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Abstract: In the context of a large-scale randomized controlled trial, our team investigated 
“front line” teaching issues as schools implemented a fully digital, blended learning curriculum 
in mathematics. This paper focuses on observations of instruction within schools that were 
assigned to use the new digital resources. Compared to a business-as-usual control group, 
classroom activity and teaching practices changed in the treatment group. Observers, who were 
blind to student achievement outcomes, found two overall patterns in treatment classrooms 
across five categories of observations. Later quantitative analysis indeed found the “high” and 
“low” patterns could account for some of the variance in achievement outcomes within the 
treatment condition. We explore observed patterns in terms of existing learning science theory 
and suggest areas where further development of the learning sciences may be needed and how 
learning sciences can contribute to improvement of digital, blended learning environments. 

Introduction  
As indicated in this year’s conference theme, AI and automation are changing the nature of classrooms as 
workplaces for teaching and learning. As these changes occur, new complexities arise for learning scientists who 
study classrooms. As the work of teaching and learning becomes distributed across teacher and technology, 
learning scientists may need to change or refine understandings of effective teaching and learning processes. The 
conference theme draws attention to the “imperative to guide commercial development,” as well as the need to 
understand different cultural and educational contexts. Our research investigated a commercially-available digital 
curriculum and we worked closely with the product team to understand the lessons of the study for improvement. 
We also worked in schools in West Virginia, a state with a distinctive regional culture. This paper discusses how 
the learning sciences may need to evolve in order to be responsive to the vision in the conference theme. 

We conducted a randomized controlled trial (RCT) aimed at measuring the efficacy of a new digital 
mathematics curriculum, engaging 46 schools and approximately 2000 students in our research. Overall, we found 
that the vision and challenges described in the conference program to ring true: AI is changing the classroom 
workplace. We observed the classrooms in both the treatment condition (TC), which was using the new digital 
materials and blended learning approach, and in the control condition (CC), which was using “business-as-usual” 
materials and approaches. As we will later describe, we observed broad differences in the structure of classrooms, 
such as the predominance of instructor-led mathematics teaching (CC) versus individual student work at 
computers (TC). For students, the “work of learning” in TC classrooms was also different. For example, TC 
classrooms emphasized independent learning strategies but CC classrooms did not. For teachers, the change in 
the role was quite extensive. For example, teachers were no longer the main providers of instruction. Further, 
teachers in TC classrooms were more likely to use data during class to make instructional decisions; TC teachers 
spent much time intervening with particular students based on data reports (Singleton et, 2018). 

This paper’s investigation of this new AI-rich classroom workplace focuses on classroom observations 
but leverages data from the larger RCT as well. The RCT engaged a large number of schools and our team of 
observers collected data in all 23 TC schools and with all 38 TC teachers. Thus, we have the opportunity to look 
at systematic patterns of teaching and learning that were emergent across many teachers and schools, whereas 
many learning science studies only look within a handful of classrooms. Another advantage of the RCT context 
is that we collected achievement outcome data for all schools, and can control for prior achievement in our 
analyses. This allows us to ask: controlling for prior knowledge, do the systematic patterns we observed in 
different TC classrooms predict differential student outcomes in those classrooms? Thus, we can examine whether 
there is evidence that the observed patterns might be consequential.   

To achieve the kinds of positive impacts envisioned in the conference program, learning scientists need 
to know if their theories are a good match to what goes on in new digital, blended learning classroom 
environments. We argue that the identification of systematic patterns that are consequential can be a good guide 
to where the learning sciences, if further developed, could have stronger impacts with regard to new AI-based 
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teaching and learning workplaces, guiding commercial products, and working within specific cultural settings. 
Within the broad frame of learner-, knowledge-, assessment- and community-centered classrooms drawn from 
the seminal How People Learn (Bransford, Brown & Cocking, 2000), we use our findings to suggest implications 
for ways in which the learning sciences may be fruitfully developed.  

Context: The Learning Sciences as co-evolving with technologies 
The learning sciences have always closely connected new understandings of how people learn (HPL) to emerging 
new technologies for and approaches to learning (Bransford, Brophy & Williams, 2000). For example, earlier 
advances in technology made new representations of mathematics possible, such as dynamically linked multiple 
representations. Learning scientists studied how students make sense of mathematics with linked representations 
(Roschelle, Noss, Blikstein & Jackiw, 2017). Likewise, a long-standing program of artificial intelligence in 
education made it possible to trace (assess) student knowledge and give targeted feedback, and researchers studied 
how learner- and assessment-centered AI approaches could improve learning (Luckin, Holmes, Griffiths & 
Fourcier, 2016). Many earlier learning science studies only examined short curricular unit, because this is what it 
was feasible to field across many classrooms. Further, earlier studies often examined only a few schools or 
classrooms, because getting the necessary technology in place was often hard. 

Now technological platforms make it feasible to deploy techniques like multiple representations and AI 
in a curricular resource that spans a full classroom year. Further, the collection and rapid use of student data has 
become easier, and it is possible to provide teachers with dashboards and reports to guide their work in real time. 
New approaches such as “blended learning” are becoming popular among educators. In blended learning, it is 
expected that teachers and technologies will each have a complementary role in the overall instructional program 
(Means, Toyama, Murphy & Bakia, 2013). Importantly, these infrastructures and approaches have become 
sufficiently commonplace that they can be studied not just in special research-partner schools, but in a sample of 
schools recruited from a whole state. Programs that are year-long and could scale state-wide could have big 
impacts. For learning sciences to play a role in understanding these impacts, it may have to adjust its focus. In 
this paper, we will look at that evolution in terms of the HPL framework of a learner-, knowledge-, assessment- 
and community-centered classroom. 

The math curriculum impact study 
This study, funded by the Institute of Educational Sciences in the US, was intended to investigate the efficacy of 
a year-long, digital, blended mathematics curriculum with a strong AI component. The main hypothesis was that 
grade 5 students in schools that implemented the new mathematics curriculum for a full year would have higher 
mathematics achievement at year end than in schools in a business-as-usual control condition. 

Intervention: Reasoning Mind 
In the TC, schools were asked to use Reasoning Mind’s grade 5 core curriculum (hereafter, “RM”) as their main 
instructional resource. With regard to being knowledge-centered, RM’s instructional approach (Khachatryan et 
al, 2014) is closely modeled on an exemplary international approach and seeks to build complementary facets of 
mathematical ability: fluency with calculations and deep understanding of foundational concepts. It also has a 
strong problem-solving component, with three levels of progressively harder problems and a “smarter solving” 
module.  With regard to being assessment-centered, RM collects copious data as students do mathematical work 
online and continuously monitors student progress. These data are used to ensure the system is learner-centered. 
The system adapts its instruction, the difficulty of problems, and the pace through the materials based on AI 
techniques, so that instruction is personalized for each learner. Further, teachers get useful reports that guide their 
work with specific students (or groups of student). Teachers can assign special assessments to follow up and see 
if their interventions with students paid off or more support is needed. Another important aspect of the learner-
centered approach in RM that aligns with HPL is the focus on metacognition; RM’s pedagogical approach seeks 
to develop independent learning strategies, such as students keeping good notebooks and using them when they 
get stuck, rather than always asking a teacher for help. RM also is notably community-centered. The program 
includes whole class incentives to motivate students. RM builds a strong classroom mathematical culture in part 
by introducing a “Genie” character to whom students relate and who establishes norms for a mathematics learning. 
RM envisions and supports a classroom community where students learn individually, but also where they support 
each other and celebrate successes together, and where teachers have time to care for the needs of individual 
students. Reasoning Mind was also an attractive intervention to study because it had good prior results (Roschelle, 
Bhanot, Patton & Gallagher, 2015) and a strong capability to achieve high quality implementation in many schools 
at once through the role of Implementation Coordinators (Roschelle, Gaudino & Darling, 2016). Previous studies 
had also found high levels of student engagement in classrooms using RM (Ocumpaugh et al 2013). 
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Setting and sample: West Virginia schools 
We conducted this study in West Virginia (WV), a state shaped by its geographical setting amongst the 
Appalachian Mountains; mountains and rolling hills define the region. Our WV-based McREL team expressed 
that their region has a love of place, community, and family, and in our initial contact with schools, we felt we 
could see these attributes reflected in the classroom. WV has low population density and the median household 
income of $42,000 is considerably lower than the national median of $56,000 (Frohlich, Sauter & Stebbins, 2016). 
Throughout the US, low family income and lower mathematics achievement are correlated. WV has been a leader 
in putting strong computing facilities in its schools and connecting schools to the Internet with high bandwidth.  
Since 2011, access to wired connections has improved from approximately 45% to 91% of West Virginians 
(Broadbandnow, 2017). The WV State Board of Education has adopted as its goals to “provide a high-quality 
learning system that (a) encourages a lifelong pursuit of knowledge and skills, (b) promotes a culture of 
responsibility, personal well-being and community engagement and (c) responds to workforce and economic 
demands.” Just prior to this study, WV also adopted curriculum standards in mathematics that set high 
expectations for all students, and the teachers we worked with showed strong commitment and effort towards 
increased mathematics achievement. RM already had an implementation in a few WV schools that was going 
well, which made recruiting easier. We recruited over 50 schools to participate in the two-year randomized 
controlled trial from districts spanning the state, and although a few dropped out for various reasons, 46 schools 
remain in the final data sample we analyzed.  

Research design 
We planned and conducted a randomized control trial. Schools were matched in pairs that had similar prior math 
scores and geographic locations, and then a coin was flipped for each pair. Schools assigned to the TC were trained 
and supported to use RM for two years: a “warm up” year in which the teachers learned the new pedagogical 
approach and a “measurement year” in which we collected student prior and end-of-year achievement data. 
Schools assigned to the CC continued with business-as-usual materials and teaching approaches for 5th grade, but 
as an incentive, they were offered a different RM product for use in grade 2. These students would not reach grade 
5 until the study was over. No CC teachers taught both grade 5 and grade 2, to avoid contamination. 

Measures  
The study collected a very rich array of measures, including teacher interviews and surveys and RM system data. 
However, in the scope of this paper, we focus on only two measures, a standardized test and observations. We 
used the required statewide assessment, the WVGSA, for both end-of-year mathematics achievement in grade 5 
and as a prior achievement covariate in grade 4. This assessment was designed to be adaptive, to align with the 
state’s curriculum framework, and to measure problem solving and not just procedural fluency. 
 A team at McREL designed an observational measure. Designing this measure was a challenge, because 
we wanted a measure that would work in both the TC and CC and the nature of what could be observed in these 
settings turned out to be quite different. A manuscript under development will describe in more detail how the 
measure was designed and refined through different phases of pilot testing in schools (Herman & Bumgardner, in 
preparation). In the course of the refinement process, the McREL team revised the instrument and their training 
until sufficient interrater reliability (> 80%) was achieved. 

We report only on observations from the measurement year, which used an observational instrument that 
was agreed upon by all the partners in the study. In the instrument, an observer in the classroom typed running 
record field notes, guided by a framework with five areas in of observation: (a) on task behavior, (b) motivational 
routines, (c) independent learning strategies, (d) use of data, and the (e) quality of mathematical discussion among 
teachers and students. After making field notes, each observer rated these five areas on a 1 to 3 scale where “1” 
(low or not present or rarely) to “3” (high or frequently), using a rubric that set criteria for the scale levels.  

Data   
We obtained statewide scores for both grade 4 and grade 5 for students in 46 schools, 23 TC and 23 CC. We 
conducted a total of 53 observations in 38 TC classrooms and 15 CC classrooms. We included all the TC 
classrooms because of the greater interest in these, but only a sample of CC classrooms due to limited budget. For 
each observation, we collected a running record plus ratings for that classroom. 

Analysis plan 
For the main impact analysis, the SRI research team set up a two-level hierarchical linear model to account for 
the clustering of students within schools, using the grade 5 student scores as an outcome variable and the grade 4 
scores as a co-variate. In later models, ratings from observations were added as potential mediating variables that 
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might account for additional variance. The main impact analysis is the subject of a forthcoming journal submission 
(Shechtman et al, 2018) and is not reported in detail here. For the analysis of observations, the McREL team 
looked both at the contrast between observations in the CC and TC and also variation within only the TC. The 
McREL team analyzed its observational data for potential variations among classrooms in the TC that might be 
systematic across a set of teachers. They did so without awareness of which teachers or schools had achieved 
higher or lower mathematics achievement outcomes. Independently, the McREL team developed its own sense 
of “low” vs. “high” implementations meeting as a team to review its ratings (through the observation process) of 
the schools it observed, and then analyzed field notes to see if common themes emerged. For further details on 
the quantitative rating, see (Herman & Bumgardner, 2018).   

Findings 
We discuss the main impact findings briefly, for context. Full presentation of findings will be in (Shechtman et 
al, 2018). We then also consider the contrast between TC and CC. We focus thereafter on the findings about 
variation within the TC, and look for systematic ways in which TC classrooms varied and examine evidence as 
to whether those variations were plausibly related to student achievement outcomes.  

Impact findings 
In contrast to our hypothesis, the data did not reveal a 
measurable difference in mathematics achievement 
between TC and CC schools on the WVGSA test. 
Although unexpected, this does not mean that the TC 
was bad for students, indeed the student outcomes did 
not differ significantly between groups. 
 We also found considerable variation within 
the TC. In Figure 1, we illustrate this graphically by 
drawing a bar for each school where the height 
represents the average mathematics score at the end of 
grade 5 for that school. The bars are ranked by score 
and filled by condition. This shows that some schools 
in TC had some of the highest end-of-year math 
scores, but other schools in the TC were among the 
lowest scoring schools. This distribution led us to 
wonder about differences between the schools at each 
end of the distribution, for example, differences in how they did the work of teaching and learning. 

Contrast findings (treatment vs. control) 
Our observers found striking differences between TC and CC classrooms. In general, observed compliance to 
assigned condition was high: TC classrooms were observed to be implementing RM as the central instructional 
resource and CC classrooms were not. Control classrooms looked reasonably traditional. For example, the teacher 
often provided instruction from the front of the room and students often worked on math problems individually 
or in small groups as a teacher (and often additional instructional aides) walked around providing help. 
Technology was available, but not used frequently. In TC (RM) classrooms, students sat down at computers at 
the beginning of their mathematics lesson and began working individually; most students this way most of the 
time.  Teachers typically had a station in a corner of the room with a computer that provided reports on student 
work. The teachers called individual students (or small groups) to their station and worked on targeted issues. 
Aside from these interventions, there was not as much small group work as in CC classrooms.  
 With regard to the five scales in the observation instrument, the observers did not find any statistically 
significant differences between conditions in the degree to which students were on task nor in the observed 
supports for motivation and engagement. There were two statistically significant difference that favored the TC: 
as expected, there was more data use (92% vs. 8%) and more emphasis on independent learning strategies (88% 
vs. 12%). The observers also rated control classroom as higher on the quality of mathematics instruction scale. 
However, they also noted that it was harder to make relevant observations on this scale in the TC classrooms – 
for example, more of quality of instruction was mediated by technology and was hard to observe.  
  

Figure 1. Variation in Achievement by School. 
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Variation within treatment findings 

High rated classrooms  
Nine of the thirty-eight treatment classrooms (24%) received overall ratings of 3 across all subscales. The 
instruction strategies, techniques, and procedures observed across each of these nine classrooms were quite 
similar, with recurring themes emerging. High scoring treatment classrooms had teachers who demonstrated 
comfort and control in managing student behaviors in their classrooms, structuring their classes and lessons in a 
manner conducive to student engagement and learning. Students in such classrooms regularly demonstrated 
familiarity with behavioral expectations and performance objectives, as well as standard classroom procedures. 
In many treatment classes observed, students entered the classrooms at the beginning of the period, obtained 
laptop computers, and signed in to RM to begin their coursework without prompting from instructors.  

Almost all highly-rated treatment classrooms concluded the lessons with a review of students’ 
performance for the day, with teachers highlighting mathematical achievements at both the whole-class and 
individual level. Students in highly-rated treatment classrooms demonstrated apparent investment in their 
mathematical performance—for example, in their commitment to engaging with the RM system. All highly-rated 
treatment teachers were observed employing adaptive learning strategies and techniques that aligned with RM. 
For example, they focused on independent learning strategies, by asking students to use available resources to 
resolve mathematical difficulties before calling a teacher over. Teachers in these classrooms also frequently used 
formative performance data in real-time, using it both to motivate students and to select groups of students for 
one-on-one interventions. With regard to motivation, teachers in the high rated classrooms, tended to exhibit 
community-centeredness by featuring the whole classes daily performance statistics before discussing any 
individual students. In the one-on-one interventions, the mathematics talk in these classrooms more often involved 
students in doing significant amounts of mathematical work; the teacher didn’t do the math for students. However, 
overall, it was hard to observe mathematical knowledge building, in part because teachers often directed students 
to do work on the computers; further, the knowledge-building work that was available in discourse was like an 
“intervention” than a longer-term process of developing understanding. 

Low rated classrooms 
McREL observers rated six of thirty-eight (16%) of classrooms as lower quality across all categories of 
observation. A wider variety of instructional strategies, policies, and procedures were observed across lower-rated 
compared to higher-rated treatment classrooms, though several patterns were consistent. Perhaps the most overt 
trend observed across lower-rated treatment classrooms was the extent to which many of the teachers appeared to 
struggle in implementing effective classroom management. Some students spent extended periods of time 
disengaged from mathematical material in these classrooms. These teachers demonstrated an ability to recognize 
off-task behavior, but demonstrated difficulty in sufficiently addressing it.  

Lower-rated treatment classrooms also differed from one another as far as the extent to which teachers 
established RM-related routines and expectations as well as the extent to which objectives were evident and 
communicated to students. Like higher-rated treatment classrooms, several teachers in lower-rated classrooms 
clearly communicated and referenced established procedures and ensured that students understood what was 
expected of them. In other scenarios, teachers were not observed making significant effort to motivate students to 
use RM as intended. Teachers from three classrooms were not observed incentivizing or encouraging engagement 
with mathematical material to a significant degree, and, thus, students in these classrooms appeared predominantly 
ambivalent as to the extent to which they accomplished RM objectives. Additionally, none of the teachers in 
lower-rated treatment classrooms were observed implementing strategies or practices to facilitate student 
autonomy or independent learning strategies. Across each of the lower-rated treatment classrooms, students were 
reliant on course instructors to make significant progress through the RM curriculum, with several students 
exhibiting an inability to engage in any mathematical work independently. Further, in some classrooms, teachers 
actively inhibited students from independently completing assignments—emphasizing more teacher control in the 
mathematical work of the classroom. In lower-rated treatment classrooms where teachers allowed students to 
collaborate with classmates, students nevertheless appeared to have trouble engaging with mathematical content 
without assistance from instructors.  None of the teachers in these classrooms were observed making references 
to resources that students could use for math learning without involving the teacher. On occasion, a student or 
small group of students appeared to consult the hints provided in RM or refer to the RM library, but these 
behaviors were rare. For the most part, teachers of low-rated treatment classrooms were not observed making 
frequent use of data to inform instruction. Those teachers who used data did so in a more supplemental manner. 
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Exploratory model 
To explore whether the high and low patterns identified by McREL’s observation team might relate to student 
outcomes, we conducted an additional analysis. For this analysis, we included only students of TC teachers in 
either the high (n=10) or low (n=6) pattern classrooms. We conducted a 2-way ANOVA in which the outcome 
variable was assessment score, and the factors were (1) Year (Grade 4, Grade 5), (2) McREL Group (Low, 
High), and (3) the interaction term (Year x McREL Group). Means are shown in Figure 2. We found that both 
main factors were significant. As would be expected, WVGSA scores were higher in Grade 5 than in Grade 4, 
F(1,748)=12.95, p <.001 (while reported on the same scale, the tests were different and aligned with respective 
grades). There was also a main effect of McREL Group, such that students of teachers in High classrooms had 
higher assessment scores than did students of teachers in Low classrooms, F(1,748)=8.40, p <.01. The 
interaction term was not significant, F(1,748)=.43, p = .51, n.s. In everyday terms, this means there was no 
closing nor expanding of the achievement gap. 

Discussion 
Overall, the work of teaching and learning was quite different with the digital, blended learning approach – 
treatment classrooms were quite different from control classrooms. Further, based on observations, we were able 
identify systematic “high” and “low” patterns within the treatment schools. We explored the importance of these 
patterns in a quantitative model that included student prior achievement and student outcomes. The observed 
patterns appear to be linked to classroom mean prior achievement, which raises equity issues. Overall, only 16% 
(6 of 38) of the observed classrooms fit the low pattern. While examining these classrooms is useful in looking 
for improvements, these classrooms are not representative. We emphasize exploratory investigation of these 
classrooms, and do not use this small sample to reach generalizable conclusions. We frame our discussion in terms 
of “uptake” – the uptake of unique RM features and possibilities was different across the two classroom groups. 

Learner-centered 
In high functioning TC classrooms, there was more uptake of learner-centered opportunities. For example, high 
functioning classrooms were observed to place an emphasis on independent learning strategies, but low 
functioning classrooms did not. Likewise, on the quality of mathematics instruction scale, we found that math talk 
in the higher functioning classroom gave the responsibility for doing mathematical work to the students, whereas 
in lower functioning classrooms, teachers did more mathematical work. The suggests that not all classrooms take 
advantage of the opportunities for learner-centered instruction equally. However, one caution is that the observed 
low group also had lower prior mathematics achievement scores; it could be that some students (who are about 
10-11 years old in grade 5) are not ready for independent learning strategies in mathematics and may benefit from 
a more teacher-centered approach. Likewise, teachers may have a stronger repertoire for engaging students with 
higher mathematics achievement in doing mathematical work, but may default to doing more of the mathematical 
work for their lower-performing students. In a traditional classroom, this may be less evident, because there may 
be enough mathematical knowledge in the classroom overall for the teacher to sustain a high quality of 
mathematical discourse. The learning sciences may need to elaborate how teachers could enact learner-centered 
instruction when they are working one-on-one with a large group of students who are coming in with low existing 
knowledge in mathematics and really struggling.  

Assessment-centered 
Overall TC classrooms used real-time data reports to make instructional decisions, whereas CC classrooms did 
not. Moreover, within TC classrooms that were observed to be lower functioning, there was much less use of real-
time data reports. Again, we urge some care in interpretation. It could be that implementation coordinators should 
help teachers to make better use of the data reports. But it also could be that certain factors have to be in place 
before teachers can sensibly use data reports in real time. For example, if students do not stay on task during 
individual work at computers, it may not make sense for teachers to be looking at data reports during classroom 
time. Likewise, if students are uniformly struggling with the mathematics (the observed-low group had weaker 
prior math achievement), it may make less sense to teachers to work with individual students. The learning 
sciences could help us understand better how to leverage a more assessment-centered teaching structure with 
classrooms that are more or less ready to engage in grade-level mathematics. 

Community-centered 
As learning communities, the observed-low classrooms were more chaotic, with many behavioral problems. It is 
unclear why the 16% of classrooms in the “low” group had lower engagement. We are reluctant to attribute it to 
the students alone, because control classrooms with low achieving students did not have the same level of 
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behavioral problems. It could be that the experience of digital and blended learning was less satisfying to some 
groups of students, and the behavioral problems emerged from their frustration and confusion. However, this was 
not observed in prior studies of student engagement with RM (e.g. Ocumpaugh et al, 2013). Our team of observers 
sometimes wondered whether the mix of instructional activities in the TC classrooms had too much of an emphasis 
on individual time at a computer, and whether the classroom community might fare better with social activities 
like small group work and full classroom discussions. We particularly wondered whether the rather quiet and 
individualistic classrooms in the blended learning condition may not have fully utilized the community-
centeredness otherwise evident in the WV classrooms that we visited. Yet, in the observed-high group, we were 
able to see many positive community-centered aspects of classrooms, such as peers helping fellow students and 
new norms being established through the character of the Genie. We noted that teachers spent lots of time working 
one-on-one with students, which can be good for strengthening relationships. 

Knowledge-centered 
It was hard to observe how knowledge building worked in the new, digital learning blended environment. This 
may be a weakness of observational methods. With regard to the method, classic learning science “knowledge 
building” environments make more use of collaborative, social and full-classroom learning – the TC classrooms 
were less collaborative and social and thus knowledge building was less public. Methodologically, we were able 
to observe strengths of the RM instructional materials as we watched individual students use them, for example, 
the recommendation to read “Genie solutions” to understand problem solving processes, which related to the well-
known self-explanation effect (Van Lehn, Jones & Chi, 1992). The RM materials also give strong conceptual 
presentations to students, and these may be stronger that many teachers would typically achieve in their own 
presentations of concepts. Yet, although there is more time and space in RM classrooms for teachers to work with 
individual students on their conceptual understanding of mathematics, we observed variability in the quality of 
the mathematical discourse in TC classrooms – many of the conversations we observed were more procedural 
than knowledge-building oriented. Overall, a challenge for the learning sciences is to come to a better 
understanding of how to measure knowledge-building in environments like those we observed in TC classrooms, 
which less available public knowledge-building discourse.  

Equity 
Overall our analysis revealed a potential equity issue. We observed less uptake of the capabilities of the digital, 
blended curriculum and more behavioral management problems in a cluster of classrooms, and then later found 
the cluster had lower mean prior achievement. Conversely, when our observers noted a cluster with uniformly 
high quality of implementation, we found that the prior achievement scores in those classrooms were higher. 
Causality cannot be determined from this analysis. Either (a) while the digital, blended approach is appropriate 
for classrooms with lower mean prior achievement, specific additional support for implementation is needed or 
(b) the adaptive, blended learning approach may have been less appropriate for classrooms with lower prior mean 
achievement, running into classroom problems despite good implementation support. Overall, we remind readers 
that there is a distribution of low-to-high achieving students in every classroom, so it cannot be inferred from this 
analysis whether the approach has differential benefits for individual students who have higher or lower 
achievement (e.g., there were some students with lower achievement in the classrooms that had higher mean 
achievement). The only relationship we explored was between classrooms that were observed to be making lower 
use of the HPL-related features of RM and classrooms that as a whole had lower mean prior achievement.  

Conclusion 
The ICLS 2018 conference program envisions a future in which the learning sciences helps schools to make sense 
of new teaching and learning approaches, including those with strong AI components, and guides improvement 
in the quality of products. The MCIS project provided an opportunity to investigate a future-oriented learning 
environment, with a full-year digital curriculum that incorporated AI features and a blended learning instructional 
approach. We found that schools were able to implement this curriculum throughout a state. Relative to 
classrooms in the control condition, there was a strong contrast in how the new classrooms functioned as 
workplaces for teaching and learning. We also looked systematically across implementing classrooms for 
systematic patterns that might explain variation in classroom outcomes. We found a pattern in which a group of 
classrooms with lower uptake of the HPL-related features of the new technological approach also were classrooms 
with lower prior mathematics achievement. This points us to one way in which Learning Scientists could help 
product developers – by examining the differential uptake of research-aligned features and examining 
relationships to equity factors, like low prior achievement. As our data does not reveal causality, we would 
encourage future researchers to explore why uptake of HPL-aligned features was lower in some classrooms. 
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 We also believe that the Learning Sciences itself needs to change in order to become more relevant. We 
need better methods for making sense of knowledge building activities when distributed and so thoroughly 
mediated by technology that there is more individual and less “community” knowledge building time.  The 
learning sciences could say more about how to make sense of the kinds of observations we made of lower 
functioning classrooms: were students ready for an emphasis on independent learning? How can teachers have 
good mathematical conversations in one-on-one settings, where they may less variety of students’ ideas to draw 
on than in full class discussions? How do teachers decide when to make use of student progress reports, and are 
there circumstances in which using such reports is more or less useful? Overall, we suspect the learning sciences 
could make stronger contributions as envisioned in the conference program with greater attention to systematically 
describing variability at scale and helping to uncover aspects of variability (and equity) which are consequential 
for learning outcomes.  In this way, we foresee more relevance for the learning sciences by aligning with 
improvement sciences and through a focus on measuring and addressing undesirable variability across settings. 
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