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Abstract 

The purpose of this study was to investigate the incremental validity of a set of domain general 

cognitive measures added to a traditional screening battery of early numeracy measures. The 

sample consisted of 458 kindergarten students of whom 285 were designated as severely at-risk 

for mathematics difficulty. Hierarchical multiple regression results indicated that Wechsler 

Abbreviated Scales of Intelligence (WASI) Matrix Reasoning and Vocabulary subtests, and Digit 

Span Forward and Backward measures explained a small, but unique portion of the variance in 

kindergarten students’ mathematics performance on the Test of Early Mathematics Ability – 

Third Edition (TEMA-3) when controlling for Early Numeracy Curriculum Based Measurement 

(EN-CBM) screening measures (R2
change = .01). Furthermore, the incremental validity of the 

domain general cognitive measures was relatively stronger for the severely at-risk sample. We 

discuss results from the study in light of instructional decision-making and note the findings do 

not justify adding domain general cognitive assessments to mathematics screening batteries. 
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 Investigating the Incremental Validity of Cognitive Variables in Early Mathematics Screening 

Research has indicated that a successful early start in mathematics is crucial to supporting 

long-term academic success (Duncan et al., 2007). Longitudinal studies of mathematics 

development have shown that early mathematics deficits are difficult to overcome and often 

compound over time and that kindergarten mathematics skills, measured upon school entry are 

predictive of mathematics performance at the end of first grade and well beyond (Bodovski & 

Farkas, 2007; Hanich, Jordan, Kaplan, & Dick, 2001; Morgan, Farkas, & Wu, 2009) . Based on 

these findings, there has been a call for the implementation of Response to Intervention systems 

to support early mathematics learning in elementary schools (Gersten et al., 2009). 

Consequently, there has been a good deal of effort invested in both early mathematics 

intervention development and creating early mathematics screeners that can quickly and 

effectively identify students in need of additional academic support. 

Research conducted over the last 10+ years of assessment development suggests that 

brief academic measures based on the principles of curriculum based measurement (CBM) are 

generally effective for identifying students that lack strong foundational mathematics skills and 

who may be at risk for future mathematics difficulties (Fuchs et al., 2007; Gersten et al., 2012). 

In early mathematics, these screeners target critical number sense skills that have been found to 

be predictive of later mathematics achievement (Fuchs et al., 2007) .  

In a review of early numeracy screeners, Gersten et al. (2012) noted that measures of 

early mathematics often tap a specific aspect of number knowledge and associated skills (NRC, 

2009)  and that commonly found measures in screening batteries include tasks to assess 

understanding of magnitude comparison and strategic counting . Both of these measures may 

also be indicative of a student’s underlying fluidity and flexibility in working with number 

(Gersten & Chard, 1999) . Magnitude comparison measures typically require students to 

compare the quantity of numbers and identify the number in a pair or set that is greater or 

greatest. Strategic counting measures, often referred to as missing number measures, require 

students to identify the missing number from a sequence of numbers (e.g., 4 __ 6) with the 
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position of the number missing and the length of the sequence of numbers varying across 

different screening batteries (Gersten et al., 2012). Measures assessing the constructs of 

magnitude comparison and strategic counting may be reliant on the development of a mental 

number line used to facilitate the student’s engagement in a range of tasks include making 

increasingly finite judgments regarding magnitude and calculation (Booth & Siegler, 2006).  

Other tasks commonly found in early mathematics screening batteries include measures 

of oral or rote counting and numeral identification (Fuchs et al., 2007). While these measures 

have demonstrated strong psychometric properties, measures assessing these areas may be more 

indicative of school readiness skills rather than mathematics specific skills (Methe et al., 2011). 

Correlations for early numeracy screeners with future mathematics performance, typically 

measured approximately one academic to one calendar year later, range from .50 to .70 (Gersten 

et al., 2012). Additional analyses suggest varying levels of accuracy in determining student at-

risk status for both screening batteries and individual measures. For example, Seethaler and 

Fuchs (2010) found a measure of quantity discrimination correctly classified students at-risk for 

mathematics disability with approximately 90% sensitivity and 66% specificity whereas Fuchs 

and colleagues (2007) found 69% sensitivity and 70% specificity for a measure of number 

identification. In part, the varied findings on classification accuracy can be attributed to how 

researchers define at-risk status (Methe et al., 2011). 

While the field of early mathematics screening has advanced greatly in the past decade 

and the use of screening measures in the field is becoming more common (Methe et al., 2011) 

calls to move the research forward are increasing (Gersten et al., 2012; Methe et al., 2011; 

VanDerHeyden, 2010). Researchers have advocated for expanding early screening batteries to 

include measures to assess informal number sense and other key conceptual areas such as 

measurement (Methe et al., 2011) and to assess students’ ability to apply their understanding of 

number in varied contexts (e.g., word problems; Locuniak & Jordan, 2008) . Researchers have 

also advocated for examining the role of a wider array of variables such as student attentiveness 

and persistence and specific domain general cognitive process variables that have demonstrated 
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relationships with mathematics achievement (DiPerna, Lei, & Reid, 2007). In addition, despite 

advances in providing information based on ROC analyses (e.g. sensitivity and specificity), 

relatively few studies have provided data anchored to more probabilistic or Bayesian approaches 

leading to calls for researchers to provide data on metrics such as positive and negative 

predictive power that are more readily understandable and useful for instructional decision 

making (VanDerHeyden, 2010). 

Moreover, an increased focus has been paid to whether or not screening could indicate a 

priori students who may not respond to a research based intervention in either tier 1 or tier 2 

(Compton et al., 2012; Vaughn, Denton, & Fletcher, 2010). While there are a number of 

potential reasons for non-response, one possibility is that students with domain general cognitive 

skill deficits may be more likely to be non-responsive to generally effective tier 2 instruction in 

contrast to students who have sufficient domain general cognitive skills. Thus, the inclusion of 

domain general cognitive measures into screening batteries may better help educators identify a 

priori potential non-responders and enable the provision of more targeted and intensive 

intervention services than typically provided in tier 2.  

A wide body of research suggests that a variety of domain general cognitive processes 

including nonverbal problem solving, phonological processing, rapid automatized naming, 

visual-spatial skills, and working memory are valuable predictors of mathematics difficulties 

(Fuchs et al., 2005; Geary, Hoard, & Hamson, 1999; Swanson & Jerman, 2006), and thus show 

potential for utility as early screeners of student risk status. In fact, one recent study found that 

49% of the variance in early numerical skills in students with a mean age of 5.3 could be 

explained by a combination of measures assessing working memory, processing speed, 

phonological abilities, and intelligence (Passolunghi, Lanfranchi, Altoè, & Sollazzo, 2015). 

Likewise, studies of the domain general cognitive correlates of mathematics performance for 

third-grade students found significant associations between mathematics skills and a variety of 

domain general cognitive abilities with domain general cognitive skills explaining 32–52% of the 

variance in various mathematics tasks (Fuchs et al., 2006).  
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Similarly, longitudinal investigations of the relationships between domain general 

cognitive skills and mathematics performance have demonstrated that working memory, 

processing speed, and visual spatial skills measured in kindergarten explain variance in later 

mathematics performance (Barnes et al., 2014; Fuchs et al., 2005). Processing speed, language 

skills, and rapid automatized naming have been shown to be (a) correlated with mathematics 

achievement (Mazzocco & Myers, 2003), and (b) effective in discriminating between typical and 

at-risk learners in the early grades (Cirino, Fuchs, Elias, Powell, & Schumacher, 2015). Initial 

studies (e.g. Mazzocco & Thompson, 2005; Seethaler, Fuchs, Fuchs, & Compton, 2012) have 

begun to examine the contribution of specific domain general cognitive factors in early 

mathematics screening batteries.  

Because there is good deal of evidence that domain general cognitive skills are highly 

correlated with mathematics achievement (Fuchs et al., 2006; Mazzocco & Myers, 2003), the 

purpose of this study was to explore the incremental validity of a set of selected domain general 

cognitive assessments focused on verbal knowledge, abstract visual processing, auditory 

memory, and working memory when added to an early numeracy screening battery. Explorations 

of this nature may enable the design of more effective screening batteries to identify potential 

non-responders to tier 2 interventions. Domain general cognitive measures administered in the 

current study were selected based on a handful of key considerations including (a) previous 

research findings demonstrating a link to numeracy, (b) ease of administration, and (c) the ability 

to discriminate between discrete domain general cognitive processes (i.e., language knowledge, 

abstract reasoning, and basic working memory skills). Specifically, this study investigated the 

following research questions:  

1. To what extent did domain general cognitive measures (WASI Vocabulary, WASI Matrix 

Reasoning, Digit Span Forward, Digit Span Backward) add incremental validity to a 

battery of early numeracy curriculum based measures (EN-CBM) predicting student 

mathematics achievement (TEMA-3)?  
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2. How did the relationship between domain general cognitive measures and mathematics 

achievement vary as a function of student risk status when controlling for EN-CBM 

performance?  

Our primary research question was designed to examine incremental validity because we 

wanted the frame for examining results to focus on the value that domain general cognitive 

measures would add to the instructional decision making process for schools. That is, does the 

addition of the domain general cognitive measures to an early numeracy screening battery enable 

better decision making for schools within the context of the increased resources required to 

administer, score, and interpret domain general cognitive measures? Although there is strong 

evidence in support of the ability of early numeracy skills to predict mathematics achievement 

(Aunio & Niemivirta, 2010; Gesten et al., 2012), for our primary research question we 

hypothesized that domain general cognitive measures would explain additional variance in Test 

of Early Mathematics Ability – Third Edition (TEMA -3) scores above and beyond EN-CBM 

scores based on previous findings of strong correlations between working memory, verbal IQ, 

processing skills and mathematics achievement (Passolunghi & Lanfranchi, 2012). For our 

second research question, we hypothesized that severe at-risk status would moderate the 

relationship between CBM screening measures and global mathematics performance such that 

foundational early numeracy skills (i.e. number identification) would be more closely associated 

with mathematics performance for the severe at-risk sample and that the relationship between 

cognitive skills and mathematics performance would differ based on severe at-risk status. 

Method 

Data presented in this manuscript were collected as part of a larger study (Clarke et al., 

2016) examining the efficacy of a Tier 2 kindergarten mathematics intervention program in 29 

classrooms across two districts in the Pacific Northwest during the 2009-10 school year. 

Participating school districts were suburban with district-wide eligibility for free and reduced 

lunch ranging from 44-50%. All students in the study were administered the math achievement 

measures (TEMA and EN-CBM) at pretest (September). Students scoring below the 42nd 
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percentile on the TEMA were then administered the domain general cognitive measures in 

January prior to the start of the intervention (Methe et al., 2011). 

Participants 

Students. All participating students from the larger study (Clarke et al., 2016) who 

scored at or below the 42nd percentile on a global mathematics measure (i.e. Test of Early 

Mathematics Ability; TEMA-3) and had complete data on all mathematics and cognitive 

variables were included in this study resulting in a sample of 458 students. Of these 458 students, 

58 were selected to receive additional mathematics intervention aligned to the core curriculum 

used in their regular mathematics instruction (Methe et al., 2011); however, because the current 

study aimed to explore relations between various screening measures (i.e., domain general and 

early numeracy measures) administered prior to intervention delivery, intervention effects were 

not considered here. In all, thirty seven percent of the students in the sample were White, 24% 

American Indian or Alaskan Native, 2% Asian American or Pacific Islander, 2% African 

American, 4% Other, and 31% were missing race information. Fifty one percent were male. Ten 

percent received special education services. Based on findings from the Morgan et al. (2009) 

longitudinal study which found that students who were in the 10th percentile for mathematics 

achievement at both entrance and exit from kindergarten had a 70% chance of remaining at or 

below the 10th percentile 5 years later, we classified students who performed below the 10th 

percentile on the TEMA-3 as severely at-risk for mathematics difficulty (n = 285).  

Measures 

Participants completed Early Numeracy – Curriculum Based Measures (EN-CBM; 

Clarke & Shinn, 2004), Test of Early Mathematics Ability (TEMA-3; Ginsburg & Baroody, 

2003), Weschler Abbreviated Scales of Intelligence (WASI) Matrix Reasoning and Vocabulary 

subtests, and Digit Span Forward and Backward measures. Raw scores were used in all analyses, 

unless otherwise noted.  

Early Numeracy – Curriculum Based Measures (EN-CBM; Chard et al., 2005; Clarke 

& Shinn, 2004). The EN-CBM assesses students’ procedural fluency on four measures (each 
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timed for one minute). The Oral Counting (OC) measure requires students to orally rote count as 

high as possible without making an error. The Number Identification Measure (NI) requires 

students to orally identify numbers between 0 and 10 when presented with a set of printed 

number symbols. The Quantity Discrimination Measure (QD) requires students to name which 

of two visually presented numbers between 0 and 10 is greater. The Missing Number Measure 

(MN) requires students to name the missing number from a string of three numbers between 0 

and 10. Concurrent and predictive validities for the EN-CBM measures range from .46 to .72. 

Reliabilities, including test-retest, alternate form, and inter-rater, for all four measures are strong 

and range from .78 to .99. 

Test of Early Mathematics Ability – Third Edition (TEMA-3; Ginsburg & Baroody, 

2003). The TEMA-3 is a norm-referenced individually administered measure of early 

mathematics for children ages 3 to 8 years 11 months. It measures mathematics skills related to 

counting, number facts and calculations, and related mathematical concepts. Test authors report 

alternate-form reliability of .97 and test-retest reliability ranges from .82 to .93. Concurrent 

validity with other criterion measures of mathematics is reported as ranging from .54 to .91. 

Standard TEMA-3 scores were used in this study.  

Wechsler Abbreviated Scale of Intelligence (WASI) Subtests: Matrix Reasoning and 

Vocabulary (Wechsler, 1999). WASI Vocabulary measures word knowledge, verbal concept 

formation, and fund of knowledge. The Vocabulary subtest requires examinees to name objects 

presented visually in pictures and define words that are presented both visually and orally. WASI 

Matrix Reasoning assesses visual information processing and abstract reasoning skills. In the 

Matrix Reasoning subtest, examinees are prompted to select a response option that completes a 

matrix or series of visual items. Test-retest reliabilities are .76 for matrix reasoning and .85 for 

vocabulary. Internal consistency for the 6-year-old sample is reported as .96 for matrix reasoning 

and .87 for vocabulary. Concurrent validity ranged from .66 to .88. 

Digit Span-Forward and Backward. Based on the fairly standard scope of these 

assessments (i.e., Wechsler Intelligence Scale for Children, Revised; Wechsler, 1974), a 
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researcher-designed measure modeled on typical digit span tasks was administered to all 

participants in this study. Digit Span-Forward is designed to assess auditory memory and has a 

total of eight, two-part items with strings of digits in increasing lengths from two digits to eight 

digits. Digit Span-Backward is designed to assess auditory working memory and has a total of 

seven, two-part items with strings of digits in increasing lengths. After the assessor presents an 

example, each set of digits is presented verbally and the examinee is prompted to repeat the 

digits back to the examiner. Each item is dichotomously scored based on either correct or 

incorrect recall of the digits. Average reliability for digit span tasks across the 6.5 to 15.5 age 

range is .78 (Wechsler, 1974) and test-retest reliability falls in the .30 - .50 range (Baker, 1993). 

Various sources report that Digit Span-Forward is correlated with reading recognition tasks (r = 

.45; Wechsler, 1974) and mathematics achievement (.32 - .36; Baker, 1993), and somewhat 

correlated with the general IQ assessments at age six (r = .11; Wechsler, 1974). Digit Span-

Backward is also correlated with reading recognition tasks (r = .31 - .37) and mathematics 

achievement (.30 - .37; Baker, 1993).    

Procedures 

Data collection. Measures were individually administered to students by trained research 

staff with experience collecting similar data for other research projects. Assessors were required 

to reach inter-rater reliability coefficients of .90 during training sessions and trial field 

administration. Standardized, scripted testing protocols were utilized for data collection, and all 

data collectors participated in shadow scoring activities to ensure reliability.   

Statistical Analysis  

Univariate descriptive analyses were performed on measures of domain general cognitive 

and mathematics performance. Pearson’s r correlation coefficients were used to examine the 

covariation among the study variables. A hierarchical multiple regression model was used to 

address our primary research question. Specifically, the extent to which domain general 

cognitive scores predicted TEMA-3 scores above and beyond EN-CBM scores for students at-

risk for mathematics difficulty was examined, and the extent to which the incremental validity of 
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the domain general cognitive scores varied as a function of severe at-risk status was also 

examined.  

The hierarchical multiple regression model involved five blocks. In Block 1, the severe 

at-risk indicator (i.e., dichotomous variable of severe risk status) was entered to obtain 

interpretable R2
change statistics for subsequent blocks because it was, by definition, correlated with 

the outcome measure. In Block 2, EN-CBM scores were entered to evaluate relations between 

EN-CBM scores and TEMA-3 scores and the total percent of variance in TEMA-3 scores 

explained by EN-CBM scores after controlling for severe at-risk status. In Block 3, the 

interactions between EN-CBM scores and the severe at-risk indicator were entered to determine 

whether relations between EN-CBM scores and TEMA-3 scores varied as a function of severe 

at-risk status. In Block 4, domain general cognitive scores were entered to evaluate the 

incremental validity of each domain general cognitive measure and the total percent of variance 

in TEMA-3 scores explained by domain general cognitive scores above and beyond EN-CBM 

scores.  

Finally, in Block 5, the interactions between the domain general cognitive scores and the 

severe at-risk indicator were entered to determine whether the domain general cognitive 

measures were differentially associated with TEMA-3 scores as a function of severe at-risk 

status. All measures and interactions were entered in each step, regardless of previous patterns of 

statistical significance to allow for estimation of total variance explained by the set of measure 

and/or interactions in each block. The R2
total and R2

change statistics are reported in the model 

results to describe the proportion of variance in the dependent variable captured by the 

independent variables in each block. In addition to R2 statistics, Akaike’s Information Criterion 

(AIC) was used to compare the models produced by the five blocks of the hierarchical regression 

(Burnham & Anderson, 2002) . For each block, ΔAIC is reported. The change in AIC is the 

difference between the AIC for any given block and the minimum AIC among the set. Lower 

AIC values indicate greater parsimony and fit, or an optimal balance between under- and over-

fitted models. Values of ΔAIC of two or less indicate competitive models, whereas values 
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greater than 10 suggest a model with little support in contrast to the best-fitting model. All 

analyses were conducted using maximum likelihood estimation with SAS (SAS Institute Inc., 

2009). As such, all available information from each case was utilized in the analyses. 

Missing data. Five hundred and four students were initially screened for inclusion in the 

current study. Of those 504 students, 458 (91%) had complete data on all study variables. 

Listwise deletion methods were employed and these analyses included cases with complete data 

only, however there is reason to believe that missing data did not bias the results of this study. 

The prediction models included between 91% of the reference student sample. Whereas a large 

proportion of missing data can have a sizable impact on results (e.g., Smolkowski, Danaher, 

Seeley, Kosty, & Severson, 2010), analyses with less than 9% missing data should be relatively 

unbiased (Schafer & Graham, 2002). 

Results 

Descriptive statistics and correlations between the study variables are displayed in Table 

1. Correlations between all variables were statistically significant (p < .05) and ranged from .12 

to .68. As expected, the academic screening measures (EN-CBMs) were moderately correlated 

with the mathematics criterion measure (TEMA-3), r = .45 – .68. Of the CBMs, the missing 

number subtest had the lowest average score and the weakest relationships with the domain 

general cognitive measures, r = .15 – .27. The domain general cognitive measures had slightly 

weaker correlations with the TEMA-3, r = .25 – .46, and WASI matrix reasoning subtest 

demonstrated weak relationships with many of the other variables, r = .12 – .32.  

The results of the hierarchical multiple regression analyses are presented in Table 2. The 

severe at-risk indicator was entered in Block 1 to obtain interpretable R2
change statistics for 

subsequent blocks. Block 2 of the multiple regression demonstrated that the EN-CBM measures 

explained 9.2% of unique variance in TEMA-3 scores after controlling for severe at-risk status 

among students at-risk for mathematics difficulties (F-change = 39.33, p < .001). Oral counting 

and number identification subtests were most closely associated with TEMA-3 scores (β = 0.20, 

p < .001 and β = 0.23, p < .001, respectively).  
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The interactions between EN-CBM scores and the severe at-risk indicator in Block 3 

explained an additional 3.1% of the variance in TEMA-3 scores (F-change = 15.09, p < .001), 

with oral counting (β = 0.20, p < .001), number identification (β = 0.25, p < .001), and missing 

number scores (β = -0.13, p < .001) having statistically significant unique interactions with 

severe at-risk status. The domain general cognitive measures in Block 4 explained an additional 

1.1% of unique variance in TEMA-3 scores above and beyond the other predictors in the model 

(F-change = 5.44, p < .001), with WASI vocabulary and matrix reasoning scores demonstrating 

statistically significant relations with TEMA-3 scores (β = 0.10, p < .001 and β = 0.05, p = .024, 

respectively). The interactions between domain general cognitive scores and the severe at-risk 

indicator in Block 5 explained an additional 0.5% of unique variance in TEMA-3 scores (F-

change = 2.44, p = .046), with WASI matrix reasoning having a statistically significant 

interaction with severe at-risk status (β = 0.25, p = .016). Information criteria reported in Table 2 

indicate that Blocks 4 and 5 achieved the most optimal balance between parsimony and fit, each 

with similar approximating abilities (ΔAIC = 2.07 and 0.00, respectively). 

For comparison purposes, a post hoc regression analysis was conducted to evaluate the 

amount of unique variance in TEMA-3 scores explained by domain general cognitive measures 

above and beyond EN-CBM scores among students severely at-risk for mathematics difficulty. 

The results indicated that the domain general cognitive measures explained an additional 4.7% of 

unique variance in TEMA-3 scores among the severely at-risk subgroup (F-change = 5.33, p < 

.001). The domain general cognitive measures explained a relatively greater amount of unique 

variance in TEMA-3 scores among the severely at-risk subgroup compared to the complete at-

risk sample (4.7% versus 1.1%). 

Discussion 

This study sought to explore the extent to which predicting student performance in 

mathematics could be improved by adding a set of domain general cognitive measures to a set of 

traditional early numeracy screening measures and the extent to which student risk (i.e. severe at-

risk) moderated the relationship between domain general cognitive skills and mathematics 
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performance. Results from the early numeracy measures indicate that oral counting and number 

identification scores positively predicted TEMA-3 scores for both at-risk and severely-at risk 

students. However, the associations were stronger among severely at-risk students compared to 

at-risk students. Furthermore, missing number scores were positively associated with TEMA-3 

scores among at-risk students, but negatively associated with TEMA-3 scores among severely at-

risk students.  

Previous findings from studies of early numeracy academic screeners and 

recommendations for implementation have emphasized the use of more complex academic 

screeners (e.g., strategic counting) to assess risk (Fuchs et al., 2007; Gersten et al., 2012; Methe 

et al, 2011). However, results from this study suggest that screeners focused on foundational 

skills may do a better job of distinguishing risk amongst students at the lower level of the 

performance spectrum. In part, this is problematic because while research studies have focused 

on evaluating how measures work with all students, the reality is that when making screening 

decisions, of critical importance for decision-making is how well a measure is able to discern 

amongst a pool of students who are at-risk. The use of screeners focused on more basic skills 

(e.g., numeral identification) may help alleviate floor effects found with more advanced 

screeners (e.g., discriminating quantities) for at-risk students and provide a method to identify 

between levels of risk within a lower performing sample. 

Of particular interest for this study was examining whether or not the inclusion of key 

domain general cognitive variables would have value in predicting student mathematics 

performance above and beyond traditionally used early numeracy measures. Domain general 

cognitive measures were able to explain a small, but unique portion of the variance in 

kindergarten students’ mathematics performance above and beyond achievement measures, and 

the incremental validity of the domain general cognitive measures was relatively stronger for the 

severe at-risk sample as compared to the entire at-risk sample. It is possible that this distinction 

arose from characteristics that are somewhat unique to the overall at-risk kindergarten population 

included in this sample. That is, because kindergarten-aged students experience a wide range of 
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preschool instruction and bring vastly different academic experiences to school (Bernstein, West, 

Newsham, & Reid, 2014; Werthheimer, Moore, Hair, & Croan, 2003), it is likely that the at-risk 

sample included a range of students including those who demonstrated weaker initial 

mathematics achievement simply because they had not received any prior mathematics 

instruction. In the current study, these students were combined with students whose difficulties 

in mathematics may have been related to an underlying disability or even attention or self-

regulation deficiencies. Thus, the heterogeneous nature of the at-risk sample and their 

presumably varying cognitive profiles, contrasted with the severe at-risk sample, who 

demonstrated very little basic number sense and were more likely to have an underlying 

disability was likely related to the findings presented here. 

However, we strongly emphasize that in practice the relatively small amount of 

additional variance (less than 5%) needs to be weighed against the very real “costs” including 

time and money incurred by schools to add domain general cognitive measures to screening 

batteries. For example, inclusion of domain general cognitive measures to screening batteries 

requires the expertise to administer and interpret a new set of tests and while many educators 

may be able to administer academic skill measures, it may fall upon school psychologists to 

administer and interpret findings from relative complex domain general cognitive assessments. It 

should be noted that answers to these types of questions may vary based on how different 

stakeholders value the information provided by domain general cognitive measures and the costs 

associated with gaining that information. This challenge is particularly relevant given that first 

order factors or profiles from comprehensive intelligence tests often fail to provide additional 

incremental validity after accounting for general intelligence (Canivez, 2013: Glutting et al., 

2006). That is, using a measure of a domain general cognitive skill such as working memory is in 

fact a measure of general intelligence and any variance accounted for by inclusion of such a 

measure is explained by general intelligence. It may be more parsimonious to either use a general 

measure of intelligence and/or note that any subtests used are functioning as measures of general 

intelligence. Issues related to the role of general intelligence and the current results of this study 
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strongly suggest that the inclusion of domain general cognitive measures to early numeracy 

screening batteries, at present, lacks justification in light of the resources that schools would have 

to expend to collect and analyze this information and the value that would be provided in terms 

of more effective instructional decision making related to provision of services and the treatment 

utility of additional assessment in informing instruction. 

Limitations and Future Research 

A few key limitations should be kept in mind when interpreting results. First, the findings 

and implications discussed here are contingent on the assumption that the delay between 

academic and domain general cognitive testing did not have a significant impact on domain 

general cognitive scores. Due to the high variance found in mathematics achievement and lack of 

stability when operationalizing mathematics learning disabilities (e.g. Chong & Siegel, 2008; 

Geary, Bailey, & Hoard, 2009) caution should be exercised when interpreting results from a 

study that uses student achievement at one time point to establish mathematics risk. Second, 

while the battery of domain general cognitive measures utilized in this study represented a 

number of key constructs it was not inclusive of all domain general cognitive variables 

associated with mathematics achievement (e.g., processing speed). Additionally, variable 

correlations revealed moderately strong relations between scores on the WASI Vocabulary 

subtests and both Digit Span tasks, which suggests that there may be a good deal of overlap in 

the variance explained by each measure which may be explained by the overall role of general 

intelligence. Furthermore, the current study employed a conservative analytic approach based on 

the exploratory nature of this study, which may have limited the amount of explainable variance 

in mathematics achievement. Thus, targeted analyses aimed at exploring associations between 

particular domain general cognitive skills and mathematics outcomes (see Fuchs et al., 2006) 

may find stronger individual relationships and explain more variance than those in the analyses 

conducted here. Future research should focus on assessing an array of domain general cognitive 

variables, both individually and in combination, and their relationship with mathematics 

achievement. Such work should be undertaken with appropriate caution given the limited 
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reliability of subtest and difference scores. Third, inter observer agreement was calculated during 

training when it is likely to be highest instead of in the field during the course of the study and 

assessors who administered the domain general cognitive assessments were not blind to the fact 

that the selected participants had scored below a specified threshold on the TEMA, which may 

have impacted their administration of the measures. Lastly, the results from the study are specific 

to the sample, which was limited to a subsample of those who participated in the larger 

intervention study and caution should be taken when generalizing findings. To that end, 

additional research with different samples is needed. 

While questions of use in school settings remain, we do feel the results of the study 

warrant further exploration within the research community. The field should continue to 

investigate different mathematical constructs that could be included in screening batteries. 

Insights by mathematics educators as to key understandings in early numeracy may provide an 

array of constructs to explore as early screeners above and beyond the typical skills that have 

been studied in the past decade. In addition, future research should focus on exploring the value 

added of domain general cognitive measures to early numeracy screening batteries administered 

at singular (e.g., Fall) and multiple time points (e.g., Fall and Winter), and their relationships 

with mathematics outcomes at the end of kindergarten or beyond. This is of particular 

importance within the context of Response to Intervention (RtI) models of service delivery 

where increased interest is being paid to identifying students who may be non-responders to tier 

2 instruction prior to providing that support. Greater accuracy in identifying that subset of non-

responders would ensure that the intensity of intervention services provided did not require the 

student failing their way through the system to obtain tier 3 support. As research in this area 

emerges, schools should cautiously evaluate new evidence and consciously weigh decisions to 

modify existing screening protocols. 

A growing field of research in beginning reading has begun to explore the use of 

screening students into different levels of instructional support and indicates promise for 

improving student outcomes (Al Otaiba et al., 2014). To that end, exploring the types of 



Cognitive Screeners 18 

screeners, both academic and cognitive, that work best for subsets of students as part of a 

multiple gating system seem logical next steps for the field to take as we attempt to more 

accurately identify students in need of additional services in mathematics.  
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Table 1. 

Descriptive Statistics and Correlations for All Study Variables 

Variable 1 2 3 4 5 6 7 8 M (SD) 

1. Oral counting         13.6   (8.9) 

2. Number 

identification  
.41        

17.2 (15.4) 

3. Quantity 

discrimination  
.45 .67       

5.0   (6.2) 

4. Missing number  .32 .51 .53      1.9   (3.2) 

5. WASI 

vocabulary  
.38 .37 .27 .16     

6.2   (4.2) 

6. WASI matrix 

reasoning 
.16 .20 .14 .23 .21    

9.1   (2.2) 

7. Digit span 

forward 
.39 .22 .25 .15 .43 .12   

4.9   (1.9) 

8. Digit span 

backward  
.35 .31 .29 .27 .46 .32 .40  

1.5   (1.4) 

9. TEMA-3  .55 .68 .58 .45 .46 .25 .35 .40 77.6 (11.2) 

Note. M = mean, SD = standard deviation. Correlations greater than .12 were statistically significant at p < .01; 

correlations greater than .20 were statistically significant at p < .001. All correlations were computed using 

pairwise deletion. 
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Table 2 

Results of Sequential Multiple Regression Model Assessing Whether Cognitive Scores Predict TEMA-3 Scores Above and Beyond EN-CBM Scores 

Predictor 

Block 1 Block 2 Block 3 Block 4 Block 5 

Coefficient 

 (SE) 
β 

Coefficient 

 (SE) 
β 

Coefficient 

 (SE) 
β 

Coefficient 

 (SE) 
β 

Coefficient 

 (SE) 
β 

Intercept 
89.21*** 

(0.51) 
 

78.92*** 

(0.93) 
 

83.54*** 

(1.21) 
 

79.15*** 

(1.81) 
 

84.00*** 

(2.41) 
 

Severe at-risk indicator 
-18.59*** 

(0.65) 
-0.80 

-12.90*** 

(0.74) 
-0.56 

-19.76*** 

(1.36) 
-0.85 

-18.41*** 

(1.38) 
-0.80 

-26.18*** 

(2.92) 
-1.13 

Oral counting   
0.26*** 

(0.04) 
0.20 

0.13** 

(0.04) 
0.10 

0.10* 

(0.04) 
0.08 

0.13** 

(0.05) 
0.10 

Number identification    
0.17*** 

(0.03) 
0.23 

0.03 

(0.03) 
0.05 

0.03 

(0.03) 
0.03 

0.02 

(0.03) 
0.03 

Quantity discrimination    
0.05 

(0.06) 
0.03 

0.14* 

(0.07) 
0.08 

0.17* 

(0.07) 
0.10 

0.15* 

(0.07) 
0.08 

Missing number    
0.01 

(0.10) 
0.00 

0.25* 

(0.11) 
0.07 

0.25* 

(0.11) 
0.07 

0.27* 

(0.11) 
0.08 

Oral counting × severe risk     
0.30*** 

(0.07) 
0.20 

0.27*** 

(0.07) 
0.18 

0.23** 

(0.07) 
0.15 

Number identification × severe risk     
0.28*** 

(0.05) 
0.25 

0.26*** 

(0.05) 
0.24 

0.26*** 

(0.05) 
0.23 

Quantity discrimination × severe risk     
-0.26~ 

(0.13) 
-0.08 

-0.33* 

(0.13) 
-0.10 

-0.33* 

(0.13) 
-0.10 

Missing number × severe risk     
-0.95*** 

(0.23) 
-0.13 

-0.91*** 

(0.22) 
-0.13 

-0.95*** 

(0.23) 
-0.13 
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WASI vocabulary        
0.26*** 

(0.07) 
0.10 

0.19~ 

(0.11) 
0.07 

WASI matrix reasoning       
0.28* 

(0.12) 
0.05 

-0.06 

(0.19) 
-0.01 

Digit span forwards       
0.04 

(0.16) 
0.01 

-0.21 

(0.26) 
-0.03 

Digit span backwards        
-0.09 

(0.22) 
-0.01 

0.00 

(0.34) 
0.00 

WASI vocabulary × severe risk         
0.14 

(0.15) 
0.05 

WASI matrix reasoning × severe risk         
0.61* 

(0.25) 
0.25 

Digit span forwards × severe risk         
0.43 

(0.33) 
0.10 

Digit span backwards × severe risk         
-0.23 

(0.45) 
-0.02 

R2
total .645*** .737*** .768*** .779*** .784*** 

R2
change .645*** .092*** .031*** .011*** .005* 

Note. SE = standard error, β = standardized regression coefficient. 

~p < .10, *p < .05, **p < .01, ***p < .001. 
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