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ABSTRACT 

We describe a data mining pipeline to convert data from 

educational systems into knowledge component (KC) models. In 

contrast to other approaches, our approach employs and compares 

multiple model search methodologies (e.g., sparse factor analysis, 
covariance clustering) within a single pipeline. In this preliminary 

work, we describe our approach's results on two datasets when 

using 2 model search methodologies for inferring item or KCs 

relations (i.e., implied transfer). The first method uses item 
covariances which are clustered to determine related KCs, and the 

second method uses sparse factor analysis to derive the relationship 

matrix for clustering. We evaluate these methods on data from 

experimentally controlled practice of statistics items as well as data 
from the Andes physics system. We explain our plans to upgrade 

our pipeline to include additional methods of finding item 

relationships and creating domain models. We discuss advantages 

of improving the domain model that go beyond model fit, including 
the fact that models with clustered item KCs result in performance 

predictions transferring between KCs, enabling the learning system 

to be more adaptive and better able to track student knowledge. 
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1. INTRODUCTION 
This paper describes preliminary progress to create a multimethod 

pipeline to determine the knowledge model (or domain model) that 

allows the most accurate prediction of performance in an adaptive 

learning system using a quantitative model of practice. A broad use 
of quantitative models of practice is to predict performance and 

make pedagogical decisions [1; 2]. To do this effectively, models 

typically assign sets of problems or items specific skill tags (often 

called knowledge components, or KCs). Having such an 
identification allows a system to monitor which skills have been 

learned and which need more practice. The matrices representing 

these item assignments to skills are called Q-matrices [4]. Because 

the act of tracing student learning is so important for pedagogy, the 
assignment of items to KCs is crucially important for systems to 

make pedagogical decisions. Without such an assignment, a system 

would conceivably need to schedule all items for practice to ensure 

mastery, so the assignment or “domain model” must be accurate for 
a system to perform well. Improvements in the domain model may 

result in better pedagogical decisions in a system. This paper 

describes a more general approach to improve these critical domain 

models, a tradition that has included much prior work [3; 5; 14; 15; 

19; 20; 22].  

In addition to improving domain models, we highlight how these 

methods may alter how many quantitative models work by enabling 

models where multiple knowledge components can influence a 

single practice trial. While such models are not new [13], 
specifying them with experts is time consuming and error prone. 

Despite this difficulty, domain models that include the potential for 

multiple KCs affecting a single performance also typically capture 

transfer when a shared KC is used in multiple items. In addition to 
making models more accurate, this transfer has large potential 

impacts on pedagogy in a complex adaptive instructional system 

since transfer in an adaptive system means that a KC's performance 

may bias the selection of other items that share KCs. This transfer 
will occur because the shared KC will affect the item predictions, 

making items sharing a KC more or less likely to be practiced.  

2. ANALYSIS METHOD 
We have developed an automatic domain model improvement 

algorithm with a highly configurable analysis pipeline.  

2.1 Step 1 
First is the preprocessing stage. In this stage, some matrix-based 

method will produce some featural vector of information 

representing each item. There are two ways this method might 

process the data from an educational system, either all at once or 
sequentially in the order the student saw the items. In the first case, 

this would include methods such as SPARFA-Lite, which assumes 

one observation for each skill for each student [14]. Our example 

in this paper uses the SPARFA-Lite model and a simpler model 
based on covariance clustering [20].  For our examples, Step 1 

meant averaging KCs performances for each subject to get a student 

performance by KC. More advanced methods such as tensor 

analysis can proceed with sequential data for each student. 

However, this is future work not presented here.  

2.2 Step 2 Infer Feature Matrix 
In this step, the method is applied to the data to get some matrix. 

Currently, the pipeline has two possibilities at this stage, but we 

plan to include multiple methods in future work as we look to our 
long-term goal of building a shareable tool for the EDM 

community. 

2.2.1 Covariance Clustering  
Developed by Pavlik, Cen, Wu, and Koedinger [20], covariance 

clustering is a method to describe how each item or existing KC in 
a domain model is related to all other items or KCs (using a measure 

of conditional log odds to represent covariance). This method 

computes a vector for each item representing the conditional 
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probability table for success and failure for the items/KCs relative 
to all other items/KCs. The pairwise relationships between each 

vector are similar to the relationships inferred in POKS (Partial 

Order Knowledge Spaces, [7; 8]), a method related to Falmagne’s 
work [10; 11]. An advantage of covariance clustering is that it 
characterizes each pairwise relationship between items/KCs in 

terms of the relationship with all other items/KCs. Pavlik et al. [20] 

used clustering to establish how to group items by using this 

KC/item relational vector as the set of features.  

2.2.2 SPARFA-Lite 
Developed at Rice University by Lan, Studer, and Baranuik [14], 
SPARFA is a factor analysis method to extract factors from binary-

valued data. It provides an association matrix similar to a dAFM Q-

matrix with graded associations of concepts with items. The “Lite” 
version simplifies the method by reducing the parameters and 
allowing automatic inference of the optimal number of concepts. 

This method works differently than dAFM, but it provides similar 

results, allowing for direct comparisons. Also, the ability to infer 

the optimal number of concepts may be a useful constraint when 

applying other algorithms. 

2.3 Step 3 Cluster Principal Components of 

Features 
In this step, the information matrix is clustered using some method 

to group items into clusters. Our current implementation first uses 

RSVD (Randomized Singular Value Decomposition) to simplify 
the information matrix. We see from the pattern in the results 

section how the quantity of RSVD components influences the 

clustering result. We are currently using K-means clustering for 

clustering, so our search is across both RSVD number of 

components (N) and K for the number of K means clusters. 

For this step, we have also done considerable experimentation with 

the cmeans fuzzy clustering method, which provides a 0 to 1 index 

of how strongly each KC is associated with each cluster. Typically, 
we have used this by specifying a threshold (which can be 

optimized with search) over which an item belongs to each cluster 

or not. This assignment allows for membership in multiple clusters, 

which means that unlike the method in Step 2.4, the item is assigned 
to potentially many clusters. Typically, when we use this method, 

we have weighted the effect of prior practice for the KC clusters 

according to the number of KC clusters involved in a performance. 

This weighting is not necessary for the simpler K-means 
implementation since the added KC column only assigns each KC 

to 1 KC cluster. 

2.4 Step 4 Fit with New Model 
We used the new model as an overlay such that we created a column 

with the cluster id for each KC for each trial. This overlay 

procedure means that while the KC and clusters are independent, 

practicing an item may affect other items if they share a cluster. To 

do this, we first describe our starting model, which was simply PFA 

(Performance Factors Analysis, [17]) using the logarithms of 
practice counts for successes and failure (adding 1 to each to permit 

the logarithms). Where 𝜃 values are Student ability and KC 

difficulty respectively, and S and F represent the count of prior 

success and failures for the KC j for the student i. 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑡) =  𝛽1log𝑒 𝑆𝑖𝑗 +  𝛽2log𝑒 𝐹𝑖𝑗 + 𝜃𝑖 + 𝜃𝑗  

The new model was defined using cluster-id (c) as a KC in an 
additive compensatory model. Prior research suggests such 

compensation among KCs works well for prediction [6; 16].  

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑡) =  𝛽1jlog𝑒 𝑆𝑖𝑗 +  𝛽2jlog𝑒 𝐹𝑖𝑗 + 𝛽3clog𝑒 𝑆𝑖𝑐 +  𝛽4clog𝑒 𝐹𝑖𝑐 + 𝜃𝑖 + 𝜃𝑗  

Two versions of this model with clusters were compared; the first 

version was as described, and the second version was a control 

condition where the cluster column was sampled at random from 

the Q-matrix. This control condition should exhibit the same 
amount of overfitting due to adding parameters but none of the 

benefit of a coherent clustering solution. These models are 

compared using 2 to N components and 2 to K clusters by iterating 

to Step 3 to search a space of models. 

In the context of our future work, we plan to allow users of our tool 

to specify candidate models with different configurations and terms 

using a logistic knowledge tracing R package freely available [18]. 

It is possible that different learner models may be implemented at 
this step since the Q-matrices we are creating may be used in many 

types of learner models. 

2.5 Step 5 Splitting and Merging 
Just as steps 3 and 4 may iterate to find optimal K and N, steps 4 
and 5 may iterate to refine the model in Step 4. This step describes 

our future planning for a tool to optimize Q-matrix type models of 

knowledge domains. 

Splitting takes the original KC model and uses the KC model from 
the clustered features to determine hypotheses for how KCs might 

be split. So if a KC in the original model is in 2 clusters, the model 

would test whether that that was best represented by the default 

model (include the effect of the cluster and the KC for each KC) or 
whether the cluster was unnecessary and the fit was just as good by 

splitting the KC into two different KCs and dropping the effect of 

the cluster KC. Further, we could also test whether the specific 

clusters proposed for each KCs even improves fit by removing 
them entirely as a third hypothesis. Two of these three possibilities 

correspond to Learning Factors Analysis (LFA) [5], and the third 

(including the cluster instead of using a split) advances the 

approach. 

Merging uses the cluster model like LFA, but instead of splitting 

KCs, the clusters are used to evaluate three hypotheses about 

whether existing KCs can be merged into a single KC. One 

hypothesis is that the KCs are best represented as separate but 
influence each other through the shared cluster membership. The 

second hypothesis is that the specific cluster was unnecessary, and 

the two KCs should be merged into 1 KC. Finally, the third 

hypothesis is that the 2 KCs are separate and that the cluster 

predictor should be omitted. 

Step 5 is similar to backward and forward stepwise regression 

methods, and so it is clear this method would be very likely to cause 

overfitting due to the way it will tailor the model term to capture 
the data iteratively. To prevent this problem, the solutions produced 

are robustly cross-validated. By tuning the model to maximize 

cross-validation accuracy, we aim to find quantitative thresholds 

for when to add or subtract terms from the model with a result that 

is efficient and parsimonious. 
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Figure 1. Changes in fit including differing numbers of additional 

clusters for Cloze dataset using covariance clustering (CC) or 

SPARFA-lite (SL). 

3. DATASETS 
The statistics cloze dataset included 58,316 observations from 478 

participants who learned statistical concepts by reading sentences 

and filling in missing words. Participants were adults recruited 

from Amazon Mechanical Turk. There were 144 KCs in the dataset, 
derived from 36 sentences, each with 1 of 4 different possible 

words missing (cloze items). The number of times specific cloze 

items were presented was manipulated, and the temporal spacing 

between presentations (narrow, medium, or wide). The post-
practice test (filling in missing words) could be after 2 minutes, 1 

day, or 3 days (manipulated between students). The stimuli type, 

manipulation of spacing, repetition of KCs and items, and multiple-

day delays made this dataset appropriate for evaluating model fit to 
well-known patterns in human learning data (e.g., substantial 

forgetting across delays, benefits of spacing). The dataset was 

downloaded from the Memphis Datashop repository. 

In the Andes dataset, 66 students learned physics using the Andes 
tutoring system, generating 345,536 observations. Participants 

were given feedback on their responses as well as solution hints. 

Additionally, participants were asked qualitative “reflective” 
questions after feedback (for more details, see [12]). 

 

Figure 2.  Changes in fit including differing numbers of additional 

clusters for Andes Physics data using covariance clustering (CC) or 

SPARFA-lite (SL). 

4. RESULTS 
Figures 1 and 2 show the result for the two datasets. The proportion 

of R-squared gain indicates the improvement in R-squared for the 

true clustered model compared to the random comparison R-

squared model as a proportion of the random comparison R-
squared model. Because of the result's preliminary nature, we have 

not been able to produce smoothed figures through cross-

validation. However, the results consistently show beneficial 

effects. In general, both methods have similar accuracy.  

Both methods can achieve similar improvements via different 

parameters. However, it does appear that the efficacy of the 

methods differs somewhat across datasets. Covariance clustering 

found the best solution in the Andes dataset, with SPARFA-Lite 
having the best solution in the Cloze dataset. This preliminary result 

suggests that applying multiple approaches to the same dataset may 

be advisable, especially when the underlying domain structure is 

unknown. Different domain modeling algorithms may differ in 

their ability to detect this underlying domain structure. 

To understand better the results shown in Figures 1 and 2 we can 

query the model for the parameters for the cluster KCs to confirm 

that they are meaningful due to the structure of PFA. Normally we 
would expect the cluster KC coefficients for success and failure to 

be more different if the model was labeling real KCs since it is 

typically the case that successes predict future success more than 

failures. Indeed, test comparison shows exactly this pattern; for 
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example, considering the model with 10 components and 10 KCs 
in for the Physics data with covariance clustering applied, we see 

the success is .56 higher than failure. In contrast, for the 

randomized model, the value was .12 higher for success than failure 

(best explained as the overfitting we might expect for such a 

mechanism).  

5. DISCUSSION 
In the present paper, we described our ongoing work to automate 

both the process of searching for domain models and the search 

method (e.g., covariance clustering vs. SPARFA-Lite). Many 
approaches have been proposed to infer domain [3; 5; 14; 15; 19; 

20; 22], but there has been little comparison. However, comparison 

among approaches is important because their different underlying 

assumptions and limitations will interact with the learning domain's 
true underlying structure. For example, if the learning domain is 

calculus, various prerequisite skills from other branches of 

mathematics may be necessary (e.g., algebra, trigonometry). In 

other domains, learning one KC before another may enhance 
learning but not be required. Learning how to compute a sample's 

mean may facilitate learning to compute the median due to 

contrasting their different procedures. However, neither is a 

prerequisite to learn the other. Domains vary in the extent that 
learning one KC may transfer to another, and the researcher may 

not have strong theories a priori that could help constrain the KC 

model search. Thus, choosing one method with specific 

assumptions and limitations across different knowledge domains 

may be inadvisable and result in suboptimal KC model solutions. 

5.1 Future Plans 

5.1.1 Additional domain model methods 
There are several methods we hope to include in the system to 

analyze student data to produce the inference matrix, for example: 

dAFM -  Developed at Berkeley by Pardos and Dadu [15] and 

shown to improve the Piech [21] deep knowledge tracing 
algorithm. This method is a deep learning model that uses 

backpropagation to infer a Q-matrix type representation with 

graded skill assignments instead of binary assignments. The 

authors show how the model is a continuous neural network 

generalization of the AFM model used in the LFA method [5]. 

Tensor factorization – We have also been working with 

implementations of tensor factorization. Tensors allow the solution 

to integrate multiple sources of data, including a representation of 

time in the sequence of practice. 

These methods may be more accurate because they allow the 

representation of sequence to capture order effects in the model that 

may be due to learning. However, another view might be that it 
makes it more vulnerable to the selection effects that led to 

particular practice sequences. In other words, domain model search 

algorithms that are sensitive to effects over time may be more likely 

to incorporate artifacts due to pedagogical decision rules (e.g., 
“drop item from practice after N successes”). For instance, in 

systems in which items are dropped from practice after a few 

successes (e.g., Assistments), the sequential order and temporal 

spacing will be different than in practice schemes in which items 
are not dropped from practice (e.g., [9]). In short, domain model 

extraction from datasets that were generated by an adaptive 

learning system will be influenced by the decision rules inherent to 

that system. 

5.1.2 An ensemble approach to address individual 

model search limitations 

We also intend to allow multiple approaches to be allowed within 
a single KC model development pipeline. For instance, approaches 

like dAFM have shown promise to improve KC models but require 

an initial KC model. However, this apparent limitation is only a 

problem if the goal is to find a single approach that resolves the 
problem of KC modeling. Instead, the goal can be reoriented 

towards finding the best ensemble and ordering of approaches that 

can be used in order to develop an optimal KC model. As an 

example, an optimal KC model may be created by making an initial 

model with SPARFA-Lite, followed by a final model using dAFM. 

Requiring a starter model is only a limitation if complementary 

approaches cannot be combined. 

5.1.3 Integrating with learner model development  
Learner models and domain models are strongly interdependent but 

frequently developed and refined independently. This separation 
probably limits progress on both fronts. Using relatively simple 

learner models when searching for improved domain models may 

lead to misleading results if the chosen learner model does not 

accurately represent learning, forgetting, transfer, and other 

important learning factors. Similarly, developing learner models 

without considering the chosen KC model's plausibility may lead 

to spurious results. Recently, we developed a framework to 

facilitate learner model development named Logistic Knowledge 
Tracing [18]. We aim to integrate automated KC model search and 

refinement into the LKT framework. 

5.1.4 Representing transfer does more than improve 

model fit 
Representing transfer among KCs can have significant pedagogical 

consequences that will not be apparent from model fit metrics (e.g., 

reduced RMSE, increased AUC). For instance, imagine a student is 

learning three items (A, B, and C). If the domain model considers 
A and B to be related because they share KC, practicing item A will 

influence both when and how much B is practiced. Depending on 

the strength of the transfer, practicing A may result in B being 

practiced being, being practiced before C, being practiced after C, 
or not being practiced until much later when forgetting has occurred 

(if the learner model assumes forgetting).  The entire order of 

practice may change. 

Another issue is the efficiency effect of such transfer. Consider that 
if the three items are independent, students may practice all three 

as necessary for mastery. In contrast, if item A affects item B 

through a shared KC, it will increase or reduce the amount of 

practice needed for mastery of B, which can reduce costly 
overpractice. In short, accounting for transfer among KCs may 

greatly improve practice efficiency, which may not be apparent 

when comparing domain models in terms of model fit metrics (e.g., 

RMSE, AUC, AIC). Ultimately, comprehensive evaluation of new 
KC models requires simulations or experiments to determine their 

effects on how practice is scheduled within an adaptive learning 

system. This need comes from how a new KC model may interact 

with pedagogical decision rules (e.g., mastery learning) and learner 
models (e.g., BKT, PFA) within an adaptive learning system to 

change the sequence of practice (e.g., due to quantifying transfer 

among items differently). These changes to the sequence may have 

significant impacts on student learning. 
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