Using Student Trace Logs To Determine Meaningful
Progress and Struggle During Programming Problem
Solving

Yihuan Dong Samiha Marwan Preya Shabrina
North Carolina State North Carolina State North Carolina State
University Universtiy Universtiy

ydong2@ncsu.edu

Thomas Price
North Carolina State
Universtiy

twprice@ncsu.edu

ABSTRACT

Over the years, researchers have studied novice program-
ming behaviors when doing assignments and projects to iden-
tify struggling students. Much of these efforts focused on
using student programming and interaction features to pre-
dict student success at a course level. While these methods
are effective at early detection of struggling students in the
long run, there is also a need to identify struggling students
during an assignment so that we can provide proactive in-
tervention to prevent unproductive struggle and frustration.
This work proposes a data-driven method that uses student
trace logs to identify struggling moments during a program-
ming assignment and determine the appropriate time for an
intervention. We define a struggling moment as not achiev-
ing significant progress within a certain amount of time, rel-
ative to the amount of progress made and time taken in a
sample student dataset. The paper describes how we de-
termine significant progress and a time threshold for strug-
gling students. We validated our algorithm’s classification
of struggling and progressing moments with experts rating
whether they believe an intervention is needed for a sample
of 20% of the dataset. The result shows that our automatic
struggle detection method can accurately detect struggling
students with less than 2 minutes of work with over 77%
estimated accuracy. Our work contributes significantly to
building proactive immediate support features for intelligent
programming environments.

Keywords
block-based programming, open-ended assignment, strug-
gling, progressing, data-driven method, trace log

Yihuan Dong, Samiha Marwan, Preya Shabrina, Tiffany Barnes and
Thomas Price “Using Student Trace Logs To Determine Meaningful
Progress and Struggle During Programming Problem Solving”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 439-
445. https://educationaldatamining.org/edm2021/

EDM 21 June 29 - July 02 2021, Paris, France

samarwan@ncsu.edu

pshabri@ncsu.edu

Tiffany Barnes
North Carolina State
Universtiy

twprice@ncsu.edu

1. INTRODUCTION AND BACKGROUND

Computer programming is a challenging topic for novices.
As aresult, there has been an increasing interest in the early
detection of struggling students for proactive intervention
to reduce dropout rates and improve student learning in
programming courses.

Researchers have collected and studied student problem-
solving trace data during programming assignments from
various perspectives. Most of this effort has focused on an-
alyzing student programming actions to reveal their behav-
ioral traits and programming patterns. This research typi-
cally uses manual inspection of the trace logs [4, 16, 9] or ap-
plies machine learning models [7, 3, 1] to categorize student
behaviors and discuss the characteristics of each category
and their potential impact on or relationship with student
performance. The contribution of these studies usually lies
in helping educators understand novice learning processes
and promote positive behaviors. Another strand of research
that analyzed student trace data focuses on student compila-
tion behaviors [11, 19, 2] and syntax errors and bugs [21, 10]
in student traces. This research used statistical inferences,
machine learning methods, and visualization techniques to
explore the relationship between specific patterns and stu-
dent success and identify novice students’ common mistakes.
Some of these patterns are helpful for identifying students
struggling with certain concepts.

However, we found that there has not been enough research
that uses student trace log to model their progress and iden-
tify struggling moments during programming assignments.
One major application of struggling detection is providing
proactive hints in intelligent tutoring systems (ITS), as pre-
vious research has shown that novices, especially those with
low prior knowledge or experience, may not request on-
demand hints even when they need them [18]. Prior work
identifying struggling students in traces generally focused
on early detection of struggling students determined by the
assignment outcome [12, 5, 6] and are not suitable for iden-
tifying struggle during programming assignments.

In this work, we propose a novel data-driven approach to

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 439

identify struggling moments from student trace data. We de-
scribe how we adopted the SourceCheck algorithm to model
student progress during open-ended programming assign-
ments and how to identify progressing moments and strug-
gling moments from student progress. We used human ex-
perts to evaluate the progressing moments and struggling
moments classified by our method. Our initial result shows
that human experts had a decent agreement with our al-
gorithm and that it is possible to determine if a student
is struggling during programming assignments within two
minutes. To the best of our knowledge, this is the first at-
tempt to use a data-driven progress measurement to identify
struggling students. We also discuss how our method may
generalize to other domains that meet certain requirements.

2. DETERMINE INTERVENTION TIMES

In this work, we consider a student to be struggling during
problem-solving when they could not make enough progress
within a typical amount of time. As such, to determine the
proper time to provide proactive intervention, we need to in-
vestigate: 1) how to measure student progress during solving
a programming assignment, 2) what constitutes significant
progress, and 3) how much time it typically takes a student
to make significant progress, and finally, 4) what is the ap-
propriate time threshold beyond which we consider the stu-
dent is struggling and need help. This section describes how
our algorithm models student progress and identifies poten-
tial progressing and struggling moments through these four
steps.

2.1 Dataset

We analyzed a dataset collected from an introductory pro-
gramming course for non-computer science major students
in Fall 2017. Students learned to program by doing a series
of open-ended programming assignments adapted from the
BJC curriculum [8] in a block-based programming environ-
ment called Snap!.

We extended the Snap! environment to record all students’
programming actions into traces. Each trace, identified by
a project id, contains all actions a student performed dur-
ing an assignment (e.g., creating or deleting a block) with
timestamps. There are two types of actions in the traces,
non-coding actions, and coding actions. Non-coding actions
do not change the program scripts, for example, searching
for blocks and running the program. Coding actions change
the abstract syntax tree of program scripts, such as creat-
ing variables, creating custom blocks, and reordering blocks.
Alongside every coding action, our Snap/ environment also
saves a code snapshot after the action, allowing us to recon-
struct the steps a student took to build their final code and
analyze their coding progress.

In this work, we focused on analyzing two assignments, Squiral

and Guessing Game. Squiral is a homework assignment that
asks students to create a procedure that draws a square-like
spiral with a certain number of rotations specified by an in-
put parameter. A correct Squiral solution typically contains
7 to 14 lines of code. Guessing Game (GG) is an in-class as-
signment that requires students to create a game that greets
the players by their names, asks the player to guess the se-
cret number, and tells the player if their guesses were too
high too low until they guessed correctly. A typical Guess-

ing Game solution contains 14 to 18 lines of code. These
two assignments allow us to explore how well our method
identifies students’ struggling moments in assignments with
different time constraints. Table 1 shows the descriptive
statistics of the traces analyzed in the two assignments. We
preprocessed the traces to remove any idle time of more than
five minutes, during which the student did not perform any
action.

Table 1: Descriptive statistics of the trace logs and grades of
the two assignments.

Traces Rows

Squiral 45

GG 59

Time on Task Avg Grade
25160 29.6m 9.8/12
22744 30.5m 11.7/12

2.2 Define Progress

The first step to identify struggling is to measure student
progress in the assignment. Previous work used code com-
pilation results [11, 19, 2], students’ programming behavior
patterns [7], and features completion [15, 13] to monitor
student progress in an assignment. While these criteria are
reliable indicators of how many assignment requirements the
students have met, they did not use the student traces’ full
potential to identify struggling students at an action-level
granularity during the assignment.

We adopted the SourceCheck algorithm [17] to measure stu-
dent progress during an assignment. SourceCheck was ini-
tially designed as a hint generation algorithm to provide on-
demand, next-step hints to help students move towards the
closest correct solution to the student’s current code. When
generating hints, emphSourceCheck first compares the stu-
dent’s current code snapshot with a list of correct solutions
(usually collected from past student data) and generates
mapping costs from the student’s code snapshot to each of
the correct solutions. These mapping cost values represent
how similar the correct solutions are to the student code —
the more similar a correct solution is to the student’s code,
the lower the mapping cost is. SourceCheck picks the correct
solution with the lowest mapping cost as the closest correct
solution and generates next-step hints to move the student
to that solution.

We adapted the mapping cost into a similarity score by re-
versing the mapping cost such that when a student moves
closer to the closest correct solution, the mapping cost de-
creases, and the similarity score increases. One novel aspect
of this paper is how we use the similarity score to measure
student progress in the two assignments ' We calculate a
similarity score for every snapshot in a student trace using
the SourceCheck algorithm. We define a snapshot’s progress
in an assignment as the similarity score difference between
the current snapshot and its previous snapshot. As such, at
a particular snapshot, we say a student is making a positive
progress if the similarity score difference is positive and a
negative progress if the similarity score difference is nega-
tive.

'Note that we assume a student is moving towards the clos-
est correct solution at any given snapshot. Students do not
know the prior student solutions used by SourceCheck, and
we have no ground truth to identify what strategy a student
may be using for their assignments.

440 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

We can visualize a student’s progress in an assignment by
plotting the similarity scores for each snapshot against the
cumulative active time, shown in blue in Figure 1. The red
line in Figure 1 represents what we call “absolute progress”,
which we define in the next section. The blue dots in Figure
1 represent the similarity score of every snapshot in a Squiral
trace, and the blue line represents the progress (similarity
change between consecutive snapshots) over time. Figure 1
demonstrates that the student made steady positive progress
in the first eight minutes. Then, the student had a reduced
similarity score for about four minutes, tearing the code
apart trying to complete an objective of the assignment.
Afterward, the student continued to make rapid positive
progress until 14 minutes, stopped progressing for around
three minutes, and finally reached their final submission at
around 17 minutes.

4 | —— Similarity score
Absolute progress

Similarity Score

0 10 20 30 40 50 60 70 80 90
T M N SN M RN NI

0 60 ' 180 = 300 = 420 ~ 540 = 660 ~ 780 ' 900 | 1020 = 1140
Cumulative Active Time (s)

Figure 1: Similarity score (blue) and absolute progress (red)
change over time in one student trace of Squiral.

2.3 Determine Significant Progress

Through inspecting multiple students’ traces and comparing
them with their corresponding progress plot (e.g., Figure 1),
we found that not all positive progress represents a signif-
icant change to the program. Some minor similarity score
increases were due to reordering code that does not change
the code semantics but slightly reduces the mapping cost.
This observation means that using any amount of similar-
ity score increase for making progress may not be sufficient.
Thus, it is important to determine how much similarity score
increase can be considered significant progress.

To determine significant progress, we first define absolute
progress for a student s; at time ¢;. We define Spmaz(Sj, i)
to be the maximum similarity score achieved by student s;
in an assignment between time to and t;, Smaz(Sj,t:) =
maxk_oS(s;,t;). We then define absolute progress as the
difference in the maximum similarity scores between ¢; and
the previous snapshot time t;—1, Papsotute(Sj,t:) =
maz(Smaz(S5,ti) — Smaz(8j,ti—1),0). To visualize absolute
progress, we plot the highest similarity scores achieved since
the beginning of the trace (Smaaz), as shown in red in Figure
1. The absolute progress is positive whenever Sy, q, increases
between two consecutive snapshots.

We then calculated and sorted the absolute progress values
from all the student traces for each assignment in increasing
order and plotted all positive absolute progress values by
percentile (using the quantile function in R), as shown in
Figure 2. We used the 25th percentile of absolute progress
values as the threshold for making significant progress. This

choice was also used in another work identifying struggling
students in a MOOC programming assignments [20]. The
intuition is that if a student’s absolute progress is no more
than three-quarters of all the absolute progress, we consider
the student is not making enough progress. Figure 2 shows
that the significant progress threshold is 1.25 for Squiral and
1.5 for Guessing Game.

o
©

o
<

30
T T N B

20
L

Absolute Progress

o |

T —— Squiral
o GuessiLab
2

L T T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentile(%)

Figure 2: Positive absolute progress in all traces by percentile

2.4 Determine Typical Time

Now that we have determined the significant progress for
each assignment, the next step to identify struggling mo-
ments is to extract the typical time for students to make
significant progress. To do this, we first split all the traces
into code chunks whenever the student makes significant
progress—each code chunk contains multiple snapshots. This
gave us 648 code chunks from Squiral and 1207 code chunks
from Guessing Game. Then, we calculate the elapsed time
between the first and the last snapshot in each code chunk
and organize the elapsed times in ascending order. We plot
the ordered elapsed times in Figure 3 where the y-axis is the
elapsed time, and the x-axis is the percentile of the elapsed
time distribution. The green line in Figure 3 marks the third
quartile of time used to make significant progress. Note
that the elapsed time to make significant progress grows al-
most exponentially after the third quartile. Therefore, we
chose to use the third quartile as the cutoff for the typical
time to make significant progress. The third-quartile time
(dashed green line) in Figure 3 intersects with the Squiral
progress (solid blue line) at 105 seconds and intersects with
the Guessing Game significant progress (solid red line) at 85
seconds. We use these times as the typical time for the stu-
dents to make significant progress in Squiral and Guessing
Game. There are several dashed lines on Figure 3, which we
explain in section 3.

2.5 Determine Progressing and Struggling

Moments
The last step of this process is to use the typical time to make
significant progress in identifying progressing and struggling
moments for each assignment. To do this, we took all the
code chunks generated in the third step and divided them
into two groups, struggling moments and progressing mo-
ments. Recall that we define a student as struggling if
the student does not make enough progress within a typ-
ical amount of time. Therefore, struggling moments are
defined to be code chunks that have elapsed time greater
than our struggling time threshold (75th percentile of time
for significant progress), meaning that in this code chunk,
even though students spent a long time, they did not make

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 441

270

—— squiral / /
—— Guessilab / /

210

80

s

—

Time to Make Significant
Progress (s)
150
[S S
.

0 30

T T T T T T T T T T LI B R — T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Percentile(%)

Figure 3: The elapsed time for all code chunks to make sig-
nificant progress by percentile. The green, yellow, blue and
red dash lines mark the proposed, earlier, even earlier, and
later intervention times, respectively.

significant progress. Conversely, progressing moments are
defined to be code chunks that took equal or less time than
the 75th percentile of the typical time to make significant
progress. Table 2 summarizes the significant progress, typ-
ical time for significant progress, and the number of code
chunks generated for each assignment.

Table 2: A summary of products generated by our algorithm
for the two assignments.

Squiral GG
Sig. Progress 1.25 1.5
Typical Time for Sig. Prog. 105.3s 84.5s
Code Chunks 648 1207

(%) Struggling Moments ~ 131(20.2%) 269(22.3%)

(%) Progressing Moments 517 (79.8%) 938(77.7%)

3. EVALUATION

Our evaluation is driven by the following research questions:

RQ1: To what extent the human experts agree with the
progressing moments and struggling moments identified by
our method?

RQ2: What are the common causes that the human experts
do not agree with the progressing and struggling moments
identified by our method?

We invited three expert raters, all included as authors, to
participate in the rating of whether an intervention is needed
for given code chunk samples. All three experts are com-
puter science graduate students, two with extensive expe-
rience analyzing Guessing Game traces, and all three with
extensive experience analyzing Squiral traces for research.

We first created the struggling rating sample dataset by pick-
ing a random struggling moment from each trace until the
rating dataset contains 20% of all struggling moments for
each assignment. Then, we created the progressing rating
sample dataset by selecting the progressing moments im-
mediately before each struggling moment in the struggling
rating sample dataset. Finally, three redundant progressing
moments were excluded from the progressing rating dataset
because they were shared by consecutive struggling moments
in the same trace. As a result, our rating dataset ended up
with 29 struggling moments and 29 progressing moments
for Squiral (out of 131), and 57 struggling moments and 54

progressing moments for Guessing Game (out of 269).

The experts were told to imagine themselves as TAs when
rating. They used a customized interface that allowed them
to visually step through the students’ code changes in the
rating moments to decide whether an intervention is needed.
The experts used the time elapsed between actions and the
type of the actions to inform their rating decision. They
were asked to avoid using hindsight, which means that they
should not justify their decision for intervening at an earlier
time using student’s later actions.

When rating the struggling moments, to make it easy to
compare expert ratings, the experts were given five interven-
tion timing options. The five options corresponds to poten-
tial intervention times marked by the colored vertical lines
shown in Figure 3, which correspond to suggesting an in-
tervention at time: blue or before (quantile(0.55)), yellow
(quantile(0.65)), green (quantile(0.75), the typical time to
make significant progress), red (quantile(0.85)), or “not now”
(after red, or never). We chose these candidate percentiles
to gain insights into expert preferences of intervention times
for future analysis. For struggling moments, experts were
shown the code changes from the start until the last action
before the 85th percentile time for significant progress (red)
to decide when an intervention would be most appropriate,
or “not now.” For progressing moments, experts were shown
the entire progressing moment (all code changes within the
time period where significant progress was achieved) and
asked the expert to rate whether the moment “needs in-
tervention” or “not now.” Aside from rating the struggling
and progressing moments, experts were also encouraged to
take notes on why they believed an intervention is needed
whenever they rate a sample as “needs intervention” for both
the struggling and the progressing rating sample datasets.
These notes will help us understand the experts’ point of
view when inspecting the disagreements between the experts
and our algorithm.

Before formal rating, the experts practiced rating on a train-
ing dataset by immediately discuss their ratings after rating
each sample until they were comfortable with the rating pro-
cess. Then, the experts rated the struggling moments inde-
pendently in three rounds, each round rating a third of the
samples in the dataset. After each round, the experts gath-
ered and discussed the differences in their ratings to share
perspectives and resolve disagreements caused by oversight.
We did not require the experts to reach a complete consen-
sus on the rating because experts sometimes have different
opinions on handling specific situations. Finally, after rat-
ing the struggling sample dataset, the experts independently
rated the progressing dataset and were asked to check dis-
agreements to correct rating errors caused by oversight.

4. ANALYSIS AND RESULT

To evaluate our RQ1 considering to what extent the human
experts agree with the struggling moments and progressing
moments identified by our algorithm, in this analysis, we
merged the five rating options the experts used in the rating
of the struggling chunks dataset into two options, "need in-
tervention” and "not now.” Specifically, we merged ”at blue
or before,” ”at yellow,” and ”at green” options into "need in-
tervention” and merged the ”at red” and "not now” options

442 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

into "not now.” These two option labels are identical to those
used when rating the progressing moments to directly com-
pare how much the experts agreed with the generated strug-
gling and progressing moments. Splitting and merging the
options at green where the proposed time is at allows us to
determine if our proposed typical time to make significant
progress is appropriate and enough for the experts to decide
whether they believe an intervention is needed.

Our analysis of expert ratings focuses on their ratings after
discussion because those ratings are after the effort to re-
move personal error or bias. However, we report the inter-
rater reliability (IRR), calculated with Fleiss Kappa, both
before and after discussions to demonstrate the impact of the
discussions. To determine how well the experts agree with
the algorithm, we turned each expert’s ratings into binary
scores of Os and 1s depending on whether the expert rating
agrees with the rating dataset. Specifically, for struggling
moments, the score is 1 if the expert rated "need interven-
tion” and the score is 0 otherwise. For progressing moments,
on the other hand, the score is 0 if the expert rated "need
intervention” and the score is 1 otherwise. We then take the
average of all expert ratings to calculate a combined rating
score for each sample such that a combined rating of 0 or 1
represents that the experts reached an agreement and any-
thing in between 0 and 1 means the two or three experts had
different opinions, even after discussion, on whether the stu-
dent was making progress or struggling. Finally, we calcu-
late the agreement rate for each rating dataset by summing
up all the combined rating scores in that rating dataset and
divide the sum by the total number of samples in the rating
dataset for that assignment.

4.1 RQ1: Expert Agreement

Table 3 shows the percentage of progressing moments and
struggling moments that the expert ratings agreed with the
algorithm after discussion, as well as the corresponding inter-
rater reliability before and after discussions. Looking at the
agreement rate between the expert and our algorithm, we see
that for both assignments, over 77% of the time, the human
experts agreed that an intervention was needed when the al-
gorithm determined the student was struggling. Over 85% of
the time, the human experts agreed that an intervention was
not needed when the algorithm determined the student was
making progress. This suggests that our method was able to
identify struggling moments and progressing moments from
the trace data with decent accuracy.

Table 3: Human expert agreement with the algorithm iden-
tified struggling moments and progressing moments

Struggling Rating Progressing Rating

Need IRR Not
N Interv. (B/A) N Now IRR
Squiral 0.805** -
Greaters) 2 TT0% ggures 29 85.2% 0853
GG 0.539" ”
(2 raters) 83.3% /0.646%* 54 85.1% 0.819

Looking at the expert agreement with each other, we found
that the experts had excellent inter-rater reliability for pro-
gressing moments ratings on both assignments and for strug-
gling moments ratings on Squiral. However, the experts

were only able to reach a moderate agreement, even after
discussion, for struggling moments on Guessing Game. We
explored reasons that might cause experts to disagree with
each other by manually inspecting the traces and their notes.
We found that in four out of five struggling moments that the
experts disagreed, students did not have errors in their snap-
shots but only performed less than six actions, which is way
below the average number of 12 actions of all rated strug-
gling moment samples. In such cases, one expert prefers
to hold off on any intervention until seeing more student
actions, whereas the other expert believes that the student
needed a nudge telling them what they should do next. We
did not see such a case in Squiral because all the rated strug-
gling moments with few student actions had relatively ap-
parent flaws in the student codes that warrant intervention.
We will talk more about this in the discussion section.

4.2 RQ2: Common Causes of Disagreement
We manually investigated the ratings on which the human
tutors and our algorithm disagreed. We present some com-
mon causes of disagreement for struggling moments and pro-
gressing moments, respectively.

Disagreement in Struggling Moments

Solution Matching: A decreased similarity score does not al-
ways mean the student is making negative progress. Due
to characteristics of the SourceCheck algorithm, in some
cases, a reduced similarity score can also be caused by the
SourceCheck algorithm mapping the student’s previous snap-
shot and the current snapshot to different correct solutions
because the student added a particular code block. In such
cases, if the student similarity score does not surpass the
maximum similarity score since the beginning within an ex-
pected amount of time, our algorithm will determine the
student is struggling, even though the student is making
progress (having an increasing similarity score). However,
the student may just be using a different approach to solve
the problem from the expert’s perspective.

Few Coding Actions: Since our algorithm focused on stu-
dents’ progress over time, sometimes students might not
have taken enough actions for experts to determine if the
student is struggling or not. There are several possible rea-
sons why students have few actions, including trying to rea-
son with their code, running their code, evaluating the re-
sult, or being off task. Disagreement in this situation did
not only occur between experts and our algorithm but also
happened between expert raters, causing a relatively lower
inter-rater reliability of struggling moments in the Guessing
Game assignment.

Disagreement in Progressing Moments

Logic Errors: The experts are good at catching critical logic
errors in the student code and tend to intervene if there
is a critical logic error in student code that might prevent
them from completing the feature they are working on. For
example, in Guessing Game, both experts decided to inter-
vene when a student set the secret number to a boolean
value and was trying to use the secret number to give player
feedback on their guesses because the student would not be
able to test the feedback feature properly without correctly
setting the secret number first. In contrast, our algorithm
considered that the student was making progress because

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 443

the students added blocks seen in the correct solutions.

Human Factors: Sometimes, when deciding on intervention,
the experts assess the natural language in students’ code to
infer information about student intention in a way that is
not possible for our algorithm. For example, in the Guessing
Game assignment, experts pointed out that an intervention
is needed when several students used an if/else block instead
of combining the say block and the join words block to greet
the players. However, since the if/else block was used for
giving player feedback in many correct solutions, our algo-
rithm determined the student was making progress, despite
the student using the if/else block incorrectly for a different
purpose.

5. DISCUSSION

RQ1: To what degree do the experts agree with the algorithm
on struggling and progressing moments? For Squiral, the ex-
perts agreed that an intervention was needed for over 77%
of the struggling moment samples and agreed that no inter-
vention was needed for over 83% of the progressing moment
samples. However, the experts have a relatively lower dis-
agreement with each other in Guessing Game ratings, caused
by different opinions on whether an intervention is needed
when a student has few actions within the time frame. Since
the expert raters were not pedagogical experts and had ex-
perience level on par with experienced teaching assistants
(TAs), we do not know how an experienced instructor would
react to this or other scenarios. Nevertheless, our results
show that our method of identifying struggling moments by
measuring whether a student could make significant progress
within a typical amount of time aligns well with opinions
from our experts who have at least as much experience as
highly qualified TAs. We believe this shows great potential
to determine when to give proactive interventions to stu-
dents in intelligent tutoring systems for programming.

RQ2: What are the common cases that our algorithm does
not handle well? We listed four common causes that led
to disagreements between the experts and our algorithm.
The first cause, “solution matching”, rests in the adoption of
SourceCheck as a progress measure. Since the SourceCheck
compares student solutions to multiple model solutions, some-
times, adding a code block to a snapshot could cause Source-
Check to pick a different solution as the closest solution with
a lower similarity score. This calls for investigation on how
we may wish to smooth out the abrupt progress change when
mapped to different correct solutions between consecutive
snapshots. “Logic errors” and “human factors” are problems
that are difficult to solve by using distance-based similar-
ity measures alone, since similarity measures merely com-
pare the mapping cost between two pieces of code and do
not assess the semantics in natural language or program-
ming logic. Thus, these two causes may require obtaining
knowledge from other types of analysis to identify. Previous
research has used compilation error [11, 19, 2], and feature
detection [14] to detect if there are specific errors and deter-
mine if the student is struggling. Incorporating these meth-
ods could provide richer information in the decision-making
for struggling moments. Lastly, some expert disagreements
with the algorithm in struggling moments were caused by
dealing with “few actions” within the time frame of the code
chunks. Our inter-rater reliability for Guessing Game shows

that even experts had a hard time agreeing on if an inter-
vention is needed in this case. There seem to be multiple
factors that may affect the expert decision, including if there
are errors in the snapshot, the type of actions performed,
and the assignment requirements that are completed and in-
completed. Potential solutions to this problem may include
consulting experienced teachers and incorporating sequence
pattern analysis [7].

It’s worth pointing out one important contribution of this
work is that our method of using a data-driven approach to
identify struggling moments has the potential to be general-
ized into any other domain that meets the following criteria.

1.Student Performance: Good student performance on the
task, meaning that the majority of the students achieve cor-
rect or mostly-correct final solutions.

2.Trace log data: having time-stamped trace logs that doc-
uments students’ snapshots during an assignment.
3.Progress measure: A score, or a combination of correct so-
lutions and a distance metric between snapshots and correct
solutions, as we devised from SourceCheck.

There are two major ways our method can benefit future
research. First, our method of identifying progressing and
struggling moments provides a new way for researchers to
study novice problem-solving behaviors and identify com-
mon misconceptions. Second, the significant progress value
and typical time to make significant progress can be incorpo-
rated into intelligent tutoring systems for providing proac-
tive feedback to struggling students.

This work has some clear limitations. First, we only used
three expert raters to evaluate the sample result. The expert
raters were not pedagogical experts and had experience lev-
els on par with experienced TAs. Hence the evaluation result
may be different if rated by experienced instructors. In addi-
tion, our work is limited by a small sample size with only two
programming assignments. We need further investigation to
determine if our result holds for assignments with even more
varied complexity or in other problem-solving contexts.

6. CONCLUSION

This work presented a novel, data-driven approach to use
a similarity measure to model student progress in program-
ming assignments and identify progressing and struggling
moments from trace log data. To evaluate the performance
of our algorithm, we asked human experts to evaluate a
sample of 20% of the algorithm-identified progressing and
struggling moments from trace logs from students solving
two programming assignments and rated if the experts agree
with the algorithm. Our result shows that the expert agreed
with over 77% of the struggling moments and over 83% of the
progressing moments, which shows great potential. Our al-
gorithm can be generalized to different domains if they have
good student performance, trace log data, and a progress
measure for in-progress student solution attempts.

7. REFERENCES
[1] A. Allevato and S. H. Edwards. Discovering patterns
in student activity on programming assignments. In
ASEE Southeastern Section Annual Conference and
Meeting, 2010.

444 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2]

[13]

[15]

[16]

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

A. Altadmri and N. C. Brown. 37 million
compilations: Investigating novice programming
mistakes in large-scale student data. In Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education, pages 522-527, 2015.

P. Blikstein, M. Worsley, C. Piech, M. Sahami,

S. Cooper, and D. Koller. Programming pluralism:
Using learning analytics to detect patterns in the
learning of computer programming. Journal of the
Learning Sciences, 23(4):561-599, 2014.

Y. Dong, S. Marwan, V. Catete, T. Price, and

T. Barnes. Defining tinkering behavior in open-ended
block-based programming assignments. In Proceedings
of the 50th ACM Technical Symposium on Computer
Science Education, pages 1204-1210, 2019.

G. Dyke. Which aspects of novice programmers’ usage
of an ide predict learning outcomes. In Proceedings of
the 42nd ACM technical symposium on Computer
science education, pages 505-510, 2011.

A. Estey, H. Keuning, and Y. Coady. Automatically
classifying students in need of support by detecting
changes in programming behaviour. In Proceedings of
the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, pages 189-194, 2017.

G. Gao, S. Marwan, and T. W. Price. Early
performance prediction using interpretable patterns in
programming process data. arXiv preprint
arXi:2102.05765, 2021.

D. Garcia, B. Harvey, and T. Barnes. The beauty and
joy of computing. ACM Inroads, 6(4):71-79, 2015.

R. Hosseini, A. Vihavainen, and P. Brusilovsky.
Exploring problem solving paths in a java
programming course. 2014.

M. C. Jadud. An ezxploration of novice compilation
behaviour in BlueJ. PhD thesis, University of Kent,
2006.

M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73-84, 2006.

Y. Mao. One minute is enough: Early prediction of
student success and event-level difficulty during novice
programming tasks. In In: Proceedings of the 12th
International Conference on Educational Data Mining
(EDM 2019), 2019.

S. Marwan, G. Gao, S. Fisk, T. W. Price, and

T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the 2020
ACM Conference on International Computing
Education Research, pages 194-203, 2020.

S. Marwan, G. Gao, S. Fisk, T. W. Price, and

T. Barnes. Adaptive immediate feedback can improve
novice programming engagement and intention to
persist in computer science. In Proceedings of the 2020
ACM Conference on International Computing
Education Research, pages 194-203, 2020.

S. Marwan, T. W. Price, M. Chi, and T. Barnes.
Immediate data-driven positive feedback increases
engagement on programming homework for novices.
2020.

O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.

(17]

(18]

(19]

(20]

(21]

Habits of programming in scratch. In Proceedings of
the 16th annual joint conference on Innovation and
technology in computer science education, pages
168-172, 2011.

T. Price, R. Zhi, and T. Barnes. Evaluation of a
data-driven feedback algorithm for open-ended
programming. International Educational Data Mining
Society, 2017.

T. W. Price, R. Zhi, and T. Barnes. Hint generation
under uncertainty: The effect of hint quality on
help-seeking behavior. In International conference on
artificial intelligence in education, pages 311-322.
Springer, 2017.

E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Predicting at-risk novice java programmers through
the analysis of online protocols. In Proceedings of the
seventh international workshop on Computing
education research, pages 85-92, 2011.

R. Teusner, T. Hille, and T. Staubitz. Effects of
automated interventions in programming assignments:
evidence from a field experiment. In Proceedings of the
Fifth Annual ACM Conference on Learning at Scale,
pages 1-10, 2018.

M. N. C. Vee, B. Meyer, and K. L. Mannock.
Empirical study of novice errors and error paths in
objectoriented programming. In Proceedings of the 7th
Annual HEA-ICS Conference, 2006.

445

