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ABSTRACT 

A significant amount of research has gone into predicting student performance and many studies have been conducted to 

predict why students drop out.  A variety of data including digital footprints, socio-economic data, financial data, and 

psychological aspects have been used to predict student performance at the test, course, or program level. Fairly good 

prediction results have been achieved using both traditional machine learning and more recently deep learning methods. 

While using diverse sets of data has achieved good results, this data is often difficult and expensive to collect, and may 

have privacy-related issues. This paper explores the extent to which only prior performance data readily available with 

registrars in most Universities can be used to predict student performance in future terms. Twenty term data from 789 

students enrolled an engineering program at an American University were used to train long term short term (LSTM),  

Bi-directional LSTM and Gated Reference Units (GRU) models to predict student performance in future terms. The results 

are that all three types of models were able to reasonably predict the next term’s performance (F1-score of about 0.70) 

regardless of the number of terms a student had spent the University. The models generally did not overfit.  The prediction 

was reasonable until about trying to predict performance on seventh term in the future, but the performance dropped beyond 

this point primarily due to lack of sufficient data (F1-score of about 0.2).  
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1. INTRODUCTION 

Predicting student performance is a classical problem in educational data mining. A recent survey showed that 

student success could be predicted based on a number of variables including information from digital platforms, 

student demographics, socio-economic status, prior academic performance, course load, relationship to the 

educational institutions, access to counselling, and psychological factors, etc. (Ifenthaler and Yau, 2020). For 

example, engagement data from a learning analytics platform was a good predictor of student success for first 

year students (Foster and Siddle, 2020). Family commitments, financial strain, time management, expected 

study load, and work commitments were also found to be related to early dropout (Nieuwoudt and Pedler, 

2021). A student’s relationship to the educational institution also played a role as students who were strongly 

‘fused’ with their university were more likely to not dropout (Talaifar et al., 2021). Institutional fit, high school 

performance, and financial aid were also significant predictors of dropout (Elder, 2021). Prior academic 

performance is important in predicting success. For example, first year grades were found to be the best 

predictor of graduation at the University level (Willoughby et al., 2021). A host of psychological factors like 

academic exhaustion, satisfaction with education and dropout intention have also been explored as well  

(e.g., (Casanova et al., 2021)).  

Data required to predict performance can be divided into three broad categories. First, some data like digital 

platform data, or prior performance is readily available with the academic information technology (IT) systems.  

Second, other data like financial aid data can be requested from external information providers. Thirdly, data 

related to socio-economic factors and psychological factors may require conducting surveys or deploying 

similar instruments to collect and create data. In most higher education environments, the performance data 

including students’ GPA on every course taken must be collected and retained by the registrar and hence this 
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data is always available in most higher education contexts and does not require any additional effort or cost for 

collection.   

In higher education, students’ performance can be predicted within a course, across semesters or across 

programs. For example, based on performance on a few quizzes, one can predict how a student will perform 

on final examination or overall, in the course. Similarly, one could also use performance on multiple courses 

within some number of terms (e.g., first four terms) to predict how well they will perform in the next term or 

subsequent terms. Finally, one could also compare students’ performance to others to determine how well they 

will perform in the program overall. For example, would they be able to graduate or not. This paper explores 

if prior performance data alone can be used to predict future performance of students based on course GPA’s 

from a set of terms. The primary contribution of this paper is building time-based models to predict student 

performance in future terms based on course GPA data alone.  

Rest of the paper is organizes as follows. Related work is discussed next. This is followed by a decription 

of the methodology used. Results are presented next, and the paper ends with a discussion and a conclusion.  

2. RELATED WORK 

Prior research has shown that most work in machine learning (38%) is about predicting the final grade within 

a course, this is followed by work (14.7%) to predict an exam grade. The other predictive variables include 

program retention (13.4%), predicting the GPA (12.2%) and performance on a specific assignment (11.4%) 

(Hellas et al., 2018). Machine learning has achieved significant performance (e.g., 90-95% accuracy) in some 

cases but also has also failed to perform in many others (48-76% accuracy) (Namoun and Alshanqiti, 2021).  

A wide range of machine learning methods have been used for predicting student performance. Traditional 

regression models have been used to predict student dropout (Hippel and Hofflinger, 2021). Traditional 

machine learning methods like Support Vector Machines (SVM) and Boosted Trees with ensemble methods 

were used to achieve accuracies ranging from 71% to 93.5% depending on the term in which prediction was 

made; earlier terms yielding lower accuracies (Hannaford et al., 2021).  Boosted trees were also used achieve 

an accuracy of 91% to predict student dropout (Oreshin et al., 2020). Similarly, AutoML was used with 

ensemble models on admission data of students to achieve accuracy rates of about 75% (Zeineddine et al., 

2021).  Similarly, SVM and Random Forest were used to predict first year student dropout with an accuracy 

of 85% (Del Bonifro et al., 2020). Other traditional machine learning techniques like Bayesian Belief Network 

(BBN) have been used to predict student performance with an accuracy of 76% (Delen et al., 2020). Finally, 

Naïve Bayes was used to achieve an accuracy of 76% across two cohorts.  

Neural networks have also been used to predict performance. For example, multi-layered perceptron was 

also used to predict student failure with an F1-Score of 0.83 (Karimi-Haghighi et al., 2021). Similarly, neural 

networks were used to predict students at risk with an accuracy of 83.7%.  At the course level a neural network 

outperformed traditional machine learning methods like SVM, K-NN etc. and achieved an F1-Score of 0.96 

(Tomasevic et al., 2020). In order to explicitly cater for time-nature of performance (activity on a campus) 

recurrent networks and SVM have been used to predict student performance (Wang et al., 2020).  One problem 

with performance data is the small size of these educational data sets.  The ICGAN-DSVM algorithm combined 

Generative Adversarial Networks (GANs) with SVM to achieve better performance than supervised learning 

methods alone (Chui et al., 2020).  

3. METHDOLOGY 

3.1 Data 

The data used for this paper was drawn from the registration system of an engineering program of a college of 

engineering at an American University. The data ranged from 2014 to 2019. Only the courses taught in the 

engineering program were considered.  For example, humanities, Math, and other courses were excluded. The 

data included accumulated hours, grade point average (GPA) in each course taken, the instructor for each 
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course, academic status, and the admitting cohort of the student. The data consisted of 789 students who had 

registered in a total of 10,508 individual courses over this time.  Many students had only taken one course so 

far with a maximum of 43 courses taken and a mean of 13.318 courses attempted per student. The total number 

of courses available to students in this engineering program was 64.  Students could register for multiple 

courses in a term and four terms (including the summer terms) were counted per year. Regardless of cohort, 

the data was normalized for each student to start in term 1.   

3.2 Neural Network Models 

Since the purpose of this paper was to use the timed sequence of student performance to predict future 

performance, three commonly used time-based neural network prediction models were used.  Each is described 

below.  

3.2.1 Long Short-Term Memory Networks (LSTM) 

Since their proposal in 1995, recurrent neural networks with long short-term memory (LSTM) have been 

successful in handling sequential data in a variety of domains (Greff et al., 2017). LSTM architecture is based 

on a memory cell that maintains its state over time. LSTM uses nonlinear gating units that regulate the flow of 

information in and out of the cell. An LSTM can take an n sized input sequence 𝑥1, 𝑥2, . . 𝑥𝑛 where each element 

of the sequence 𝑥𝑖 can be represented by a fixed set of features 𝑓1
𝑖 , 𝑓2

𝑖, . . 𝑓𝑘
𝑖.  In this paper, since the input to 

LSTM consisted of a sequence of terms with associated GPA in each course, 𝑥𝑖 represented the ith term while 

the GPA in each course was represented by a feature 𝑓𝑙
𝑖.  For example, the engineering program considered 

had a total of 64 upper-level courses (i.e., k = 64) which were typically attempted by each student. The second 

term (i.e.,  𝑥2) for a particular student was hence represented by the feature vector 𝑓1
2, 𝑓2

2, . . 𝑓64
2  where each 𝑓𝑗

2 

either represented the GPA in a course that was attempted in this term or a very small number (𝜀 =0.0001) 

indicating that course was not attempted in this term.  

Within this formulation, the LSTM was trained using variable length sequences 𝑥1, 𝑥2, . . 𝑥𝑙  as input and 

performance to be predicted in future terms 𝑝(𝑥𝑙), 𝑝(𝑥𝑙+1), 𝑝(𝑥𝑙+3),.. etc.  For example, one could use the data 

from the first term only (i.e., 𝑥1) to predict performance in the third term (i.e., 𝑝(𝑥3)).  Performance can either 

by the actual cumulative GPA of the student in the said term or a classification into a performance category 

based on the cumulative GPA. For a term x, this paper defined p as shown in Eq. (1).  In other words, if the 

student’s cumulative GPA in term x was less than 2 out of 4, then they were classified as weak with a code of 

1, and so on; the student’s performance was categorized in one of the three categories depending on their 

cumulative GPA.   

 

𝑝(𝑥)  =  {

1    0 <= 𝑐𝑔𝑝𝑎(𝑥) <= 2
2        2 < 𝑐𝑔𝑝𝑎(𝑥) <= 3

3       3 <  𝑐𝑔𝑝𝑎(𝑥) <= 4
                    (1) 

 

The training data for the LSTM consisted of batches of variable length sequences of terms (e.g., first two 

terms) followed by a predicator based on a subsequent term.  For example, one set of training data consisted 

of < 𝑥1, 𝑝(𝑥2) > in predicting student performance in the second term based on the GPA of courses taken in 

the first term (i.e., 𝑥1) only.  Similarly, < 𝑥1, 𝑥2, . . 𝑥𝑝, 𝑝(𝑥𝑞) > represents a training set that used the data from 

the first p terms to predict performance in the qth term where 𝑞 > 𝑝.  All such valid sequences were used to 

train a single LSTM for each p and q.  

After the LSTMs were trained, given the performance of a student 𝑥1, 𝑥2, . . 𝑥𝑝 as input the respective LSTM 

could predict the performance 𝑝(𝑥𝑞) in the qth subsequent term.   

Figure 1 shows the number of terms completed verses the number of batches when predicting performance 

in the next term. Each batch consists of data of the form < 𝑥1, 𝑥2, . . 𝑥𝑝, 𝑝(𝑥𝑞) >  for some p and q. For example, 

for each p terms (e.g., one term) completed, Figure 2 has data in the form of < 𝑥1, 𝑥2, . . 𝑥𝑝, 𝑝(𝑥𝑝+1) > as we 

are trying to predict the GPA in the next (i.e., p+1) term.  As the figure shows, the number of batches is reduced 

as we get closer to higher terms because fewer students have taken that many courses.   
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Figure 2 shows graphical representation of various inputs < 𝑥1, 𝑥2, . . 𝑥𝑝, 𝑝(𝑥𝑝+1) > for p = 15. Each 

colored dot represents a grade point average (GPA) in a course. As the Figure shows, lighter colors mean higher 

GPA.  The Figure also demonstrates that there does not seem to be an obvious pattern on how the various 

students choose to attempt the courses within the same engineering program.  

 

Figure 1. Number of batches completed to predict performance in the next term 

 
Figure 2. Randomly selected students with different cumulative GPAs for batch size = 15 terms 

3.2.2 Gated Reference Units (GRU) 

Recurrent networks with gated recurrent units (GRU) emerged in 2014 as a simpler form of LSTM and are 

more efficient (Chung et al., 2014). Since the basic formulation is the same as the LSTM, the same data was 

used for training as the LSTM but replacing the LSTM with a GRU.  

3.2.3 Bi-Directional LSTM   

Bi-directional LSTM is another version of an LSTM that processes the input sequence both forward and in 

backwards direction to make the predictions (Graves and Schmidhuber, 2005).  Since the the basic formulation 

is the same as a normal LSTM, the same data was used for training as an LSTM but the LSTM was replaced 

with a bi-directional LSTM.  

3.3 Training 

One model of each type (e.g., LSTM) for each forward prediction capability was trained on the data set. The 

data set used an 80:20 split for training/testing and a 70:30 split of training data into training/validation sets.  
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In each case a two-level stacked model with 16 internal nodes was found to work best. The learning rate was 

0.001. 20% dropout was used between the two stacks to prevent overfitting. Each model was trained for 50 

epochs and a batch size of 16 was used. Generators were used to dynamically feed batches to the models for 

training. For example, if the model was to predict n terms ahead, then the model was trained on various batches 

< 𝑥1, 𝑥2, . . 𝑥𝑝, 𝑝(𝑥𝑝+𝑛) > where p could vary from 1 to the maximum number of terms available that allowed 

prediction to  𝑝(𝑥𝑝+𝑛). For example, since only data for 20 terms was available, one could only use data from 

the first 4 terms to be able to predict 16 terms forward.   Hence, the models that were trying to predict farther 

in the future had lesser data available for training.  

4. RESULTS 

Figure 3 shows the multiple performance metrics for the various models trained for each predict forward 

capability. As the Figure shows, the LSTM model to predict performance one term ahead was quite reasonable 

with a macro F1 Score of 0.70. However, as the prediction horizon becomes longer the performance 

deteriorates and the macro F1 Score drops to drops to 0.19 for predicting 17 terms ahead. Similarly, GRU 

performed similarly to the LSTM with a macro F1 Score of 0.72 for one term look ahead. The performance 

dropped to a macro F1 Score of 0.22 for predicting 17 terms ahead. Finally, Bidirectional LSTM models also 

performed similarly with an F1-score of 0.72 for one term look ahead. The performance drops to 0.24 for 

predicting 17 terms ahead. 

 

Figure 3. Performance metrics for various models with different forward predictions 

As Figure 4 shows, the LSTM models are robust under overfitting as the validation and the training loss 

follow each other. However, overfitting begins to occur when the number of data points for training become 

quite small as shown in Figure 6 (f) where validation loss diverged from the training loss.   

 

Figure 4. Loss while training for various LSTM models with different forward predictions 
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Similarly, as Figure 5 shows, like the LSTM, the GRU models also did not overfit. In fact, in this particular 

training regimen the GRU models did not seem to overfit even for very low amount of data. This can perhaps 

be attributed to the fact that GRU models generally require much lesser number of parameters as opposed to 

an LSTM. Finally, as Figure 8 shows, like the normal LSTM, the Bi-Directional LSTM also begins to overfit 

when the amount of training data becomes very small.  However, it tends to not overfit until even when trying 

to predict 12 terms ahead.  
 

 
Figure 5. Loss while training for various GRU models with different forward predictions 

 
Figure 6. Loss while training for various Bi-directional LSTM models with different forward predictions 

5. DISCUSSION 

As Figure 7 shows, all three model types performed similarly with respect to the macro F1 Score. For all three 

model types, the performance dropped significantly when trying to predict beyond seven terms in the future.  

The results are not spectacular as many have achieved much higher performance by using a variety of data 

sources. However, given that only performance data was used and that a single model can predict performance 

in the future regardless of how many terms are counted as input, these initial results are promising.  
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Figure 7. Macro F1 Scores for models trying to predict various terms in the future 

6. CONCLUSION 

This paper has explored the extent to which course-level GPA alone within an engineering program could be 

used to predict student performance in future terms. Several models were built based on the how far in the 

future predictions were to be made.  Each model could be used to predict performance even if the student had 

spent a few terms in the University. The results are reasonable for predictions into up to seven terms in the 

future.  Obviously, the results are limited to one engineering program alone. It will be interesting to compare 

the results with traditional machine learning techniques like SVM that seemed to have performed well 

elsewhere using a wider set of data. Similarly, GAN-based architectures to augment data could perhaps also 

be explored to cater for the low amount of data available in such educational environments  
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