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ABSTRACT 
Recent years have seen significant interest in multimodal 
frameworks for modeling learner engagement in educational 
settings. Multimodal frameworks hold particular promise for 
predicting visitor engagement in interactive science museum 
exhibits. Multimodal models often utilize video data to capture 
learner behavior, but video cameras are not always feasible, or even 
desirable, to use in museums. To address this issue while still 
harnessing the predictive capacities of multimodal models, we 
investigate adversarial discriminative domain adaptation for 
generating modality-invariant representations of both unimodal and 
multimodal data captured from museum visitors as they engage 
with interactive science museum exhibits. This approach enables 
the use of pre-trained multimodal visitor engagement models in 
circumstances where multimodal instrumentation is not available. 
We evaluate the visitor engagement models in terms of early 
prediction performance using exhibit interaction and facial 
expression data captured during visitor interactions with a science 
museum exhibit for environmental sustainability. Through the use 
of modality-invariant data representations generated by the 
adversarial discriminative domain adaptation framework, we find 
that pre-trained multimodal models achieve competitive predictive 
performance on interaction-only data compared to models 
evaluated using complete multimodal data. The multimodal 
framework outperforms unimodal and non-adapted baseline 
approaches during early intervals of exhibit interactions as well as 
entire interaction sequences. 
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1. INTRODUCTION 
Visitor engagement is critical in museum learning [21]. 
Engagement defines how visitors experience museums, including 
how they move between exhibits, form and express interests, and 
acquire knowledge and understanding. Developing computational 

models of museum visitor engagement holds significant promise 
for identifying salient patterns of visitor behavior as well as 
providing insight into how specific exhibits can be designed to 
enhance engagement. For example, visitor analytics show potential 
for enabling adaptive learning experiences tailored to the 
preferences and tendencies of the visitors, leading to highly 
engaged interactions with the exhibit. Visitor interactions with 
museum exhibits are inherently multimodal. Visitor engagement 
manifests through a variety of behaviors such as facial expression, 
touch, eye gaze, and body posture. As such, multimodal learning 
analytics can model museum visitor engagement by capturing and 
analyzing visitor behavior from several different perspectives [2, 
16]. Multimodal models of learner engagement have been shown to 
be effective in a range of environments, including laboratory [8, 22] 
and classroom settings [1, 6, 7]. More recently, multimodal 
learning analytics have been the subject of growing attention in 
informal education settings, such as museums [16, 20], but this line 
of investigation is still in its nascent stages.  
Given the multimodal nature of visitor interactions in museums, the 
use of multichannel data provides important benefits for modeling 
visitor engagement. In particular, multimodal models can be used 
to predict visitor engagement early during a visitor’s interaction 
with an exhibit [16]. This shows promise for enabling visitor-
adaptive technologies that provide adaptive support for fostering 
engaged learning experiences with an exhibit or for notifying 
museum educators to inform decisions about staffing the museum 
floor. In predictive modeling, it is important that the multimodal 
visitor engagement models be evaluated in terms of both predictive 
accuracy and the minimum amount of time that the models require 
to achieve robust predictive performance.  
Multimodal modeling of visitor engagement in museums also poses 
significant challenges. Interactions with exhibits are highly variable 
due to the free-choice nature of museum learning [12, 25, 28]. 
Additionally, multimodal frameworks often utilize physical sensors 
(e.g., video cameras, motion sensors, eye trackers), which introduce 
questions about scalability, privacy, and mistracking. Intrusiveness 
is also a concern, as suites of multimodal sensors may be 
impractical in some settings, or they may adversely affect the 
natural behavior of visitors [32]. 
Transfer learning presents itself as a natural solution to this issue, 
as the various modalities in a multimodal modeling framework 
share a common predictive task. In particular, recent years have 
seen an increased emphasis on domain adaptation, a type of transfer 
learning that investigates the predictive capacity of models that are 
pre-trained on one domain (source domain) and are subsequently 
reweighted to perform similarly on another domain with a different 
distribution (target domain) across a single common task [39]. A 
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primary objective of domain adaptation is to obtain a domain-
invariant representation of the salient features extracted from the 
two distinct data sources, where the shared feature space allows for 
improved predictive performance on data points from the target 
domain while still maintaining strong performance on data from the 
source domain. Examples of recent domain adaptation research 
include adapting across images extracted from different domains 
[34, 42] or across modalities captured from different data channels 
such as RGB-to-depth image translation [33, 42]. 
In this work, we investigate the use of domain adaptation as a 
method of translating unimodal, interaction-based data to a 
domain-invariant representation that can be used with predictive 
models previously trained on multimodal data. We demonstrate the 
effectiveness of a multimodal domain adaptation framework for 
making early predictions of visitor dwell times at an interactive 
museum exhibit. Our multimodal analytics framework is designed 
to operate in museum settings where sensor-based data capture may 
be restricted or otherwise impractical. We adopt an adversarial 
approach to generating domain-invariant representations of 
multimodal data (exhibit interactions and facial expression serving 
as the source domain) and unimodal data (exhibit interactions 
serving as the target domain) that are encoded using stacked 
denoising autoencoders. Empirical results of evaluations of the 
framework suggests that the use of adversarial discriminative 
domain adaptation allows for a unimodal target encoder to be 
trained to share a latent feature space with a multimodal source 
encoder [42]. The framework achieves higher performance than an 
interaction-only baseline model in terms of early prediction and 
visitor-level prediction of dwell time, a proxy indicator of visitor 
behavioral engagement with an exhibit. Dwell time has been 
frequently used to quantify visitor engagement in museum settings 
[5, 23]. The framework offers the potential to accurately predict 
visitor dwell time in museums, while also allowing for operation 
with reduced availability of physical sensor data, or even when no 
physical sensor data is available. 

2. RELATED WORK 
Visitor engagement is a critical aspect of learning in informal 
learning environments, such as science centers and museums [21]. 
Engagement shapes how visitors proceed throughout a museum, 
and interact with various exhibits [16]. There has been substantial 
work on modeling engagement in formal learning environments 
such as classrooms [19] and laboratories [8], and this focus has 
expanded in recent years to informal learning environments. This 
includes research efforts focused on analyzing engagement in 
groups of visitors around interactive tabletop exhibits [5], 
investigating the effectiveness of interventions for enhancing group 
engagement at different diorama exhibits [23], and predicting 
visitor dwell time [16]. However, devising computational models 
of museum visitor engagement remains a relatively unexplored area 
and presents distinctive challenges due to the free-choice nature of 
visitor learning in museums, creating a need for data-rich 
engagement modeling techniques. 
Multimodal engagement modeling has shown significant promise 
as an engagement modeling approach due to its capacity to provide 
a data-rich multi-dimensional perspective on learner behavior [2]. 
In many cases, multimodal models lead to improved performance 
compared to models that utilize a single modality [19, 22, 32, 49]. 
Multimodal models have often utilized several diverse data 
channels when deployed in formal learning environments, 
including facial expression, posture, eye gaze, dialogue, and 
interaction trace data [40]. Facial expression data is commonly used 
in multimodal learner models of student affect [7] and performance 

[44]. Posture data has also been used for affect detection [22] as 
well as predicting learners’ levels of engagement with Massive 
Online Open Courses (MOOCs) [9]. Eye gaze data has been 
combined with facial expression and head pose data to train models 
for continuous emotion prediction [48], while dialogue data has 
been utilized to predict dropout in online K-12 courses [26]. 
Finally, interaction trace logs and keystroke data have been used in 
conjunction with facial expression data to detect confusion in 
students engaging with an introductory computer science education 
learning environment to provide adaptive feedback and support 
dynamic adjustment of exercise difficulty levels [6]. While recent 
work has investigated multimodal approaches to modeling visitor 
engagement in museums [16], multimodal approaches to museum 
visitor modeling poses significant challenges, as these frameworks 
often necessitate physical, sensor-based data capture. This 
introduces various ethical and logistical concerns and may be 
impractical or prohibitive in certain informal learning 
environments.  
Computational methods such as transfer learning, and particularly 
domain adaptation, provide a way to harness the predictive 
capacities of multimodal learning analytics while allowing visitor 
modeling frameworks to operationalize a reduced number of more 
intrusive modalities. Domain adaptation and transfer learning have 
shown significant potential in a variety of implementations, and 
have been utilized within educational contexts for tasks such as 
confusion detection in online forums for different online courses 
[50] and automated essay scoring across different prompts [35]. 
Additionally, domain adaptation has been investigated within 
multimodal contexts such as RGB and depth images [42], as well 
as video and audio modalities [36]. To our knowledge, adversarial 
domain adaptation has not been applied to unimodal and 
multimodal data to model learner engagement in museums. 
Recent domain adaptation work has focused primarily on an 
unsupervised or semi-supervised variation of this problem, where 
deep learning models trained on a labeled source dataset are 
transferred to share latent representations alongside a target domain 
that may contain little or no previously labeled data. The issue of 
missing labels for the target domain data is addressed by obtaining 
a domain-invariant representation through minimizing the distance 
between the learned data representations between the two domains 
[17, 41, 42]. While prior efforts accomplish this task through 
statistical measures such as the Maximum Mean Discrepancy 
(MMD) [43] or the deep Correlation Alignment (CORAL) [39], 
other work has taken an adversarial approach, with the 
simultaneous goals of learning a data representation that is 
predictive of the source domain labels while also being 
indistinguishable to a domain discrimination model [27, 42]. One 
approach involves reversing the gradients of a domain 
discrimination model to maximize the model’s loss and guide the 
learning to explore a domain-invariant representation [17]. Other 
approaches train a source encoder to reduce the source domain data 
to a latent representation and use a domain discriminator to 
adversarially train a target encoder to produce a latent 
representation of the target domain data that is indistinguishable to 
the discriminator [42]. The trained target encoder is subsequently 
used to process unlabeled data from the target domain to be 
classified by a model pre-trained on source data. Another approach 
is the Co-GAN approach, which involves two Generative 
Adversarial Networks (GANs) that generate source and target data, 
respectively [27]. The high layer parameters of the two GAN 
models are tied together, allowing the generators of the models to 
co-learn a shared latent representation while possibly sharing a 
common input noise vector.  

94 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



Early prediction is an important component of visitor modeling 
because it can drive run-time adaptive support to enhance visitor 
interest and engagement with interactive exhibits. A critical 
objective in early prediction is to reach a certain accuracy threshold 
in a timely manner. Early prediction has been investigated in the 
context of formal learning environments, such as predicting 
middle-grade learner engagement with a game-based learning 
environment [47], evolving learning goals throughout students’ 
interaction trajectories [31], and student success in novice 
programming tasks [29]. Early prediction has also been the subject 
of prior work on museum learning, such as automatic detection of 
visitors’ social behavioral patterns [13, 24] and multimodal 
regression-based modeling of visitor engagement in science 
museums [16].  
The primary contributions of this work are as follows: (1) we 
demonstrate improved predictive performance of multimodal 
models of museum visitor dwell time using facial expression and 
interaction data compared to interaction-only baselines, (2) we 
evaluate the effectiveness of adversarial discriminative domain 
adaptation as a means of enabling the use of previously-trained 
multimodal models with unimodal data, and (3) we investigate the 
performance of each visitor engagement model using convergence-
based early prediction metrics and standard predictive performance 
measures. Domain adaptation has been relatively underexplored 
with educational data, and this is especially true of data from 
informal learning environments such as museums. Furthermore, 
there has been limited work investigating domain adaptation in the 
context of early prediction of learner engagement. Our work shows 
that domain adaptation is effective at enhancing prediction of 
visitor dwell time by harnessing the capacities of multimodal 

visitor modeling, which leads to higher predictive accuracy when 
compared to unimodal models. 

3. FUTURE WORLDS EXHIBIT 
To investigate multimodal predictive models of museum visitor 
engagement, we use data collected from visitor interactions with a 
game-based museum exhibit, FUTURE WORLDS, which is designed 
to introduce visitors to concepts about environmental sustainability 
(Figure 1). FUTURE WORLDS runs on a multi-touch display, 
enabling visitors to interact with the virtual environment through 
touch and gestures on the screen. Visitors are faced with the 
challenge of improving the conditions of the virtual environment’s 
biosphere through a series of changes such as farming practices and 
energy sources within the game. FUTURE WORLDS and its integrated 
educational content are targeted towards learners ages 10-11. 
Visitors can tap or swipe on the screen to perform certain actions 
such as reading about a particular aspect of the virtual environment 
and its impact on sustainability or modifying an in-game element 
and observing the broader consequences of this decision on the 
environment. Upon making a change to the virtual environment, the 
visitor is given immediate feedback regarding the positive or 
negative impact of the gameplay action. A visitor can “win” by 
making the correct decisions to certain in-game elements that 
maximize the environmental sustainability of the virtual 
environment. Afterwards, the visitor is presented with the option to 
restart the game or continue interacting with the virtual 
environment in its completed state. Additionally, a visitor is able to 
leave the FUTURE WORLDS exhibit having not completed the game 
beforehand. Prior work with FUTURE WORLDS found that visitors 
improved their understanding of environmental sustainability 

Figure 1. Gameplay of the FUTURE WORLDS interactive exhibit, including (A) 3D virtual environment, (B) selecting an element to 
modify, (C) viewing information about the selected element, and (D) correctly solving the in-game problem. 
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concepts, while also demonstrating high levels of engagement 
throughout their interactions with the exhibit [37].  

4. MULTIMODAL DATA COLLECTION 
To track visitor engagement and behavior with FUTURE WORLDS, 
the exhibit was instrumented with several sensors to collect the 
real-time behavior of visitors’ interactions with the exhibit, as 
shown in Figure 2. We first describe the visitor population for study 
participants and then introduce the two modalities used for the 
domain adaptation approach (facial expression, exhibit interaction 
trace logs), and the features extracted from each input data channel.  

4.1 Study Participants and Procedure 
We conducted a study of visitor interactions with the FUTURE 
WORLDS exhibit at the North Carolina Museum of Natural Sciences 
in Raleigh, North Carolina. The data were collected over a series of 
three sessions with different school groups of visitors aged 10-11 
(M=10.4, SD=0.57). The school groups came from different socio-
cultural backgrounds (e.g., race/ethnicity), and each school served 
student populations where 70% of the students are from low-
income families. In total, 116 visitors interacted with FUTURE 
WORLDS. There were 47 female and 55 male participants, with 14 
participants who did not provide data on their gender. The visitors 
were 32.4% Hispanic or Latino, 21.6% African American, 11.8% 
American Indian, 8% Asian, 7.5% mixed race, 3% Caucasian, and 
15.7% preferred not to respond. Before interacting with the exhibit, 
visitors were asked to complete a series of surveys and 
questionnaires, including a demographic survey, sustainability 
content knowledge assessment, and the Fascination in Science 
scale [11]. Afterward, visitors interacted with the exhibit until they 
wanted to stop or after approximately 12 minutes had elapsed 
(M=5.8, SD=2.4, Min=1.8, Max=11.8). Visitor dwell times were 
captured by the game’s internal logging functionalities. Once 
visitors finished their interaction with the exhibit, they were asked 
to complete a sustainability content knowledge assessment, 
engagement survey, and a short debrief interview. Several visitors 
were missing one or multiple data channels (e.g., facial 
mistracking), requiring the removal of their data from the final 
dataset for analysis. The final dataset that was used for the 
predictive models in this paper consisted of multimodal data from 
79 visitors.  
During the data collections, the visitors’ body movement, eye gaze, 
facial expression, and interaction data from the exhibit were 
captured. For this study, we focus exclusively on the exhibit 
interaction data and the facial expression data. We selected the 
exhibit interaction data due to its unintrusive nature and its relative 
ease of data capture, as the trace data is captured in the background 

with the exhibit software and does not require any physical sensors 
or calibration. We selected facial expression data because of its 
predictive utility in previous work on unimodal and multimodal 
models of learner engagement [14, 15]. 

4.1.1 Facial Expression 
Facial expression is an important indicator of learner emotion, and 
it has been widely used in previous studies on modeling learner 
engagement [46]. In this work, visitor facial expression was 
captured using video data from an externally mounted Logitech 
C920 USB webcam. In real time, the video data was processed by 
OpenFace, an open-source facial behavior analysis toolkit to detect 
facial landmarks, estimate head pose, recognize facial action units 
(AUs), and estimate eye gaze [3]. The OpenFace software 
automatically detects and analyzes 17 distinct AUs for each 
visitor’s face captured within the camera’s field of view. 

4.1.2 Interaction Trace Logs 
FUTURE WORLDS includes built-in logging functionalities to 
capture fine-grained logs of visitor interactions with the exhibit. 
The interaction trace logs consist of sequential records (at the 
millisecond level) of physical interactions with the multi-touch 
display (e.g., taps, swipes, and gestures), as well as specific in-
game learning events (e.g., altering the virtual environment and 
accessing an embedded informational resources). The interaction 
trace logs are used to investigate how visitors interacted with the 
exhibit and progressed through the game. 

4.2 Multimodal Features 
Using both visitors’ facial expression and exhibit interaction 
behavior, we distilled two sets of features to serve as predictors of 
visitor dwell time. Many of the extracted features for each modality 
were chosen based on their predictive performance in prior work 
on multimodal learning analytics [16].  

4.2.1 Facial Expression 
Using the processed AU data from OpenFace, we calculated the 
duration that each AU was exhibited throughout the visitor’s 
interaction with FUTURE WORLDS. We first standardized each 
visitor’s observed AU intensity values and then calculated the 
duration of each AU during time intervals where consecutive AU 
intensity values were at least one standard deviation greater than 
the mean of that particular visitor-specific AU feature. This 
filtering process ensured that only spikes relative to the specific 
visitor’s AU values contributed towards the calculation of the total 
duration. To further filter the AU durations, we only recorded the 
duration if the AU was present for longer than 0.5 consecutive 
seconds. This avoided possible micro-expressions that could add 
noise to the overall data channel [38]. We performed this filtering 
process for all 17 AUs tracked by OpenFace. In addition, we 
generated the standard deviation and maximum AU values across 
the visitor’s interactions up to the current timestamp. In total, we 
extracted and distilled 51 facial expression-related features. 

4.2.2 Exhibit Trace Logs 
We distilled eight features from the exhibit interaction data: (1) the 
total number of times a visitor tapped the FUTURE WORLDS multi-
touch display, (2) the total number of times a visitor tapped 
informational tiles about environmental sustainability concepts, (3) 
the total duration of time an informational tile was open, (4) the 
total duration spent with labeled sustainability images displayed 
onscreen, (5) the total duration of time that a visitor spent directly 
interacting with the 3D simulated environment in FUTURE WORLDS, 
(6) the total number of times a visitor swiped the interface to 
explore alternative options for modifying the simulated 

Facial Expressions Eye Gaze

Exhibit Interaction Logs Posture

Figure 2. Visitor interacting with FUTURE WORLDS. 
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environment, (7) the total number of times the simulated 
environment was modified, and (8) a binary feature that indicated 
whether a visitor had successfully solved the current environmental 
problem scenario in FUTURE WORLDS. 

5. DOMAIN ADAPTATION 
In this work, we present an unsupervised, adversarial 
discriminative domain adaptation approach that enables the use of 
multimodal visitor engagement models in settings where only 
unimodal data streams are available. In unsupervised domain 
adaptation, two datasets are extracted from two separate domains: 
(1) a source domain (s), from which data samples Xs and associated 
labels Ys are drawn, and (2) a target domain (t), which contains 
unlabeled data samples Xt. It is also assumed that there exists a 
classifier Cs that has been previously trained on the source data Xs 
and source labels Ys by learning a latent mapping Ms. The primary 
objective of the unsupervised domain adaptation approach is to 
learn a latent mapping Mt so that Mt(Xt) can be correctly classified 
by Cs despite the absence of any associated labels for Xt.  
The purpose of adversarial training within the domain adaptation 
framework is to learn a domain-invariant data representation that 
minimizes the distance between Mt(Xt) and Ms(Xs). This is 
accomplished through a separate binary discriminator, D, that is 
trained to distinguish between latent representations of the source 
domain and the target domain. The discriminator is optimized 
according to a standard cross-entropy loss function (Equation 1): 
ℒ!"#$ 	(𝑋%, 𝑋&, 𝑀%, 𝑀&)

= 	−𝔼'!	~	*!+log𝐷0𝑀%(𝑋%)12																						(1) 	
− 𝔼'"	~	*" 4log 51 − 𝐷0𝑀&(𝑋&)167 

Adversarial domain adaptation focuses on two primary objectives 
implemented within a minmax framework: the discriminator 
attempts to accurately classify a latent data representation as either 
from the source domain or the target domain, while a target encoder 
attempts to learn a mapping Mt(Xt) that deceives the discriminator, 
thus finding a latent representation that is domain-invariant but 
retains enough salient characteristics to provide predictive value to 
a source classifier Cs. To implement an adversarial loss function 
within the framework, a common practice is to simply invert the 
loss term when training the target encoder. This essentially reverses 
the gradients for the target encoder but can consequently lead to 
premature convergence and vanishing gradients [17]. A more stable 
training method is to invert the labels used to train the target 
encoder. This creates two distinct convergence objectives for the 
two elements of the adversarial framework [42]. The discriminator 
loss term remains the same as stated in Equation 1 above, while the 
loss term for the target encoder becomes: 

ℒ+,-	(𝑋%, 𝑋&, 𝐷) = 	−𝔼'"	~	*"+log𝐷0𝑀&(𝑋&)12               (2) 

This process is analogous to the process utilized by generative 
adversarial networks (GANs) [18]. A GAN attempts to emulate a 
fixed data distribution by adversarially training a discriminator to 
distinguish between “fake” data, which was produced by a 
generator that aims to generate data that is synthetic but realistic 
looking using a random noise vector, and “real” data that is 
extracted from the prior fixed data distribution. While GANs have 
been utilized in domain adaptation tasks [27], they are typically 
effective when the source and target domains are relatively similar. 
GANs have shown convergence issues in scenarios involving a 
high degree of domain shift [42]. As our work involves a domain 
shift from a multimodal source domain to a unimodal target 
domain, we opt to utilize a non-generative approach for this work 
and focus exclusively on discriminative adversarial methods. It is 

assumed that a pre-existing distribution of multimodal data (i.e., 
interaction trace logs + facial expression) is available to train the 
source encoder and the source classifier, while the target 
distribution consists of unlabeled unimodal data (i.e., interaction 
trace logs). This is intended to simulate scenarios where visitor 
engagement models have been previously trained on multimodal 
data but are deployed in situations where only interaction trace log 
data is available to generate new predictions of visitor engagement.  
While much prior work in adversarial domain adaptation involves 
source and target domains of similar or identical dimensionality 
(e.g., image-to-image translation), the multimodal aspect of this 
work presents a distinct challenge, as the multimodal data in the 
source domain inherently contains more features than the unimodal 
target domain. To enable the pre-trained multimodal classifier to 
handle unimodal data as input, stacked denoising autoencoders [45] 
are used to reduce the multimodal and unimodal feature vectors to 
the same dimensionality. An autoencoder is an unsupervised 
method of using feedforward neural networks to reduce an input 
vector X to a latent data representation using an encoder that 
contains a mapping function M. The autoencoder then attempts to 
use a decoder that uses mapping function N to reconstruct M(X) to 
its original input. The encoder and decoder components of the 
autoencoder are both optimized by minimizing the reconstruction 
loss between X and N(M(X)). A stacked autoencoder is a variation 
in which each component contains multiple hidden layers of 
autoencoders. A denoising autoencoder builds on the same concept 
but corrupts the input vectors using random noise injection, which 
allows effective model regularization [45]. In this work, we use a 
corruption level of 0.25 on each feature in each input vector, where 
a value is set to 0 when the input feature is corrupted. After input 
vector X undergoes random noise injection to produce X’, the 
denoising autoencoder attempts to reconstruct X from N(M(X’)). 
This allows the autoencoder to become more robust against random 
noise within the input features while also preventing the 
autoencoder from overfitting or simply learning the identity 
function. Following the optimization of the autoencoder, the 
decoder component is discarded while the encoder component is 
retained for dimensionality reduction within our data processing 
pipeline. A denoising autoencoder is shown in Figure 3.  

Our adversarial domain adaptation process is shown in Figure 4. 
Figure 4A illustrates the initial training of the classifier and the 
source encoder. The features from the facial expression and 
interaction modalities are concatenated together and then used to 
train a stacked denoising autoencoder. Following this process, the 
trained source encoder is then used to reduce the multimodal input 
data to a latent representation that is then used to train a classifier. 
The classifier receives the latent data as input and is trained to 
predict the target variable, visitor dwell time. To enable the 
adversarial training of the target encoder and discriminator (Figure 
4B), the weights of the pre-trained source encoder are fixed, and 
the target encoder weights are initialized using a pre-trained 
autoencoder optimized on the unlabeled, interaction-only data. An 

X’ X

M(X’)

N(M(X’))

Encoder Decoder

Reconstruction Loss

Hidden
Visible

Figure 3. A denoising autoencoder. 
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alternative approach is to initialize the target encoder weights from 
the source encoder. However, this can only be accomplished if the 
feature vectors extracted from the source domain are the same 
dimensions as the target domain. In our work, the multimodal 
feature vectors from the source domain have a higher 
dimensionality than the unimodal feature vectors from the target 
domain, since we remove the facial expression modality from the 
training data for the target encoder. The source and target encoders 
are used to produce latent representations of the multimodal and 
unimodal features, respectively. These representations are assigned 
labels of either 1 if the sample originated from the source domain, 
and 0 if the sample originated from the target domain. The 
data/label pairs are then used to train a feedforward network serving 
as the discriminator model. The discriminator is trained to 
distinguish between latent data from the source domain and from 
the target domain, while the target encoder is simultaneously 
trained to produce latent data from the target domain that 
consistently deceives the discriminator. To evaluate the target 
encoder (Figure 4C), unimodal data is passed through the encoder, 
and the resulting encoded data is then forward propagated through 
the trained classifier shown in Figure 4A. This procedure provides 
a way to evaluate the predictive performance of a multimodal 
classifier on unimodal data. It is important to note that some amount 
of multimodal data must be present prior to deploying our 
adversarial approach in order to train the multimodal classifier as 
well as the multimodal autoencoder. 

6. METHODOLOGY 
In multimodal models of learner engagement, some modalities that 
are highly predictive of engagement can also be impractical or 
undesirable in certain educational settings, such as sensors that 
require a cumbersome calibration process or expensive specialized 
equipment. Modalities that involve the capture of video data can 
raise concerns about privacy. However, eliminating physical 
sensors and exclusive reliance on sensor-free modalities may result 
in decreased performance on some tasks and settings. We propose 
a solution to this issue that (1) allows the predictive capacities of 
multimodal models to be retained, and (2) allows for the reduction 
in use of physical sensors. This work operates under the assumption 
that multimodal data is available in at least some capacity to 

facilitate the training of multimodal models prior to adversarial 
domain adaptation. As a result, the ideal setting for the proposed 
framework is after an initial multimodal data collection has taken 
place, enabling pre-trained multimodal models to be deployed. 
Below we describe the methods used to preprocess the multimodal 
and unimodal data, the feature selection process utilized to select 
the data used in the prediction and adversarial tasks, and the 
approach to training and validation of the visitor engagement 
models. Finally, we present the early prediction convergence 
metrics used to evaluate the final classification models and the 
domain encoders. 

6.1 Data Preprocessing 
6.1.1 Temporal Feature Engineering 
To facilitate early prediction of visitor engagement, sequential 
representations were produced from the features engineered from 
the two modalities as described in Section 4.2. To accomplish this, 
feature vectors were engineered for every subsequent 10-second 
interval in a single visitor’s interaction session with the exhibit. For 
each feature, the average or sum of all values from t=0 to t=10n 
seconds was calculated, where n is the number of 10-second 
intervals that have elapsed for that feature vector. For example, if a 
visitor engaged with the exhibit for one minute, then n=6, and the 
feature vectors are generated across time intervals of 10, 20, 30, 40, 
50, and 60 seconds from the beginning of their session. This allows 
each feature vector to be a representation of a visitor’s behavior 
over their entire interaction with an exhibit up to that point. 
Additionally, this approach solves the issue of the temporal 
alignment of the separate data channels caused by differing 
sampling rates of the facial expression modality and the interaction-
based modality. As a result, the early prediction models are able to 
make predictions at a consistent frequency across every visitor’s 
exhibit interaction trajectory (i.e., every 10 second). To ensure that 
the additive nature of the features does not contribute to artificially 
inflated model performance, each feature is scaled by the elapsed 
time up to the current timestamp. After this process is complete, 
2,279 data samples were generated for 79 visitors. 

6.1.2 Visitor Dwell Time  
The beginning of a visitor’s dwell time takes place after a 
calibration process with the eye gaze sensor is completed, and prior 
to when they are presented with an on-screen information dialogue 
box explaining the problem to be solved. The visitor’s session can 
end one of three ways: (1) the visitor opts to end their session prior 
to completing the problem-solving task in FUTURE WORLDS, (2) the 
visitor solves the problem and chooses to end their session, or (3) 
the visitor solves the problem, opts to continue interacting with the 
virtual environment, and later chooses to end their session. Each 
visitor’s dwell time was captured in total seconds (M=268.83, 
SD=137.48, Min=77.11, Max=657.48) and was recorded by the 
FUTURE WORLDS exhibit’s built-in logging functionalities. For the 
purpose of this work, the dwell time prediction task was converted 
to a classification problem by splitting dwell time into three tertile 
groups and assigning approximately one-third of the visitors to 
each group. We use this classification approach instead of 
regression analysis due to the relatively low number of visitors in 
the dataset and to accommodate the use of early prediction 
convergence metrics. The visitors in the dataset were assigned to 
one of three possible groups according to their dwell time d: low (d 
<= 193.54, N=26), low (193.54 < d <= 318.82, N=27), and high (d 
> 318.82, N=26). We take this approach as a way to prevent a 
significant class imbalance while still retaining a higher level of 
granularity than a median split. The distribution of visitor dwell 
times, including the ternary groups, is shown in Figure 5. 

Figure 4. Domain adaptation process, including (A) the 
classifier and source encoder training, (B) adversarial training 
of the target encoder and discriminator, and (C) evaluation of 
the adapted target encoder on the classifier. Dashed lines 
indicate fixed model weights. 
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6.2 Feature Selection 
Because of the large number of features in the multimodal data (51 
facial expression features and 8 exhibit interaction features), we 
implemented forward feature selection to eliminate features with 
little or no predictive value and to reduce potential noise. Forward 
feature selection iterates through a list of features in a greedy 
manner, training a model on a single feature and continuing to add 
features if their inclusion increases the performance of the model 
on the target variable. This process continues until a predetermined 
number of features are selected or until all available features have 
been evaluated. This process has a few shortcomings. Due to the 
greedy nature of the algorithm, the features that are evaluated first 
have a higher chance of being selected. For example, the first 
feature that is evaluated is always retained, regardless of its true 
contribution to the predictive performance of the model. One 
approach to mitigating this issue is to perform forward feature 
selection for every possible combination of features, but this is 
often prohibitive as the number of combinations increases 
exponentially as the number of features increases, which imposes 
significant computational requirements. To mitigate the issue of 
bias in greedy feature selection while avoiding an exhaustive search 
across all feature combinations, we perform forward feature 
selection across a randomized ordering of all available features. We 
used a support vector machine (SVM) as the predictive model for 
each feature combination due to its effectiveness in high-
dimensional spaces and relatively small computational overhead. 
This process was repeated for 100 separate iterations and 
randomizations to ensure that each feature had an equal probability 
of being placed at a specific point within each feature ordering. 
Following this process, the features were sorted according to the 
frequency that each feature was selected across all 100 iterations. 
To compensate for the difference in the number of features for each 
data channel, we performed forward feature selection on the facial 
expression modality and selected the ten most frequently selected 
features.  
It should be noted that because we selected the ten most frequent 
features from the facial expression modality, and the interaction-
based modality contained only 8 total features, each feature from 
the latter modality was included in the data modeling process. (We 
perform forward feature selection on the interaction-based features 
for analysis purposes only.) Because certain features such as AU 
durations and tile durations increase monotonically throughout a 

Table 1. Most frequent features from forward feature  
  selection (interaction) 

Feature Frequency 

Proportional Tile Duration 0.637 
Proportional Open Tile Count 0.561 
Proportional Info Duration 0.557 
Proportional Info Taps 0.554 
Proportional Taps 0.511 
Proportional Swipe Tiles Count 0.416 
Proportional Modify Tile Count 0.341 
Beat Game 0.272 

 
Table 2. Most frequent features from forward feature 

selection (facial expression) 
Feature Frequency 

AU05 Max 0.317 
AU10 Max 0.276 
Proportional AU10 Duration 0.257 
AU02 Max 0.237 
Proportional AU01 Duration 0.227 
AU26 Std 0.218 
AU25 Max 0.214 
Proportional AU17 Duration 0.208 
Proportional AU45 Duration 0.206 
Proportional AU26 Duration 0.196 

 
visitor’s exhibit interaction trajectory and can lead to indirect data 
leakage with regard to the target variable (dwell time at the exhibit), 
the features were scaled by the total elapsed time up to the current 
timestamp, so these features were converted to proportional 
representations of the elapsed time at each time interval. 
This feature selection process took place within each cross-
validation fold, and as a result, each fold produced a different 
combination of selected features. We calculated the frequency of 
the features across all cross-validation folds and present these in 
Table 1 and Table 2. 
Based on the results in Table 1, features related to general 
interactions (proportional number of times any tile was opened, 
proportion of time any tile was open) were the most predictive 
interaction-based features. The features related to opening and 
viewing embedded graphical and textual science materials were 
also frequently selected features. The features representing the 
frequency a visitor modified the in-game virtual environment were 
less frequently selected as predictive features, as was the binary 
indicator of whether the visitor correctly solved the problem at that 
particular timestamp. 
The most predictive features from the facial expression modality 
were primarily maximum values and proportional durations of 
certain AUs. AU05 (upper lid raiser) and AU10 (upper lip raiser) 
were the most predictive facial action units, followed by AU02 
(outer brow raiser) and AU01 (inner brow raiser). AU25 (lips part) 
and AU26 (jaw drop) were moderately predictive, followed by 
AU17 (chin raise) and AU45 (blinking). Multiple representations 

Figure 5. Distribution of visitor dwell times and  
ternary groups. 

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 99



of AU10 and AU26 were frequently selected during the feature 
selection process as well. It is notable that the overall frequency of 
the facial expression features is significantly lower than many 
interaction-based features. This is likely a result of the large number 
of facial expression features compared to the interaction-based 
features.  

6.3 Model Evaluation 
The models were evaluated using 10-fold cross-validation, with the 
splits for each fold occurring at the visitor level to ensure that a 
visitor’s data was contained only within a single training, 
validation, or test set. The dataset was standardized within each 
cross-validation fold by dividing each feature by subtracting the 
feature’s mean and dividing by the feature’s standard deviation, as 
determined by the training data. This rescales the data to have a 
standard deviation of 1 (unit variance) while centering the mean to 
be 0. Following this process, class imbalances within the training 
data were resolved using Synthetic Minority Oversampling 
Technique (SMOTE) [10]. SMOTE is a common upsampling 
approach that resolves class imbalances through a randomized K-
nearest neighbor approach, which brings the class balance to a 
uniform distribution while avoiding duplication of any data points. 
The upsampled, standardized training data is then used for forward 
feature selection as described in Section 6.2.  
After feature selection, a classifier model was trained on the 
multimodal data and the visitor dwell time labels in each cross-
validation fold to provide a comparison point for the domain-
adapted models. The tertile labels for the target variable were 
encoded as one-hot vectors for each model output. We evaluated 
five different models: SVM, logistic regression, naïve Bayes, 
random forest, and a feedforward neural network. We performed 
hyperparameter tuning using a 3-fold nested cross-validation 
within the training set for each outer cross-validation fold. The 
hyperparameters that were varied for each model included the 
regularization parameter and kernel (SVM), regularization 
parameter (logistic regression), number of estimators (random 
forest), and number of layers and nodes (feedforward neural 
network). Additionally, the architecture of the autoencoder used to 
train the source encoder was evaluated during the hyperparameter 
tuning phase. The autoencoder was a feedforward neural network, 
and the hyperparameter values that were evaluated were the number 
of layers and nodes in the hidden layers within the encoder and 
decoder, as well as the number of latent dimensions. The 
feedforward neural network achieved the optimal performance as 
the classifier for visitor dwell time, using two hidden layers with 64 
nodes each. The source encoder contained three hidden layers with 
64, 32, and 16 nodes, respectively, with a latent output of 10. 
Additionally, all feedforward neural network models used a 
learning rate of 0.001, a dropout rate of 0.5 in the last hidden layer, 
and sigmoid activation functions. The loss function used for each 
model was categorical cross-entropy. Early stopping was 
implemented for each model using the validation data during the 
nested cross-validation to protect against overfitting. As a baseline, 
we follow the same process previously described, except using only 
the interaction modality. We evaluate both a unimodal and 
multimodal baseline in order to demonstrate the improved 
performance of the multimodal model of visitor dwell time as 
compared to the unimodal model, and to show the improved 
performance using the domain adaptation framework in situations 
where only unimodal data is available. 
After the optimal classifier and source encoder for adversarial 
domain adaptation were trained for each cross-validation fold, the 
models’ weights were fixed to evaluate the classifier performance 

on interaction-only data and to encode the multimodal data within 
the adversarial framework, respectively. The adversarial 
framework used a target encoder that is a feedforward neural 
network whose architecture and weights were pre-determined using 
the interaction-only baseline model. Although the source encoder 
and target encoder weights were not tied together as is common in 
other adversarial domain adaptation work [27], there was an 
imposed restriction that the latent dimensions be the same for both 
domains due to the fixed input size of the discriminator. The 
discriminator in the adversarial framework was a feedforward 
neural network with two layers of 64 nodes each. The learning rate 
of both the discriminator and the target encoder was 0.001, with a 
dropout rate of 0.05 in the last hidden layer and hyperbolic tangent 
activation functions. The loss functions for the discriminator and 
target encoder were based on binary cross-entropy as shown in 
Equations 1 and 2, respectively. The adversarial domain adaptation 
took place within each cross-validation fold to prevent data leakage 
from the test set.  
To evaluate the predictive performance of the domain-adapted 
representations of the target data, the trained target encoder was 
used to encode the interaction-only data from the held-out test set 
within each cross-validation fold, and the encoded data was passed 
to the classifier model trained with the source data. The predictive 
performance of the classifier on this data was used to confirm that 
the use of multimodal data to train the classifier induces higher 
performance than if the facial expression data was removed from 
the dataset entirely. As an additional baseline, the target encoder 
trained on the interaction-only modality was used to pass the 
encoded data directly to the multimodal classifier without the 
domain adaptation procedure, following the source-only baseline 
approach of Tzeng et al. [42]. This illustrates that any improvement 
due to our method can be attributed to the adjusted weights through 
the adversarial adaptation process instead of just compressing the 
latent representation of the target domain data to the source 
domain’s dimensionality. This specific baseline is called target-
only. 

6.4 Early Prediction 
To quantify the models’ ability to accurately predict a visitor’s 
dwell time early and consistently, we utilize two metrics: 
standardized convergence point [30] and convergence rate [4]. The 
standardized convergence point calculates an average point of 
model convergence to the correct labels, while a particular visitor’s 
sequence not converged to a correct prediction is penalized. This 
metric extends the conventional convergence point metric to 
account for sequences that are ultimately predicted incorrectly and 
fail to converge by instituting a penalty term [4]. In this instance, 
standardized convergence point is greater than one. In cases of 
convergence, a sequence’s standardized convergence point falls 
within the range [0, 1]. Equation 3 displays the formula used to 
calculate the standardized convergence point across all sequences, 
where m is the number of sequences, and ni is the number of data 
points in the ith visitor’s sequence. The value of ki is the number of 
data points after which the model makes consistently accurate 
predictions, otherwise ki equals ni+pi, where pi is the penalty term 
for the ith sequence [30]. (pi is set to 1 for all sequences in this work 
following the original work.) A lower standardized convergence 
point indicates that the model’s predictive accuracy tends to 
converge earlier in a visitor’s interaction with the exhibit, 
indicating better early prediction performance.  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	𝑝𝑜𝑖𝑛𝑡 = 	F
G𝑘.𝑛.

I

𝑚

/

.01

												(3) 
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The second metric that we use to quantify a model’s early 
prediction performance is the convergence rate. Convergence rate 
is the percentage of observed sequences in which the final 
prediction is accurate. Any sequence that contains an accurate 
dwell time prediction at the last data point is considered to have 
converged. Therefore, a higher convergence rate is indicative of 
better performance.  

7. RESULTS AND DISCUSSION 
The results for the unimodal and multimodal models as well as the 
unimodal latent representations (i.e., target-only encoding) and 
domain-adapted representations are shown in terms of early 
prediction and visitor-level predictive performance in Table 3. To 
measure visitor-level performance, a single point estimate of the 
predictive performance for each individual visitor is obtained by 
averaging across the predictions for all data points. The results for 
Table 3 are shown in terms of standardized convergence point 
(SCP) and convergence rate (CR) for early prediction, and area 
under curve (AUC), Cohen’s Kappa, accuracy, and F1 score for 
visitor-level performance. Although AUC is commonly used for 
binary classification problems, we use this metric for a multi-class 
approach using a “one vs. rest” method which treats the correct 
class as the “positive” group and combines all other classes as a 
single “negative” group. The total AUC for a single model is 
calculated by using the unweighted mean of the AUC values across 
all three groups. 
Based on the results in Table 3, the adversarial domain adaptation 
allows the multimodal classifier to outperform all baselines in 
terms of early prediction and across all sequences for each visitor. 
As expected, the complete multimodal model achieved the highest 
performance, achieving an AUC value of 0.660, while also 
outperforming the other models in all other evaluation metrics. The 
model achieved a standardized convergence point of 64.58%, 
indicating that the model achieved and maintained its optimal 
predictive performance approximately 64% into a visitor’s total 
dwell time at the exhibit, while converging to the correct 
predictions more often than other baseline approaches. The 
interaction-only modality produced noticeably lower performance, 
achieving a convergence point of 75.95%, while also reaching a 
0.574 AUC across all sequences. The adversarial domain 
adaptation allowed the classifier to achieve higher performance on 
the interaction-only data, with an early prediction performance of 
67.42% and a visitor-level AUC of 0.585, similar to the full 
multimodal model while also outperforming the interaction-only 
baseline across all evaluation metrics. 
The classifier’s performance on the latent unimodal data (without  
domain adaptation) was notably poor, achieving an AUC that was 
slightly worse than random chance (0.500). This result is not 
surprising, as we are evaluating the model’s performance using 
latent representations from a domain that has not been used to train 
the model beforehand. Although similar baseline approaches can  
 

achieve moderate performance in instances where the source and 
target domains are relatively similar, other work that investigates 
cross-modality adaptation or adaptation across dissimilar domains 
achieves much lower performance for this specific baseline [42]. 
While the adversarial domain adaptation proved more effective 
than the interaction-only and latent unimodal data baselines, the 
performance of our framework did not achieve the same 
performance as a framework that contained the full multimodal 
data. This could be attributed to the significant difference between 
the interaction and facial expression domains. The majority of the 
interaction-based modality is comprised of discrete, monotonically 
increasing features, which inherently are not as data-rich as the 
features from the facial expression modality. Because there are 
multiple features for each AU, this modality provides multifaceted 
perspectives on multiple AUs, leading to a relatively high number 
of continuous features. Adapting between two data channels with 
such a discrepancy in dimensionality may be a contributing factor 
to the framework’s performance. Second, the relatively small 
number of visitors in the dataset may also be a contributing factor, 
as the performance of the models could be at risk for overfitting the 
classifier, source encoder, or target encoder. Contributing to this 
potential issue is the loss induced in the domain adaptation process. 
The size of the dataset may prevent the adversarial framework from 
reaching optimal convergence. Third, because there is no restriction 
regarding how long the visitors could remain at the exhibit, the 
target variable has a relatively wide range of values, approximately 
from one minute to more than ten minutes. Although this issue is 
addressed through the use of a tertile split, additional data could 
provide further evidence of behavioral patterns that are able to 
induce higher performance with more granular target variables.  
Because timestamped interaction trace logs are the basis of one of 
the modalities used in this work, the design of the museum exhibit 
may play a role in the performance of the visitor models in terms 
of early prediction. During the early stages of FUTURE WORLDS, 
visitors are prompted to read an information dialog box explaining 
the premise of the game and a summary of the problem to be solved 
in the virtual environment. Because this event occurs at the 
beginning of every visitor’s interaction sequence, it is likely that 
more indicative behaviors that allow the classifier to differentiate 
between groups occur at later stages of learner interactions with the 
exhibit. This is a potential explanation behind the early prediction 
performance of each model, as the standardized convergence point 
occurs after 60% of the overall exhibit interactions across all 
models. 
To further investigate the impact that domain adaptation has on the 
predictive performance of the multimodal classifier, confusion 
matrices based on the target-only encoder and the adversarially-
trained encoder are shown in Figure 6 as is the confusion matrix for 
the interaction-only classifier. The purpose of this analysis is to 
determine if adversarial domain adaptation results in any changes 
relative to the classifier’s sensitivity to certain dwell time groups.  

Table 3. Visitor-level predictive performance (all sequences) 

 Early Prediction Visitor-Level Prediction 

Encoding Classifier SCP CR AUC Kappa Accuracy F1 Score 

Interaction-Only Unimodal 75.95% 34.18% 0.574 0.085 0.392 0.355 
Multimodal Multimodal 64.58% 48.10% 0.660 0.278 0.519 0.511 
Target-Only Multimodal 73.79% 34.18% 0.499 0.015 0.342 0.338 
Domain Adaptation Multimodal 67.42% 43.04% 0.585 0.203 0.468 0.468 
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Based on the confusion matrix for the target-only classifier (i.e., the 
multimodal classifier evaluated on the interaction data without 
domain adaptation), the classifier appears to primarily predict high 
dwell times for a majority of visitors. The model also appears to 
frequently predict visitors with medium dwell time as having low 
dwell time. As this particular model performed similarly to a 
random chance classifier, it is likely that the interaction-only data 
representation was not easily identifiable to the classifier, leading 
it to primarily predict a single class and not classify the lower two 
groups accurately. The classifier that was trained and evaluated on 
interaction-only encodings performed slightly better and appears to 
become more accurate in cases of lower dwell time in visitors. 
However, it is notable that the model still does not appear to 
accurately predict instances of medium dwell time. This indicates 
that the interaction-based modality contains salient features 
indicative of noticeably low or high engagement but interactions 
from visitors with medium dwell time are not easily distinguishable 
to the model. Low dwell time may be characterized by a relatively 
low number of taps or interactions in the virtual environment, while 
high dwell time may be indicated by greater or more frequent 
tapping or interactions with the virtual environment. Additionally, 
visitors that have a higher dwell time are more likely to beat the 
game or read a higher number of information dialogs. However, 
this information may not be predictive enough with the ternary 
split, causing the interaction model to overfit to the two extremes.  
The multimodal classifier that processes the modality-invariant 
data representations performs noticeably better for visitors with 
medium dwell time and continues to maintain fairly accurate 
performance on visitors with high dwell time. This may indicate 
that facial expression captures physical cues that allow the model 
to more easily distinguish between the medium group and the other 
groups, and the domain adaptation allows these features to be 
integrated into the interaction-only representations. By 
implementing this approach across the two modalities, it appears 
that the multimodal model retains its robustness to visitors with a 
medium dwell time in particular, while being able to achieve this 
performance using only features from the interaction data. This is 
significant because it appears that the interaction-only model does 
not appear to induce high performance on the medium dwell time 
visitors, so it remains important to utilize the multimodal data 
representations obtained through domain adaptation as pre-training 
for accurately predicting the visitor dwell time.  

8. CONCLUSION 
Modeling visitor engagement is an important task in museum-based 
learning. However, visitor engagement modeling presents 
significant challenges, as visitors’ patterns of engagement with 
museum exhibits can vary widely. Multimodal frameworks show 
promise for the prediction of visitor engagement in museums 
because they capture information about visitor behavior that cannot 

otherwise be captured through interaction trace logs or similar 
unimodal data channels. Although multimodal sensor systems give 
rise to concerns about privacy, feasibility, and intrusiveness, the 
complete removal of sensor data from visitor engagement models 
may result in diminished predictive performance. To address this 
issue, we have introduced an adversarial domain adaptation 
approach to generating modality-invariant representations of 
interaction data and facial expression data from visitor interactions 
with the FUTURE WORLDS museum exhibit. The domain adaptation 
approach enables multimodal models to be induced in a pre-
training phase while being deployed and evaluated with modality-
invariant representations obtained using interaction-based data 
exclusively. We investigate the models’ ability to predict visitor 
dwell time during the early stages of a visitor’s interaction with the 
museum exhibit. Results indicate that the domain adaptation 
approach to modeling visitor engagement achieves higher 
performance than a visitor modeling approach using only a single 
modality. The domain adaptation approach also outperforms the 
unimodal baseline during early sequences of a visitor’s interaction 
trajectory as well as across all sequences while demonstrating 
competitive performance compared to classifiers utilizing 
multimodal data.  
There are several promising directions for future work. Alternative 
techniques for modeling visitor engagement should be evaluated, 
including sequential models like long short-term memory (LSTM) 
networks, to improve models’ predictive accuracy and early 
prediction. Alternative approaches to the adversarial learning 
component of this framework include the use of generative models 
such as GANs or variational autoencoders. Attaining reliable 
training convergence continues to be a challenging problem within 
adversarial learning and investigating solutions to this issue may 
enhance the benefits of domain adaptation. The generalizability of 
the domain adaptation framework should be evaluated using larger 
and more diverse visitor populations on different exhibits and 
museum settings. Additionally, the domain adaptation framework 
should be evaluated using additional combinations of modalities 
(e.g., posture, gaze, speech), and extended to include three or more 
modalities simultaneously. Finally, this framework should be 
evaluated at run-time by integrating visitor engagement models into 
a museum exhibit to enable visitor-adaptive interventions to enrich 
visitor engagement and enhance museum-based learning 
experiences. 
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Figure 6. Confusion matrices for classifiers using target-only, interaction-only, and domain adaptation-based representations. 
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