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Abstract
Open-ended comprehension questions are a common type of assessment used to evaluate how
well students understand one of multiple documents. Our aim is to use natural language
processing (NLP) to infer the level and type of inferencing within readers’ answers to
comprehension questions using linguistic and semantic features within their responses. Our
taxonomy considers three types of responses to comprehension questions from students (N =
146) who read four documents: a) textbase responses (i.e., information required for the answer is
present in a contiguous short sequence of text); b) single-document inference responses (i.e.,
requiring information from multiple text segments in a single document); and c¢) multi-document
inference responses (i.e., information spanning multiple documents is required). The
classification task was approached in two ways. First, we extracted features from students’
answers to the comprehension questions using linguistic and semantic indices related to textual
complexity and an extended Cohesion Network Analysis (CNA) graph to assess semantic links
between the answers and the reference documents. Second, we compared different Recurrent
Neural Networks (RNNs) architectures that rely on word embeddings to encode both answers
and reference documents. Our best model based on RNN’s predicts the answer type with an

accuracy of 81%.
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Abstract—Open-ended comprehension questions are a
common type of assessment used to evaluate how well students
understand one of multiple documents. Our aim is to use natural
language processing (NLP) to infer the level and type of
inferencing within readers’ answers to comprehension questions
using the linguistic and semantic features within their responses.
Our taxonomy considers three types of responses to
comprehension questions from students (/V=146) who read four
documents: a) textbase responses (i.e., information required for the
answer is present in a contiguous short sequence of text); b) single-
document inference responses (i.e., requiring information from
multiple text segments in a single document); and c¢) multi-
document inference responses (i.e., information spanning multiple
documents is required). The classification task was approached in
two ways. First, we extracted features from students’ answers to
the comprehension questions using linguistic and semantic indices
related to textual complexity and an extended Cohesion Network
Analysis (CNA) graph to assess semantic links between the
answers and the reference documents. Second, we compared
different Recurrent Neural Networks (RNNs) architectures that
rely on word embeddings to encode both answers and reference
documents. Our best model based on RNNs predicts the answer
type with an accuracy of 81%.
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Natural Language

I. INTRODUCTION

Reading assessments are frequently used to evaluate the
coherence of a student's mental representation of a text.
Coherence is defined as the degree to which the overall
connections between disparate text ideas are cohesively linked
with the reader’s prior knowledge. In his seminal book on
comprehension, Kintsch [1] outlined two separate but related
levels of understanding that contribute to the reader's
development of a coherent mental representation of the text
information: the textbase level and the situation model. The
textbase level relates to the basic meaning that is derived from
ideas in the text, whereas the situation model integrates various
aspects of the textbase with prior knowledge through spreading
activation to create a dynamic and integrative process called
inferencing. Through inferencing, a reader can link adjacent or
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distal information in a text with their prior knowledge. Although
assessments can target surface level information in a text
through text-based questions, the assessments typically must
also include deeper level questions that require inferencing in
order to truly evaluate the coherence of a reader’s mental
representation [2].

There are many ways to assess comprehension; these include
multiple-choice, open-ended, recall, verification, and even essay
questions. Open-ended questions are typically a better form of
assessment since these questions force students to rely on their
understanding and memory to generate a response as opposed to
recognizing the appropriate answer (as is the case with
verification and multiple-choice questions) [3]. Additionally,
open-ended questions force readers to engage in active
comprehension processes through inference generation because
of limited retrieval cues [3, 4].

Typically, these reading assessments were conducted on
individual texts and only few researchers have begun to assess
comprehension across multiple texts [5-7]. Within a single text
there exist cohesive devices (e.g. connectives) and anaphoric
references to direct the reader to relevant information. These
textual cues help facilitate inference generation within a text.
Inference generation between texts cannot rely on such cues
since each text is written independently of one another. As a
result, the absence of these cues forces readers to rely even more
on prior knowledge. Whereas inference questions for within text
content (intra-textual questions) require generating connections
between information that already contains cohesive devices,
inter-textual questions require inferencing across separate
documents. Therefore, due to their inherent complexity induced
by the bridging of remote texts, these responses may be different
from those generated for intra-textual inference questions.

Our research question is the following: to what extent can
textual complexity indices, coupled with word embeddings and
deep learning models, assess the level and type of inferencing
evidenced within answers generated by students in response to
open-ended questions? Our aim is to introduce a tool that
provides feedback to students on whether their production
matches the level of inference required by the given question.
Doing so first requires a benchmarked set of questions that are
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designed to tap into different levels of inferencing. As such, we
leverage the corpus reported in Nicula, et al. [8], described
below.

We conceive this problem as a classification task, such that
we categorize participants’ responses into three potential
categories of increasing degrees of inferencing within the
answer: textbase, single-document, or multi-document
inference. As such, we assess the extent to which inferencing
can be detected within readers’ open-ended responses to
comprehension questions.

Our objective was to compare the use of linguistic and
semantic features within different types of machine learning
models, and to also explore the use of deep learning (i.e.,
Recurrent Neural Networks). In Study 1, we used two types of
handcrafted features, coupled with various machine learning
models to predict the level and type of inferencing evidenced
within student answers. In Study 2, we examine the accuracy of
the classification model using word embeddings within a deep
learning model (i.e., RNN). In contrast to Study 1, which relies
on classical machine learning models applied to linguistic and
semantic features, Study 2 analyzes classification accuracy
using models that generate their own internal representations in
order to make a prediction.

II. GENERAL METHOD

A. Corpus

The corpus reported by Nicula, et al. [8] consists of
productions from 146 students who were asked to read four texts
(referred to as text A, B, C, and D) on the same topic, green
living (i.e. the feasibility of implementing sustainable living
methods). In terms of length, text A is by far the most complex
text, having a length of 720 words, while texts B, C, and D, are
approximatively half the length —more precisely, 360, 334, and
369 words, respectively.

The 146 students were asked to answer 12 open-ended
questions comprised of three questions per text. There were
three different question types, each depending on the
information that they targeted (see Table I). In total, there were
584 question answers per question type, resulting in 1752
responses in total. Out of these, 15 were blank and were skipped
in further analyses.

TABLE L. LIST OF QUESTIONS.
Question IDs Number of examples
Text A | Q1,Q2,Q3 Intra-textual, Intra-textual, Inter-textual
Text B | Q4,Q5, Q6 Textbase, Intra-textual, Inter-textual
TextC | Q7,Q8,Q9 Textbase, Text-based, Inter-textual
TextD | Q10,Q11,Q12 Textbase, Intra-textual, Inter-textual

Textbase questions were designed to target information
located in one sequence of text from one document (e.g., Q4
refers to one continuous sequence of text in text B) and they
correspond to textbase answers. Intra-textual questions targeted
information presented in multiple sections across a single
document; the associated answer class is single-document
inference. Finally, if the information was presented in multiple
documents, then the question was considered inter-textual (e.g.,
Q3 refers to information mentioned across all texts but focused
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in text A) and the corresponding answers are labeled as multi-
document inference answers.

Regardless of its type, each question has one of the four texts
as its “reference text”, indicating that the information targeted
by that question can be located in that reference text. In the case
of intra-textual questions, additional useful information can be
found in other texts, but it is not necessary for answering the
question. In contrast, even if a reference text is mentioned for
inter-textual questions, information from multiple texts is
necessary to generate a complete answer.

In terms of preprocessing, few changes were made to the
texts before the two methods below were applied. Given that
semantic models and word embeddings were used in both cases,
no stemming or lemmatization techniques were applied to the
text. Only a standard tokenization was applied to split the text
into words. However, no preprocessing was performed to
correct possible spelling errors made by the students. Misspelled
words, for which there were no corresponding terms in our
vocabularies, were ignored by the two methods.

II. StuDY 1: COHESION NETWORK ANALYSIS AND
TEXTUAL COMPLEXITY INDICES

We explored two directions of deriving relevant features for
this study. First, we were interested in a global view, namely the
links between the question answer and the reference documents.
Thus, we considered features from the Cohesion Network
Analysis (CNA) extended graph [8, 9] that establishes semantic
links between the question answers and the source texts. We
hypothesized that the semantic relations would differ between
answer types because each of the corresponding questions was
designed to tap into different relations. Cohesion Network
Analysis is a technique inspired from Social Network Analysis
[10], aimed at modelling text cohesion by generating a graph
composed of links between different elements of the text(s),
which can have different granularities (e.g. sentence, paragraph,
entire text, etc.). These links represent the similarity between the
two text elements, and can be computed using different lexical
overlap measures or semantic models, such as Latent Semantic
Analysis — LSA [10], Latent Dirichlet Allocation — LDA [11],
GloVe [12] or word2vec [13]. In this study, the graph only
contained links between the question answer and the source text
(i.e., sentences or paragraphs from the text). This resulted in a
set of 15 features per question answer (text features and
paragraph and sentence aggregated features).

Second, we were interested in a local view centered on the
question answer. We extracted linguistic features from each
answer, reflective of specific writing characteristics. We relied
on 700 textual complexity indices from the ReaderBench
framework [14] covering surface, lexical, syntactic and semantic
properties. The surface and lexical features are easily
computable features such as: sentence or paragraph lengths
(average values and standard deviations), commas per sentence
or paragraph, number of unique words and others. Syntax-level
indices are used for extracting both word-level features (e.g., the
frequency for each part of speech) and sentence-level features,
which are structural features derived from the parsing tree (e.g.,
the maximum depth of the parsing tree). Lastly, semantic
features consider the CNA semantic links within a document, as
well as specific word lists designed to capture certain semantic
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valences (e.g., General Inquirer' — GI [15], or Lasswell [16]
dictionaries). One example of such a list taken from the GI
categories is the “Academ” list, which contains words related to
academic, intellectual, or educational matters.

The resulting 715 features were filtered to eliminate
multicollinearity. All pairs of two features with a Pearson
correlation greater than .9 were analyzed using the Kruskal-
Wallis H Test and the feature with the lowest ¥* score was
eliminated. After this step, 599 ReaderBench features and 7
CNA features remained, for a total of 606 features. These
features were used as input for a set of machine learning
classifiers from the SciKit Learn library [17] to predict the
answer type: SVC linear (Support Vector Classifier with a linear
kernel), SVC RBF (Support Vector Classifier with a Radial
Basis Function kernel), Extra Trees classifier, and Multi-
Layered Perceptron (MLP). The SVC models were chosen due
to their popularity. We opted for both the RBF and linear kernels
because the first one is better at classifying data that is linearly
non-separable, while the second is better for linearly separable
data. The Extra Trees model was chosen because it works well
at separating a large number of features and it allows easy
interpretation of feature importance. Out of the four selected
classifiers, Extra Trees is also the only bagging and boosting
algorithm, meaning that it is the only one that builds multiple
weak classifiers and bundles their results together to create a
more robust prediction. Thus, the model is more resilient to
noise and able to work well in high dimensional feature spaces.
The Multi-Layered Perceptron model was selected because it is
simple, straightforward, and computationally fast.

III. STUDY 1: RESULTS AND DISCUSSION

All experiments employ 5-fold cross-validation conducted
10 times to account for outliers. The reported metric is the
average of the overall accuracy for the three given classes (i.e.,
number of correct predictions divided by the size of the test set),
across all 10 runs. The five training and testing datasets for each
run were compiled such that students’ responses remained
within the same set. This ensured that class balance was
maintained, as each student answered an equal number of
questions (4), from each of the three categories. Several
experiments were conducted to assess the importance of the two
types of features and their combination (see Table II). We
further compared accuracy using the four types of machine
learning models (i.e., Extra Trees, SVC RBF and linear, MLP).

A. Predicting answer type

The highest accuracy in predicting the correct answer type is
bolded for each feature set in Table 2. Extra Trees produced
good results for all three combinations, obtaining the highest
accuracy when using the CNA features; in addition, results were
close to the best ones in all other scenarios. The average
accuracy of 60.80% was obtained with the Extra Trees model
when using the CNA features, but this was the lowest accuracy
among the three scenarios. When using the ReaderBench
features, the accuracy was 67.83% with the same classifier, but
an even better result was obtained using the MLP classifier.
When using all features, accuracy was improved slightly more
for all models except the SVC with RBF kernel. The best result

was obtained by the MLP model, reaching an average of
68.47%.

We noticed that the SVC RBF model had a large drop in
performance in the 2™ and 3 scenario. This is probably due to
the fact that it tries to find nonlinearly separable features and
struggles with the high-dimensional space. The best results for
the two scenarios with a large number of features (599 and 606)
were obtained using SVC linear and MLP, respectively;
however, both previous models and Extra Trees obtained similar
results.

TABLE IL. CLASSIFICATION ACCURACY AND F1 USING DIFFERENT
FEATURE SETS
Feature set (# of Model Avg. Avg. Max
features) Fl-score | accuracy | accuracy

CNA (7) Extra trees | 60.72% 60.80% 62.64%
SVC RBF 57.20% 57.14% 59.77%

SVClinear | 52.01% 52.53% 56.32%

MLP 56.50% 56.86% 58.62%

ReaderBench Extra trees 67.71% 67.83% 73.55%
textual complexity SVC RBF 45.25% 45.64% 49.30%
indices (599) SVClinear | 67.76% 67.82% 73.00%
MLP 67.58% 67.95% 74.21%

All features (606) Extra trees 68.08% 68.15% 72.12%
SVC RBF 45.33% 45.83% 49.71%

SVClinear | 68.45% 68.47% 70.97%

MLP 67.58% 68.14% 71.26%

Given the large number of features obtained when
combining the CNA features and the textual complexity indices,
we also attempted to filter them by selecting only top-k features
based on their importance, as reported by the Extra Trees
models. We analyzed three cases with k=10, k=50, and
k=100 (see Table III). Although all four types of machine
models were calculated, the best results by at least 4% in all
cases was obtained by the Extra Trees model. It seems that this
model performs better in these scenarios with fewer features.
This could also be influenced by the hyperparameter addressing
the number of estimators, i.e., how many weak classifiers the
Extra Trees model uses. This parameter was kept fixed
throughout the experiments. Given that the Extra Trees model
obtained the best or second-best results in all three cases, we
report only the results for those models.

The £ =10 scenario obtained a 1.5% better result than the
scenario using only CNA features, underlining the importance
of the textual complexity indices. We could notice a steady
improvement in results as the number of features increased, the
best result, out of the three, being the one for £ = 100. This result
improved upon the best nonfiltered results by 1%, reaching
71.06%, thus arguing for the necessity of this second filtering.

TABLE III. EXTRA TREES MODEL CLASSIFICATION F1 AND ACCURACY AS
A FUNCTION OF THE FEATURE SET SIZE (K = 10, K = 50, K = 100) BASED ON THE
FEATURE IMPORTANCE

Model Average F1 Average accuracy | Max accuracy
scores
Top 10 63.17% 63.16% 66.48%
Top 50 68.30% 68.20% 69.82%
Top 100 71.11% 71.06% 73.56%

! http://www.wjh.harvard.edu/~inquirer/homecat.htm
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When analyzing the top features, we could also observe the
importance of the CNA features (see Table IV). Despite
representing only 1.1% of the total number of features, 4 out of
10 top features were CNA-based (see Table IV in which CNA
features are marked with *). In the top 30, all 7 CNA features
that remained after the multicollinearity filtering were present.

TABLE IV. TOP 10 FEATURES ACCORDING TO THE EXTRA TREES MODEL
1D Feature name Feature Q) P
importance

1 Links between QA and all texts | 0.0273 186.239 <.001
(Stdev)*

2 Links between QA and all | 0.0188 71.871 <.001
paragraphs from the target text
(Stdev)*

3 Links between QA and all | 0.0183 80.237 <.001
sentences from the target text
(Stdev)*

4 Average words per sentence | 0.0173 182.211 <.001
related to negative affect
category from GALC [18]

5 Average number of nominal | 0.0139 111.030 <.001
subject  dependencies  per
sentence

6 Average number of third | 0.0136 124.036 <.001
person pronouns per paragraph

7 Links between QA and all | 0.0136 104.485 <.001
paragraphs from the target text
(Max)*

8 Average word length 0.0133 60.694 <.001

9 Average words per paragraph | 0.0130 106.728 <.001
related to economy category
from GI [15]

10 | Average number of sentences | 0.0124 30.387 <.001
per paragraph

One interesting finding is that the top three features consider
the standard deviation of the semantic similarity between the
question answer and all the texts, all the paragraphs in the
reference text, and all the sentences in the reference text. These
metrics quantify the variability of links between the question
answer and different text elements of the same granularity. The
top ReaderBench textual complexity features seem to be almost
evenly distributed among surface-level features (e.g., average
number of sentences per paragraph or average word length),
syntax and morphology features (e.g., average number of third
person pronouns, average number of nominal subject
dependencies), and semantical features (e.g., average number of
words appearing in General Inquirer or GALC word lists).

Another interesting finding is that the most important
ReaderBench textual complexity feature, according to the Extra
Trees model, covers the average valence related to the economy
word list from the General Inquirer. We assume this is due to the
topics of the texts, which are centered on green living; a topic
with a strong economic emphasis. Some other features may
seem more of an example of overfitting to the particularities of
the text, such as average counts relative to negative affect.
Nevertheless, the wide range of considered features allows the
method to be adaptable to new problems. The machine learning
models have to be retrained from scratch for every new dataset
to learn what features are most important for the given task.

The confusion matrix for the best Extra Trees model is
provided in Table V. The most difficult to predict class was the
single-document inference one as it was the easiest to mistake
with either simpler textbase answers from a cognitive point of
view, or the slightly more complex multi-document inference
answers. Nearly 18% of single-document inference answers
were categorized as multi-document inference, and nearly 16%
of multi-document inference answers were classified as single-
document inference. This underlines the similarity of the two
types of question answers, from the perspective of the types of
features extracted using ReaderBench and CNA.

TABLE V. CONFUSION MATRIX WHEN RELYING ON THE TEXTUAL
COMPLEXITY INDICES
Predicted Predicted Predicted
Textbase Single- Multi-
document document
inference inference
Actual Textbase 73.33% 13.33% 13.33%
Actual Single- 15.00% 66.67% 18.33%
document inference
Actual Multi- 13.33% 15.83% 70.83%
document inference

IV. STUDY 2: CLASSIFICATION USING RECURRENT NEURAL
NETWORKS

As opposed to the Study 1 in which classical machine
learning models were used on top of handcrafted features, in this
study we analyzed models that generate their own internal
representations in order to make a prediction. To this end, we
implemented Recurrent Neural Networks using the Pytorch
deep learning library [19]. Pretrained 300-dimensional GloVe
[12] word embeddings were considered. These embeddings are
a high dimensional representation of the meaning of each word
and they allow the neural network to aggregate information from
words to text level through multiple levels of processing. Every
input for the deep learning model was translated from text into
a set of indices, each index pointing to the corresponding GloVe
embedding. The array of word embeddings is passed through a
standard feature extractor module composed of two stacked
bidirectional Long Short-Term Memory —LSTM [20] layers, a
set of pooling operations, and a fully connected (FC) layer.
Depending on the architecture type, after this step one or more
fully connected layers are used to combine intermediary results
and predict the answer type (see Fig. 1). The first architecture
from Fig. 1 uses only the question answer as input for the feature
extractor module.

FC
A

Concat

MaxPooling AveragePooling
L A

LSTM
A

LST™M

A
Embedding Layer
(GloVe)

A

Question Answer

Fig. 1. Simple architecture using only the question answer as input
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Afterwards, we experimented with a Siamese architecture
[21] (see Fig. 2) in which we used the question answer and also
a secondary input consisting of either the question, or the
reference text. Both the question answer and the secondary input
were processed separately by the model, using the same
processing pipeline. This results in two sets of features which
were concatenated and used as input for a fully connected layer
(a single layer perceptron) that predicts the question type.

FC
A
Concat
/ ‘-_—‘\—-_
FC FC
A
Concat Concat
P A
MaxPooling AveragePooling MaxPooling AveragePooling
w P k 2 A
LSTM LSTM
A A
LSTM LSTM
> #
Embedding Layer Embedding Layer
(GloVe) (GloVe)
7y 7 T
Question Answer Text / Question text

Fig. 2. Siamese architecture using as a first input the question answer and as a
secondary input either the reference text, or the question.

V. STUDY 2: RESULTS AND DISCUSSION

The neural network models introduced for this study takes
into account both the student’s response, as well as its potential
links to the question text or reference documents. Three
scenarios were tested, depending on the type of input that was
used for making the prediction: a) prediction of the answer type
based only on the question answers (QAs), b) prediction based
on the question answer and the question text itself, and
¢) prediction based on the question answer and the reference text
that was targeted by the question.

One of the scenarios was a failure. When trying to make the
prediction based on the question answer and the question text,
the model overfits. This happens because the model becomes
biased due to the small number of questions (12 overall). We
examined how the model fared when tested on answers to
unseen questions, so we trained this model on answers from 9 of
the 12 questions and test it on answers from the remaining 3. In
this case the training accuracy remained at 100%, but the test
accuracy dropped to 33% (i.e., the model learned the answer
type from the question text without making any links to the
answer; i.e., it was overfitting). Thus, Table VI considers only
the two remaining relevant scenarios (i.e., only the question
answers and the questions answers in combination with the
reference text).

TABLE VL CLASSIFICATION ACCURACY USING THE DIFFERENT DEEP
LEARNING MODELS
Model Average Test Average Test Average Training
F1-score Accuracy Accuracy
Only QAs 78.47% 78.37% 79.65%
QA + text 81.33% 81.20% 83.21%

The best performance was obtained by the model using both
question answers and the reference text. We notice a significant
improvement in the prediction of the textbase and intra-textual
examples (a 15-16% increase in accuracy), when analyzing the
confusion matrix for the best performing model (81.2%
accuracy) — see Table VII. The performance for the multi-
document inference class, however, improved by only 3%,
illustrating that this class of answers is more difficult to
categorize.

TABLE VII. CONFUSION MATRIX FOR THE DEEP LEARNING MODELS USING
BOTH QUESTION ANSWER AND THE REFERENCE TO THE READ TEXTS
Predicted Predicted Predicted
Textbase single- multi-
document document
inference inference
Actual textbase 88.46% 4.81% 6.73%
Actual single- 7.89% 82.46% 9.65%
document inference
Actual multi- 12.32% 13.77% 73.91%
document inference

A second observation is that the textbase class remained the
easiest to predict, but the margin between it and the other classes
increased from 3% to a 6% margin. This may be explained by
the decrease in the number of single-document inference
samples classified as textbase and vice-versa (from 15% and
13% to 8% and 5%). This is probably due to the LSTM-based
Recurrent Neural Network model which is better at extracting
and synthesizing semantic information; thus, the model becomes
more finetuned at separating between those two classes which
are structurally and lexically more similar, than the third one.
This assumption is also supported by the observation that the
deep learning model only slightly improves the performance for
classifying multi-document inference answers.

VI. CONCLUSIONS

Both CNA features and ReaderBench textual complexity
indices play important roles in predicting the answer type. The
CNA features that were preferred by the models were those
underlining how spread out the information from the answer was
across the source text. The two sets of features are focused on
complimentary facets of the response. The top ReaderBench
indices focused on surface elements (e.g., punctuation, word
uniqueness), as well as semantic information (e.g., word
valences from different dictionaries) from the question answers.
The simple top-k feature selection method that we employed
further improved the results. An improvement in terms of
feature selection could be to prune features based on the type of
information embedded in them.

The deep learning approach obtained considerably better
results, despite the relatively small number of samples. The risk
of overfitting with such small data was still visible in the
scenario where we tried to use both the question answer and the
question as inputs. This approach may have yielded better
results if a wider variety of questions were available. The
combination of question answer and reference text
representation features yielded the best result, indicating that the
deep learning model might also be looking at the connectivity
between the question answer and the source text. However, the
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question answer and the reference text are treated by our RNN
as two large sequences of data, from which the network extracts
features combined only at a later stage. The only link between
different text elements that the model is able to comprehend is
the order in which words appear. It cannot distinguish sentence
or paragraph ends, for instance, and it considers the text as a
chain of words, not a graph of knowledge. Thus, it seems
unlikely that such a model can actually analyze the connections
between ideas in multiple parts of the text in relation to the
question answer.

This work could be improved in the future by increasing the
dataset with more data of a similar kind, as well as by using a
proxy task for training a more complex network that could then
be used on the current dataset. A second line of action could be
to integrate the CNA approach, which is better at analyzing the
structure and cohesion of the texts, with a deep learning model,
which seems better at analyzing semantics. This could be done
by: a) training a deep learning model and using it to compute the
links in the CNA graph, or b) considering a hierarchical deep
learning approach, in which the network would analyze the text
bottom up and aggregate the information at different granularity
levels, in accordance with the structure of the text.

In conclusion, we conducted two studies to explore methods
to classify question answers based on the type and level of
inferencing targeted by the question in the context of multiple
document comprehension. Such algorithms will contribute to a
larger objective of developing the means to provide feedback to
students on the quality and depth of their answers. Ultimately,
the objective is to enhance students’ ability to understand
multiple documents at deep levels, generating connections both
within and between documents. We provide comparisons of
machine learning and deep learning models to assess natural
language within student responses and ultimately provide initial
steps toward providing automated feedback in the context of
multiple document comprehension.
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