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ABSTRACT
Personalized learning stems from the idea that students benefit
from instructional material tailored to their needs. Many online
learning platforms purport to implement some form of person-
alized learning, often through on-demand tutoring or self-paced
instruction, but to our knowledge none have a way to automatically
explore for specific opportunities to personalize students’ education
nor a transparent way to identify the effects of personalization on
specific groups of students. In this work we present the Automatic
Personalized Learning Service (APLS). The APLS uses multi-armed
bandit algorithms to recommend the most effective support to each
student that requests assistance when completing their online work,
and is currently used by ASSISTments, an online learning platform.
The first empirical study of the APLS found that Beta-Bernoulli
Thompson Sampling, a popular and effective multi-armed bandit al-
gorithm, was only slightly more capable of selecting helpful support
than randomly selecting from the relevant support options. There-
fore, we also present Decision Tree Thompson Sampling (DTTS), a
novel contextual multi-armed bandit algorithm that integrates the
transparency and interpretability of decision trees into Thomson
sampling. In simulation, DTTS overcame the challenges of recom-
mending support within an online learning platform and was able
to increase students’ learning by as much as 10% more than the
current algorithm used by the APLS. We demonstrate that DTTS is
able to identify qualitative interactions that not only help determine
the most effective support for students, but that also generalize well
to new students, problems, and support content. The APLS using
DTTS is now being deployed at scale within ASSISTments and is a
promising tool for all educational learning platforms.
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1 INTRODUCTION
Personalized learning revolves around providing each student with
the instruction that best suits them. At the core of personalization
is the idea that there exists two groups of students, Group A and
Group B, and that Group A benefits more from one teachingmethod,
Method X, than another method, Method Y, and Group B benefits
more from Method Y than Method X. This relationship, referred
to as a qualitative interaction, can involve different instructional
mechanisms, changing the pace of instruction, and using differ-
ent evaluation methods, all with the goal of helping each student
achieve their full potential. This is already difficult to achieve in
small settings where teachers can directly interact with students. Ef-
fectively implementing personalized learning throughout an entire
online learning platform is even more difficult.

While some platforms have created infrastructure to evaluate in-
dividual research questions regarding personalized learning [13, 18],
if one instructional method is better than all other methods for all
groups of students, then at least half of the students in the study
received sub-optimal support, which could negatively impact the
students as well as the long-term adoption of the platform. Multi-
armed bandit algorithms can be used to adjust how often students
receive each support option by estimating each option’s effective-
ness and intentionally giving more students the most effective
option. Simulations using real student data found that across 22
educational experiments, using multi-armed bandit algorithms to
assign students to conditions statistically significantly increased
students’ assignment completion rates and proficiency [16].

To automate the discovery of opportunities to personalize learn-
ing and increase students’ performance within online learning
platforms, this work presents theAutomatic Personalized Learn-
ing Service (APLS). A fully deployed service in ASSISTments, an
online learning platform, that provides personalized support to
struggling students upon their request. The APLS works by linking
support content to aspects of students’ learning environment, such
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as their current assignment, problem, or prior mistakes. After com-
piling the relevant support content, the APLS uses a multi-armed
bandit algorithm to determine which content is likely to be most
helpful to the student, and then provides the selected support to
the student. Two examples of student supports that can be shown
to a student are shown in Figure 1.

The APLS provides student support content throughout AS-
SISTments whenever multiple instances of support are available,
enabling multi-armed bandit algorithms to personalize students’
experience at scale. However, the results of the initial APLS study
using Beta-Bernoulli Thompson Sampling[21] as the recommen-
dation algorithm were not as positive as expected. Therefore, in
addition to the APLS, this work presents Decision Tree Thomp-
son Sampling (DTTS), a novel contextual multi-armed bandit
algorithm designed to address the specific limitations of attempt-
ing to personalize learning within online learning platforms in an
interpretable way. DTTS integrates the transparency and inter-
pretability of decision trees into the multi-armed bandit framework
and was shown in simulation to be more effective than existing
multi-armed bandit algorithms when used to personalize students’
support within an online learning environment.

This paper seeks to accomplish the following objectives and in
doing so, provide a method for researchers to integrate personalized
learning into other platforms while informing educators of the
insight gained through this method:

(1) Provide a description of the APLS.
(2) Report on the results of the initial APLS study.
(3) Provide a novel algorithm (DTTS) to address the difficul-

ties encountered when attempting to personalize students’
support.

(4) Simulate the effectiveness of DTTS in realistic scenarios.

2 PRIORWORK
There is an abundance of online platforms that attempt to personal-
ize learning either by adjusting students’ lessons based on their skill
level or adapting to students’ needs. McGraw-Hill Thrive, Lexia,
PracTutor, HMH FUSE, Carnegie Learning’s Cognitive Tutor, Auto-
Tutor, and ASSISTments all claim to implement one or both of these
methods of personalized learning [5]. However, the effectiveness
of most of these platforms’ personalized learning methodology has
not been empirically evaluated in a classroom setting, and when
evaluated, either does not show consistent positive results, as was
the case with HMH FUSE [5], or achieves positive results through
the use of the platform as a whole, without directly evaluating the
benefit of personalizing students’ experience using the platform,
as was the case with ASSISTments [20] and Carnegie Learning’s
Cognitive Tutor [14].

Although most online learning platforms have shown little ev-
idence for the effectiveness of personalizing students’ education,
there are some encouraging results as well. For example, a ran-
domized controlled experiment done in ASSISTments found that
high-knowledge students learned more from being given an en-
tire explanation of their mistakes, while low-knowledge students
learned more from being given smaller instructional segments [17].
Additionally, a meta-analysis of studies measuring the learning
gains of students when grouping them by ability level found that

the average effect size in 21 studies in which the students were given
different instructional material was more than twice the average
effect size of 30 studies in which the instructional material remained
the same for each group of students [10]. The ASSISTments study
and the meta-analysis both support the idea that personalizing
educational content based on students knowledge level increases
students’ learning, but do not evaluate the effect of this personal-
ization at scale.

While most platforms have not evaluated the overall benefits
of personalization, some have allowed for testing individual hy-
potheses regarding personalization. The MOOClet Framework and
ASSISTments have already taken steps to allow for researchers
to create and deploy studies of different tutoring methods within
their platforms. The MOOClet Framework provides educators with
the ability to create multiple sets of material for their courses and
evaluates the most effective content through randomization [18].
The ASSISTments E-TRIALS TestBed allows researchers to cre-
ate modified versions of problem sets. These modified problem
sets include internal random assignment of supportive content,
enabling randomized controlled experimentation across all the stu-
dents in ASSISTments that are assigned these problem sets [13]. In
addition to allowing researchers to create randomized controlled
experiments, ASSISTments also crowdsources student supports
from teachers that use the platform and distributes these supports
through a program called TeacherASSIST. Relevant student sup-
ports are randomly selected and provided to students upon their
request, effectively creating a randomized controlled experiment in
situations where more than one teacher has created support for the
same problem [15]. While these platforms offer ways to gather data
and test individual hypotheses, they do not automatically evaluate
and deploy candidate methods for personalized learning to students
throughout the platform.

3 APLS ARCHITECTURE
The APLS is designed to facilitate personalized learning in a mod-
ular way, such that regardless of the available context or student
support options, the system can make an intelligent and informed
decision as to which support is likely to be most beneficial to stu-
dents. The APLS has two components, an online and an offline
component. The online component is responsible for receiving
and responding to support requests. The APLS uses the content of
support requests to retrieve context it has stored on the students’
learning environment, identify the potential student supports it
can return, and select a multi-armed bandit model to determine
which support is likely to be most effective. After a model has been
chosen, potential student supports have been identified, and con-
text on the student supports and students’ environment has been
gathered, the APLS uses this information to predict which student
support is likely to have the most positive effect on learning. After
a student support is selected, the APLS sends its prediction to the
ASSISTments Tutor, which displays the support to the student.

The offline component facilitates updating the multi-armed ban-
dit models and the context used by the models during low-load
periods, e.g., at night when students that use ASSISTments are
asleep. The offline component first determines the effectiveness of



Figure 1: Two views of the ASSISTments tutor in which a student has requested support and received one of two available
student supports. The student support on the left is a written explanation, and the student support on the right is a video
explanation.

each recommendation made by the APLS during the day by review-
ing logs of students’ actions, then it uses this information to update
the multi-armed bandit models. Lastly, it updates any context based
on the same logs of student’s actions. These offline updates allow
the APLS to learn over time how to most effectively personalize
students’ learning. A flowchart of the online and offline tasks of
the APLS is shown in figure 2.

3.1 Data Collection
In ASSISTments, as students complete their assigned problem sets,
each action the student takes is recorded. This includes their use
of student supports, correct and incorrect responses to problems,
and duration of their engagement with various aspects of their
assignments. Offline, these action logs are used to aggregate sta-
tistics on students and problems within ASSISTments, these sta-
tistics, referred to as the learning environment context, are used
by the multi-armed bandit models in the APLS. The action logs
are also used to determine the reward for each time a model made
a recommendation, which the model uses to adjust how it makes
recommendations in order to maximize reward.

Every night, the APLS collects data from the ASSISTments action
logs and creates context for the recommendation models to use the
following day. This context contains statistics on students’ prior
performance, statistics on the prior performance of all students
across each problem, qualities of the problem such as text length,
the skills required to solve it, its structure, e.g. multiple choice or
short answer, whether it uses a diagram, and more. In addition to
collecting statistics on various aspects of students’ learning envi-
ronments, the APLS collects information on each student support
available to students. When new student supports are created, their
format and HTML bodies are used to extract context such as the

length of the text in the student support, whether the student sup-
port uses videos or images, whether the student support contains a
question, and more. After each nightly update, the context of each
student’s learning environment and all student supports is updated,
this ensures that the following day the models in the APLS can
use the context to make recommendations. The full context of all
learning environments and student supports collected by the APLS
during its initial trial is hosted by the Open Science Foundation and
can be found at https://osf.io/9pgv5/, and a description of all the
context features used by the APLS can be found in Appendix A.

In addition to updating the learning environment and student
support context, every night the reward is calculated for each rec-
ommendation made by the APLS using Algorithm 1. Algorithm
1 returns 1 when the next graded problem that the student had
the opportunity to complete was completed correctly on the stu-
dent’s first attempt. When a student completes the next graded
problem incorrectly, or when they fail to complete the next graded
problem, Algorithm 1 returns 0. In cases when the student did not
have an opportunity to complete a graded problem within the same
assignment after requesting support, e.g., if the student requested
support on the last problem in an assignment, or if all the following
problems were ungraded open response problems, Algorithm 1
returns 𝑛𝑢𝑙𝑙 . When the reward is 𝑛𝑢𝑙𝑙 , nothing was learned about
the quality of the student support, and therefore the multi-armed
bandit model is not updated based on that recommendation.

3.2 Content Recommendation
In real-time, as students use the ASSISTments Tutor, they can re-
quest support. Whenever a student starts a problem, the APLS is
sent a support request and uses a multi-armed bandit algorithm to
return the support it predicts will be most likely to result in a high
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Figure 2: The online (real-time) and offline (nightly) tasks performed by the APLS. Tasks and data from the ASSISTments Tutor
are in green, tasks and data from the APLS are in blue.

Algorithm 1 APLS Reward Calculation
𝑎 is an assignment with 𝑛 problems
𝑝𝑖 is the 𝑖th problem in 𝑎
if student 𝑠 requested tutoring for 𝑝𝑖 then
for𝑚 = 𝑖 + 1, ..., 𝑛 do

if 𝑝𝑚 is a graded problem then
if 𝑠 completed 𝑝𝑚 correctly then
return 1

else
return 0

end if
end if

end for
else
return 𝑛𝑢𝑙𝑙

end if

reward, which in this case indicates that student was able to get
the next graded problem correct, and therefore likely learned from
the support. If the student requests support while completing the
problem, they are shown the support recommended by the APLS.
The first step that the APLS performs when recommending content
is to identify all of the supports that are relevant to the request.
Each support request contains different IDs, e.g., a user ID, problem
ID, assignment ID, and skill ID. These IDs are linked to student
supports and determine which student supports are available for
recommendation. For example, the most common link is between
a student support and a problem ID. These links imply that the

student support was written specifically for the problem. A less
common link is between a student support and a skill ID, which
implies that the student support was written for any problem rele-
vant to a particular skill. This modular linking system allows for
educators and researchers to create content related to any aspect
of students’ learning environment by simply linking the student
support to the relevant ID, enabling these student supports to be
assessed for their effectiveness and used to further personalize
students’ learning.

After the potential student supports have been identified, context
for the multi-armed bandit algorithm is gathered from the IDs of
the request and the potential student supports. Just as each ID in
the request can link to a student support, the IDs of the request
and the potential student supports can link to an array of features.
For example, each problem ID links to an array of performance
statistics and HTML-based attributes of that particular problem,
and each student support ID links to an array of features on the
structure and content of the support. All of the relevant feature
arrays are concatenated and become the context used by the multi-
armed bandit algorithm. It is useful to note that the context of each
potential student support will only differ in the values related to the
specific student support, the context related to any ID of the support
request will be constant across all potential student supports, as the
IDs in the request are not changing between the potential student
supports of a single support request.

Once the context of each potential student support is gathered,
The APLS selects a multi-armed bandit model using a similar pro-
cess to the one used to identify potential student supports. First,
potential models are selected by identifying models linked to IDs



in the support request, then, one of the potential models is selected
at random. Randomly selecting a model facilitates randomized con-
trolled experiments that compare the effectiveness of different mod-
els. The first of these experiments is reported on in section 4. Once
a model is selected, the context derived from the support request
and potential student supports is provided to the model and the
model selects the student support it predicts will lead to the highest
reward and therefore be most likely to help the student learn. The
selected student report is returned to the ASSISTments Tutor and
displayed if requested by the student.

3.3 Model Updates
The traditional way to update a multi-armed bandit model is to
provide the model with a reward after each recommendation it
makes. The model then uses this reward to adjust its internal logic
such that it will be more likely to receive higher rewards after
future recommendations. However, the models in the APLS can
only observe a reward once a student has finished the problem
they requested support on, and the order that students complete
problems is not necessarily the order that recommendations were
made in. Therefore, instead of attempting to update the models in
real-time, the models are updated in batches during lulls in user
activity.

The APLS tracks which model made each recommendation and
the context used to make the recommendation. Each night, after
identifying the reward for each recommendation using Algorithm
1, the APLS provides each context-reward pair to the model used
to make the recommendation in the order that the recommenda-
tions were made. During this process any student support requests
sent to the APLS are processed using the models in their states
prior to the current update to ensure that there is no downtime or
ambiguity in the APLS recommendations. After every model has
been updated, the APLS begins to use the updated models to make
recommendations.

4 APLS EXPERIMENT
4.1 Experiment Design
To determine the effectiveness of using multi-armed bandit algo-
rithms at scale, a randomized controlled experiment was performed
within ASSISTments between November 4th, 2021 and January 2nd,
2022. In this experiment, the APLS randomly selected which of two
models it would use to recommend content to students. Students
were randomized between the two models each time they started
a problem. Therefore, the same student could have received con-
tent from both models, but would be unable to determine which
model was recommending them content because both models were
selecting from the same potential student supports.

The first model used random selection (RS) to select which
student support to recommend, and the second model used Beta-
Bernoulli Thompson Sampling (BBTS) to select which student sup-
port to recommend. BBTS is a simple contextual bandit algorithm
for environments with binary rewards. It models the potential re-
ward of each student support as a beta distribution𝐵𝑒𝑡𝑎(𝛼, 𝛽) where
𝛼 is the number of times the student support was recommended
and the model received a reward of 1, and 𝛽 is the number of times
the student support was recommended and the model received a

Table 1: Results of Thompson Sampling vs. Random Selection

RS BBTS

Total Requests 49,740 50,379
Requests with Rewards 40,878 (82.2%) 41,306 (82.0%)

Total Reward 13,529 (33.1%) 13,805 (33.4%)

reward of 0. When determining which student support to recom-
mend, a random value is drawn from the beta distribution of each
possible student support. The student support corresponding to the
highest random value is recommended to the student. BBTS is not
aware of the context in which it made recommendations, and learns
simply from the rewards that it received in the past [21]. Although
BBTS is simple compared to a contextual bandit algorithm, it is a
strong baseline from which insight can be gained and advances can
be made [6].

4.2 Experiment Results
Over the two months that the experiment ran, support was re-
quested by students on about 16.5% of problems. 49,740 support
requests were responded to by the APLS using RS, and 50,379 re-
quests were responded to using BBTS. Of all these requests, 82.2%
of the RS requests and 82.0% of the BBTS requests did not have a
reward due to students receiving support prior to ungraded open
ended response questions or on the last problem in their assign-
ment. The average reward received by each model was 0.331 and
0.334 respectively. Table 1 summarizes these findings.

Although BBTS out performed RS, its impact was less than ex-
pected based on previous simulations [16]. To understand why
BBTS was less effective than expected, it helps to examine the
challenges associated with making recommendations within an
online learning platform. Firstly, consider the breadth of questions
for which supports are being recommended. The BBTS model rec-
ommended tutoring for 2,923 different problems, and only recom-
mended each student support an average of 6.5 times. This is very
little information to learn from, and thus limited the model’s ability
to significantly out perform RS. Secondly, consider the way in which
students interact with online learning platforms. It is common for
a teacher to assign a particular problem set to be completed within
the day or week. If an entire class attempts this problem set, and
only 16.5% of students request support, half of those supports are
going to the RS model, and only four out of five of the support
requests can be learned from, than only around 6.5% of students
will affect the BBTS model. Furthermore, these students are not
coming in a steady stream, but rather in batches of classes. The
student supports that work best for one class are not necessary
going to be the best for every class. Teachers use different methods
of explaining content and the supports that align with the teachers’
instruction are more likely to be effective. Therefore, without con-
text of the students’ learning environment, the BBTS model could
learn relationships from one class that are detrimental to the follow-
ing class. While the online learning environment made it difficult
for BBTS to perform well, a contextual bandit algorithm that can
utilize context of the learning environment and student supports to



share insight between student supports can theoretically overcome
the shortcomings of BBTS.

5 MOVING FORWARD: DTTS
To overcome the challenges of making recommendations within an
online learning platform and to be able to identify opportunities
for personalization that can be applied outside of the contextual
bandit framework, a recommendation algorithm must be able to
accomplish the following:

(1) Apply insight gained from recommending a student support
to recommendations of other supports.

(2) Identify generally applicable qualitative interactions between
students’ learning environment and the effectiveness of dif-
ferent supports.

(3) Learn interpretable insights that can be easily extracted from
the model and understood by educators and researchers.

To be able to apply insight gained from recommending a student
support to recommendations of other supports, the model must take
into account the context of each potential student support when
selecting which support to recommend. Models like LinUCB, which
use a separate regression for each potential student support would
not be able to inform educators of the common trends between
student supports without doing additional analysis to combine each
regressions’ findings [11].

To be able to identify generally applicable qualitative interactions
between students’ learning environment and the effectiveness of
different supports, not only must the model combine context of the
learning environment and supports, but it must do so in a non-linear
way. Models like Hybrid-LinUCB [11] and Linear Thompson Sam-
pling [1], both popular models that combine context of the learning
environment and supports, only form linear relationships between
these parameters. A qualitative interaction is a non-linear rela-
tionship. To make these models capable of identifying qualitative
interactions, one must manually add all the potential interaction
terms, and doing so would create thousands of additional variables,
making these models slow and prone to over-fitting.

To be able to learn interpretable insights that can be easily
extracted from the model and understood by educators and re-
searchers, the model must not abstract the context it is given too
severely. There are many neural network based contextual ban-
dit algorithms [19], but the insight gained by these algorithms is
represented by weights in neural networks, which are notoriously
difficult to interpret as the size of the network increases. Further-
more, difficult to interpret models can lead to skepticism and lack
of adoption due to the rising increase in demand for interpretable
AI, therefore educators are more likely to accept recommendations
from a model that can explain its reasoning [12].

These factors point towards using decision trees to find oppor-
tunities for personalization because decision trees are capable of
combining the context of students’ learning environments and the
potential student supports in a non-linear and easily interpretable
way. While decision trees are a strong contender for delivering
interpretable personalization to students, adapting them to the con-
textual bandit framework, where they must balance exploration and
exploitation to learn how to determine the optimal support for each

student, is non-trivial. In the past, researchers attempted to com-
bine decision trees and reinforcement learning by fitting a decision
tree each time a recommendation was made on a random subset
of the data, which simulated the effect of sampling from a prior
distribution [8]. This method has the limitation of needing to re-
train the tree to ensure exploration, which is very time-consuming.
Another method that attempted to integrate decision trees into the
multi-armed bandit framework first explored all possible branches
the tree could form, and then selected the branch that led to the
highest reward [9]. This method has the limitation of being unable
to adapt over time to changing interactions within the context, and
requires the exploration of all possible branches, which becomes
overwhelmingly time-consuming when there are many possible
branches.

Decision Tree Thompson Sampling (DTTS) is a novel decision
tree based multi-armed bandit algorithm designed to interpretably
recommend support to students within online learning platforms.
DTTS integrates decision trees into the multi-armed bandit frame-
work by using the decision tree not as as explicit predictor of the
expected reward, but as a model of the prior reward distribution,
which can be sampled from to make recommendations via Thomp-
son sampling. As shown in Algorithm 2, given an uninitialized
decision tree 𝐷𝑇 , an empty set of all context observations 𝑋 , and
an empty set of all reward observations 𝑅, every 𝑛 observations,
𝐷𝑇 is trained on up to𝑚 past observations to predict the expected
reward given the context. At each time-step 𝑡 , for all time-steps
in 𝑇 , the leaf node of 𝐷𝑇 , 𝑙𝑥𝑡,𝑎 , that corresponds to the observed
context 𝑥𝑡,𝑎 is identified for each available action 𝑎. In this case,
each action is a potential student support. Then, prior distributions
are calculated from 𝑅𝑙𝑥𝑡,𝑎

, the subset of 𝑅 used to create the tree
that reached the same leaf node 𝑙 for each action 𝑎 out of all 𝐾
available actions. The prior distribution calculated from 𝑅𝑙𝑥𝑡,𝑎

is
a beta distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽) where 𝑎𝑙𝑝ℎ𝑎 is the total number of
times the reward was 1 in 𝑅𝑙𝑥𝑡,𝑎 , and 𝛽 is the number of times the
reward was 0 in 𝑅𝑙𝑥𝑡,𝑎 . If the decision tree has not been created yet,
then the prior distribution is assumed to be a uniform distribution
in the range [0, 1). After determining the prior distributions for
each potential action, like in Thompson sampling, each prior dis-
tribution is randomly sampled from, and the action corresponding
to the random sample 𝜃𝑡,𝑎 with the highest value is chosen. After
the action is taken and a reward is observed, the context 𝑥𝑡,𝑎 and
reward 𝑟𝑡 are added to 𝑋 and 𝑅 respectively. If the length of 𝑋 and
𝑅 is greater than𝑚, the oldest observation is removed from 𝑋 and
𝑅. Only storing the most recent𝑚 observations helps to keep 𝐷𝑇
up to date with the current trends in the observations.

6 DTTS SIMULATION
6.1 Simulation Data
The data used to evaluate DTTS came from the ASSISTments
TeacherASSIST program. Within ASSISTments, a crowdsourcing
effort called TeacherASSIST allowed teachers to create their own
student supports for mathematics problems, which were then dis-
tributed to all students using ASSISTments. In 2019, a random-
ized controlled experiment was carried out within ASSISTments
in which students were randomized between receiving different



Algorithm 2 Decision Tree Thompson Sampling
𝐷𝑇 is an uninitialized CART decision tree
𝑛 is an integer. 𝐷𝑇 is trained every 𝑛 observations
𝑋 is a set of length𝑚 that will hold observed contexts
𝑅 is a set of length𝑚 that will hold observed rewards
for t = 1, ..., T do

for a = 1, ..., K do
observe context 𝑥𝑡,𝑎
if 𝐷𝑇 is uninitialized then

sample 𝜃𝑡,𝑎 from [0, 1)
else

sample 𝜃𝑡,𝑎 from 𝑃 (𝑅𝑙𝑥𝑡,𝑎 )
end if

end for
choose action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
𝜃𝑡,𝑎

observe reward 𝑟𝑡
add 𝑥𝑡,𝑎 and 𝑟𝑡 to 𝑋 and 𝑅 respectively
if Length of 𝑋 >𝑚 then
remove the oldest observation from both 𝑋 and 𝑅

end if
if 𝑡 ≥ 𝑛 and 𝑡 (mod 𝑛) = 0 then
train 𝐷𝑇 to predict 𝑅 using 𝑋

end if
end for

crowdsourced supports. This study found that providing students
with crowdsourced supports led to greater learning gains thanwhen
students were only given the answer after requesting support [15].
In 2020, the 2019 study was repeated and the same results were
found. The data collected from the TeacherASSIST program con-
tains 399,869 instances of a struggling student requesting support,
being given one of multiple possible crowdsourced student sup-
ports, and then having the opportunity to answer a graded problem
within the same assignment. 1,946 teachers, 5,635 classes, 27,712
assignments, 62,056 students, 5,470 mathematics problems, and
13,394 different student supports are contained within this data. For
each teacher, class, assignment, user, problem, and next problem,
prior performance statistics are available for every support request.
Various features of the problem sets, problems, and student sup-
ports are also available. Additionally, in order to make the insight
gained from these features more interpretable, for this simulation,
each continuous feature was converted into a binary indicator of
whether the value was above average or not. The full dataset and
a description of all of its contents is hosted by the Open Science
Foundation at https://osf.io/9pgv5/. In total, 98 of the available fea-
tures were used in this analysis, specifically the features focused on
prior statistics and aspects of the students, problems, and student
supports. This data is ideal for determining the effectiveness of
different recommendation algorithms within online learning plat-
forms because it contains real information on the learning gains of
thousands of students after receiving one of thousands of supports,
and the features are nearly identical to the context used by the
APLS described in Appendix A.

6.2 Simulation Design
The data from TeacherASSIST can be sampled from to simulate a
mutli-armed bandit algorithm operating within an online learn-
ing platform. This can be achieved using the following simulation
strategy:

(1) Initialize a multi-armed bandit algorithm that may take fea-
tures of the student, problem, and potential student supports
as context and uses the reward metric described by Algo-
rithm 1.

(2) Randomly sample with replacement a single instance of a
student receiving support from all the TeacherASSIST data.

(3) Use the bandit algorithm to recommendwhich tutoring, from
all the possible student supports, the student in the random
sample should receive.

(4) If the recommended support was the support that the student
actually received, then update the bandit algorithm using
the calculated reward, otherwise ignore this sample and go
back to step 2.

(5) Repeat steps 2-4 as many times as desired to simulate the
contextual bandit algorithm making multiple sequential rec-
ommendations.

6.3 Learning Impact
The process described in Section 6.2 can be used to answer the
question "How would students’ learning gains have been differ-
ent if a multi-armed bandit algorithm besides BBTS was used to
recommend student supports?". To evaluate the effectiveness of
DTTS, three different simulation studies were run in which DTTS
was compared to RS, BBTS [21], and Linear Thompson Sampling
(LTS) [1]. In all three simulations, DTTS used a CART decision
tree [4] that used Gini Impurity as its split criteria, and the 𝜖 and 𝛿
parameters of LTS were set using Theorem 1 and Remark 2 of [1]
to obtain a 95% chance of having an �̃� (𝑑2

√
𝑇 ) regret bound. The

first simulation used the process described in Section 6.2 to sample
from all the TeacherASSIST data 376,674 times, which is how many
recommendations with reward were collected by TeacherASSIST
in the year 2020. This gives insight into how DTTS would have
performed compared to random selection and popular multi-armed
bandit algorithms over the course of a full year.

The second and third simulations investigated how capable
DTTS is of generalizing its insight to new content. The second simu-
lation is similar to the first, but it divided the data into groups, where
each group contained unique students. Each group was sampled
from approximately 1,721 times, which is the average number of
recommendations with reward made in a single day, before moving
on to the next group. This simulation helped evaluate DTTS’s abil-
ity to learn contextual insight beneficial to new students because
each simulated day, the students were unique. Therefore DTTS
would have to gain generalizable insight from students’ context to
be able to make helpful recommendations. The third simulation
was similar to the second except it divided the data into groups
of unique problems and student supports. This simulation helped
evaluate DTTS’s ability to learn generalizable insight applicable to
new problems and supports. The cumulative reward over 376,674
observations and the percent of recommendations with a reward
of 1 for every model in each simulation is shown in Table 2.

https://osf.io/9pgv5/


Table 2: Cumulative Rewards and % Maximum Reward for all Simulations

Simulation Description RS BBTS LTS DTTS

All Data 127,302 (33.8%) 133,601 (35.5%) 126,449 (33.6%) 146,983 (39.0%)
Student Groups 127,024 (33.7%) 134,615 (35.7%) 127,080 (33.7%) 134,073 (35.6%)
Problem Groups 127,000 (33.7%) 134,028 (35.6%) 127,274 (33.8%) 134,714 (35.8%)

Table 2 shows that, overall, DTTS not only outperformed BBTS,
which is currently used in the APLS, but also outperformed LTS, a
well established contextual bandit model. In the student groups sim-
ulation, BBTS sightly out performed DTTS. This implies that while
DTTS is capable of generalizing findings between students, these
findings do not provide more insight than modeling the reward
of each support independently. In the problem groups simulation,
DTTSwas again able to out-perform all other models, which implies
that DTTS can learn relationships that generalize across problems
and tutoring. Across all three simulations, DTTS demonstrated
that the contextual insight it learned was applicable both to new
students, and new problems and student supports. Overall, it seems
that interactions between features of the problems and student
supports are more generalizable than interactions with features of
the students.

The difficulty of using multi-armed bandit algorithms in an on-
line learning environment is made clear by LTS’s inability to out-
perform BBTS. Although this simulation was focused on evaluating
the effectiveness of DTTS, this is a valuable finding because it im-
plies that the quality of the student support is dependent on the
learning environment. LTS can only model how much each feature
of student supports influences the likelihood of the student getting
the next graded problem correct. Without interactions between
context of the student supports and context of the learning environ-
ment, it struggles to gain insight. For example, LTS can only learn
that longer student supports have an overall positive or overall
negative effect on students’ learning, but BBTS can learn that for
one particular problem, a longer support is better, and for a different
problem, a shorter support is better, even though it does not know
the length of the student supports. Without being able to generalize
this finding across multiple supports, BBTS still out-performs LTS.
This finding implies that DTTS outperformed BBTS and LTS be-
cause it could both utilize non-linear relationships, and generalize
these relationships to previously unseen students, problems, and
student supports.

6.4 Personalization Insight
Although we have shown that DTTS is more capable of increasing
students’ learning gains than other multi-armed bandit algorithms,
there is no guarantee that it does so by identifying and taking
advantage of qualitative interactions between students’ learning
environment and the potential student supports. To investigate if
this is the case, the simulation strategy described in Section 6.2 was
again used to simulate a year of DTTS based recommendations, but
the simulation only used a random half of the TeacherASSIST data.
After the simulation finished, the total amount that each feature
of the context contributed to the reduction of Gini Impurity in the
final decision tree formed by DTTS was compared to the strength

of the qualitative interactions that existed in the other half of the
TeacherASSIST data not used in the simulation. To make this com-
parison, the first step was to use Equation 1 to fit a model for each
of the 2,001 possible qualitative interactions between the student
supports and the learning environment, where 𝑥1 is a feature of the
student supports, 𝑥2 is feature of the learning environment, and 𝑦
is the reward calculated using Algorithm 1.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3 (𝑥1 ⊕ 𝑥2) (1)

For there to be a qualitative interaction, the effect of 𝑥1 when
𝑥2 = 0, eff𝑥1 |𝑥2=0, must have the opposite sign as the effect of 𝑥1
when 𝑥2 = 1, eff𝑥1 |𝑥2=1, or in other words, the product of the two
effects must be less than zero. This can be determined by whether
or not 𝛽23 is greater than 𝛽

2
1 , using the following logic.

𝐸 [𝑦 |𝑥1 = 0, 𝑥2 = 0] = 𝛽0
𝐸 [𝑦 |𝑥1 = 1, 𝑥2 = 0] = 𝛽0 + 𝛽1 + 𝛽3
𝐸 [𝑦 |𝑥1 = 0, 𝑥2 = 1] = 𝛽0 + 𝛽2 + 𝛽3
𝐸 [𝑦 |𝑥1 = 1, 𝑥2 = 1] = 𝛽0 + 𝛽1 + 𝛽2

eff𝑥1 |𝑥2=0 = 𝐸 [𝑦 |𝑥1 = 1, 𝑥2 = 0] − 𝐸 [𝑦 |𝑥1 = 0, 𝑥2 = 0]
eff𝑥1 |𝑥2=0 = (𝛽0 + 𝛽1 + 𝛽3) − (𝛽0) = 𝛽1 + 𝛽3

eff𝑥1 |𝑥2=1 = 𝐸 [𝑦 |𝑥1 = 1, 𝑥2 = 1] − 𝐸 [𝑦 |𝑥1 = 0, 𝑥2 = 1]
eff𝑥1 |𝑥2=1 = (𝛽0 + 𝛽1 + 𝛽2) − (𝛽0 + 𝛽2 + 𝛽3) = 𝛽1 − 𝛽3

(𝛽1 + 𝛽3) (𝛽1 − 𝛽3) < 0

𝛽21 − 𝛽
2
3 < 0

𝛽21 < 𝛽23

Once it has been determined whether or not there is a qualita-
tive interaction between two features, the absolute value of the
𝑡-value of 𝛽3 can be used to measure the strength of the qualitative
interaction in a way that takes into account the magnitude and the
standard error of the 𝛽3 coefficient.

After the presence and strength of each potential qualitative
interaction was determined, the strength was compared to the
product of the total reduction of Gini Impurity that each of the
features in the interaction is responsible for in the decision tree
formed by DTTS. If the magnitude of the 𝑡-value is correlated with
the product of the total reductions in Gini Impurity, this implies
that stronger qualitative interactions are used more by DTTS. This
helped determine whether the insight learned by the decision tree
involved personalization, and if that insight was applicable to new



Table 3: Correlation Between Qualitative and Non-
Qualitative Interactions and the Product of the Total
Reduction in Gini Impurity of Each Feature in the Interac-
tion Determined Using the Decision Tree Formed by DTTS

Total # 𝑟ℎ𝑜 𝑝-value

Qualitative Interactions 823 0.11 0.002
Non-Qualitative Interactions 1178 0.06 0.052

data or just over-fit assumptions based on the data used to create
the decision tree.

Using the above methodology, the correlation between the mag-
nitude of each potential qualitative interaction’s 𝑡-value and the
product of the total reductions in Gini Impurity of each feature of
the interaction in the DTTS decision tree was determined using
Spearman’s rank correlation coefficient [22]. The results of this,
shown in Table 3 demonstrate that when there is a qualitative inter-
action between two features, the decision tree utilizes the features
more as the strength of the qualitative interaction increases, and
when there is no qualitative interaction, there is no correlation
with how valuable the features are to the decision tree. This im-
plies that the decision tree formed by DTTS is taking advantage
of qualitative interactions to personalize students’ learning. Due
to the interpretability of decision trees, it is possible to search the
tree, identify these interactions, and use them to inform the design
of curricula with the intent of personalizing students’ education.

7 LIMITATIONS AND FUTUREWORK
The APLS, while a promising tool for personalizing students’ online
education, has yet to reach its full potential. While the process of
recommending content is modular, it relies on havingmany optional
supports available. Personalized learning relies on having enough
content such that each student can be delivered support suitable for
their needs. In the future, collecting more student support messages,
either through crowdsourcing or algorithmic generation, will be key
in ensuring that any online learning platform can provide quality
personalization. Additionally, the ability to collect relevant context
on the student supports and learning environment is imperative to
the success of personalized learning at scale. The APLS currently
collects context on the prior statistics, format, and HTML-based
attributes of the students, problems, and student supports. This can
be expanded, not only to include more features from within the
online learning platform, such as teachers’ behavioral patterns, but
also to include features such as the sentiment or tone of the student
supports or the emotional state of the students. These features,
which can be collected with a variety of different algorithms, e.g.
[2, 3], would help the APLS make more informed and insightful
recommendations.

The APLS has only been tested using BBTS, a simple multi-
armed bandit algorithm to recommend support to students. How-
ever, DTTS was able to overcome the difficulties of recommending
content within an online learning platform and outperformed both
BBTS and LTS in simulation. While the future of DTTS is bright,
more work needs to be done to confirm the findings of this sim-
ulation. The next step is to integrate DTTS into the APLS and

empirically measure its impact on learning at scale. Additionally,
while DTTS was the most effective algorithm, it was also the only
algorithm that needed to record previous observations. Both BBTS
and LTS need to only store statistics on the previous observations,
making them much more memory efficient. Moving forward, ex-
perimenting with using Hoeffding Trees instead of CART Decision
Trees could reduce the memory cost. Hoeffding Trees are designed
to use each observation as input only once and store statistics on
each observation instead of a history of observations [7]. Beyond
exploring improvements to DTTS, the purpose of using decision
trees was to ensure interpretability. Therefore, when DTTS is in-
tegrated into online learning platforms, work should be done to
make the recommendations made by DTTS as transparent as pos-
sible. Creating a user interface to help educators and researchers
understand what qualitative interactions DTTS is taking advantage
of when recommending content would both facilitate adoption of
DTTS and inform personalized learning pedagogy.

8 CONCLUSION
This work presented the Automatic Personalized Learning Service
(APLS), a novel infrastructure for personalized learning within AS-
SISTments, an online learning platform with around 300,000 active
users. An empirical study was performed and it was demonstrated
that using the APLS to recommend support for struggling students
with Beta-Bernoulli Thompson Sampling (BBTS), a common and
effective multi-armed bandit algorithm, was only slightly better
that selecting from the optional relevant student supports at ran-
dom. Further investigation revealed that the lack of significant
improvement was due to the breadth of problems for which sup-
port needed to be recommended and the sparsity in opportunity
to recommend the same content multiple times. These shortcom-
ings prompted the creation of Decision Tree Thompson Sampling
(DTTS), a novel multi-armed bandit algorithm for recommending
content that combines the interpretability and non-linearity of de-
cision trees with Thompson sampling’s proven approach to the
exploitation-exploitation trade-off. DTTS was shown in simulation
to outperform both BBTS and Linear Thompson Sampling (LTS),
demonstrating its ability to learn generalizable insights into how to
effectively personalize learning for students, problems, and student
supports that it had no prior exposure to. Additionally, using DTTS
to simulate recommending student supports, then correlating the
importance of each feature, as determined by the decision tree made
by DTTS, to the magnitude of every potential qualitative interac-
tion in a separate dataset found that the importance of the features
correlated with the strength of their qualitative interaction. Imply-
ing that the insight gained by DTTS is applicable to new content
and relies on the identification of qualitative interactions, which
are essential for personalization. Moving forward, DTTS will be
integrated into the APLS in ASSISTments where it can begin to
personalize learning for thousands of students across the world and
other platforms can begin to integrate the APLS framework using
DTTS.
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A APLS FEATURE DESCRIPTIONS
For users, summary statistics based on all prior problems com-
pleted by the user are calculated. These same summary statistics

are calculated for problems based on all prior instances of a student
attempting the problem. These summary statistics, listed below,
make up 20 of the context features.

• total_assignments_completed: For users, the total number
of assignments completed previously. For problems, The total
number of assignments with the problem in it completed
previously.

• total_problems_completed: For users, the total number
of problems completed previously. For problems, The total
number of times the problem was completed previously.

• assignment_completion_percentage: For users, the per-
cent of previously started assignments that were completed.
For problems, the percent of previously started assignments
with the problem in it that were completed.

• problem_completion_percentage: For users, the percent
of previously started problems that were completed. For
problems, the percent of previous times the problem was
started that is was also completed.

• median_time_on_task: For users, the median time on task
spent on problems. For problems, the median time on task
spent by students on the problem.

• median_first_response_time: For users, the median time
spent before submitting an answer or requesting tutoring
when completing a problem. For problems, the median time
spent before submitting an answer or requesting tutoring
for students completing the problem.

• average_correctness: For users, the fraction of times they
got previously completed problems correct on their first
attempt. For problems, the fraction of times that students
attempting the problem got it correct on their first attempt.

• average_attempt_count: For users, the average number
of attempts per problem on previously completed problems.
For problems, the average number of attempts for students
that completed the problem.

• average_hint_count: For users, the average number of
hints used per previously attempted problem. For problems,
the average number of hints used by students that previously
completed the problem.

• average_first_action_answer: For users, the fraction of
times that the student attempted to answer the problem
before requesting tutoring. For problems, the fraction of
times that students completing the problem attempted to
answer the problem before requesting tutoring.

One-hot encoded categorical variables for problem answer type,
grade level, and subject are also included in the context of the APLS.
Descriptions of the 10 answer types are listed below.

• problem_type_1: Multiple Choice
• problem_type_2: Check All That Apply
• problem_type_3: Place Items In Order
• problem_type_4: Exact Match (case sensitive)
• problem_type_5: Legacy Algebraic Expression, e.g., z = 2y
• problem_type_11: Exact Match (ignore case)
• problem_type_13: Number, e.g., 93
• problem_type_14: Numeric Expression, e.g., 3 + 2 * 4
• problem_type_15: Exact Fraction, e.g., 3/2
• problem_type_17: Algebraic Expression, e.g., z = 3x + 2y



The 15 grade level features and 32 subject features are described
by the Common Core State Standards for Mathematics, which can
be found at http://www.corestandards.org/Math/. The first and
second section of the Common Core Skill Code correspond to the
grade level and subject respectively. For example, for the skill code
7.RP.A.2.d, the grade level is 7 and the subject is RP.

Lastly, problems and student supports have context used by the
APLS corresponding to their HTML structure. Student supports
have more structural features than problems. Therefore, in the
following list, every feature exists for student supports and starred
features also exist for problems.

• student_support_content_creator_id: The ID of the cre-
ator of the student support.

• student_support_hint: A binary indicator of whether or
not the student support is a hint.

• student_support_explanation: A binary indicator of whether
or not the student support is an explanation.

• student_support_message_count: The number of mes-
sages contained within the student support.

• *_text_length: The character count of all the text in the
problem or student support.

• *_contains_video: A binary indicator of whether or not the
problem or student support contains a video.

• *_contains_image: A binary indicator of whether or not
the problem or student support contains an image.

• *_contains_link: A binary indicator of whether or not the
problem or student support contains a link.

• *_color_use: A binary indicator of whether or not the prob-
lem or student support uses different text colors.

• *_font_use: A binary indicator of whether or not the prob-
lem or student support uses different text fonts.

• *_text_size_use: A binary indicator of whether or not the
problem or student support uses different text sizes.

http://www.corestandards.org/Math/
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