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ABSTRACT
Gaining insight into course choices holds significant value for
universities, especially those who aim for flexibility in their
programs and wish to adapt quickly to changing demands
of the job market. However, little emphasis has been put
on utilizing the large amount of educational data to under-
stand these course choices. Here, we use network analysis of
the course selection of all students who enrolled in an un-
dergraduate program in engineering, business or computer
science at a Nordic university over a five year period. With
these methods, we have explored student choices to iden-
tify their distinct fields of interest. This was done by ap-
plying community detection (CD) to a network of courses,
where two courses were connected if a student had taken
both. We compared our CD results to actual major special-
izations within the computer science department and found
strong similarities. Analysis with our proposed methodol-
ogy can be used to offer more tailored education, which in
turn allows students to follow their interests and adapt to
the ever-changing career market.

Keywords
Community detection, higher education, Louvain method,
bipartite networks, student network, course selection

1. INTRODUCTION
University students enter higher education with a plethora of
courses to choose from on their path to graduation. Gaining
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insight into student choices holds significant value for uni-
versities, especially those who aim for flexibility in their pro-
grams and those who wish to adapt quickly to changing de-
mands of the job market. For example, the fast rise in pop-
ularity of machine learning over the past years could impel
universities to make machine learning and related courses
readily available to their students. In contrast, more subtler
trends could be directly identified by the students’ choices
rather than an obvious shift in the job market.

Numerous studies based on questionnaires and surveys have
found that there are various components that contribute to a
student’s course selection [2, 19, 20]. These are factors such
as learning value, workload, age and academic performance
[2]. Of these, the learning value of the course (which refers
to factors such as intellectual level and interest in the topic)
has been found to be the most influential factor in course
selection. Course selection has also been a target in studies
aiming to understand the gap between student mindsets and
career demands [20]. Maringe [19] found that although in-
trinsic interest was important, course choices depend mainly
on future career goals. According to the author, universities
may need to adapt their strategies to the idea that students’
course choices now seem to reflect their expectations of fu-
ture employment rather than simply interests. Thus, uni-
versities would benefit greatly from a deeper understanding
of the path their students choose towards their degree.

Educational data mining (EDM) has risen as a new field
to answer these and other questions about students and
their learning environment. It utilizes a variety of analytical
methods and applies them to the vast amounts of data that
has become available with increased digitization of adminis-
trative educational information. For example, EDM meth-
ods have already been applied to try to accurately predict
college success using common classification algorithms with
different feature sets [31]. They have also been used to ana-
lyze student clicking behavior in online courses to determine
students’ learning strategies and how those strategies can
have an impact on their learning outcomes [1], as well as to
predict student dropout [10]. One area of educational stud-
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ies that has not received much attention is student course
selection, despite its importance in understanding student
interests and preparing them for a future career [28].

In this paper, we aim to reveal patterns in course selection
through EDM, providing a new data-driven technique based
on institutional analytics to gain insight into students’ inter-
ests that would otherwise be difficult to discern. This knowl-
edge can then be used for monitoring student interests and
ensuring that courses reflecting those interests are available.
We examine whether network analysis applied to students’
course data, with a focus on community detection (CD), can
effectively be used to identify university students’ fields of
interest. To accomplish this, we use a weighted projection
network in combination with CD to explore student course
selection. We focus on communities of elective courses for
different majors and compare them to some of the official
specializations the university already has to offer. Deeper
understanding of students’ choices is a stepping stone into
allowing students to take more control over their studies,
improve flexibility in the curricula, and facilitate students’
pursuit of their interests.

2. RELATED WORK
A promising method for EDM is to represent educational
data as networks. In general, networks consist of nodes and
edges, where the nodes can for example represent people,
countries or cells, and edges represent connections between
nodes based on factors such as spatial and temporal prox-
imity or social connections such as friendships [12, 8]. Net-
work analysis is used to look at internal characteristics and
the connections and patterns of nodes and edges, providing
the ability to better understand the fundamental structure
of networks and the real-life phenomena they model [29].
Different methods can be used to analyze networks, for ex-
ample by looking at structural characteristics such as cen-
trality, which indicates the importance of any given node in
the network by assuming nodes that are more central have
higher control over information passed through the network
[8]. Community detection is another common way of ana-
lyzing networks which allows for the aggregation of different
nodes into communities based on shared characteristics by
identifying groups of nodes that have a high number of edges
within themselves but fewer edges to other groups [12].

A common application of network analysis in educational
settings is to understand social connections between stu-
dents. This has helped reveal the negative effects of student
interdependence in music education programs and its rela-
tionship to the program’s friendship networks [26], as well as
identifying how positive and negative friendship ties emerge
[27]. Network analysis has also helped clarify the relation-
ship between students’ social networks and the development
of their academic success [6, 14]. Furthermore, looking at
students’ social networks over time, close coequal commu-
nities are typically formed early on [30], although in some
cases, students enhance their performance due to social re-
lations outside their assigned group [24].

Although students’ social networks have been studied, the
exploration of students’ course choices through network anal-
ysis has few precedents. Within the EDM field, Kardan et al.
[16] used neural networks to predict course enrollment based

on various factors such as course and instructor character-
istics, and course difficulty. Further, Turnbull and O’Neale
[28] used network analysis with CD and entropy measures to
explore enrollment in STEM courses at the high school level.
Among other results, they revealed that indigenous popu-
lations showed higher levels of entropy in their enrollment
patterns, which was moderated by adolescent socioeconomic
status. Neither of these studies focused on detecting student
interests from course selection patterns.

3. METHODS
3.1 Data Source
Here, we use student and course data from Reykjav́ık Uni-
versity (RU). The university offers many different areas of
study, including preliminary studies, undergraduate and grad-
uate degrees. Most RU students are undergraduate stu-
dents, and the RU undergraduate programs also offer the
most variety of courses. Generally, the majority of RU un-
dergraduate programs’ courses are mandatory. These are
the core courses each department decides is essential to their
study program. The rest of the courses are either free choice
electives, which can be any course in the university that the
student qualifies for, or restricted elective courses from a
selection tailored to the specific major.

We sample data from all graduated RU students that en-
rolled in the year 2014 or later and completed undergradu-
ate programs in engineering, business, or computer science
(CS) before 2021 (the total number of students was 1481).
The university offers other programs as well, but we left
them out since they have fewer students. The variables we
look at include the student’s registration ID and registration
semester, the name and semester of each course a student
has completed, and whether they passed or failed the course.
We also include each student’s department, major, and type
of study (undergraduate, graduate, etc.).

To anonymize the data, we remove anything that could iden-
tify students, specifically their social security number and
a numerical registration ID and give them a unique ran-
dom sequence of numbers to replace both original numbers.
For each student, we also remove any courses that they had
de-registered from early in the semester. Further, for each
major, courses taken by fewer than 5% of students are con-
sidered outliers and removed.

3.2 Network Analysis
3.2.1 Bipartite networks

We apply network analysis to the data to explore the fields
of interests of RU students from a data driven perspective.
Many real-world networks have a bipartite structure, where
nodes belong to one of two groups or divisions and edges con-
nect nodes of opposite groups without within-group edges
[3]. In our bipartite network, the students make up one di-
vision of the nodes, and courses the other. If a student has
taken a course, an edge is created between the respective
nodes. Since edges represent that a student has taken a
course, there is no edge between two students nor between
two courses (see Figure 1, left).

Although bipartite networks give a more realistic and de-
tailed representation of the system, analyzing them can be
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Figure 1: From bipartite network to weighted projected net-
work. Left: a bipartite network, where the blue nodes repre-
sent courses and the green nodes, students. Right: a unipar-
tite network has been obtained from the bipartite network,
where the nodes are courses and the edges have weights that
determine how many students have taken both courses.

complex. Therefore we project the bipartite network onto its
unipartite counterpart (see Figure 1, right) [3]. This leaves
a network with one type of nodes that can be analyzed with
typical network methods. The resulting projected network
consists of nodes representing the courses and edges between
two nodes indicating that a student has taken both courses.
We assign weights to the edges to represent the number of
students who have taken both courses (see Figure 1).

A base problem with projection of bipartite networks is that
a lot of important information in the original bipartite net-
work is lost. Thus, we may end up connecting all courses
in the network to each other –and form a clique– as long as
they have at some point been taken by the same student,
without taking into account how many students connected
the two courses in the original bipartite network. Here, we
address this by assigning weights to the edges in the pro-
jected network [3], where the weights represent the number
of students who have taken both courses (see Figure 1).

3.2.2 Community detection
Building on the weighted projected networks, we use CD
with the objective of inferring fields of interests in students’
course selection. To identify fields of interest, we want to
emphasise electives. However, in our data set, the informa-
tion on which courses are mandatory and which are electives
is incomplete. Mandatory courses along with very popular
electives appear in the network as hubs, which usually occur
in real-world networks as nodes with much higher degrees
and edge weights than the other nodes [4]. We therefore de-
fine hubs in a data driven way, where a node is a hub if its
total edge weight is at least one standard deviation above
the mean edge weight of all nodes. We remove hubs from
the network based on this definition.

Next, we apply the Louvain algorithm for CD [7]. This
is an established, computationally efficient, fast converging
method that produces accurate communities with high net-
work modularity, especially in smaller networks [7, 17, 12,
23]. It has been successfully applied to identify communities
of intrinsic brain systems [9], and to help create friend lists
for Facebook users [18]. Modularity, is a measure of edge
density within a partition (or proposed community) as op-
posed to edge density between partitions, whereby a higher
modularity suggests a more cohesive community, separate
from the others in the network. Importantly for our analysis
using weighted projected networks, the Louvain algorithm

can be used both with weighted and unweighted edges. The
method starts by assigning each node to its own community
[7], as seen in Figure 2. It then iterates over all nodes of
the network and assesses the modularity gain obtained by
assigning the node to the same community as each of its
neighboring nodes. Next, the node is assigned to the com-
munity that yields the largest positive modularity gain, or
maintains its current community if no positive modularity
gain can be achieved by switching communities. This way,
each new community assignment brings us closer to optimal
modularity. The nodes are usually considered multiple times
and the final iteration is determined when no switch leads
to a gain of modularity, resulting in optimal partitioning
of the network. This optimal partitioning is a local max-
ima, as the result is influenced by which node is considered
first and the order in which nodes are visited. For some
communities, we re-apply the Louvain algorithm for more
detailed results, while using the inter/intra weight density
ratio described below to ensure our communities maintain
high quality.

Figure 2: The Louvain algorithm. The first step of the algo-
rithm is to assign each node to its own community. In step
2, a random node is selected to start the community aggre-
gation process. All nodes are visited and allocated to the
community of one of their neighbors or maintain their cur-
rent community, depending on which choice gives the highest
gain in modularity for the network. When no more modu-
larity gain is possible in the network, step 3 is to aggregate
the nodes of each community into new super-nodes. Here,
the numbers given show the sum of node edges within and
between supernodes. Steps 2 and 3 are then repeated until
modularity has been optimized, as seen in step 4.

3.2.3 Community validation
Although the objective of CD is to split nodes into groups
based on their connections within versus outside the group,
there are many more aspects to consider [12]. One impor-
tant factor is intra-cluster density, which refers to how many
edges there are within the community as a ratio of how many
possible edges there could be if all nodes of the community
were connected to each other. This is contrasted by inter-
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cluster density, which shows how many edges go from the
community to the rest of the network as a proportion of the
maximum possible connections. High intra-cluster density
may suggest a strong and cohesive community, however if
it coincides with equally high inter-cluster density, it may
simply suggest a strong and cohesive overall network.

To assess the quality of our communities, we use intra and
inter weight density [13]. This is the same as intra and inter
edge density previously described, but now accounting for
weighted edges. The two are defined as follows:

WD inter =
wext

C

w̄nC(n− nC)
and WD intra =

wint
C

w̄nC(nC − 1)/2
,

where wext
C is the sum of edge weights connecting the com-

munity to the rest of the network, or external community
edges. We divide this by the estimated total edge weight
of the network, which shows the edge weight going from
the community to the rest of the network as a proportion
of the maximum possible edge weight (assuming that the
average edge weight of the fully connected network were un-
changed). Here, w̄ is the average edge weight of the network,
n is the total number of nodes in the network and nC is
the total number of nodes within the community. Similarly,
wint

C refers to the sum of edge weights inside the community,
which is divided by the expected total edge weight within
the community. We then use a ratio of these two measures
(WDinter / WDintra) to obtain the community strength on
a scale where 0 is the strongest value, indicating a commu-
nity that is disconnected from the rest of the network, and
a value of 1 indicates a community equally connected within
itself as to the rest of the network. We call this measure
density ratio and use it not only to determine the commu-
nity strength, but also to ensure that as we create smaller
and more focused communities, community strength is not
compromised.

3.2.4 Comparing communities and specializations
To further assess the real-world application of the commu-
nities we detect, we compare them to specializations within
RU’s Computer Science (CS) department, described in Table
4 in the Appendix. Any student who pursues an undergrad-
uate degree in CS at RU has the option to graduate with
a specialization in a certain field. The specializations do
not need to be declared at enrollment but any student who
fulfills the requirements can choose to add this to their grad-
uation certificate. The specializations offered are Artificial
Intelligence, Law, Web- and User Experience (UX) Design,
Sports Science, Game Development and FinTech. Each spe-
cialization has 2-4 core courses that students need to com-
plete, along with 1-3 courses from a pool of specialization-
specific electives. Our approach to defining fields of interest
is purely through data driven CD. Comparing the detected
communities with these specializations helps validate the re-
sults and perhaps provide a reference for the creation of
new specializations. We compare both the courses in each
community and specialization, and the number of students
belonging to a specialization versus those belonging to the
corresponding community. We define a student as belong-
ing to a community if they have taken at least 50% of the
community’s courses, with a special case of two course com-
munities where both courses have to be completed.

3.3 Tools
Aside from the initial retrieval and anonymization of data,
which we do using C# and SQL, all code for the data anal-
ysis was written in Python 3.9. We use multiple Python
libraries to help with the data analysis. For our network
analysis, we mainly utilize the NetworkX library [21]. For
more general data manipulation, we use the pandas library
[22]. We used Gephi for the majority of our network visual-
ization [5], along with the Matplotlib library [15].

4. RESULTS
4.1 Communities that Reflect Interest Fields
We conducted CD with the Louvain algorithm on three un-
dergraduate majors: engineering, business, and computer
science. These majors have quite different program struc-
tures and emphases on electives, with the business major
having the lowest number of elective courses allowed in their
study plan (four electives). This is followed by the CS major
with 11 electives and finally engineering, which offers only
four free electives but nine ”guided electives” (that is, nine
electives must be specific to engineering), depending on the
chosen engineering specialization.

We first look at the communities for the engineering de-
partment, see Figure 4 and Table 2 in the Appendix, which
after hub removal consisted of 81 courses taken by 496 un-
dergraduate students. Reykjav́ık University offers various
undergraduate engineering programs such as biomedical en-
gineering, financial engineering, and mechatronics engineer-
ing. These engineering majors all fulfill the same core courses
in addition to some additional major-specific requirements.
These majors are quite structured and offer few free elec-
tive courses. Due to the similarity in the core courses of
these programs, we group them together into a more gen-
eral engineering major. This means that the hub removal
method removed general core engineering courses but leave
most specialty-specific courses in the network. The result-
ing engineering network has 81 course nodes and 2614 edges.
The weighted average inter/intra weight density ratio is 0.24.
This suggests that hub removal was effective and the aver-
age community is relatively strong. The communities we
have detected were eight in total as seen in Table 2. Note
that communities are named after common characteristics
between the majority of the courses, even though rarely
all courses of a community fall within that definition. As
expected, these communities mainly correspond to the of-
ficial engineering majors such as financial, biomedical, and
electrical engineering, with electrical engineering being our
strongest community (WDinter / WDintra = 0.05). How-
ever, we also observe unrelated communities that supersede
the official majors, such as a community of applied design
and another for business related courses not mandatory in
the financial engineering major. Courses in these commu-
nities are commonly taken together by engineering under-
graduates, suggesting a common interest not credited to the
specialized majors.

There are 334 undergraduate students in our data set who
majored in business. For this major, the network consists
of 36 course nodes and 504 edges, with a weighted average
WDinter / WDintra of 0.25, again suggesting strong commu-
nities, see Figure 5 in the Appendix. This is not unexpected,
as the business major only allows electives in the final year,
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giving business students less room to pursue distinct inter-
ests outside their core subjects. Table 3 in the Appendix
shows the five communities identified within the business
major. The strongest community is that of popular courses,

Figure 3: The network with communities for the BSc program
in CS.

Table 1: Community detection results for BSc in CS.

Community No. courses Density ratio

UX and Business 15 0.25
Engineering 13 0.17
Web and Software 10 0.20
Artificial Intelligence 7 0.39
Deprecated Courses I 6 0.08
Game Development 4 0.10
Deprecated Courses II 4 0.23

Weighted average 0.21

which includes the most common electives in the business
majors along with a handful of newer core courses (WDinter

/ WDintra = 0.07). These core courses were recently added
to the study plan, meaning that they were only mandatory
for a minority of the students in our data set. This is why
these core courses were not identified as hubs and removed
during hub removal. The business major also contains the
weakest community of all the majors, management (WDinter

/ WDintra = 0.71). As the name suggests, this commu-
nity includes various courses on management, such as service
management and project management. The low inter and
intra weight density ratio is interesting, as intuitively these
courses would seem very connected. This is why measuring
community strength is vital in determining the importance
of the detected communities. The other business communi-
ties are both strong and reflect more specific interests, sug-
gesting that there are students of the business major who
actively seek distinct interests despite the program having
no official specializations. The last major we explore is CS,
with 377 students. Computer science has the least struc-
tured study plan of the three majors, as it puts a higher
emphasis on unstructured flexibility and free electives. The
CS course network consists of 59 nodes and 1492 edges. The
communities (see Figure 3 are the strongest we found, with
a weighted average WDinter / WDintra of 0.21. Most, but

not all, detected communities seem to reflect an interest in
a CS sub-field. However, the strongest community we have
discovered was Deprecated Courses I (see Table 1), which
represents older courses that may have been core courses
at some point but are no longer being offered (WDinter /
WDintra = 0.08). We conjecture that this community exists
as some older students re-register to complete their under-
graduate degree, for example after previously completing a
CS diploma or taking a longer study break. It is therefore
very intuitive that this specific sub-field is combined into
our strongest community. Aside from communities based
on deprecated courses, the other communities suggest that
there is in fact an underlying pattern of interest fields present
in the CS major, as observed for the other majors explored
here.

4.2 RU Communities and Specializations
As a final validation of the communities we have detected
for the CS undergraduate major, we now cross-reference our
results with the actual specializations available for CS stu-
dents. Unlike the other majors, CS offers a number of spe-
cializations meant to aid students in pursuing a specific sub-
field (see Table 4 in the Appendix for a short description of
each specialization). However, only a subsection of students
choose to do this. Of the students who graduated between
2014 and 2020, inclusive, only 9.5% fulfilled the requirements
for a specialization. A further 13% partially fulfilled a spe-
cialization’s requirements, by completing at least 60% of the
specialization’s core courses and 60% of the restricted elec-
tives needed.

Comparing the specializations and the communities we de-
tected (shown in Table 1), we find interesting similarities.
Our CD reveals that some communities are consistent with
the specializations, but there is no absolute match. For the
AI specialization (taken by 11 students, or 29% of those
who graduated with a specialization), there is a partially
corresponding community that includes both of the AI core
courses (Artificial Intelligence and Machine Learning). There
are 28 students who belong to this community, making it
more popular than the official AI specialization. Although
this community does not include any of the other courses
from the specialization, it does include more theoretical and
academically demanding courses than most other commu-
nities, suggesting a reflection of interest in theoretical com-
puter science in general rather than specifically AI.

To fulfill the official AI specialization requirement, students
must complete two core courses and three or more courses
from a list of specialization-specific electives. However, in
our data set most of these other electives were removed dur-
ing either data cleaning (where we removed courses taken
by fewer than 5% of students) or during hub removal and
are therefore not part of any community. Interestingly, two
of the remaining electives overlap between the AI special-
ization and that of Game Development. Both these courses
have been sorted by our algorithm into a community that re-
flects Game Development much more strongly than AI, with
67 students. This is intriguing, as we know that students are
much more likely to specialize in Artificial Intelligence than
Game Development (only one student in our data set fulfills
the requirements for Game Development), but this indicates
that the gaming sub-field of Artificial Intelligence may be the
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biggest area of interest for these students.

The final specialization for which we discovered a similar
community is Web and UX design, which was by far the most
popular specialization taken by students (with 23 students,
or 64% of all students who had a specialization). While this
specialization encompasses both web programming and user
experience, the corresponding community of Web and Soft-
ware Development (with 84 students) is much more web than
UX specific. Most of the UX related courses belong to a sep-
arate community of 21 students that unites UX and business
rather than UX and web design. This suggests that divid-
ing the Web and UX design specialization into two distinct
specializations (Web design and UX design) might be more
appealing to students. Interestingly, the remaining four offi-
cial specializations have no corresponding community in our
results. This was to be expected, as these remaining spe-
cializations are very rarely pursued by students. That is,
the communities we have detected are able to represent the
specializations that students are actually choosing, but did
not reflect other specializations. This is exactly what we
expect of CD, with the added bonus of identifying fields of
interests that may not have been previously considered.

5. DISCUSSION AND CONCLUSION
With this project, we aimed to find whether CD could be
used to effectively identify students’ fields of interest at RU.
To maintain the scope of the results, we have presented only
the findings for undergraduate majors in engineering, busi-
ness, and CS. Our resulting communities vary slightly in
strength and size, yet almost all of them contain courses
of a general theme that seem to indicate that they do in
fact reflect fields of interest. This builds on the results
found by Turnbull and O’Neale [28], who performed CD on
a similar school course network, but without hub removal.
This resulted in much more general course communities that
demonstrated important but slight differences in the over-
all majors. In focusing on fields of interests, removing the
hubs has allowed us to increase the granularity of the result-
ing communities while still maintaining community strength
and cohesion. However, one of the commonalities between
these majors is that the largest community detected usually
included the major’s most popular courses, be that electives
or new mandatory courses our hub removal does not con-
sider. As Fortunato [13] suggested, using the inter/intra
weight density, we were able to evaluate the quality of the
communities that were detected with the Louvain algorithm.

The communities we have discovered encapsulate various
distinct areas of interests for the different undergraduate
majors RU has to offer. Additionally, for the CS depart-
ment, we have verified that the detected communities also
reflect the main areas students choose to specialize in, which
further validates our findings. To our knowledge, applying
CD in this way and for this purpose has not been done be-
fore. This provides an exciting new tool for universities to
better understand their students’ aspirations.

In improving knowledge of student course selection, we pro-
vide academic institutions with more tools to increase study
flexibility for their students. This knowledge can then be
used to decide which courses the university wants to of-
fer. This knowledge is also useful for academic counselors

when helping students to discover their own field of inter-
est. Based on previous studies, we assume that interest is
the main motivation behind course choices [2, 19]. However,
these communities may be based on other factors. Exam-
ining the characteristics of courses that make up different
communities might reveal other factors that contribute to
course selection, such as course difficulty, grading, teacher
characteristics, and more [25, 2, 19].

Although we were able to successfully apply network analy-
sis to our student and course data, there were a few setbacks.
One drawback in our analysis is the fact that although RU’s
administrative data has largely been digitized, this has not
always been done in the most structured and data-mining
friendly way. For example, all information on specializa-
tions was retrieved directly from RU’s website and format-
ted manually, as this information is not stored in the univer-
sity’s data warehouse. Reliable information on the manda-
tory courses of each major was also not available, which was
why we decided to use data driven hub removal. Improving
data availability, centrality and consistency is currently a
priority at RU, but should also be considered by other uni-
versities wanting to take full advantage of EDM methods.

Our findings show that network analysis with CD is a useful
tool in understanding students’ course selection. The course
choice patterns found here can still be explored further. For
example, the current results are based on data from stu-
dents who enrolled in the same program at different times.
Thus any small changes in the program structure between
years can introduce noise in the data. Looking at individ-
ual registration years, perhaps including a larger university
with more students, could give clearer results. Further, it
would be interesting to repeat the same analysis over sepa-
rate periods to discover changes in interest fields over time.
Finally, it was out of the scope of the current paper to an-
alyze trends based on more detailed characteristics such as
gender, age or grades. Augmenting the communities with
these factors could for instance provide a tool to identify
differences in choices made by students who graduate suc-
cessfully and those who struggle more with their studies,
perhaps yielding an opportunity for early intervention.

Educational data mining is an exciting new field with the
potential to greatly influence educational institutions and
their students going forward [11]. This project aimed to re-
veal how network analysis could be used to enhance student
course selection by improved understanding of students’ aca-
demic interests. Our analysis has successfully led to mean-
ingful results that could easily be replicated by most inter-
ested universities with digitized information. Coupling this
increased understanding of student interests with added aca-
demic support gives universities the tools to raise flexibility
within majors while maintaining educational quality. Hope-
fully, this and other research in the field can be used to offer
more tailored and student-led education, which in turns al-
lows students to follow their interests and easily adapt to
the ever-changing demands of the job market.
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dóttir who had a big impact on the conceptualization and
development of this research.

372 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



7. REFERENCES
[1] N.-J. Akpinar, A. Ramdas, and U. Acar. Analyzing

student strategies in blended courses using clickstream
data. In Proceedings of the 13th International
Conference on Educational Data Mining, 2020.

[2] E. Babad and A. Tayeb. Experimental analysis of
students’ course selection. British Journal of
Educational Psychology, 73(3):373–393, 2003.

[3] S. Banerjee, M. Jenamani, and D. K. Pratihar.
Properties of a projected network of a bipartite
network. In 2017 International Conference on
Communication and Signal Processing (ICCSP), pages
0143–0147. IEEE, 2017.

[4] A.-L. Barabási. Network science. Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences,
371(1987):20120375, 2013.

[5] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An
open source software for exploring and manipulating
networks, 2009.

[6] D. Blansky, C. Kavanaugh, C. Boothroyd, B. Benson,
J. Gallagher, J. Endress, and H. Sayama. Spread of
academic success in a high school social network.
PLoS ONE, 8(2):e55944, 2013.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008(10):P10008, 2020.

[8] S. P. Borgatti, A. Mehra, D. J. Brass, and
G. Labianca. Network analysis in the social sciences.
Science, 323(5916):892–895, 2009.

[9] M. Cole, D. Bassett, J. Power, T. Braver, and
S. Petersen. Intrinsic and task-evoked network
architectures of the human brain. Neuron,
83(1):238–251, 2014.

[10] G. Deeva, J. De Smedt, P. De Koninck, and
J. De Weerdt. Dropout prediction in moocs: a
comparison between process and sequence mining. In
International Conference on Business Process
Management, pages 243–255. Springer, 2017.

[11] G. Deeva, S. Willermark, A. S. Islind, and
M. Oskarsdottir. Introduction to the minitrack on
learning analytics. In Proceedings of the 54th Hawaii
International Conference on System Sciences, page
1507, 2021.

[12] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

[13] S. Fortunato and D. Hric. Community detection in
networks: A user guide. Physics Reports, 659:1–44,
2016.

[14] N. Gitinabard, F. Khoshnevisan, C. F. Lynch, and
E. Y. Wang. Your actions or your associates?
predicting certification and dropout in moocs with
behavioral and social features. International
Educational Data Mining Society, 2018.

[15] J. D. Hunter. Matplotlib: A 2d graphics environment.
Computing in Science & Engineering, 9(3):90–95,
2007.

[16] A. A. Kardan, H. Sadeghi, S. S. Ghidary, and
M. R. F. Sani. Prediction of student course selection
in online higher education institutes using neural
network. Computers & Education, 65:1–11, 2013.

[17] A. Lancichinetti and S. Fortunato. Community
detection algorithms: A comparative analysis.
Physical Review E, 80(5):056117, 2009.

[18] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and
A. Mislove. Analyzing facebook privacy settings: user
expectations vs. reality. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement
conference - IMC ’11, page 61. ACM Press, 2011.

[19] F. Maringe. University and course choice: Implications
for positioning, recruitment and marketing.
International Journal of Educational Management,
20(6):466–479, 2006.

[20] V. C. Milliron. Exploring millennial student values
and societal trends: Accounting course selection
preferences. Issues in Accounting Education,
23(3):405–419, 2008.

[21] NetworkX developer team. Networkx, 2014.

[22] T. pandas development team. pandas-dev/pandas:
Pandas, Feb. 2020.

[23] X. Que, F. Checconi, F. Petrini, and J. A. Gunnels.
Scalable community detection with the louvain
algorithm. In 2015 IEEE International Parallel and
Distributed Processing Symposium, pages 28–37.
IEEE, 2015.

[24] B. Rienties and D. Tempelaar. Turning groups inside
out: A social network perspective. Journal of the
Learning Sciences, 27(4):550–579, 2018.

[25] R. Sabot and J. Wakeman-Linn. Grade inflation and
course choice. Journal of Economic Perspectives,
5(1):159–170, 1991.

[26] M. Sarazin. Can student interdependence be
experienced negatively in collective music education
programmes? a contextual approach. London Review
of Education, 2017.

[27] M. A. Sarazin. Disliking friends of friends in schools:
How positive and negative ties can co-occur in large
numbers. Social Networks, 64:134–147, 2021.

[28] S. M. Turnbull and D. O’Neale. Entropy of
co-enrolment networks reveal disparities in high school
stem participation. ArXiv, abs/2008.13575, 2020.

[29] B. Wellman. Network analysis: Some basic principles.
Sociological Theory, 1:155, 1983.

[30] Y. Xu, C. F. Lynch, and T. Barnes. How many friends
can you make in a week?: Evolving social relationships
in moocs over time. International Educational Data
Mining Society, 2018.

[31] R. Yu, Q. Li, C. Fischer, S. Doroudi, and D. Xu.
Towards accurate and fair prediction of college
success: Evaluating different sources of student data.
In 13th International Conference on Educational Data
Mining, 2020.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 373



APPENDIX

Figure 4: The network with communities for the BSc program
in engineering.

Figure 5: The network with communities for the BSc program
in business.

Table 2: Community detection results for BSc in engineering.

Community No.
courses

Density
ratio

Comp Sci and Mechatronics 25 0.37
Engineering Management 15 0.16
Finances and Management 10 0.25
Biomedical Engineering 10 0.10
Financial Engineering 9 0.21
Electrical Engineering 5 0.05
Applied Design 4 0.29
Business 3 0.32

Weighted average 0.24

Table 3: Community detection results for BSc in business.

Community No. courses WDinter/WDintra

Popular Courses 15 0.07
Management 6 0.71
Finance 6 0.29
Operations 5 0.10
Asset Management 4 0.36

Weighted average 0.25

Table 4: Official specializations in the CS program.

Name Description

Artificial
intelligence

Core courses reflecting an interest in AI
and machine learning, with electives fo-
cused on game development and analytical
skills.

Game design Core courses encompass game development
in general, computer graphics and game
engine architecture. Electives reflect more
general programming skills and AI.

FinTech Both core courses and electives focus on
the financial part of the Financial Technol-
ogy discipline, as all students taking these
courses gain software development skills
from the core courses of the CS major.

Web and UX
design

As the name suggests, most courses for this
specialization directly relate to either web
programming (such as the courses Web
Programming II and Web Services) or user
experience (User-Focused Software Devel-
opment, Human-Computer Interaction).

Psychology Core courses in psychology that emphasize
cognitive processing and research method-
ology. Any other psychology courses can
then be chosen as electives.

Law General law courses with some emphasis
on intellectual property rights and negoti-
ations.

Sports science General sports science courses.
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