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Abstract 

 

Growth mixture models (GMMs) are a popular method to uncover heterogeneity in growth 

trajectories. Harnessing the power of GMMs in applications is difficult given the prevalence of 

nonconvergence when fitting GMMs to empirical data. GMMs are rooted in the random effect 

tradition and nonconvergence often leads researchers to modify their intended model with 

constraints in the random effect covariance structure to facilitate estimation. While practical, 

doing so has been shown to adversely affect parameter estimates, class assignment, and class 

enumeration. Instead, we advocate specifying the models with a marginal approach to prevent 

the widespread practice of sacrificing class-specific covariance structures to appease 

nonconvergence. A simulation is provided to show the importance of modeling class-specific 

covariance structures and builds off existing literature showing that applying constraints to the 

covariance leads to poor performance. These results suggest that retaining class-specific 

covariance structures should be a top priority and that marginal models like covariance pattern 

GMMs that model the covariance structure without random effects are well-suited for such a 

purpose, particularly with modest sample sizes and attrition commonly found in applications. An 

application to PTSD data with such characteristics is provided to demonstrate (a) convergence 

difficulties with random effect models, (b) how covariance structure constraints improve 

convergence but to the detriment of performance, and (c) how covariance pattern GMMs may 

provide a path forward that improves convergence without forfeiting class-specific covariance 

structures. 
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1     Introduction  

Growth models are a common group of statistical methods applied to repeated measures 

data when the interest is in quantifying how the mean of an outcome changes over time.1–3 One 

way to quantify this heterogeneity is to identify unobserved, latent classes of growth trajectories 

from the data.4 The goal is similar to including a moderator for growth like sex or treatment 

condition to allow different growth trajectories for different types of people. However, the 

moderator in this case is latent and not known a priori. Discrete latent classes of growth 

trajectories are determined from the data by combining latent class analysis with growth 

modeling in what have been deemed growth mixture models (GMMs).5,6  

  Methodological and empirical literatures alike lament difficulties in estimating GMMs 

and applications can be fraught with nonconvergence. Sample size requirements for obtaining 

trustworthy estimates can exceed 1,000 with routine data characteristics.7 Nonetheless, GMMs 

outperform alternative methods for clustering growth trajectories despite the possible 

reservations about estimation.8 Criticisms notwithstanding, researchers continue to regularly 

employ GMMs to address questions about growth trajectory heterogeneity while attempting to 

parry nonconvergence difficulties along the way.  

 When nonconvergence arises with GMMs, a common practice is to impose equality 

constraints on the covariance structure across classes9 or to switch to a more restrictive latent 

class growth model (LCGM).10 Parameters in the covariance structure are the most difficult to 

estimate, so the logic is that nonconvergence can be avoided by simplifying this portion of the 

model. These methods sacrifice flexibility in the covariance structure to facilitate estimation and, 

though effective for reducing nonconvergence, they have been noted to change key conclusions 

of the model such as growth trajectories in each class,11,12 how many classes are extracted,13,14 

the meaning of the classes,15,16 or class assignment.17 So whereas covariance structure 
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misspecification is less injurious in non-mixture settings where it has no impact on consistency 

of regression coefficients,18 adding mixture components results in covariance structure 

misspecifications permeating to all parts of the model.  

Though GMMs typically follow the random effects tradition,6 the marginal model 

tradition may have untapped utility in mixture contexts. Covariance pattern growth mixture 

models (CPGMM)19,20 were recently developed as an alternative to covariance structure 

constraints to keep the covariance structure as flexible as possible while minimizing 

nonconvergence. Marginal models like covariance pattern models are less computationally 

demanding than random effect models for repeated measures data because they do not partition 

the covariance into between-person and within-person sources with random effects.21 

Furthermore, covariance pattern models are capable of providing the same marginal covariance 

structure as random effects models. However, marginal models have received little attention in 

the GMM literature, even though GMM applications focus on marginal quantities like average 

growth trajectories in each class and rarely have person-specific interests that would necessitate 

inclusion of random effects.19,22–24  

Forgoing the random effects tradition in favor of a covariance pattern approach could 

promote flexible and class-specific covariance structures, potentially improving accuracy of 

parameter estimates and class assignment by reducing misspecifications induced via constraints 

imposed primarily to placate nonconvergence concerns. Proof-of-concept simulations with fairly 

idealistic conditions have been conducted with CPGMMs to show their potential utility.19 The 

primary goal of this paper is to build from these initial simulations to explore how CPGMMs 

perform with messier and more realistic data that include features like attrition, modest sample 

sizes, and poor class separation. Ultimately, the goal is to determine if CPGMMs outperform 
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popular covariance constraint approaches for circumventing nonconvergence with the data 

characteristics typically seen in applications. Specifically, we want to address the potential 

fallibility of prioritizing convergence over flexibly modeling the covariance structure and 

whether CPGMMs mitigate nonconvergence while maintaining class-specific covariance 

structures, thereby preempting researchers from having to choose between convergence and the 

covariance structure in the first place. 

 To outline the structure of this paper, Section 2 overviews the basics of GMMs and 

suggested alternatives when convergence problems are encountered. Section 3 reviews GMM 

applications in the PTSD literature to note the sample size, growth trajectories, and missing data 

characteristics of these studies. Section 4 presents a simulation study to compare the 

convergence, estimated class proportions, and parameter estimation accuracy of various models 

used for study growth trajectory heterogeneity. Section 5 presents the results of simulation. 

Section 6 provides an application to a PTSD study to demonstrate interpretational differences 

between approaches that sacrifice the covariance structure for convergence and CPGMMs. 

Section 7 provides discussion points and limitations.   

2     Growth Mixture Models 

 Conceptually, GMMs can be thought of as an extension of growth models25,26 with a 

discrete latent moderator.27 In essence, this means that the model is a multiple-group growth 

model where the grouping variable is latent.28 So whereas groups are split based on a known 

variable in a multiple group growth model, GMMs probabilistically uncover the groups into 

which the data are split.29(p138) 

 The most general unconstrained growth mixture model (GMMU) is based on a random 

effect growth model and many can be written as,  
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= + +

y Tβ ε

β α Γ x b
.  (1)  

In the first expression, 
iy  is a 1it   vector of responses where 

it  is the number of observed 

repeated measures provided by person i, 
iT  is a 

it q  design matrix for q, the number of 

coefficients related to time, 
ikβ  is a 1q  vector of growth coefficients for individual i in class k 

where 1,...,k K=  for K, the preselected number of classes, and 
iε is a 1it   vector of multivariate 

normal residuals with a zero mean vector and class-specific covariance matrix ( )~ ,i ikMVNε 0 R

. In the second expression, the growth coefficients 
ikβ  are modeled by a 1q  vector of class-

specific fixed effects 
kα , a q p  matrix of class-specific coefficients 

kΓ  for p time-invariant 

covariates, a 1p  vector of time-invariant covariate values 
ix , and a 1q  vector of multivariate 

normal random effects with a zero mean vector and class-specific covariance matrix, 

( )~ ,i kMVNb 0 G . This implies that every class will have its own fixed effects, random effect 

covariance matrix, residual covariance matrix, and time-invariant covariate coefficients. Rather 

than person-specific trajectories varying around a single marginal growth trajectory as in a 

traditional random effect growth model, person-specific growth trajectories vary around a class-

specific marginal growth trajectory defined by the class-specific fixed effects, 
kα .  

The model-implied mean and covariance structures for each class are,  

 ( )ik i k k= +μ T α Γ x   (2) 

 ( )T T

ik k k k i iki= + +Σ TΓT ΦΓ G R   (3) 

where Φ is the covariance matrix of the time-invariant covariates. The model-implied mean and 

covariance structures for the full model cannot be expressed a priori because it depends on the 
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latent class proportions, which serve as weights for each of the class-specific models. The 

general form of the composite density of the full model for 
iy  can be written as

( ) ( )
1

| , , |
K

i k k i ik ik

k

f f
=

=   y φ μ Σ y μ ,Σ  where 
kf  is the component normal probability density 

function for the kth class, and 
k  is the proportion of people in the kth class where 0 1k   

and 
1

1

1 .
K

K k

k

 
−

=

= −  

2.1     Convergence Difficulties  

 The model allows for between-person variability (captured by 
kG ) around the class-

specific mean trajectory (defined by 
kα ) and within-person variability around the person-specific 

growth trajectory (denoted by 
ikR ). This helps to fully partition the variability, but it also means 

that there are many random effects in the model. In growth models, covariance structure 

parameters are the most difficult to estimate,30 so the source of convergence difficulties with 

GMMUs is not hard to conceive when one considers the number of covariance structure 

parameters present when each of the K classes has unique covariance structure parameters.31,32  

More specifically, the presence of so many covariance parameters across latent classes 

creates many singularities in the likelihood surface whereby the likelihood spikes to infinity.33 If 

an optimization algorithm encounters one of these singularities, the algorithm will simply fail to 

converge because the gradient is undefined. A subtler but damaging issue with singularities 

occurs when the optimization algorithm encounters values near the singularity, which often 

results in a local maxima that terminates the optimization algorithm but whose solution does not 

represent the global maximum of the likelihood surface.34,35 Therefore, when nonconvergence 

with GMMUs is encountered, the common remedy is to reduce the number of covariance 
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parameters to avoid complications related to singularities in the likelihood surface.33 The two 

most common ways to do this are with a Constrained GMM (GMMC) or with an LCGM. We 

also discuss recently proposed covariance pattern GMMs (CPGMM) as an alternative. These 

methods are overviewed in Sections 2.2 through 2.4.  

2.2     Constrained Growth Mixture Models  

 Removing the k subscripts from G and 
iR  such that 

1 2 K= = = =G G G G  and 

1 2i i iK i= = = =R R R R  retains the concept behind GMMUs while reducing the number of 

covariance structure parameters. The logic is that, if the number of parameters composing the 

covariance structure make estimation difficult, then estimating fewer of these parameters should 

mollify the problem.36 The advantage with this approach is that the model retains person-specific 

trajectories within each class, estimation is easier since there are fewer of the difficult-to-

estimate covariance parameters in the model, and the frequency of singularities in the likelihood 

is greatly reduced.13,33  

The disadvantage is that the random effect covariance matrix and residual covariance 

matrix must be equal across all classes. Though commonly implemented in empirical settings to 

aid convergence (e.g., GMMCs are the default in the Mplus software),37 the approach of 

constraining covariance matrices across classes has been widely criticized. Bauer and Curran38 

explicitly question the choice to apply constraints across classes by stating,  

Although [constraints across classes] are statistically expedient, we do not regard these 

equality constraints as optimal from a theoretical standpoint, and in our experience, 

they are rarely found to be tenable in practice. Indeed, implementing these constraints 

is in some ways inconsistent with the spirit of the analysis, because one is forcing the 

majority of the parameter estimates to be the same over classes (permitting only mean 

differences in the within-class trajectories) (p. 346). 
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The model will attempt to classify individuals while satisfying the within-class growth 

characteristics defined by the model. So to the extent that the covariance structure differs across 

classes, enumeration and classification errors will increase.11,13,17,39,41 Further, these constraints 

are often applied in response to nonconvergence rather than theory calling for an assumption of 

covariance homogeneity.37,40 So although this approach can aid in improving convergence, it has 

been criticized for being inconsistent with the goal of conducting such an analysis while also 

having a high probability of adversely impacting the resulting class enumeration and parameter 

estimates.35 

2.3    Latent Class Growth Models 

 LCGMs provide another option to simplify the estimation of GMMUs.10,42 In the random 

effect growth modeling framework, each person has a person-specific growth trajectory. Nagin 

and colleagues note that interpreting N separate trajectories can be surfeit and that N trajectories 

can be reduced to a handful of prototypical trajectories. They do not argue that only these 

prototypical trajectories matter, quite the opposite.10(p140) The argument is that the underlying 

information from a few prototypical trajectories is easier to digest than N person-specific 

trajectories. Instead of fitting a model with continuous random effects, LCGMs do not allow the 

growth coefficients to vary across people. Instead, discrete latent classes are used rather than 

continuous random effects to capture between-person differences in growth trajectories. Rather 

than person-specific growth trajectories, people are assigned to the class whose trajectory formed 

by class-specific fixed effects most closely match what the person-specific trajectory would have 

been. The model does not allow for between-person differences within classes and people within 

a class are considered interchangeable, so any deviation from the class-specific trajectory is 

absorbed into the residual term.  



8  Statistical Methods in Medical Resarch 

 

The LCGM can be written as 

  
i i k i

k k k i

= +

= +

y Tβ ε

β α Γ x
  (5) 

where 
iε  is a 1it   vector of residuals such that ( )2~ 0,

ii k tMVN ε I , meaning that the residuals 

are assumed to be constant and independent across time. Note that 
kβ  does not have an i 

subscript nor a random effect vector 
ib , so the only source of between-person heterogeneity is 

through the latent classes. The goal of LCGMs is therefore to provide a semiparametric 

representation of the growth trajectories, meaning that there is no requirement to assume 

normality around the class-specific mean trajectory.43 An advantage of the LCGM is that there 

are no random effects within classes, so computational difficulties are rarely encountered.44  

Compared to GMMUs, a drawback is that the model features a simple submodel for the 

covariance among repeated measures.45,46 This is intentional because the LCGM conceptualizes 

classes differently from GMMs. LCGMs define a class as a collection of people who follow a 

similar and distinct trajectory whereas GMMs define a class as a heterogeneous set of people that 

can be described by a single probability distribution.43(p895). As a result, modeling the residuals as 

constant and independent over time often leads to additional classes being extracted with a 

LCGM relative to a corresponding GMM.14,16 This is not to say that the LCGM is incorrect, but 

rather the solution represents a different definition of what constitutes a class. Though LCGMs 

have merit for their own theoretical considerations, they do not always align with the goal of 

GMMs and can be a tenuous substitution for GMMs because LCGMs often lead to different 

solutions and interpretations.47,48 

2.4    Covariance Pattern Mixture Models  
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CPGMMs are another alternative to reducing the complexity of the GMMUs to improve 

convergence.19 Covariance pattern models49,50 are part of the family of marginal models whose 

goal is to estimate the marginal growth trajectory while fully modeling the covariance between 

repeated measures.51 Random effect growth models have a similar goal but add an intermediate 

step of providing person-specific growth trajectories, which requires partitioning the marginal 

covariance into between-person and within-person sources. Covariance pattern models combine 

all sources into a single marginal covariance in order to describe the covariance between 

repeated measures rather than trying to explain the sources of covariation among repeated 

measures with random effects.  

The covariance pattern growth mixture model (CPGMM) can be written as,  

 
i i k i

k k k i

= +

= +

y Tβ ε

β α Γ x
  (6) 

where ( )( )~ ,i ik kMVNε 0 Σ θ . There is no random effect vector in the second expression, so 
ikΣ  

combines within- and between-person sources of variability in class k, whose structure is a 

function of class-specific parameters in 
kθ . The LCGM is a special case of the CPGMM when 

2

k k=θ  but more complex structures can be used to allow for heterogeneity within classes and to 

better reproduce the variances and covariances of the repeated measures. The most general 

structure allows for the variances in each class k to be uncoupled from the correlations such that 

1 2 1 2

ik ik ik ik=Σ D P D  where ikD is a diagonal matrix of time-specific variances in class k and 
ikP is a 

class-specific correlation matrix.52,53 More commonly, parsimonious structures are chosen such 

as compound symmetry or an autoregressive structure. 

The CPGMM shares the advantages of the LCGM in that it removes random effects and 

the associated covariance partition that complicate estimation of GMMUs. It is more congruent 
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with GMMs than LCGMs by more rigorously modeling the covariance structure of the repeated 

measures within classes. In essence, the goal is to arrive at the same marginal covariance as the 

GMMU but to do so without random effects in order to reduce the singularities in the likelihood 

surface. As a disadvantage, researchers lose the ability to obtain person-specific trajectories and 

the ability to differentiate between-person and within-person sources of variance. Additionally, 

the researcher is responsible for selecting the structure of the marginal covariance, which can be 

more challenging for data with many repeated measures. 

Table 1 compares the key features of the four types of GMMs we have covered for 

modeling heterogeneity in growth trajectories.  

3     Convergence Difficulties in Empirical PTSD Studies 

To provide context and evidence for the nonconvergence in empirical studies and to 

gauge data characteristics seen in applications, we reviewed studies in the PTSD literature where 

GMM applications are frequent. To facilitate this review, we use the work of van de Schoot et 

al.54 as a baseline, whose review screened 11,395 papers that satisfied keywords, ultimately 

whittling down to 34 papers containing 38 unique studies. The original goal of the review was to 

use these studies to form informative prior distributions for a Bayesian GMM analysis. To 

address the interest of the current paper, we re-reviewed these studies with a focus on the 

characteristics of the data and the modeling decisions used to arrive at the final model 

(characteristics not tracked in the original review). The modeling decisions of these studies were 

telling for how researchers dealt with nonconvergence. First, only 2 papers (6%) reported using a 

GMMU with class-specific covariances whereas 9 studies (27%) reported a GMMC. Another 9 

studies (27%) did not provide enough information in the reports to determine if there were 

covariance structure constraints across classes. Presumably, these 9 studies used a GMMC 
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because this is the default setting in the Mplus software used in these studies. An additional 14 

studies (41%) used a LCGM.  

The prevalence of model choices that directly reflect nonconvergence issues is less 

surprising when looking at the attributes of the data in these studies. First, the median attrition 

from the first wave to the last wave was 35%, with the first and third quartiles being 22% and 

51%, respectively (range: 9% to 74%). Missing data are rarely considered in GMM simulations55 

and large amounts of missing data exacerbate nonconvergence.  

Second, the sample sizes found in these studies are markedly lower than the suggested 

values suggested by the methodological literature.7 The median sample size was 517, with the 

first and third quartiles being 207 and 835, respectively (range: 70 to 16,488). In the 

methodological literature on GMMs, 300 is a typical lower bound for sample size in simulations 

with complete data.13,56 Though simulation studies have yet to explicitly consider or quantify the 

impact of simultaneously having high attrition with modest sample sizes, estimation of GMMUs 

with class-specific covariance matrices in such contexts is unlikely to be auspicious.  

The next section provides a simulation study with conditions inspired by these PTSD data 

to examine the performance and nonconvergence of different modeling approaches. Our data 

generation model builds off McNeish and Harring19 and incorporates more realistic data 

characteristics such as modest samples, attrition, and poor class separation than were used in 

their proof-of-concept study that features more idealistic characteristics.  

4     Simulation Study 

4.1    Data Generation Model 

The data generation model is based on the so-called “Cat’s Cradle” pattern that emerges 

in PTSD research.57,58 Four classes typically emerge: one class that starts at higher values and 
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maintains high values (the “Chronic” class), a second class that starts low and maintains low 

values (the “Resilient” class), a third class that starts high but decreases over time (the 

“Recovery” class), and a fourth class that starts low and increases over time (the “Delayed 

Onset” class). The Resilient group comprised 63% of the population, the Recovery class 12%, 

the Chronic class 19%, and the Delayed Onset class 6% to mirror empirical applications of 

GMMs where class proportions are disparate. The data feature 5 time-points that represent weeks 

after a traumatic incident. Time is coded as: 0 (baseline), 1, 10, 18, and 26, which follows the 

timing employed in motivating application data we use in Section 6, which measured people’s 

PTSD approximately every 2 months after 2 closely spaced baseline measurements. 

Figure 1 shows a plot of the trajectories in each of the four classes. Table 2 shows the 

model equations and covariance structures that were used to generate data from these 

trajectories. Table 2 has two sets of covariance matrices that satisfy the manipulated simulation 

conditions because we also manipulate class separation (discussed shortly). The growth 

trajectories present in each class have both linear and quadratic components to account for 

nonlinearity in the longitudinal profiles present in Figure 1. The linear slope varies across 

individuals within classes in the data generation model but the quadratic slope variance was 

constrained to zero because quadratic variance is difficult to estimate due to scale differences59 

and we did not wish to favor models that do not feature random effects based on how we 

generated the data.  

4.2     Simulation Conditions 

We manipulated three conditions in our simulation design. First, we generated data from 

three different sample sizes: 100, 250, and 500. These conditions were selected from the 

distribution of the sample sizes observed in the review of the PTSD literature; the lower bound 
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was near 100, the 25th percentile was near 250, and the median was near 500. Our focus is on 

nonconvergence, so our simulation conditions focus on the lower 50% of the sample size 

distribution where these issues are most probable.  

Second, we had three conditions for attrition: 0%, 25%, and 45%. 20% attrition 

corresponds to the 25th percentile of reported values in the PTSD review and 45% attrition 

corresponds to the 75th percentile. Attrition was generated such that missing data did not rely on 

any covariates or the values of the missing data themselves. Instead, missing values were 

generated according to a random probability. To mimic the way that people drop out of studies, 

we assigned a probability to each generated person having 5, 4, 3, or 2 observed repeated 

measures. For the 20% attrition condition, 80% had 5 repeated measures, and 10% each had 3 or 

2 repeated measures. In the 45% attrition condition, 55% had 5 repeated measures, 10% had 4 

repeated measures, 15% had 3 repeated measures, and 20% had 2 repeated measures. Missing 

data were monotone.  

Third, we manipulated the separation between the different latent classes. Sample size in 

GMMs is really about the interaction between sample size and class separation. If the classes are 

completely distinguishable, then the model will easily identify the number of classes and 

estimate the growth trajectory in each, even at very small sample sizes. For example, Verbeke 

and Molenberghs60(p186) provide a 2-class example of height changes in 20 schoolgirls without 

issues as the two classes are highly separated. On the other hand, samples of 1000 or more may 

be insufficient for estimation and class assignment when classes are poorly separated.61,62  

Class separation is straightforward to define with 2-class solutions (e.g., Mahalanobis 

distance), but it is not straightforward to quantify separation with more than 2 classes as in the 

current simulation design. For more than two classes, class separation is less clear but relative 
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entropy has been used in past studies by manipulating the population values of 
kG  and 

ikR .61 

Following this precedent, our low class separation condition featured relative entropy of 0.70 for 

the population model and our high separation condition resulted in relative entropy of 0.90. 

These values also reflect the PTSD literature review: of the 23 studies that reported relative 

entropy values for their final model, the 25th percentile was 0.72 and the 75th percentile was 0.93 

(range: .49 to .97). To help visualize class separation conditions, Figure 2 shows the width of the 

95% interval for the person-specific trajectories for each class in each class separation condition.  

Each generated dataset was fit with four different models – (a) a GMMU with class-

specific covariance matrices (the data generation model), (b) a GMMC where all covariance 

matrices are constrained to be equal across classes, (c) an LCGM, and (d) a CPGMM with a 

class-specific compound symmetric marginal covariance matrix. We used a compound 

symmetric marginal covariance structure because it would represent a moderate misspecification 

given that the population model includes random slopes. The misspecification was intentional to 

encode the difficulty of perfectly specifying the covariance structure with real data so that the 

results would more accurately reflect the performance of different approaches in applications. 

The mean structure was the same for each model and was properly specified. Because the 

population values for the quadratic slope variance were 0, the GMMU and GMMC conditions 

did not include a quadratic slope random effect. The covariance between the intercept and linear 

slope random effect was estimated in the GMMU and GMMC conditions. All conditions were 

fully crossed, meaning there were 18 possible combinations of sample size, missing data, and 

class separation. Within each of these possible condition combinations, 500 datasets were 

generated and analyzed with all 4 models with Mplus Version 8.3 using robust maximum 
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likelihood estimation. All data generation and analysis files can be found on the first author’s 

Open Science Framework page (https://osf.io/k9y54/).  

4.3     Simulation Outcomes 

The first outcome is the percentage of the 500 replications that converged for each of the 

4 models. The complexity of estimation with GMMs means that “nonconvergence” can be 

interpreted in slightly different ways. We consider a replication nonconvergent if the solution 

produces inadmissible estimates (e.g., negative variances, correlations greater than 1), the 

Hessian matrix was nonpositive definite, or if likelihood optimization could not be completed 

using Mplus’s default criteria (500 EM algorithm iterations, convergence criteria of 1E-5). If a 

replication produced a solution with admissible solutions with one set of starting values but the 

same likelihood could not be reproduced for a different set of starting values, we counted the 

replication as convergent for the purposes of the simulation even though it may suggest a local 

maxima or saddle point. This employs a relatively lenient definition such that replications are 

counted as converged anytime optimization completed with admissible parameter estimates. The 

second outcome is the mean absolute bias of the class proportions, which will provide a single 

value to summarize how well the model is able to estimate the proportion of people in each class. 

This is calculated by averaging the absolute value of the difference between all of the class 

proportions from the data generation model and the estimated class proportions based on the 

most likely class membership assignment, 
1

1

ˆ
K

k k

k

K  −

=

− .  

The third outcome is whether each model can identify the growth trajectories of the four 

different classes generated by the population model. This will be explored graphically rather than 

being quantified by distance from the population parameter value because we are more interested 

in ability of the model to qualitatively identify the different types of growth trajectories.  

https://osf.io/k9y54/
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5     Simulation Results 

5.1     Convergence 

 Table 3 shows the convergence results across simulation conditions. GMMU results 

highlight a familiar theme – even though the GMMU is the data generation model, under 

relatively advantageous circumstances of no attrition, well-separated classes, and a sample size 

of 500; convergence was only 50%. As conditions deviate further from ideal and feature smaller 

samples and attrition, GMMU became increasingly worse and ultimately converged in only 1% 

of replications for the condition with 100 people and 45% attrition. These results reflect the 

nonconvergence reported in the PTSD literature review, suggesting that nonconvergence would 

be rather dire even if researchers were using the exact data generation model.  

GMMCs are often used to improve convergence when GMMUs fail. GMMC 

convergence rates were not 100%, but convergence notably improved and corroborated the 

popularity of this strategy, especially with smaller sample sizes and higher attrition. As it relates 

to convergence, the LCGM is also inviting with convergence at or near 100% across conditions. 

The CPGMM convergence rates exceeded GMMC and were only slightly lower than the LCGM, 

demonstrating the advantage that CPGMMs can provide class-specific covariance parameters 

without the computational issues of GMMUs.  

Nonconvergence rarely was related to optimization issues like exceeding the number of 

iterations and these issues occurred in 1% or less of replications for each condition. Nearly all 

problems were attributable optimization terminating normally but at a solution with inadmissible 

values or the Hessian matrix being nonpositive definite when evaluated at the parameter 

estimates. The central issue estimating these models is not optimization choices like number of 
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iterations or convergence criteria but rather that the likelihood surface is difficult to navigate and 

poorly behaved with singularities or multiple optima. 

The ability of a model to merely converge to an admissible solution is not the ultimate 

goal and other relevant performance metrics need to be considered to ensure that the extracted 

classes correspond to the population model. The next two subsections discuss results related to 

estimated class proportions and estimated class trajectories.  

5.2     Class Proportions 

 Table 4 shows mean absolute bias for each model in each of the simulation conditions. 

With this metric, 0 indicates that the estimated class proportions match the generated class 

proportions so lower values are better with 0 indicating that the class proportions exactly match 

the data generation model. Results show that in the 100 sample size condition, the CPGMM 

yielded the class proportions that most closely mirrored the generated class proportions in all 

conditions, often by a sizeable margin. This trend continued in all cells containing a sample size 

of 250, with one exception. In the 500 sample size condition, GMMC had the lowest mean 

absolute bias for class proportions when class separation was low, but the CPGMM generally 

produced the lowest mean absolute bias for class proportions when class separation was high. 

Overall, the CPGMM yielded the lowest mean absolute bias for class proportions in 72% of the 

simulation conditions.  

Another notable feature of Table 4 is the consistently high mean absolute bias values 

across all conditions for the LCGM, suggesting that this model is not classifying people in a way 

that is consistent with the generated classes. Specifically, the LCGM tended to classify few 

people into the Resilient class (estimated proportions were about half the population proportions) 

and overclassified people in the Delayed Onset and Recovery classes. This echoes previous 
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points that the LCGM is not a substitute for a GMMU (as it is sometimes used given the ease 

with which it converges) because the models have different goals and conceptualize classes 

differently. 

It is also important to note that these values are only calculable for replications that 

converged, so selection effects are a possible explanation for inaccurate values in some 

conditions. For instance, class proportions for the GMMU models in the smaller sample size 

conditions could be inaccurate because the estimation is only stable enough to converge in 

replications that over-assign people to the smaller, minority classes. If this were the case, then 

the class proportions in Table 4 could be confounded with convergence.  

5.3     Estimated Class Trajectories 

 Figure 3 compares the average estimated class trajectories across all converged 

replications (in black) to the generated class trajectories (in grey) for the 250 sample size 

conditions with 45% attrition. Figure 3 does not include GMMU in the comparison given that 

GMMU convergence was poor and that one of our interests lies in the best alternative when the 

desired GMMU fails (for the few GMMU replications that did converge, results closely mirrored 

the GMMC plots). Results for other simulation conditions follow a similar pattern but are not 

presented for brevity.  

The low separation conditions in the top row of Figure 3 show that GMMC and LCGM 

do not recover the class trajectories very well. Rather than the “cat’s cradle” pattern of the 

generated model, both of these models essentially produced four horizontal lines and the 

“Recovering” and “Delayed Onset” classes are not readily identifiable as embodying the 

intended characteristics. The CPGMM class trajectories are more closely aligned to the 

trajectories of the data generation model and the key distinctions between the different classes 



McNeish & Harring  19 

 

 

are easy to identify. The result is amplified in the high separation condition in the bottom row of 

Figure 3. The CPGMM class trajectories overlap with the trajectories from the data generation 

model so closely that the lines are nearly indistinguishable. Meanwhile, GMMC and LCGM 

continue to produce essentially horizontal lines that resemble the trajectories of the data 

generation model much less faithfully.  

5.4     Simulation Results Summary 

Though drawing conclusions from simulation results is difficult as interpretations and 

trends become more convoluted as the myriad of crossed conditions increases, the results seem 

to suggest classifying the different model type based on the complexity of the estimation and the 

class-specificity of the covariance structure as is shown in Table 5. Below is a synopsis of this 

classification.   

1. GMMUs with class-specific covariance matrices are often the model that researchers 

theoretically want to fit but this model may be too complex for data characteristics 

commonly encountered in PTSD studies. Even when the analysis model matched the data 

generation model, convergence with GMMUs was below 50% in the best-case scenario 

and as low as 1% with smaller samples and higher attrition.  

2. Alternative methods like GMMCs, LCGMs, and CPGMMs can aid in improving 

convergence. However, class proportions and estimated class trajectories were less 

accurate for GMMCs and LCGMs because they place quixotic constraints on the 

covariance matrices. The LCGM also showed discrepant class proportions, likely because 

the model conceptualizes classes differently than methods that model for heterogeneity 

within classes. The CPGMM was more accurate in terms of class proportions and 
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estimating class trajectories across conditions, even if the covariance structure was not 

correct.  

3. Simulation evidence showed that the CPGMM most effectively balances convergence 

with performance. The CPGMM narrowly trailed the convergence rate of LCGM and 

exceeded the convergence rate of GMMC, but the CPGMM outperformed both the 

LCGM and GMMC in terms of estimating class proportions and class trajectories. 

Essentially, CPGMMs provide a more complete covariance structure than LCGMs, improves on 

GMMCs by allowing class-specific covariance structures, and encounters fewer convergence 

issues than GMMUs by removing within-class random effects while maintaining the ability to 

answer the fundamental questions asked in empirical studies (i.e., how many classes are there, 

what is the average trajectory in each class, what predicts class membership). Together, this 

suggests that the CPGMM – not LCGM or GMMC – should be the preferred alternative to 

emulate the intent of GMMUs in the face of convergence issues. To take this a step further, if 

there are no person-specific research questions, the CPGMM could be the analysis of choice 

from the onset rather than only providing utility after a more complex model fails to converge. 

The next section provides an application to show how choice of model can dramatically 

influence conclusions from GMMs.  

6     Application 

Data come from a study on PTSD in burn victims who were admitted to a burn center 

between 1997 and 2000.63 Participants completed the Impact of Event Scale64 up to 8 times in 

the 12 months following the incident. The first two waves were taken two and three weeks after 

the traumatic incident, respectively. The remaining 6 waves were collected in 8-week intervals 
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thereafter (i.e., time is coded 0, 1, 9, 17, 25, 33, 41, 49). The data contain 301 people and there is 

21% attrition.  

 In the PTSD literature, four latent classes are often found, so we fit a 1-class, 2-class, 3-

class, 4-class, and 5-class GMMU with class-specific covariance matrices and estimated with 

robust maximum likelihood estimation in Mplus Version 8.3 using 100 random sets of starting 

values and 10 optimization points to guard against local maxima.31,65 As anticipated by 

simulation results, none of the GMMU models with multiple classes converged due to 

inadmissible parameter estimates. Reverting to a GMMC did not help – constraining the 

covariance matrices to be equal across all classes continued to yield inadmissible parameter 

estimates for models with between 2 and 5 classes.  

To allay these convergence issues and to deal with the smaller sample size in a principled 

way, van de Schoot et al.54 analyzed these data with Bayesian estimation using a Markov chain 

Monte Carlo algorithm by placing informative priors on the class proportions and covariance 

matrices based on the 34 aforementioned papers. This is a perfectly reasonable approach 

methodologically to accommodate issues related to convergence and smaller sample sizes. 

Nonetheless, a looming issue is that nearly all the studies upon which the informative priors were 

based employed some type of alteration or constraint to work around nonconvergence. As a 

result, the covariance matrices in the Bayesian analysis were constrained to be equal across 

classes and assumed a 4-class solution often found in the literature because it is difficult to place 

priors on unknown classes. So, whereas informative priors are a commonly cited method to 

circumvent small sample or convergence issues,66 prior distributions are only as useful as the 

underlying source upon which they are based. In this case, the existing literature is plagued with 
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nonconvergence and associated constraints, so basing informative priors on this literature 

implicitly encodes these issues into the analysis.  

 Instead, we applied a CPGMM with class-specific factor analytic marginal covariance 

matrices. A factor analytic structure is similar to a Cholesky factorization of an unstructured 

matrix but uses fewer parameters and is helpful for data with many repeated measures,67,68 

especially if the timing is uneven such that autoregressive structures are inappropriate. With the 

GMMU and GMMC, we tested between 1 and 5 classes. The 5-class solution extracted a class 

with very few people, so we do not consider it here. Additionally, one of the classes in the 4-

class solution had nearly equal variances and near equal covariances across time, so we reduced 

the marginal covariance to a compound symmetric structure for that class only to reduce the 

number of parameters.  

Though there are many methods by which to base class enumeration, we based our 

decision on the BIC, sample-size adjusted BIC (SA-BIC)69, integrated classification likelihood 

Bayesian information criteria (ICL-BIC)35,70, and classification likelihood information criterion 

(CLC)35. BIC is a commonly reported criteria for class enumeration71 with some simulations 

advocating for the adjusted SA-BIC version in the presence of poorer class separation and 

smaller samples.61,72 Simulations have shown BIC-ICL and CLC outperform likelihood-based 

statistics and information criterion by wide margins in when selecting among solutions with K > 

1, smaller samples, and disparate class proportions.73 Table 6 reports fit of models with 1 to 4 

classes. Notably, all measures support the 3-class solution over the traditional 4-class solution 

that is commonly obtained when covariance constraints are applied and that has previously 

reported with this data when the covariance structure is constrained across classes. Because class 



McNeish & Harring  23 

 

 

enumeration was not included in the previous simulation, we perform a small-scale simulation 

with a small number of conditions to provide some context for these class enumeration results.  

6.1     Small-Scale Class Enumeration Simulation 

 Because the relative entropy was high for all class solutions in Table 6, we generated 500 

datasets from the 4-class High Separation condition from the model equations shown in Table 2 

with the same class proportions as in the previous simulation (63%, 12%, 19%, 6%). We 

changed the number of time-points from 5 to 8 to match the PTSD data and coded time as 0, 1, 9, 

17, 25, 33, 41, 49. The sample size for each generated data set was 300. Missing data were 

generated such that 80% of the data were complete, 10% were missing the last three 

measurement occasions (t = 33, 41, 49), and 10% were missing the last six measurement 

occasions (t = 9, 17, 25, 33, 41, 49). This was done to mirror the missing data pattern in the 

empirical data where the percentage of observed data at each measurement occasion was 100%, 

98%, 93%, 88%, 84%, 82%, 80%, 80%.  

 We then fit CPGMMs with 2, 3, 4, and 5 classes to each generated dataset and compared 

the four fit indices reported in Section 6 (BIC, SA-BIC, ICL-BIC, and CLC). Convergence was 

defined identically to Section 4.3. The main interest was the proportion of replications in which 

the correct 4-class solution was selected by different information criteria. This will help 

determine whether the 3-class solution suggested by Table 6 might be a common under-

extraction error for data that truly have 4 classes or whether these indices tend to extract 4 

classes when they are present.  

 Table 7 shows the simulation results. 2-, 3-, and 4-class models converged in 100% of 

replications and 5-class models converged in 74% of replications. BIC and ICL-BIC selected the 

correct 4-class solution in 81% and 85% of replications, respectively. SA-BIC and CLC did not 
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perform as well and only selected the correct number of classes in 38% and 28% of replications, 

respectively. Importantly, no replications across all information criteria selected 2 or 3 classes. 

So, when data are generated from the 4-class Cat’s Cradle pattern in Figure 1 with N = 300, t = 

8, and 20% attrition, BIC and ICL-BIC very often detect the correct 4-class solution and no 

information criteria suggest 3 classes when the data truly contain 4 classes. 

If there were truly 4 classes in the data, the information criteria reported in Section 6 

would seem to err in the direction of reporting more than 4 classes rather than fewer as reported 

in Table 6. From these results, we conclude that the 3-class solution is unlikely to be an under-

extraction error and we proceed to interpret the 3-class solution results in the next subsection.  

6.2     Results  

The estimated class trajectories for the 3-class solution are shown in Figure 4 and the 

empirical data of people assigned to each class are shown in Figure 5. The breakdown of the 

classes is essentially that Class 1 shows people who show some symptoms initially but improve 

to show no symptoms after one year (similar to the traditional Recovering class and the higher 

portion of the traditional Resilient class). Class 2 is composed of people who showed no 

symptoms throughout the observation window and is essentially those at the floor of the scale 

(the most unambiguous members of the traditional Resilient class). Class 3 is people who show 

symptoms and continue to show symptoms after one year and includes those who responded 

erratically over time.  

Note the widely different variance of the growth trajectories in each class. If constraining 

variances to be equal across classes, the solution would look quite different to satisfy the 

imposed homogeneity assumption. Differences in variability across classes seems to be a 

defining characteristic of the class solution as the classes appear to be defined more by the 
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volatility of symptoms rather than the mean change in symptoms. The unappreciated importance 

of the covariance has recently been noted75–77 and the current analysis is an example of how 

these considerations similarly apply to GMMs but are discarded with the common GMMC 

approach that applies equality constraints on covariance parameters in different classes.  

 The proportion of people classified into the Resilient class tends to be large in most 

empirical studies and the informative Bayesian analysis of this same data placed 76% of the 

sample into this class. However, after allowing the covariance matrices to be class-specific, the 

percentage of people who are classified as Resilient drops considerably to 54% (if considering 

Class 1 and Class 2 combined as “Resilient”). This decline in Resilient classification mirrors 

findings from Infurna and Luthar17, who found that Resiliency classification dropped from 81%  

with a constrained covariance structure to 48% with an unconstrained covariance structure in a 

different dataset. The Resilient class has little variance because the class is at the floor of the 

scale and shows little growth, so constraining the covariance structure to be equal across classes 

in such context artificially expands the reach of the Resilient class, resulting in cannibalization of 

the next nearest class into the Resilient class in order to satisfy unsupported homogeneity 

assumptions.  

Also relevant is the lack of the Delayed Onset class, a type of PTSD whose existence has 

been debated in the psychiatry literature outside of military populations78–81 but whose evidence 

for existence is taken largely from GMMs.57 It is also interesting to note that the only two 

applications in the PTSD studies reviewed in Section 3 with sufficiently rich data to fit a GMMU 

with class-specific covariance matrices both yielded two classes, not four classes as found in 

studies that used GMMCs or LCGMs.  
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Though the true structure of empirical data is unknown, these results are consistent with 

the simulation results and demonstrate how conclusions can be affected by model alterations that 

are applied solely with an interest in model convergence without being accompanied by a 

theoretical justification. Much of the PTSD literature suggests four classes, but our analysis 

along with other work in this area suggests that the intended version of the model researchers 

want to fit if not for nonconvergence issues tends to uncover fewer classes with different class 

proportions and different interpretations, largely because differences in variability of the class is 

a central feature of the class solution and covariance parameters should not be constrained.   

7      Discussion 

 Despite the heavy emphasis that researchers place on the mean structure in GMMs, the 

covariance structure is equally important for ensuring that results and conclusions are accurate. 

Covariance structure parameters are the most difficult to estimate and the task does not become 

any simpler when latent classes are present. Nonconvergence with the most general GMMU is 

therefore pervasive and the analysis often devolves into post-hoc processes of trial-and-error to 

determine which constraints or alterations to the covariance structure will yield convergence. We 

are sympathetic to the intentions behind these efforts; however, this study extends previous work 

showing that this approach provides poor class assignment, poor class trajectories, and over-

extracts classes. Our application echoed the narrative that has recently appeared in the literature 

that latent classes of PTSD trajectories might be artifacts of methodological choices rather than 

reflective of the nature of PTSD itself.40 

 Our results suggest that the recently proposed CPGMM is well-positioned to address 

some of the longstanding nonconvergence present in applications of GMMs with realistic data 

characteristics. GMMs following the random effect tradition stack latent classes on top of latent 
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growth trajectories and estimation algorithms can only extract so much latent information from a 

set of a few observed repeated measures. Whereas the person is the focus of a random effect 

growth models, the class is the focus of GMMs. As evidence of this, of the 34 reviewed PTSD 

papers, zero included any mention of person-specific trajectories. The interests were universally 

to (a) determine how many classes exist, (b) discern the class-specific trajectories and (c) 

determine which covariates were related to class membership. The lack of person-specific 

trajectories is not an isolated feature of the PTSD literature and has been noted as a feature of 

GMM applications broadly.22–24 This suggests that either the within-class random effects are 

afterthoughts that are included to model the within-class covariance structure or there is a lack of 

realization that the population-average versus person-specific distinction in longitudinal data 

analysis extends to GMMs. As in any other longitudinal analysis, if the goal is simply in the 

average trajectory, researchers need not pursue random effects and person-specific models – 

answers can more easily be obtained with population-average approaches like covariance pattern 

models.   

7.1     Limitations and Future Directions 

 First, our study considered continuous outcomes only, but GMMs are sometimes applied 

to discrete outcomes.82 With binary data, covariance patterns models are supplanted by 

generalized estimating equations (GEE)18 which are better equipped to deal with the nuances of 

modeling discrete outcomes. There is some literature considering this idea83,84 and further 

development of a GEE version of GMMs would be a clear future direction to extend the current 

line of reasoning to the context of discrete outcomes. Additionally, similar to GEE, the cluster-

robust sandwich estimator for standard errors can also be applied to CPGMMs to reduce effects 
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of covariance structure misspecification (the default robust estimator in Mplus addresses 

deviation from normality, not covariance misspecification).  

Second, our simulation results largely assumed that the correct number of classes was 

known. Class enumeration is an undoubtedly important area to refine further within CPGMMs 

because the favorable properties demonstrated in this study are useful only to the extent that the 

model is capable of reasonably identifying the proper number of classes. Our small-scale 

simulation showed that BIC and ICL-BIC coupled with CPGMMs were able to accurately 

identify the correct number of classes and suggested that the 3-class solution in the application 

was not an under-extraction error. However, a rigorous full-scale class enumeration simulation 

study is needed before making comprehensive conclusions about the ability of CPGMMs to 

extract the correct number of classes. This would include generating data from models with 

different numbers of classes with different class proportions and including a broader array of 

information criteria and fit statistics to gauge under what conditions CPGMMs can and cannot 

reliably extract the correct number of classes. A simulation with sufficient complexity to address 

these questions is deserving of a dedicated study of its own. 

Third, our simulation conditions were heavily based upon data characteristics observed 

from the PTSD literature. GMMs are commonly applied in many areas, especially substance use 

research, where the characteristics may look different. To the extent that attrition, sample size, 

class separation, and class separation differ from the PTSD literature; convergence and 

performance noted in our simulation may not carryover to other adjacent areas of application.  
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 Table 1 

 Comparison of methods to model heterogeneity in growth trajectories 

 

 
a This is a disadvantage from the viewpoint of defining classes as a set of people that can be described by a single probability 

distribution. From the viewpoint that a class is a collection of people who follow a similar and distinct trajectory, this would likely be 

consider an advantage.  

 

Note: GMMU = Unconstrained Growth Mixture Model, GMMC = Constrained Growth Mixture Model, LCGM = Latent Class 

Growth Model, CPGMM = Covariance Pattern Growth Mixture Model. 
tI  is an identity matrix with dimension equal to the number of 

repeated measures, t.  

 

 

 

 

 

Model 
Unconditional Marginal  

Covariance Structure 

Within-Class 

Random Effects 

Person-

Specific 

Curves 

Primary 

Advantage 

Primary 

Disadvantage 

GMMU 
T

ik k i iki= +G TTΣ R  Yes Yes 
Complete random effect growth 

model in each class 

Many random effects make 

estimation difficult 

      

GMMC 
T

iiik i i= = +Σ TTΣ G R  Yes Yes 
Resembles GMMU but simplifies 

estimation 

Prioritizes convergence over 

covariance structure flexibility 

      

LGCM 
2

ik k t=Σ I  No No 
Minimal assumptions  

and simplified estimation 

Covariances between repeated 

measures not modeleda 

      

CPGMM ( )ik ik k=Σ Σ θ  No No 
Class-specific marginal covariance 

without random effects  

Researcher must select pattern 

for marginal covariance structure 
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Table 2 

Data generation equations for population model 

 

Class Model Equation 

Covariance Structures, 

Low Separation 

Covariance Structures, 

High Separation 

1 

(Resilient) 

0 1ti i i tiy t  = + +  

0 015.0i ib = +  

1 10.15i ib = − +  

40

0 0.04

 
 
 

G =  

528R = I  

25

0 0.02

 
 
 

G =  

525R = I  

2 

(Recovering) 

2

0 1 2ti i i i tiy t t   = + + +  

0 038.0i ib = +  

1 10.1i ib = − +  

2 0.008i = −  

160

0 0.04

 
 
 

G =  

 

572R = I  

20

0 0.01

 
 
 

G =  

 

510R = I  

3 

(Chronic) 

2

0 1 2ti i i i tiy t t   = + + +  

0 041.0i ib = +  

1 10.12i ib = +  

2 0.002i = −  

120

0 0.04

 
 
 

G =  

 

560R = I  

15

0 0.015

 
 
 

G =  

 

515R = I  

4 

(Delayed Onset) 

2

0 1 2ti i i i tiy t t   = + + +  

0 018.0i ib = +  

1 10.2i ib = +  

2 0.015i =  

72

0 .035

 
 
 

G =  

 

560R = I  

10

0 0.015

 
 
 

G =  

 

512R = I  

 

Note: t = 0, 1, 10, 18, 26 

  



38  Statistical Methods in Medical Resarch 

 

Table 3 

Percentage of replications that converged each model across simulation conditions 

 

 

Note: CPGMM = Covariance Pattern Growth Mixture Model, LCGM = Latent Class Growth Model, GMMC = Constrained Growth 

Mixture Model, GMMU = Unconstrained Growth Mixture Model with class-specific covariance matrices 

 

 

  

    N =100   N =250   N =500 

Separation Attrition CPGMM LCGM GMMC GMMU   CPGMM LCGM GMMC GMMU   CPGMM LCGM GMMC GMMU 

Low                

 0%  84% 94% 70% 4%  97% 100% 81% 17%  100% 100% 68% 26% 

 20%  92% 96% 62% 5%  98% 100% 82% 15%  100% 100% 66% 23% 

 45%  88% 100% 54% 1%  98% 100% 78% 9%  100% 100% 72% 18% 

High                

 0%  88% 100% 68% 7%  100% 100% 82% 29%  100% 100% 82% 50% 

 20%  96% 100% 63% 7%  100% 100% 78% 24%  100% 100% 82% 46% 

  45%  97% 100% 57% 4%   100% 100% 72% 15%   100% 100% 75% 36% 
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Table 4 

Mean absolute bias of class proportions for each model across simulation conditions 

 

 

Note: Bold entries indicate the model with the class proportions that most closely represent the values from the data generation model 

for each combination of conditions. CPGMM = Covariance Pattern Growth Mixture Model, LCGM = Latent Class Growth Model, 

GMMC = Constrained Growth Mixture Model, GMMU = Unconstrained Growth Mixture Model with class-specific covariance 

matrices  

 

    N =100   N =250   N =500 

Separation Attrition CPGMM LCGM GMMC GMMU   CPGMM LCGM GMMC GMMU   CPGMM LCGM GMMC GMMU 

Low                

 0% 8.1 18.7 10.2 11.4  7.3 20.3 6.1 9.4  7.3 20.6 4.3 7.0 

 20% 7.7 18.9 12.1 12.3  6.4 20.6 6.5 10.3  6.8 20.8 4.3 7.6 

 45% 9.7 18.6 12.6 12.0  6.2 20.4 8.2 11.2  6.1 20.7 4.7 9.9 

High                

 0% 3.5 12.6 13.8 8.6  1.7 12.9 13.6 4.0  1.5 12.8 14.9 0.8 

 20% 3.0 12.8 13.9 9.6  1.2 13.1 9.6 5.0  0.9 13.0 15.0 1.1 

  45% 4.9 12.7 14.9 10.0   0.9 13.4 14.4 6.1   1.2 13.5 15.9 1.8 
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Table 5 

Summary classification of GMM methods by class-specificity of the covariance structure and the 

complexity of the estimation  

 

 

 Low Estimation  

Complexity 

High Estimation  

Complexity 

High Covariance Specificity  
Covariance  

Pattern GMM 

Unconstrained  

GMM 

   

Low Covariance Specificity 
Latent Class  

Growth Model 

Constrained  

GMM 
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Table 6 

Comparison of fit for different numbers of classes for PTSD data 

 
  Classes 

  1 2 3 4 

Loglikelihood -7931.8 -7492.1 -7194.2 -7239.0 

Relative Entropy --- .945 .912 .845 

Parameters 19 39 59 65 

BIC 15,972 15,207 14,725 14,849 

SA-BIC 15,912 15,083 14,538 14,643 

BIC-ICL --- 15,230 14,783 14,978 

CLC --- 15,007 14,447 14,607 

 

Note: Entropy based measures are undefined for models with one class. The number of 

parameters in the 4-class model are relatively close to the number of parameters in 3-class model 

because covariance structure of one class was reduced to a compound symmetric structure to be 

more parsimonious because the variances and covariances were very similar across time.  
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Table 7 

Percentage of simulation replications suggesting each class solution with N =300, t = 8, and 

20% attrition 

 

  Classes 

Metric 2 3 4 5 

BIC 0 0 81 19 

SA-BIC 0 0 38 62 

ICL-BIC 0 0 85 15 

CLC 0 0 28 72 
     

Convergence 100 100 100 74 
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Figure 1. Generated population mean trajectories. Proportions of people were unevenly assigned to each class with 63% in Class 1, 

12% in Class 2, 19% in Class 3, and 6% in Class 4. 
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Figure 2. Class-specific growth trajectories with 95% intervals shaded in grey for the low separation condition (top row) and the high 

separation condition (bottom row). From left the right, the classes depicted are (a) Resilient, (b) Recovering, (c) Chronic, (d) Delayed 

Onset 

Resilient Recovering Chronic Delayed Onset 
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Figure 3. Comparison of population class trajectories (grey) to estimated class trajectories averaged across replications (black) for 

CPGMM, LCGM, and GMMC. The top row is for N = 250, 45% attrition, and low class separation. The bottom row is for N = 250, 

45% attrition, and high class separation.  

CPGMM LCGM GMMC 
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Figure 4. Class trajectories for CPGMM with class-specific factor analytic covariance using the 

3-class solution.  
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Figure 5. Plot of estimated class trajectories (in black) within the empirical data of people assigned to each class (in grey).  

 

 

 

 




