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The mathematics proficiency of citizens plays a large role in the economic
growth of nations (Hanushek & Woessmann, 2008), and individual differ-
ences in math proficiency predict a wide range of personal economic and edu-
cational outcomes. Among these are likelihood of completing high school,
college grades, college graduation, starting salary, and salary growth
(Murnane, Willett, & Levy, 1995; National Mathematics Advisory Panel,
2008; Sadler & Tai, 2007). Indeed, the dividends of high math proficiency
have increased over time, due largely to secular increases in the wage pre-
mium for college attainment (Tyler, 2004).

Mathematics proficiency also differs greatly among nations (Gonzales
et al., 2008; Hus!en, 1967; OECD, 2010). In two of the most widely cited
cross-national comparisons, the Program for International Student Assessment
(PISA) and the Trends in International Mathematics and Science Study
(TIMSS), the difference in math scores between the top-ranking nations and
the bottom-ranking nations has been about three standard deviations. To grasp
this difference intuitively, if men in nation A were three standard deviations
taller than U.S. men (average height ¼ 5 ft, 10 in.), then men in nation
A would have an average height of 6 ft, 6 in. tall. Thus, the difference in math
scores between top-ranking nations and bottom-ranking nations is like the dif-
ference between the average height of U.S. men and the average height of a
professional basketball player. Of course, in economic terms, the effect of
math proficiency on income is much greater than the effect of height
(Mankiw & Weinzierl, 2010; Rose & Betts, 2004)—and thus a good reason
to care about these very large national differences in math proficiency.
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Although the top spots vary somewhat from year to year, there has been a
very large and consistent difference in the mathematical performance of U.S.
and East Asian students. The difference between U.S. and East Asian students
came to the broad attention of scientists largely due to the efforts of Harold
Stevenson and his colleagues, first in an article that appeared in Science
(Stevenson, Lee, & Stigler, 1986) and more broadly publicized in his book
The Learning Gap (Stevenson & Stigler, 1992). Not much has changed over
this period of time. In the 25 years since the publication of The Learning
Gap, East Asian students have routinely outperformed their American peers
across a range of math assessments (Bailey et al., 2015; Stevenson, Chen, &
Lee, 1993), with the magnitude of this “learning gap” typically appearing
before the first year of formal schooling and growing larger with each succes-
sive year (Geary, Bow-Thomas, Liu, & Siegler, 1996).

In this chapter, we review two approaches for understanding these national
differences in math abilities. The first approach attempts to link cross-national
differences in educational input to cross-national differences in test scores.
A tacit assumption of this approach is that children’s performance on tests
of mathematics is a direct effect of input. The second approach attempts to
link cross-national differences in educational input to cross-national differ-
ences in test scores by means of indirect effects through more basic cognitive
abilities. The assumption of this approach is that the specific educational
inputs that differ among nations do not make much difference unless they
have an effect on basic cognitive abilities that improve learning for all stu-
dents. We argue that this approach has two related virtues. Because it is mech-
anistic, it greatly constrains the search for potential causes. Also, because it is
mechanistic, it offers a clearer path to closing the learning gap. We then
examine our theory in light of existing cross-national research on math-related
cognitive abilities and preview results of a study (under review) that tested
our idea.

THE TRADITIONAL APPROACH: DIFFERENCES IN INPUT,
DIFFERENCES IN OUTPUT

Early work on cross-national differences in educational outcomes involved
intensive analyses of how nations differ in their educational practices (Hus!en,
1967). Data on this topic came from a wide range of sources, including surveys
and interviews with parents and teachers, systematic video recordings of class-
room lessons, and experimental studies seeking to uncover the implicit attitudes
of students living in different nations. Many potentially important national dif-
ferences in educational input were uncovered in this early work, including
cross-national differences in the quantity (Stevenson & Stigler, 1992) and qual-
ity of math instruction (Richland, Zur, & Holyoak, 2007; Stigler & Hiebert,
1999), quality of teacher’s math knowledge (Ma, 1999), and cultural differ-
ences in math attitudes (Chen & Uttal, 1988; Stevenson & Stigler, 1992).
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Quantity of Math Instruction

One of the most powerful predictors of academic achievement generally is
“time on task,” which is partly a function of the time that a student is available
to learn (Carroll, 1989). This quantity of time differs greatly between East
Asian and American schools, where the former has longer school days and
more days in the school year. As a result, Chinese and Japanese children finish
the sixth grade having spent between 1500 and 3000 more hours (equivalent to
1–2 more years) in school than their American peers (Stevenson & Stigler,
1992). This difference might not be as important as it seems when one consid-
ers that Chinese and Japanese children spend more time at recess and in lunch
than American children. Alternatively, one must also recall that Chinese and
Japanese children spend more time in teacher-directed activities, more time
allocated for mathematics instruction, more time within math lessons involving
teacher activity, and less time within math lessons involving “off-task” activ-
ities (Stevenson & Stigler, 1992). Thus, compared with their American counter-
parts, East Asian students spend more days of the year in school, more hours of
the day in school, more time of the day in math class, and more time in math
class encountering math instruction.

Quality of Math Instruction

All other things being equal, more time with math instruction would be
expected to lead to greater math learning. Many studies, however, have shown
that these potential gains may be compounded by higher quality math instruc-
tion in East Asian schools. Measuring instruction quality is a notoriously diffi-
cult task. However, experimental studies on the features of high-quality math
lessons typically point to the importance of using real-world problems, connect-
ing symbolic to concrete representations of quantity, using students’ answers in
discussion, and reflecting on students’ errors for insight (National Research
Council (NRC), 2005). These are also much more likely to be features of East
Asian math classes than American ones according to observational studies in
Sendai, Taipei, Beijing, and Chicago (Stevenson & Stigler, 1992; for recent
reviews, see Geary, Berch, Ochsendorf, & Mann Koepke, 2017).

Another feature of high-quality instruction—one that we have used in our
own studies teaching number line estimation (Thompson & Opfer, 2008)—
involves providing cognitive support for connecting novel problems to famil-
iar ones (Richland, Stigler, & Holyoak, 2012; Richland et al., 2007). Despite
the potential of these cognitive supports to help young children, their use is by
no means ubiquitous in the mathematics classroom—at least not in American
classrooms. Support for this conclusion comes from a secondary analysis per-
formed by Richland et al. (2007) on the video portion of the Trends in Inter-
national Mathematics and Science Study (Stigler, Gonzales, Kwanaka, Knoll,
& Serrano, 1999), a large-scale international comparison of mathematics
instruction.
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To study how often teachers provided cognitive support for analogies
between familiar and novel problems, Richland et al. (2007) analyzed how
analogies were used in mathematics lessons in the United States and two
regions in Asia—Hong Kong and Japan—where students consistently outper-
form U.S. students in mathematics achievement and where the gap between
high and low achievers is substantially smaller. Richland et al. specifically
coded use of six cognitive supports for analogy that structure-mapping theory
had identified as potentially helpful: (1) using a familiar source analog to
compare with the target analog being taught, (2) presenting the source analog
visually, (3) keeping the source visible to learners during comparison with the
target, (4) using spatial cues to highlight the alignment between corresponding
elements of the source and target (e.g., diagramming a scale below the equal
sign of an equation), (5) using hand or arm gestures that signaled an intended
comparison (e.g., pointing back and forth between a scale and an equation),
and (6) using mental imagery or visualizations (e.g., “picture a scale when
you balance an equation”). For every one of these six cognitive supports
coded, teachers in the U.S. sample were less likely to promote relational
learning than were teachers in Hong Kong and Japan. Thus, in addition to
providing more math instruction, East Asian teachers also appear to provide
better math instruction.

Quality of Teacher Knowledge

Teachers’ ability to provide high-quality math instruction partly depends on
their own fluency with mathematical content, including their ability to envi-
sion real-world math problems, to link the elements of the problem to math-
ematical language and to discuss the mathematical ideas implied by their
students’ errors. Unfortunately, American elementary school teachers strug-
gle with mathematical concepts much more than their East Asian peers (e.g.,
Lo & Luo, 2012; Ma, 1999). For example, in one cross-cultural study of
American and Chinese early mathematics teachers, nearly all of the
23 American teachers who were interviewed struggled to accurately solve
and generate word problems about fraction division (Ma, 1999). In contrast,
not only all of the Chinese teachers could accurately solve fraction division
problems, but also they were able to describe multiple ways of conceptualiz-
ing fraction division and multiple strategies for approaching this topic with
their students.

Cultural Differences in Math Attitudes

A final difference in educational input concerns students’ willingness to spend
the time required to learn math, that is, to expend effort. Stevenson and Stigler
(1992) have documented many ways that attitudes toward effort differ greatly
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between American and East Asian parents, teachers, and students. American
mothers were found to rate the importance of effort for academic achieve-
ment as lower than did their East Asian counterparts, and American mothers
rated the importance of ability much higher than East Asian mothers. Also,
American students were found to rate the importance of ability as higher than
did Chinese students. Finally, when given a difficult math problem, American
students spent much less time trying to solve it than their East Asian
counterparts.

Beyond Habits of Highly Successful Educational Systems

The traditional approach of documenting differences in educational input has
an obvious and intuitive appeal; for children in a given nation to be doing bet-
ter at mathematics, those children must have been exposed to something in
their environment that would lead to better outcomes. Thus, the scientist’s
job is simply to find what those environmental factors are.

At first glance, the only alternative approach to the traditional one would
posit that children in different nations have different intrinsic math ability
(e.g., Lynn, 1982; Rushton, 1992). Such an essentialist approach, however,
does not appear to be supported by the evidence. First, the “learning gap”
seems to be a recent phenomenon. That is, although contemporary Chinese
students outperform American students in arithmetic, elderly Chinese indivi-
duals perform no better than elderly Americans (Geary et al., 1996). This
would not be expected if Chinese students were intrinsically better at math
than Americans. Yet, another reason to reject the essentialist approach is that
within-nation differences in many basic cognitive abilities—such as IQ, per-
ceptual speed, working memory, and spatial skill—are as large or larger than
between-nation differences, at least when good translations of the tests of
these abilities are used (Geary et al., 1996; Stevenson et al., 1985). Thus, with
the essentialist approach having been disconfirmed, the traditional approach
seems rather sensible.

The traditional approach, however, has two major problems. The first is
that—in the absence of a good theory of how math proficiency develops—it
is tempting to consider any and every national difference in child socialization
as potentially causing national differences in math proficiency. The problem
is not simply a matter of inferring causation from correlations (often a reason-
able source for our hypotheses). Rather, the problem is chasing down one
dependent variable (math scores) with too many independent variables, which
is bound to lead to some spurious correlations and wrong-headed educational
reforms.

Another limitation of the traditional approach is that it is nonmechanistic.
That is, even if national differences in the quantity or quality of math instruc-
tion do reliably lead to national differences in math ability, we would want to
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know how. Does increasing the quantity of math instruction lead directly or
indirectly to greater math ability? Distinguishing between direct and indirect
effects is important both theoretically and practically. The issue is important
theoretically because it allows us to identify the mechanisms by which nations
produce better math students. The issue is also important practically because
it allows us to identify novel targets for interventions.

To illustrate, consider a problem with many parallels to the “learning gap”
that Stevenson identified: the gap between children of high and low socioeco-
nomic status. Like the difference between East Asian and American children,
children in low-income families achieve lower math scores than peers in
higher-income families (Case, 1975; Jordan, Huttenlocher, & Levine, 1992;
Saxe, Guberman, & Gearhart, 1989), despite going to schools with a similar
number of days in the school year, a similar number of hours in the school
day, a similar cultural beliefs about effort and ability, and so on. Intriguingly,
children from low-income families were also found to lag considerably behind
their middle-income peers in their knowledge of fundamental aspects of num-
ber itself, thereby impairing their ability to compare the size of Arabic num-
bers, to order a group of four numbers from smallest to largest, or to
determine which of two numbers was closer to a target number (Case &
Griffin, 1990; Case & Sandieson, 1987; Griffin, Case, & Sandieson, 1992).
Put another way, the performance of low-income children suggested they
lacked a “mental number line” that associated ordered numbers with a linearly
increasing series of magnitudes. Hypothesizing that this “central conceptual
structure” might explain much of the learning gap, Griffin, Case, and
Siegler (1994) developed a program to improve low-income children’s
numerical magnitude judgments, such as having them play games where they
had to locate numbers on a number line. The results were quite dramatic, with
the children in the experimental training group catching up to their middle-
income peers in tests of arithmetic ability. Thus, rather than simply document-
ing all the ways that children from low- and high-income families differ, the
investigators made progress in closing the learning gap by identifying a cru-
cial cognitive difference between the groups and targeting it for intervention.

A COGNITIVE THEORY ON HOW THE LEARNING GAP OPENS

Our theory is that national differences in early math proficiency emerge for
the same reason that socioeconomic differences lead to differences in math
proficiency. That is, what mediates the effect of socioeconomic and national
differences on early math proficiency is the same cognitive feature—the qual-
ity of numerical magnitude judgments, especially symbolic numerical magni-
tude judgments.

As we will argue, numerical magnitude judgments are important for math-
ematical thinking at any given point in time—a point that is consistent with
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Siegler, Thompson, and Schneider’s (2011) theory about fraction learning and
recent work on math achievement in at-risk preschoolers (Geary & vanMarle,
2016). Additionally, numerical magnitude judgments help to foster learning
from mathematical instruction (Booth & Siegler, 2008; Siegler & Ramani,
2008). In this way, high-quality numerical magnitude judgments can be
thought of as a kind of malleable math aptitude. As this aptitude rises, the
amount of time that a student needs in math instruction to reach a given level
of competence will decline. If true, this theory is important because it suggests
that East Asian students’ math learning is not likely to be matched simply by
increasing American students’ time in math class, the quality of their math
instruction, or their willingness to spend time on mathematics. At the same
time, it suggests that the learning gap between East Asian and American chil-
dren may be closed—perhaps substantially—by boosting American students’
numerical magnitude judgments.

Why Numerical Magnitude Judgments?

Math proficiency—and quantitative reasoning more broadly—entails the abil-
ity to encode magnitudes, and the development of math proficiency builds and
expands on the kinds of magnitudes that can be accurately encoded at any
given age (Butterworth, 2005; Dehaene, 1997). What kinds of information-
processing capacities must develop to encode these relations among magni-
tudes? Two kinds—ones that correlate with culturally invariant vs culturally
variant abilities—are processing of nonsymbolic and symbolic numeric
magnitudes, respectively. Proficiency at processing nonsymbolic numeric
magnitudes (or “number sense acuity”) (Halberda, Mazzocco, & Feigenson,
2008) involves facility with the ability to represent and compare nonsymbolic
quantities accurately, such as comparing the relative quantities of two collec-
tions of items. Proficiency at processing symbolic numeric magnitudes
(or “numeracy”) (Hofstadter, 1982) involves the ability to accurately translate
between magnitudes and symbolic numbers (e.g., “9,” “nine,” “1/9”) and to
encode quantitative relations among the numbers (e.g., 10 is closer to 1 than
100; 1/10 is closer to 1/100 than 1).

The number acuity/numeracy distinction provides a useful way to think
about the varieties of numerical magnitude judgments that might lead to
national differences in math proficiency. Numbers were only invented in the
last 10,000 years of human history; the human brain is unlikely to have
evolved specifically to handle numbers (Geary, 1995). Instead, numbers must
be learned by modifying the brain through socialization and other interactions
with the environment. As we will see, number acuity and numeracy differ in
many ways that are consistent with this theoretical perspective. Number acu-
ity emerges in infancy; numeracy develops much later. Number acuity is
approximate and ratio-dependent; numeracy allows precision and encoding
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of mathematically important (linear) quantitative relations. Finally, numeracy
varies widely among children growing up in different nations, whereas num-
ber acuity shows less variation and (where it exists) may be diagnostic
of neurocognitive disorders (Piazza et al., 2010). Therefore, just as the dis-
tinction between processing of speech sounds (/kæt/) and signs (cat) is
important for reading, the distinction between number acuity and numeracy
is likely to be an important one for arithmetic generally (Vanbinst, Ansari,
Ghesquière, & De Smedt, 2016) and in cross-cultural studies of arithmetic
in particular.

Varieties of Numerical Magnitude Judgments

In the following section, we review findings on three major types of numeri-
cal magnitude judgments: comparing sets and numbers, estimating the loca-
tion of a set or number on a number line, and approximately adding two
sets or numbers (Fig. 1).
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FIG. 1 Illustration of six numerical magnitude tasks and evidence for compressive representa-

tion of numbers. (A) Nonsymbolic and symbolic number comparison. (B) Nonsymbolic and sym-
bolic approximate addition. (C) Nonsymbolic and symbolic number line estimation. (D) Ratio

effect in comparison (Halberda et al., 2008) (A>B). (E) Ratio effect in approximate addition

(Barth, La Mont, Lipton, & Spelke, 2005) (A>B, on half of trials A was the sum of two addends).
(F) Logarithmic responses in number line estimates (Opfer & Siegler, 2007).
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Comparing Sets and Numbers

A breakthrough in research on the development of mathematical abilities
came from developmental psychologists’ discovery that human infants notice
changes in set sizes, typically sets of 2 vs 3 objects (Starkey & Cooper, 1980;
Strauss & Curtis, 1981) and prefer to look at the larger set when the two sets
differ numerically, for example, 128 vs 32 elements (Fantz & Fagan, 1975),
32 vs 16 (Xu, Spelke, & Goddard, 2005), or 16 vs 8 (Lipton & Spelke,
2003). In a typical study, investigators repeatedly presented babies with N1

objects until looking times decreased and then presented N2 objects. Infants’
recovery of attention (suggesting they noticed a difference) to N2 was evident
only when the ratio between N1 and N2 was 3:2 or 2:1 (2 vs 3, Strauss &
Curtis, 1981; 8 vs 4, Xu, 2003), a finding that appeared even in 21- to 144-
hour-old neonates (Antell & Keating, 1983).

Research on infants’ and children’s ability to compare sets led to three
broad generalizations. First, at any given age, the number required to discrim-
inate two sets of large numbers (i.e., 4 or more) does not depend on an abso-
lute difference in number. Rather, as in the Weber-Fechner psychophysical
function, the probability of discrimination is proportional to the difference
in the logarithms of the numbers, where ln(32)" ln(16)¼ ln(16)" ln(8)¼
ln(8)" ln(4)> ln(12)" ln(8)¼ ln(6)" ln(4). (The term “ln” refers to the natu-
ral logarithm.) Second, the difference in logarithms required to discriminate
numbers decreases with age. Thus, older infants were found to discriminate
small ratios (e.g., 4:6 or 8:10) that younger infants could not (Cordes &
Brannon, 2008). Third, for very small numbers (i.e., 3 or less), the probability
of discrimination was uniformly high, higher than would be predicted from
considering the differences in logarithms alone. Thus, discriminating 2 vs 3
is easier for infants than discriminating 4 vs 6. These three generalizations
also hold for a wide range of animals’ ability to compare sets (honeybees,
Dacke & Srinivasan, 2008; fish, Piffer, Petrazzini, & Agrillo, 2013; pigeons,
Scarf, Hayne, & Colombo, 2011; rats, Mechner, 1958; and monkeys,
Brannon & Terrace, 2000) making it likely that number acuity is the product
of evolution and not schooling.

The time required for older children and adults to compare sets parallels
findings with infants. When prevented from counting and asked to select the
larger of two sets, the time required to select the larger set is generally propor-
tionate to the difference in logarithms, with the time required to select the
larger of 4–6 being less than 6–7 (Birnbaum, 1980; Buckley & Gillman,
1974; Temple & Posner, 1998). Also, the difference in logarithms necessary
for discriminating sets decreases with age. That is, a small difference in set
size takes longer for younger children to discriminate than it does for older
children and longer for older children than for adults (Temple & Posner,
1998). To quantify this development, a useful formalism is the “internal
Weber fraction” (Halberda & Feigenson, 2008; Piazza & Izard, 2009;
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Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). For example, both schooled
and unschooled adults can reliably discriminate numbers that are only within
11%–15% of each other (Halberda & Feigenson, 2008; Halberda et al., 2008;
Piazza et al., 2010), which would be measured as an internal Weber fraction
of 0.11–0.15. Regardless of cultural experiences, this internal Weber fraction
changes greatly from infancy to adulthood (Piazza & Izard, 2009; Pica,
Lemer, Izard, & Dehaene, 2004), starting from an average of 0.34 for kinder-
garteners, down to 0.25 for 10-year olds, and 0.15 for adults. Finally, the
speed of older children’s and adults’ discrimination of very small numbers
of objects is consistently greater than would be expected from considering
the ratio in isolation. For example, the time required to judge the greater of
two sets of 3 or fewer objects is uniformly low, much lower than would be
expected given their ratios alone (Chi & Klahr, 1975; Revkin, Piazza, Izard,
Cohen, & Dehaene, 2008).

Unlike the early ability to compare sets of objects, the ability to com-
pare numbers develops much later. Young children—and some adults—
who reliably notice the difference between collections of 3 and 4 objects
are hopelessly innumerate when asked to compare the magnitudes of
numerals like “3” and “4,” “30%” and “40%,” or “3/10” and “2/5.” Unlike
the ability to compare sets of objects, these skills must be learned and
show substantial variability. For example, 3-year olds from middle-income
backgrounds or 4- and 5-year olds from ow-income backgrounds perform
near-chance levels when asked to compare numbers between 1 and 9
(Ramani & Siegler, 2008). By kindergarten, most (but not all) children
are generally accurate at comparing numerals, but their accuracy and solu-
tion times—like those of older children and adults—are subject to the same
Weber-Fechner law that characterizes comparisons of nonsymbolic quantities
(Dehaene, 1989; Laski & Siegler, 2007; Moyer & Landauer, 1967; Sekuler &
Mierkiewicz, 1977).

The parallels between the ability of babies and other animals to compare
sets and the ability of children and other humans to compare numbers sug-
gests that once the meaning of numeric symbols are learned, numeric symbols
automatically activates the brain’s system for representing magnitude, thereby
leading to the Weber-Fechner pattern in response times. In support of this
idea, presentations of either sets or numerals evoke number-related activation
in the intraparietal cortex of educated adults (Naccache & Dehaene, 2001).
Also, after adaptation with a set of 17, 18, or 19 dots, blood oxygenation
recovery is observed when the number 50 is presented, but not when the num-
ber 20 is presented. These results suggest that—at least in educated human
adults—populations of neurons in parietal and prefrontal cortex are jointly
activated by nonsymbolic and symbolic quantities (Naccache & Dehaene,
2001). This is a powerful result in that it provides a link between the mecha-
nism of magnitude representation and the symbols that evoke that mechanism.
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It also illustrates why all human children may possess some mathematical
aptitude, but why culture is needed to fully develop that aptitude.

Estimating the Placement of Sets and Numbers on a Number Line

A still more direct method of assessing numerical magnitude judgments asks
children to estimate the placement of a number on a number line (Siegler &
Opfer, 2003). Like comparisons of sets and numbers, children’s early number
line estimates follow the Weber-Fechner law, with children—like babies, rats,
and pigeons comparing sets—estimating the differences among small num-
bers to be greater than the differences among large numbers (as on a logarith-
mic ruler). With education, however, children’s estimates typically follow a
more linear function.

This “logarithmic-to-linear shift” was first observed on a number line task
in which a symbolic number was estimated on a line flanked by another sym-
bolic number at each end and with no intermediate anchors provided. On this
task, young children’s placement of numbers typically follows an approxi-
mately logarithmic function, but this logarithmic pattern changes to a linear
one with age and experience, with the timing of the shift coinciding with
the magnitude of the number ranges tested and children’s experiences with
numbers in school (Booth & Siegler, 2006; Kim & Opfer, in press; Laski &
Siegler, 2007; Opfer & Martens, 2012; Opfer & Siegler, 2007; Opfer,
Siegler, & Young, 2011; Opfer & Thompson, 2008; Siegler & Booth, 2004;
Siegler & Opfer, 2003; Siegler, Thompson, & Opfer, 2009; Thompson &
Opfer, 2008). The logarithmic-to-linear shift has since been observed across
a wide range of other number line tasks, including ones in which a midpoint
anchor is provided for children (Booth & Siegler, 2006; Opfer, Thompson, &
Kim, 2016; Siegler & Booth, 2004), one in which there is no upper boundary
marked (Kim & Opfer, in press), and ones in which the numbers are replaced
by sets of dots (Opfer, Qin, & Kim, submitted for publication).

An interesting feature of number line estimation is that the magnitude of
the logarithmic-to-linear shift is much greater when subjects are asked to esti-
mate the placement of numbers instead of sets of dots. On this nonsymbolic
version of the task, estimates of nonschooled adults and children are more
logarithmic than would be expected from their age alone (Dehaene, Izard,
Spelke, & Pica, 2008; Sasanguie, De Smedt, Defever, & Reynvoet, 2012;
Sella, Berteletti, Lucangeli, & Zorzi, 2015), and the estimates of even
educated adults show a substantial degree of logarithmicity (Anobile,
Cicchini, & Burr, 2012; Dehaene et al., 2008). These findings suggest that
providing linear number line estimates—where the distance between any
two successive estimates (e.g., 5 and 6 vs 155 and 156) is equal—depends
on schooling and culture, where children gain proficiency with symbolic
quantities.
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Approximately Adding Sets and Numbers

A mental number line makes basic addition and subtraction trivial: traveling
four spaces forward from four registers the sum of four and four, traveling
four spaces back from eight registers the difference between eight and four,
and so on. Thus, if infants encode the approximate numerical value of a set
and possess something akin to a mental number line (for at least nonsymbolic
numbers), they should be able to register sums and differences of numeric
quantities (at least approximately).

The hypothesis that infants could approximately add sets led Wynn (1992)
to conduct a series of surprising experiments on infants’ arithmetic abilities.
In one condition, Wynn tested babies’ ability to compute 1+1: she recorded
infants’ looking times as they watched one object appear to be placed behind
an opaque screen and then another object added to it behind the screen. When
the screen dropped, seeming to reveal the arithmetically impossible event
1+1¼1, infants looked longer than when the screen dropped and revealed
an outcome consistent with the arithmetically realistic event 1+1¼2. Addi-
tionally, infants’ ability to approximately add sets is not limited to numbers
less than 4 (McCrink & Wynn, 2004). Consistent with Wynn’s interpretation
that infants were surprised by the numerical outcome, when 9-month-old
babies were confronted with arithmetic transformations of large sets (e.g.,
5+5¼10 vs 5+5¼5 or 10–5¼5 vs 10–5¼10), babies also looked longer
at the arithmetically impossible events than the arithmetically possible ones.
Thus, it seems that nonsymbolic, approximate arithmetic may not require
any schooling at all.

How are babies able to add and subtract sets of objects (at least approxi-
mately)? One possibility is that nonsymbolic, approximate addition relies on
the same logarithmically compressed number line representation that we
reviewed above. In this view, adding n2 to n1 involves traveling n2 spaces
forward from n1 on the mental number line. If this is right, then babies would
actually arrive at the position log(n1)+ log(n2), which would be a consider-
able overestimation of the actual result. From this perspective, babies would
have no doubt found 5+5¼5 surprising because they would have experienced
it as log(5)+ log(5) and thus expected to see log(25)! Conversely, subtraction
through traversing a logarithmically spaced number line would yield a consid-
erable underestimation of the actual results.

The idea that the approximate addition relies on a logarithmically spaced
number line is consistent with the mistakes that babies make when adding
sets. Specifically, babies’ expectations do overestimate the results of additive
operations and underestimate the results of subtractive operations (McCrink &
Wynn, 2009). Thus, when babies were initially shown a sequence of events
equivalent to 6+4, they looked significantly longer when the raised screen
revealed 5 objects than when it revealed 20 objects. Similarly, when babies
were shown a sequence equivalent to 14"4, they looked significantly longer
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when the raised screen revealed 20 objects than when it revealed 5. In the
same study, the infants looked equally long at 20 objects as 10 at the end of
the first example and looked as long at 5 objects as at 10 at the end of the sec-
ond example.

Approximately adding sets of objects appears quite similar in infants,
young children, and adults (Barth, Beckmann, & Spelke, 2008; Barth et al.,
2006; McCrink, Dehaene, & Dehaene-Lambertz, 2007; Park, Bermudez,
Roberts, & Brannon, 2016; Pica et al., 2004). In a representative study,
McCrink et al. (2007) showed adults several hundred videos of two successive
sets of dots and asked them to approximate their sum or difference by choos-
ing one of two sets of dots. As with infants, adults almost always overshot the
correct outcomes on addition problems, whereas they almost always under-
shot the correct outcomes on the subtraction problems. Researchers found that
from adults’ modal response, the distribution of other responses tapered off as
a function of the ratio of the true and alternative quantities, just as would be
predicted by Weber-Fechner’s law. To illustrate the magnitude of this error,
the presented subtraction problem of 32"16¼8 was judged to be correct
approximately 60% of the time, which is quite a radical departure from
moving along a linearly scaled mental number line.

Before formal arithmetic training, children’s ability to add numbers is very
similar to adults’ ability to add sets of objects. One source of evidence comes
from Gilmore, McCarthy, and Spelke’s (2007) study of preschoolers’ esti-
mates of answers to arithmetic problems that they had not yet encountered
in school. The investigators presented 5- and 6-year olds with problems such
as “Sarah has 21 candies; she gets 30 more; John has 34 candies—who has
more?” To ensure that the preschoolers understood the symbols that were
being used, the problems were simultaneously presented both orally—as spo-
ken numerals—and in writing, as Arabic numerals. Despite the fact that the
preschoolers had received no training with numbers of that size, they sponta-
neously performed better than chance. Performance was still approximate,
however, and depended on the ratio of the two sums that the children were
choosing between, a signature of the Weber-Fechner law.

Connections Between Numerical Magnitude Judgments
and Math Proficiency

In the previous section, we reviewed evidence that three types of numerical
magnitude judgments—comparison, estimation, and approximate addition—
bear striking psychophysical similarities and may rely on highly overlapping
cortical resources. In this section, we examine the potential importance of this
cognitive feature on math proficiency by reviewing the literature that exam-
ines relations between numerical magnitude judgments, math proficiency,
and aptitude for math learning.
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Comparing Sets and Numbers

Given that arithmetic proficiency is usually measured by participants’ speed
and accuracy with symbolic problems, it was a real surprise to many investi-
gators to learn that individual differences in the ability to compare sets of
objects (thereby tapping the ANS) could (retrospectively) predict individual
differences in mathematics ability (Halberda et al., 2008). The finding that
number acuity predicts math skill, however, has now been tested repeatedly
in preschoolers and kindergartners (Bonny & Lourenco, 2013; Libertus,
Feigenson, & Halberda, 2011, 2013), older children (Holloway & Ansari,
2009; Mundy & Gilmore, 2009), and adults (Castronovo & G€obel, 2012;
Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Lyons & Beilock, 2011).
The breadth of these studies allowed Fazio, Bailey, Thompson, and Siegler
(2014) to conduct a metaanalysis of 19 studies examining the relation
between number acuity and math proficiency. Their general finding was that
there is a small but reliable connection between number acuity and math
proficiency, with the ability to compare sets accounting for about 4% of
the variation in math scores. One way to make sense of these findings is that
math ability partly develops as an elaborated, conceptual understanding of
numerosity—the property shared by sets of N objects or N tones or N events
(Butterworth, 2005), which is often impaired in a subpopulation of indivi-
duals with dyscalculia (Butterworth, 2005).

Children’s ability to compare symbolic numbers also has a positive rela-
tion to their arithmetic proficiency (Castronovo & G€obel, 2012; De Smedt,
Verschaffel, & Ghesquière, 2009; Fazio et al., 2014; Holloway & Ansari,
2009; Vanbinst, Ghesquière, & De Smedt, 2012), with the magnitude of the
correlation between number comparison and math scores typically being
much larger than the correlation between ability to compare sets and math
scores (for a metaanalysis of 45 studies, see Schneider et al., 2016). For exam-
ple, in the study by Fazio et al. (2014), the speed of number comparison
explained 33% of the variation in standardized math scores (compared with
4% from their metaanalysis on number acuity and math proficiency). Addi-
tionally, individual differences in the magnitude of the numerical distance
effect explain about 11% of the variation in math fluency (Holloway &
Ansari, 2009). Thus, if Chinese children have greater facility with comparing
numbers than U.S. children, one might expect them to also become more flu-
ent in math and score better on standardized tests.

Estimating the Placement of Sets and Numbers on a Number Line

As with magnitude comparison, estimating the placement of sets and numbers
on a number line shows a strong and consistent relation to math skills, with
the magnitude of the relation again being larger for symbolic than nonsym-
bolic number line estimation. For example, in the Fazio et al. (2014) study,
accuracy of nonsymbolic whole number line estimation accounted for about

112 Language and Culture in Mathematical Cognition



10% of the variation in standardized math scores. In our own studies (Opfer,
Qin, et al., submitted for publication), the logarithmicity of nonsymbolic num-
ber line estimation explains about the same proportion of variance in addition
and subtraction scores after controlling for all other variables in the model
(such as age) and experiment-wise error.

The relation between ability to place numbers on a number line and math
proficiency is also a very consistent finding. Individual differences in the
accuracy (Fazio et al., 2014; LeFevre et al., 2013; Lyons, Price, Vaessen,
Blomert, & Ansari, 2014; Muldoon, Towse, Simms, Perra, & Menzies,
2013; Sasanguie, G€obel, Moll, Smets, & Reynvoet, 2013; Schneider,
Grabner, & Paetsch, 2009; Siegler & Ramani, 2008, 2009) and logarithmicity
of estimates of a number on a number line (Kim & Opfer, in press; Opfer,
Qin, et al., submitted for publication) correlates positively and strongly with
speeded arithmetic and standardized math scores. In studies that compare
placement of numbers with placement of sets, the proportion of variance in
math scores explained by symbolic number line estimates is typically around
30% (Fazio et al., 2014; Kim & Opfer, in press; Opfer, Qin, et al., submitted
for publication) and roughly twice that of nonsymbolic number line
estimation.

Probably, the best evidence that linearity of number line estimates
improves math proficiency comes from experimental studies that have studied
the effects of number line training (Booth & Siegler, 2008; Siegler & Ramani,
2009). These studies find that presenting randomly chosen school aged chil-
dren with accurate number line representations of the magnitudes within arith-
metic problems improves children’s learning of the answers to the problems
(Booth & Siegler, 2008). Similarly, playing a linear board game with ran-
domly chosen preschoolers improves their ability to learn answers to arithme-
tic problems (Siegler & Ramani, 2009). Thus, rather just linking number line
estimate accuracy to arithmetic performance, these studies suggest that accu-
rate representations of numerical magnitude make learning math easier for
children. This is an important finding because it suggests that Chinese chil-
dren might gain more from their experiences in school than American chil-
dren if they have more linear numerical magnitude representations (Fig. 2).

Cross-National Differences in Numerical Magnitude Judgments

Given the early emergence of competence in nonsymbolic numerical magni-
tude judgments and the relatively late emergence of competence in symbolic
numerical magnitude judgments, it seems reasonable to expect a certain pat-
tern to cross-national differences in numerical magnitude judgments. Specif-
ically, because proficiency with symbols depends on experiences in early
childhood, cross-national differences with symbolic numbers would be
expected to be larger than cross-national differences in proficiency with non-
symbolic numbers. This hypothesis has been tested indirectly with Western
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and East Asian children in a number of studies (Rodic et al., 2015; Siegler &
Mu, 2008; Xu, Chen, Pan, & Li, 2013; Zhou et al., 2007). These studies
have examined cross-national differences in comparing sets and numbers
and estimating the placement of sets and numbers on a number line. How-
ever, no studies have yet examined cross-national differences in approximate
addition.

Comparing Sets and Numbers

When comparing two sets of dots for the greater quantity, Chinese children
perform somewhat better than their peers in Western countries. For example,
Rodic et al. (2015) tested ethnic and national Chinese children and their West-
ern peers on a large test battery, including comparing sets of dots. Chinese
children’s judgments were reliably more accurate than children growing up
in the United Kingdom, but the judgments were typically made just as
quickly. This is important because the standard positive relation between non-
symbolic number comparison and math performance typically uses a compos-
ite measure of speed and accuracy, suggesting that this component of
numerical magnitude judgments may not mediate the effect of nation on math
proficiency.

When comparing two numbers for the greater quantity, Chinese children
also performed better than their Western peers, and this difference was larger
and better supported by a range of evidence than evidence regarding set size
comparison (Rodic et al., 2015). More strikingly, Chinese children were
found to automatically process symbolic magnitudes as early as 5 years
old (Zhou et al., 2007). In their study, Zhou et al. (2007) asked children to
estimate the physical size of numbers but ignore their magnitude informa-
tion. In this Stroop-like task, 5-year-old Chinese children showed a signifi-
cant size congruity effect, suggesting magnitude information of numbers
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interfered with their physical size comparison. This automatic processing of
symbolic magnitude ability is striking because it emerges at a much older
age for children in Western nations (Berch, Foley, Hill, & Ryan, 1999;
Girelli, Lucangeli, & Butterworth, 2000; Rubinsten, Henik, Berger, &
Shahar-Shalev, 2002).

Estimating the Placement of Sets and Numbers on a Number-Line

When estimating the placement of sets on a number line, Chinese kindergart-
ners’ estimates were also found to be more accurate and linear than their
Western peers. However, both groups showed a similar developmental pattern
(a logarithmic-to-linear shift), and both showed a linear pattern of estimates
on 0–10 number lines and a logarithmic pattern on 0–100 number lines
(Sasanguie et al., 2012; Sella et al., 2015; Xu et al., 2013). Given the small
but reliable relation between nonsymbolic number line estimation and math
proficiency, generally, these results should lead us to expect that this compo-
nent of numerical magnitude judgments will mediate a small but reliable
effect of nation on math proficiency.

When estimating the placement of numbers on number lines, a somewhat
similar pattern emerges. Specifically, Chinese children have shown the same
logarithmic-to-linear shift as their Western peers, but they typically show an
earlier onset of attaining linear representations (Siegler & Mu, 2008; Xu
et al., 2013). For example, Xu et al. (2013) found the estimates of Chinese
preschoolers (3- to 7-year olds) were more accurate and linear on the 0–10,
0–100, and 0–1000 number lines than their Western peers. Moreover, the lin-
earity indexes of estimates for Chinese kindergartners were similar to those
for American first and second graders (Booth & Siegler, 2006; Opfer &
Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003, Xu et al.,
2013). Given the previously observed association between symbolic number
line estimation and math proficiency and math learning, this is an important
finding. It suggests that a given hour of math instruction in China might have
a larger effect on children than the same hour of math instruction in the
United States because children in the former group have a linear representa-
tion of numerical magnitude—and thus a stronger foundation for symbolic
magnitude representations than their Western peers.

DO NUMERICAL MAGNITUDE JUDGMENTS MEDIATE NATION
EFFECTS ON MATH PROFICIENCY?

In the previous sections, we have reviewed evidence that (1) East Asian chil-
dren typically show greater math proficiency than their American peers, (2)
numerical magnitude judgments (particularly symbolic ones) are generally
correlated with greater math proficiency, and (3) East Asian children typically
show more accurate numerical magnitude judgments (particularly symbolic
ones) than their American peers. Together, these three lines of work suggest
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a simple model in which the effect of nation on math proficiency—especially
early, but possibly all math proficiency (see below)—is mediated by the qual-
ity of numerical magnitude judgments (Fig. 3).

A test of this model has recently been conducted by Opfer, Kim, Siegler,
Fazio, and Zhou (submitted for publication). Although these results have not
been published yet, we can preview a narrative description of their findings.
At present, these preliminary results provide the only test of our cognitive the-
ory of nation effects on mathematics proficiency.

In their study, Opfer et al. examined kindergarteners recruited at the end of
the school year from four schools in Beijing, China, and Columbus, OH. All chil-
dren completed a mathematics assessment (Geary et al., 1996), a subtest of the
WISC-III with a numeric response code (Stevenson et al., 1985), and six numeric
magnitude judgment tasks. The numeric magnitude tasks varied in the format of
numeric information (symbolic numerals vs dot arrays) and type of magnitude
judgment (comparison, approximate addition, and number line estimation). Time
for each task was roughly equivalent; each took less than 5 min.

Consistent with previous reports (Geary et al., 1996), Opfer et al. found
that arithmetic scores of Chinese kindergartners were roughly three times
higher than those of U.S. kindergartners. Each element of the arithmetic score
differed by nationality: U.S. kindergartners provided fewer accurate answers
than Chinese kindergartners, and U.S. children provided more wrong answers
than Chinese children. Finally, when wrong answers were given, the differ-
ence between the child’s answer and the correct one was significantly smaller
among Chinese than U.S. children.

What might account for these differences in math proficiency? Opfer et al.
first reexamined the essentialist hypothesis that East Asian kindergartners are
simply smarter than American ones. To do this, they used a coding task
(WISC-III; also Digit-Symbol Substitution task, WAIS-III) that is widely used
to measure children’s and adults’ performance IQ (Ryan & Lopez, 2001;
Wechsler, 1991). The task is thought to index the overall speed of information
processing (Lezak, Howieson, Loring, Hannay, & Fischer, 2004; Stevenson
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FIG. 3 Mediation model of the effects of nationality on math proficiency. The total effects of
nationality (c) are divided into two effects: the direct effect (c0) and the indirect effect via a cog-

nitive mediator (ab).
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et al., 1985) and correlates more highly with arithmetic performance than any
other IQ subscale (Osborne & Lindsey, 1967). Additionally, because the test
relies on a numeric response code, it provides a simple test of the idea that
Chinese children are simply more familiar with numbers overall.

Consistent with Stevenson et al. (1985) findings with first graders (Geary
et al., 1997; Stevenson et al., 1985), Opfer et al. found that average scores on
this coding task did not differ between Chinese and U.S. kindergarteners, sug-
gesting their samples were equivalent to previous studies and national norms.
Additionally, variability in scores did not differ between the two groups, sug-
gesting the samples were equivalently homogenous. Although IQ scores did
correlate highly with mathematics scores, the lack of difference between the
American and Chinese children in IQ meant that nationality could not be hav-
ing an effect on math proficiency via IQ.

Comparing Sets and Numbers: U.S. Vs Chinese children

Opfer et al. next examined the effect of nationality on three measures of non-
symbolic and symbolic number comparison. These measures included overall
accuracy (Lourenco, Bonny, Fernandez, & Rao, 2012; Mazzocco, Feigenson,
& Halberda, 2011), Weber fraction (w; Halberda et al., 2008; Inglis, Attridge,
Batchelor, & Gilmore, 2011), and numeric distance effect (Holloway &
Ansari, 2009; Price, Palmer, Battista, & Ansari, 2012). Across all three
indexes of nonsymbolic number comparison, a remarkably consistent pattern
emerged. Overall accuracy scores, the average Weber fraction, and the
numeric distance effect were similar for Chinese and U.S. children. As we
have argued, comparing sets is likely to be a universal cognitive ability,
and the similarity of Chinese and U.S. children should not be surprising.
Also, like IQ, accuracy of nonsymbolic number comparison was somewhat
correlated with mathematics scores, but the lack of difference between the
Chinese and U.S. children’s ability to compare sets meant that numerical
magnitude judgments could not have mediated the effect of nation on math-
ematics proficiency.

Chinese and U.S. children’s ability to compare numbers was examined
similarly. Unlike set comparison, number comparison differed markedly
between the U.S. and Chinese children. In comparing numbers, U.S. children
provided less accurate answers and required a larger numeric difference to
accurately discriminate two numbers. Additionally, because accuracy of sym-
bolic number comparison was correlated with mathematics scores and
because U.S. children provided less accurate symbolic number comparisons,
symbolic number comparison could partially mediate the effect of nationality
on arithmetic performance. Consistent with this conjecture, Opfer et al. found
that nearly half the effect of nationality on arithmetic performance was an
indirect effect that occurred via symbolic number comparison.
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Estimating the Placement of Sets and Numbers on a Number Line:
U.S. Vs Chinese Children

Children’s ability to estimate the placement of sets and numbers on a num-
ber line was also evaluated in terms of overall accuracy and by assessing
the degree of logarithmicity in the responses. Chinese children’s estimates
where a set of dots would fall on the number line were surprisingly more
accurate than U.S. children’s estimates. Additionally, the estimates of Chinese
children were less logarithmic than estimates of U.S. children. Because errone-
ous nonsymbolic number line estimation was somewhat negatively correlated
with mathematics scores and because U.S. children provided less accurate non-
symbolic number line estimates than Chinese children, nonsymbolic number
line estimation would be expected to partially mediate the effect of nationality
on arithmetic performance. Consistent with this conjecture, Opfer et al. found
that almost half of the effect of nationality on arithmetic performance was an
indirect effect that occurred via nonsymbolic number line estimation.

Chinese and U.S. children’s ability to place numbers on number lines was
evaluated and compared similarly (see also Chapter 4 by Okamoto for a related
discussion of cross-cultural differences in number line estimation). Consistent
with previous reports, accuracy of Chinese children’s symbolic number line
estimates was greater than accuracy of U.S. children’s estimates, and the esti-
mates of Chinese children were less logarithmic than the estimates of U.S. chil-
dren (Siegler & Mu, 2008). Because erroneous symbolic number line estimation
was negatively correlated with mathematics scores and because U.S. children
were less accurate at symbolic number line estimation, it was expected that
symbolic number line estimation ability might mediate the effect of nationality
on arithmetic performance. Consistent with this conjecture, Opfer et al. found
that nearly half of the effect of nationality on arithmetic performance was an
indirect effect that occurred via symbolic number line estimation.

Approximately Adding Sets and Numbers: U.S. Vs Chinese
Children

Children’s ability to approximately add sets of dots and numbers (e.g., a+b>
or <c?) was evaluated in both the U.S. and Chinese samples. When approxi-
mately adding sets of dots, Chinese and U.S. children were remarkably similar
in accuracy and the average Weber fraction. In both groups, accuracy
improved as a function of the difference in the logarithms of the numbers
compared, and the magnitude of this distance effect was similar as well. Thus,
although accuracy of nonsymbolic approximate addition was somewhat corre-
lated with mathematics scores, there was very little indirect effect of nation on
math through this route.

Children’s ability to approximately add numbers, somewhat unsurpris-
ingly, did differ between Chinese and U.S. children. Overall accuracy scores
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were higher for Chinese than for U.S. children, and the average Weber frac-
tion was also lower for Chinese than for U.S. children. Because accuracy of
symbolic approximate addition was correlated with mathematics scores and
because U.S. children were less accurate at symbolic approximate addition,
symbolic approximate addition would be expected to partially mediate the
effect of nationality on arithmetic performance. Consistent with this conjec-
ture, Opfer et al. found that a little more than half the effect of nationality
on arithmetic performance was an indirect effect that occurred via symbolic
approximate addition.

Cognitive Mechanisms of Nation Effects on Mathematics
Proficiency

In the previous three sections, independent mediation analyses indicated that
the effect of nation on mathematics proficiency was partially mediated by a
number of symbolic numerical magnitude judgments. These cognitive abil-
ities, however, were largely correlated with one another. As a result, the total
indirect effect of nation on mathematics via these cognitive abilities cannot be
a sum of these partial effects (e.g., more than two different mediators
accounted for roughly half the indirect effect, which is mathematically impos-
sible). Additionally, each independent mediation analysis is associated with
the risk of experiment-wise error. To deal with these issues, Opfer et al. con-
ducted a multiple mediation analysis to measure how much the total effect of
nationality on mathematics occurred via an indirect effect on numerical mag-
nitude judgments and which of these were the mechanisms by which nation
affected mathematics proficiency (Fig. 4). Overall, they found that only a very
small proportion of the total effects of nation on arithmetic performance
occurred directly via nationality itself, whereas almost all of the effect
occurred through the numerical magnitude judgment mediators. Put another
way, if the total effect of nationality on mathematics was the size of the
“learning gap,” almost all of this learning gap was reduced by accuracy of
numerical magnitude judgments.

Although the multiple mediators accounted for almost all of the effects of
nation on arithmetic scores, contribution of individual mediators to the
mediated effects varied considerably. Generally, indirect effects of nationality
through the three nonsymbolic numeric judgments were not significant,
whereas the symbolic numerical judgments mediated effects of nationality
significantly. In contrast, effects of nationality on arithmetic scores were sig-
nificantly mediated by all symbolic numeric judgment tasks. These results
suggest that the effects of nation on mathematics proficiency are mediated
by symbolic numeric performance significantly more than by nonsymbolic
numeric judgments. Additionally, of these putative mediators, only number
line estimation showed a direct effect of nation controlling for differences
in math achievement (Fig. 5).
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CONCLUSIONS

For many decades, American children have lagged behind their East Asian
peers in math proficiency. Efforts to explain this “learning gap” have tradi-
tionally looked for potential differences in input, and these efforts have not
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come up short: East Asian children have been found to have more opportu-
nities to spend time on math, have math instructors that make their time better
spent, and (maybe for these reasons) are more willing to spend time learning
math. Emulating the East Asian model seems promising. However, reforms to
lengthen the American school day or school year, to improve the quality of
American teachers and instruction, and to try to convince American children
that math is worthwhile have not narrowed the gap between East Asian and
American students’ math proficiency in the 25 years since the learning gap
first came to broad attention.

In this chapter, we proposed a very different approach to the problem of
the “learning gap.” Specifically, we hypothesized that the cause of the
learning gap may not be simply a matter of differences in schooling, but a
cognitive difference in representations of numerical magnitude. This cognitive
difference is superficially similar to IQ in that representations of numerical
magnitude also increases learning from a given unit of input and emerges
before formal schooling. Unlike IQ, however, these differences in numerical
magnitude representations almost certainly come from differences in informal
teaching at home. Thus, the learning gap may result from a kind of aptitude
difference (i.e., a greater ability to learn) between East Asian and American
children, but this rests on domain-specific knowledge—namely, representa-
tions of numeric magnitude—rather than a general cognitive ability, and these
representations of numeric magnitude are known to be malleable (Opfer &
Siegler, 2007; Opfer & Thompson, 2008; Ramani & Siegler, 2008;
Siegler & Ramani, 2008; Thompson & Opfer, 2008).

High-quality numerical magnitude representations—assessed by children’s
ability to compare, estimate, and approximately add sets and numbers—
generally correlate positively with math proficiency and have been shown to
increase the ability of children to learn arithmetic. Additionally, evidence sug-
gests that these numerical magnitude representations also differ between East
Asian and U.S. children. These facts led us to hypothesize that American chil-
dren with high-quality numerical magnitude representations might almost be
as proficient at mathematics as East Asian children.

Our preliminary results from a study of Beijing and Columbus students
provided much support for our cognitive theory. Specifically, we found that
accurate numerical magnitude representations were generally associated
with greater math proficiency, and we found that accuracy of numerical
magnitude representations were generally higher among Chinese students
than American ones. Mediation analyses also showed that nearly the entire
effect of nation on math proficiency came via the indirect route of improv-
ing numerical magnitude representations. Thus, when American children
had numerical magnitude representations that were equal to those of their
Chinese peers, they were also just as proficient at mathematics—despite
being in schools with American-length school years and school days,
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American-trained teachers, and presumably the same American attitudes
toward mathematics.

These results are broadly consistent with several lines of previous work.
First, after controlling for Americans’ ethnicity (including Asian and European
heritage) and a broad array of general cognitive abilities (such as working
memory), symbolic number knowledge in first grade has also been found to
predict performance on economically relevant math skills in adolescence
(Geary, Hoard, Nugent, & Bailey, 2013). This relation is not unique to early
math learning: adolescents who show better symbolic number knowledge for
fractions also do better in high school math classes, after controlling for a very
wide range of other predictors (Siegler et al., 2012). Thus, rather than symbolic
number knowledge simply providing a foundation to early math proficiency, it
appears to play a supporting role for proficiency throughout development.

Results from our study of East Asian and American students closely paral-
lel findings about socioeconomic differences in math ability. Like American
students, children low in SES also show deficits in numerical magnitude
representations and math proficiency. Moreover, experimental lessons that
have intervened specifically on low SES children’s numerical magnitude
representations were also able to eliminate the differences between low and
high SES children’s math proficiency. Combined with our cross-national
findings, previous efforts suggest that much of the learning gap between
U.S. and American children could be closed if educational interventions
focused on American children’s relatively poor-quality numerical magnitude
representations.
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