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A B S T R A C T   

With recent advances in high-resolution satellite imagery and machine vision algorithms, fine-grain geospatial 
data on population are now widely available: kilometer-by-kilometer, worldwide. In this paper, we showcase 
how researchers and policymakers in developing countries can leverage these novel data to precisely identify 
“education deserts” – localized areas where families lack physical access to education – at unprecedented scale, 
detail, and cost-effectiveness. We demonstrate how these analyses could valuably inform educational access 
initiatives like school construction and transportation investments, and outline a variety of analytic extensions to 
gain deeper insight into the state of school access across a given country. We conduct a proof-of-concept analysis 
in the context of Guatemala, which has historically struggled with educational access, as a demonstration of the 
utility, viability, and flexibility of our proposed approach. We find that the vast majority of Guatemalan pop
ulation lives within 3 km of a public primary school, indicating a generally low incidence of distance as a barrier 
to education in that context. However, we still identify concentrated pockets of population for whom the distance 
to school remains prohibitive, revealing important geographic variation within the strong country-wide average. 
Finally, we show how even a small number of optimally-placed schools in these areas, using a simple algorithm 
we develop, could substantially reduce the incidence of education deserts in this context. We make our entire 
codebase available to the public – fully free, open-source, heavily documented, and designed for broad use – 
allowing analysts across contexts to easily replicate our proposed analyses for other countries, educational levels, 
and public goods more generally.   

1. Introduction 

Developing countries have recently made significant strides in 
improving fundamental educational outcomes like literacy rates and 
primary school enrollment. For instance, net enrollment in primary 
school worldwide went from 72% in 1970 to 89% in 2018, thanks to 
widespread efforts and strategic investments from governments and 
international agencies (World Bank, 2017a). These encouraging ad
vances have motivated a corresponding change in the policy priorities of 
development organizations and policy institutions from getting students 
into school, to improving the learning outcomes of students while 
attending school (World Bank, 2017a). However, despite this mean
ingful progress in terms of enrollment, much of the developing world is 
still far from achieving universal education. For instance, 1 of every 6 
age-appropriate children for primary and secondary school in 
low-income countries remained out of school by 2018 – a total of 258 
million children around the world (UNESCO, 2019). 

While the particular reasons students remain unenrolled in school 
varies by context and individual, available evidence shows that actually 
having a school physically nearby is the first-order necessity for 
attending school and improving human capital. As Evans and Mendez- 
Acosta put it, “ultimately, construction is likely a necessary condition 
for other interventions to work when there are insufficient schools” 
(Evans and Mendez-Acosta, 2021). As such, ensuring that the full pop
ulation of a region has reasonable physical access to a school is a critical 
first step in this pursuit of universal school enrollment. Adequately 
addressing this need requires that policymakers and researchers identify 
highly localized areas in which populations lack physical access to 
school. Yet to date, fine-grain analyses of this kind for developing 
countries have been logistically and financially prohibitive due to the 
costs of conducting local surveys and standing up the extensive analytic 
infrastructure required. 

In this paper, we develop an open-source analytic framework to 
precisely identify areas of lower physical access to schools (i.e., 
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“education deserts”, per Hillman, 2016) using recently available esti
mates of the distribution of population across nearly every square 
kilometer on the planet (WorldPop, 2018). By cross-referencing these 
publicly-accessible data with administrative records on school locations 
within a given country – data that are also broadly available and 
accessible to the public across many contexts – we can empirically 
quantify the extent to which distance to school is a problem within a 
given country, and further identify the exact areas, if any, where people 
do not have access to schools nearby. Prior analyses of educational ac
cess, particularly in developing countries, were typically limited to 
characterizing broad regional tracts, such as counties or departments (e. 
g., Lehman et al., 2013), or local areas with extensive data collection 
resources, such as larger urban centers. By comparison, our framework 
can identify education deserts across nearly every country in the world 
down to the 1 km2 level – a resolution substantially more amenable to 
targeted policy interventions like school construction when paired with 
the contextual expertise of local policymakers. To provide a demon
stration of this analytic framework in the present paper, we exemplify 
our approach in the Guatemalan context, a country which has histori
cally struggled with educational access and equity. 

Ultimately, our analytic framework offers a multitude of actionable 
insights for policymakers and researchers. First, it allows us to estimate 
how far individuals in every square kilometer of a country must travel to 
reach a school – analyzable separately by primary/secondary/post
secondary schools, public/private, or other categories of interest. We 
further visualize these results using a variety of figures and maps to 
make the wealth of output easily parsed by policymakers. Second, we 
can re-contextualize these results by setting a baseline “threshold” norm 
of what should constitute reasonable physical access to school and thus 
identify education deserts. For example, if policymakers wish to ensure 
that every child lives within 3 km of a school (a commonly used inter
national benchmark),1 our framework can quickly identify what pro
portion of the population lacks this access, and precisely where those 
populations are located. Such insights allow for a more nuanced un
derstanding of regional-level enrollment rates and potential barriers to 
greater enrollment, as well as changes in physical access over time. 
Third, using this same threshold definition for an education desert, our 
framework can algorithmically identify school construction sites that 
would most reduce the share of population living in an education desert 
and thus maximize the efficiency of school construction as a lever for 
improving educational access. To illustrate the potential value of this 
algorithmic optimization, we conduct a simulation analysis in 
Guatemala and find that building a mere 350 optimally-placed schools 
based on the algorithm’s recommendations from 2008 data would have 
had the same impact on the share of population living in a public pri
mary school desert as the 7000 schools that were actually opened in the 
ensuing decade. Finally, we provide guidance for analysts who wish to 
further refine these analyses to account for geographic factors like 
elevation, impassable terrain, and similar considerations. 

Most importantly, we deliver all of these analytic components 
in an extensively documented open-source codebase alongside this 
manuscript designed around the goal of “plug-and-play” utility; 
assuming an analyst can obtain, at minimum, school location data for a 
given country context, the entirety of our main analysis can be 
replicated with minimal effort, zero cost (all requisite software and 
packages used in our analysis are also free and open-source), and only 
modest computational resources.2 This code base is publicly available 

at: https://github.com/brhkim/mapping-education-deserts, from which 
the code can be downloaded, and adapted by other analysts. Indeed, 
while we focus on Guatemala for the body of this manuscript, we include 
in the appendix parallel analyses for Peru, Costa Rica, Tanzania, Kenya, 
Rwanda, and South Africa, as a testament to the portable nature of our 
analysis. Aligning our codebase to analyze each additional country takes 
as little as 10 min, excluding time for the computation itself. And while 
our analysis is geared towards assessing the accessibility of schools, our 
codebase requires only clerical adjustments to instead analyze the 
physical accessibility of any other statically-located public good (e.g., 
vaccination sites, water sources, libraries, hospitals, etc.). 

While our findings ultimately show that physical access to public 
primary schools is not a prominent barrier to universal school enroll
ment in Guatemala, we observe meaningful variation in the extent to 
which this is true across the country. Moreover, this analysis then offers 
empirical evidence to suggest that low regional enrollment rates in 
Guatemala are more likely the result of barriers besides physical access – 
insights that could prove invaluable for policymakers moving forward. 
In sum, we argue that as policymakers seek to traverse the last mile in 
school access and enrollment, fine-grain geolocated data infrastructure 
and identification algorithms like the one we propose here can offer 
enormous utility by ensuring that school investments are made in areas 
where they would have the highest returns in terms of educational 
access. 

The rest of the paper is structured as follows. Section 2 describes the 
background and conceptual framework for this paper. Section 3 de
scribes the data sources and Guatemalan context we focus on to 
demonstrate our analysis. Section 4 describes our main methodology, 
Section 5 reviews our main results for Guatemala, and Section 6 de
scribes how the main methodology can be expanded and adapted to 
produce additional analytic insights. Finally, Section 7 explores the 
implications and possible applications of this analysis. 

2. Background 

2.1. School proximity and educational outcomes 

Previous research is clear in highlighting the educational benefits of 
policies that target school construction in areas which are underserved 
by educational institutions. In a meta-analysis of the effect of physical 
inputs on educational outcomes from 1990 to 2010, Glewwe et al. 
(2014) find that there are five high-quality studies on building new 
schools in developing countries, which all find consistently positive ef
fects on enrollment and the time the students spend in school. More 
recently, Evans and Mendez-Acosta (2021) review 6 new studies on 
school construction in Africa since 2014, finding general increases in 
enrollment and learning across contexts, and highlighting that these 
programs seemed most effective when physical access to schools was 
indeed the binding constraint to school enrollment (e.g., in rural areas 
with few or no schools nearby). Similarly, in experimental work in 
Afghanistan, Burde and Linden (2013) find that the construction of 
community schools that decreased students’ physical distance to school 
increased enrollment by 47 p.p., raised test scores by 0.59 standard 
deviations, and helped girls more than boys, nearly eliminating the 
gender gap in enrollment. Duflo (2001) also shows that school con
struction in places in Indonesia where there were no or few schools led 
to returns to education of 6.8–10.6 percent in Indonesia – which in turn 
translated into long-run and intergenerational effects (Akresh et al., 
2021) – and Koppensteiner and Matheson (2019) demonstrate that 
secondary school construction in Brazilian regions previously without 
schools led to a substantial decrease in teen pregnancy. 

Not only is there evidence for the benefits of school construction on 
educational outcomes, but parents themselves seem to also favor school 
proximity. For instance, Solomon and Zeitlin (2019) run a 
discrete-choice experiment with Tanzanian parents, in which they find 
that parents indeed value outcomes (i.e., school test scores) and school 

1 Theunynck (2009) notes that this norm is in line with the recommendations 
of the International Institute for Education Planning (IIEP) in Paris and the 
World Bank (Gould, 1978).  

2 We were able to replicate our analysis on a single consumer-grade laptop, 
which took approximately 1 h to complete our main analytic components. 
Analytic extensions will take substantially longer depending on country size but 
should impose no additional hardware constraints. 
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proximity more than other inputs such as pupil-teacher ratios and desk 
availability. They find that the average travel distance to school in 
Tanzania is about 5 km, but that parents are willing to trade off more 
positive reported outcomes for proximity. For instance, parents are 
willing to send their children an additional 1.16 km for a school that 
scores about 8% higher over the mean on average on a primary exit 
exam. Conversely, similar work in Kenya by Ngware and Mutisya (2021) 
found that poor households often sent children to low-fee private 
schools because of physical convenience, as opposed to other factors like 
educational quality. 

In all, these studies elucidate the idea that enrollment in these con
texts is often negatively related to distance to education (i.e. that the 
distance elasticity of enrollment demand is negative) due to the logis
tical constraints and costs that greater distance imposes, a dynamic also 
well-studied in the contexts of U.S. higher education (see Alm and 
Winters, 2009, for a helpful review) and K-12 school choice markets (He 
and Giuliano, 2018). Thus, targeted school construction in areas where 
there are few or no schools seems to be, perhaps expectedly, a powerful 
way to improve school enrollment, as well as other important indicators 
along the lines of learning, gender parity, and equality of opportunities 
more broadly. 

2.2. School proximity as one barrier to access of many 

In spite of the strong evidence in favor of building schools in remote 
areas with low physical access to schools, little is known about how 
researchers and policymakers can best understand the extent to which 
distance, specifically, may be a barrier to enrollment for certain sub- 
populations and geographic areas on a comprehensive scale. For 
example, while local school enrollment rates are often referenced as a 
primary metric of school accessibility, these measures could be driven 
by a variety of context-specific issues ranging from family finance, 
motivation, cultural priorities, as well as physical access – each of which 
require drastically different policy interventions in circumstances where 
resources for such interventions are scarce. Relying on enrollment rates 
to guide intervention in this manner then masks to a large degree the 
potential heterogeneity in physical access to schools by region, locality, 
or settlement pattern. In order to maximize the effectiveness and impact 
of any investments made in educational access across developing na
tions, policymakers would ideally be able to differentiate between the 
previously described scenarios using a data-driven, empirical approach. 

As an illustration of this quandary, the World Bank reported in 2016 
that 84% of all age-appropriate children in Tanzania were enrolled in 
primary schools (World Bank, 2016). It is nevertheless unclear what the 
barriers to access look like for the remaining 16%. One can imagine a 
scenario where these students would attend school if one were available, 
but currently lack access; conversely, it could be that they currently have 
physical access, but choose not to enroll for other reasons like fees or 
high opportunity costs. Both stories would be consistent with the overall 
aggregate statistic, but they would require drastically different policy 
recommendations. In the case of the first scenario, policymakers might 
consider policies like investment in school construction and infrastruc
ture, whereas investment in outreach campaigns or scholarships could 
likely be a higher priority in the second scenario. In short, without more 
fine-grain data than aggregate enrollment statistics, it is infeasible to 
systematically assess the varying educational needs in terms of 
increasing access to and enrollment in school. 

In order to conceptualize the policy issue described here, we borrow 
the term “education deserts” in the spirit of Hillman (2016). Hillman’s 
study uses data on the location of higher education institutions within 
commuting zones in the United States – defined by the U.S. Department 
of Agriculture as clusters of counties that form discrete labor market 
regions using detailed journey-to-work data (USDA ERS, 2019) – to 
identify communities that do not have reasonable access to higher ed
ucation. While we focus on calculating actual distance to primary edu
cation in developing countries in the present analysis, the core of 

Hillman’s analysis is the same as ours: the systematic identification of 
areas without physical access to education given a particular definition 
for access. More broadly, the international education literature refers to 
this type of rule regarding optimal school construction and placement as 
a “norm” (Theunynck, 2009; Lehman et al., 2013), and categorizes 
distance under the norm of “accessibility and efficiency.” Previous pol
icy and research efforts to establish these accessibility and efficiency 
norms have generally focused on selecting a maximum acceptable dis
tance that children would be expected to travel to school, thus defining 
the “catchment area” for schools. For example, a commonly applied 
distance norm is to locate schools within a radius of 3 km from students’ 
homes (Gould, 1978; Theunynck, 2009), though these numbers are often 
context-specific and can be sensitive to factors like mountainous areas 
where the effort of traveling such distances can vary greatly. Another 
example is Lehman et al. (2013), who report that in rural Mali, the 
distance norm in 2004 was set at 5 km.3 

While these norms have been pervasive in the theory underpinning 
school construction, it has long been difficult to actually implement 
them at scale into decision-making frameworks given the costly and 
time-consuming nature of collecting such data for any given locality. For 
instance, Lehman et al. (2013) set out to do this in Mali, across 12 of the 
country’s 70 educational administration districts. Ultimately, only 8 of 
these 12 intended districts were successfully georeferenced by sur
veyors, identifying all the schools, villages, and hamlets within them. 
While the Lehman et al. (2013) report is an extensive and valuable effort 
to quantify physical access to schools, the dependence on in-person 
surveying of schools, villages, and population makes the marginal 
costs of including new areas using this methodology prohibitively high 
for many. This is true in terms of financial costs, as well as logistical 
difficulty for areas that may be too remote or afflicted by conflict. 

3. Data and study context 

3.1. Data specifications 

Our main methodology, by contrast, requires only two critical data 
components: the locations of schools across a country (through pairs of 
latitude and longitude coordinates), and the geographic distribution of 
population across a country. For the methodological extensions that we 
articulate in this paper, we further incorporate data on elevation geog
raphy to examine the repercussions of alternate “pathing” algorithms to 
school, a second wave of historical schools and population data to 
examine trends over time, and regional enrollment rates to facilitate 
comparisons across traditional and geographic measures of access. 

School location data is perhaps the least standardized across contexts 
of our data requirements in terms of how countries report it, and stands 
as the primary barrier to replicating our analysis broadly. Still, this in
formation is commonly obtainable through administrative records in 
many countries, either as latitude-longitude coordinates, or as physical 
addresses that are easily translated into coordinates through “geo
coding.” Recent grassroots efforts using commonly available modern 
technology have also shown that school locations can be “crowd
sourced” in contexts where the government has not actively located 
where all the educational institutions are. For instance, Mulaku and 
Nyadimo (2011) describe the “Kenyan School Mapping Project,” where 
the researchers identified and geolocated over 70,000 institutions across 
the Kenyan territory. 

As is the case with any secondary data analyses, the exact process 
and scope of data collection for these administrative datasets will have 
meaningful repercussions for the robustness and interpretation of ap
plications of our geospatial analysis. Therefore, researchers should be 

3 If a reasonable estimate for the average walking speed of a 12-year-old is 5 
km/h (which is faster than for younger children), this would imply a 2-h, daily 
journey to school (Cavagna et al., 1983). 
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careful to interrogate these data accordingly before applying the algo
rithm we propose. For example, what are the formal conditions for a 
school to be included in the data? Are there relevant institutions likely to 
be excluded, such as private or parochial schools?4 And how might such 
details affect specific areas, contexts, or populations differentially? 
Moreover, the concept of location should itself be interrogated. For 
example, if studying a context in which schools commonly have several 
linked campuses, or typically large campuses relative to the resolution of 
population data used for analysis, using a singular set of coordinates per 
school could understate access or imply unwarranted precision.5 

For the purposes of this paper, we use government administrative 
data that focus exclusively on locating publicly-run primary schools in 
Guatemala in 2017 (Ministerio de Educación, 2020) and 2008 (SEGE
PLAN, n.d.). We expect that other types of schooling in this context are 
valuable to consider when characterizing the broader landscape of ed
ucation, but these publicly run schools as tracked by the government are 
likely the most policy-relevant sample to consider when analyzing, and 
intervening upon, the public’s broad access to educational services. This 
is particularly true in the context of Guatemala, as primary enrollment in 
private schools was only 13% of the total primary enrollment in the 
country (World Bank, 2019). 

Our geolocated, fine-grain population data come from the freely 
available “Global High-Resolution Population Denominators Project” 
datasets (WorldPop, 2018).6 These layers provide estimates of human 
population distribution at a resolution of approximately 100 or 1000 m2 

for all years between 2000-2020.7 The unusually fine-grain data comes 
from a combination of census and satellite imagery data, as well as 
careful application of machine learning algorithms (Stevens et al., 
2015), developed through a partnership between School of Geography 
and Environmental Science at University of Southampton; the Depart
ment of Geography and Geosciences, at the University of Louisville; the 
Departement de Geographie, Universite de Namur, and the Center for 
International Earth Science Information Network (CIESIN), Columbia 
University. Discussion of their exact methodology is outside the scope of 
this paper, but the end result is that these data are highly standardized 
and available for nearly every country in the world at time of writing. In 
other words, the need to obtain these fine-grain population data to 
implement our proposed methodology should not pose a constraint for 
nearly any application. 

One noteworthy feature of the Global High-Resolution Population 
Denominators Project is that they estimate both overall population 
within each gridded square, as well as disaggregated age-sex groupings, 
for each country. For our present analysis, this means that we are also 
able to isolate the population estimates to children of school-going age 
in this context, potentially avoiding some mismatch if relevant children 
are distributed distinctly from the overall population estimates. This 
feature will also be of use to researchers interested in other age de
mographics for certain school contexts (e.g., university-going age) or 
sex-specific policy margins (e.g., access to school specifically for female 
students). 

That said, we still opt in the main body of this analysis to focus only 
on overall population estimates. This is because the methodology used 
to estimate these disaggregated figures impose substantially more 
functional form assumptions with respect to population growth and 
change over time (see Pezzulo et al., 2017). For example, if migration 
into and out of the various geographic units is heterogeneous with 
respect to age groups, or if such patterns are heterogeneous over time (as 
they use a singular base year to extrapolate population age pyramid 
ratios over time), it will be more difficult to ascertain how consistently 
accurate those population estimates are across a geographic context. For 
simplicity, and to make more transparent the limitations of the present 
analysis, we focus on the overall population estimates in the main body.8 

We conduct a sensitivity analysis in the Appendix to examine whether 
our estimates for Guatemala meaningfully change in response to using 
the age-specific data (children ages 5–14), finding that this distinction is 
completely immaterial for this particular context. We still urge analysts 
to consider and weigh this decision carefully for their own use-cases, 
however. 

3.2. The Guatemalan context 

While our main methodology should be broadly applicable given 
these relatively modest data requirements, we focus the current paper on 
Guatemala to showcase our approach for two primary reasons. First, 
Guatemala is a country which has historically struggled with an array of 
social challenges, and educational outcomes in Guatemala are particu
larly weak. For example, in terms of net school enrollment, 86% of 
school-age children were enrolled in primary school as of 2017 
(compared to 94% in Latin America in 2017), and down from 94% in 
2008 (World Bank, 2008, 2017b). In terms of learning, the World Bank 
estimates that 2 in 3 Guatemala children experience “learning poverty”, 
meaning that they are not proficient in reading, even by the time they 
get to grade 6 (World Bank, 2019a). These challenges are typically 
worsened by the large inequities along ethnic and geographic lines 
within Guatemala (McEwan, 2007), given a very diverse geographic 
landscape with mountain ranges, lakes, and volcanos throughout the 
southern regions, and deep tropical jungle in more northern areas. 
Taken together, these challenges in terms of educational inequalities 
and physical characteristics make Guatemala an appropriate case study 
to pilot our methodology. 

The second reason why we chose Guatemala is because of the public 
availability of all the needed data sets required for our main analysis and 
extensions. While our main analysis requires only a single year’s worth 
of school and population data, additional data (such as multi-year school 
data) offer a useful opportunity to test the methodology’s robustness and 
to assess the extent to which it offers new insight versus traditional 
measures. As such, this paper is best served by selecting a context that 

4 Note that enrollment in private schools can vary widely by context. As an 
example, private school enrollment amounted to 82% of all primary school 
students in Belize (World Bank, 2019b). In such contexts, policymakers are 
faced with the additional choice of first reducing the number of people without 
access to any school, or prioritizing potentially more populated areas with ac
cess to only private schools where parents are burdened by higher private 
school fees.  

5 Our provided code can account for multiple campuses so long as each are 
recorded as a separate observation in the school data. Importantly, though, note 
that recording data in this way assumes access to any one campus is equivalent 
to having access to any other campus (which would not be the case if a school 
has geographically separated academic and athletic facilities, for example). As 
accounting for large campuses would require a substantially different approach 
to our calculations, and we leave this task to future work where these features 
are a more critical factor in analysis. Anecdotally, such abnormalities are nearly 
unheard of in the context of Guatemala.  

6 The specific version of the data used for this analysis is known as the “Top- 
Down Unconstrained Individual Countries 2000–2020 (1 km2 Resolution)” 
dataset. No changes to the algorithm would be required if the data used was the 
version with resolution at the 100 m resolution. However, this does increase 
computational time substantially. Analysts focusing on only one country 
context at a single point in time may opt to use the “Bottom-Up” datasets 
instead; we encourage all those interested to examine the trade-offs of these 
datasets closely before use.  

7 WorldPop has not released a schedule of data releases for additional years 
going forward, but our best understanding is that these data are intended to be 
maintained over time. 

8 That said, our codebase can accommodate analysts interested in utilizing 
these disaggregated data simply by pointing the scripts to the disaggregated 
population dataset, instead. Note that the disaggregated data may require 
additional preprocessing if multiple demographics are desired (i.e. by adding 
the raster files together) and a resolution other than 100 m2 is desired (as the 
disaggregated datasets are not provided “off-the-shelf” at 1 km2). 
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facilitates these valuable comparisons, as these additional data re
quirements do impose meaningful constraints to the exclusion of many 
otherwise viable contexts. Finally, note that we further test the “porta
bility” of our method by conducting our main analyses in the contexts of 
six other developing countries in Sub-Saharan Africa and Latin America 
for which we could easily find data. We include this analysis in the 
appendix and in an additional online appendix (https://doi.org/10.10 
16/j.deveng.2021.100064), and remark on individual data sources 
there. 

Given our present focus on the Guatemalan context, we now move to 
describe the existing policies that relate to school construction norms to 
better understand the current business-as-usual. Unlike the distance 
norms we describe in section 2.2 above, the current Guatemalan policy 
legislating school construction instead mandates where schools can be 
built, not where they must be built (Ministerio de Educación, 2016; 
Acuerdo Ministerial, 2012). This policy imposes a dual norm: that 
schools cannot be built within 2 km of one another, and they must serve 
a minimum number of potential students within their catchment area, 
which varies by educational level. For our case, primary schools must 
serve on average 25 potential students per grade in schools with sepa
rated grade levels, or 30 potential students per grade in schools with 
mixed grade levels. The policy moreover allows for a “deficit” of up to 5 
potential students in total within a potential area for school 
construction. 

The framing for Guatemala’s school construction policy thus does 
not impose an automatic trigger policy on school construction, and 
instead places the burden of starting the process for construction on 
local governments and communities. Underserved communites must 
compile and submit comprehensive requests to the Ministry of Educa
tion with technical details on why the school is needed and how it meets 
the requirements set out in the aforementioned policy (see for instance, 
Municipalidad de San José, Chacayá, n.d., or Municipalidad de San José, 
Pinula, n.d.). We were unable to ascertain the exact process by which 
communities are mobilized from the ground up to submit these pro
posals, and by which these requests are ultimately approved in any 
public sources, academic literature, “grey” literature, news articles, or 
even anecdotal evidence. It may be the case that these processes are 
purposefully informal so as to provide the most flexibility for local 
policymakers to exercise their judgment and contextual knowledge. 
More cynically, we have evidence in the context of other developing 
countries that government inefficiencies (Batabyal and Nijikamp, 2004), 
lack of political representation, ethnic favoritism (Ejdemyr et al., 2018; 
Burgess et al., 2015), information asymmetries, and coordination 
problems may each ultimately play a role in the provision of public 
goods. In either case, it remains likely that our proposed approaches for 
assessing and meeting school access needs in a data-driven manner 
provide novel insight against the current counterfactual in the Guate
malan context.9 

4. Main methodology 

The goal of our framework is to systematically identify areas of low 
physical access to educational facilities in a scalable and reproducible 
way. Our main methodology consists of a conceptually-straightforward 
algorithm which estimates the nearest distance from each population 
pocket to a public primary school, and then analyzes these distances in 
different ways to compute interpretable statistics and output. Specif
ically, the method follows these basic steps:  

1. Load the fine-grain population raster data from the “Global High- 
Resolution Population Denominators Project,” publicly available 
for all countries, discretized at either the 100 × 100m or 1 × 1 km 
plot level. Each discrete geographic unit will be treated as the basic 
unit of analysis, and each such observation contains an estimate of 
the number of people that live inside this unit.  

2. Load the school location data describing the latitude and longitude of 
each school.  

3. Estimate the straight-line distance (“as the crow flies”) between the 
center of each population unit and its nearest public school. 

The output we obtain is a geolocated set of land plots with two key 
attributes: a) the estimated population living in each plot area, and b) 
the minimum distance from that plot to a public primary school. From 
this dataset, we can create several outputs to understand where the areas 
of low physical access, or “education deserts,” are. Since these high- 
resolution population grids are much more disaggregated than even 
localized aggregate statistics on school access, we can pinpoint the 
specific areas where the distance to schools is prohibitively far. For our 
geospatial analysis, we use the excellent open-source R packages “sf” 
(Pebesma et al., 2021) and “raster” (Hijmans et al., 2020). 

Our approach has three key advantages. First, it is very straightfor
ward to implement and to understand conceptually, facilitating its broad 
use and easy interpretation by analysts and policymakers. Second, and 
relatedly, this analysis requires nothing more than a consumer-grade 
laptop and access to the internet, as all software involved (at least in 
the implementation we provide alongside this paper) are free and open- 
source. Third, the data it requires are readily available for many con
texts. The fine-grain population data we use is available for virtually all 
countries in the world, at a resolution of 100 m2, or 1 km2 for faster 
computation. There are moreover other sources that take a different 
approach to estimating overall and subgroup population data for which 
our algorithm is also compatible.10 And as mentioned earlier, many 
governments already maintain administrative databases tracking the 
location of schools (such as Education Management Information Sys
tems, or “EMIS”), which are often publicly available, either by default or 
on request. 

The simplicity of our proposed methodology is an intentional deci
sion to offer greater flexibility, allowing it to be adapted and responsive 
to specific contexts as necessary, but it also makes three important 
methodological choices that should be stated explicitly. First, the choice 

9 To provide a rough illustration, we conducted a supplementary analysis 
related to section 6.3 below and examined empirically how many Guatemalan 
schools could be built that meet the stated policy requirements. In this exercise, 
we require that schools be built at least 2 km away from one another and serve 
an age-relevant population of 175 (taking 30 students per grade, minus the 
allowed deficit of 5 students per grade, times 6 grades). In brief, we find that 
there are currently 1087 potential areas, with no overlap among them, where a 
school could be built while abiding by stated requirements. We estimate that if 
schools were constructed at all 1087 sites, these schools would reach 376,316 
age-appropriate students total, or an average of 346 students each. Remarkably, 
we estimate from administrative data that the average existing public primary 
school in Guatemala in 2017 had 124 students, so many of these potential new 
schools would not be considered “small” in this context. Note that we opt to use 
the age-specific population datasets from WorldPop, ages 5–14, for only this 
analysis. While an imperfect alignment with the true primary age demographic, 
this seemed the most appropriate data to use for the exercise. 

10 For example, the High-Resolution Settlement Layer (HRSL) datasets, which 
are the product of a long-term collaboration between Columbia University and 
the Facebook Connectivity Lab (CIESIN, 2016; Tiecke et al., 2017). Their 
approach combines intensive survey work with advanced machine learning to 
estimate the population of every 30 × 30m block in a country, for almost every 
country worldwide. The disadvantage of this, admittedly more disaggregated 
dataset, is that the current data for most countries is for a singular year, 
meaning that if the school data does not match this year, there might be some 
meaningful mismatch in the analysis. In addition, the WorldPop has 
open-sourced all of their estimation procedure, code, and underlying data, 
making their population estimates imminently replicable. This exceptional 
transparency felt important to privilege and endorse given the nature of our 
work here, and the likely desire for future users of our code to conduct more 
rigorous population data diagnostics depending on their specific use-case. 
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of population pockets at the 1 km2 resolution clearly defines how 
granular and precise our analysis is. Although the population data that 
we use is also available at the level of 100 m2 resolution, we observe 
similar results when this population layer is used, but with the important 
drawback of much higher computational times and memory limits that 
could put the analysis beyond the computational resources of many 
users. Ultimately, this decision should be for the user of the algorithm to 
determine given their context-specific knowledge and the policy action 
being considered. 

Second, and relatedly, we assume that population is dispersed evenly 
within each geographic unit of 1 km2 when we calculate distance from 
the center of each plot to each school. This is because if population is 
distributed evenly across a 1 km2 plot, their average distance to school 
will be equivalent to the distance from the center of that plot, which is 
what we seek to estimate. That said, this assumption is obviously un
tenable and may serve to cause some measurement error in our process, 
but is done so for conceptual and computational ease as before Impor
tantly, this issue becomes negligible when the resolution is sufficiently 
small (as with the 100 m2 resolution), and it is actually possible to use 
the finer-grain population data to “weigh” population within coarser- 
grain population data. Given what we observed when running our 
analysis at the 100 m2 resolution, this assumption is unlikely to be 
consequential except in very specific cases. 

Third, we choose to calculate distance using an “as-the-crow-flies” 
approach (i.e., a straight line connecting each population pocket to the 
nearest school). We recognize that this approach is most certainly an 
under-estimate as it may ignore geographic constraints such as swift 
elevation changes or lack of a clearly marked path or road. We discuss 
how to incorporate some of these features into our methodology in the 
extensions later. However, we decide to use to “as-the-crow-flies” as our 
baseline measure for several reasons. Much like in the discussion about 
resolution of the population data, computation time increases substan
tially by including these factors. Moreover, as we show in the extension 
later, we find that at least in the case of Guatemala, including elevation 
changes as a factor does not significantly change the results. Lastly, we 
believe that the inclusion of other constraints in the landscape should be 
context-dependent, as a mountainous country with a relatively low 
number of roads such as Bhutan may need different adjustments 
compared to a flat country composed of many islands such as the 
Maldives. As such, we default to the as-the-crow-flies approach and 
leave it to users to modify this base-level algorithm to their specific 
needs. 

5. Main results 

We begin our proof-of-concept analysis by running our main algo
rithm using the Guatemalan population and primary schools data from 
2017. Using the resulting data set, we create several outputs to better 
understand the nature of physical access to primary schools throughout 
the country. First, we examine the distribution of distances to school 
across the whole Guatemalan population. We display this distribution in 
Fig. 1 (Panel A). The median Guatemalan person lives 0.8 km from a 
public primary school, and the person at the 95th percentile lives 2.9 km 
from the nearest school. For comparison, this is lower than the median 
distance of 2.2 km in Tanzania, the same as in Kenya, and higher than 
the median distance of 0.5 km in Costa Rica (see the appendix for more 
details and contexts). This continuous measure can be dichomitized into 
the share of the population that lives further than a specific distance 
away from a school, and those that do not, to define the population 
living in an “education desert.” This threshold distance for living in an 
education desert, effectively a distance norm, can be varied to explore 
the sensitivity of the dichotomous measure to different definitions/ 
norms. We show this in Fig. 1 (Panel B), where we calculate the pro
portion of Guatemalan population living in an education desert on the y- 
axis, at varying distance thresholds along the x-axis. For example, at a 
distance threshold of 1 km, 36% of the population lives in a primary 

school desert. Conversely, at a distance threshold of 5 km, only 1% lives 
in a primary school desert. For the most commonly used international 
distance norm of 3 km, only 5% of the population lives in a public pri
mary school desert. Broadly speaking, Fig. 1 suggests that prohibitive 
physical distances to school in Guatemala only affect a small share of the 
population, and that a relatively small but targeted school construction 
initiative might be effective at closing these access gaps. 

Beyond quantifying the distribution of physical access to schools as 
an aggregated metric, our algorithm can also map out these distances to 
the nearest school for every square kilometer in the country. This type of 
figure serves as a visual primer on areas with greater and lesser physical 
access to school across the country, providing valuable insight on 
geographic heterogeneity in the aggregated measures we described 
above. In our map of Guatemala in Fig. 2, we see that areas of low 
physical access (i.e., long distances to school) are concentrated mostly in 
the northern region (Petén region), and in the southwestern region 
(around the Escuintla and Santa Rosa departments). We argue that such 
visualizations allow for far more contextual interpretation of these 
distance-to-school measures. 

6. Extensions to the methodology 

As mentioned earlier, the main algorithm we propose in the previous 
section is relatively straightforward by design to allow enough flexibility 
in its adaptation across contexts and educational levels. In other words, 
it could be extended in several ways to yield a more nuanced and 
tailored analysis for different policy questions in other contexts. In this 
section, we demonstrate four ways in which our methodology could be 
modified or refined accordingly. The replication files for all four ex
tensions are likewise publicly available in our included codebase. 

6.1. Before and after comparisons 

One of the simplest extensions that can be made in our framework is 
the analysis of physical access trends over time, a task we facilitate in 
our codebase and demonstrate here. In the Guatemalan context, we were 
able to obtain paired schools and population data for 2008 and 2017, 
allowing us to compare how physical access in the country has changed 
over the course of about a decade. Our data shows that between 2008 
and 2017, the net number of public primary schools in Guatemala 
increased by 2,077, or approximately 15%. However, the Guatemalan 
population between the same period grew from 13.7 to 16.1 million 
people (18%). Therefore, at its face, the effect of the increase in the 
number of schools is ambiguous in terms of changes to the aggregate 
level of physical access to schools. Our methodology can be used to 
compare two points in time, as we show in Fig. 3 below. Fig. 3 shows 
that even though population growth outpaced school construction, the 
distribution of peoples’ distance to their nearest school shifted leftward, 
i.e., that physical access to school improved over time. That said, this 
fact should not necessarily be taken as a straightforward endorsement of 
school placement policy in that period, given that many factors may be 
contributing to this shift besides targeted school construction. For 
instance, in the extreme case where population growth was exclusively 
concentrated in high-density areas with existing schools nearby, the 
share of the population living far from schools would fall mechanically 
given that the relative share of people living near schools is rising 
relative to the pre-existing share of people living far from schools, even if 
no schools were constructed at all. Therefore, instead of being a stand
alone evaluation of the optimality of school placement over time, this 
method simply provides one measure for how physical access changed 
over time in aggregate. 

6.2. Choosing a distance norm 

Policymakers have typically relied on fixed distance norms or 
thresholds to determine whether a certain population pocket is within a 
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school’s catchment area (Theunynck, 2009; Lehman et al., 2013). This 
threshold is highly context-dependent, and should be chosen, if at all, by 
agents with rich knowledge of the specific geographical, infrastructural, 
social, and budgetary landscape. As such, our main algorithm does not 
take an ex-ante stance on what this threshold should be, or what con
stitutes an “education desert.” However, the algorithm can be easily 
modified to accommodate a given distance norm for more in-depth 
analysis. This dichotomization has two main advantages. First, it most 
closely resembles the previous work on identifying areas as “education 
deserts,” with the added advantage that this task can now be done at 
scale in many contexts with minimal data and no surveying costs using 
our algorithmic approach. Second, it allows for quick identification of 
the most problematic areas given a certain threshold, offering a clear 
and interpretable “target” for policy intervention. For example, policy
makers and their constituents may find it meaningful to ensure that all 
students in a given context live no further than X km from school.11 

To showcase this extension to our main methodology, we choose a 
tentative threshold of 3 km in the Guatemalan context. Besides this 
being a common international distance norm, we estimate that just the 
cost of gas to cover even 3 km to school every day back and forth would 
lead to an expenditure of 4.4% (USD 7.40) of the average individual 
income per month in rural Guatemala, not taking into account school 
fees, books, bike maintenance, or other materials.12 If instead students 
take the bus, the monthly transportation cost could be USD 5.20 or 3% of 
the monthly rural income.13 These household expenses can start to look 
prohibitively high, especially for disadvantaged populations, further 
supporting the use of 3 km as a distance norm. This choice mirrors the 
spirit of Hillman (2016), where the author examines the distribution of 
postsecondary institutions across commuting zones in the United States 
as a proxy for access within a reasonable commuting distance. 

Fig. 1. (Panel B): Proportion of Guatemalan population living in education desert at varying distance norms, (Panel A): Distribution of distance to nearest school 
across Guatemalan population, Note: Sample subsets to only public primary schools in 2017 in Guatemala. 

11 For example, the Virginia Community College System advertises that, “If 
you are in Virginia, you are 30 miles from a community college” (Rorem, 2015). 

12 Assuming an efficiency of 45 km per gallon, an average cost of 2.75 USD per 
gallon, and an average income in rural Guatemala of 168 USD per month 
(Voorend et al., 2018).  
13 Assuming a cost of 2 quetzales (0.13 USD) per ride (Cueva, 2020). 
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Fig. 4 below shows the resulting geolocated “education deserts,” as 
defined by a distance norm of 3 km, by plotting only those population 
points further than 3 km from the nearest primary school. The first panel 
pinpoints these areas on the map of Guatemala using color to moreover 
represent the density of population in each of these areas (white rep
resenting areas not in an education desert), while the second panel uses 
the additional dimension of height to more clearly display the relative 
populations of these deserts. These two panels taken together highlight 
an important distinction: while most of the land that constitutes “edu
cation deserts” is located in the northern regions (Panel A), the real 
concentration of the population in education deserts is generally local
ized in the southern regions (Panel B). These figures, much like Fig. 2, 
can provide an important perspective for policymakers to decide where 
to strategically locate schools to increase physical access to education. 

We can moreover examine the geographic distribution of population 
in a 3 km education desert and compare these insights against the in
formation provided in traditional regional enrollment rates (defined in 

this case as the percent of age-appropriate students enrolled in primary 
school). Fig. 5 (Panel A) displays the same information as Fig. 4 (Panel 
A) except with regional enrollment rates underlaid in blue. What we 
observe immediately is that while some regions have high regional 
enrollment rates, they nonetheless contain several areas, of non-trivial 
population size, in education deserts. For example, the southern 
department of Escuintla (annotated with a red “A”) has a fairly high 
enrollment rate relative to other departments, yet still has many pockets 
of education deserts. Conversely, Totonicapán (annotated with a red 
“B”) has some of the lowest enrollment rates in the country, yet has no 
incidence of education deserts by our measure. We examine this rela
tionship more explicitly using the basic scatterplot in Fig. 5 (Panel B), 
where each region is plotted as a single point according to its population, 
proportion of population in an education desert, and proportion of age- 
appropriate children enrolled in primary school. If enrollment rates 
were solely driven by whether people lived in an education desert, we 
would expect a perfectly negative relationship between regional 

Fig. 2. Heatmap of distance to nearest public primary school by population pocket, Note: Primary school and population data from 2017. Distance is measured as- 
the-crow-flies from the center of each population plot to the nearest primary school. 

Fig. 3. Comparison of the distributions of distance to nearest school across Guatemalan population in 2008 and 2017, Note: Analysis limited to public primary 
schools in Guatemala for the years shown. 
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enrollment rate and their share of population living in a 3 km education 
desert. Yet what we observe is only a weak relationship; running a 
simple population-weighted regression of the proportion of population 
in a desert on the proportion of age-appropriate population enrolled at 
the department-level, we estimate a coefficient on proportion enrolled of 
− 0.32 (p-value of 0.04 and R-squared of 0.15).14 This indicates to us, at 
least on a conceptual level, that our measure of physical access is 
providing novel information compared with enrollment rates alone, and 
that the picture remains complex and multi-faceted even after analyzing 
physical access as we do here. 

6.3. Prioritization of school construction sites based on population 

A natural extension of the identification of education deserts for a 
given distance norm is determining how to prioritize these areas given 
their relative population sizes. In other words, if policymakers were to 
invest in school construction, what construction locations would most 

reduce the share of population in an education desert? To do so, we 
propose an additional algorithm that extends our main methodology. 
After the main algorithm is applied, we use the previously discussed 
extension to identify the areas that fall outside of a given distance norm 
(i.e., the “education deserts”). Then, the new algorithm examines where 
a school could be constructed (within a 1 square kilometer area) to 
maximize new population reached given the distance norm. It is able to 
do this iteratively for any set number of schools to be constructed (i.e., it 
can produce any number of optimally-placed schools, always taking into 
account any previously placed schools for the next school). This process 
can be reiterated until the desired number of schools is reached (e.g., as 
determined by some budget constraint), or a minimum target of popu
lation reached by schools is reached (e.g., “for a school to be built, it 
needs to have at least X population within its catchment area”). There
fore, this approach is especially helpful to policymakers under constraint 
conditions: if the budget constraint only allows the government to build 
a given number of schools, and the goal is to maximize the number of 
people reached, then this approach can ensure a more efficient place
ment of schools. Similarly, this approach could be helpful if govern
ments have tiered proposals to address issues of physical access to 
education. In other words, a government might require a minimum 
number of people served for a school to be built, and locations that fall 
below this minimum might be prescribed other policies like remote 

Fig. 4. (Panel B): 3-dimensional geographic dis
tribution of Guatemalan population at least 3 km 
away from a school, (Panel A): Geographic dis
tribution of Guatemalan population, including 
only those population points at least 3 km away 
from a school, Note: Sample subsets to only public 
primary schools in 2017 in Guatemala. Panel B 
represents the exact same information as Panel A, 
but plots both color and height to population 
count to better visualize differences in population 
than color alone. 3D visualization made possible 
by the “rayshader” package from Morgan-Wall 
(2021).   

14 Interestingly, this again implies a negative distance elasticity of enrollment 
demand per our literature review – albeit calculated using less direct proxy 
measures for both distance and demand. That said, an unweighted regression 
produces a non-significant coefficient of − 0.24 instead. 
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instruction (such as “telesecundarias” in Mexico).15 In this case, this 
extension could help to quickly categorize localities at a large scale. 

We test the efficiency of this algorithm at minimizing the share of 
population in a 3 km education desert by leveraging Guatemala data 
from 2008 to 2017 to conduct a simple simulation exercise: how 
different would the share of population in education deserts in 2017 
look if Guatemala had used our algorithm in 2008 to determine new 
school placements instead of its business-as-usual procedure? To begin, 
we first conduct our main and distance norm analysis on Guatemala 
using population and primary school data from 2008, and a distance 
threshold of 3 km. Then, we run our school placement algorithm as 
described above given these data. 

Once that analysis is complete, we determine how many schools 
Guatemala would have constructed in the time period between 2008 and 
2017. Our dataset shows that Guatemala had a total of 14,033 public 
primary schools in 2008, but of these, only 9040 remained open by 
2017. Given that 16,110 schools were on record by 2017, we infer 
approximately 7070 new schools were constructed by 2017.16 To be 
realistic, we assume that policymakers in this exercise would not have 
known which schools in 2008 were going to close over the next decade, 
nor how the distribution of population would change by 2017. In other 
words, they choose to construct and place new schools based only on the 
“snapshot” of population in an education desert using 2008 data. 

We find that if policymakers had placed all 7070 new schools using 
our school placement algorithm and given these parameters, there 
would not be a single person living in an education desert by 2017; 
indeed, this feat would have been accomplished after constructing only 
3167 optimally-placed schools. That said, we recognize that there exist 
many other factors determining how new schools are placed, making 
this scenario fairly unrealistic. For example, Panel A of Fig. 6 shows the 
cumulative new population reached per new school constructed, 
demonstrating the quickly diminishing returns to each additional 
optimally-placed school. This panel also highlights the important caveat 
that each additional new school would likely lack the requisite student 
body to justify new school construction well before this benchmark was 
reached (because building a school to serve a single person would not 
actually happen). 

To explore a more realistic scenario, we proceed to ask the following 
question: given that the proportion of Guatemalan population in an 
education desert actually did decline from 2008 to 2017 after the 7070 
schools were constructed (see Section 6.1 above), how few optimally- 
placed schools would it take to produce this same reduction? Panel B 
of Fig. 6 below displays the results of this thought experiment. The blue 
line shows the share of Guatemalan population in an education desert 
across varying distance thresholds, for the actual schools that existed in 

Guatemala in 2017 – essentially, our target to meet. The red line shows 
this same dynamic, but under the hypothetical circumstance that 
Guatemala had constructed no new schools at all between 2008 and 
2017 – serving as our reference baseline. We find that it would take only 
350 new optimally-placed schools to match the actual reduction of 
population living in a 3 km education desert by 2017, the hypothetical 
circumstance represented by the green line. Put another way: 350 
optimally-placed schools had the same impact on the share of population in 
an education desert as the 7070 schools actually built between 2008 and 
2017. We take this finding as especially hopeful and actionable for 
policymakers because it roughly indicates that – at least in the Guate
malan context – substantial strides in physical access can be made even if 
only one in 20 schools are constructed with physical access in mind. 
Conversely, it also makes clear that even a large amount of school 
construction may not necessarily increase physical access to school 
across the country by default (e.g., new schools are built in locations 
already being served by other schools). Policymakers are the best suited 
to determining when and to what extent physical access should be a 
consideration for new school construction, but so long as it remains even 
a minute priority, progress can be made with the help of these proposed 
algorithms. 

6.4. Elevation and geographic features 

Our main algorithm relies on estimating distance “as-the-crow-flies”, 
or a completely linear trajectory between the population pockets and 
school locations. This approach has three key advantages. First, it is a 
simple and straightforward measurement choice that allows for easy 
conceptualization of the way in which distance was measured and 
minimizes the number of contextually-dependent assumptions made 
about travel patterns, infrastructure, etc. Second, it makes computation 
vastly faster than other approaches (like the extension we will discuss 
here). Third, it does not require additional data layers besides what we 
have described before: solely population data and school locations. Still, 
all of these advantages come at the expense of ignoring potential barriers 
like geographic features or lack of roads connecting two places in a fairly 
linear fashion.17 

Therefore, we showcase an extension of our main algorithm where 
we consider elevation changes and compute the “path of least resis
tance” between a population pocket and a school.18 Put simply, we first 
obtain elevation data across Guatemala from ArcGIS’s online servers 
(gspeedAIST, 2019) – though note that robust elevation data are uni
versally available for all regions of the world from a variety of sources. 
Using these data, we can then calculate how elevation changes when 
moving from each geographic cell to each adjacent cell.19 As in our main 
algorithm, we calculate distances between each population point and 
each nearby school; however, we instead calculate the distance of the 
route that minimizes walking time after accounting for the fact that speed 
is inversely related to the steepness of the terrain’s gradient (per 
Tobler’s Hiking Function; Tobler, 1993). Any sufficiently steep gradient 
is considered impassable and avoided for any routing entirely. In prac
tice, this might take different forms. If there is a very large mountain 

15 Telesecundarias are “are a type of junior secondary school that delivers all 
lessons through television broadcasts in a classroom setting, with a single 
support teacher per grade” (Navarro-Sola, 2019). Although these schools were 
initially introduced to deal with issues of delivering education in remote areas, 
they are also used now in urban areas to deal with issues of poor teacher 
quality. While these schools do require certain personnel and a physical 
building, these requirements are less stringent in terms of teacher training and 
building size. For instance, Navarro-Sola (2019) mentions that the adminis
trative cost per student of telesecundarias is half the cost of brick-and-mortar 
schools. As such, our algorithm can support the identification of areas that 
may be best served with a full-fledged school (with the logistical, staffing, and 
administrative requirements this might pose) versus a lighter investment like a 
telesecundaria.  
16 Note that these numbers come from the presence of schools by their unique 

administrative ID in either data set (2008 or 2017). However, if schools simply 
had their unique IDs changed over this period (e.g., if they merged with another 
school, took on an additional level, etc.), we would still consider this as a school 
closing, and another one opening by this tallying method. That said, the precise 
number of new schools we estimate here is not hugely consequential, given the 
nature of the results we describe later. 

17 While roadways are an attractive feature to consider, geographically het
erogeneous data availability and reliability, as well as computational 
complexity and costs, make such analysis infeasible and potentially biased for 
certain contexts (e.g., if roadway data is more complete and accurate in regions 
of higher income). Given our intention to provide a broadly applicable and 
easily accessible toolset in this paper, as well as the methodological concerns 
such analyses present, we opt not to explore this style of analysis ourselves.  
18 We leverage the implementation offered by van Etten and Sousa (2020) in 

the R package “gdistance.”  
19 For computational tractability, we use elevation data at a resolution of 500 

m2. Finer-grain data allow for more nuanced pathing, but also drastically in
crease computational time and the likelihood of hitting software memory 
storage constraints. 
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Fig. 5. (Panel B): Scatterplot of regional enroll
ment rates against percent of regional population 
living at least 3 km away from a school, (Panel 
A): Geographic distribution of Guatemalan pop
ulation at least 3 km away from a school against 
regional enrollment rates, Note: Sample focuses 
on only public primary schools in 2017 in 
Guatemala. Enrollment data were collected in 
2016. Panel B displays each region of Guatemala 
as a point, plotting its population (in point size), 
proportion of population in desert (on the y-axis), 
and proportion of age-appropriate children 
enrolled in primary school (on the x-axis). When 
running a simple population-weighted regression 
of the proportion of population in a desert on the 
proportion of age-appropriate population 
enrolled at the department-level, we estimate a 
coefficient on proportion enrolled of − 0.32 (p- 
value of 0.04 and R-squared of 0.15).   
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between a school and a population pocket, the “path of least resistance” 
is likely around the mountain. If instead there is a very small hill be
tween these two areas, the path of least resistance might still be a 
straight line over the hill (depending on the elevation of the hill and its 
circumference), instead of going all the way around it. 

After incorporating this extension to our algorithm, we compare the 
results to our main results using the as-the-crow-flies methodology for 
Guatemala in 2017. Fig. 7 (Panel A) plots, for each population pocket, 
the estimated distance to school using the as-the-crow-flies methodology 
(x-axis) against the estimated distance to school consider the path of 
least resistance (y-axis). For visual clarity, we bin observations and scale 
color according to the sum of population in that bin. The vast majority of 
population indeed cluster close to the 45-degree line in red, meaning 
that for nearly all cases, the difference in distance between the two 

methodologies is small.20 In fact, Fig. 7 (Panel B) below displays the 
distribution of the difference in estimated distances between the two 
methodologies. The vast majority of the observations fall below a 20% 
difference between the two methodologies. Therefore, in the case of 
Guatemala, accounting for elevation does not make much of a difference 
in the identification of where education deserts are, and may come at the 
expense of increased barriers to analysis (e.g., data requirements, 
computational costs). However, this extension might be particularly 
valuable for other hilly or rugged contexts like Rwanda. Importantly, the 
estimation of the path of least resistance can also accommodate further 
geographical barriers such as accounting for internal bodies of water or 

Fig. 6. (Panel A): New population reached per optimally located school. Note: For simulated public primary schools in 2017. (Panel B): Comparison of the dis
tribution of the Guatemalan population living in an education desert in 2017, across several real and simulated school construction scenarios. Note: Population data 
used are from 2017 regardless of school construction scenario. 

20 Note that in all cases, the distance for the algorithm that takes into account 
elevation is equal or larger than for the main algorithm, since the main algo
rithm computes a straight line connecting two points. 
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impassable national parks.21 In this sense, this extension provides the 
most flexibility to further adapt our main algorithm to local conditions, 
at admittedly much longer computation times.22 

7. Discussion 

In this paper, we propose a framework to identify populated areas 
that are not served by public primary schools in developing countries, 
where surveying costs may be prohibitively high and other types of 
administrative data may be lacking. We use Guatemalan data as a proof- 
of-concept to identify geographic areas within the country where in
dividuals lack physical access to primary schooling, as well as to 
showcase some of the useful extensions we propose to our main meth
odology. We find that education deserts, defined as pockets of popula
tion outside of a school’s catchment area, are somewhat rare in 
Guatemala, and that a relatively few but strategically placed schools 
could significantly universalize physical access to education. 

This type of disaggregated, fine-grain analyses can be especially 
valuable as policymakers and investors around the world attempt to 
guarantee universal access to education. If indeed a country has pockets 

Fig. 7. (Panel B): Histogram displaying the distribution in the difference between “as-the-crow-flies” distances with distances calculated using the “path of least 
resistance” through elevation changes, (Panel A): Comparison of “as-the-crow-flies” distances with distances calculated using the “path of least resistance” through 
elevation changes, Note: Sample subsets to only public primary schools in 2017 in Guatemala. 

21 These could be incorporated in two ways. The first option would be to clip 
“holes” in the population and elevation raster data files using layers that signal 
where the national park or water bodies are. The second option would be to 
change the elevation of these impassable areas to an unrealistically high 
number. This way, the algorithm will never consider these as viable routes 
while searching for the path of least resistance.  
22 Conducting this analysis for Guatemala took our workstation computer 

approximately 9 h, compared with only 30 min for the main analysis. Moreover, 
we expect the computational time of this extension to increase exponentially 
with country area. 
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of population in remote areas where there are no schools, and infor
mation is not readily available on where new schools could be more 
impactful, then it is not clear how to make these investments in a way 
that creates as much social welfare as possible. Unfortunately, the re
gions where it is most important to identify education deserts are often 
the same regions where traditional, aggregate administrative data is 
typically most lacking. In such circumstances, policymakers would need 
to resort to either costly surveying endeavors, or fall back on analyses 
aggregated in larger regions that could critically mask meaningful het
erogeneity within those aggregations. By strategically locating educa
tional institutions using these finer-grain analyses and their own 
contextual expertise, policymakers can indeed ensure that all pop
ulations are served by such reforms, at least in terms of physical access to 
a school. 

That said, primary school access is far from the only frontier in which 
physical access is a relevant consideration for equity and social welfare, 
and most of the data required to replicate this style of analysis in similar 
circumstances is publicly available or is of easy access to researchers and 
policymakers. We thus create and make available highly documented 
and portable code as a public good for others to recreate and extend our 
analysis to other contexts. Applying our codebase to analyzing primary 
school access in additional countries (as we show in our Appendix) can 
take as little as 10 min, excluding time for data acquisition and 
computational processing. Similarly, applying our codebase to 
analyzing the parallel issues of secondary school access – an increasingly 
prominent goal for many development organizations and governments 
(Cosentino, 2017) – or postsecondary institution access should be 
equally straightforward. While outside of our expertise, we also ensured 
that the codebase should be fully capable of applications to other stat
ically located public goods, for example libraries, health institutions, 
vaccination facilities, water wells, and so on. In short, if a good can be 
meaningfully characterized by a coordinate, one can apply our code to 
better understand a population’s physical access to it. 

But in closing, we will caution that while applying the code to said 

contexts should be nearly costless from a logistical perspective, any such 
analyses should still attend to the many important contextual and data 
quality considerations we have outlined in this article. For instance, it 
remains an important critique of our approach that we assume the costs 
associated with traveling a kilometer in one geographic area is equal to 
the costs of traveling a kilometer in another geographic area. On its face, 
this assumption can be entirely untenable – whether comparing within 
the same country, same region, same city, or even same neighborhood – 
even after accounting for elevation as we do in the extension analysis 
above. Analysts must then be cognizant of how their own context and 
data constraints relate to the value of such analysis in spite of this 
assumption. To put it concisely, we subscribe to an adapted version of 
the old adage: if all you have is an education desert mapping tool, 
everything may look like an education desert problem. We thus ulti
mately hope that analyses stemming from our methodology provide an 
additional source of insight for researchers and policymakers, to be un
derstood and contextualized in concert with many other sources of ev
idence, to better serve the public and their well-being more broadly. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We are grateful for the support and feedback from Benjamin Cas
tleman, Daphna Bassok, James Wyckoff, Erich Purpur, two very helpful 
referee reports, and our colleagues in the Center on Education Policy and 
Workforce Competitiveness (EdPolicyWorks) and the Nudge4 Solutions 
Lab. This work has been supported by the Institute of Education Sci
ences, grant #R305B140026, through the Virginia Education Science 
Training Pre-Doctoral Fellowship program.  

Appendix: Comparisons of Results Using Overall and Age-Specific Population Data

D. Rodriguez-Segura and B.H. Kim                                                                                                                                                                                                         



Development Engineering 6 (2021) 100064

15

Appendix: Other Contexts and Cross-National Comparisons 

Our main methodology is primarily designed to identify areas within a given region where physical access to education is limited. However, we use 
this appendix to (1) demonstrate the portability of our analysis, and (2) illustrate some of the considerations when extending the analysis to example 
multiple countries by adding similar analyses for four Sub-Saharan African countries and two Latin American countries: Tanzania (in 2016), Rwanda 
(2012), South Africa (2020), Kenya (2018), Peru (2020), and Costa Rica (2020), as we display in this appendix and in an additional online appendix 
(https://doi.org/10.1016/j.deveng.2021.100064). 

We observe two main benefits to cross-country analyses. First, applying this methodology to other contexts allows analysts to create potentially 
informative benchmarks for a given region of interest. For example, we report in the main narrative that 95% of the population in Guatemala lives 
within 3 km of a public primary school. In a vacuum, this number is not too informative. But when coupled with distance norms, policy goals, and 
statistics from peer countries, this can serve as a meaningful data point of comparison. In the case of this metric, Guatemala performs better than all 
other countries analyzed in Appendix Table 1 except for Costa Rica. Second, this type of comparison can moreover facilitate a rough classification for 
countries in terms of the issues they face with enrollment. In an ideal world, countries would have high enrollment rates and a low prevalence of 
education deserts, like Peru and Costa Rica in the table below. Deviations from this categorization can offer a useful shorthand for thinking about 
extant enrollment barriers. For instance, Guatemala and South Africa can be thought of as having relatively low desert prevalence and low enrollment, 
while Rwanda can be thought of as having relatively high enrollment in spite of high desert prevalence– indicating countries where distance may not be 
the primary issue for enrollment. We can moreover examine countries where desert prevalence is high while enrollment is low – perhaps contexts 
where deserts are more impactful – like Tanzania, with 4 in 10 people living further than 3 km from a public primary school and deserts pervasive 
throughout the country. 

We also want to highlight that there are clear challenges in the cross-country comparison of our analyses. First, while the data-generating process 
for the population data is fairly uniform across countries, the data-generating process for school data can vary meaningfully by country. As we allude to 
in section 3 above, what qualifies as a “public” school may vary across contexts (e.g., is it only schools run by governments, or does it also include 
privately-run government schools?), as well as what qualifies as a “primary” school (e.g., if the grades covered in primary schools differ by location). 
Similarly, the data collection capabilities of governments may vary, and the degree of missingness for geo-locations can differ as well. 

Finally, differences in the actual geographic distribution of a country’s population can also affect the usefulness of cross-country comparisons. 
Costa Rica, where ~45% of the overall population lives in an extended capital area of only about 2000 km2 (Gran Área Metropolitana), is arguably 
incomparable to a largely rural context like Tanzania, where the most populous metropolitan area (Dar es Salaam) houses only 11% of its population, 
and the next-largest city only has about a fifth of this number (Mwanza). This non-exhaustive list of contextual factors can lead to shortcomings in 
cross-country comparisons in results derived from the methodology we proposed, and as such, these comparisons should be made carefully and 
sparingly, if at all. 
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Appendix Table 1 
Comparison of “education desert” analyses across countries  

Country (year of 
analysis) 

Median distance to a 
public primary school 
(km) 

Mean distance to a 
public primary school 
(km) 

Share of the population that lives 
further than 3 km from a public 
primary school 

Net primary enrollment rate, according to 
World Bank Development Indicators (latest 
year available) 

Classification 

Guatemala 
(2017) 

0.8 1.1 4.7% 85.6% (2017) Low desert 
prevalence, low 
enrollment 

Tanzania 
(2016) 

2.2 5.9 40.6% 83.5% (2016) High desert 
prevalence, low 
enrollment 

Peru (2020) 0.6 1.4 11.5% 95.7% (2018) Low desert 
prevalence, high 
enrollment 

Costa Rica 
(2020) 

0.5 0.6 3.0% 97.3% (2018) Low desert 
prevalence, high 
enrollment 

Kenya (2018) 0.8 2.0 12.9% 80.0% (2012) High desert 
prevalence, low 
enrollment 

Rwanda (2012) 1.4 1.7 11.9% 98.8% (2016) High desert 
prevalence, high 
enrollment 

South Africa 
(2020) 

0.7 1.1 5.1% 87.0% (2017) Low desert 
prevalence, low 
enrollment  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.deveng.2021.100064. 

References 

No. 4025-2012 Acuerdo Ministerial, 2012. https://leyes.infile.com/index.php?id=182&i 
d_publicacion=67124. 

Akresh, R., Halim, D., Kleemans, M., 2021. Long-Term and Intergenerational Effects of 
Education : Evidence from School Construction in Indonesia. Policy Research 
Working Paper; No. 9559. World Bank. © World Bank, Washington, DC. 
https://openknowledge.worldbank.org/handle/10986/35208 License: CC BY 3.0 
IGO.  

Alm, J., Winters, J.V., 2009. Distance and intrastate college student migration. Econ. 
Educ. Rev. 28 (6), 728–738. https://doi.org/10.1016/j.econedurev.2009.06.008. 

Batabyal, A.A., Nijkamp, P., 2004. Favoritism in the public provision of goods in 
developing countries. Econ. Bull. 15 (1), 1–9. 

Burde, D., Linden, L.L., 2013. Bringing education to Afghan girls: a Randomized 
Controlled trial of village-based schools. Am. Econ. J. Appl. Econ. 5 (3), 27–40 
(JSTOR).  

Burgess, R., Jedwab, R., Miguel, E., Morjaria, A., Padró i Miquel, G., 2015. The value of 
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