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Abstract 
In 2009, we reported on a new Intelligent Tutoring Systems (ITS) technology, example-
tracing tutors, that can be built without programming using the Cognitive Tutor 
Authoring Tools (CTAT). Creating example-tracing tutors was shown to be 4-8 times as 
cost-effective as estimates for ITS development from the literature. Since 2009, CTAT 
and its associated learning management system, the Tutorshop, have been extended and 
have been used for both research and real-world instruction. As evidence that example-
tracing tutors are an effective and mature ITS paradigm, CTAT-built tutors have been 
used by approximately 44,000 students and account for 40% of the data sets in DataShop, 
a large open repository for educational technology data sets. We review 18 example-
tracing tutors built since 2009, which have been shown to be effective in helping students 
learn in real educational settings, often with large pre/post effect sizes. The fact that 
example-tracing tutors can only handle problems with no more than a moderately-
branching solution space is sometimes, though often not, a practical impediment. CTAT 
and other ITS authoring tools illustrate that non-programmer approaches to building ITS 
are viable and useful and will likely play a key role in making ITS widespread.  
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Introduction 
ITS authoring tools aim at making the creation of ITS more efficient and easier to learn. 
Also, they often aim at lowering the skill level needed to build a tutor and sometimes 
even at providing design guidance for effective tutors. ITS authoring tools by now have a 
long history in ITS research. Important early work was presented in Murray’s (1999) 
influential overview paper in IJAIED and in a book edited by Murray, Blessing, 
Ainsworth (2003). More recent work appeared in a special issue in IJAIED (Koedinger & 
Mitrovic, 2009) and a series of workshops organized by the Army Research Laboratory 
and the University of Memphis (Sottilare, Graesser, Hu, & Holden, 2013, 2014; 2015). 
There are many ITS authoring tools, each with its own underlying ITS technology, such 
as ASPIRE (Mitrovic et al., 2009), ASTUS (Paquette, Lebeau, Beaulieu, & Mayers, 
2015), ASSISTments Builder (Razzaq et al., 2009), AutoTutor tools (Nye, Graesser, & 
Hu, 2014), CTAT (Aleven, McLaren, Sewall, & Koedinger, 2009; Koedinger, Aleven, 
Heffernan, McLaren, & Hockenberry, 2004), GIFT (Sottilare, 2012), SDK (Blessing, 
Gilbert, Ourada, & Ritter, 2009), SimStudent (MacLellan, Koedinger, & Matsuda, 2014; 
Matsuda, Cohen, & Koedinger, 2015), and xPST (Blessing, Devasani, & Gilbert, 2011; 
Blessing, Gilbert, Blankenship, & Sanghvi, 2009; Kodavali, Gilbert, & Blessing, 2010). 
These tools have made ITS development easier and more cost-effective. They have 
lowered the skill threshold for building tutors. Some have provided estimates of cost 
savings (Aleven et al., 2009; Razzaq et al., 2009). Some studies have empirically 
evaluated the authoring efficiency or other aspects of ITS authoring tools’ effectiveness 
(Aleven, McLaren, Sewall, & Koedinger, 2006; Blessing & Gilbert, 2008; Devasani, 
Gilbert, & Blessing, 2012; Kodaganallur, Weitz, & Rosenthal, 2005; MacLellan et al., 
2014; Paquette, Lebeau, & Mayers, 2010; Razzaq et al., 2009). 
 
Although it is hard to generalize from the current crop of ITS authoring tools, one broad 
trend we see is that non-programmer approaches to tutor building appear to be winning 
the day. Given that ITS development has traditionally required specialized programming 
skill that has hampered widespread development and use of tutors, this trend is not 
surprising. Many tool sets, including ASPIRE (Mitrovic et al., 2009), ASSISTments 
(Razzaq et al., 2009), CTAT (Aleven et al., 2009), SimStudent (Matsuda et al., 2015), 
and xPST (Kodavali et al., 2010), do not require advanced programming or any 
programming at all. While it is clear why easy-to-use and easy-to-learn tools are popular, 
we do need to ask the question whether non-programmer ITS authoring tools are capable 
of capturing sophisticated tutoring behaviors that are effective in helping students learn in 
a wide range of domains.  
 
We focus on a set of authoring tools, CTAT (which stands for Cognitive Tutor Authoring 
Tools). The project started in 2002 with the key goals of making Cognitive Tutors easier 
to develop and lowering the skill threshold for building these kinds of tutors. At the time, 
a substantial number of Cognitive Tutors had been built and were in a use on a regular 
basis in many schools in the United States. They had been shown to lead to substantial 
increases in students’ learning (Anderson, Corbett, Koedinger, & Pelletier, 1995; 
Koedinger, Anderson, Hadley, & Mark, 1997).  With a few exceptions, subsequent 
classroom studies have produced similar findings (Koedinger & Aleven, 2007; Ritter, 
Anderson, Koedinger, & Corbett, 2007), including one conducted by a third party with 
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17,000 students in 150 schools in which it was found that a year of Cognitive Tutor 
Algebra led to nearly a doubling of student learning, compared to a “business as usual” 
control condition (Pane, Griffin, McCaffrey, & Karam, 2013). Although our initial goal 
was to facilitate development of Cognitive Tutors (Koedinger et al., 2004), along the way 
the project took an unexpected turn, described in our 2009 article in IJAIED entitled “A 
new paradigm for intelligent tutoring systems: Example-tracing tutors” (Aleven et al., 
2009). We created a novel non-programmer approach to tutor authoring. We called the 
new tutor type example-tracing tutors, by analogy to model-tracing tutors (Anderson et 
al., 1995). Whereas model-tracing tutors use a generalized rule-based cognitive model to 
interpret student behavior, example-tracing tutors use generalized examples of problem-
solving behavior. This choice sets them apart from many other ITS, as it is more common 
to use representations of general domain knowledge, such as rules (Anderson et al., 1995; 
Koedinger & Corbett, 2006) or constraints (Mitrovic & Ohlsson, 1999). No programming 
is needed and – as we argued in our 2009 IJAIED and continue to maintain today – 
sophisticated tutoring behaviors can be authored for a broad range of task domains. 
Further, we presented evidence that even in relatively small tutor-building projects, 
building example-tracing tutors can be 4-8 times as cost-effective as estimates from tutor 
building projects reported in the literature. Across projects, we saw roughly a 1:50 to 
1:100 ratio of instructional to development time, compared to earlier estimates of 1:200 
to 1:300. Additional cost savings come from the fact that tutors can be built without 
employing expensive programmers. A similar study with the ASSISTments Builder, 
another non-programmer ITS authoring tool, demonstrated development ratios of 1:28 to 
1:40 (Razzaq et al., 2009). (These estimates are not directly comparable across the two 
tools sets, CTAT and ASSISTments, because the tools support different types of tutors 
and because the CTAT study estimated the overall tutor development time, whereas the 
ASSISTments study measured only the time spent with the tools, which leaves out certain 
development activities.) These studies show that ITS authoring tools for non-
programmers can make authoring dramatically more efficient and cost-effective. 
 
In the current article, we first give an overview of example-tracing tutors and of new 
extensions added to CTAT since 2009. We then revise and bolster the argument first 
presented in our 2009 IJAIED article that example-tracing tutors are ITS, along the way 
highlighting the many ways in which they are “adaptive” to learner needs and 
differences. To illustrate the scope of systems built with CTAT, we present 18 examples 
of example-tracing tutors, all of which have been used in real educational settings. 
(Screenshots of these tutors are shown in the Appendix.) We hope that together these 
arguments present a convincing case that example-tracing tutors are a useful and effective 
ITS paradigm and, more generally, that non-programmer authoring tools can be used to 
develop genuinely sophisticated tutors. We believe good authoring tools can make a 
dramatic difference in making ITS technology widespread. 

Overview of example-tracing tutors and CTAT 
CTAT supports two tutor paradigms: example-tracing tutors (Aleven, Sewall, McLaren, 
& Koedinger, 2006; Aleven et al., 2009; Koedinger et al., 2004) and rule-based Cognitive 
Tutors (Aleven, 2010; Aleven, McLaren, et al., 2006). In this article, we focus on 
example-tracing tutors, as they were the focus of our IJAIED 2009 article. Like many 
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other ITS, this type of tutor provides step-by-step guidance during practice on recurrent 
problem types. The vast majority of tutors built with CTAT have been example-tracing 
tutors, because they are easier to author and debug than rule-based Cognitive Tutors. 
Using CTAT, example-tracing tutors can be built and deployed entirely without 
programming. Table 1 gives an overview of the functionality supported by CTAT and its 
associated learning management system, the Tutorshop. To give a sense for the scope of 
this project, we started building CTAT in 2002. Over the years, at least 54 people have 
contributed to CTAT and the Tutorshop; these two systems together represent 
approximately 60 man years’ worth of work, the large majority of it by professional 
software engineering staff. Today, the CTAT/Tutorshop code base comprises 750,000 
lines of code (including white lines and comments). 
 

 
Figure 1: Authoring an example-tracing tutor with CTAT 

 

Authoring process 
The process of authoring an example-tracing tutor has six key parts, often carried out in 
iterative cycles (and not necessarily in sequence). First, the author or authoring team 
investigates student thinking and learning in the given task domain, using cognitive task 
analysis (Baker, Corbett, & Koedinger, 2007; Clark, Feldon, van Merriënboer, Yates, & 
Early, 2008; Lovett, 1998) and (e.g., in the case of tutor redesign) educational data 
mining methods. Second, informed by the results of the first step, the author designs and 
creates one or more tutor interfaces. These interfaces tend to be specific to the targeted 
problem types; they break down complex problem solving into steps. Using CTAT, tutor 
interfaces can be built through drag-and-drop techniques within an existing interface 
builder, such as the Flash IDE (Figure 1, right). Other options for the tutor front end are 
supported as well (see Table 1).  
 
Third, the author creates generalized examples needed by the tutor. She demonstrates 
problem-solving step on the interface (Figure 1, middle), which CTAT’s Behavior  
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Table 1: Overview of CTAT/Tutorshop functionality; all functions are supported without programming, 
except where otherwise indicated 

Front-end options (tutor interface) 
• Java (drag-and-drop interface building) 
• Flash/Actionscript (drag-and-drop interface building) 
• HTML5/CSS/Javascript (currently requires coding) 
• External problem-solving environment or simulator (needs to be integrated using custom 

programming) 
 
Inner loop (step loop); within-problem guidance by the example-tracing algorithm 

• Minimal feedback on steps - classified as correct, incorrect, or suboptimal  
o Immediate feedback 
o On-demand feedback 
o No feedback (quiz mode) 

• Error-specific feedback 
• Success messages on correct steps 
• Student-requested hints on the next step (different policies for selecting hints are supported) 
• Assessment of knowledge (i.e., maintaining a student model that captures probabilities of mastery 

of the knowledge components (KCs) targeted in the instruction, updated by Bayesian Knowledge 
Tracing) 

• Skill meter (i.e., an open learner model showing mastery of KCs) 
• Multiple solution paths within a problem (major and minor strategy/notational variations) 
• Dynamic interfaces (i.e., interfaces that can change, under control of the tutor, as a function of the 

problem state) 
• Collaborative tutors for synchronous, networked collaborative problem solving, with roles and 

embedded collaboration scripts tied to the problem state 
• Backward fading of worked examples 
• Input substitution (tutor can replace correct student input with canonical/evaluated form, 

corrections, etc.) 
 
Outer loop (task loop); problem selection by the Tutorshop 

• Student picks problem (custom versions exist, not part of the standard installation) 
• Fixed problem sequence  
• Adaptive problem selection (cognitive mastery based on Bayesian Knowledge Tracing) 
• Random problem sequence 

 
Delivery options 

• Standalone application (Java only) 
• Embedded in web pages 
• Tutorshop (dedicated ITS-oriented learning managements system) 
• Integration in external LMS based on e-learning standards (SCORM, LTI) 
• Custom integration in external LMS (OLI, edX by XBlock integration) 

 
Support for research 

• Datashop logging of student-tutor interactions 
• Support for multiple experimental conditions 
• Replay of logged interactions 
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Recorder tool records the in a behavior graph (Figure 1, left); the links in the graph 
represent individual problem-solving steps. During tutoring, the tutor evaluates student  
actions by comparing them against the graph. The graph is therefore expected to capture 
all solution strategies that are reasonable within the given interface, so that the tutor can 
recognize all of them as correct student behavior. Different ways of solving the problem 
are captured as different paths in the graph. Once relevant paths have been recorded, the 
author generalizes the behavior graph, to indicate the range of student behavior that the 
graph stands for, beyond just literally the paths recorded in the graph with steps in the 
same order as demonstrated. For example, an author can provide input matchers that 
specify a range of values or notational variations to be accepted for a given step. She also 
can attach formulas (akin to Excel formulas) that specify how steps depend on each other 
or can define ordered or unordered groups of steps, nested if needed, to indicate what step 
orders are acceptable. Solution paths that involve the same steps but different values can 
be captured with a single path with attached formulas, as a way of keeping the graph 
manageable.  
 
Fourth, an author annotates the graph. She can attach hints to links in the graph, which 
recommend the action on the given link as an appropriate next action to take; hints also 
typically explain why that action is a good next action, in terms of the domain’s problem-
solving principles. During tutoring, these hints will be displayed at the student’s request. 
To make the tutor proactively display feedback in response to specific errors, an author 
can insert incorrect action links into the graph, each with a feedback message specific to 
the given error. To support assessment of knowledge through Bayesian Knowledge 
Tracing (Corbett & Anderson, 1995), an author may attach knowledge component (KC) 
labels to the links in the graph. Knowledge components are the smallest units into which 
the knowledge to be learned can be decomposed (Aleven & Koedinger, 2013; Koedinger, 
Corbett, & Perfetti, 2012; Koedinger et al., 2010).  
 
Fifth, to make it easier to create multiple practice problems having the same behavior, 
CTAT supports a template-based feature called “Mass Production.” To use it, an author 
first turns a behavior graph into a template by replacing problem-specific values with 
variables. She can then define many problems by specifying their values for the template 
variables in a spreadsheet. A final merge step automatically substitutes the spreadsheet 
values into the template’s variables and generates a behavior graph for each problem.  
 
Finally, when the interface and behavior graph are ready for initial testing with students, 
the author uploads the tutor to a deployment environment, for example, the Tutorshop, 
described below. After one or more rounds of pilot testing and revision, preferably with 
students from the target population, and often on a server reserved for testing, the author 
performs the final edits and uploads the tutor to the final production environment.  
 

Inner loop: Using a behavior graph to provide tutoring 
At student run time, CTAT’s built-in example-tracing algorithm (Aleven, McLaren, & 
Sewall, 2009) takes care of the tutor’s inner loop (a.k.a. step loop; VanLehn, 2006; this 
issue). That is, it provides step-level guidance within each problem, including step-level 
correctness feedback, on-demand hints, error-specific feedback messages, and assessment 
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of knowledge based on Bayesian Knowledge tracing (Corbett & Anderson, 1995). 
Essentially, the example tracer algorithm evaluates whether the student’s solution steps 
conform to one or more solution paths implied by the generalized graph. CTAT now 
provides a number of feedback policies, including on-demand feedback and no-feedback 
(for implementing online tests). At the student’s request, the algorithm provides hints by 
looking for an appropriate choice of next step within the graph, taking into account the 
solution path(s) the student may be on. CTAT also supports a number of hint selection 
policies, which give an author some control over how the tutor decides which of multiple 
possible next steps to recommend in a hint. It provides an error feedback message when 
the student’s action matches one of the incorrect action links in the graph. Finally, CTAT 
supports input substitution, meaning that the tutor can transform student input in an 
author-specified way and echoes the transformed version back to the student; this feature 
is useful for arithmetic calculations, spell checking, etc. 
 
Beyond these basic behaviors CTAT’s example-tracing technology supports a range of 
additional inner loop behaviors (see Table 1). Whereas CTAT originally supported tutors 
for individual learning only, we recently added support for authoring collaborative 
example-tracing tutors (Olsen, Belenky, Aleven, Rummel, et al., 2014), described in 
more detail below. We also added support for gradually fading worked examples, based 
on research that demonstrated the effectiveness of this way of transitioning from 
examples to problem solving (e.g., Atkinson, Renkl, & Merrill, 2003; Renkl, Atkinson, & 
Grosse, 2003; Salden, Aleven, Schwonke, & Renkl, 2010). Further, an author can create 
dynamic interfaces whose components change depending on the problem state or in 
response to specific student actions. An author can do so by inserting links in the 
behavior graph that represent tutor-performed actions such as updating, showing, or 
hiding interface components. This basic functionality can be used to craft a wide range of 
interface behaviors, such as revealing steps or groups of steps gradually as the student 
pogresses through the problem, creating dynamically linked representations, or breaking 
down the problems into steps when the student makes an error (cf. Heffernan & 
Heffernan, 2014).  
 

Learner modeling 
As mentioned, CTAT and the Tutorshop support a learner model that records 
probabilities that the given student masters the KCs targeted in the given problem set. As 
author defines a KC model for an example-tracing tutor by annotating the links of a 
behavior graph with KC labels. The learner model is updated (in the inner loop) through 
Bayesian Knowledge Tracing (Corbett & Anderson, 1995) and is used (as one of the 
outer loop options) for adaptive problem selection and cognitive mastery. As a form of 
open learner modeling, CTAT provides an interface component that displays the learner 
model in the form of a skill meter (see Figure 1, middle, in the bottom right corner of the 
tutor interface). An author can define an initial KC model based on cognitive task 
analysis and refine it later based on analysis of tutor log data, for example using tools for 
learning curve analysis made available in the DataShop (Koedinger et al., 2010). Refined 
KC models can lead to more effective or efficient instruction (for an overview, see 
Aleven & Koedinger, 2013). As a way of generalizing CTAT, we are looking into the 
possibility of supporting the plugging in of custom student models. 
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Outer loop 
The Tutorshop supports a number of outer loop (a.k.a. task loop) options. First, it 
supports cognitive mastery learning based on Bayesian Knowledge Tracing, a form of 
personalized problem selection that has proven to be very effective (Corbett, 
McLaughlin, & Scarpinatto, 2000). It also supports randomized problem selection, which 
is sometimes useful for research purposes. For example, when problems are presented in 
random order (randomized separately for each student), then in offline analyses of tutor 
log data, the difficulty of problem steps can be assessed without being confounded by the 
order in which the problems were presented. One of our goals for the near future is to 
extend CTAT so it can support the easy plugging in of custom problem selection policies 
and mastery criteria.  
 

Tutor front end 
CTAT currently supports three options for the tutor front-end (i.e., the interface in which 
the students solve problems, with the tutor’s guidance), namely, Java, Flash/ActionScript, 
and HTML5/Javascript. For the first two options, drag-and-drop interface building is 
supported. For the last of these, HTML5/Javascript, interfaces need to be created by 
writing code, although we hope to support drag-and-drop interface building in the future. 
A great amount of our effort in recent years went into CTAT’s front-end technology, 
mainly to keep up with changes in web-based technologies. Since 2009, we have revised 
or re-implemented our interface technologies three times. First, we updated the look and 
feel of the tutor interfaces in our ActionScript 2 code base, in line with the design 
aesthetic for Mathtutor (Aleven, McLaren, & Sewall, 2009). Second, we moved to 
ActionScript 3, a substantial reimplementation effort, as ActionScript 3 provides 
important enhanced functionality but is not backwards compatible. Finally, we completed 
an HTML5/JavaScript implementation, which enables us to offer a truly cross-platform 
ITS approach. We expect this to become the go-to option for CTAT tutors, with Flash not 
supported on all web client platforms – and on the decline. Keeping up with changing 
interface technology would not have been possible without a factored architecture 
maintaining strict tool/tutor separation (Ritter & Koedinger, 1996), described below.  
 

Delivery and deployment 
Much of our effort since 2009 has also gone into supporting ways to deliver CTAT tutors 
in a variety of e-learning platforms, including MOOCs. We view this capability as an 
important goal for ITS authoring tools and for making ITS technology widespread 
(Aleven et al., 2015b).  
 
So far, the Tutorshop has been the go-to platform for deploying CTAT tutors. The 
Tutorshop is a web-based content management and learning management system we 
created geared specifically for tutor use in classrooms and other settings. It is 
implemented in Ruby on Rails. Tutorshop’s learning management facilities include 
management of class lists, student and teacher accounts, assignments, and a wide range of 
reports for students and teachers regarding student progress and learning. Tutorshop has 
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been used in many research projects. Also, it functions as the backbone of the Mathtutor 
website (Aleven, McLaren, & Sewall, 2009) as well as the Genetics Tutor (Corbett, 
Kaufmann, MacLaren, Wagner, & Jones, 2010). We currently host the Tutorshop as a 
service to the research community. For large-scale studies, we sometimes run Tutorshop 
in the Amazon cloud (AWS). Although Tutorshop has not been used to deliver non-
CTAT tutors, this would be a useful way in which the CTAT architecture could be 
generalized. We have also made it possible to embed example-tracing tutors in MOOC 
and e-learning platforms that adhere to the SCORM and LTI e-learning interoperability 
standards, as many do. To this end, the CTAT/Tutorshop platform now implements the 
provider/content side of SCORM and LTI. As evidence of this capability, we have 
embedded CTAT tutors in Moodle (Rice, 2011) and in two edX MOOCs (Aleven et al., 
2015b). We have also achieved custom integration with edX through edX’s XBlock API 
and with the Open Learning Initiative (OLI)’s learning management system 
(http://oli.cmu.edu).  
 
As part of our effort to support tutoring at scale, we have moved the example-tracing 
tutor engine (which takes care of the tutor’s inner loop) from the server to the client, a 
change of direction since our 2009 IJAIED paper. Although there are a number of 
advantages to having the tutor engine on the server, discussed in the 2009 paper, doing so 
complicates the embedding of tutors in external e-learning platforms or learning 
management systems (LMSs). This is so because with a server-side tutor engine, a tutor 
is not a fully self-contained learning object. Further, with very large numbers of users, a 
server-based tutor engine could incur severe server load. Therefore, we now support a 
variety of options for running the tutor engine on the client, including a Java Web Start 
option, a Java applet option, and, most recently, a JavaScript version of the example 
tracer (Aleven et al., 2015b). We expect the latter to become the go-to option for 
example-tracing tutors in a variety of deployment options.  
 
We see this work as an encouraging first step towards tutoring at scale (e.g., in MOOCs; 
Aleven et al., 2015b; Cook, Kay, & Kummerfeld, 2015; Kay, Reimann, Diebold, & 
Kummerfeld, 2013), although work remains to be done. For example, with the current 
versions of SCORM or LTI, the rich analytics produced by the tutor cannot easily be sent 
to a learning management system. This information is therefore not displayed in the grade 
book of the online course or integrated in existing student or instructor dashboards, a lost 
opportunity to take advantage of some of the advanced capabilities that ITS have to offer. 
Fortunately, newer versions of SCORM and LTI are moving toward richer data exchange 
between a tutor and the LMS, so this limitation may be addressed in the near future. Also, 
work remains to be done to make CTAT’s model available within a MOOC, as well as 
adaptive task selection. 
 

Support for research 
CTAT tutors, typically running out of the Tutorshop, have been used in many dozens of 
scientific experiments to investigate questions regarding how tutors can most effectively 
support learning or other desirable educational outcomes. CTAT and Tutorshop offer 
some functionality that facilitates the use of tutors in such research. First, CTAT is fully 
compatible with DataShop (Koedinger et al., 2010), a large, open repository for 
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educational technology data sets that supports offline analysis of tutor log data. All 
CTAT tutors log in DataShop format, without any additional effort from authors. 
DataShop supports many analyses geared towards data-driven refinement of the KC 
models underlying tutors (see e.g., Aleven & Koedinger, 2013). As of July, 2015, 
DataShop contains 290 data sets generated by CTAT tutors, approximately 40% of the 
data sets in DataShop, with roughly 48,000,000 transactions by a total of 44,000 students, 
working for a total of 62,000 hours. Second, Tutorshop supports assigning students to 
experimental conditions (although not automatically at this point in time) and recording 
experimental conditions in the log data. Finally, we are completing a Log Replayer 
capability, which will make it possible to replay logs through the tutor that generated 
them or through an extended version of that tutor that writes new information in the logs. 
This replay will support new analyses of log data not originally foreseen by the creators 
of the given tutor, as seems to be commonplace in educational data mining (e.g., Aleven, 
McLaren, Roll, & Koedinger, 2006; Harpstead, MacLellan, Aleven, & Myers, 2015). 
 

Architecture 
CTAT is conceived not just as a tool, but as a factored architecture for tutoring, with 
well-defined components and interfaces between those components (Aleven, McLaren, & 
Sewall, 2009; Aleven et al., 2009; 2015a; 2015b). In particular, CTAT and the Tutorshop 
enforce a strict separation between “tool” and “tutor.” Here “tool” means the problem-
solving interface or environment in which the student solves problems; “tutor” means the 
tutor backend, both the inner and outer loop (Koedinger, Suthers, & Forbus, 1999; Ritter 
& Koedinger, 1996). In CTAT, the tool and tutor communicate through a message 
protocol that derives from the work of Ritter and Koedinger (1996) 
(http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor). This aspect of the factored 
architecture has been very valuable. It has made it possible to mix-and-match options for 
the tutor engine (example-tracing or model-tracing tutor) with options for the tutor 
interface (Java, Flash/ActionScript, or HTML5/Javascript) or problem-solving 
environment (e.g., simulators). Also, it has made it possible, critically, to keep up with 
interface and web technology changes and has helped make it easier to extend the front-
end technology with new interface components. Finally, the tool/tutor separation has 
made it easier to integrate tutors in a wide range of environments, as discussed above.  
 
A second aspect of modularity in the CTAT/Tutorshop architecture is the separation 
between inner loop (within-problem tutor guidance) and outer loop (between-problem 
tutor guidance). The inner loop and outer loop communicate strictly through the student 
model (Aleven et al., 2015a). That is, at the beginning of each problem, the outer loop 
(currently, running server-side in the Tutorshop) passes the learner model to the inner 
loop. As the student works on the problem, the inner loop updates the learner model 
(displaying it as a skill meter, if the author so chooses). At the end of the problem, it 
passes the updated student model back to the outer loop, so it can be used for adaptive 
problem selection or stored in the database, if the student decided to log out. This 
separation facilitates plugging in different options for student modeling and task 
selection, an area where we are just beginning to gain experience.  
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We see a number of ways in which the CTAT architecture could be generalized further, 
so it can be more versatile and support greater interoperability. For example, the 
Behavior Recorder has a range of functionality that supports cognitive task analysis and 
tutor testing in a way that is not specific to example-tracing tutors. A generalized 
behavior recorder API would make this tool available for use with other tutor types 
(Aleven et al., 2015a). Likewise, the Tutorshop could be useful for other tutors. Also, it 
would be useful to make it possible to use different tutor engines with the CTAT front 
end, which to a large degree this is already facilitated by the tool/tutor separation. A 
promising direction is further to make it possible to plug in different student models, 
different algorithms for updating the student model, and different policies for task 
selection.  Finally, additional extensions for supporting research (e.g., A/B testing) would 
be useful as well. 
 

ITS authoring tool development philosophy 
In developing CTAT we took, and continue to take, a use-driven design approach. We 
credit this approach with making CTAT useful and usable. The essence of this approach 
is that we have made it a high priority to promote and support use of CTAT by others, to 
learn from users’ experiences, and to make sure that what we learned helped shape the 
tools. We have regularly solicited feature requests and feedback from users. When 
planning for new releases of CTAT, we invariably prioritized features based on the 
question: “Who is going to use it?” If we could not identify specific users, the feature 
would not make it into the release. We provide online documentation and tutorials 
(http://ctat.pact.cmu.edu). Further, we have made efforts to build a user community, by 
setting up an online user forum (http://groups.google.com/groups/ctat-users) and by 
holding yearly summer schools where people can learn about ITS with hands-on work in 
CTAT. We have also used the tools extensively ourselves to build tutors used in 
classrooms (Aleven, McLaren, & Sewall, 2009; Forlizzi et al, 2014; Long & Aleven, 
2013a; 2013b; McLaren et al., 2012; McLaren, DeLeeuw, & Mayer, 2011a, 2011b; 
McLaren, Lim, & Koedinger, 2008; McLaren, van Gog, Ganoe, Yaron, & Karabinos, 
2014; 2015; McLaren, van Gog, Ganoe, Karabinos, & Yaron, 2016; Olsen, Belenky, 
Aleven, & Rummel, 2014; Olsen, Belenky, Aleven, Rummel, et al., 2014; Rau, Aleven, 
& Rummel, 2013; Rau, Aleven, Rummel, & Pardos, 2014; Stampfer & Koedinger, 2013; 
Waalkens, Aleven, & Taatgen, 2013; Wylie, Sheng, Mitamura, & Koedinger, 2011). 
“Eating our own dog food” helped spot opportunities for improvement and has driven 
development of a number of new features. We have always kept the cost-effectiveness of 
authoring in mind. Before deciding to implement a new feature, we typically ask: How 
often will this feature be used and how much time will it save authors? Further, to 
support cost effective authoring, CTAT takes advantage of existing tools, including Flash 
and Eclipse Window Builder for building interfaces and Microsoft Excel in CTAT’s 
Mass Production process, described above.  
 

Should example-tracing tutors be considered ITS? 
In our 2009 paper, we argued that example-tracing tutors should be viewed as ITS. This 
argument was based on VanLehn’s (2006; 2011) criterion that what distinguishes ITSs 
from other forms of computer tutors is that they have an inner loop (i.e., provide step-
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level guidance to learners, rather than feedback only at the end of each problem).1 We 
update and bolster this argument for two reasons: First, a recent chapter by Pavlik, 
Brawner, Olney, and Mitrovic (2013) questioned whether example-tracing tutors should 
be viewed as intelligent tutors, on the grounds that they might be similar to “programmed 
instruction.” Second, although VanLehn’s (2006) criterion has much going for it, we now 
more clearly recognize the limitations of this criterion. The issue is important, because 
how we position our systems vis-à-vis other kinds of learning technologies may influence 
public perception, acceptance, and eventual widespread adoption of ITS.  
 
Although experts do not agree about how to define ITS (Woolf, 2009, p. 21), the crux 
may be how adaptive to student needs and student differences (e.g., in knowledge or 
motivation) the tutoring system is in ways that enhance student learning, motivation, or 
other desirable outcomes.  In defining adaptivity, we believe it is appropriate to look at 
the system’s behavior and the effect that the system has on the student experience, in line 
with how Newell and Simon (1976) view intelligence: 
 

“By ‘general intelligent action’ we wish to indicate … that in any real situation 
behavior appropriate to the ends of the system and adaptive to the demands of the 
environment can occur … ” 
 

What we like about VanLehn’s (2006; 2011) criterion (i.e., that the system has an inner 
loop) is that it emphasizes adaptive behavior as a hallmark of intelligence, in line with 
Newell and Simon (1976). Also, it aligns with key empirical evidence, namely, that 
systems with an inner loop tend to have a stronger positive effect on student learning than 
systems without (VanLehn, 2011). On the other hand, this criterion is not without its 
shortcomings. Step-based guidance may not be very adaptive if the tutor can recognize 
only one particular set of steps for each problem. Also, certain desirable forms of 
adaptivity may not easily be viewed as step-level support, such as reacting to student 
affect or adaptively selecting problems in the system’s outer loop. Furthermore, a number 
of systems that have a legitimate claim to being adaptive and intelligent do not have a 
very elaborate inner loop, for example, ASSISTments (Heffernan & Heffernan, 2014) 
and Wayang Outpost/Mathsprings (Arroyo et al., 2014). Instead they have other features 
that warrant viewing them as ITS, such as being designed with a fundamental and sound 
understanding of student learning and the specific difficulties that students face in the 
given task domain, or that their outer loop is adaptive to student metacognition and affect 
(Arroyo et al., 2014).   
 
Therefore, we offer an alternative definition (Aleven, 2015; Aleven, Beal, & Graesser, 
2013; Aleven, McLaughlin, Glenn, & Koedinger, forthcoming): 
 

                                                
1 In a more recent framing, VanLehn (this issue) has generalized his conception of the inner and outer loop, 
calling them step loop and task loop, respectively. VanLehn now views the inner and outer loop of an ITS 
as instances of so-called “regulative loops” that repeatedly compare a student’s performance to a gold 
standard. This generalization allows for including, for instance, certain types of computer-supported 
collaborative learning (CSCL) and other forms of intelligent learning support.  It does not affect our 
argument made here. 
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A learning environment is adaptive to the degree that:  
a. Its design is grounded in a thorough empirical understanding of learners in the 

given task domain;  
b. it takes into account, in its pedagogical decision making, how individual 

learners measure up along different psychological dimensions; and 
c. it is appropriately interactive and responsive to learner actions. 

 
Specific to the concerns of the field of AIED, the first part of this definition emphasizes 
(implicitly) the use of cognitive task analysis and data mining to guide tutor design and 
cyclical improvement of tutors (Aleven, 2010; Aleven & Koedinger, 2013; Baker et al., 
2007; Clark et al., 2008; Lovett, 1998). The second part emphasizes adaptive 
individualization across a host of learner variables both in the inner (or step) loop and in 
the outer (or task) loop, consistent with Woolf’s (2009) emphasis on having a student 
model and using it to adapt instruction. The third part of the definition emphasizes 
interactivity, consistent with VanLehn’s inner loop or step loop.  
 
Example-tracing tutor technology supports the building of tutors that exhibit all three 
factors that make up this definition. Regarding the first factor, example-tracing tutors 
vary in the depth of cognitive task analysis and other forms of data analysis that underlies 
their design. While the degree of cognitive task analysis depends ultimately on the efforts 
and procedures of the designers and developers, we note that CTAT’s Behavior Recorder 
tool is particularly suited to support this activity, for it permits designers to model and 
visualize a solution space and to rapidly prototype different tutor behaviors (Aleven et al., 
2015a). Furthermore, example-tracing tutors are an offshoot of Cognitive Tutors, which 
have always been grounded in cognitive task analysis and cognitive modeling. Therefore, 
example-tracing tutors can meet the first requirement. They also meet the second factor: 
As mentioned, example-tracing tutors and the Tutorshop support individualized problem 
selection based on Bayesian Knowledge Tracing (Corbett & Anderson, 1995; Anderson, 
Conrad, & Corbett, 1989; Corbett et al., 2000; VanLehn, 2011).   
 
To see how example-tracing tutors address the third factor, we briefly review how they 
can be adaptive in their inner loop. Example-tracing tutors support basic inner loop (or 
step loop) functionality (VanLehn, 2006) with next-step hints and correctness feedback 
on steps and error feedback messages for common errors. Step-level feedback is strongly 
supported in the empirical ITS and education literature as enhancing student learning 
(Arroyo, Beck, Woolf, Beal, & Schultz, 2000; Kleij, Feskens, & Eggen, 2015; 
McKendree, 1990; VanLehn, 2011). Beyond basic inner loop functionality, example-
tracing tutors can follow students within a problem with respect to multiple strategies, 
regardless of which strategy the student decides to follow. They do so by virtue of having 
multiple paths in their behavior graph (Waalkens et al., 2013) or by virtue of using 
formulas to capture commonalities among solution paths. By contrast, the simplest 
approaches for building interactive e-learning software (e.g., authoring questions one at a 
time, independent of each other) do not capture dependencies among steps (i.e., do not 
capture multiple paths). Capturing multiple solution paths also supports other adaptive 
behaviors. For example, a multi-path example-tracing tutor has the ability to respond 
differently to the same student input, depending on context, a hallmark of adaptive, 
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intelligent behavior. That is, whether a certain student step is marked correct depends on 
which path(s) the student is deemed to be on, based on the student’s prior steps in the 
problem.  Similarly, the tutor’s hints can be sensitive to what solution path the student is 
on, with different hints being given for the same step, dependent on the student’s prior 
path through the problem. An example-tracing tutor may change the hint it gives 
regarding what to do for a certain step, as more information about the student’s solution 
becomes available, a form of flexible, adaptive behavior. It is also possible to create a 
tutor whose hints depend not only on the solution strategy the student is following, but 
also on the particular steps within the given strategy the student has completed already, as 
a way of making hints even more context sensitive.  In sum, many adaptive behaviors are 
possible in an example-tracing tutor’s inner loop. All behaviors described above emerge 
from the basic example-tracing algorithm.  
 
In spite of the many adaptive behaviors that example-tracing tutors can support, Pavlik et 
al. (2013) question whether this type of tutor ought to be considered ITS. They view 
example-tutors as analogues to “programmed instruction” or “branched instruction” and 
state: “Perhaps these systems [i.e., example-tracing tutors] do not qualify as ITS, 
considering the student state space is small and that pedagogical options are few.” The 
analogy between behavior graphs and branched instruction is problematic, however. Both 
types of graphs are used to provide instruction, but behavior graphs do not represent 
instructional sequences or pedagogical decisions, as do the branches of branched 
instruction. Rather, behavior graphs capture problem-solving processes and their 
variations (Newell & Simon, 1972). More broadly, we reject the notion that only tutoring 
systems capable of handling elaborate solution spaces should be viewed as adaptive or 
intelligent. (This would also rule out ASSISTments or Mathsprings, for example.) In 
principle, even within a small solution space, many pedagogical decisions are possible, so 
there is room for adaptivity to be effective. Perhaps more fundamentally, even a limited 
amount of adaptivity within a small solution space might be just the right amount in order 
to support an effective and efficient student experience. Pavlik et al. (2013) may look at 
the system’s internal structures as a key criterion for intelligence or adaptivity, while 
overlooking the many adaptive behaviors that behavior graphs enable.  
 
We do see a number of limitations in example-tracing tutors. First, example-tracing tutors 
currently do not have specific features for responding adaptively to student self-
regulation, metacognition, or affect, although individual projects have added various 
forms of adaptive support for these aspects, including machine-learned detectors for help 
avoidance and for fast actions (Corbett, personal communication), simple support for 
self-explanation (Rau, Aleven, & Rummel, 2015; Wylie et al., 2011), self-assessment 
(Long & Aleven, 2013b; Roll, Aleven, McLaren, & Koedinger, 2011), and (with custom-
programmed software modifications), shared student/system control over problem 
selection (Long & Aleven, 2013b). Also, one project (AdaptErrEx) added an external 
module for adaptively responding to student misconceptions in the outer loop through 
custom modifications (Goguadze, Sosnovsky, Isotani, & McLaren, 2011; McLaren et al., 
2012).  Other limitations discussed in our 2009 IJAIED paper (and still apropos) are that 
the example-tracing technology is not particularly efficient when it comes to authoring 
simpler interactive items (e.g., multiple-choice questions) and is not geared toward 
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supporting tutorial interactions in natural language or towards building systems with 
large domain ontologies or that draw on large stores of factual or conceptual knowledge, 
or to integrate (without programming) animated pedagogical agents. Additionally, 
example-tracing tutors have been proven only to a limited degree in open-ended domains, 
where each problem tends to have its own structure (but see Ogan, Aleven, & Jones, 
2009). 
 

Evidence of the utility of example-tracing tutors 
To consider whether example-tracing tutors are a generally useful ITS paradigm and to 
illustrate the level of maturity that CTAT has reached, we look at example-tracing tutors 
built with CTAT since our 2009 IJAIED paper.  In that paper, we reported that example-
tracing tutors had been used in 26 research studies in real educational settings. The 
domains for which example-tracing tutors had been built included mathematics (at the 
elementary, middle, and high-school levels), science (chemistry, genetics), engineering 
(thermodynamics), language learning (Chinese, French, and English as a Second 
Language), and learning of intercultural competence (references provided in the original 
paper). Since 2009, a substantial number of new tutors have been built with CTAT. We 
review 18 such tutors in this section, all of which were used in real educational settings, 
most of them in research studies. For this review we informally clustered these tutors 
based on key aspects of their pedagogy. We label these clusters as problem-solving 
tutors, tutors that use worked examples or erroneous examples, tutors that emphasize the 
use of interactive graphical representations, tutors that use pedagogical approaches other 
than standard tutored problem solving, and (in a singleton cluster), a tutor for language 
learning. As we discuss these clusters, we focus on (a) the degree to which the tutors 
could be built entirely “within” the tools, (b) use in real educational settings, (c) evidence 
that students learned from the tutors, when they were used in such settings, and (d) 
applicability and limitations of example-tracing tutors. Screenshots of the 18 tutors are 
shown in the Appendix. 
 

Problem-solving tutors 
A number of example-tracing tutors built with CTAT can be viewed as “traditional” 
problem-solving tutors, meaning they provide step-by-step guidance as students practice 
the solving of recurrent complex problems. The two most comprehensive are Mathtutor 
and the Genetics Tutor. Mathtutor covers mathematics topics for grades 6 through 8 in 
the American school system (https://mathtutor.web.cmu.edu) (Aleven, McLaren, & 
Sewall, 2009). It is a re-implementation, as example-tracing tutors, of a set of Cognitive 
Tutors for middle-school mathematics that were created in our lab prior to CTAT (Baker 
et al., 2007; Koedinger, 2002; Koedinger & Terao, 2002; Rittle-Johnson & Koedinger, 
2005). Each of these tutors had seen multiple rounds of classroom use. The Genetics 
Tutor supports problem-solving and reasoning tasks for high school and college level 
genetics (Corbett et al., 2010). It has more than 25 units covering topics in Mendelian 
Transmission, Pedigree Analysis, Gene Mapping, Population Genetics and Genetic 
Pathways Analysis. Various tutor units have been evaluated in 15 colleges and 
universities and in 4 high schools. In a total of 45 single-unit in-course evaluations, 
pretest-to-posttest learning gains averaged about 18 percentage points (equivalent to 
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almost 2 letter grades) across topics at both the post-secondary and high school levels. 
Both Mathtutor and the Genetics Tutor were originally implemented as rule-based 
Cognitive Tutors and were reimplemented as example-tracing tutors so as to make them 
available over the Internet. (In the mean time, CTAT has progressed so that rule-based 
tutors built in CTAT can also be deployed on the Internet, with a server-side model-
tracing engine.)  
 
In addition to these two tutors, several tutors with smaller domain scopes have been 
implemented that we also categorize as problem-solving tutors. Lynnette is a tutor for 
basic equation solving (Long & Aleven, 2013a; 2013b; Waalkens et al., 2013). It was 
originally implemented as an example-tracing tutor, and later re-implemented (also using 
CTAT) as a rule-based Cognitive Tutor (Long & Aleven, 2014), so as to be more flexible 
in recognizing students’ major and minor solution variations. Thus, it followed the 
opposite trajectory of the two tutors just discussed. In four classroom studies with a total 
487 students in grades 6 through 8, the example-tracing version of Lynnette led to 
pre/post gains in basic equation solving skill with medium to large effect sizes (d =.69, d 
= 1.65, and d = 1.17; in one experiment, the gains were not significant, due to a ceiling 
effect. 
 
Our final example of a problem-solving tutor is the Tuning Tutor, an example-tracing 
tutor developed by Carolyn Rosé for use in her course at Carnegie Mellon University 
entitled “Applied Machine Learning.” This tutor teaches students how to apply the 
general principles of avoiding overfitting in cross-validation to the case where parameters 
of a model need to be tuned. It was used during two semesters and was well received by 
students, many of whom completed more than the required number of tutor problems. 
Informally, students expressed their appreciation for the opportunity to practice with 
feedback and suggested that other concepts in the course include CTAT exercises as well.  
The incidence of students attending office hours during the unit on tuning, which used to 
be the most difficult unit in the second half of the course, dropped to nearly zero. These 
examples confirm that example-tracing tutors can effectively support learning at a variety 
of educational levels, including advanced college courses. 
 
The Mathtutor, Genetics Tutor, and Lynnette projects help us better understand the 
practical import of the fact that example-tracing tutors can handle only problem types 
with a limited number of structurally dissimilar solution paths. As described, both 
Mathtutor (Aleven, McLaren, & Sewall, 2009) and the Genetics Tutor (Corbett et al., 
2010) were originally developed as Cognitive Tutors (i.e., having a rule-based cognitive 
model) (Aleven, 2010) and later re-implemented as example-tracing tutors. These 
example-tracing tutors have been used extensively in schools and (in the case of the 
Genetics Tutor) in colleges, evidence that they are bona fide, real-world tutors. In both 
projects, the problem types, tutor interfaces, and tutoring behavior were kept largely the 
same when the tutors were re-implemented as example-tracing tutors. In both projects, 
the authors were able to capture, as example-tracing tutors, a large proportion of the 
problem sets of the original tutors, without simplifying their solution spaces or tutoring 
behavior (roughly 95% of the problem sets in both projects). On the other hand, in both 
projects, there was a small residue of problem types whose solution space was too large 
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to be feasibly implemented as example-tracing tutors (namely, a unit on abductive 
problem solving in genetics and units on equation solving in middle-school mathematics). 
This finding was confirmed in the Lynnette project, in which a tutor for basic equation 
solving initially implemented as an example-tracing tutor (Long & Aleven, 2013a; 
2013b; Waalkens et al., 2013) was re-implemented as a rule-based Cognitive Tutor (Long 
& Aleven, 2014), in spite of the example-tracing tutor’s proven effectiveness in multiple 
classroom studies (see above). The purpose of the reimplementation was to make it easier 
to create new problem types for the tutor but also to have greater flexibility in 
recognizing solution variations within each problem. These three projects thus provide 
key evidence that example-tracing tutors are often an excellent option for tutor 
development. The requirement of having a moderately-branching solution space turned 
out to sometimes be an obstacle, but only infrequently so. This finding is interesting 
especially if one considers that the problem types that were transitioned from rule-based 
Cognitive Tutors to example-tracing tutors were not created or selected with example-
tracing tutors in mind. Evidently, in many domains, good practice problems need not 
have widely branching solution spaces. 
 

Tutors that use worked-out examples or erroneous examples 
Several CTAT-built tutors have been created and used as platforms for research that 
investigates potential benefits of worked examples and/or erroneous examples in ITS, a 
topic that has seen increased interest since 2009 (e.g., Salden, Koedinger, Renkl, Aleven, 
& McLaren, 2010; McLaren, Adams, & Mayer, 2015).  
 
A number of projects used example-tracing tutors to implement worked examples or 
erroneous examples. The Stoichiometry Tutor (McLaren et al., 2014; 2015; 2016) was 
extended so that students watch the step-by-step narrated playback of worked and 
erroneous examples in the tutor’s problem-solving interface. They are prompted to 
explain the solutions, in the case of standard worked examples, or fix the errors, in the 
case of erroneous examples.  In two classroom studies (McLaren et al., 2014; 2015), 
involving 295 10th and 11th grade students across the studies, erroneous examples and 
worked examples yielded the same learning outcomes as tutored and untutored problems 
but were more efficient in terms of time (d ranging between 1.76 and 3.31) and mental 
effort (d ranging between 0.89 and 1.04) (McLaren et al., 2014). The AdaptErrEx project 
used erroneous examples to help students learn decimals. Working with this tutor, 
students find, explain, and fix errors in decimal problems.  In two studies, one with 208 
subjects (Adams et al., 2014) and another with 390 subjects (McLaren, Adams, & Mayer, 
2015), students who worked with erroneous examples performed significantly better on a 
delayed test (d = .62 and d = .33, respectively) than students in a tutored problem-solving 
condition with explanation steps.  Building on this work and on the example-tracing 
technology, McLaren and colleagues created a suite of educational games, Decimal 
Point, unified by an amusement park metaphor, that use erroneous examples as the core 
instructional technique (Forlizzi et al., 2014). A considerable amount of special-purpose 
Flash code was required and some CTAT interface components had to be modified. 
Nevertheless, CTAT provided a valuable foundation. As a final project that employed 
worked examples in an example-tracing tutor, the Proportional Reasoning Tutor 
(Earnshaw, 2014) was created and used in a classroom study with 143 middle-school 
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students that examined effects of worked examples and tutored problems. Learners in the 
worked example condition took less time and scored higher on the post-test than learners 
in the two other conditions.  
 
With more and more studies showing that worked examples enhance learning with an 
ITS or, at minimum, make it more efficient, we expect to see worked examples become a 
staple of ITS, combined with self-explanation prompts. We see a need for more research 
that reconciles the findings of studies focused on worked examples in the ITS literature 
with those in other literatures (e.g., van Gog & Rummel, 2010; Renkl, 2013). For 
example, it would be useful to test whether the typical expertise reversal effect (studying 
examples is more effective early on, problem solving is more effective later on) 
(Kalyuga, 2007; Kalyuga, Ayres, Chandler, & Sweller, 2003) occurs in the context of 
ITS. 
 
As the projects reviewed above illustrate, worked-out examples or erroneous examples 
can often (as in the Proportional Reasoning Tutor) be authored entirely within CTAT 
(i.e., without programming). The same can be said about prompts for self-explanation, 
which often accompany worked examples (Booth, Lange, Koedinger, & Newton, 2013; 
McLaren et al., 2014; 2015; Rau, Aleven, & Rummel, 2015; see also Conati & VanLehn, 
2000; Renkl, 2013). At other times, tool extensions were needed to support examples 
(e.g., the Stoichiometry Tutor and AdaptErrEx). Regarding the outer loop, that is, how 
examples and problems can be sequenced in a problem set, as mentioned, CTAT now 
supports the gradual backward fading of worked examples, shown to be an effective 
method of transitioning from worked examples to problems (Atkinson et al., 2003; 
Salden et al., 2010). This functionality is used in all problem sets of Mathtutor (Aleven, 
McLaren, & Sewall, 2009). As an alternative strategy, an author could decide to 
interleave fully worked-out examples and fully open problems (e.g., Paas & van 
Merriënboer, 1994), which she could do using the standard way of ordering problems 
within a problem set in the Tutorshop. A third strategy is fixed or adaptive fading of 
example steps at the knowledge component level, which was shown to be effective in one 
(non-CTAT) project (Salden, et al., 2010). CTAT provides building blocks for tutor 
authors to implement adaptive example fading in this manner, though we do not know of 
any CTAT tutors using this capability.  
 

Tutors with interactive graphical representations 
Since 2009, a number of example-tracing tutors have been created with CTAT that 
feature the use of interactive graphical representations of learning materials.  This work 
shows that interactive graphical representations can be a key way of designing effective 
tutors and leveraging ITS technology.  
 
For some of these projects, special-purpose graphical interface components were 
developed (which required programming). For example, the Fractions Tutor 
(https://fractions.cs.cmu.edu) focuses on conceptual learning with multiple, interactive 
graphical representations including number lines, fractions circles, and rectangles (Rau, 
Aleven, & Rummel, 2013, 2015; Rau et al., 2014). This tutor was used in five classroom 
studies with over 3,000 students. In the last study, learning gains, up from the pre-test, 
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were d = .40 for the immediate post-test and d = .60 for a delayed post-test (Rau, Aleven, 
Rummel, & Rohrbach, 2012). The Fractions Tutor project illustrates that ITS, and 
example-tracing tutors specifically, can be effective with elementary school students. The 
only other ITS work we know of at the elementary school level is a set of studies by 
Stankov, Rosić, Žitko, and Grubišić (2007). To build the Fractions Tutor, special 
interface components for the interactive graphical representations of fractions were 
developed and added to CTAT’s component class hierarchy. Once they were, they could 
be used, for example, to create dynamically linked representations (i.e., where the 
student’s interactions with one representation are mirrored, automatically, in a second 
representation). They also became part of the standard CTAT release package and were 
used in other tutors. For example, in a different project, also dealing with elementary 
school fractions learning (Stampfer & Koedinger, 2013; Wiese & Koedinger, 2015), they 
were used to implement an instructional approach called grounded feedback (Mathan & 
Koedinger, 2005; Nathan, 1998). Given that CTAT provided interface components for 
interactive fraction representations, the grounded feedback tutor could be built entirely 
within the tools, using tutor-performed actions to make interface changes in the concrete 
representation in response to student entries in the abstract representation. 
 
Chem Tutor (Rau, Michaelis, & Fay, 2015) features domain-specific interactive graphical 
representations, such as Lewis structures, Bohr models, and energy diagrams. Students 
receive step-by-step guidance for planning and constructing representations and are 
prompted to self-explain differences between different representations so as to reflect on 
the limitations of either representation. New interface components for these interactive 
representations were built first. Chem Tutor led to large learning gains in a field study 
with 74 undergraduate students enrolled in an introductory course for science majors (d = 
1.44) (Rau et al., 2015) and in a lab experiment with 117 undergraduates (d = .78) (Rau 
& Wu, 2015).  Chem Tutor has been used as a research platform to investigate support for 
representational competencies (Rau & Wu, 2015), effects of students’ spatial abilities on 
their interactions with graphical representations (Rau, 2015), and visual attention 
behaviors (Peterson et al., 2015; Rau et al., 2015). 
 
Some projects built interactive graphical representations using standard CTAT interface 
components, bypassing the need to first create new custom interface components; these 
include the Genetics Tutor (discussed above) and the RedBlackTree Tutor. The latter is 
an example-tracing tutor that aims to help students in a college level introductory data 
structures courses understand (i.e., “hand simulate”) a key algorithm for red-black trees 
(Liew & Xhakaj, 2015; Xhakaj, 2015; Xhakaj & Liew, 2015), a data structure with many 
applications (e.g., Weiss, 2010). Interactive red-black tree structures in the tutor interface 
were built out of standard CTAT components such as text boxes, radio buttons and drop-
down components, combined with standard Flash elements and a small amount of custom 
ActionScript. In two small evaluation studies (Liew & Xhakaj, 2015; Xhakaj & Liew, 
2015; Xhakaj, 2015, approximately one hour’s work with the RedBlackTree Tutor led to 
large learning gains (d = 1.66 and d = 3.06, respectively).  
 
Thus, CTAT offers various ways of supporting interactive graphical representations. In 
the best-case scenario (as in the Grounded Feedback Tutor), CTAT already offers an 
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interactive interface component for the given representation, so the tutor can be built 
without programming. Sometimes, a new interactive graphical representation can be 
assembled entirely from standard CTAT-supported interface components (as in the 
Genetics Tutor), sometimes with a small amount of custom ActonScript (as in the 
RedBlackTree Tutor). Sometimes, when moving into a new domain, it is necessary to 
create new interactive interface components for the given graphical representations (e.g., 
Mathtutor, the Fractions Tutor, and Chem Tutor), which can then become part of the tool 
set. This experience illustrates that it is important that an ITS authoring tool is “open” so 
that it is easy to extend its collection of interface components, or to use custom 
programming to extend what tutors built with the tool can do. 
 

Tutors that support other pedagogical approaches  
A number of tutors have been built that use pedagogical approaches other than tutored 
problem solving: educational games (example discussed above), collaborative learning, 
learning with an external problem-solving environment, activities that target sense 
making and fluency building, and guided invention activities. 
 
CTAT’s example-tracing tutor technology has been extended so that it now supports the 
authoring of tutors with simple support for collaborative learning (Olsen, Belenky, 
Aleven, Rummel, et al., 2014), similar to earlier work done with constraint-based tutors 
(Baghaei, Mitrovic, & Irwin, 2007). Using CTAT, an author can build tutor activities that 
combine tutored problem solving with embedded simple collaboration scripts. In these 
activities, networked small teams of students work synchronously on tutor problems. The 
students can have a shared but – if the author so chooses – differentiated view of a joint 
problem and can have different actions available, so collaborating students can have 
different roles. The phases of the collaboration script can be tied to the problem-solving 
state, for example so students may switch roles dynamically within a given problem. This 
form of collaboration support is quite flexible; different forms of collaboration support 
can be authored. It has a number of limitations, however. For example, it is not currently 
straightforward within CTAT to provide feedback on how students are collaborating 
(e.g., Rummel, Walker, & Aleven, under review; Walker, Rummel, & Koedinger, 2014). 
Further, collaboration scripts have to be built from low-level interface components and 
there is no provision for reacting to dialogue between students (e.g., Adamson, Dyke, 
Jang, & Rosé, 2014).  
 
CTAT’s collaborative features were used to author collaboration scripts that support 
proven ways of scripting collaboration such as roles, cognitive group awareness (Janssen 
& Bodemer, 2013), and individual accountability (Slavin, 1996). In a pull-out study 
conducted in schools with 56 students, these tutors were shown to help elementary 
students learn collaboratively (Olsen, Belenky, Aleven, & Rummel, 2014), with gains no 
different from equivalent tutors used individually.  In a second study, a classroom study 
with 189 participating students, there again were no differences in learning gains between 
students working individually and collaboratively, but students working collaboratively 
spent less time on the tutor (Olsen, Rummel, & Aleven, under review). This line of work 
may help as a bridge between ITS and research in Computer-Supported Collaborative 
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Learning (CSCL) (see also Baghaei et al., 2007; Kumar & Kim, 2014; Rummel, Walker, 
& Aleven, under review; VanLehn, this issue).  
 
CTAT has also been used to provide tutoring within external problem-solving 
environments including simulators for thermodynamics and chemistry (Aleven, Sewall, 
et al., 2006; Borek, McLaren, Karabinos, & Yaron, 2009). In a new project by McLaren 
and colleagues embeds a CTAT example-tracing tutor within Google Sheets. This tutor 
guides college students in their work on business modeling problems, represented on 
spreadsheets, using replayed solutions as worked examples and tutors developed in 
CTAT. This work builds on work on plug-in tutoring agents that pre-dates CTAT 
(Koedinger, Suthers, & Forbus, 1999; Mathan & Koedinger, 2005; Ritter & Koedinger, 
1996). Although hooking up an external problem-solving environment can be challenging 
(it typically requires extensions to the external problem-solving environment), it is 
facilitated by CTAT’s factored architecture, which, conforming to Ritter and Koedinger’s 
(1996) notion, strictly separates interface and tutor functionality 
(http://ctat.pact.cs.cmu.edu/index.php?id=tool-tutor). This notion is also being addressed 
in the xPST authoring tools project (Blessing et al., 2009; Kodavali et al., 2010). 
 
A new project with the Fractions Tutor studies whether an ITS can be made more 
effective by adaptively targeting a broader range of learning mechanisms than ITS 
typically do. The work is grounded in the Knowledge-Learning-Instruction (KLI) 
framework (Koedinger et al., 2012), which links cognitive theory and instructional 
design. The tutor aims to support all three key KLI learning mechanisms, by supporting 
not just induction and refinement (IR) processes as ITS typically do, but also verbal 
sense-making (SM) processes and fluency-building (F) processes. SM activities in the 
Fractions Tutor include instructional videos that explain fractions topics, interleaved with 
brief supporting problem-solving exercises and opportunities to self-explain via drag-
and-drop fill-in-the-blank questions. F activities emphasize procedural practice with 
design features that may encourage students to work more quickly (e.g., bigger problem 
steps, short hints, and on-screen timers). In a classroom study with 1068 fourth and fifth 
grade students across 12 schools, we found that the tutor leads to significant pre- to post-
test learning gains (d = .47) (Doroudi, Holstein, Aleven, & Brunskill, 2015); students 
who did relatively more fluency-building activities learned more. Ongoing work uses 
machine learning techniques to create policies for adaptive activity selection.  
 
CTAT has also been used to implement tutors for guided invention activities, in which 
the goal is for students to develop a quantitative method that captures a mathematical or 
physics concept, guided by carefully designed sets of contrasting examples.  Prior 
research shows that these kinds of activities prepare students well to learn and transfer 
from a more traditional lesson (Schwartz & Martin, 2004; Schwartz, Chase, Oppezzo, & 
Chin, 2011). Over the years, three different tutors for guided invention activities have 
been built with CTAT. The first one, by Roll, Aleven, and Koedinger (2010) relied on 
rules and constraints (i.e., was not an example tracing tutor). A second tutor was an 
example-tracing tutor that provided domain-general guidance during invention activities 
(Holmes, Day, Park, Bonn, & Roll, 2014). In an evaluation study, in which 87 
undergraduate students in a first-year physics lab course at the University of British 
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Columbia used the system for two activities, roughly 30 minutes each (Holmes et al., 
2014), domain-general guidance during invention activities enhanced students’ 
conceptual understanding. In addition, the system was used as part of the regular physics 
instruction at the University of British Columbia until last year. A third tutor for 
invention activities, for middle-school physics, is currently under development and also 
builds on example-tracing tutors, although with substantial custom programming (Chase, 
Marks, Bernett, & Aleven, 2015; Chase, Marks, Bernett, Bradley, & Aleven, 2015).  
 

A tutor for language learning 
The remaining cluster comprises a single tutor, the Article Tutor, an example-tracing 
tutor that teaches students the English article system (when to use a, an, the, or no 
article). Other tutors for language learning have been built with CTAT as well (e.g., 
Guan, Liu, Chan, Ye, & Perfetti, 2011; Liu et al., 2011; Ogan et al., 2009). The Article 
Tutor was built to be part of a course for English as a Second Language (ESL). It was 
used in research to investigate whether the use of self-explanation can be effective as a 
learning strategy for ESL. In total, six tutor versions were built, including an adaptive 
tutor that prompted students to self-explain only if they got the question wrong. This 
form of adaptivity could be authored entirely within CTAT’s non-programmer tutor 
authoring paradigm. In four classroom studies (390 students total) all conditions learned 
from the tutor but the practice-only (no self-explanation) condition consistently was the 
more efficient form of instruction (Wylie, Koedinger, & Mitamura, 2009; 2010a; 2010b; 
Wylie et al., 2011). The work refines the conditions under which self-explanation is 
understood to be effective (e.g., Koedinger et al., 2012). 
 

Discussion and conclusions 
The main contributions highlighted in our IJAIED 2009 paper were: First, the CTAT 
project pioneered a non-programmer paradigm for ITS authoring that involves (a) 
generalized examples of problem-solving behavior as the tutor’s representation of domain 
knowledge, (b) tools for creating, without programming, tutors that use these generalized 
examples to provide within-problem, step-level guidance to students, and (c) an 
algorithm for flexibly using generalized examples to interpret student behavior and 
provide step-based tutoring. A second intellectual contribution claimed at the time was a 
demonstration, across a range of tutor research projects, that this paradigm can be widely 
useful and effective. A third contribution was evidence of substantial cost savings: 
Building example-tracing tutors was shown to be 4-8 times as cost-effective, compared to 
estimates in prior literature. 
 
We see six novel scientific contributions of our project since 2009. First, we update and 
bolster our argument that example-tracing tutors should be viewed as first-class citizens 
in the world of ITS. We now focus on adaptive behavior as a hallmark of intelligence, 
following Newell and Simon (1976). We provide a definition for adaptivity based on 
three factors, (cf. Aleven, 2015; Aleven et al., 2013; forthcoming) and highlight many 
elements of adaptivity in the behavior of example-tracing tutors.  
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Second, we provide additional evidence that example-tracing tutors are a useful and 
mature paradigm for developing intelligent tutors. We describe 18 example-tracing tutors 
built since 2009 and used in real educational settings, many with statistically significant 
pre/post learning gains. Most of these tutors were for STEM domains (science, 
technology, engineering, and mathematics) including computer programming, but we 
also see tutors for business modeling and language learning. The tutors were used by 
students ranging from late elementary school to university undergraduate and graduate 
students. As evidence of widespread use, CTAT-built tutors were used by 44,000 
students and account for 40% of the data sets in DataShop. This work thus supports the 
notion that a non-programmer approach to ITS authoring can yield effective tutors. It also 
illustrates that CTAT has reached a state of maturity in which tutors built with CTAT 
routinely withstand the rigors of classroom use and even use within MOOCs. 
 
Third, the 18 reviewed example-tracing tutors illustrate a range of pedagogical 
approaches, including (standard) tutored problem solving, the use of worked-out and 
erroneous examples, interactive graphical representations, and collaborative learning. 
CTAT supports these features to a substantial degree; however, some amount of 
programming is sometimes necessary. Thus, we see that an ITS authoring tool, in the 
hands of creative authors, can be used in unanticipated ways. We also see that an ITS 
authoring environment, even one that supports a non-programmer approach to authoring, 
should be easily extensible and accommodate custom programming.  
 
Fourth, the strengths and limitations of example-tracing tutors are now better understood. 
In particular, we better understand the extent to which it is limiting that example-tracing 
tutors support only problems that have no more than a moderately-branching solution 
space (unless many branches are isomorphic so that an author can collapse them into a 
small number of branches using formulas). The experience across a range of tutor 
development projects suggests that occasionally this limitation precludes use of the 
example-tracing paradigm, but more frequently, example-tracing tutors are a viable 
approach. Other limitations are that adaptivity in response to affect, metacognition, and 
motivation is not currently supported and that the number of example tracing tutors that 
have been demonstrated in domains outside of STEM domains remains relatively small. 
 
Fifth, we have learned how an ITS architecture can be factored so it supports the flexible 
re-use of tutor components. First, the notion of separating tool and tutor pre-dates CTAT 
(Ritter & Koedinger, 1996), but CTAT demonstrates some advantages of it that have not 
been demonstrated before. Most importantly, the changes in web technologies that forced 
us twice to revamp our tutor front-end technology would have spelled doom for CTAT 
had it not been for the strict tool/tutor separation. The tool/tutor separation has also made 
it possible to mix-and-match tutor engines and interface technology and makes it easier to 
extend the tutor interface by creating new components (rather than project-specific 
interfaces). We recommend this separation for any ITS project. The second key way of 
factoring is to separate inner loop and outer loop, with the student model as the sole 
means of communication between the two loops. This separation has proven to be useful 
(e.g., it has been relatively easy to plug in an alternative student model and outer loop). It 
will be interesting to see if this separation holds up when we extend the range of student 
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models and task selection policies. Sixth and finally, we have created ways of embedding 
CTAT tutors in a range of e-learning environments, and continue to work on both 
extending the range of environments in which these tutors can be embedded, and the 
range of advanced tutoring functionality (including learning analytics and student 
modeling) that can be made available to these environments.  
 
We see interesting days ahead for ITS authoring tools. Our ongoing work focuses on 
generalizing CTAT and supporting tutoring at scale. For ITS technology to spread, it is 
critical that authoring tools not only support cost-effective authoring of sophisticated 
tutor behaviors, but also that tools created with these tutors interface with popular e-
learning and MOOC environments across the range of popular client platforms. 
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Appendix: Screenshots of 18 example-tracing tutors  
We provide screenshots of the 18 example-tracing tutors built with CTAT since 2009 that 
are discussed in the body of the document.   

Mathtutor 

   
 

 
Mathtutor (Aleven, McLaren, & Sewall, 2009) is a comprehensive web-based tutoring 
system for mathematics in grades 6 through 8. 
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Genetics Tutor 

   
 

 
The Genetics Tutor (Corbett et al., 2010) covers a wide range of problem-solving 
activities in high-school and college-level genetics. 
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Lynnette – Basic Equation Solving 

   
 

 
 

Lynnette, a tutor for basic equation solving for grades 6, 7, and 8, originally implemented 
as an example-tracing version (top) (Long & Aleven 2013a; 2013b; Waalkens et al., 
2013), later re-implemented, also with CTAT, as a rule-based Cognitive Tutor 
(bottom)(Long & Aleven, 2014) 
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The Tuning Tutor – Parameter Fitting in Machine Learning 

 
The Tuning Tutor helps graduate students and advanced undergraduate students learn to 
use cross validation to avoid overfitting when tuning model parameters. It was used at 
Carnegie Mellon University in a course for graduate students and advanced undergrads 
called “Applied Machine Learning” by Carolyn Rosé. 
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Stoichiometry Tutor 

 
 

 
The Stoichiometry Tutor (McLaren et al., 2014; 2015; 2016) supports the narrated replay 
of  example solutions. As the steps of the problem are replayed, a flashing yellow box 
draws the student’s attention to the next step of the worked example (top). After the 
worked example plays back, the student is prompted to fill out the reasons for every step, 
and then their solution is evaluated (i.e., delayed feedback; bottom).  
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AdaptErrEx – Erroneous Examples 

  
AdaptErrEx (Adams et al., 2014; McLaren, Adams, & Mayer, 2015) is an example-
tracing tutor for learning decimals (part of 6th-grade mathematics) that has students 
identify, correct, and explain incorrect steps in worked-out problem solutions 
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Decimal Point: Educational Games for Learning Decimals 

   
 

 
Decimal Point (Forlizzi et al., 2014), built using CTAT as foundation, supports game-
based learning with erroneous examples to help middle-school students learn decimals 
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Proportional Reasoning Tutor 

 
The Proportional Reasoning Tutor (Earnshaw, 2014) supports worked examples and 
tutored problems in middle-school mathematics. 
 
 
  



 33 

Fractions Tutor 

 
 

 
The Fractions Tutor (Rau, Aleven, & Rummel, 2013, 2015; Rau et al., 2014) supports 
conceptual learning of fractions in grades 4 and 5 using multiple interactive graphical 
representations of fractions 
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Grounded Feedback Tutor 

   
 

 
Grounded Feedback Tutor (Stampfer & Koedinger, 2015; Wiese & Koedinger, 2015) for 
elementary school fractions learning; instead of providing explicit correctness feedback, 
as the student enters a solution using numeric symbols, the fraction bars (except those 
representing the given fractions) are updated by the system to reflect the student input 
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Chem Tutor 

 
In Chem Tutor (Rau, Michaelis, & Fay, 2015), designed for introductory undergraduate 
chemistry learning, students plan and construct a graphical representation (Lewis 
structures), with feedback from the system 
 

 
Given one representation, students construct a different kind of graphical representation 
of the same atom and are prompted to reflect on the differences and limitations of the two 
visual representations. 
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RedBlackTree Tutor 
 

 
Example problem in the RedBlackTree Tutor (Liew & Xhakaj, 2015; Xhakaj, 2015; 
Xhakaj & Liew, 2015), which helps explain how red-black trees are built, a common data 
structure in computer science.  
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Tutor for collaborative learning of fractions 

   
 

 
Elementary school students (grades 4 and 5) use the Collaborative Fractions Tutor with a 
partner; each partner has a different role, with a different view of the problem and 
different available actions (Olsen, Belenky, Aleven, & Rummel, 2014; Olsen, Belenky, 
Aleven, Rummel, et al., 2014; Olsen, Rummel, & Aleven, under review)  
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Tutor for Business Modeling with Google Sheets 

 
An example-tracing tutor build by McLaren and colleagues, embedded within Google 
Sheets, provides guidance with business modeling problems 
  



 39 

Fractions Tutor version that supports Sense Making, Induction/Refinement, and 
Fluency Building 

 
A new version of the Fractions Tutor (Doroudi et al., 2015) has activities targeting each 
of the three Knowledge-Learning-Instruction (KLI; Koedinger et al., 2012) learning 
mechanisms: induction and refinement (IR) (left), sense-making (SM) (center), and 
fluency (F) (right) 
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Tutors for Guided Invention activities 
 

 
Tutor for guided invention activities by Roll et al. (2010) 
 
 

 
A tutor for guided invention activities with a Wizard of Oz interface (Chase et al., 2015); 
CTAT’s collaborative tutoring facility enabled separate roles and capabilities for student 
and wizard. 
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The Article Tutor 
 

  
Version of the Article Tutor (Wylie et al., 2011). that supports self-explanation 
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