
Grouping Source Code by Solution Approaches —
Improving Feedback in Programming Courses

Frank Höppner
Ostfalia University of Applied Sciences

f.hoeppner@ostfalia.de

ABSTRACT
Various similarity measures for source code have been pro-
posed, many rely on edit- or tree-distance. To support a
lecturer in quickly assessing live or online exercises with
respect to approaches taken by the students, we compare
source code on a more abstract, semantic level. Even if
novice student’s solutions follow the same idea, their code
length may vary considerably – which greatly misleads edit
and tree distance approaches. We propose an alternative
similarity measure based on variable usage paths (VUP),
that is, we use the way how variables are used in the code
to elaborate code similarity. The final stage of the mea-
sure involves a matching of variables in functions based on
how the variable is used by the instructions. A preliminary
evaluation on real data is presented.

Keywords
source code distance, semantic analysis, variable usage paths

1. INTRODUCTION
Learning a programming language requires a lot of practice.
Students gain knowledge and experience from both, home-
work and in-classroom exercises. It is, however, very impor-
tant to give students feedback, e.g. discuss different solu-
tion approaches with them. Both, those who have and have
not yet succeeded, will benefit from such discussions, either
it widens their view (because they may not have thought
about alternative approaches yet) or encourages them to
try the exercise at a later point in time once more (once
they got a glimpse on how to solve it). The sharing of dif-
ferent solution approaches and discussing the pros and cons
of different approaches improves their algorithmic thinking
skills. However, it is quite common in many programming
courses, that the only (automatic) feedback consists of the
number of passed or failed unit tests. Achieving a positive
feedback then requires an already well developed solution
and no credit is given for, say, getting the code structure
right – which may frustrate novices noticeably.

We thus address the following research question: Can we
support the lecturer in providing meaningful feedback about
the solution approaches taken by the students? This requires
automation as a lecturer does not have the time to review
all solutions manually, especially not in online teaching situ-
ation. Providing meaningful feedback requires some kind of
insight in the solution approach a particular student was fol-
lowing (semantics), how common the approach is, how many
different approaches have been followed in the course, etc.
We intend to achieve this by providing a similarity measure
for source code that does not focus on results (as unit tests
do) but to reach a higher semantic level by assessing the
more abstract code structure: different solution approaches
manifest themselves in different code structures.

Such a measure would be useful in many ways. For in-
stance, during an in-classroom teaching situation it would
enable the lecturer to pick two (or more) submissions fol-
lowing different approaches to start a discussion about their
pros and cons. It could also support a lecturer in browsing
the spectrum of approaches that were followed by the course
members (how many different approaches were chosen how
often) without having to check every solution manually. It
may enable the lecturer to pick a solution that follows the
same approach as a solution that has been discussed already,
but did not pass all unit tests, thereby representing a live
challenge to the course members (“spot the error”). Note
that we are not aiming at grading the source with respect
to its correctness, but leave this to the unit tests. As tests
do not provide any useful feedback to students that do not
yet have an appropriate code structure, the desired measure
may close this gap, as it would allow us to differentiate code
submissions that are far from working from those that follow
a reasonable solution approach and got the code structure
right, but only the tiny details prevents them from passing
the tests. Such a more detailed inspection would enable a
much more sensitive (automatic) feedback.

2. RELATED WORK
Similarity or distance measures for source code have been
investigated for a long time. Many approaches have in com-
mon that they start from an abstract syntax tree (AST) that
represents the code. Code is then compared by calculating
some kind of tree distance on the corresponding ASTs: the
minimal number of steps (node deletion, insertion, and re-
labelling) to transform one AST to the other. A survey on
tree edit distance can be found in [2]. A tree, however, has
no conscience about variable identity: the very same vari-

Frank Höppner “Grouping Source Code by Solution Approaches — Im-
proving Feedback in Programming Courses”. 2021. In: Proceed-
ings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 461-467.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 461

able occurs over and over again as a new node in an AST.
To reflect which variable change affects other code, program
dependency graphs (PDG) may be used. But comparing
graphs is even more complicated than comparing trees, a
survey on graph edit distance is given in [6]. To simplify the
comparison, the AST may also be linearized such that much
simpler string comparison measure (edit distance) may be
applied (cf. [5, 7, 9]).

An extremly fast approach is to define a hash function on
(possibly pre-processed trees) such that a similarity is de-
tected when hash codes are identical [1]. The flexibility of
such an approach is, however, very limited, as the similiarity
measure is a binary one. It may nevertheless be useful for
clone detection (plagiarism) or may be enhanced by calcu-
lating multiple hashes [4]. Tree edit distance has been used
in, e.g., [10] to detect similar source codes. In [3] a distance
measure for source code has been proposed, that transforms
the AST into a sequence of tokens on which Levenshtein or
edit distance is applied.

In many related papers the goal is to compare (student’s)
code to a (lecturer’s) reference code; the higher the simi-
larity, the closer is the student’s submission to the correct
solution. In this work, however, we want to identify source
codes that are semantically similar, that is, they follow the
same solution approach. Especially when novices start to
code, their solutions are often more lengthy and redundant
than those of an experienced programmer. This affects mea-
sures such as edit distance or tree distance dramatically. The
approach in [3] did not work out as well as expected, and
the authors hypothesized about one of the reasons that the
length of the code dramatically influences the edit distance.
While longer code may be less readable and more redundant,
it is neither more likely wrong nor does it necessarily follow
a different solution approach. As an example, consider codes
(a) and (b) from Fig. 1. The task was to calculate the mean
of all positive array elements. Both codes follow the same
approach, but (b) uses a single loop instead of two and is
thus more compact. But semantically, we consider both so-
lutions as being identical. We are not aware of any source
code similarity measure that tries to reflect that.

It is also common in the literature to replace variable names
by a constant string (possibly depending on the variable’s
type), which eases matching sources that use different vari-
able names. In plagiarism detection (see [5, 9] and references
therein) this is considered as a countermeasure against dis-
guising plagiarism by variable renaming. However, the way
a single variable is used throughout the code is crucial for
a solution approach. Fig. 1(d) utilizes the same statements
(e.g., array-access in conditional statement of a for-loop),
but does not calculate anything meaningful and thus does
not represent the same solution approach as codes (a-c).

3. COMPARING SOURCE CODE BY
VARIABLE USAGE PATHS

We argue that two solutions follow the same approach if they
use variables in the same way. In the subsequent sections
we show how we grasp variable usage in the code and then
define similarity measures on this representation.

public double avg(double a[]) {
if (a==null) return NaN;
int n = 0;
for (int j=0;j<a.length;++j) {
if (a[j]>0) ++n;

}
double sum = 0;
for (int j=0;j<a.length;++j) {
if (a[j]>0) sum+=a[j];

}
return sum/n;

} // (a) [TwoLoopQuickExit]

public double avg(double a[]) {
if (a==null) return NaN;
int n = 0;
double sum = 0;
for (int i=0;i<a.length;++i) {
if (a[i]>0) {
++n;
sum+=a[i];

}
}
return sum/n;

} // (b) [OneLoopQuickExit]

public double avg(double a[]) {
if (a!=null) {
int n = 0;
double sum = 0;
for (int i=0;i<a.length;++i) {
if (a[i]>0) {
++n;
sum+=a[i];

} }
return sum/n;

} else {
return NaN;

} } // (c) [OneLoopGuardedIf]

public double avg(double a[]) {
if (a==null)
return NaN;

int n = 0;
double sum = 0;
for (int i=0;i<a.length;++n) {
if (a[i]>0) {
++i;
a[i]+=sum;

}
}
return sum;
} // (d) [Disordered]

Figure 1: Responses to a simple programming exer-
cise: Write a function avg that yields the mean of all
positive values in the array. Left: Code (a) uses two
loops, while code (b) only one. While the main code
is organized after an if-statement in (a) and (b), it is
embedded in the conditional statement in (c). Code
(d) uses similar instructions, but the variable usage
is screwed up and does not solve the problem.

3.1 Variable Usage Paths
Solving a programming exercise requires to combine pro-
gramming instructions such that a handful of variables
jointly build up the final result (and return it to the caller).
The key to a solution are thus the variables and how they
are embedded in the (possibly nested) instructions. Code
analysis often starts with an abstract syntax tree (AST);
there, every variable usage is represented by a new node in
the tree. This occludes important information: Where in
the source code is the same variable used? We therefore
rearrange the AST to a graph, where a node is unique for
each variable and subsequent usages of the variable link to
the same node. Fig. 2 shows an example for the code of
Fig. 1(b). All variables are marked in red color. From the
paths between the variable sum and function avg, we can
see that the variable sum is declared, occurs in a conditional
statement that is embedded in a loop, and finally occurs in
the return value. We consider these paths (shown in blue in
Fig. 2) as a kind of fingerprint for the role of this variable:
code following the same approach requires variables with the
same roles.

We thus do not operate directly on the graph, but paths from
variable nodes to the enclosing function node. After apply-
ing some transformations to simplify the graph somewhat
(e.g. removing body or replacing for, while, etc. by a subsum-
ing label loop), we end up with string representations of the
three blue paths like sum/expression/return/avg, sum/dec-

462 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

ArrayAccess

i

index

a

array

avg

double

return

Parameters

public

modifier

Body

body

<

Expression

operator

operand_0FieldAccess

operand_1

int

type

0

Test

_0

++0

0

Expression

/

operator

n

operand_1

sum

operand_0

>

length

==

++

double

Expression

operand

operator

nametype

+= ArrayAccess

indexarray

parameter_0

For

control

update_0

Declaration

Declare

Body

repeat

Assignment

right operatorleft

Declare

Declaration

name_0

Body

statement_1

Expression

statement_0

int

NaN

Declaration

set

name Double

set

name

operatoroperand

double

type

NULL

type

Expression

operand_1operator operand_0

Declare

name_0

return

FieldAccess

expression

0

Expression

operator

operand_0

operand_1

name

set

If

statement_0

return

expression

type

then

control

nametype

statement_3statement_2statement_1 statement_4

If

statement_0

then control

Figure 2: Graph representation of code in Fig. 1(b) (red: variable nodes; blue: VUPs of variable ’sum’).

laration/declare/avg and sum/assignment/if/loop/avg.

Definition 1. Let I be a set of code instruction labels
(such as if, loop, . . .). For a given source code C (single
class), let VC be a set of variable-identifiers1 and FC the set
of methods declared in C. A path p = (v, i1, . . . , in, f) ∈
VC × I∗ × FC := P reflects that a variable v is used by
instruction i1, which is itself used by instruction i2, etc.,
in function f . The VUP-representation (variable usage
path) of code C is a set PC ⊆ P of all paths occurring in C.

We thus intentionally drop many details from the original
source code, e.g. numerical constants or full expressions.
From the fact that two codes that are structurally identi-
cal (same VUP representation) we cannot conclude anything
about the number of unit tests both codes may pass. But
as we have mentioned earlier, we seek for a common code
skeleton, which may indicate that the programmers were
guided by the same underlying idea. The skeleton includes
the information which variables need to be used in which
instructions — but there are many different ways of coding
expressions equivalently, so we simply stick with unit tests
to check their correctness.

3.2 Simplified Set Similarity
Given two source codes (a) and (b) from Fig. 1 and the cor-
responding VUP-representations P,Q. Code (a) determines

1Note the variable names themselves are not valid identi-
fiers, as the same variable name may occur more than once
in the same function, e.g. variable j in code (a) of Fig. 1.

the number of elements first before it sums the relevant val-
ues, while code (b) does both in a single loop. While the
choice of one or two loops may affect the efficiency, they are
semantically equivalent and thus similar. At first glance the
variable usage paths (of, say, the loop counter) in all loops
seem identical such that a set comparison (where duplicate
elements are not counted) appears just right. However, the
loop counter is named j in code (a) and i in code (b). Fur-
thermore, (a) defines two variables with the same name j

(one for each loop). Let us ignore these details by introduc-
ing a simplification (and revisit the problem later):

Definition 2. From a VUP representation P we obtain a
SVUP representation (simplified VUP) representation P ′

by replacing all variable identifiers and all method identifiers
by a constant identifier vn (generic variable name) and fn

(generic function name), resp. (I = {vn}, F = {fn}).

Standard methods to measure set similarity may then be
used to compare source code. For given SVUPs P and Q we
use the F1 measure2:

F1 = 2 · p · r
p+ r

where p =
|P ∩Q|
|P | , r =

|P ∩Q|
|Q|

Fig. 3 shows a dendrogram for an average-linkage cluster-
ing using this measure (actually 1−F1 to obtain a distance
measure). Codes (a)-(d) correspond to TwoLoopQuickExit,
OneLoopQuickExit, OneLoopGuardedIf and Disordered. Addi-
tional examples include: Nonsense (similar set of instruction

2although based on asymmetric precision p and recall r, F1

itself is symmetric and thus a similarity measure

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 463

0.8 0.6 0.4 0.2 0.0

Empty

OneLoopGuardedIf

OneLoopGuardedElse

Nonsense

OneLoopQuickExit

TwoLoopQuickExit

OneLoopQuickExitTempVar

Disordered

Figure 3: Dendrogram for source codes of Fig. 1
based on F1-measure on VUP representation.

Table 1: Example of comparing P and Q (see text).
P 1 vn/expr/if/loop/fn

2 vn/assign/if/loop/fn
3 vn/declare/fn
4 vn/assign/fn
5 vn/return/fn

Q 6 vn/expr/loop/fn
7 vn/assign/loop/fn
8 vn/assign/declare/fn
9 vn/return/fn

d m(d)
if (1,6), (2,7)

assign (3,8)
declare (4,8)

step un- / assigned
0 1,2,3,4,6,7,8 / 5,9
1 3,4,8 / 1,2,5,6,7,9
2 4 / 1,2,3,5,6,7,8,9

set but variables are mixed randomly), OneLoopQuickExit-
TempVar (the mean value is assigned to a temporal vari-
able before it is returned) and OneLoopGuardedElse (same
as OneLoopGuardedIf (Fig. 1(c)) but inverted if-condition).
From the dendrogram we learn that codes TwoLoopQuick-
Exit and OneLoopQuickExit become identical as desired. But
we can also see that code OneLoopGuardedIf, where a con-
ditional statement encloses the main code, is recognized as
very dissimilar. The additional if-statement occurs in all
paths and the simple Jaccard similarity finds this code to
be completely different. We address this problem next.

3.3 Reflecting Instruction Embedding
A single conditional statement may introduce an new ele-
ment in many paths turning them all different (as in codes
(a),(c) in Fig. 1). For compensation we could measure a par-
tial similarity between paths (e.g., 80% of path p is contained
in q), but a single instruction (such as the conditional state-
ment in (c)) would then still weaken all path similarities.
We therefore propose a different approach in the fashion of
edit distance, where we pay a constant cost for a missing
path element, which may then be used in many paths.

Given two SVUP representations P,Q, we compare all paths
p ∈ P, q ∈ Q to identify missing path elements δ(p, q) ∈ I∗.
(For example, δ(vn/loop/if/fn,vn/loop/fn)=if). Many dif-
ferent path combinations may lead to the same δ(p, q), so
by m(d) we denote the set of all pairs (p, q) ∈ P × Q with
δ(p, q) = d. The matching of paths in P to paths inQ is done
iteratively: In the first iteration, we match all paths from P
and Q that are identical (δ(p, q) = ()). To match the SVUP
representations at minimal cost, in subsequent iterations we
identify the missing path element d that unifies the largest
number of paths (that is, choose d = argmaxx|d(x)|). Be-
fore entering the next iteration, all pairs are removed from

0.8 0.6 0.4 0.2 0.0

Empty

Nonsense

OneLoopQuickExitTempVar

Disordered

OneLoopGuardedIf

OneLoopGuardedElse

OneLoopQuickExit

TwoLoopQuickExit

Figure 4: Dendrogram for source codes of Fig. 1
based on F1-measure on SVUP representation.

m(·) that have been assigned already. We reflect the cost of
adding a missing path element by adding it as a virtual path
to the SVUP P or Q (depending on where it was missing).

Table 1 shows a detailed example. The table on the left
shows the paths belonging to SWUP of P and Q. All paths
have been numbered for easier reference. The initial map
m(·) is shown on the top right; for instance, the path element
if unifies path #1 of P with #6 of Q, as well as #2 of P
with #7 of Q. At the bottom right each line corresponds
to an iteration of the matching process. In step 0, paths
#5 and #9 are already identical. In the second iteration
the path element if is chosen from map m(·), because it
unifies 2 paths (all others only one). We have thus matched
6 paths in total (step 1 of bottom right table), and only
#3, #4, #8 remain unassigned (gray). The map d(·) now
offers two alternatives (assign and declare, both |m(·)| =
1), we arbitrarily choose assign as the second missing path
element for the third iteration. This leaves only path #4
unassigned. The choice of m(declare) has covered paths #4
and #8, so we remove all pairs from m(·) containing any
of these (already covered) paths. This ends the matching
phase (all |m(·)| = 0). We had to add the first missing
path element if to paths in Q; likewise we had to add the
second path element assign to P to match #3 against #8.
As a penalty for the missing path elements we add them to
the respective SVUP, that is, P becomes {1, 2, 3, 4, 5, assign}
and Q = {6, 7, 8, 9, if}. Taking the established identity of
paths into account, this gives us an F1 value of

p =
|P ∩Q|
|P | =

4

6
, r =

|P ∩Q|
|Q| =

4

5
, so F1 = 2·16/30

44/30
=

8

11
.

Fig. 4 shows the resulting dendrogram. Now OneLoop-
GuardedIf (Fig. 1(c)) became much more similar to One/T-
woLoopQuickExit (Fig. 1(a-b)). But we are still dissatisfied
with the high similarities towards Disordered: it uses the
same set of embedded instructions (causing the high simi-
larity), but the variable usage is mixed up. The instructions
may look identical, but the author did not get the role of
variables right and that should degrade the similarity.

3.4 Matching Variables
So we finally revisit the simplification of definition 2. We
have hypothesized that similar solution approaches use vari-
ables at specific places in the code skeleton. Up to now,
we have mixed the usage paths of different variables in the
SVUP representation. This will be sorted out next.

464 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Definition 3. Let π(v,f) : P → P, P 7→ {p | p =
(v, i1, . . . , in, f) ∈ P} be a filtering function that returns
only those paths that refer to variable identifier v and
function identifier f . From a VUP representation P with
a set V of variable identifiers and F of function identi-
fiers, we obtain a GVUP representation (grouped VUP)
P ′ = {π(v,f)(P) | v ∈ V, f ∈ F}. That is, a GVUP is a set
of VUPs, one VUP set for each variable in each function.

For instance, the code in Fig. 1(b) consists of 4 variables in
one function, so the GVUP representation is a set of four
VUP representations (one set for each variable). Now, as
the GVUP representations P and Q of two source codes
are sets of sets, how do we generalize the F1 calculation?
Consider the following example, where we use abbreviated
instructions I = {a, b, c}:

P = {{x/a/c/f, x/b/c/f}, {y/a/f, y/c/f}, {z/b/f}},
Q = {{x/a/f, x/c/f}, {y/b/f}}

Formally, a direct calculation of |P ∩Q| yields 0 as none of
the sets in P is contained in Q. But this does not meet our
intention. Note that variable y in P plays the role of x in
Q (same for z in P and y in Q). Variables may be renamed
without changing the semantics, in fact |P ∩ Q| should be
2. The desired semantics is to match variable and function
names appropriately, rename them accordingly and calculate
the F1 measure on the obtained

⋃
X∈P X and

⋃
Y ∈Q Y .

How do we match the sets X ∈ P against Y ∈ Q? All paths
in X or Y refer to the same variable and function name, so
we can safely transform the VUP to a SVUP representation
and use the measure from section 3.3 to construct a pair-
wise cost matrix. We employ the Munkres algorithm [8] to
find the optimal assignment based on this cost matrix. As
the Munkres algorithm performs a 1:1 least-cost assignment,
some variables may not get assigned. We match them after-
wards in a second pass to the least costly counterpart. (This
allows us to match multiple identifiers in one program to the
same variable in another, as required when comparing codes
(a) and (b) of Fig. 1.)

As an example, for the abovementioned P and Q we would
create a cost matrix of all pairwise F1-values (P -paths in
rows, Q-paths in columns): 0.67 0.50

1.00 0.50
0.50 1.00


The Munkres algorithm optimally assign two of the P -paths
to two of the Q-paths (bold face). The third P -path is then
associated with the first Q-path, which matches best ac-
cording to the higher F1-value. We have thus assigned the
variables x and y of P to variable x in Q and may think
of renaming all these variables in both codes to, say, u. In
the same fashion we may rename the variables of the second
assignment to v; reunifying all SVUPs leads us to:

P ′ = { u/a/c/f, u/b/c/f, u/a/f, u/c/f, v/b/f},
Q′ = { u/a/f, u/c/f, v/b/f}

The final similarity is obtained by applying the calculations
of Sect. 3.3 to both sets P ′ and Q′ (this time with differ-
ent variable names rather than just generic variable names

0.8 0.6 0.4 0.2 0.0

Empty

Nonsense

Disordered

OneLoopQuickExitTempVar

OneLoopGuardedIf

OneLoopGuardedElse

OneLoopQuickExit

TwoLoopQuickExit

Figure 5: Dendrogram for source codes of Fig. 1
based on F1-measure on GVUP representation.

vn). Although the example did not include different function
names, it works in the same way. Fig. 5 shows the resulting
dendrogram. As desired, the similarity of code Disordered
(Fig. 1(d)) is now worst among all solutions that follow the
same solution approach.

4. EXPERIMENTAL EVALUATION
We started to evaluate the proposed approach on real stu-
dent code submissions and demonstrate its performance on
some examples. The submissions were inspected manually
and grouped by approach (defining ground truth). While the
author of an exercise may have a specific solution in mind,
a group of students usually finds multiple ways to solve the
exercise. The real data contains nearly identical submis-
sions (potential plagiarism) as well as submissions that ap-
pear somewhat chaotic, have superfluous declarations and
calculations, or contain artefacts indicating a change in the
solution approach over time. Most codes can nevertheless
be assigned to solution approaches, but the strong variation
in novice’s code length misleads edit- and tree-distance such
that resulting dendrograms do not match the approaches.

We show results for two exercises, the first exercise asks for
the most frequently occurring element in an integer array.
To inspire the students to elaborate on different solutions,
an additional restriction was given that all values v in the
array satisfy 0 ≤ v < 10000. The two main solution ap-
proaches were: (1) iterate over all elements in an outer loop,
count the frequency of the current element in an inner loop,
remember the element that occurs most often; (2) instanti-
ate an array of size 10000 (associating a counter with each
possible element in the original array), increment the re-
spective counter while looping over the array and identify
the largest entry in the counter array. Apart from these
two dominating solutions, three solutions (3) sorted the ar-
ray first, such that identical values are grouped together,
which simplifies frequency counting in a single loop over the
array.3 Finally, (4) there are some exotic solutions which
may be considered as a mixture of the discussed solutions.
Possibly students became aware of the other approaches by
discussing approaches among each others, but had difficul-
ties in solving the task and switched back and forth between
them. Usually, elements of all other solutions can be found
in them. Fig. 6 shows average-linkage hierarchical clustering

3However, when this exercise was handed out, sorting al-
gorithms were not yet discussed (so this solution required
background knowledge or a student’s own initiative).

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 465

1.0 0.8 0.6 0.4 0.2 0.0

G27G10G13G37G26G20G7G62G4G47G42G55G67G68G66G23G39G43G30G48G34G19G65G63G45G60G94G31G46G36G35G22G25G18G52G73G32G2G56G33G5G49G54G14G64G53G50G29G12G15G9G11G44G38

1.0 0.8 0.6 0.4 0.2 0.0

G27G32G2G25G22G18G33G5G56G52G73G14G64G49G53G50G29G12G7G10G13G37G26G15G54G9G11G20G31G62G4G47G42G46G63G45G36G35G55G67G68G66G38G39G43G30G48G34G19G65G44G60G23G94

1.0 0.8 0.6 0.4 0.2 0.0

G27G7G10G13G37G26G20G31G46G55G67G68G66G47G42G63G45G60G94G44G9G11G38G39G43G30G48G34G19G65G23G36G35G22G25G18G32G2G33G14G64G49G53G50G29G12G5G56G15G54G52G73G62G4

Figure 6: Dendrogram for exercise ’most frequent
element’ based on F1-measure (measure from Sect.
3.2, 3.3, and 3.4 from top to bottom).

results for the similarities from Sect. 3.2, 3.3, and 3.4 from
top to bottom. The ground truth is shown by means of the
node colors: 1: black, 2: blue, 3: red, 4: gray, incomplete
/ unfinished: cyan. While the clusters in the top clustering
mixes even the two large approaches (1) and (2), the clus-
tering in the middle is much better but does not separate
solution (3). This is only achieved by the GVUP-clustering
(bottom), which corresponds best to the ground truth. The
bubblesort used in (3) uses very similar loops as the main
task, so it was crucial to distinguish the role of variables as
done in the GVUP-approach.

A second exercise deals with the identification of happy num-
bers4. The calculations require the sum of squares of each
digit and the submissions differ mainly in the way how this
is solved. The intended solution (black) was a loop that suc-
cessively splits the last digit (using integer division and mod-
ulo). Another popular solution is based on string-conversion
(blue), a few (somewhat restricted) approaches (red) dealt
with different numbers of digits individually (avoiding a
loop). Again, the average-linkage clustering for all three
proposals is shown in Fig. 7 and the GVUP-approach sepa-
rates them best. The modulo-approaches (black) subdivide

4https://en.wikipedia.org/wiki/Happy_number

1.0 0.8 0.6 0.4 0.2 0.0

G10G25G18G71G15G23G8G5G66G67G68G57G44G38G63G22G94G78G28G24G32G2G51G7G52G73G33G31G70G62G60G34G46G56G65G48G13G4G26G20G37G3G36G35G64G42G55G14G47G54G12G53G19G29G49G50G9G11G45G39G30G43

1.0 0.8 0.6 0.4 0.2 0.0

G31G10G25G63G71G23G8G5G44G38G51G28G24G78G94G7G52G73G32G2G57G15G56G65G48G70G62G60G34G46G33G22G66G67G68G36G35G13G4G26G20G37G3G49G50G39G30G43G45G9G11G12G53G19G29G18G64G42G55G14G47G54

1.0 0.8 0.6 0.4 0.2 0.0

G31G10G25G18G63G71G8G5G66G67G68G56G70G62G60G34G46G78G32G2G51G7G52G73G28G24G44G38G94G22G15G57G33G65G48G13G4G26G20G37G3G36G35G42G47G54G55G14G64G45G9G11G49G50G39G30G43G23G12G53G19G29

Figure 7: Dendrogram for exercise ’happy number’
based on F1-measure (measure from Sect. 3.2, 3.3,
and 3.4 from top to bottom).

into two major branches, which differ in the way intermedi-
ate variables are used. Approaches that use the same kind of
utility variables (e.g. to store digits, square of a digit, etc.)
are closer matches than approaches that use different sets of
utility variables.

5. CONCLUSIONS
Assessing the variety in student’s solutions to a program-
ming exercises without having to inspect all codes manu-
ally can help a lecturer in many ways. We have proposed
a measure that captures how variables and instructions are
coupled by means of variable usage paths, and use this fin-
gerprint to match code from different solutions while at the
same time being tolerant to code repetitions. The approach
needs to be evaluated further, but the first results appear
promising. The nature of the comparison is set-based, which
allows us not only to assess similarity (using F1), but also to
use recall and precision. This enables further applications,
for instance, we may assess partial solutions by the degree
how many elements of a complete solution they contain (us-
ing recall only) or assess the student’s degree of program-
ming maturity by investigating the amount of superfluous
statements (using precision only).

466 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

6. REFERENCES
[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and

L. Bier. Clone detection using abstract syntax trees.
In Int. Conf. on Software Maintenance, pages
368–377. IEEE, 1998.

[2] P. Bille. A survey on tree edit distance and related
problems. Theoretical Computer Science, 337:217–239,
2005.

[3] J. Broisin and C. Herouard. Design and evaluation of
a semantic indicator for automatically supporting
programming learning. In Int. Conf. Educational Data
Mining, pages 270–275, 2019.

[4] M. Chilowicz, E. Duris, and G. Roussel. Syntax tree
fingerprinting for source code similarity detection. In
2009 IEEE 17th International Conference on Program
Comprehension, pages 243–247. IEEE, 2009.

[5] Z. Djuric and D. Gasevic. A source code similarity
system for plagiarism detection. The Computer
Journal, 56(1):70–86, 2013.

[6] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph
edit distance. Pattern Analysis and Applications,
13(1):113–129, 2010.

[7] O. Karnalim. Syntax trees and information retrieval to
improve code similarity detection. In Proceedings of
the Twenty-Second Australasian Computing Education
Conference, pages 48–55, 2020.

[8] M. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society of
Industrial and Applied Mathematics, 5(1):32–38, 1957.

[9] C. Ragkhitwetsagul, J. Krinke, and D. Clark. A
comparison of code similarity analysers. Empirical
Software Engineering, 23(4):2464–2519, 2018.

[10] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer.
Detecting similar java classes using tree algorithms. In
Int. Workshop on Mining software repositories, pages
65–71, 2006.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 467

