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ABSTRACT
To support online learners at a large scale, extensive studies have
adopted machine learning (ML) techniques to analyze students’
artifacts and predict their learning outcomes automatically. How-
ever, limited attention has been paid to the fairness of prediction
with ML in educational settings. This study intends to fill the gap
by introducing a generic algorithm that can orchestrate with ex-
isting ML algorithms while yielding fairer results. Specifically, we
have implemented logistic regression with the Seldonian algorithm
and compared the fairness-aware model with fairness-unaware ML
models. The results show that the Seldonian algorithm can achieve
comparable predictive performance while producing notably higher
fairness.

CCS CONCEPTS
• Applied computing → Interactive learning environments;
• Computing methodologies→ Machine learning algorithms.
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1 INTRODUCTION
Online learning has received great popularity in K-12 and higher
education as instruction increasingly migrates from conventional
methods [24]. The closing of physical schools worldwide due to
the COVID-19 pandemic has further attracted people’s attention
to online learning [5]. To support online learners at a large scale,
extensive studies have adopted machine learning (ML) techniques
to analyze students’ artifacts automatically and predict their learn-
ing outcomes [30, 32, 33]. These techniques empower knowledge
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discovery at the big data level and characterizations in individual
interaction with instructional tools.

However, limited attention has been paid to the fairness of pre-
diction with ML in educational settings [14]. Studies have shown
that ML models can be biased by demographic factors such as gen-
ders [4, 37]. In the study of Bolukbasil et al., the researchers showed
that natural language processing (NLP) models trained with Google
News article (a widely adopted dataset for NLP models) demon-
strated various stereotypes towards genders. For example, women
were highly correlated with stereotyped professions such as home-
makers, while men were coupled with computer programmers.
Similar biases have also been found in hiring and finance [3, 15],
where participants with specific demographic backgrounds were
more likely to get employed or be granted loans. No exceptions
would be warranted for ML applications in education. For instance,
an ML algorithm may mislabel African-Americans as a high risk
of failure at nearly twice the rate it mislabeled white students. In
another example, Riazy et al. [27] reported that machine learning
models could extensively favor students without disabilities if no
careful examination of model fairness were conducted.

With the increasingly wide adoption of learning analytics in
data-driven decision systems, fairness issues arising from ML algo-
rithms in educational settings should be examined [21]. Moreover,
there is an urgent call to help teachers understand students’ learn-
ing status in online contexts. Therefore, this study aims to explore
the possibility of building an early warning system (EWS) that
could fairly predict students’ learning outcomes in an online math
learning platform. Specifically, we have compared a cutting-edge
ML algorithm to enhance fairness with three commonly used algo-
rithms for educational predictions. The ML models were built to
predict if a student is likely to pass or fail an in-course assessment.
This study aims to initialize a foundation work for the EWS that
could treat over a million active students on the platform fairly.

2 BACKGROUND
Algorithms might not be biased by nature, but the data fed to al-
gorithms can be [38]. The undesired behaviors of algorithms that
reflect humans’ hidden values are algorithmic bias [2]. Fairness in
algorithms aims to avoid such a bias that creates discriminatory
or unjust results [36]. Shin and Park [28] suggested three compo-
nents of algorithmic fairness: indiscrimination, impartiality, and
accuracy. The accuracy in their study is not regarding what users
want but avoiding socially and politically incorrect consequences.
In the meantime, fairness can be factual or perceived [23], where
factual fairness is measured quantitatively with metrics and per-
ceived fairness is perceptions from individuals. This study intends
to address the factual fairness with ML algorithms that can limit
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inherent data biases’ effects on gender and race while achieving
desired predictive accuracy.

Predictive analytics that predicts students’ learning outcomes
based on behavioral data is a widely used approach in learning
analytics research [26]. The viability of using ML models for predic-
tive analytics has been extensively explored in educational settings
[31, 34, 35]. For example, Xing and Du [31] used deep learning
to predict students’ drop-out status temporally based on students’
learning management system (LMS) activities. The results sug-
gested that the model could accurately predict students’ drop-out
status and provide teachers with actionable intelligence. However,
to the best of our knowledge, most research with predictive analyt-
ics focused on the predictive performance of different algorithms
while ignoring their fairness. A few recent studies have demon-
strated the effectiveness of algorithm fairness from a predictive an-
alytics perspective [20, 23, 27]. Nonetheless, most of them focused
on fairness evaluation of existing algorithms instead of adapting
algorithms to achieve better fairness. This study intends to fill the
gap by introducing a generic algorithm that can orchestrate with
existing ML algorithms while yielding fairer results.

3 METHODS
3.1 Research Context and Data
This study uses upper-level high school students’ data on Algebra 2
from Algebra Nation, an online math learning platform developed
by Study Edge. There are 14 sections for the course of Algebra 2,
with each section having an end-of-section assessment of 10 items.
A correction rate above 60% of an assessment is treated as pass.
Since this study aims to build a predictive model that can fairly
provide students with early warnings, only students who regis-
tered in September 2017 and had completed at least one assessment
were selected. Data generated by the participants in the academic
year of 2017-2018 were extracted because Algebra Nation’s use
usually follows the academic calendar. The data consists of 2,761
assessments and 717,402 click-stream data entries by 484 students.
The click-stream data recorded students’ interactions with all the
pages and resources (e.g., lecturing videos, reviewing videos, and
discussion board).

3.2 Features
Previous studies have suggested that students’ behavioral data
can offer significant prediction power to their performance [10,
13, 31]. While other studies have adopted feature engineering to
achieve better predictive performance, it is out of this study’s scope.
Therefore, we used a flat feature structure, which was used in most
previous studies [31]. Table 1 illustrates what each feature stands
for. The combination of assessment id and student id served as
one unit and features were computed for each unit, where only
behavioral data recorded before a unit were retained. Overall, we
used the features to predict a binary outcome on whether a student
is about to fail an assessment.

3.3 Equalized Odds
In this study, we used equalized odds as the metric to inform us of
models’ fairness. While there are several fairness metrics used in
previous research, most failed to comprehensively address fairness

when it comes to learning. For example, the widely used demo-
graphic parity is defined such that the probability of yielding a
positive prediction should be the same across protected groups
(e.g., grouped with genders or races). However, demographic parity
is not ideal in that (1) it only ensures aggregated fairness while
ignoring individual fairness and (2) it does not reflect the true ten-
dency of a disadvantaged group [14, 17, 19]. For example, female
students might have the tendency to enroll in various courses to
find the best fit and thus tend to drop out at the start of courses
after final course schedules have been planned [21]. If constrained
with demographic parity, a predictive model of students’ dropout
status in this context would not be able to respect the fact that
female students tend to have a higher dropout rate. To remedy the
disadvantages of demographic parity, Hardt et al. [17] proposed the
metric of equalized odds, which is defined as

P(Ŷ = 1|A = 0,Y = 1) = P(Ŷ = 1|A = 1,Y = 1) (1)

P(Ŷ = 1|A = 0,Y = 0) = P(Ŷ = 1|A = 1,Y = 0) (2)
, where Ŷ is the predicted outcome of the model, Y is the binary
outcome from the dataset, and A is the comparison group (e.g.,
female vs. male). Essentially, equalized odds are satisfied when a
model yields equal false positive rate (FPR, Equation 2) and true
positive rate (TPR, Equation 1) across groups. In reality, it is difficult
to have the same FPR and TPR in different groups. Therefore, we
have defined a score function of equalized odds as

γ (Ŷ ) =max(|FPRAb − FPRAc |, |TPRAb −TPRAc |) − ϵ (3)

, whereAb andAc are groups for comparison and ϵ is a user-defined
threshold. Scores equal to or smaller than 0 are preferred since they
mean the FPR and TPR of comparison groups are equal to or smaller
than the threshold ϵ .

3.4 Seldonian Algorithm
To ensure the predictive model’s fairness, we adopted the Seldonian
algorithm to achieve better fairness with satisfactory performance.
The Seldonian algorithm [29] was created to define a series of
procedures to help machine learning algorithms behave desirably.
Instead of being a specific machine learning (ML) algorithm, the
Seldonian algorithm serves more as a framework to construct fair
ML algorithms. Therefore, different tasks (e.g., regression and clas-
sification) and existing ML algorithms (e.g., logistic regression) can
all orchestrate with the Seldonian algorithm [25, 29].

Figure 1 demonstrates the implementation of the Seldonian algo-
rithm. In the algorithm, we will first define n tuples of constraints
(дi ,δi ), where дi is a constraint function and 1−δi is the confidence
level that the constraint will be met. For example, if we aim to build
a model that would output an equalized odds score less than 0.02
between females and males with δ being 0.01, we can have one
constraint as

д(θ ) =max(|FPRf emale−FPRmale |, |TPRf emale−TPRmale |)−0.02

, where FPR is the false positive rate, and TPR is the true positive
rate. Undesirable behavior is produced if and only if д(θ ) > 0. This
means that we are restricting the model to have a close false positive
rate and true positive rate of females and males (less than 0.02), and
the confidence that an undesirable behavior will appear is 0.99 (1 -
0.01).
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Table 1: Features used for predictive models and their description

Feature Description
Video Watch Frequency of watching videos
Video Pause Frequency of pausing videos
Video Play Frequency of clicking the video play button
Video Seek Frequency of adjusting video progress
Video Completed Number of videos completed
Correct Answer Review Frequency of watching videos for reviewing correct answers
Solution Video Watch Frequency of watching videos for solution walkthrough
Reviewing Video Watch Frequency of watching reviewing videos for assessment topics
Discussion Post Number of discussion posts created
Assessment Order The order of the current assessment among all taken assessments
History Avg Correct Answer Avg number of correct answers from previous assessments
Previous Correct Answer Number of correct answers from the last assessment

Figure 1: Illustration of the Seldonian algorithm.

D is the training dataset, which will be split into two subsets,
D1 and D2. Then D1 will be passed to the Candidate Selection step,
which is the model learning phase. The model learning phase shares
the main goal with a typical ML algorithm, which is to minimize the
model’s loss. In the example of binary logistic regression, parame-
ters of the model (e.g., β0, β1, ..., βn ) will be adjusted to minimize
the loss function of

J (θ ) = −
1
m

m∑
i
[yi loд(ŷi ) + (1 − yi )loд(1 − ŷi )] (4)

, wherem is the number of entries of data, yi is the actual class (0
or 1) of an entry, and ŷi is the current entry’s predicted probability
from the logistic regression model [11]. However, what makes the
Candidate Selection step different from the learning phase of a
typical ML algorithm is that the Candidate Selection step will also
try to satisfy a series of fairness constraints defined above while
minimizing the model loss within a confidence level. We can use
Hoeffding’s inequality or bootstrap confidence bound to check if
the upper bound of a fairness constraint will be below 0 and thus
satisfies a constraint [29]. While confidence bounds computed with
Hoeffding’s inequality is valid for any distribution, the values tend
to be overly conservative [18]. This often requires an impractical
amount of data to have a confidence bound that satisfies a con-
straint. Therefore, we used a bootstrap confidence bound in this
study to approximate the bounds with a limited number of data

[12]. Bootstrap is a technique commonly used in statistics and ma-
chine learning and has been shown to be an effective approach for
confidence bounds approximation. Figure 2 shows the procedure
of bootstrapping. For example, we can use bootstrap to resample
from D1 with replacement, with each bootstrapped sample having
the size of D1. Statistics will be calculated for each bootstrapped
sample (e.g., Equation 3). After repeating the procedure j times,
where j needs to be a reasonably large number (e.g., 10,000), we
will have j equalized odds scores computed and the equalized odds
scores will form the bootstrap distribution, with which we can get
approximated confidence bounds. We can then check the upper
confidence bound and a penalty for model learning will be given
if the upper confidence bound is greater than 0 (recall д(θ ) > 0 is
undesired).

The Safety Test will use the partitioned dataset D2 to check
whether the parameters candidate θc will help a model achieve
sufficient confidence such that дi (θc ) ≤ 0. This step resembles the
Candidate Selection step, except that the Safety Test will not adjust
model parameters and will solely focus on the constraint checking.

Figure 2: The process to use bootstrap for confidence bounds
approximation.

3.5 Comparison Groups
Under-representation of different races and genders have long been
reported, especially in the context of STEM education. Therefore,
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Figure 3: Distribution of race and gender among all the assessments taken.

this study chose to examine prediction fairness in terms of race
and gender. Five different values were recorded for races in the
dataset: Caucasian, Black or African American, Two or More Races,
Asian, and Unknown. The race variable was then coded into a
binary variable, with 1 beingWhite students, and 0 being non-White
students. Gender was only recorded with binary values: Female
and Male. The gender variable was also coded with 1s or 0s, with 1
being male students and 0 being female students. Figure 3 shows the
distribution of race and gender among all the assessments taken.

3.6 Model Training and Evaluation
In this study, three popular ML algorithms were used to benchmark
with the Seldonian algorithm in terms of prediction fairness of
race and gender, and they are logistic regression (LR), support
vector machine (SVM), and random forest (RF).We implemented the
Seldonian algorithm with logistic regression since its hypothesis
function for prediction and loss function for optimization were
straightforward to modify. Moreover, studies have suggested LR
can achieve comparable performance with other ML algorithms
[8]. SVM was selected because of its robust binary classification
performance and has been widely used in educational settings
[9, 22]. RF was chosen because of its superior performance due to
its ensemble features [6, 16, 22].

The data were split into a training (70%) and testing (30%) dataset
to better evaluate these algorithms’ prediction performance. To find
optimized parameters, we conducted a grid search along with 10-
fold cross-validation on the benchmark algorithms; Model hyperpa-
rameters were searched within a defined space and performances
were measured from multiple rounds of cross-validation and aver-
aged over the iterations. For the Seldonian algorithm, we defined
2 pairs of constraints: (1) a minimum loss with 95% confidence to
avoid overfitting and (2) a maximum equalized odds score with
95% confidence to avoid unfair behaviors. Different values for the
constraints were examined to achieve the ideal results. After model
training, model performance was evaluated on the testing dataset
with metrics such as accuracy, F-measure, and area under the re-
ceiver operating characteristic curve (AUC).

Equalized odds scores were then calculated in terms of race and
gender, respectively, on the benchmark models and the Seldonian
algorithm. The equalized odds scores were defined as the maximum
between the FPR difference and TPR difference between groups
(e.g., male vs. female, white vs. non-white students). This is the same
as Equation 3 with ϵ set to 0. Specifically, equalized odds scores of
the benchmark models were computed first. Then thresholds ϵ for
the constraint (2) of the Seldonian algorithm were selected to see if
better equalized odds scores can be achieved.

4 RESULTS
4.1 Prediction Performance
Table 2 shows the model performance on predicting students’ pass
or fail status of the next assessment. The best-performed models are
bolded. "*" suggests comparable performance from the Seldonian
algorithm. SA stands for the Seldonian algorithm, with the under-
scored values being the maximum equalized odds required in the
constraints. The predictive performance is the same for benchmark
models (SVM, RF, and LR) in different comparison groups. Because
these models’ learning goal is to reduce the model loss and do
not get affected by which group is used for comparison. However,
for the Seldonian algorithm, predictive performance varies since
the learning goal is more than minimizing the model loss but also
satisfying the fairness constraints.

For the race, RF is the best performed model in terms of predic-
tion, with an F1 score of 0.81 and an AUC score of 0.82, followed
by SVM, whose F1 score is 0.79 and AUC score is 0.81. However,
though slightly less performative, two out of the four variants of
the Seldonian algorithm can achieve comparable performance in
terms of accuracy, F1, and AUC. In general, as we require smaller
equalized odds in the fairness constraint, the Seldonian algorithm
generates more unsatisfactory performance. It is worth noting that
the Seldonian algorithm can achieve similar and even slightly better
performance than its direct counterpart, LR.

Similar when using race as the comparison group, for gender,
RF achieves the highest F1 (0.81) and AUC (0.82) scores, and the
Seldonian algorithm can still yield comparable metrics. However,
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Table 2: Models Performance Comparison

Comparison Group Model Accuracy F1 AUC

Race

SVM 0.81 0.79 0.81
RF 0.82 0.81 0.82
LR 0.81 0.79 0.74
SAraceodds0.25∗ 0.81 0.78 0.79
SAraceodds0.20∗ 0.80 0.77 0.76
SAraceodds0.15 0.78 0.72 0.78
SAraceodds0.10 0.77 0.69 0.74

Gender

SVM 0.81 0.79 0.81
RF 0.82 0.81 0.82
LR 0.81 0.79 0.74
SAдenderodds0.05∗ 0.79 0.78 0.77
SAдenderodds0.01∗ 0.79 0.79 0.77

the Seldonian algorithm outputs no solution found (NSF) in this
case, meaning not enough confidence level can be given using
the learned parameters to ensure the fairness. This is why the
actual equalized odds scores were higher than the thresholds set in
constraints (see Figure 4 right).

4.2 Prediction Fairness
Figure 4 shows models’ equalized odds comparisons in terms of
race and gender. For the race, SVM has an equalized odds of 0.2371,
that of LR is 0.3637, and the best-performed RF has an equalized
odds of 0.2626. While for the Seldonian algorithm, the variant with
the most comparable performance has an equalized odds of 0.2082
(F1 = 0.78), whose maximum equalized odds constraint was set to
0.25, followed by another competitive variant (equalized odds =
0.1794, F1 = 0.77). While the other two variants have much smaller
equalized odds (0.1194 and 0.0673) than the benchmark models,
their predictive performances are also less ideal, with F1 being
0.72 and 0.69, respectively. As for gender, SVM has an equalized
odds of 0.2431, LR has an equalized odds of 0.3296, and RF has
an equalized odds of 0.0675. The two variants of the Seldonian
algorithm have equalized odds of 0.0726 (F1 = 0.79) and 0.0856 (F1 =
0.78), respectively. In general, models with the Seldonian algorithm
tend to have lower equalized odds while retaining competitive
predictive performance.When compared with the fairness-unaware
LR, the Seldonian algorithm can predict more fairly with similar or
better precision.

5 DISCUSSION AND FUTURE DIRECTIONS
This study shows that the use of the Seldonian algorithm can
achieve both desirably fair and predictive performance. Although
the choice of thresholds in the fairness constraint seems arbitrary,
there exists the potential to incorporate such values as additional
hyper-parameters of ML models. Researchers can then adjust the
fairness hyper-parameter to balance the accuracy and fairness trade-
off. The gains of fairness with the Seldonian algorithm are notably
high, especially compared to its direct counterpart LR. For SVM
and RF, Seldonian algorithm variants can still achieve comparable
predictive performance while being fairer when it comes to race.
However, for gender, models with the Seldonian algorithm had
slightly higher equalized odds scores compared with RF, suggesting

a less fair result. The discrepancy of achieved fairness in race and
gender can be explained as follows. The fairness-unaware baselines
solely try to minimize training loss. When there is no conflict be-
tween loss minimization and fairness, high-performing solutions
can also be fair (e.g., RF in gender). The finding aligns with the study
byMetevier et al. [25]. Importantly, while the baselines might be fair
in some cases, unlike the Seldonian algorithm, these approaches do
not provide fairness guarantees. However, when there is a conflict
between loss minimization and fairness, the Seldonian algorithm
might start to shine. Figure 5 shows the number of passed assess-
ments in different races and genders. For the race, the proportion
of passed assessments of White students are much higher than that
of non-White students. In contrast, the proportions are similar for
female and male students. The skewed data in the race might have
caused conflicts between loss minimization and fairness such that
high-performing fairness-unaware baseline models failed to retain
fairness.

This study is exploratory by nature and intends to start a foun-
dation work for further endeavors. In the future, we plan to incor-
porate over-sampling techniques such as SMOTE [7]. SMOTE can
help with the data asymmetry in the race synthetically, and we
can understand if the Seldonian algorithm can still achieve better
fairness with SMOTE enhanced data. Meanwhile, we plan to adopt
explainable AI (XAI) techniques to compare fairness-unaware LR
and Seldonian algorithm to understand why better fairness can be
achieved when predictive performance is almost the same. Last, we
will compare fair algorithms (e.g., reductions approach [1]) devel-
oped before the Seldonian algorithm to understand the affordances
of different fair algorithms.
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