Topic Transitions in MOOCs: An Analysis Study

*

Fareedah ALSaad

University of lllinois at
Urbana-Champaign

alsaad2@illinois.edu

Thomas Reichel
University of lllinois at
Urbana-Champaign

reichel3@illinois.edu

Yuchen Zeng
University of lllinois at
Urbana-Champaign

yuchenz8@illinois.edu

Abdussalam Alawini
University of lllinois at
Urbana-Champaign
alawini@illinois.edu

ABSTRACT

With the emergence of MOOCs, it becomes crucial to automate the
process of a course design to accommodate the diverse learning
demands of students. Modeling the relationships among educational
topics is a fundamental first step for automating curriculum planning
and course design. In this paper, we introduce Topic Transition Map
(TTM), a general structure that models the content of MOOCs at
the topic level. TTMs capture the various ways instructors organize
topics in their courses by modeling the transitions between topics. We
investigate and analyze four different methods that can be exploited
to learn the Topic Transition Map: 1) Pairwise Constrained K-Means,
2) Mixture of Unigram Language Model, 3) Hidden Markov Mixture
Model, and 4) Structural Topic Model. To evaluated the effectiveness
of these methods, we qualitatively compare the topic transition maps
generated by each model and investigate how the Topic Transition
Map can be used in three sequencing tasks: 1) determining the
correct sequence, 2) predicting the next lecture, and 3) predicting the
sequence of lectures. Our evaluation revealed that PCK-Means has
the highest performance in the first task, HMMULM outperforms
other methods in task 2, while there is no winning in task 3.

Keywords
Topic Transition Map, Topic Transition, Word Distribution, Mixture
Model, Hidden Markov Model, Clusters, Sequencing Tasks.

1. INTRODUCTION

For many decades, the process of creating courses has been a manual
task that needs to be carefully managed by instructors and experts.
However, with the recent advances in technologies and the emergence
of Massive Open Online Courses (MOOCsS), it becomes critical
to automate the process of course design to accommodate the
heterogeneity of online students and their diverse needs. According
to [32], learning on demand is considered one factor that causes

*King AbdulAziz University, Jeddah, Saudi Arabia.

Fareedah Alsaad, Thomas Reichel, Yuchen Zeng and Abdussalam Alaw-
ini “Topic Transitions in MOOCs: An Analysis Study”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 139-149.
https://educationaldatamining.org/edm2021/

EDM 21 June 29 - July 02 2021, Paris, France

the high dropout rate in MOOCs. Learners have different learning
demands depending on their motivations and goals. For instance,
learners may seek knowledge about an interdisciplinary domain
and hence need to learn modules from courses in several areas.
This problem requires adopting a model in which MOOC:s are used
as modularized resources, rather than a set of pre-designed static
courses. A crucial first step toward developing such a model is the
automation of course plan design by sequencing lectures among
different courses.

The main principle in designing the curriculum of any course is to
organize course content according to some relations between topics.
For instance, to help students to learn the materials, instructors
carefully organize lectures as a sequence, based on the difficulty
levels of topics [10, 27, 1] as well as the dependency relations
between topics [11, 21, 23, 1]. The fundamental sequential structure
of a course design is to place topics that are easy or prerequisite
in earlier lectures while more advanced and dependent topics are
taught in later lectures [1]. Consequently, modeling the relatedness
among educational topics is a very crucial first step for automating
curriculum planning and course design.

Modeling the content structure of MOOCsS has recently attracted
much research. Most of the current research has focused on modeling
the prerequisite relationships between courses [29, 15], between lec-
tures or segments of lectures [6, 7], or between concepts discussed
within or across courses [3, 14, 17, 29, 15]. Using concepts to model
MOOCs’ content can be easily generalized to capture the relations
in the concept space. However, because concepts are represented
as keywords or phrases, it is hard to capture the different levels of
granularity between lectures and courses. In addition, modeling pre-
requisite relationships between concepts cannot capture the various
learning paths accommodated by different courses.

In this paper, we introduce the Topic Transition Map, a general
structure that models the educational materials at the topic level.
We model a course as a set of topics, and each topic is a set of
concepts. Modeling content at the topic level is a more natural way
to design custom course plans. We can think of a course as a path in
the generalized Topic Transition Map. Thus, designing a new course
becomes a task of identifying a path in the Topic Transition Map.
Additionally, we investigate four methods that can be leveraged to
construct the Topic Transition Map: Pairwise Constrained K-Means
(PCK-Means) [2], Mixture of Unigram Language Model (MULM),
Hidden Markov Mixture Model HMMULM), and Structural Topic

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 139

Model (str'TM) [24]. We analyze and compare the Topic Transition
Maps learned by these methods by studying how to exploit the
Topic Transition Map in three sequencing tasks: 1) determining the
correct sequence, 2) predicting the next lecture, and 3) predicting
the sequence of lectures. To the best of our knowledge, we are the
first work to introduce and investigate the use of Topic Transition
Maps in modeling MOOC:s content and sequencing lectures.

To evaluate the effectiveness of all methods, we use real MOOCs from
three different domains: Python, Structural Query Language, and
Machine Learning Clustering algorithms. Our evaluation revealed
that while the PCK-Means has the highest performance on the task
of finding the best sequence from a list of possible sequences, the
HMMULM achieves the best performance on the task that predicts
the next lecture in the sequence. Additionally, all methods perform
similarly in the task of predicting the whole sequence with MULM
has the lowest performance as it sometimes cannot predict the whole
sequence. In addition to comparing various models in sequencing
tasks, we visualize the Topic Transition Maps generated by different
methods to qualitatively compare the resulted topic transition maps.
We found that PCK-Means has extracted more meaningful topics
with the best word distributions that clearly explain each topic.

The rest of the paper is organized as follows. In section 2, we present
some of the related work. Section 3, defines the topics and topic
transitions and states some applications of the topic transition maps.
In section 4, we formally define our problem before describing the
four different methods we exploit to construct the topic transition
maps in section 5. Section 6 elaborates on our approach for the
evaluation and the analysis of various models. Finally, we conclude
our work in section 7.

2. RELATED WORK

Most of the work that models the content of MOOCs has focused
on capturing the prerequisite relationships using different levels of
granularity such as courses [29, 15], lectures or segments of lectures
[6, 7], or concepts discussed within or across courses [3, 14, 17, 29,
15]. Modeling the relations between courses, lectures, or seqments of
lectures is restricted to these units and cannot be generalized. While
modeling dependency relations between concepts is considered a
general structure that captures the required concepts before learning
any concept, prerequisite relations cannot model the various learning
paths accommodated by different courses. ALSaad and Alawini [2]
have addressed this problem by proposing the precedence graph
that captures the similarities and variations of learning paths among
different courses. We build on their work and introduce the Topic
Transition Map that maps each lecture to a topic and leverages the
sequences of lectures among courses to capture the topic transitions
pattern and hence the likelihood of such a transition. The main
difference between the Topic Transition Map and the precedence
graph is that Topic Transition Map models self transitions between a
topic and itself and also captures how likely each topic to be the first
topic in courses. While ALSaad and Alawini [2] have investigated the
use of PCK-Means in modeling the precedence graph, in this paper,
we explore three more methods in addition to PCK-Mean, namely
MULM, HMMULM, and strTM, for modeling Topic Transition
Maps. We also examine the impact of the learned topic transition
maps on three different sequencing tasks. We believe that we are the
first work that examines the use of topic transitions modeled from
existing MOOC:s to learn how to sequence new courses.

Some research has investigated the use of prerequisite relations
between concepts to construct and sequence learning units [1, 16].

Both studies [1, 16] have developed supervised approaches based
on feature engineering that extracted features from some external
knowledge such as Wikipedia [1] and DBpedia [16] to infer the
prerequisite relations between concepts. Our work is different as
instead of modeling the prerequisite relations between concepts
using supervised approaches, we model the Topic Transition Map or
the various paths between topics using unsupervised methods, where
a topic is a set of concepts. In addition, our methods rely only on the
content of MOOCs without using any external knowledge. While
Agrawal et al. [1] used the concept dependency graph to organize
concepts to construct learning units and then sequence the learning
units, we use lectures from existing MOOCs and investigate the
impact of the learned transitions between topics to sequence lectures.

The most relevant research to our study is the work by Shen et al. [22].
Shen et al. [22] have proposed a method for linking similar courses
to construct a map of lectures connected by two types of relations:
similar and prerequisite. The constructed map only captures the
similarity and prerequisite relations between certain units (lectures)
and is not generalized to other lectures and thus cannot be used to
predict the sequence of new lectures. In this paper, we map lectures
to topics and construct the Topic Transition Map that depicts the
precedence relations between topics and hence not tied with any
specific units. Having a generalized Topic Transition Map can help
in finding the sequence of lectures or predict the next lecture in the
sequence as we discuss in section 6.2.

Another related line of research is the work on structural topic
modeling by the Natural Language Processing, NLP, Community.
In NLP, topic transitions have been used to model latent topical
structures inside documents by assuming each sentence is generated
from a topic where topics satisfy the first order Markov property
[12,25]. While Gruber et al. [12] only modeled the transition between
topics as a binary relation (either remain on the current topic or
shift to a new topic with a certain probability), Wang et al. [25]
have developed a Structural Topic Model called strTM to explicitly
model the topic transitions as probabilities that capture how likely
one transits from a topic to another. Modeling transitions have been
used in many applications related to NLP such as sentence ordering
[25], topic segmentation [9], and multi-documents summarization
[28]. In this paper, we investigate the use of topic transitions on
modeling the topical structures in MOOCs by assuming a lectures
is generated by one topic and use the sequences of lectures to learn
the transitions between topics. We also explore the impact of using
the Topic Transition Map to sequence lectures in three different
sequencing tasks.

3. TOPIC TRANSITIONS

Before defining the topic transitions, it is important to briefly explain
our representation of topics used in this paper. Similar to the definition
of topics in the literature of the topic modeling research [5, 13],
we define a topic as a distribution of concepts where concepts
with higher probabilities tend to explain or characterize the topic.
Concepts can be represented as words or phrases of words [3, 18, 26].
Each lecture is a composition of concepts and hence can be mapped
to some topics. Depending on the length of lectures, lectures can
cover one or more topics. Longer lectures usually cover more topics
than shorter lectures. For example, traditional university lectures
tend to be more elaborated and have longer duration than MOOCs
lectures, which are usually concise and short in length. Therefore,
the number of topics per lecture discussed in MOOC:s is less than
that of traditional university lectures. In this paper, since our work
focus on learning the topic transitions from MOOCs, we assume

140 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

that each lecture is mapped only to one topic. This assumption is
reasonable as lectures in MOOCs are concise and short in length.
Having this assumption is also very useful as it helps in leveraging
the sequences of lectures to learn the relations between topics.

A topic transition captures the precedence relations between topics.
In other words, it means how likely instructors move or transit from
one topic to another in the course delivery. It models the various
ways of how instructors dynamically assemble concepts from the
concepts space in order to construct the study plan of their courses.
For instance, some instructors decide to start their Python course by
explaining the topics: data types, conditional statements, loops, and
then reading and writing from files. Other instructors may choose a
different order, such as conditional statements, loops, string, and then
lists. By leveraging the sequences of lectures from multiple courses,
we can infer the latent topics of each lecture and hence model the
common transition patters shared by multiple courses as well as the
variations of different transitions or paths. To determine the strength
or how common that transition is, each transition is attached with a
score or a probability. For example, given the topics in Computer
Science Programming: “Conditional Statements”, “Loops”, and
“Arrays”. It is more likely that instructors will explain the topic
“Conditional Statements” immediately before the topic “Loops” and
thus the topic transition score between them would be higher than
the transition score between the topic “Conditional Statements” and
the topic “Arrays”.

Learning the topic transitions can be the initial block to facilitate
several useful applications that can support modern learning. For
instance, we can use the Topic Transition Map to extract the most
common paths of topics in the field or explain the topic space in
the current MOOC offerings. Learners can use transition maps to
get more insights about the structure of topics in MOOC offerings.
On the other hand, instructors can use these maps to improve their
course offerings by examining the topic structure of related courses.

One important application of the Topic Transition Map is to support
automatic curriculum planning and course design. Since courses
consist of topics, learning the relations between topics would be the
initial step to understand how likely instructors transit from one topic
to another. We can think of a course as a path in the generalized
Topic Transition Map. Thus, designing a new course becomes a task
of identifying a path in the Topic Transition Map. In this paper, we
analyze how can we use the learned topic transitions to sequence
new courses.

4. PROBLEM FORMULATION

In this section, we formally formulate our problem. Given a set of
courses C' = {X1, X2, X3,...,Xn} from a particular domain,
where N is the total number of courses. We assume that courses in
C are similar and hence have some content overlaps between them
and also have the same difficulty level (e.g. Beginner, Medium, or
Advance). A course X is represented as an ordered list of lectures
Xi = [z, a2, ..., T4 x,|], where | X;]| is the total number of
lectures in the course X;. Each lecture is a composition of concepts
represented in some narrative way. In this paper, we assume a
concept as a single word and hence lectures are represented using a
bag-of-word representation.

Given the number of topics M, our goal is to map each lecture to a
topic and leverage the sequences of lectures to learn topic transitions
and construct the Topic Transition Map. The Topic Transition Map
is represented as a matrix A, where A € R™*™ Each entry a;; of

the matrix A represents the likelihood of the transition from topic 4
to topic j. It reflect how common the precedence relation from topic
i to j in the dataset courses. In addition to the Topic Transition Map,
we also aim to learn the probability of each topic being an initial
topic in courses. We denote the initial probability of each topic as
a vector 7, where 7 € R . Along with the Topic Transition Map
and the initial probability of each topic, it is important to model
the word distribution of each topic, which represented as a matrix
B € RM*V where V is the vocabulary size.

S. MODELING TOPIC TRANSITIONS

In this section, we explain the four different models we exploit to
capture topics and Topic Transition Maps.

5.1 Pairwise Constrained K-Means

PCK-Means clustering algorithm [4] is a variation of the standard
K-Means algorithm. To cluster instances, PCK-Means incorporates
distance between points as well as pairwise constraints to guide the
clustering process. Since the purpose of clustering is to capture topic
transition patterns across courses, using PCK-Means helps to restrict
the clustering process to cluster lectures across courses instead
of within courses [2]. To guide the clustering, PCK-Means uses
two types of constraints: Must-Link and Cannot-Link. Must-Link
constraint determines lecture pairs that need to be clustered together,
while Cannot-Link constraint specifies pairs that should not be
grouped into the same cluster. To find the clusters, PCK-Means uses
an objective function that minimizes both: 1) the distance between
points (lectures) and the cluster centroid, and 2) the penalty costs of
violating the constraints. For more information about PCK-Menas,
please refer to [4].

Similar to ALSaad and Alawini [2], we use PCK-Means to build the
Topic Transition Map A. We first construct the list of Must-Link and
Cannot-Link constraints to clusters lectures based on their content
similarity into clusters. We assume that each cluster forms a topic
and hence we need to learn the word distributions of each topic
along with topic transitions. We link clusters by using the precedence
relations between adjacent lectures and capture the strength of the
transition by accumulating the frequency of transitions. To find
the word distribution of each cluster or topic in the matrix B, we
accumulate the vector representations of each lecture that belongs to
the same cluster. For more information, please see [2].

In order to estimate the initial probability 7 for each topic, we simply
count the number of times of each topic being the first topic in the
set of courses C'. Then we do normalization to find the probability.

5.2 Mixture of Unigram Language Models

To capture topics, we use a mixture model of M unigram language
models (MULM) with a bag-of-words representation. The mixture
model is a generative probabilistic model that has been used for
documents clustering. Thus, it will help in clustering lectures based
on their topics, where each lecture belongs only to one cluster or one
topic. In the mixture model, to generate a document, first one needs
to choose the topic of the document according to the probability
P(6;), where M is the number of topics, and then generate all the
words in the document using the probability P(w|0;). According
to the model, the likelihoods of a document = and the corpus C are
calculated as follows:

M

weV

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 141

N

P(C|\) :H (z;]\))

To estimate the model parameters A = ({6;}, P(6;)), where 6; is the
word distribution of topic ¢ from the matrix B , we use Expectation-
Maximization algorithm [8] to find the parameters that maximize
the likelihood of the data:

A = argmax P(C|\) (3)
A

After learning the parameters, we map each lecture to a cluster or
topic by maximizing the following equation:
¢ = argmax P(z|z;) 4)

Zi

Using the mixture model can help in clustering lectures according
to their topics, however; it will not capture the transition patterns
between topics or the initial probability of each topic. Therefore,
similar to the PCK-Means method, we leverage the sequences of
lectures to calculate the score of topic transitions and construct the
Topic Transition Map A. Likewise, we count the number of times
courses start with each topic and normalize the results to model the
initial probability 7.

5.3 Hidden Markov Mixture Models

Instead of separately clustering lectures and then learning the transi-
tions between them, using a Hidden Markov Model would allow us
to jointly learn the word distributions of each topic (B), the transition
probabilities between topics (A) as well as the initial probability of
each topic ().

The Hidden Markov Model, HMM, is a probabilistic graphical model
that describes the process of generating a sequence of observable
events according to some hidden factors [20]. It simulates how the
real world sequence data is generated from hidden states. Particularly,
it consists of two stochastic processes: 1) invisible process, and 2)
visible process [30]. In HMM, invisible process consists of hidden
states whereas visible process is observed sequence of symbols that
are drawn from the probability distributions of the hidden states.
Figure 1 demonstrates the HMM model. As you can see from Figure
1, each observable event in the sequence are generated from a hidden
state and observations are conditionally independent given the hidden
state. You can also notice that the hidden states form a Markov chain
where each hidden state depends only on the previous state such as
Zi+1 depends on Z;.

To control the process of generating the observed sequences from
hidden states, HMM has three parameters: 7, A, and B. The first
parameter, T = 71, 72, . . ., T, iS the initial probability distribution
of each hidden state. The parameter 7 determines the probability
of the Markov chain to start at each state and hence controls which
state can be chosen as an initial state for the observed sequence.
The second parameter, A € R™*M s the transition probability
matrix that specifies how likely the model can transit from one state
to another, denoted by P(Z;+1|Z:) in Figure 1. The third parameter,
B € RM*V s the emission probability matrix, where V’ is the total
number of distinct symbols. It determines the likelihood of each
state to produce each symbol, denoted by P(X;11|Z;+1) in Figure
1. For example, to generate a sentence, a sequence of words would
be drawn from the HMM model according to the three parameters
m, A, and B.

In MOOCs, we only observe courses, where courses are sequence of
lectures, while the topics of lectures and the transition between them
are invisible or latent. Therefore, HMM would be a great model to
simulate the generation process of courses and hence infer the latent
states that contribute in the evolution of these lectures. In HMM,
each hidden state generates only one symbol or word (see Figure
1). As our goal is to capture topic transitions using sequences of
lectures as observed data, we map each lecture to a topic and assume
each hidden state generates a lecture instead of a word. Our revised
HMM assumes that each hidden state produces one lecture where
each lecture is a bag-of-words. We ignore the sequence of words
in lectures since the order of the words would not contribute to
capturing the topic of each lecture. Figure 2 depicts the HMMULM
utilized to capture the content of MOOC:s.

In order to capture both the lectures’ topics and the transitions be-
tween them, we combine the mixture model (MULM) with HMM,
and we call the new model Hidden Markov Mixture of Unigram
Language Model (HMMULM). To do that, we assume the Marko-
vian assumption between topics where in the generation process,
the choice of the next topic depends only on the current topic. Even
though, the choice of the topic in the course delivery depends on the
previous topics discussed so far, this simplified assumption makes
sense due to the locality of reference property [1] of course design.
Based on this property, when an instructor designs a course, a depen-
dent lecture should appear as soon as possible after the prerequisite
lecture to reduce students comprehension burden. Therefore, assum-
ing the dependency between adjacent lectures not only simplifies
the model but also aids in capturing the transitions between highly
related topics. By combining the HMM with mixture model the
likelihood of generating a course is as follow:

P(X|\) = > P(ZINP(X|Z,))

all Z
T
= ZP P(x1]|21) H (zt)ze—1)P(x¢|2t)
all Z t=2
=" P(z1) [] Plwlz)
all Z weV
T
[1 PGz T Pwlz) s
t=2 weV
M M
ZZW(zl =g H B(z = s,)F(w o1)
=1 j=1 weV
T
H 2t-1 = Si, 2t = Sj) H B(z = s, w)c(w 1)
t=2 weV

To estimate the HMMULM parameters A = (m, A, B), we use a
modified version of Baum-Welch algorithm in order to model the
observation sequences as a multidimensional categorical events.
Following the work [19], we derived the equations of E-step and
M-step to train the model and infer the transition probability between
topics. In the E-step, we use the equations:

142 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Transition probability
e (2)onl)
Sequence of states Z

Emission probability

Sequence of observation | X1 | X) (xw1) Xt)
NN NG
t

Time >

oS0
.;Q/

Figure 1: The graphical model of HMM.

Transition probability

Sequence of states Zi Jreeeann I I b Zut Jrmmeeann > zr
Emission probability >\
(o) (3o () ()
X1 Xt Xt

Xis1
t t+1

Time >

Sequence of
observation

Figure 2: The graphical model of HMMULM used to
model the content of MOOCs.

7e(i) = Pzt = 55| X, \)
(1) B (7) (6)
St ae(§)Be(3)

&(i,7) = Pzt = 83, 2e41 = 85| X, A)
(1) AijBi41 (5) [T ey Bi(w)oest)

M S 0nli) Aii B (5) Tpey By (w)eCwees)

In the M-step, the following equations are used to choose the pa-
rameters that maximize the likelihood of the observed sequence of
lectures:

(1) = v1(3))

Ay = it 69) o
>t ()

Bi(w) = iy ve(d)e(w, xr) (10

- Z¥:1 23:1 ¥ (i)e(v,)

For more information about Baum-Welch algorithm, please see [20].
It is clear that the E-step and M-step equations are very similar
to the standard HMM except that instead of emitting one symbol,
HMMULM emits one lecture represented as a bag-of-words.

5.4 Structural Topic Model

The Structural Topic Model (StrTM) [25] is another probabilistic
graphical model that functions very similar to HMMULM. It has
been used to model the latent topical structures inside documents.
Like HMMULM, it models topics and their transitions as hidden
states that emit lectures as bags-of-words. Unlike HMMULM, strTM
assumes each lecture as a mixture of content topics and functional

Table 1: The dataset utilized in the experiment.

Domain | # of Courses | # of Lectures | Avg # of Lectures
Python 21 460 22
SQL 15 247 16
ML 10 99 10

topic. Functional topic, denoted by 2, is used to filter out document-
independent words that models the corpus background (or general
terms) [31]. Each word in the lecture is either generated by one of
the content topics or the functional topic:

w ~ OP(w|B, z;) + (1 — 0)P(w|B, zB) (11)

where 6 is the controlling parameter. According to strTM, the
probability of lecture x; being generated by some topic z; is:

P(z;lz) = [0P (w8, z)+(1—0)P(w|8, z5))""**) (12)

weV

Another difference between str'TM and HMMULM, is that stt'TM
assumes the transition probabilities A and the emission probability
B are drawn from Multinomial distributions and use the conju-
gate Dirichlet distribution to impose a prior on the Multinomial
distributions:

a ~ Dir(n) (13)

B ~ Dir(y) (14)

Where 7 and v are the concentration hyper parameters that control
sparsity of a, and 3, respectively.

To estimate the parameters of strTM, we use the expectation-
maximization algorithm as described by [25]. For more information
about str'TM, please refer to [25].

6. EVALUATION

In this section, we first demonstrate our dataset and the parameters
settings. Second, we compare different models by studying the impact
of topic transitions learned from various models on three lecture
sequencing tasks. Finally, we qualitatively evaluate the topics and
their transitions.

6.1 Dataset and Parameters Settings

We collected our dataset from real online courses using various
MOOC platforms and in three different domains: Python, Structural
Query Language (SQL), and Machine Learning Clustering algo-
rithms (ML). Table 1 presents the statistic of the dataset. We use
75% of the data as a training set and 25% as a test set. To choose the
number of topics in each domain, we manually inspected the dataset
to choose the number of topics. The number of topics for Python,
SQL, and ML were set to 13, 10, and 9 respectively.

Each course in the dataset is represented as a sequence of lecture video
transcripts. We preprocess lecture transcripts by eliminating stop
words and some rare terms. After cleaning the data, we constructed
the bag-of-word vector representations of all lectures. We only use
lecture transcripts to represent lectures; therefore, we only need to
set two thresholds (K; and K5) of the PCK-Means method in order
to select the list of Must-link and Cannot-link constraints. Since
we do not have labeled data we chose the thresholds that maximize

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 143

Table 2: The performance of Task 1: Finding the correct sequence using the permutation method. It is clear that PCK-Means

achieves the highest performance.

Dataset | Measures | Methods
| | Cosine | PCK-Means | MULM | HMMULM | suTM
| kendall’s 7 (o) | 0.60 | 0.73 | 0.49 | 0.66 | 0.54
Python | Dir-P | 0.37 | 0.50 | 0.43 | 0.28 | 0.31
| Undir-P | 052 | 056 | 050 | 044 | 035
Lev-Sim 0.60 0.63 0.45 0.49 0.50
kendall’s 7 (o) 0.58 0.59 0.58 0.55 0.41
SQL | Dir-P | 0.46 | 0.43 | 0.40 | 0.36 | 0.41
| Undir-P | 0.67 | 0.58 | 0.49 | 0.44 | 0.41
Lev-Sim 0.53 0.57 0.54 0.49 0.37
kendall’s 7 (o) 0.68 0.75 0.63 0.58 0.64
umL | DirP | 034 | 034 | 044 | 034 | 043
| Undir-P | 0.52 | 0.52 | 0.57 | 041 | 0.53
| Lev-Sim | 0.61 | 0.65 | 0.55 | 0.43 | 0.53

the Silhouette Coefficient clustering measure using the training data.

We set K1 = 0.55 and K> = 0.004 for Python, K; = 0.8 and
K> = 0.01 for SQL, and K; = 0.55 and K5 = 0.01 for ML. To
set the hyper parameters of strTM method, we used a grid search
and chose the values that maximize the likelihood of the training
data. We set 6 = 0.2, v = 0.3, and = 0.6 for Python, § = 0.1,
v =0.3,and n = 0.1 for SQL, and # = 0.1,y = 0.1, and n = 0.6
for ML.

6.2 Sequencing Tasks

In this experiment, our goal is to compare the topic transitions
modeled by different methods in three tasks: 1) Finding the correct
sequence of lectures, 2) Predicting the next lecture given a sequence
of lectures, and 3) Predicting the sequence of a list of lectures
where the first lecture in the sequence is given. An example of real
application for task 1 and task 3 is designing a new course plan by
sequencing lectures before delivering them to students. However,

task 1 and task 3 exploit two different techniques to find the sequence.

In contrast, task 2 can be applied to recommend the next lecture to
learners to customize their learning based on the history of lectures
they already watched. In the evaluation, the purpose of each task is to
compare different methods and evaluate the ability of the parameters
(A, B, and 7) of each model to find the correct sequence in the three
different tasks.

6.2.1 Evaluation Measures

To compare different models, we use the sequences of lectures
from courses in the test set as the ground truth sequences and
exploit different measures to do the evaluation. First, we follow
Wang et al. [25] and use kendall’s 7(o). Kendall’s 7(o) is an
information retrieval measure that captures the correlation between
two ranked list. It indicates how the predicted order differs from
the ground truth where 1 means perfect match, —1 means total

mismatch, and 0 indicates that the two orders are independent.

Second, we use Levenshtein normalized similarity which is the
opposite of Levenshtein normalized distance that measures the
minimum number of edits (insertions, deletions or substitutions)
required to transform the predicted sequence to the ground truth
sequence. The goal is to find the sequence that has the Levenshtein

144

normalized similarity close to 1 which indicates that the number
of edits required is minimal. Third, we utilize the directed bigram
precision (see equation 15) that captures the correctness of the order
between adjacent lectures. The intuition behind using this measure is
to evaluate whether the transition maps learned by different models
have the ability to capture the correct direction order between topics
and adjacent lectures. Finally, we use the undirected bigram precision
shown in equation 16 to measure whether the transition map of each
model can recognize adjacent lectures but incorrectly captured the
direction between topics.

of correct(a — b) in estimated sequence

of correct(a — b) in ground truth
15)

PDi'rfbig'ru,'m -

of correct{a,b} in estimated sequence

of correct{a,b} in ground truth
(16)

PUndir—bigram -

6.2.2 Task I1: Finding The Correct Sequence

To find the correct sequence of lectures, we follow the permutation
method utilized by [25]. With courses that have large number of
lectures, it is infeasible to find all the orderings of lectures. Therefore,
when the number of the permutations exceeds 500, we randomly
permutated 500 possible orderings of lectures as candidates. We ran
the experiment 20 times for each method and recorded the average
results.

In order to select the optimal sequence from the list of permutations
in str'TM and HMMULM, we follow Wang et al. [25] and choose the
sequence that has the highest generation probability calculated as:

&(m) = arg max Z P(xy00), Zof]- - > Tom], Z|A) (A7)
Z

o(m)

To choose the best sequence for MULM, we first find the best topic
¢ that generates each lectures in the test set according to equation
4. After that, we select the sequence that has the highest likelihood

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

o
3]
S

I
N}
a

S T II| il | ‘
-0.50

=]
=3
S

Kendall's Taus
s
N
(4]

-0.75

-1.00

Courses

Directed Bigram Precision
o o o o o
N w S (4,1 (2}

o

ooh“|m|x ‘l”Jh|l”“ “ M|“Imn
1 2 3 4 5 9 10 11 12 13

Courses

Levenshtein Normalized Similarity

o

Undirected Bigram Precision

o
3

o
o

o
o

o
~

o
w

o
N}

o

1 2 3 4 5 9 10 1" 12 13

Courses
10 =
—— HMMULM
= PCKM
— strTM
0.8
0.6
0.4
) | Il‘llll ‘ H |‘| ‘ HII'
IO TN b 00 | 1000 1
1 2 3 4 5 9 10 11 12 13
Courses

Figure 3: The performance of different methods in Task 3: Predicting the whole sequence. All methods have comparable performance.

based on the equation:

&(m) = argmax P(C)

P(X]0)

lo ()| (18)
:P(Cl)P(w1|C1) Z P(Ci|ci_1)P(££’i|Ci)

=2

Since PCK-Means is a clustering method that minimizes the distance
between lectures and clusters’ centroids, we assign lectures x of the
test set to the closest clusters z; using Euclidean distances as shown
in equation 19. Then, we select the sequence that maximizes the topic
transitions between lectures in the sequence as well as minimizes the
distance between adjacent lectures (see equation 20). The intuition
behind that is to ensure the topic coherence between adjacent lectures
and also reduces the gaps by minimizing the distance between them.

c(x) = argmin ||z — ., |’ (19)

Zq

lo(m)]

Z A(l’ifl, Iz)
1=2

g(m) = arg max 7(c(z1)) — |lzi — zia]?
o(m)

(20)

As a baseline we accumulate the cosine similarity between adjacent
lectures in the sequence and select the sequence in the permutations
that has the highest similarity score to be the optimal sequence.

Table 2 summarizes the results of Task 1 for each method. We can
notice that PCK-Means has the highest score in kendall’s 7(o) and
Levenshtein normalized similarity in all datasets which indicates that
PCK-Means has chosen the sequences that are very correlated to the

Table 3: The performance of Task 2: Predicting the next
lecture. It is clear that HMMULM achienes the highest

performance.
Accuracy
Method Python SQL ML
Cosine-Similarity 0.46 0.56 042
PCK-Means 0.45 049 047
MULM 0.41 034 0.37
HMMULM(Viterbi) 0.52 0.56 0.60
StrTM(Viterbi) 0.39 027 043

ground truth sequences and need the minimal edits to be transformed
to the ground sequences. However, PCK-Means only outperforms
other models in the directed and undirected bigram precision in the
Python dataset, indicating that it sometimes not able to capture the
sequence between adjacent lectures.

In general, it is clear that PCK-Means achieves the highest perfor-
mance in most measures and almost in all the datasets. We think that
combining the topic transitions with the Euclidean distance helps
PCK-Means in finding the best sequence from the list of possible
sequences.

6.2.3 Task 2: Predicting The Next Lecture
In task 2, each model predicts the next lecture given a sequence of
lectures. We varied the length of the given sequence starting from
one. As stt'TM and HMMULM are based on HMM, we utilized the
Viterbi algorithm [20] to find the most probable sequence of hidden
states or topics that generated the lectures in the given sequence.
Then we greedily choose the next probable lecture in the sequence

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 145

types of data(python quick start) MULM

tuples in python(python quick start)

built-in functions in python(python quick start)

lists in python(python quick start)

for loop(python quick start)

store data using variables(python quick start)

. 7.if-elif and if-elif-else statements(python quick start)
. 4.types of functions(python guick start)

predicted_topics = [12 10 9 9]

actual_topics = [610 6 9 6 6 9 12]

XNV A WN R
BANNOU WO R

. l.unsupervised learning(columbia machine learning) strTM
. 3.convergence of k-means(columbia machine learning)

. 4.applications of k-means(columbia machine learning)

. 5.principal component analysis(columbia machine learning)
.| 6.pca: general(columbia machine learning)

.| 8.kernel pca(columbia machine learning)

.| 7.Jprobabilistic pca(columbia machine learning)

. Z.clustering(columbia machine learning)

predicted_states = [4 3 1 2| 7101

actual_states = [41312777]

®NOU A WN R

types of data(python quick start) HMMULM

for loop(python quick start)

lists in python(python quick start)

tuples in python(python quick start)

built-in functions in python(python quick start)

store data using variables(python quick start)

types of functions(python quick start)

.if-elif and if-elif-else statements(python quick start)
predicted_states = [7 711 11 4

actual_states = [711 4 311 5 3 7]

ONOUAWNR
NANWO UL LR

HMMULM
. l.unsupervised learning(columbia machine learning)
. 3.convergence of k-means(columbia machine learning)
. 4.applications of k-means(columbia machine learning)
. 2.clustering(columbia machine learning)
.kernel pca(columbia machine learning)
Jprincipal component analysis(columbia machine learning)
.pca: general(columbia machine learning)
.| 7.probabilistic pca(colupbia machine learning)
predicted_states = [4 2 2 3

actual_states = [4223 0000

N U A WN R

. PCK-Means
types of data(python quick start)

lists in python(python quick start)

for loop(python quick start)

types of functions(python quick start)

if-elif and if-elif-else statements(python quick start)
built-in functions in python(python quick start)
tuples in python(python quick start)

.store data using variables(python quick start)
predicted_topics [3 4 8 611 1]

actual_topics = [3 1 6 4 011 8 0]

PNV A WN R
NOWNA®U R

PCK-Means
. l.unsupervised learning(columbia machine learning)
.| 3.convergence of k-means(columbia machine learning)
2.[clustering(columbia machine learning)
4.ppplications of k-means(columbia machine learning)
.[7.probabilistic pca(columbia machine learning)
.| 6.pca: general(columbia machine learning)
.| 5.principal component analysis(columbia machine learning)
.[8.kernel pca(columbia machine learning)
predicted_topics = [6[0 0 0|8 8 8 8|

actual_topics = [60 008888

ONOUAWN R

(a)

(b)

Figure 4: Qualitative Analysis of Sequencing Task 3. (a) Examples of preferring self transition behaviour when selecting next lecture
in the sequence, (b) Examples of the problem of sequencing adjacent lectures that cover the same topics.

according to the equation:

Z = argmax P(zi|zi—1)P(z|z:) @1

Similar to task 1, for MULM and PCK-Means models we assign
lectures to the best clusters using the equations 4 and 19 respectively.
After that MULM greedily chooses the next lecture that maximizes
the equation 21. On the other hand, PCK-Means model selects the
next lecture that maximizes the topic transition and minimizes the
distance with the last lecture in the given sequence. For the baseline,
we use the cosine similarity where we choose the next lecture that
has the highest similarity score with the last lecture in the given
sequence.

Table 3 summarizes the results of Task 2 for each method. We
can notice that HMMULM achieves the highest accuracy in all
datasets. Using the Viterbi algorithm along with the learned topic
transitions helps in capturing the most probable hidden states or
topics that generate the given sequence of lectures. In addition,
the topic transitions learned by HMMULM help in greedily pick
the next lecture in the sequence. While Str'TM also uses Viterbi
algorithm similar to HMMULM, its accuracy scores were far less
than HMMULM. We think the main reason for that due to the
performance of the learned topic transitions as we explain in section
6.3.

6.2.4 Task 3: Predicting The Sequence
Task 3 is very similar to task 2 except that each method needs to find
the whole sequence of given lectures where the first lecture in the
sequence is given. Figure 3 depicts the results of Task 3.

As this task is considered the most challenging task, it is clear that
there is no wining method. However, from the upper left graph that

captures the Kendall’s taus in Figure 3, we can notice that HMMULM
has achieved a taus score > 0.50 in four courses, PCK-Means has
achieved the same score in only two courses, MULM and strTM
in only one course, and Cosine method in non courses. For the
Levenshtein normalized similarity, it is clear that all methods have
comparable results. For the directed and undirected bigram precision,
all methods have also comparable results except MULM. The reason
is that MULM sometimes cannot complete the whole sequence
because it only uses the greedy method which cannot complete the
sequence in the case of the absence of the topic transitions required
to sequence courses in the test set. In the case of other methods,
they always find the whole sequence either because of the Viterbi
algorithm used by HMMULM and strTM or due to the similarity or
distance measures utilized by PCK-Means and Cosine methods.

In addition to quantitatively comparing the methods, we try to quali-
tatively evaluate the results by examining the generated sequences of
each methods. In general, we found two common behaviour shared
by all methods.

First, in most cases almost all the methods prefer self transition when
they pick the next lecture in the sequence. For example, as shown in
Figure 4 (a) , MULM, HMMULM, and PCK-Means select the next
lecture that has the same topic as the current lecture.

Second, all methods cannot sequence lectures that belong to the same
topic. In MOOC:s, due to the short length of lectures, instructors
sometimes explain the same topic using multiple lectures. As a result,
it is hard to find the correct sequence of lectures that cover the same
topic. For example, as shown in Figure 4 (b), the last four lectures
of the course explain the “Principal Component Analysis algorithm”
and hence str'TM, HMMULM, and PCK-Means cannot predict the
correct sequence of these lectures. In this case, we need to use other

146 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

0.44 Topics Terms

string, index, quotes, strings, characters,
String |quote, double, substring, character, eric,
method.

function, parameters, functions,
Function |arguments, return, parameter, formal,
global, errors, def, scope.

Loop &
Condition

file, files, open, directory, py, install, text,

File | cad, foider, lin, lines.

csv, phones, file, row, column, table,
CSVFile | ojumns, delete, format, tabuiar, menu.

Loop & |/00p, true, false, condition, block, while,
Condition [¢'s¢: €aual, statement, greater, boolean,
ondition isfinite, elif.
dictionary, key, keys, dictionaries, pairs,
Dictionary |counts, keyvalue, word, values, mapping,
dic

0.65

0.12 List |st range, item, element, lists, index,
Tuples elements, loop, sequence, items, strings.
& Sort
Tuples & |tuple, sorted, random, sort, tuples, sorting,
04 Sort |lst, reverse, lambda, function, order.

class, attributes, object, methods, teaching,
Classes [classes, method, language, programming,

N expression, area, largest, guess, recursive,
objects, instance. Not Clear gest, g

root, expressions, divided, floating, pi, cube.

programming, language, concepts, machine,

Prog.
i ui o |nours, leam; tasks, tool, videos, calculations,
guag languages. it aoi o i
list, accumulator, state, num, item, append, Not Clear |SPI': 8% Preview, join, space, image, white,
List s s s 3 , append, comma, format, file, words.

laccumulate, items, object, position, mutate.

Figure 5: Python topics and their transitions using PCK-
Means method. The table represents the top terms in each
topic.

techniques to predict the sequence. One naive solution is to assume
that all adjacent lectures the belong to the same topic as one atomic
unit and we only need to sequence lectures that have different topics.
Further investigation of solving the sequencing problem of lectures
that belong to the same topic is left for future work.

6.3 Topic Transitions Examples

In this section, we present examples of topics and topic transitions
learned by different methods. Due to space constraint, we present
examples using Python dataset. We try to analyze the words with the
highest probabilities in the word distributions of topics learned by
each methods and manually mapped them to topic words or phrases.
For instance, if the word distribution has the words: [list, range,
items, index, and append, then it is clear that this word distribution
captures the topic “List”. The word distributions with topic phrases
of each topic learned by PCK-Means, MULM, HMMULM, and
str'TM methods in Python dataset are depicted in Figure 5, 6, 7, and
8 respectively. Since we have 13 topics in the Python dataset, we
only visualize the topic transitions of a subset of these topics and
depicted the transitions that have scores > 0.05.

It is clear from the Figures that all models extract some useful topics
where the top terms of each topic clearly explain the topic. However,
PCK-Means has the best word distributions that clearly explain each
topic followed by HMMULM and then MULM while strTM has the
lowest performance. We also notice from the Figures that PCKMeans
have extracted 11 useful topics with two topics that have unclear
word distributions and cannot be mapped to any useful topics. In
contrast, MULM has modeled 10 meaningful topics with three topics
form noise and cannot be mapped to any topics. On the other hand,
HMMULM and strTM capture 9 topics with four unclear topics that
cannot be mapped to any phrase. In general, this finding indicates
that PCK-Means has the best performance in modeling the topics
of the courses in the Python dataset as it models more useful topics
with clear word distributions. The results also indicate that strTM
achieves the lowest performance because even though it captures the
same number of meaningful topics as HMMULM, str'TM has the
lowest performance in the clarity of the word distributions.

Topics Terms
Conditional csv, quotes, file, string, format, row,
Statements S CSV File |quote, column, double, table, comma,
col
File |file; function, open, lines, line, area,

seconds, files, read, object, close.

loop, largest, while, infinite, loops,
Loop |smallest, break, statement, blah, true,
iteration.

float, expression, integer, floating, type,
Data Types |int, types, floats, expressions, convert,
decimal.

Conditional|l7ue. false, block, else, condition, equal,
Stat tg|XPression, greater, statement,
EEa elif, boolean.

dictionary, key, keys, dictionaries, pairs,

Dictionary | o, nts, keyvalue, list, word, tupl, values.

sorted, random, sorting, sort, list,
List Sort |programming, accumulation, language,
loop, lost, lesson

i list, index, object, string, method,
List & p . :

- methods, class, item, position, strings,
String |iems.

Installing |file, install, directory, py, command, tool, turtle, floor, api, random, comments,
Python |windows, files, window, click, folder, ipython. || Not Clear |calculations, module, program, errors, stack,
" machine.
Prog. programming, language, learn, concepts,
tasks, scripts, practice, learning, videos,
Language feel
script, feel list, tuple, function, element, range, loop,
Not Clear |2ccumulator, list, guess, state, root, function, Not Clear |global, recursive, tuples, sequence,
square, cube, dictionary, count, total. parameter.

Figure 6: Python topics and their transitions using MULM
method. The table represents the top terms in each topic.

Topics Terms

string, index, character, strings, quotes,
String |list, substring, characters, preview,
location, slice.

function, float, type, expression, return,
Function |parameter, parameters, integer, int,
string.

File file, csv, files, phones, row, format, open,
column, read, table, directory.

Loop & |loop, true, false, while, condition, loops,
Condition |equal, largest, block, infinite, else.

dictionary, list, accumulator, key, item,

Dictionary |, o count, counts, loop, state, num.

List list, object, append, lists, items, position,
Ist, reference, strings, mutate, bound.

Dict, List,
Tuple &
Sort

dictionary, list, tuple, key, sorted, function,
keys, sort, expression, item, sorting.

class, attributes, methods, instance, comments, calculations, floor, input,
Classes |dictionary, method, turtle, classes, module, Not Clear |algorithms, computers, warm, web, city, hot,
oobjects, concepts. fast.

language, programming, learn, script, data,

seconds, block, traceback, hours, blah, turtle,
Prog. |, . ning, syntax, tasks, concepts, languages, || Not Clear line, code, runs, times, execute.
Language scripts. . i ! .
Not Clear |162ching, eric, code, cell, grade, install, button, | Not Clear kelvin, temperature, hours, fahrenheit, equal,

messages, errors, error, month. program, step, error, loop, celsius, indent.

Figure 7: Python topics and their transitions using HM-
MULM method. The table represents the top terms in each
topic.

ary Topics Terms

" list, string, f, position, index, python,
Conditional strings, quotes, character, number, single,
Expression type.

String

function, return, code, parameter,
Function |expression, square, inside, functions,
print, parameters, statement,

Loop &
Condition

File il osv. files, open, line, read, list, row,
lines, data, quotes, table.

Loop & |if, loop, code, while, run, else, statement,
Condition |block, equal, condition, true.

dictionary, key, list, function, keys,
dictionaries, sorted, lists, sort, tuple,
values.

Dictionary

List [ist lists, element, tem, index, loop,
function, if, count, strings, file.

itional [ue. i false, else, equal, expression,
Te2 Conditionall 0. " 0 block. greater,
- Expression |¢pressions, operators.

list, character, dictionary, item, loop, python, variable, string, type, if, integer, point,

List & Dict [accumulator, variable, numoer, count, inder, || Not Clear variables, code, floating, kind.
Classes list, class, tuple, function, method, set, data, Not Clear if, loop, guess, root, machine, start, simply,

tuples, index, methods, object. number, answer, times, cube.

data, dictionary, language, kelvin, keys,

|00p, if, true, pymon' statement, Iargesl. code, Not Clear table, row, column, dictionaries,

false, run, smallest, variable.

Not Clear
columns.

Figure 8: Python topics and their transitions using strTM
method. The table represents the top terms in each topic.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 147

As shown in the Figures 5, 6, 7, and 8, the meaningful topics extracted
by all methods are very similar with some variations. For example,
while PCK-Means and MULM separate “Files” and “CSV Files”,
HMMULM and strTM combines them into one topic. In addition,
while PCK-Means and HMMULM combines “Loops & Condition”,
MULM differentiates between them. StrTM, on the other hand, has
both “Loops & Condition” and “Conditional Statements.”

Regarding the topic transitions, it is clear that all models capture self
transitions with the topic and itself. This indicates that, in MOOC:s,
instructors used multiple lectures to explain the same topic. However,
HMMULM gave higher probability to self transitions compared to
other methods. We can notice from the Figures that there are some
consensus between all methods on some transitions between topics
such as: “List”— “Dictionary” and “String”— “File.” There are also
some variations of topic transitions between different models. For
instance, wile PCK-Means, HMMULM, and str'TM have a transition
between “String”— “List”, MULM combines these two topics into
one topic or cluster. Another variation is that, PCK-Means, strTM and
MULM have a transition “Loop & Condition”— “String”, whereas
HMMULM misses this transition.

In general, all methods captures useful topics with clear word dis-
tributions. Regarding the topic transitions, all methods capture self
transitions and also have some consensus on some transitions. There
are also some variations between methods and these differences due
to how each method identify topics of each lecture. Improving the
modeling of topics and the mapping between lectures and topics
clearly would improve the quality of the topic transition maps.

7. CONCLUSION

In this paper, we introduce the Topic Transition Map which is a
general structure that models the content of MOOC:s as topics, where
each lecture is mapped to a topic, and captures the transition between
topics. It models the various ways of how instructors organize topics
in order to construct the study plan of their courses. We investigate
four different methods to construct the Topic Transition Map: PCK-
Means, MULM, HMMULM, and strTM. PCK-Means and MULM
separately cluster lectures into topics and then learn the transitions
between topics, by leverage the sequences of lectures in different
courses. In contrast, HMMULM and strTM assume first order Markov
property among latent topics and hence jointly learn topics and their
transitions. While the three model, MULM, HMMULM, and strTM
are probabilistic models, PCK-Means is distance-based clustering
algorithm that incorporates some constraints to guide the clustering
process.

We evaluated the generated topic transitions from various methods
using three different tasks: 1) determining the correct sequence,
2) predicting the next lecture, and 3) predicting the sequence of
lectures. Our evaluation revealed that PCK-Means achieves the
highest performance in determining the correct sequence while
HMMULM outperforms other methods in the task of predicting
the next lecture. Since the task of predicting the whole sequence
of lectures is considered the most challenging task, there was no
winning method and all methods have comparable performance with
MULM has the lowest performance as it sometimes fails to predict
the whole sequence. We also visualize the the Topic Transition Maps
generated by different methods to qualitatively evaluate the resulted
maps. We found that PCK-Means has extracted more meaningful
topics with the best word distributions that clearly explain each topic.

In the future, we plan to explore incorporating Topic Transition
Map with concept dependency relations and examine if this can
solve the problem of sequencing lectures that belong to the same
topic. Further, we aim to combine different methods such as PCK-
Means and HMMULM in order to improve the accuracy of the
Topic Transition Map and hence improving the performance of
the sequencing tasks. Finally, we plan to apply our work on other
domains such as traditional University courses or educational books.
To do that, we need to investigate how to divide long lectures or book
sections into segments where each segment is mapped to one topic.

8. REFERENCES

[1] R.Agrawal,B. Golshan,and E. Papalexakis. Toward data-driven
design of educational courses: A feasibility study. JEDM-
Journal of Educational Data Mining, 8(1):1-21, 2016.

[2] F. ALSaad and A. Alawini. Unsupervised approach for model-
ing content structures of moocs. In Proceedings of The 13th
International Conference on Educational Data Mining (EDM
2020), pages 18-28, 2020.

F. ALSaad, A. Boughoula, C. Geigle, H. Sundaram, and C. Zhai.

Mining mooc lecture transcripts to construct concept depen-

dency graphs. In Proceedings of the 11th International Con-

ference on Educational Data Mining, pages 467-473. EDM,

2018.

S. Basu, A. Banerjee, and R. J. Mooney. Active semi-

supervision for pairwise constrained clustering. In Proceedings

of the 2004 SIAM international conference on data mining,

pages 333-344. SIAM, 2004.

[5] D. M. Blei, A. Y. Ng, and M. L. Jordan. Latent dirichlet

allocation. the Journal of machine Learning research, 3:993—

1022, 2003.

D. Chaplot and K. R. Koedinger. Data-driven automated

induction of prerequisite structure graphs. In Proceedings of

the 9th International Conference on Educational Data Mining,

pages 318-323. EDM, 2016.

W. Chen, A. S. Lan, D. Cao, C. Brinton, and M. Chiang.

Behavioral analysis at scale: Learning course prerequisite

structures from learner clickstreams. In Proceedings of the

11th International Conference on Educational Data Mining,

pages 66-75. EDM, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum

likelihood from incomplete data via the em algorithm. Journal

of the Royal Statistical Society: Series B (Methodological), 39

(1):1-22, 1977.

[9] L. Du, J. K. Pate, and M. Johnson. Topic models with topic
ordering regularities for topic segmentation. In 20/4 IEEE
International Conference on Data Mining, pages 803-808.
IEEE, 2014.

[10] L. D. Fink. Creating significant learning experiences: An
integrated approach to designing college courses. John Wiley
& Sons, 2013.

[11] R. M. Gagne and L. J. Briggs. Principles of instructional
design. Holt, Rinehart & Winston, 1974.

[12] A. Gruber, Y. Weiss, and M. Rosen-Zvi. Hidden topic markov
models. In Artificial intelligence and statistics, pages 163—170.
PMLR, 2007.

[13] T. Hofmann. Probabilistic latent semantic analysis. arXiv
preprint arXiv:1301.6705, 2013.

[14] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles. Recov-
ering concept prerequisite relations from university course
dependencies. 2017.

[15] H. Liu, W. Ma, Y. Yang, and J. Carbonell. Learning concept

[3

—

[4

—

[6

—

[7

—

[8

—

148 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

graphs from online educational data. Journal of Artificial
Intelligence Research, 55:1059-1090, 2016.

R. Manrique, J. Sosa, O. Marino, B. P. Nunes, and N. Car-
dozo. Investigating learning resources precedence relations via
concept prerequisite learning. In 2018 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI), pages 198-205.
IEEE, 2018.

L.Pan,C.Li,J.Li,andJ. Tang. Prerequisite relation learning for
concepts in moocs. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1447-1456, 2017.

A. Parameswaran, H. Garcia-Molina, and A. Rajaraman. To-
wards the web of concepts: Extracting concepts from large
datasets. Proceedings of the VLDB Endowment, 3(1-2):566—
577, 2010.

G. Pfundstein. Hidden markov models with generalised emis-
sion distribution for the analysis of high-dimensional, non-
euclidean data. PhD thesis, Institut fiir Statistik, 2011.

L. R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE,
77(2):257-286, 1989.

R. Scheines, E. Silver, and I. M. Goldin. Discovering prereq-
uisite relationships among knowledge components. In EDM,
pages 355-356, 2014.

S.-s. Shen, H.-y. Lee, S.-w. Li, V. Zue, and L.-s. Lee. Structuring
lectures in massive open online courses (moocs) for efficient
learning by linking similar sections and predicting prerequisites.
In Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

A. Vuong, T. Nixon, and B. Towle. A method for finding
prerequisites within a curriculum. In EDM, pages 211-216,
2011.

K. Wagstaff, C. Cardie, S. Rogers, S. Schrddl, et al. Constrained
k-means clustering with background knowledge. In Icml,
volume 1, pages 577-584, 2001.

H. Wang, D. Zhang, and C. Zhai. Structural topic model
for latent topical structure analysis. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 1526—1535,
2011.

S. Wang, A. Ororbia, Z. Wu, K. Williams, C. Liang, B. Pursel,
and C. L. Giles. Using prerequisites to extract concept maps
fromtextbooks. In Proceedings of the 25th acm international
on conference on information and knowledge management,
pages 317-326, 2016.

K. WAUTERS, P. DESMET, and W. VAN DEN NOORTGATE.
Acquiring item difficulty estimates: a collaborative effort of
data and judgment. In EDM 2011 4 th International Conference
on Educational Data Mining, page 121.

J. Xu, J. Liu, and K. Araki. A hybrid topic model for multi-
document summarization. /EICE TRANSACTIONS on Infor-
mation and Systems, 98(5):1089-1094, 2015.

Y. Yang, H. Liu, J. Carbonell, and W. Ma. Concept graph
learning from educational data. In Proceedings of the Eighth
ACM International Conference on Web Search and Data Mining,
pages 159-168. ACM, 2015.

B.-J. Yoon. Hidden markov models and their applications
in biological sequence analysis. Current genomics, 10(6):
402-415, 2009.

C. Zhai, A. Velivelli, and B. Yu. A cross-collection mixture
model for comparative text mining. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 743-748, 2004.

[32] S. Zheng, M. B. Rosson, P. C. Shih, and J. M. Carroll. Un-

derstanding student motivation, behaviors and perceptions in
moocs. In Proceedings of the 18th ACM conference on com-
puter supported cooperative work & social computing, pages
1882-1895. ACM, 2015.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 149

