer. be equal to df the planet 
has no par. in rt. as. but if it be not = </, the diff. is the parallax 
in rt. as. ; from which, by what is shewn above, the hor. par, will 
be given. If one of the observations be made before the planet 
comes to the meridian, and the other after, a greater diff. will be 
obtained.* 

As the right ascen. and decl. is thus affected by the parallax, it 
is evident that the lat. and long, of the moon and planets must, in 
like manner, be affected by it; and as the determination of this, 
in respect to the moon is, in many cases, particularly in solar 
eclipses, of great importance, we shall here shew how to com¬ 
pute it, on supposition that the lat. of the place, the time, and 
therefore the sun’s rt. as. the moon’s true lat. and long, with her 
hor. parallax, are given.f 

* Ex. Mars was very near a star of the 5th mag. in the eastern 
shoulder of Aquarius, on Aug. 15, 1719, at 9h. l&f in the evening, and 
in 1C7 1i" he followed the star ; on the 16th, at 4h. 21f he followed the 
star in 10' 1"; hence in that interval, the appar. rt. as. of Mars had in¬ 
creased 16" in time. But from observations made in the mer. for several 
days after, Mars, from its proper motion in that time, approached the 
star only 14"; therefore the effect of parallax, in the interval of the ob¬ 
servations, was 2" in time, or 30" in motion. Now the decl. of Mars was 
15°, the co. lat. 41° 10', and the two hour angles 49° 15', and 56° 39f; 
hence the hor. par• = 30" X cos. 15° sin. 41° 10' X (sin. 49° 15' 
sin. 56° 39') = 27^". But the dist. of the earth from Mars, was to its 
dist. from the sun, at that time, as 37 : 100, whence the sun’s parallax 
comes out — 10"17, but this is too great by nearly l^"* 

j The following solution is principally taken from Vince. 
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Let HZR be the meri¬ 
dian, T EQ the equator, A 
its pole ; T DC the ecliptic, 
P its pole, T the beginning 
of Aries, HQR the horizon, 
Z the zenith, ZL a vertical 
circle, or secondary to the 
horizon passing through the 
true place r, and apparent 
place t of the moon; draw P£, Pr, which produce to s, and draw 
the small circle tsy parallel to ov ; then rs is the parallax in lat. 
and ov the parallax in longitude* Draw the great circles TP, 
PZAB, Ppde, and ZW perp to Pc ; then as TP == 90°, and also 
Tp = 90°, T is the pole of Pde (see def. 6, or Simson’s Spher. 
Trig, annexed to his Eudid, cor, to prop. 3) and hence dT = 90°; 
therefore d is one of the solstitial points Cancer or Capricorn ; 
draw Zx perp. to Pr, and join ZT,/*T. Now TE or the L 
T/zE or 2/zT, is the rt. as of the midheaven, which is known 
(see the note to prob. 16, part 3) PZ = AB (being each the 
comp, of AZ) the alt. of the highest point A of the ecliptic above 
the horizon, or nonagesimal degree, and TA, or the angle TPA 
is its longitude ; also Zp = co. lat. of the place, and the L. ZpW 
is the diff between the rt. as. of midheaven T/*E and Tc. Now 
in the rt. angle AZ/zW, rad. X cos Z. p = tang pW X cot. 
pZ (Napier’s rule) hence (16 Eucl. 6) cot. pZ : rad. : : cos. A : 
tang, p W ; or by logarithms, 

log. tang. pW = 10, -f- log. cos. p — log. cot. pZ ; 
therefore PW = pW + /zP, where the upper sign takes place 
when the sign of the midheaven is less than 180°, and the lower 
sio-n when greater. Also in the triangles WZ/i, WZP, we have 
sin. Wp : sin. WP : : tang. WPZ : tang. WpZ (Vince’s Trig, 
art. 231, or Simson’s prop. 26) :: cot. WpZ : cot WPZ, or tang. 
APT (the tangents being reciprocally as the cotangents, Emer¬ 
son’s Trig. prop. 1, cor. 4, or Vince, art. 82) therefore, 
log. tang. APT = ar. co. log. sin. \\p\ -f log. sin. WP + log. cot. 

WpZ— 10 
or, log. tang. APT = log. sin. WP -f* log. cot. WpZ — log. sin. 

Wp; 
and as To, or TPo, the true long, of the moon is given, APo, or 
ZtFx is therefore given. Also in the triangle WPZ \ cos. WPZ, 
or sin. APT : rad. : : tang. WP : tang. ZP (Simson’s Spher. 
prop. 20, or Vince’s, art. 219) therefore, 

* See Keil’s Astronomy, Lect. 21, or Gregory’s Astr. B. 2, sect. 8, 
where this subject is also fully investigated. . „ in 

f The arithmetical complement of any logarithm is what it vvants ol^ l , 
or 20, and is used to avoid subtraction; thus the ar. com. ot 2.oyt)oo64 
is 7.3036436. Hence in the above proportions the ar. com. log. s. 
being added and 10 subtracted, is the same as subtracting log. sin. \\p, _ 
as is evident. However, there seems to be more perplexity, particular.v 
for beginners, in using the ar. co. than the simple log. 
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log. tang. ZP = iO, -f log. tang. WP — log. sin. AP6^. 
Again, in the triangle ZPr, ZP, Pr, and the angle P are given, 
whence the angle ZrP or srt may be thus found ; in the rt. angled 
triangle ZP.r, ZP and the angle P are given ; hence (by Napier’s 
rule) rad X cos. ZP.r = cot. PZ X tang. Par; which resolved by 
logs, gives 

log. tang Px = 10, -f- cos. ZPx — log. cot. PZ ; 
hence rx is given ; therefore sin. rx : sin. Vx :: tang. ZP.r : tang* 
Zrx or trs (Simson’s Spher. prop. 26) which in logarithms is, 
log. tang. Zrx = ar. co. log. sin. rx -f- log* sin. P.r -j- log. tang. 

ZP.T— 10} 
also in the rt angled triangle Zr.r, we have (by Napier’s rule) 
rad. X cos. Zrx — cot Zr X tang, rx; therefore, 

log. cot. Zr =10,-4- l°g cos• Zrx — log. tang. rx. 
with this true zenith dist. Zr, let the parallax be found (note, p. 
279) as if it were the afifiarent zenith distance, and the true pa¬ 
rallax will be given nearly ; let this par. be therefore added to the 
true zenith dist and the afi/iarent zenith dist. will be given nearly, 
to which let the parallax be again computed (p. 279) and the true 
parallax rt will be obtained extremely near; then in the rt.angled 
triangle rst, which may be considered as plane, we have rad. : 
cos. r ; : rt : rs, the Jiarallax in latitude (Simson’s Trig. prop. 1) 
hence, log- rs = tog. rt -f- log. cos. r — 10 = log. fiar lat. Also 
rad : sin. r : : rt : ts ; therefore log. ts = log. rt -4- log. sin. r —• 
10 ; hence cos. tv : rad. :: ts : ou, the fiaral. in longitude (see the 
note to prob 35, part 2.) 

Ex. On January i, 1771, at 9h. apparent time, in lat. 53° N. 
the moon’s true longitude was 3s. 18° 27' 35" and lat. 4° 5' 30" S. 
and her horizontal parallax 61' 9"; to find her parallax in lat. and 
long. 

The sun’s rt. as. by the Tables, was 282® 22' 2", and his dist. 
from the mer. = 9h x 15° = 135° ; also the rt. as. of the mid¬ 
heaven was 57° 22' 2" ;* hence the whole operation for the solu¬ 
tion of the triangles will be as follows. 

In the triangle Z/iW. 
ZfiW = 32® 37' 58" - - - 10, -f- cos. 19.9253864 
Zfr = 37 00 .cot. 10.1228856 

fiW = 32 23 57 .cot. 9.8025008 

fiW + fiV = 23® 28' = PW = 55° 51' 57". 

t 360° — 282° 22' 2" = 77° 37' 58": hence 185° — 77° 37' 58" = 57° 22' 
2*. Z/>W = 90° — 57° 22 2" = 32° 37' 58". 
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In the triangles W/*Z, WPZ. 
fiW = 32° 23' 57" - - - - ar. co. s. 0,2709855 
PW = 55 51 57  sin. 9.9178865 
Z/AV == 32 27 58 ----- cot. 10.1935941 

APT ==? 67 29 8 tan. 10.3824661 

oPT D’s /on£\ 108° 27' 35" — APT *= 40° 58' 27". 
In the triangle WPZ. 

WP = 55o 51'57" - - - 10, -f- tan. 20.1688210 
APT = 67 29 8 ----- sin. 9.9655700 

ZP == 57 56 36 .tan. 10.2032510 

In the triangle WPZ. 
ZPa? = 400 58'27" - - - 10,-f cos. 19.8779500 
ZP = 57 56 36 ----- cot. 9.7967445 

Vx == 50 19 33 ----- tan. 10.0812055 

Pr = 90p -f 4° 5' 30" = 94° 5' 30", hence 94° 5' 30" 
—- P.r = 43° 45' 57" = rx. 

In the triangles ZP^, Zrr. 
rx — 43o 45' 57" - - - ar. cos. s. 0.160074& 
Pa? =s 50 19 33 - - - 9.8863144 
ZPo? 40 58 27 - - - 9.9387676 

Zrx sa 44 1 16 - - - *. - tan. 9.9851563 

In the triangle Zrx. 
Z rx 2= 44° 1' 16" - - - 10, -f* cos. 19.8567795 
rx — 43 45 57 - - - 9.9812846 

Zr =35 53 6 10 - - - - - cot. 9.8754949 

*Zr = = 53° 6' 10" 9.9029362 
Hor. par. 61' 9" = 3669" - fcb 

JD « 1 3.5645477 

rr uncorrected = 2934" = 48' 34" log. 3.4674839 

App. zen. dist. Z*f = 53° 55' 4" nearly sin. 9.9075042 
Hor. par. 3669" * - - - - - log. 3.5645477 

* See the latter part of the note, p. 279. 
f Zt =s= Zr 53° 6' 1G" + rf 4?/ 54" = 53° 55' 4", 
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^ fPar. rt corrected = 2965" 3= 49' 25" log. 3 4720519 
£ trs or Zrx = 44° l7 16" - - - - cos. 9 8567795 

• H 1 r- - - — 

H par. in latitude = 2132" *= 35' 32" log. 3 3288314 

log. 3.4720519 
sin. 9 8419369 

log. 3.3139888 

The true latitude ro being = 4° 5' SO" S. hence, 
Appar. lat. tv b=. ro 4- rs = 4° 41' 2" cos. 9.99S5472 
ts = 206177 ------ 10, -f log. 13,3139888 

ov par. in longitude «= 2067" = 34' 27" log. 3.3154416 

JVote 1. The value of tv is ro + rs, according as the moon has 
N. or S. lat. 

Note 2. The order of the signs being from west to east, from A 
towards C is eastward, and from \ towards T is westward; now 
as the parallax depresses the hody from r to t, it increases the lon¬ 
gitude from 0 to v ; but if the point 0 had been on the other side 
of A, ov would be the contrary way ; hence when the body is to 
the east of the nonagesimal degree, the parallax increases the 
longitude ; and when to the west, it diminishes the longitude. 

' Ex. 2. On June 29, 1813, at 7h 3' 57" apparent time, in the 
evening, at New-York, lat. 40° 42' 40", the moon’s true longitude 
will be 4s. 1° 1 i' 36", and latitude 52' 10" S, and her horizontal 
parallax 59' 16" ; required her parallax in lat. and longitude ? 

The sun’s rt. as. will be 6h. 33' 40"3 in time = 98° 25' 4"5, by 
the Naut. Aim and his distance from the mer. will be 7h. 3' 57" 
= 105° 59' 15"; also the rt. as. TE of the medium cceli will be 
204° 24' 19"5 * 

From Mayer's tables the moon’s greatest parallax (or when she 
is in her perigee and in opposition) is 61' 32"; her least parallax 
(or when in her apogee and conjunction) is 5 3' 52" in the lat. of 
Paris. The arithmetical mean of these is 57' 42" ; but this is not 
the parallax at the mean dist as the par. varies inversely as the 
dist. the par. at the mean dist is therefore 57' 24", an harmonic 
mean between the two.f Laplace makes the moon’s par. at her 
dist. from the earth, which is an arith mean between the two ex¬ 
tremes = (10676") 57' 39"024, so that at the same dist. at which 
the moon appears to us to subtend an angle of (5823") 31' 26"652, 

* To find the rt. as. of midheaven ; the sun’s rt. as. 98° 25' 4'\5 -f* Ids 
dist. from the mer. 105° 59' 15W = 204° 24; 19"5. 

f Harmonic ratio, is when a quantity is divided into* three parts, so that 
the whole is to one part, as the second part to the third. When the se¬ 
cond and third are equal, it is called harmonic proportion continued Em¬ 
erson’s Doctrine of Prop. sect. 2, def. 14. 

^ Crt corrected = 2965" - - - - 
& J trs = 44° 1' 16" . 

•rj J 
H [_ts = 2061" « 34' 21". 
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the earth would appear under an angle of (21322") 1° 55' 18"048. 
M. de Lambre re-calculated the parallax from the same observa¬ 
tions from which Mayer calculated it, and found that it did not 
exactly agree with Mayer’s. He made the equatorial parallax 
57' 11"4. M. dp la Lands makes it 57' 5" at the equator, 56' 
53"2 at the pole, and 57' l" for the mean radius of the earth, 
supposing the diff. of the equatorial and polar diameters to be 
of the whole. From the formula of Mayer (at the end of his ta¬ 
bles) the equatorial parallax is 57' 11"4.* 

During the course of a lunation, or synodic revolution, the moon 
constantly exhibits very singular phenomena, which we call her 
phases. At the moment that the moon passes between the earth 
and the sun, in her revolution round the earth, which she regards 
as her centre, the enlightened half of her is then entirely turned 
towards the sun, and the other dark half is towards the earth ; in 
this case, the moon will therefore be invisible to us, and this po¬ 
sition of the sun and moon is termed the conjunction or new moon. 
The moon remains invisible during 3 or 4 days ; because for a day 
or two both before and after conjunction, her crescent is so small, 
and her light so obscured by the sun’s rays, that she escapes the 
nicest observation. After disengaging herself in the evening from 
the rays of the sun, she re-appears towards the east with a slender 
crescent, convex towards the sun, which increases with her dis¬ 
tance ; in about 7j days after the conjunction it becomes a semi¬ 
circle, at which time she will come to the meridian about 6 o’clock 
in the evening, when the moon is 90° distant from the sun ; mov¬ 
ing still eastward, she becomes an entire circle of light in about 
14^ days, when she is in opposition with the sun, at which time 
she will come to the meridian at midnight; hence in this position 
she appears full, and is therefore called full moon. When she af¬ 
terwards approaches the sun, this luminous circle is changed into 
a crescent, which diminishes according to the same degrees it had 
increased before, until, in the morning it becomes immersed in 
the solar rays. The lunar crescent being always turned towards 
the sun, evidently indicates that it is from the sun the moon re' 
ceives her light. The law of the variation of her phases we have 
given in p. 269, and the method of delineating the phases may be 
easily collected from what is given in p. 268. These phases are 
renewed at every conjunction, and their return depends on the 
excess of the moon’s synodical motion above that of the sun, 
which excess is called the synodical motion of the moon. The 
length of the synodic revolution of the moon, or the period of her 

* M. John Machin, Astron. Prof. Gresh. Col. lias, at the end of Matte’s 
translation of the Principia, given the laws of the moon’s motions ac¬ 
cording to gravity; that is, her variations, her inequalities during a revolu¬ 
tion, &c. the motion of the nodes, the inclination of the plane of her orbit to 
that of the ecliptic, the variation of the areas described about the sun, the 
motion of her apogee, the variation of the eccentricity of her orbit, the equa¬ 
tion of the apogee, equation of the centre, and other things oi a similar 
nature. 



336 OF THE SOLAR SYSTEM. 

mean conjunction, according to Laplace, is 29.530588 days (see 
pages 325, 326) it is to the tropical year nearly as 19 : 235, that 
is, 19 solar years for about 235 lunar months. 

It is in those points of the moon’s orbit called the syzygies, that 
she is in conjunction or opposition with the sun ; in the first point 
she is new, in the second full. In the quadratures, when she is 
distant from the sun 90° or 270°, reckoning in the direction of her 
proper motion, or in her first and second quarters, we see half of 
her enlightened hemisphere, strictly speaking, we see a little 
more, for when the exact half is presented to us, the angular dis¬ 
tance of the moon from the sun is a little less than 90°. At this 
instant, as Laplace remarks, the enlightened being separated from 
the obscure part of the moon by a straight line, the radius drawn 
from the observer to the centre of the moon, is perpendicular to 
that which joins the centres of the moon and sun : so that in the 
triangle formed by the straight lines which joins those centres and 
the eye of the observer, the angle at the moon is a right one; 
hence the distance of the earth from the sun, may be determined 
in parts of that of the moon from the earth. This method is, 
however, very inaccurate, from the difficulty of fixing with preci¬ 
sion the instant when half of the lunar disk is enlightened ; how¬ 
ever, it is to this method we owe the first just notions that were 
formed of the immense magnitude of the sun, and of his distance 
from the earth. An observer will moreover observe, that from 
new to jull moon the phases are horned, half moon, and gibbous, 
and as the enlightened or convex side of the moon is always turned 
to the sun, the crescent, or irregular side will appear towards the 
east, or, if the spectator be in north lat. towards the left. From 
the full to the change, the phases appear in this order, gibbous, 
half moon, and horned ; in these positions, the convex or enlight¬ 
ened side will appear towards the east, and the horns or crescent 
towards the west, or to the right hand. The earth exhibits to the 
moon similar phases ; when she is new to us, the earth is full to 
her, and when she is in her first quarter to us, the earth is in her 
third quarter to her, &c. In consequence of this, one half of the 
moon will have no darkness at all, the earth affording her a much 
greater light in the sun’s absence than she does to us ;* while the 
other half has about 14§ days darkness and 14j days light alter¬ 
nately. As the moon’s axis is almost perpendicular to the eclip¬ 
tic, she has scarce any difference of seasons. 

In north lat. all the full moons, in the winter, happen when the 
moon is on the north side of the equinoctial ; as they always hap¬ 
pen when the rnoon is directly opposite the sun. While the moon 
passes from Aries to Libra, she will be visible at the north pole, 
and from Libra to Aries she will be invisible there ; hence, at the 
north pole there is alternately a fortnight’s moonlight and a fort- 

* As the surface of the earth is about 13 times greater than that of 
the moon, it affords 13 times more light to the moon than the moon does 
to the earth. 
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eight’s darkness The same phenomena will take place at the 
south pole, in our summer, during the sun’s absence. 

The explanation of the moon’s phases naturally leads us to that 
of eclipses ; but as this subject merits a separate chapter, we shall 
give it in the following part of the work. The influence of the 
moon on the waters of the ocean shall also be explained, when the 
laws of gravity, kc. on which it depends, are first investigated. 

Before the first and after the last quarter, but principally about 
the time of new moon, we can sometimes distinguish that portion 
of the lunar disk which is not enlightened by the sun ; this feeble 
light is called lumiere cendree, and is caused by the light reflected 
from the illuminated hemisphere of the earth on the moon’s disk. 
This is evident from its being more perceptible at the new moon, 
when the greatest part of the earth’s enlightened hemisphere is 
turned towards the moon. According to Dr. Smith, the propor¬ 
tion of moonlight to daylight, at the full moon, is 90000 to 1. 
Emerson, in his Optics (B. 1, prop. 20) makes it as 96000 to l.* 
But Bouguer has found, by experiment, that it is as 300000 to l.f 
This is the reason why the light of the moon, collected in the fo¬ 
cus of the largest mirrors, produces no sensible effect on the 
thermometer. 

The moon’s disk is greatly diversified with spots or inequalities, 
which have been accurately described. Through a telescope, 
those spots have the appearance of hills, valleys, &c. They, how¬ 
ever, shew us that the moon always presents to us very nearly the 
same hemisphere, and that she revolves upon her axis in a period 
equal to her revolution round the earth.j: From the bestobserva- 

* Emerson shews (Optics, 13. 1, prop. 20, cor. 1) that moonlight is to 
daylight as half the square of the moon’s radius, to the square of the 
moon’s distance, when she is full. And in the quadratures as f the 
square of the moon’s radius to the square of the moon’s distance; and 
shews that from the same principle, the light of any other body, com¬ 
pared with daylight, may be found. 

f In the English edition of Laplace, this is given as 300 : 1. 
f Each of the moon’s spots have been distinguished by a proper name, 

principally from the most noted astronomers, philosophers, and mathe¬ 
maticians, or from their respective appearances. Thus Sinus roris, Mare 
frigorum, Oceanus pro cell arum, Terra siccitatis, Palus nitnbovum, Copernicus, 
Kepi emus, Grimaldi, Galileo, HerscheVs volcano, &c. Many astronomers 
have given maps of the face of the moon; but the most celebrated are those 
of Hevelius in his Selenograpliia, in which lie has represented the different 
phases of the moon during an entire revolution. Floreniius, Langrenus 
Grimaldus, and Ricciolus, have each distinguished himself in describing 
the lunar spots, &c. Langrenus and Ricciolus denoted the spots by the 
names of the principal philosophers, mathematicians, See giving the 
names of the most celebrated characters to the largest spots. Tlevelius 
marked them with the geographical names of places on the eaith. The 
former distinction is, however, generally followed, though Mayer prefers 
Hevelius’s figures: see Keil’s Astr. led. 10. The best and most complete 
representation of the moon’s disk, is that drawn on Mr. Russel’s lunar 
globe, published a few years ago. This globe not only shews the libra- 
tion of the moon in the most perfect manner, but is also a complete pic 
ture of the mountains, pits, shades, kc. on her surface. 

T t 
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lions, these spots are found to be produced by the mountains and 
valleys on the moon’s surface. This is evident from the irregu¬ 
larity of that part of her surface which is turned from the sun ; 
for if her surface was perfectly level or smooth, the illuminated 
part of her disk, at the quadratures, would be separated from the 
dark by a straight line ; at all other times, this line would appear 
of an elliptic form, convex towards the enlightened part of the 
moon, in the 1st and 4th quarters, and concave in the 2d and 3d ; 
but these lines, so far from appearing regular and well defined, 
particularly when the moon is viewed through a telescope, that 
they always appear notched and broken in innumerable places. 
In all situations of the moon, the elevated parts always cast a tri¬ 
angular shadow with its vertex turned from the sun ; on the con¬ 
trary, the cavities are always dark on the side next the sun, and 
illuminated on the opposite side ; moreover, when the sun be¬ 
comes vertical to some of these parts, there is no shadow percep¬ 
tible ; hence these are mountains, and those that are dark on the 
side next the sun, are cavities ; for these appearances are exactly 
conformable to what we observe of hills and valleys on the earth. 
It is not, therefore, singular that the edge of the moon, which is 
always turned towards the sun, is regular and well defined, and 
that no indented parts are seen on her surface at the time of full 
moon ; for the shining spots on her surface would not be percep¬ 
tible, did not the shade or dark part separate them from the illu¬ 
minated part of the disk; but in the above circumstances, there 
is more of the dark part turned towards a spectator on the earth, 
all being equally and more strongly enlightened. The dark parts 
by some have been thought to be seas ; but the irregularity of the 
line between the enlightened and dark parts, shews that there can 
be no very large tracts of water, as such a regular surface would 
necessarily produce the line perfectly free from any irregularity. 
On the dark part of the moon’s disk, near the confines of the lu¬ 
cid part, some bright spots are perceptible ; these shining spots 
are supposed to be the summits of high mountains, which are en¬ 
lightened by the sun’s rays, while the adjacent valleys, near the 
enlightened part, are entirely dark. On this supposition, astron¬ 
omers have determined the height of some of these mountains ; 
the method of performing which we shall presently shew. 

Continued observations on the lunar disk, have discovered some 
small changes in these appearances, so that the same side of the 
moon is not always exactly turned towards the earth, the spots that 
lie near the edge or limb, successively appearing and disappearing 
by periodical oscillations, which have been distinguished by the 
name of the libration of the moon. 

This phenomenon arises from four principal causes. 1. From 
the observer not being placed at the centre of the earth, but at its 
surface. Galileo, who first observed with a telescope the moon’s 
spots, discovered this circumstance; he observed a small daily 
variation, arising from the motion of the spectator about the earth’s. 
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centre, which caused a little of the moon’s western limb to disap¬ 
pear, from her rising to her setting, and brought into view a small 
portion of the eastern limb. For the visual ray, drawn from the 
eye of an observer to the moon’s centre, determines the middle 
of the visible hemisphere, and it is evident, that from the effect 
of the lunar parallax, this radius cuts the surface of the moon at 
different points, according to her alt above the horizon. 2. Ga¬ 
lileo likewise observed that the north and south poles of the moon, 
and the part of the surface that are near them, alternately appeared 
and disappeared; this is called the libration in latitude, and is caused 
from the axis of the moon not being perpendicular to the plane of 
her orbit, it making an angle of about 1° 43' with a perp. to the 
plane of the ecliptic. In supposing this axis to maintain its pa¬ 
rallelism during the moon’s revolution round the earth, it inclines 
more or less to the radius vector of the moon, as observed from 
the earth ; and the angle which is formed by these two lines, is 
therefore acute during one half of the revolution, and obtuse dur¬ 
ing the other half. 3. The third cause, is the unequal angular 
motion of the moon about the earth, and her uniform motion about 
her axis, which makes a little of the eastern and western parts 
alternately appear and disappear, the period of which is a month ; 
this is called the libration in longitude * 4. The fourth cause of 
the libration arises from the attraction of the earth upon the moon, 
in consequence of its spheroidical figure. 

* The libration in longitude would not take place, if the moon’s angu¬ 
lar motion about the earth were equal to her angular motion about her 
axis. For if T be the earth, abed the moon at v and e ; let arc be perp. 
to Tv, then abc is that hemisphere of the moon at v which is next the 
earth. Now when the moon comes 
to e, if she had no motion on her axis, 
bed would be parallel to bvd, and the 
same face would not be turned to¬ 
wards the earth. But if b was brought 
to coincide with the line Te, by the 
moon’s rev. on her axis in the direc¬ 
tion abc, the same face would remain 
turned towards the earth ; in this case 
the moon would have revolved, on 
her axis, the angle beT, which is equal 
to the alternate angle eTv, the angle 
which the moon has described about 
the earth. 

The same face of the moon is al¬ 
ways turned towards the earth, when 
in the same point of her orbit, and hence, from what we have now 
shewn, the time of her rev. in her orbit, is equal to the time of her rev. 
on her axis. But as her angular motion eTv about the earth is unequal, 
while that on her axis is equal, these two angles cannot continue equal, 
and hence, from the above, the same face cannot continue towards the 
earth, but in the intermediate points, must vary sometimes a little more 
to the east, and sometimes to the west. The greatest libration in longt,- 
tude is therefore nearly equal to the equation of the orbit, or at its max¬ 
imum about 7$° i this would be accurately so, if the mwo»*9 axis were 
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It is an extraordinary circumstance, as Vince remarks, that the 
lime of the moon’s revolution on her axis, should be equal to that 
in her orbit; and still more extraordinary, that all the secondary 
planets should observe the same law Sir Isaac Newton has com¬ 
puted (Prim B 3, prop. 37) from the altitude of our tides, that 
the alt. of the moon’s tides must be 93 feet, and that therefore the 
figure of the moon is a spheroid, whose greatest diameter pro¬ 
duced, would pass through the centre of the earth, and exceed 
the diameter perp thereto by 186 feet. Hence it is, says he, that 
the same face of the moon always respects the earth ; nor can the 
body of the moon possibly rest in any other position, but would 
always return by a iibratory motion to this situation, from the 
earth’s attraction. But it has been shewn (p 338) that there can 
be no large tracts of water on the moon’s surface, and hence New¬ 
ton's supposition cannot account for this phenomenon. The sup¬ 
position of Dr Mairan is, that the hemisphere of the moon next 
the earth is more dense than the opposite one, in which case the 
same face would be kept towards the earth, from the earth’s at¬ 
traction. We have pointed out a more probable cause (note, p. 
296, See.) from the moon’s having little or no atmosphere. 

Whether the moon has an atmosphere or not, is a question, 
however, that has long been agitated by various astronomers. 
Schroeter, of Liiienthal, in the duchy of Bremen, endeavours to 
establish the existence of an atmosphere from the following con¬ 
siderations. 1. He observed the moon when 2^ days old, in the 

perp to her orbit; for the equat. of the orbit, or the cliff* between the 
true and mean motion, is equal to the diff. of her mot. about her axis, 
and her true motion, which is the libration. As there is no equation of 
the orbit in apogee and perigee, the same face will then be turned to¬ 
wards the earth, Let T, in the above small fig represent, the earth, M 
the moon, Pp its axis, not perp. to the plane of the orbit ev, then at e the 
pole P will be visible to the earth, and ai v the pole p will be visible ; 
hence as the moon revolves about the earth, the poles will alternately 
appear and disappear, which explains the libration in latitude Our sea¬ 
sons are caused in a similar manner from the obliquity of the ecliptic. 
From what we have here shewn, it is evident, that one half of the moon 
is never visible at the earth ; and that the time of its rotation about its 
axis being one month, the length of the lunar days and nights will be 
each nearly a fortnight, being subject but to a small variation, as the 
moon’s axis is nearly perp. to the ecliptic. 

Hevelius observes, that the libration in lat. was the greatest when the 
moon was at her greatest north lat. the spots which are near the northern 
limb being then nearest to it; and that the spots receded from that 
limb, as the moon advanced from thence, until she came to her greatest 
lat. S, where the spots near the southern limb were then nearest to it. 
lie found this variation to be about 1# 45Y, the moon’s diam. being SC'\ 
It therefore follows, that when the moon has her greatest lat. a plane 
passing through the earth and moon, perp. to the plane of the moon’s 
orbit, will pass through the moon’s axis; the moon’s equator must 
therefore intersect the ecliptic in a line parallel to the line of the nodes 
of the moon’s orbit, so that in the heavens, the nodes of the moon’s or¬ 
bit coincide with those of her equator (see Yince’s Astr.) 

/ 
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evening soon after sun-set, before the dark part was visible, and 
continued to observe her until it became visible. The cusps or 
horns, appeared tapering in a very sharp, faint prolongation, each 
exhibiting its further extremity faintly illuminated by the sun’s 
rays, before any part of the dark hemisphere was visible ; after¬ 
wards the whole dark limb appeared illuminated. The prolonga¬ 
tion of the cusps beyond the semicircle, Schroeter thinks, must 
arise from the refraction of the sun’s rays by the moon’s atmos¬ 
phere. He also computes the height of the atmosphere, and finds 
it = i 356 Paris feet, when it is capable of refracting light enough 
into the dark hemisphere to produce a twilight, more luminous 
than the light reflected from the earth, when the moon is about 
32° from the new; and that the greatest height, capable of re¬ 
fracting the solar rays, is 5376 feet 2. At an occultation of Ju¬ 
piter’s satellites, the 3d disappeared, after having been about 1" or 
2" of time indistinct; the 4th became indiscernible near the limb; 
this was not observed of the other two. Phil, tram, i792 There 
is another argument brought forward to prove the existence of a 
lunar atmosphere, taken from the appearance of a luminous ring 
round the moon, in the time of solar eclipses; this has been par¬ 
ticularly observed in the total eclipse of the sun in 1706, and in 
another in 717, when, during the time of total darkness, certain 
streaks of light were seen to dart from different places of the 
moon, during the time of total darkness. These were imagined 
to be flashes of lightning, and hence the existence of clouds and 
vapours, and an atmosphere, has been inferred. These flashes are 
also, by some, supposed to be connected with such appearances, 
as Dr. Herschel has concluded,* to be volcanoes, which have also 
been considered as a proof of the lunar atmosphere. 

On the other side it is urged, that as the moon constantly ap- 

* On April 19, 1787, Dr. Herschel discovered three volcanoes in the 
dark part of the moon ; two of which appeared to be almost extinct, but 
the third shewed an actual eruption of fire, or luminous matter, resem¬ 
bling a small piece of burning- charcoal, covered by a very thin coat of 
white ashes ; it appeared about as bright as such a coal would be seen 
to glow in faint da} light. The adjacent parts of the volcanic mountain 
seemed faintly illuminated by the eruption. Ulloay in an eclipse of the 
sun, discovered a similar eruption, several years ago ; it appeared like 
a star near the moon’s edge. Another eruption appeared on May 4, 1783. 
Phil trans. 1787. On March 7, 1794, a few minutes before £i o’clock in 
the evening, a bright spot was observed, with the naked eye, on the 
dark side of the moon, by Mr. IVilhins, an eminent architect of Norwich ; 
he conjectured that he saw it about five minutes. London, Phil, trans. 
1794. On April 13, 1793, and on Feb. 5, 1794, the celebrated Mr. Pi- 
azzi, of Palermo, observed a bright spot on the dark part of the moon, 
near Aristarchus. Several other astronomers have observed the same 
phenomenon. Laplace remarks (Astr. ch. 4, B. 1) that the crown of pale 
light which has been perceived round the lunar disk, is probably the 
solar atmosphere, for that its extent cannot accord with that of the 
pioon, as we are assured by eclipses of the sun and stars, that the lunar 
atmosphere is nearly insensible. 
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pears with the same brightness, when there are no clouds in our 
atmosphere, she cannot be surrounded with an atmosphere, at 
least like ours, which is so variable in its density, and so frequent¬ 
ly obscured by clouds and vapours. And Vince remarks, that if 
there were much water on her surface, or an at a osphere, as 
conjectured by some astronomers, the clouds ahd vapours might 
easily be discovered by the telescopes we have now in use ; but 
no such phenomena hare ever been observed. Lafilace says, that 
the atmosphere which we may suppose to surround the moon, in¬ 
flects the luminous rays towards her centre, and if (as should be 
the case) the atmospherical strata are rarer in proportion as they 
are removed from the surface, these rays, in penetrating into them, 
will be inflected more and more, and will describe a curve con¬ 
cave towards her centre. An observer in the moon will not cease 
to see a star until it is depressed below the horizon, an angle call¬ 
ed the horizontal refraction. The rays emanating from this star, 
seen at the horizon, after having first touched the moon’s surface, 
will continue to describe a curve similar to that by which they ar¬ 
rived ; thus an observer placed behind the moon, relatively to the 
star, will see it in consequence of the inflection of the lunar at¬ 
mosphere. The diam. of the moon is not sensibly augmented by 
the refraction of its atmosphere ; and hence a star, eclipsed by the 
moon, would appear eclipsed later than if this atmosphere did not 
exist; and would, for the same reason, sooner cease to be eclipsed. 
Thus the effect of a lunar atmosphere would be principally per¬ 
ceived in the eclipses of the sun and stars by the moon. Very 
exact and numerous observations have scarcely indicated a suspi¬ 
cion of this influence ; and, according to Lafilace, the horizontal 
refraction, at the surface of the moon, does not exceed (5") "62. 
At the surface of the earth, this refraction is at least 1000 times 
greater.* The lunar atmosphere, therefore, if any exist, must 
be extremely rare, and even superior to that produced in the best 
air-pumps. 

Some remark, that if we reason from analogy, the advocates for 
an atmosphere have the advantage over those who contend that 
there is none ; but the reverse is, in reality, the case. For it is 
not analogy to compare the phenomena of a secondary planet with 
those of a primary : the phenomena of the moon, being compared 
with those on our earth. Whereas, reasoning from strict analogy, 
we should compare her phenomena with those similar phenomena 

* The horizontal refraction on the earth is about 33' = 980ff (see p. 
155.) Nexuton has shewn (cor. 5, prop. 37, B. 3) that the accelerative 
gravity, or weight of bodies, on the surface of the moon, is about three 
times less than on the surface of the earth, and as the expansion of the 
air is reciprocally as the weight that compresses it; hence the moon’s 
supposed atmosphere, being pressed or attracted towards the moon’s 
centre, by a force only one third of that which attracts our air towards 
the earth’s centre, it follows, that the lunar atmosphere is only one third 
as dense as that of the earth, and is therefore, from the laws of refrac¬ 
tion, too rare to produce any sensible refraction. 
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in the secondary planets. Now the secondary planets, from the 
observations of the most skiltul astronomers, are found, like the 
moon, to have little or no atmosphere ; and hence the probability, 
from analogy, is in favour of those who contend that there is no 
atmosphere. * 

We have shewn that the bright spots which are sometimes vis- 
ible on the moon’s disk, are the tops of high mountains, the sha¬ 
dow of these, projected on the planes, varying with the sun’s po¬ 
sition ; upon or near the edge of the enlightened part of the disk, 
we see these mountains forming an indented border extending 
beyond the line, which separates the illuminated and dark part; 
by a quantity from which, being measured, their altitude may be 
determined The method used by Hevellus, Riccioli, and others, 
to determine this alt. is the following. Let SLM be a ray of light 
from the sun, passing the moon at L, 
and touching the top of the mountain 
at M ; then the space between L and 
M will appear dark. Now by means of 
a micrometer, the ratio of LM to the 
moon’s diameter, or its half LC, may 
be determined ; hence LC being given, 
LM is therefore given ; then (47 Eucl. 

1) CM = ^CL2 -f- LM2 is given; but 
CP = CL, hence PM = CM — CP = 
the height of the mountain, is given. 
Keil, in his Astr. lect. 10, remarks, that Riccioli observed the il¬ 
luminated part of the mountain St Catharine, on the 4th day after 
new moon, to be distant from the confines of the lucid surface 
about part of the moon’s diameter, or | part of her semidiam- 
ter LC ; hence LC being = 8, and LM = 1, we have CM = 

.. 

"5. 
64 -f- 65 = 8.062, and hence PM = .062 ; therefore PC 
or LC : PM : : 8 : 062. Now taking the moon’s semidiameter 
— 1079 miles (p. 66 or p. 344) the height of this mountain will 

be = = 8.1 miles nearly. Galileo makes LM : 
8 itr 

of LC, from which the height of the mountain will be 5.07 miles; 
and Hevelins makes LM = T'T of LC, from which the mountain’s 
height = 3.15 miles. 

The foregoing method, as Dr. Herschel observes (Phil, trans. 
1781) is only applicable when the moon is in her quadratures ; he 
has therefore given the following general method. Let E repre¬ 
sent the earth (see the last, fig.) draw Emn and bo perp. to the 
moon’s rad. RC, and br paral to c?z, also me perp. to Sm ; then, 
to an observer at E, the line mb will not measure its full length, 

* We have been rather diffuse on this article ; but the importance of 
the subject deserves to be strictly examined, as it may lead to important 
results relative to the planets’ motions on their axes, &c. see the note, 
p. 296. 
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being projected into the line br or ora, which will therefore be the 
lines observed by the micrometer; but when the earth is in quad¬ 
ratures at e, the line bm will measure its full length. From the 
observed quantity bm or on, when the moon is not in her quadra¬ 
tures, to find bm we have the following proportion : the triangles 

brm, bCo, are similar ; hence bo : bC :: br : bm = —--. But6C 
1 bo 

is the radius of the moon, and br or on the observed dist of the 
moon’s projection ; also bo is the sine of the angle RCb = o£S = 
the distance, or elongation of the moon from the sum very nearly, 
which may be easily found by calculation, or from the Nautical 
Almanac ; hence bm = br divided by the sine of the elongation, 
radius being unity, from which mjiy the height of the mountain, is 

found as before. 
In June, 1780, at 7 o’clock, Dr. Herschel measured bm or br, 

and found it = 40"625, for a mountain in the south-east quadrant; 
the moon’s elongation was 125° 8', the sine of which = .8104 ; 
hence 40"625 —■ .8 104 = 50" 13, the angle under which bm would 
appear, if seen directly Now Cb, the moon’s semidiameter, was 
16' 2"6, and if, with Vince, we take its length = 1090 miles,* 
we have 16' 2"6 : 50" 13 : : 1590 : bm = 56.78 miles } hence mji 
= 1.47 miles, the height of the mountain. 

Dr. Herschel has determined the height of several other moun¬ 
tains, and thinks that the height of the lunar mountains is in gen¬ 
eral greatly overrated, and that, a few excepted, they do not ex¬ 
ceed half a mile in their perpendicular elevation. He observes, 
that it should be examined whether the mountain stands upon lev¬ 
el ground, that the measurement may be exact: as a low tract of 
ground, between the mountain and the sun, will make its alt. 
greater, and elevated places will make it lower than its true height. 

* The moon’s semidiameter may be thus calculated. In the fig. p. 250, 
let M represent the earth. All the moon, AC its semidiameter ; then 
MC her dist. from the earth being 238553 miies (p. 250) and her appar. 
diam. at her mean dist from the earth = 3i' 7" (p 326) or semidiam. 
or the angle AAIC = 15' 33"5, we have this proportion: 

As Cos. 15' 33"5 - - - 9.9999956 
To Sine 15' 33"5 - - - 7.6554652 
So is 238533 - - - . 5.3775494 

13.0330146 

To AC 1079 miles - - 3.0330190 

Having the diameter of the moon given = 1079 X 2 = 2158 miles, its 

79113 3 T 
magnitude from this = -- — log. 7911 — log. 2158' = 1.6925400 

21583 
the number corresponding to which, is 49.26 nearly, the number of times 
the earth is greater than the moon. See this also calculated, p. 327. 

f For more information on the moon’s phenomena, the reader is refer¬ 
red to A'ewton’s Principia, B. 3, Laplace's Celestial Mechanics, Mayer's 
Lunar Theory, or the late Tables of M. Burg as published by Vince- 
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Schroeter, on the contrary, asserts, that there are mountains in the 
moon much higher than any on the earth, and instances one above 
1000 toises higher than Chimbaraco * But, as we have seen above, 
a small error in taking the angle with the micrometer, will produce 
a great error in the height of a mountain. 

Before we finish this chap, it may not be improper to say a few 
words on the comparative astronomy of the moon. In one of her 
hemispheres the inhabitants in the moon (if any) constantly see 
the earth, but in the other never, except, from her libration, those 
who are situated near the limits of her disk. To those the earth 
sometimes rises a little above the horizon, and sometimes appa¬ 
rently moving backward, subsides below it. In the hemisphere,from 
which the earth is visible, it seemsas it were fixed to the same point 
of the heavens, except a small oscilatory motion from the moon’s 
libration, whilst in the space of a natural day, the sun and stars 
move towards it from the east, and then advance from it towards 
the west, the earth’s atmosphere concealing the stars, some time, 
from a lunar observer. To such of the lunarians as live near the 
middle of the disk, the earth appears continually vertical ; but to 
some it appears to decline towards the north, and to others towards 
the south ; to some towards the east, and to others towards the 
west ; the declination being in proportion to their dist. from the 
middle of the disk. To the inhabitants who reside near those 
limits which divide the visible from the invisible hemisphere of 
the moon, one half of the earth will appear always in their horizon 
like a stupendous flaming mountain, its orb appearing to them 
nearly 14 times larger than the moon’s disk appears to us ;f but 
those that dwell in a circle of the moon, passing from the poles 
through the middle, will have the earth always in their meridian, 
&c. &c | In her compound motion round the earth and sun, her 
path is every where concave towards the sun, as McLaurin has 
shewn in his account of Newton’s discoveries B. 4. ch. 5. The 
force, as he remarks, that bends the course of a satellite into a 
curve, when the motion is referred to an immoveable plane, is, at 
the conjunction, the difference of its gravity towards the sun, and 
of its gravity towards its primary ; when the former prevails over 
the latter, the force that bends the course of the satellite tends to¬ 
wards the sun ; hence the concavity of the path is towards the sun, 
and this is the case of the moon, as he proves, in the ch. above 

* This author has also lately published a new work, on the height of 
the mountains of Venus, some of which he makes 23000 toises in perp. 
height, an alt. seven times more than that of Chimboraco. 

f Laplace remarks, that at the same distance at which the moon appears 
under an angle of 5823w (in his measures) the earth would subtend an angle 
of 21852"; hence the ratio of their diameters are nearly as 3 to 11; and as 
the areas of circles are as tlie squares of their diameters (2 Eucl. 12) we 

have 11 divided by 3 = 13-f nearly. 
* For more information on this curious subject, consult Gregory’s Astr. 

II. 6, prop. 9. 

Uu 
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quoted * McLaurin further remarks, that when the gravity towards 
the primary exceeds the gravity towards the sun, at the conjunct 
tion, then the force that bends the course of the satellite tends to¬ 
wards the primary, and therefore towards the opposition of the 
sun ; therefore the path is there convex towards the sun : and 
this is the case with Ju/iiter’s satellites When these two forces 
are equal, the path has, at the conjunction, what is called by math¬ 
ematicians a point of rectitude ;f in which case, however, the path 
is concave towards the sun throughout. 

CHAP. V. 

OF MARS. 
Mars is the next planet in order after the earth; he always ap¬ 

pears of a dusky red colour, and though sometimes apparently as 
large as Venus, yet he never appears so bright. From his red and 
dull appearance it is very probable that he is encompassed with a 
gross, cloudy atmosphere | 

We have shewn that the orbits of Mercury and Venus are with¬ 
in the orbit of the earth ; that these planets seem to accompany 
the sun, like satellites, their mean motion round the earth being 
the same as that of the sun ; that they never recede from the sun, 
so as to be seen in opposition, or even a quadrant or 90o from him, 
and are only visible a few hours in the morning before the sun ri¬ 
ses, and a few hours in the evening after he sets ; and that they 
are sometimes seen to pass over the sun’s disk in the form of a 
dark round spot, which phenomena evidently prove that they are 
situated within the earth’s orbit. But Mars, being the first planet 
situated without the orbit of the earth, exhibits to the spectator dif¬ 
ferent appearances. He is sometimes seen in conjunction with 
the sun, but he is never seen to transit or pass over his disk. He 
recedes from the sun to all possible angular distances, is some¬ 
times in opposition, comes to the meridian at midnight, or rises 
when the sun sets, and sets when the sun rises ; at this time he 

* See also Ro-we’s Fluxions, 2d ed. pa. 225, A Treatise on Ast. by O. Gre 
gory, art. 458, or Ferguson’s Ast. art. 266. See also Dr. D. Gregory’s Ast. 
b. 4, where the theory of the secondary planets are fully established; or 
B. 3, Newton’s Prin. 

f See Simpson’s Fluxions, vol. 1. sect. 8. 
t Emerson, in his Optics (B. 1. prop. 12. cor. 4) has shewn, that the 

red rays are the strongest, are the least refracted, or turned out of their 
way, and penetrate furthest into a resisting medium. And that the rest of 
the" colours grow weaker in order, the violet being the weakest. This is 
also proved from the observations of those who dive into the sea; for the 
deeper they go the redder the objects appear, the other rays being reflect*- 
ed back. And we see that the sun and moon always appear ruddy in the 
horizon, where their light has to pass through a greater portion of the at¬ 
mosphere, than when they are in the zenith. 
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appears brightest being nearest the earth. The disk of Mars, 
when viewed through a telescope, changes its form and becomes 
sensibly oval, according to his relative position from the sun j 
sometimes appearing round, at other times gibbousy but never 
horned. These phenomena evidently shew, that Mars moves in an 
orbit more distant from the sun than that of the earth (see p. 257) 
and that it is from the sun he receives his light. When viewed 
from the earth, he appears to move sometimes from •west to east, 
at other times from east to west, and sometimes he appears sta¬ 
tionary ; which shews that he does not regard the earth as his 
centre of motion, not observing the equal description of areas ; 
(see pages 258, 306 and 307) but when viewed from the sun 
Mars observes this law, and always performs his motion from west 
to east, which proves that he regards the sun as the centre of his 
motions. 

The mean length of the sidereal revolution of Mars is 686,979579 
days, or l y. 32 id. 23 h. 30' 35" 6. His synodic revolution is. 
1 y. 321 d. 22 h. 17' 56".* His motion is very unequal. In the 
morning when he begins to be visible, it is then direct and its ve¬ 
locity the greatest ; it becomes gradually slower until the planet's 
elongation from the sun is about 136° 48', where he becomes 
stationary ; after which his motion becomes retrogradey increas¬ 
ing in velocity until the planet is in opposition with the sun. At 
this time his velocity is a maximum, after which it diminishes and 
again becomes nothing, when Mars is distant from the sun 136° 
48' as before. His motion then becomes again direct, after hav¬ 
ing been retrograde during 7 3 days ; in which interval, the arc of 
retrogradation, described by the planet is about 16° 12', immerg- 
ing at length, in the evening into the sun’s rays. Mars renews 
these singular phenomena at every opposition, with considerable 
variations, however, in the extent and duration of his retrograda¬ 
tion s. 

The rotation of Mars on its axis is found, from some spots on 
his surface, to be from west to east, M. Cassini, in 1666, dis¬ 
covered some well defined spots, from which he determined the 
time of the rotation to be 24 h. 40'. M. Miraldi determined the 
time of rotation to 24 h. 39'. Dr. Herschel makes the time of 
rotation = 24 h. 39' 2i" 67, without the probability of a greater 
error than 2" 34 $ he remarks that the spots are ficrmanenty and 

* The mean motions of the planets being given from the ast. table*, the 
length of their synodic, ov tropical year, can be easily found, by saying, as 
the mean motion for a year to 360°, so is 365 days to the synodic revolu¬ 
tion. Thus for Mars, the mean motion in a year, according to Delantbre (tab. 
112) is 6s. 11° 17' 10" ; hence 191° 17' 10" : 360° :: 365d. : 686d, 22h. 17" 56" 
nearly. Independent of the tables the length of a tropical year may be 
found, by saying, as 360° to 360° less the precession of the equinoxes, during 
the time, so is the length of the planet’s sidereal revolution, to the length of 
its synodic or tropical revolution. And on the contrary the tropical rev. be¬ 
ing given, the sidereal is found as shewn before, pa. 246. See also pa. 307!, 
304, See. 
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that this planet has a considerable atmosphere. Laplace makes 
tliis motion on its axis 1.02723 days = Id 0 h. 39' 12" 672, and 
on an axis inclined to the ecliptic in an angle of (66° 33') 59° 41' 
49" 2 Dr Htrschi'l (phil. trans. 1784) makes the axis of Mars 
inclined to the ecliptic in an angle of 39° ,2', and to his orbit in 
an angle of 61° 18' ; and the north pole to be directed to !7° 47' 
of Pisces upon the ecliptic, and 19° 28' on his orbit He makes 
the ratio of his diameters as 16 : 15 ; but Dr. Maskelync, who 
carefully observed Mars at the time of opposition, could perceive 
no difference in his diameters. 

According to Vince, the relative mean distance of Mars from 
the sun is 152369, that of the earth being 100000. This distance 
may be found, by Kepler's rule, from the periodic time (see p 25 3*) 
or by the note p 260 Kepler has also given the following me¬ 
thod (in his works, de motihus Stella Martis.) Let S (fig p. 260) 
represent the sun, P Mars, L, K, two places of the earth, when 
Mars is in the point P of his orbit. When the earth was at L, 
Kepler observed the difference between the longitude of the sun 
and that of Mars, or the angle PLS ; in the same manner he ob¬ 
served the angle PKS Now the places L, K, of the earth in its 
orbit being known (which for any given time may be found from 
Astr. tables, or the Naut Aim pa. 11, being the point opposite 
the sun’s place) the distances LS, KS, and the angle LSK, will 
be given ; hence in the triangle LSK, LS, SK,, and the angle 
LSK, are given, to find LK. and the angles SLK, SKL ; hence 
the angles PLK, PKL, and the side LK, are given, to find PL ; 
and lastly, in the triangle PLS, PL, LS, and the angle PLS are 
gLen, to find PS the distance of Mars (or of any other planet) 
from the sun.f 

* The learner will take notice, that the mean dist. of a planet from the 
sun, is equal to half the transverse, or greatest diameter of its orbit. For 
the mean dist. is expressed by a line drawn from the focus of the orbit, 
to the extremity of the conjugate axis, and this line is always equal to half 
the transverse. (Emerson’s Conic Sect. b. 1, prop. 2.) 

f Kepler also determined the angle PSL, or the diff. of the heliocentric 
long, of Mars and the earth. From the above method, from his observa¬ 
tions on Mars in the aphelion and perihelion (as lie had before determined 
the position of the line of the apsides) he determined the dist. of Mars from 
the sun in his aphelion to be 166/80, and in the perihelion 138500, the 
earth’s mean dist. from the sun being 100000 ; the mean dist. of Mars was 
therefore 152640, and the eccentricity of his orbit 14140. He also deter¬ 
mined three distances of Mars as follow ; 147750, 163100 and 166255; he 
calculated these same distances, on supposition that the orbit was circular, 
and found them equal 148539, 163883 and 166605; and therefore the errors 
of the circular hypothesis wTere 789, 783 and 350 respectively. From these 
observations, Kepler, relying on Tycho Brahes’ observations, first concluded 
that the orbit of Mars must be oval■ After this discovery Kepler discovered 
the relation between the mean distances and the periodic times of the plan¬ 
ets, and thus laid the foundation of the Principia of Newton, and conse- Suently the foundation of all Physical Astronomy. The angle under which 

re semidiameter of the earth’s orbit, or the parallax of its annual orbit, as 
seen from Mars, being equal to the angle LPS, is, at a medium equal 41°, 
the greatest being 47° 24'. 
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Laplace makes half the greater axis of the orbit of Mars, or his 
mean distance equal 1.523693 the earth’s being 1. He also makes 
the proportion of the eccentricity of the greater axis 0.093808, and 
the secular augmentation of this proportion 0.000090685 Vince 

makes this eccentricity 14183.7, the earth's mean dist. from the 
sun being taken 100000 > and also makes the greatest equation 
equal 10° 40' 40". Delambre (table 116) has given the log. of 
the mean dist. of Mars from the sun, for every degree of his mean 
anomaly, allowing the secular corrections, See. He makes his 
greatest equation (tab. 115; 10° 40' 39". 

Laplace remarks that the variations in the apparent diameter of 
Mars are very great ; he makes it in its mean state about (30") 
9" 72, and when greatest (90") 29" 16 when the planet ap¬ 
proaches his opposition. M. Mollet in his Etude de del (p. 223) 
makes his mean diameter 1 i-J". Some make the greatest appar. 
diam. 25". Laplace further remarks, that when the app. diam. 
is greatest, the parallax of Mars becomes sensible, being then 
nearly double that of the sun, or equal to 17" 6. M la Caille 
makes his horizontal parallax at the time of opposition 23" 6_ 
(see p 329.) From other observations he makes the hor. par. = 
27£". (3d. method of determining the paral. pa. 330.) The same 
law which exists between the parallax of the sun and Venus, exists 
also between that of the sun and Mars, as we have shewn pa. 279, 
and this last parallax had given a near approximation to the sun’s 
paral. before the transit of Venus had more accurately determin¬ 
ed it (See pa. 330.) 

From the periodic time, the mean distance* of Mars is 
142088087.7 miles ; his real diameter 4887 miles,f and his mag* 

* The planet’s synodic rev. e= 686d. 22h. 17' 56" (pa. 347) = 59350676", 
the square of which is 3522502741656976, which being divided by the sq. 
of the earth’s per. rev. = 995839704797184 (pa. 258) gives 3-537208573 
nearly, ihe cube root of which is 1.5307 nearly, the dist. of Mars from the 
sun, that of the earth being an unit or 1; hence 1.5307 X 23464.5 (see pa. 
258) = 35917-11015 dist. of Mars in semidiam- of the earth; therefore 
35917.11015 X 3956 = 142088087.7 miles the mean dist of Mars from the 
sun. 

f Now taking the hor. par. at the time of opposition 23"6 as given by 
La Caille. Then in the fig. pa. 250, let M represent Mars, and AB the 
earth, and we have. 

As sine AMC 23"6 - - - 6.0583927 
To radius or sine 90° - - 10.0090000 
So is AC = 1 semidiam. - 0.0000000 

To MA = 8741.93 semidiam. 3.9416073 

Hence Mar’s dist. from the earth at his oppos. is 8741.93 semid. of the 
earth, and taking his appar. diam. at oppos. = 29"16, it will be 23464.5 : 
8741.93 29"16 : 10"36, the app. diam of Mars as seen from the earth at a 
dist. equal that of the sun; therefore 32' : 1G"86 :: 864065.5 (the sun’s diam. 
pa. 255) : 4887 miles, the diameter of Mars. 
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nitude is something more than ^ of that of the earth.* * * § His velo¬ 
city in his orbit round the sun is about 54152 miles an hour ;f 
and his light and heat is in proportion to that on the earth as 0.43 
to l nearly. $ The distances of the exterior planets may also be 
found from the parallax of the earth’s annual orb, as shewn be fore.§ 

The mean longitude of Mars at the commencement of 1750, 
reckoning from the mean vernal equinox at the epoch of the 31st 
of December, 1749, at noon, mean time at Paris, was, according 
to Laplace (24° 4219) 21° 58" 46" 956. Longitude of the per¬ 
ihelion at the beginning of 1750 (368° 3005) 321° 28' 13" 62. 
The sidereal and secular progressive motion of the perihelion 
(4834" 57) 26' 6" 4. The inclination of his orbit to the plane 
of the ecliptic (2° 0556) 1° 51' ; and its secular retrograde varia¬ 
tion (4" 45) l" 44. Longitude of the ascending node upon the 
ecliptic (52° 9377 * 47° 38' 38" i 48 ; and its sidereal and secu¬ 
lar retrograde motion upon the true ecliptic (7027" 41) 37' 56" 
88 Vince makes the place of the aphelion for 1750, 5s. 1° 28' 
14", and its secular motion in longitude 1° 51' 40". In 1760 
(Bissextile) Delambre makes the mean place of the aphelion 5s. 
1° 39' 34", and of the node Is. 17° 43' 18". In 1810 (com. 
year) he makes the place of the aphel. in 5s. 2° 35' 24", and of 
the node Is. 18° 6' 38". According to him the annual mean 
motion of Mars is 6s 11° 17' 10", of the aphel. 1' 7", and of the 
node 28" ; the daily mean motion is 31' 27". 

The learner should take notice, that all the epochs in the As¬ 
tronomical tables are reckoned from noon on December 31, for 
common years, and from January 1st for the bissextiles. 

* To determine his magnitude we have 79113 divided by 48873 = log. 
79113 —48873 = .6275673, the number corresponding to which is 4.234, 
winch shews that the earth is more than four times as large as Mars. It is 
probably greater in proportion, as we have taken Mars’ greatest diam. as 
given by Laplace ; if 25" were taken the proporti on would be greater. 

-j- Tlie mean dist. 142088087.7 X 2 X 3.1416 — 892767872 miles nearly, 
the circumference of the orbit of Mars; and therefore 5935067&f : 111. or 
3600" :: 892767872m. : 54152 miles. 

4 The effects of light and heat being reciprocally proportional to the 
squares of the distances from the centre from which they are propagated; 
hence the sq. of the earth’s distance from the sun divided by the sq. of the 
dist. of Mars, the quot. will be the comparative heat, &Jc. 

§ Thus in the fig. pa. 260, in the right angled triangle SLP, taking the 
angle LPS at a medium = 41° (see pa. 348) and SL, the earth’s mean dist. 
from the sun = 23464.5 semidiam. SP, the dist. of Mars from the earth is 
found = 35766 semid. of the earth. 

In Mercury and Venus as the sidereal rev. had been taken in place of the 
tropical, to correspond with the tropical rev. of the earth, in finding their 
dist. from the sun (pa. 258 and 271) this will therefore alter a little the dis¬ 
tances thus determined. When the sidereal rev. of the planets is used, the 
sid. rev. of the earth should also be used, which is nearly 365d. 6h. 9' 11" 
=r 31558151", the sq. of which is 995916894538801, a cojistant divisor, for 
the sidereal rev. of the planets. The examples of different authors, who 
could scarce be suspected of the above mistake, was the cause of this inad¬ 
vertent error, which the reader, knowing the principle, may correct, at his 
leisure. 
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>fow the places of the aphelion and nodes being given, and the 
planet’s true anomaly (found from the theory of the planet's motions, 
given in ch. 4. see pa. 312) its distance from the node, which is 
called the argument of latitude, is given ; from which we can find 
the central distance of the planet, and its curtate distance from 
the sun, or the dist. from the sun to that point where a perp. let 
fall from the planet meets the ecliptic. From these data the geo? 
centric place of the planet may be easily 
found. Let TC£ be the earth’s orbit, 
and T the earth’s place ; DNP the orbit 
of a planet, and P the planet’s place ; S 
the sun ; nSN the line of the nodes.— 
From P let fall on the plane of the eclip¬ 
tic the perp. PB, join SB and produce it 
until it meets the planet’s place reduced 
to the ecliptic, found by the arch PN, 
(the planet’s dist. from the node) and the 
inclination of the orbit to the plane of the 
ecliptic, which are given (for Mars see 
page 350) but the place of the earth 
seen from the sun, or the point opposite 
the sun’s place, is given ; and hence the angle between them, or 
the angle TSB, which is called the angle of commutation, is given. 
Then in the triangle STB, ST the earth’s dist from the sun, and 
SB the curtate dist. of the planet, are given (see pa. 265) the an¬ 
gle TSB is given, being the elongation of the planet from the sun, 
or the arc of the ecliptic intercepted between the sun’s place, and 
that of the planet reduced to the ecliptic ; as also TB the curtate 
dist. from the earth. And as the sun’s place is given, the place 
of the planet, as seen from the earth, is likewise given. Again in 
the triangles PSB, PTB, right angled at B, tang. PSB : tang. 
PTB :: TB : SB :: sine of the commut. TSB : sine of the elong, 
STB. Hence as sine of the commutation : sine of the elong :: tang, 
heliocentric lat. : tang. geocentric lat. In this manner the geocen¬ 
tric place, or the place seen from the earth, and the lat. of a planet 
k found for any time. (See Dr. Gregory's Astr. b, 3. where 
several curious and important points relative to the theory of the 
primary planets, are fully investigated.) 

The following observations principally collected from Delambrc 
and la Lande, will be of use to the learner. 

The mean longitude of a planet, seen from the sun, as also that 
of the sun and moon, is found by adding the epoch to the mean 
motions.* 

* Thus if it be required to find the moon's mean longitude, mean anomaly, 
and place of the node, on the 19th of May, 1819, at 5 o’clock in the after¬ 
noon, at New-York If we make use of JJelumbre's tables, the time must be 
reduced t* the meridian of Pajris, and asthediff. of long, is 76° 20' 42", the 
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The longitude of the a/ihelion taken from the planet’s mean Ion* 
gitude, will give the mean anomaly If the sun’s longitude, in* 
creased by 20", on account of the aberration 'pa. 302) be taken 
from the reduced heliocentric long, if the remainder exceeds 6 
signs, subtract it from 12 signs half this commutation, or suppl. 
of 12 signs, is called the semi-commutation. Also if the difference 
between the log. of the sun’s dist. from the earth, and that of a 
planet’s dist. from the sun being found, and so be added to the 
caracteristic of the remainder, let this diff be found in the log. 
tangents, and from the corresponding angle let 45° be subtracted 
(la I,ancle's Astr. Art. 3850) the log. tang, of the remainder add¬ 
ed to the log. tang, of the semi-commutation, will give the log. 
tang, of an angle, which added to the semi-commutation for the 
superior planets, or subtracted from the semi-commutation for the 
inferior, the sum or remainder will give the planet’s elongation 
respectively (La Lande, Art. 1142.) 

The geocentric longitude is found by adding the elongation to 
the sun’s long, when the commutation is less than 6 signs, or sub¬ 
tracting it when the commut. is greater. 

La Lande (art. 1146) gives the following rule for finding the 
planet’s dist. from the earth ; as sine elong. : sine commut. :: 
planet’s dist from the sun reduced to the ecliptic : the dist. from 
the earth on the plane of the ecliptic : this distance divided by the 
cosine of the geocentric lat. gives the direct distance from the 
earth to the planet. Also the diameter of the planet for the mean 
dist. of the sun, being divided by the dist. of the planet from the 
earth, will give its actual and apparent diam. seen from the earth. 
(La Lunde, art. 1391 and 1384.) And the sun’s parallax being 
divided by the same dist. of the planet from the earth, gives the 
hor, parallax of the planet. (La Lancle, Art. 1631.) 

Vince shews how to reduce the places of the planet’s seen from 
the earth to their places seen from the sun, as follows. 

Let T be the place of the earth (see the fig pa. 35 l) P the planet, 
S the sun, T the point aries ; let PB be drawn perp. to the ecliptic, 
and TS be produced to t. Let the longitude of the sun seen at /, at 
the time of observation be computed (note to prob. 1 and 3, part III) 
and the opposite point in the ecliptic is the long, of the earth at T, 
or the angle TST ; compute also the long, of the planet, or the 
angle TSB (pa. 195) and the difference of these two angles is the 
angle of commutation TSB. The place of the planet in the eclip- 

difference of time is 5h. 5r 22" 8; hence the corresponding time in Pains is 

J\Tooji’$ Iong. 

Epoch for 1819 (tab. 26) 10s. 26°39' 31"3 
May 19 (tab. 28) 1 1 31 9 0 
Motion for lOh. (t. 29) 5 29 24 6 
Motion for 5r 2 44 7 
Motion for 22" 8 12 5 

Mean long. reg. 0 3 43 

Mean anom. Sup. of the node. 

7s. 18° 8' 37"4 11s. 4oll' 23,,0 

16 2 0 2 7 21 38 8 
5 26 37 5 1 19 4 

2 43 3 07 
12 4 

. 

8 9 40 10 8 I 11 11 34 21 9 
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tic being observed, and the sun’s place being known, we have the 
angle BTS, the elongation in respect of the longitude; hence the 
angle SBT, which is the measure of the diff of the planet’s pla¬ 
ces, as seen from the earth and the sun, is given ; therefore the 
geocentric place of the planet being known, its heliocentric will be 
known Moreover tang. PTB : rad. :: BP : TB (Simson’s 
Trig, prob 1.) and rad. : tang. PSB :: BS : BP ; hence tang. 
PTB : tang. PSB :: BS : TB :: sine STB : sine TSB ; that 
is, sine of the elong. in long. : sine diff. long, of the earth and 
jilanet :: tang geocentric lat : tang, heliocentric lat. When the 
lat. is small SB : TB :: PS : PT very nearly, which, in oppo¬ 
sition, is very nearly as PS : PS — ST. Or the values of PS 
and ST can be computed with more accuracy (see the method in 
pa. 314) than we can compute the angles STB, TSB. The cwr- 
tate dist. ST of the planet from the sun, is found by this propor¬ 
tion rad : cos. PST :: PS : SB. 

The place of the planet’s node may be thus determined ; find its 
heliocentric lat. immediately before and alter it has passed the 
node, and let rc, m, be the places in the orbit, and b, «, the cor¬ 
responding places reduced to the ecliptic ; then the triangles 
;waN, which may be considered as rectilinear, being similar, we 
have nb : ma :: N6 : Na ; hence nb -j- ma : nb :: N6 -f~ Na 
fab J : N b (5 Eucl. 18; or alternately, nb -f- ma : ab :: nb : Nby 
that is, the sum of the two latitudes : diff. of the longitudes :: 
either lat. : dist. of the node from the long, corresponding to that 
lat. Or it will be very nearly as accurate to take both latitudes 
from the earth, when the observations are made in opposition. If 
the dist. of the observations exceed 1°, this rule will not be suffi¬ 
ciently accurate, in which case we can compute by spherical trig, 
thus, in the rt. angled spher. triangle aNm, we have, by Napier's' 
rule, rad. X sine oN = tang. ma. X cot. L N ; but rad, being = 

-- < v ab -— N6 
I, and sine aN = sine ab — bn ; hence, sine -— = cot. N : 

tang ma 

and f Napier) rad. X sine N6 = tang, nb X cot, N ; hence cot. 
XT sine N6 , . —---r. . . ,T/ 
N =-- ; but sine ab — Nb = sine ab X cos. No — sine 

tang, nb 
Nb x cos. ab (Vince’s Trig. art. 101, or Emerson’s b. 1. prob. 6.) 

sine ab x cos. N6 — sine N6 x cos ab sine N3 
hence, * ~1 ■**■»■* * s: ■ ■ t 

tang, ma tang, nb 

. r s. ab X cos. Nb s. N5 s. Nb X cos. ab 
the re tore —-:- = -;—f- — 

tan ma t. nb 

s. N^xtan. 7>za-f“cos a^Xtan. nb 

tan. nb. X tan. ma 

s N b 

; hence 

tan. ma 

s. ab X tan. nb 

cos No 

tan. 7w«-|“cos* c^xtan. nb 

= (Emerson’s Trig. b. 1. prob. 1. cor. 4.) tang. N£.* 

* Mr. Bugge having observed the rt. as. and deck of Saturn, from thence 
found the following heliocentric longitudes and latitudes (see prob. 3, part 
3, and the above rule for the heliocentric lat. See.) 

W w 
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The inclination of the orbit may be thus determined; bn the 
lat. of the planet, and 5N its dist. from the node on the ecliptic 
being given, we have sine 6N : tan. nb :: rad. : tan. Z- N ; or 
by Mtpier’s theorem tang. bn : rad. :: s bN : cot. N the inch 
required. The observations must not however be taken near the 
node, in determining the incl. as a very little error in the lat. will 
make a considerable error in the inclination.* 

Or the incl. may be thus found Find the angle PSB, as shewn 
above, then the place of the planet and that of its nodes being giv¬ 
en, BN is given; hence (Simson’s Spher. Trig. prob. 17 ) sine 
BN : tang. PB :: rad. : tang. PNB the incl of the orbit. Or by 
Napier's rule, rad. X s. BN = tan. PB X cot. PNB ; hence tan. 
PB : rad. :: s. BN : cot PNB 

On March 27, 1694, at 7h. 4' 40", at Greenwich, Mr. Flam- 
stead determined the right ascension of Mars to be 115° 48' 55" 
and his deck 24° 10' 50" N. hence the geocentric long found as 
directed above, was Cancer 23° 26' 12", and lat. 2° 46' 38" — 
Let P represent the place of Mars, B his place reduced to the 
ecliptic, and S, f, the places of the sun and earth respectively; 
then the true place of Mars, by calculation, as seen from the sun, 
was Leo 28° 44' 14", and the sun’s place Aries 7° 34' 25" ; 
hence the diff. of these places or the angle BTS = 105° 51' 47" ; 
and the earth’s place being Libra 7° 34' 25", if the place of Mars 
be taken from it, the remainder is the angle TSB = 38° 50' I l" ; 
hence from the above, sine 105° 51' 47" : sine 38° 50' 11" :s 
tang. PTB = 2° 46' 38" : tang. PSB = 1° 48' 36". Now the 
place of the node was Taurus 17° 15', which subtracted from Leo 

1784. Appat. time. Helioc. long. Helioc. lat. 

July 12 at 12h. 3' 1" ? 9s. 20° 37' 29" £ 0° 3' 13" N. 
20 11 29 9 ( 9 20 51 53 i 0 2 41 

Aug. 1 10 38 25 S 9 21 13 17 S 0 1 34- 
8 10 9 0 S 9 21 26 2 ^ 0 0 56 

21 9 14 59 > 9 21 49 27 > 0 0 2 
27 8 50 19 s 9 22 0 12 jo 0 27 S. 
31 8 33 47 S 9 22 7 32 S 0 0 50 

Sep. 5 8 13 45 S 9 22 16 28 0 1 21 
15 7 33 45 9 22 34 32 7 0 1 59 

Dec. 8 6 4 23 ^ 9 23 16 15 ^ 0 3 35 

From the obs. on August 21 and 27, the triangles being considered as 
plane, N6 = 44" 5, from the observations on the 21 and 31, N5 = 42" 5 ; 
and from those on Aug. 21, and Sept. 5, N6 = 40" ; the mean of these 
gives N6 = 42". Mr. Bugge makes N5 = 41" either from taking the 
mean of more obs. or computing from spher. hence the heliocentric place 
of the descending node was 9s. 21° 5i/ 8" 5. On Aug. at 9h. 12' 26" true 
time, Saturn’s hel. long, was 9s. 2i° 49' 27", and on 27, at 8h. 49' 23" true 
time, it was 9s. 22° O' 12"; hence in 5d. 23h. 36' 57" Saturn moved 10' 45" 
in long, therefore 10' 45" : 4l" 5d. 23h. 36' 57" : 9h. 7' 44" the time of 
describing 41" in long, which being added to Aug. 21, 9h. IS' 2&', gives 
Aug. 21, l8h. 20' 10", the time when Saturn was in its node. 

* The obs. on July 20 (see the last note) gives the angle 2° 38' 15"; 
that on Oct. 8, gives it = 2° 22' 15"; the mean of these is 2° 30' 14" the* 
inclination of Saturn’s orbit to the ecliptic from these observations. 
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28o 44/ 14", gives 101° 29' 14" == BN the dist. of Mars from 
his node ; hence sine BN 101° 29' 14" : tang. PB.1° 48' 06" :: 
cad. : tan. PNB = 1° 50' 50" the inclination of his orbit. Mr. 
Bugge makes the incl. 1° 50' 56" 56 lor March) 178S. M. de 
la Lande makes it 1° 51' for 1780. 

If we conceive lines to be drawn from t to P and B. it is evident 
that the angle PTB will be much greater than P*B ; and that 
also the angle PTB is greater than PSB, while "I is nearer to P 
than S, and less when further from P, as at t ; hence when the 
earth is in T, the geocentric lat. of Mars is greater than his helio¬ 

centric^ but when the earth is in t, the heliocentric is greater than 
the geocentric ; hence the visible lat. of Mars vary according to his 
various positions ; so that, other circumstances remaining the same, 
his latitude is greater, the nearer he approaches his opposition with 
the sun, and becomes less as he approaches his conjunction. The 
same reasoning may be applied to the other superior planets Jupi¬ 

ter, Saturn, Herschel, and also the newly discovered planets Ceres, 
Pallas, Juno and Vesta. 

When the planets are in opposition to the sun, they rise when 
the sun sets, and set when he rises ; after they depart from^the 
opposition, they appear to the eastward of the sun, and after sun 
set they are visible in the evening until their conjunction with the 
sun, when they rise and set with him. As they recede from the 
sun, after their conjunction, they are visible only in the morning 

before sun rise, for they set in the evening before the sun. When 
they come to their opposition again, these phenomena will appeal 
in order as before, &c. In their oppositions their appal, diame¬ 

ters appear much larger than in conjunctions, being nearest the 
earth in one position, and furthest in the other ; the diflf in their 
distances, in these two positions, being equal to the diameter of the 
earth’s orbit ; and, as tins bears a considerable proportion to the 
dist. of Mars, being about Jive times nearer the earth in opposition 

than in conjunction, his app. diam, will be 5 times gieater in the 
one than in the other, and hence, as his visible disk and lustre in¬ 
creases as the squares of the app. diam. he will in oppos. be twen¬ 
ty times larger and brighter than in conjunction. 

All the superior planets observed from the sun, will appear to 
move regularly the same way, though with unequal angular mo¬ 
tions, arising from their different distances, but yet so as to observe 
the general law of describing equal areas in equal times, round 
the sun. But when observed from the earth, their appearances are 
very different: they sometimes move forward, or direct, that is 
from west to east, at other times retrograde, or from east to 
west, and at other times they appear immoveable or stationary 
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(See pa. 25S ) Let TEe be the orbit 
of the earth, AMO the orbit of a supe¬ 
rior planet, as Mars, and S the sun’s 
place. Now let the earth be at 1' when 
Mars is at M, then Mars and the sun 
will be in conjunction } but if the earth 
be at t when Mars is at M, they will be 
in ofifiosition. If the earth remained 
fixed at F, the motion of Mars would 
appear always direct ; but the earth 
jnoving in its orbit quicker than Mars 
in his, the latter will therefore be over¬ 
taken by the earth, and afterwards the 
earth will advance before him, so that 
he will seem to move backwards. If 
we now suppose the earth at E when 
Mars is at M. he will be seen in the heavens among the fixed stars 
at a, and for some time before and after he has been at E, he will 
appear nearly in the same point a, that is, he will be stationary. 

While the earth moves in its orbit through the space Ete, if 
Mars remained without any motion at M, he would appear to move 
in a retrograde direction, through the arc aPrb, among the fixed 
stars, and would again appear stationary at b ; but if while the 
earth moves from E to c, Mars moves from M to O, his retro- frade motion will be nearly represented by the arc aPr. Hence 

lars will have two stationary and one retrograde appearance. 
What we have here shewn with respect to Mars, is also true of 

Jufiitcr, Saturn, and all the superior planets. But Saturn’s re¬ 
gressions are more frequent than Jupiter’s, and Jupiter’s than 
those of Mars, because the earth overtakes them, or passes be¬ 
tween them and the sun, oftener than between the sun and Mars ; 
but the retrogressions of Mars are greater than those of Jupiter, 
and Jupiter’s greater than Saturn’s, See. For more information 
on this subject see Keii’s Astronomy, lect- 27. 

From what we have given above it will be seen that Mars’ year 

is nearly equal to two of our years ; but that the natural day is only 
a little greater than ours. The axis of Mars’ diurnal revolution 
being nearly perp. to the plane of its orbit, it follows, that the ar¬ 
tificial day, exclusive of twilight, is almost constantly equal to the 
night, on every part of this planet’s surface ; and that therefore 
there is little diff. between his summer and winter. However, 
from the different inclinations of the sun’s rays to the horizon, as 
on the earth at the equinoxes, the heat constantly diminishes from 
his «quaror to the poles ; and hence Dr. Gregory supposes the 
Fasciae, or belts of Mars, to be produced from this phenomenon. 
For as the same dtgree of heat always continues in the same cli¬ 
mate, it is probable that the spots in Mars, like the clouds and 
snow on the earth, being produced by heat and cold, are extended, 
according to the climate, and make Fasciae or belts parallel to the 
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circles of Mars* diurnal motion. Similar phenomena existing in 
Jupiter, who, like Mars, has a perpetual equinox, strengthens the 
conjecture. (See Gregory’s Astr. b.' 6. prob 4.) 

In our earth and moon, an observer in Mars will have a phe¬ 
nomenon, which is not seen by us, that of an inferior planet with 
a satellite ; though they will never appear to him to be one quar¬ 
ter of a degree from each other To him our earth will appear 
about as large as Venus does to us, and its elongation from the 
sun, will never appear to him to be more than about 48°. Like 
Mercury and Venus, it will sometimes be seen by him to pass 
over the sun’s disk. Venus will be as seldom seen by him as we 
see Mercury, and Mercury will never be visible to him, unless as¬ 
sisted with good telescopes or other substitutes. We have re¬ 
marked before (pa. 277) that, as we are now better acquainted 
with the planet’s motions and phenomena, than in any preceding 
period, these phenomena represented on the globe, or with an 
orrery, would be very interesting. And from what is shewn, in 
parts 2 and 3, the learner will be able to pursue this entertaining 
subject at his leisure. 

CHAP. VI. 

OF THE NEW PLANETS, 

CERES, PALLAS, JUNO AND VESTA. 
Herschel, in 1780, having enriched our system with anew 

planet, it seemed at that time, that in this regard, all was then dis¬ 
covered, aqd that the number of the planets was fixed to seven; 
but recent discoveries have shewn that they are not thus limited, 
and that we are, as yet, far from being acquainted with their num¬ 
ber. We have spoken of the new planets discovered, since this 
time, in pa. 47, note to def. 119, but here it becomes necessary to 
speak more particularly of them. 

The celebrated M. Piazzi, astronomer royal at Palermo in Sici¬ 
ly, on the 1st of January, 1801, augmented the number of the 
planets already known in our system, by adding another, to which 
he gave the name of Ceres,* called Ceres Fernandea, in honour of 
Ferdinand IV. king of the Two Sicilies. Her orbit he found to 
be situated between the orbits of Mars and Jupiter, at the distance, 
according to some, of about 94 millions of leagues, or according to 
others of 2^ times that of the earth, from the sun. Her periodic 

* Ceres and the names of the other newly discovered planets, Pallas, 
Juno, and Vesta, were given these planets in allusion to the heathen names 
given the other primary planets, to preserve an uniformity and similarity, 
with the names in the ancient system. The planet Herschel or Uranus be¬ 
ing exterior or superior to Jupiter, has received a title of greater antiquity, 
but these being interior or inferior, have received titles which indicate a 
more recent date. For their mythological explication see Lemprierds Clas¬ 
sical Dictionary, or Littleton’s I,atin Dictionary. 
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revolution is, according to some, 4 years 7 months, and according 
to others, 4 years 8 months; but the elements of her theory is as 
yet very imperfectly known. She is found not to be confined with¬ 
in the ancient limits of the zodiac ; she is invisible to the naked 
eye, being of the 8th magnitude, and cannot therefore be seen 
without a good telescope. Her diameter, according to Dr. Hers- 
chel, is about 162 miles. 

Dr. Olbers, of Bremen, discovered a 9th planet on the 28th of 
March, 1802, to which he gave the name of Pallas. It is of the 
7th magnitude, and was then situated near the northern wing of 
the constellation Virgo. Her orbit is about equally placed between 
Mars and Jupiter, and stated to be at nearly the same distance 
from the sun as Ceres. The theory of the phenomena of this 
planet is still less known than that of Ceres, and hence the account 
of her dist. period, magnitude, See. must be very imperfect. Her 
periodic revolution is reckoned to be about 1 month more than the 
planet of Piazzi, and her diameter about 95 miles. 

These discoveries surprized all the astronomers, in pointing out 
to them new planets which till then had escaped their researches, 
and attended with phenomena, which they had never before ob¬ 
served. Two planets placed at nearly equal distances from the 
central body (the sun) is a phenomenon entirely new, and which 
may give place to very extraordinary results, altogether unforeseen 
or unexpected. It is true that these planets move in different 
planes, and that the eccentricity of their orbits is not the same ; 
but after all it may possibly take place, that their approach may be 
too near ; and, if so, it will then be curious to observe the effects 
which would result from this too near proximity. 

Some German astronomers, having considered the relative dis¬ 
tances of the planets from the sun, concluded that there was want¬ 
ing another planet between Mars and Jupiter, and hence they en¬ 
deavoured to find it nut; but their wishes are more than gratified 
in the discovery, not only of one or two, but even of four. How¬ 
ever some, before the discovery of the two latter, to account for 
the phenomenon of the two planets being equally dist from the 
sun, asserted that they were but one planet divided into pieces, &c. 

Mr. Harding of Lilienthal in the duchy of Bremen, on Septem¬ 
ber 1, 1804, discovered a 10th planet which he called Juno, This 
new planet is also found to be at nearly the same distance from 
the sun as the former two, and it is not yet decided with certainty, 
which of the three is the nearest or the most remote from the sun. 
As she appears like a star of the 8th magnitude, she is not there¬ 
fore visible to the naked eye. 

On the 29th March, 1807, Dr. Olbers discovered another new 
planet, which he called Vesta, now the 11th in our System, in the 
order of discovery : it is very remarkable that this planet is found 
to be apparently at the same distance from the sun as the three al¬ 
ready mentioned. At the time that it was discovered, that is on 
the 29th March, 8h. 2 L', its rt. ascen. was 184° 8', and declination 
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11° 47L In size this planet appears like a star of the 5th magni¬ 
tude. If the phenomena of two planets, nearly at the same dist. 
from the sun appeared strange to astronomers, that of four must 
appear still more extraordinary ; however it is more than probable 
that since the creation of the world, they have like the comets per¬ 
formed their motions in their respective orbits, without clashing 
with each other, or producing any of those strange phenomena, re¬ 
sulting from their too near proximity ; and it is equally probable, 
that the wisdom of the Creator has regulated their motions in 
such a manner, as to prevent any of these accidents taking place*, 
while the Solar System exists. 

CHAP. VII. 

OF JUPITER, 
AjYD his four satellites. 

Jupiter is the next planet, in order, in our System, and also 
the largest of all the planets, so that notwithstanding his great dis¬ 
tance from the sun and earth, he appears to the naked eye almost 
as large as Venus, thoughrnot so bright. Jupiter when in opposi¬ 
tion to the sun, appears larger and more luminous than at other 
times, being then much nearer to the earth, than a little before or 
after his conjunction * Jupiter will be a morning star when his 
longitude is less than that of the sun, and will therefore appear in 
the east before the sun rises; but when his longitude is greater 
than the sun’s, he will be an evening star, and will be in the west 
after sun set. Jupiter’s periodic or sidereal revolution from west 
to east, is, according to Laplace, 4332 602208 days or 117y. 3 Id. 
14h. 27' 10,,77. Vince makes his periodic revolution 1 ly. 3I5d. 
14h. 27' 10"8.f 

Jupiter before his opposition, is subject to the same apparent 
inequalities as Mars, as we have before remarked, and when he is 
about 115° 12/ distant from it, his motion becomes retrograde, his 
Velocity increases until the opposition, and after which it dimin- 

* Jupiter, when in conjunction with the sun, rises, sets, and comes to the 
meridian with the sun; but when in opposition, he rises when the sun sets, 
sets when the sun rises, and comes to the meridian at midnight. 

f Here there are two days difference between Vince and the other astron¬ 
omers Cexcept those tvho copy himJ this might be accounted for allowing 
only 365 days for the year, in reducing the days from Laplace ; whereas there 
are, at least, two leap years ; but Vince, where he makes the same calcula¬ 
tion for Saturn’s sidereal revolution, takes 365 days for the year without any 
allowance for bissextile. Calculating from Jupiter’s mean motion according 
to Delambre (tab. 119) which is at the rate of 30° %J Si1'/ in a year, we have 
30° 20' 3i"7 : 360° :: 365d. : 4330d. 14h. 3^ 49"2; but this is the mean tro¬ 
pical revolution which is considerably less than the sidereal; and hence Vince 
must have here fallen into an error. Keith in his Treatise on the Globes^ 
makes the same mistake. 
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ishes, until the planet in his approach towards the sun, is again 
only 115° 12' distant from him The duration of this retrograde 
motion is 121 days, according to Laplace, and the arc of retrogra- 
dation 9° 54'; there are, however, perceptible differences in the 
duration and extent of the regressions of Jupiter. 

The semimajor axis of Jupiter’s orbit, or his mean distance from 
the sun, is, according to Laplace 5.202592, the earth’s being 1, the 
proportion of the eccentricity of this axis for the beginning of 17 50 
is 0.048877, and the. secular increase of this proportion 0 000 14345. 
Vince makes the relative mean dist. of Jupiter 520279, and the ec¬ 
centricity of his orbit 2501 3,3, the mean dist. of the earth from the 
sun being 100000. The mean longitude of Jupiter, reckoned from 
the mean vernal equinox at the epoch of the 31st of December, 
1749, at noon, mean time at Paris, is reckoned according to La¬ 

place (4° (201) 3° 42' 29" 124 ; longitude of the perihelion at the 
beginning of 1750 (l I°50i2) 10° 21' 3"888 ; its sidereal and di¬ 
rect secular motion (2030"25) !0' 57"801. Vince makes the 
place of the aphelion for the beginning of 750, 6s. 10° 21'4", 
and its secular motion in longitude i° 34' 33". Delambre in his 
tables, makes the mean long, of Jupiter for the beginning of 1811, 
meantime at Paris, Is. 25° 44' 33"7, of his aphelion 6 s. 11° . 8' 
45", and of his node 3s. 8° 30' 40". He makes Jupiter’s mean 
annual motion Is 0° 20' 31"7, that of his aphelion 57", and of his 
node 36"; and the secular motion of the aphelion 1° 34' 33", and 
of the nodes 59' 30" The mean motion of Jupiter for a month is 
therefore 2° 34' 37"2, of the aphel. 5", and of the nodes 3" For 
a day the mean mot. is 4' 59" 3, for an hour ?2"5, and for a mi¬ 
nute 0"2. The inclination of Jupiter’s orbit to the plane of the 
ecliptic, at the beginning of 1750, according to Laplace, was 
(1° 4636) 1° 19' 2"0b4, and its secular variation to the true eclip¬ 
tic (—67"40) 21 "8376 decreasing. Vince makes his inclination 
1° 18' 56". According to Laplace, the longitude of the ascending 
node, on the ecliptic, at the beginning of 1750, was ( i08° 8062) 
97° 55' 32"088, and its sidereal and secular mot. on the true eclip¬ 
tic (—4509"5) 24' 21 "078 decreasing Vince makes the long, 
of the nodes for the beg. of 1750, 3s 7° 55' 32", and its secular 
motion 59' 30". The greatest equation for Jupiter, according to 
Vince, is 5° 30' 38"3, according to Delambre 5° 30' 37"7. (See 
tab. 124 of Delambre, where its secular var is also given for every 
degree of the mean anomaly.) Laplace remarks that the path of 
Jupiter occasionally deviates from the ecliptic (3° or 4°) 2° 42' 
or 3° 36'. 

Jupiter is observed to have several obscure belts or stripes on 
his surface, which are parallel among themselves and also to his 
equator, and therefore nearly parallel to the ecliptic ; there are 
likewise other spots, the motion of which has demonstrated the 
rotation of this planet from west to east upon an axis nearly perp. 
to tiie plane of the ecliptic, and in a period, according to Laplace 
of 0.41377 days, or 9h. 55' 49"7. M, Cassini, from a remarkable 
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spot which he observed in 1665, found the time of rotation to be 
9h 56'. In Oct. 1691, he observed two bright spots almost as 
broad as the belts ; at the end of the month he saw two more, 
from which he found the rotation of the planet to be performed in 
9h. 51' ; he also found that some spots near the equator revolved 
in 9h. 50', and in general he found that the nearer the spots were 
to the equator the quicker they revolved ; he also observed, that 
several spots which at first were round, grew long by degrees, in 
a direction parallel to the belts ; and divided themselves into two 
or three spots. These variations in some of the spots, and the 
sensible difference in the period of rotation of others, induce 
the opinion that they are not attached to Jupiter ; they appear to 
be clouds which are transported by the winds with various veloci¬ 
ties, in an atmosphere extremely agitated * M. Miraldi from 
several observations of the spot observed by Cassini in 1665, found 
the time of rotation to be 9h. 56', and concluded that the spots 
had a dependence upon the contiguous belt, the spot never ap¬ 
pearing without the belt, though the belt appeared without the 
spot. It continued to appear and disappear until 1694, and then, 
disappeared until 1708 ; he therefore concluded that the spot was 
some effusion from the belt upon a fixed place of Jupiter’s body, 
as it always happened in the same place. Dr Herschel found the 
rotation of different spots to vary, and that the time of the rotation 
of the same spot diminished. The spot in 1788 revolved as fol¬ 
lows ; from Feb. 25, to March 2, it revolved in 9h 55' 20"; 
from March 2 to 14, in 9h. 54' 58" ; from April 7 to <2, in 9h. 
51' 35". He observes that this is agreeable to the theory of equi¬ 
noctial winds, as the spot may require some time before it can 
acquire the velocity of the wind ; and he further remarks, that if 
Jupiter’s spots were observed in different parts of its revolution to 
be accelerated and retarded, it would amount almost to a demon¬ 
stration of its monsoons, and their periodical changes. M Schroe- 
ler makes the time of rotation 9h. 55' 36" 6 ; he found the same 
variations as Herschel. 

According to Laplace the apparent diameter of Jupiter, in his 
opposition, or when it is greatest, is (149") 48" 276, and his 
mean diameter, in the direction of his equator, is (120") 38" 88. 
From the great magnitude of Jupiter, and his quick revolution on 
his axis, it is found that he is flatter towards the poles than at the 

* The belts of this planet are also subject to very great variations, both 
as to number and figure ; eight have been sometimes seen at once, and 
at other times only one; they are sometimes found to continue three 
months without any change, and sometimes a new belt has been formed 
in one or two hours. Large spots have been also seen in these belts, and 
when a belt disappears, the contiguous spots disappear likewise. Hence, 
from their being subject to such sudden changes, it is very probable that 
they do not adhere to the body of Jupiter, but are produced andexist in his 
atmosphere. If this be the case, those that are produced in one or two 
hours, must require an agitation or velocity in the air,much greater than 
we experience in the greatest hurricanes. 

X X 
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equator, Lafilace makes the polar diameter : equatorial diam. ; 
13 : 14. Mr. Pound makes this proportion as 12 : 13. Mr. 
Short as 13 : 14. Dr. Bradley as 12.5 : 13 5. Sir I. Newton, 
makes the ratio from theory as 9J : 10| (prop 18. b 3. prin.) 
and on supposition that Jupiter is more dense towards the equator, 
he makes the ratio from 12 : 13 or from 13 to 14. The diame¬ 
ters as observed by Mr. Pound vary from 11 : 12 to 13| : 14J 
(see the principia prob. 19 b. 3.) Newton makes the greatest 
diam. 37" and least 33" 25'"; but after allowing 3" for refrac¬ 
tion, he makes them 40'" and 36" 25"' respectively. 

Jupiter’s mean dist. from the sun, as calculated from his peri¬ 
odic time, is 483342701.3 miles,* his hourly velocity in his orbit 
is 29206 miles,f taking his mean diameter 38" 8 or 39" nearly, 
his real diameter will be 73687 miles,f and his magnitude 807 
times that of the earth.§ The light and heat which he receives 
from the sun is about ^ of that which the earth receives. || 

It is a remarkable result which the nicety of modern observa¬ 
tions has determined, and which may be collected from what is 
said above, that, while the eccentricities, inclinations to a fixed 

* The sidereal revolution of Jupiter being lly. 317d. 14h. 27' 11*' near¬ 
ly = 374336831", the square of which is 140128064043122561, this divided 
by 995916894538801, the square of the earth's sidereal revolution (see 
pa. 350) gives 140.702567, the cube root of which is nearly 5.207, the 
relative dist. of Jupiter from the sun, that of the earth being 1 ; hence 
23464.5 X 5.207 = 122179.6515, Jupiter's dist. from the sun in semidi¬ 
ameters of the earth, which multiplied by 3956, gives 483342701.334 
miles, the mean dist. of Jupiter from the sun. 

f 483342701.3 X 2 X 3.1416 = 3036938860.8 miles, the circumference 
of Jupiter's orbit; hence 4332d. 14h. 27' llr : lh. :: 3036938860.8 ^ 
29206 miles, the hourly velocity of Jupiter. 

* 483342701 — 92825562 (pa. 255 and 258) = 390517139 miles, the 
dist. of the earth from Jupiter. Now by the rule of three, inversely, 
390517139 : 39" :: 92825562 : 164"073, the apparent diam. of Jupiter at 
a dist from the earth equal to that of the sun; hence 32' : 862299 
164*073 : 73687.4 miles, the diameter of Jupiter. The diam. may be also 
determined by trig, in the same manner as that of Mercury, pa. 263, or 
thus, in the fig. pa. 250, let M represent the earth, AB Jupiter; then the 
angle AMC = 1S"5, and MC = 122179.6 — 23464.5 = 98716 nearly, Ju¬ 
piter's dist. from the earth in semidiameters of the earth; then cos. 19/;5 
(log. = 10) : sine 19"4 (log. = 5.9754667) :: 98715 (log. = 4.9943831) 
: 9.3293 (log. = 0.9698498) the semidiameter of Jupiter in semidiam 
of the earth ; hence 9.3293 X 2 = 18.6586, Jupiter's diam. which multi' 
plied by 3956, gives 73813.4, Jupiter's diameter in miles. 

§ The cube of the diameter of Jupiter, divided by the cube of the 

earth’s diameter = = (log- 2.9074785) 8O6.7. Or taking 73813 

we get 812.3 nearly. A more accurate method for determining the mag. 
and dist of Jupiter will be given in treating of his satellites 

|1 The relative mean dist. of Jupiter from the sun is 5.207, that of the 
earth being 1 ; hence, the effects of light and heat being reciprocally as 
the distances from the centre whence they are propagated, we have 

•-—pj - = 5.2072 = 27.1 nearlv, 
32 
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plane, the position of the nodes and perihelia of the planetary or¬ 
bits, are subject to small variations, which, as Laplace remarks, ap¬ 
pear, up to the present time, to have increased proportional to the 
times, their greater axis, half of which is their mean distances from 
the sun, appear to be always the same. These variations only be¬ 
coming sensible through the lapse of ages, have been therefore 
called secular inequalities. We shall speak mbre fully of these 
after the laws of gravity, &c. Small inequalities have been like¬ 
wise remarked which disturb the periods of the planets, as we 
have shewn with respect to the sun (pa. 246) but these inequali¬ 
ties are principally sensible in Jufiiter and Saturn, from their mu¬ 
tual actions and respective situations ; these particular causes are 
found to alter at length the elements of their orbits, as we shall af¬ 
terwards shew 

For the comparative astronomy as regards Jupiter, or the phe¬ 
nomena that would appear to an eye in Jupiter, see Dr. Gre~ 
gory's Astronomy, b. 6. prob. 5. 

OF THE SATELLITES OF JUPITER. 

Gallileo, the inventor of the telescope, was the first who dis¬ 
covered that there are four small stars or satellites invisible to the 
naked eye, which constantly accompany Jupiter, and perform their 
revolutions round him. He called them Medicea sidera or Medi- 
*ean stars, in honour of the family of the Medici, his patrons. 
This discovery, which he made on January 8, 1610, was a very 
important one in its consequences ; the eclipses of these satellites 
furnishing one of the best methods of determining the longitudes 
of places on the earth. From these eclipses Roemer was led to* 
the discovery of the progressive motion of light, from which Dr. 
Bradley was enabled to account for the apparent motion of the fix¬ 
ed stars, called the aberration. 

The relative situations of these satellites to each other vary every 
moment; they are observed to oscilate on each side of Jupiter, and 
it is from the extent of these elongations, that they are classed ; 
that being called thefrst satellite whose oscilation is the least, and 
so on in order. They are frequently concealed from our view or 
eclipsed by the shadow of Jupiter, while performing their revolu¬ 
tions from west to east; and when they move from east to west, 
they are observed to pass over his disk, and project a shadow which 
then describes a chord of this disk. From these phenomena we 
discover that Jupiter and his satellites are opake bodies enlighten¬ 
ed by the sun ; and also that they revolve round Jupiter in the 
same direction that Jupiter revolves round the sun. The three 
first satellites are always eclipsed when they are in opposition to 
the sun ; they are often found to disappear when at some distance 
from the planet’s disk, and the duration of their eclipses is differ¬ 
ent at different times ; the third and fourth sometimes re-appear 
on the same side of the disk, and the fourth sometimes passers 
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through its opposition without being at all eclipsed These dis¬ 
appearances are perfectly similar to eclipses of the moon, and are 
evidently produced by the conical shadow of Jupiter, which, rela¬ 
tively to the sun, is projected behind him ; for the satellites are 
found to disappear in opposition, or on that side of Jupiter where 
the shadow is projected ; they are eclipsed nearest to the disk 
when the planet is nearest his opposition ; and the duration of their 
eclipses exactly corresponds to the time they should employ in 
traversing the shadow of Jupiter in his various positions. From 
the same phenomena it appears, that the planes of their orbits do 
not coincide with that oi Jupiter’s orbit; as in that case they would 
always pass through the centre of Jupiter’s shadow, and therefore, 
at every opposition of the sun, an eclipse would take place, and of 
the same, or very nearly the same duration. By comparing eclip¬ 
ses at long intervals, observed near the planets’ opposition, we have 
the most accurate methods of determining their motions It is 
thus discovered that the orbits of the satellites of Jupiler are near¬ 
ly circular aud uniform ; for this hypothesis very nearly corres¬ 
ponds with those eclipses which take place while the planet is in 
the same position with respect to the sun When the planes of 
the orbits pass through the eye, the satellites will appear to de¬ 
scribe straight lines, passing through the centre of Jupiter’s disk ; 
when this is not the case, they will appear to describe ellipses of 
Which Jupiter is the centre. 

The follow ing is, in substance, the method given by Vince and 
other astronomers for determining the periodic times and distances 
of Jupiter's satellites The mean time of their synodic revolutions, 
or of their revolutions relatively to the sun, is thus found ; let the 
passage of a satellite over the body of Jupiter be observed, when 
Jupiter is in opposition, and let the time be marked when it ap¬ 
pears to be exactly in conjunction with the centre of Jupiter, this 
will also be the time of conjunction with the sun. Let the same 
observation be repeated after a considerable interval of time, Ju¬ 
piter being in opposition, and divide this interval by the number of 
conjunctions with the sun during this time, and the result will be 
the satellites synodic revolution This is the revolution on w hich 
the eclipses depend, and is therefore the most important to be 
considered ; but on account of the equation of Jupiter’s orbit, this 
will not give the mean time of a synodic revolution, unless Jupiter 
were at the same point of his orbit at both observations ; when 
this is not the case, we must proceed in the following manner. 
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Let AIPR be the orbit of Jupi¬ 
ter. S the sun in one focus, about 
which the motion may be consi¬ 
dered as uniform, the eccentricity 
of the orbit, or SF being small. 
(Ward's Theory, pa. 317) Let 
Jupiter be in A his aphelion, in 
opposition to the earth at T ; and 
L a satellite in < onjunction; let I 
be the place of J upiter at his next 
opposition with the earth at D, and 
the satellite in conjunction at G ; 
then if the sateilite had been in O, 
it would have bee n in conjunction 
with F, or in mean conjunction ; therefore before it comes to its 
mean conjunction, it must describe the angle FIS ; this angle is the 
equation of the orbit, according to Ward's or the simple elliptic hy¬ 
pothesis^ which, as the eccentricity is small, is here used. The 
angle FIS therefore measures the difference between the mean 
synodic revolutions with respect to F and the synodic revolution 
with respect to the sun S. Let n = the number of the satellites 
revolutions as respects the sun ; then n x 360° — SIF = the re¬ 
volutions as respects F ; hence n X 360° — SIF : 360° :: the 
time between the two oppositions : to the time of a mean synodic 
revolution about the sun. 

The difference between the times of any two successive revolu¬ 
tions, with regard to S and F respectively, is as the variation of the 
equation of the orbit, or of the angle FIS ; for the satellite being 
at O at the mean conj. and at G when in conj. with the sun, it is 
evident that if FIS continued the same, the time of a rev. in respect 
to S, would equal the time in respect to F, or that of the mean sy¬ 
nodic revol. When Jup. is at A, this equation vanishes, and the 
conjunctions at F and S happen a* the same time. When Jup. 
comes to I, the mean conj at O takes place after the true conj, at 
G by the time of describing FIS. This astronomers call thz first 
inequality ; and this inequality of the times of the intervals of the 
true conjunctions, affect the times of the eclipses of the satellites. 

As it however seldom happens, that a conjunction of the satel¬ 
lite takes place when Jupiter is in opposition, the following method 
must be used to find the time of a mean revolution, when he is 
not in opposition. Let the earth be in H when the satellite is in 
Z, in conjunction with Jup. at R, and again in V when the satel¬ 
lite is in C, in conj^ with Jup at I ; let RH, IV, be produced until 
they meet in M ; then Jupiter’s motion round the earth, in this 
interval, is the same as if the earth was fixed at M. Now the 
diff between the true and mean mot. of Jup. is RFI — RMI = 
FIM -f FRM (32 Eucl 1) which shews the excess of the num¬ 
ber of mean revolutions in respect to F, above the same number 
of apparent revolutions in respect to the earth ; hence n x 360° 

B 
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— FIM — FRM : 360° :: the time between the observations 
the time of a mean synodic revolution of the satellite If C and Z 
be at the other side of O and Y, the angles FIM, FRM must be 
added to n x 360° ; if C be on one side and Z at the other, one 
must be added and the other subtracted according to the circum* 
stances. 

From the great brightness of Jupiter, it is difficult to determine 
accurately the time when the satellite is in conjunction with Ju¬ 
piter’s centre, in its passage over his disk, and hence it is deter¬ 
mined by observing the satellites entrance upon the disk, and its 
going off; but as this cannot be so accurately determined as the 
times of immersion into, and emersion from the shadow of Jupiter, 
the eclipses will therefore determine the time of conjunction more 
accurately. 

Let I be the centre of Jupiter’s shadow FG ; NsJ the orbit of a 
satellite, and N its node upon the orbit of Jupiter, let Iv be drawn 
perp. to IN, and 1C to Nr; and when the satellite comes to v, it 
is in conj.* with the sun. The time of this conjunction is found 
thus; the immersion at $ and 
emersion at t of the 2d, 3d and 4th 
satellites, may be sometimes ob¬ 
served, the middle of the time be¬ 
tween which will give the middle 
of the eclipse at c ; and hence NI 
and the L. N being given, cv may 
be found, and therefore the time of conjunction at v. If both the 
immersion and emersion cannot be observed, let the time of either 
be observed, and after a long interval, let the time of the same be 
again observed, when an eclipse happens in the same situation 
with respect to the node, as nearly as possible ; from the interval 
of these times, the time of a revolution will be obtained. 

M. Cassini, by these methods, found the times of the four sa¬ 
tellites mean synodic revolutions to be as follow, viz. First Id. 
18h. 28' 36", Second 3d. I3h. 17'54", Third 7d. 3h. 59' 36", 
and Fourth I6d. 18h. 5' 7". 

Hence it follows that 247 revolutions of the first satellite are 
performed in 437d. 3h. 44' ; 123 revolutions of the 2d in 437d, 
3h. 41' ; 61 revolutions of the 3d in 437d. 3h. 35' ; and 26 re¬ 
volutions of the 4th in 435d. I4h. 13'. It appears therefore that 
after an interval of 437 days, the three first satellites return to 
their relative situations within 9'. 

The synodic revolutions of the satellites and the mean motion 
of Jupiter being given, their sidereal, or periodic revolutions may 
be easily found thus ; let x° be the mean angle described by Ju¬ 
piter during a synodic revolution of the satellite, then in the re ¬ 
turn of the satel. to the mean conj. it will have to describe this an- 

* A satellite is said to be in conjunction, both when it is between the 
sun and Jupiter, and when it is opposite to the sun ; the latter is called su¬ 
perior, the former inferior conjunction. 
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gle to complete its periodic revolution ; hence we have this pro¬ 
portion 360° -f- x° : 360° :: time of a synodic revolution : time 
of a periodic revolution. The periodic revolutions of the satellites 
are therefore as follow ; the sidereal revolution of the First is Id. 
18h 27,/ 33" ; of the Second 3d. 13h. 13' 42", of the Third 7d. 
3h. 42' 43,# ; and of the Fourth 16d. 16h. 32' 8". Newton 
(Prin. b. 3. phen. 1.) makes them nearly the same. Laplace gives 
their sidereal revolutions as follow ; the First 1.769137787069931 
days = id. 18h. 27' 38" 5; the Second 3.551181016734509 
days = 3d I3h. 13' 42"; the Third 7.154552807541524 days 
= 7d. 3h 42' 33" 3, and the Fourth 16.689019396008634 days 
=* 16d. 16h. 32' 11" 27. 

At the beginning of 1700 the mean longitudes of the satellites 
were as follow : First 77° 15' 51" 084, of the Second 75° 13' 
37" 948, of the Third 164° 12' 16" 38, and the Fourth 227° 50' 
20" 58. 

The distances of the satellites being compared with the duration 
of their revolution, the same proportion has been observed as in 
the primary planets, and hence the dist. of one being obtained, the 
distances of the others may be therefore found, the squares of the 
Periodic times being as the cubes of their mean distances from Jupi¬ 
ter. The greatest heliocentric elongation of the 4th satel. from 
Jupiter's centre, was taken by M. Pound with a micrometer in a 
telescope 15 feet long, and at the mean distance of Jupiter from 
the earth, was found about 8' i 6", that of the 2d. taken with a 
micrometer in a telescope 123 feet, was found = 4' 42", and from 
the periodic times the others were found 2' 56" 47'" and i' 51" 
6"' respectively, and from Newton's determination Jupiter's diam. 
at its mean dist. being taken 37-t", the distances of the satellites 
are found to be 5.965, 9.494, 15 141 and 26.63 semidiameters of 
Jupiter, respectively. (See b. 3, prin. phen. 1.) Newton also re¬ 
marks that with the 123 feet telescope, Jupiter's diameter reduc¬ 
ed to the earth's mean distance proved always less than 40", never 
less than 38", and generally 39". Laplacey taking the diameter 
of Jupiter's equator (120" 37) 39" nearly, finds the mean dis¬ 
tances of the satellites from his centre, the mean distance of Ju¬ 
piter from the being taken 1, as follow ; lat 5.6973, 2d. 9.065898, 
3d. 14.461628, and 4th 25.436. The distances may be also thus 
found. When a satellite passes over the middle of Jupiter's disk, 
let the whole time of its passage be observed, then, the time of a 
re-volution : time of passage over the disk :: 360° : the arc of its 
orbit corresponding to the time of its passage over the disk ; hence, 
sine of half this arch : rad. :: Jupiter's semidiameter : the distance 
of the satellite. See the distances thus determined by M. Cassiniy 
also by Borelli and Townley given by Newton. (Pa. 207 Motte’s 
trans.) 

By knowing the greatest elongations of the satellites in minutes 
and seconds, their distances from the centre of Jupiter, compared 
with Jupiter's mean distance from the earth is found by saying, 
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sine of the satellite's greatest elongation : radius : distance of the 
satellite from Jufilter : the mean distance of Jupiter from the earth. 

The distances of Jupiter and the sun from the earth may be al¬ 
so compared with each other, by knowing the position of the satel¬ 
lites as seen from J\tp iter’s centre, which is easily determined 
from their periodic tildes, on supposition that they revolve in cir¬ 
cular orbits round him. Let the total duration of an eclipse of the 
third satellite, for exalnple, be observed ; and at the middle of 
the eclipse the satellite is nearly in opposition to the sun, as seen 
from Jupiter’s centre. Now its position in the heavens, as observ¬ 
ed from Jupiter’s centre, is the same as this centre seen from the 
sun ; and from the periodic time of the sun, or from direct obser¬ 
vation, the position of the earth as seen from the sun’s centre is 
given ; hence if a triangle be conceived to be formed by the right 
lines which join the centres of the sun, the earth, and Jupiter, 
the rectilinear distance from Jupiter to the earth, and also to the 
sun, in parts of the distance of the sun and earth, will be given, 
at the instant of the middle of the eclipse. By this method it is 
found that the distance of Jupiter, when his apparent diameter is 
38" 88 is at least five times that of the sun from us. At this dis¬ 
tance the diameter of the earth would not appear under an angie of 
3" 56, and hence the magnitude of Jupiter is at least 1000 times 
greater than the earth’s, from these data. 

The apparent diameters of the satellites being insensible, their 
magnitudes cannot, therefore, be exactly measured. The attempt 
to appreciate it has been made by observing the time they take to 
penetrate the shadow of the planet; but the various powers of tele¬ 
scopes and other circumstances, have produced a great discordance 
in these observations. 

Cassini suspected that the satellites had a rotary motion on their 
ax’s, as in their passage over Jupiter’s disk, they were sometimes 
visible, at other times not: he therefore conjectured that the\ had 
spots on one >ide and noton the other, and that they were rendered 
visible in their passage when the spots were next the earth At 
different times they likewise appear of different magnitudes and of 
different brightness. The 4th appears generally the smallest, but 
sometimes it appears the largest; and the diameter of its shadow 
on Jupiter, appears sometimes greater than the satellite The 3d 
also appears to vary its magnitude, and the same is observed to 
take place with regard to the other two. From similar circum¬ 
stances also Mr Pound concluded that they revolved on their axis. 
The comparative brightness of the satellites ought to afford in¬ 
formation concerning their rotary motion Dr Herschel has ob¬ 
served, that they surpass each other alternately in brilliance, a cir¬ 
cumstance that enables us to judge of their respective light. The 
relation of the maximum and minimum of their light with their 
mutual positions, has persuaded him that they re olve upon 
themselves like our moon, in the period equal to the duration of 
their respective revolutions round Jupiter. {Phil, trans. 1797.) 
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Maraldi had already found the same result for the 4th satellite, 
From the returns of the same spot observed on its disk, in its pas^ 
sage over the planet. 

The eclipses of Jupiter's satellites deserve to be particularly con¬ 
sidered, not only for themselves, but also as they serve to settle 
the longitude of places, and to explain one of the most interesting 
results in modern philosophy; that is the motion or propagation 
of light in a determined time, as we have before noticed. 

Let S be the sun, EF the orbit of the 
earth, I Jupiter, abc the orbit of one of his 
satellites. When the earth is at E before 
Jupiter’s opposition, the spectator will ob¬ 
serve the immersion at a ; but if the satellite 
be the 1st, from its nearness to Jupiter, the 
emersion is never visible, the satellite being 
then always behind the body of Jupiter ; the 
other three satellites may have both their im¬ 
mersions and emersions visible ; this will, 
however, depend on the earth’s position. 
When the earth is advanced to F after oppo¬ 
sition, the emersion of the 1st is then seen, 
but the immersion can never be seen in this 
position; but both the emersion and immer¬ 
sion of the other three may be visible at this 
time. Let Elr be drawn ; then denoting 
the centre of the shadow, or the middle point between a and b by 
5, sr, the distance of the centre of the shadow from the centre of 
Jupiter, referred to the orbit of the satellite, is measured at Jupi¬ 
ter by sr, or by the angle sir, or EIS. The satellite maybe hid¬ 
den behind Jupiter at r without being eclipsed, which is called an 
occultation. When the earth is at E, the conjunction of the satel¬ 
lite happens later at the earth than at the sun ; but sooner when 
the earth is at F. 

The diameter of Jupiter’s shadow, at the distance of any of the 
satellites, is best found by observing the time of an eclipse, when 
it happens at the node, at which time the satellite passes through 
the centre of the shadow ; for the time of a synodical revolution : 
the time the satellite is passing through the centre of the shadow 
:: 360° : the diameter of the shadow in degrees. But when in 
the nodes, the immersion and emersion of the first and second 
satellite cannot be seen. Hence astronomers compare the immer¬ 
sions some days before the opposition of Jupiter with the emer¬ 
sions some days after, and then the number of synodical revolu¬ 
tions being known, the time of the transit through the shadow, and 
thence the corresponding degrees are found. But from the 
eccentricity of some of the orbits, the times of the central transit 
must vary. Example. The second satellite is sometimes found 
to pass through the centre of the shadow in 2h. 50', and some¬ 
times to be 2h. 54' in passing ; this indicates an eccentricity. 

Y v 
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The duration of the eclipses being very unequal, shews that the 
orbits are inclined to the orbit of Jupiter, sometimes the fourth 
satellite passes the opposition without being eclipsed, as noticed 
before. The duration of the eclipses depends on the situation of 
the nodes with respect to the sun, as in a lunar eclipse ; when the 
line of the nodes passes through the sun, the satellite will pass 
through the centre of the shadow ; but as Jupiter revolves round 
the sun, the line of the nodes will be carried out of conjunction 
with the sun, and the times of the eclipse will be shortened as the 
satellite only describes a chord of the section of the shadow. 

The ellifiticity of the orbit of the first satellite, as Lafilacc re¬ 
marks, is insensible, its plane nearly coincides with the equator of 
Jupiter, the inclination of which, to the planet’s orbit is '4° 4444) 
4° nearly. The ellipticity of the orbit of the second satellite is 
equally insensible. Its inclination to Jupiter’s orbit varies, as well 
as the position of its nodes. These variations according to Z,a/i/acet 
may be represented nearly by supposing the orbit of satellite inclin¬ 
ed about (5182") 27' 58" 968 to the equator of Jupiter, and giv¬ 
ing its nodes a retrograde motion on this plane, the period of which 
is about 30 Julian years. A slight ellipticity is observable in 
the orbit of the third satellite. The extremity of its greater axis 
nearest to Jupiter, and which is called fierijove, has a direct motion, 
and the eccentricity of its orbit is subject to perceptible alterations. 
The equation of the centre, towards the end of the last century, 
was at its maximum nearly =* (2661") 14' 22" 184, then di¬ 
minishing, about 1775, it was at its minimum = (759") 4'5" 916. 
The variations in the inclination of its orbit, and the position of its 
nodes, may be nearly represented by supposing the orbit inclined 
about (2244") 12' 7" 056 to the equator of Jupiter, and the peri¬ 
od of the retrograde motion of its nodes = 137 years. The orbit 
of the 4th satellite has a very sensible ellipticity, its perigee has a 
direct motion of about (7852") 42' 24" 048. Its inclination to 
the orbit of Jupiter is (272") l' 28" 128, in consequence of which 
this satellite passes behind Jupiter relatively to the sun without 
being eclipsed. The cause of these irregularities, Sec. is explain¬ 
ed in ch. 6. b. 4, Lafilace*8 Astronomy. 

The mean motion of the satellites are such, that the motion of 
the first satellite plus that of the third, is nearly equal three times 
that of the second. Hence the same proportion evidently exists 
between their mean synodical motions. 

The mean longitudes, whether synodical or sidereal, of the 
three first satellites seen from Jupiter’s centre is such, that the 
motion of the first satellite, minus three times that of the second 
plus, twice that of the third is nearly, or exactly, equal the semi¬ 
circumference. 

The periods and the laws of the principal inequalities in these 
satellites are the same. The inequality of the first advances or 
retards its eclipses (233") 1' 15" 492 h\ time, at its maximum. 
This is found to disappear when the two first satellites seen from 
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the centre of the planet are in opposition to the sun at the same 
time ; it afterwards increases, and is the greatest possible when 
the first satellite at its opposition is 45° more advanced than the 
second. It is again nothing when the satellite is 90° more advanc¬ 
ed ; after this it takes a contrary sign and retards the eclipses, it 
augments to i 35° distance between the satellites where it is at its 
negative max. It then diminishes and disappears, when 180° 
distance. In the second half of its circumference it follows the 
same laws as in the first. Hence in the first satellite there is found 
an inequality of (5258") 28' 23" 592 at its max. and proportion¬ 
al to the sine of twice the excess of the mean longitude of the first 
satellite above that of the second, an excess as the difference of 
the mean synodic longitudes of the two satellites. The period of 
this inequality is not four days, and yet it transforms itself into a 
period of437d. 18h. in the eclipses of the first satellite 

Let the two first satellites be supposed to set out together from 
their mean oppositions to the sun. At every circumference which 
the first satellite describes, in consequence of its mean synodic 
motion, it will be in the mean opposition. If we now imagine a 
fictitious star, whose angular motion may be equal to the excess 
ef the mean synodic motion of the first satellite above twice that 
©f the second, then twice the difference of the mean synodic mo¬ 
tions of the two satellites will be, in the eclipses of the first, equal 
to the multiple of its circumference, filus the motion of the ficti¬ 
tious star. The sine of this last motion will be then proportional 
to the inequality of the first satellite in its eclipses, and may repre¬ 
sent it. Its period is equal to the duration of the motion of the 
fictitious star, which from the mean synodic motions is 437.75 
days. 

The inequality of the second satellite follows a law similar to 
that of the first, with this difference, that it has always a contrary 
sign. It accelerates or retards the eclipses (1059") 5' 43" 116 
in time,* at its maximum. It disappears when the two first satel¬ 
lites are at the same time in opposition to the sun. It then retards 
more and more the eclipses of the second satellite, until the two 
satellites are 90° distance from each other, at the instant of these 
phenomena. This retardation diminishes and becomes nothing 
when the satellites are distant 180° ; beyond which term the eclip¬ 
ses advance in the same manner as they were before retarded.— 
Erom these observations it has been concluded, that there is an in¬ 
equality of (11923") 1° 4' 23" 052 at its maximum in the mo¬ 
tion of the second satellite proportional (but affecctd with a con¬ 
trary sign) to the sine of the excess of the mean longitude of the 
first satellite above that of the second, which i3 equal the difference 
of the mean synodic motions of the two satellites. If we conceive 

* These quantities being principally taken from Laplace, his measures 
are therefore retained, and the corresponding measures used in this coun¬ 
try given ; but in his seconds of time, he probably retains the late French 
division of the calendar (see the note page 308) if so, 1059"1=2513' 3^"976. 
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the two satellites to set out together as before, the second satellite 
will be in its mean opposition at each circumference, it wiil de¬ 
scribe in consequence of its mean synodical revolution. If as be¬ 
fore, a star be taken whose angular motion may be equal the ex¬ 
cess of the mean synodical motion of the first satellite above twice 
that of the second, then the difference of the synodical motion of 
the two satellites will be, in the eclipses of the second, equal to a 
multiple of its circumference, plus the motion of the fictitious 
star The inequality of the second satellite in its eclipses, will 
then be propoi tionanle to the sine of the motion of this imaginary 
star Hence the period and law of this irregularity is the same as 
that of the first satellite 

The influence of the first on the second satellite is very proba¬ 
ble ; but if the third satellite produced in the motion of the second 
an inequality similar to that which the second seems to produce in 
the motion of the first, that is proportional to the sine of double 
the difference of the mean longitude of the second and third satel¬ 
lites, this new inequality would confound itself with that of the 
first satellite; for, from the relation which the longitudes of the three 
first satellites have to each other, as before remarked, the differ¬ 
ence of the mean longitudes of the two first, is equal to half the 
circumference, plus twice the difference of the longitude of the 
second and third satellites ; so that the sine of the first difference 
is the same as the sine of twice the second difference with a con¬ 
trary sign. The inequality produced by the third satellite in the 
motion of the second, would therefore have the same sign, and fol¬ 
low the same law, as the inequality observed in this motion ; hence 
it is probable that this inequality is the result of two inequalities 
depending on the first and third satellites. If by the succession of 
ages, says Lafiloce, the relation between the mean longitudes of 
these three satellites should cease to exist, these two inequalities, 
at present confounded, would separate, and their respective values 
might be known. But according to observation this relation should 
subsist for a long period Laplace shews (in the fourth book of 
his astronomy) that it is rigorously exact. 

Finally, the inequality relating to the third satellite in its eclip¬ 
ses, compared with the respective positions of the second and third 
satellites, offers the same proportion as the inequality of the two 
first satellites. Hence in the motion of the third satellite there 
exists an inequality proportional to the sine of the excess of the 
mean longitude of the second satellite above that of the third, 
which at its maximum is (827") 4/ 2f"948. 

If we suppose a star, whose angular motion may be equal to 
the excess of the mean synodical motion of the second satellite, 
above twice the mean synodical motion of the third, the inequal¬ 
ity of the third satellite will be. in its eclipses, proportional to the 
sine of the motion of this fictitious star. Now in consequence of 
the proportion which exists between the mean longitudes, the sine 
of this motion is, exclusive of the sign, the same with the motion of 
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the first fictitious star which we have considered. The inequality 
of the third satellite in its eclipses, has the same peiiods, and fol¬ 
lows the same laws, as those of the two first satellites 

These are the principal inequalities in the motions of the three 
first satellites of Jupiter. Dr. Bradley first remarked them, but 
Wargentin, whose tables of these satellites are used in calculating 
the Nautical Almanac, has since investigated them with the great¬ 
est accuracy. 

From these tables of Wargentin the configurations, or the pro- 
portional distances, of the satellites of Jupiter and their eclipses 
are calculated in the Nautical Almanac. 

The eclipses of Jupiter’s satellites, besides their being useful at 
sea (see pa 53) are, as Dr. Maskelyne remarks, observed by as¬ 
tronomers on land, as well in order to provide materials for im¬ 
proving the theories and tables of their motions, as for the sake of 
comparison with the corresponding observations, which may be 
made by persons in different parts of the globe, whereby the lon¬ 
gitude of such places will be accurately ascertained. He also re¬ 
marks, that it is to be lamented that persons who visit distant coun¬ 
tries, are not more diligent to multiply observations of this kind ; 
for want of which, the observations made by astronomers in estab¬ 
lished observatories lose half their use, and the improvement of 
geography is retarded.* The eclipses set down in the Ephcmeris, 
pa. 3 of the month, will serve to shew the times when these ob¬ 
servations should be attended to ; having first from the difference 
of longitude in time, if he be under any meridian different from 
Greenwich, found the apparent time at which the eclipse will hap¬ 
pen at his meridian nearly, that at Greenwich being given (See 
prob. 6, page 58.) Fie must also have his watch or clock, previous¬ 
ly, well regulated, by some of the methods given in parts first or 
second, to know the mean time exactly at which the observation is 
to be made Equal altitudes of the sun or stars is, perhaps, the 
best method.f 

* As so useful a service can be rendered to the public, and to science in 
general, from multiplied observations of this and a similar nature, it is tru¬ 
ly to be regretted that public observatories are not erected in some of our 
principal cities in the United States, and that there are to be found only 
one solitary observatory near Boston, which is of any credit to the coun¬ 
try. It is, however, to be hoped, that a point of such extensive utility and 
importance to a country, will not be much longer overlooked by an enlight¬ 
ened public ; and that New-York, which is so well situated for, and calcu¬ 
lated to support a public undertaking of this nature, will not be backward 
in setting the example to her sister states. 

f In prob. 22, pa. 83, we have shewn how a watch or clock may be regu¬ 
lated, and how its rate of going may be ascertained ; but. as this point is 
extremely useful in determining the longitude, &c. we shall here insert the 
following observations collected from Vince's astronomy, for finding the 
rate of going, and from thence the mean rate. Sec. Suppose, for instance, 
that the rate of a watch for thirty days be examined, and that on some of 
those days it gains and on others loses ; if the quantities which it has gain¬ 
ed be added, and found for example to amount to 17", and the quantities 
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Dr. Maskelyne farther remarks, that, the observer, being in a* 
place whose longitude is well known, should be settled at his teles¬ 
cope three minutes before the expected time of an immersion or 
emersion of the three first satellites ; and ten minutes before that 
of the fourth. If the longitude of the place be very uncertain, he 
must begin to look out for the eclipse proportionally sooner. Thus, 
if the longitude be uncertain to 3°, answering to 12' of time, he 
ought to fix himself at his telescope 12' sooner than is mentioned 
above, See. However, when he has observed one eclipse of any 
satellite, and thereby found the error of the tables, he may allow 
the same correction to the calculations of the E/fiemeris for seve¬ 
ral months, which will advertise him nearly of the time of expect¬ 
ing the eclipses of the same satellite, and dispense with his attend¬ 
ing so long. (See pa. 178.) 

The immersions or emersions of any satellite being carefully 
observed in any place according to mean time (the eclipses of thfc 
satellites being now computed to mean time, in the Nautical Al¬ 
manac, instead of afifiarent time as formerly) the longitude from 
Greenwich, is found immediately, by taking the difference of the 
observed time from the corresponding time shewn in the Efihem- 
eris, which must be turned into degrees, See. and will he east or 
west from Greenwich, as the time observed is more or less than 
that of the Efihemeris. 

Dr. Maskelyne also observes that a corresponding observation of 
an eclipse of a satellite of Jupiter, made under a well known me¬ 
ridian, is to be preferred to the calculations of the Efihemeris for 

which it has lost to 13ff, then the difference 4'' is the mean rate of gaining 
for 30 days ; hence (/' 133 is the mean daily rate of gaining. Or the daily 
rate may be thus obtained ; take the difference between what the watch 
was too fast or too slow on the first and last days of observation, if it be 
too fast or too slow on each day ; but their sum if too fast on one day, and 
too slow on the other ; and divide by the number of days between the ob¬ 
servations. (See Wales's method of finding the longitude at sea.) To find 
the time at the place of trial at any future period by this watch, the time 
gained or lost by the watch must be obtained ; then (f 133 X the number 
of days from the end of the trial, being the quantity gained according to 
the above mean rate of gaining, and the true time affected by the error at 
the end of the trial, is supposed to be obtained. This will, however, only 
diminish the probable error of the watch ; as the temperatures of the air, 
and the imperfection of the workmanship, will cause some change in the rate 
of the watches going. Hence when the watch is used to determine the longi¬ 
tude at sea, the observer when he goes ashore, if time permits, should compare 
his watch, for several days, with the mean time deduced from the sun’s or 
a star’s altitude, to determine its rate of going more correctly. And when¬ 
ever he comes to a place whose longitude is known, the watch may be cor¬ 
rected and set to Greenwich time. Without these or similar means of ad¬ 
justing the watch, its error in long voyages may be very considerable, and 
therefore the longitude deduced from it proportionably erroneous ; but in 
short voyages, and in carrying on the longitude from one known place to 
another, or in keeping the longitude from that which is deduced from a lu¬ 
nar observation until another is obtained, the watch is undoubtedly veiy 
useful; and hence in navigation and geography it may be rendered of great 
service. 
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comparing with an observation made in a meridian whose longi¬ 
tude is required ; but if no corresponding observation can be ob¬ 
tained, as is frequently the case, it will be best to find what cor¬ 
rections the calculations of the Efihemeria required, by the nearest 
observations to the given time that can be obtained ; which cor¬ 
rections applied to the calculation of the given eclipse in the 
Efihemeria, renders it almost equivalent to an actual observation. 
In the actual making the observations, the observers should be 
furnished with the same kind of telescopes, should make allowance 
for the different states of the air, and remove themselves from all 
warmth and light, for a little time, before making the observation, 
that the eye may be reduced to a proper state ; and this precau¬ 
tion is also to be attended to, when the difference between the ap¬ 
parent and true times of immersion and emersion is to be settled. 
If two telescopes show the disappearance or appearance of tha 
satellite, at the same distance of time from the immersion or emer¬ 
sion, the difference of the times will be the same as the difference 
of the true times of their immersions and emersions, and will 
therefore shew the difference of longitude exactly \ but if the ob* 
served time at one place be compared with the computed time at 
another, then allowance must be made for the difference between 
the apparent and true times of immersion and emersion, in order 
to obtain the true time when the observation was made, to compare 
with the true time from computation at the other place. This 
difference may be found by observing an eclipse at any place whose 
longitude is known, and comparing it with the time by computa¬ 
tion. At an immersion when the satellite enters the shadow, it 
grows fainter and fainter, until at last the quantity of light is so 
small, that it becomes invisible, even before it is immersed in the 
shadow; hence the instant that it becomes invisible, will depend on 
the quantity of light which the telescope receives, and its magni¬ 
fying power. Therefore the instant of the disappearance of a 
satellite will be later, the better the telescope is, and its emersion 
will appear sooner. 

The apparent position of Jupiter’s satellites with respect to each 
other, and to Jupiter, or their configurations, are given in pa. 12 
of the month in the Nautical Almanac, at such an hour of the 
evening or night, as they are most likely to be observed, and serve 
to distinguish the satellites from one another. Jupiter is distin¬ 
guished by the mark O, and the satellites by points with figures 
annexed, the 1 signifying the 1st satellite, 2 the 2d, &c. When 
the satellite is approaching towards Jupiter, the figure is put be¬ 
tween Jupiter and the point, but when receding from him, the fi¬ 
gure is put on the other side of the point. The satellites are in 
the superior parts of their orbits, that is above the orbit of Jupiter 
or furthest from the earth, when they are marked to the right 
hand, or west of Jupiter .approaching him ; or to the left hand or 
east of Jupiter receding from him ; but are in the inferior parts of 
their orbits or nearest to the earth when they are marked to the 
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right hand or west of Jupiter receding from him, or to the left or 
east of Jupiter approaching him. The satellites that are above 
the orb of Jupiter has north latitude, those below south latitude —* 
The cypher 0, sometimes annexed to the figure of the satellite 
towards the margin, signifies that it is invisible on the face pf Ju¬ 
piter, and the black mark €*, signifies that it is invisible, being 
eclipsed in Jupiter’s shadow, or behind Jupiter, eclipsed by his 

body. 
The following exhibits the configurations of the satellites of Ju¬ 

piter at 4 o’clock in the morning, Greenwich time (or 3' 56" af¬ 
ter eleven o’clock at night, in New-York) on the following days 
in September, 1813, viz. 17, 19, 25, 26, and 28, as given pa. 12 
of the month in the Nautical Almanac, an explanation of which will 
l ender that page intelligible to young students, for any other year 
and month. 

On the 17th day of the month, given above, the second and 
third satellites distant from Jupiter as represented, will be eclip¬ 
sed at 4 o’clock in the morning, at Greenwich, or at 3r 56" after 
11 at night, in New-York ; the first satellite is to the left hand of 
Jupiter, and in north latitude, the fourth satellite to the right and 
in south latitude. 

On the 19th the third satellite at 4 o’clock, at Greenwich, will 
be to the left of Jupiter in north latitude, or higher than Jupiter ; 
the first and second will be in conjunction, or appear as one, on 
the right hand of Jupiter, and the fourth will be in south latitude 
further from Jupiter. 

On the 25th the fourth satellite will appear to the left of Jupiter 
above his orbit, or in north latitude, and approaching towards Jupi¬ 
ter, the second and third will be also to the left, in south lati ude, 
approaching towards Jupiter, the first will be eclipsed to the right 
hand of Jupiter. 

On the 26th the fourth will be above Jupiter’s orbit, the third 
below it, both to the left ; the first will be near the body of J upi- 
ter, in south latitude and receding from him ; the second will ap¬ 
pear like a bright spot on the disk of Jupiter. 

On the 28th the third is invisible on the disk of Jupiter, the 
fourth in north, and the second in south latitude, both to the left ; 
the first will appear to the right of Jupiter above his orbit, and re¬ 
ceding from Jupiter. 
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CHAP. VIII. 

377 

OF SATURN, 
HIS SATELLITES AJVD KING. 

Saturn is the next planet in order, in the solar system, after 
Jupiter ; he shines with a pale, feeble light, being the most re¬ 
mote from the sun of any of the planets that are visible without a 
telescope. When viewed through a good telescope, the singular¬ 
ity of his appearance engages the attention of the young astron¬ 
omer ; being surrounded by a ring, the only phenomenon of the 
kind observed in the Solar System. 

As the periods of the superior planets depends on their opposi- 

(ions to the sun, we shall here shew how to find these oppositions, 
and from thence the periodic times, this article being omitted in 
the preceding chapters. 

To determine the time of opposition ; Let the time when the 
planet is nearly in that situation be observed, the time at which it 
passes the meridian (note to prob. 8) and also its right ascension 
(prob. 1. pa 192 ) let its meridian altitude be also found, and 
likewise the meridian altitude of the sun ; and let the observations 
be repeated for several days. From the observed meridian alti¬ 
tudes let the declinations be found (see the note pa 140) and from 
the right ascensions and declinations compute the latitudes and 
Iongitndes of the planet (note to prob. 3, pa. 195) and the longi¬ 
tudes of the sun. Then let a day be taken when the difference of 
their longitudes is 180°, and reduce the sun’s longitude on that 
day, found from observation when it passes the meridian, to the 
longitude found at the time (t) the planet passed, by finding from 
observation or computation at what rate the longitude then in¬ 
creases. Now as the planet is retrograde in opposition, the differ¬ 
ence between the longitudes of the planets and sun increases by 
the sum of their motions. Hence the following rule : As sum (S) 
of their daily motions in longitude : the difference (D) between 
180° and the difference of their longitudes reduced to the same 
time (t)* (subtracting the sun’s longitude from the planet’s to ob¬ 
tain the difference reckoned from the sun according to the order 
of the signs) :: 24h : the internal between that time (t) and the 
time of opposition. This interval added to, or subtracted from that 
time {}) according as the difference of their longitudes was great¬ 
er or less than 180°, gives the time of opposition. If this be re¬ 
peated for several days, and the mean of the whole taken, the time 
will be obtained more accurately. If the time of opposition, found 
from observation, be compared with the time by computation from 

* The diff. shewing how far the planet is from oppos. The proportion 
is evident from this principle, that the sun approaches the star by spaces 
proportionable to the times ; hence the spaces 3 and D must be as tire, 
time 24h. and the time (t) to opposition. 

Z z 



OF THE SOLAR SYSTEM- 378 

the tables, the difference will be the error of the tables, whicifi 
may serve as means of correcting them. , 

Example. M de la Lande, on October 24, 1763, observed the 
difference between the t ight ascension of £ Aries, and Saturn, 
which passed the meridian 12h. 17' 17" apparent time, to be 
8° 5r 7", the star passing first. Now the apparent right ascen¬ 
sion of the star at that time was 25° 24' 33" 6 ; hence the appa¬ 
rent right ascension of Saturn was Is. 3° 29' 40" 6 at 12h. 17' 
17" apparent time, or l2h. 1' 37" mean time. On the same 
day he found from observation of the meridian altitude of Saturn, 
that his declination was 10° 35' 20" N His longitude is there¬ 
fore found, from his right ascension and declination = Is. 4p 50' 
56". and latitude 2° 43' 25" S. At the same time the sun’s lon¬ 
gitude was found by calculation to be 7s. 1° 19' 22", which taken 
from Saturn’s longitude gives 6s. 3° 31' 34" ; hence Saturn was 
3° 31' 34" beyond opposition, but being retrograde, will after¬ 
wards come into opposition From the observations made on sev¬ 
eral days at that time, Saturn’s longitude was found to decrease 
4' 50" in 24h. and by computation the sun’s longitude increased 
59' i9" in the same time, the sum of which is 64' 49" ; hence 
64' 49" : 3° 31' 34" :: 24h. : 78h. 20' 20", which being add¬ 
ed to October 24, 12h. 1' 37", gives 27d 18h. 21' 57" for the 
time of opposition. The longitude of Saturn at the time of oppo¬ 
sition may therefore be found by saying 24h. : 78h. 20' 20" :: 
4' 50" ; ; 5' 47", the retrograde motion of Saturn in 78h. 20' 20", 
which taken from Is 4° 50' 56", leaves Is. 4° 35' 9", the lon¬ 
gitude of Saturn at the time of opposition. In like manner the 
sun’s longitude may be found at the same time, in order to prove 
the opposition ; for 24h. : 78h. 20' 20" :: 59' 59" : 3° 15' 47", 
which added to 7s. 1° 19' 22", the sun’s longitude at the time of 
observation gives 7s. 4° 35' 9" for the sun’s longitude at the time 
of opposition, which is exactly opposite that of Saturn. Hence the 
latitude of Saturn may be found at the same time, by observing in 
like manner the daily variation, or by computation from the tables, 
the elements of its motions being known, and the tables construct¬ 
ed : whence it appears, that in the interval between the times of 
observation and opposition, the latitude had increased 6", and was 
therefore 2° 43' 3i". Thus, the times of opposition of all the su~ 
perior planets are found. 

Vince remarks, that from the conjunctions* and oppositions of 
the planets, their nu^an motions could be readily determined, if 
the place of the aphelia, and eccentricities of their orbits were pre¬ 
viously known ;f for then the equation of the orbit could be found 
(pa. 313) and the true reduced to the mean place; hence the 
mean places being determined at two different times, the mean 
motion corresponding to the interval between these times will be 

* See the method of determining the conjunctions of the inferior planets. k 
pa. 267. See also pa. 260 and pa. 280. 

•j The method of finding these is given pa. 2611 Sic. 
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given. The place of the aphelion is however best determined 
from the mean motion To determine, therefore, the mean mo¬ 
tion, independent of the place of the aphelion, such oppositions or 
conjunctions must be sought, as take place nearly in the same 
points of the heavens ; for the planet being then very nearly in the 
same point of its orbit, the equation will be very nearly the same 
at each observation, and therefore the comparison between the 
true places will be nearly a comparison of their mean places. The 
equation must be considered, if it differ much in the two observa¬ 
tions. Now by comparing the modern observations, the time of a 
revolution will be nearly obtained ; and then, by comparing the 
modern with the ancient observations, the mean motion may be 
accurately determined ; for any error, being divided among a great 
number of revolutions, will become very small with respect to 
one revolution. The following example (M Cassini Elem. d'As* 
tron. pa. 362 or Vince) will best illustrate this article. 

On September 16, 1701, Saturn was in opposition at 2h. when 
the sun’s place was Virgo 23° 2 i' 16", and Saturn therefore in 
Pisces 23° 21' 16", with 2° 27' 45" S. latitude On September 
10, 1730, the opposition was at 12h 27', and Saturn in Pisces 17° 
53' 57", with 2° 19' 6" S. latitude. On September 23, 1731, the 
opposition was at 15h. 5»', in Aries 31' 50", with 2° 36' 55" S. 
latitude. Now the interval of the two first observations was 29 
years (of which 7 were bissextiles) wanting 5d. 13h 33'; and the 
interval of the two last was ly. 13d. 3h. 24'. The difference of 
the places of Saturn was also, in the two first observations, 5° 27' 
19", and in the two last 12° 36' 53". Hence, from these obser¬ 
vations, Saturn moved over 12° 36' 53" in one year ; therefore 12<> 
36'53" : 5° 27' 19" :: ly. 13d. 3h. 24' :: 163d. 12h. 41', the 
time of moving over 5° 27' 19" very nearly, Saturn being nearly 
in the same part of its orbit, and will therefore move nearly with 
the same velocity ; this therefore, added to the interval between 
the two first observations (as Saturn, at the 2d observation, wanted 
5° 27' 19" from being up to his place at the 1st) gives 29 years, 
164d. 23h. 8' for the time of one revolution. Hence 29y. 164d. 
23h. 8' : 365d :: 360° : i2° 13' 23' 50'", the mean annual mo¬ 
tion of Saturn in a common year of 365 days, that is, on suppo¬ 
sition that it moves uniformly This being divided by 365, gives 
2' 0" 28'" for Saturn's mean daily motion.* 

* The mean motion thus determined will be sufficiently accurate to de¬ 
termine the number of revolutions which the planet must have made, when 
we compare the modern with the ancient observations, in order to deter¬ 
mine the mean motion more accurately. Delambre in his tables (tab. 142) 
makes Saturn’s mean mot. in a Julian or common year 12° 13' 36" 8 ; 
hence 12° 13' 36" 8 : 360° :: ly. : 161y. 191n 2(Z 18"‘07 the time of Sa¬ 
turn’s revolution. lie makes Saturn’s mot. for a day 2' 0" 6, for an hour 
5", and for a minute 0" 1. These tables of Delambre are calculated from 
the theory of Laplace, and examined from a multitude of observations. See 
the demonstrations of the principles in the memoires of the Academy for 
1785 and 1786. 
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The most ancient observation which we have of the opposition 
of Saturn, was on March 2, in the year 228, before Jesus Christ, 
at 10 o’clock in the afternoon, in the meridian of Paris, Saturn be¬ 
ing then in Virgo 8° 23', with 2° 50' N. latitude. February 26, 
17 4, it 8h 15', Saturn was found in opposition in Virgo 7° 56' 
46", with 2° 3' N. latitude. From this time 1 * days must be 
subtracted (if the observation were made after the year 1800, 12 
days should be subtracted, &c. see page i 6) to reduce it to the 
same sole as at the ist observation, and therefore this opposition 
happ ned on February . 5, at 8h. i 5'; the difference between these 
two places was, therefore, only 2 6' 14". Also, the opposition in 
171 5. w<ts on March 11, at 16h. 55', Saturn being then in Virgo 

21° 3' 14", with 2° 25' N latitude. Now between the two first 
observations, there were 1942 years ,'of which 485 were bissex¬ 
tiles) wanting 14d 16h. 45', that is, 1943 common years, and 105d. 
7h 15' over. The interval between the times of the two last op¬ 
positions was 378d 8h 40', during which time Saturn had moved 
over 13° 6' 28" ; hence 13° 6' 28" : 26' l4" :: 378d. 8h. 40' 
c 13d. I4h. which added to the time of oppos. in 1714, gives the 
time when Saturn had the same longitude as at the oppos. in the 
ye .r 228 before J C. This being therefore added to 1943 com. 
ye, rs, 105d. 7h 15' gives 1943y. 118d- 21h. 15', in which interval 
Saturn must have made a certain complete number of revolutions. 
Now having found above from the modern observations, that the 
time of one revolution u ust be nearly 29 com y. 16 id, 23h. 8', 
it follows that the number of rev in the above interval was 66 ; 
this interval being therefore divided by 66, gives 29y 162d. 4h. 
27' for the time of one re'olution. From comparing the opposi¬ 
tions in the years 1714 and 1715, the true mot. of Saturn appears 
to be very nearly equal his mean mot. which shews that the op¬ 
positions were observed very near the mean distance, and that 
therefore, the root, of the aphel. could not have caused any con¬ 
siderable error in the determination of the mean mot. Hence the 
mean annual mot. is 12° 1 o' 35" 14'", and the mean daily mot. 
2' 0" 35"'. Dr Halley makes the annual mot. to be 12° i3' 21". 
M de Lafilace and Delambre make it 12° 13' 36"8. As the revo¬ 
lution here determined is, that in respect to the long, of the planet, 
it must be a tropical revolution ; hence to find the sidereal rev. 
we have this proportion, 2' 0" 35'" : 24' 42" 20"' (the preces¬ 
sion in the time of a tropical revol. see pa 246 and 305) :: 1 day 
: I2d. 7h. 1' 57", which added to 29y 162d. 4h 27', gives 29y. 
174d 1 lh. 28' 57", the length of a sidereal year of Saturn From 
more correct observations Vince makes it 29y. 174d lh. 5 l' 11"2. 
In this manner the periodic times of all the superior planets are 
found. 

Laplace makes the sidereal ray. the same as Vince 10759.077213 
days, or 29y I74d lh. 51' 11"2. The semimajor axis of his or¬ 
bit, or his mean distance 9.540724, the earth’s being 1 ; the pro¬ 
portion of the eccentricity of half the greater axis for the beginning 
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of 1750, 0 0562 23 ; the secular variation of. this proportion 
0.000261553 diminishing; the mean longitude of Saturn at the 
beginning of 1750, reckoning from the mean vernal equinox at 
the epoch of the 31st of December, 1749, at noon, mean time at 
Paris (257°0438) 231° 20' 2 i "9 12 ; long, of the perihelion at the 
beginning of 1750 (97°9466) 88° 9'6"984 ; the sidereal and se- 
cular direct motion of the perihelion (4967"64) 26'49"51536 ; 
the inclination of the orbit to the ecliptic at the beginning of 1750 
(2°7762) 2° 29' 54"888 ; the secular var. of the inclination to the 
true ecliptic (—47"87) 15"5098 decreasing ; longitude of the as¬ 
cending rcor/eupon the ecliptic at the beginningof 1750 (123°9327) 
111° 32' 21 "948 j the sidereal and secular mot. of the node on the 
true ecliptic (—5781"54) 3l' ;3"2l896, retrograde. 

According to Vince, the relative mean distance of Saturn from 
the sun is 9 54072, that of the earth being 100000 ; the place of 
his aphelion for the beginning of 1750, was 8s. 28° 9' 7"; its 
secular motion 1° 50' 7" ; the eccentricity of his orbit 53640.42 ; 
the greatest equation 6° 26' 42" ; the longitude of his node for 
the beginningof 1750, 3s 21° 32' 22"; its secular motion in 
respect to the equinox, 56' 30"; and the inclination of his orbit 
to the plane of the ecliptic 2° 29' 50". Delambre for the begin¬ 
ning of 1800, makes the mean place of Saturn 4s 3° 5' 9" 9, of 
the aphelion 8s. 29° 4' 10", and of the node 3s. 21° 56' 40".—- 
For the beginning of 1812, he makes his place 8s. 29° 54' 33" 5, 
that of his aphelion 8s. 29° 17' 23", and of his nodes 3s. 22° 2' 
5b". The annual mean motion of the aphelion, according to De- 
lamb~e, is i' 6", and of the node 32". The greatest equation of 
Saturn in his orbit, for 1750, according to the same author, is 
6s. 26° 41' 7, audits secular variation 110" 24. 

The periodic motion of Saturn in his orbit is from west to eastt 
and nearly in the plane of the ecliptic ; it is subject to inequalities 
simiLr to those of Jupiter and Mars Saturn commences and fin¬ 
ishes his retrograde motion when the planet, before and after his 
opposition, is about 08° 54' distant from the sun. The duration 
of this retrogradation is nearly 13 i days, and the arc of retrogra- 
dation about 6° 18'. At the moment of his opposition, his diam¬ 
eter is a maximum, and its mean magnitude, according to La¬ 
place, is (54" 4) 17" 6256, or 17" 6 nearly. 

From Saturn’s periodic revolution, his mean distance from the 
sun is found to be 89535 1645 2 miles ;* and his progressive mo¬ 
tion in his orbit is 21786.5 miles an hour f His real diameter is 

* Saturn’s per. rev. = 10759d. Ih. 51' ii" nearly, =r 929584271", the 
f>q. of which is 864126916890601441, this being divided by 995916894538801, 
the sq. of the seconds in a sidereal year (see pa. 350) gives 867.669705, the 
cube root of which is 9.5378 nearly, the relative dist. of Saturn from the 
sun. Hence 9.5373 x 23464.5 — 223799.7081 d;st. of Saturn in semidiam, 
of the earth, which multiplied by 3956, gives 895351645.2436 miles, the 
dist. of Saturn from the sun. 

f Saturn’s dist. from the sun being multiplied by 2, and then by 3.1416, 
gives 5625673457.4 nearly the circumference of bis orbit ; lienee 10/59(1 
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67624 miles, * and his magnitude 624.6 times that of the earth.f 
The light and heat which he receives from the sun about of 
the light and heat which the earth receives $ 

Cassini and Fato in 1683, suspected that Saturn revolved on 
his axis, from having one day observed a bright streak which dis¬ 
appeared the next, when another came into view near the edge of 
his disk ; these streaks are called Belts Cassini considered these 
belts as clouds floating in the air ; and having a curvature similar 
to the exterior circumference of the ring, he concluded that they 
ought to he nearly at the same distance from the planet, and that 
therefore the atmosphere of Saturn extended to the ring Dr. 
Herschel found that the arrangement of the belts always followed 
the direction of the ring, so that when the ring opened, the belts 
shewed an incurvature answering to it. And during his observa¬ 
tions on June 19, 20 and 21, 1780, he saw the same spot in 
three different situations He in consequence conjectured that 
Saturn revolved about an axis perpendicular to the plane of his 
ring. This conjecture receives a greater degree of probability 
from the planet being an oblate spheriod, the equatorial diam. or 
the diam. in the direction of the ring, being to the diam. perp to 
it, or the polar diam. in the proportion of about II : 10 accord¬ 
ing to Dr. Herschel ; the measures being taken with a wire mi¬ 
crometer prefixed to his 20 feet reflector. The attraction of the 
ring, however, contributes to produce this effect. He afterwards 
verified the truth of his conjecture, having determined from di¬ 
rect observation, that Saturn revolves on his axis from west to east 
in loh 16' o" 4. Phil, trans. 1794. He has also observed^/foe 
belts nearly parallel to Saturn’s equator. 

For the phenomena that would appear to an observer situated in 
Saturn, see Dr. Gregory’s Astr b. 6, prob 6. From what has 
been delivered these may be easily conceived, and most of them 
represented on the globes. 

lh. 51' 11" : lh. or 3690" :: 5625673457.4 : 21786.5 miles the hourly velo¬ 
city of Saturn in his orbit. 

* Saturn’s dist. from the sun, at opposition, is 223799.7 of the earth’s 
semidiameters, from which 23464.5, the earth’s dist. in semid. being taken, 
leaves 200335.2 semidiameters of the earth, Saturn’s dist. from the earth.— 
Now taking his appar. diam at oppos. 17" 6, we have inversely 200335.2 : 
17" 6 :: 23464.5 : 150" 265, the appar. diam. of Saturn at a dist. from the 
earth equal to that of the sun. Hence 32' : 150" 265 :: 864065.5 (sun’s 
diam.) : 67624 m.les the diameter of Saturn. The diam. may be also found 
in the same manner as Jupiter’s, pa. 362. 

676243 
t For 77777 = (log. 2.7956085) 624.6. 

f Saturn being about 9^ times further from the sun than the earth, his 
heat and light (being as the square of the dist.) will therefore be 90$ times 
less than the earth’s. 
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OF SATURN’S RING. 

Saturn, when viewed through a good telescope, makes a 

more remarkable appearance than any of the other planets. Gal- 
lileo, in 1610, first discovered his extraordinary shape ; the planet 
appearing to him like a large globe between two small ones. In 
1612 he was surprized to find only the middle globe ; but after¬ 
wards he discovered again the globes on each side, and found that 
their magnitude and form were extremely variable ; sometimes 
they appeared round, at other times oblong, sometimes semicir¬ 
cular, then with horns towards the globe in the middle, and by de* 
grees growing so long and wide as to encompass it, as it were, 
with an oval ring. Huygens in 1656, from the improvements he 
had made in grinding glasses, was able to announce the curious 
discovery, that these strange phenomena are produced by a large 
thin ring, which surrounds the globe of Saturn, and which is every 
where separated from it. He made the space between the globe 
and the ring something greater than the breadth of the ring, and 
the greater diameter of the ring (which generally appears elliptic 
except when the eye of the spectator is in its plane, when it ap¬ 
pears like a straight line) to that of the globe as 9 : 4. Mr. 
Pound made this prop, as 7 : 3. The best description of this 
singular phenomenon is that given by Dr. Herschel in the Phil, 
trans. for 1790. The following is the substance of his account. 

The black disk, or belt, or Saturn’s ring, is not in the middle 
of its breadth ; nor is the ring subdivided into many such lines, as 
some astronomers represent ; but there is one single dark, con¬ 
siderable broad line, belt, or zone, which he has constantly found 
on the north side of the ring. As this dark belt is subject to no 
change whatever, it is probably owing to some permanent construc¬ 
tion of the ring’s surface. This construction cannot be owing to 
the shadow of a chain of mountains, since it is visible all round the 
ring ; for at the ends of the ring there could be no shade ; and the 
same arguments will hold against any supposed caverns. It is 
moreover pretty evident, that this dark zone is contained between 
two concentric circles, as all the phenomena correspond to the 
projection of such a zone. 

The matter of the ring is undoubtedly no less solid than the 
planet itself ; and it is observed to cast a strong shadow on the 
planet. The light of the ring is also generally brighter than that 
of the planet ; for the ring appears sufficiently bright when the 
telescope affords scarcely light enough for Saturn. Dr. Herschel 
next observes the extreme thinness of the ring : he frequently 
saw the 1st, 2d, 3d, and 4th satellites pass before and behind it, 
in such a manner as to serve as excellent micrometers to measure 
its thickness. For an account of these phenomena, consult the 
fihil. trans. for 1790 and 1792 ; or Vince's astr. many particulars 
will also be found in Dr. Gregory's astr. 

From a series of observations upon luminous points of the ring, 
he has discovered that it has a rotation about its axis, the time of 
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which is lOh. 32' 15"4. The ling is invisible, with the telescopes 
in common use among astronomers, when its plane passes through 
the sun, or the earth, or between them ; in the first case the sun 
shines only upon its edge, which is too thin to reflect sufficient 
light to render it visible ; in the second case, the edge only being 
opposed to us, it is not visible, for the same reason ; in the third 
case, the dark side of the ring is exposed to us, and therefore the 
edge, being the only luminous part which is towards the earth, is 
invisible on the same account. Dr Herschel, with his large tele¬ 
scopes has been, however, able to see it in every situation. He 
thinks that the edge of the ring is not flat but spherical, or sphe- 
riodical. M. de la Lande thinks that the ring is just visible with 
the best telescopes in common use, when the sun is elevated 3' 
above its plane, or three days before its plane passes through the 
sun ; and when the earth is elevated 2' 20" above the plane, o" one 
day from the earth’s passing it The difference of the telescopes 
and the state of the atmosphere, will make 10 or 12 days difference 
in the time of its becoming invisible. 

Dr. Herschel, from his observations on the ring, thinks that he 
has sufficient reason to conduce, that Saturn has two concentric 
rings, situated in one plane, which is probably not much inclined 
to the equator of the planet Tht dimensions of the rings and the 
space between them, are in the following proportion, as nearly as 
they could be ascertained. 

Parts. Miles. 
Inner diameter of the smaller ring, - - 5900 or 146345 
Outside diameter of do. - - - 75 10 184393 
Inner diam of the larger ring, - - - 7740 190248 
Outside diam of do. - - - 8300 204 883 
Breadth of the inner ring, ----- 805 20000 
Breadth of the outer ring, ----- 280 7200 
Breadth of the dark zone, or vacant space 

between the rings, ------ 155 2839 

Dr. Herschel, from the mean of a great many measures of the 
diameter of the larger ring, makes it 46" 677 at the mean dist. 
of Saturn. Hence his diam. : the earth’s diam :: 25.8914 
(according to Vince) : 1. From the above proportion, therefore, 
the diameter of the ring must be 204883 miles ;* and the dist. 
of the two rings 2839 miles. 

From the oblique position of the ring, though circular, it ap¬ 
pears elliptical, and it appears most open when Saturn is 90° from 
the nodes of the ring upon the orbit of Saturn ; or when Saturn’s 
long, is about 2s. 17°, and 8s. 17°. In this situation the lesser 

,* By taking the appai*. diameter of Saturn = 17" 6, we have 17" 6 : 
46" 677 :: 67624 miles the diam. of Saturn (see pa. 382) : 179345 miles 
the diameter of the ring. If 17" 6 the appar. diam. of Saturn at his oppos. 
•were reduced to Saturn’s mean dist. from the earth, the diameter of the 
ring would come out greater, as the appar. diameter of Saturn would he 
diminished. 
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axis is very nearly equal to half the greater, when the observations 
are reduced to the sun ; and therefore the plane of the ring makes 
an angle of about 30° with Saturn’s orbit. 

In the Mem. de l’Acad. at Paris, 1787, M. de Laplace sup¬ 
poses that the ring may have many divisions ; but Dr. Herschel 
remarks that no observations will justify this supposition. Laplace 
makes the inclination of the ring to the plane of the ecliptic (54° 8) 
49° 19' 12". He remarks that the plane of the ring meeting the 
solar orbit at every semi revolution of Saturn, the phenomena of 
its disappearance and reappearance return every fifteen years, but 
frequently wfili very different circumstances, two disappearances, 
and two reappearances may occur in the same year, but never 
more. The inch of the ring to the ecliptic is measured by the 
largest opening which the eclipse presents to us. As the earth is 
in the plane of the ring when it disappears or reappears, the posi¬ 
tion of its node may be determined by the appar. situation of Sa¬ 
turn. I^aplace further remarks, that all the disappearances and 
appearances from which the same sidereal positions of the nodes 
of the ring result, take place when its plane meets the earth.— 
The others when the same plane meets the sun. It may therefore 
be known by the situation of Saturn when the ring disappears or 
reappears, whether this phenomenon is produced by the sun or 
the earth. When the plane passes through the sun, the position 
of its nodes gives that of Saturn, as seen from the sun’s centre, 
and the rectilinear dist. of Saturn from the earth may be deter¬ 
mined as that dist. of Jupiter is by the eclipses of his satellites.— 
It is thus found that Saturn is about times further from us 
than the sun, when his appar. diam. is 17" 6. For more infor¬ 
mation on the phenomena of the ring, and the manner of deter¬ 
mining them, consult Dr. Gregory's Astr. sect. 13, b. 4, and 
ch. 6. b. 6. See also Newton's prin. phen. 2. b. 3. 

The phenomena of the ring to an eye placed in Saturn make an 
interesting and curious part of the comparative Astr. of Saturn, 
for which the reader is referred to Gregory's Astr. b. 6. ch. 6. 
A learner who understands what is here delivered, will easily con¬ 
ceive these phenomena, and the globe will very much assist in 
exhibiting them ; thus, if the equator of the artificial globe be 
made to coincide with the horizon, and the globe be turned on its 
axis from west to east, its mot. will represent that of Saturn on 
his axis, and the wooden horizon will represent the ring, especial¬ 
ly if it be supposed a little more dist. from the globe. This ring 
will cause a great variety in the days and nights in Saturn, which, 
from its rapid mot. on his axis, are shorter than ours. There is 
also a much greater cliff. between summer and winter on Saturn’s 
globe than on the earth, as well on account of the duration on each., 
and the sun’s , great deck from the equator, as on account of the 
meridian darkness in winter, from the interposition of the ring 
which hides the sun. 

3 A 
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OF THE SATELLITES OF SATURN. 

Saturn has besides his ring, seven little secondary planets or 
satellites, which perform their motions round him from west to 
east, in orbits nearly circular. One of them, which till lately 
was reckoned the 4th in order, was discovered by Huygens in 1655* 
with a telescope <00 feet long ; he published tables of its mean 
motion in 1659, which were afterwards corrected by Dr. Halley in 
1682. M. Cassini, with telescopes 100 and 136 feet long, discov¬ 
ered the 5th in 671, the 3d in 1672, and the 1st and 2d in 1684 ; 
he afterwards published tables of their motions, and called them 
Sidera Lodoicea, in honour of Louis le Grand, in whose reign and 
observatory they were discovered. These tables were afterwards 
reformed and corrected by Dr. Halley from Mr. Pound's observa¬ 
tions. Dr. Halley observes that the four innermost satellites des¬ 
cribe orbits very nearly in the plane of the ring, which he says is, 
as to sense, parallel to the equator ; and that the orbit of the 5th 
is a little inclined to them. The periodic times of the live satel¬ 
lites, and their dist. in semid. of the ring, as determined by Mr. 
Pound, with a micrometer fitted to the 123 feet telescope given by 
Huygens to the R. Society, are as follow; first, Id. 2ih. 18' 27" 
dist. 2.097 ; second, 2d. 17h. 41' 22" dist. 2.686 : third, 4d. 12h. 
25' 12" dist. 3 752 ; fourth, l5d. 22h. 41' 12" dist. 8.698 ; and 
fifth, 79d. 7h. 49' dist. 25.348. The distances in semid. of Sa¬ 
turn as given by Pound, are 4.893, 6.286, 8.754, 20.295, and 
59.154 respectively. The above distances were deduced from 
that of the 4th. which was measured, from the proportion between 
the squares of the periodic times and the cubes of their distances, 
and found to agree with observation. Cassini, from his own ob¬ 
servations, makes the periods the same except the 5th, which he 
makes 79d 7h. 48'. He makes their dist. in semid. of the ring 
as follow ; l^y (or l^-J) 2|, 3|, 8, 8, and 23 (or 24 Newton's 
prin. b. 3. phen 2.) their dist. from the periodic times in sem. 
of the ring 1.93, 2 47, 3.45, 8, 23.35 ; and their dist. at the mean 
dist. of Saturn 43" 5, 56", l' 18", 3', and 8' 42" 5 respec¬ 
tively. Herschel makes the dist. of the 5th 8' 31" 97, which is 
probably more exact. Mr. Pound found the dist. of the 4th satel. 
3' 7", when it was very near its greatest eastern digression ; 
hence at the mean dist. of the earth from Saturn, that distance 
becomes 2' 58" 21. Sir Isaac Newton (b. 3. prop. 8, cor. l.J 
makes it 3' 4". 

The periodic times for Saturn’s satellites are found in the same 
manner as for those of Jupiter (pa. 365.) To determine these, 
Cassini chose the time when the semiminor axis of the ellipsis 
which they describe, were the greatest, as Saturn was then 90° 
from their node, because the place of the satellite in its orbit is 
then the same as upon the orbit of Saturn ; whereas in every other 
case, it would be necessary to apply the reduction to obtain its 
place in its orbit. As Saturn and his satellites cannot be seen at 
the same time, without difficulty, in the field of view of a teles- 
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cope, their distances have sometimes been measured by observing 
the time of the passage of Saturn over a wire adjusted as an hour 
circle in the field of the telescope, and the interval between the 
times when Saturn and the satellite passed. 

By comparing the places of the satellites with the ring in dif¬ 
ferent points of their orbits, and the greatest minor axes of the 
eclipses which they appear to describe, compared with the major 
axes, the first four are found to have the planes of their orbits very 
nearly in the plane of the ring, and are, therefore, inclined to the 
orbit of Saturn about 30° ; but according to Cassini the son, the 
orbit of the 5th makes an angle with the ring of about 15°. Cas- 
sini places the node of the ring^ and consequently the nodes of the 
first four satellites, from what we have just now remarked, in 5s. 
22° upon the orbit of Saturn, and 5s. 2i° upon the ecliptic.— 
Huygens found it equal 5s. 20° 30'. M. Maraldi, in 1716, de¬ 
termined the long of the node of the ring upon the orbit of Saturn 
to be 5s. 19° 48' 30", and upon the ecliptic 5s. 16° 20'. The 
node of the 5th satel. is placed by Cassini in 5s. 5° upon the orbit 
of Saturn. M. de la Lande makes it 5s. 0° 27' From the observa¬ 
tion of M. Bernard at Marseilles, in 1787, it appears that the 
node of this satellite is retrograde. Dr. Halley discovered that 
the orbit of the 4th satellite was eccentric ; for, from its mean 
motion, he found that its observed place was at one time 3° more 
forward than by his calculations, and at other observations 2° 30' 
backward This indicated an eccentricity ; and he placed the line 
of the apsides in 10s. 22°. Phil tram. No 145. Or Vince*s 
astr. from which the principal part of our acct. of the satellites is 
extracted. 

The revolutions and mean motions of the satellites are given by 
La Lande as follow. In this table the satellites are numbered 
from Saturn, as they were before the discovery of the other two by 
Dr. Herschel, whose orbits are situated nearer to Saturn than any 
of the other five. 
Sat Diur. tnot. Mot. in 365ti. Period Pevol. Synod. Pevol. 

I 6s. 10° 41' 53" 4s. 4° 44' 42" Id. 21h. 18' 26"222 Id. 21h . 18' 54" 778 
II 4 11 32 6 4 10 15 19 2 17 44 51,177 2 17 45 51,013 
III 2 19 41 25 9 16 57 5 4 12 25 11,100 4 12 27 55,239 
IV 9 22 34 38 10 20 39 37 15 22 41 16,022 15 23 15 23,153 
V 0 4 32 17 7 6 23 37 79 7 53 42,772 79 22 3 12,883 

Newton in his prin. b. 3. prob. i 7, remarks, that the outermost 
satellite of Saturn seems to revolve about its axis with a motion 
like that of the moon, having the same face continually turned to¬ 
wards Saturn. For in its revolution round Saturn, as often as it 
comes to the eastern part of its orbit, it is scarcely visible, and 
generally quite disappears ; which he says is probably occasioned 
by some spots on that part of its body which is then turned towards 
the earth. Newton remarks the same of Jupiter’s satellites. Dr. 
Herschel has confirmed this conjecture, by tracing regularly the 
periodical change of light through more than ten revolutions. 
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which he found, in all appearances, to be cotemporary with the 
returp of the satellite to the same situation in its orbit. M Ber* 
nard, at Marseilles, from his observations in 1787, has further 
confirmed this result. Hence this equality in the period of rota¬ 
tion and revolutions appears to be a general law of the motion of 
the satellites, and a remarkable instance 6f analogy in this part of 
the Solar System. 

In the /mil. trans. for 1789 and 1790, Dr. Herschel gives an 
account of the discovery of two other satellites, with some of the 
elements of their motions, and tables for calculating them. 

The distances of these satellites from the centre of Saturn are 
36" 7889, and 28" 6689 ; and their periodic times are Id. 8h. 
53' 8" 9, and 22h. 37' 22" 9. The planes of the orbits of these 
satellites lie so near the plane of the ring, that their difference 
cannot be perceived. 

According to La/ilace, if the semidiameter of Saturn seen at 
his mean distance from the sun be taken as unity, the distances 
of the satellites from its centre will be as follow : First, 3.080, 
Second, 3.952, Third, 4.893, Fourth, 6.268, Fifth, 8.754, Sixth, 
20,295, and Seventh, 59 154 ; and the durations of their sidereal 
revolutions, 0.94271 days *= 22h. 37' 30" 144 ; 1*37024 days *== 
Id. 8h. 53' 8" 736 ; 1.8878 days == Id. 21h. 18' 25" 92 ; 
2.73948 days = 2d. 17h. 44' 51" 072 ; 4.5)749 days = 4d. I2h. 
25' 11" 136; 15.9453 days = I5d. 22h. 41' 13" 92; and 
79 3296 days = 79d. 7h. 54' 37" 44 respectively, the satellites 
being taken here in order, as their respective orbits are situated 
from Saturn. These mean distances of the satellites, as Laplace 
remarks, being compared with the durations of tin ir revolutions, 
the beautiful proportion of Kepler, relative to the planets, and 
which we have seen to exist in the satellites of Jupiter, is here 
again found to take place. 

CHAP. IX. 

OF URANUS OR HERSCHEL * 
AND HJS SATELLITES. 

This is the remotest of the planets belonging to the Solar Sys 
tern, that has hitherto been discovered. From its minuteness it 
had escaped the observation of ancient astronomers. F/amstead at 
the end of the last century, and Mayer and Le Monnier in this, 
liad observed it as a small star ; and according to F. de Zach's 

account of this planet in the memoirs of the Brussels academy, 

* This planet is called by the English the Georgium Stilus, in honour of 
the present King George III. In the Naut. Aim. it is called the Georgian. 
By foreigners it is generally called Herschel, in honour of the discoverer. 
The royal academy of Prussia and some others call this planet Ouramis or 
Uranus. Laplace calls it by the same name, but Belambre in his tables 
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1785, there was then in the library of the prince of Orange, four 
observations of this planet considered as a star, in a catalogue of 
observations written by Tycho Brahe. It was not, however, until 
1781, that Dr. Herschel discovered its motion, and soon after, by 
observing carefully, he was able to ascertain that it was a true 
planet. 

Its apparent diameter is so small that it can seldom be seen by 
the naked eye. When viewed through a telescope of small mag¬ 
nifying power, it appears like a star of the 6th or 7th magnitude. 
Laplace makes its apparent diam. about (1 >.") 3"888. In a clear 
night, in the absence of the moon, it may be perceived, by a good 
eye, without a telescope ; at the beginning of !8t2, its place, as 
given in the Nant. Aim. will be long. 7s. 22° 2', lat. 8' N. and 
deck 18° S. At the beginning of 1813, it will be in long. 7s 26° 23', 
lat. 14' N and deck 19° 8' S. And on the 31st Dec. 1813, it will be 
in long 8s. 0° 36', lat. 11' N. and deck 20° 7' S. Like Mars, Ju¬ 
piter and Saturn, its motion is from west to east round the earth. 
According to Vince, its periodic revolution is performed in 83 
years, l50d. 18h. The place of its aphelion for the beginning of 
1750, is 11s. 16° 19' 30", and its annual progressive motion, ac¬ 
cording to M. de la Grange 3" i7, from the action of Jupiter 
and Saturn ; and therefore its motion in long. = 50" 25 (the 
precession of the equin.) -j- 3" 17 = 53" 42. The longitude of 
the nodes in the beginning of 1750 was 2s. 12° 47'. The annual 
motion of its nodes, according to La Grange, is 12" 5 from the¬ 
ory ; according to La Lande, who takes a different density for 
Venus, it is 20" 40"', which he uses in his tables. The inclina¬ 
tion of its orbit to the ecliptic is 46' 20". Its distance from the 
sun is 1918352, that of the earth being 100000. The eccentricity 
of its orbit 90804. Its greatest equation is 5° 27' 16" 

Laplace makes the sidereal revolution of Uranus 30689 days, 
or 8 4 years 29 days. His mean distance or half the greater axis 
of his orbit, 19.18362, that of the earth being 1. The proportion 
of the eccentricity of half the greater axis of his orbit, for the be¬ 
ginning of 1750, 0.046683. The secular variation of this pro¬ 
portion — 0.000026228, the sign — indicating a diminution. 
The mean long, at the beginning of 1750, reckoning from the 
mean vernal equinox, at the epoch of the 31st Dec. 1749, at noon, 
mean time at Paris was (352° 962) 318° 33' 53" 64 The lon¬ 
gitude of the perihelion at the beginning of 1750, was (185° 1262) 
166° 36' 48" 888. The sidereal and secular progressive motion 
of the perihelion (759" 85) 4' 6" 1914. The inclination of the 
orbit to the ecliptic at the beginning of 1750 (0° 8599) 46' 26"076. 
The secular progressive var. of the incl. to the true ecliptic 
(9° 38) 3" 039. Longitude of the ascending node upon the 

calls it Herschel. It is called Uranus in allusion to the names of the heathen 
deities by which the other planets are distinguished, as before remarked ; 
thus Uranus was the father of Saturn, Saturn the father of Jupiter, Jupiter 
the father of Mars, &c. Herschel discovered this planet at Bath in England, 
on the 13th of March, 1781. 
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ecliptic at the beginning of 1750 (80° 7015) 72° 37' 52" 86.—= 
And the sidereal and secular retrograde motion of the node upon 
the true ecliptic (10608") 57' 16" 992. 

Delambre in his tables (tab. 160) gives his mean filace for the 
beginning of 1 8 i 2, 7s. I 5° 4' 9"5, of his afihelion 11s. 17C 3 l' 23", 
and of his node 2s 12° 54' 6". His mean mot. for 365 days 4° 
17' 44"2, of his aphel. 53", and of his node 16", his mean motion 
for an hour is l"8. His greatest equat. for 1780, 5° 21' 2" 7. 

Lafilace remarks that his motion, which is nearly in the plane of 
the ecliptic, begins to be retrograde when, previous to the opposi¬ 
tion, the planet is (115°) 103° 30' distant from the sun. The mo¬ 
tion ceases to be retrograde when, after the opposition, the planet 
in his approach to the sun is only 103° 30' distant from it. The 
duration of his retrogradation is about 151 days, and his arc of re- 
trogradation (4°) 3° 36'. He further remarks, that if the dist. of 
Uranus were to be estimated by the slowness of his motion, it 
should be on the confines of the planetary system 

From the periodic time of this planet, given above, his distance 
from the sun, &c. may be found as for the other planets. The ratio of 
his diam. to that of the earth’s is given as 4.32 : 1, hence its mag¬ 
nitude is more than 80 times that of the earth. His hourly vel. in 
his orbit; the light and heat on his surface, &c. may also be found 
as for the other planets. 

OF THE SATELLITES OF HERSCHEL, 

Dr. Herschel has discovered six satellites moving round this 
planet, in orbits almost circular and nearly perpendicular to the 
plane of the ecliptic. The first two he discovered on Jan 11, 1787, 
of which he gives an account in the Phil. Trans, for 1787. 

In the Phil. Trans, for 788, he gives a further account of this 
discovery, together with their periodic times, distances, and posi¬ 
tions of their orbits, as far as he was then able to ascertain them. 

The most convenient method, as Vince remarks, of determining 
the periodic time of a satellite, being, either from its eclipses, or 
from taking its positions in several successive oppositions of the 
planets ; but as no eclipses happened since the discovery of the 
satellites, and that it would be too tedious to put in practice the 
latter method, Herschel, therefore, took their situations whenever 
he could ascertain them with some degree of precision, and then 
reduced them, by computation, to such situations as were necessa¬ 
ry for his purpose. In computing their periods round their prima¬ 
ry, he has taken the synodic revolutions, as the positions of their 
orbits, at the times when their situations were taken, were not 
sufficiently known, to get very accurate sidereal revolutions. The 
mean of several revolutions gave the synodic rev. of the first sa¬ 
tellite 8d. 17h. 1' 19"3, and of the second 13d. 1 lh. 5' l"5. The 
epochs from which their situations may, at anytime, be computed. 
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are, for the frst, Oct. 19, 1787, at 19h 11' 28" ; and for the set* 
ond, at 17h 22' 40" ; at which times they were 76° 43' north, fol¬ 
lowing the planet. 

Dr. Herschel has also determined their distances from the plan¬ 
et ; one of which he obtained by observation ; and the other from 
the periodic times. While making his observations to discover the. 
dist. of the second, its orbit seemed elliptical. He found its greatest 
elongation to be 46"46, and its elong. at the mean dist. of the pri¬ 
mary from the earth 44"23, which will be the true dist. very 
nearly, on supposition that the satellites move in circular orbits ; 
hence by Kefiler's rule, the dist of the second sat. comes out 33"09. 
In this calculation the synodic rev. were used for the sidereal, 
which will make but little error. 

In determining the inclinations of the orbits and places of their 
nodes, Herschel could not determine which part of the orbit was 
inclined /o, and which from the earth ; he therefore computed 
them on both suppositions, and found that the orbit of the 2d sat. 
is inclined to the ecliptic 99° 43' 53" 3, or 81° 6' 4" 4 ; its as¬ 
cending node upon the ecliptic is in 5s. 18°, or 8s. 6°, and when 
the planet comes to the ascending node of this satellite, which hap¬ 
pened about the year 1799, and will again take place about the 
year 1818, at which time there will be an eclipse of this and the 
1st satellite, when they will appear to ascend through the shadow 
of the planet, in a direction almost perp. to the ecliptic. M De- 
lambre makes the ascending node in 5s. 21°, or 8s. 9° from Dr. 
Hcrschers observations The situation of the orbit of the first 
satellite does not materially differ from that of the second. The 
light of the satellites is extremely faint ; the 2d is the brightest, 
but the difference is small. Here, as in Jupiter's satellites, these 
two are called 1st and 2d satellites, and are so in the order of dis¬ 
covery, but from the four other satellites which Herschel has dis¬ 
covered to revolve round this planet {Phil, trails. 1798) this or¬ 
der is changed, and the 1st is now the 2d, and the 2d the 4th. 

Most astronomers give their distances from the planet, and 
their periods as follow. 

I. II. III. IV. V. 
JDist. 2 5"5 33' 38“57 44"2 88"4 
Rev. 5d.21h. 25' 8d. I7h.l'19 lOd. 23h. 4' 13d. llh. 5/ 38d. lh. 49' 

VI. 
176"8 

I07d. 16h.4C* 

Lafilace says, that if we take for unity the semidiameter of Ura¬ 
nus, supposed (6") 1"944 seen at the mean dist. of the planet 
from the sun, the distances of his satellites will be 13.120, 17.022, 
19.845, 22.752, 45.507, 91.008 ; and the durations of their sidereal 
revolutions 5.8926 days, 8.7068d. 10.961 Id. 13.4559d. 38.075d.and 
107.6944 days respectively. These durations, as Laplace remarks, 
with the exception of the 2d and 4th, have been concluded from 
the greatest observed elongations, and from Kepler’s lule, as re¬ 
gards the primary planets, (see pa. 25 3) a rule which observation 
has. confirmed with regard to the 2d and 4th satellites of Herschel, 
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so that it should* be considered as a general law of the motion of £ 
system of bodies round a common focus. 

It is a singular circumstance, that the orbits of those satellites 
are found to be nearly perp. to the ecliptic, and still more singular, 
that they perform their revolutions round Herschel in a retrograde 
order, that is contrary to the order of the signs. The first is pro¬ 
bably the cause of the latter ; and if properly examined, might 
therefore throw much light on the general cause of the regular 
law observed in all the planets, in following the direction of the 
sun’s motion on his axis ; and also of all the satellites, except those 
of Herschel, in performing their motions in the direction of the di¬ 
urnal revolution of their primaries. If the action of the sun in 
moving on its axis, carry the planets, or that of the planets the sa^ 
tellites, it is plain that the more oblique their orbits are to the 
equator of the body, the less will the effect of the body be upon 
that which regards it as its centre. 

CHAP. X. 

OF THE NATURE AND MOTION OF 

COMETS. 
Besides the primary planets and their satellites already describ 

ed, there are, belonging to our system, other bodies called Comets, 
from their hairy appearance ; these appear suddenly in the plan¬ 
etary regions, and again disappear ; they are supposed to move 
round the sun in elliptic orbits, like the planets, but very eccen¬ 
tric, so that the Comet is visible but in a small part of it. They 
are distinguished from other stars from their being attended with 
a long train of light, always opposite the sun, and which is of a 
fainter lustre the further it is from the body Hence comets are 
commonly divided into bearded, tailed, and hairy ; this division, 
however, relates not to different comets, but rather to the several 
appearances of the same comet. Thus, when the comet is west¬ 
ward of the sun, and moves from it, it is said to be bearded, be¬ 
cause the light precedes it in the manner of a beard ; when the 
comet is west of the sun, and therefore sets after him, it is said 
to be tailed, because the light or train follows it ; lastly, when the 
comet is in opposition to the sun, the train is hidden behind the 
body of the comet, except a small portion that surrounds it like a 
border of hair, or coma, whence called hairy, and whence the 
comet derives its name. 

Like the other stars, the comets participate in the diurnal mo¬ 
tions of the heavens, and thus combined with the smallness of their 
parallax, proves that they are not meteors generated in the atmos¬ 
phere, but that they are much higher than the moon, and in the 
regions of the planets {Newton prin. b. 3. Xem. 4.) Though 
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the opinion prevailed among many of the ancient philosophers that 
they were meteors, &c. yet the most ancient and learned ot them 
supposed comets to be eternal or constant bodies of the world, 
which like planets perform their revolutions in stated times. See 
Newton pr. b. 3, or Dr. Gregory’s Astr. b 5. sect. 1. where 
their opinions, &c. are given. (The phase observed in the comet 
of 1744, of which only half the disk was enlightened, proves that 
they are ofiake bodies, which receive their light from the sun.) 

Among the moderns Tycho Brahe was the first who, after dil¬ 
igently observing the comet of 1577, and finding that it had no 
sensible diurnal parallax,* assigned it its true place in the plan¬ 
etary regions Few comets have approached the earth so near as 
to have a diurnal parallax, they however afford sufficient indica¬ 
tions of an annual parallax This shews that they are not so dis¬ 
tant as the fixed stars.f 

There have been various theories concerning the nature of co¬ 
mets, which it would be too tedious here to detail f (they may be 

* Kiel in his astr. lect. 17, gives the following simple method of discov¬ 
ering whether the comet has any sensible parallax. A comet before it dis¬ 
appears moves so slowly, that it seems to be almost without any motion, 
and it may be twice observed in this manner, before and after the perihe¬ 
lion ; these places of the comet being selected, then, when it is very high 
above the horizon, take any two stars between which the comet lies in a 
right line parallel to the horizon, which may be easily found by extending 
the thread before the stars ; next when the comet approaches the horizon, 
let the thread be extended again as before, and if the comet is found to be 
in the same straight line with the stars as before, it is a proof that it has no 
sensible parallax, and must be at an immense distance from us. No error 
ean arise here from refraction, as it equally affects both the stars and comet. 
Kiel also gives the following method; let the comet be observed when it is 
near the eastern part of the horizon, and in a right line with two stars that 
are both in the same circle, which is perp. to the horizon ; and afterwards 
when the stars rise higher, and are not in the same vertical circle as before, 
if the comet still appear to be in the same right line with them, it can have 
no sensible parallax ; and hence its course must be very high in the hea¬ 
vens. If it should be found more depressed than to appear in the right line 
that joins the stars, it must necessarily have a parallax. And if during the 
observations, the comet has a proper motfon of his own, this motion must 
be allowed for, in proportion to the time between the observations. The 
parallax here spoken of is the diurnal. The want of this parallax afforded 
an argument of placing the comets higher than the moon ; but their being 
subject to an annual paral. proves their descent into the planetary regions. 
The reason of these methods may be easily understood from considering 
the earth’s motion, and the nature of a parallax. 

-j- Hevelius observes, that these motions of the comets are inexplicable, 
but on the supposition of the earth’s motion round the sun ; which therefore 
affords another proof of the truth of this hypothesis. See Newton's prim, 
pa. 380, Motte’s translation. 

t The principal is that of Sir Isaac Newton. He says (prin. b. 3, 
prop. 41.) that the comets are solid, compact, fixed, and durable bodies, 
like the bodies of the planets ; in a word, they are a kind of planets which 
move in very oblique orbits every way with the greatest freedom ; perse¬ 
vering in their motions even contrary to the planets direction ; and that 
their tail is a very thin slender vapour, emitted by the head or nucleus of 

3 B 
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found in the firincifiia, in Gregory's ast. b. 5, or in Vince's astr.) 
but the truth or falsehood of any one of these theories may be 
tried from the following: phenomena of comets, collected from 
Ree's Cydofiedia (Philadelphia ed.) 

First. Those comets which move according to the order of the 
signs, do all, a little before they disappear, either advance a little 
slower than usual, or else go retrograde, if the earth be between 
them and the sun ; and more swiftly if the earth be situated in a 
contrary part. On the contrary, those which proceed contrary to 
the order of the signs, advance more swiftly than usual, if the earth 
be between them and the sun ; and more slowly, or go retrograde, 
when the earth is in a contrary part.* 

2. As long as their velocity is increased, they move nearly in 
great circles : f but towards the end of their course, they deviate 
from their circles ; and when the earth advances in one direction, 
they advance the contrary way. 

3. They move round the sun in ellipses, having one of their 
foci in the centre of the sun : and by radii drawn to the sun de¬ 
scribe areas proportional to the times.}: 

the comet heated by the sun. The truth of these principles appear from 
their being perfectly conformable to the above phenomena. That the comets 
are solid, appears from the heat they are capable of sustaining, as appears 
from that of 1680, whose heat, according to Newton, was 2000 times great¬ 
er than that of red hot iron. 

* This is evident, as the course of the comets is among tbe planets, and 
must therefore follow the same laws. 
| Keil remarks (lect. 17. astr.) that if the distance of the comet be ob¬ 

served every day from two fixed stars, whose longitudes and latitudes are 
known, and the places computed from these distances be marked on the 
surface of a celestial globe, the course of the comet will thus be found to 
be a portion of a great circle, allowance being made for the earth’s motion. 
Prom tills it is manifest, that the comet moves in a plane passing through 
the eye of the spectator, or more exactly through the sunfor all visible 
motion that is made in such a plane, however inclined to the ecliptic, will 
always appear to be in the periphery of a great circle. The comet’s devia¬ 
tion from a course in a great circle, or the variation in the comet’s orbit 
with the ecliptic, is only apparent, and does not arise from the real mo¬ 
tion of the comet, but from that of the earth, as was shewn in the planets, 
whose distances and incl. to the ecliptic vary according to their different 
positions, as seen from the earth ; while they are regular, as seen from the 
sun. Newton says that this arises from their parallax. See his prin. b. 3i 
Lemma 4. 

t They are supposed, for the ease in calculation, to move in parabolic 
orbits, which, in that part of it near the sun, is sufficiently correct for the 
elements of their elliptic orbits, as they are very eccentric. Newton re¬ 
marks, from considering the curvity of their orbits, that when they disap¬ 
pear, they are much beyond the orbit of Jupiter, and that in their perihelion 
they frequently descend below the orbits of Mars and the inferior planets. 
(Prin. b. 3. Lemma 4.) He has fully demonstrated, that every body plac¬ 
ed in our planetary system, should be attracted by the sun, with a force 
reciprocally proportional to the squares of the distances, which, in conjunc 
tion with the projectile force, would cause the body to move in a conic sec¬ 
tion about the sun placed in the focus, and describe areas proportional to 
the times. He also shews, that if the same comet ever return to our svV 
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4. The light of their bodies, or nuclei, increases in their recess 
from the earth towards the sun ; and on the contrary, decreases in 
their recess from the sun.* 

5. Their tails appear the largest and brightest immediately af¬ 
ter their transit through the region of the sun, or after their peri¬ 
helion ; because then they are most heated, and must therefore 
emit a greater quantity of vapours f 

6. The tails always decline from a just opposition to the sun to¬ 
wards those parts which the bodies or nuclei pass over, in their 
progress through their orbits ; because all smoke or vapours emit¬ 
ted from a body in motion, tends upwards in an oblique direction, 
and receding from that part towards which the smoking body 
proceeds. 

7. This declination cceteris paribus, is the smallest, when the 
heads, or nuclei, approach nearest the sun ; and is still less near 
the nucleus of the comet, than towards the extremity of the tail. 
Because the vapour ascends with more velocity near the head of 
the comet, than in the higher extremity of the tail; and also when 
the comet is at a less distance from the sun than when at a greater. 
See Dr. Gregory’s astr. b. 5, prop. 4. cor. 1, See. In this prop, 
and corollaries, many interesting remarks concerning the tails of 
comets are given. See also the principia, b. 3, Lemma 4, and 
prop. 41. 

8. The tails are somewhat brighter and more distinctly defined 
in their convex than in their concave part, because the vapour in 
the concave part, which goes first, being somewhat nearer and 
denser, reflects the light more copiously. 

9. The tails always appear broader at their upper extreme than 
near the centre of the comet, because the vapour in a free space 
is perpetually rarified and dilated, as is also the case with any vir¬ 
tue passing from a centre. 

10. The tails are always transparent, and the smallest stars ap¬ 
pear through them, because it consists of thin vapour, &c. 

Hence the hypothesis of Newton, given in the note to pa. 393, 
exactly agrees with the phenomena. Newton, at the end of the 
third book of his Principia, fully illustrates this hypothesis, and 
gives many other interesting particulars concerning the nature of 
comets. Dr. Gregory enters more fully into the investigation of 
these particulars. See b. 5 of his Astronomy. 

The nuclei, or the heads-, or rather the bodies of comets, when 
viewed through a telescope, appear differently, or with different 

tern, it must describe an ellipsis, though very eccentric. See Dr. Halley's 
Synopsis of the astronomy of comets, at the end of Dr. Gregory's astronomy. 

* As they are in the regions of the planets, their access towards the sun 
bears a considerable proportion to their whole distance. See Newton's ob¬ 
servations on the cornet of 1680. 

f As the heads of the comets are illuminated by the sun, this light being 
reflected towards the earth, renders them visible, and shews that they are 
not in the region of the fixed stars, for any of the planets which are onlv 
illuminated by the light of the fixed stars, are not visible on the earth. 
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phases, from those of the fixed stars or planets. They are subject 
to apparent changes, which Newton considered as performed in 
their atmosphere ; and this opinion was confirmed by observations 
of the comet in ±744. Hist Acad. Sciences, 1744. 

Tycho, Heve ius, and some others, give various estimates of the 
magnitude of comets, but their estimates are not sufficiently accu¬ 
rate to be depended on ; for it appears that they did not distinguish 
between the nucleus and the surrounding atmosphere. Tycho 
computes that the true diameter of the comet in 1577, was in pro¬ 
portion to the earth’s diameter as 3 to 14. Heve/ius found the 
diam of the nucleus of the comet of 1661, and also that of 1665, 
at its commencement, to be less than a 10th part of the diam. of 
the earth ; and that of 1652, from its parallax, and appar. mag. of 
its head, he computes on the 10th Dec. to be to the diam. of the 
earth as 52 to 100. He found the true diam. of the comet of 1664 
to be six times that of the earth, at another time not much more 
than 2-| diameters The diameter of the atmosphere is sometimes 
10 or 15 times greater than that of the nucleus. Flamstead ob¬ 
served the comet of *682, with a telescope of 16 feet, and found 
with a micrometer the least diam. of its head = 2', but the nucleus 
scarcely a tenth part, or about 1 l" or 12". From comparing the 
appar. dist. and mag. of comets, some have been found larger than 
the moon, and even equal to some of the primary planets. The 
diam of that of 1744, when at the distance of the sun from us, 
measured about l', and therefore its diam must be about three 
times the diam of the earth : at another time the diam. of the nu¬ 
cleus was nearly equal that of Jupiter. 

Hence Newton shews that more comets are seen in the hemis¬ 
phere towards the sun, than in that which is opposite to it. For as 
comets shine by the reflected light of the sun, they will not become 
visible to us until their light, so reflected, is strong enough to affect 
our eyes : and moreover, as comets are principally rendered con¬ 
spicuous from their tails, which they do not emit until heated by 
the sun, it is evident that to have the comet or its tail visible, it 
must come within a defined distance of the sun And, as Newton 
remarks (Cor. 2, lem. 4, b. 3) comets descending into our parts, 
neither emit tails, nor are so weli illuminated by the sun, as to dis¬ 
cover themselves to our naked eyes, until they are come nearer to 
us than Jupiter. But the far greater part of that spherical space 
which is described about the sun, with so small an interval, lies on 
that side of the earth which regards the sun ; and the comets in 
that greater part are more strongly illuminated, as being generally 
nearer the sun This is more fully elucidated in prop. 5, b. 5, 
Gregory's Astr. where it is further proved (Scholium) that by how 
much nearer a comet must be to the sun before it becomes visible, 
by so much does the number of the comets^ seen in the hemis¬ 
phere towards the sun, exceed the number of those which appear 
in the opposite hemisphere. It, as Newton remarks, they were vi¬ 
sible in the regions far above Saturn, they would appear more fre¬ 
quently in the parts opposite the sun. 
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Comets are always surrounded with a very gross dense atmos¬ 
phere, and from the side opposite the sun project a tail, which in¬ 
creases as the comet approaches its perihelion, immediately after 
which it is longest and most luminous. That the tail depends on 
the sun, is evident from these phenomena. The tail is so rare, 
that the smallest stars are seen through it, and hence the opinion 
of the ancient philosophers was, that the tail is a very thin, fiery 
vapour arising from the comet. Afiian, Cardan, Tycho, Snell and 
others among the moderns, were of a different opinion, and imagin¬ 
ed that the sun’s rays were propagated through the transparent 
head of the comet, and refracted as in a lens. But this is contrary 
to the laws of Dioptrics, nor does the figure of the tail answer to it; 
and moreover there must be some reflecting substance like dust in 
a room, Stc to render the rays visible to an eye placed sideways 
from it. Kefiler supposed that the tail was produced by the gross 
parts of the comet being carried away by the sun’s rays- Hevelius 
thought that the thinnest parts of the comet’s atmosphere were ra- 
rified, and driven towards the parts turned from the sun. De. Cartes 
considered the tail as produced by the refraction of light, from the 
nucleus of the comet to the eye of the spectator. If this were the 
case, the planets and principal fixed stars ought likewise to have 
tails ; nor would the tails, as Dr. Gregory remarks, be free from the 
colour of the rainbow, which always accompany refracted light. 
(See other opinions, See. in Gregory’s Ast prop. 4, b. 5.) Dr. Gre¬ 
gory remarks, that the most obvious opinion to any one that looks 
at a comet, is, that the tail has its origin from the head. He shews 
this to be the opinion of the principal of the ancient philosophers, 
and also that of Newton, who says, that the tail is nothing else hut a 
very thin vafiour, which the head or nucleus of the comet emits by its 
heat. He shews that the atmosphere of comets will furnish vapours 
sufficient to form their tails, from this principle, that if the air 
should expand itself according to this law, which is confirmed by 
experience, viz that the spaces in which it is compressed are reci¬ 
procally proportional to the weights compressing it; a globe of air 
of an inch diameter, if it should become as rare as it would be at 
the height of a semidiameter of the earth, would fill all the plane¬ 
tary regions as far as the sphere of Saturn, and far beyond. (See 
this demonstrated in prop 3, b 5, Gregory’s Ast) Hence he sup¬ 
poses that when the comet is descending to its perihelion, the va¬ 
pours behind the comet in respect to the sun, being rarified by the 
sun’s heat, ascend and carry with them the particles of which the 
tail is composed, as air rarified by heat carries up the particles of 
smoke in a chimney. Since then the coma or atmosphere of a 
comet is ten times higher than the surface of the nucleus, reckoning 
from its centre ; the tail ascending much higher, must necessarily 
be immensely rare ; and hence the stars appear so visibly through 
it. The ascent of the vapours will be promoted by their circular 
motion round the sun. When the tail is thus formed, like the nu¬ 
cleus, it gravitates towards the sun, and by the projectile force re- 
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ceivcd from the comet, it describes an ellipse about the sun, and 
accompanies the comet, See. (See the Prin. or Gregory’s Astr.) 
The vapours of the comets being thus ratified and dilated, may be 
scattered through the heavens, and mix with the atmosphere of the 
planets. Mairan supposes that the tails are formed out of the lu¬ 
minous matter that composes the sun’s atmosphere, which is sup¬ 
posed to extend as far as the orbit of the earth, and to furnish mat¬ 
ter for those northern lights, called the Aurora Borealis. He calls 
the tail of a comet the Aurora Borealis of the comet. This hypo¬ 
thesis La Lande combines with that of Newton. He thinks that 
part of the vapour which form them, arises out of the atmosphere 
rarified by heat, and is pushed forward by the force of the light 
streaming from the sun ; and also that a comet passing through the 
sun’s atmosphere is drenched therein, and carries away some of it. 
Euler (Mem. de l’Acad. de Berlin, tom. 2, pa. 117, seq j thinks 
that there is great affinity between these tails, the zodiacal light, 
and the aurora borealis ; and that the common cause of them all is 
the action of the sun’s light on the atmosphere of the comets, of 
the sun, and of the earth. It may, from thence happen, that the vel. 
of the comet in its perihelion may be so great, that the force of the 
sun’s rays may produce a new tail before the old one, varied front 
the comet’s mot. in its orbit and about an axis, can follow; in which 
case the comet might have two or more tails. The possibility of 
this is confirmed by the comet of 1744, which was observed to have 
several tails while it was in perihelion. Dr Hamilton, in his Phi- 
losofihical Essays, urges several objections against the Newtonian 
hypothesis. He observes that we have no proof of the existence of 
a solar atmosphere ; and if we had, that when the comet is moving 
in its perihelion, in a direction at right angles to the direction of its 
tail, the vapours which then arise, partaking of the great velocity 
of the comet, and being also specifically lighter than the medium 
in which they move, must suffer a much greater resistance than 
the dense body of the comet, and therefore ought to be left behind, 
and would not appear opposite the sun ; and afterwards they ought 
to appear towards the sun Besides, if the splendour of the tails be 
owing to the reflection and refraction of the sun’s rays, it ought to 
diminish the lustre of the stars seen through it, which would have 
their light reflected and refracted in like manner, and consequently 
their brightness diminished. He concludes that the tail of a comet 
is composed of a matter which has not the power of refractity or 
reflecting the rays of light; but that it is a lucid or self shining 
substance ; and from its similarity to the Aurora Borealis, produced 
by the same cause, and a proper electrical phenomenon. He con¬ 
jectures that the use of the comets are destined to supply the sun 
with fresh fuel, in place of what he loses from the emission of 
light. This he conjectured from the proximity of the comet of 
1680 to the sun, and the resistance it must receive from the sun’s 
atmosphere. Hcvclius informs us that he observed the comet of 
1665 to cast a shadow upon the tail, a dark line appearing in it? 
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middle. Cassini observed the same phenomenon in the comet of 
1680 ; and the same appearance was taken notice of by a curious 
observer in the comet of 1744. 

The lengths of the tails of comets are various, and depend on 
a variety of circumstances. Longomontanus mentions a comet that 
in 1688, Dec. 10th. had a tail which appeared under an angle of 
140° ; that of 1680 on the month of Dec. when it was scarcely 
equal in light to the stars of the second mag. emitted a remarka¬ 
ble tail, extending 50°, 60°, or 70°, and more ; the comet of 
1744 had a tail extending 16° from its body, and which, allowing 
the sun’s parallax to be 10", must have been about 23 millions of 
miles in length. The diameter of its body was equal to that of 
Jupiter. The tail of the comet of 1759, according to M. Pingre, 
subtended an angle of 90° ; but the light was very faint. The 
length of a comet’s tail may be thus found ; 
let S represent the sun, E the earth, C the 
comet, CL the tail when directed from the 
sun ; then the place of the comet being giv¬ 
en, we have the angle ECL, the side EC, 
and the angle CEL, the angle under which 
the tail appears ; hence CL the length of 
the tail is given If the tail deviate by an 
angle LCM found from observation, we shall 
then know the angle ECM, with CE and 
the angle CEM, to find CM. 

The analogy between the periodic times of the planets and their 
distances from the sun, takes place also in the comets ; hence the 
comet’s mean distance may be found by comparing its period with 
the time of the earth’s revolution round the sun : thus the period 
of the comet which appeared in 1531, 1607, 1682, and 1759, 
being about 76 years, its mean dist. is found by saying as l2 
(or 1 year) : 762 (== 5776) :: 1003 (or 1000000) : 5776000000 
the cube of the comet’s mean dist the cube root of which is 1794, 
the mean dist. in such parts as that of the earth contains 100. If 
the per. dist. of this comet 58 betaken from 3588, double the 
mean dist. the aphel. dist. will be given = 3530, which is a lit¬ 
tle more than 35 times the earth’s mean dist. from the sun. In 
like manner the aphel dist. of the comet of 1680 is found to be 
135 times the earth’s mean dist. from the sun, its period being 
supposed 575 years ; so that in the aphel. it is more than 14 times 
more distant from the sun than Saturn. 

If the tail of the comet be supposed directed from the sun, the 
limit of the comet’s distance may be easilv ascertained from it.—- 
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Let S be the sun, E the earth, ET the line in 
which the head of the comet appears, EW the line 
in which the extremity of the tail is observed, and 
draw ST parallel to E VV, then the comet is within 
the dist ET ; for if the comet were at T, the tail 
would be directed in a line parallel to EW, and 
therefore it could not appear in that line. The an¬ 
gle TEW being given from observation, and there¬ 
fore ETS its equal, together with TES the an¬ 
gular distance of the comet from the sun, and ES 
(from the theory of the earth, part 4. c.h 4. or the 
Nautical Aim.) hence ST the limit is given by saying sine ETS : 
sine TES :: ES : ST. Or it may be found as in the following 
example. On Dec 21, 1680, the comet’s elongation from the 
sun was 32° 24', and length of the tail 70°; hence ST : SE :: 
sine 32° 24' : sine 70° :: 4 : 7 nearly ; therefore the comet’s 
dist. from the sun was ^ of the earth’s dist- from the same—- 
Hence Aewton found that all comets, while visible, are not fur* 
ther from the sun than 3 times the earth’s dist. from the sun. But 
this computation depends on the goodness of the telescope, and the 
mag. of the comet. 

With regard to the motion and periods of comets, astronomers 
are not agreed. Aewton, Flamstead, Hallnj, Gregory, and all the 
English astronomers, and also Cassini and others of the French, 
seem satisfied that they return But de la Hire and others sup¬ 
posed not. It would be too tedious to give their respective rea¬ 
sonings on this subject. Dr. Halley was the first who predicted 
the return of a comet, and found that it was one and the same 
comet which appeared in 1682, 1607, 15*3, 1456 and .305 — 
Dr. Halley in his Synopsis of the Astronomy of Comets (see Dr. 
Gregory’s astr) shews that comets describe ellipses, and not 
parabolas or hyperbolas, and thence ventures to foretell the return 
of the comet of 1682, about the end of 1758 or beginning of 17^9 ; 
it appeared Dec. 14, 1758 He also shewed that it was the same 
as the comet of 1607, 15 :3, 1456, and i305 In this computa¬ 
tion he allowed for the action of Jupiter on this comet, which he 
found would increase its periodic time about a year M. C airaut 
computed the effects both of Saturn and Jupiter, and found that 
Saturn would retard its return, in the last period, 1 0 days, and 
Jupiter 511 days. Fie, therefore, determined the time when the 
comet would come to its perihelion to be in April 5. 1759, observ¬ 
ing that he might err a month from neglecting small quantities in 
the computation. It passed the perihelion on March 13, within 
33 days of the time computed It we suppose that the time meant 
by Dr. Halley to be that of the comet’s passing the perih lion, 
and not of its first appearing ; the addition of the 100 days, from 
the action of Saturn, which he did not consider, will bring it very 
near the time in which it did pass the perihelion, and will also shew 
that Jupiter’s effect on its motion, as computed by him, was very 
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accurate. He also observed that the action of Jupiter, in the de» 
scent of the comet towards its perihelion in 1682, would tend to 
increase the inclination of its orbit, and accordingly the inch in 
1682 was found 22' greater than in 1607. 

From the observations of M. Messier upon a comet in 1770, M. 
Edric Prosfierin, member of the Royal Acad, of Stockholm and 
Upsal, shewed that a parabolic orbit would not answer to its mo¬ 
tions, and therefore recommended to astronomers to seek for the 
elliptic orbit. This laborious task was undertaken by M. Lexell> 
who has shewn, that an ellipsis in which the periodic time is about 
5 years and 7 months, agrees very well with the observations.— 
(Phil, trails. 1779.J 

The ellipsis which the comets describe being very eccentric, as¬ 
tronomers, for the ease in calculation, suppose them to revolve in 
parabolic orbits, for those parts of their orbits which are within the 
reach of calculation ; on this supposition they can very accurately 
find the place of the perihelion of a comet, its dist. from the sun, 
the inclination of the plane of its orbit to the ecliptic, and the place 
of its node ; which are the elements of the comet’s orbit. Before 
we can, however, determine the orbit of a comet, from observa¬ 
tion, it will be necessary to premise such particulars relative to the 
motion of a body in a parabola, as may be requisite for such an in¬ 
vestigation. 

Let APM be a parabola, S its focus, 
A the vertex, P the place of the body; 
draw PQ perp. to AS, PD perp. to the 
tang. PT, and SM perp. to AD. Now 
by the property of the parabola QD=4 
the latus rectum (Emerson’s Conic 
Sect. prob. 11, b. 3) hence if AS be 
taken =» 1, then QD = 2 ; also the 
angle PSA = 2PDA ; therefore if 
QD be made rad. PQ will be tang, of PDA or \ PSA ; hence to 
the rad. AS, PQ will be twice the tang, of ^ PS A ; so that if t 
be taken = the tang, of (z) half the true anomaly PS to the 
radius AS = 1, 2t = PQ. Also AQ x 4AS — PQ2 (Emer¬ 
son’s con. sect. b. 3. prop. 3, cor. 3) hence AQ = t2 ; also the 
area AQP = § AQ X QP (Em con. b. 3, pr. 55) = f tz x = 

t3 ; and as QS = 1 —*2, the area QPS = ^ X ~ t t3 j 

hence the area ASP = + t ; and the area ASM = | (AS 
being = ^ SM, or ! the iatus rectum.) Let a and b be the times 
in which the comet moves from A to M, and from A to P ; then 
the areas described about S being proportional to the times, we 
have a : b :: -J : tz -f- t, therefore at3 -f 3at = 4b. Hence 
if a and the true anomaly be given, we have the time b =«= ~ at3-\- 

at And because a : b :: 4 : -f t, therefore if the true 
anomalies, and consequently /, be given in different parabolas, the 

3 (? 
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times of describing those true anomalies from the perihelion, will 
be proportional to the times of describing 90° from the perihelion. 

If the times a and b be given, the true anomaly may be found 

from resolving the cubic equation t% -f 31 = — which may be 
ia 

done thus. Make a right angled triangle, one of whose sides is 

expressed by 1, and the other by — and find the hypotenuse (h) 
'za 

, b b 
then find two mean proportionals between h -f y— and h— 7— and 

ia ia 
their difference will be the value of t. 

4 b • 
Take the fluxion of tz -f- 3t ■=. — and we have 3t2 t -f* 3t = 

a 
Ab . . • 4 be 
— (a being considered constant) ; hence t = 7— X ; but 

3a 

£= 1 -f- X z, therefore 2z = 
8 

3a X J-H2 

8 

3a 

l + t2 

xcos. z4xb, 

the variation of the true anomaly corresponding to any small vari¬ 
ation b of time expressed in decimals of a day, a being expressed 
invdays. 

Let SA be the mean dist. of the earth from the sun = 1 ; then 
the area of the circle described with that radius will be 3.14159 ; 
also the area AMS = -J. Now the velocity in the parabola : vel. 

in the circle ::%/ 2 ; 1 ; for let P/i be an indefinitely small arc 
described by the body, S the place of the sun, SN a line drawn 
from the focus S perp. to a tangent to the parabola APD at the 
point P ; then 1 st. The vel. a in amj point 
P of the fiarabola, is as the square root of 
the parameter to the axis, divided by SN ; 
For the vel. is as the arc P/j, or u = fi\J : 
now AM being perp. to PS, in the similar 
rt. angled triangles /2PM, PSN, SN : 

/ip = /<M x SP 
SP :: PM 

SN 
But the 

parameter is as the square of the sectors 
described ; hence put R = the parameter, 

we have R = AM2 x SP2, and R2 = 
AM X SP ; and by substitution, AP of u 

^4AS p P 
from the nature of = oxt 5 0r U- SN SN 

the parabola. 2dly. The velocity u in any point P of the parabola, 
is to the velocity V of a body running through the circumference of 
a circle, with a central force tending to its centre, the rad. beintr 

cp 9J . r . ..v/4AS w 4AS 
= SP, as 23 : 1. r or, since u = —rrrr , u~ = ; or as 

SN2 = 
SN 5 SN2 ’ . 

SP X SA (from the nature of the parabola') u 
o 
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c — = -i- 5 now the circle whose radius is SP being taken 
SPxAS bP 
as an ellipse, its parameter is == 2SP ; and th,e vel V being uni- 

V/2SP 2bp 2 
form, it is every where as ——— ; hence V2== —-* = — : there¬ 

fore u2 : Vs :: 
2 

* ___ • • O 
* / n r-k •* 

SP 

: 1 ; hence u : V 

br2 

: 2^ 

bP 
i 

1* 22 : 1. 
bP SP 

The areas described in the same time will be in the same ratio 
as the velocities, because at A the motion in each orbit being per¬ 
pendicular to SA, the areas described will be as the velocities ; 
and this being the case in one instance, it must hold always so, 
because in each orbit respectively, equal areas are described in 
equal times. But the times of describing any two areas are as the 
areas directly, and the areas described in the same time inversely ; 

. _ 3.14159 4 / v/8 \ , . r , . . 
therefore --* ::-< — :: the time of the revolution 

1 3 v/ 2 ' 3 / 
in the circle = 365d. 6h. 9' : the time of describing AM = 
109d. !4h. 46' 20". Now, as the time of describing AM, is in a 
given ratio to the time in the circle, which varies as AS|, there¬ 
fore if r = the perihelion dist. in any parabola, we have 1| : rj 
:: 109d. <4h 46' 20" : the time of describing 90° in that para¬ 
bola from the perihelion. Hence the time corresponding to any 
true anomaly in that parabola whose perihelion dist. = 1, being 
given, we know the time corresponding to the same true anomaly 
in any other parabola, because the times of describing 90° are as 
the times corresponding to the same true anomaly Hence if n 
— the number of days corresponding to any given anomaly in that 
parabola, whose perihelion dist is unity, then nrl will be the time 
t corresponding to the same anomaly in that whose perihelion dis¬ 
tance is r, which may be readily found thus ; multiply the log. r 
by 3 and divide by 2, and to the quotient add the log. n, and the 

t 
sum will be the log. of the time required Hence also n = 

ri 
therefore if from the log. t we subtract log. r, the remainder will 
be the log. n of the number of days corresponding to the same ano¬ 
maly in the parabola whose perihelion dist = 1 ; hence the ano¬ 
maly will be found from a table, which gives the times corres¬ 
ponding to the true anomaly for 200000 days from the perihelion, in 
that parabola whose perihelion dist. is unity. This table may be 
constructed by the preceding prob by taking a = 109.6155, and 
assuming b = 1, 2, 3, 4, See. and finding the corresponding values 
of t. Dr. Halley first constructed a table of this kind.* De la 

* See his synopsis of the astronomy of comets at the end of Dr. Gregory's 
Astr. where he also gives the elements of 24, from 1337 to 1698. The fol- 
lowingis the method he makes use of in calculating his table. Let S be the sun 
(fig. pa. 402) ARP the orbit of a comet, A the perihelion, R the place where 
the comet is 90° distant from the perihcl. P any other place. Let the lines 
VP, PS, be drawn, and make SH, SQ equal to PS; and having drawn the 
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Gaille changed it into a more convenient form, by pitting the areas 
for the times ; but the most extensive and complete table is that 
computed by Delambre, and inserted in the tables annexed to the 
3d ed. of La Lande’s Ast. (tab. pa 204 to 234 ) See art. 3118, La 
Lande’s Ast. The true anomaly in this tab. is calculated for days 
and quarters of a day to 200 days, then for days and half days to 400, 
afterwards for each day to 700, for 2% days to 1200, for every 5 days 
to 1800, for 10 days to 30u0, for \2h days to 4000, for 25 days to 
7000, for 50 days to 12000, for 100 days to 24000, for 200 days to 
40000, for 250 days to 48000, for 500 days to 100000, and for 1000 
days to 200000 days. He also gives a small table for reducing 
hours, minutes, and seconds, to decimals of a day. The following 
is an example of the use of this table. The perih. dist. of a comet 
being given = 0.5835 to find its true anomaly for 49d. 18h. 55' 16'" 

rt. lines PQ, PH, one of which is tang, and the other perp. to the curve ; let 
fall PO perp. to the axis AOQ. Now any area, as PRAS, being given, the 
angle PSA, and the distance PS is required. From the nature of the parabo¬ 
la, QO is always =*= £ the parameter or latus rectum of the axis (Emerson’s 
Con. Sect. b. 3, prop. 11) and hence if the param. = 2, then QO = 1. Let 

PO = z, then AO = ^ z2, and the parabolic segment PRA = z3. But 

the triangle APS = d z, and hence the area ASPR == -IL *3 £ z = a; 

whence z 3 4- 3z — a. Wherefore solving this cubic equation, z or the or¬ 
dinate PO will be known. Now let the area ARS be proposed to be divided 

into 100 parts, this area is ^ of the sq. of the param. and therefore 12a = 
that sq. == 4. If therefore the roots of these equations z3 4- 3z = 0.04, 
0.08, 0.09, &c. be successively extracted, there will be obtained so many va¬ 
lues of z or the ordinate PO respectively, and the area PRS will be divided 
into 100 equal parts. In like manner the calculus is to be continued beyond 
the place R. Now the root of this equation (since OQ = 1) is the tabular 
tang, of the Z_ PQO or ^ Z- ASP; hence the £_ ASP is given. RC, also 
the secant of PRO, is a mean prop, between QO = 1, and HQ = 2I1S. But 
if AS = 1, and latus rectum therefore = 4 (as in Halley’s table) then IIQ will 
be the dist. sought, that is 2PS in the former parabola. He then determines 
the place of a comet,by the numbers in his table, thus. The vel. of a comet 
in a parabola, being every where to that of a planet describing a circle about 
the sun, at the same distance from the sun, as x/2 : 1 (from what we have 
before dem. or JVeivton’s prin. b. 1, prop. 16, cor. 7.) If therefore a comet 
in its perihelion were supposed to be as far distant from the sun as the earth 
is, then the diurnal arc, which the comet would describe, would be to the 
diurnal arc of the earth as ^/2 : 1. And therefore the time of the annual 
rev. : the time in which such a comet would describe the quadrant of its orbit 

from the perih. :: 3.14159 : -f. Hence the comet would describe that 
quadrant in 109d. 14h. 46'; and so the parabolic area (analogous to the area 
ASR) being divided into 100 parts, to each day there would be allotted 
0.912280 of those parts, the log*, of which, that is, 9.960128, is to be kept 
for constant use. But then the times in which comets, at a gr. or less dist. 
would describe similar quadrants, are as the times of the rev. in circles, that 
is, in the sesquiplicate ratio of the distances ; whence the diurnal arcs esti¬ 
mated in centessimal parts of the quadrant (which are put for the measures 
of the mean mot. like degrees) are in each, in the sesquialtera proportion of 
the distance from the sun in the perihelion. See the application of the above, 
in computing the appar. place of a comet, &c. with examples, in Dr. Halley’s 
'Synopsis, and which, except in the change in the tables, differs but l\tt,fo 
from the method given above. 
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before or after its perihelion. (LaLande, art 3121.) 18h. 55' 16" 
being'reduced to decimals of a day, gives <$.7500. 0.03819, and 
0.00018 respectively, the sum of which added to 49 days, gives 
49.78837 days. 

Log. dist. of the perihelion 0.5835 9.7660409 
Half the same log'. ... 9.8830204 

Log. of the peril, multiplied by 
Log. of the given time 49.78837 

s 
T 9.6490613 

1.6971279 

The remd. is the log. of 111.7034 days 2.0480666 

Now 111.5 days correspond 90° 38' 57"4 true anomaly; the 
difference given in the table between 111.50 and 111 75, is 5' 6"l ; 
hence .25 : .2034* :: 5' 6"l : 4,' 9"; therefore the true anomaly 
required is 90° 43' 6". 

Vince has given Delambre's table in pa. 454, vol. 1, of his Astr. 
DrawSYperp. to the tang. (fig.pa. 401)thenSP : SY :: SY : SA; 

whence SP2 : SA2 :: SP : SY :: rad. : cos. PSY, or|PSA the 
true anomaly; or SP : SA :: rad.2 : cos. square of i the true ano¬ 
maly. Hence if SA = 1, and a -f- x = iPSA, a — x = ^/iSA ; 

then 1 : SP2 :: cos. (a-f-x) : rad. and S/22 : 1 :: rad. : cos. 
a i 

{a — x) ; hence S/22 : SP2 :: cos. (a + x) 1 cos. (a — x). Hence 
SP = SA -4- the square of £ the true anomaly, rad. being = 1 ; 
therefore from log. SA, subtract twice the log. cos. h true anomaly, 
the remainder is the log. of the dist. of the comet from the sun. 

Now let BD be made perp. to AB, take BC 
= AB, join AC and produce it to E, from D 
let fall DE perp. to AE, and produce ED until 
it meets AF parallel to BD in F, join AD and 
draw DG, CH parallel to BA. Then as the 
angle EAF = 45°, EFA = 45°, (32 Eucl. 1) 
hence A£= EF (6 Eucl. l); also FG = GD 
= AB (34 Eucl. 1) ; hence AF = BD -f- BA, 
and GH — BD — BA ; also by similar trian¬ 
gles AF or BD -f BA : CD = GH or BD — 
BA :: EF or EA : ED rad. : tang. DAE ; 
but AB : BD :: rad. : tang. BAD, from which subtract 45°, and 
we have BD -f- BA : BD — BA :: rad. : tang, of that difference. 

If BD = SP2 (see last fig.) and BA = S/22, then SP2 : S/22 :: 

rad. : tang. BAD = ^ ~ j 2; hence to get this angle, take half the 

difference of the logarithms of SP and S/2, and add 10 to the index 
(because in the log. tangents, the index of log. tang, of 45°, or log. 

* The above .2034 (.7034—50) is given in Delambrc’s tables .7034, tin's 
ex. being taken from there. 
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of rad. as 1, is 10, in place of 0) and this last sum will be the log. 
tang, of the angle, from which let 45° be taken, and we have 

SP2 -f SA2 : SP2 — SA2 :: rad. : tang of that difference. 
Hence if two radii SP, Sfi (fig pa. 402) and the contained angle 

ASP be given, the two anomalies will thence be gi en. For let a be i 
of ASP -f- ASA, and x be i of ASP — AS/;; then h ASP = a 4- x, 

L L 
and £ ASA = a — x ; hence SA* : SP3 :: cos. a 4 x : cos. a — x 
:: (Trig.) cos. a X cos. x — sine a x sin. x : cos. a x cos. x 4 

sine a X sine x; therefore SP2 4 SA2 : SP2 — SA2 :: cos. a 
X tos. x : sin. a X sin. x :: cos. a -f- sin. a : sin. x cos. x :: 
cos. a : tang. x. Now the ratio of the two first terms is found 
from the last art and as the angle PSA is given, the value of x will 
be given ; hence a is also given, and therefore the sum, and dif¬ 
ference of ASP, ASA is given, and hence the angles themselves. 
If A be on the other side of A, then a is given to find x. 

Given two distances SP, SA, from a y w_^ 
the focus to the curve of a parabola, 
and the angle between them to find the 

parabola. With the centres P and A> 
and radii PS AS- describe two circu¬ 
lar arcs rwt, mvn, to which draw the 
tangent avw'V ; draw ST perp to it, 
and bisect it in A, and it will be the 
vertex of the parabola. For SA be¬ 
ing = AT, and ST to Pw, or SA to 
pv, the parabola will pass through A 
and P, A, See. from a well known 
method of describing the parabola.* See a general solution to this 
prob in Newton’s prin. b. 1, prop. 19. Or prep. 24, b. 5, Dr. 
Gregory's Astronomy. 

* If one end of a thread equal in length to the longest side rl? of a ruler 
or square (similar to that which carpenters use) be fixed at the point S, and 
the other end at B the end of the square avB. If the side av of the squares 
be moved along the right line Ta, and always coincide with it; then, the 
string being always kept tight, and close to the side of the square, the 
point p will describe a parabola. For other methods consult the writers on 
conic sections. 

If through either of the given points a circle be described with S as a 
centre, meeting again with the trajectory, and this point of intersection be 
joined to the former by a straight line ; on this line let a perp. be let fall 
from S until it meets the parabola, this last point will be the perihelium of 
the trajectory ; the dist. of which from the focus will be f the l at us rectum. 
The reason is evident ; for the focus S being found in the axis of the para¬ 
bola, a circle described about the centre S will cut the parabola, if it cuts it 
at all, in two points equally distant from the axis, and hence the rt. line joining 
the intersections, will be perp. to the axis, &c. If a time be taken whose in¬ 
terval, from the first obs. (the comet being then supposed in the point c of 
its orbit) is to the interval of time between the first and third obs. as the 
area eAS to the area rSd (c and cl being the observed places of the comet, 
and A the perihelion) that will lie the time of the cornet’s perih. 

A 

S 
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The elements of the orbit of a comet being given, to compute 
its place at any time. The elements of a comet’s orbit are, 1. 
The time when the cemet passes the perihelion, 2. The place of 
the perihelion, 3. The distance of the perihelion from the sun, 4. 
The place of the ascending node, 5. The inclination of the orbit 
to the ecliptic. From these elements the place at any time may 
be computed. The example given by M. de la Caille in his astr. 
is the comet of 1739, which passed its perihelion on June 17, at 
lOh. 9' 30" mean time ; the place of the perihelion was in 3s. 
12° 38' 40" ; the perihelion distance was 0.67358, the mean 
dist of the earth from the sun being l ; the ascending node was 
in Os. 27° 25' 14", and the inclination of the orbit 55° 42' 44"; 
to compute the place seen from the earth on Aug. 17, at 14' 20" 
mean time 

Let APV be the parabolic orbit of the 
comet, N the ascending node, P the co- ^ 
met’s place, T the corresponding place of 
the earth ; draw Px> perp to the ecliptic ; S 
produce SN, Sx>, SP, ST to n, u, /?, and 
t the sphere of the fixed stars, and de¬ 
scribe the great circles np, nucft and pu. 

I. The interval of time from the peri¬ 
helion to the given time, is 6id. 4h. 10' 
30" = 61.174, whose log. == ».786567 ; 
also the log. of .67358 is 9 828388, § of 
which log. (from the nature of logar ) 
is 9.742582, which sub. from 1.78o567, 
leaves 2 043985, the log. of 1 tO.6587 
days, which by the table (see the ex. pa 405) answers to 3s. 0° 21y 
38", the true anomaly PSA at the given time. 

II. Subtract 3s. 0° 21' 38" from 3s. 12° 38' 40", the place 
of the perihelion, the comet being retrograde, and after passing 
the perihelion, and the remainder is 12° 17' 1" for the heliocen¬ 
tric place p of the comet in its orbit. 

III. The longitude of n is 27° 25' 14", also np = 27° 25' 14"— 
12° 17' 1" = 15° 8' 13" ; hence rad. : cos. pnu = 55° 42' 44" 
:: tang, pn = 15° S' 13" : tang, un = 8° 39' 53", the distance 
•f the comet from the ascending node measured upon the ecliptic. 

IV. Take this value of un from the place of the node, and there 
remains 18° 45'21" = Vu, the true heliocentric place of the 
comet reduced to the ecliptic. 

V. As rad. : sine pn = 15° 8' 13" :: sine pnu = 5 5° 42' 44" 
: sine pu — 12° 37' 34" the heliocentric latitude, or lat. seen 
from the sun, which is south. 

VI. The true place T of the earth at the same time is 10s. 24° 
34' 36" ; hence TST =. 35° 2o' 24" ; therefore TSV -f TSu 
= TSx» — Is. 24° 10' 45". Also TS = 1.0115. , i 

VII. By what is shewn in a preceding article (pa. 405) cos. 
square of 45° 10' 49" : rad.2 .67358 : SP = 1.3557. 

7L 
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VIII. As rad. : cos. FSv = 12° 27' 34" :: SP = 1.3557 : 
Sv = 1.32377. 

IX. In the triangle TSv, TS, Sv, and the included angle TSu 
are given ; hence the angle S Vv is found = 77° 33' 38^", which 
being taken from 4s.24° 34' .36" the sun’s place, leaves 2s. 7° 0' 
571" for the comet’s true geocentric longitude 

X. Again, sine 54° 10' 45" : sine 77° 33' 384" :: tang PSv 
=ss 12° 27' 34" : tang. PTu = 14° 54'4", the comet’s true geo¬ 

centric latitude. 
To determine the orbit of a comet from observation. Sir Isaac 

Newton^ aided by his theory of the planets, and by those observa¬ 
tions which shewed him that the comets descended from immense 
distances into the planetary regions, was the first who solved this 
important problem, which he called firoblema longe difficillimum. 
The following is the method given by him in his principia. Select 
three observations distant from one another by intervals of time 
nearly equal. But let the interval of time in which the comet 
moves more slowly, be somewhat greater than the other ; so that, 
for ex. the diff. of the times may be to the sum of the times, as 
the sum of the times to about 600 days. See Newton prop. 41, b. 3. 
If such observations be not at hand, a new place of the comet must 
be found. (See Lem. 6. b. 3. Newton’s prin. or Emerson’s differ¬ 
ential method, prob. 10. ex. 17 and 18.) 

Let S represent the 
sun, T, t, t, three pla¬ 
ces of the earth in the 
orbis magnus ; TA, 
tB, tC, three observed 
longitudes of the com¬ 
et ; V the time be¬ 
tween the 1st obs and 
the 2d. W the time 
between the 2d and 3d. 
X the length which in 
the whole time, V -f 
W the comet might 
describe, with that ve¬ 
locity which it had in 
the mean dist. of the earth from the sun (which is found as di¬ 
rected pa. 402, or cor. 3. prop. 40. b. 3 firin') and tV a perp. 
upon the chord Tt. In the mean observed long. tB, take the 
point B at pleasure, for the place of the comet in the plane of the 
ecliptic ; and from thence towards the sun S, draw the line BE, 
which may be to the perp. tV as SB x St2 to the cube of the 
hyp. of the rt. angled triangle, whose sides are SB, and the tang, 
of the lat. of the comet in the 2d obs. to the radius tB. Through 



OF THE SOLAR SYSTEM. 409 

the point E (see lemma 7 firin. *) draw the right line AEC, whose 
parts YE and EC, terminating in the right lines TA, and tC, may¬ 
be to each other as the times V and W ; then A and C will be 
nearly the places of the comet in the plane of the ecliptic, in the 
1st and 3d observations, if B was its place rightly assumed in the 
second. 

Upon AC bisected in I, erect the perp. Ii; through B draw the 
obscure line Bi parallel to AC ; join the obscure line Si cutting 
AC in /, and complete the parallelogram Him. Take Is = 31/, 
and through the sun S draw the obscure line s.v = 3Ss -j- 3z7. 
Then cancelling the letters A, E, C, I, from the point B towards 
.r, draw the new obscure line BE, which may be to the former 
BE in the duplicate proportion of the dist. BS to the quantity Sw 
+ ^ il. Again, through the point E draw the right line AEC as 
before, that is so that AE : EC :: the time V : the time W, 
between the observations. Then A and C will be the places of 
the comet more accurately. 

Upon AC bisected in I, erect the perpendiculars AM, CN, IO, 
of which AM, CN may be the tangents of the latitudes in the 1st 
and 3d obs. to the radii TA and tC ; join MN cutting IO in O ; 
draw the rect. parallelogram Him as before ; in z'A produced 
take ID — Sm -f |7/. Then in MN, towards N take MP to X, 
found above, in the subduplicate propor. of the earth’s mean dist. 
from the sun (or of the semid. of the orbis magnus) to the dist* 
OD. If the point P fall on N ; A, B, C, will be three places of the 
comet through which its orbit is to be described in the plane of 
the ecliptic. But if P do not fall on N ; in the right line AC take 
CG = NP, so that the points G and P may be on the same side 
of the line NC. 

By the same method as the points E, A, C, G, were found 
from the assumed point B, from other points b and b assumed at 
pleasure, find out the new points e, a, c, g, and e, a, c, g, Then 
through G, g and g, draw the circle Cgg cutting the it. line tC in 
Z ; Z will then be one place of the comet in the plane of the 
ecliptic. And in AC, ac, ac, taking AF, af, aj\ equal respectively 
to CG, eg, eg, through the points F, f and f draw the circle Fff 
cutting the rt. line AT in X ; the point X will be another place 
of the comet in the plane of the ecliptic. And at the points X 
and Z, erecting the tangents of the latitudes of the comet to the 

* This lemma is as follows. Through a given 
point P to draw a rt. line PC, whose parts PB, 
PC, cutoff by two rt. lines AB, AC, given in po¬ 
sition, may be to each other, in a given proportion. 
From the given point P suppose any rt. line PD 
to be drawn to either of the right lines given, as 
AB (produced if necessary) and produce PD 
towards AC the other given right line to E, so 
that PE may be to PD in tire given proportion.— 
(12 Eucl. 6) Draw EC parallel to AD ; also draw 
CPB, and by sim, triangles PC : PB :: PE : PD. 
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radii TX and ^Z, two places of the comet in its orbit will beAde- 
terroined. If therefore a parabola be described to the focus S 
through tiiose two places, by the method given pa. 406, this para¬ 
bola will be the orbit of the comet See the demonstration of this 
construction in the lemmas (7, 8, 11 and 10) given by Newton, 
•with a further explanation in Emerson’s comment on the prin. pa. 
105, 106, &c This prob. is more fully explained by Dr. Gregory 
in his Astronomy, b 5, prob. 26. This explanation would be pre¬ 
ferred were it not too tedious. 

It will be convenient not to assume the points B, b, b, at ran¬ 
dom, but nearly true If the angle AQt, at which the projection 
of the orbit in the plane of the ecliptic cuts the rt. line tB be 
rudely known ;* at that angle with Bt draw the obscure line AC, 
which may be to | Ti in the reciprocal subduplicate proportion of 
SQ to St. (See Emerson’s Comment, pa. 106) or as -v/St to 
V bQ t And drawing the rt. line SEB so that its parts EB may 
be equal to the length V/, the point B will be determined, which 
we are to use for the first time. Then cancelling the rt. line AC, 
and drawing anew AC according to the preceding construction, 
and moreover finding the length MP ; in tB take the point b by 
this rule, that if TA and tC intersect in Y, the dist Yb may be to 
YB in a proportion compounded of the proportion of MP to MN, 
and the subduplicate propor. of SB to Sb.| By the same method 
the 3d point b may be found if required. But if this method he 
followed, two operations will in general suffice. For if the dist. 
Bb happen to be very small after the points F, f, and G, g, are 
found, draw the right lines Ff and Gg, and they will cut TA and 
tC in the points X and Z. (See this also investigated in Gregoryys 
ast. b. 5, prob c7 ) 

Newton corrects the comet’s trajectory found by the foregoing 
method as follows. 

Operation 1. Assume that position of the plane of the trajectory 
which was determined according to the preceding method, and 
select three places of the comet, found from very accurate obser¬ 
vations, and at great distances one from the other. Then sup- 

* See the method of determining this in the Schol. prop. 13, b. 5. Greg. 
Ast. In what follows, in this chap, there are also given different methods, 
which are more convenient in practice. 

f For vel. of a comet at Q in a parab. : vel. at Q in a circle : : 1, 

nearly as * : 1, Also vel. at Q in a circle : vel. at t in a circle :: St5 : SQ2 ; 
therefore ex equo, vel. of the com. in Q : vel. of the earth at t :: nearly as 

AC : Tt; hence AC : Tt :: |St- : SQ^ ; or AC : % Tt S** : SQ* ’ 
Wherefore Q is nearly in the chord of the parabola, and B nearly a point of 
the comet’s orbit. 

$ If MP = MN, or AG = AC, then Yb : YB :: Yc : YE :: ac : AC 

vel. in b : vel. in B :: SB2 : Sb^. But if Sb = SB, and MP or AG invari¬ 
able, it will be Yb : YB :: ac or AG : AC when G falls in CY. Therefore 

Universally Yb : YB :: AG X SB^ : AC X Sb MP X SB^ ; MN X 

tb find b truly, 
✓ 
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pose A to represent the time between the 1st obs. and the 2d, and 
B the time between the 2d and 3d. It will be convenient that in 
one of those times the comet be in its perigeon, or at least not far 
from it. From those apparent places find by trigonometry the. 
three true places of the comet in that assumed plane of the trajec-, 
tory, then through the places found, and about the centre of the 
sun as the focus, describe a conic section by arithm. operations 
(principia, b. 1, prob. 2 1, or pa. 406.) Let the areas of this figure 
which are terminated by radii drawn from the sun to the places 
found, be D and E, to wit, D the area between the 1 st and 2d 
obs. and E the area between the 2d and 3d. Let T represent that, 
whole time in which the whole area D + E should be described 
with the vel. of the comet found as in prob. 16, b. 1. prin. See 
the laws of Gravity, &c. at the end of this work. 

O/ier. 2. Retaining the inch of the plane of the trajectory to the 
plane of the ecliptic, let the longitude of the nodes of the plane of 
the trajectory be increased by the addition of 20' or 30b which 
call P. Then from the foresaid three observed places of the co¬ 
met, let the three true places be found, as before, in this new 
plane, as also the orbit passing through those places, and the two 
areas of the same, described between the true observations, which 
call d and e, and let t be the whole time in which the whole area, 
d + e should be described. 

O/ier. 3. Retaining the long, of the nodes in the 1st operation* 
let the incl of the plane of the trajectory to the plane of the eclip¬ 
tic be increased by adding 20' or 30' to it, the sum of which call Q. 
Then from the foregoing three appar places of the comet, let the 
three new places be found in this new plane, as well as the orbit 
passing through them, and the two areas of the same described 
between the observation, which call d and e, and let t be the whole 
time in which the whole area d f e should be described. 

Then taking C : 1 :: A : B, and G : i :: D : E, also g 
1 :: d : e, and g : 1 :: d : e ; let S be the true time between 
the 1st and 3d. obs. and observing well the signs -f- and —, let 
such numbers m and n be found as will make 2G — 2C = mG 
— mg -f- nGt — ng ; and 2T — 2S = mT — mt + nT — nt. 
If in the 1st oper. I represents the incl. of the plane of the tra¬ 
jectory to the plane of the ecliptic, and K the long, of either node, 
then I -f- will be the true incl. of the plane of the trajectory to 
the plane of the ecliptic ; and K + mP the true longitude of the 
node. And lastly, if, in the 1st. 2d. and 3d. oper. the quantities 
R, r and r represent the parameters of the trajectory, and the 

JL JL JL 
quantities L, 1 and /, the transverse diam. of the same; then R-f* 
mr — mR -f- nr — nR will be the true parameter, 1 divided by 
L -f* ml — mL nl — nL will be the true transverse diam. of 
the trajectory which the comet describes. And the transverse 
diam. being given, the periodic time is given. See the investiga¬ 
tion of these expressions, and of computing them by the rule of 
jfoise, in Emerson's comment, pa. 108, The same investiga* 
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lions, &c. are also given in Gregory’s astr. prob. 31, to which the 
reader is referred, as it would be rather tedious to insert them 
here ; their application will be given in the following part of this 
chapter. 

Newton remarks, that the periodic times of the rev. of comets, 
and the transverse diameters of their orbits, cannot be accurately 
enough determined but by comparing comets together, which ap¬ 
pear at different times. If after equal intervals of time, several 
comets are found to have described the same orbits, we may thence 
conclude, that they are all but one and the same comet revolved 
in the same orbit, and then from the times of their revolutions,, 
the transverse diameters of their orbits will be given ; and from 
those diameters the elliptic orbits themselves will be determined. 
For this purpose an extensive table of the elements of the comets 
is given in this chap. 

M. la Lande gives the following mechanical method of deter- 
ming the orbit nearly. Let the dist of the earth from the sun be 
divided into equal parts, and let 10 parabolas be described, whose 
perihelion distances are 1, 2, 3, Etc. of those parts ; and divide 
these parabolas into days from the perihelion, answering to the 
motion of a body in each. Let S be the 
sun, a, 6, c the places of the earth at 
the times of three observations of the 
comet. Then let three geocentric la¬ 
titudes and longitudes of the comet be 
found, and set off the elongations Sad, 
S6e, Sf/'in longitude. From «, £,r, ex¬ 
tend three fine threads, aw, bn} ver¬ 
tical to ad, 6<°, cf making angles, with 
them equal the geocentric latitudes res¬ 
pectively. Then let any one of the pa¬ 
rabolas be taken, place its focus in S, 
apply the edge to the threads, and observe whether it can be made 
to touch them all, and whether the intervals of time cut off by the 
threads upon the parabola, be equal to the respective intervals of 
the observations, or very nearly so ; if this be the case, the true 
parabola, or very nearly the true one, is found. But if the parabola 
do not agree, let others be tried, until there be one found which 
agrees, or very nearly agrees, and the true, or nearly the true pa¬ 
rabola will then be obtained, whose inclination, place of the node, 
and perihelion, are to be determined as accurately as possible from 
mensuration ; also the projection upon the ecliptic. If none of the 
parabolas nearly answer, it shews that the perihelion dist. must be 
greater than the dist of the earth from the sun, in which case other 
parabolas must be constructed ; but this does not very often happen. 
As this method is rather troublesome, when only the elements of 
one comet is required, though useful when there are many, as it 
determines the elements very nearly, Vince proposes the following 
method by means of one parabola, without dividing it. 
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Take a firm board perfectly plane, and fix on paper for the pro¬ 
jection ? let a grove be cut near the edge, and five perpendiculars 
be moveable in it, so that they may be fixed at any distances. Let 
S represent the sun, and describe any 
number of circles about it ; compute 
five geocentric latitudes and longi¬ 
tudes of the comet, from which you 
will have the five elongations of the 
comet at the times of the respective 
observations. Draw SA, SB, SC, 
SD, SE, making the angles ASB, 
BSC, CSD, DSE, equal to the sun’s 
motion in the intervals of the obser¬ 
vations ; and on any one of the circles 
make the angles So/, Sbg, Schy Sdi9 

Sek, equal the respective elongations in longitude, and fix the five 
perpendiculars, so that the edge of each may coincide with f\ g, 
//, i, k. From the points a, b, c, cl, <?, extend threads to the res¬ 
pective perpendiculars, making angles with the plane equal to the 
geocentric latitudes of the comet; then fix the focus of the para¬ 
bola in S and apply its edge to the threads, and if it can be made 
to touch them all, it will be the parabola required, corresponding 
to the mean distance Sa of the earth, which is here supposed to 
revolve in a circle, being sufficiently accurate for the present pur¬ 
pose. If the parabola cannot be made to touch all the threads, 
ehange the points a, b, c, cl, e, to such of the other circles as will 
be judged from the present trial, most likely to succeed, and let 
the former trial be repeated again ; by a few such repetitions, 
such a distance for the earth will be obtained, that the parabola will 
touch all the threads, in which position find the inclination, ob¬ 
serve the place of the node, and measure the perihelion distance, 
compared with the earth’s dist. and the elements of the comet’s 
orbit will be nearly obtained. 

Boscovich gives the following method of approximating to the 
orbit of a comet. 

Let S be the sun, 
XZ the orbit of the 
earth, supposed to 
be a circle ; T the 
place of the earth at 
the first observa¬ 
tion, and t at the 
third ; draw TC, tc 
to represent the ob¬ 
served long, of the 
comet ; and let L, 
/, A, be the longi¬ 
tudes at the first, second, and third observations ; rn and n the geo¬ 
centric latitudes of the comet at the first and third observations ; 
and t, T, the intervals of time between the first and second, and 
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second and third observations. Assume C for the place of the 
comet at the first observation, reduced to the ecliptic ; then to 

determine the point at the third observation, we have T x sin. * — £ 

: t x sin. I — L :: TC : tc, and c will be nearly the place re¬ 
quired (see Buscov. Opuscula vol 3, or Sir H Englefield's de¬ 
termination of the orbits of comets, pa. 27) join Cc, and it will 
represent the path of the comet on the ecliptic, upon this assump¬ 
tion. Draw CK, ck, perp. to the ecliptic, and make CK : TC :: 
tang, m : rad. and ck : tc :: tang, n : rad. join K>, and it will 
represent the orbit of the comet, if the first assumption be true. 
Bisect Cc in x, and draw xv parallel to ck, and y will bisect KX* ; 
join yS. Let SX = l ; then if v be put for the mean velocity of 

the earth in its orbit, the velocity of the comet at y will be 

hence taking v = Tt, let the value of 
22 x v 

x/S y 

x/ S y 

be found, and 

if this be equal to KX- measured by the scale, the assumed point C 
was the true point. But if these quantities be not equal, assume 
a new point for C, in doing which the error of the first assump¬ 
tion will be a guide ; if for instance the computed value of KX- be 
greater than the true value, and the lines CK, ck are diverging 
from each other and receding from the sun, the point C must be 
taken further from T, and how much further, may be conjectured 
from the value of the error, and also from hence that the velocity 
of the comet diminishes as it recedes from the sun These con¬ 
siderations will lead us to make a second assumption near the 
truth. Having thus determined the true points C, c, very nearly, 
produce cC, X-K to meet at N, join NS, and it will be the line of 
the nodes. Draw Cr, cz perp to SN, and the angles KrC, kzcy 
will measure the inclination of the orbit. From the two distances 
SC, Sc, and the included angle CSc, the parabola may be con¬ 
structed, and applied as in the preceding method, from which the 
time of passing the perihelion may be found. 

The following is another method by which the orbit is readily, 
and very nearly obtained. Let S be the 
sun, T the earth, T, t, t, three places 
of the earth at the times of the three 
observations ; extend three threads Tfi, 
tn, tm, in the direction of the comet, as 
before directed ; assume a point y for 
the piace of the comet at the second ob¬ 
servation, and measure Sy ; then if ST 
= 1, and the velocity of the earth be v, 
the velocity of the comet at y will be 

22 X v 

T^ioF 
odge PQ} set off cc 

; lei v be represented by Tt, tt, 

x Tt 

! (Sv)l1 
and ed = 

and 

2fr 

upon any straight 

X 11 
then apply 
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the point e to i/, and by turning about the edge, try whether you 
can make the point C fall in Tfi, and the point d in tm ; if this 
cannot be done, the error will be a guide to assume another dis¬ 
tance, and by a few trials the point y, where the points c and d 
will fall in T/j, tm. This method is very easy in practice, and 
sufficiently accurate to obtain a dist. Sy from which to begin to 
compute, in order to find the orbit more correctly, when the comet 
is not too near the sun. 

The parabola being determined nearly, let some quantity be as¬ 
sumed as known at the first and second observations, from which let 
the place of the comet be computed at those times, and also the time 
between ; if that time agree with the observed interval, a parabola 
which agrees with the two first observations is obtained; if the 
times do not agree, let one of the assumed quantities be altered, 
and see how it then agrees : and then by the rule of false, the sup¬ 
position which was altered may be corrected, and a parabola ob¬ 
tained which will agree with the two first observations. (See Dr. 
Gregory’s Ast. b. 5, prop 31 and 26.) In like manner by altering 
the other assumed quantity, another parabola is obtained, agreeing 
with the two first observations. Then if these do not agree with 
the third observation, a correction must be made by proportion, 
and the three observations will be answered.* 

As the comets do not however move in parabolas, but in very 
eccentric ellipses, it is impossible to find a parabola that will accu¬ 
rately agree to all the data ; it will therefore be sufficient when it 
nearly agrees. When great accuracy is required, we must take 
into consideration the effect of aberration and parallax ; the former 
may be computed from the methods given in the following chap, 
and the latter by taking the horizontal parallax to the sun’s hori¬ 
zontal parallax = 8 "7 5 (see pa. 284) as the distance of the sun to 
the distance of the comet, and then finding the parallax in lat. and 
long, as directed pa. 331, Scc.f 

* For further particulars we must refer to Vince’s ast. vol. pa. 428, 8cc. 
See also “ An account of the discoveries concerning comets, with the way 
to find their orbits, and some improvements in constructing and calculating 
their places ; to which are added new tables fitted for those purposes.” By 
Thomas Barker, Gent. London, 1757. 

f Newton, in determining nearly the 
dist. of a comet, determines also its pa¬ 
rallax. The following is his method. 
Let ‘Y’QA, ^QB, ^QC be three ob¬ 
served longitudes of the comet about 
the time of its first appearing, and 
‘TQF its last observed long-, before its 
disappearing. Draw the rt. line ABC, 
whose parts AB, BC intercepted be¬ 
tween the right lines QA and QB, QB 
and QG, may be to each other as the 
times between the three first observa¬ 
tions respectively. Produce AC to G, 
so that AG may be to A.B as the time 
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To ascertain the periodic tune of a comet, and the axis of its orbit, 
If comets, after receding from the lower regions of the Solar 

System, to vast distances beyond the orbits of the most distant 
planets, return again to the neighbourhood of the sun, the paths 
which they describe must be nearly elliptic : if then observations 
be made sufficiently accurate to be a basis of the operations, the 
requisites of the p$ob. may be determined in the following man¬ 
ner. Let AKBl be the trajectory 
of a comet, AB its major axis, IK 
the minor, S, F the two foci, the 
former of which represents the 
sun’s place, C the comet’s place, 
CS its disk from the sun, Cc the 
space it passes over in a very small 
portion of time, DCE a tangent to 
the curve in the point C ; SD, FE 
perpendiculars, let fall thereon 
from the foci ; let SG be drawn 
parallel to the tangent, and join 
FC. Also let ALB be a circle, 
described on the tranverse axis 
AB ; APTB a rectangle about the ellipse AIB, and AQRB a 
square about the circle ALB. Lastly, let ANO be the elliptic 
orbit of any planet, S, f its foci; let SC = a} SD = b, Cc — e, 
the time in which e is described = f the transverse or greater 
axis of the comet’s orbit AB = x, that of the planet’s orbit AO = 
<7, the circumference of the circle AVO, described on the same axis 
=/>, the periodic time of the comet = t, and that of the planet = «. 

between the first and last obs to the time between the 1st and 2d. and join 
QG. Now if the comet moved uniformly in a rt. line, and the earth either 
stood still, or was likewise carried forwards in a rt. line by an uniform mo¬ 
tion, the long. ‘Y’QG would be the comet’s long, at the last obs. Hence the 
/ FQG, which is the diff. of long, proceeds from the unequal motions of the 
comet and the earth. If the earth and comet move in contrary directions, 
this angle is added to ^QG, and accelerates the comet’s appar. mot. but if 
they move in the same direction it is subtracted, and either retards the mo¬ 
tion of the comet or renders it retrograde This angle therefore proceeding 
from the earth’s motion, is properly esteemed the comet’s parallax ; the small 
increment or decrement that may arise from the unequal mot. of the comet 
in its orbit being neglected. From this parallax the comet’s distance is found 
thus. Let S represent the sun, acT the earth’s orbit, a the place in the 1st 
obs. c its place in the 3d obs. Q its place in the last, and a rt. line 
drawn to the beginning of aries. Join ac, and produce it to^, so that ag ; 
ac :: AG : AC, and g, will be the place at which the earth would have ar¬ 
rived at the time of the last obs. if it continued to move uniformly in ac. If 
therefore g°p be drawn parallel to Q^Y3, and the at g made = ^QG, 
(gF being drawn parallel to QG, meeting at F, or at any other point) the 
l_ °fgF will then be equal to the long, of the comet seen from g, and QF^ 
will be the parallax which arises from the earth being transferred from the 
place g into the place Q; and therefore F will be the place of the comet in 
the plane of the ecliptic. This place F, Neivton found to be commonly 
lower than the orb of Jupiter. 
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The space described Cc, the distance SC, and the angle SCD, 
are determined from observation. Let the mean dist- of the comet 
AH or its equal SK = %x, and that of the planet or SN = \q; 
and the squares of the periodic times being as the cubes of the 
mean distances, we have ^ g* : 71‘ : t2 ; hence t2 =k 
\ 
¥ x$ n2 

-—3~, and t = 
nx x 

i 93 
x/ 

9 9 
It is however necessary to find another expression for the peri¬ 

odic time t, which may be thus found. Cc being a small portion 
ef the orbit, may be considered as a straight line, and the sector 
CSc a rectilineal triangle, whose area — \ SD x Cc = | be is 
given ; then as -i be : the area of the ellipse AKBI == A :: f : t 
f 

~~ X A. Now to determine the area A, the semiconjugate HK 

must be found ; in order to which AB = SC -fi FC ; hence FC 
= x .— a ; and the triangle SDC, FEC, being similar, we have 

SC : SD :: FC : FE j that is, a : b :: x — a : ~~ = 
a 

FE ; therefore FG = FE — GE 
bx — 2 ab 

a 

FC : CE ; or a : (a2 — b2)~ :: x—a : 
a 

Again SC : CD 

1 X (a2—b2)^ ; 

hence DE or SG=CE -f CD 
x 

a 
~ X (a2—b2f + (a2-— 

x 
= - (a3 — b2)*. 

a 
But FG 

' b2 x2 —. 

bx 2ab 

a 
therefore FS = 

fFG2 + SG3)*= ( 

'a2 x2 — 4ab2 x -f- 4a2 b2 

4ab2 x -j- 4a2 b2 a2 x2 — b2 x2 y \ 
_ — j 

{ 

(- ad ) ■ 
hence SH ^ FS 

a- x2 — 4ab2 x -J- 4a2 b2\^ 

4a- 
j . Moreover, as SK = AH =*= §xy 

/. <> a2 xz~-4ab2 x-j-4a2 b2 \i 
HK = (SK2 — SH2)2 = [±x2-- y 

O , vr 00 b , i 
= — X (ax — a2)2, and — X (a:r~a2) 2 = area of the rectan- 

d a 
gle APTB. Let P = the periphery of the circle whose diarn, = x, 
then its area will be \ LH X P = \ xj>; hence x2 : ±xP :: ix% 
: -g-^P :: AQRB : ALB :: APTB : AIB :: g2 : A qfi; that is 

r : ~ X {ax — a*y : x {ax — = AIB ? 

bfix 4 
A —-z—- X (ax-—a2)2. Let this value 

2 aq v 
but 2 AIB = AIKB < 

of A be substituted in the preceding expression, and we get t 
fOf* ^ 

aed * 0ax — which being equated with that already given, 

3 R 
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then 

/* A2 9 

X {ax —a2)J, from which x is found = 
q q aeq 

Q f ^ (1 
J y : AB, the greater axis of the cornet's elliptic 

ae2 7?2 

trajectory. 
If this value of x be substituted in the above equation for we 

: the periodic time. Also, be- shall get t = 
ft,3 f3 n2 a | 

(7/2 »■)! — at" 

26 " ‘ A 
cause the conjugate IK = ~~ X {ax — a2)2 = c, we have x 

c2 a2 462 a2 

4b2 a 

a 

af 2 A2 

/ A* </ — 2 w2 ’ 
whence, by reduction, we find 

c = 2ben X ^„—S) 2\ the lesser axis of the comet's orbit. 
V2A 9 — ae2 n2' 

From these equations it is evident, that when the velocity of the 
comet is such that f2P2 q — ae2 n2, the axis x will be infinite, 
and therefore the trajectoiy will be a parabola ; if ae2 n2 be greater 
than f2 p2 the direction of the axis will be on the other side of 
the curve, which will be an hyperbola ; in either of which cases 
the comet can never return: but when f2p2q is greater than 
ae2 n2, the comet will describe an ellipsis; among the ellipses 

• • a f2 p2 a 
we may comprise the circle where x = 2a = - 

and/2 p2 q — 2ae2 n2, whence e = Cc = ^ x the arc 
a \2 a> 

of the circle described in 1 day, l hour, See. according as the value 
of n is given in days, or hours, &c The solution of the above is 
also given in Simpson’s Fluxions, art. 240. 

If the earth, for example, be the planet which is supposed to 
describe the ellipse ANO ; and taking its mean dist. £ q = 100000, 
or q == 200000, then p — 628318 ; the periodic time n = 1 year ; 
hence, if Cc be the portion of the comet’s orbit described in 1 day, 

* 0.0027378. The other expressions 

f2p2 q — ae 2 nr 

591826599235 X a 

59 1826599235 — ae2’ 
and t 

we have / = - 
365.2d65 

will become as follow: x = 

4750560000 X af 

(591826599235 —«e2)f 
To obtain the elliptic orbit of a comet from computation to any 

degree of exactness, is extremely difficult ; for when the orbit is 
very eccentric, a small error in the observation will change the 
computed orbit into a parabola, or hyperbole. And, from the 
thickness and inequality of the atmosphere with which the comet 
is surrounded, it is impossible to determine with great precision 
when either the limb or centre of the comet pass the wire at the 
time of observation. This uncertainty in the observations will 
subject tjje computed orbit to a great error. Hence it happened 
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that Buugucr determined the orbit of the comet in 1729, to be an 
hyperbola. Euler determined the same for the comet of 1744, 
but from more accurate observations, he found it to be an ellipse. 
The period of the comet in 1680 appears, from observation, to be 
575 years, which Euler by his computation determined to be 166£ 
years The only safe way to get the periods of comets, as Vince 
remarks, is to compare the elements of all those which have been 
computed, and where they are found to agree very well, it may be 
concluded that they are elements of the same comet, it being so 
extremely improbable that the orbits of two different comets should 
have the same inclination, the same perihelion distance, and the 
places of the perihelion and node the same. Thus, knowing the 
periodic time, we get the greater axis of the ellipse ; and the per¬ 
ihelion dist. being known, the lesser axis will be known. When 
the elements of the orbits agree, the comets may be the same, 
although the periodic times should vary a little ; as that may arise 
from the attraction of the bodies in our system, and which may 
also alter all the other elements a little. 

It has been already observed, that the comet which appeared in 
1759, had its periodic time increased considerably by the attraction 
of Jupiter and Saturn. This comet was seen in 1682, * 607, and 
1531, all the elements agreeing except a little variation of the pe¬ 
riodic time. Dr. Halley suspected the comet in 1680 to have 
been the same which appeared in 1106, 531, and 44 years before 
Christ. He also conjectured that the comet observed by Jlpian 
in 1532, was the same as that observed by Hevelius in 1661 ; if 
so, it ought to have returned in 1790, but it has never been observ¬ 
ed. But M. Mechain having collected all the observations in 1532, 
and calculated the orbit again, found it to be sensibly different 
from that determined by Dr. Halley. The comet in 1770, whose 
periodic time M. Lex ell has found to be 5 years 7 months, has 
not been since observed, owing probably to the disturbing force 
of Jupiter. From the elements calculated by Lexell, the comet 
would be in conj. with Jupiter on Aug 23, 1779, and its distance 
from Jupiter would be only of its dist. from the sun ; hence 
the sun’s attraction would be only part of Jupiter’s attraction. 
What a change should this make in the orbit ! The comet would 
not be visible if it returned to its perih. in March, 1776. See 
Lexell’s account in Phil, trans. 1779. The elements of the or¬ 
bits of the comets in 1264 and 1556, were so nearly the same, 
that it is probably the same comet which appeared at each time ; 
if it be, it ought to appear again about the year 1848. 

The number of comets that, from the most accurate accounts, 
are stated to have appeared, since the commencement of our aera, 
is about 500 ; and before that aera, about 100 others are recorded 
to have been seen. 

The elements of the comet for 1770, with the trajectory of its 
path, may be found in the transactions of the American Phil, 
Society, vol. 1. 
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In order to obtain the course of a comet, its distance from two 
known fixed stars must be observed ; or its alt- taken when in the 
same azimuth with any two stars ; from cither of these observa¬ 
tions its place may be calculated by spher. trigonometry,* or laid 
down on a globe If several places of the comet be thus found, 
and marked on the globes, the great circle passing through them 
will be the way of the comet. This great circle may be drawn by 
the quad of alt. or the poles may be elevated or depressed, until 
all the places marked are, at the same lime, found in the horizon ; 
for then the circle denoted by the hor. on the surface of the 
globe will be that required. Hence its intersections with the 
ecliptic will be the nodes of the orbit of the comet, and the angle 
which the ecliptic makes with the horizon, measured by the alt. 
of the nonagesimai degree, will be the met. of its orbit to the eclip¬ 
tic The long, latitude, &c. of a comet, may therefore be easily 
found on the globes. 

Let a circle be described the diam. of which is equal to that of 
the globe (or reduced proportionally to a smaller scale if necessary) 
as ABD, whose centre is T, and A a 
point in its circumference, represent¬ 
ing its place among the fixed stars, in 
which the comet was first observed. 
Let the arcs AB, AD be taken equal 
to the dist of the place of the comet, 
marked on the surface of the globe, 
from the place first observed, and let 
TB, TD be drawn Draw the right 
line through the point A, so that AE : 
EC :: R : S (see the note pa. 409) 
that is, by construction, as the time be¬ 
tween the lstobs. and 2d to the time 
between the 2d and 3d. From T let fall TP perp. to AO, and 

* If its dist. from two known fixed stars be taken, its place maybe found 
thus : Let S be the comet (see fig. pa. 208) s one of the stars, Z the other, 
and P the pole of the equator; then ZP, sP, are the co. decl, of the stars, 
and the angle sPZ the cliff", of their rt. ascensions, which are given ; there¬ 
fore the dist. between the stars sZ, and the angle Z,sP are given. Now in 
the triangle SZs, SZ, Ss, the correct dist. of the comet from each of the 
given stars, and also sZ are given ; hence the angle S&Z, and therefore S.«?P 
are given. Now in the triangle SPs, the dist. Ss and sP, and the /_ SsP 
are given, hence SP the co. decl. of the comet, and the angle SPs, which is 
the diff. between the rt. aseen. of the star and comet ; therefore the comet’s 
rt. ascen. and decl. are given, from which its lut. and long, is found,- as 
shewn in the note to prob. 3, pa. 195. 

When exactness is required, the apparent distances must be first correct¬ 
ed ; thus, the places of the stars and the hour being given, their alt. may be 
found ; and as the appar. place of the comet is given, and the hour, its appar. 
alt. may be also found, for which the refraction for that alt. will be nearly 
the refraction for its true alt. and hence from the appar. alt. the true alt 
may be nearly found. If the refraction for this last alt. be again found (see the 
table, pa. 155) and taken from the appar. alt. the true alt. of the comet 
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producing it if necessary as far as the circumference at G ; an arc 
equal to AG being transferred from the place first observed, to the 
way of the comet, described above on the surface of the globe, the 
point G will shew the place among the fixed stars, in which the 
comet will be in its pengceum. 

If the place of the comet can be observed when it has no lati¬ 
tude, the place and time of being in one of its nodes will then be 
exactly known ; but as this can seldom be actually observed, these 
elements are generally observed by approximation from other 
methods The appar. diam. of the comet must also be often ob¬ 
served ; as by this means a judgment may be formed of its rela¬ 
tive distance at different times. Its degree of motion, its bright¬ 
ness, See. must also be regarded ; for when it moves with the 
greatest velocity, or appears most bright, it may be inferred that 
it is near its perihelion. 

If four stars round the comet be observed, such that the comet 
may be in the intersection of the rt. lines which join the two op** 
posite, which are easily found, by extending the thread, placed 
before the eye, over the stars and comet ; let the thread be ex¬ 
tended in like manner, over those stars found on a globe, and the 
point of intersection will shew the place of the comet.* 

Although the orbit of a comet may be computed from three ob¬ 
servations, yet from these data the direct solqtion of the prob. is 
impossible. We have therefore given several indirect methods to 
find the orbit very near the truth, by mechanical and graphical 
operations (as did Aewton himself for the comet of 1680, see his 
firin.) then by computation it may be corrected by what is given, 
until a parabola be found to satisfy the observations very nearly.— 
The result of these methods as given by Ciairault, Fenn and 
others, and as pointed out in the preceding part of this chap, is as 
follows : 

Let the rt. ascension and decl. of the comet be found, and from 
thence its long, reduced to the eclip. and its lat. corresponding to 
each obs. as shewn in the preceding note. Let the sun’s long, be 

then be obtained very nearly ; the appar. place of the comet found on a good 
globe, will be sufficiently exact for trial. Now from the apparent and true 
altitudes, and the appar. distances, the time distances may be found, as 
shewn in the note pa. 224. 

If the quantity of the comet’s parallax be known, which may be estimated 
from its (list, from the earth, or as shewn in the note pa, 120, it may be al¬ 
lowed for, and also an allowance may be made for the aberration of light. 

* Whoever wants more information on this subject, besides the works al¬ 
ready quoted, may consult the following. Sejoxir Essai sur les cometes, 
1775 ; Pingre’s Cometographie, 2 vols. 4to. 1781 ; Sir H. Engle field’s work 
“ on the determination of the orbits of cometsM. Bode’s General Con¬ 
siderations on the situations of the orbits of the planets and comets which 
have hitherto been calculated, inserted in the memoirs of the Academy of 
Sciences of Berlin ; O. Gregory’s treatise on astronomy, 1803 ; De la Lands 
Theorie des Cometes, 1759 ; and Astronomie, vol. 3. An account of the 
discoveries concerning comets with the way to find their orbits, See. by Thu- 

•%nap Barker, 1757, &c. 
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computed at each observation (selecting three best calculated for 
that purpose) and the cliff. (A, a, a) between the comet’s long, 
and that of the sun, corresponding to each obs will be the elonga¬ 
tion of the comet or its dist. from the sun reduced to the ecliptic. 
Let the dist (13, b, b) of the earth from the sun at the time of 
each obs be computed (as shewn in the theory of the earth, ch. 4, 
or more readily by the Nautical Aim.* * * § or Delambre’s tables.) 

Then let y and z be the assumed distances of the comet from 
the sun reduced to the ecliptic (found as nearly as possible by 
some of the foregoing methods) at the 1st and 2d obs. then the 
true distance may be determined as follows: 

As the assumed dist y or z : sine A or a the elong. :: dist. B or 
b of the earth at the ls£ or 2d. obs. : sine L C or c contained by 
the rt. line drawn from the earth and sun to the comet.f This 
angle C or c being added to the elongation A or a, their sum 
will be the supplement of the angle of commutation D or d.J Then 
(by the proper, pa. 35 1) sine A or a : sine D or d :: tang, obser¬ 
ved geocentric lat. of the comet corresponding to the 1st or 2d obs. 
: tang, corresponding heliocentric lat. of the comet E or e. 

Each of the curtate distances y and z divided by the cos of the 
coriesponding helioc. lat. E and e, will give the true distances of 
the comet V. v, from the sun§ Now to fnd the angle contained 
by those distances, add to or subtract from the places of the earth 
(according to the cornet’s pos with respect to the signs) the corres¬ 
ponding L. ’s of com. D, d, the sum or diff will be the heliocen¬ 
tric long Hides L, 1, of the comet whose diff. F, is the helioc. motion 
of the comet in the plane of the ecliptic. Then as rad : cos. F 
cot. greatest of the two hel. lat. : tang X. Let this arc X be ta¬ 
ken from the compl. of the least hel lat. and the rem. call x. 
Then cos. X : cos x :: sine gr. oj the two lat. : cos. contained 
by the two vector rays or distances V, v, of the comet. 

Now by what is shewn pa. 405, the place of the perihelion may 
be found by this rule : take the log. of the least vector ray from 
that of the greatest, add 10 to the characteristic of half the remain¬ 
der, it will be the tang, of an angle, from which 45° being subtr. 
the log. tang of the remainder added to log cot. i of the mot. of 
the comet in its orbit, will be the log tang, of an Z_ to which A of 

* In the Naut. Aim. pa. 3, the log. of the dist. of the earth from the sun is 
given every 6th day in the month, the earth’s mean dist. being 1. 

•j* In the triangle ESC, pa. 399, let SC represent y and ES, B, then the 
/ SEC will be the elongation of the comet from the sun, and SCE that 
found by lines from the earth to the sun and comet, whence from plane trig, 
the propor. is evident. 

+ In this fig. pa. 351, if B represent the plane of the comet reduced to t he 
ecliptic, then (32 Eucl. 1) TBS -f- STB the elong. = 180° — TSB; hence 
TSB the commut. = 180° — TBS— STB. 

§ In the fig. pa. 351, rad. : cos. PST :: PS : SB the curt. dist. B being 
supposed as before the comet’s place, 8tc.; hence rad. being taken — 1, PS 

SB 
the comet’s true dist. (P beins: its true ulace') —-. 

k 6 } cos. PST 
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the mot. of the comet in its orbit being added, the sum will be \ 
the greatest true anomaly, and their difference will be i the lease 
of the two true anomalies. These quantities doubled will be the 
two true anomalies, which will be both on the same side of the 
perihelion, when their diff. is the whole motion of the comet ; but 
on different sides, when it is their sum, which is equal to the 
whole motion of the comet. 

Let the perihelion dist. be found by adding twice the log. cos. 
©f the greatest of the halves of the two true anomalies, to that of 
the greatest of the two distances, the sum will be the log. of the 
perihelion distance required. See pa. 405. 

The time in which the comet describes the two vector rays may 
be thus determined. To the constant log. 1.9149328,* add the 
log. tang, of $ each true anom. add the triple of this same log. 
tang, to the constant log. 1.4378 116, the sum of the two numbers 
corresponding to those two sums of logs, will be the exact num¬ 
ber of days corresponding to each true anomaly, in a parabola 
whose perihelion dist is 1. (by what is shewn pa. 403.) Find the 
log. of the diff. or sum of those two numbers, according as the two 
anom. are situated on the same, or on different sides of the perihe¬ 
lion ; to this log. add f of the log. of the perihelion dist. the sum 
will be the log. of the time in which the comet describes the 
angle contained between the two vector rays ; as shewn pa. 406, 
which see. 

The above is called the Is? hypothesis ; the following is the 2d 
supposition of this hypothesis. • If the time thus found does not 
agree with the observed time, another value of the curt. dist. z is 
to be assumed, corresponding to the 2d obs. the val. of y corres¬ 
ponding to the 1st being still retained, and the helioc. long, and lat. 
from thence deduced, and all the operations indicated in the fore¬ 
going articles being repeated ; another expression will be found 
Jfor the interval of time between the two observations. If this time 
approaches nearer the observed time, the 2d val. assumed for z is 
lobe preferred to the 1st; if not, a 3d val. for z is to be assumed, 
and by the increase or decrease of the errors, the value to be as¬ 
sumed, so that the interval of time calculated may agree with the 
observed one, will be easily discovered ; and therefore a parabola 
will be found which answers the two first observations, or thejirst 
hypothesis. 

The parabola answering the two first obs. would be the true orbit 
if it also answered the 3d obs. but as this seldom or never happens, 
a second hypothesis becomes necessary, in which another parabola 
is to be found which answers the two first observations, by increas¬ 
ing or diminishing the curt. dist. y, preserved constant in the 1st 
hypot. and preserving it still constant, i)Ut varying the 2d assumed 

* By what is shewn pa. 401, b = £ at& -f- ■§ at, and a = 109.6155, ^ of 
which or | a a 82.2116, the log', of which is 1.9149328 ; also ^ or a = 
27-4038, the log of which is 1,4378116 as above. Hence this rule is taken 
from the value of b. 
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dist. z until this 2d parab. is obtained. The 3d obs. calculated in 
those two parab. will shew which of them approaches nearest the 
true orbit sought To calculate this 3d obs in each hypot. tire 
time of the comet's flossing the fierih. the incl. of its orbit, and the 
place of the nodes of each parabola, is first to be determined 

To determine the comet's passage at the perihelion. Find the 
number of days corresponding to one of the true anom. for ex to 
that which corresponds to the 1 st obs in the parab whose perih. 
dist. is 1. bv Delambre’s table, or as shewn pa. 403, See where the 
method of constructing the table is given) the log. of this number 
of days being added to of the log of the perih. dist. (found above) 
will be the log. of the interval of time elapsed between the 1st obs. 
and the comet’s passing the perih. which is to be added to or sub¬ 
tracted from the time of the obs. according as it was made before 
or after the passage of the comet at the perihelion. 

To determine the place of the node we have this proportion ; sine 
of the 2d arc x : sine 1st arc X :: tang, comet’s mot in the eclip. 
: tang, of an angle r ; then rad. sine least lat. :: tang, r :: tang. 
distx from the node, (See also pa. 407.) From this dist and the 
helioc long, of the comet, found as shewn above, the heliocentric 
long of the node is obtained. With this hel. long and the dist mea¬ 
sured on the orbit of the comet, the place of the perihelion is deter¬ 
mined. To find the dist. measured on the comet’s orbit, we have • 
this proportion ; sine r : rad. :: dist. measured on the ecliptic : 
dist. required. To determine the inclination it will be rad. : sine r 
:: cos. least lat. : cos. of incl. 
- The elements of each parabola being determined, the geocentric 
place of the comet answering to the 3d obs. is computed in each 
by the following rules : 1st. Let the log. of the diff. between the 
time of the 3d. obs. and the time of the comet’s passing the perih. 
be taken, from which take § of the log. of the perih. dist. the rem. 
will be the log. of the diff. between the time of the 3d obs. and 
that of the comet’s passage at the perih. of a parab. whose perih. 
dist. is 1. 2d. Let the true anomaly corresponding to this time 

b b 
be found, by solving the equation -f 3£ = -p = —- —t—, as 

—Cl 27.4O08 
• • . 4» 

shewn pa. 402,* m which t = tang. the true anom. and b the 
time of describing it. 3d. When the mot of the comet is direct, 
add the true anom. to the place of the perih. but subtract it if the 

The mean proportional required here between h + -- and h —■ 
54.8077 

b 

O48077 
to find t (see pa. 402) will be obtained by finding the cube root of 

the ratio between the two quantities ; the root thus found will be the ratio 
between the four quantities ; hence this ratio multiplied by the least ex¬ 
treme, will give the next term, or one of the mean proportionals, and this 
multiplied again by the same ratio, will give the other mean proportional. 
The equation may be also solved by any of the known methods for solving- 
cubic equations. 
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6bs. was made before the comet’s passing the perih. When the 
comet’s mot. is retrograde, add the true anom. to the place of the 
perih. it the obs. was made before the passage, at the perih. but 
subtract it if the obs, was made after the time of perih. the true 
helioc. long, of the comet in its orbit will be thus obtained. See 
also pa. 407. 4th. The diff. between this long and the long, of 
the ascending node will be the argument of the lat. of the comet. 
5th. As rad. : cos. inch :: tang, argum. of lat. : tang, of this arg. 
measured on the ecliptic, which added to the true place of the 
node, gives the helioc. long, reduced to the eclifitic. 6th Rad. : 
sine arg. of lat. :: sine inch of comet’s orbit : sine of its hel. lat. 
which when the motion of the comet is direct, is north or south 
according as the argument of lat. is less or greater than 6 signs ; 
but when retrograde, is north or south, according as the arg. of 
lat. is greater or less than 6 signs. 7th. Log. cos. hel. lat. -f log* 
perih. dist. — log. of twice cos. | the true anom. = log. of the 
curt. dist. answering to the 3d. obs. 8th. Log. curt. dist. — log. 
dist. of the earth from the sun -f- 10 added to the characteristic, or 
index = log. tang, of an angle, from which subtract 45°, and to 
log. tang. remd. add log. tang, compl. of \ the angle of commuta¬ 
tion, the sum = log. tang, of an arc, which added to this compl. 
if the curt. dist. of the comet from the sun exceed the earth’s dist. 
but subtracted if the comet’s dist. be less than the earth’s, the sum 
or diff. will be the angle of elongation ; this angle added to, or 
subtracted from the sun’s true place or long, according as the 
cornet seen from the earth is east or west of the sun, will give the 
geocentric long. of the comet. 9th. Sine A commut. : sine elon¬ 
gation :: tang, helioc. lat. of the comet : tang, of its geocentric lat. 
See these different cases exemplified in pa. 407 and 408, and in what 
follows. The long, and lat. thus found, ought to agree with those 
observed, if the parabola obtained were really the comet’s orbit. 

As these rules without sufficient examples may, especially to 
beginners, be rather difficult in their application, the following 
example of the comet, which was observed in Europe, about the 
beginning of March, 1742, is given. 

1742. 

Mean Time. 

Obs. long, 
of the 
comet. 

Ohs. lat. 
north of 

the comet. 

Long, of the 
sun calcu¬ 

lated. 

Log. of the 
earth’s 

dist. from 
the sun. 

Elong. of 
the comet 
from the 

sun. 

4th Mar. 16h. 9'50" 
28 . . at 13 39 0 
24 Apr. 9 39 0 

9s. 16° G'40" 
2 18 .52 45 
3 1 5 53 

34*45'37" 
63 3 55 
50 32 50 

lis.l4°27'44" 
0 8 11 28 
L 4 27 16 

9.996910,58o27'4"vv 
9.999840 
0.003092 56 38 17e 

1st. Supposition, y = 0 879 and z = 0.957, of the earth’s 
mean dist. from the sun, which is taken equal 1 ; then C = I05o 
42' 8", c = 6lo 31', C -f A = 164° 9' 52", and c -f* a 118° 
9' 17" ; hence D — 15° 50' 8", and d = 61° 50' 43" ; there¬ 
fore E = 12° 3t' 42" north, and e — 52° 3' 38", and log. V «= 
9.954455, and log. v = 0.192159. 

SF 
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The places of the earth at the 1st and 2d. obs. being 5s. 14* 2V 
44", and 7s. 4° 27' 16" respectively, hence D -f- 5s. 14° 27' 44" 
(the comet being east of the earth’s place) = L =* 6s. 0° 17' 52", 
and 7s. 4° 27' 16" — d (the comet being west of the earth) = 
1 = 5s. 2° 56' 33" ; then L — 1 = F = 27° 41' 19" the com¬ 
et’s mot. in the eclip. Also X = 34° 37' 11", and x = 42° 51' 
7", the angle contained by the two vector rays = 45° 22' 8", the 
comet’s motion in its orbit. 

Log. v 0.192159 — log. V 9.954455 = 0.237704, half of which, 
together with 10 added to its characteristic = 10.1 18852 = tang. 
52° 44' 38", from which 45° being taken, leaves 7° 44' 38" ; 
whence log. tang, of 7° 44' 38" -j- log. cot. of 11° 20' 32" 
(^ of 45° 22' 8") = log. tang, of 34° 8' 5-£" ; therefore 34° 8' 
Sh." — l i° 20' 32" = 22° 47' 33£", half the least true anomaly ; 
and 34° 8' 5h" 4* 11° 20' 32" = 45° 28' 37^" half the greatest 
true anom. Hence the least true anom. = 45° 35' 7", and the 
greatest 90° 57' 15", and their diff. being equal the comet’s mot. 
they are both therefore on the same side of the perihelion. Hence 
log. perih. dist. is found = 9.883835. 

To find the time in which the comet described the angle con¬ 
tained by the two vector rays, we have log. 1.9149328 -f log- 
0.007233 (log. tang, of 45° 28' 37|") =x 1.922166, and log. 
1.438112 -f- 0.021699 (triple log. same tang.) = 1.459512, the 
numbers corresponding to which are 83.592 and 28.808 respec¬ 
tively ; hence 112.400 days is the time corresponding to the true 
anomaly 90° 57' 15" in a parabola, whose perih. dist. is 1. In 
like manner the number of days, in the same parab. corresponding 
to the true anom. 45° 35' 7", is 36.579. Now taking the diff. 
of those times = 75.821 days (the two anom. being on the same 
side of the perih.) the log. of which is 1.879789 added to 9.825752 
(i log. perih. dist.) gives log. 1.705541 corresponding to 50.762 
days, the time required. 

Comparing this time with the interval 50.728 J between the two 
observations, it is found to exceed it by 0.033, if therefore a vari* 
ation of 0.001 be made in the dist. z, in order to discover which 
way, and by how much the elements of the corresponding parabola 
will be changed. 

2d. Sufi y — 0.879 and z = 956, and repeating the same cal¬ 
culations as in the foregoing sup. we find E = 12<> 31' 42", e = 
52° 1' 54f", log of the dist. V = 9.954455, and v = 0.191424, 
the helioc. long. L = 6s. 0° 17' 52", 1 == 5s. 2° 43" 11" ; the 
mot. of the comet in the eclip. = 27° 34' 41", and in its orbit = 
45° 18' 13", the true anomalies 45° 32' 3" and 90° 15' 16", 
the corresponding days 36 529 and 112.056, log. perih. dist. = 
9.883997, and the reduced time of describing the angle contained 
by the two vector rays 50.594 days. Hence increasing z by 0.001, 
the time is diminished by 0.168; therefore 0.168 : 0.001 :: 0.0334 
: 0.0002 ; hence z is diminished by 0.0002 to obtain a parabola 
answering the required conditions. 



OF THE SOLAR SYSTEM. 427 

3d. Sufi/ios. y = 0.879, z = 0.9568, from which the helioc. 
fat. E — 12° 31' 42" and e — 52° 3' 16*"; log. V = 9.954455 
and log. v = 0.192009 ; L = 6s. 0° 17' 52" and 1 = 5s. 2° 37' 
53" ; comet’s mot. in eclip. = 27° 39' 59", motion in its orbit 
45° 21' 22"; the true anomalies 45° 34' 2S" and 90° 55' 50"; 
corresponding times 36.568| and 112.330 days; log. perih dist. 
= 9.883870 ; reduced time 50.728| days, agreeing with obser¬ 
vation. 

Having therefore found a parab. corresponding to the two first 
obs. another must be found answering the same obs. by making a 
variation in the dist. y preserved constant in the 1st hyp. 

Second Hyfi. 4th Sufifios. y =: 0.878, and z = 0.957, from 
which E = 12° 42' 11", e =* 52° 3' 38", log. V = 9.954257, 
log. v = 0.192159, L = 6s. 0« 31' 54", 1 = 5s. 2° 36' 33", 
comet’s mot. in the eclip. = 27° 55' 21", angle contained by the 
two vector rays == 45° 17' 56", true anomalies 45° 44' 56" and 
91° 2' 52", corresponding times 36.743 and 112 680 days, log. 
perih dist. = 9 883115, reduced time = 50.714, differing 0.014£ 
from the observed interval ; hence diminishing y by 0.001, the 
time is diminished 0.048 ; therefore 0.048 : 0,001 :: 0.0141 : 
0.0003. 

5. Sufi, y = 0.8783, z = 0.957, hence E = 12° 39' 2", e =» 
52° 3' 38", log. V == 9.954316, log. v = 0.192159, L = 6s. 0° 
27* 40", 1 = 5s. 2° 36' 33", comet’s mot. = 27° 51' 7", an¬ 
gle contained by the vector rays = 45° 19' 20", true anomalies 
45° 41' 45" and 91° l' 5", corresponding times 36.689 and 
112.590, log. perih. dist. = 9.885344, reduced time 50.729, 
agreeing with observation. 

Two parabolas being therefore obtained answering the 1st and 
2d observations, the 3d obs. must be calculated in each to find 
which of them approaches nearest the real orbit of the comet ; 
hence the place of the perih. the time of the comet’s passage at it, 
the inch to the eclip. and the place of the nodes of each parabola, 
must be first found. 

In the first parab. R = 23° 40' 15", comet's dist. from the 
ascending node reduced to the eclip. at the 1st obs. 5° 25' 45", 
which added to its helioc. long. 4th March, 6s. 0° 17' 52" (its 
mot. being retrograde as 6s. 0° 17' 52" is greater than 5s. 2° 
36' 33" at the 2d obs. and the comet after passing its perih.) 
gives 6s. 5° 43' 37" for the place of the node. Dist. of the com¬ 
et from its node measured on its orbit =13° 38' 14", which ta^ 
ken from the place of the node, gives the place of the comet in 
its orbit at the 1st obs. and its true anomaly being then 45° 34' 28", 
therefore these being added to the comet’s place in its orbit, give 
7s. 7° 39' 51" for the place of the perihelion ; -§ of the log. of 
which added to log. of 36.5684 days, the time corresponding to 
the least true anomaly 45° 34' 28", gives 24.486 days for the 
interval of the elapsed time between the 1st obs. and that of the 
perih. which being taken from March 4d. !6h. 9' 50" or 4th 
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March 0.673^, the time of the 1st obs. fixes the passage of the 
perihelion on the 8th of Feb. at 0.187—. The inch of the comet’s 
orbit to the ecliptic is found = 66° 56' 14". 

In the 2d parab. the same elements are, the ascending node in 
6s 5° 59' 6", place of the perih. 7s. 7° 53' 42", inch 66° 47; 
14", time of passing the perih. 8th Feb. 0.151|. 

The geocentric long, for March ’-8, at 0.569 of the day in each 
parabola is thus calculated ; the interval between this time and the 
comet's passing the perih. is 48.381 days; log. perih. distance 
9.883870, its triple is 9.651610, its •§ ~ 9.825805, which taken 
from log of 48.381 or 1.684675, leaves log. 1.858870 corres¬ 
ponding to 72.255 days, answering to 73° 11' 7" or 2s 13° 11 
7" anomaly, this subtracted from the place of the perih. 7s. 7° 39s’ 
51" (the comet being retrograde) gives 4s. 24° 28' 44" for the 
true helioc. place of the comet in its orbit, from which 6s. 5° 43' 
37" the place of the ascending node being subtracted, leaves 10s. 
18° 45' 7" the argum. of lat. which on the ecliptic is 11s. 11° 
2' 47" ; hence the comet’s helioc. long, is 5s. 16° 46' 24", and 
hel. lat. 37° 20' 41" north, the arg. of lat. of the comet, which 
is retrograde, being greater than 6s. 

The sun’s true place March 28th at 13h. 39' is 8° 11' 28", 
and log. dist. from the earth is 9.999841, hence the true place of 
the earth seen from the sun is 6s. 8° 11' 28", from which 5s. 
16° 46' 24" being subtr. gives 21° 25' 4" the angle of commut. 
Log. of the curt. dist. for 3d obs. is 9.974915, which being taken 
from 9 99841, leaves 0.024926, to the caracter. of which 10 be¬ 
ing added, gives the sum is 10.024926 log. tang, of 46° 38' 42" •§•, 
from which taking 45° the log. tang. remd. 1° 38' 42" -}- log- 
tang. 79° 17' 28" (compl. of L. of commut.) = log. tang. 
8° 37' 39", which taken from 79° 17' 28" (because the comet’s 
dist. from the sun is less than the earth’s) gives 70° 39' 49" or 
2s. 10° 39' 49" the elongation. If the places of the sun, the 
earth, and the comet found as above, be marked on the ecliptic of 
an artificial globe (or any circle divided into 12 signs) it will be 
seen that the comet to an observer on the earth appears east of the 
sun. Hence the elongation is to be added to the sun’s place to 
find the true geocentric long, of the comet, which is 2s. 18° 51' 
17", which is less than the observed long, by l' 28". In like 
manner the comet’s geocentric long, in the 2d parabola March 28, 
is 2s. 18° 45' 14", which is less than the observed long, by 7' 31" ; 
hence neither of the two parabolas is the comet’s orbit. 

3d. Hypothesis. As the variations of the orbits are, however, 
sensibly proportional to those made in the curt, distances ; hence 
to obtain the two curt, distances an severing to the reqd. orbit, we 
have from the rule of false position those two proportions ; as 
6' 3" (diff.* of the two errors 1' 28" and 7' 31") : least of the 

* If one of the errors was b}?- excess and the other by defect, the snln of 
the errors would be here used. Sec this rule investigated, and different 
jhethods given in prob. 80. b. 1, and Corollaries Emerson’s Algebra. 
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two 1' 28" :: 0.0007 and 0.0002 (corrections of y and z to ob¬ 
tain parabolas in the 1st and 2d obs.) : G.000235 and 0.000065, 
corrections for those distances to obtain the orbit required. 

Now as y, supposed = 0.879 gives an error of— 1' 28", and 
z/, supposed = 0.8783, gives an error of —- 7' 3i", by diminish¬ 
ing y the error is increased ; hence the true value of y — 0.879 -f- 
0.000235 = 0.879235. Reasoning in like manner we find z = 
0.956735. 

6, Sufifios. y — 0.879235, and z = 0.956735, whence E == 
12° 29' 17V( ; e = 52° 3' 10^", log. of the vector rays V = 
9.954504 and v = 0.191963, L = 6s. 0« 14' 37" and 1 — 5s. 2° 
38' 19", true anomalies = 45° 32' and 90° 54' 4", the corres¬ 
ponding times 36.528 and 112.243 days, log. perih. dist. 9.884049 
time of describing the angle contained by the two vector rays 
50.729, place of the node 6s. 5° 38' 29", place of the perih. 7s. 
7° 35' 13", inclination of orbit 66° 59' 14", and time of passing 
the perih. 8th Feb. at 4h. 48'. From those elements the geo¬ 
centric long, on the 28th March, at 13h. 39', is 2s. 18° 53' 18", 
and geoc. lat. 63 3' 57" north, agreeing with observation. 

The following table of Mr. Lee’s taken from Dr. Rees’ New 
Cyclopedia, calculated on an extensive scale, and with immense 
labour, will be found extremely useful in comparing the com¬ 
puted orbits of new comets with those before observed, &c. The 
Elements of the foregoing comet determined as above, exactly 
agrees with that given in the following table by la Caille, except 
the time of the passage of the perihelion, which in the table is 
given Jan. 28th. 4h. 38' 40". The 11 days difference arises froip 
the old stile being used in the table. 

t 



430 OF THE SOLAR SYSTEM. 

THE ELEMENTS OF NINETY-SEVEN COMETS 

4 
Passage at per. mean time 

at Greenwich. 

Long, of tin 
per. on the orb 
of the comet. 

Per. dist. 
earth’s be¬ 
ing 1. 

Anno A. C 
1 539 Oct. 20 15b. 0' 0" I0s.l3°30' 0' 0.3412 

Anno Domini Old Stile. 

2 837 March 9 19 3 0 0.5800 

3 1097 Sept 21 21 36 0 11 2 30 0 0.7385 

4 1231 Jan. 30 7 12 40 4 14 48 0 0.9478 

5 1264 July 6 8 0 0 9 21 0 0 0.445 
July 17 6 0 40 9 5 45 0 0.41081 

f 1299 Mar. 31 7 28 40 0 3 20 0 0.3179 
7 1301 Oct 4- or — 9s. or 10s. 0.457 
8 1337 June 2 6 25 0 Is. 7°59' 0" 0.40666 

June 1 0 30 40 0 20 0 0 0.6445 

9 1351 Nov. 26 12 0 0 2 9 0 0 1.0000 

10 1456 June 8 22 0 0 10 1 0 0 0.5855 
11 1472 Feb. 28 22 23 0 1 15 33 30 0.54273 

1531 Aug. 24 21 18 30 10 1 39 0 0.56700 
12 1532 Oct. 19 22 12 0 3 21 7 0 0.50910 
13 1533 June 16 19 30 0 4 27 16 0 0 20280 
14 1556 April 21 20 3 0 9 8 50 0 0.46390 
15 1577 Oct. 26 18 45 0 4 9 22 0 0.18342 
16 1580 Nov. 28 13 44 40 3 19 11 5 0.59553 

15 0 0 3 19 5 50 0.59628 
17 1582 May 7 8s. 5° or 9s 11° .23 or .04 
18 1585 Sept. 27 19 20 0 0s. 8°51' 0" 1.09358 
19 1590 Jan. 29 3 45 0 7 6 54 30 0.57661 

20 1593 July 8 13 38 40 5 26 19 0 0.08911 
21 1596 Julv 31 19 55 0 7 18 16 0 0.51293 

29 15 33 40 7 28 30 50 0.549415 

*10 1607 Oct. 16 3 50 0 10 2 16 0 0.58680 
22 1618 Aug. 7 3 2 40 10 18 20 0 0.51298 
23 1618 Oct. 29 12 23 0 0 2 14 0 0.37975 
24 1652 Nov. 2 15 40 0 0 28 18 40 0.84750 
25 1661 Jan. 16 23 41 0 3 25 58 50 0.44851 
26 1664 Nov. 24 11 52 0 4 10 41 25 4.025755 

27 1665 Apr. 14 5 15 30 2 11 54 30 0.10649 
28 1672 Feb 20 8 37 0 1 16 59 30 0.69739 
29 1677 Apr. 26 0 37 30 4 17 37 5 0.28059 
30 1678 Aug. 16 14 3 0 10 27 46 0 1.23801 
31 1680 Dec. 8 0 1 2 8 22 40 10 0.006030 

7 0 4 0 8 22 33 0 
7 23 9 0 8 22 44 25 0.006170 
7 20 38 39 8 23 26 48 0.006565 
8 0 4 0 8 27 43 0 0.005920 

*10 1682 Sept 4 7 39 0 10 2 52 50 0.58328 
21 31 0 10 1 36 0 0.58250 

32 1683 July 2 3 50 0 2 25 29 30 0.56020 
0 r> 
OO 1684 May 29 10 16 0 7 28 52 0 0.96015 
34 1686 Sept. 6 14 33 0 2 17 0 30 0.32500 
35 1689 Nov. 21 14 55 40 8 23 44 45 0.016889 
36 1698 Oct. 8 16 57 0 9 0 51 15 0.69129 

Long, of theflncl. of the 
ascending j orbit, 

node. 

1s.28°op7s.28' 10°+Or— 

6s.26°33' 
6 27 30 
0 13 30 
5 19 0 
5 28 45 
3 17 8 

0" 10° or 12 
0 73°3G' 0 
0 6 5 0 
0 36 30 0 
0 30 25 0 
0 68 57 0 

15° -j- or — j70°-f-or— 
2s.24°2i' 0" 32 11 0 
2 6 22 0 32 11 0 

1 18 30 0 
9 11 46 20 
1 19 25 
2 20 27 
4 5 44 
5 25 42 
0 25 52 

17 56 
5 20 

0 I17 56 
0 j32 36 

35 49 
32 6 30 

0 74 32 45 
0 19 7 37 64 51 50 
0 18 57 20 64 40 0 
7s. 5° or 21° 59° or 61° 
Is. 7°42' 30" 6° 4' 0" 
5 15 30 40 29 40 4O 
5 14 15 0 87 58 0 

10 12 12 30 55 12 0 
10 15 36 50 52 9 45 

1 20 21 0 117 
9 23 25 
2 16 1 

2 
0 121 28 
0 37 34 

0 
0 
0 

2 28 10 0 (79 28 0 
2 22 30 30 32 35 50 
2 21 13 55 21 18 40 
7 18 Q 0 76 5 0 
9 27 30 30 83 22 10 
7 26 49 10 |79 3 15 
5 11 40 0 3 4 20 

1 57 13 (61 22 55 
1 53 0 61 20 20 

0 (61 6 48 
9 158 39 50 

61 20 20 
17 56 0 
17 42 0 

0 [83 11 0 
0 65 48 40 

2 2 
2 59 
1 53 0 

1 21 16 30 
1 20 48 0 
5 23 23 
o 90 -I r 

1 20 34 40 (31 21 40 
0 23 45 20 69 17 0 
8 27 44 15 (11 46 0 

D 

R 
D 
D 
D 

R 
R 
R 

D 
R 
R 
D 
D 
R 
D 
R 
D 

R 
D 
R 
D 
R 
R 
R 
D 
U 
D 
1) 
R 
R 
D 
R 
D 

R 
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■j? <* 

Passage at per. vie an 
at Greenwich. 

tiVie Long. of the 
per. on the orb. 
of the comet. 

Per. dist. 
earthys be¬ 
ing 1. 

Long, of the 
ascending 

node. 

Inch of the 
orbit. 

37 1699 Jan. 3 8h.22' 19; 7s. 2°31' 6" 0.74400 10s.21°45' 35", 69°2(y 0" 
38 1702 Mar. 2 14 12 19 4 18 41 O 

O 0.64590 6 9 25 15 4 30 0 
39 1706 Jan. 19 4 22 39 2 12 29 10 0.42580 0 13 11 40 55 14 10 

4 56 4 2 12 36 25 0.426865 0 13 11 23 55 14 5 
40 1707 Nov. 30 23 29 39 2 19 54 56 0.8597 1 22 46 35 88 36 0 

23 43 6 2 19 58 9 0.85904 1 22 50 29 88 37 40 
41 1718 Jan. 3 23 38 39 4 1 30 0 1.02650 4 8 43 0 30 20 0 

4 1 14 55 4 1 26 36 1.02565 4 7 55 20 31 12 53 
42 1723 Sept. 16 16 10 0 1 12 15 20 0.998651 0 14 16 0 49 59 0 
43 1729 June 14 11 6 40 10 22 40 0 4.26140 10 10 32 37 76 58 4 

12 6 32 2 10 22 16 53 4.0698 10 10 35 15 77 1 58 
44 1737 Jan. 19 8 20 0 10 25 55 0 0.22282 7 16 22 0 18 20 45 
45 1739 June 6 9 59 40 3 12 38 40 0.67358 0 27 15 14 55 42 44 
46 1742 Jan. 28 4 38 40 7 7 35 13 0.76568 6 5 38 29 66 59 14 

4 20 50 7 7 33 44 0.765555 6 5 34 45 67 4 11 
27 4 14 39 7 10 49 23 0.7521 6 9 32 7 61 43 44 

47 1742 Dec. 30 20 25 40 3 2 41 45 0.83501 2 8 21 15 2 19 33 
21 15 16 3 3 58 4 0.838115 2 8 10 48 2 15 50 

48 1743 Sept. 9 21 16 18 8 6 33 52 0.52157 0 5 16 25 45 48 21 
49 1744 Feb. 19 8 27 0 6 17 12 55 0.22206 1 15 45 20 47 8 36 
50 1747 Feb. 20 7 10 40 9 7 2 0 2.19851 4 27 18 50 79 6 20 

17 11 44 38 9 10 5 41 2.29388 4 26 58 27 77 56 55 
31 1748 Apr. 17 19 25 0 7 5 0 50 0.84067 7 22 52 16 85 26 57 
52 1748 June 7 1 24 15 9 6 9 24 0.65525 1 4 39 43 56 59 3 

JVew Stile. 

53 1757 Oct. 21 9 46 40 4 2 49 0 0.33800 4 4 0 12 48 0 
54 1758 June 11 3 17 40 8 27 38 0 0.21535 . 7 20 50 0 68 19 0 

*10 1759 Mar. 12 13 31 40 10 3 16 0 0.58349 1 23 49 0 17 39 0 
13 50 40 10 3 8 10 0 58490 1 23 45 35 17 40 14 
13 48 16 10 3 16 20 0.58360 1 23 49 21 17 35 20 

55 1759 Nov. 27 0 2 37 1 23 34 19 0.80139 4 19 39 41 79 6 38 

56 1759 Dec. 16 21 3 40 4 18 24 35 0.96599 2 19 50 45 4 51 32 

57 1762 May 28 15 17 40 3 15 15 0 1.0124 11 19 20 0 85 45 0 
6 51 29 3 14 29 46 0.009856 11 19 2 22 85 3 2 

29 0 18 28 O 
O 15 22 23 1.01415 11 18 55 31 85 22 21 

56 1763 Nov. 1 19 43 18 2 24 51 54 0.49876 11 26 23 26 72 40 40 
20 58 14 2 25 1 6 0.49820 11 26 27 0 72 28 0 

59 1764 Feb. 12 13 42 16 0 15 14 52 0.55522 4 0 4 33 52 53 31 
60 1766 Feb. 17 8 40 40 4 23 15 25 0.50533 8 4 10 50 40 50 20 
61 1766 Apr. 22 20 46 20 8 2 17 53 0.33274 2 14 22 50 118 4 

62 1769 Oct. 7 12 20 40 4 24 5 24 0.12376 5 25 0 43 40 37 33 
13 36 53 4 24 11 7 0.12272 5 25 6 33 40 48 49 
14 56 39 4 24 16 0 0.12265 5 25 3 0 40 50 0 
15 28 16 4 24 10 51 0.1227 5 25 4 41 40 49 33 
12 34 9 4 24 U 8 0.1232352 5 25 2 24 40 48 29 
15 42 2 4 24 15 53 0.12275 5 25 6 4 40 46 42 
12 44 38 4 24 11 32 0.12327 5 25 3 40 40 47 56 

€3 1770 Aug1.14 0 4 4 11 26 26 13 0.676893 4 12 17 3 1 34 30 
13 12 55 40 11 26 16 26 0.6743815 4 12 0 0 1 33 40 
13 12 37 35 11 36 15 0 0.67435 4 11 54 50 1 34 31 

'♦sfc , o 

R 
D 
D 
D 
D 
D 
R 

R 
D 

D 
R 
R 

R 
D 
R 

R 
D 

D 
D 
R 

D 
R 
D 

D 

R 
R 
D 
L> 

I* 
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66 
67 

68 
69 

70 
71 
72 

73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

87 
88 
89 
90 
91 

92 
93 
94 
95 

96 
97 
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at 

1770 Nov. 22 
L771 Apr. 18 

19 
1772 Feb. 18 
1773 Sept. 5 

1774 Aug-. 15 
L779 Jan. 4 

1730 Sept. 30 
1781 July 7 
L781 Nov. 29 

1783 Nov. 15 
1784 Jan. 21 
1784 Apr. 9 
1785 Jan. 27 
1785 Apr. 8 
1786 Juiv 7 
1787 May 10 
1788 Nov. 10 
1788 Nov. 20 
1790 Jan. 15 
1790 Jan. 28 
1790 May 21 
1792 Jan. 13 
1795 Dec. 14 

15 
14 

1796 April 2 
1797 Julv 9 
1797 April 4 
1798 Dec. 31 
1799 Sept. 7 

1799 Dec. 25 
1801 Aug. 8 
1803 Sept. 9 
1804 Feb. 13 

13 
1805 Nov. 18 
1805 Dec. 31 

mea?i time 
ivich. 

Long, of the 
per. on the orb. 
of the comet. 

Per. dint, 
earth’s be- 
mg 1. 

Long, of the 
ascending 

node. 

Inci. of the 
orbit. 

£ 
• **~ 
*Nm 

■5 

5h.38' 40" 6s.28°22' 4i" 0.52824 3s.l8°42' 10" 51°25' 55' R 
22 5 7 3 13 28 13 0.90576 0 27 51 0 11 15 20 D 

5 1 21 3 14 2 54 0.90340 0 27 50 27 11 16 0 
20 41 13 3 18 6 22 1.01815 8 12 43 5 18 59 40 D 
11 9 25 2 15 35 43 1.13390 4 1 15 37 61 25 21 D 
14 33 48 2 15 10 58 0.10120 4 1 5 30 61 14 7 
10 46 15 10 17 22 4 1.4286 6 0 49 48 83 0 25 D 
2 2 40 2 27 13 11 0.71312 0 25 5 51 32 24 0 D 
2 15 10 2 27 13 40 0.7132 0 25 3 57 32 25 30 

18 3 30 8 6 21 18 0.09925 4 4 9 19 53 48 5 R 
4 32 0 7 29 11 25 0.775861 2 23 0 38 81 43 26 D 

12 32 26 0 16 3 28 0.96101 2 17 22 52 27 13 8 R 
12 33 25 0 16 3 7 0.960995 2 17 22 55 27 12 4 

5 44 3 l 15 24 46 1.5655 1 24 13 50 53 9 9 D 
4 47 40 2 20 44 24 0.70786 1 26 49 21 51 9 12 R 

21 7 46 10 28 54 57 0.650531 2 26 52 9 47 55 8 R 
7 48 44 3 19 51 56 1.143398 8 24 12 15 70 14 12 D 
8 58 52 9 27 29 33 0.427300 2 4 33 36 87 31 54 R 

21 50 52 5 9 25 36 0.41010 6 14 22 40 50 54 28 D 
19 48 40 0 7 44 9 0.34891 3 16 51 36 48 15 51 (1 
7 25 40 3 9 8 27 1.06301 5 7 10 38 12 28 20 R 
9 4 25 0 23 12 22 0.766911 11 21 42 15 64 52 32 l) 
5 5 39 2 0 14 32 1.7581 5 26 11 46 31 54 15 R 
7 36 13 3 21 43 37 0.063286 8 27 8 37 56 58 13 D 
5 46 54 9 3 43 27 0.79796 1 3 11 2 63 52 27 R 

13 35 9 1 6 29 42 1.293 6 10 46 15 39 46 55 D 
23 17 53 | 5 13 37 0 0.227 11 29 11 0 24 17 0 D 
15 6 18 1 5 7 37 0 0.258 11 13 23 0 20 3 0 
18 43 0 5 15 33 0 0.215 0 17 0 24 42 u 
19 47 51 6 12 44 0 1-578 0 17 2 0 64 55 0 R 
2 43 31 1 19 34 48 0.52545 10 29 16 35 50 35 50 R 

11 32 21 3 14 59 0 0.48476 4 2 9 0 43 52 16 D 
12 58 57 1 4 29 48 0-77968 8 9 30 44 42 23 25 
5 49 48 0 3 39 12 0.839865 3 9 31 59 50 55 3? R 
5 34 4 0 3 39 10 0.840178 3 9 27 19 50 57 3o 
4 24 39 0 3 36 0 3 9 34 0 50 52 30 

21 30 49 6 10 20 12 0.625810 10 26 49 11 77 1 38 R 
13 22 39 6 3 49 0 0.2617 1 14 28 0 21 20 0 R 
20 33 54 11 2 8 0 1.0942 10 10 17 0 57 0 0 D 
13 31 7 4 28 44 51 1.07117 5 26 47 58 56 28 40 D 
15 30 39 4 28 53 32 1.072277 5 26 49 47 56 44 20 D 

0 15 39 4 29 0 28 0.37567 11 15 6 51 15 58 12 D 
6 X 36 13 39 23 40 0.89159 8 10 35 24 £6 25 25 D 
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The following were calculated by M. Burekhardt ; 1,3, 9, 58, 
2d. 63, 3d in an elliptic orbit semimajor axis 3.1435, period, 65 
Apr 19, in an hyperbolic orbit, 67, Sept- 14. 89, 90, 91, 3d. 93. 

Those that follow by M. Pingre, No. 2, 4, 5, July 17, sup¬ 
posed to be the same as No. 14, 6, 8, 2d, 10, period 75\ years. 
16, 17 (nearly) 21, 2d. 22 (nearly) 31, 35 (nearly) 53, 54 (see 
?nem. dc CAcad. 1757 and 1759) 55, 58 (:mem. de l*Acad. 1774) 
59 {mem 1774) 60 (nearly, mem. 1776) 61 {mem. 1778) 63, 
6th. cal. in an elliptic orbit, mem. 1771. 63, 1st in an elliptic 
orbit, mean dist. 3.08891, period 5.42886 years 64, 65. 

M. Dunthom calculated the elements of the 5th, 1st supposed 
to be the same as No. 14. 

Dr. Halley calculated the elem. of the following ; 8, 1st nearly 
11, 1st 12, 13, 14, 15, the four last also nearly, No. 12 is supp. 
the same as No. 25, and No. 14 as 5. 16, 2d. 18, 19, 10,* (see 
Newton's Prin.) 23, 24, 26 (see the firin ') 27, 28, 29, 31, 1st. 
2d. in an ellipse, mean dist. 138.2957, period 575 years (see 
prin.) 10,* 1st 2d in an ellipse, period 75 years. 32, 33, 34 and 36. 

The following were calculated by M. Douwes ; 13, 30 (nearly) 
41, 2d. 

M. de la Caille calculated the following 20 (nearly) 37 (nearly) 
38, 39, 1st 40, 1st 41, 1st 43, 1st see Mem. de l'Acad. Roy. 
1763. 45, 46, 1st 47, 1st nearly. 50, 1st (mem. 1757) 10,* 
1st 56. 

M. Euler in his Theoria motuum Planetarum et Cometarum, 
calculates the following, 31, 4th an elliptic orbit. 46, 3d 62, 3d 
an elliptic orbit. 

The 39, 2d 40, 2d 46, 2d 47, 2d. 52 (nearly) 57, 2d were 
calculated by M. Struyck. 

The 42 (see Newton's prin.) and 44, were calculated very accu¬ 
rately by M. Bradley. 

M. Klinkenberg calculated 48. M. Betts calculated 49 very ac- 
eur. {Phil, trans. vol. 43.) M. Chezeaux 50, 2d. M. Maraldi 
51, 10,* 3d. (mem. de l'Acad. 1759) 57, 3d. M de la Landc 
10,* 3d 57, 1st (mem. de l'Acad. 1762 and 1763) 62, 1st (mem. 
1769 and 1765.) M. Prosperin 62, 2d S6, Sd. M. Lexell 62, 
4th an elliptic orbit. (See mem. 1795, pa. 430) 63, 2d an ellip¬ 
tic orbit, semimajor axis 3.14786, period 5.585 years. {Phil, 
trans. vol. 69.) Sir Henry Englejield 62, 5th M. Mechain 68, 
69, 2d 70, 71, 72, 73 (nearly) 74, 76, 77, 78 (mem. 1786) 80 
(mem. 1788) 81, 83, 91, 1st (see Connoissance des Terns, sen. 12) 
92 (La Landc supposes this to be the same as No. 37) 94 (Con. 
des T. an. 14) Chev. d'Angos 69, 2d 75. M. Legendre 72, 2d 
(see Aouvclle Mcthodes, &c.) 96 and 97. P. de Saron 79. {Mem. 
1787) 82 {con. de T) M Zach 86, 1st 91, 2d {con. de T. an. 12) 
M. Bouvard 86, 2d 88. Dr. Olbcrs 87. M. Gauss 95, 1st 
{con. de T. an. 15) 2d. con. an. 1808. 

The preceding article being nearly written, when, from the po¬ 
liteness of Professor Farrar in Cambridge, Massachusetts, the 

3 C , 
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author had been favoured with his observations on the present co¬ 
met (1811) from Sep. 6 to Nov. 12.* From these observations 
those of Sept. 26, Oct. IT and Nov. 10, have been selected for 
calculating the elements of this comet’s orbit; as more nearly- 
conforming with the directions given by Newton* As these sheets 
are immediately wanting for the press, there is therefore little 
time to enter into calculations so tedious as the present: the fol¬ 
lowing results have, however, been hastily deduced ; the time 
being changed to that of the meridian of Greenwich, allowing 
71° 7' for cliff, long, and the correct distances! of the comet, for 
Sept. 26, 12h. 11' 9" being taken from Arcturus 30° 11' 46" 
from Lyra 60° 15'; on Oct. 17, 11 h. 20' 48" from Arct. 34° 
2' from Lyra 27° 26' 35" ; Nov. 10, I2h. 34' 58", from Lyra 
16° 30' 5", from Deneb 33° 10'. 

* The following being, according to Mr. Farrar the most correct, are in¬ 
serted here, and the Cambridge times, as given by him, retained. They may 
serve as an exercise for learners in making more accurate calculations, Sec . 

AUCT uuu s. LYRA. 

Appar. time. Appar. dist. App. time. Ap. (list. 
Sept. 6d. 7h. 52' 14" 4 7° 43' 20" 8h i. 3' 14" 82° 11' 0" 

9 7 59 20 45 38 20 7 54 40 79 32 18 
10 8 19 38 44 53 16 7 47 31 78 30 46 
14 8 38 18 42 0 15 8 28 20 74 o r» 50 
18 7 39 23 38 58 45 7 27 2 70 18 50 
26 7 26 41 30 8 15 7 32 16 60 17 10 
30 7 12 0 30 49 30 7 19 20 54 38 30 

Oct. 2 7 oo oS 12 29 54 45 7 49 40 51 37 45 
17 6 36 20 34 4 30 6 41 50 27 27 05 

POLAR STAR. 

(21) 19 8 6 30 49 0 0 7 59 25 24 13 15 
21 8 58 10 50 34 15 8 55 0 . 21 7 15 
23 7 23 30 52 20 30 7 17 30 18 27 45 
29 7 

n 
O 50 57 40 15 7 1 20 12 24 45 

Nov. 2 7 15 5 61 17 45 7 7 5 11 32 37 
4 7 23 0 63 6 45 7 18 30 12 12 45 

10 7 58 20 68 1 0 7 50 30 16 30 05 
11 8 8 30 68 38 15 8 2 50 17 21 55 
12 7 15 57 18 11 21 

The distances were also taken from Deneb «. Cygni (or ct winded as marked, 
on Cary’s Globes) as follow. Nov. lOd. 8h. 6'20" ap. dist. 33° 10' 25" Nov. 
11. 8h. 11' 50" dist. 33° 12' 25" and Nov. 12. 7h. 24' 45" dist. 33° 14' 55" 
It would have been better if the distances could have been taken at one in - 
stunt by two observers and the altitudes given, as then the trigonometrical 
calculations, and allowances would become more simple. But the alt. in 
order to allow for refraction, &c. can be found nearly by the Globes. 

f The distances corrected above, were not found from strict calculation, 
but when the star and comet were found to have nearly the same alt. a 
mean of the alt. was taken, and refraction being allowed, the dist. was in¬ 
creased as cos. variation of the altitudes from refraction, &.c. When the 
star and comet were found to be nearly vertical, then the diff. of their re¬ 
fractions were subtracted. It being too tedious to give the trig. cal. not 
having 1 day to perform the oper. Some allowance was made for the com¬ 
et’s motion, but the aberrations and parallax were omitted, the calculation 
not being rigorously exact 



OF THE SOLAR SYSTEM. 435 

1811 
J\Iean time at 

Greenwich. 

obs. long, 
of the 
comet 

obs. lat 
north 
of the 
comet. 

sun’s long, 
calculated. 

log. of the 
earth’s 

dist. from 
the sun. 

comet’s elong. 
from the 

sun. 

Sept. 26d. 12h. 2' 32" 
Oct. 17 11 6 18 
Nov. 10 12 19 14 

5s. 18° 2r 
7 12 8 
9 12 30 

46° 17' 
62 40 
45 15 

6s. 2° 49' 57" 
6 23 41 0 
7 17 44 33 

0.000715 
9.998334 
9.995520 

14° 47'57"W. 
18 27 0 E. 
54 45 27 E. 

Now the mean distances of the comet from the sun, by project 
tion, was found 1.058 corresponding to the obs of Sept. 26.— 
And 1.422 corresponding to the obs. of Nov. 10, the earth’s 
mean dist. being 1. From which data the elements of the comet 
may be found as before directed * 

Mr. Farrar remarks, that with a common night glass, he ob¬ 
served a dark ground of considerable extent immediately surround¬ 
ing the coma, exterior to which a sort of halo, which after making 
a curve of about ISO®, receded in a tangential direction forming 
the two branches of the tail, of which the convex, on that next the 
sun was somewhat the longest, and both a little incurvated ; the 
length of the tail, found by taking the dist. of a star at its extremi¬ 
ty and the comet, was Sept. 10, in the evening 5°, .breadth 2° ; 
Sept. 13, even 7° 10' ; Sept. 18, 12° ; Oct. 19, the evening 
being fine, the tail measured 142°. Nov. 6, the diameter of the 
head including the coma, was measured with an object glass mi¬ 
crometer, fitted to a 3 feet Gregorian Reflector, made by Short, 
and found 2' 46''. The nucleus had very much the colour and 
nearly the apparent mag. of Saturn. The exterior light surround¬ 
ing the comet before mentioned, was judged to be five times the 
diameter of the head. Mr. Farrar further remarks, that the 
curved part of this light seemed very much to resemble in form, 
a current of water flowing round a stone or other obstacle placed 
in it. 

* We had thus far proceeded when the sheets were wanting for the press, 
we may however resume the calculation in some of the following articles. 
Mr. N. Bowditch of Massachusetts, determines the elements of this comet 
as follow. Perih. dist. 1.032, time of passing the perih. Sept. 12d. 3h. 
Greenw. time, place of the perih. reckoned on the comet’s orbit 2s. 15° 14', 
long, of the ascending node, 4s. 20° 24', inch of its orbit to the eclip. 73°. 
Its motion he finds to be retrograde. 

Mr. Wood of Richmond says that the mot. is direct, as it moves according 
to the order of the signs since its appearingbut it is evident that its mo¬ 
tion may be direct, as seen from the earth, though retrograde as seen from 
the sun, from which this motion is estimated in the cal. The heliocentric 
longitudes immediately shew whether the comet be direct or not, and not 
r.he geocentric. 
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CHAP. XI. 

OF THE FIXED STARS. 
Having given as comprehensive an account of the Solar System 

as an elementary work of this nature would admit, we shall now 
give a short description of those bodies which are situated beyond 
the limits of this System, and which are called fixed stars, from 
their not ha ing any proper sensible motion of their own, except a 
few. Of their general division into constellations, &c. we have 
already given an account in the first part- 

From the most accurate observations, the whole diameter of the 
earth’s orbit, seen from them, is found to dwindle into a point, or 
in other words they are found to have no sensible parallax, and 
must therefore be immensely distant from us From this circum¬ 
stance, and that when examined by the most powerful telescopes, 
their disks appear but as luminous points, it is with reason inferred, 
that their magnitudes must be very great, as otherwise they would 
not be visible ; and considering the weakness of reflected light, 
there can be no doubt but that they shine with their own light. 
They therefore differ from Planets in these two circumstances, 
that they do not borrow their light, or reflect it, as the planets do, 
and that their apparent diameters are not increased by telescopes. 
The smallness of their appar. diameters is also proved from their 
rapid disappearance in their occultations with the moon, the time 
of which not amounting to proves, as Lajilace remarks, that 
their appar. diam. is less than (5") l"62 And as the smallest 
stars are subject to the same motions as the most brilliant, and 
constantly preserve the same relative positions, it is therefore prob¬ 
able that all those bodies are of the same nature and placed more 
or less distant from the planetary system. Whether they have 
planets revolving around them or not, is a question that can never 
be decided ; but as they seem to be of the same nature with the 
sun, and of a mag. at least equal to him, analogy would lead us to 
suppose that they are destined to perform the same functions, and 
are, therefore, probably suns to other systems ; for there are mil¬ 
lions of them that are not at all visible to an inhabitant in our sys¬ 
tem. 

The number of the stars visible to the naked eye is about 1000, 
as may be seen by reckoning all those to the 6th mag. inch which 
are on a hemisphere of the celestial globe. But from the im¬ 
provements in reflecting telescopes, Dr. Herschel and other astro¬ 
nomers have discovered that their number is great beyond concep¬ 
tion. Every improvement of the telescope discovers stars not vis¬ 
ible before, so that there seems to be no limits to their number or 
to the extent of the universe. 

We have marked in the table of the constellations, in a separate 
column, all those stars that are not single, when viewed with good 
telescopes, but as some consist of 3, 4, or more stars, we shall give 
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an account here of the most remarkable, following the order of 
the table, page 28. 

In Aries a and 0 are double. 
In Taurus Aldebaran is quadruple, the largest in the Pleiades 

double. 
In Gemini x or Castor is double, 0 or Pollux, or Hercules con¬ 

sist of several, there are 11 marked on it, on Cary’s Globe. 
In Leo Regulus, y, and some others are double. 
In Virgo y is double, and S quadruple. 
In Cafiricorn x is double, one is much larger than the other, 

the largest is marked 1, the other 2. 
In Aquarius 0 is double. 
In Ut •sa Minor x is double, very unequal, the largest white, 

the smallest red. 
In Ursa Major Mizar is double, or triple, two are easily dis¬ 

tinguished, one larger than the other, the smallest is called Alcor. 
In Draco v 1, v 2 appears single to the naked eye. 
0 in Cefiheus is double. In Cassiopeia a or Shedir, and £ are doub. 

a small star marked d is triple, a or Cafiella, and 0 in Auriga are 
double. The star marked 2 in Lynx is double. Cor 'Caroli is 
double. In Bootes Arcturusis triple or quadruple, two of the stars 
in it appear of the 8th mag. « or Mirach is double, very unequal, 
largest reddish, smallest blue, or faint blue, very beautiful J, 
and others are double. In Corona Borealis f and a are quadruple, 
v is quintuple. In Hercules x, y and others appear double, the 
stars marked 70 and 7 1, also 80 and 81 appear single to the naked 
eye. In Lyra x appears double, very unequal, the smallest ap¬ 
pears with a power of 277. Dr. Herschel measured the diameter 
of this star and found it = 0"3553. 0 is quadruple, unequal, one 
white, three reddish, $ 1 and 2, appear as one, e and others are 
double. 0, o', *, 32, o2 and others, are double, y triple, is also 
double, unequal, largest white, smallest blue. In Delfihinus 0 and 
y are double. In Equuleus 7, o-, l, and others are double. In 
Pegasus e or Enir and e are double. In Andromeda x and y or 
Almaach, are double, the latter are unequal, the largest reddish 
white, the smallest blue, inclining to green, a beautiful object. 
In Musca Borealis the star marked 33 is double, 41 is triple, 3d 
mag. In Perseus £ is triple, H 31, and others, are double.— 
In Serpens 0, 8 and others are double. In Ojihicicus a has two 
small stars of the 6th mag. nearly touching it, * and others are dou¬ 
ble. In Cetus, Menkar is double, one of the 2d, and the other of 
the 6th mag. Mira,« and others are double, Mira is changeable 
when greatest of the 2d, when smallest invis. period 344d. In 
Orion, Betelgeux, and Rigel, £, tj, t, e and others, are double, 
a, v l and v 2 contain each 6 or 7 small stars, c has 6 or two triple 
stars. In Cams Minor Procyon has two stars of the 9th mag. very 
near its body, the star marked 31 is double. In Hydra Cor Hydra 
is triple, the star marked 2 is double and variable. In Corvus $ is 
double. In Centauries x is double, the 1st is of the 1st and the 2d 
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of the 4th mag. In Piscis Australis Fomalhaut has a siar of the 
6th mag near its edge, e is double, the 1st of the 3d, the 2d of the 
5th mag. In the Ship Argo Canopus is double, the 1st is of the 1st, 
the 2d of the 6th mag in the milky way has on its south side an 
innumerable multitude of stars, and in its body 9 or 10. The 
southern constellations have not been examined with the same care 
as the northern, which is the reason that so few of them are marked 
double, &c. Dr. Herschel has given a catalogue of the double 
stars in the Phil, trails. 1782 and 1785. 

Many of the stars observed by ancient astronomers, do not ap¬ 
pear at present, and others are at present observed which are not 
found in their catalogues It was the appearance of a new star 
about 120 years before J C. that caused Hipparchus first to under¬ 
take making a catalogue. There is however no account where 
this star appeared. A second is said to have appeared in the year 
130 ; a 3d in 389 ; a 4th in the 9th century, in 15° of Scorpio ; a 
5th in 945, and a 6th in 1264 ; the accounts we have of these are 
however imperfect. Cornelius Gemma on Nov 8, J 572, observed, 
in the chair of Cassiopeia, the 1st of which we have any regular ac¬ 
count. It exceeded Sirius in brightness, and was seen at midday. 
It first appeared larger than Jupiter, then gradually decayed, and 
in 16 months vanished. Some suppose that it was this which ap¬ 
peared in 945 and 1264. 

David Fabricius, on Aug. 13, 1596, discovered a new star in 
the neck of the whale in 25° 45' of Aries, lat. 15° a4' S. In Oct. 
the same year it disappeared. It was again seen in 1637 ; the pe¬ 
riodic time between its greatest brightness is determined to be 333 
days. Its greatest brightness is that of the 2d mag. and least that 
of a star of the 6th. But its greatest splendour and also its period, 
are found to be variable. 

William Jansenius, in 1600, discovered a changeable star in the 
neck of the Swan. Kepler, who wrote a treatise on it, fixes its place 
in 16° 18', with 55° 30' or 32' S. lat Bicciolus observed it in 
1616, 1621, 1624, and 1629 ; and says that it was invisible in 1640 
and 1650. Cassini observed it in 1655, from which it increased to 
1660, then grew less, and at the end of 1660 disappeared. In 
Nov. 1666, it again appeared, and disappeared in 1681. In 1716, 
it appeared of the 6th mag. 

P. Anthelme on June 20, 1670, discovered another changeable 
star near the swan’s head In Oct. it disap. and appeared again 
on March 17, 1761, and disap Sep. 11. In March, 1672, it ap¬ 
peared again, disap in the same month, and was not observed 
since. Its long, was XZ 1° 52' 26", lat. 47° 25' 22" N. The 
days are here as in the new stile. 

In 1686 Kirchius observed % in the swan to be a changeable 
star ; and from 20 years obs. it was found that the period of the 
return of the same phases is 405 days ; its magnitude is, however, 
subject to some irregularity. In 1604 Kepler discovered a new 
star in the right foot of Serpentarius, which exceeded even Jupi- 
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ter in mag. Near the horizon it appeared white, in every other 
posit, it continually varied its colour into some of the colours of 
the rainbow. It disappeared in 1605 and was not seen since. Its 
longitude was t 17° 40', lat. 1° 56'N. it had no parallax. 

The stars & and y in Virgo were found by Montanan to be 
wanting. They were visible in 1664, but were wanting in 668. 
He found 0 in the serpent visible from the time he observed until 
1695-. 4 in Leo disappeared, and was again seen in 1667. /3 in 
the head of Medusa also varied its mag. 

Cassini discovered one new star of the 4th and two of the 5th 
mag. in Cassiopeia ; he afterwards discovered five new stars in 
the same constel three of which disappeared He discovered 
two new stars in Eridanus, one of the 4th and the other of the 5th 
mag. He observed that s in the Little Bear disappeared : that a 
in Andromeda which had disappeared, had again appeared in 1695 : 
that in place of v there are two stars more northerly, and that f is 
diminished. 

Maraldi says that x which was of the 3d mag. in 1671, was of the 
6th in 1676, Dr. Halley found it again of the 3d in 1692, it was 
almost imperceptible, but in 1693 and 1694 it was of the 4th mag. 
In 1704 he discovered a new star in Hydra, in a rt. line with ir 
and y. The period of its changes is about 2 years. J. Goodncke 
has found the periodic variation of Algol in Perseus to be about 
2d. 2 lh. He has also discovered that $ Lyres completes all its 
phases in 12d. 19h. <1 Cephei, according to him performs the 
periodic variation of its phases in 5d. 8h. 37|'. E. Pigott has 
discovered that n Antinoui is a variable star, and fixes the period of 
its variation at 7d 4h. 38'. For a further detail, consult Vince's 
Astr. or Phil, trans. 1785, and Herschel’s remarks and method 
®f observing these changes, Phil, trans. 1796. In the Phil, trans. 
for 1783, in a paper on the proper motion of the Solar System, he 
has given a large collection of stars which were formerly seen, but 
are now lost ; also a catalogue of variable stars and of new stars. 

These variations in those stars, considered as fixed, have afford¬ 
ed ample scope for conjecture. Maupertuis supposes the varia¬ 
tions to arise from their quick motion round their axis, which he 
thinks may reduce them to very oblate spheroids, like a mill stone, 
and that when the flat side is presented to the earth, they become 
nearly invisible. Laplace remarks, that the extensive spots which 
these fixed stars present to us periodically in turning round their 
axis, nearly in the same manner as the last satellite of Saturn, and 
the interposition of large opake bodies which circulate round them, 
are sufficient to explain their periodic variations ; and further re¬ 
marks, that as to those stars which suddenly appear with a very 
brilliant light, and then vanish, it may be supposed that this takes 
place by means of great conflagrations on their surface, occasioned 
by extraordinary causes. As light takes a considerable time to 
pass from us to the fixed stars, it may have considerable effect in 
changing the apparent place of those that become invisible, when 
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they again reappear. And as the nature of the aberration of the 
stars is not only useful to be known in this inquiry, but also in cor¬ 
recting their apparent places to obtain the true, we shall here col¬ 
lect. principally from Vince's Astronomy, what is most practical and 
important on this subject. 

The situation of any object in the heavens, is determined by the 
position of the axis of a telescope annexed to the instrument with 
which we measure ; for the telescope is so placed, that the rays 
of light from the object may pass through it in the direction of its 
axis or length, and then the index shews the angular dist. requir¬ 
ed. Now if light lake a determined time in parsing from one ob¬ 
ject to another, when a ray from any distant object as a star de¬ 
scends down the axis, the position of the telescope must be differ¬ 
ent from what it would have been, if light had been instantaneous, 
and therefore the place to which the telescope is directed, will be 
different from the true place of the object. For let S' be a fixed 
star, VF the direction of the earth’s mo¬ 
tion, S'F the direction of a particle of light 
entering the axis ac of a telescope at a, 
and moving through aF while the earth 
moves from c to F, then if the telescope 
continue parallel to itself, the light will 
descend in the axis. For let the axis nm, 
F?y, continue parallel to ac, then consid¬ 
ering each mot. as uniform (the rotary 
mot of the earth being here neglected, 
as producing no sensible effect) the spa¬ 
ces described in the same time will con¬ 
tinue in the same proportion ; but cF : 
cF :: cn : av, and cF, aF are, by suppos. 
described in the same time ; cn, av, are therefore described in 
the same time ; hence when the telescope comes into the situa¬ 
tion nm, the particle of light will be in the axis at v, and this is 
true for every instant, the position of the telescope remaining the 
same ; hence when the telescope is at F, the place of the star, as 
determined by it, will be s' and the angle S'F</ will measure the 
change made in the appar. position of the star from the motion of 
the earth, combined with the progressive motion of light, or the 
aberration. If we therefore take FS : F/ :: the vel of light : 
the earth’s vel. and join St, and complete the paral. F/S.?, the JL 
FSt will represent the aberr. S will be the true place of the star, 
and s the place determined by the instrument. 

A similar change will be produced inthep'ace of the star, seen 
with the naked eve F'or if a ray of light fall upon the eye in 
motion, its relative mot in respect to the eye, will be the same as 
if equal motions were impressed in the same direction upon each, 
at the moment of contact; as equal motions in the same direction, 
impressed upon two bodies, will not affect their relative motions, 
and therefore the effect of one upon the other will not be allowed. 
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Let VF be a tangent to the earth’s orbit at F, which will represent 
the direction of the earth’s mot. at F, S a star, join SF and produce 
it to G, and make FG : Yn :: vel. of light : vel. of the earth in its 
orbit ; complete the paral. and draw the diag. FH Now as FG 
represents the mot. of light, and nV that of the earth in its orbit, 
let a mot. Fra, equal and oppos. to wF, be conceived to be impress¬ 
ed upon the eye at F, and upon the ray of light, then the eye will 
be at rest, and the ray, by the two motions FG, F«, will describe 
the diagonal FH ; this is therefore the rel mot of the ray in res¬ 
pect to the eye itself. The object will therefore appear in the di¬ 
rection HF, and the angle GFH = FSt will measure the diff. be¬ 
tween its appar. and true place, as before The place, therefore 
determined by the instrument, is properly called its apparent place. 

Now sin. FSr : sine F^S :: F^ : FS vel. of the earth : vel of 
light ; hence sine of aberration = sin. F/?S X vel. of the earth -£- 
vel. of light If we therefore consider the vel. of the earth and light 
constant, sine aber. or the aber itself, as it never exceeds 20", va¬ 
ries as sine F^S, and is therefore greatest when F^'s = 90° ; taking 

= sin. F7S, it will be rad. : s :: 20" : s x 20" the aberration. 
By obs. Z_ FS^ = 20" ; hence when F^S = 90°, vel. of the 

earth : vel. of light :: sin. 20" : rad :: I : 10314. The aber. 
SV lies from the true place of the star, in a direction paral. to the 
direction of the earth’s motion, and towards the same part. 

While the earth makes one revolution in its orbit, the curve de¬ 
scribed by the appar. place of a fixed star, parallel to the ecliptic, 
is a circle. For let AFBQ 
be the earth’s orbit, K the 
focus in which the sun is, 
H the other focus, on AB 
the greater axis let a circle 
be described in the same 
plane ; to the point F draw 
the tangent yFZ, and ky 
HZ perp. to it, then the 
points y and Z will be al¬ 
ways in the circumference 
of the circle ( Vince’s conic 
sect. prop. 5, el. or Emer¬ 
son’s, b. i, prob. 20 ) Let S be the true place of the star, out of 
the plane of the ecliptic, and therefore elevated above the plane 
AFBQ, and let d? be to FS as vel. of the earth to vel of light; com¬ 
plete the paral F^Ss, and by what is shewn in the first part of this 
art. s will be the star’s appar. place Let FL be drawn perp. to AB, 
and let WsYx be the curve described by the point s ; draw WSV 
parallel to FL. Now from a well known principle in physics, the 

vel. of the earth varies as Ky, or as HZ {Vince's ton sect. pr. 6 el.) 
but dF, or Ss, represents the earth’s vel. hence Ss varies as HZ. 
And as S-s, SV are paral. to Fy, FL, the angle sSV = yFL = 
ZHL ; for LFZ added to each makes two rt. angles, the angles at 

3 H 
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L and Z being right angles Hence as S.s varies as HZ, and sSV 
3= ZHA, the figures described by the points s and Z must be 
similar ; but Z describes a circle in the time of one rev of the 
earth, s must therefore describe a circle about S in the same time. 
As Ss is always paral. to *F in the plane of the ecliptic, the circle 
W«Vx is therefore paral to the ecliptic Also as S and H are 
two points similarly situated in WV and .AB, it appears that the 
true place of the star divides the diam (which although in a dif* 
ferent plane, may be considered as perp to the greater axis of the 
earth’s orbit) in the same ratio as the focus divides the greater 
axis. But as the earth’s orbit is nearly a circle, S may be con¬ 
sidered in the centre of the circle without any sensible error. 

The earth’s orbit AFBQ being considered circular, and therefore 
coinciding with AZB, draw (V paral. to Sa or i/F, s' will then be 
the point in that circle corresponding to s in the circle W.sV ; and 
as F*'= 90° the appar. place of the star in the circle of aber. is al¬ 
ways 90° before, the earth’s place in its orbit, and hence the appar. 
angular vel of the star and earth, about their respective centres, 
art-, always equal Moreover S' being at an indefinitely great dist. 
the true place S being supposed not altered from the earth’s mot. 
or the stai to have no parallax, and FS being considered as always 
parallel to itself, it will be always directed to S'. Hence also the 
appar place ol the sun being oppos to the earth’s, the star’s appar. 
place, in the circle of aberration, is 90° behind that of the sun 

A small portion of the hea’.ens being considered as perp to a 
line joining the earth and star, the circle 
anbm., paral. to the ecliptic, described by 
the appar. place of the star, projected 
on that plane, wi 1 (from the principles 
of orthographic project see Emerson’s 
tracts) be an ellipse ; hence the star’s 
appar path will be an ellipse, and the 
trans, will be to the conjugate as rad. to 
sine of the star’s lat For let CE be the 
plane of the ecliptic, P its pole, PE a 
secondary to it, PC perp. to EC, C, the 

place of the eye, and let ab be paral to CE, then ab will be the 
diam. of the circle anbm of aberration, which is seen most oblique¬ 
ly, and therefore that diam which is projected into the lesser axis 
of the ellipse ; let mn be perp. to ab, and it will be seen directly, 
being perp to a line drawn from it to the eye, and will therefore 
be the greater axis ; let Ca, Cbd, be drawn, and ab will be the pro¬ 
jection of ab ; and as ad may be considered as a straight line, it 
will be, mn or ab the greater axis : ad the lesser axis •: rad. : 
sine abd, or ECd the star’s lat. Hence the circle is projected on 
a plane making an angle with it equal to the comp, of the star’s 
lat. for bad is the comp of abd, or of the star’s lat. 

The lesser axis da coinciding with a secondary to the ecliptic, is 
therefore perp. to it ; and the greater axis mn is parallel to it, its 
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posit, not being altered by projection Hence in the pole of the 
ecliptic the sine of the lat. being rad the ellipse becomes a circle ; 
and in the plane of the ecliptic sine star’s lat being = 0, the les¬ 
ser axis vanishes, and the ellipse becomes a straight line, or rather 
a very small circular arc. 

To find the aberration in Latitude and Longitude ; let ABCD 
be the earth’s orbit, supposed 
a circle with the sun in the 
centre at x, let P be in a line 
drawn from x perp. to ABCD 
so as to represent the pole of 
the ecliptic ; let S be the star’s 
true place, and let aficq be the 
circle of aber paral to the 
ecliptic, and abed the ellipse 
into which it is projected ; let 
^T be an arc of the ecliptic, 
and draw the secondary PSG 
to it, and, by one of the fore¬ 
going articles, it will coincide 
with the lesser axis bd, into 
which the diam fiq is pro¬ 
jected ; let GCxA be drawn, 
and it will he parallel to fiq, and B.rD, perp. to AC, is paral. to the 
greater axis ac ; then, when the earth is at A, the star is in conj. 
and when the earth is at C, it is in oppos. Now the star’s place 
in the circle of aber. being always 90° before the earth in its or¬ 
bit, as shewn before, when the earth is at A, B, C, D, the appar. 
places of the star in the circle will be at a^fi, c, <7, and in the ellipse 
at Uj b, c, d. To find the place of the star in the circle when the 
earth is at any point E, take the angle fiSs = ExB, and s will be 
the corresponding place of the star in the circle ; to find the pro¬ 
jected piace in the ellipse, draw sv perp to Sc, and vt perp. to Sc 
in the plane of the ellipse, then t will be the appar place of the 
star in the ellipse ; let st be joined, and it will be perp. to vt (the 
project, of the circle into the ellipse being in lines perp. to the 
ellipse) draw the secondary Px>£K, which, as to sense, will coin¬ 
cide with vt, unless when the star is very near P , hence, except 
in this case, the rules here given will be sufficiently accurate. 

Now as cr>S is paral. to the eciip S and v have the same lat, 
hence vt is the aberration in lat. and G being the true and K the 
appar. place of the star in the eciip. GK is the aberration in long, 
To determine these quantities, let m and n be the sine and cos of 
6-Sc, or ChrE, the dist. of the earth from syzygies, rad being = 1 ; 
and as i~ svt — star’s co. lat as we have before shewn, vst = the 
lat. for the sine, and cos. of which let v and w be taken, let r = Sa 
or S.v ; then in the it. angled triangle S.s-e, I : m :: r : sv f= rm; 
hence in the triangle vts, . v :: rm : tv = rvm the aber in lat. 
Also in the triangle S&v, 1 : n :: r ; v$ * rn, Now, as the simi- 
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lar arches of circles contain the same number of degrees w : lft 
vn. 

rn : GK = — the aber. in long. W hen the earth is in syzygies 
V) 

m = o ; and hence there is no aber. in lat. and n being then greatest, 
there is the greatest aber. in long, if the earth be at A or the star 
in conj. the star’s appar. place is at a, and reduced to the ecliptic 
at H ; GH is therefore the aber which diminishes the star’s long, 
the order of the signs being TGT ; but when the earth is at C, 
or the star in oppos. the appar. place c reduced to the eclip is at F, 
and the aber. GF increases the long, the long, is therefore the 
greatest when the star is in oppos and least when in conj. When 
the earth is in quadratures at D or B, then n = oy and m is great¬ 
est ; hence there is no aber. in long, but the greatest in lat. when 
the earth is at D, the appar. place of the star is at d, and the lat. 
is there increased ; but when at B the appar. place of the star is 
at b, and the lat is diminished ; hence the lat. is least in quadra¬ 
ture before oppos. and greatest in quad, after oppos. From the 
mean of a great number of observations, Dr. Bradley determined 
the value of r to be 20".* 

To find the aber. in rt. as- 
cen. and decl. Let AEL be 
the equator, fi its pole ; ACL 
the ecliptic, P its pole ; S the 
star’s true place, and s its ap¬ 
par. place in the ellipse; 
draw the great circles Psa, 
Tsb, fiSw, fiSv, and Sp, st, 
perp. to Pb, ftv. Now, as 
we have before shewn, sv = 
mm ; and Su = rn ; hence 
rvm (vs): rn (Sr) :: rad. : tang. Ssr ~n~ vm = cot. earth’s dist. 
syzy divided by sine of the star’s lat. = cos. star’s lat. X cot. earth’s 
dist. from syzy Thus L Ssr is immediately computed ; in like 
manner Ps/i the angle of posit, is computed from the three sides of 
that triangle being given, the angle Ssfi is given, being the sum or 

* Example 1. What is the greatest aber. in lat. and long, of @ Ursa J\Ei- 
norisy whose lat. the beginning of 1812 will be 74° 55' 28"? Here m = 1, v 
= sine 74° 55' 28"= .9655836, which mult, by 20"= 19"31 nearly, the great¬ 
est aber. in latitude. For the greatest aber. in long, n — 1, w = .2600927, 
which divided into 20" gives 76"9 nearly, the gr. aber. in lat. and long. 

2. When the earth is 30° from syzygies, what is the aber. in lat. and long, 
of the same star ? 

Here m «= sine 30c = .5, hence 19"31 X 5 = 9"65 nearly, the aber. in 
lat. If the earth were 30° past conj. or before oppos. the lat. is diminished ; 
but increased if the earth be 30° after oppos. or before conj. Also u = cos. 
30° = .866; hence 70"9 X -866 = 66"59, the aber. i?i long. If the earth be 
30° from conj. the long, is diminished : but increased if 30° from oppos. 

3. For the sun, m = o, n = 1, and w = 1 ; hence the sun has no aber. 
in lat. and the aber in long. = r = 20" constantly. This aberration an¬ 
swers' to the sun’s mean mot. in S' 7" 30'", which is therefore the time in 
rwhich light moves from the sun to the earth at its mean dist. Hence the sur 
qlways appears 20° more backward than bis true .Diace. 
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3iff. of Ssx and Vsfi. Let a — the sine, and b = the cos. of Ssi/; c 
= sine and d = cos. of Ssfi. z — cos. star’s decl. then (sv, st, being 
the co. sines of Sax/, Sst, to rad. sS) b : d :: sv (= rvm) : st = 

d d 
rvmx~ —20"x vm X — the aber. in declination ; and (as St/, St, 

are the sines of S-sx, Ss£, rad. being sS) a : c :: Si/ (=* rn) : S? 
tnc , . 

=* — ; hence, from the property of similar arches, v (St cos. 
CL 

TIC v. 

decl.’) = 20" x — the aber. in rt. ascension. Or the correct lat. 
uz 

and long, being given, the corresponding correct rt. ascen. and decl. 
may be found, and hence the aber. in rt. as. and decl. Before we 
conclude this chap we shall collect a few remarks on the nature 
of the nebulous afifiearances oberved in the heavens, which from 
the improvements in telescopes, have lately become so interesting. 

The greater part of the fixed stars are collected into clusters, of 
which it requires a large magnifying power, with a great quantity 
of light, to be able to distinguish the stars separately. With a tele¬ 
scope of small magnifying power, and light, these clusters appear 
like small whitish spots, and thence were called Aebula; the Milky 
Way is a continuation of such nebulae or perhaps the one in which 
we are situated, as Herschel observes. Allowing an observer (says 
Herschel) the use of a common telescope, he begins to suspect 
that all the milkiness of the bright path which surrounds the sphere 
may be owing to stars. He perceives a few clusters of them in va¬ 
rious parts of the heavens, and finds also that there are a kind of 
nebulous patches: still his views are not extended to reach so far 
as the end of the stratum in which himself is situated, so that he 
looks upon these patches as belonging to that system which to him 
seems to comprehend every celestial object. He now increases his 
power of vision ; and applying himself to a close observation, finds 
that the milky way is in reality no other than a collection of very 
small stars. He perceives that those objects which had been called 
nebula, are evidently nothing but clusters of stars. Their number 
increases upon him, and when he resolves one nebula into stars, he 
discovers ten new ones which he cannot resolve, he then forms the 
idea of immense strata of fixed stars, of clusters of stars, and of ne¬ 
bula ; till going on with such interesting observations, he now per¬ 
ceives. that all these appearances must naturally arise, from the 
confined situation in which he is placed Confined it may justly be 
called, though in no less a space than what appeared before to be 
the whole region of the fixed stars, but which now has assumed the 
shape of a crooked, branching nebula ; not indeed one of the least, 
but, perhaps, very far from being the most considerable of those 
numberless clusters that enter into the construction of the heavens. 

There are some nebula, however, which do not receive their 
light from stars. For in 1656, Huygens discovered a nebula in the 
middle of Orion’s sword ; it contains only seven stars, the other 
part being a bright spot upon a dark ground, and appears like an , 
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opening into brighter regions beyond. Sim<>n Marius in 1612, dis 
covered a nebula in the Girdle of Andromeda, Dr Halley, when 
observing the southern stars, discovered one in the Centaur, and 
in 1714 another in Hercules, in rt ascen. above 248-§° and deck 
37° N. this is visible to the naked eye when the sky is clear and 
the moon is absent M Cassini discovered one between the Great- 
Dog and Argo, M. de la Caille gives an account of 42. 

Messier and Me chain ^ in the con. de Tempt for 1783 and 1 784. has 
given a catalogue of 103 nebulae ; but Dr. Herschei, from his own 
observations, has given a catalogue of 2000 nebula and clusters. 
Some of them form a round, compact system ; others are more ir¬ 
regular, of various forms ; some are long and narrow ; others are 
hollow in the middle as that in the constel Telescojiium, and others 
are thicker in the middle or more condensed towards the centre ; 
the globular systems of stars are of the latter kind On Cary*s large 
globes there are described, including clusters, clusters and nebulae, 
and nebulas, exclusive of the milky way, at least 311. And as their 
figures and places are marked on the globes, the learner will have 
no difficulty in finding their places in the heavens. 

That the stars should be thus accidentally disposed, is a suppo¬ 
sition too improbable to be admitted. Dr. Herschei, therefore, 
supposes that they are thus brought together by their mutual at¬ 
tractions, and that the gradual condensation towards the centre is a 
proof of a central power of that kind. He also observes that there 
are additional circumstances in the appearance of extended clus¬ 
ters and nebulae- that favour he idea of a power lodged in the 
brightest part He supposes the milky way to be a nebula of 
which our sim is one of its component pares See his account in 
the Phil trans. 1786 and 1789, or in Low’s or the Philadelphia 
ed of the Encyclopedia, art astr 

Dr Herschei has discovered other phenomena in the heavens 
which he calls Arebulous stars; that is stars surrounded with a faint 
luminous atmosphere of a consideiable extent He has given an 
account of seventeen of these stars, one of which he describes thus. 
u Nov 13, 1790, A most singular phenomenon ; a star of the 8th 
mag with a faint luminous atmosphere of a circular form, and of 
about 3' diameter. The star is perfectly in the centre, and the at¬ 
mosphere is so diluted, faint, and equal throughout, that there can 
be no surmise of its consisting of stars ; nor can there be a doubt 
of the evident connection between the atmosphere and the star. 
Another star not much less in brightness, and in the same field of 
view with "the above, was perfectly free of any such appearance.” 

Herschei therefore draws the following conclusions : that the cen¬ 
tral star must be immensely greater than those which give the ne¬ 
bulous appearance, if this consist of stars very remote and connect¬ 
ed with the star which it surrounds ; or that if the central star be 
not larger than common the other luminous points must be ex¬ 
tremely small and compressed to form the nebulosity. Hence ac¬ 
cording to the former supposition, as the central point must far ex¬ 
ceed the standard of what we call a star, there must exist a central 
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body which is not a star. That this may be, and is very probably the 
case, we have shewn in the note pa. 296 If the latter supposi¬ 
tion be granted, there must exist a shining fluid surrounding a star 
of a nature entirely unknown to us. Dr. Herschel adopts the latter 
opinion, and says, that the existence of this shining matter does not 
seem to be so essentially connected with the central points, that it 
might not exist without them. The great resemblance there is be¬ 
tween the chevelure, or the beams or hairy appearance, of these 
stars, and the diffused nebulosity about the constellation Orion} 
which occupies a space of more than 60 sq. degrees, renders it ex¬ 
tremely probable that they are of the same nature. This being ad¬ 
mitted, the separate existence of the luminous matter is fully prov¬ 
ed This is also extremely probable from what is shewn in the 
note pa 296 ; moreover light reflected from the star could not be 
visible at this dist. and besides the outward parts are nearly as bright 
as those next the star. Herschel further observes in con fir of this 
supposition, that a cluster of stars will not account for the milkiness 
or soft tint of the light of those nebulae, as a self luminous fluid.— 
There is a telescopic milky way extending in rt. ascen. from 5h. 
15' 8" to 5h 39' t", and in polar dist. from 87° 46' to 98° 10b 
Dr Herschel thinks that this is better accounted for by a luminous 
matter, than from a collection of stars, tie observes that some 
may account for those nebulous stars, from a star being accidental¬ 
ly placed nearer, which appears in the centre of a collection of 
stars placed at an immense distance, but he is of opinion that this 
milky appearance does not at all favour the suppos that it is pro¬ 
duced by a great number of stars. But as Vince remarks, when 
we reflect that nothing but a solid body is self luminous, or at least, 
that a fixed luminary must immediately depend upon such, as the 
flame of a candle upon the candle itself, it is extremely difficult to 
admit this suppos. Our knowledge of the nature of these phenom¬ 
ena must however be very imperfect, as we are. as yet, but imper* 
fectly acquainted with the nature of light and its various modes of 
existence See Dr Herschel's account in the Phil, trails. 1791. 

The distance of the fixed stars are great beyond conception; for 
at the dist of the nearest, the whole diameter of the earth’s orbit 
does not amount to, or at most much exceed, a single second. If 
this angle, or their parallax could be accurately determined their 
disk might be found in the same manner as that of the superior 
planets For other methods see Dr. Gregory's ast. sect. 9, b 3. 
Dr Bradley estimates the dist of the nearest at 80000 times that 
of the sun, and of y IJraconis 400000 times the earth’s mean dist. 
from the sun, its parallax not amounting to i ". How great then 
must be the dist of the nebulous stars i Dr Herschel remarks that 

. a nebula whose light is perfectly milky, cannot be supposed at less 
than 6000 or 8000 times the dist. of Sirius, considered the nearest 
of the fixed stars ; so that a ray of light, which traverses the im¬ 
mense space between the earth and the sun in 8' 7"30'" (pa 444) 
would take 36000 or 38000 years, to arrive from one of these ne¬ 
bula to us, according to the distances which Herschel assumes. 
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CHAP. XII. 

OF SOLAR AND LUNAR ECLIPSES. 

An eclipse of the moon is evidently caused by the interposition of 
some opake body which deprives it of the light of the sun ; and it 
is ecpially evident that this opake body is the earth, as an eclipse of 
the moon never happens but at the full moon or oppositions, at 
which time the earth is between her and the sun ; and projects 
behind it relatively to the sun, a conical shadow, the axis of which 
is the straight line which joins the centres of the sun and the 
earth, and terminates in a point where the diameters of these two 
bodies are the same Hence the cone of the terrestrial shadow is 
at least three times the length of the moon’s dist. from the earth, 
and its breadth at the points where it is crossed by the moon is more 
than double her diameter. Hence there would be a lunar eclipse 
at every oppos. if the plane of the moon’s orbit coincided with the 
ecliptic. But from the incl of these planes, the moon in oppos. 
is often elevated above or depressed below the lunar shadow, and 
does not enter it but when she is near the nodes. If the whole o£ 
the disk be immersed in the shadow, the eclipse is total; if only 
a portion of the disk be obscured, it is partial 

In calculating an eclipse of the inoon, the first thing to be found 
is the time of the mean oppos. or the time when the oppos. would 
have taken place were the motions uniform. To obtain which, 
from the table of Epacts (see Delambre's or Burg's tables as pub¬ 
lished by Vince) take out the epact for the year and month, and 
take this sum from 29d. 12h. 44' 3", one synodic rev. of the 
moon, or two if necessary, so that the rem. be less than a rev. this 
rem. will be the time of mean conjunction. If 14d 18h. 22' i'f5, 
half a revolution be added to the time of mean conj. the sum will 
be the time of the next mean oppos or if it be subtracted, the rem. 
will be the time of the preceding mean oppos. If it be bissextile, 
one day is to be taken from the sum of the epacts in Jan. and Feb. 
before the above subtr. is made. When the day of the mean conj. 
is 0, it denotes the last day of the preceding month.* 

To determine whether an eclipse may happen at oppos. let the 
earth’s mean long, at the time of mean oppos. be found, and also 
the long, of the moon’s node ; then according to M Cassini, if 
the diff. between the mean long, of the earth and the moon’s node 
be less than 7° 3O', there will be an eclipse, if this diff. be great¬ 
er than 14° 30', there will be no eclipse ; but between 7° 30' and 

* Ex. To find the times of the mean new and fnl moons in Feb. 1813. 
Here 27d. 16h. 17* 18" 4- Id. llh. 15' 57" (the epact for Feb.) = 29d. 3h. 
33' 1 which subt. from 29d 12h. 44' 3", leaves Od. 9h. 10' 48" for mean 
new moon on January 31, the day being = 0. 14d 18h. 22' 1"5 added to 
this, gives 15d. 3h. 32* 49"5 the time of mean full moon. (See pa. 19 ) 
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14° 30', there may or may not be an eclipse. M. Delambre 
makes these limits 7° 47' and 13° 21.* 

The new and full moons for a month before and after the time 
at which the sun comes to the place of the nodes of the lunar or¬ 
bit, being thus examined, no eclipse will be omitted. Or if the 
eclipses for the preceding 18 years be given, and to the times of 
the middle of these eclipses 18y. lOd. 7h. 43|' or 18y. lid. 7h. 
43£' (see note pa. 176) be added, the times at which the return 
of the eclipses may be expected will be given. 

Next compute by the tables the true long, of the sun and 
moon, and the moon’s true lat. for the time of mean oppos. and 
also their horary motions in long, the diff. (d) of the horary mot. 
is the moon’s relative hor. mot. in respect to the sun, or the mot. 
with which the moon approaches to> or recedes from the sun ; let 
the moon’s hor. mot. in lat. be also found ; and suppose the moon 
is at the dist. (m) from oppos. at the time (?) of mean oppos. then 
as the moon’s access or recess from the sun may be supposed uni¬ 
form d : m :: 1 hour : the time (w) between t and oppos. which 
added to or subtr. from ?, according as the time is before or after 
the moon’s oppos. gives the time of the ecliptic oppos. 

To find the moon’s place in oppos. let n be the moon’s hor. mot. 
in long, then lh. : tv :: n : the increase of the moon’s long in 
the time w, which applied to the moon’s long, at mean oppos. 
gives the moon’s true long, at the ecliptic oppos. The opposite 
point to this is the sun’s true place or long\ Let the moon’s true 
lat. at the time of oppos. be also found, by this propor. lh. : w :: 
the hor. mot. in lat. : mot. in lat. in the time w, which applied to 
the moon’s lat. at the time of the mean oppos. gives the true lat. 
at the time of the true oppos.| In like manner the true time of 
the ecliptic conjunction may be computed, and the places of the 
sun and moon for that time, when a solar eclipse is calculated. 

From the sun’s hor. mot. in long, and the moon’s in long, and 
lat. the incl. of the relative orbit, and the horary mot. on it, may 
be thus found ; let LM be the moon’s hor. 
mot. in long. SM that of the sun ; let Ma 
perp. to LM = the moon’s hor. mot. in lat. 
take Sb = and parallel to aM, and join La, 
Lb, then La is the moon’s true orbit, and Lb 
her relative orbit in respect to the sun. Hence 

* To find whether there will be an eclipse at the full moon on Feb. 15, 
1813. Sun’s mean long, at 15d. 3b. 32' 49" 5 — 10s. 15° 14/ IS" 6, hence 
the earth’s mean long'. — 4s. 15° 14' 19" 6, and long, of the moon’s node 
— 4s. 19° 23' 28" 6, the diff. of which is 4° S' S", hence there must be an 
eclipse, because this diff. is less than the limit given above. The ecliptic 
limit being found, as will he shewn afterwards, to which if the greatest diff. 
of the true and mean places be applied, the above limit will be obtained. 

■j- Vince directs that for greater certainty the places of the sun and moon 
may be computed again from the tables, and if they be not exactly in oppos. 
which may happen not to be the case, as the moon’s long, does not increase 
uniformly, the operation may be repeated. This accuracy is however gen 
erally unnecessary in eclipses, unless where very great accuracy is reauired 

3 I 
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rad. LS (diff. hor. mot. in long.) : S6 (moon’s hor. mot. in lat.) 
: tang. 6LS the inch of the rel. orbit, and cos. 6LS : rad. :: LS 
: L6, the hor. mot. in the relative orbit. The moon’s hor. paral¬ 
lax, her semidiam and the semidiam of the sun, the hor. parallax 
of which may be here taken = 9", must also be found from the 
tables at the time of oppos. 

To find the semidiam. of the earth's shadow at the moon seen from 
the earth Let AB be the sun’s 
diam. TR the diam. of the earth, 
O and-C the fcentres ; let AT, BR, J 
be produced to meet at I, and draw 
OCX ; let FGH be the diam. of the 

A 

0 

B 

earth’s shadow at the dist. of the moon, and join OT, CF. Now 
the L FCG = CFA — CIA (32 Eucl. 1) but CIA = OTA — 
TOC ; hence FCG = CFA — OTA + TOC ; that is the angle 
under which the semidiam. of the earth's shadow, at the. moon, ap¬ 
pears, is equal the sum of the horizontal parallaxes of the sun and 
moon less the sun's appar. semidiam. From the earth’s atmos¬ 
phere, the shadow, in lunar eclipses, is found to be a little greater 
than this rule gives it. According to M. Cassini the augmen. is 
20" ; according to M. Monnier 30", and to M. de la Hire 60". 
Mayer makes the correction -g— of the semidiam. of the shadow. 
Some computers always add 50", but this must be subject to un¬ 
certainty. 

The L. CIT (=» OTA — TOC) being known, we have sin. 
TIC : cos. TIC :: TC : Cl the length of the earth’s shadow. 
If the sun’s mean semid. or the L ATO be taken = 16' 3", his 
hor. parallax TOC = 9", we have CIT » 15' 54" ; hence sin. 
15' 54" : cos. 15' 54", or 1 : 216,2 :: TC : Cl = 216,2 TC. 

The different eclipses which may happen of the moon is thus 
explained by differ¬ 
ent authors. Let _ M 
CL represent the 
plane of the ecliptic, 
OR the moon’s or¬ 
bit cutting the eclip¬ 
tic in the node N ; 
and let SH repre¬ 
sent a section of the earth’s shadow, at the dist. of the moon from 
the earth, and M the moon when she passes nearest the centre of 
the earth’s shadow. Hence if the oppos. happen as in pos. I, the 
moon will touch the earth’s shadow, without entering it, and hence 
there will be no eclipse. In posit. II, a part of the moon will pass 
through the earth’s shadow, and there will be a partial eclipse.— 
In posit. Ill, the whole of the moon passes through the earth’s 
shadow, and there is a total eclipse. In posit. IV, the moon’s 
centre passes through that of the shadotv, and there is a total and 
central eclipse. Hence it is evident, that whether an eclipse will 
happen at the time of oppos. or not, depends upon the moon’* 
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dist. from the node at that time ; or the dist. of the earth’s shad¬ 
ow, or of the earth, from the node. In lunar eclipses the angle at 
N may be taken = 5° 17% and in posit. I the value of Ei/, according 
to Vince, is about 1° 3' 30" ; hence sin, 5° 17' : rad. :: sin. 1° 3r 
30" : sine QN = 11° 34' ; when EN is therefore greater than 
QN at oppos there can be no eclipse. This quantity 11° 34' is 
called the ecliptic limit. 

Let ArB6 be that half of the earth’s shadow which the moon passes 
through, NL the moon’s 
relative orbit; let Cmr be 
drawn perp. to NL, and 
let z be the centre of the 
moon at the beginning of 
the eclipse, m at the mid¬ 
dle, x at the end ; also 
let AB be the ecliptic, 
and Cn perp. to it. Now in the rt. angled triangle Cnm, Cn the 
moon’s lat. at the time of the eclip. conj is given (as shewn in the 
beginning) and the Z_ Cnmt the comp, of the angle which the 
moon’s rel. orbit makes with the ecliptic ; hence rad. : cos. Cnm 
:: Cn : nmy which is called the reduction ; and rad. : sin. Cnm 
:: Cn : Cm. The moon’s horary motion (h) in her rel. orbit be¬ 
ing known, the time of describing mn is thus found ; h : mn :: 
lh. : the time of descr mn. The time of the ecliptic conj. at n 
being known, we therefore know the time of the middle of the 
eclipse at m. Again, in the rt. angled tri Cmz, Cm, and Cz, the 
sum of the semidiameters of the earth’s shadow and the moon are 

given : hence mz is given. (47 Eucl. 1.) For mz = y/Cz2—Cm2 

— (Cz -f- Cm x Cz — Cand therefore log. mz = ^ x log. 

(Cz -f- Cm -}- log. Cz — Cm.) The moon’s hor. mot. being there¬ 
fore known, we know the time of describing zmy which subtracted 
from the time at in, gives the time of the beginning, and added, 
the time of the end of the eclipse. The magn. of the eclipse at 
the middle is represented by tr; which is the greatest dist. of the 
moon within the earth’s shadow, and is measured in terms of the 
moon’s diam. conceived to be divided into 12 parts called Digits, 
or Parts deficient ; to find which the diff. between Cm and Cr 
gives mr, which added to mt, or if m fall without the shadow, the 
diff. between mr and mt, and we have tr ; hence to find the digits 
eclipsed we have mt : tr :: 6 digits S60' (the digits being usually 
divided into 60 equal parts, and these parts called minutes) : the 
digits eclipsed. If the moon’s lat- be N. the upper semicircle is 
used ; if S, the lower. And in the fig. if the moon at n have N. 
or S. lat. increasing, the L~ Cnm is to be setoff to the right; 
otherwise to the left of Cn. 

If the earth had no atmosphere, the moon would be invisible 
when totally eclipsed ; but from the refraction of the atmosphere, 
some rays will fall on the moon’s surface, upon which account the 
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moon will be visible at that time, and appear of a red, dusky co¬ 
lour. The earth’s umbra in general, at a certain dist. is divided 
by a kind of penumbra from this refraction. And hence in some 
total eclipses the moon will be more visible than in others. 

An eclipse of the sun is caused by the interposition of the moon 
between the sun and the spectator, or by the shadow of the moon 
falling on the earth at the place of the observer ; for it is only in 
the conjunction of the sun and moon that we can observe a solar 
eclipse. Let the sun and moon be observed in the same straight 
line with the eye of the observer, he will then see the sun eclips¬ 
ed, and if the appar. diameter of the moon be greater than that of 
the sun, the eclipse will be total; but if less, a luminous ring will 
be seen, formed by that part of the sun’s disk which extends be¬ 
yond the disk of the moon, in which case the eclipse will be an¬ 
nular. If the moon be not in the rt. line which joins the centre of 
the sun and the observer, the moon may then conceal only a part 
of the solar disk, and hence the eclipse will be partial Thus the 
circumstances of a solar eclipse is subject to great variety, as well 
from the difference in the distances of the sun and moon, and the 
proximity of the moon to the node, as from the elevation of the 
moon above the horizon, which changes the angle under which 
her appar. diarn. is seen, and which by the effect of the lunar par¬ 
allax, may so augment or diminish the appar. distances of the sun 
and moon, that an eclipse of the sun which is visible to one ob¬ 
server, may be totally invisible to another. The length of a solar 
eclipse is also affected by the earth’s rotation about its axis. M. du 
Sejour determines that an eclipse can never be annular longer 
than 12' 24", nor total longer than 7' 58". 

A total eclipse of the sun is thus described by Laplace. We 
often see the shadow of a cloud transported by the winds, rapidly 
pass over the hills and valleys, depriving those spectators which 
it reaches of the light of the sun, which others are enjoying ; this 
is the exact image of a total eclipse of the sun ; a profound night, 
which under favourable circumstances may last five minutes, ac¬ 
companies these eclipses ; the sudden disapparition of the sun, 
with the sudden darkness that succeeds, fills all animals with 
dread ; the stars which had been effaced by the light of day, shew 
themselves in their full lustre, and the heavens resemble the 
most profound night. Dr. Halley in his remarks on the total 
eclipse of the sun which happened on April 22, 1715, says, that a 
few seconds before the sun was totally obscured, he observed round 
the moon a luminous ring, about a digit, or perhaps a tenth part 
of the moon’s diam. in breadth : that it was of a pale whiteness, or 
rather pearl colour, and seemed a little tinged with the colour o£ 
the iris, and to be concentric with the moon ; and hence he con¬ 
cluded that it was the moon’s atmosphere. But, says he, the great 
height of it far exceeding that of the earth’s atmosphere ; and the 
observations of some one who found the breadth of the ring to in¬ 
crease on the west side of the moon as the emersion approached, 
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together with the contrary sentiments of those whose judgment I 
shall always revere, make me less confident, especially in a mat¬ 
ter to which I paid not all the attention requisite, Laplace there¬ 
fore concludes, that it must be the solar atmosphere, its extent 
not agreeing with that of the moon, as we are assured from the 
eclipses of the sun and stars that the lunar atmosphere is nearly 
insensible, if any. 

The different eclipses of the sun may be thus explained.. Let 
CL be the orbit of 
the earth, OR the q 
line described by 
the centres of the 
moon’s umbra and 
penu. at the earth ; q 
N the moon’s node, 
SF the earth, E its 
centre ; fin the 
moon’s penumbra, 
u the umbra. Then in pos. I, there will be no eclipse, as no 
part of the earth enters into the penumbra. In pos. II, the pen¬ 
umbra pn falls upon the earth, but the umbra u does not ; there 
will, therefore, be no total eclipse, but there will be a partial 
eclipse where the penumbra falls. In pos. Ill there will be both 
a partial and total eclipse, as the umbra and penumbra both fall 
on the earth ; where the umbra w falls, the eclipse will be total; 
where only the penumbra falls, it will be but partial, and where 
neither falls, there will be no eclipse. Now we may find the 
ecliptic limit thus ; the /- N may be taken = 5° 17', and in pos. 
I, the value of Eu (u being the centre of the umbra) is about 1° 
.34' 27"; hence sin. 5° 17' : rad. :r sine 1° 34' 27" : sine EN 
= 17° 2i' 27" the ecliptic limit; hence if the earth be within 
this dist. of the node at the time of conjunction, there will be no 
eclipse. 

We may calculate a solar eclipse, or rather an eclipse of the 
earth, without respect to any particular place, in the same manner 
as a lunar eclipse, that is, the times when the moon’s umbra or 
penumbra first touches and leaves the earth ; but to obtain the 
times of the beginning, middle, and end, at any particular place, is 
attended with more difficulty, as the apparent place of the moon, 
as seen from thence must be determined, and hence the parallax 
in lat and long, must be computed, which renders the calculation 
of a solar eclipse extremely long and tedious. 

To calculate the eclipse of the sun for any particular place, the 
first oper is to determine that there will be an eclipse somewhere 
upon the earth, or that the earth at the time of conj. is not further 
than 17° 21' 27" from the node ; the true long, of the sun and 
moon must be computed, by the astrom. tables, and the moon’s 
true lat. at the time of mean conj. (determined as shewn before.) 
The horary mot. of the sun and moon in long, and the moon’s hor. 
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mot in lat. must also be found in the same manner as the time of 
the ecliptic oppos. was computed. At the time of the ecliptic conj. 
let the sun and moon’s lat. be computed (as shewn in the beginning 
of this ch.) and also the moon’s lat. let the horizontal parallax of 
the moon be also found, from the tables of the moon’s mot. from 
which let the sun’s horiz. parallax be subtracted, the rem. is the 
horiz. parallax of the moon from the sun. 

Let the moon’s parallax in lat. and long, from the sun, be com¬ 
puted (pa. 331) at the time of the ecliptic conj to the lat. of the 
given place, and the moon’s horiz. parallax from the sun ;* the 
paral. in lat. applied to the true lat. gives the apparent lat. (L) of 
the moon from the sun, and the paral. in long, shews the appar. 
diff. (D) of the long, of the sun and moon. 

Let S be the sun, GE the 
ecliptic, according to the or¬ 
der of the signs ; let SM = 
D, and MN be perp. to MS 
and = L; then N is the 
moon’s appar. place, and SN 
3= (D2 L2)i — moon’s 
appar. dist from the sun If the moon be east of the nonages deg. 
the parallel increases the long, if west) it diminishes it (see jpa. 331) 
hence if the true long, of the sun and moon be equal, in the former 
case, the appar. place will be from S towards E, in the latter to* 
wards C. 

Find the true long, of the sun and moon, and also the moon’s true 
lat from their horary motions, for some time, as an hour after 
the true conj if the moon be to the west of the nonagesimal deg* 
or before) if east; and let the parallax in lat. and long, from the 
sun be found; the parallax in lat. being applied to the true lat. 
gives the appar. lat. (/) of the moon from the sun The appar. 
dist. (d) of the moon from the sun in long, is also found by taking 
the diff between the sun and moon’s true long, and applying the 
parallax in long. Now from S let SP be taken = d, and draw PQ 
perp. to EC and equal to /, Q will then be the moon’s appar. place 
Ih. from the true conj. and SQ = (d2 + l2)h = the moon’s appar. 
dist. from the sun ; hence the i t. line NQ being drawn, will repre¬ 
sent the relative appar, path of the moon,f and its value will also 
represent the rel. horary mot. of the moon in the appar. orbit, the 
rel. mot. in long, being — MP. 

The appar. hor. mot. (r) in long, of the moon from the sun is 
found from the diff. between the moon’s appar. dist. in long, from 
the sun at the time of the ecliptic conj. and at the interval of an 

* The horizontal parallax of the moon from the sun is here used, instead 
of the moon’s horiz. paral. in order to determine what effect the parallax 
has in varying their appar. relative situations. 

j- The small portion of this path here considered is taken as a straight 
line, it being in general very nearly so. 
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hour; and the moon’s appar. dist. in long, from the sun at the true 
time of the ecliptic conj. is =» the diff. (D) between the true long, 
at the ecliptic conj. and the moon’s appar. long, hence, r : D :: 
lh. : the time from the true to the appar conj the time of the ap¬ 
par. conj. is therefore given. To find whether this time be accu¬ 
rate, let the true longitudes of the sun and moon (from their hora¬ 
ry motions) be computed, and also the moon’s paral. in long, from 
the sun, which applied to the true long, gives the appar; long, if 
$his be the same as the sun’s long the time of appar. conj. was 
rightly determined ; if they do not agree, the true time must be 
found from thence as before. For the true time of appar. conj. 
let the moon’s true lat. from its horary mot. and her paral. in lat. 
be found, from which her appar. lat. at the time of the appar. conj. 
is obtained. Let SA be drawn perp. to CE and equal to this appar. 
lat. then as the point A will not probably fall in NQ, let us suppose 
it to fall in QN, to which let SB be perp. and draw NR parallel to 
FM. Then NR (= PM) and QR (n= QP — MN) being given, 
we have by trig. NR : RQ :: rad. : tang. QNR, or ASB ; and 
sin. QNR : rad. :: QR : QN. The time of describing NQ in 
the appar. orbit, being = the time from M to P in long. QN is 
therefore the hor. mot. in the orbit. Moreover, rad. : sin. ASB :: 
AS : AB and rad. : cos. ASB :: AS : SB. 

The moon appears at A at the appar. conj. the time of which is 
known from the preceding article ; when the moon appears at B, she 
is then at her nearest dist. from the sun, and the time corresponding 
is therefore that of the greatest obscur. or the time of the middle of 
the eclipse.* Now the quantity of the eclipse ; its beginnings and 
ends are thus found. The mot. being considered uniform, it will 
be, QN : AB :: time of describing NQ : time of describing AB, 
which added to or subtracted from the time at A (according as the 
appar. lat. is decreasing or increasing) will give the time of the 
greatest obscuration. 

To find the digits eclipsed ; take BS from the sum of the appar. 
semid. of the sun and moon, and the rem. will shew how much of 
the sun is covered by the moon, or the parts deficient; hence sun’s 
semid. : parts deficient :: 6 digits : the digits eclipsed. If SB 
be less than the diff. of the semid. of the sun and moon, and the 
moon’s semid. greater than the sun’s, the eclipse will be total; if 
the moon’s semid. be less, the eclipse will be annular, the edge of 
the sun appearing like a ring round the moon’s disk ; but if B and 
S coincide, the eclipse will be central. 

Let QN be produced if necessary, and let SV, SW = the sum 
»f the appar. semid. of the sun and moon, at the beginning and end 
of the eclipse respectively ; then BV = (SV2 — SB2)3, and BW 
am (SW2 ~SB2)£ i to find the times of describing those we have 
NQ : BV :: lh. : the time of describing BV ; and NQ : BW :: 
lh. : the time of descr. BW, which times respectively subtr. from 

* This is provided there be an eclipse, which will always be the case, 
when SB is less than the sum of the appar. scmidiameters of the sun and moon. 
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and added to the time of the greatest obscur. will give the times of 
the beginning and end nearly. A different method must however 
be adopted where accuracy is required ; for in supposing VW to 
be a straight line, there will arise errors too considerable to be neg¬ 
lected It will however serve as a rule to assume the beg and end. 
It therefore follows that the time of the greatest obscur. at B is 
not necessarily equidistant from the beg and end If the eclipse 
be total, let SV, SW, be taken equal the diff. of the semid. of the 
sun and moon, then BV = BW = (SW2 — SB2)i, from whence 
the times of describing BV, BW, may be found as before ; these 
times may be considered as equal, and if applied to the time of the 
middle of the eclipse, or gr. obscur. will give the beg. and end of 
total darkness. 

To determine the time of the beg. and end of the eclipse more 
accurately, we must proceed thus. From the horary motions, and 
computed parallaxes, let the appar. lat. VD of the moon be found 
at the estimated time of the beg and also her appar. long. DS from 
the sun, and we get SV = (SD2 -f- DV2)i ; if this be equal to the 
appar. semid. of the moon, added to that of the sun (which sum 
call S) the estimated time is the beginning ; if it be not equal, let 
another time be assumed (as the error directs) at a small interval 
from it, before if SV be /ess than S, but after if greater ; let the 
moon’s appar. lat. mv, and appar. long. Sm from the sun, be again 
computed for that time, and we find Sty = (Sm2 -f- mvz)%, which 
if not = S, say, diff. of Sty and SV : diff. Sty and SL (=*= S) :: the 
assumed interval, or time of mot. through Vty : the time through 
tyL, which added to or subtr. from the lime at ty, according as Sty 
is greater or less than SL, will give the time at the beginning.* In 
the same manner the end of the eclipse may be computed. 

* The reason of this oper. is, that as Yv, v'L are very small, they will be 
very nearly prop to the diff. of SY, Sr, and Sr, SL. But the var. of the ap¬ 
par. dist. of the sun and moon, not being' exactly proportional to the var. of 
the diff. of the appar. long, and lat. where great accuracy is required, the 
time of the beg. thus found, (if not correct) may be corrected by assuming it 
for a 3d time and proceeding' as before. This cori’ection is however never 
necessary, unless where extreme accuracy is required in order to deduce 
some consequences from it. But the time thus found is to be considered as 
accurate, only so far as the tables of the sun and moon can be depended on 
for their accuracy ; the lunar tables of Mr. Burg and solar tables of Belam- 
bre, republished and corrected by Vince, are, as before remarked, by fax- the 
most correct. If however there remains any error in the tables, and some small 
errors are unavoidable, accurate observations of an eclipse compared with 
the computed time, furnish the best means of correcting the lunar tables. 
The above directions principally collected from Vince will, together with 
good tables, which the young astronomer should always be furnished with, 
be found sufficient in calculations of this nature. For examples, &c and 
more information, this author may be consulted. See also Rees Cyclopedia, 
the Philadelphia ed. of the Encyc. art. Astr. Lead better, Ewing, Ferguson, 
and other practical writers on this subject. Dr. Gregory treats this subject 
at large in B. 4. of his Astronomy, and also Kiel in his Astr. Lectures 11, 
12, 13 and 14, where 'besides the calcul. he gives various graphical meth¬ 
ods, for computing both solar and lunar eclipses, 8cq. 
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The duration of an eclipse of the sun can never exceed 2 hours; 
nor of the moon, from the first touching the earth until her leaving 
it, cannot exceed 5-*- hours. The moon cannot remain in the earth’s 
umbra longer than 3| h in any eclipse, nor be totally eclipsed for a 
longer period than hours. (Emerson’s ast sec. 7, pa. 347 8c 339.) 

If a conj. of the sun or moon happen at, or very near the node* 
there will then be a great solar eclipse ; but in this case, at the 
preceding oppos. the earth was not within the lunar ecliptic limits, 
and next oppos it will be beyond it ; hence it may happen that at 
each node there may be but one solar eclipse, and therefore in a 
year there may happen but two ; and this is the least that can 
happen in a year, as there must be one conj. in the time in which 
the earth passes through the solar eclip. limits, and hence there 
must be one solar eclipse at each node. If there be an oppos im¬ 
mediately before the earth enters the ecliptic limit, the next may 
not happen until the earth is beyond the limit on the other side of 
the node ; hence there may not be a lunar eclipse at the node, 
and not therefore in the course of a year. There can be at most 
but three lunar eclipses in a year ; for when there is a lunar eclipse, 
as soon as the sun gets within the lunar eclip lim. it will be out 
of this lim. before the next oppos and hence there can be but one 
lunar eclipse at each node ; but as the moon’s nodes have a retro¬ 
grade mot. of about l9-^° in a year (see ch. 4) the earth may come 
again within the lunar eclip. lim at the same node in the course of a 
year. There may happen at each node two eclipses of the sun and 
©ne of the moon ; for when a lunar eclipse happen at, or near the 
node, a conj. may take place before and after, while the earth is, 
within the solar ecliptic limits ; the eclipses of the sun in this 
case will be small, and that of the moon large. Hence when the 
eclipses do not happen a second time at either node, there may be 
six eclipses in a year, four of which will be of the sun, and two of 
the moon. But if, as in the last case, an eclipse happen at the 
same node a second time in a year, there may be six eclipses, 
three of the sun and three of the moon. These six may take place 
during 12 lunations or 354 days, or 11 days less than a common 
year ; hence if an eclipse of the sun should happen before Jan. 11, 
and the last cases should also take place, there may be seven eclip¬ 
ses in a year, five of the sun and two of the moon ; but there can 
be no more ; the mean number is however four, and seven can 
seldom happen. 

As the earth describes 19 *-° in about 19| days, hence the mid¬ 
dle of the seasons of the eclipses is about 19 days sooner each year 
than the preceding. The solar ecliptic limits being greater than 
the lunar, in the ratio of 17° 21' 27" to 11° 34' (as shewn before) 
or nearly of 3 : 2, there will therefore be more solar than lunar 
eclipses in about the same proportion ; but, as a lunar eclipse is 
visible to a whole hemisphere at once, arid1 a solar only to a part, 
there is greater probability of seeing a lunar than a solar eclipse, 
and hence more lunar than solar eclipses are seen at any place. 

3 K 
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CHAP. XIII. 

OF THE TIDES.* 

A tide is that motion of the waters in the seas and rivers, 
which they are found to rise and fall in regular succession. JVevjton 
shews (Prop. 66, b. I, cor. > 9 and 20 ; and prop. 24, b. 3) that the 
waters of the sea ought to rise and fall twice every day, as well lu¬ 
nar as solar, from the combined attraction of the sun and moon. 
In their conjunction or oppos. their forces being joined, or acting 
on the earth in the same straight line, will produce the greatest 
flood and ebb, and these tides are called sprmg tides. In the qua¬ 
dratures, or about the time of the first and last quarters of the 
moon, the sun’s action will tend to raise the waters which the moon 
depresses, and depress those which she raises, and hence from the 
diff of their actions the least tide will follow: these are called neap 
titles. And as there is an oppos. and con j. with the sun once in every 
lunation, there will be two spring, and two neap tides, in that period. 
A mean lunation or synodic rev. is 29d. I2h. 44' 2"8 (pa. 325) the 
mean retardation of the tides, or of the moon’s coming to the merid. 
in 24h. is therefore 48' 45"7, hence the interval between two suc¬ 
cessive tides is 12h. 25' 14"2, and the daily retardation of high 
water is 50' 28"4, at a medium. But this retardation is consider¬ 
ably altered from the variation in the respective dist. of the sun and 
moon, and their different declinations, as also the change of the lat. 
of the place. (See Prin. b. 3, prop. 26, or McKay's pr. Nav. pa. 18.) 
Newton remarks that there will also arise some variation from the 
force of reciprocation, which the waters retain after being put in 
motion, &c. 

Laplace makes the mean interval of the return of the tides, be¬ 
tween two consecutive returns of the moon to the same meridian, 
equal 1.035050 days, or Id. Oh. 50' 28"32. The mean value of a 
total tide (or half the sum of the heights of two successive high 
tides above the level of the intermediate low tide) at Brest is 5.888 
metres = 19.318528 feet at its maximum about the syzygies, and 

* We have sometimes in the preceding- parts of this work referred to 
this chap, as if given after the laws of motion, &c. this was our intention, as a 
subject so interesting merited a full investigation, and that this investiga¬ 
tion could not be entered into without previously laying down the principles 
of gravity, &c. on which it depends. But our time at present not being 
sufficient to discuss a subject, the most intricate in physical astronomy, and 
the work already swelled beyond our intended plan, we have only inserted 
extracts from Nexuton, Laplace and others, sufficient to give the learner a 
comprehensive idea of this phenomenon. Convinced that the knowledge 
which only touches at the surface can be attended with no real utility, and 
can only nourish that vanity, too common in the present age, of appearing 
learned in matters of whi0'i we know nothing, we have without deviating 
from the simplicity of an elementary introduction, all along joined the the¬ 
ory with the practical part, and entered as deep into eacli subject, as the 
nature of a contracted School book would permit. 
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2.729 me. = 9.1507-09 feet, from whence Lafilace concludes that 
the mean lunar tide, which corresponds to the constant part of the 
parallax of the moon, is three times less than the mean solar tide, 
or in other words, that the action of the moon to elevate the waters 
of the ocean, is three times as great as that of the sun* The height 
of the tides, all other circumstances remaining the same, augment 
and diminish with the lunar parallax, but in a greater ratio ; so that 
if this paral. increase the total tide will increase £ in the syzy- 
gies, and £ in the quadratures ; and as the tide is nearly twice as 
great in the first as in the second case, its increase in the two cases 
is the same 

The greatest var. in the moon’s diam. being about Tl7 of the 
whole, the corresponding var of the total tide in the syz. is ^ of 

mean height, or about 2.997 feet: thus the entire effect of the 
change of dist. between the earth and moon is (1.766 me.) 3.794 
feet nearly. The var. in the sun’s dist. influences the tides in a 
much less degree. 

The decl. of the sun and moon diminish the total tides of the 
syz. At Brest the dimin. is (0 8 me.) 2.62 feet nearly, less in the 
solstices than at the equinoxes ; and in the quadratures, they are 
less by the same quantity in the equinoxes than at,the solst. The 
greatest tide at Brest follows the syz. about 1| days, or is the 3d 
afte syz. and the dimin of the total tides that are near it, is propor¬ 
tional to the squares of the times elapsed from that instant to the 
time of the intermediate low tide, to which the total tide is referred, 
it is (0.1064 me.) 0.349 feet nearly, when this interval is a lunar 
day. The following var from the decl. of the sun and moon are 
also found at Brest. In the syz of the sum. solstice the morning 
tides the 1st and 2d day after it, are less than the everting tides by 
(0.183 me.) or .6 feet nearly. They are gr, by the same quantity 
in the syz. of the winter solstice. In the quadratures of the au¬ 
tumnal equinox, the morning tides the 1st and 2d day after, exceed 
the evening tides by (0.131 me.) 0.429 feet, and are less by the 
same quantity in the quadr. of the ver. equinox. 

* The power of a celestial body to raise a particle of water placed be¬ 
tween it and the centre of the earth, is equal the diff. of its action on the 
centre and on the particle ; let b be put for the mass of the body, r the se- 
mid of the earth, d — the dist. between the body and the earth, then the 
above diff. — l>r -f- = relatively to the sun, the one hundred and seventy- 
ninth part of the force of gravity acting on the moon mult, by the propor¬ 
tion of the terrestrial rad. to the moon’s dist. this force of gravity is nearly 
= sum of the masses of the earth and moon div. by the sq. of the lunar dist. 
hence the power of the sun to raise the waters of the sea is 89§ times less 
than the sum of the masses of the earth and moon mult, by r and div. by 
the cube of the lunar dist. this force, as shewn above, being- only § that of 
the moon, which is equal to double its mass mult, by r and div by the cube 
of its dist. thus the mass of the moon is to the sum of the masses of the earth 
and moon, as 3 : 179 ; from whence it follows, that this mass is very near¬ 

ly sj'j of that of the earth, its volume being only 4-9,Vt^ °f ^le earth’s, its 
density is 0.8401, that of the earth being 1; and the weight which on the 
earth’s surface is 1, would on the moon’s surface be reduced to 0.2291 
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The interval of the tides offer other phenomena. At Brest the 
liigh tide the moment of syz. follows midday or midnight at 
0.14822d. or 3h. 33' 26"i, this is called the hour of the port. and 
differs in different harbours At quadr. the high tide in Brest 
follows midnight or midday at 0.35464 days, or 8h. 30' 40" 9. 
The tide of the syz advances or retards (264") 3' 48", for every 
hour that it precedes or follows the syz and the tide of the quadr. 
advances or retards (416") 5' 59"4 for every hour before or after 
the quadr. In the syz also, every minute of increase or dimin. 
in the moon’s appar. semid advances or retards the hour of high 
water (354") 5' 6" 6 ; this phenomenon is three times less at the 
quadr. 

From the sun and moon’s decl the time of high water advances 
about (2') 2' 52"8 in the syz of the solstices, and is equally retard¬ 
ed in the syz. of the equinoxes ; but in the quadr. of the equin. 
high water advances (8') 11' 3 i"2, and is equally retarded in the 
quadr. of the solstices. 

The daily retardation of the tides varies also with the phases of 
the moon ; it is a minimum at the syz. when the total tides is at 
their max and is only O.027O5d or 38' 57"l2, when the tides 
are at their min. it is then greatest, and amounts to 0.05 207d or 
Ih. 14' 58"8 Thus the diff. 0 20642d. (0.35464 — 0.14822) of 
the times of high water at the syz. and quadr. increases, for the 
tides which follow in the same manner these two phases, and be¬ 
come nearly a quarter of a day relatively to the max. and min. of 
the tides 

Every minute of incr. or dimin. in the moon’s appar. semid. aug¬ 
ments this daily retardation (258") 3' 42"9 about the syz. and is 
three times less in quadr. From the var. of the sun and moon’s 
decl. it varies likewise in the syz. of the solstices about (155") 2' 
13"9 greater than in its mean state, and equally less in the syz. of 
the equinoxes; on the contrary in the quadr. of the equin it ex¬ 
ceeds the mean by (543") 7' 49f/l, and is surpassed by this quan¬ 
tity in the quadr of the solstices. Hence the var in the heights 
and intervals of the tides have verv diff. periods ; some of half a 
day, and a day, others of half a month, a month, half a year, and of 
a year ; others again vary with the rev. of the nodes and the perigee 
of the lunar orbit, as they vary the decl and dist. from the earth. 
All these phenomena appear to have been the same in the new as 
in the full moon. 

These phenomena equally take place in all the harbours along 
the sea shore ; but local circumstances, without changing the laws 
of the tides, have a considerable influence in changing the heights 
of the tides and the hour of high water for a given port. 

Laplace gives the following method of determining the time of 
high water on any day Considering each of our ports as the ex¬ 
tremity of a canal at whose embouchure (its mouth or entrance) the 
partial tides happen at the moment of the passage of the sun and. 
Thoon over the meridian, and employ a day and a half to arrive at 
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its extremity (supposed eastward of its embouchure) by a certain 
number of hours, called ihe fundamental hour of the port, and may 
be easily computed from the hour of the establishment of the port, 
by considering this as the hour of the full tide, when it coincides 
with the syz. The daily retardation of the tides being (2705") 38' 
57" 1, it will be for 1-i days — (395 i") 56' 53"6, which quantity is 
to be added to the hour of the establishment to have the funda¬ 
mental hour Now if the hours of the tides at the embouchure be 
augmented by (l5 hours) 36h. plus the fundamental hours, we 
shall have the hours of the corresponding tides in our ports. We 
shall now make a few remarks on the cause of those interesting 
phenomena. 

As the action of gravity decreases as the sq. of the distance in¬ 
creases, the waters that are on the side next the sun or moon, will 
be more attracted, by them respectively, than the central parts of 
the earth, and the central parts than the surface on the opposite 
side ; therefore the distances between the centre of the earth and 
the surface of the water under the Zenith and Nadir, by the laws 
of attraction, will be increased ; for that part of the surface which 
is nearest to the sun or moon, will move with greater vel. towards 
those bodies, and that part that is more dist. with less vel. than 
the centre ; from which it is evident, that high water must take 
place nearly at the same instant at opposite parts of the earth ; and 
from the earth’s mot. on its axis in 24h\ there will be two tides of 
food and two of ebb in that time agreeable to experience. It ap¬ 
pears from the foregoing explanation, that the fig. of the earth 
caused by the tides, would be an oblate spheriod, having its longer 
axis passing through the moon, on suppos. that the whole surface 
•was fluid.* 

Laplace thus determines the law by which the waters rise and 
fall. Let a vertical circle be conceived whose circumference rep¬ 
resents half a day, and whose diam. is equal to the whole tide or 
the cliff, between the height of high and low water, and let the arc 
of this circum. from the lowest point express the time elapsed 
since low water, the versed sines of these arcs will express the 
heights of the water corresponding to these, so that the ocean in 
rising, covers, in equal times, equal arcs of this circumference.f 
This law is exactly observed in the middle of the ocean, but in 
our harbours local circumstances produce some deviation. The 
sea is also found to employ a longer time to fall than rise ; this 
diff. is found at Brest about (10-|') 15' 7"2. The greater the 
extent of the surface of the water, the more perceptible will be 
"he phenomena of the tides, the motion which is communicated to 

■a part of a fluid being communicated to the whole ; hence such 
remarkable effects are produced in the ocean, and the waters com¬ 
municating with it, which are insensible in lakes and small seas. 
If we imagine at the bottom of the sea a curved canal, terminated 

* See Simpson’s Fluxions, art. 403. 
f See Emerson’s Fluxions, prob. 25, where the method of determining 

tjie height of the tides is investigated. 
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at one of its extremities by a vertical tube rising above the sur¬ 
face of the water, and which if prolonged would pass through the 
centre of the sun or moon, the water Would rise in this tube by 
the direct action of the sun or moon, which diminishes the gravity 
of its particles, and particularly by the pressure of the particles en¬ 
closed in the canal, all of which make an effort to unite under the 
siin and moon, and from the integral of all their efforts arise the 
elev of the water in the tube above its natural level. If we con¬ 
ceive a similar canal communicating with the sea and extending 
into the land, tht undulations caused by the tides at its entrance, 
will bo propagated through its whole lengthen the interval of half 
a day ; but the hours will be retarded, in proportion as the points 
are further from the entrance of the canal.* This reasoning may 
be applied to rivers, whose surfaces rise and fall by similar waves, 
notwithstanding their contrary motion.f 

The solar and lunar tides do not happen at the same instant, 
their periods being different ; hence the lunar tide will retard 
upon a solar tide by the excess of half a lunar day above half a solar 
day, that is (1752") 25' 13"7. See Laplace** astr b. 4, ch. 10. 
In further confirmation of the theory, it is found, that in Brest the 
solar tide follows the passage of the sun (18358") 4h. 24' 2i"3, 
and the lunar the passage of the moon (13101") 3h 8' 39"2 ; 
the greater (l' 26"4) tide following the syz. being nearly 1| days : 
that (100") l' *2o"<i variat. in the moon’s semid. answers to half 
a metre or 1.6405 feet of variat. in the total tide when the moon 
is in the equinoctial : that (1') l' 26"4 retards the tide as given 
in the preceding theory (354") 5' 6"6 very nearly : that (1') 
1' 26"4 var. in the moon’s semid. produces a var. of (258") 
S' 42"9 agreeable to obs The above is on suppos. that the sun 
and moon move in the equinoctial; the phenomena resulting from 
their change of deck are also found to correspond with what is 
given in the preceding theory. See this subject further detailed 
in Laplace, b 4, ch. I0.| 

* See this investigated in prob. 20, Emerson’s Flux, in the Schol. of which 
he shews, that if a pendulum be made whose length is the breadth of a 
wave from top to top, then in the time that it will perform one vibration, the 
waves will advance forwards a space equal their breadth. See also New¬ 
ton’s prin. b. 2, prop. 46, 47, &,c. Their velocity, according to Newton, is 
in the subduplicate ratio of their breadths, B. 2, prop. 45. 

f The action of the sun and moon is usually found separate, f Principle, 
b. 3, prop. 36 and 37) which by the composition of forces (see the next 
chap.) are combined, and from the resulting force result the tides, which 
are observed in our ports. 

f We have, according to the remark pa. 308, changed Laplace’s measures 
of time, in all this ch. allowing 10 hours to the day, 100' to an hour, 100" 
to a minute, &c. And we are further confirmed in this opinion, not only 
from the result agreeing with the known established hour in other ports, 
but also from Laplace’s augmenting the hours of the tides at embouchure by 
15 hours to find the time of high water, as this corresponds to 36 hours of 
our measures, or to l£ days, agreeable to theory. We have before remark¬ 
ed, that this was not among the least considerable errors in Mr. PovxTk 
translation of Laplace’s Astr. 
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CHAP. XIV. 

OF THE GENERAL LAWS OF 

MOTION, FORCES, GRAVITY, &c. 
These laws being necessary in understanding those in the solaf 

system, which we have given in the preceding chapters, and not 
only the foundation of Physical Astronomy, but the very basis of 
all Natural Philosophy, we have therefore given them a place in 
this chapter. But, as in the short compass of a single chap, it can¬ 
not be expected that we should enter into the detail of these laws, 
we shall therefore only insert what is necessary to give a general 
knowledge of the motions of bodies, particularly those in the Solar 
System, first premising the rules of reasoning in philosophy as 
delivered in the 3d. b. of the Principia. 

Rules of reasoning in Philosophy A 

1. We are to admit no more causes of natural things, than such 
as are both true and sufficient to explain their appearances. 

2. Therefore to the same effects we must as far as possible as¬ 
sign the same causes. 

3. The qualities which are found in all bodies upon which ex¬ 
periments can be made, and which can neither be increased or di¬ 
minished, are to be esteemed as belonging to all bodies. 

4. In experimental philosophy, propositions collected from phe¬ 
nomena by general induction, are to be admitted as accurately or 

* In rule 3, Newton lays it down as a principle, that the properties of 
matter cannot be known otherwise than by the senses, from which we know 
that innumerable objects exist around us, and act upon us. Their powers, 
properties, causes, &c. is an interesting subject for our contemplation, and 
what is properly called philosophy. These objects may be divided into two 
general classes ; the first is of those which have a self moving power, and 
several properties similar to those of our minds. The second is of those 
which never move of themselves, without the action of some external or in¬ 
visible object. The former is called Mincl or Spirit, and the latter Body 
or Matter. The properties of matter are extension, figure, solidity, motion, 
divisibility, gravity and vis inertia. These properties are therefore the foun¬ 
dation of all Nat. Phil. Extension is considered with regard to length, 
breadth and depth, and Figure the boundary of extension. Solidity or impen¬ 
etrability is that property of matter by which it fills space, or excludes any 
other portion of matter from that space which it occupies. Motion is the 
change of place. Divisibility of matter the capacity of being separated into 
parts. Gravity is the force or tendency of a body to a centre, and Vis In¬ 
ertia the innate force by which it resists any change. Motion is also abso¬ 
lute or relative ; absolute when it is compared with a body at rest, and re¬ 
lative when compared with others in mot. The rate of this motion is called 
the Velocity of a body, causing the body to pass over a certain space in a 
given time, and whatever produces or changes this motion is termed Force ; 
in moving bodies this is called their Momentum. The Density of a body is 
the proportional weight or quantity of matter in it, and is proportional to the 
specific Gravity which is the proportion of the weights of different bodies of 
equal magnitude. 
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nearly true, until from other phenomena they are rendered more 
accurate, or liable to exceptions. 

Axioms, Laws, tsfe. 

5. Every body perseveres in its state of rest, or of its uniform 
mot in a right line, unless compelled to change that state by other 
forces impressed on it 

6 The alteration of motion, or the motion generated or des¬ 
troyed, in any body, is proportional to the force applied ; and is 
made in the direction of that straight line in which the force acts. 

7. To every action there is always opposed an equal reaction ; 
or the mutual actions of two bodies upon each other, are always 
cqua. and directed to contrary points. 

8 The jnassy or quantity of mattery or the volume in all bodies, is 

in the compound ratio of their magnitudes and densities. 
If b be put for the body, m its mag and d its density, b is as* 

?nd. For if the bodies be equal, the mass is as the density ; and 
if the densities be equal, the mass is as the mag but when neither 
are equal, the mass is therefore in the compound ratio of the mag. 
and density 

9. The volumes are als© as the densities and cubes of the diam. 
the magnitudes being in this proportion. 

10. The masses are also as the mag and specific gravities, the 
density being as the spec gravity. 

11. The quantities of motion in moving bodies are in the compound 

ratio of the masses and velocities. That is m is as bvy where m repre¬ 
sents the momentum and v the vel. For if the velocities be equal, 
the quantities of mot will be as the quantities of matter, and if the 
masses be equal, the momentum will be as the velocities, hence, See. 

12 The momentum generated by any momentary force is as the 
force. For every effect is proportional to its adequate cause. 

13. In uniform motions the spaces are as the velocities and times 

of description. For the vel being the same, the spaces are as the 
times, and the times being equal, the spaces are as the velocities ; 
hence, kc. 

14. From this art. it appears that in uniform motions the time 
is as the space directly and vel. reciprocally, or as the space divi¬ 
ded by the vel. and that the vel. is as the space directly and time 
reciprocally, kc. From art. 1*, 12 and 13, many other general 
proportions may be deduced- (See Emerson’s Mechanics, 4to. 
page 8, or Hutton’s Mathematics, vol. 2, pa 134. 

15. The quantity of motion generated by a constant and uniform 

forcey is in the compound ratio uf the force and time of acting. For 
if the time be divided into very small parts, the momentum in 
each is the same (art. 12) the whole momentum will therefore 
be as the sum of all the parts or the whole time ; but the momen* 

* That is whatever variation is made in b, a proportional change will be 
made in ml. 
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turn for each time is also as the force (art. 12) hence the whole 
momentum is in the compound ratio of the force and time. 

16. From the preceding art. it is evident that the mot. lost or 
destroyed in any time is also in the same proportion. And that 
the vel. gener. or destroyed in any time, is as the force and time 
directly, and the body or mass reciprocally ; hence if the body or 
force be given, the vel. will be as the time, See.* 

17. The spaces passed over by bodies, urged by constant and uni¬ 

form forces, are in the compound ratio of the forces and squares of 

the times of acting directly, and the body or mass reciprocally. For 
let b be put for the body, s the space passed over with the vel. v 

in the time S. Then art. 16, J- v is the vel. at ~ t the middle of 
the time ; hence the increase of vel. being uniform, s will be de¬ 
scribed in the same time t by the uniform vel. \ v, s is therefore 
as 4- tv, or 6? = tv ; but art. 16, v is as ft b, hence s or 4 tv 

is as ft2 b. 

18. If b and ./be given, s is at t2 ; hence art. 16, s is as tv, or 
as v2. s ov jr tv is the space actually described, that is half the 
space that would be uniformly described with the last or greatest 
vel. in the same time t. From these general proportions, a table 
of all the particular relations of uniformly accelerated forces may 
be easily formed See Hutton’s Math. pa. 136, vol. 2, or Emer¬ 
son’s Mechanics. 

19. What is given in art. 17 and 18, hold equally true, for the 
spaces passed over by bodies freely descending by their own gravi¬ 
ty, this force being considered uniform at all places at, or at equal 
distances from, the earth’s surface It is found that in the lat of 
London a body falls 16/^ feet in 1", and that (art. 18) at the end 
of this time it has acquired a veb that would carry it over 32^ feet 
in l" ; hence if ^ = 16T^ feet the space passed through in 1", 
and 2g the vel. generated in that time; then art. 16 and 17 we 
have l" : t2 :: 2^ : 2gt = v, and l2 : t2 :: g : gt2 = s the 
space ; from which proportions if the different values of s, v, g, t7 
be found in general, we shall obtain the general equations for the 
descents of gravity, &c. Hence art. 16 and 18, if the time be as 
the numbers 1, 2, 3, 4, 5, See. the velocities will be as the same, 
and the spaces as their squares 1, 4, 9, 16, 25, 8cc. and the spaces 
for each time the difference of these squares, or 1,3, 5, 7, 9, Sec. 

20. These relations between the times, velocities, and spaces, 
may be represented by a rt angled triangle thus. If one side of 
the triangle (t) represent the time, and the other side (v) perp to it, 
the vel. gained at the end of this time. Then if t be divided into 
any number of equal parts, and through these points lines be drawn 
parallel to the base to meet the hyp. these will represent the ve¬ 
locities in each corresponding interval of time, and by similar tri¬ 
angles will be proportional to the former. Also the area of the 
triangle being = \ tv will therefore represent the space s passed 

* In art. 8 and 9 volume was inadvertently used for the mass, the vol. is 
properly the size or mag. 

S L 
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over in the time t; and the smaller triangles, for the same reason. 
'will represent the different spaces passed over in the corresponding 
intervals of time, and their other sides the velocities. Now these 
areas or spaces being as the squares of their sides, shews that s is 
as tz or v2, as in art. ! 8. 

21. The relations, See. given in art. 20, may be more naturally 
represented by the abscissas and ordinates of a parabola. For if the 
ordinates represent the respective times from the beginning, or the 
velocities which are proportional to them, then the corresponding 
abscissas drawn parallel to the axis of the parabola, will represent 
the spaces described by a falling body in those times ; the abscis¬ 
sas which represent the spaces, being as the squares of the ordi¬ 
nates which represent the time, by a well known property of the 
parabola. 

22. As motions are destroyed in the same manner as produced, 
and by the same forces acting in contrary directions ; hence 1. A 
body thrown directly upwards, will lose equal velocities in equal 
times. 2. If the body be projected upwards with the same vel. 
acquired in falling, it will lose all its motion in the same time in 
which it fell, and will have the same vel. in any point of the same 
line both in ascending and descending. 3. The respective heights 
ascended to, will be as the squares of the velocities with which they 
were projected, or as the squares of the times, until they lose all 
their motion These properties are accurately true in Vacuo, 
but near the earth’s surface the resistance of the air, particularly 
in very swift motions, has considerable effect in changing the ve¬ 
locities, &c. 

23. If a body at A be acted upon by any two similar forces, so that 
they would separately cause the body to pass over the spaces AB, AC 
in an equal time ; then if both forces act together, they will cause the 
body to move, in the same time, through AD the diagonal of the pa¬ 
rallelogram ABCD. Let cd, bd, be drawn parallel to AB, AC res¬ 
pectively ; let t be the time in Ab or Ac, and 
T the time in AB or AC ; then if the forces be * h b !B 
impulsive or momentary, it will be Ab or cd : 
AB or CD :: t : T, and bd or Ac : BD or Ac :z 
t : T ; therefore by equality (11 Eucl 5) Ab : 
bd :: AB : BD ; the parallelograms Abde, 
ABDC are therefore similar, and consequent¬ 
ly (26 Eucl. 6) they are about the same diam. 
hence d is in the diagonal AD And this may be shewn of any 
other point d, the path of the body is therefore in AdD, the diag¬ 
onal of the parallelogram. 

If the forces be uniformly accelerated or retarded, the spaces 
will then be as the squares of the times (art. 18) in which case Ah 
or cd : AB or CD :: t2 : T2, and bd or Ac : BD or AC :: t2 : T2, 
hence Ab : bd :: AB : BD as before. 

24 From the preceding art. it appears, 1. That the diag. AD 
by both forces, is described in the same time as AB, AC, by the 
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single forces impressed in these directions. 2. That the forces in 
the directions AB, AC, AD, are as these lines respectixely. 3. That 
the single force AD is equal to the two AB, AC, and compounded 
of them ; so that any single force as AD, may be resolved into 
two or more forces by describing any parallelogram whose diag. is 
AD, and each of these may be resolved in like manner. This is 
called the resolution of forces. 4. That any two or more forces 
may be compounded into one, by reducing any two of them to one, 
as in art 23, and this again with the other ; the force resulting 
will be that compounded of the whole, and hence this is called the 
composition oj forces. 5. And hence the effect of any given force 
as AD in any other direction AB, CD, or AC, BD may be found, 
being as those sides respectively 6. Hence also if the two forces 
act in the same line, in the same or contrary directions, their sum 
or diff. will be the resulting force, which will always act in the di¬ 
rection of the greater. 7 From the same principle it will appear, 
that if an elastic body impinge on a firm plane, the angle of inci¬ 
dence will be found equal the angle of reflection, by resolving the 
forces before and after the stroke, action and reaction being equal 
and contrary. 

25. The forces of bodies acting on others, may be found from 
the same principle Thus the perp., force of AD or the body at 
D, on CD, is as BD or AC, that is as sine ADC the angie of 
incidence ; AD which represents the force being radius. For the 
force AD may be resolved into AC, CD, the latter of which does 
not act on the plane, being parallel to it. 

From this art. it appears, 1. That the action of any force and in 
any direction, is always perp. to the surface acted on. 2. that if 
the plane acted on be not fixed, it will move after the stroke, in a 
direction perpendicular to its surface. 

26. If one of the forces AD be uniform, and the other AH uni¬ 

formly accelerated, as the force of gravity, the motion resulting from 

these two forces will be in the curve AEFG of a parabola. For 
if the body be projected from A in the direction 
AD with an uniform vel. then art. 14, it would 
describe the spaces AB, BC, CD, supposed equal, 
in equal times, when not acted on by any other 
force. Let BE, CF, DG, be drawn perp. to the 
horizon, so as to represent the spaces the body 
would fall through by the accelerated force, or 
force of gravity, in the same time that by the uniform force it de¬ 
scribed AB, BC, CD ; hence by the composition of motion the 
body will be in the points E, F, G respectively at the end of those 
times ; therefore the real path of the body will be in the curve 
A, E, F, G. But the spaces in AD are as the times art. 13, and the 
spaces BF, CF, DG, as the squares of the times art. 18 ; hence 
AB, BC, kc. are as BE2, CF2, 8tc. which is the property of the 
parabola ; therefore the projectile will move in the curve of the 
parabola. This demonstration holds whether AD be parallel to 
the horizon or in an oblique direction. 



468 OF THE GENERAL LAWS OF MOTION, &c. 

27 If three forces acting together in the same plane, keep one 
another in equilibrio, they will be proportional to the three sides DE, 
EC, CD of a triangle which are d> awn parallel to the directions of 

the forces AD, DB, CD 
Let AD, BD be produced, and CF, CE drawn 

parallel to them ; then by suppos th force in 
CD is equal to the two in AD, BD ; but the 
force in CD is also equal to the two represented 
by ED, CE or FD ; hence if CD represent the 
force C, ED. FD will represent the forces A F< 
and B ; therefore the three forces A, B, C, are 
proportional to the three lines DE, CE, DC, 
parallel to the directions in which they act. 

From this it follows, 1. That the three forces, when in equili- 
brio, are proportional to the sines of the angles of the triangle 
formed by their lines of direction. 2 That these three forces are 
also proportional to the three sides of any other triangle drawn 
perp to their lines of direction, or forming any angle with them ; 
for this triangle will be similar to that whose sides are parallel to 
the lines of direction. 3 That if any number of forces acting 
against one another, be kept in equilibrio by these actions, they 
may be all reduced to two equal and opposite ones. For any two 
of the forces may, by composition, be reduced to one acting in the 
same plane ; and this last force and any other may likewise be re¬ 
duced to one force acting in the plane of these ; and so on until 
they are all reduced to two equal and opposite forces. 

28 If a heavy body or weight W, be sustained on an inclined 
plane AB, by a power P, acting in a direction VVP parallel to the 
plane ; then if AC represent the weight W, BC will represent the 
power P, and the base AC the pressure (p) against the plane. 
Let CD be drawn perp to AB ; then the 
weight W, or force of gravity acting perp. 
to AC or parallel to BC, the power P acting 
parallel to DB, and the pressure p acting 
perp to AB or paral. to DC ; will be to one 
another as BC, BD, CD respectively (art. 
27.] that is, from similar triangles as AB, 
BC, AC, or as W, P, p 

Hence W, P, p, are as rad. sine and cos. BAG the plane’s ele¬ 
vation ; or as AC, CD, AD perp. to their directions ; hence 
also the relative weight down BA equal W X BC -t- AB 

29 When the power P acts in any other direction as Wp, let 
CFrf be perp. to Wp ; then W, P, p are as AC, CF, AF perp. 
to the direction of those forces. 

30 If a heavy body descend freely down an inclined plane AB, 
its velocity in any time, is to the veL of a body falling perpendicular¬ 
ly, in the same time, as BC the height of the plane, to AB its length. 
For the force of gravity in the directions BA and BC is constant, 
and art. 28, ^s those sides ; but art, 17, the velocities are as the. 
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forces, that is, in the same time, as the force on BA to that on 
BC, or as BC : BA. 

31. From the preceding art it follows, 1. That, as the mot. 
down an inclined plane is uniformly accelerated, being produced by 
a constant force, the laws which are given for accelerated forces in 
general, hold equally for motions on inclined planes ; that is, vel. 
are as the times ; the spaces as the sq. of the times or velocities; if 
the body be thrown upwards on the incl plane, it will lose its mot. 
and ascend to the same height in the same time, &c. 2. That the 
space descended on the incl. plane, is to the perp. descent in the 
same time as CB : AB, or as sine of the plane’s incl. to rad. 3 That 
the velocities on inclined planes are as the sines of their elevations. 
4. That if CD be perp. to AB, BD and BC will be described in the 
same time ; for by sim. triangles BC : BD :: BA : BC. 5. That 
in a rt. angled triangle, whose hyp. is perp. to the horizon, a body 
will descend down any of its sides in the same time; hence if a 
circle be described on the hyp. the time of descending down any 
of its chords, drawn from either extremity of the hyp. or its perp. 
diam will be all equal, and also to the time of falling freely down 
the perp. diam. 

32 The time of descending down the incl. filane BA is to that of 
falling through its height BC as B \ : BC. Let the time of de¬ 
scribing BD or BC, which are equal (4 art. 31) be called and 
that of describing BA, T ; then t2 : T* :: ED : B v, the forces 
being constant; but BD : BC :: BC : BA ; hence BD : BA :: 
BC2 : BA2 ; therefore by equality t2 : T2 :: BC2 : BA2, or t : 
T :: BC : BA. 

Cor. Hence it follows, that the times of descending down dif¬ 
ferent planes of the same height, are as the lengths of the planes. 

33 A body acquires the same vel. in descending down an inclined 
filane BA, as in falling fierfi. through its height BC. For let F 
be the force of gravity in BC, y'the force on AB, t the time of 
falling through BC, and T of descending down AB ; then art. 28, 
F BA : BC, and art. 32, t : T :: BC : BA ; hence by 
comp. Ff if T :: 1 : 1 ; but F^, /T, areas the velocities, art. 
18, therefore the velocities are equal. 

34. From the preceding art it follows, I. That the velocities 
acquired by bodies descending on any planes, from the same 
height to the same horizontal line are equal. 2. That if the veloci¬ 
ties be equal at any two equal altitudes D, E, they will be equal 
at all other equal altitudes A, C. 3. That the velocities acquired 
in descending down any planes, are as the sq. roots of the heights. 

35. If a body descend from the same height through any number 
of contiguous filanes AB, BC, CD ; it will at last acquire the same, 
velocity as a body falling perpendicularly from the same height ; the 
yel. being supposed not altered in passing from one place to another. 
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Let the plants DC, CB, be produced to 
meet the horizontal line EG in F and G ; 3lL___ a AE 
then (i art. 34. the vel. at B is the same 
whether the body descends through AB or 
FB ; and in C, for the same reason, the vel is^Z 
the same whether the body descends through 
ABC, FC or GC ; hence at D it will ac- - 
quire the same vel. in des. through the 
planes AB, BC, CD as in des. through GD, that is, art. 33, as in 
falling through ED 

36 The velocity acquired by a body descending along any curve 

surface is the same, as if it fell perp. through the same height. This 
is evident from the last art. by supposing the lines, AB. BC, &c. 
indefinitely small, in which case they will form a curve. 

37 Hence also it appears, 1. That the velocities acquired by 
bodies descending down any planes, or curves, or falling perp. 
from the same height, are the same. 2 That if the velocities be 
equal at any alt they will be equal at any other alt 3, That the 
vel. are as the sq. roots of the perp heights 4. That a body af¬ 
ter its descent through any curve will acquire a vel, that will carry 
it through the same height in any other curve, and in any direc¬ 
tion, or by being retained in the curve by a string, and vibrating 
like a pendulum.* 5 That the velocities will be equal, at equal 
altitudes, and also the times of ascending and descending will be 
the same, if the curves be of equal altitudes. 

38. The times in which bodies descend through similar parts of 

similar curves, in similar positions, are as the sq. roots of their 

lengths. Let A BCD, abed, in the foregoing fi gure, be two simi¬ 
lar curves, and let any corresponding parts as AB, ab> be taken, 
these will be proportional to the whole ; and as they are similarly 
situated, they will be parallel to each other ; hence the times of 
describing these corresponding parallels are as the square roots of 
their lengths, art. 31, that is, as v/AD : \/ad. In the same 
manner it is proved that the times of describing any other two 

* A simple pendulum consists of a ball or any other heavy body suspended 
by a fine string or thread, moveable about a fixed centre. If the pendulum 
be moved from its vertical situation, and then let fall, the ball, from its 
gravity, in descending, will describe a circular arc, in the lowest point of 
which, or where the pend, regains its vertical position, it will have that vel. 
that it would acquire by falling perpendicularly the length of the pendu¬ 
lum (1 art. 37) and this vel/ will be sufficient to cause the ball to ascend 
through an equal arc to the same height (4 art. 37) from whence it fell; 
having there lost ail its mot. it will again fall, by its own gravity, in the 
same manner as before, and will thus perform continual vibrations. Hence 
if the mot. of a pendulum suffered no resistance from the air, or from the 
friction at the centre of motion, its vibrations would never cease. But from 
these obstructions the vel. of the ball is a little diminished in every vibration, 
and hence the arcs described must become continually shorter, until at 
length they vanish with the mot. of the pendulum. To prevent this taking 
place in clocks, there is a mechanical contrivance called a maintaining power 
See Helsham,s Lectures, lecture 10. 
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similar parts, are as >/AD : y/ad ; hence by compos, the whole 
times of describing are in the same ratio. 

39. Hence it appears, 1. That the times of descent in curves are 
as the sq. roots of their axes, or as vT-D : v/Ec/, the axes of sim¬ 
ilar curves being as the lengths of the similar parts. 2. That as 
the vibrations of pendulums are similar to the descent of bodies in 
curves ; therefore, the times of the vibration of pendulums in simi¬ 

lar arcs of any curves, are as the square roots of the lengths of the 

pendulums. 3. That the velocity of a pendulum at its lowest point 
is as the chord of the arch it descends through See art 37. 
4. That pendulums of the same length vibrate in the same time. 

40. When cl pendulum vibrates in a cycloid,* the time of one vi¬ 

bration^ is to the time a body falls through half the length of the 

pendulum, as the circumference of a circle to its diameter. Let 
ABC be the cycloid, DB its 
axis, or the diameter of the 
generating semicircle DB, 
OB or 2DB the length of the 
pendulum, or radius of curva¬ 
ture at B (see Simpson’s Flux¬ 
ions, art. 72.) Let the ball de¬ 
scend from F, and in vibrating 
describe the arc FB/; let FB 
be divided into innumerable 
parts, and let Ga be one of 
those parts ; drawr FEL, GM, 
ab, perp. to DB ; on LB describe the semicircle LMB whose 
centre is Q ; draw Mm parallel to DB, and also the chords BE, 
BH, EH and rad QM Now the triangles BEH, BHI are simi¬ 
lar ; hence BI : BH :: BH : BE (6 Eucl 4) or BH2 = BI X 
BE, or BH = V BI x BE. Also in the sitn. tria. Mmb, MQn. 

Mm : M£ :: Mrc : MQ, and by the nature of the cycloid Hh = 
Ga. If another body descend down the chord EB, it will acquire 
the same velocity as the ball in the cycloid falling from F, art. 37. 

* If a circle BED (supposed complete) be rolled on a rt. line AC, until 
the fixed point B, which at first touched the line at A, arrives at C ; the 
point B will then describe the curve ABC, which is called a cycloid. See its 
properties investigated in Emerson’s properties of curve lines at the end of 
his Conic Sections, sect. 3, some of which are the following. 1. The rt. line 
AD = the cir. DEB. 2. Any rt. line FE paral. to AD = the arc EB. 3. If 
Xy be drawn paral. to AD, the tang, xz is parallel to the chord. 4. The 
length of the arc B.r is double the chord By. 5. The length of the semicy- 
cloid BA = 2DB the diameter of the generating circle, &c. 

The contrivance by which a pendulum is made to vibrate in the curve of 
a cycloid is the following. Let the semicycloids OA, OC be described each 
— 5ABC, their vertices being at A and C. If then OA, OC be supposed to 
be two plates of some breadth, and the pendulum OB to vibrate between 
these plates, the upper part of the string- will constantly apply itself to that 
plate towards which the body moves, and will thus describe the cycloid 
ABC. Here AO or OC is called the evolute, and OB becomes the radius of 
eurvciture of the cycloid, ffuyqens is the author of this contrivance. 

o 
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Hence Ic and Ga are passed over with the same vel. and therefore' 
the time in passing them will he as their lengths, or as YLh : Ic, 
or by sim tri. as BH (or BI X BE)§ : BI, or as \/ BE : v/BI, 
or sim tri. as \/BL : a/Bn. That is, the time in Ga : time in 
Ic :: \/BL : y/Bn Again vel. at I : vel. at B :: v/EK : \/EB 
(3 art. 34) or y/Ln : ,/LB. Now the uniform vel. for EB is 
equal half the vel at the point B, and the time of describing 
any space with a uniform motion, being directly as the ^pace and 
reciprocally as the velocity ; hence the time in Ic : EB :: Ic 
y/Ln : EB iv/LB :: (sim. tri.) nr y/Ln : LB i\/LB 
:: nr or Mm : 2 (BL X Ln)i. That is time in Ic : time in EB 
:: Mrc : 2 (BL X Ln)h. But it was shewn that time in Ga : 
time in Ic :: v/BL : y/Bn ; hence by comp time in Ga : 
time in EB :: Mn : 2 (BL X Ln)$ or 2rcM (35 Eucl 3.) And 
by sim. tri Mn : 2QM or BL :: Mm : 2wH ; hence time in 
Ga : time in EB :: Mm : BL. Therefore the sum of all the 
times in all the Ga’s : time in EB or in DB :: sum of all the 
Mm’s : BL ; that is time in Fa : time in DB :: Lb : LB, and 
time FB : time in DB :: LMB : LB, or time E'By': time in 
DB :: 2LMB : LB, or as 3.1416 : I Q E D. 

41. Hence all the vibrations of a pendulum in a cycloid, whether 
great or small, are performed in the same time Ifft = 3.14-16, 
l = length of the pend and s the space fallen by a heavy body in 
1" ; then y/s : y/\l :: l" : (/ ~ 2«)$ the time of falling through 
\l ; therefore 1 : ft :: (/ ~ 2s)h : ft X (/ -5- 2s)^, the time of 
one vibration. 

42. The time of vibration in the small arc of a circle is nearly 
equal to that in tht cycloid, as both arcs nearly coincide at B ; 

hence ft X -H 2s is the time of vibr in a small circular arc, 
where l is the radius. If s or l be given, the rest is therefore 
given. The easiest way is to find by experiment the length of the 
pendulum vibrating seconds ; this in the lat. of London is found 
= 39^ inches ; hence we have ft X ( >9-|- 2s)$ = 1", from 
which s = % ft2 l, is found = 193 07 in or 16^ feet. 

43 From art 4 1 and 42, if n = the number of vibrations per¬ 
formed in the time t; then the lengths of pendulums describing 
similar arcs being as the squares of the times, we have S9i : .2 

~ 39^ = the sq of the time of one vibration ; hence t 

divided by il ~ 394.)f = w, from which t2 x 39-£ = rc2/, and 
therefore n2 : t2 :: 39j : l. Thus to find the length of a half- 
seconds pendulum, then 1 : -J :: 39| : 9J. inches, See 

The reverse of this prop being also true, that is l : 39| :: t 

: w2, the number of vibrations made by a pendulum of a given 
length may from thence be found. 

44. The lengths of ftendulums -vibrating in the same timey in dif¬ 

ferent ftlaces on the earth, will be as the forces of gravity. For the 
vel. being as the force of gravity (the quantity of matter being 
the same in both pendulums) the space is as the vel. or as the 
gravity. Now as pendulums of the same length will vibrate in the 
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bame time (4 art. 39) and the lengths of pendulums are as the 
spaces fallen through in equal times, that is as the forces of 
gravity. 

45. By a similar reasoning it appears, 1. That the time in which 
pendulums of the same length will vibrate, by different forces of 
gravity, are reciprocally as the sq. roots of those forces respective¬ 
ly. 2. That the lengths of pendulums in different places are as 
the forces of gravity, and the sq. of the times of vibr. 3. That 
times of vibr. are as the sq. roots of the lengths of the pend, di¬ 
rectly, and the sq. roots of the gravitating forces reciprocally.— 
4. That the forces of gravity in different places are as the lengths 
of pend, directly, and the sq. of the times of vibr. reciprocally * 

46. If a body revolving in a circle, be retained in it, by a centric 
fetal force tending to the centre of the circle ; then its periodic timey 
or the time of one rev. will be fit X (%r sand the vel or 
sfiace it describes in the time t will be \Z2rs. Where r = rad. AC. 
9 the space fallen through in the time t, by the force at A ; and 
fi = 3.1416. 

Let AB be a tang, at A, AF an indefi¬ 
nitely small arc ; let FB, FD, be drawn perp. 
to AB, AC, respectively. Let the body de¬ 
scend through AD or BF in the time 1 ; 
then AF will be described in the time I — 
The whole circum. = 2/ir, and AF = 
(2r x AD)L Now art 18, s$ : t :: ADi 

i t \/AD ■— s — time of moving through 
AD or AF ; and AF : t (AD ~ s)| :: 
circum AFEA : the time of one rev by subst. = ft x (2r -v- s)|. 

And by uniform mot. time of descr. AF : AF or y/2r x AD :: t : 
s/2rs = vel. of the body (b) or the space descr. in the time t. 

47. Vel. of b = vel. acquired in descending through Jr, by the 
force (f) at A uniformly continued For : 2v (the vel.) :: 
v/Jr : \/2rs = vel. acquired in falling through Jr. 

48. Hence the arc described by b in any time is a mean pro¬ 
portional between Jr and s. For 2r : \Z2rs :: <ff2rs : s. 

49. Hence if AFE be any curve, and AC, or r its radius of 
curvature in any point A, and its centre of force be any other 
point (S) then vel. in A = \/2rs. For this is the vel. in the 
circle, and therefore in the curve which coincides with it. 

50. The fieriodic times (P) of several bodies revolving in circles 
round the same or different centres, are as the sq. roots off their 

* In these articles the rod of the pendulum, or the thread, is supposed 
very fine, or of no weight; and that the ball is very small, or has its matter 
united in a point. Hence as this cannot be so, the length of the pend, is 
nearly its dist. from the point of suspension to the centre of the ball, or 
rather to the centre of oscillation of the pend. See Emerson’s Tracts, sect. 
2, prop. 28. The Methods of finding the centres of Gravity, Percussion, 
Oscillation, be. with a further detail of the properties of the pond, are given 
in Emerson’s Mechanics. 

B A. 

S M 
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radii directly, and the sc/. roots of the cent, forces recifirocally. For 
(art 45) P sn fit X (2r -ir s)h, and s is as f the force ; hence P 
a fit x (2r -f-yji ; but 2, fi, and * are given, therefore P is as 

51 From the preceding art. it appears, 1. That the periodic 
times are as r + For v *= (2rs)i = y/2rf hence v2 = 2^/; 
and P2 = fi2 t2 x 2r -5-,/j therefore P2 i>2 = /2 £2 X 4r2, from 
which P = 2/rr -f- v ; whence P is as r -f- -y. 2. That the peri¬ 
odic times are as v -f-f For v 2= 2rs = 2rf and r = x>* -f- 2/', 
also r -r- v is as v -r f; but P is as r -f r, that is as v -f- f. 
S. That v and./are as r. For if P be given, then r /' r v9 
and v -t-f are each given. 4. That if P be as %/r, v will be as 
y/r, and the centripetal forces equal For (art. 49 and 50, cor. I.) 
taking %/ r for P, we have \fr is as (r -f~f)h that is as r -f- v. 
Hence 1 is as 1 — y/f, or as \/r v, and y/r is asv; the y/f 
is therefore a given quantity. 5. That if P be as r the velocities 
will be equal, and./'as 1 -s- r. For taking r for P, we have r is as 
(r or as r v ; hence y/r is as 1 -r \/f and 1 is as 
1 -T- v, therefore v is a given or constant quantity (that is V is as v) 
and r is as 1 -r-f 6. That if the periodic times be in the sesqui- 
plicate ratio of the radii, or if P be as r-|, then v will be as \Zry 
and f as l -f* r2f For taking r5 for P, is as (r -~f )i, or as 
T -f- v ; and r is as 1 -f y/f or r2 is as 1 -~ / also y/r is as 

I -ir y. 7. That if P be as rn, then v will be as 1 -f* r71-1, and 

/ as r2n 1. For taking rn for P, then rn is as (r or as 

r-r-v; whence r2n is as r-bf, and is as 1 -~f Also r71-1 is 
as 1-t-v. 

52. The -velocities of several bodies revolving in circles round the 
same or different centres are as the radii directly, and periodic times 
recifirocally ; or v is as r -f- /. For (art. 46) -y == 2 rs = y/2rf and 
P is as v ~f (2 art. 51) and P/is as v ; also f is v -b P ; hence 
v = y/2rf = (2r X v -f- P)$, and v2 = 2ri» -f* P, and v =2r -r> P, 
that is is as r -b P. 

53. prom the preceding art. it follows, 1. That v is as P/- 2. 
That v2 is as r/. For v == y/2rf. 3. That the velocities being equal, 
P is as r, and r as 1 -bf For r-f- P is a given ratio, r being given ; 
and as */rf is given, r is as 1 -bf. 4. That if v be as r, the pe¬ 
riodic times will be the same, and ./as r. For then v or r is as 
r -f- P, and l is as 1 -b P. Also r = y/2rf hence r is as f 5. 
That if v be as 1 r, then f will be as 4 -b r3, and P as r2. For 
taking l -f- r for v, then (cor. 2) 1 -f- r = y/2 rf or 1 -f- r =2 rf • 
whence/'is as 1 -j- r3 ; also 1 -b r is as r P, and P is as r2. 

54. The centrifietal forces are as the radii directly, and the squares 
of the periodic times recifirocally. For (art- 46) P = fit X 

* When any quantity is divided into another, the reciprocal of that quan¬ 
tity may be taken. The reciprocal of any quantity is 1 divided by that 
quantity. Thus the reciprocal of a is 1 -b a. 
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(2r s)i = fit (2r — /)£, and P2 = /j2 r? X 2r -r*/; also/2/ 
= 2/2 £2r ; hence/ =• 2p2t2r P2 is as r ~ P2. 

55. Prom the last art. it follows, l. That ./is as i; -i* P. For 
(art. 52) v is t 4- P, and / is as r P2, that is as v -f- P. 2. 
That / is as v -f- r. For / is as -y -f- P, and / P is as -y ; 
but (1 art. 44) P is r v ; hence /P is as fr ~ v ; therefore 
fr ~ v is as v, and/is as iws -r r. 3. That, the centripetal for¬ 
ces being equal, v will be as P, and r as P2 or as v2. 4. That if 
/be as r, the periodic times will be equal. For if/is as r P2, 
and /-T- r is as 1 P2 ; and if/-r* r be a given ratio, 1 -f- P2 
will be given, as also P. 5. That iff be as 1 -r- r2 ; then P2 ‘will be 
as r3, and v as 1 —• \/r. For taking 1 r2 for f then 1 -j- rs 
is as r ~ P2, and r3 P2 a given quantity. Also 1 -f- r2 is as 
v2 ~~ r, and 1 r as v2, or (1 -f- r)£ as v. 

56. The radii are directly as the centripetal forces and the squares 
of the periodic times. For (art 46 or 54) P2 = Ji2 t2 x 2r -f- fy 
and P2/ = 2/2 t2 r ; hence P2f is as r, 2,/z, and t being given. 

57. Hence it follows, 1. That r is x>P. For Pf is as v (l art. 
53) and P2/ is as r ; hence Pv is as r. 2. That r is v2 -r- f 
For (2 art. 5 1) P is as v -/; but r is as Pi/, by the preceding ; 
lienee r is as r2 -r/ 3. That the radii being equal, / is as v2 
P2, and that v is as 1 -r* P. For in this case v2 /, P2/, and 
Pi/ are all given ; and/is as v2, or /is as 1 P2 ; hence v is as 
1 -T- P. 

Note. The converse of all these articles, See. are also true ; and what is 
shewn of cent, forces is equally true of centrifugal forces, they being equal 
and contrary. Moreover whatever is demonstrated in these articles, con¬ 
cerning the forces, velocities, and periodic times of bodies moving in circles, 
hold equally true in ellipses, taking the mean distances, or half the trans¬ 
verse axis, instead of the radii. The truth of this is fully shewn in Emer¬ 
son’s Centripetal forces, where the different cases of bodies revolving in the 
conic sections are investigated. The reader is therefore referred to this, or 
to Newton's prin. for more information on this subject. In Gregory's Ast. 
the Laws of Centripetal and Centrifugal forces are fully discussed. But for 
some recent improvements, consult Laplace's System of the World, B. 3, or 
his Celestial Mechanics. Simpson, Emerson, Me Law-in, &c. in their res¬ 
pective treatises on Fluxions, have given the analytic investigation of these 
laws. See also pa. 402. 

58. The quantities of matter (M) in all attracting bodies, having 
others revolving about them in circles, are as the cubes of their dis¬ 
tances directly, and the squares of the periodic tunes reciprocally. 
For as observations have fully proved that the squares of the pe¬ 
riodic times are as the cubes of the distances, both of the planets 
and satellites from their respective centres Hence (6 art. 51) / 
is as 1 -5- r2 ; and the attractive forces at the same dist being as 
the quantity of matter M, hence the absolute force of M is as 
M -7- r2, and (art 54) since / is as r P2, if we take M -f- r2 in 
place of/, then M -f- r2 is asr-f- P2, and therefore M is as r3-~P2. 

Cor. 1. Hence M -f- r2 (which is the force of the attracting body 
C at A) may be substituted for/in any of the foregoing articles. 
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Cor. 2. Hence also the attracting force of any body is as the quai€~ 
City of matter directly, and the sq. of the dist. reciprocally. 

Note. If the mean dist. be taken for the radii of the circles, the same 
properties hold also in ellipses, See. 

59 The de?isities (D) of central attracting bodies are recipro- 
cally as the cubes of the parallaxes of the bodies revolving round them 
(as seen from those central bodies) and reciprocally as the squares 
of the periodic times. For D X d3 (the cube of the diam.) is as 
the quantity of matter (art. 9) that is as m3 (cube of the mean 
dist.) or r3 ~ P2 (art. 58) hence D is as r3 (or m3) -4- d3 P2. 
But d ~jr~ r or ?/?, is as the angle of the parallax (a) therefore D 
is as 1 -4- a3 P2. 

Cor. Hence D is as 1 H- d3 P2.* 

* From this and the foregoing* article the masses and densities of the plan¬ 
ets are thus found. The result in art. 58, being applied to Jupiter and his 
4th satellite, we have the angle subtended by mean rad. of the orbit of this 
satel. at Jup. mean dist. from the sun = (1530"36 according to LaplaceJ 
Sr 15"99 nearly, this angle at the earth’s mean dist. from the sun = (7964"75) 
43' o"57 the rad. of the circle = (63661S"8) 57° 179 44"8. Hence the mean 
rad. of the orbit of the satel. : the mean rad. of the earth’s :: 43' G"57 : 57° 
17' 44"8. The sidereal rev. of the 4th satel. is 16.689 days, and of the earth 

365.2564 days ; from which the mass of Jupiter is found = that of 
the sun being 1. Laplace remarks that the denom. of this ffac. must be 
augmented by 1, as the force which retains Jup. in his relative orbit round 
the sun is the sum of the attractions of the sun and of Jupiter. The mass 

of Jup. will then be to ST xt' The mass of Saturn determined in the same 

manner is found to be titV-IV’ and of Herschel The mass of the 
earth may be found in the same manner. Laplace gives a different method 
in B. 4, ch. 2, Ast. from which he determines that the masses of the sun 
and earth are as 1479560.5 and 4.48855, from whence it follows that the 

mass of the earth is -yrsVlTiJ taking the sun’s parallax (27"2) S"8126. If the 
sun’s parallax differ any thing from this, the value of the earth’s mass should 
vary as the cube of this parallax compared with that of 8"8. Laplace deter¬ 
mines the masses of Vemis and Mars from the secular diminution of the obi, 
of the ecliptic supposed (154"3) 50" nearly, and from the acceleration of the 
Moon’s mean motion fixing it at (34,,36) 11" 13 nearly, for the 1st century 

comm, with 1700. The mass of Venus is thus found = 7> and that 

of Mars inVpf* He has found the mass of Mercury from his mag 
supposing the densities of this planet and the earth’s inversely as their mean 

(list, from the sun, = 
The densities of bodies being proportional to their masses divided by their 

volumes or mag. that is by the cubes of their radii when spherical. Their 
densities are therefore as their masses divided by the cubes of their radii; 
but to obtain greater accuracy that radius of a planet must be taken (as La¬ 
place remarks) which corresponds to that parallel the square of the sine of 

whose latitude is -j, and which is equal to 3- of the sum of the radius o. the 
pole added to twice the radius of the equator. It is thus that Laplace de¬ 
termines the densities of the Earth, Jup. Saturn and Herschel to be 3.9393, 
0.8601, 0.4951 and 1.1376 respectively, the sun’s mean density being taken 1, 

As the force of gravity at the equator of the planets is as their masses di¬ 
vided by the squares of their diameter, supposing them spher. and deprived 
of their rotary motion. Now the equatorial diam. of Jup. is (626"26) 3' 22"P •, 
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60. The areas which a revolving body describes, by radii drawn 
to a fixed centre of force, are firofiortional to the times of descnp~ 
tion ; and are all in the same immoveable plane. Let S be the 
centre of force ; and let the time be di¬ 
vided into very small equal parts. In 
the first part of that time let the body 
describe the line AB, then (art. 5) if 
no other force be impressed the body 
will proceed towards c, and describe 
Be s=r AB in the 2d part of time, so 
that the area ASB = BSc (38 Eucl 1) 
But when the body comes to B, suppose 
that a centripetal force act by a single, 
but strong impulse, then the body will describe the diagonal BC 
of a parallelogram whose sides Be, Br or cC parallel to SB repre¬ 
sent those forces (art. 27) hence the triangle SBC = SBc = also 
SBA, all of which are in the same plane. In like manner it may 
be shewn that if the centripetal force act successively in C, D, E, 
See. and make the body in each single particle of time describe the 
lines BC, CD, DE, EF, &c. they will all be in the same plane, 
and the triangles CStf, CSD, DSe, DSE, ES/, ESF, &c. are all 
equal. Hence in equal times, equal areas are described in one 
immoveable plane ; and by comp, any sum of those areas are as 
the times of description. Now let the number of these triangles 
be increased, and their breadth diminished ad infinitum ; the cen¬ 
tripetal force will then act constantly, and the figure ABCD, Sec. 
will be a curve. 

61. From the precedingart.it appears, 1. That if a body de¬ 
scribe areas proportional to the times about any fixed point, it is 
urged by a centripetal force directed to that point. For a body 
cannot describe areas proportional to the times about two fixed 
centres. 2. That the vel. of a body, in any point of a fcurve, is 
reciprocally proportional to the perp. on the tang, at that point.— 
The base of any of the triangles (which represents the vel.) being 
reciprocally as the perp. 3. That the angular velocity at the cen¬ 
tre of force is reciprocally as the square of the dist. from that cen¬ 
tre. For ABCD, &c. being considered as a curve, the small tri¬ 
angle SFE = SaB, they are descr. in equal times, and area of 
the 1st = SF X FQ -r- 2, and of the 2d SB X B/i -r 2 ; hence 
SF X FQ = SB X B/i. But L FSE : ASB :: FQ :: ab (Sa be¬ 
ing sss SF) :: SF X FQ : SF or S a X ab :: SB X Bp : S ax ab 
:: area SBA : area Sab :: SB2 : Sc2 or SF2. See Newton's 
prin. B. 1. sect. 2. 

and of the earth (54,;5) 17w6, at the earth’s mean dist. from the sun. Hence 
if the weight of a body at the terrestrial equator be 1, this body transported 

to the equator of Jup. would weigh 2.509. But this must be diminished 
from the effects of the centifugal force at Jupiter’s eq. this effect may be 
determined by the preceding articles. The same body at the sun’s eq. 
would weigh 27.65, and heavy bodies would fall 100 metres the 1st second 
of their descent, according to Laplace. The second here must, no doubt, 
be that adopted in the French measures. 



478 OF THE GENERAL LAWS OF MOTION, Sec. 

62. If two bodies A, B, revolve about each other, they will both 
revolve about their centre of gravity. Let C be the centre of gravity 
of A, B acting on each other by 
any centr. forces. Let AD be the 
direction of A’s mot. draw BE 
paral. to AD for B’s direction. 
Let the time of descr AD, BF 
be Very short, so that AD : BF :: 
AC : BC, C will then be the 
centre of grav. of D and F, the 
tri. ACD, BCF being sim. (see 
the note pa 253.) Hence AC : 
CB :: DC CF. Let A a, B by be the spaces through which A and 
B will advance towards each other in the same time by their mu¬ 
tual attractions, these spaces will be reciprocally as the bodies, or 
directly as the dist. from C the centre of gravity ; that is, A a : Bb 
:: AC : BC. Complete the paral. Ac, Bd ; c, and d will then be 
the corresponding places of the bodies, instead of D, F. (art. 23.) 
Now as AC : BC :: A a : B 6, by div. AC : BC :: aC : bC ; but 
AC : BC :: AD : BF :: ac : bd. Hence cC : bC :: ac : bd\ 
the tri. cCa, and dCb are therefore similar, whence Cc : Cd :: ac : 
bd:: AC : BC :: B : A. Therefore C is still the centre of grav. 
of the bodies, at c and d. 

If Bd and Ac be now produced until df = Bd, and ci = Ac, and 
if ck, dg, be the spaces drawn through from ttieir mutual attr. and 
ci, df be compl. then it will appear, in like manner, that C is the 
centre of grav of the bodies at h and c, and also i and f; and Ac, 
cf, See and Bd, df Sec. are therefore the paths of A and B round C. 

If B be at rest while A moves towards G ; then C will move 
uniformly along CH paral. to AG. Hence if the space the bodies 
move in, moves in the direction CH with the vel. of the centre of 
grav this centre will then be at rest in that space, and B will 
move in the direction BF paral. to CH or AD, which comes to 
the same as the former case. Hence the bodies will always move 
round the centre of grav. which is either at rest, or moves uni¬ 
formly in a rt. line. 

In the same manner it may be proved, that if A and B repel 
each other, they will also constantly move round their centre of 
gravity. 

6 5 From the preceding art. it appears, 1. That in estimating 
the motions of a system of bodies among themselves, their mo¬ 
tions round their common centre of grav. should be taken. 2. 
That the directions of the bodies in oppos. points of their orbits 
are always parallel to each other. For as AD : Dc :: BF : Fd, 
AD, Dc is therefore paral to BF, Fd ; hence L. DAc = HBd ; 
Bd is therefore paral to Ac. For the same reason df is paral. to 
d, Sec 3. That two bodies acting on each other by any forces, 
describe sim. figures about their centre of gravity. For Ac, Bd, 
Sec. are parallel, and always proportional to AC, BC. 4. That if 
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the forces be directly as the dist. the bodies will describe concen¬ 
tric ellipses round the centre ofgrav. 5. That if the forces be 
reciprocally as the squares of the dist the bodies will describe 
similar ellipses, or some conic sections, about each other, having 
the centre of gravity in the focus of both, he.* 

64. If a body be projected from A, in a given direction AD, and 
be attracted to two fixed centres S, T not in the same plane with 
AD, the revolving triangle SAT formed by lines drawn from the 
two fixed centres to the body, will describe equal solids in equal 
times, about ST the line joining the fixed centres. Let the time 

* Our limits would not permit us to enter into an investigation of any of the 
properties of the centre of grav. however interesting: the following observa¬ 
tions of Laplace deserve, however, to be mentioned. He remarks, that when 
a body receives an impulsion in the direction passing through the centre of 
grav. all its parts move with equal vel. That if the direction pass on one side 
of this point, the different parts of the body acquire unequal velocities, from 
which results a mot. of rotation of the body about its centre of grav. togeth¬ 
er with its progessive mot. He then remarks that this is the case with the 
earth and the planets. He makes the dist. of the prim, impulse from the 

centre of grav. of the earth = of its rad. supposing it homogeneous. 
Sir Isaac Newton makes a similar suppos. in accounting for the centrifugal 
forces of the planets. But neither he, or any other person since his time, 
has ever shewn whence proceeded, or what was the cause of this primitive 
impulse, for it is certain that there is no effect without a cause. It is in¬ 
finitely more probable that both the motion of rotation, and also that in 
the orbits of the planets, depend upon the sun, and are regulated by him. 
For as we have remarked before, we find no other active principle in mat* 
ter, or emanating from it, capable of producing such an effect, except light, 
which modified, reflected, refracted, and varied in a thousand different man¬ 
ners, is very probably the cause of gravity, electricity, &c. and innumerable 
phenomena of which no rational account can be given, from our igno¬ 
rance of the nature of this subtle fluid. If its action produces the rotary 
motion of the planets, it could not be from the situation of their centres of 
grav. For if the centre of motion be the same as the centre of the body, 
and the centre of gravity a little distant from it, let the line joining these 
centres be perp. to the direction of the rays of light, See. from the sun; then 
the unequal action on the body may produce a rotary mot. but when this 
line is parallel to the direction of the rays, they have no effect on turning 
the body ; and when the line passes this paral. posit, the action of the rays 
v/ill tend to turn the body in a contrary direction ; and hence their effect 
would be to produce a vibratory mot. which with a little resistance would 
subside, and the same side remain turned towards the sun. This may be 
the case with the secondary planets with respect to their primaries, whose 
action on them is greater than that of the sun’s. If the unequal action of 
the sun’s rays on the planets, from a rarification of their atmospheres, ex¬ 
ceeded the former, a rotary motion would ensue. This may be the case 
with the primary planets. For if we suppose the former case, it may be 
asked why has not the secondary planets a rotary mot. Why does not the 
change of the sun’s decl change that in the primaries ? Until these ques¬ 
tions be solved, Lablacc’s obs. can have no force. 
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be divided into infinitely small equal 
parts, then in those equal times it 
is evident that the lines AB, BC, 
CD, &c. will be described, and 
hence that the solids ST AB, 
STBC, STCD, See. described in 
the same equal times, would be 
equal, if the focus at S and T did 
not act on the moving body Let 
S and T be now supposed to act at 
the end of each interval of time, 
let T act at B in the direction BT, in which direction the body is 
always drawn by T, so that instead of being at C, it is drawn in the 
direction CF ; and by the force S, for the same reason, it is drawn 
from C in a direction CE parallel to SB. Hence from both for¬ 
ces the body at the end of the time must be somewhere in the 
plane ECF paral. to SB V as at I.'* Now as pyramids upon the 
same base and of equal altitudes are equal (Emerson’s Geom. b. 
6, prop 7) the pyramid STBI = STBC, being between the 
paral- planes ECF, SBT, and therefore of equal altitude ; hence 
pyr. STBI = STAB. 

If BI be now continued to K so that IK = BI, the body in the 
next part of time would advance to K describing the pyr STIK = 
STBI, but at the end of the time the body being drawn by the 
forces S, T parall to their directions KL, KN, it will be found 
somewhere in the plane LKN, as suppose at O. Then the solid 
STIO = STIK == STBI = pyr. STAB 

If IO be now produced making OP = IO the body attracted by 
S, T at P will descr another equal pyr. Hence equal pyramids 
will be described in equal times : and therefore the whole described 
as the times of description. 

It may be here remarked, 1. That the orbit becomes a curve 
when the number of the lines AB, BI, IO, &c. is increased, and 
their mag. dim. ad infinitum. 2. That any lines AB, BI, IO, &c. 
are tangents at A, I, O, See. being corresponding points in the 
curve- 3. That the curve is not in the same plane except when 
the forces on each side of it are equal. 

65. If the body T revolves 
above S at a great dist. in the 
orbit I'V, and M a lesser body 
about T which is near M. Then pS 
if Y — the centr. force of S 
ufxon T, the disturbing force of 

S ufion M = F X 3MI -i- ST, 
M/I being jiaral. and IT fierfi, to ST. And F X MT ST will 
be the increase of the centr. force from M towards T. Let 

* This point may be found by resolving the three forces in the directions 
BC, CF, CE, as shewn art. 27. And any number of forces may he resolved 
in like manner. 
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ST = r, MT = a, MI = x, g = the force of gravity, s the 
space fallen by this force in the time 1. h = the space descended 
by the force F in the time 1. P = the period, time of T about S, 
and t = the period, time of M about T, f— the centr. force of T 
at M, fi a= 3.1416. Now as attraction is reciprocally as the sq. of 
the dist. then the force of S at T : its force at M :: 1 r* : 
1 -7- SM2 :: 1 -f- r2 :: 1 (r jc')2 :: r : r -J- 2x -f- 3.r3 -r- 
r -f^4.r3 -f- r2, &c. And force of S at T : diff. of the forces :: 
r : 2x 4* 3x2 —• r, See. that is r : 2x -f- ox2 r :: F : 2F.r 
-7- r -f- 3Fx2 r2 nearly, the diff. of the forces, or the single 
force by which M is drawn from its orbit in the direction IM or 
MS. Let the forces MS be divided into the two MT, TS, which 
substituted for it and proceeding as before, we have force of S at T 
: force at M :: 1 r2 : 1 ~ (r — x)2. And force of S on M 
in direct. MS : force on M in direct. TS ::r — x : r :: 1—r 
: 1 (r — x). Hence from equality of propor. force of S at 
X : force on M in direct. TS :: 1 ~ r3 : 1 (r — or)3 :: 
1 -r- r3 : 1 divided by r3 — 3r*x -f- 3rx2 — x3 :: r : r -j- 3x -f~ 
6x2 -r- r, &c. And force at T : diff. of the forces :: r : 3x~\- 
6x2 r, See or r : 3x -f- 6.r2 ~~ r :: F :: 3F.r —■ r -j- 6F:r2 ~~ r3 
= the disturbing force of P paral. to TS. Also x : a :: increase 
of the disturbing force in direct- MI (F.r ~r r -f- 3F^ 2 r2, Sec.) 
: Fa -4- r -f 3Fax r2, Sec. the addition of the centripetal force 
in direction MT. For in the former disturbing force 2F.r -r- r 
-f- 3F^2 -r- r2, there was a diminution of centr. force at T, as 
appears from the next art. 

66. From the preceding art. it appears, 1. That the simple 
disturbing force at M towards S = 2Fx — r nearly (rejecting the 
other terms of the series as inconsiderable) and dimin. of centr. 
force of M towards T = Fx> -r- r. Also accelerating force of M 
in the arc MA = Fz ~ r. z and v being the sine and versed 
sine of 2MQ. For TI = x/, and let IK be perp to MT ; then 
sim. trian. a : x :: x : MK = x2 ~ a :: force Ml (2Er r 
nearly) : force in direct. KM or I'M = zF x2 ~ ar = Fi> -r- r. 
Also a : y :: x : IK :: force MI : force in direct. IK or MA 
= 2Fyx —• ar = (Trig. Emerson's, prop. 2. Schol.) Fz -r- r. 
2. That if M be the moon, and S the sun, the disturbing force at 
M —fq -r- 59.574, q being sine dist. from the quadrature Q. 
For (art. 54) F = ft r -r- P2a, and 3Fjc -h r, &c. = 3ft2x 
P2a (nearly) = 3fq 178.724 (because t2 P2 — 1 -f- 178.724 
see pa. 308 or 325, and 304 or 350, and x ~ a = q ~ 1) — fq 
~ 59.6 nearly. 3. That if M be a body in the equator the dis¬ 
turbing force of the sun at M = qg 13067671. For M being 
the moon, the force is then fq — 59.6 ; but ^ = 60.3 X 60.3/ 
(see pa. 308) or f = g 3636 nearly ; hence the force becomes 
qg — 59.6 X 3636, and at the earth = qg ~ 59.6 x 60.3s = qg 
•— 13067671 nearly. 4. That the disturbing force of the moon on 
the equinoctial = gg-r- 3595802. For the general perturbating 
force was nearly 3F.r r, where F must be the centr. force at 
the moon. But the centr. force of the earth at the dist. of the 

3 N 
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moon = 1 60.S2g. And the moon being 49.2 times less than 
the earth (see pa. 327 or 344*) the centr. force of the moon at the 
same dist =,§•-?- 49.2 x 60.32, which being substituted for F, 
then the force of the moon in the equator — 3x r mult, by g -f- 
49 2 X 60.32 = 3gx divided by 60 3a X 49.2 X 60.32 — qg divid¬ 
ed by 20 1 X 49.2 X 60.32 = 3595802 nearly. 5. That the dis¬ 

turbing force of the sun to that of the moon ufion the equator is 
as 1 : 3.6 nearly For i 13067671 and 1 -r- 3595802 is near¬ 
ly in this proportion. 6. That if D be the apparent diam- and d 
the density of the perturbating body, then the disturbing force 
will be as dD3.r For that force = 3Fx ~ r, or as Fot-h r. If 
the diam. =* b, its quantity of matter = m j then F is as c/63-f-r2, 
and the disturbing force is thereiore dbzx — r3, or as dF)zx 7. 
That the centrifugal force of M (at the equator) : perturbating 
force MT :: P2 : t2, t being here the time of one rev. ol the 
earth on its axis. For t : 2fia (circum ) :: 1" : 2pa -f- t. = arc 
descr in l" ; and versed sine = 4fi2a2 —- 2at2 = 2/?2a t = 
the ascent or descent from the earth’s centrifugal force. But for¬ 
ces are as the effects produced ; hence s : g :: 2p2a ~ t2 
(ascent) : 2p2ag t2s the centrifugal force itself Now as the 
perturb force = Fa r = ahg -f- rs, we have centrif force : 
perturb force :: 2p2ag t2s : ahg rs :: 2p2 t2 : h ~ r 

:: 2fi2r : t2h :: 2/<2*- -f- h : t2. But 2p2r h = P2 ; for 
<v/2rh : l" :: 3pr : P = 2fir \/2rh ; hence P2 = 4p2r2 -f~ 
2rh = 2p2r h 8 That the body M is therefore accelerated 
from the quadr. Q, Z, to the syzygies A, B ; and retarded fiom 
syzy. to the quadr. And also that the vel. and area descr, in the 
syz are greater than in the quadr 

67 The linear error gen. in M in any time, is as the disturb, 
force and sq. of the time. And the angular error, seen from T, is 
as the force and sq. of the time directly, and the dist. TM recipro¬ 
cally. For the mot. genr. in any portion of time is as the force, 
and in any other time as the force and sq. of the time ; this mot. 
is the linear error of M, being carried out of its proper orbit by 
the force 3F.r r. This error as seen from T is as the angle 
under which it appears, that is as the linear error divided by the 
dist TM ; and hence is as the force and sq. of the time divided 
by the dist. 

68. From the preceding art. it appears, 1. That the linear er¬ 
ror generated in one rev. of M, is as the distu. force and sq. oi the 
period, time 3Fa£2 ~ r. And the angular error in one rev. is as 
the torce and sq of the period, time divided by the dist. 2. That 
the mean error of M in any given time will be as the force and 
period, time Vat -f- r And the mean angular error is as the 
force and period, time divided by the dist. For let i = given 
time ; then t : Fat2 ■x- r (whole error) :: 1 : Fat ~ r error in 
the time 1. 3. That the mean linear error in any given time is 
as at -F- P2- And the mean angular error as t P2. For (art 54) 
F is as r P2 ; hence Fat -f- r is as at -f- P2. And ang. error 

as t -r P2* 4. In any given time the linear error is as at ~ r3. 
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For (art. 58) P2 is as r3, hence at 4- P2 is as at 4- r3. 5. That 
the linear error in a given time is as Faf 4- r. And the angular 
error as Fa3- 4- r For t2 is as a3, hence Fat 4- r is as Faf 4- r. 
6. That universally the angular errors in the whole rev. of any sa¬ 
tellites are as t2 4- P2. And the mean ang errors as t 4- P2. For 
(1) ang. error is as Ya 4- r X t2 4- a, that is as t2 P2, because F 
is as r 4- P2. The latter case has been already proved. (3.) 

69. To determine the disturbing force of Jupiter or Saturn, upon 
the earth in its orbit ; that of the sun upon the moon being given. 
Let the quant, of matter in the sun and Jup. be as m : l. P, p, t the 
periodic times of the earth, Jup. and the moon, r, 6, the distan¬ 
ces of the earth and Jup. from the sun, a the moon’s dist from 
the earth, F, f the centr. forces of the sun and Jup. Now 
(art. 65) the distur. force of S the sun on M the moon is 3F.r -4 r, 
or as Fa -4 r ; but if S be Jup M the earth, and T the sun ; the 
force is then fr -4 b. That is the sun’s distur. force on the moon 
: Jup distur. force on the earth :: Fa 4- r : fr -4 b :: Ybr : 
fr2. But (2 art. 58) F = m -4 r2, and F = l -4 b2 ; hence the 
sun’s force on the moon : Jupiter’s on the earth :: abm -r- r2 : 
r2 -T- b2 :: ab*m : r4 :: a?2m : rP2 (art. 65.) But the sun’s 
disturbing force on the moon is given, and therefore that of Jup. 
If for P and m, Saturn’s periodic time and quantity of matter be 
substituted, his disturbing force will be known. 

70. From the preceding art. it appears, L That the angular er¬ 
rors generated in the moon by the sun are to those gen by Jup in 
the same time, as p2'ra : P3. For (2 art. 68) these errors are as 
the forces and periodic times divided by the distances. Hence the 
sun’s to that of Jup is as ap2mt 4- a : rP2 X P 4- r :: p2tm : r2. 
2. That the error in the moon from the sun’s action, is to the 
earth’s by Jupiter’s as 11466 : 1 ; and to that gener. by Saturn as 
222600 : 1. For let p = 4332.6 days, t — 27.32 days nearly, m = 
1067.1 nearly. P = 365.25 ; then p2*m 4- P3 = 1 1466. And 
taking p = 0759.07, and m— 3359 4 for Saturn ; then p2tm 4- 
P3 = 222600. 3. That the force of Saturn to that of Jup. to dis¬ 
turb the earth is as 1 : 19.4 4. That the secular motion of the 

nodes of the earth's orbit by Jupiter’s action is 10' 9"2, and by 
Saturn’s 3 t"4. For the annual mot of the moon’s nodes == 19° 19' 
43" (pa. 323) = 69583", which divided by 1 1466 gives 6"0686, 
and mult b'. 100= 60c"86 ; this being increased in the ratio of 
cos. of inch of Jup. orbit 1° 19' to that of the moon’s 5° 8' 48" (pa. 
324) gives 1G< 9"2, which divided by 9.4 gives i"4 for Saturn. 
5. That the secular mot of the earth's aphel. by the action of Jup. 
is 21' 16" in consequentia, and by Saturn 65"77 For the an¬ 
nual mot. of the moon’s apogee = 40° 39' 5 " (pa 328> = 146390" 
div by 11466 = 12"76, and mult by 100 gives 1276" = 21' 16". 

This div. by 19.4 gives 65"77. 
71. If a planet Y (or the moon) perform its mot. round an im¬ 

movable centre C in the orbit NT«;, whose plane is inclined to that 

of the ecliptic NEft, and is acted en by a force perp. to AB and par al 
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to the ecliptic, and always directed from the plane AB to either 
side. To find the mot. of the nodes N, n, and the var. of the or- 
bids inch PNE. Let NTBrc be half 
the orbit above the eclip. NE, Nrc 
the lines of the nodes, T, t, the tro¬ 
pics. Let CM be drawn perp. to 
the eclip. and CG perp. to the plan¬ 
et’s orbit. Let the circle GORX 
be descr. round M as a pole ; then 
GC will be the axis of the orbit, and 
MC of the eclip. Through T, C, 
draw the olane GMC, and another 
through N, C, M, cutting the cir. 
GRF in X and V ; then GF is perp. 
to XV, and GRF paral. to NBrc. 
Here GNX represents the upper 
surface. Let the planet at P de¬ 
scribe the space P2 in any short in¬ 
terval of time, and let Ps be the 
space it would be drawn in the same 
time by the force acting from the plane MAB. Compl. the paral. 
P3, then P3 will be the direction from both forces. Now as Ps 
is paral. to the eclip. the point 3 is below the plane of the orbit, 
and the plane CP2 will be moved in the pos. CP3, about CP ; 
hence GC will be moved perp. to CP. The pole G will there¬ 
fore be moved to some point between F and V. Hence the mot, 
of G will be known for all the places of P in its orbit. For about 
A, G moves perp. to MQ ; at N perp. to MX, or in the direct. 
GM ; at T paral. to MV, or in the curve RO ; about B it moves 
perp. from MQ ; hence in the passage of P from A to B, the 
pole of its orbit G describes the curve GI234. But in the other 
half of the orbit Bn? A, G will return back at 4, and describe a sim. 
curve 4567, the force being directed the contrary way from the 
plane ABMR. Hence when P has made 1 rev. G will be at 7. 
In this posit, of the nodes 7 will be within the circle ; for the 
points G, 4, being equidistant from QR ; 4, 7 will be also equi- 
dist. If the force and plane ABRQ revolve round CM in the 
direct. ANTn ; then when the ascend, node N is as far on the 
other side of A, as at c, the pole G will be as far on the other 
side of O, as at b, and being equally dist. from RQ on the same 
side, the curves (12467) will approach OV there, by the same 
degrees as they receded from it at GO. Hence G will, by de¬ 
grees, be brought to the circle again. Thus in every two corresp. 
points on each side of O, the forces and their effects balance one 
another, and G will be at the same dist. from the circle GOV. 
Hence after half a rev. of the plane AB to the nodes, the Z-GCM, 
or inch of orbit, becomes the same as at first. And as G moves 
forward or backward in the circle, the mot. of the nodes N, w. 
will be forward or backward. 
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72. From this art. it appears, 1. That in the pos. of the nodes 
at N and w, the inclination of the orbit will be dimin. every rev. of 
P, but at a increased. For then 4 and 7 approach M and recede 
at b. 2. That the incl. decreases when P is in AT or IP, and 
increases in TB, tA For G moves to 3, while P moves through 
AT. At 3 it is nearest M ; from 3 to 4, G recedes from M 
while P moves through TB. The same will happen in the other 
half of the orbit. 3. That when P is in AN and Bn, the nodes 
move forward, but backward in NB, n A. For while G describes 
Gl, its mot. is forward, that is from G towards Q ; at 1 it is stat. 
P being in N. G moves backwards or towards O through 1234 ; 
and then P is in NB. 4. That in general the nodes are always 
regressive except when P is between a node and its quadr. and 
then they are progr. wherever they are situated. 5. That the 
nodes move faster when P is in T and t. For then G is at 3 and 6. 
6. That the inch varies most when P is at N and n. For G is 
then at l and 5. 7- That therefore the incr. or deer, of the inch 
may be easily found, the place of P, and diff. situations of N, n 
being given. 8. That hence the forces being given, the mot. of G 
may be delin. on the surface GXFV ; and the incl. and place ©f 
the node at any time found. 

For more information consult Emerson’s Centr. forces, where 
this subject is fully investigated. 

73. To find the secular variat. of incL of the earth!s orbit, from 
the action of Jufi. and the same for Saturn. Let be the 
eclip. NGn the orbit of Jup, N Jup. 
ascending node, E, I, Q the poles of 
the eclip. Jup. orbit, and the equat. 
respectively ECD a circle paral. to 
NG, and FwQ paral. to the eclip. 
Q moves regularly along the circle 
Q/F, from the preces. of the equin. and 
as Jup. has no force to alter this re¬ 
gular mot. his force being only exert¬ 
ed on the whole body of the earth, 
and therefore in altering its orbit and 
the pole E of the ecliptic, which 
therefore moves in the circle ECD. 
Hence the orbit of Jup. must be considered as fixed, and there¬ 
fore the pole I and circle ECD ; in which circle the mot. of 
E must therefore be computed. The precess. of the equin. 
in 100 years = 1° 23' 45" (pa. 244 and 305.) The secular 
motion of the nodes of Jupiter is 10' 9"2* (4 art. 70) = 609"2 
Jup. asc. node N in 1812 (A. QEN) 23 8° 31' 15". Inch of 
Jup. orbit (1812) 1° 18' 49". Hence making Z-QEa = 1° 23' 
45" and EIC = 10' 9"2. Make Co perp. to Ea, then Eo is the 

* See pa, 360, where the true secular var. is given. 
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decrease of EQ or Ea, and is the same as that of the inch of the 
eclip. and equinoctial, (art 71.) 

In the AEIC, the Z. EIC being very small, we have rad : s. IC 
1° 18' 40" :: Z_ EIC 10' 9"2 : EC = 13"94 nearly. Again 
AaEN or cEC = 8° 3t' 15" -f- 1° 18' 47" = 9y 50' >" ; then 
in the small rt A’d A ECo rad. : EC :: cos. oEC : Eo = 
13"73 nearly, the secular decrease of the equin. by the action of 
Jup. 

The same comput. being applied to Saturn, then EIC = 31 "4, 
IC — 2o 29' 45", oEC = 21o 32' -f 1° 23' 45" = 22° 55' 45" ; 
hence the deer, by Saturn will be 1"26 nearly, and therefore by 
both the deer, will be I 5"J nearly. 

74. From the preceding art. it appears, 1 That the inch will 
decrease until E and a be at their nearest dist. in the two circles* 
which will be about 6600 years, after which it will incr. again. 
It has been decreasing for more than 8000 years. For the diam. 
of the circles ED and FQ being nearly as l : 19.4. And the 
AIEQ = 81° 28' 45", and the diff of the mot. of E and Q being 
1° 13' 36", it will decrease nearly as many centuries as 81° 28' 45" 

1 ° 13' 36", which is 66. Also suppl 98° 31' 15" — 1° 13' 36", 
gives 80 centuries it has been decreasing. The decrease for every 
century is not the same. For at its max. or min it is very slow, 
and is at a stand for a long time. 2. That the inch can never be 
less than about 21°, oi greater than about 26°. For the nearest 
and great dist. of the two circles EQ, FQ amount hut to these. 
JLaiilace makes these limits (3°) 2° 42'. 

To obtain these results more accurately, more terms of the 
series should be made use of; the above results are too small, but 
are however sufficient to give the learner an idea of this subject, 
the most interesting in modern astronomy. For more information 
the Celestial Mechanics of LafiLace, or his Astr. vol. 2 may be 
consulted. See also Newton's prin. where different methods of 
performing this and the preceding articles, relative to the moon, 
are given. The above calculation being according to Emerson's 
method. Dr. Gregory's Astr. may also be consulted. 
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Declination of the Sun for the years lSi^, 1816, 1820, 1824, tfc. 

BEING LEAP YEARS. 

<0 Jan. Feb. Alar. April. Aluy. June. July. | Ait S'' Sept. Oct. J\'ov. Dec. 

<sJ 
S. S. S &N. N. > i. N. N. N. N &.b. 8 i. 8 >. > ». 

1 2JC o' 17° 20' 7°3l/ 4° 50' loc 7' 22c 5' 23c 8' i8° x' 8°lt' 3° 14', l-i° 29' 2t° 51' 
O X* 23 0 17 n O 7 8 4 59 15 25 22 13 23 o 17 46 7 54 3 37 14 48 22 0 o D 22 55 16 46 6 45 5 22 15 42 22 20 22 59 17 31 7 S'i 4 0 15 7 22 9 
4 22 49 16 28 6 22 5 45 16 0 22 27 54 17 15 7 10 4 24 15 2o 22 17 
5 22 43 16 10 5 59 6 7 16 17 22 34 22 48 16 52 6 4b 4 47 15 44 22 25 
6 22 36 15 52 5 36 6 30 16 34 22 40 22 42 16 42 6 25 5 10 16 o 22 32 
7 22 29 15 34 5 13 6 53 16 51 22 46 22 36 16 26 6 3 5 Ct o 

DO 16 20 2 2 39 
8 22 22 15 15 4 49 7 15 17 7 22 52 22 2. 16 9 5 4c 5 56 16 38 22 45 
9 22 14 14 56 4 26 7 38 17 23 22 57 22 22 15 51 5 lb 6 19 17 56 22 51 

10 22 5 14 37 4 2 8 0 17 39 23 2 22 15 15 34 4 54 6 42 17 12 22 57 
11 21 56 14 17 o D o9 8 22 17 55 23 6 22 i 15 16 4 5^ 7 4 17 29 23 2 
12 21 47 13 58 o O 15 8 44 18 10 23 10 21 51 14 58 4 c 7 27 17 45 23 7 
13 21 37 13 38 o O 52 9 6 18 25 23 14 21 51 14 40 o O 4L 7 49 18 1 23 H 
14 21 27 13 18 2 28 9 27 18 39 23 17 21 42 14 22 o O o 8 12 18 17 23 15 
15 21 17 12 57 2 4 9 49 18 54 23 20 21 32 14 o O 3 c 8 34 18 33 23 18 
16 21 6 12 37 1 41 10 10 19 8 23 22 21 23 13 44 2 37 8 56 18 48 23 21 
17 20 54 12 16 1 17 10 31 19 21 23 24 2* 13 13 26 2 14 9 18 19 o 

O 23 23 
18 20 43 11 55 53 10 52 19 35 23 26 21 2 13 6 1 50 9 40 19 17 23 25 
19 20 31 11 34 29 11 13 19 48 23 27 20 52 12 46 1 27 10 2 19 31 23 26 
20 20 18 11 13 6 11 34 20 0 23 27 20 40 12 26 1 4 10 24 19 45 23 27 
21 20 5 10 51 N 18 11 54 20 13 23 28 20 29 12 7 40 10 45 19 58 23 28 
22 19 52 10 29 42 12 14 20 25 23 28 20 17 11 46 17 11 6 20 11 23 28 
23 19 38 10 8 1 5 12 34 20 36 23 27 20 5 11 26 S 6 11 28 20 24 23 27 
24 19 24 9 45 1 29 12 54 20 48 23 26 19 53 11 6 30 11 49 20 36 23 26 
25 19 10 9 24 1 52 13 14 20 58 23 25 19 40 10 45 53 12 9 20 48 23 25 
26 18 55 9 1 2 16 13 -TO oo 21 9 23 23 19 27 10 24 1 17 12 30 21 V 23 23 
27 18 40 8 39 2 39 13 52 21 19 23 21 19 13 10 o O 1 40 12 50 21 11 23 20 
28 18 25 8 16 3 3 14 11 21 29 23 18 19 0 9 42 2 4 13 11 21 21 25 17 
29 18 9 7 54 3 26 14 30 21 38 23 16 18 46 9 21 2 27 1 ° *o 31 21 32 23 14 
SO 10 53 3 45 14 48 21 48 23 11 18 31 8 59 2 50113 50 21 42 23 10 
31 10 37 21 56 18 16 8 38 ‘14 10 23 6 

Change of the Sun's decl.for periods of four years. 

A • 
O 

Qj . * 

4 
8 

12 
16 
20 

JANUARY. 

Days. 

1 7 
11 " 

13 19 

O'.l O'2 O'. 3 (/A 
o .O .4 .6 .7 

.4 .7 .9 1.1 

.6 .9 1.2 1.4 
.7 1.1 1.5 1.8 

FEBRUARY MARCH. 

Days *. Days. 

^5 1 7 13 19 25 l 7 13 19 25 

. -- , 4- 
O'. 4 G'.5 ■ r - L/ l. 0'. 6 O'.L o'. 7 O'. 7 0 c'.r O'. 7 0'.7 

.8 1.0 L .1 1.2 i .2 1.3 1 .3 1 A 1.41 .4 i .4 
1.3 1 .5 1.6 1 .7 1.9 2.0 2.0 2.1 2.1:2.1 2.1 
1.7 2.0 2.2 2.3 2.5 2.6 2.6 2.7 2.8,2 .8 2.8 
2.1 12.5 2.7 2.9 3.1 

o r> 
D .D 

o o o .o 3.5 3.5 3.6 3.6 

4 
8 

12 
16 
20 

In the above tables of declination, the declination is given for the noon of 
each day, under the meridian of Greenwich, for four successive years. S and 
N shew when the decl. is north or south. These tables are principally cal¬ 
culated for the years 1810, 1811, 1812 and 1813. 

The table of the change of the sun’s decl. is intended to reduce this decl. 
to a subsequent period. The variation of decl. is given opposite the years, 
and under the 1st, 7th, Stc. days of the month, which is to be added to or sub¬ 
tracted from the decl. in the table, according as the sine over it is -f- or ■—. 
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Declination of the Sun for the years 1813, 1817, 1821, 1825, UV. 
BEING THE FIRST AFTER LEAP YEAR. 

£•> 
Jan. Feb. Alar. Jlpril. Afay. June. Jidy. Aug. Sept. Oct. ATov. Dec. 

3. S. S&N. N. i\. N. N. N. N &S. S. S. S. 

1 23° 1' 17 3 7' 7°37' 4°30' 15° 2' 22° S' 23° S' 18° 5' 8°21' 3C 8' 14°25' 21°49' 
2 22 56 i6 50 7 14 4 58 15 21 22 11 23 5 17 50 7 59 3 31 14 44 21 58 
o O 22 51 16 32 6 51 5 16 15 58 22 18 23 0 17 35 7 37 3 55 15 o O 22 7 
4 22 45 16 14 6 28 5 39 15 56 22 26 22 55 17 19 7 15 4 18 15 22 22 15 
5 22 38 15 56 6 5 6 2 16 13 22 33 22 50 17 n 

O 6 53 4 41 15 40 22 23 
6 22 31 15 38 5 41 6 25 16 30 22 39 22 44 16 46 6 31 5 4 15 58 22 30 
7 22 24 15 19 5 18 6 47 16 47 22 45 22 38 16 30 6 8 5 27 16 16 22 37 
»|22 16 15 0 4 55 7 10 17 O 

O 22 51 22 31 16 13 5 46 5 50 16 34 22 44 
9;22 7 14 41 4 31 7 32 17 20 22 56 22 24 15 56 5 23 6 13 16 51 22 50 

10,21 59 14 22 4 8 7 55 17 35 23 1 22 17 15 38 5 1 6 36 17 8 22 56 
11121 49 14 o 

-</ 3 44 8 17 17 51 23 5 22 9 15 21 4 38 6 59 17 25 23 1 
12:21 40 13 48 

r> 
O 21 8 39 18 6 23 10 22 1 15 O 

O 4 15 7 21 17 41 23 6 
13 21 30 13 22 2 57 9 0 18 21 23 13 21 53 14 45 3 52 7 44 17 58 23 10 
14 21 19 13 2 2 34 9 22 18 36 23 16 21 44 14 26 3 29 8 6 18 13 23 14 
15 21 9 12 42 2 10 9 44 18 50 23 19 21 35 14 8 3 6 8 29 18 29 23 17 
16 20 57 12 21 1 46 10 5 19 4 23 22 21 25 13 49 2 43 8 51 18 44 23 20 
17 20 46 12 0 1 23 10 26 19 18 23 24 21 15 13 30 2 19 9 lo 18 59 23 23 
18 20 34 11 39 59 10 47 19 32 23 25 21 5 13 11 1 56 9 35 19 14 23 25 
19 20 21 11 18 35 11 8 19 45 23 26 20 54 12 51 1 33 9 57 19 28 23 26 
20 20 8 10 56 12 11 29 19 57 23 27 20 43 *2 31 1 9 10 18 19 42 23 27 
21 19 55 10 n 

OJ N 12 11 49 20 10 23 28 20 32 12 12 46 10 40 19 55 23 28 
22 19 42 10 13 36 12 9 20 22 23 28 20 20 11 52 23 11 1 20 8 23 28 
23 19 28 9 51 59 12 30 20 34 23 27 20 8 il 31 S 1 11 22 20 21 23 27 
24 19 13 9 29 1 23 12 42 20 45 23 26 19 56 11 11 24 11 44 20 33 23 26 
25 18 59 9 7 1 47 13 0 20 56 23 25 19 43 10 50 48 12 4 20 45 23 25 
26 18 44 8 44 2 10 13 29 21 7 23 23 19 30 10 29 1 11 12 25 20 57 23 23 
27 18 28 8 22 2 34 13 48 21 17 23 21 19 17 10 8 1 34 12 46 21 8 23 21 
28 18 13 7 59 2 57 14 7 21 27 23 19 19 o 

O 9 47 1 58 IS 6 21 19 23 18 
29 17 57 r* 

O 21 14 26 21 36 23 16 18 49 9 26 2 21 13 26 21 29 23 15 
30 17 41 3 44 14 44 21 46 23 12 .18 35 8 5 2 45 13 46 21 39 23 11 
31 17 24 4 7 21 54 18 43 8 43 14 5 23 7 

Change of the Sun's decl.for periods oj four years. 

P
e
ri

o
d
s 

o
f y

e
a
rs

. 

APRIL. MAY. JUNE. 

P
e
ri

o
d
s 

o
f y

e
a
rs

. 

Days. Days. JJays. 

1 7 
13119 

; 
25 1 

7 13 
19 25 1 7 13 19 25 

+ + 4- “h + 4- 4- 4* 4- 4* 4- 4- 4~ 
4 0'.7 0 '.7 O'. 7 O'. 6 O'.6 O'.6 O'. 5 O'.5 0f.4 0'.3 0'.3 O'-2 (/.1 O'.O O'.l 4 
8 1.4 1.4 1.3 1.3 1.2 1.1 1.0 .9 .8 .7 .5 .4 .2 .0 .1 8 

12 2.112.1 2.0 1.9 1.8 1.7 1.6 1.41.2 1.0 .8 .5 .3 .1 .2 12 
16 2 .8|2 .7 2.6 2.5 2.4 2.3 2.1 1.9 1.6 1.3 1.0 .7 .4 .1 .3 16 
20 3 .513 .4 3.3l 3.2 3.0 2.8 2.6 2.3 2.0 1.6 1.3 .9 .5 .1 .3 20 

Thus if the sun’s declination for the 1st of May, 1824, be required. The given 
year being leap year, or 12 years after 1812. lienee 

The sun’s declination 1st of May, 1812, is 15° 7' N. 
Equation or change for 12 years, is 4- 1.7 

Sun’s declination, 1st of May, 1824, 15 8.7 
Again, required the sun’s decl. at noon, for the 30th of September, 1833 ? 
Here the given year is the 1st after leap year, and is 20 years after 1813. 

Hence 
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Dedination of the Sun for the years 1810, 1814, 1818, 1822, is’c. 
BEING THE SECOND AFTER LEAP YEAR. 

«*> Jan. Feb. JStar. April May. June. July. Aug. Sept. Oct. Nov. Dec. 

q S. S. S&N. N. N. N. N. N. N &.S. S. S. S. 

1 23 3 J 17° ii' 7°42' 4°24' i4°58' 22° 1' 23°10, 18° 9 8°27' 3° 2' 14°20' 21°47' 
2 22 58 16 54 7 20 4 47 15 16 22 9 23 6 17 54 8 5 3 25 14 39 21 56 
3 22 53 16 3/ 6 57 5 10 15 34 22 17 23 2 17 38 7 43 3 48 14 58 22 5 
4 22 47 16 19 6 34 5 38 15 52 22 24 22 57 17 23 7 21 4 12 15 1/ 22 13 
5 22 40 16 1 6 11 5 56 16 9 2<^ 31 22 52 17 7 6 59 4 35 15 36 22 21 
6 22 33 15 43 5 47 6 19 16 26 22 38 22 46 16 51 6 37 4 58 15 54 22 28 
7 22 26 15 24 5 24 6 42 16 43 22 44 22 40 16 34 6 14 5 21 16 12 22 35 
8 22 18 15 5 5 1 7 4 17 0 22 50 22 34 16 17 5 52 5 44 16 30 22 42 
9 22 10 14 46 4 38 7 27 17 16 22 55 22 27 16 0 5 29 6 7 16 47 22 48 

10 22 1 14 27 4 15 7 49 17 32 23 0 22 20 15 43 5 6 6 30 17 4 22 54 
11 21 52 14 8 3 51 8 11 17 47 23 4 22 12 15 25 4 44 6 53 17 21 23 0 
12 21 43 13 48 O O 27 8 33 18 2 23 8 22 4 15 8 4 21 7 16 17 37 23 5 
13 21 33 13 28 3 4 8 55 18 17 23 12 21 56 14 50 3 58 7 38 17 53 23 9 
14 21 23 13 8 2 40 9 17 18 32 23 16 21 48 14 31 3 35 8 1 18 9 23 13 
15 21 12 12 47 2 16 9 38 18 47 23 19 21 39 14 13 3 12 8 23 18 25 23 17 
16 21 0 12 26 1 52 10 0 19 1 23 21 21 29 13 54 2 49 8 45 18 41 23 20 
17 20 48 12 5 1 29 10 21 19 15 23 23 21 19 13 35 2 25 9 8 18 56 23 22 
18 20 36 11 44 1 6 10 42 19 29 23 25 21 9 13 16 2 2 9 30 19 10 23 24 
19 20 24 11 23 42 11 3 19 42 23 26 20 58 12 56 1 39 9 51 19 24 23 26 
20 20 11 11 2 

N 
18 11 24 19 55 23 27 20 47 12 37 1 15 10 13 19 38 23 27 

21 19 58 10 40 5 11 44 20 7 23 27 20 36 12 17 52 10 35 19 52 23 28 
22 19 45 10 1 29 12 5 20 19 23 28 20 24 11 57 29 10 56 20 6 23 28 
23 19 31 9 57 52 12 25 20 31 23 28 20 12 11 37 5 11 17 20 19 23 27 
24 19 17 9 35 l 16 12 45 20 42 23 27 19 59 11 17 S 18 11 38 20 31 23 27 
25 19 2 9 12 1 40 13 4 20 53 23 26 19 46 10 56 42 11 59 20 42 23 26 
26 18 47 8 50 2 4 13 24 21 4 23 24 19 33 10 35 1 5 12 20 20 54 23 24 
27 18 32 8 28 2 28 13 43 21 14 23 22 19 20 10 14 1 29 12 41 21 5 23 22 
28 l8 17 8 5 2 51 14 2 21 24 23 20] 19 6 9 53 1 52 13 1 21 16 23 19 
29 18 1 3 15 14 21 21 34 23 17 18 52 9 32 2 15 13 21 21 27 23 16 
30 17 45 3 38 14 40 21 43 23 14 18 38 9 10 2 39 13 41 21 37 23 13 
31 17 28 4 1 21 52 18 24 8 49 14 1 23 9 

Change of the Sun*s decl.for periods of four years. 

Co 
S. 

JULY. AUGUST. SEPTEMBER. -§ t o JS •j* 
f* 3*5 

Days. Days. Days. © « 
*£ 

1 7 
I13 

19 25 1 7 13 19 25 1 7 13 19 25 

4 0M O'. 2 O'. 3 O'. 4 0'.4 O'. 5 j',5 O'. 6 O'. 6 0'.? 0'.7 O'. 7 0'.7 0'.'/ 
+ 

C/.7 4 
8 .3 .4 . .6 .7 .9 1.0 1.1 1.2 1.3 1.3 1.4 1.4 1.4 1.4 i .4 8 

12 .4 .7 .9 1.1 1.3 1 .5 1.6 1.8 1.9 2.0 2.0 2.1 2.1 2.1 2.1 12 
16 .6 .9 1.2 1 .4 1 .7 2.0 2.2 2.4 2.5 2.6 2.7 2.8 2.8 2/' 2.9 16 
20 .7 1.1 1.5 1.8 2.2 2.5 2.7 3.0 3.2 3.3 3.4 3.5 3.5J3.6 3 .61 20 

The sun’s declination 30th of Sept. 1813, is 2° 45' S. 
Equation or variation for 20 years, is -F 3.6 

Sun’s declination 30th Sept. 1833, 2° 48'.6 
The correction maybe found independent of the table thus; From the given 

year take as many times 4 as will reduce it to one of the years to which the 
table is adopted, and take out the deck answering the given time as before ; 
find also the deck for the following day, and multiply the difference between 
them by £th of the difference between the given and tabular years, and the 

3 O 
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Declination of the Sun for the years 1311, 1815, 1819, 1823, tfc. 
BEING THE THIRD AFTER LEAP YEAR. 

& 
Jan. Feb. Mar. April. May. June. July. Aug\ Sept. Oct. Nov. Dec. 

S S. S &N. N N « N • N N. N&S. S S # S. 

l 23° 4' 17° 16' 7°48' 4° 18', 14° 53' 2l°59' 23° n' i8°13' 8°32' *2°56' 14°15' 2 °44' 
2 22 59 16 59 7 25 4 42, 15 11 22 7 23 7 17 58 8 11 O O lb 14 34 21 53 
o 22 53 16 41 7 3 5 5 15 29 22 15 23 2 17 42 7 49 3 43 14 53 22 2 
4 a 48 16 24 6 40 5 28 15 47 22 22 22 58 17 27 7 27 4 6 15 12 22 11 
5 22 41 16 6 6 17 5 50 16 4 22 29 22 5 17 li 7 4 4 29 15 31 22 19 
6 22 35 15 47 5 53 6 13. 16 21 22 36 22 47 16 55 6 42 4 52 15 49 22 27 
7 22 27 15 29 5 JO 6 36: 16 38 22 42 22 41 16 38 6 20 5 15 16 7 22 34 
8 22 20 15 10 5 7 6 58; 16 55 22 48 22 35 16 21 5 57 5 38 16 25 22 41 
y 22 12 14 51 4 43 7 

21 
17 11 22 53 22 28 16 4 5 35 6 1 16 42 22 47 

10 22 3 14 32 4 20 7 43 17 27 22 59 22 21 15 47 5 12 6 24 16 59 22 53 
li 21 54 14 13 3 57 8 5 17 43 23 3 22 13 15 30 4 49 6 47 17 16 22 58 
12 21 45 13 53 3 33 8 27 17 58 23 7 22 5 15 12 4 26 7 10 17 33 23 O 

O 
13 21 35 13 33 3 9 8 49 18 14 23 11 21 57 14 54 4 4 7 O os 17 49 23 8 
14 21 25 13 13 2 46 9 11 18 28 23 15 21 48 14 36 4 41 7 55 18 5 2 12 
15 21 14 12 52 2 22 9 33 18 43 2 5 18 21 39 14 17 3 17 8 17 18 21 23 16 
16 21 3 12 32 1 59 9 54 18 57 23 21 21 30 13 58 2 54 8 40 18 36 23 19 
17 20 52 12 11 1 35 10 15 19 11 23 23 21 20 13 39 2 31 9 2 18 51 23 21 
18 20 40 11 50 1 It 10 36 19 23 23 25 2» 10 13 20 2 8 9 24 19 6 23 23 
19 20 28 11 29 47 10 57 19 

o . 
oo 23 26 21 0 13 1 1 45 9 46 19 21 23 25 

20 20 15 11 7 24 11 18 19 51 23 27 20 49 12 41 1 21 10 7 19 35 23 27 
21 20 o 

<6 10 46 0 11 39 20 3 23 28 20 38 12 22 58 10 29 19 48 23 27 
22 19 49 10 24 N 24 11 59 20 16 23 28 20 26 12 2 35 10 50 20 2 23 28 
2; 19 35 10 2 47 12 19 20 28 23 27 20 14 11 41 11 11 12 120 14 23 28 
24 19 21 9 40 1 11 12 33 20 39 23 27 20 2 11 21 S 12 11 33 '20 27 23 27 
25 19 6 9 18 1 35 12 59 20 50 23 26 1° 50 11 1 36 11 54 20 39 23 26 
26 18 51 8 56 1 .58 11 15 21 1 23 24 19 37 10 40 59 12 15 20 51 23 24 
27 18 3c 8 S3 2 22 i3 38 21 12 23 22 19 24 10 19 1 23 12 35 21 2 23 22 
26 18 21 8 11 2 45 13 57 21 22 23 20 19 10 9 58 1 46 12 55 21 13 23 20 
2? 18 5 3 9 14 f 6 21 32 23 17 18 56 9 37 2 9 13 16 21 24 23 17 
3( 17 4S 3 3 2 14 35 21 41 23 14 18 42 9 15 2 33 13 36 21 34 23 13 

L 17 32 3 55 21 50 18 28 8 54 13 55 23 9 
Change of the Sun’s decl.for periods oj four years. 

Jo CO 

^ b 
OCTOBER. November DECEMBER . Co Co 

O >2 
#s* Days. Fays. Fay s. 

1 7 13 19 25 1 7 13 19 25 1 7 13 19 25 

-f 4- + -f- + + 4- 4- + 4- 

1 1 
O

 

+ 4- 4- 
4 O'. 7 0'.7 O'. 7 O'. 6 O'.6 O'. 5 0'.5!0'.4 O'.4 O'.3 o'; O'.l O'.O O'.O 4 
8 1.4 1.4 1.3 1.3 1.2 1.1 1.0 .9 .8 .7 5 .4 .2 .0 .1 8 

12 2.1 2.0 2 .Oil .9 1 .8 1.6 1 5il .3 1.2 1.0 .7 .5 O 
.O .1 .1 12 

16 2.8 2.7 2 .6(2.5 2 .4 2.2 2.Oil .8 1.5 1.3 1.0 .7 .4 .1 .2 16 
20 3.5 3.4 3 .3j3 .2 3.0 2.8 2 .5*2.2 2.0 1.7 1.3 .9 .5 .2 

O 
.O 20 

product divided by 33 will give the correction ; which is to be added when 
the decl. is increasing or to be subtracted when decreasing. If the given lime"* 
be interior to that in the tables, the correction is to be applied in a contrary- 
manner. Thus, if the sun’s decl. for the 1st of May, 1824, be required. Here 
the given year is 12 years after 1812, the sun’s decl. on the 1st of May, 1812, 
is 15° 7', and for the 2d, 15° 25', the difference is 18'. Now 18 x o (because 
12 ■ 4 = o) gives 54 ; hence 54 . oo = 1.6 nearly, the correction, which 
added to 15° 7', because the decl. is increasing, gives 15° 8'.6, the declination 
for the 1st of May, 1824, 



A TABLE 

OF THE 

Latitudes and Longitudes 
OF SOME OF THE 

PRINCIPAL PLACES IN THE WORLD, 

Collected from the most authentic Tables, Maps, Astronomical 

Observations, life. 

The longitude, or difference of meridians, is reckoned from the 
meridian of Greenwich observatory, which is 5' 37" east of Lon¬ 
don, 2° 19' according to Mayer (or 2° 19' 42" according to 
Delambre) wes of Paris observatory. 9° 5 3', according to Mayer, 
west of Gottingen observatory, 17° 33' 45" east of the'town of 
Ferro, 75° 14' 22" east of Philadelphia, 74° 1' east of New- 
York, 71° 3' 37" east of Boston, and 77° 14^' east of Wash¬ 
ington City, generally reckoned 77° 9'. 

There is nothing in which authors disagree more than in the 
lat. and long, of places, as they generally copy each other, or the 
mistakes of those who have actually made observations, and whose 
errors must have arisen from the imperfection in their instru¬ 
ments, or want of the necessary knowledge in using them 

The Tide-Table annexed to the following latitude and longitude 
af places, gives the distance of the moon from the meridian, 
when it is high water at those respective places. As there are 
two tides in the dayr it is evident that this table will only give the 
moon’s distance from the meridian at one of them : if this time be 
however taken from 12, the dist. of the moon from the meridian at 
the other will be given. Thus, if when the moon is full, high water 
at New-York be at 9 o’clock, P. M it is evident that the next tide 
will be about 9 o’clock in the morning, when the moon will be 
about 3 hours distant from the meridian ; and this is the reason 
that some make the time of high water in New-York 9 hours, 
while others make it 3. The s^me observation will hold for any 
other place. 
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Names of Places. Country or Sea. Lat. Long, H. -water 

A. 
Acre, Syria, 32 42 N. 35 10 E. 
Abbeville, France, 50' 3 7'N. 1° 49'E. 10h.30' 
Aberdeen, Scotland, 57 9 N. 2 8 W 45 
Abo, Finland, 60 27 N. 22 13 E. 
Acapulco, Mexico, 17 10 N. 101 26 W 
Achen, Sumatra, I. 5 22 N. 95 35 E. 
Adrianople, Turkey, 41 12 N. 26 28 E. 
Adventure Bay, Van Dieman’s, L 43 22 S. 147 30 E. 4 36 
Agra, Hindoostan, 26 43 N. 78 45 E. 
Air, Scotland, 54 25 N. 4 26 W 10 30 
Aix, France, 43 32 N. 5 26 E. 
Albany, N. America, 42 39 N. 73 46 W 3 24 
Aleppo, Syria, 36 11 N. 37 10 E. 
Alexandretta, Syria, 36 35 N. 36 15 E. 
Alexandria, Egypt, 31 12 N. 29 55 E. 
Alexandria, Virginia, 38 45 N. 77 16 W 
Algiers, Africa, 36 49 N. 2 12 E. 
Alicant, Spain, 38 21 N. 0 30 W 
Altorf, 
Amboy, 

Switzerland, 46 53 N. 8 37 E. 
N. Jersey, 40 33 N. 74 20 W 8 9 

Amboyna, I. Moluccas, 3 36 S. 128 15 E. 
Amiens, F ranee, 49 54 N. 2 18 E. 
Amsterdam, Holland, 52 22 N. 4 51 E. 3 0 
Ancona, Italy, 43 38 N. 13 30 E. 
Angers, France, 47 28 N. 0 34 W 
Angra, Tercera I. Azores 38 39 N. 27 12 W 11 45 
Annapolis, Maryland, 39 2 N. 76 45 W 10 0 
Antigua, I. SO 

John’s town, 3 
Carib. Sea, 17 4 N. 62 9 W 

Antioch, Syria, 35 55 N. 36 15 E. 
Antrim, Ireland, 54 58 N. 6 27 W 
Antwerp, Netherlands, 51 13 N. 4 24 E. 6 45 j 
Archangel, Russia, 64 34 N. 38 55 E. 6 of 
Arica, Peru, 18 27 S. 71 13 W j 
Ascension, I. S. Atlant. Ocean, 7 56 S. 14 21 W 
Astracan, Russia, 46 21 N. 48 3 E. 
Athens, Turkey Eur. 38 5 N. 23 52 E. 
Ausburg, Germany, 48 19 N 10 56 E. 
Augusta, Georgia, U. S. 33 20 N. 81 4 W 
St. Augustine, E. Florida, 29 58 N. 81 40 W 4 30 
Ava, East India, 21 56 N. 95 15 E. 
Avignon, France, 43 5 7 N. 4 48 E. 
Avranches, France, 48 41 N. 1 22 W 6 30 f 
Auxerre, France, 47 48 N. 3 34 E» / 

Feef 

5* 
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Names of Places. 
R 

Country or Sea. Lat. Long. I{. water 

Jj« 

Babel mandebstr, Red Sea, 12° 50'N. 43c 45'E. Oh . 0' 
Babylon, (anc.) Syria, 33 o N. 42 46 E. 
Badajoz, Spain, 38 46 N. 6 45 W. 
Bagdad, Syria, 33 20 N. 44 23 E. 

Balasore, Hindoostan, 20 21 N. 86 45 E. 10 0 

Balbec, Syria, 33 50 N 36 20 E. 

Baltimore, Ireland, 51 16 N. 9 30 W. 4 30 

Baltimore, Maryland, 39 20 N. 76 43W. 
Banca, I. S. end, Indian Ocean, 3 15 S. 107 10 E. 
Bantam point, Java I. 5 50 S. 106 9 E. 
Bantry, Ireland, 51 27 N. 9 46 W. 5 15 

Barbuda I. Atlantic, 17 49 N. 62 ow 
Barcelona, Spain, 41 26 N. 2 12 E. 
Basil or Basle, Switzerland, 47 34 N. 7 35 E. 
Basse Terre, Guadaioupe, 15 59 N. 61 54 W. 
Bassora or Basra, Turkey, A, 30 25 N. 47 30 E. 
Bastia, Corsica, 42 42 N. 9 25 E. 
Batavia, Java I. 6 11 S. 106 52 E. 
Bayonne, France, 43 29 N. 1 29W. 3 30 
Beachy head, England, 50 44 N. 16 E. 10 30 
Belfast, Ireland, 54 43 N. 5 57 W. 10 0 
Belgrade, Turkey, E. 45 0 N. 21 20 E. 
Bencoolen, Sumatra, 3 49 S. 102 3 E. 
Bennington, Vermont, U. S. 42 50 N. 73 6 W. 
Bergen, Norway, 60 23 N. 5 12 E 1 30 
Bergen-op Zoom Holland, 51 30 N. 4 17 E. l 30 
Berlin, Germany, 52 32 N. 13 23 E. 
Bermudas I. N. Atlantic, 32 35 N. 64 28 W. 6 30 
Berne, Switzerland, 46 57 N. 7 26 E 
Berwick, Scotland, 55 47 N. 2 5W. 2 0 
Bethlehem, Pennsylvania, 40 37 N. 75 25 W. 
Bilboa, Spain, 43 26 N. 2 47 W. 3 45 
Bologna, Italy, 44 30 N- 11 2 i E. 
Bologne, France, 50 43 N. 1 36 E. 10 45 
Bombay I. India, E. 18 56 N. 72 54 E, 
Boston, Massachusetts, 42 23i N 71 OW. 1 l 9 
Botany Bay, N. Holland, 34 o s. 151 20 E. 8 0 
Bourbon, I. N. Ind. Ocean, 20 51 S. 55 30 E. 
Bourdeaux, France, 44 50 N. 35 W. 7 14 
Braganza, Portugal, 41 53 N. 7 3 W. 
Breda, Netherlands, 5 1 36 N. 4 46 E. 
Bremen, Germany, 53 5 N. 8 49 E. 5 45 
Breslaw, Silesia, 51 5 N. 17 6 E. 
Brest, France, 48 23 N. 4 30 E. 3 45 

Feet 

15 

15 

15 

19 
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JYames of Places. Country or Sea. Lat. Long. H iv ater 

Bristol, England, 51° 28 N. 2° 35 W 6h.45' 

Bruges, Netherlands, 51 .3 N- 3 13 E. 

Brunswick, Germany, 52 25 N. 10 31 E. 

Brunswick, Dist. Maine, 43 52 N. 69 59 W. 

Brunswick, New-Jersey, 39 39 N 74 18 W. 

Brussels, Netherlands, 50 51 N. 4 21 E. 

Breda, Hungary, 47 30 N. 19 0 E. 

Buenos Ayres, S. America, 34 35 S. 58 24 W. 

Bukarest, Turkey, 44 27 N. 26 8 E 

Burlington, New-Jersey, 40 5 N. 75 6W. 9 14 

Burgos, 
p 

Spain, 42 20 N 3 30 W. 

Cabello port, S. America, 10 31 N. 67 32W. 

Cadiz, Spain, 36 31 N 6 17 W. 2 30 

Caernarvon, Wales, 53 6 N. 4 30 W. 7 0 

Cagiiari, Sardinia I. 39 25 N 9 38 E. 

Cairo, Egypt, 30 3 N. 31 17 E. 

Caithness point, Scotland, 58 46 N. cy 
O 22 W. 9 0 

Calais, France, 50 571 N 1 50 E. 11 45 

Calcutta, F. VV. Bengal, 22 35 N 88 28 E. 3 5 

Callao, Peru, 12 2 N 76 58W. 6 30 

Calmar, Sweden, 56 41 N. 16 25 E. 

Cambray, Netherlands, 50 11 N. 3 14 E. 

Cambodia, East India, 13 1 N. 105 0 E. 

Cambridge, England, 52 13 N. 5 E. 

Cambridge, Massachusetts, 42 23£ N 71 7 W. 

Canary, I. N. E. Canary, Is. 28 13 N 15 39 W. O 
O 0 

Candi, Ceylon, 7 45 N. 80 46 E. 

Candia, Candy, I. 35 19 N. 25 18 E. 

Canton, China, 23 7 V 113 16 E. 

Cape Canso, Nova Scotia, 45 16 N 60 55 W 8 30 

—Cantin, Morocco, 32 44 N. 9 10 W 1 0 

—Clear, Ireland, 51 18 N. 9 30 W 4 30 

—Ortegal, Spain, 43 46 N 7 39 W 3 0 

—Finisterre, Spain, 42 53 N. 9 18 W. 3 15 

—St. Vincent, Portugal, 37 2 N. 9 2 W 3 0 

—Baiodor, Africa, 26 13 N 14 27 W. 0 0 
J 

—Blanco, do. 20 55 N. 17 10W. 9 45 

—Verd, do. 14 47 N. 17 33 W 7 45 

— Siera Leon, do. 8 30 13 9VV. 8 1 5 

—Mount, do. * 6 46 H 48 W. 

—Palmas, do. 4 30 7 41 W. 
—Good Hope. > do. 34 29 S. 18 23 E. o 

O 0 

— Town, 5 do. O ' 56 S. 18 23 E. 2 30 

—Comorin, Hindoostan, 8 4 N 77 34 E. 

Feet 

24 

2 

9X 

12 

3 

3 
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Names of Places. Coumry or Sea. Lat. Long. If. water 1 

Cape Lapotka, Namskatcha, 51° O'N. 156°42' E. 
—Race, Newfoundland, 46 40 N. 53 44 W. 
—.Sable, Nova Scotia, 43 24 N. 65 39 W. 8h 15' 
—Cod, (light) Massachusetts, 42 5 N. 70 14 W. 11 30 
—Charles, Virginia, 37 12 N. 76 9 W. 7 0 
—Hatteras, N. Carolina, 35 12 N. 75 5 W. 11 0 
—Francois (new) do. 19 46 N. 72 18 W. 6 0 
—Horn, S. America, 55 58 S. 67 26 W. 
—Bianco, Patagonia, 47 20 N. 64 42 W. 
—Farewell, Greenland, 59 38 N. 42 42 W. 
—Florida, America, 25 47 N. 80 35 W. 7. 30 
—Capricorn, N. Holland, 23 27 S. 151 6 E. 8 0 
—Diggs, Labradore, 62 41 N. 78 51 W. 
—Henry, Virginia, 36 57 N. 76 19 W. 10 54 
■—Lahogue, France, 49 45 N. 1 57 W. 8 30 
—May, New-Jcrsey, 39 4 N. 74 54 W. 8 9 
Cardigan, Wales, 52 2 N. 4 45 W. 7 15 
Carthage ruins, Tunis, 36 35 N. 10 10 E. 
Carthagena, Spain, 37 37 N. 1 1 W. 8 0 
Carthagena, Terra Firma, 10 26 N. 75 21 W. 2 0 
Casan, Siberia, 55 44 N. 49 28 E. 
Cayenne, Cayenne, I. S. A 4 56 N. 52 16 E. 4 0 
Charleston, South Carolina, 32 50 N. 80 1 W. 7 54 
Charlestown, Massachusetts, 42 22 N. 71 1 W. 
Christiana, Norway, 59 55 N 10 48 E. 
Christiansand, Norway, 58 10 N. 8 2 E. 
Christianstat, Sweden, 56 5 N. 14 2 E. 
Christmas sound, Terra del Fuego, 55 22 S. 70 3 W. 2 30 
St. Christophers, West Indies, 17 15 N. 62 43 W. 
Cologne, Germany, 50 55 N. 6 55 E. . 

Columbia, South Carolina, 33 58 N. 81 5 W. 
Conception, S. America, 36 43 S. 73 6 W. 3 0 
Constance, Germany, 47 37 N. 9 13 E. 
Constantinople, Turkey, 41 1 N. 28 55 E. 
Copenhagen, Denmark, 55 41 N. 12 35 E. 
Corinth, Turkey, 37 54 N. 22 55 E. 
Cork, Ireland, 51 54 N. 8 28 4 45 
Corvo, Azores, 39 43 N. 31 5 W. 
Cracow, Poland, 50 11 N. 19 50 E. 
St. Cruz, I. Atlantic, 17 49 N. 64 53 W. 
Curacoa, I. } 

W. Indies, 12 16 69 7 W. 
nortli point, 3 

Cusco, Peru, 
, 

12 25 S. 73 35 W- 

Feet 

4 

18 

10 

6 
6 
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Names of Places. 
D. 

Damascus, 
Dantzick, 
Dardanelles, 
St. David's head 
Delhi, 
Deseada, I. 
Detroit, 
Deventer, 
Dieppe, 
Dijon, 
Dingle Bay, 
St. Domingo, 
Dort, 
Douay, 
Douglas, 
Dover, ' 
Dresden, 
Drontheim, 
Dublin, 
Dublin, obs. 
Dunbar, 
Dungarvon, 
Dungeness, 
Dunkirk, 
D unnose, 

E. 
East Cape, 
Eddystone light, 
Edenton, 
Edinburgh, 
Embden, 
Ephesus, 
Erzerum, 
Eustatia I. 
Exeter, 

F. 
Fair Island, 
Falmouth, 
False Cape, 
Fayal Town, 
Fayetteville, 
Ferrara, 
Ferro (Town) 

Country or Sea. 
1 

Lat | Long. //. -water 

Syria, 33° 16'N. 36 °20' E. 
Poland, 54 22 N. 18 38 E. 
Turkey, 30 10 N. 26 26 E. 

, Wales, 51 55 N. 5 27W. 6h. 0' 
Hindoostan, 28 37 N. 77 40 E. 
VV. Indies, 16 36 N. 61 low. 
United States, 42 31 N. 83 12 W. 
United Prov. 52 17 N. 6 13 E. 
F ranee. 49 56 N. 1 4 E- 10 30 
Burgundy, 47 19 N. 5 1 E. 
Ireland, 51 55 N. 10 49 W* 4 0 
Hispaniola, 18 20 N. 69 46 W. 
Holland, 51 47 N. 4 35 E. 3 0 
Flanders, 50 22 N. 3 5 E. • 
I. of Man, 54 7 N- 4 38 W. 10 30 1 
England, 51 8 N. 1 19 E. 11 45 
Germany, 51 o N- 13 41 E. 
Norway, 63 26 N- 10 22 E. 
Ireland, 53 22 N- 6 17 W. 9 0 

Do. 53 23 N. 6 20^ W 
Scotland, 56 1 N. 2 33 W. 3 30 
Ireland, 52 0 N. 6 50 W. 4 30 
England, 50 52 N. 0 59 E. 9 45 
F ranee. 51 2 N. 2 22 E. 
I. of Wight, 50 37 N. 1 UW. 9 45 

New Zealand, 37 44 S. 178 58 W. 
England, 50 8 N. 4 24 W. 5 30 1 
N. Carolina, 36 6 N. 76 50 W. 
Scotland, 55 57 N. 3 12 W. 4 30 1 
Germany, 53 23 N. 7 10 E. 15 
Natolia, 38 0 N. 27 53 E. 
Natolia, 39 56 N. 41 10 E. 
West-Indies, 17 30 N. 63 2W. 
England, 50 44 Ne 3 34 W. 10 30 

Orkney Is. 59 30 N. 1 46W» 10 0 
England, 50 8 N. 5 2W* 5 30 1 
Delaware, 38 38 N. 75 9 W • 1 

Azores, 38 32 N. 28 41W- 2 20 
V. Carolina, 35 11 N. 78 50 W • 
Italy, . 44 50 N. 11 36 E- 
Canaries, 27 47 

* 
17 46W. 3 0 i 

l 

Feet 

36 

16 

O 
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vVames of places. Country or Sea. J Lat. Long. H. ivater\ 
Ferrol, Spain, 43° 29'N. 8°15'W. 3h. 0' 
Fez, Africa, 33 31 N. 5 OW. 
Florence, Italy, 43 46 N. 11 3 E. 
Flores, Azores, 39 26 N. 31 11W. 
Flushing, United Prov. 51 27 N. 3 34 E. 45 
N. Foreland, England, 

Martinico, 
51 23 N. 1 27 E. 10 20 

Fort Royal, 14 36 N. 61 low. 7 30 
France, I. of S.W. 
Francfort on ? 

Indian Ocean, 

Germany, 

20 

50 

27 

8 

N. 

N. 

57 15 E. 

35 E. 

30 

the Main, S 8 

Frankfort, Kentucky, 38 4 N. 85 12 W. 
F ribourg, Switzerland, 46 48 N. 7 8 E. j 
Fuego I. Cape Verd Is. 14 57 N. 24 22 W. 
Funchal, Madeira, 32 38 N. 16 56 W. 4 

Galway, Ireland, 53 10 N. 10 1W. 4 0 
Geneva, Switzerland, 46 12 N. 6 8 E. 
Genoa, Italy, 44 25 N. 8 50 E. 
Georgetown, Columbia dist. 38 55 N. 77 14 
Georgetown, S. Carolina, 33 32 N. 79 3 W. 
Fort St. George, or Madras, 13 5 N. 80 25 E. 
St-George’s town Bermudas I. 32 22 N. 64 33 W. 5 30 
St. George’s 7 

Isle, W. 3 
Azores, 28 53 N. 28 10W. 

Ghent, Netherlands, 51 3 N. 3 43 E. 
Gibraltar, Spain, 36 5 N. 5 4W. 0 0 
Glasgow, Scotland, 55 52 N. 4 15W. 3 0 
Gluckstad, Holstein, 53 48 N. 9 27 E. 
Goa, Malabar, 15 28 N. 73 59 E. 
Gondar, Abyssinia, 12 34 N. 37 28 E. l 30 
Gottenburg, Sweden, 57 42 N. 1 1 57 E. 
Gottingen (ob.) Germany, 51 32 N. 9 54 E. 
Gravesend, England, 51 28 N. 20 E. 
Greenwich (ob.) England, 51 28fN. 0 0 2 40 
Groningen, United Prov. 53 10 N. 6 22 E. * 
Guadaloupe, West-Indies, 15 59 N. 61 59 W. 
Guernsey, 

H 
Haerlem, 

British ch. 49 30 N. 2 52 W. 1 30 

Holland, 52 22 N. 4 36 E. 9 0 
Hague, Holland, 52 4 N. 4 17 E. 8 15 
Halifax, Nova Scotia, 44 44 N. 63 36 W. 7 30 
Hamburg, Germany, 53 34 N. 9 54 E. 6 15 
Hanghoo, China, 30 25 N. 120 12 E. 
Hanover, Germany, 52 22 N. 9 45 E. 
Hartford, Connecticut, 41 50 N. 72 35 W. 11 14 
Havannaji, Cuba I. 23 12 N. 82 18 W. 

H 

11 

18 

3 P 
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Names of Places. Country oi' Sea. [ Lat. Long. // -water 

Havre de Grace, France, 49< > 29'N. 0° 6' E. 9h 0' 
St. Helena, ? 
James town, 5 Atlantic, 

I 

15 55 S. 5 49 W. 2 15 

Hervey’s I. Society Isles, 19 17 s. 158 56 W. 
Holla, Iceland, 65 45 N. 19 44 N. 
Holyhead, Wales, 

England, 
53 23 N. 4 45 W. 9 45 

Hull, 
I. 

Jackson (Port) 

53 48 N. 33 W. 6 0 

New Holland, 33 52 S. 151 14 E. 8 15 
Jackutskoi, Siberia, 62 2 N. 129 44 E. 
Jaffa, Siberia, 32 5 N. 35 10 E. 
St. Jago, Cuba I. 19 55 N. 75 35 W. 
Jassay, Moldavia, 47 8 N. 27 30 E. 
Java head, Java I. 6 49 S 105 7 E. 
Ice Cape, Nova Zembla, 75 30 N. 67 30 E. 
Jeddo, Japan Is. 36 30 N. 140 0 E. 
Jersey I. St.? 

Aubins, S Eng. Channel, 49 13 N, 2 12 W. 30 

Jerusalem, Syria, 31 45 N. 35 20 W. 
Ingoistadt, Germany, 48 46 N. a 25 E. 
Inverness, Scotland, 57 36 N. 4 15 W. 11 50 
St. John’s, Newfoundland, 47 32 N. 52 26 W. 6 0 
St John’s, Antigua, 17 4 N. 62 9 W. 
St. Joseph’s, California, 23 4 N. 109 42 W. 
St. Julian (Port) Patagonia, 49 10 s.j 68 44 W. 4 45 
Ispahan, Persia, 32 25 N.l 52 50 E. • 

Feet 

20 

* 

Isthmus of Corinth joins the Morea to Greece. 
of Darien joins North and South-America. 
of Suez joins Africa to Asia. 

Ivica I. Mediterranean 
St. Juan, Porto Rico I. 

K. 
Kamtschatka, Siberia, 
Kiel, Holstein, 
Kilkenny, Ireland, 
Kingston, Jamaica I. 
Kinsale, Ireland, 
Kiow, Russia, 
Koningsberg, Prussia, 

L. 
Laguna, Tene-7 

riffe I. S 
Canaries, 

Lancaster, England, 

35 50 N. 1 30 E. 
18 30 N. 66 29 W. ] 
56 30 N. 161 0 E. 
54 20 N. 10 18 E. 
52 37 N. 7 15 W. 
18 15 N. 76 44 W. 
51 32 N, 8 38 W 4. 45 
50 27 N 30 27 E. 
54 43 N. 21 35 E. 

28 29 N. 16 27 W 3 0 

54 4 N. 2 50 E. 11 15 
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Names of Places. 

Lancaster, 
Lands End, 
Leghorn, 
Leuwarden, 
Leipsic, 
Lexington, 
Leyden, 
Liege, 
Lima, 
Limburg, 
Limerick, 
Limoges, 
Lisbon, 
Liverpool, 
Lizard, 
London (st. Paul’s) 

Londonderry, 
Louisbourg, 
Louisville, 
Louvain, 
Lubec, 
Lucerne, 
St. Lucia I. 
Lunden, 
Luxemburg, 
Lyons, 

M. 
Macao, 
Macassar, 
Madeira I. ? 

Funchal, 5 
Madras, 
Madrid, 
Mahon (Port) 
Majorca I. 
Malacca, 
St. Maloes, 
Malta I. 
Manilla, 
Mantua, 
Marigalante, 
Marietta, 
Marseilles, 

Country or Sea. 

Pennsylvania, 
England, 
Italy, 
United Prov. 
Germany, 
Kentucky, U. S. 
United Prov. 
Netherlands, 
Peru, 
Netherlands, 
Ireland, 
France, 
Portugal, 
England, 
England, 
England, 
Ireland, 
Cape Breton I. 
Georgia, U. S. 
Netherlands, 
Germany. 
Switzerland, 
W est-Indies, 
Sweden, 
Netherlands, 
France, 

China, 
Celebes I. 

Atlantic, 

India, 
Spain, 
Minorca I. 
Mediterranean, 
E. India, 
France, 
Mediterranean, 
Philippine Is. 
Italy, 
W. India, 
Ohio, U. S. 
France, 

Lat. 

<3/1 o-N 
6 N. 

13 5 
40 25 
39 52 
39 35 

2 12 
48 39 
35 54 
14 36 
45 8 
15 55 
39 8 
43 18 

40° 
50 
43 33 N 
53 9 N. 
51 22 N. 
37 59 N. 
52 8 N 
50 39 N. 
12 2 S. 
50 40 N. 
52 33 N. 
45 50 

38 42 N. 
53 22 N. 
49 57 N. 
51 31 N. 
54 59 N. 
45 54 N. 
32 54 N. 

50 53 N. 
53 51 N. 
47 3 N. 
13 24 N. 
55 42 N. 
49 37 N. 
45 46 N. 

22 13 N. 
5 9 S. 

32 38 N. 

N. 
N. 
N. 
N. 
N. 
N. 
N. 
N. 
N. 
N. 
N. 
N. 

Long. 

760 20'W. 
5 54 W 

10 16 E 
5 55 E 

12 20 E 
84 46 W 

4 28 E 
5 SI E 

76 50 VV 
$ 57 E 
8 42 W 
1 15 E 
9 9 W 
2 57 W 
5 13 W 

6 W 
7 15 W 

59 59 W 
82 44 W 

4 41 E. 
10 41 E. 
8 18 E. 

60 51 W. 
13 12 E. 
6 11 E. 
4 49 E. 

113 35 E. 
119 49 E. 

16 56 W. 

80 
3 
O O 
2 

102 
2 

14 
120 

10 
61 
81 

5 

25 E. 
38 W. 
48 E. 
30 E. 

9 E. 
2 W. 

28 E. 
52 E. 
52 E. 
11 W. 
38 W. 
22 E. 

rater 

4h 30' 

6 
0 

Feet 

6 30 

4 30 

3 30 
11 15 

5 30 
3 0 
6 0 

7 15 

5 50 

5 50 

0 

0 
0 

20 

51 

M 

4£ 
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Names of Places. 1 Country or Sea. Lat. Long. H. -water 

Martha's vineO J 
yard I. Ed- t Massachusetts, 41‘ "22' N. 70°26'W. 
gar's town, J 

Martinico I. ? 
Fort Royal, -> 

W. Indies, 14 36 N. 61 10WT. 

Mecca, Arabia, 21 45 N. 40 15 E. 
Mexico, N. .\merica, 19 54 N. 100 7 W. 
St. Michael's I. Azores, 37 47 N. 25 42 W. 
Milan, Italy, 45 28 N. 9 14 E. 
Milford, Wales, 51 45 N. 5 21 W. 5h.l5' 
Minorca (Port 7 

Mahon) 5 
Mediterranean, 39 51 N. o 

K> 54 E. 

Mocha, Arabia, 13 44 N. 44 o E. 
Modena, Italy, 44 47 N. 10 55 E. 
Mons, Netherlands, 50 27 N. r* 

O 57 E. 
Montpelier, France, 43 37 N. o 

O 52 E. 
Montreal, Canada, 45 33 N. 73 18 W. 
Montserat, N. E. West-Indies, 16 49 N. 62 27 W. 
Morocco, Barbaiy, 31 0 N. 7 4 W. 
Moscow, Russia, 55 45 N. 37 46 E. 
Munich, Germany, 48 8 N. 11 35 E. 

N. 

*i 

Namur, Netherlands, 50 28 N. 4 51 E. 
Nancy, France, 48 42 N. 6 10 E. 
Nan gasaki, Japan, 32 45 N. 130 15 E. 6 0 
Nankin, China, 32 5 N. 118 46 E. 
Nantes, France, 47 13 N. 1 34 W. 3 45 
Nantucket, Nantucket I. 41 18 N. 70 10 W. 3 
Naples, Italv, 40 50 N. 14 17 E. 9 30 
Newbern, N. Carolina, 35 17 N. 77 18 W. 
Newburyport, Massachusetts, 42 47 N. 70 52 W. 11 30 
Newcastle, England, 55 3 N. 1 30 W. 5 15 
New-Haven, Connecticut, 41 18 N. 72 53 W. 10 44 
Newport, Rhode-Island, 41 25 N. 71 15 W. 7 37 
New-Orleans, Louisiana, 29 58 N. 90 6 W. 
New-York, New-York, 40 42| -N. 74 1 W. 8 54 
N. York light h. New-York, 40 28 N. 74 0 W. 7 30 
Niagara, New-York, 43 16 N. 79 ow. 
Nice, Italy, 43 43 N. 7 15 E. 
Nieuport, Flanders, 51 8 N. 2 45 E. 0 0 
Nootka, N. America, 49 36 N. 126 43 W. 20 
Norfolk, Virginia, 36 55 N. 76 22 W. 
North Cape, Lapland, 71 10 N. 25 49 E. 3 40 [ 
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Names of Places. 

o. 
Ochotsk, 
Odense, 
Ohitatoo I. 
Ohnutz, 
St. Omer, 
Oporto, 
L‘Orient, (port) 
Ostend, 
Otaheite, 
Oviedo, 
Owhyhee,S.poin 

P. 
Padua, 
Palermo, 
Palmyra, 
Panama, 
Paris (obs.) 
Parma, 
Pegu, 
Pekin (obs.) 
Pensacola, 
Perth Amboy, 
Petersburg, 
Philadelphia, 
Pico I. 
Pittsburg, 
Placentia, 
Plymouth, 
Plymouth, 
Poitiers, 
Pondicherry, 
Port au Prince, 
Portland, 
Portland (light) 
Porto Bello, 
Port Royal, 
Portsmouth, 
Portsmouth, 
Potosi, 
Prague, 
Presburg, 
Providence, 

Country or Sea. Lat. Long. II water 1 

Russia, S9°20r N. 143ol3'N. 
Funen I. 55 24 N. 10 11 E. 
Society I. 9 55 s. 139 6W. 2h .30' 

Moravia, 49 37 N. 17 5 E. 
Netherlands, 50 45 N. 2 15 E. 

Portugal, 41 10 N. 8 27 W. o 
O 15 

France, 47 45 N. 3 22 E. 3 30 

Netherlands, 51 16 N. 2 56 E. 0 0 

S. Pacific Ocean, 17 20 s. 149 30 E. 
Spain, 43 18 N. 5 50 W 
S. Pacific Ocean, 18 54 N. 155 48 W. 3 45 

Italy, 45 23 N. 11 53 E. 
Sicily I. 38 7 N. 13 35 E. 
Arabia, 33 58 N. 38 42 E. 
Mexico, 8 58 N. 80 15 W. O o 0 

France, 48 50 N. 2°19'42"E 
Italy, 44 47 N. 10 21 E. 
East India, 17 55 N. 96 45 E. 
China, 39 54 N. 116 27 E. 
W. Florida, 30 30 N. 87 low. 
New-Jersey, 40 33 N. 74 20 W. 8 9 
Russia, 59 56 N. 30 18 E. 
Pennsylvania, 39 57 N. 75 14 W . 1 54 

Azores, 38 27 N. 28 28 W. 
Pennsylvania, 40 26 N. 80 OW. 
Newfoundland, 47 26 N. 53 30W. 9 0 
England, 50 22 N. 4 12 W. 6 0 
Massachusetts, 41 57 N. 70 40 W. 10 40 
France, 46 35 N. 0 21 E. 
East India, 11 56 N. 79 52 E. 
St. Domingo I. 18 34 N. 72 28 W. 
Dist. Maine, 43 39 N. 70 28 W. 10 45 
England, 50 31 N. 2 27W. 7 30 
Terra Firma, 9 33 N. 79 50 W. 8 0 
Jamaica, 18 0 N. 76 45 W. 
England, 50 47 N. 1 6 W. 11 15 
New Hampshire 43 4 N. 70 46W. 11 15 

Peru, 20 0 s. 66 15 W. 
Bohemia, 50 6 N- 14 24 E. 
Hungary, 

(Rhode I. U, S. 
48 8 N. 17 10 E. 
41 47 N. 71 22 W. 8 11 

Feel 

2i 

6|- 

<4 

10 
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Names of Places. Country or Sea. Lat. Long. H. water 

Q- 
Quebec, Canada, 46<>48 N. 71 > 6'W. 7 h.30' 
Quimper, France, 47 58 N. 4 7 W. 2 30 
Quito, Peru, 13 S. 78 10W. 

XV* 

Ramsay, I. of Man, 54 17 N. 4 26W. 10 30 
Revel, Russia, 59 27 N. 24 39 E. 
Rheims, F ranee, 49 15 N. 4 2 E. 
Rhodes, Rhodes I. 35 27 N. 28 45 E. 
Richmond, Virginia, 37 35 N. 77 43 E. 

Riga, Russia, 56 55 N. 24 0 E. 
Rio Janeiro, Brazil, 22 54 S. 42 44 W. 4 30 
Rochelle, France, 46 9 N. l 10 W. 3 45 
Rochester, England, 51 26 N. 30 E. 45 
Rome (St. Pet.) Italy, 41 54 N. 12 28 E. 
Rotterdam, United Prov. 51 56 N. 4 28 E. 3 45 
Rouen, France, 49 27 N. 1 5 W. 2 45 
Rugen I. Baltic, 54 32 N. 14 30 E. 

u« 
Saba L W. Indies, 17 39 N. 63 17W. 
Sagan, Silesia, 51 36 N. 15 13 E. 
Salem, Massachusetts, 42 29 N. 70 52 W. 11 30 
Salonica, Turkey, 40 41 N. 23 7 E. 
St. Salvador, Brazil, 12 58 N. 39 OW 
Samarcand, W. Tartary, 39 35 N. 64 20 E. 
Samos I. Archipelago, 37 46 N. 27 13 E. 
Sancta Cruz, Teneriffe I. 38 39 N. 16 22 W. 
Sancta Fee, New Mexico, 36 54 N. 104 SOW. 
Saragossa, Spain, 41 43 N. 50W. 
Saratov, Russia, 51 35 N. 46 0 E. 
Savannah, Georgia, U. S. 32 4 N. 81 11W. 7 45 
Scanderoon, Syria, 36 35 N. 36 14 E. 
Scaff-house, Switzerland, 47 42 N. 8 37 E. 
Sigo, Africa, 14 0 N. 2 15 W. 0 30 
Senegal (Fort) Africa, 15 53 N. 16 31W. 0 30 
Sion, Switzerland, 46 14 N 7 22 E. 
Seringatapam, Hindoostan, 12 22 N. 76 50 E. 

Siam, E. India, 14 18 N. 100 49 W. 
Sigan, China, 34 16 N. 109 0 E. 
Sinope, Natolia, 42 2 N- 35 0 E. 
Smyrna, Natolia, > 38 28 N. 27 7 E. 
Stans, Switzerland, 46 57 N. 8 22 E. 
Stockholm, Sweden, 59 21 N. 18 4 E. 
Strasburg, France, 48 35 N. 7 45 E. 

Feet 

18 

7 

12 

/ 
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Names of Places. 

Suez, 
Surrinam, 
Syracuse, 

T. 
Tainarin town, 
Tanjore, 
Tavira, 
Teflis, 
Teneriffe Peak, 
Tercera I. 
Texel I. 
Tobolsk, 
Toledo, 
Tornea, 
Toulon, 
Toulouse, 
Tours, 
Trent, 
T renton, 
T'rincomale, 
Tripoly, 
T royes, 
Tunis, 
Turin, 

U. 
Upsal, 
Uraniburg, 
Ushant I. 
Utrecht, 

V. 
Valencia, 
Venice, 
Vera Cruz, 
Vernon, (mount) 
Verona, 
Versailles, 
Vienna (obs.) 

W. 
Wardhuys, 
Warsaw, 
Washington city, 
Waterford, 
Wells, 
Wexford, 
Weymouth, 

Country or Sea. Lett 1 jOng //. water[Feet 
Egypt, 29c > 50'N. 33< >27' E. 
S. America, 6 30 N. 55 30 W. 
Sicily I. 36 53 N. 15 17 E. 

Socotra, 12 30 N. 52 9 E. 9h. 0' 
Hindoostan, 10 46 N. 79 48 E. 
Portugal, 37 8 N. 7 40 E. 1 30 
Ptrsia, 42 6 N. 45 15 E. 
Canary I. 28 15 N. 16 45 W. 3 0 
Azores, 38 39 N. 27 12 W- 11 45 5 * 

United prov. 53 10 N. 4 59 E. 7 30 15 
Siberia, 58 12 N. 68 19 E 
Spain, 39 50 N. 3 20W. • 

Lapland, 65 51 N. 24 14 E. 
France, 43 7 N. 5 55 E. rs 

o 14 1J 
France, 43 46 N. 1 26 E. 
France, 47 24 N. 42 E. 
Germany, 46 5 N. 11 6 E. 
New-Jersey, 40 13 N. 74 50 W. 
Ceylon, I. 8 33 N 81 21 E. 6 0 

<n ■ G> 
Barbary, 32 54 N. 13 20 E. 
France, 48 18 N. 4 5 E. t 

r 
Barbary, 36 16 N. 10 40 N. 
Italy, 45 5 N. 7 39 E. 

Sweden, 59 52 N. 17 43 E. 
1 

Denmark, 55 54 N. 12 51 E. ► i 
Coast of France, 48 28 N. 5 4 W. 4 30 
United prov. 52 5 N. 5 9 E. 

Spain, 39 25 N. 25W. 
Italy, 45 27 N. 12 4 E. 10 30 3 
Mexico, 19 10 N. 97 20 W. 
Virginia, 38 46 N. 77 11W. 
Italy, 45 26 N. 11 1 E. p 

France, 48 48 N. 2 7 E. 
Austria, 48 12 N. 16 22 E. 

Lapland, 70 23 N. 31 7 E. 
Poland, 52 16 N. 21 3 E. 
N. America, 38 53 N. 77 13 W. 
Ireland, 52 12 N. 7 6W. 4 45 
England, 51 12 N. 2 45 W. 6 0 
Ireland, 52 20 N. 6 24 W. 8 30 
England, 52 40 N. o 3-4 W. 7 20 18 
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Names of Places. 
Williamsburg, 

Country or Sea. 1 

Virginia, 
Lat. 

37°14'N. 
Long. 

7 6049'W. 
H •water 
11h.10' 

Wilmington, NU Carolina, 34 11 N. 78 5 W. 

Wilna, Poland, 54 42 N. 25 27 E. 

Wyburg, Russia, 60 55 N. 30 20 E. 

Y. 
Yarmouth, England, 52 55 N. 1 40 E. 9 0 

York, England, 53 58 N. 1 7 VV. 

York Town, Virginia, 37 14 N. 76 36 W. 

z. 
Zug, Switzerland, 47 10 N. '831 E. 

Zurich, Switzerland, 47 22 N. 8 32 E. 

Zutphen, United Prov. 52 12 N. 6 15 E. 

A table of the mean rt. ascen. and decl. of the principal Fixed Stars 

adapted to the beginning of 1800.* 

Names of Stars. .Mag. Rt Ascen. an.var. Declination. I An. var * 
y Pegasi Algenib, 2 0° 23' 16' 45"9 14G 4' 23" N. !+20"2 
tc Cassiopeise, Schedar, 3 7 18 38 49 7 55 26 20 N. 4-19 9 
a Urs. Min. Pole Star, 2.3 13 8 46 173 2 88 14 26N. + 19 4 
8 Androm, Mirach, o 14 38 35 49 9 34 n cy OO 25N. + 19 4 
5 Cassiopeiae, 

n O 18 12 44 57 0 59 11 28N. + 18 9 
# \rietis, 3.4 25 54 12 49 4 19 49 27N. + 18 0 
y \udrom. Almaach, 2 27 55 24 54 1 41 21 46N. + U r 
u Arietis, 2,3 28 58 54 50 2 22 30 39N. + 17 5 
a Ceti, Menkar, 2 42 57 33 46 6 n O 17 54N. + 14 r » 
@ Persei, Algol, var. 2.5 43 48 15 57 5 40 8 19N. + 14 5 
a Persei, 2 47 31 45 62 9 49 8 13N. + 13 7 
a Pleiadum, Alcyone, o O 53 55 19 53 0 23 28 38N. + 11 9 
y Tauri, o O 62 6 22 50 8 i5 8 2N. + 9 5 
11 Tauri, Aldebaran> 1 66 6 53 51 2 16 5 43N. + 8 0 
@ Eridani, 3 74 30 21 43 7 5 21 18S. — 5 4 
a Aurigae, Cafiella, 1 75 29 3 66 0 45 6 39N. + 4 6 
<3 Orionis, Rigel, 1 76 13 59 43 0 8 26 30S. — 4 9 
$ Tauri, 2 78 33 53 56 6 28 25 30N. + 3 9 
a Orionis, Bellatri:v, 2 7 8 35 23 45 1 2 35 33S — 4 0 
8 Orionis, 2 80 26 54 45 5 0 27 27S. — 3 5 
e Orionis, 2 81 31 3 45 4 1 20 28S. 2 0 
£ Orionis, 2 82 40 6 45 1 2 3 33 S. — 2 6 
a Coin mbs, 2 83 6 11 32 2 34 11 17S. _ Q A* 4 
@ Columbae,. 3 85 58 46 32 1 35 51 6S. — 1 8 

* The above is from the latest observations of La Lande, but fitted to the 
1800, the latest British globes being adapted to that year. 
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J table of the mean rt. ascen, and decL of the firincifial Fixed Stars 
adafited to the beginning of 1800. 

Names of Stars. dfay . Rt . Ascen. an.var Declination. An. var. 
&> Orionis, Bctelguese, 1 86° 8 12 ' 48 7° 21' 29''N .4- l "5 
( Canis Majoris, 2.o 93 9 3 34 2 9 58 56S. 4 l 0 

Canis Majoris, 2.2 93 o 0 25 2 35 17 52 2S. 4- l 2 
a Canis Maj Sirius, 1 99 5 39 5 1 6 26 54S. 4 4 5 
i Canis Majoris, 3 102 41 2* 35 1 28 42 19S 4 4 3 
d Canis Majoris, , 2.3 105 3 5: 1 36 2 26 5 2S 4 5 1 
•o Canis Majoris, 2 109 2 4 35 2 28 55 16S. 4 6 5 
a. Geminorum, Castor 1.2 1 10 27 1 57 6 82 18 46N — 7 0 
a Canis Min. Procyon 1.2 1 12 12 2C 47 0 5 43 34N — 6 7 
8 Geminorum, Pollux, 2.3 113 15 5! 55 0 28 29 50N — 8 0 
£ Navis 2 1 19 8 2( 31 5 >9 26 45S. 4 9 8 
* Ursae Majoris, ' 3 131 2 l 45 63 4 4-9 49 2N- 0 —- » 0 5 
cl 2 Cancri, Acubens, 3 131 52 58 49 2 12 37 24 1 0 — 1 0 4 
as Hydae, Alfihard, 2 139 26 23 43 9 7 47 50S. 4 *6 0 
ffc Leonis, 3 1 45 20 26 51 6 26 56 24N —16 5 
<» Leonis, Regulus, 1 149 25 38 47 9 12 5 6 2oN. —17 2 
8 Urs3e Majoris, 2 162 25 4 55 4 57 27 7N. — 19 1 
cl Urs. Maj. Dubhe, 2.1 1 62 48 57 57 2 62 49 40N. — i 9 3 
8 Leonis, Deneb, 2.1 5 74 4 2 4 D 45 9 15 41 25N. —20 0 
$ Virgpnis, 3 175 4. 8 46 8 2 53 34N. —20 3 
y Ursae Majoris, 2 175 48 41 48 1 54 48 25N. —20 2 
£ Ursae Majoris, 

o O 1 8 1 21 49 45 3 58 8 4 IN. —20 2 
y Corvi, Algoraby 3 1 81 23 6 45 7 16 25 44S -f 20 0 
* Ursae Maj. Alioth, 3 1 9 l 17 5 3 40 4 57 2 55 N. — 9 7 
a Vtrsp Sfiica Virg. 1 198 40 7 46 9 10 6 3 4S. + 19 l 
£ Ursae Majoris, 2.3 198 57 43 36 8 55 58 29N — 19 0 
♦) Ursae Maj. Benetnach 2 204 54 45 35 2 5 0 19 IN. — 18 2 
ct, Draconis, 3 209 24 45 24 6 65 20 8N. — 17 3 
Q5 Bootis, Arcturus, 1 211 38 8 40 7 20 13 54-N —19 0 
y Bootis, Seginus, o O 216 0 15 36 4 39 10 22N. — 16 1 
a 2 Librae, Zubenelch. 2.3 219 57 34 49 2 15 17 4s. 415 5 
# Ursae Min. Kochab. 3 222 51 58 —•4 8 74 58 27N — 14 9 
8 Librae, Zubenelg. 2 3 226 oo 58 47 9 8 38 2S. 413 7 
<55 Coron. bor. Alfihacca, 2.3 231 33 24 37 8 27 23 50N. — 12 5 
a Serpentis, 2.3 233 36 24 43 y 7 CS O 59N. — 1 1 8 
# Serpentis, ' 3 234 14 27 41 0 O 16 3 30N. — i l 7 
<5* Scorpii, 3 2 37 9 56 52 8 22 2 18 S. — ! 0 9 
5 Scorpii, 2 236 27 28 51 9 19 14 39 S. — 10 4 
2 Ophiuchi, 3 241 58 10 46 7 f* O 9 58 S. 4 9 T * 
a Scorpii, Antares, ] 244 17 3 54 6 25 5 1 16 S 4 8 3 
£ Ierculis, O D 244 24 27 38 3 21 56 9N-- — 8 3 
a ; Ierculis, Ras Algethi 3j 25 6 3 0 40 8 14 37 54n::- — 4 6 
X Scorpii, Le.sath, o 260 0 36 60 5 36 56 31 S. ■ 4 3 4 
a O p h i achi, J?<zs- a /hagns 2. 261 24 50 41 5 12 4 3 7 s’.1- O - O 1 
y Draconis, Rastaben} 3 267 59 31 20 4 i >1 31 6N4 — 0 7 

3Q 
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A table of the mean rt. ascen. and decl. of the firinci/ial Fixed Stai'a 
ada/ited to the beginning of 1800. 

Names of Stars. Ft. Ascen. an.var. Declination. An var. 
a Sagitarii, 3 272°43'27" 59" 5 34° 27'^ n''N. 1 0 
a Lyrx, Vegay 1 277 32 29 30 4 38 36 19N. + 2 9 
(2 Lyrx, 2.3 280 40 28 33 0 33 8 35N. + 

o O 6 
cr Sagitarii, 2.3 280 42 52 55 7 26 31 41 S. — 3 7 
y Lyrx, 

o O 282 51 56 33 5 32 23 SON. + 4 5 
$ Aquilx, 

o O 288 51 9 45 2 2 43 44N. + 6 6 
(3 Cygni, Albirco, o O 290 39 50 36 ft O 17 32 56N. + 7 1 
« Aquilx, Altair, 1.2 295 15 20 43 8 8 21 8N. + 8 9 
(3 Aquilx, 

o O 296 22 16 44 5 5 55 10N. + 8 6 
a 1 Capricorni, 3.4* 301 38 16 49 9 13 6 44 S. — 10 5 
* 2 Capricorni, O 301 44 11 49 9 13 9 3 S. — 10 8 
0 Capricorni, 3 302 26 23 50 6 15 23 56 S. 

4* 
10 9 

a Delphini, 
a Cygni, Deneb, 

3 307 35 13 41 6 15 12 59N. 1PM 
2 308 39 13 30 5 44 34 18N. + 12 6 

a Cephei, Alderamin, 3 3»8 26 51 21 5 61 44 29N. + 14 9 
Aquarii, 

o O 320 15 17 47 3 6 26 31 S. 15 6 
s Pegasi, 3 323 35 22 44 5 8 57 57N. + 16 2 
£ Capricorni, 3 323 59 43 49 8 17 1 32 S. ■16 ft i> 
a Aquarii, 3 328 52 36 46 0 1 17 6 S '. 17 3 
y Aquarii, 3 332 49 45 46 3 2 23 19 S. ■18 0 
a Pise. \us. Fomalhaut 1 341 38 34 49 9 30 40 30 S •19 0 
/3 Pegasi* Scheat, 2 343 31 22 42 9 27 0 7N. + 19 4 
os Pegasi, Markab, 2 343 42 5 44 4 14 8 4N. + 19 2 
at Androm. Alfiheratz, 2.3 359 30 8 1 45 9 27 59 14N. +20 0 
3 Cassiopx, 2.3 359 r\ ft oi> 41 ! 46 7 58 2 48N. + 19 9 
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A. 

ABERRATION, what 49. How discovered, &c. 301. 
Altitude of an object, what 9. Meridian 9. Quadrant of 9. IIow louftd. 

with artificial horiz. 50. Of a star, how found 203. 
Amphiscii, who and why so called 4. 
Amplitude, what 9. How found 145, he. 
Analemma, what 63. . _ . . . 
Angle of position, what 24. How found 135. Differing from the bearing 

of places 135. 
Anomaly, true, mean, &c. what 48. How found olj. 
Anomalistic year, what and how found 305. 
Antseci who, their seasons, hours, &c. 5. How found 57- 
Antipodes, who, &c. 5. How found 57- 
Aphelion, what 48. 
Apogee, what 48. 
Apparent place of a body differs from its true 
Apsides, line of the 48. 
Apsis of an orbit, what 48. 
Arch, diurnal and nocturnal, what 25. 
Argument, what 49. Of latitude, how found 350. 
Ascension, right, oblique, &c. what 23. How found 145, 192, 194 
Ascensional difference, what 24. How found 145. 
Aspect of the stars or planets, what, he. 48. 
Atmosphere, what 25. 
Axis of a sphere, of the earth, and of the artificial globe 2. 
Azimuth, what 9. Sun’s, how found 148. Of a star, how found 203. 

B. 

Bayer’s Characters, what, remarks on, &c. 45. 
C. 

Calendar, reformat, of, method of calculating, &c. 16. 
Centre of gravity, what, of a system of bodies, how found 253- 
Ceres, a new planet, when and by whom discovered 47. Remarks on 357. 
Circle great, lesser, &c. 2. Of reflection, use of, he. 50. 
Circles of perpetual apparition and occultation, what 25. 
Climates, what, he. 22. How found 115. Their breadth, Sec. 117. 
Clocks, he. how regulated 83, 373. 
Clusters, what, their number, &c. 27, &c. 46. 
Colures equinoctial and solsticial, mark the seasons, he. 7. 
Comets appar. paths of 242. Their nature, motion, periods, tails, he. from 

392 to 435 
Commutation, angle of 259, 351. 
Compass mariner’s, variation of, he. 9. 
Conjunction, he. what 48. Of the inferior planets, how found 267. 
Constellations, what, tables of, description, of origin of, &c. 27 to 45. 
Course, or a ship’s way, what 24. 
Crepusculum or twilight, what, probable cause of, he. 24. 
Culminating point, what 24. 
Curtate distance of a planet from the sun or earth, what 49. How found 35*4 
Cycle, what 17- Of the sun and moon 17, 18. Of indiction 19. 
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D. 

Day, a true and mean solar, Natural or Astronomical, artificial, &c. what 11. 
Civil, sidereal, Sec. what 12- Length of the longest in an) latitude how 
found 77. 

Declination, what 23. Of the sun, how found 62, 63, 64, 74, 166, 171. Of 
a star 192. 

Degree, length of, &c. 3, 118, 119, Sec. 
Degrees, reduced to t me, and the contrary 51. 
Descension oblique, what 23. How found 145, &c. 
Dialling, principles of, &.c. 183 to 191. 
Digit, what 49. 
Disk, what 49. 
D.p, &c. how calculated 158, 159, 160. 
Distance of places on the earth, how found 118. Of stars, &c. from each 

other .'24 Of planets from the sun, how found 259, 352. 
Dogdays, how found, &c- 233. 
Dominical Letter, what, and how found 18. 
Duration, what 10. 

E. 

Earth, diurnal motion of the, and poles 2. Daily mean mot. of 15. Its 
pLxe, how found 64. Its surface irregular 120, 121. Its mean distance 
from the sun 256. Figure 28o to 288. Magnitude, how found 288, Sec. 
Diurna* mot 293. Probable cause of its diur. mot. 296- Annual mot. 
297 Its perihelion, apogee, Sec 305. Its mot. theory of 312, &c. Its 
orbit, secular variation of its inch from the action oi Jupiter and Saturn 
485, &c. 

Easier Sunday, how found 20. 
Eccentricity of a planet’s orbit, what 48. Howr found 318, 
Eclipse, solar and lunar, where visible 173, 174. When likely to happen 176. 
Eclipses, useful in finding' the long. 55. Of Jupiter’s satellites, where visi¬ 

ble 177. Solar and lunar, how determined 448 to 457. 
Ecliptic, what, and why so called, signs of, &c. 6. Cardinal points of 8. 
Ellipse, how described 253. 
Elongation of a planet from the sun 49. How found 351, 352. 
Emersion of a satellite, what, &c. 178. 
Epact, udiat, how found, &c. 18, 19. 
Equation of the centre, what 49 How found 313. 
Equation of time, causes of 84. Calculation of 85. Tables of 86, 87, 88, 
Equator, what, and why so called 3. 
Equmoctial, w hat 3. Points of what 7- 
Equinox, verm.l and autumnal, what 7. 
Equinoxes, precession of 15. Illustrated 243. Its quantity determined 305. 

C. 

Galaxvj via Lactea, or Milky way 45. 
Globe, what, terrestrial, its spherical figure, proofs of, &c. 1. 

H. 

Harvest moon, phenomenon of the 179. 
Herschel, his periods, &.c. 388, 389, Sec. His satellites 390 to 392. 
Heteroscii, who, and why so called 4. 
Hi eh water, how found 240, 460. 
Hoi izon, what, sensible, rational, circles on, wooden, &c. 7, 8. 
Hour, six o’clock line, what 24. Of the day, how found 144, 150, 151, 152, 

172. Of the night, how found 204, 206, 207, 208, Sic. From the moon’s 
shining on a dial 214. 

Hours, what, and how divided 11. Babylonish, Italian, Jewish, Planetarv. 
&c. what 12. 
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i. 

Immersion of a satellite, what, &c. 178. 
Incl. na-. ion, reclination and decl. of a plane, how found 191, 
Inclined planes, motion of b -dies on 468 to 470. 
index or hour circle, what, &c. 6. 
Juno a new planet, when and by whom discovered 46. Remarks on 357- 
Jupiter, his periods 359; retr. mot. mean dist. eccentricity, mean long-, 

perihelion, incl of orbit, gr. equation, belts, &c. mot on his axis, &c 560 
and 362 ; diameter 361; light and heat on, &c. 362. His satellites 363 ? 
then- mean motions, &.c. 364 ; their lmmer. emersions and revolutions 
366 ; their long, dist &,c. 367 ; rotary motion 368 ; their eclipses 369 i 
inequalities 370, &c. their configurations 373, &c. His disturbing force 
on the earth, &c. 483. 

K. 
Kepler’s laws 253, 475, 477, &.C. 

Latitude, of a place, what, diff. of, &c. 3. How found 50 to 57, also 155, 
159, &c. to 172 Of a star, how found 195. Of a place 214 to 222. Geo¬ 
centric and heliocentric, what 4-8. How found 351. 

Laws of motion, forces, gravity, &c. from 463 to 486. 
Light or heat, &c. decreases as the square of the dist. 270. 
Longitude, of a place, what 4. How found 50 to 57 and 266. Of a star, 

how found 195. Difference of, what 3. How found 56, 57, 284. Geo¬ 
centric, how found 352. 

Lumicre cendree, what 337. 
M. 

"Magnetic needle used in finding the latitude 54. ^ 
Mars, his periodic and rotary motions 347. Mean dist. 348, 549. Apparent 

diameter, parallax, &c. 349. Velocity in his orbit, light and heat, mean 
longitude, incl. of orbit, place of his node, aphelion, magnitude, &c. 350. 
Fasciae or belts of 356. 

Measures, French, &c. 132, 133. 
Medium Cadi, what, and how found 210. 
Mercator’s sailing explained, &c 134. 
Mercury, his direct, retr. and stat. motion explained 257 and 266. His dist. 

from, and period round, the sun 258. Elongation, &c- 259. Eccentricity 
and mean mot. 260. Aphelion, nodes, and their secular variations 262, 
263, &.c. Diam. how found, magnitude, &,c. 262, 263. 

Meridian, what, why so called, how drawn, brazen or universal, what, 
first what, &c. 5, 6. Alt. of the sun, when to be observed 90. Line, 
how drawn 181. 

Meridional parts, how found 134. 
Month, astronomical, periodical, synodic, civil, solar, &c. 13, 14. 
Months, their names, origin of, &.c. 13, 14. 
Moon, age of, how found 20. Time of coming to the meridian or southing, 

how found 20, 213, 238. New, full, &c. 20, 21. Situation of her orbit, 
how found 226. Where vertical 237. Distance from the earth, how 
found 250 Her mean mot. 320. Her sidereal revol. 321. Eccentricity, 
gr. equation of her orbit, &c 322, 324. Mean mot. of her apogee, place 
of the nodes, how found, their mean mot. inclination of her orbit, &c. 323. 
Evection, variation, ann .al equation, Etc. 325. Her revol. table of 325. 
Appar. diameter 326. Her spots 337. Libration 338. Libr. in lat. and 
long. 339. Atmosphere 340. Refraction 342. Height of her mountains, 
how determined 343. Magnitude 344. Her disturbing force, &c. 481, &c. 

Motion of bodies in general 463, Etc. In circular orbits, Etc. 473. 

N. 
Nadir, what 9. 
Nebulae, what, their number, Etc. 27, 28, 29, 46, 445. 
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Nebulous stars. Sec. 46, 447. 
Night, what, variable in different latitudes 12. 
Nodes, what, ascending, descending, line of, &c. 4?, 48. How found, Sec. 264 
Nonagesimal degree, whal, and how found 210. 
Noon, mean or true 11. 
Numbers of the months, what, and how found 19. 
Nutation, wbat, &c. 243. 

Occultation of a star or planet, what 49. 
Opposition, &c. what 48 Time of, for the sup. planets, how found 377. 
Orbit of a planet, &c. what 47. How found 260, 261. 

P. 

Pallas, a new planet, when, and by whom discovered 47. Remarks on 357. 
Parallax, what, &c. 25, 226. How found, &c. 279, 328, &c. In lat. and 

long. 331. 
Parallels of latitude, what 4. 
Pendulum, properties of, kc 470 to 473. 
Perioeci, who, their seasons, hours, See. 5. How found 57, 58. 
Perigee, what 48. 
Perihelion, what 48. 
Periscii, who, and why so called 4. 
Perpetual darkness, observations on 73, 298. 
Place of a body, mean and true 49. 
Plane of a circle, what 2. 
Planets why so called, primary, secondary, opake 47. Time of passing 

the meridian 201. Above the horiz. after sun setting, or any hour, how 
found 235, 236. Heliocentric place of, and dist. from the sun 365, 348, 
352, 353. Phases of 268. Mot. of, general remarks on, kc. 305. Mean 
long, how found 351. Nodes determined 353. Appearances of superior 
355. Masses and densities of 476. 

Polar circles, what 4. 
Polar distance, what 9. 
Poles of a great circle 2. Of the ear(h, arctic, antartic, celestial, &c. 2. 
Prosthapheresis, what 49. How found 313, 318. 

R. 

Refraction, what, kc. ancients not unacquainted with, horizontal greatest, 
&c. 25, 26. 

Rhumb, or a rhumb line, what 24. 
S. 

Sailing parallel, properties of, &c. 128. 
Satellites, what, kc. 47. Of Jupiter 363. Of Herschel 390. 
Saturn, his periods 380. Iiis mean long, perihelion, incl. of his orbit, long, 

of his nodes, eccentricity, gr. equat. diam. mag. mean dist. &c. 38l. 
Rotary mot 382. His ring 383, &c. His satellites 386. His disturbing 
force on the earth, kc. how found 483. 

Seasons, anticipation of the not owing to the precess. of the equinoxes 15. 
Alteration of, &c. 89, 90, See. » 

Solstitial points, what 7. 
Sphere diam. and circum. of 2, 3. Right, parallel, oblique, &c. 21, 22. 
Stars, poetical rising and setting of, 15, 27. Fixed, classes of, mag. tel¬ 

escopic, &c. 26. Unformed, what 27. Number of in Orion, Pleiades, &c. 
46. Rising, setting, coming to the meridian, kc. how found 199. Near 
the moon’s path 226. Achronical rising and setting of 226, 234. Cos- 
mical 230, 234. Heliacal 233, 234. Immense dist. of 302, 447. Their 
appearances, mot. kc. 436. Aberration 440. General remarks on 445, kc, 

Stile, new, old, kc. 16. 
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Sun, what, kc. 47. Place of the, how found 62, 152. Rising and setting 
68, 69, 145. Merid. alt. when to be observed 90. Alt. how found 140, 
141, 143, 8tc. 148, 151, 168. His magnitude 250, 255. Spots 251. 
Rotary mot. 251. Appar. diameter 253. Real diameter 255. His at¬ 
mosphere 256. 

Syzygies, what, and why so called 48. 

T. 

Tides happen always when the moon is in the same position 20. Their 
phenomena 458 to 462. 

Time what, how divided, kc. 10. Its physical essence unknown 10. Equa¬ 
tion of what, causes of, &c. 10. How found 83. 

Tropics what, and why so called 4. 
Twilight, how found, cause of, &c. 107. 

V. 

Variation chart used in finding the longitude 53. 
Variation of the compass, how found 147, 149. 
Venus, how long she rises before the sun or set9 after him 236. Position 

of, when brightest 269. Her periods 270. Elongation 270. Dist. from 
the sun, eccentricity, aphel. gr. equat. mean mot. diameter, kc. 271. 
Incl. of her orbit, her nodes, variation of, mag. brightness, mountains, kc. 
273. Rotary mot. 274. Phenomena 276, 277, &c. Conjunctions and 
transit 281, kc. 

Vesta, a new planet, &c. 47. Remarks on 357. 
Universe, a general idea of 296. 
Up and down, how understood 5. 
Week what, the most ancient collection of days, kc. 13. Days of the, call¬ 

ed after the heathen names of the planets 14. 

Y. 

Year what, how divided, variation of, its seasons, 8tc. 13. Solar or tropical, 
sidereal, civil, lunar, civil solar, Julian, Gregorian, &c. 15,16, 17. Move- 
able feasts of, how regulated 21. Sidereal and tropical length of, how 
found 246, 303. 

Z. 
Zenith, what, distance 8, 9. 
Zodiac, what, why so called 27. 
Zone, what, why so called, torrid, temperate, frigid, &c. 4. Torrid limits 

of, how found by the ancients 66, 

INDEX TO THE TABLES. 

TABLE of the Climates, &c. 22. 
Table of the constellations, number of stars, &C. as described on the new 

British globes 28, 29. 
Table of the length of the longest day in almost every degree of latitude 76. 
Tables of the equations of time 86, 87, 88. 
Tables for finding the length of a degree 118, 119, 129, Sec. 
Table for finding how many miles make a degree of longitude in any lati¬ 

tude 127. 
Tables of ancient and modern measures 129 to 132. 
Tables of the dip or depression of the horizon, &c. 155, 15S. 
Table of refractions, kc. 155. 
Table of the sun’s parallax, in altitude 155. 
Table of the sun’s 'semidiameter in minutes, Sec. 155. 
Table of the dip when the land intervenes 158. 
Table shewing when the harvest moon is least and most*beneficial 181. 
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Table of the hour arches for a horizontal dial, lat. of N. York, 18T. 
Table of the hour arches for an erect south dial. lat. 40° 43', 189. 
Table of the lat. and long*, of the nine principal fixed stars used in deter 

mining1 the longitude 196. 
Tables for finding high water 241, 
Tables of the sun’s declination, &c. 487, Sec. 
Table of the latitudes and longitudes of places, time of high water. Sec 

491 to 504. ' 
Table of the rt. ascension and decl. of the principal fixed stars 504, &c. 

FINIS. 

0. A, J\A» Z). G. 

ERRATA. 

Page 1, line 3, for Definition, read Description.—p. 2,1. 37, for 23d, r. 25tb 
—p. 3, 1. 40, omit lias.—p. 4, 1. 43, for decrease, r. decreases.—p. 7, 1. 1, for 
follows, r. follow.—p. 11, 1. 16, for space, r. interval. Sec.—p. 14, 1. 25, for 
their, r. these.—p. 14, 1. 41, for follows, r. follow.—p. 15, 1. 30, for 20° 24', 
r. 24".—p. 15? 1. 51, for anticipations, r. anticipation.—p. 23, 1. 42, for in¬ 
creases, r. increase.—p 32, 1. 6, for who, r. which.—p. 52, 1. 27, after equal¬ 
ly, r. as.—p. 54, 1. 1, for places those, r. those places.—p. 54, 1. 51, for in, r. 
on —p. 56, 1. 38, for 75° S' 45", r. 75° 14' 22"— p. 56, 1. 47, for 30° 11', r. 30' 
117—p. 57, 1. 28, 30, 33, for 75° l5f 22", r. 77° 14' 22".—p. 57, 1. 29, 30, for 
1° 13' 22", r. 3° 13' 22".—p. 57, 1. 33, for 14° 52' 8", r. 12° 52' 8".—p. 75,1 6, 
for brass meridian, r. meridian.—p. Ill, 1. 45, for towards the eastward, r. 
eastward.—p. 128, 1. 33, for position, r. portion.—p. 140, 1. 25, for place r. 
plane.—p. 140, 1. 32, for where, r. when.—p. 147, 1 24, for sun, ?■. sum.—p. 
151, 1. 4, for 13th? r. 32d.—p. 158, 1. 18, for by r. from.—p. 185, 1. 42, for 
place, r. plane.—p. 188, 1. 50, 51, for set method above, r. above method.— 
p. 197,1. 37, after 16° 6', place : —p. 230, 1. 44, after similar, r. manner.— 
p. 251, 1. 29, for ecliptical, r. elliptical.—1 39, for 29° 36', r. 39° 36'.—p. 255, 
1. 25, for foregoing fig. r. fig. pa. 250.—p. 261, .1. 2, for near distance, r. mean, 
distance.—p- 266, 1. 21, for Venus, r. the planet.—p. 270, last line, for chap. 
7, r. chap. 8.—p. 289, 1. 29, omit act.—p. 353, 1. 15, for ST, r. SB.—p. 367, 
1. 37, after the r. sun.—p. 373, 1. 26, for he, r. the observer.—p. 392, 1. 41, 
for thus, r. this.—p. 393,1. 25, for the r. a.—p. 399.1. 7, for on r. in. 
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