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Supporting Students in Making Sense of Connections and in Becoming Perceptually Fluent 

in Making Connections among Multiple Graphical Representations 

Abstract 

Prior research shows that multiple representations can enhance learning, provided that 

students make connections among them. We hypothesized that support for connection making is 

most effective in enhancing learning of domain knowledge if it helps students both in making 

sense of these connections and in becoming perceptually fluent in making connections. We 

tested this hypothesis in an experiment with 428 4th- and 5th-grade students who worked with 

different versions of an intelligent tutoring system for fractions learning. Results did not show 

main effects for sense-making or fluency-building support but an interaction effect, such that a 

combination of sense-making and fluency-building support is most effective in enhancing 

fractions knowledge. Causal path analysis of log data from the system shows that sense-making 

support enhances students’ benefit from fluency-building support, but fluency-building support 

does not enhance their benefit from sense-making support. Our results suggest that both 

understanding of connections and perceptual fluency in connection making are critical aspects of 

learning of domain knowledge with multiple graphical representations. Findings from the causal 

path analysis lead to the testable prediction that instruction should provide sense-making support 

and fluency-building support for connection making.  

Keywords 

Multiple representations; connection making; intelligent tutoring systems; classroom evaluation; 

causal path analysis
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1. Introduction 

Instructional materials typically employ a variety of representations. For instance, 

students learning about fractions usually encounter the representations shown in Figure 1: 

circles, rectangles, and number lines. There is considerable evidence for benefits of multiple 

representations on students’ learning (Ainsworth, 2006; de Jong et al., 1998; Eilam & Poyas, 

2008). Multiple representations can enhance learning because they emphasize complementary 

conceptual aspects of the content (Larkin & Simon, 1987; Schnotz, 2005; Schnotz & Bannert, 

2003). For example, the circle in Figure 1 depicts fractions as part of a whole circle, whereas the 

number line depicts fractions as a measure of length.  

--- Insert Figure 1 about here --- 

However, students’ benefit from multiple representations depends on their ability to make 

connections among them (Ainsworth, 2006; Cook, Wiebe, & Carter, 2007; Taber, 2001). For 

example, learning of fractions requires an integration of the different concepts afforded by the 

representations in Figure 1 (National Mathematics Advisory Panel, 2008; Siegler et al., 2010). 

Therefore, students need to make connections among these representations. Yet, connection 

making is a difficult task (de Jong et al., 1998; Van Someren, Boshuizen, & de Jong, 1998) that 

students often fail to attempt spontaneously (Ainsworth, Bibby, & Wood, 2002; Authors, 2012a). 

At least two types of connection-making competencies play a role in students’ learning. First, 

they need understanding of connections: the ability to map corresponding visual features of the 

GRs to one another (e.g., Ainsworth, 2006; Schnotz & Bannert, 2003; Seufert, 2003). For 

example, when working with the GRs in Figure 1, students may map the colored section in the 

circle to the number of sections between 0 and the dot in the number line, based on the rationale 

that both show the numerator of the fraction. Second, connection making involves the acquisition 
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of perceptual fluency: learning to recognize visual patterns in GRs that correspond to domain-

relevant concepts. For example, the student may learn to recognize that the GRs in Figure 1 show 

the same proportion of some unit.  

Although prior research has yielded a number of effective interventions to support both 

types of connection-making competencies, this research has so far not investigated possible 

interactions among them. Our work addresses this gap by investigating whether combining 

support tailored to each type of connection-making competency enhances students’ learning of 

fractions knowledge. We chose fractions as a domain for our research because—similar to many 

other STEM domains—instructional materials typically use multiple graphical representations 

(MGRs) that emphasize different concepts. Therefore, our research has the potential to 

generalize to other STEM domains. We conducted our research as part of regular classroom 

instruction in the context intelligent tutoring systems (Koedinger & Corbett, 2006), which are 

used in many classrooms across the United States and hence represent a realistic educational 

scenario. A further advantage of intelligent tutoring systems is that they allow for the use of 

interactive, virtual GRs while providing tutoring, which aligns with mathematics education 

research demonstrating advantages of virtual over physical GRs for fractions instruction (Moyer, 

Bolyard, & Spikell, 2002; Reimer & Moyer, 2005). For our experiment, we used the Fractions 

Tutor (Authors, 2013), which provides multiple virtual GRs and has been shown to yield 

significant learning about fractions knowledge among elementary-school students.  

2. Motivation 

2.1. Multiple Graphical Representations of Fractions 

The mathematics education literature suggests that GRs fundamentally shape how 

students conceptualize fractions (Charalambous & Pitta-Pantazi, 2007; Cramer, Wyberg, & 
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Leavitt, 2008). Fractions are a notoriously complex domain (Charalambous & Pitta-Pantazi, 

2007). Indeed, Behr, Lesh, Post, and Silver (1983) suggest at least six conceptual ways to 

interpret fractions: (1) parts of a whole, (2) decimals, (3) ratios, (4) quotient, (5) operators, and 

(6) measurements. GRs differ in their capacity to help students understand these concepts. For 

instance, area models (i.e., circles and rectangles) can illustrate part-whole concepts (e.g., one of 

four sections is shaded), ratio concepts (one section is shaded, three are unshaded), and quotient 

concepts (one whole divided by four) (Cramer et al., 2008). While circles are a type of area 

model in which the whole is inherent in the shape (i.e., a full circle; Cramer et al., 2008), 

rectangles do not have a standard shape but can be divided horizontally and vertically, which is 

helpful for illustrating quotient and operator interpretations. By contrast, linear models (e.g., 

number lines) are well suited to illustrate measurement and decimal concepts (Siegler et al., 

2010).  

Fractions instruction typically uses MGRs (Charalambous & Pitta-Pantazi, 2007; Kieren, 

1993; Lamon, 1999; Martinie & Bay-Williams, 2003; Moss & Case, 1999; Thompson & 

Saldanha, 2003). Common curricula tend to start fractions instruction with area models (e.g., 

circles and rectangles) to introduce part-whole concepts of fractions and then work towards 

including other concepts, for instance by using number lines to illustrate measurement concepts 

(Behr et al., 1983; Kieren, 1976; Ohlsson, 1988). Failure to make connections among these 

different GRs may lead students to overly rely on one conceptual interpretation (Behr et al., 

1983; Kieren, 1976; Ohlsson, 1988). This can cause misconceptions such as the “whole number 

bias”: the bias to treat fractions as composites of whole numbers (i.e., numerator and 

denominator), rather than as overall fraction values (Ni & Zhou, 2005). Indeed, Siegler and 

colleagues criticize early reliance on area models in fractions instruction for over-emphasizing 
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part-whole concepts (Siegler et al., 2011, 2013). Instead, they recommend increased use of 

number line representations to emphasize measurement concepts. In line with this 

recommendation, educational practice guides emphasize advantages of number lines over other 

GRs (National Mathematics Advisory Panel, 2008; Siegler et al., 2010). 

Given recent research on the potential privilege of number line representations over area 

models (Siegler et al., 2011, 2013), one may even argue that unless students make connections 

among GRs, they may learn better with number lines alone. Indeed, in our own prior research, 

we found that students benefited from MGRs only if they received instructional support to relate 

each GR to key fractions concepts (Authors, 2015). Without this support, students who worked 

with number lines alone showed higher learning gains than students who worked with MGRs.  

In sum, students’ benefit from MGRs depends on their ability to make connections 

among them. Yet, it remains an open question how best to support students in making such 

connections. We investigate this question in our current experiment. Because Siegler’s 

suggestion that number lines alone may be more effective than MGRs is mainly rooted in 

concerns about failure to connect measurement concepts to part-whole concepts, our experiment 

focuses on connection making between the GRs typically used to emphasize these concepts: 

number lines and area representations (circle and rectangle).  

2.2. Theoretical Framework  

To address the question of how best to support students in making connections among 

MGRs, we draw on a recent theoretical framework that seeks to bridge cognitive science and 

educational research to educational practice: Koedinger and colleagues’ (2012) Knowledge-

Learning-Instruction framework (KLI; also see Koedinger et al., 2013). KLI offers the alignment 

hypothesis: that instructional interventions are most effective if they enhance learning processes 



SENSE MAKING AND PERCEPTUAL FLUENCY IN CONNECTION MAKING 6 

 
 

that match the complexity of the to-be-learned competency. Hence, we use KLI to consider (1) 

the complexity of connection-making competencies that are important for domain expertise, (2) 

through which learning processes students acquire these competencies, and (3) which 

instructional interventions may match their complexity. As illustrated in Figure 2, these 

theoretical considerations lead to the hypothesis that combining support tailored to each type of 

connection-making competency enhances students’ learning of fractions knowledge. 

--- Insert Figure 2 about here --- 

2.2.1. Connection-Making Competencies in Domain Expertise  

The literature on expertise provides insights into how connection making among MGRs 

relates to domain expertise. Our review of this research suggests that two connection-making 

competencies play an important role in expertise (see Authors, in press, for an overview): 

understanding of connections (Ainsworth, 2006; Dreyfus & Dreyfus, 1986; Patel & Dexter, 

2014; Richman et al., 1996) and perceptual fluency in connection making (Dreyfus & Dreyfus, 

1986; Gibson, 1969, 2000; Pape & Tchoshanov, 2001; Richman et al., 1996). To analyze the 

complexity of these competencies, we draw on KLI’s definition of a knowledge component as an 

“acquired unit of cognitive function […] that can be inferred from performance on a set of 

related tasks” (Koedinger et al., 2012, p. 764).  

Understanding of connections among GRs means that a student can map visual features 

of one GR to those of a different GR because they show the same concept (Ainsworth, 2006; 

Charalambous & Pitta-Pantazi, 2007; Cramer, 2001; Kozma & Russell, 2005; Patel & Dexter, 

2014). For example, consider a student who sees the GRs shown in Figure 1. The student may 

map the shaded section in the circle to the section between zero and the dot in the number line 

because both visual features depict the numerator, and he/she may relate the number of total 
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sections in the circle to the sections between 0 and 1 in the number line because both features 

show the denominator. By reasoning about these connections, the student may understand the 

abstract principle that both GRs express fractions as portions of a unit, measured by partitioning 

the unit into equal sections. Under KLI, such reasoning involves learning of complex knowledge 

components because it requires that students learn a principle that applies in multiple situations 

(e.g., a proportion can be shown in multiple ways: circles, rectangles, number lines, etc.).  

Perceptual fluency in making connections is the ability to quickly and effortlessly see 

holistic, corresponding visual patterns across different GRs. For example, a student should see 

“at a glance” that the circle and the number line show the same proportion of a unit. Perceptual 

fluency in connection making is related to domain expertise because it frees “cognitive head 

room” that allows students to reason about domain-relevant concepts (Gibson, 2000; Kellman & 

Massey, 2013; Richman et al., 1996). Under KLI, perceptual fluency involves learning of simple 

knowledge components because there is a one-to-one mapping between the GRs (e.g., circle and 

number line) and the visual pattern (e.g., proportion of unit covered).  

2.2.2. Connection-Making Processes that Lead to Connection-Making Competencies 

KLI moves beyond the analysis of knowledge components by relating them to the 

learning processes through which students acquire them. Students learn complex knowledge 

components via sense-making processes. These processes are verbally mediated because they 

involve explanations of principles of how GRs depict conceptually relevant information (Chi, 

Bassok, Lewis, Reimann, & Glaser, 1989; Gentner, 1983; Koedinger et al., 2012). They are 

explicit in that students have to willfully engage in them (Chi, de Leeuw, Chiu, & Lavancher, 

1994; diSessa & Sherin, 2000). The literature on learning with representations often refers to 

sense-making processes as structure mapping processes (Gentner & Markman, 1997) because 
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students map features of the representations to abstract concepts. Seufert (2003) suggests that 

structure mapping is one major process through which students integrate information from 

multiple representations into a coherent understanding of domain knowledge. diSessa’s (2004) 

framework of meta-representational competence and research on representational flexibility 

(Acevedo Nistal, Van Dooren, & Verschaffel, 2013, 2015) suggest that sense-making processes 

are also involved in selecting appropriate GRs to solve domain-relevant problems. 

By contrast, students learn simple knowledge components via non-verbal inductive 

learning processes (Koedinger et al., 2012; Richman et al., 1996) that they engage in when 

learning to categorize instances accurately and efficiently (Koedinger et al., 2012). These 

processes are often non-verbal because they do not require explicit reasoning (Kellman & 

Garrigan, 2009; Kellman & Massey, 2013). They are implicit because they typically happen 

unintentionally and unconsciously (Shanks, 2005) through experience with many instances 

(Gibson, 1969, 2000; Kellman & Massey, 2013; Richman et al., 1996). The literature also refers 

to inductive learning processes as perceptual learning and pattern recognition (Gibson, 1969, 

Goldstone & Barsalou, 1998; Kellman & Massey, 2013; Richman et al., 1996).  

2.2.3. Instructional Interventions to Support Connection-Making Processes 

According to KLI’s alignment hypothesis, instructional interventions that enhance sense-

making processes are most effective for complex knowledge components, whereas interventions 

that enhance inductive processes are most effective for simple knowledge components.  

Supporting verbally mediated sense-making processes in connection making. KLI identifies 

principles that can guide the design of instructional activities that support sense-making 

processes (Koedinger et al., 2013). Here, we discuss two instructional activities that apply to the 

case of connection making: explicitly comparing multiple instances and providing self-
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explanation prompts. Prior research has demonstrated how best to implement these principles 

into support for connection making. First, sense-making support is particularly effective if it 

prompts students to self-explain mappings between representations (Ainsworth & van Labeke, 

2002; Bodemer & Faust, 2006; Seufert, 2003; Van der Meij & de Jong, 2011). Such prompts 

may be critical because students typically struggle in making sense of connections (Ainsworth et 

al., 2002), especially if they have low prior knowledge (Stern, Aprea, & Ebner, 2003). For 

example, Berthold and Renkl (2009) show that self-explanation prompts increase students’ 

benefit from multiple representations. In their experiment, self-explanation prompts were 

implemented in the form of “why”-questions, in order to elicit self-explanations of principled 

knowledge. Self-explanation prompts are more effective if they ask students to self-explain 

specific connections than if they are open-ended (Berthold, Eysink, & Renkl, 2008; Van der Meij 

& de Jong, 2011). 

Second, sense-making support typically asks students to use these mappings to compare 

how representations show analogous information or different, complementary information about 

the concepts they depict (Bodemer & Faust, 2006; Seufert, 2003; Seufert & Brünken, 2006; van 

der Meij & de Jong, 2006; Van Labeke & Ainsworth, 2002; Vreman-de Olde & De Jong, 2007). 

Although most implementations of sense-making support encourage students to compare 

representations, our review of prior research showed that there are two different, commonly used 

implementations. One common implementation of sense-making support in computer-based 

learning environments uses linked representations, where the student’s manipulations of one GR 

are automatically reflected in the other GR (e.g., Ainsworth & van Labeke, 2002; Van der Meij 

& de Jong, 2006, 2011). Linked GRs allow students to explore intermediate steps, mistakes, and 

the final result in two or more GRs. This implementation aligns with KLI’s cognitive dissonance 
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principle, which states that presenting incorrect solutions may enhance sense-making processes 

(Koedinger et al., 2013).  

A second common implementation uses analogous examples. These types of sense-

making support typically provide step-by-step guidance for students map corresponding features 

across examples so as to extract their commonalities (e.g., Bodemer & Faust, 2006; Gutwill, 

Frederiksen, & White, 1999; Özgün-Koca, 2008). For example, Gutwill and colleagues (1999) 

found that asking students to map features of corresponding GRs to one another was effective in 

enhancing learning outcomes. Providing analogous examples aligns with KLI’s worked 

example’s principle (Koedinger et al., 2013).  

Studies that compared the effects of sense-making support with linked representations 

and analogous examples yield contradictory findings. There is evidence in favor of linked 

representations (e.g., Van der Meij & de Jong, 2006, 2011), but there is also evidence in favor of 

analogous examples (e.g., Gutwill et al., 1999; Özgün-Koca, 2008). Hence, in the present 

experiment, we compare sense-making support with linked representations and with analogous 

examples, while incorporating self-explanation prompts in both. 

Supporting non-verbal inductive refinement processes in connection making. KLI proposes 

that learning of simple knowledge components does not require that students engage in verbally 

mediated learning processes because there is nothing to explain. Evidence for this claim comes 

from studies showing that sense-making support is ineffective for simple knowledge components 

in perceptual learning (Schooler, Ohlsson, & Brooks, 1993; Schooler, Fiore, & Brandimonte, 

1997) or grammar learning (Wylie, Koedinger, & Mitamura, 2009). KLI identifies a number of 

principles to guide the design of instructional activities that enhance non-verbal, implicit, 
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inductive processes (Koedinger et al., 2013). Here, we discuss two principles that apply to 

perceptual fluency in connection making: immediate feedback and exposure to varied instances.  

We note that the majority of connection-making support has focused on supporting sense-

making processes rather than inductive processes. Yet, a new line of research yields a type of 

intervention that aligns with the KLI principles for inductive processes (Kellman & Massey, 

2013; Kellman, Massey, & Son, 2009; Wise, Kubose, Chang, Russell, & Kellman, 2000). 

Kellman and colleagues developed interventions that provide fluency-building support for 

several science and mathematics topics (Kellman et al., 2009). These interventions ask students 

to rapidly classify representations over many short problems. In line with the KLI principle of 

immediate feedback, students receive correctness feedback on these problems. Further, the 

problems expose students to systematic variation, often in the form of contrasting cases, so that 

irrelevant features vary but relevant features remain constant across problems (Kellman & 

Massey, 2013). Studies in several domains (e.g., Kellman & Massey, 2013) show that fluency-

building support leads to large and lasting gains in perceptual fluency that transfer to new 

instances and to learning gains on domain knowledge tests. Hence, in the present experiment, we 

investigate the effectiveness of fluency-building problems designed based on Kellman and 

colleagues’ interventions. 

2.3. Summary and Research Questions 

In summary, KLI leads to the hypotheses we test in this paper, illustrated in Figure 2. We 

test the effects of sense-making problems that support verbally mediated sense-making processes 

(Figure 2, path 1) to enhance understanding of connections (Figure 2, path 5), and of fluency-

building problems that support non-verbal inductive processes (Figure 2, path 2) to enhance 
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perceptual fluency (Figure 2, path 6). We hypothesize that combining both types of connection-

making support will enhance students’ learning of fractions knowledge (Figure 2, paths 7 and 8).  

This hypothesis remains untested because research on sense-making support and research 

fluency-building support are, to date, separate lines of research. In particular, prior research on 

sense-making support did not assess or manipulate students’ perceptual fluency. Notably, most 

research on sense-making support involved connecting a GR to text-based representations. It 

seems reasonable to assume that students are fluent in reading (i.e., they have a high level of 

perceptual fluency in processing text). However, we do not know whether students in these 

studies had some level of perceptual fluency with the GR, and we do not know whether their 

level of prior perceptual fluency affected their benefit from sense-making support. Likewise, 

prior research on fluency-building support typically involved students who had already acquired 

conceptual understanding of the domain knowledge (e.g., Kellman et al., 2009), which is likely 

to involve understanding of connections. However, we do not know whether students’ prior 

knowledge affected their benefit from fluency-building support.  

We conducted a controlled classroom experiment that tested the following research 

questions and hypotheses: 

Research question 1: Does connection-making support enhance students’ learning gains? 

Hypothesis 1.1: Students who receive sense-making problems that support connection 

making show higher learning gains of fractions knowledge than students who do not.  

Hypothesis 1.2: Students who receive fluency-building problems show higher learning 

gains than students who do not.  

Hypothesis 1.3: Students who receive a combination of sense-making and fluency-

building problems show higher learning gains than students who receive either alone. 
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Research question 2: Are sense-making problems more effective if they include linked 

GRs or analogous examples? 

This question was explorative, so we did not test specific hypotheses. 

Research question 3: Does connection-making support enhance students’ benefit from 

MGRs? 

Hypothesis 3.1: Students who work with MGRs without connection-making support 

show higher learning gains than students who work with a single GR. 

Hypothesis 3.2: Students who work with MGRs with connection-making support show 

higher learning gains than students who work with a single GR. 

3. Classroom Experiment 

3.1. Methods 

3.1.1. Experimental design 

--- Insert Table 1 about here --- 

We randomly assigned individual students to work with one of several versions of the 

Fractions Tutor, which differed with respect to the types of connection-making problems they 

included. Our experiment had a 2x3 +1 design, summarized in Table 1. The two experimental 

factors were two types of connection-making problems: sense-making support and fluency-

building support. The sense-making factor varied whether students received sense-making 

problems with linked representations (SL), sense-making problems with analogous examples 

(SE), or no sense-making problems. This factor was crossed with the fluency-building support 

factor, which varied whether students received fluency-building problems (F) or not. Students in 

the multiple-graphical-representations (MGR) condition received MGRs but no connection-
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making problems. Students in the single-graphical-representation (SGR) condition received only 

number lines and no connection-making problems.  

3.1.2. Participants 

599 4th- and 5th-grade students, aged 9-13 years, from five elementary schools (25 

classes) in one school district in Pennsylvania, USA participated in the experiment. The school 

district was among the 10% highest ranked in reading and mathematics assessments of 500 

Pennsylvania public school districts in the year of 2010/2011, with about 12% of students 

enrolled in free or reduced-price lunch programs, and 95% of the students being White. The 

school district volunteered to participate in this research.  

3.1.3. Instructional Materials: The Fractions Tutor 

We conducted the experiment in the context of the Fractions Tutor, an effective 

intelligent tutoring system designed for use in real classrooms (Authors, 2013). The Fractions 

Tutor supports learning through problem solving while providing immediate feedback and on-

demand hints, both related to each problem step. The Fractions Tutor emphasizes conceptual 

learning by emphasizing principled understanding of fractions as proportions of a unit while 

students solve problems. The curriculum covers ten topics (see appendix in online supplemental 

material, Table 1A), covering about 10 hours of instruction. Students worked individually at their 

own pace. All conditions received 80 tutor problems: eight problems per topic, for ten fractions 

topics. For our experiment, we created different versions of the Fractions Tutor that varied what 

types of support for connection-making competencies it provides, detailed in the following. 

Consequently, the problems students encountered in the Fractions Tutor differed by condition, 

but we equated the number of problem-solving steps across conditions. Pilot-testing established 

that they took about the same time.  
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Single-graphical-representation (SGR) condition. Students in the SGR condition worked on 

number line problems only, eight per topic.  

Multiple-graphical-representations (MGR) condition. Students in the MGR condition worked 

on eight individual-representation problems per topic. These problems involved only one GR per 

problem, but MGRs were used across problems, such that the students encountered each GR an 

equal number of times. Thus, the MGR condition received all three GRs, but no connection-

making problems.  

--- Insert Figure 3 about here --- 

Figure 3 shows an example of an individual-representation problem. As students work 

through the steps of the problem, the Fractions Tutor provides feedback. The items shown in 

green are student entries with tutor feedback indicating that the value is correct, such as values 

entered in input boxes, selections from menus, and dots placed on an interactive number line. 

Students can also request a hint from the tutor on every step by clicking the brown button at the 

top right. Students interact with the GRs by using buttons to partition the GR into sections and by 

clicking to highlight sections in circles and rectangles or to place a dot on the number line. They 

also receive feedback on these interactions. 

In the remaining five conditions, the first four problems for each topic were individual-

representation problems. Students received the same number of individual-representation 

problems for each GR. The last four problems per topic were connection-making problems (i.e., 

sense-making problems with linked representations, sense-making problems with analogous 

examples, and/or fluency-building problems), corresponding to the student’s experimental 

condition. Table 2 illustrates how sense-making problems and fluency-building problems were 

combined by contrasting three of the conditions. 
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--- Insert Table 2 about here --- 

Sense-making with analogous examples (SE) condition. Students in the SE condition received 

four problems per problem in which they solved a part of the problem with one GR while being 

able to reference a set of worked-out steps for an analogous example that involved a different 

GR. These problems all share the same format, illustrated in Figure 4. Students were first given 

worked-out steps for a question with an area model (i.e., circle or rectangle; Figure 4-A, light 

green panel on the left). Next, the problem-solving part appeared on the right (Figure 4-B, light 

blue panel in the middle), with steps that were analogous to those in the example part. The 

problem-solving part always involved the number line. The key idea was that the analogous 

example uses the GR that is more familiar to students, given that—as mentioned above—

fractions curricula tend to introduce fractions with area models. After completing the problem, 

students received self-explanation prompts to abstract a general principle from the two GRs (e.g., 

that both show equivalent fractions by re-partitioning the same amount; Figure 4-C, bottom). 

Self-explanation prompts were implemented in a fill-in-the blank format with drop-down menus 

on which students receive feedback. Similarly simple formats have been shown to be effective in 

prior research with intelligent tutoring systems or other educational technologies (Aleven & 

Koedinger, 2002; Atkinson, Renkl, & Merrill, 2003) and more effective than open-ended forms 

of self-explanation prompts (Gadgil, Nokes-Malach, & Chi, 2012; Johnson & Mayer, 2010; van 

der Meij & de Jong, 2011).  

--- Insert Figure 4 about here --- 

Sense-making with linked representations (SL) condition. Students in the SL condition 

received four problems per topic that included support to make sense of connections with linked 

GRs (Figure 5). Students interacted with a number line (Figure 5-A) to solve a problem, while an 
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area model (i.e., a circle or a rectangle) updated automatically to mimic the same steps. Because 

students tend to be more familiar with area models than with number lines, linking was 

implemented such that the more familiar GR provided feedback on interactions with the less 

familiar GR. The SL problems included the same self-explanation prompts as SE problems 

(Figure 5-B). 

--- Insert Figure 5 about here --- 

Fluency-building (F) condition. Students in the F condition received four problems per topic 

that included fluency-building support for connection making (Figure 6). The fluency-building 

problems were designed based on Kellman and colleagues’ (2009) interventions. Hence, they 

provided students with numerous short categorization problems. In the equivalent fractions topic, 

for instance, students sorted a variety of GRs using drag-and-drop (Figure 6). In alignment with 

Kellman and colleagues’ interventions, fluency-building problems provided only correctness 

feedback. Students could request hints, but hint messages only provided general encouragement 

(e.g., “give it a try!”). Finally, the fluency-building problems encouraged visual problem-solving 

strategies. For example, in the equivalent fractions topic, students were instructed to visually 

judge equivalence rather than counting sections. To discourage counting strategies, we included 

examples with sections too small to count.  

--- Insert Figure 6 about here --- 

Combined sense-making and fluency-building conditions. Students in the sense-making with 

linked representations plus fluency-building (SL-F) condition also received four connection-

making problems per topic: two SL problems followed by two F problems. Similarly, students in 

the sense-making with analogous examples plus fluency-building (SE-F) condition received two 

SE problems followed by two F problems. We decided to provide sense-making problems before 
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fluency-building problems in each topic because understanding is expected before fluency in 

educational practice guides (e.g., National Council of Teachers of Mathematics, 2000, 2006).  

3.1.4. Test instruments 

Students took the tests three times: before they started working with the tutor (pretest), 

immediately after they finished working with the tutor (immediate posttest) and one week after 

the immediate posttest (delayed posttest). The delayed posttest was included so as to test whether 

students’ knowledge is robust in that it lasts over time (Koedinger et al., 2012). We created three 

equivalent test forms, which included the same type of problems but with different numbers. We 

counterbalanced the order in which the different test forms were administered.  

The tests targeted robust knowledge of fractions (i.e., with respect to domain knowledge, 

not connection-making knowledge) considering two knowledge types: procedural and conceptual 

knowledge. The conceptual scale included eight items that assessed students’ principled 

understanding of fractions. The test items asked students to reconstruct the unit of a fraction, 

identify fractions from GRs, answer proportional reasoning questions, and complete written 

reasoning questions about fraction comparison tasks. The procedural scale included nine items 

that assessed students’ ability to solve questions by applying algorithms. The test items asked 

students to find a fraction between two given fractions using GRs, finding equivalent fractions, 

addition, and subtraction. Both scales included multiple-choice and open-ended items. Half of 

the items in both test scales were reproduction and transfer items, respectively. Reproduction 

items were similar to individual-representation problems students had encountered during their 

work on the tutor. Transfer items were new relative to those covered in the tutor. The goal in 

including transfer items was to assess whether students’ knowledge is robust in that it is 

transferred to unfamiliar problems (Barnett & Ceci, 2002). Example items for both tests can be 
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found in the appendix in online supplemental material (Figures 1A, 2A). For questions that 

required multiple steps, partial credit was given for each correct step. The scores reported here 

are relative scores (i.e., ranging from 0 to 1). The theoretical structure of the test was based on a 

factor analysis with pretest data from the current experiment and was replicated with data from 

the immediate and delayed posttests. All test items were evaluated for their difficulty levels and 

discriminatory power using item-response-theory models. Taken together, the test items covered 

a range of difficulty levels. All items had good discriminatory power. Both scales had good 

reliability with Cronbach’s Alpha of .70 for the conceptual scale and Cronbach’s Alpha of .77 

for the procedural scale. 

3.1.5. Procedure 

The study took place at the beginning of the 2011/2012 school year. Students accessed all 

materials online from their school’s computer lab. They were instructed to work individually at 

their own pace with the Fractions Tutor. Classroom teachers led the sessions as they normally 

would during computer-lab hours; that is, they walked around to help individual students who 

needed assistance. They managed their classrooms in regular fashion; for instance, they told 

students to be quiet when they were chatting. Experimenters were present for the first two days 

of the experiment to ensure that the Fractions Tutor worked smoothly in the labs.  

On day 1 of the study, students completed a 30-minute pretest. They then worked on the 

Fractions Tutor for about one hour per day for ten consecutive school days (i.e., two weeks, 

yielding about ten hours spent on the Fractions Tutor in total). On the last day, students 

completed a 30-minute posttest. One week later, students took a delayed posttest. 

3.1.6. Analysis 
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Data in education research often has complex patterns of variance due to the fact that 

students are nested within classes (i.e., classes may account for a portion of the variance) and 

within schools (i.e., schools may account for a portion of the variance). Taking these sources of 

variance into account in statistical analyses allows to reduce the error variance statistical 

significance tests (Raudenbush & Bryk, 2002). Hierarchical linear models are a type of statistical 

model that allows accounting for such nested sources of variance (HLM; Raudenbush & Bryk, 

2002).  

We tested a number of variables, including teacher, school district, test form sequence, 

grade level, number of problems completed, total time spent with the tutor, random intercepts 

and slopes for classes and schools. We also tested whether including each level of the HLM 

increased model fit. The outcome of this selection procedure was the following four-level HLM. 

At level 1, we modeled performance on each of the tests for each student. At level 2, we 

accounted for differences between students. Level 3 models random differences between classes, 

and level 4 random differences between schools. Specifically, we used the following HLM: 

Yijkl = (((μ + Wl) + Vkl) + β2 * sj + β3 * fj + β4 * pj + β5 * sj * pj + β6 * fj * pj + Ujkl) + β1 * ti + Rijkl 

with 

(level 1) Yijkl = εjkl + β1 * ti + Rijkl 

(level 2) εjkl = δkl + β2 * sej + β3 * slj + β4 * fj + β5 * pj + β6 * sej * pj + β7 * slj * pj + β8 * fj * pj + 

Ujkl 

(level 3) δkl = γl + Vkl 

(level 4) γl = μ + Wl 

Table 3 provides an overview of the variables included in the HLM. Index i stands for 

test time (i.e., immediate and delayed posttest), j for the student, k for class, and l for the school. 
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The dependent variable Yijkl is studenti’s score on the dependent measures at test time ti (i.e., 

immediate or delayed posttest), εjkl is the parameter for the intercept for studentj’s score, β1 is the 

parameter for the effect of test time ti, β2 is the parameter for the effect of sense-making problems 

with analogous examples sej, β3 is the parameter for the effect of sense-making problems with 

linked representations slj, β4 is the parameter for the effect of fluency-building problems fj, β5 is 

the parameter for the effect of studentj’s performance on the pretest pj, β6 is the parameter for an 

aptitude-treatment interaction between sense-making problems with analogous examples sej and 

studentj’s performance on pretest pj, β7 is the parameter for an aptitude-treatment interaction 

between sense-making problems with linked representations slj and studentj’s performance on 

pretest pj, β8 is the parameter for an aptitude-treatment interaction between fluency-building 

problems fj and studentj’s performance on pretest pj, δkl is the parameter for the random intercept 

for classk, γl is the parameter for the random intercept for schooll, and μ is the overall average. 

We ran this model in the SAS software package for mixed models.  

--- Insert Table 3 about here --- 

3.2. Results 

We excluded students who did not complete all tests or did not complete the Fractions 

Tutor in the time allocated by their classroom teacher because they did not receive the full 

intervention and did not complete all topics that were tested in the posttests. The final sample 

included a total of N = 428 (n = 61 in the SGR condition, n = 64 in the MRG condition, n = 52 in 

the SL condition, n = 59 in the SE condition, n = 73 in the F condition, n = 61 in the SL-F 

condition, n = 59 in the SE-F condition). The number of students who were excluded from the 

analysis did not differ significantly between conditions, χ² (6, N = 169) = 4.34, p > .10. Excluded 

students had significantly lower pretest scores on the conceptual knowledge test, F(1,594) = 
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6.73, p < .05, and on the procedural knowledge test, F(1,594) = 5.60, p < .05, but there were no 

differences between conditions (Fs < 1). Students’ lower prior knowledge may explain why they 

took longer in working with the Fractions Tutor and, hence, did not finish in the allocated time. 

Table 4 shows the means and standard deviations for the conceptual and procedural 

scales by test time and condition. Table 5 shows the total amount of time spent on tutor problems 

by condition. To verify that time spent did not differ between conditions, we used the same HLM 

as described above. There were no significant effects of sense-making support, fluency-building 

support, nor a significant interaction among these factors on time spent (Fs < 1).  

--- Insert Table 4 about here --- 

--- Insert Table 5 about here --- 

3.2.1. Learning gains 

In learning experiments in real educational settings, any difference between conditions 

needs to be interpreted relative to pretest-to-posttest learning gains (Lipsey et al., 2012). Thus, 

we first verified whether students learned from the Fractions Tutor. To do so, we used a modified 

version of the HLM described above on all seven conditions, using pretest scores as a repeated, 

dependent measure rather than as a covariate (the SAS-code can be found in the appendix in 

online supplemental material, Figure 3A). Students performed significantly better on conceptual 

knowledge at the immediate posttest (p < .0001, d = .40), and at the delayed posttest (p < .0001, 

d = .60), compared to the pretest. Students performed significantly better on procedural 

knowledge at the immediate (p < .0001, d = .20) and at the delayed posttest (p < .0001, d = .24), 

compared to the pretest. 

3.2.2. Effects of connection-making support 
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To investigate whether a combination of sense-making problems and fluency-building 

problems leads to higher learning gains than either type of problem alone, we applied the HLM 

described above to the 2x3 design (i.e., without the SGR condition; the SAS-code can be found 

in the appendix in online supplemental material, Figure 4A). The parameter estimates can be 

found in the appendix in online supplemental material (Tables 2A for random intercepts, 3A for 

fixed effects in the conceptual knowledge model, Table 4A for fixed effects in the procedural 

knowledge model). There were no main effects of sense-making problems (hypothesis 1.1) or 

fluency-building problems (hypothesis 1.2) on conceptual knowledge or on procedural 

knowledge (Fs < 1). There were no significant interactions of sense-making problems or fluency-

building problems with pretest performance. There was no significant interaction on procedural 

knowledge (Fs < 1). However, there was a significant interaction between sense-making 

problems and fluency-building problems on conceptual knowledge, F(2, 343) = 4.11, p = .017, η² 

=.03, such that students who received both types of problems performed best on the conceptual 

posttests. To gain further insights into this interaction effect, we turn to research question 2: are 

sense-making problems more effective if they include linked GRs or analogous examples? We 

examined simple effects of the sense-making factor for the conditions with fluency-building 

problems (i.e., SL-F, SE-F, F conditions) and without fluency-building problems (i.e., SL, SE, 

MGR conditions). On conceptual knowledge, there was a significant effect of sense-making 

problems among the conditions with fluency-building problems, F(2, 343) = 4.34, p = .014, η² 

=.07, such that the SE-F condition significantly outperformed the F condition, t(341) = 2.82, p = 

.005, d = .32, and the SL-F condition, t(342) = 2.20, p = .05, d = .26. The difference between the 

SE-F condition and the F condition was not significant (t < 1). The effect of sense-making 
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problems was not significant for the conditions without fluency-building problems (F < 1), and 

consequently, none of the post-hoc comparisons were significant.  

To investigate whether MGRs are more effective than an SGR (hypotheses 3.1 and 3.2), 

we applied a modified version of the HLM described above to the SGR, MGR, and SE-F 

condition (i.e., the most successful connection-making condition; the SAS-code can be found in 

the appendix in online supplemental material, Figure 4A). There were no significant differences 

between the MGR condition and the SGR condition (ps > .10) (hypothesis 3.1). The SE-F 

condition significantly outperformed the SGR condition on conceptual knowledge, t(115) = 2.41, 

p = .016, d = .27, but not on procedural knowledge (t < 1) (hypothesis 3.2).  

3.3. Discussion 

With respect to research question 1 (does connection-making support enhance students’ 

learning gains?), our results do not support hypotheses 1.1 or 1.2, that problems that work on 

sense-making or working on fluency-building problems would enhance robust fractions 

knowledge, respectively. However, our results support hypothesis 1.3 for conceptual knowledge: 

working on a combination of sense-making problems and fluency-building problems was 

effective. Somewhat to our surprise, neither type of connection-making support alone, but only 

the combination of both was effective. With respect to research question 3 (does connection-

making support enhance students’ benefit from MGRs?), our results stand in contrast to 

hypothesis 3.1 but support hypothesis 3.2. Comparisons to the SGR condition show that students 

did not benefit from working with MGRs, unless they received a combination of sense-making 

and fluency-building support.  

We did not find significant effects on procedural knowledge. It may be that students’ 

conceptual knowledge benefits from connection making because each representation provides a 
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different conceptual view on what fractions are, whereas procedural knowledge may rely more 

on experience with algorithmic operations tasks rather than on conceptual understanding.  

With respect to our exploratory research question 2, whether problems that help students 

make sense of connections are more effective if they include linked GRs or analogous examples, 

we find that analogous examples lead to higher learning gains on a test of robust fractions 

knowledge than linked GRs.  

4. Causal Path Analysis Modeling 

The experiment showed that only the combination of sense-making problems and 

fluency-building problems was effective in enhancing students’ learning of domain knowledge. 

This finding leads to open questions about how sense-making processes and inductive refinement 

processes interact (Figure 2, paths 3 and 4). Hence, we seek to better understand the nature of 

this interaction through an additional data source–the tutor log data as an indicator of problem-

solving performance–using causal path analysis modeling. The logs provide a detailed record of 

students’ interactions with the Fractions Tutor at the “transaction” level (i.e., attempts at steps, 

hint requests, etc.). Given that sense-making problems with analogous examples were more 

effective than those with linked GRs, we focused on the SE conditions in this analysis. 

4.1. Hypotheses 

We investigate two possible mechanisms by which sense-making problems and fluency-

building problems might interact. One mechanism may be that working on fluency-building 

problems enhances students’ benefit from sense-making problems (Figure 2, path 3; we will refer 

to this as the fluency hypothesis). According to the fluency hypothesis, perceptually fluent 

students may benefit from increased cognitive capacity during subsequent learning tasks 

(Kellman et al., 2009; Koedinger et al., 2012). Therefore, they should show better performance 
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on sense-making problems. We contrast the fluency hypothesis to the practice hypothesis that 

receiving more practice on sense-making problems leads to better performance on sense-making 

problems. The SE condition has practice on four sense-making problems, per problems whereas 

the SE-F condition has practice on only two sense-making problems. Therefore, the practice 

hypothesis predicts that the SE condition should show better performance on sense-making 

problems than the SE-F condition. To see the effect of having practice with fluency-building 

problems on students’ performance on sense-making problems, we compare the SE condition to 

the SE-F condition. In the SE condition, problems P5, P6, P7, and P8 were sense-making 

problems (for each of the ten topics, see Table 2). In the SE-F condition, only problems P5 and 

P6 were sense-making problems (for each of the ten topics). Hence, when comparing the SE and 

SE-F conditions, problems P5 and P6 of each topic serve as the basis for the comparison (bold-

underlined problems in Table 2).  

Another mechanism may be that working on sense-making problems enhances students’ 

benefit from fluency-building problems (Figure 2, path 4; sense-making hypothesis). Prior 

research shows that students have difficulties in making sense of connections at a conceptual 

level and typically do not make connections spontaneously (Ainsworth et al., 2002; Authors, 

2012a). Therefore, the sense-making hypothesis predicts that students may not be able to 

discover what features of the GRs depict meaningful information while working on fluency-

building problems, which may lead to inefficient learning strategies (e.g., trial-and-error) that can 

impede their benefit from fluency-building problems. In particular, the visual features that denote 

fractions may not be easy to detect, and can perhaps not be learned in a purely inductive manner. 

Therefore, sense-making support could increase students’ performance on fluency-building 

problems. We contrast the sense-making hypothesis to the practice hypothesis that receiving 
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more practice on fluency-building problems leads to better performance on fluency-building 

problems. The F condition has practice on four fluency-building problems per problems, whereas 

the SE-F condition has practice on only two fluency-building problems. Therefore, the practice 

hypothesis predicts that the F condition should show better performance on fluency-building 

problems than the SE-F condition. To investigate the effect of having practiced on sense-making 

problems on students’ performance on fluency-building problems, we compare the F condition to 

the SE-F condition. In the F condition, problems P5, P6, P7, and P8 were fluency-building 

problems (for each of the ten topics, see Table 2). In the SE-F condition, only problems P7 and 

P8 were sense-making problems (for each of the ten topics). Hence, when comparing the F and 

SE-F conditions, problems P7 and P8 for each topic serve as the basis for the comparison (bold-

italicized problems in Table 2). 

In testing the fluency hypothesis and the sense-making hypothesis, we allow for the 

possibility that they are not mutually exclusive. 

4.2. Methods 

To investigate these hypotheses, we use causal path analysis, which provides a unified 

framework to test mediation hypotheses, estimate total effects, and separate direct from indirect 

effects in a coherent statistical model (Bollen & Pearl, 2013; Chickering, 2002; Spirtes et al., 

2000). We constructed causal path analysis models that correspond to the fluency hypothesis and 

to the sense-making hypothesis, respectively.  

Because we selected the SE and SE-F conditions for the fluency hypothesis model and 

the F and SE-F conditions for the sense-making hypothesis model, 190 students were included in 

the analysis (n = 59 in the SE condition, n = 73 in the F condition, and n = 58 in the SE-F 

condition).We operationalized performance on the tutor problems as error rates: making fewer 
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errors while solving a tutor problem indicates higher problem-solving performance. Rather than 

using the overall error rate, we classified errors based on the detailed knowledge components to 

which they relate. For the fluency hypothesis model, we computed the error rate for each 

knowledge component across the sense-making problems P5 and P6 for all ten topics (bold-

underlined problems in Table 2). For the sense-making hypothesis model, we computed the error 

rate for each knowledge component across the fluency-building problems P7 and P8 for all ten 

topics (bold-italicized problems in Table 2). Altogether, the knowledge component model 

yielded twelve error types that students could make on sense-making problems, and eleven error 

types that students could make on fluency-building problems, summarized in Tables 7 and 8. 

Next, included only those error types in the causal path analysis model that (1) were significant 

predictors of performance on the conceptual posttest, while controlling for pretest, and (2) 

significantly differed between conditions (i.e., the italicized error types in Tables 7 and 8).  

--- Insert Table 7 about here --- 

--- Insert Table 8 about here --- 

We constructed the causal path analysis models using an automatic algorithm that 

searches for models that are theoretically plausible and consistent with the data; namely, the 

Tetrad IV program’s1 GES algorithm. Tetrad IV allows us to specify assumptions that constrain 

the space of models searched (Chickering, 2002; Spirtes et al., 2000) and to find the model with 

the best model fit among models that are theoretically tenable and compatible with the 

experimental design (Spirtes et al., 2000). Independent variables in the causal path analysis were 

sense-making support and fluency-building support. Dependent variables were students’ 

 
1 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, contains a causal model simulator, estimator, and 

over 20 model search algorithms, many of which are described and proved asymptotically reliable in (Spirtes, 
Glymour, & Scheines, 2000). 
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performance on the conceptual pretest, immediate and delayed posttest. Mediators were error 

types students made on the sense-making problems for the fluency hypothesis model, and error 

types students made on the fluency-building problems in the sense-making hypothesis model.  

When conducting a model search, we can narrow the search space based on the 

knowledge we have about the nature of our data (Spirtes et al., 2000). We assumed that the 

experimental conditions are exogenous and causally independent, that the pretest was not 

influenced by the conditions, that the pretest is an exogenous variable and causally independent 

of the conditions. Furthermore, we assume that the mediators are prior to the immediate posttest 

and the delayed posttest, and that the immediate posttest is prior to the delayed posttest. The 

search space is defined by the fully saturated model for each hypothesis because it contains all 

possible edges (or “effects”) compatible with these assumptions and with the experimental 

design.  

We had Tetrad search among models that had all, none, or a subset of the edges in the 

fully saturated model. In the model search, each edge is automatically evaluated as to whether 

including it yields a better model fit than not including it, and whether it represents a statistically 

significant effect. Figure 7 (left) illustrates the fully saturated model for the fluency hypothesis 

(which includes only performance variables related to sense making as possible mediators). 

Figure 7 (right) illustrates the fully saturated model for the sense-making hypothesis (which 

includes only performance variable related to perceptual fluency as possible mediators). Thus, 

Figure 7 illustrates that, even with our assumptions, the search space contains at least 215 (over 

32 thousand) distinct path models that are plausible tests for the sense-making hypothesis, and 

220 (over 1 million) for the fluency hypothesis. The outcomes of the model search are two causal 

path analysis models, one corresponding to the fluency hypothesis, one corresponding to the 
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sense-making hypothesis, each consistent with the data and hence allowing us to trust the 

parameters of the model.  

--- Insert Figure 7 about here --- 

4.3. Results 

--- Insert Figure 8 about here --- 

To test the fluency hypothesis, we inspect the model shown in Figure 8, which is the best-

fitting model Tetrad IV found for the fluency hypothesis. The model fits the data well (χ2 = 8.32, 

df = 5, p = .14; CFI = 0.9943; RMSEA = 0.0808)2. The standardized coefficients and their 

standard errors, the significance tests for each effect, and the implied covariance matrices for the 

model are provided in the appendix in online supplemental material (Tables 5A, 6A, 7A). Figure 

8 shows unstandardized coefficients, which are easier to interpret with respect to the effects of 

number of errors students made. Further, because scores on all tests range between 0 and 1, the 

effects on the posttests are easy to compare even though coefficients are unstandardized. Recall 

that this model compares the SE and SE-F conditions based on errors students made on the 

sense-making problems. Further recall that, according to the fluency hypothesis, we expect that 

practice on fluency-building problems reduces error rates on sense-making problems, and that 

error rates on sense-making problems mediates the effect of condition on the posttests. Finally, 

recall that the alternative practice hypothesis suggests that, because students in the SE-F 

condition have less practice on sense-making problems, they should show higher rates of sense-

making errors. The model in Figure 8 shows that students in the SE-F condition, compared to the 

 
2 The usual logic of hypothesis testing is inverted in path analysis. The p-value reflects the probability of seeing 

as much or more deviation between the covariance matrix implied by the estimated model and the observed covariance 
matrix, conditional on the null hypothesis that the model that we estimated was the true model. Thus, a low p-value 
means the model can be rejected, and a high p-value means it cannot. Conventional thresholds are .05 or .01, but like 
other alpha values, this is somewhat arbitrary. The p-value should be higher at low sample sizes and lowered as the 
sample size increases, but the rate is a function of several factors, and generally unknown. 
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SE condition, made more selfExplanationErrors (i.e., the average student in the SE-F condition 

made 5.662 more errors in answering self-explanation prompts than the average student in the 

SE condition, and for each of these errors, the student looses .005 points on the final posttest) 

and more place1Errors (i.e., errors in finding 1 on a number line). Both decreased learning gains. 

Thus, students’ performance on sense-making problems mediated a negative effect of fluency-

building support on students’ posttest performance. This negative mediation effect is in line with 

the alternative hypothesis that practice alone explains performance on sense-making problems. In 

addition, in line with the overall finding of the experiment, Figure 8 shows that fluency-building 

support had a direct positive effect on posttest performance, which was stronger than the 

negative mediation effects. That is, the direct path of .116 is larger than the sum of the mediating 

paths (-.005 * 5.662 + -.012 * .166 * 5.662).  

--- Insert Figure 9 about here--- 

To test the sense-making hypothesis, we inspect the model in Figure 9, which shows the 

best-fitting model for the sense-making hypothesis. This model fits the data reasonably well (χ2 = 

16.10, df = 6, p = .013; CFI = 0.9822; RMSEA = 0.1338)3. The standardized coefficients and 

their standard errors, the significance tests for each effect, and the implied covariance matrices 

for the model are provided in the appendix in online supplemental material (Tables 5A, 6A, 7A). 

Figure 9 shows the unstandardized coefficients. Recall that this model compares the F and SE-F 

conditions based on errors students made on the fluency-building problems. Further recall that, 

according to the sense-making hypothesis, we expect that practice on sense-making problems 

leads to a lower rate of errors on the fluency-building problems, which in turn mediates the effect 

 
3 Ibid. It is worth noting that this model asserts that any effect the SE-F condition (compared to the F condition) 

has on the post-test or delayed post-test is entirely mediated by the three variables measuring error rates. Thus, it 
makes a bold and easily falsifiable prediction that is tested by this model.  
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of condition on the posttests. Finally, recall that the alternative practice hypothesis suggests that, 

because students in the SE-F condition have less practice on fluency-building problems, they 

should show higher error rates on fluency-building problems.The model in Figure 9 shows that 

students in the SE-F condition made more nameCircleMixed errors (i.e., errors in identifying the 

fraction depicted by a circle) but fewer improperMixedErrors (i.e., errors in identifying an 

improper fraction) and fewer equivalence errors (i.e., errors in identifying equivalent fractions) 

than students in the F condition. Students who made fewer nameCircleMixedErrors also made 

more subtractionMixedErrors (i.e., errors in finding the difference between two given fractions) 

and improperMixedErrors, which decreased performance in the conceptual posttest. Thus, 

performance on fluency-building problems mediated the positive effect of sense-making support 

on the conceptual posttest. There were no additional direct effects of sense-making support on 

posttest, so that students’ higher performance on fluency-building problems fully mediated the 

positive effect of sense-making support on learning gains. 

4.4. Discussion 

The results from the causal path analysis are consistent with the sense-making hypothesis 

but stand in contrast to the fluency hypothesis: we did not find evidence that working on fluency-

building problems helps students benefit from sense-making problems, but that fluency-building 

problems decrease their performance on sense-making problems. Thus, the mediation effect 

shown in Figure 8 suggests that receiving fluency-building problems comes at the cost of lower 

performance on sense-making problems: students tend to make more selfExplanationErrors and 

more place1Errors. Recall that that students in the SE condition work on twice as many sense-

making problems than the SE-F condition, so they receive more practice on these problems 

compared to the SE-F condition (see Table 2). Hence, the practice hypothesis predicts that they 
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perform somewhat worse on those problems, simply because they have less practice. The model 

in Figure 8 is in line with the practice hypothesis. Furthermore, the model in Figure 8 puts the 

performance on sense-making problems in relation to learning gains: higher performance on 

sense-making problems is associated with higher learning benefit from sense-making problems. 

Yet, since we do not find evidence that fluency-building problems help students learn from 

sense-making problems, our results do not support the fluency hypothesis. 

By contrast, the results from the causal path analysis models are in line with the sense-

making hypothesis: working on sense-making problems helps students learn from fluency-

building problems. The model in Figure 9 demonstrates that, although students who receive 

sense-making problems make more nameCircleMixedErrors, they make fewer equivalenceErrors 

and improperMixedErrors while working on fluency-building problems. The reduction of 

equivalenceErrors and improperMixedErrors mediates the effect of sense-making support on 

learning gains. NameCircleMixedErrors are confined to an early topic in the Fractions Tutor, 

whereas equivalenceErrors and improperMixedErrors occur later in the Fractions Tutor. The 

results therefore suggest that working on sense-making problems reduces errors later during the 

learning phase, which leads to higher learning gains. This finding is particularly interesting 

because it indicates that having worked on sense-making problems leads to higher performance 

on fluency-building problems, even though students in the F condition had more practice 

opportunities on fluency-building problems (practice hypothesis). Thus, it seems that sense-

making problems prepare students to benefit from subsequent fluency-building problems—even 

more so than practice with fluency-building problems does. 

5. General Discussion 
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Our experiment investigated how best to support students in making connections among 

MGRs. Our results support our hypothesis that a combination of sense-making and fluency-

building support is most effective with respect to learning of conceptual knowledge. 

Surprisingly, we found that only the combination of sense-making problems and fluency-

building problems is effective; taken alone, neither sense-making problems nor fluency-building 

problems were effective. By establishing that sense-making problems and fluency-building 

problems interact, this finding extends prior research that has—to the best of our knowledge—

exclusively focused on either sense-making support (e.g., Seufert, 2003; Bodemer & Faust, 

2006; van der Meij & de Jong, 2006), or on fluency-building support (e.g., Kellman et al., 2009). 

As argued above, students in prior research on sense-making support may have had some level of 

perceptual fluency in interpreting the representations used in these studies (i.e., mostly text-based 

and numerical representations). Likewise, students in prior research on fluency-building support 

likely had, to some extent, understanding of connections because they had typically received 

prior instruction on the domain knowledge. Our finding that both types of support are necessary 

does not necessarily contradict prior research. Rather, our findings extend it by indicating that 

the aspects that were held constant across conditions in prior research may be an important 

prerequisite to the effectiveness of either type of support. At a practical level, our results suggest 

that standard sense-making support should take into account students’ level of perceptual 

fluency. Instructors may need to ensure that students are indeed perceptually fluent in making 

connections, in which case sense-making support alone could be effective (although this 

hypothesis has not been tested), or they might need to combine sense-making support with 

fluency-building support (as in our experiment). 
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It is also interesting to reflect on the fact that we did not find evidence that MGRs 

without connection-making support lead to higher learning gains than a single GR that is 

considered the “superior” GR by some researchers: the number line (National Mathematics 

Advisory Panel, 2008; Siegler et al., 2010). We found that MGRs were more effective than a 

single GR only if students received a combination of sense-making and fluency-building support. 

This finding is in line with our own prior research (Authors, 2012b), which shows that MGRs are 

not always effective in enhancing fractions learning. It is also in line with experiments in other 

domains that failed to show a benefit of MGRs over learning with a single GR (e.g., Berthold & 

Renkl, 2009; Corradi, Elen, & Clareboug, 2012). MGRs are commonly used in instruction 

because they emphasize multiple conceptual perspectives. Our results support this practice but 

also caution that integrating these conceptual perspectives into their domain knowledge is a 

difficult task for students. To support them in doing so, instruction may need to provide a 

combination of sense-making support and fluency-building support.  

The causal path analysis models provide additional insights into the mechanisms 

underlying this finding. We found that sense-making problems enhance students’ benefit from 

fluency-building problems by reducing the number of certain types of errors students make on 

fluency-building problems. Hence, understanding of connections seems to provide the 

foundation for inductive processes that students engage in when working on fluency-building 

problems. Our findings do not support the reverse conclusion: we have no evidence that fluency-

building problems enhance students’ benefit from sense-making problems. In contrast, we found 

that more practice on sense-making problems yields better performance on sense-making 

problems, as expected purely based on practice effects. Thus, it seems that, even if there are 
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benefits of additional cognitive headroom as a result of perceptual fluency, they do not outweigh 

the advantages of practice effects on the same type of problem. 

Lipsey and colleagues (2012) suggest that effect sizes of interventions obtained in real 

classrooms must be interpreted in relation to pretest-to-posttest changes. Ranging between d = 

.20 and d = .60 resulting from a ten-hour long intervention, effect sizes of learning gains are of 

small to medium size. According to Hattie’s (2012) meta-analysis of educational interventions in 

realistic settings, the average effect size of interventions are d = .40 per year on student 

achievement (e.g., p. 16, p. 240 in Hattie, 2012). Thus, our experiment shows learning gains that 

compare favorably to those obtained in other studies. A similar argument can be made when 

interpreting the effect sizes for the between-condition effects. The advantage of receiving a 

combination of sense-making and fluency-building support compared to working with only the 

number line representation had an effect size of d = .27. Thus, comparing this difference to the 

learning gain of d = .40 on the conceptual knowledge test, the benefit of combining sense-

making problems and fluency-building problems when providing students with MGRs seems 

meaningful. 

It is important to note a number of limitations of this research. First, we excluded 

students who did not finish their work with the Fractions Tutor because they did not receive full 

exposure to the experimental intervention and because the posttests assessed knowledge targeted 

in all topics of the curriculum. However, this decision led to excluding many students, and these 

students had lower pretest scores than students who were included in the analysis. Because 

students were randomly assigned to conditions and because the number of excluded students did 

not differ by conditions, this exclusion does not undermine our overall conclusions, but implies 

that future research should test that our findings generalize to lower-performing students. We 
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also note that the school population was mostly White and included only a small portion of 

students from low-income families. Although we cannot think of a reason why students from 

more diverse backgrounds would not benefit from a combination of sense-making and fluency-

building support, future research should empirically verify this prediction.  

The causal path analysis was limited because (unlike the HLM), it does not allow us to 

take into account variance due to students being nested in classes and schools. Not taking into 

account these sources of variance means that the error variance in the causal path analysis is 

larger than in the HLM analysis, which reduces the statistical power of the analysis. While this 

limitation does not affect the internal validity of the results, the lower power of the analysis 

means that there might be effects in the data that we did not detect. Future research should 

address this issue by using a larger sample for a causal path analysis.  

We also note limitations resulting from the presentation of instructional materials. We 

conducted our experiment in the context of an intelligent tutoring system, an effective type of 

educational technology that is widely used in classrooms across the United States. Even though 

this context represents a realistic educational scenario, further research should test whether our 

results generalize to out-of-technology contexts. For example, future research should investigate 

whether our findings generalize to contexts in which students use physical representations or a 

combination of physical and virtual representations. Further, students received sense-making 

problems before fluency-building problems. Since this sequence was repeated for each topic of 

the tutor, we believe that it does not affect the validity of the effects we found in the causal path 

analysis. However, the effects of fluency-building problems on students’ performance on sense-

making problems may have been stronger if fluency-building problems had been directly 

followed by sense-making problems (rather than by individual-representation problems). This 
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limitation may have affected the power of the analysis, but not the validity: we may not have 

detected all effects, but we can trust the effects that we did detect, and we can trust that the 

effects we did detect are stronger than the effects we may not have detected. 

6. Conclusions 

We tested a prediction that resulted from applying KLI to the case of connection making 

among MGRs; namely, that students will benefit most from support that targets verbally 

mediated sense-making processes through which students acquire understanding of connections, 

and support that targets non-verbal, inductive processes through which students acquire 

perceptual fluency in making connections. Our experiment extends prior research that has only 

focused on either sense-making support (e.g., Bodemer & Faust, 2006; Seufert, 2003; van der 

Meij & de Jong, 2011) or fluency-building support (e.g., Kellman & Massey, 203; Kellman et 

al., 2009), but has not investigated potential interactions between these two types of connection-

making support. Our results were more pronounced than expected: the combination of sense-

making support and fluency-building support was necessary for students to benefit from MGRs, 

compared to a single GR. The causal path analysis suggests sense-making support provides the 

foundation for students’ benefit from fluency-building support. This finding yields a new testable 

hypothesis: students will learn best when sense-making support is provided before fluency-

building support rather than vice versa.  

Given the pervasiveness of MGRs in STEM and the well-documented need for 

connection-making support, our findings have the potential to apply to many domains. The 

research presented in this paper is only a first step in this direction, and we hope it will inspire 

future research on sense making and perceptual fluency in connection making. 
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Tables 

Table 1. Overview of experimental conditions. 

  Sense-making support Control 

  No Linked representations Analogous examples  

Fluency-

building 

support 

No Multiple-graphical-

representations (MGR) 

Sense-making with linked 

GRs (SL) 

Sense-making with anal-

ogous examples (SE) 

 

Yes 

Fluency-building  

(F) 

Sense-making with linked 

GRs plus fluency-building 

(SL-F) 

Sense-making with anal-

ogous examples plus 

fluency-building (SE-F) 

Control  

Single-graphical-

representation (SGR) 

Table
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Table 2. Problem sequence per condition: for each topic, problems 1-4 (P1-P4) are individu-

al-representation problems (I); problems 5-8 are connection-making problems: sense-making 

problems with analogous examples (SE, underlined) or perceptual fluency-building problems 

(F, italicized). Bold-underlined problems and bold-italicized problems are used in the causal 

path analysis. 

Condition Topic P1 P2 P3 P4 P5 P6 P7 P8 

SE 

1 I I I I SE SE SE SE 

2 I I I I SE SE SE SE 

… … 

F 

1 I I I I F F F F 

2 I I I I F F F F 

… … 

SE-F 

1 I I I I SE SE F F 

2 I I I I SE SE F F 

… … 
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Table 3. Overview of variables included in the HLM. 

Variable Explanation 

Yijkl Studenti’s score on the dependent measures at test time ti (i.e., im-

mediate or delayed posttest) 

 
εjkl Intercept for studentj’s score 

β1 Effect of test time ti 

β2 Effect of sense-making problems with prompts for analogical com-

parisons GRs sej 

β3 Effect of sense-making problems with linked GRs slj 

β4 Effect of perceptual fluency-building problems fj 

β5 Effect of studentj’s performance on the pretest pj 

β6 Aptitude-treatment interaction between sense-making problems with 

analogical comparisons sej and studentj’s performance on pretest pj 

β7 Aptitude-treatment interaction between sense-making problems with 

linked GRs slj and studentj’s performance on pretest pj 

β8 Aptitude-treatment interaction between perceptual fluency-building 

problems fj and studentj’s performance on pretest pj 

δkl Random intercept for classk 

γl Random intercept for schooll 

μ Overall average 
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Table 4. Means (and standard deviations) for conceptual and procedural knowledge at pre-

test, immediate posttest, delayed posttest. Min. score is 0, max. score is 1. 

Measure Condition 
Pretest Immediate 

posttest 

Delayed  

posttest 

Conceptual 

knowledge 

Multiple-graphical-representations 

(MGR) 

.33 (.20) 

 

 

.45 (.23) 

 

 

.48 (.26) 

 

 Sense-making with linked GRs (SL) .38 (.20) 

 

 

.49 (.23) 

 

 

.51 (.26) 

 

 

Sense-making with analogous examples 

(SE) 

.36 (.22) 

 

 

.43 (.20) 

 

 

.49 (.26) 

 

 Fluency-building (F) .31 (.21) 

 

 

.37 (.22) 

 

 

.44 (.24) 

 

 

Sense-making with linked representations 

plus fluency-building problems (SL-F) 

.36 (.20) 

 

 

.43 (.24) 

 

 

.49 (.25) 

 

 Sense-making with analogous examples 

plus fluency-building problems (SE-F) 

.39 (.21) 

 

 

.52 (.24) 

 

 

.58 (.26) 

 

 Single-graphical-representation (SGR) .37 (.20) 

 

 

.43 (.25) 

 

 

.48 (.20) 

 

 Procedural 

knowledge 

Multiple-graphical-representations 

(MGR) 

.25 (.25) 

 

 

.30 (.28) 

 

 

.30 (.26) 

 

 
Sense-making with linked representations 

(SL) 

.21 (.18) 

 

 

.26 (.24) 

 

 

.26 (.24) 
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Sense-making with analogous examples 

(SE) 

.26 (.21) 

 

 

.29 (.24) 

 

 

.31 (.27) 

 

 
Fluency-building condition (F) .19 (.17) 

 

 

.23 (.20) 

 

 

.25 (.22) 

 

 

Sense-making with linked representations 

plus fluency-building problems (SL-F) 

.20 (.18) .25 (.21) 

 

 

.26 (.21) 

 

 Sense-making with analogous examples 

plus fluency-building problems (SE-F) 

.26 (.20) 

 

 

.32 (.26) 

 

 

.33 (.26) 

 

 
Single-graphical-representation (SGR) .21 (.20) 

 

 

.25 (.22) 

 

 

.27 (.23) 
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Table 5. Means (and standard deviations) of total time spent on tutor problems by condition. 

Condition Time on tutor in minutes 

Multiple-graphical-representations (MGR) 232.04 (62.88) 

Sense-making with linked GRs (SL) 206.27 (60.3) 

Sense-making with analogous examples (SE) 213.7 (58.32) 

Fluency-building (F) 199.25 (54.97) 

Sense-making with linked representations plus 

fluency-building problems (SL-F) 

215.83 (58.43) 

Sense-making with analogous examples plus 

fluency-building problems (SE-F) 

203.51 (53.61) 

Single-graphical-representation (SGR) 189.47 (41.54) 
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Table 7. Error types on fluency-building problems and number of occurrences per condition (summed up for all stu-

dents across fluency-building problems P7 and P8). Italicized error types were selected for further analysis. 

Error type Knowledge component # in F  # in SE-F  

nameCircleMixed-Error 

Finding circle representations that show the same frac-

tion as a number line or a rectangle 

355 126 

equivalenceError Finding equivalent fraction representations 2899 2157 

improperMixed-Error Finding representations of improper fractions 1380 1608 

additionMixedError 

Finding representations that show the addend of a given 

sum equation depicted by representations 

207 176 

compareMixed-Error 

Finding representations that show a fraction smaller or 

larger than the given one 

436 307 
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diffMixedError 

Finding representations that show the difference of two 

fractions 

282 238 

nameNLMixed-Error 

Finding number line representations that show the same 

fraction as a circle or a rectangle 

949 599 

nameRectMixed-Error 

Finding rectangle representations that show the same 

fraction as a number line or a circle 

385 133 

subtractionMixed-Error 

Finding representations that show the subtrahend of a 

given difference equation depicted by representations 

214 240 

sumMixedError 

Finding representations that show the sum of two frac-

tions 

256 205 

unitMixedError Finding the unit of a given fraction 1050 1138 



SENSE-MAKING AND FLUENCY-BUILDING PROCESSES 9 

 

 

Table 8. Error types on sense-making problems and number of occurrences per condition (summed up for all students 

across sense-making problems P5 and P6). Italicized error types were selected for further analysis. 

Error type Knowledge component # in SE  # in SE-F  

place1Error 

Locating 1 on the number line given a dot on the number 

line and the fraction it shows 

150 222 

selfExplanationError Incorrect response to self-explanation prompt 1320 1629 

comparisonError Comparing two fractions 92 82 

denomError Entering the denominator of a fraction 972 837 

equivalence-CompareError Judging whether two fractions are equivalent 19 18 

multiplyError 

Entering a number by which to multiply numerator or 

denominator to expand a given fraction 

30 29 
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nlPartitionError 

Partitioning the number line to show an equivalent frac-

tion 

1913 2115 

numberSections-UnitError 

Finding the denominator of a fraction by indicating how 

many sections the unit was divided into 

41 44 

numError Entering the numerator of a fraction 1559 1390 

placeDotError Placing a dot on the number line to show a fraction 198 253 

sectionsBetween-0-1 

Indicating that the denominator in a number line is 

shown by the sections between 0 and 1 

61 44 

unitError 

Selecting the unit for a fraction given the symbolic frac-

tion and a graphical representation 

123 115 
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Figure 1. Graphical representations of fractions: circle, rectangle, and number line. 

 

 

Figure
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Figure 2. Theory of change of how working on connection-making problems (sense-making problems, fluency-building 

problems) foster learning processes (verbally mediated sense-making processes, non-verbal inductive and refinement 

processes) and representational competences (understanding of connections and perceptual fluency in making connec-

tions) that enhance students’ learning of robust domain knowledge (robust fractions knowledge). For each mechanism, 

the figure indicates which section in the paper describes prior research regarding this particular mechanism. 
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Figure 3. Example of a tutor problem with only the number-line representation. 
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Figure 4. Example of a sense-making problem with analogous examples. The self-

explanation prompts in part C (highlighted in pink) were identical to sense-making problems 

with linked representations.  
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Figure 5. Example of sense-making problem with linked representations. The self-

explanation prompts in part B (highlighted in pink) were identical to sense-making problems 

with analogous examples. 
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Figure 6. Example of a fluency-building problem. 
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Figure 7. Saturated models for the fluency hypothesis (left) and the sense-making hypothesis 

(right). 
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Figure 8. Fluency-hypothesis model with unstandardized parameter estimates. Paths that de-

scribe a negative effect of fluency-building support on posttest performance (immediate and 

final) are highlighted in red, paths that describe a positive effect are highlighted in green. 
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Figure 9. Sense-making hypothesis model with unstandardized parameters. 

 

 




