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Abstract 

Understanding equivalence is fundamental to STEM disciplines, yet misunderstandings and 

misconceptions inhibit students from fully appreciating or leveraging the concept. Using the 

game-based algebraic notation system, From Here to There! (FH2T), students explore ideas 

of equivalence by dynamically transforming expressions or equations among mathematically 

equivalent states. In the fall of 2019, 475 middle-school students participated in a randomized 

control trial where they worked in either FH2T or online problem sets with hints and 

feedback in ASSISTments over four 30-minute sessions during their math class. We found 

that (a) students in both conditions improved their understanding of mathematical 

equivalence from pretest to posttest, (b) students in the FH2T condition performed better on 

posttest compared to students in the problem set condition, and (c) the condition effect was 

comparable between students with high versus low prior knowledge. Together, the findings 

suggest that From Here to There! is an effective intervention for improving middle-school 

students’ understanding of mathematical equivalence. The implications for research and 

practice on the usefulness of digital environments in mathematics education are discussed. 

Keywords: Algebra and Algebraic Thinking, Technology, Instructional Activities, 

Middle School Mathematics 
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Educational Impact and Implications Statement 

This study provides evidence that From Here to There!, a freely available game-based math 

technology, can improve mathematical understanding of equivalence in 6th and 7th grade 

students. From Here to There! integrates perceptual learning with mathematical puzzles,  

allows students to dynamically transform mathematical expressions and equations, and is 

designed to promote students’ understanding of mathematical equivalence. Results reveal that 

FH2T improves learning for all students regardless of their prior knowledge, suggesting that 

it is a low-cost and effective math intervention for students.  
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From Here to There!: A Dynamic Algebraic Notation System Improves Understanding 

of Equivalence in Middle School Mathematics   

Student misconceptions about equivalence and the equal sign have been noted as 

inhibiting success in upper-level mathematics and other STEM disciplines (Kieran, 2007; 

Knuth, Stephens, McNeil, & Alibali, 2006; Stephens et al., 2013; U.S. Department of 

Education, 2008). Equivalence is a foundational concept of mathematics involving the 

understanding that two mathematical objects, such as sets (e.g., 2 = 2), values (e.g., 2/3 = 

4/6), or expressions (e.g., (x – 1)(x + 1) = x 2 – 1), represent the same value and are 

interchangeable. It is often formally represented by the equal sign, denoting that the two sides 

of an equation have the same value, so there is an equivalence relation between the 

expressions on each side of the equal symbol (e.g., 2 + 3 = 5; Kieran, 1981, 1992, 2007). 

While there has been an abundance of work that has explored interventions for improving 

students’ understanding of equivalence in elementary grades (e.g., Alibali, Crooks, & 

McNeil, 2018; Blanton et al., 2015; McNeil et al., 2012), students continue to struggle with 

equivalence beyond elementary school years (McNeil et al., 2006). However, there is less 

work examining different approaches of training or improving students’ conceptual 

understanding of equivalence at the middle school level.  

In this study, we conduct a randomized controlled trial with 475 middle-school 

students, and test the effects of two different learning technologies, From Here to There! 

(FH2T) and an active control of online problem sets with hints and immediate feedback, on 

students’ understanding of mathematical equivalence. In FH2T, we explore a novel approach 

of asking students to transform a perceptually different expression (e.g., 24 + y + 6 + 13) to 

match a mathematically equivalent goal state (e.g., 13 + y + 30). Instead of involving the 

equal sign, mathematical equivalence is implicitly embedded in the task, and students can 

experience the transformation of the starting expression changing into the goal state and the 
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equivalent relation between the two expressions. Here, we compare student performance on 

mathematical equivalence items before and after the intervention to examine whether FH2T 

improves students’ understanding of mathematical equivalence, and whether these effects 

vary based on students’ initial levels of prior knowledge.  

Mathematical Equivalence and Students’ Struggles 

 Although children as young as four years of age have some understanding of 

numerical equivalence—whether two sets have equal quantities of items (e.g., Mix, 1999; 

Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011), students continue to struggle with the 

concept of equivalence well into college as the notation becomes more complex and involves 

larger numbers, more operations, and generalized forms with variables (Crooks & Alibali, 

2013). One common misconception many students have is holding an operational view, or 

viewing the equal sign as calling for computation. This view leads students to interpret “2 + 3 

= 5” as two and three makes five, or judge “2 + 3 = 4 + 1” as an invalid equation because it 

does not follow the typical “operation = answer” format (Kieran, 1981; Knuth et al., 2006). 

Furthermore, when an equation involves operations on both sides (e.g., 2 + 3 = 4 + __), some 

elementary students may add up all the numbers to generate the answer, __ = 9, instead of 

balancing two sides of the equation and fill in __ = 1 (e.g., McNeil & Alibali, 2005; Perry, 

Breckinridge Church, & Goldin-Meadow, 1988). When asked to compare two arithmetic 

expressions (e.g., 10 – 2 + 4 and 10 + 4 – 2), middle-school students were inconsistent at 

parsing the expressions (i.e., knowing that “–” should go with “2” in the expressions above) 

and some students incorrectly judged the equivalence of the two expressions, especially when 

they involved large numbers (Chaiklin & Lesgold, 1984). These misconceptions of arithmetic 

equivalence have negative impacts on learning algebra in which letters represent unknown 

values (Kieran, 1992; Küchemann, 1980) and students need to understand the relations 

between variables (Usiskin, 1988) and the structure of algebraic expressions (Kieran, 1989). 
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Together, these misconceptions about equivalence are associated with difficulty in equation 

solving and have ramifications for algebra and higher-level mathematics.   

Past work has shown that students, especially in elementary school, struggle with 

mathematical equivalence (e.g., McNeil & Alibali, 2000), thus most of the intervention 

studies on mathematical equivalence are with elementary school students and focus on 

students’ understanding of the equal sign (Alibali et al., 2018; Knuth et al., 2006; Rittle-

Johnson et al., 2011). In one study with second- and third-graders, students who received 

intervention on practicing arithmetic problems organized by equivalent sums (e.g., 2 + 3 = 5, 

1 + 4 = 5, etc.) showed more improvement on solving mathematical equivalence problems 

(e.g., 2 + 3 = 4 + __ ) compared to students who practiced arithmetic problems organized by 

the first addend (e.g., 2 + 3 = 5, 2 + 4 = 6, etc.) or students who did not practice solving 

arithmetic problems at all (McNeil et al., 2012). Furthermore, a sustained, comprehensive 

early algebra intervention involving relational understanding of the equal sign and principles 

of identity (e.g., 2 + 0 = 2), inverse (e.g., 2 – 2 = 0), and commutative (e.g., 2 + 0 = 0 + 2 ) 

properties in third grade leads to improvement in students’ understanding of mathematical 

equivalence and equations (Blanton et al., 2015). The improvements in these studies reflect 

aspects of the relational view of the equal sign, where two sides of the equal sign calculate to 

the same value, and a particular expression is just one of myriad ways to represent that 

quantity (Stephens et al., 2013). 

The importance of equivalence extends well into middle school and these concepts are 

critically important for success in pre-algebra and algebra (Fyfe, Matthews, Amsel, 

McEldoon, & McNeil, 2018; Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Kieran, 1989; 

McNeil et al., 2006). However, studies have found that almost half of middle-school students 

in the U.S. held an operational view of the equal sign (Alibali, Knuth, Hattikudur, McNeil, & 

Stephens, 2007; Booth & Davenport, 2013; Knuth et al., 2006), indicating the need for 
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equivalence intervention in middle-school. Whereas most elementary students struggle with 

math equivalence and students across aptitude levels benefit from the equivalence 

interventions, the understanding of equivalence varies between middle-school students. 

Therefore, the differences in middle-school students’  level of understanding may moderate 

intervention effects, resulting in aptitude-by-treatment interactions.  

Previous studies have revealed two competing hypotheses on how students’ prior 

knowledge may moderate mathematical learning. First, students with high prior knowledge 

may be more equipped to benefit from the instruction or intervention, and improve more on 

mathematical performance compared to students with low prior knowledge (e.g., Swanson, 

Jerman, & Zheng, 2008; Wood, Mazzocco, Calhoon, Crowe, & Connor, 2020). Second, 

students with low prior knowledge may have more room for improvement, and learn more 

from an intervention compared to students with high prior knowledge (e.g., Murphy et al., 

2020; Ramani & Siegler, 2011). Understanding whether students with high or low prior 

knowledge gain more from an intervention is important to provide effective and efficient 

instruction that supports all students.   

Given that developing a formal understanding of math equivalence is crucial to 

algebra learning, identifying effective interventions that promote these equivalence skills in 

students is critical. Previous interventions have focused on the meaning of the equal sign (that 

both sides of equations equal the same amount) and the principles of arithmetic operations 

around the equal sign. However, students also need to be able to encode the location of 

symbols and operators, notice the arithmetic relations between numbers within equations, 

recognize that quantities can be represented in many ways, and transform equations following 

mathematical principles. In the current study, we test the efficacy of a perceptual learning 

intervention—From Here to There!—on middle-school students’ understanding of 

equivalence, and explore the potential interaction between prior knowledge and intervention 
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on students’ learning of mathematical equivalence. 

Perceptual Learning and Conceptual Understanding of Equivalence 

Substantial empirical work has demonstrated that perceptual processes are involved in 

learning (e.g., Catley & Novick, 2008; Goldstone, Landy, & Son, 2010; Patsenko & Altmann, 

2010) and mathematics specifically (e.g., Kellman, Massey, & Son, 2010; Kirshner, 1989; 

Kirshner & Awtry, 2004; Landy & Goldstone, 2007). Perceptual features of symbols 

influence mathematics performance (e.g., McNeil, Uttal, Jarvin, & Sternberg, 2009), and 

humans adapt their perceptual-motor systems to organize these perceptual features to fit the 

needs in mathematical tasks. For instance, proximity is often used as a cue to group symbols 

in a way that aligns with mathematical principles. Adults tend to spontaneously group terms 

in ways that align with the order of operations: They write numbers around the multiplication 

sign closer together, and numbers around the addition sign further apart (e.g., 3  +  4×5; 

Landy & Goldstone, 2007). When the symbols are spaced incongruent to the mathematical 

principles (e.g., 3+4  ×  5), even adults solve expressions incorrectly (i.e., add before 

multiplying in this example; Landy & Goldstone, 2010). These kinds of perceptual biases are 

thought to emerge with experience, and we rely on these perceptual processes to effectively 

and efficiently perform sophisticated cognitive tasks (Goldstone et al., 2010).  

Since “what students notice mathematically has consequences for their subsequent 

reasoning” (Lobato, Hohensee, & Rhodehamel, 2013, p. 809), training one’s perceptual and 

sensorimotor systems in symbolic notation may result in effective reasoning about the 

relationships represented by the symbols. Principles of grounded and embodied cognition 

suggest that successful perceptual training of algebraic structures engages cognitive systems 

that correctly embody mathematical rules and turn actions into meaning (Dourish, 2004). 

Grounding one’s mathematical knowledge and reasoning in action and perception has also 

been shown to support the transfer of knowledge to new situations (Goldstone et al., 2010; 
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Goldstone, Landy, & Son, 2008; Landy & Goldstone, 2007b). 

There is increasing evidence that utilizing perceptual features or engaging perceptual-

motor systems in mathematical contexts can have a positive influence on learning (Kellman 

et al., 2010; Landy & Goldstone, 2007b; Ottmar et al., 2012; Ottmar et al., 2015). For 

instance, providing perceptual support by highlighting the equal sign in red leads to using 

new and correct strategies for solving mathematical equivalence problems in fourth-grade 

students (e.g., 2 + 3 + 4 = 2 + __; Alibali et al., 2018). Furthermore, students show 

improvement in simplifying algebraic expressions after a two-hour intervention that engages 

their perceptual-motor systems (Ottmar et al., 2012). In this intervention, eighth-grade 

students practiced simplifying algebraic expressions using gesture-actions (e.g., moving, 

combining, and substituting symbols) that apply dynamic transformations to expressions on 

screens. The system records all student actions, enacts valid transformations on the screen 

(e.g., turning 2 + 7x into 7x + 2 when “2” is dragged to the right), and provides clear visual 

feedback on invalid transformations. As an example, in 2 + 7x, when students attempt to add 

2 and 7x by tapping “+”,  the expression shakes; when students attempt to transform 2 + 7x 

into 2x + 7 by dragging “x” next to “2”, “x” snaps back to its original location. Because x is 

an unknown in 2 + 7x, adding 2 and 7x or moving x next to 2 are invalid, and the only valid 

actions the system enacts are commuting 7 and x around the multiplication sign (i.e., 2 + x⋅7) 

or 2 and 7x around the addition sign (7x + 2). Following this intervention, students showed 

significant improvement on simplifying complicated expressions (e.g., –5 + 4x + 2 – 6x – 8y 

+ 2y). Together, the findings suggest that learners leverage perceptual-motor features and 

feedback in mathematical learning and problem-solving, and that turning algebraic notations 

into tangible objects that enforce their own rules through physical movements may help 

improve mathematics learning. 

Theoretical and Empirical Support for “From Here to There!”  
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FH2T (freely available online at https://graspablemath.com/projects/fh2t) is a 

dynamic research-based game application that implements perceptual learning theories to 

address cognitive and affective factors that lead to low proficiency in mathematics. While 

algebra instruction in school often focuses on memorizing and retrieval of abstract and 

arbitrary rules (Henry & Brown, 2008; Kirshner & Awtry, 2004), FH2T leverages and builds 

on students’ knowledge of arithmetic for algebra learning. FH2T aims to help students 

identify how algebraic expressions are structured and think more flexibly about mathematical 

operations and properties, which in turn may improve students’ proficiency and fluency in 

algebra (Ottmar et al., 2012). In particular, FH2T engages the perceptual-motor system to 

externalize the hierarchical structure of algebraic formalisms. In FH2T, the implicit structure 

of mathematics is made into explicit and interactive virtual objects so that students can touch 

and move symbols according to math principles in a virtual environment. By reifying math 

symbols as movable physical objects, students can realize that mathematical transformations 

are more dynamic, rather than procedural steps or a static re-copying of lines.  

One of the important features of FH2T is that students learn algebra through 

discovery-based puzzles, rather than procedural steps. In each problem in FH2T, students are 

presented with two expressions: a starting expression, which is active and transformable, and 

a target goal state, which is mathematically equivalent to the starting expression (See Figure 

1). Students’ objective is to transform the starting expression (“24 + y + 6 + 13”) into the 

target goal state (“13 + y + 30” in a white box) using algebraically permissible actions and 

learned gestures. It is important to note that there is no equal sign linking those two 

expressions; however, equivalence is an integral aspect of the game that the starting 

expression (and any subsequent state of the active expression) is mathematically equivalent to 

the goal state, and the transformation process demonstrates this equivalence. For instance, 

adding 24 to 6 transforms “24 + y + 6 + 13” into “y + 30 + 13”, and commuting 13 to the left 
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transforms “y + 30 + 13” into “13 + y + 30”. Equivalence was preserved in all steps between 

the starting expression (24 + y + 6 + 13) and the goal state (13 + y + 30). In FH2T, students 

apply and build upon their arithmetic knowledge (e.g., 24 + 6 = 30) to efficiently reach the 

goal, receive perceptual feedback on their actions, and uncover transformation paths between 

the two equivalent expressions. 

Another important feature of FH2T is that students can dynamically manipulate and 

transform mathematical expressions by using various gesture-actions on the screen (e.g., 

dragging, tapping) to perform operations, break apart parts of the equation, and reach the goal 

state of the problem. Learning technologies, particularly dynamic systems that utilize motion, 

may offer a promising new approach to teaching mathematics that is not possible with 

traditional instruction (Arzarello, Bairral, & Dané, 2014; Byers & Hadley, 2012; Mcewen & 

Dubé, 2015; Sinclair & Heyd-Metzuyanim, 2014). Turning algebraic notations into tangible, 

movable objects that follow mathematical principles shows promise for transforming many of 

the traditional distinctions between abstract and concrete knowledge (Alibali & Nathan, 

2012; Kaminski, Sloutsky, & Heckler, 2008; Uttal, Gentner, Liu, & Lewis, 2008). Indeed, 

preliminary evidence suggests that the use of dynamic symbols in a game-based environment 

can increase students’ engagement and learning of algebraic concepts (Ottmar & Landy, 

2017; Siew, Geofrey, & Lee, 2016). The program also responds to student actions, and the 

student receives immediate feedback on the validity of their actions. From a perceptual 

learning perspective, the experience of moving and transforming algebraic objects on the 

screen, reinforced by the visual feedback of changes to the expressions, may help students 

generalize notation mechanics and attend to relevant details. 

Prior work using an earlier version of FH2T has shown positive results that the system 

may be effective for decreasing structural errors (e.g., incorrectly adding the 3 and 5 to make 

8 in 3 + 5 × 4) and improving mathematical understanding for elementary and middle school 
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students. For instance, one preliminary study with 85 sixth- and seventh-grade students 

showed that those in the condition similar to FH2T, referred to in the study as the fluid 

visualizations condition, experienced more gains on mathematics than students in both the 

manual calculations and control conditions (Ottmar et al,, 2015). Moreover, the students who 

completed more problems in the fluid visualizations condition scored higher on the posttest 

than students who completed fewer problems in the app (Cohen’s d = .48), and this effect was 

significant above and beyond students’ prior knowledge.  

Similarly, another study with 185 second-grade students (Hulse et al., 2019) also 

found that, controlling for pretest performance, students who completed more problems 

within the game scored higher on the posttest compared to students who completed fewer 

problems. A further investigation revealed a significant interaction between in-game progress 

and students’ prior knowledge on the posttest performance. Among students with low prior 

knowledge, those who solved more problems were more likely to have larger learning gains 

compared to those who solved fewer problems; among students with high prior knowledge, 

in-game progress was not related to posttest scores. The findings suggest that solving more 

problems in the game was more beneficial for students with low, as opposed to high, prior 

knowledge. In sum, the prior evidence suggests that FH2T may prove effective at improving 

mathematics performance in elementary and middle-school students, and perhaps be more 

beneficial for students with low prior knowledge, warranting a larger-scale randomized 

controlled trial to evaluate its effectiveness in middle school. 

The Current Study  

We conducted a pretest-intervention-posttest randomized controlled trial in the fall of 

2019, where students were assigned to one of two intervention conditions: FH2T and an 

online problem set control with hints and immediate feedback in ASSISTments (Heffernan & 

Heffernan, 2014). ASSISTments is an online assignment platform where teachers can 
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monitor student performance and progress, and students can request hints during problem-

solving and receive immediate correctness feedback on their answers. A previous randomized 

controlled trial has revealed that ASSISTments was beneficial for student learning and 

increased students’ mathematics performance compared to business-as-usual homework 

practice (Roschelle, Feng, Murphy, & Mason, 2016). As such, in this study, we used problem 

sets in ASSISTments as an active comparison group, rather than a true business-as-usual 

control, to examine the effects of playing FH2T on students’ understanding of mathematical 

equivalence above and beyond an effective technology-based intervention (What Works 

Clearinghouse, 2020). Our specific research questions were:  

(1) Do students make gains in understanding of mathematical equivalence after a two-

hour intervention? 

(2) Do students in the FH2T condition show a greater understanding of mathematical 

equivalence at posttest compared to students in the active problem set control 

condition?   

(3) Does the intervention effect vary depending on students’ prior knowledge?  

To address our research questions, we first conducted a preliminary series of paired 

sample t-tests to examine gains from pretest to posttest (RQ1); we then used hierarchical 

linear modeling (HLM) to estimate the effects of condition on posttest scores, controlling for 

pretest and other student characteristics, as well as classroom-level nesting (RQ2); and we 

explored the interaction between condition and pretest scores, using HLM (RQ3). We 

hypothesized that students in both conditions might experience gains from pretest to posttest, 

but students in the FH2T condition may show a greater understanding of mathematical 

equivalence at posttest compared to students in the problem set condition. We explored the 

potential moderating effect of students’ prior knowledge on the effects of intervention in 

order to examine whether students with high or low prior knowledge benefit more from the 



FH2T IMPROVES UNDERSTANDING OF EQUIVALENCE 

 

14 

intervention, but we did not have an a priori hypothesis regarding the direction of the 

interaction.   

Methods 

Participants 

Ten teachers from six middle schools were recruited from a large, urban district in the 

Southeastern United States. Together, they taught 29 mathematics classes with a total of 689 

students. Most students were in sixth grade (609 students, 88.4%), and the remaining 80 

students (11.6%) were in seventh grade. All students in our study were placed in one of three 

levels of mathematics classrooms by the district: advanced (525 students, 76.2%), on-level 

(111 students, 16.1%), or support (53 students, 7.7%). The majority of students in our sample 

were advanced sixth grade students. Random assignment of the intervention condition 

occurred at the student-level, with the 689 students from the 29 classes randomly assigned to 

FH2T (n = 348) or problem set (n = 341) conditions.  

Due to scheduling constraints, 19 students from one classroom did not participate in 

the study and 183 students did not complete at least 50% of the items on the pretest or 

posttest, thus, we excluded these students in the following analyses. The 50% cutoff on 

pretest and posttest was determined during preliminary analysis prior to testing the 

intervention effects. The students who completed less than 50% of items spent an average of 

9 minutes on the pretest (Range: 0–12 minutes out of 45 minutes), and 2 minutes on the 

posttest (Range: 0–13 minutes out of 40 minutes), suggesting that they did not spend 

appropriate amount of time and dropped out of the assessments. Using the 50% cutoff on 

pretest and posttest allowed us to only include students with whom we had more accurate 

estimates of their equivalence understanding and learning. Additionally, we obtained access 

to data on student characteristics from the school district, and excluded 12 students who had 

missing demographic and past achievement information (i.e., gender, race, overall academic 
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achievement status). The total number of excluded participants was 214 (FH2T: 121; problem 

set: 93). The final sample included the remaining 475 students: 227 (47.8%) were in the 

FH2T condition, and 248 (52.2%) were in the active control problem set condition. 

The student demographics and pretest scores of the final sample (N = 475) were 

comparable between conditions (Table 1). The study was approved by and conducted in 

accordance with the human subjects guidelines of the Institutional Review Board.  

Procedure 

This study consisted of a 45-minute pretest, four 30-minute intervention sessions, and 

a 40-minute posttest in a span of six weeks. Teachers were asked to have their students 

complete one or two sessions a week, and the session assignments for that week were made 

available to the teachers and students each Sunday. Individual teachers decided the days that 

their students would work on the study assignments in class.  

In Week 1, all students received a brief assessment on their equivalence 

understanding, an experimenter-designed task that measures students’ sensitivity to 

perceptual differences in algebraic expressions, and questionnaires on their mathematics 

anxiety and mathematics self-efficacy. Students were then assigned two intervention sessions 

in Week 2 and another two intervention sessions in Week 3. The mathematical content was 

aligned between the two conditions, and all students solved problems involving four 

operations, negative numbers, fractions, and order of operations during their intervention 

sessions using their assigned technology. The posttest was given on Week 4, and it consisted 

of the mathematical equivalence assessment, the experimenter-designed task, and the 

questionnaire on mathematics anxiety. All study assignments remained available to students 

and teachers until the end of Week 6, allowing students additional time to complete any 

outstanding assignments. 
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All study assignments were administered online in mathematics classrooms during 

instructional periods, and students worked individually at their own pace using their own 

school-issued Chromebooks in the classroom. Although the pretest and posttest were 

designed to take approximately 40 minutes, students could take as long as they needed to 

complete the assessment and the questionnaires. A countdown timer was embedded in the 

FH2T and problem set conditions to ensure that students in the two conditions were allotted a 

comparable amount of time with each learning technology.  

The assessments and all study sessions in both conditions were delivered to students 

using ASSISTments (Heffernan & Heffernan, 2014), an online platform that allows teachers 

to assign problem sets to students. To be clear, we used the ASSISTments platform in two 

different ways in this study: a platform to implement the randomized controlled trial, and as 

the technology used in the active problem set control condition. ASSISTments was designed 

to be used not only as a homework tutoring and feedback system for teachers and students, 

but also as a tool to help researchers efficiently conduct randomized controlled trials, collect 

finely grained data about student interactions, and analyze and share results within an existing 

data infrastructure (Heffernan & Heffernan, 2014). Thus, we used ASSISTments as the 

platform for administering pretest and posttest, providing instructions for the intervention 

sessions, maintaining intervention condition within students across sessions, and recording 

timing and fidelity data for both conditions.  

While it may appear that using the system in this dual way may unfairly benefit 

students in the problem set control condition, we feel that any advantage the control students 

may have makes it an even stronger comparison condition for testing FH2T. That is, if the 

familiarity and experience of the technological environment contribute to student 

performance on posttest, students in the problem set control condition should outperform 

students in FH2T condition. However, if we detect positive effects for FH2T above and 
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beyond the active control, the findings provide clear evidence that the improvement may be 

due to aspects of FH2T experience and cannot be attributed to students’ familiarity with the 

learning technologies.  

The Measure of Mathematical Equivalence Understanding. 

 Although the pretest and posttest also included several measures on perception of 

algebraic expressions and attitude toward mathematics, the current analyses focused on the 

mathematical equivalence assessment consisting of six items from previously validated 

measures of performance (Rittle-Johnson et al., 2011: Cronbach’s α = .94 -.95; Star et al., 

2014; Cronbach’s α = .89). Questions are listed in Table 2. Within the six items, Items 1 and 

2 focused on balancing two sides of the equation; Item 3 assessed students’ definition of the 

equal sign; Item 4 involved arithmetic operation on both sides of the equal sign; Items 5 

tapped into students’ understanding of the relations between addition and multiplication in 

equivalent expressions; and Item 6 involved transforming equivalent expressions by applying 

order of operations and distribution. Although limited in measuring students’ comprehensive 

understanding of algebra, these six items together assessed a range of students’ conceptual 

knowledge in mathematical equivalence. Isomorphic posttest questions were created by 

substituting numbers of similar magnitudes in the pretest questions and the response options. 

Each item was scored as correct (1) or incorrect (0), and the total score out of 6 on the 

posttest was included as the outcome and the pretest score was included as a covariate in the 

analyses. The reliability of these six items was KR-20 = 0.63 at pretest and KR-20 = 0.64 at 

posttest. Since the reliability on these assessments were within acceptable range but lower 

than the preferred 0.80, likely owing to the limited number of items and binary scoring, we 

reported descriptive findings of the individual items to further explore how the intervention 

may impact students’ understanding of equivalence.   

The assessments were administered using the test-mode in ASSISTments, where hints 
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and correctness feedback were not available during or after the assessments. The questions 

were presented one at a time, and students entered their answers via the keyboard or selected 

a response option using a mouse. After entering or selecting an answer, students clicked the 

“Submit Answer” button for the system to record their response, and then clicked the “Next 

Problem” button to move on to the next question (Figure 2).  

Intervention Conditions  

 In both conditions, students accessed their assigned learning technology through the 

ASSISTments platform. Each day, students logged in to the platform using a username and 

password. The assignment of the day was presented using a clickable link that directed 

students to their assigned learning technology—further work in ASSISTments or FH2T. A 

countdown timer was embedded into each intervention session to ensure that both conditions 

were matched on time.  

From Here to There! (FH2T)   

 As described earlier, FH2T is a research-based technology game, where students 

transform mathematical expressions from an initial state to a specified mathematically 

equivalent goal state. In FH2T, numbers and mathematical symbols become virtual objects 

that students can pick up and move. Students acquire new gesture-actions (e.g., using a 

mouse cursor to tap the addition sign to add) through brief video demonstrations, and use 

these gesture-actions to transform expressions from one state to another.  

A sample FH2T problem with a series of gesture-actions to the goal state is illustrated 

in Figure 3. In this example, the objective is to transform 7 + 2 + 10 + 8 into 5 + 2 + 5 + 15 

(Figure 3a). The student first dragged the 7 on top of 8 (Figure 3b) to produce the sum of 15 

(addition; Figure 3c). Then, the student turned on the keypad (Figure 3d) and selected 10 

(Figure 3e) to substitute 10 with 5 + 5 (decomposition; Figure 3f). Last, the student dragged a 

5 to the left to commute it with 2 (commuting; Figure 3g). When the active expression 
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matches the goal state (Figure 3h), a clover board appears showing the number of clovers 

awarded based on the number of steps taken to solve the problem (Figure 3i). Students 

received more clovers for solving the problem using fewer steps. It is important to note that 

the problems do not simply ask students to click and solve for the answer. Rather, students 

need to attend to the similarities and differences between the initial and the goal states in 

order to successfully and efficiently complete the problem.    

Beyond combining terms and dragging to commute, gesture-actions in FH2T allow 

users to enact most forms of symbolic manipulation, including each of the four basic 

operations, number decomposition, distribution, factoring, and properties of equality (e.g., 

performing arithmetic operations to both sides). The system also provides immediate 

feedback on invalid mathematical transformations. When students make a mathematical error 

or attempt an invalid transformation (for example, trying to turn 2 + 7x into 9x or 5 + 3 × 4 

into 8 × 4), the expression automatically shakes and snaps back to the starting expression, 

which signifies that it was an invalid mathematical transformation, without indicating the 

correct action.  

FH2T consists of 14 worlds that focus on different mathematical concepts, and each 

world contains 18 problems (a total of 252 problems). Students start from simple topics and 

build up their knowledge and skills throughout the game. In this study, all students in the 

FH2T condition started from World 1: Addition, and worked their way through the game 

(World 2: Multiplication, World 3: Order of Operations + and ×, World 4: Subtraction and 

Negative Numbers, World 5: Mixed Practice of + and −, and World 6: Division, World 7: 

Order of Operations, World 8: Equation + and −,  World 9: Inverse Operations + and −, 

World 10: Distribution, World 11: Factoring, World 12: Equation +, −, ×, and ÷, World 13, 

Inverse Operations, World 14: Final Review).  
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All students were given 30 minutes to play FH2T for each session. After 30 minutes, 

the system would log students out of the game and save their progress. When students 

returned by clicking the assignment link in each subsequent session, they were able to start 

where they left off. Because students worked through the problems on their own devices at 

their own pace, the progress within the game varied across individuals. On average, students 

solved 104.7 distinct problems (SD = 31.96, Min. = 31, Max. = 173) in FH2T across four 

intervention sessions. Among the 227 students in the FH2T condition, about half (48.9%) 

reached World 8 (Equation + and −) or higher; only 19 students (8.4%) reached World 11 

(Factoring) or beyond. Mapping to the assessments, Worlds 1 (Addition), 2 (Multiplication), 

and 3 (Order of Operations + and ×) correspond to the concepts tested in Items 1, 2, 3, and 5; 

Worlds 4 (Subtraction and Negative Number) and 8 (Equation + and −) correspond to Item 4; 

Worlds 7 (Order of Operation) and 10 (Distribution) correspond to Item 6.  

Problem Sets with Hints and Immediate Feedback in ASSISTments  

 Students in the problem set condition solved traditional mathematics problems in 

ASSISTments, a free online tutoring system for homework and problem-solving (Heffernan 

& Heffernan, 2014). Problem sets in ASSISTments were selected as an active control 

condition because it bookends different aspects of FH2T. Problem sets in ASSISTments 

cover mathematical content well-aligned with traditional instruction and offer hints and 

immediate feedback (e.g., the correctness of the answers) to students. However, unlike FH2T, 

the system does not include perceptual learning features so that the problems are presented 

with a static textbook format. Moreover, it does not have game design elements, such as 

rewards, level, and challenge, to motivate student learning.  

The problems in ASSISTments were selected and adapted from three open-source 

middle-school mathematics curricula: Utah Math Project (2016), Illustrative Mathematics 

(2017), and Engage NY (2014), so that the problems aligned with traditional instruction and 
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the topics covered in FH2T. The topics covered in the problem sets included: addition and 

multiplication, subtraction and negative numbers, division and fractions, and order of 

operations. Four problem sets each consisting of 24 to 39 questions were developed for the 

four mathematical topics in this study, and students started on the first question of a problem 

set at the beginning of each intervention session. On average, the students answered 115 

questions (SD = 17.47, Min. = 25, Max. = 129) in the problem set condition across four 

intervention sessions. Among the 248 students in the problem set condition, 245 students 

(98.8%) completed all problems in Assignment 1: addition and multiplication, 237 (95.6%) 

completed Assignment 2: subtraction and negative number, 229 (92.3%) completed 

Assignment 3: division and fraction, and 236 (95.2%) completed Assignment 4: order of 

operations (Note that students did not have to complete the previous assignments to move 

forward). Mapping to the assessments, Assignment 1 (addition and multiplication) 

corresponds to the concepts tested in Items 1, 2, 3, and 5; Assignment 2 (subtraction and 

negative number) corresponds to Item 4; Assignment 4 corresponds to Item 6. 

A variety of task and answer formats were used. The task formats included 

computation, word problems, and representation interpretations; the answer types included 

numbers, algebraic expressions, multiple choice, and open response. The questions were 

presented one at a time (Figure 4a), and the majority of the answer types were numbers, 

algebraic expressions, or multiple choice that were automatically graded. Students had the 

opportunity to request three hints and the final solution at any time (Figure 4b). Students 

received immediate correctness feedback after each answer submission (i.e., “Correct!” or 

“Sorry, try again. [Student answer] is not correct.”), and they had to enter the correct answer 

to move on to the next problem. If students answered the problem correctly on the first 

attempt without requesting any hints, they received a green check on the problem. If students 

attempted the problem multiple times or used hints, they received an X mark on the problem. 
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A green X was given if students answered a problem correctly after using one to three 

attempts or hints. A red X was given if students answered a problem correctly after using 

more than three attempts or hints. A red X with a yellow box was given if students requested 

all hints and the solution. Less than 15% of the questions were in the open-response format 

and they were included to gauge students’ reasoning during problem solving. Students did not 

receive correctness feedback or hints on these questions. Instead, students saw the “Answer 

Recorded” message when they submitted their responses, and moved on to the next question. 

The open responses were recorded for later analyses but not automatically graded by the 

system.  

Students solved traditional mathematics problems in ASSISTments for 25 minutes 

and then were directed to their assignment report to review their performance on each 

problem for the remaining 5 minutes (Figure 4c). Students were instructed to spend as much 

time as needed to review the problems and their answers. It is important to note that although 

ASSISTments provides additional functions for teachers to build their own problems, assign 

problem sets, monitor student progress, and review student performance, the current study 

only utilizes the student focused features, including hints, immediate correctness feedback, 

and performance reports in ASSISTments.   

Results 

Descriptive statistics, correlations, t-tests, and standard multiple regressions were 

conducted using IBM SPSS Statistics version 25. Hierarchical linear models were conducted 

using HLM version 8.0 (Raudenbush, Bryk, Cheong, Congdon, & du Toit, 2019). Means, 

standard deviations, minimum and maximum values, and correlation coefficients for all 

variables are presented in Table 3. Pretest scores ranged from 0 to 6, with a mean of 3.80 (SD 

= 1.61); posttest scores also ranged from 0 to 6, with a mean of 4.14 (SD = 1.56). Although 

the pretest and posttest scores were somewhat skewed (pretest = –0.31, posttest = –0.58), the 
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entire range was reflected in the data. At pretest 23% of students scored two or below, 38% 

scored three or four, and 39% scored five or six; at posttest, 16% scored two or below, 36% 

scored three or four, and 47.4% scored five or six. Because the pretest and posttest scores 

were distributed throughout the entire range, they were treated as continuous variables in the 

analyses.    

We conducted a Pearson correlation analysis for the pair of continuous variables (e.g., 

pretest - posttest scores) and computed the point-biserial correlation coefficients for the pairs 

of continuous and dichotomous variables (e.g., posttest scores - condition, grade, gender). For 

the pairs of dichotomous variables (e.g., gender - condition), phi coefficients were computed. 

As shown in Table 3, two variables showed statically significant, strong positive associations 

with the posttest scores: pretest scores (r(473) = .65, p < .001) and being in the advanced-

level classes (rpb(473) = .56, p < .001). Being identified as above grade level (rpb(473) = .45, 

p < .001) or Asian (rpb(473) = .35, p < .001) was also associated with higher posttest scores. 

The correlation analysis indicated potential associations among classroom level, student 

achievement level, ethnicity, and student performance, therefore we included these variables 

as covariates when estimating intervention effects in the following models.    

RQ 1: Do Students Make Gains in Understanding of Equivalence after a Two-hour 

Intervention? 

First, we examined whether students in the two conditions performed comparably on 

the pretest. An independent sample t-test on the pretest revealed that the baseline scores did 

not significantly differ between students in FH2T (M = 3.86, SD = 1.60) and problem set (M 

= 3.75, SD = 1.62) conditions, p = .477; nor were they significant in a 2-level HLM analysis 

based on students nested within classroom (γ = 0.05, t(448) = 0.39, p = .699). 

Next, to examine the overall effects of intervention on students’ performance, 

regardless of their intervention condition, we conducted a paired-sample t-test comparing the 
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scores at pretest and posttest. Ignoring condition, students improved their performance from 

pretest (M = 3.80, SD = 1.61) to posttest (M = 4.14, SD = 1.56), t(474) = 5.56, p < .001. 

When each condition was examined separately, both were found to experience significant 

gains (FH2T: Posttest = 4.30 Gain = 0.44, t(226) = 5.06, p < .001; problem set: Posttest = 

4.00, Gain = 0.25, t(247) = 2.92, p = .004). 

RQ 2: Do Students in FH2T Condition Show Greater Understanding of Equivalence at 

Posttest Compared to Students in the Problem Set Condition? 

We used HLM to examine differences in posttest scores, controlling for pretest 

performance and other student characteristics. A 2-level model (students nested within 

classrooms) was used on all analyses moving forward. We considered a 3-level model 

(classrooms nested within schools) but chose not to use it due to the small amount of variance 

at the school-level. While not reported here, the 3-level results were consistent with the 2-

level model. In a preliminary, null model with no predictors, 52.2% of the variance in posttest 

scores was at Level 1, while 47.8% was at Level 2. 

An initial model then examined the classroom (i.e., grade, instruction level) and 

student (i.e., gender, race, student achievement level, pretest) covariates, without considering 

the condition (FH2T vs. control) indicator. Robust standard errors were used to evaluate all 

effects, and multiparameter hypothesis tests were used to examine student race and 

instruction-level of the classroom as both of these constructs were reflected in two dummy 

variables. Not surprisingly, as seen in the first set of columns in Table 4, student pretest 

scores were highly related to posttest performance (γ = 0.39, t(444) = 10.77, p < .001), as was 

identification of “above grade level” on academic achievement (γ = 0.31, t(444) = 3.15, p 

= .002). In contrast, neither student gender (γ = -0.14, t(444)= -1.10, p = .270), nor race (χ2(2, 

N=475) = 3.21, p = .199) were found to have a statistically significant effect on posttest 

scores. At Level 2, both the grade-level of the class (γ = 0.53, t(22) = 2.48, p = .021) and 
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instruction-level (advanced/supported, χ2(2, N=475) = 95.23, p < .001) were related to 

posttest scores in expected directions, with relatively higher performance among students in 

advanced classes (γ = 1.13, t(22) = 5.03, p < .001) and relatively lower performance in 

supported classes (γ = -0.57, t(22) = -3.23, p = .004), compared to those in on-level classes. It 

should be noted that the Level 2 variance no longer met a strict “p < .05” significance level, 

raising the question of switching to a traditional multiple regression; however, the decision 

was made to remain with an HLM approach for theoretical and conceptual grounds, as well 

as in order to reflect the original design and analytic plan (Raudenbush & Bryk, 2002).  

The intervention condition was then added as a Level 1 predictor in the final model 

(see the second set of columns in Table 4). Reflecting the student-level random assignment, 

coefficients and statistical tests for the covariates were largely unchanged, however 

intervention condition was highly statistically significant (FH2T posttest: estimated mean 

=4.27; problem set posttest: estimated mean =  4.02), γ = 0.25, t(443) = 3.81, p < .001.  In 

terms of group mean differences, this translated to a Hedge’s g of 0.16 between the FH2T and 

active control problem set condition.  

In order to help readers judge the practical importance of this intervention effect, we 

translated this effect size into the What Works Clearing House Improvement Index 

(Appendix E in What Works Clearinghouse, 2020), which can be interpreted as the expected 

change in percentile rank for students in an average comparison group if the students had 

received the intervention. To calculate this value, we first converted the effect size (Hedges’ 

g) to Cohen’s U3 index. An effect size of 0.16 corresponds to a U3 of  56.4%, indicating that 

an average student in the FH2T group would rank at the 56.4 percentile in the control group. 

To calculate the improvement index, representing the difference in percentile rank of an 

average FH2T student compared to an average comparison group, we then subtracted 50 from 

the U3 (56.4-50=6.4). Practically speaking, the improvement index of 6.4 suggests that 
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teachers and administrators could expect an average student to improve 6.4 percent rank 

(from 50 to 56.4%) after using the FH2T intervention for 2 hours, compared to using other 

effective programs like problem sets in ASSISTments.  

RQ 3: Does the Effect of Intervention Vary Depending on Students’ Prior Knowledge?  

A final analysis examined the possible interaction between intervention condition and 

students’ prior knowledge on students’ posttest performance. The analysis revealed that the 

interaction between intervention condition and pretest scores was not significant, γ = -0.02, 

t(442) = -0.57, p = .556, suggesting that the FH2T effects were consistent for students who 

began the program performing at both higher and lower levels.   

Performance on Individual Assessment Items.   

 Because the pretest and posttest assessments only included six items, and the 

reliability was suboptimal, we explored changes in students’ pretest and posttest performance 

on each item by intervention conditions (Table 5). We found that students’ performance on 

Items 1, 2, 3, 4 showed minimal change from pretest to posttest. In both conditions, students 

showed the largest gains on Item 5, which focused on their understanding of equivalent 

expressions for addition and multiplication with the prompt, “Which of the following is 

equivalent to (the same as) (n + 3) + (n + 3) + (n + 3) + (n + 3)?”. In particular, 27% of 

students in FH2T condition improved on this item, whereas only 19% of students in the 

problem set condition improved from pretest to posttest. Fewer students (FH2T: 9% and 

problem set: 5%) improved on Item 6 (order of operations and distribution), and the 

difference between the conditions were small. The findings suggest that some of the features 

in FH2T (e.g., dynamically transform expressions into visually different yet equivalent states) 

may have a positive influence on students’ understanding of equivalent expressions.  

Discussion 
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In summary, we found that (a) students in both conditions improved their 

performance of mathematical equivalence from pretest to posttest, (b) students in the FH2T 

condition showed higher performance on the posttest compared to students in the problem set 

with hints and feedback condition, even after controlling for students’ prior knowledge and 

mathematics instruction level, and (c) the condition effects were similar for all students, 

regardless of their prior knowledge. Together, the findings suggest that FH2T is an effective 

intervention for improving middle-school students’ understanding of mathematical 

equivalence.  

FH2T and Problem Sets Conditions Improve Students’ Understanding of Equivalence  

 In this study, we found that students in FH2T and problem set conditions both 

improved their understanding of mathematical equivalence after four 30-minute intervention 

sessions. Although the problem set condition was included to serve as a control in the current 

study, the ASSISTments learning platform was an established and effective educational 

technology that has been recommended without reservation by the What Works 

Clearinghouse (What Works Clearinghouse, 2020; Roschelle et al., 2016). Therefore, it was 

not surprising that solving textbook problems on arithmetic operations in ASSISTments with 

some student features of the platform, specifically hints on problem-solving and immediate 

correctness feedback during assignments, had positive effects on students’ understanding of 

mathematical equivalence. This finding extends previous studies demonstrating 

ASSISTments efficacy (Murphy et al., 2020; Roschelle et al., 2016) and suggests that even 

implementing only the student aspects of ASSISTments (and not the teacher supports) in a 

brief intervention may lead to improvements in student learning.      

 We also found that students in the FH2T condition had better understanding of 

mathematical equivalence at posttest compared to students in the problem set condition. This 

aligns with previous findings demonstrating the effectiveness of From Here to There! in 
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elementary (Ottmar et al., 2019) and middle-school classrooms (Ottmar et al., 2015) on 

improving procedural knowledge. This study expands on the prior work by suggesting that 

playing FH2T also improves students’ understanding of mathematical equivalence. 

Importantly, the effect of the condition was significant and positive, suggesting that students 

in the FH2T condition had better understanding of mathematical equivalence at posttest 

compared to students in the problem set active control. Although the condition effect may be 

modest (Hedge’s g = .16) in comparison to other extensive mathematics interventions (e.g., 

Blanton et al., 2015), it is worth noting that the intervention was brief (2 hours) and the 

comparison condition itself was a robustly effective evidence-based intervention with an 

Improvement Index of 7 (What Works Clearinghouse, 2020; Roschelle et al., 2016). The 

added benefit of FH2T above and beyond the significant improvement found in the active 

ASSISTments control condition suggests that the condition effect may underestimate the true 

efficacy of FH2T, if compared to a true business-as-usual control.  

The Impact of FH2T on Understanding of Equivalence  

Despite major efforts in research, curricula development, and policy, many students 

continue to struggle with understanding equivalence. The results showed that using FH2T 

improved performance on mathematical equivalence and conceptual assessment items 

compared to a control condition of online problem sets with hints and feedback in 

ASSISTments. Similar to previous equivalence interventions (Alibali et al., 2018; Blanton et 

al., 2015; McNeil et al., 2012), FH2T guides students’ attention to expression structures (24 + 

y + 6 + 13 and 13 + y + 30), and provides ample practice on equivalent expressions that build 

on arithmetic and mathematical properties. The findings extend previous research on 

equivalence interventions with elementary students and show that middle-school students 

may also benefit from interventions targeting equivalence understanding.  

Different from the previous interventions, FH2T utilizes a dynamic algebra notation 
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system that allows students to concretely transform expressions and receive immediate visual 

feedback on their actions. Although this study does not tease apart the mechanisms by which 

FH2T leads to improved learning, there are several plausible explanations. One possible 

explanation is that the perceptual learning (i.e., being able to dynamically manipulate 

algebraic symbols and experience math transformations) afforded in the game provides 

students with explicit and dynamic ways to productively explore abstract mathematics 

concepts. These findings are consistent with other research which found utilizing perceptual 

features or engaging perceptual motor systems in mathematics learning contexts had a 

positive influence on learning ( Hulse et al., 2019; Kellman et al., 2010; Landy & Goldstone, 

2007b; Ottmar et al., 2012, Ottmar et al., 2015). These are also in line with the theory that 

algebra reasoning comprises perceptual-motor routines (Goldstone et al., 2008; Landy & 

Goldstone, 2007b). In FH2T, the symbols are treated as virtual objects and are constrained to 

mathematically appropriate behaviors, resulting in fast feedback about possible 

transformations, and fluid continuous visualizations. It may be that these affordances in 

FH2T provide students with ample opportunities to explore and learn which dynamic actions 

and mathematical properties are appropriate and allowed in different mathematical contexts 

(De Lima & Tall, 2008; Dörfler, 2003; Goldstone et al., 2010; Landy & Goldstone, 2009). 

This study provides further evidence that technology-based perceptual interventions, like 

FH2T, may provide students with conceptually rich opportunities to explore algebraic 

formalisms.  

The FH2T intervention may also benefit students by providing practice with various 

structures of expressions (e.g., transform 24 + y + 6 + 13 to 13 + y + 30) and equations (e.g., 

transform 23 + y – 13 = 10 + y to 3 = 3) that deviate from a more traditional operations-

equals-answer structure (e.g., 24 + 6 + 13 = 43; Fyfe et al., 2018). Attending to mathematical 

relations in a variety of structures and enacting procedures appropriately are important for 
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success in algebra (Kieran, 1989). The problems in FH2T are uniquely designed to present 

students with perceptually different structures of expressions and equations, and asks them to 

enact algebraic transformations that prove their equivalence. Giving students opportunities to 

explore different problem structures with varying perceptual features may improve their 

flexibility and expand their definitions of what equivalence means. Further, it is also 

plausible that the connected sensorimotor experience between the gesture-actions and 

resulting mathematical transformations in FH2T guide students’ attention to the fluid 

visualization of equivalent transformations, reduce the cognitive demands of rewriting and 

computing complex expressions, and allow students to focus on the conceptual understanding 

of the links between the steps in a derivation and the high-level structure of equations.  

 The procedural advantages of moving symbols that seamlessly integrate with 

conceptually challenging expression transformation tasks in the FH2T system may help 

students become more familiar with algebraic notations, acquire perceptual and conceptual 

fluency in algebraic principles, and increase their confidence and comfort in dealing with 

equations. This increase in algebra familiarity and proficiency grounded in perceptual 

learning of procedural fluency and conceptual understanding, may improve learning 

outcomes in more advanced areas of algebra that assume the ability to read and manipulate 

equations. 

Alternatively, the condition effect may be driven by other differences between FH2T 

and the problem set condition. For instance, the game-based mathematics puzzles, such as 

FH2T, may be more engaging for students and students may be more motivated to solve 

problems in FH2T compared to traditional answer-based online problem sets. Further, the 

higher posttest performance in FH2T may be due to the fact that half of the students in FH2T 

had the opportunity to transform linear equations as they progressed through the game, 

whereas students in the problem set condition only completed the assigned problem sets 
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relevant to the four arithmetic operations and the order of operations. Although the exposure 

to more challenging content in the FH2T may contribute to the condition effect we observed, 

students made the largest improvement on Item 5 of the assessment (equivalent expressions 

of addition and multiplication; FH2T: 27% of students improved, problem set condition: 

19%). This item did not involve linear equations and students in both conditions had the 

opportunity to practice solving problems relevant to this item. Therefore, it is unlikely that 

the differences in the content exposure between the two conditions drove the condition effect.  

Another potential account for the condition effect is that students in FH2T practiced 

transforming expressions into other equivalent forms that are visually and structurally 

different. The expression transformation task in FH2T may explicitly highlight mathematical 

equivalence for students. On the contrary, students in the problem set condition solved a 

variety of traditional textbook problems with the goal of simplifying to a correct answer. 

These textbook problems may seem more like a simplifying task to students and do not 

explicitly emphasize equivalence concepts. Future studies should explore these alternative 

hypotheses and further delineate the mechanisms through which FH2T promotes 

mathematical learning.  

From Here to There and Prior Knowledge 

The lack of an interaction effect between the intervention condition and pretest scores 

suggests that FH2T may be benefiting students to the same degree regardless of their prior 

knowledge. Different from the two competing hypotheses presented in prior work (Murphy et 

al., 2020; Swanson et al., 2008), we found that neither students with higher nor lower prior 

knowledge benefitted more from the FH2T intervention. Instead, we found that the effect of 

intervention was comparable for students with high and low prior knowledge. Further, 

extending our previous study in which we showed that elementary students with low prior 

knowledge improved more on mathematics performance when they completed more 
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problems in FH2T (Hulse et al., 2019), we found that simply receiving FH2T intervention, 

without considering the in-game progress, did not benefit middle-school students with low 

prior knowledge more than students with high prior knowledge. Replicating these effects 

with different samples (e.g., elementary vs. middle school), content covered, analytic 

approaches (e.g., influences of FH2T progress vs. impact of FH2T intervention regardless of 

progress), and mathematical outcomes (e.g., mathematics achievement vs. perception of 

algebraic expressions) may help further examine the potential effects of these factors on the 

relations between prior knowledge, FH2T intervention, and mathematical performance.  

Limitations and Future Directions  

While this study suggests that FH2T is a promising intervention for improving 

understanding of mathematical equivalence, our current study is limited in a few ways. First, 

given the population of our sample, the results may not be representative or generalizable to 

different populations in the U.S. The sample in this study had a high number of Asian and 

above grade level students. While the composition of our sample based on race and prior 

performance is not generalizable to the demographics of the U.S. as a whole, student-level 

random assignment within classrooms ensures comparable performance between FH2T and 

control students at pretest. Despite the fact that 84% of the sample were in an advanced math 

class, many students were not at ceiling on the pretest and the average pretest score was only 

3.89 (out of 6; 65%), providing room for improvement on equivalence understanding. 

Further, there was adequate distribution and variability in pretest and posttest assessments, 

allowing for the examination of the improvement and intervention effects. Future work 

should aim to replicate these findings in more diverse populations.  

Next, since this study was conducted in the classroom, the administration of our 

pretest and posttest assessments relied on teachers allocating appropriate classroom time for 

the intervention and assessments. However, because the study took place immediately prior 
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to a holiday break, several teachers did not provide their students with adequate class time to 

complete the full intervention sessions or posttest, which resulted in a high number of 

students missing data at posttest. This challenge highlights the tradeoffs of conducting 

applied experimental work in authentic classrooms. Future studies should include other distal 

measures (e.g., state standardized math assessments) so that the student outcome does not 

depend on the fidelity of the teachers. This would also afford testing of the sustained effects 

of the intervention.   

Further, the results presented here, although significant, do not provide insight into 

what components of the FH2T intervention lead to improved learning. Future directions 

include adding proximal measures (e.g., an expression matching task) to delineate the effects 

of FH2T on equivalence understanding, and examining plausible mechanisms by which 

progress through the FH2T game leads to improved mathematical performance. The 

availability of clickstream data from the FH2T game also provides opportunities to explore 

the relations between student behaviors within each FH2T problem and math learning. We 

hypothesize that greater exposure to the problems and engagement within FH2T will lead to 

greater gains in perceptual learning, understanding of algebraic principles, and flexible 

problem solving. Additional studies will explore these hypotheses.  

Finally, FH2T is designed to guide students’ attention to mathematical notations and 

structures through perception and action. Rather than relying on language-based instruction 

and students’ English proficiency, FH2T uses gesture-action videos to dynamically 

demonstrate mathematical principles and provides a fluid interface for students to experience 

mathematical transformations. Providing perceptual-motor pathways to mathematical 

learning may help bridge the achievement gap for English Language Learners. Future studies 

should explore the accessibility and usability of FH2T in students from more diverse 

backgrounds, including English Language Learners, and such findings will contribute to the 



FH2T IMPROVES UNDERSTANDING OF EQUIVALENCE 

 

34 

efforts of promoting diversity, equity, and inclusion in mathematics education. 

Conclusion 

 Overall, this study supports the efficacy of the FH2T intervention for improving 

students’ mathematics performance, above and beyond solving traditional textbook problems 

in ASSISTments, a well-studied and effective active control. FH2T is a promising 

intervention that addresses a relatively untapped area of practice-focused, perceptually guided 

instructional technology, designed based on cognitive theories. This study has implications 

for educators: It provides evidence that perceptually-focused, gamified learning platforms 

may help students develop perceptual fluency through dynamic interactions with algebraic 

objects, and provide a useful learning environment for students to explore mathematical ideas 

and improve their mathematical understanding.  
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Table 1 
Students’ demographic information by condition, and their pretest scores.  
 

All 
(N = 475) 

 FH2T  
(n = 227) 

 Problem set  
(n =248) 

 
n %  n %  n % 

Gender 
  

 
  

 
  

male 261 54.9  127 55.9  134 54.0 

female 214 45.1  100 44.1  114 46.0 

Race  
  

 
  

 
  

White 165 34.7  81 35.7  84 33.9 

Asian 260 54.7  120 52.9  140 56.5 

Hispanic 23 4.8  10 4.4  13 5.2 

African American 10 2.1  6 2.6  4 1.6 

Native American 5 1.1  1 0.4  4 1.6 

Pacific Islander 1 0.2  1 0.4  0 0.0 

Multi-racial 11 2.3  8 3.5  3 1.2 

Grade  
  

 
  

 
  

Sixth 453 95.4  217 95.6  236 95.2 

Seventh 22 4.6  10 4.4  12 4.8 

Class  
  

 
  

 
  

Advanced 400 84.2  192 84.6  208 83.9 

On-Level 34 7.2  14 6.2  20 8.1 

Support 41 8.6  21 9.3  20 8.1 

Student Achievement Level 
  

 
  

 
  

Above grade  248 52.2  119 52.4  129 52.0 

Not above grade  227 47.8  108 47.6  119 48.0 

Pretest scores (M, SD)  
3.80 

 
1.61 

  
3.86 

 
1.60 

  
3.75 

 
1.62 
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Table 2.  

The mathematical equivalence items in pretest  

Item Question Correct 
answer 

Reference  

1 8+__=8+6+4. Enter the number that goes in the blank. 10 Rittle-
Johnson et 
al., 2011 

2 898 + 13 = 896 + __ What number goes in the blank?  
You can try to find a shortcut, so you don't have to do all the 
adding.  

15 Rittle-
Johnson et 
al., 2011 

3 3 + 4 = 7         
          ↑         What does this symbol mean? 
 
a. the total 
b. two quantities on either side have the same value 
c. what the answer is 
d. the problem has been solved 

b Star et al., 
2014 

4 If 10x + 12 = 17, which of the following must also be true? 
a.  10x+12-12=17-12 
b.  10x-10+12-10=17 
c.  -10x-12=17 
d.  5x+6=17 

a Star et al., 
2014 

5 Which of the following is equivalent to (the same as) 
 (n + 3) + (n + 3) + (n + 3) + (n + 3)? 
a. n+12 
b. 4n+3 
c. n4+12 
d. 4(n+3) 

d Star et al., 
2014 

6 Which of the following is NOT equivalent to 19(73 - 15)? 
a. 19(58) 
b. 19(73) - 19(15) 
c. 19(-15 + 73) 
d. 19(73) - 15 

d Star et al., 
2014 
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Table 3 
 
Descriptive statistics and correlations for the overall sample  

 

Variable 1 2 3 4 5 6 7 8 9 10 

1.Posttest - 
         

2.Pretest .65** - 
        

3. Condition   .09*  .03 - 
       

4. Grade  -.27**  -.26** -.01 - 
      

5. Class-Adv  .56**  .49** .01 -.51** - 
     

6. Class-Sup  -.47**  -.46** .02 .68** -.71** - 
    

7. Gender  -.08  -.06 -.02 .04 -.07 .04 - 
   

8. Asian  .35** .45** -.04 -.22** .27** -.31** .09* - 
  

9. White  -.30** -.38** .02 .09* -.21** .22 -.08 -.80** - 
 

10.Stud level  .45** .49** .00 -.21** .43** -.31** .05 .28** -.20** - 

Mean 4.14 3.80 .48 6.05 .84 .09 .45 .55 .35 .52 

SD 1.56 1.61 .50 .21 .37 .28 .50 .50 .48 .50 

Min. .00 .00 0 6 0 0 0 0 0 0 

Max. 6.00 6.00 1 7 1 1 1 1 1 1 

Note. Condition (0 = problem-set, 1 = FH2T); Class-Adv: Class Instruction Level- 
Advanced (0 = Not advanced,1 = Advanced); Class-Sup: Class Instruction Level-Support 
(0 = Not support, 1 = Support); Gender (0 = Male, 1 = Female); Asian: Race-Asian (0 = 
Not Asian, 1 = Asian); White: Race-White (0 = Not White, 1 = White); Stud level: Student 
Achievement Level (0 = Not above grade level,1 = Above grade level  
* indicates p < .05. ** indicates p < .01. 
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Table 4  

Result of HLM analyses. 

 Initial Model  Final Model 

Effect Coef t df p  Coef t df p 

Intercept -1.61 -1.19 22 .248  -1.92 -1.37 22 .185 

Grade 0.53 2.48 22 .021  0.57 2.56 22 .018 

Class-Adv 1.13 5.03 22 <.001  1.11 4.61 22 <.001 

Class-Sup -0.57 -3.23 22 .004  -0.62 -3.04 22 .006 

Gender -0.14 -1.10 444 .270  -0.14 -1.10 443 .271 

Asian 0.15 1.09 444 .278  0.17 1.27 443 .205 

White -0.05 -0.36 444 .719  -0.04 -0.30 443 .762 

Stud Level 0.31 3.15 444 .002  0.31 3.21 443 .001 

Pretest 0.39 10.77 444 <.001  0.38 -11.16 443 <.001 

FH2T      0.25 3.81 443 <.001 

Random 

Effects Var X2 df p  Var X2 df p 

Level 1 1.167     1.155    

Level 2 0.032 31.4 22 0.088  0.030 30.7 22 0.103 

Note. Grade: Grade in school; Class-Adv: Class Instruction Level-Advanced (0 = 
Not advanced, 1 = Advanced); Class-Sup: Class Instruction Level-Support (0 = Not 
support, 1= Support); Gender: Student gender (0 = Male, 1 = Female); Asian: Race-
Asian (0 = Not Asian, 1=Asian); White: Race-White (0 = Not White, 1 = White); 
Stud Level: Student Achievement Level (0 = Not above grade level, 1 = Above 
grade level); Pretest: Pretest score; FH2T: Intervention Condition-FH2T (0 = 
Problem-set, 1 = FH2T).  
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Table 5  
 
Percent of students responded correctly on each item of the pretest and posttest, and the 
percent of students improved on the items by intervention condition. 
 FH2T (n = 227)  Problem Sets (n = 248) 
Item Pretest Posttest Gain  Pretest Posttest Gain 
1 91%  93%  2%   91%  91% 0% 
2 86%  87%  1%    84%  81%  -3%  
3 54% 57%  4%   49%  54%  5%  
4 57%  58%  1%   53%  52%  -1%  
5 51%  78%  27%   52%  71%  19%  
6 47%  56%  9%   46%  52%  5%  
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Figure 1. An example of FH2T problem consisting of a starting expression and a target goal 

state.   
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Figure 2. The basic layout and procedure in ASSISTments.   
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Figure 3. A sample problem in From Here to There! (a) and a potential transformation process 

involving three steps (b, c, d, e, f, g) to reach the goal state (h, i).   
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Figure 4. A sample question (a), three hints and the correct answer in yellow boxes (b), and 

the assignment report (c) in ASSISTments  

 


