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Abstract. Many national policy documents underscore the ingnme
of 21st century skills, including critical thinking. In pallel, recent
American frameworks for K-12 Science education ¢atl the devel-
opment of critical thinking skills in science, alsgferred to as science
inquiry skills/practices. Assessment of these skdllnecessary, as indi-
cated in policy documents; however, this has pasepleat challenge
for assessment researchers. Recently, some sdieageng environ-
ments seek to assess these science skills. Thetamsylog all stu-
dents’ interactions within the given system, anfiiify leveraged, these
logs provide rich assessments of inquiry skillsreHe/e describe our
environment Ing-ITS Ifquiry Intelligent Tutoring System), that uses
Educational Data Mining to assess science inquiffssas described
as 21st century skills. Additionally, here we describe hawe measure
students’ skills at designing controlled experirmsert lynchpin skill of
inquiry, in the context of complex systems. In dpso, our work ad-
dressex1st century skill assessment in two ways, namely gfiry
(designing and conducting experiments), and inctiretext of complex
systems, a key topic areaZifstcentury skills. We use educational data
mining to develop our assessment of this skilldomplex systems.
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1. Introduction

1.1. Background
Following the launching of Sputnik in October of5T9 policy

makers in the United States began to question tiaditg of science
instruction in schools, which, in turn, instantte call for change in
all science curricula. Post-Sputnik, educators @olcty makers sought
that science literacy should include science cdrkeawledge, inquiry
skills, and understanding of the nature of scigiarkins, 1986). Sec-
ondly, Post-Sputnik reform efforts also called émtucating the broad
populace rather than the top 10% of high achiewnglents. Taken
together, the goal was and continues to be to dpwalcitizenry with
knowledge and skills so that they can participatly in a democracy
(Stokes, 1997).

In more recent reports, policy makers continuenipleasize the
need for 21st century skills (NRC, 2011; Partngrgbr 21st Century
Skills, 2007). In brief, 21st century skills brogdhclude: cognitive
knowledge/skills(e.g., critical thinking), interpersonal skills (e.qg.,
communication and teamwork skills), aitrapersonal skills(e.g.,
metacognitive/motivational, self-regulated learnii@artnership for
21st Century Skills, 2007). Twenty-first centurkills predict both
college grades and future employment success, angcanological
advancements continue, people will be increasiagpected to think in
creative and divergent ways (Lai & Viering, 201Pastly, 21st century
skills are acknowledged as important for developmgpvative think-
ers (Sternberg, 2006; Sternberg & Lubart, 1991 51%awyer, 2006),
necessary for a knowledge-based economy Berei@?2;2Resnick,
2007).

In the present work, we focus on tbegnitive componentsf
21st century skills, which include: critical thimgj, non-routine prob-
lem-solving, and systems-thinking. Specificallyrdh@e assess inquiry
skills, critical thinking in science, in the conteaf complex systems
(cf., Hmelo-Silver, 2007; Jacobson & Wilensky, 208®on, 2008). In
other work, we address intrapersonal skills, namehgagement
(Gobert, Baker, & Wixon, 2015).



1.2. Traditional Educational Assessments

The purpose of educational assessments, broadtyilted, is
to make inferences about students’ knowledge aitid.skraditionally,
as in the case of science, formal assessment is dorthe basis of
standardized tests, which use multiple-choice iténsletermine the
level of proficiency a student has achieved. Itemres developed using
standards, for example, state content standarelse tiests are criterion-
referenced in that they are intended to measumests in terms of
their level of mastery on grade-appropriate knogéednd skills. These
tests are also norm-referenced in that they comgtadents relative to
their peers. These tests are typically implementdg paper and pen-
cil format and multiple-choice items (Anastasi &dira, 2009).

However, given the richness of critical thinkingatved in sci-
ence inquiry, it has been acknowledged that typsca¢énce achieve-
ment testsdo not adequately reflect the complex science knowledge
and inquiry process skills that are important congras of scientific
literacy or of 21st century skills (NSES, 1996; idaal Assessment of
Educational Progress, 2004; Haertel, Lash, Ja&itQuellmalz, 2006;
Quellmalz & Haertel, 2004; Quellmalz, Kreikmeier,eBarger, &
Haertel, 2007; Clarke-Midura, et al, 2011; Leigh®&Gierl, 2011). As
discussed elsewhere (Gobert et al, 2013), thedtmits of these tests
are partly due to the simplified conceptions of tla¢ure of science un-
derstanding at the time that the tests were degi(fi€erbo & Behrens
2012; Mislevy et al, 2012). Thus, more recentljpas been widely ac-
knowledged that multiple choice items are not flétaneans to assess
rich inquiry skills, and instead, tasks need todbeseigned to elicit data
that can address what students know and how theethes knowledge,
rather than elicit data that we can easily coltex analyze (Pellegrino,
2009). In doing so, one can assess both the paunct processes of
inquiry (Rupp et al., 2010).

In short, the problem becomes: how do we use pamyu-
ments about critical thinking in science (NRC, 20Phrtnership for
21st Century Skills, 2007) use to inform the desigd development of
valid, reliable assessments of rich inquiry skillt®ighton & Gierl,
2011). Furthermore, specific to this paper, we asslithow to do this



type of assessment in the context of complex systankey topic area
of 21st century thinking.

13 Ing-1TS (Inquiry Intelligent Tutoring System)

Our design work started with the specificationsvidrat knowl-
edge and skills students should possess (NGAA, )2@18rder to de-
velop a system that could provide fine-grained sssent data on stu-
dents’ science inquiry skills. Our environment, -l
(http://sling.org) is a rigorous, technology-bagedrning environment
that assesses and scaffolds middle school studeriarth, Life, and
Physical Science during learning. Our work recogsithat these envi-
ronments can provide a more fertile basis upon kacdevelop per-
formance-based assessments by leveraging commatiatechniques to
analyze students’ log files of their inquiry proses (Gobert et al,
2012, 2013).

Ing-ITS uses microworlds (Papert, 1980) to engdgdesits in
inquiry. Microworlds are computerized representagiof real-world
phenomena whose properties can be inspected amgjezhgdPea &
Kurland, 1984; Resnick, 1997). Since microworldarshmany features
with real apparati (Gobert, 2005; in press), theyvgle greater authen-
ticity for “doing science”. In turn, microworlds fafd authentic per-
formance assessment of inquiry skills because witmicroworld in
Ing-ITS, students can generate a hypothesis, tiasterpret data, war-
rant their claims with data, and communicate figdirwith regard to
what they discover. These inquiry tasks reflectrtagonal frameworks
for inquiry (NSES, 1996; NRC, 2011), and repreghstcritical think-
ing skills used taeason logically about scientific concepts as otdlé
in 21st century skills documents (Partnership fbst2Century Skills,
2007).

In terms of assessment techniques, we employ tggésithat
originate from Educational Data Mining (EDM henadffip cf., Baker
& Yacef, 2009; Romero & Ventura, 2010), which griram computer
science, human-computer interaction, and measurtefa®M broadly
described, is a set of powerful methods for anatygatterns in educa-
tional data. It has been used for a variety of gja@ compare the effi-
cacy of interventions (cf., Beck & Mostow, 2008; iCkanLehn, &



Litman, 2010), to refine domain knowledge modeler{Koedinger, &
Junker, 2008; Pavlik et al., 2009; Desmarais, Meghikn, & Gagnon,
2006), to build automated detectors of relevantstiocts during stu-
dent learning (Baker et al., 2008; Cetintas et28110; Gobert, Baker,
& Wixon, 2015; Hershkovitz, Wixon, Baker, Gobert, 8o Pedro,
2011), and to do both formative and performancessssent (Mislevy
et al., 2012; Gobert et al., 2012).

Educational data mining can be a powerful methasyedver in
order to inform pedagogy and assessment of ingdatg mining needs
to be guided by theoretical principles about stiglenquiry learning
(Gobert, in press). EDM, particularly exploratorgta mining, on the
face of it, appears to be distinct from the top-dpviorward-design
processes used in the psychometric community (Mysée al., 2012) in
which design principles are derived exclusivelyrirtheoretical princi-
ples. In fact, elsewhere, we articulate how evidetentered design, a
rigorous and detailed framework for assessmengdesias used in our
system (Gobert et al., 2012). Here, we argue thatapproach, which
is both top-down and bottom up, can lead to valatrios for develop-
ing of assessment models. Specifically, here, mprdprocesses are
used to guide the development of categories fod lagging, and bot-
tom-up processes, namely, machine learning (akecdfidumal Data
Mining) are then used to predict hand tagging.

Here we address a key skill of inquiry, namely, igie#sg con-
trolled experiments, a lynch pin skill of inquiffihis skill is commonly
referred to as the control for variables strategfy, Chen & Kilahr,
1999). Of all of the skills underlying inquiry, thione is particularly
difficult for students: students may gather instiéint evidence to test
hypotheses (Shute & Glaser, 1990; Schauble, Gitsalr, 1991), may
run only one trial (Kuhn, Schauble, Garcia-Mila929 or run the same
trial repeatedly (Kuhn, Schauble & Garcia-Mila, 298uckley, Gobert
& Horwitz, 2006). They also change too many vaesldt once (Glaser
et al.,, 1992; Reimann, 1991; Tschirgi, 1980; Sh&t&laser, 1990;
Kuhn, 2005; Schunn & Anderson, 1998, 1999; Harrigorschunn,
2004; McElhaney & Linn, 2008, 2010). They also experiments that
try to achieve an outcome (i.e., make something lasrquickly as pos-
sible) or design experiments that are enjoyablexecute or watch



(White, 1993), as opposed to testing a hypoth&ibkduble, Klopfer &
Raghavan, 1991; Schauble, Glaser, Duschl, Schulzéol&n, 1995;
Njoo & de Jong, 1993).

Having successfully developed detectors for thifl & Physical
science topics (Sao Pedro, Baker, Gobert, Mont#ivlakama, 2013;
Sao Pedro et al, 2012), we conduct our assessraealoppment in the
area of Complex Systems, also referred to as Sgsfdnmking, a key
aspect of 21st Century science knowledge (Lai &rivge 2012). Our
ecosystems microworld targets students’ understgnai the ways in
which organisms interact and have different fundiaithin an ecosys-
tems to enable survival (Sao Pedro, Gobert, & Betid4). Since the
ecosystems environment has multiple variablesaoterected in a non-
linear fashion (Yoon, 2008; Greiff, Wustenberg, &nke, 2012), the
hypothesis space increases (Klahr & Dunbar, 19884 the under-
standing of the effects the independent variablesdependent vari-
ables(s) is more challenging because, as previaiated, the simple
control for variables strategy (cf., Chen & Klahr999), desribed
above, cannot be applied in a straightforward manfige complexity
that arises here is illustrated when contrasteithé¢capplication of this
skill in Physical Science topics. Specifically,fysics phenomena (at
the middle school level) there ame independent andne dependent
variable (ivs and dvs) underlying the causal systdany Life Science
topics, by contrast, are inherently different fréthysical Science be-
cause the former have a number of interconnectad]inear elements
that are interacting in a complex causal systenpo(yY@008; Jacobson
& Wilensky, 2006), as in topics like Ecosystems &l functions.

In brief, students have difficulties with compleyseems because
students view relationships between variables astate, simple, and
direct (Grotzer & Perkins, 2000; Grotzer & Bell-Bas 2003). Addi-
tionally, there are many emergent properties thmatret predictable
from the behavior of individual parts (Wilensky 8egnick 1999), and
students favor explanations that assume centrataaand determinis-
tic causality (Resnick & Wilensky, 1993), ratheamhthinking about
the interconnectedness of multiple variables. im$e of conducting
inquiry, animportant implication that impacts students’ diffity is
that the control of variables strategy (cf., ChenKé&hr, 1999) no
longer works in it is simple form (Bachmann et 2010) because of



the multiple interacting independent variables,, iwhere variables
Variable 1 and Variable 2 interact, changing Vdeaband keeping all
else fixed will yield different results depending the value at which
Variable 2 is fixed. This is extremely difficult festudents to under-
stand (Hmelo-Silver et al, 2007; Wilensky & Resnidi©99; Yoon,
2008). These complexities cause a challenge tolengithool students
both in understanding complex systems and in cdmdpuenquiry in
complex systems (Hmelo-Silver et al, 2007); as wltary of these,
students’ inquiry strategies are also difficuliteasure.

In our microworld, students are said to demonsttia¢ skill of de-
signing controlled experiments when they genenasdstthat make it
possible to infer how changeable factors (e.g.wseed, shrimp, small
fish, and large fish within an Ecosystem) affectcomes (e.g., the
overall balance of the ecosystem) (Sao Pedro, Bakabert,
Montalvo, & Nakama, 2013). This skill relates tophgation of the
Control of Variables Strategy (CVS; cf., Chen & Kita 1999), but
unlike CVS, it takes into consideratiall the experimental design set-
ups run with the simulation, not just isolated, .s&gfial pairs of trials
(Gobert, Sao Pedro, Baker, Toto, & Montalvo, 20829 Pedro, Baker,
Gobert, Montalvo, & Nakama, 2013).

In this paper, we aim to demonstrate how data-rgirilgorithms
can be developed to assess students’ science ynskills (namely,
designing and conducting experiments) in the candéxomplex sys-
tems. This is a well-acknowledged assessment clgglsince this in-
quiry skill is ill-defined, i.e., there are many yga(both correct and
incorrect) that students go about designing andlecimg experiments
(Kuhn, 2005). Specifically, we discuss the develeptrand evaluation
of a data-mined model that classifies the studemis are demonstrat-
ing designing controlled experiments skill (vs.d4bavho are not dem-
onstrating this skill) in a simulation of a compleystem.

3. Method

3.1 Participants

101 eight graders at a Central Massachusetts msgtii@ol participated
in this study. The teachers used the Life Scienagaworld during
their regular science classes after students ldaabeut food webs.
Each student had access to an individual compatengage in the mi-



crowold. 53% of the participants were female stasleand the average
age of the all participants was 15.67 (SD = 1.32).

3.2 Materials

Ing-ITS (Gobert, et al., 2012, 2013) is a web-basedronment in
which students conduct inquiry with interactive slations and inquiry
support tools. The simulations are designed tosassguiry in content
areas aligned to middle school Physical, Life, Badth Science as de-
scribed in the NGSS standards (NGSS Lead Statds}).2Bach Ing-
ITS activity provides students a driving questiomd aequires them to
investigate that question using the simulation toals (see Figure 1
for an example Ecosystems activity). Students nigketheses, collect
data by changing the simulation’s variables andingtrials, analyze
their data, warrant their claims, and communichgsrtfindings. A key
aspect of Ing-ITS is that activities are perfornebased assessments
of inquiry skills. Metrics on students’ skills aderived from the proc-
esses they follow while conducting inquiry and twerk products
(Rupp et al., 2010) they create with the suppafsto

3.3. Microworld and Inquiry Scenarios

The students engaged in inquiry within Ing-ITS eowment
(Gobert et al., 2012, 2013) using the EcoLife satioh. The EcoLife
simulation (Figure 1) is an aquatic ecosystem doim@ big fish, small
fish, shrimp, and seaweed where students condqairinabout how
the populations of producers, consumers, and degsenp are interre-
lated. The microworld consists of two inquiry sceos In the first,
students were asked to stabilize the ecosystemmelsecond, students
were asked to stabilize the shrimp population (teraatively, ensure
that the shrimp population is at its highest). &ach scenario, students
form a hypothesis, collect data by changing theufain of a selected
organism (on the left side of Figure 1), analyz¢éaday examining
automatically generated data tables and populagiaphs (on the right
side of Figure 1), and communicate findings by clatipg a brief lab
report.

This microworld addresses the two strands of thesddehusetts
Curricular Frameworks: (1) the functions of orgamssand the ways in
which organisms interact within an ecosystem timatb&e the ecosys-
tem to survive and (2) the roles and relationstapsng producers,



consumers, and decomposers in the process of emmangyer in a food
web.
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Figure 1. EcoLife design and conduct an experiment stagee,Hstu-
dents add and remove organisms and scan the emwosisinvestigate
how the population changes over time.

4. Data Analysis

4.1. Hand-Scor ed Classification

With log data from 101 students, we carried out teplay tagging
(Baker, Corbett, & Wagner, 2006) to classify studewho demon-
strated the skill of designing controlled experitseinom students who
didn’t demonstrate the skill. This classificatiorlgs a label variable
(i.e., skill demonstration vs. no skill demonsiwad that can be later
used for supervised machine learning of the mddeiext replay tag-

ging, human coders are presented “prptipted” versions of log files



(i.e., clips), that contain textual sequences woflevel student actions,

then coders assign one or more tags (e.g., degigntrolled experi-
ments) per clip. For the EcoLife microworld, theaigrsize of a clip
contains all actions associated with formulatingodtheses (e.g.,
selecting shrimp population as independent varjahfel all actions
associated with designing and running experiments,(increasing the
population of shrimp). After producing these clésations, each stu-
dent’s activity sequences were summarized by crgadi feature set
from the data, which was later used to generat@aehme-learned de-
tector that can categorize who is demonstratingkileof interest (Sao
Pedro et al., 2013). There are several advantafyesing machine-
learned detectors (Sao Pedro, 2013). First, suctielmccan capture
relationships that people cannot easily specifylavieveraging the
human coders’ ability to recognize demonstratiorskifl. Second, as
machine learning approaches use standard methogseidicting how
well models will generalize to new data (e.g., sraalidation), accu-
racy and generalizability of machine-learned modals be easily veri-
fied.

Two coders participated in the hand-scoring ofdiygs. One coder
hand-scored all the clips, and a second coder cthaefirst 50 clips to
compute inter-rater reliability. A kappa of .71 wastained between the
two coders for these first 50 clips. This kappa wassidered to be
adequate and commensurate with coding such dadarirprior work
(Sao Pedro et al., 2013). Within the corpus of ¢éalgglips, 52.2% of
students had demonstrated the skill of controlforgrariables.

4.2. Feature Distillation

To build a data minded model (or detector) for geisig controlled
experiments that predicts the hand-coded labelshether or not stu-
dents demonstrate this skill when collecting data,then distilled cer-
tain features from the log files to use as predsctd the detector. Ini-
tially, we identified and extracted 73 featured tivare based on earlier
literature on students’ inquiry (e.g., Buckley &t 2006; Kuhn et al.,
1992; Chen & Klahr, 1999). In our earlier work, vigther refined
these features by iteratively testing how varyingfgurations of these



features contribute to model performance, and tdetl features that
have good generalizability and construct validigséd on literature
review of indicators that are associated with smemquiry (See Sao
Pedro et al., 2012 and Gobert et al., 2013 foril@etaliscussion of this
process).For the current study, we also used thkdeatures to build a
detector. We briefly describe each feature as\ialo

1.

All actions count: This is a count of all low# actions found in a
clip including all actions in the hypothesize angb&iment phases
of inquiry. These actions include: changing vaesablvhen making
hypotheses; proposing hypotheses; running, pausingsetting the
simulation; changing values of simulation variablddgen designing
experiments; and displaying or hiding the datagald hypothesis
list from the simulation interface.

Complete trials count: The number of trials imiet the student ran
the simulation to completion (i.e., without restagtthe trial).

Total trials count: The total number of triatarted within the clip,
regardless of whether the student allowed the sitiwn to run to
completion.

Simulation pause count: The number of timessiheulation was
paused.

Simulation variable changes count: The numbéimnuods the values
of simulation variables were changed while the stiidvas design-
ing experiments.

Simulation variable changes count related ttedthypotheses: The
number of times the values of simulation varialdeglicitly stated
in hypotheses were changed.

Number of pairwise repeated trials: A count lué pairs of trials
that had identical experimental setups. This carorisiders any
two trials in the entire clip.

Number of successive repeated trials: The sasnthe pairwise
count, except that only adjacent (successive)strfalg., between
Trials 2 and 3, between Trials 4 and 5) are consdle

Number of pairwise controlled trials, with refgeaA count of the
pairs of trials in which exactly one simulation izdle (independent
variable) had different values between trials, atidther variable
values were identical (cf., Chen & Klahr, 1999).cBese it is a
pairwise count, any pair of trials is consideredttkermore, if any
trial is a repeat of an earlier trial, it is sthnsidered in this count.



10. Number of successive controlled trials, withe&ts: Same as the
pairwise controlled trial count, except that thisiat only considers
successive trials.

11. Number of pairwise controlled trials, ignorirgpeats: Same as the
pairwise controlled count previously mentioned, eptcthat if a
trial is a repeat of an earlier trial, it is nohstdered.

4.3. Detector Generation and Validation

Continuing with the EDM-based method used in owugr (Sao

Pedro et al. 2013; Gobert et al. 2013), machaaened detectors were

developed using the hamwdded clips (i.e., label variable) and the 11

features distilled from students’ log data (i.eredictor variables)
within EcoLife using RapidMiner 6.3 (Mierswa, Wurstlinkenberg,
Scholz, & Euler, 2006). We used J48 decision tragerithm with
automated pruning as method to generate the detdd® decision tree
algorithm is an open-source implementation of tHe5Clecision tree
algorithm (Quinlan, 1993), and it has been widedgdito detect behav-
iors in technology-enhanced learning environmeatg.( Baker & de
Carvalho, 2008). J48 decision trees are partiguigolod at reducing
over-fitting (i.e., the model is fitting to noisather than the underlying
relationship) as it uses a post hoc pruning apprdhat reduces tree
complexity (Quinlan, 1993). That is, the pruningogess removes
nodes of the decision tree that does not provigiefstant information,
which yields a comprehensible decision tree withoutecessary com-
plexity.

The J48 decision tree has two parameters that wecoatrol:
minimum number of instances per leaf (M) and thefidence thresh-
old for pruning (C). In our previous work (Sao Reet al., 2013), we
set these values at 2 for M and .25 for C (whiaghtae default values
for this algorithm). For the current study, we gt confidence thresh-



old at .25, and the minimum number of instancedgusdrwas put at 10
to yield a parsimonious tree that can is more gdizable. This setting
was selected to about 5% of the data points availdo further mini-

mize possible over-fitting, sifold crossvalidation was conducted at

the student level, meaning that detectors weraddaon five randomly
selected groups of students and tested on a sigthpgf students. By

crossvalidating at this level, we can increase configetiat detectors

will be accurate for new groups of students. Wesehthis technique
for the following reasons. J48 decision trees Hadeto successful be-
havior detectors in previous research (e.g. Wakin&s Heffernan,

2006; Baker & de Carvalho, 2008; Sao Pedro et@all3). Also, deci-

sion trees produce relatively humiwterpretable models (i.e., attributes

and associated rules). For example, as depict&iyure 2, each node
Is essentially a feature and the value associaittditithat can be used
to classify which incident is demonstrating designifor controlled

experiments. This model in turn can be used tosassteident behavior
or integrate within the existing learning enviromtgeto update student

model reatime (Mislevy, Behrens, Dicerbo, & Levy, 2012).

5. Results

The confusion matrix (Table 1) captures raw agregnbetween
the detector’'s prediction and the human coders's tagder stu-



dentlevel crossvalidation. For example, the first column of thenfte

sion matrix (“Hand-coded Positive”) indicates tlmhong 118 hand-
coded clips labeled as demonstrating designingraibed experiments
skill, the machine learned detector also classthes as the case while
7 cases were classified as negative. We used plertermance metrics
to evaluate the detector. Precision (.92) and r¢@&) are simply ac-
curacy of the detector where precision indicates rditio of correct
positive predictions and recall indicates the ratigositive cases that
were captured by the model. We further calculatetled’s Kappak),

a widely used metric to evaluate goodness of dateanmodels (Baker
& Inventado, 2014). Kappa assesses whether thetdeie better than
chance at identifying the correct action sequengelsappa of 0 indi-
cates that the detector performs at chance, andppdof 1 indicates
that the detector performs perfectly. This decidiee gave a kappa of
.795 indicating a high agreement between the detisee’s and hu-
man coders’ classification of students who demaitstdesigning con-
trolled experiments. We should note that this vakes a little bit
higher than the inter-rater reliability of .71, whimight indicate possi-
ble over-fitting.

Figure 2 illustrates a fragment of the decisiore generated for the
detector. Because a decision tree contains atsband associated
rules, it is more interpretable than other minipgr@aches (Bresfelean,
2007). For example, the very first feature usedlagsify students who
demonstrate designing for controlled experimentd & “Adjacent
controlled with repeats” (i.e., feature # 10 frone tist of the detector
features). Following down the decision tree, ifréhés no controlled
experiment (smaller than 1), then the detectodi®s® of 98 confident
that the incident is not demonstrating the skik.(iN for no). If the
incident has “Adjacent controlled with repeats” sbgreater than 1,
then the detector uses the second feature, “Adjamarirolled with no
repeats” to continue classification. The decisime tobtained for the
present detector is very much aligned with our ey detectors ob-



tained using the data from Physical Science micrlso(e.g., Sao
Pedro et al., 2013)
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Figure 2. A fragment of the decision tree generated fordisector.

6. Discussion and Conclusions

lll-defined science inquiry (e.g., Clarke-Miduragd@e, & Norton,
2011; Gobert, Sao Pedro, Baker, Toto, & Montalv@il2), such as the
skill of designing and conducting experiments pnéseany assessment
challenges since traditional multiple choice iteoanot be used to
assess such skills (Haertel, Lash, Javitz, & Qualm 2006;
Quellmalz, Kreikmeier, DeBarger, & Haertel, 200&ighton & Gierl,
2011). In the present work, there is added difficih measuring stu-
dents’ experimental strategies during inquiry beseawe sought to as-
sess these skills in a complex system, namely, ysta®s. This adds
an assessment challenge because as previouslythetsoiple control
for variables strategy, whereby students shoulg trae target variable
of interest and hold the remaining variables cartstzannot be applied
because the independent variables interact in glesntausal system



leading to the change in a dependent or set obi@s. Thus, the goal
of this paper was to determine whether our EDM-tasstector, used
in other domains in our work (Sao Pedro et al, 2@dbert et al, 2012,
2013), could be successfully used to score studskitls at designing
and conducting experiments when applied to logsfioquiry in a
complex system microworld with multiple interactingriables.

As described in the results section, the detecfmei$ormance was
quite high and indicate that the detector can lexlus evaluate stu-
dents’ inquiry performance for the designing fonttolled experiments
skill in the Ecosystems activities. It can distirgjuwhen a student de-
signed controlled experiments in Ecosystems fronerwthey did not
79% of time K = .795). This performance is on par (slightly eett
than) with previous metrics computed at the studkardl across our
three physical science topics for this skilranging from .45 to .62
across studies (Sao Pedro, Baker, & Gobert, 20023)2

It is important to note that the features usedHerpresented detec-
tor were the same features that were used in thela@ment of our
detector for this skill in Physical Science (Sadeet al, 2013). There
are several explanations for this. First, givert tihiés task, though a
complex system per se, it is representative ofrly faimple system in
that only 4 variables (i.e., seaweed, shrimp, sriigtl, and large fish
populations) are interacting. Specifically, Naragaret al., (2003) laid
out five characteristics of complex systems afed: (1) they exhibit
hierarchical structures composed of subsystemscantgponents; (2)
their subsystems and components exhibit naturahwers or engi-
neered functions; (3) the component/subsystem hefsagausally in-
fluence other components/subsystems; (4) the patigaigof the causal
influences create chains of events in the operatidhe overall system,
and gives rise to its overall behavior and functiamd (5) these chains
of events extend in temporal and spatial dimensidasuch, it appears
that our Ecosystem microworld, if viewed with thesgeria, is at the
less complex end of the spectrum. Additionally, &omosystems mi-
croworld can be solved using an “engineering apgrgas outlined by
Narayanan, and thus our features used to detedetign of controlled
experiments can get us “pretty far” in detectings tbkill in students
because there are only 4 interacting variablesh\tits in mind, it is
not surprising then that the same features carsée for both Physical



science topics and Ecosystems. It is an empiricaktion whether the
same set of features would yield reliable metrios dvaluating this

skill in a “more complex” complex system (say w@hnteracting vari-

ables), as outlined by Narayanan et al. (2003).tlh@ropossible expla-
nation for these findings is that students’ skalfsthis task are bimodal,
i.e., either very buggy or very skilled and thuse detector, as con-
structed, can discriminate “good” from “poor” exde® of designing

controlled experiments in these data.

In closing, this work contributes to the literatwe performance-
based assessment, and to the assessment of stgéeistat designing
and conducting experiments in complex systems. T a&gether with
our earlier work (Sao Pedro, Baker, Gobert, Momtal®& Nakama,
2013; Sao Pedro et al, 2012) our results demosstra potential
power of EDM for the broad scalability of our assaents across mul-
tiple science domains. Lastly, given their genesddility and power,
these techniques provide a solution towards assgssis ill-defined
skill in the context of complex systems, also nefdrto as systems
thinking, as called for in reform documents on 2gentury skills
(NGSS, 2013; Partnership for 21st Century Skil@) 2. As previously
stated, more research is needed with a other canggtems in which
there are a greater number of interacting varialges, to address how
well these techniques can validly assess studesxperimentation
strategies. This work represents an advance irssis®at, in particular
in complex systems, a here-to-fore difficult cotitexwhich to conduct
inquiry assessment, given the multiple interactiagables. As such, it
also represents a step towards the assessmerttesfioquiry skills in
the context of complex systems, a necessary compofi@T" Century
skills (NGSS, 2013; Partnership for 21st Centurfi§K2007).
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clips

Hand-coded Hand-coded
Positive Negative
Predicted Positive 111 10
Predicted Negative 7 98

Precision = 0.92, Recall =0.94= .795
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