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ABSTRACT
Automated essay scoring (AES), where natural language
processing is applied to score written text, can underpin ed-
ucational resources in blended and distance learning. AES
performance has typically been reported in terms of correla-
tion coefficients or agreement statistics calculated between
a system and an expert human examiner. We describe the
benefits of alternative methods to evaluate AES systems
and, more importantly, facilitate comparison between AES
systems and expert human examiners. We employ these
methods, together with multi-marked test data labelled by
5 expert human examiners, to guide machine learning model
development and selection, resulting in models that outper-
form expert human examiners.

We extend on previous work on a mature feature-based lin-
ear ranking perceptron model and also develop a new multi-
task learning neural network model built on top of a pre-
trained language model – DistilBERT. Combining these two
models’ scores results in further improvements in perfor-
mance (compared to that of each single model).

Keywords
Student Assessment, Metrics, Evaluation, Automated Essay
Scoring, Natural Language Processing, Deep Learning

1. INTRODUCTION
Automated essay scoring (AES) is the task of employing
computer technology to score written text. Learning to
write a foreign language well requires a considerable amount
of practice and appropriate feedback. On the one hand,

AES systems provide a learning environment in which for-
eign language learners can practice and improve their writ-
ing skills even when teachers are not available. On the other
hand, AES reduces the workload of examiners and enables
large-scale writing assessment. In fact, these technologies
have already been deployed in standardised tests such as
the TOEFL and GMAT [7, 6] as well as in a classroom set-
ting [26].

As English is one of the world’s most widely used languages,
and learners naturally outnumber teachers, AES systems
aimed at ‘English as a Second or Other Language’ (ESOL)
are in high demand. Consequently, there is a large body of
literature with regards to AES systems of text produced by
ESOL learners [20, 3, 5, 28, 2, 30, 1, 23, 16], overviews of
which can be found in various studies [25, 22, 15].

AES systems exploit textual features in order to measure
the overall quality and assign a score to a text. The earli-
est systems used superficial features, such as essay length,
as proxies for understanding the text. As multiple factors
influence the quality of texts, later systems have used more
sophisticated automated text processing techniques to ex-
ploit a large range of textual features that correspond to
different properties of text, such as grammar, vocabulary,
style, topic relevance, and discourse coherence and cohesion.
In addition to lexical and part-of-speech (PoS) n-grams, lin-
guistically deeper features such as types of syntactic con-
structions, grammatical relations and measures of sentence
complexity are some of the properties that form an AES
system’s internal marking criteria. The final representation
of a text typically consists of a vector of features that have
been manually selected and tuned to predict a score on a
marking scale as accurately as possible, an approach which
has involved extensive work on feature development and op-
timisation.

In contrast, the most recent AES systems are based on neu-
ral networks that learn the feature representations automat-
ically, without the need for this kind of manual tuning [1,
23, 19, 16, 27]. Taking the sequence of (one-hot vectors of
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Figure 1: Data distributions (0-20 score on x-axis, count on y-axis). Left to right: Full training set (98,138 responses), u400
training set (14,966), test set (364).

the) words in an essay as input, Alikaniotis et al. [1] and
Taghipour et al. [23] studied a number of neural architec-
tures for the AES task and determined that a bidirectional
Long Short-Term Memory (LSTM) [14] network was the
best performing single architecture. With recent advances in
pre-trained bidirectional Transformer [24] language models
such as Bidirectional Encoder Representations from Trans-
formers (BERT) [11], pre-trained language models have been
applied for AES to achieve state-of-the-art performance [19,
16].

The B2 First exam, formerly known as Cambridge English:
First (FCE), is a Cambridge English Qualification that as-
sesses English at an upper-intermediate level. We extend a
mature state-of-the-art feature-based AES system [5, 28, 2],
researched and developed over the last decade using Cam-
bridge English’s FCE exam answers and their corresponding
operational scores as training data. Further, we develop a
new multi-task learning (MTL) neural network model built
on top of a pre-trained masked language model – Distil-
BERT [21].

Various evaluation metrics have been used to evaluate AES
systems, including correlation metrics such as Pearson’s Cor-
relation Coefficient (PCC) and Spearman’s Correlation Co-
efficient (SCC), agreement metrics like quadratic weighted
Kappa [8] (QWK) and quadratic agreement coefficient [13]
(AC2), and error metrics such as Mean Absolute Error (MAE)
and Mean Square Error (MSE).

We introduce novel evaluation methods that employ multi-
marked test data, where each test item has been labelled by
more than one expert human examiner, to facilitate compar-
ison of human and AES system performance. Our methods
aim to recognise that the set of examiner scores per answer
represent an acceptable range of scores and thence we aim to
evaluate AES systems against this set of scores rather than
against a single gold standard score or via inter-rater agree-
ment metrics. This is an important distinction given that
expert examiner performance represents the upper bound on
the AES task. To the best of our knowledge, this is the first
work to perform an in-depth comparison of feature-based
and neural-based AES model performance. Further, we il-
lustrate that these models can be considered complementary,
and combined to improve performance.

2. DATA
We employ a large training set, collected by Cambridge
Assessment,1 comprising almost 50,000 FCE examination
scripts from 2016–20 with operational scores, as well as a
newly created multi-marked test set containing 182 scripts
labelled by 5 expert human examiners.2 Each script con-
sists of two questions, and responses are scored using 4 fine-
grained assessment scales: content, communicative achieve-
ment, organisation and language. Each scale provides a
score between 0 and 5 inclusively, and the overall score is
calculated by summing over these 4 individual scales to pro-
vide an answer score in the range 0–20. For this AES task,
we employ the overall 0–20 score to train and test models.3

The full training set contains almost 100,000 individual re-
sponses to over 50 different prompts, all labelled with a score
in the range 0–20, but with an uneven distribution strongly
concentrated around 14 (the score expected by an average
learner having attained the B2 level for which the exam is
designed). In order for the multi-marked test set to include
as wide a range of responses as possible, 182 scripts (each
consisting of two answers) were sampled to provide a more
uniform distribution of scores in the range 16–40 as well as a
certain number of lower scores (scripts with scores 0–15 are
rarely seen since they correspond to a level far below the one
required to pass the exam); the 364 individual answers show
a relatively uniform distribution of scores above 8. Similarly,
a more balanced training set of just under 15,000 answers
was extracted from the full training set by excluding super-
numerary scripts from the middle of the scale; u400.4 The
resulting distributions can be seen in Figure 1.

3. METRICS
3.1 Traditional Metrics
Yannakoudakis & Cummins [29] investigated the appropri-
ateness and efficacy of evaluation metrics for AES including

1https://www.cambridgeassessment.org.uk/
2The operational score, combined with 5 examiner scores,
results in 6 scores per answer in the test data. In contrast,
the training data contains a single operational score.
3Previously, Yannakoudakis et al. [28] worked at the script
level (i.e. across two answers) and therefore used scores in
the range 0–40.
4Note: u400 was selected to be uniformly distributed at the
script-level; with 400 randomly selected (maximum) scripts
for each script score level 0–40.
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SCC, PCC, QWK and AC2 under different experimental
conditions. They recommend AC2 [13] for evaluation and
reporting SCC and PCC measures for error analysis and
system interpretation. Therefore we report these three eval-
uation metrics (AC2, SCC, PCC), as well as RMSE which
we consider operationally desirable; it penalises larger errors
more than smaller errors.

Ke & Ng [15] provide a survey of AES system research and
popular public corpora employed in evaluation. Most public
corpora contain a single human annotator score and evalu-
ation is limited to considering this score the gold standard
thence evaluation aids in comparison of AES systems but it
is not possible to determine a reasonable upper bound on
the task.

The CLC-FCE dataset [28] and the Automated Student As-
sessment Prize (ASAP) corpus, released as part of a Kaggle
competition,5 include scores assigned by four and two hu-
man annotators, respectively. For these, multi-marked cor-
pus evaluation can be performed against a single reference
score by taking an average of the scores [1, 16].6 Alterna-
tively, agreement between the AES system and (each) hu-
man expert can be compared to inter-rater agreement per-
formance (which represents the upper bound the task) [28,
19]. Yannakoudakis et al. [28] calculate the average pair-wise
agreement across all markers (human examiners and AES
system) to produce a single (comparable) metric for SCC
and PCC.We perform inter-rater and rater-to-AES pair-wise
evaluations for SCC, PCC, AC2 and RMSE in our experi-
mentation, and determine the average performance across
the 5 expert human examiners.

3.2 Multi-marked Metrics
We also employ a novel evaluation method whereby scores
are only considered to be erroneous if they fall outside the
acceptable range of scores, as defined by the set of expert
human examiner scores considered. We consider two score
ranges: i) the range of 5 expert examiner scores (ALL) and
ii) a narrower range (MID3 ) where we remove the top and
bottom scores (for each test item). In addition, we report
performance achieved for each of these ranges after removing
a single examiner’s score from the range, in turn, so that
we can compare the performance of each expert examiner
against the AES models.

Given a score range, we report the accuracy (percentage of
scores that fall within the range) and a novel RMSE variant;
RMSER, which considers the size of the error as equal to the
distance between the score and the range. For example, if
a score falls above the range we calculate the error as the
difference between the score and the highest score in the
range.

3.3 RMSEc Graphs
Operationally, the best performing model may not necessar-
ily be one that achieves the highest performance value based

5https://www.kaggle.com/c/asap-aes
6For ASAP, the resolved score is often employed, which is
calculated as the average between the two human examiner
scores (if the scores are close), or is determined by a third
examiner (if the scores are far apart).

on single metric such as AC2. Rather, a model that performs
well across the assessment scale is preferable. Further, it is
possible for models to achieve similar (single) metric perfor-
mance but exhibit very different performance distributions
across the scale (cf. uniform vs non-uniform distributions
with the same average).

Baccianella et al. [4] argued that macro-averaged metrics, in-
cluding macro-averaged root mean squared error (RMSEM),
are more suitable for ordinal regression tasks. RMSEM is
calculated by averaging over RMSEc (RMSE determined for
each score c on the assessment scale). That is, RMSEc is
RMSE calculated over the subset of test items that are la-
belled c. They argue that macro-averaged metrics are more
robust to test set distribution given the average results in
equally weighting the error rate for each label in the assess-
ment scale. Therefore, we report the RMSEM metric.

We also want to explicitly analyse how a model performs
across the assessment scale. Therefore, we employ individ-
ual RMSEc measures, for each reference score c (0–20), and
produce novel graphs; RMSEc graphs, where the score (c) is
plotted on the x-axis and the RMSEc value is plotted on the
y-axis. We also produce RMSER

c graphs, where we calculate
RMSEc values based on our novel RMSER variant.

4. AES MODELS
4.1 Feature-based
In this work, we extend a mature feature-based AES model [5,
28, 2]: a ranking timed aggregate perceptron (TAP) model
trained on a set of features shown to encode the information
required to distinguish between texts exhibiting different
levels of language proficiency attained by upper-intermedite
learners. Features include ones that can be extracted di-
rectly from the text (word and character n-grams) or a
parsed representation (PoS n-grams and parse rule names),
as well as various statistics (PoS categories, lengths, read-
ability scores, use of cohesive devices, etc.) and error es-
timations (rule-based and corpus-based). We also include
features that measure congruence between question and an-
swer (similarity between embeddings for different parts), but
that is not the focus of this paper.

Unlike for models used in previous work, the n-gram features
have been filtered to exclude ones that encode punctuation
without context; this forces the model to focus on other, pos-
sibly more relevant, aspects of the text and at the same time
removes the possibility of artificially inflating model scores
by adding superfluous punctuation characters. The models
trained on the full and u400 training sets will be referred to
as the TAP and TAP1, respectively, in the following.

4.2 Neural Network
In recent years, fine-tuning pre-trained masked language
models like BERT via supervised learning has become the
key to achieving state-of-the-art performance in various nat-
ural language processing (NLP) tasks. These models often
consist of over 100 million parameters across multiple layers
and have been pre-trained on large amounts of existing text
data to capture context-sensitive meaning of, and relations
between, words. Following [19, 16], our neural approach
builds upon this, where we use pre-trained DistilBERT as
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Table 1: Average inter-rater and rater-to-AES performance (Ex1–Ex5)

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
SCC 0.74 0.77 0.72 0.75 0.74 0.77 0.75 0.74 0.78 0.79 0.78
PCC 0.73 0.76 0.69 0.76 0.75 0.76 0.74 0.73 0.78 0.78 0.77
AC2 0.90 0.92 0.92 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94
RMSE 2.74 2.41 2.44 2.19 2.19 2.25 2.20 2.21 2.09 2.08 2.05

Table 2: RMSE using average examiner (Ex1–Ex5) scores
(ExAvg).

TAP TAP1 NN TAP+NN TAP1+NN
RMSE 1.70 1.72 1.58 1.56 1.52
RMSEM 1.70 1.34 1.55 1.54 1.33

the basis for our neural network model and add additional
layers on top to perform supervised tasks. We choose Distil-
BERT for practical reasons – it retains 97% of the language
understanding capabilities of BERT, while reducing param-
eter size by 40% and decreasing model inference time by
60% [21].

We treat AES as a sequence regression problem and con-
struct the input by adding a special start token ([CLS]) to
the full text:

[CLS], w1, w2, . . . , wt, . . . , wn (1)

This representation is then used as input to the output layer
to perform regression.

Compared with feature-based models, for neural network
models to be effective, they need to be trained on a large
amount of annotated data. MTL allows models to learn from
multiple objectives via shared representations, using infor-
mation from related tasks to boost performance on tasks for
which there is limited target data [18, 10, 31, 9]. Instead of
only predicting the score of an essay, we extended the model
to incorporate auxiliary objectives. The information from
these auxiliary objectives is propagated into the weights of
the model during training, without requiring the extra la-
bels at testing time. Inspired by the linguistic features used
in the feature-based AES systems, we experimented with a
number of linguistic auxiliary tasks, and identified the de-
pendency parsing as the most effective one.

The neural AES model is developed as a MTL neural net-
work model trained jointly to perform AES and Grammat-
ical Relation (GR) prediction. Model weights are shared
among these two training objectives. The final layer for
the AES objective is a fully connected layer that performs
regression (i.e. scoring head), while another linear layer is
introduced to perform token-level classification to predict
the type of the GR in which the current token is a depen-
dent (i.e. classification head). The overall loss function is a
weighted sum of the essay scoring loss (measured as MSE)
and the dependency parsing loss (as cross-entropy):

Loss = λLossAES + (1− λ)LossGR (2)

During training the whole model is optimised in an end-to-
end manner. We refer to the neural MTL model trained on
the full training set as the NN model in Section 5.

Table 3: Accuracy for ALL range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 61.3 54.1 55.5 56.0 56.0 59.3
Ex1 ∗ 73.4 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 69.0 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 76.4 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 73.6 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 80.8
TAP 82.1 76.1 76.4 79.4 76.9 79.7
TAP1 78.8 71.4 72.8 73.9 74.7 76.1
NN 81.0 75.0 76.9 76.1 76.4 78.0
TAP+NN 84.9 78.8 79.1 79.9 81.0 82.4
TAP1+NN 85.4 77.5 80.8 80.5 80.5 82.1

Table 4: Accuracy for MID3 range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 36.0 25.5 27.2 26.4 28.3 26.9
Ex1 ∗ 46.2 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 43.1 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 42.9 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 40.9 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 50.0
TAP 59.9 46.4 49.5 45.1 49.2 46.7
TAP1 53.6 44.5 45.6 41.5 41.5 42.6
NN 58.2 43.4 45.9 42.6 43.7 43.7
TAP+NN 61.8 47.0 49.2 46.7 47.3 48.1
TAP1+NN 59.6 47.3 46.7 45.1 44.0 45.9

5. EVALUATION
To facilitate comparison between AES systems and human
examiners, we employed traditional evaluation metrics as de-
scribed in §3.1. Table 1 shows average inter-rater or rater-to-
AES performance in terms of SCC, PCC, AC2 and RMSE
calculated between 1) operational scores (Op), scores as-
signed by an expert (Ex1–Ex5) or scores predicted by an
AES system, and 2) each of the experts’ scores (excluding
the expert being evaluated, if any).7 For instance:

SCC(Ex3) =
1

n− 1

∑
i 6=3

SCC(Ex3,Exi) (3)

For each metric (row) in Table 1, we have highlighted the
best performance in bold. AC2 scores 7 of the 10 models
the same (top) score of 0.94 and thence, in our experimenta-
tion, does not aid in system comparison. Apart from AC2,
these traditional evaluation metrics indicate that the NN
model outperforms all examiners and feature-based (TAP)
models. Both TAP models perform comparatively to the
individual examiners, that is, fall in the performance range
achieved by examiners (Ex1–Ex5). Performance of the com-
bined TAP and NN models (the average score) is shown in
the last two columns of Table 1. Based on these traditional

7For interested readers, we have included pair-wise results
for SCC, PCC, AC2 and RMSE metrics in the Appendix.
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Table 5: RMSER for ALL range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 1.35 1.48 1.46 1.49 1.46 1.43
Ex1 ∗ 1.12 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 1.16 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 0.77 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 0.78 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 0.93
TAP 0.74 0.90 0.92 0.82 0.84 0.79
TAP1 0.71 0.87 0.85 0.83 0.83 0.81
NN 0.64 0.81 0.74 0.76 0.77 0.70
TAP+NN 0.62 0.79 0.76 0.73 0.74 0.68
TAP1+NN 0.58 0.74 0.68 0.68 0.68 0.65

Table 6: RMSER for MID3 range.

-Ex1 -Ex2 -Ex3 -Ex4 -Ex5
Op 1.84 2.11 2.03 2.12 2.04 2.04
Ex1 ∗ 1.77 ∗ ∗ ∗ ∗
Ex2 ∗ ∗ 1.77 ∗ ∗ ∗
Ex3 ∗ ∗ ∗ 1.42 ∗ ∗
Ex4 ∗ ∗ ∗ ∗ 1.41 ∗
Ex5 ∗ ∗ ∗ ∗ ∗ 1.48
TAP 1.21 1.41 1.49 1.42 1.55 1.42
TAP1 1.21 1.51 1.44 1.43 1.52 1.46
NN 1.09 1.38 1.31 1.33 1.40 1.31
TAP+NN 1.08 1.32 1.32 1.30 1.41 1.28
TAP1+NN 1.01 1.31 1.23 1.25 1.34 1.25

metrics, it is unclear whether combining models improves
performance. PCC and AC2 indicate no improvement is
made over the single NN model, while SCC and RMSE in-
dicate that TAP+NN and TAP1+NN are best, respectively.

Table 2 compares the AES systems using RMSE and RMSEM

calculated using the average examiner scores (ExAvg) as the
single reference score. The combined TAP1+NN achieves
the best RMSE and RMSEM performance (in line with av-
erage examiner RMSE performance in Table 1). RMSEM is
the only metric that illustrates a large performance differ-
ence between TAP and TAP1 models. In fact, TAP1 sig-
nificantly outperforms the NN model as well for this metric,
indicating that this model performs better across the assess-
ment scale than the other AES models. RMSE and RMSEM,
over ExAvg scores, suggest that there is some small perfor-
mance gains made by combining models.

In addition to traditional evaluation methods, we employed
novel multi-marked metrics, as described in §3.2. Tables 3
and 4 illustrate the accuracy (percentage of scores that fall
in range) over the ALL and MID3 ranges, respectively. Ta-
bles 5 and 6 show the corresponding RMSER performance
for these ranges, respectively. For all four tables, perfor-
mance is directly comparable within each column, with the
highest accuracy highlighted in bold.8 The most important
evaluation relates to the first column for the ALL range in
Tables 3 and 5, as these results compare the performance
of the AES models evaluated against all 5 examiner scores’
range. Other columns in these tables (-ExN) facilitate com-
parison between the AES systems and each human examiner
(N).

8Note, the asterisk symbol in these four tables indicate that
the score is part of the acceptable range.

Accuracy and RMSER metrics are complementary, as ac-
curacy represents the proportion of scores that are correct
while RMSER evaluates the degree to which scores fall out-
side the range of human examiner scores. Operationally, we
consider RMSER more important than accuracy, given AES
systems should be consistent and errors, when they do oc-
cur, should be penalised to a greater degree as the scores
falls further outside the range of human examiner scores.

Tables 5 and 6 suggest that NN outperforms both TAP
models and all human examiners, while both TAP mod-
els perform comparatively to the individual examiners; in
line with evaluation based on traditional metrics in Table 1.
However, in contrast to the metrics discussed thus far, the
RMSER metric indicates combined models outperform their
corresponding individual models. This improvement is more
evident for TAP1+NN, which outperforms all human exam-
iners and AES models across both ranges.

As described in §3.3, we produced novel RMSEc graphs
to compare model performance across the assessment scale.
RMSEc (and RMSER

c ) graphs for the single and combined
AES models are shown in Figure 2. The Op and ExAvg
graphs plot RMSEc calculated against the operational and
average examiner scores (i.e. c on the x-axis), respectively.
The bottom graph, a RMSER

c graph, plots the RMSER per-
formance for the ALL range where the c score (x-axis) is
the average examiner score in the ALL range (i.e. using the
same distribution of test items as the ExAvg RMSEc graph).

Comparing the AES models across the assessment scale, we
can see that all AES models follow a similar pattern; they
perform better in the mid ranges and worse in the lower and
upper score ranges. This finding is not unexpected, given we
have ample training data in the mid ranges and very little
training data in the upper and lower ranges of the assessment
scale (see Figure 1). The TAP1 model, trained over a more
uniformly distributed training set trades smaller declines in
performance in the middle of the scale for more consistent
results across the scale, in line with the RMSEM evaluation
metric. The NN model achieves better performance in the
upper and lower scores compared to TAP, suggesting that it
is more robust over skewed training datasets. However, as
evident in these RMSEc graphs, the TAP and NN models
tend to perform better in particular ranges of the scale and
thence these models are complementary, and combined mod-
els benefit from the relative strengths of individual models
across the scale.

6. CONCLUSIONS
We deployed two types of AES systems: feature-based and
neural network. We found that the NN model is more ro-
bust over skewed datasets as it achieves better performance
in the upper and lower scores. However, the feature-based
models are more interpretable, require significantly less com-
putational overhead to train and can be trained over much
smaller datasets than neural-based models. The TAP1 model,
trained over a more uniform subset of the training data per-
formed more consistently than NN across the assessment
scale. We illustrated that feature-based TAP and NN mod-
els are complementary, and combined models benefit from
the relative strengths of individual models across the scale,
outperforming human examiners. In operational deploy-
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Figure 2: RMSEc graphs for operational score (Op) and
average examiner score (ExAvg). RMSER

c graph for the
ALL range.

ment, the best performing TAP1+NN model can make ef-
fective use of the constantly growing set of training data by
retraining TAP1 frequently to incorporate any new informa-
tion available and only retraining the NN models over the
full training set from time to time.

We presented novel approaches to evaluating AES that make
use of multi-marked/annotated data. These approaches have
advantages over traditional evaluation methods and also demon-
strate the value of using resources to repeatedly annotate
essays for the AES context. Building on the recommenda-
tions made by Yannakoudakis & Cummins [29], we make the
following observations and suggestions for those working on
AES:

• In addition to RMSEM, we recommend calculating RMSEc

and plotting RMSEc graphs to explicitly analyse how
system performance varies across an assessment scale.

• We recommend that, where feasible, a proportion of
texts in evaluation sets should be annotated by mul-
tiple examiners to allow different forms of evaluation
that account for rating variability exhibited by human
examiners.

• Where multiple human-derived scores are available,
system performance should be evaluated using meth-
ods that incorporate the range of scores given for each
text. We recommend using a novel RMSE variant;
RMSER, that considers the size of the error as equal
to the distance between the score and the upper or
lower bound of the range.

• Where multiple human-derived scores are available, we
also recommend that the accuracy of a system is cal-
culated, by treating texts scored within the range of
scores provided by humans as correct classifications.

Further work is needed to explore the evaluation approaches
proposed here to establish how they vary in different con-
texts, to inform how they should be interpreted. For ex-
ample, we expect these evaluation metrics to behave differ-
ently according to the granularity of the reporting scale, the
distribution of evaluation sets and the inter-rater reliabil-
ity observed between human examiners. Therefore, work to
systematically investigate these measures in terms of their
robustness to trait prevalence, robustness to marginal homo-
geneity and robustness to scale scores should be conducted
systematically, in a similar vein to simulations reported by
Yannakoudakis & Cummins [29].

We have demonstrated the value of producing multi-marked
data to support evaluation. However, our proposed metrics
can be refined further to allow for more sophisticated uses
of multi-marked data, by incorporating methods commonly
used for psychometric evaluation and quality assurance, such
as Many-Facet Rasch Measurement [17, 12]. Further work
should explore how these methods can account for examiner
reliability issues when making use of multi-marked data.

7. ACKNOWLEDGMENTS
We would like to thank Ted Briscoe, Michael Corrigan, He-
len Yannakoudakis and the anonymous reviewers for their

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 861



valuable comments and suggestions. This paper reports on
research supported by Cambridge Assessment, University of
Cambridge.

8. REFERENCES
[1] D. Alikaniotis, H. Yannakoudakis, and M. Rei.

Automatic text scoring using neural networks. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 715–725, Berlin, Germany,
August 2016. Association for Computational
Linguistics.

[2] Ø. E. Andersen, H. Yannakoudakis, F. Barker, and
T. Parish. Developing and testing a self-assessment
and tutoring system. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 32–41, Atlanta,
Georgia, June 2013. Association for Computational
Linguistics.

[3] Y. Attali and J. Burstein. Automated essay scoring

with e-rater® v.2. The Journal of Technology,
Learning and Assessment, 4(3), Feb. 2006.

[4] S. Baccianella, A. Esuli, and F. Sebastiani. Evaluation
measures for ordinal regression. pages 283–287, 01
2009.

[5] T. Briscoe, B. Medlock, and Ø. Andersen. Automated
assessment of ESOL free text examinations. Technical
Report UCAM-CL-TR-790, University of Cambridge,
Computer Laboratory, Nov. 2010.

[6] J. Chen, J. H. Fife, I. I. Bejar, and A. A. Rupp.

Building e-rater® Scoring Models Using Machine
Learning Methods. ETS Research Report Series,
2016(1):1–12, June 2016.

[7] M. Chodorow and J. Burstein. Beyond essay length:

Evaluating e-rater®’s performance on toefl® essays.
ETS Research Report Series, 2004(1):i–38, 2004.

[8] J. Cohen. Inter-rater reliability: Dependency on trait
prevalence and marginal homogeneity. Psychological
bulletin, 4(70):213–220, 1968.

[9] H. Craighead, A. Caines, P. Buttery, and
H. Yannakoudakis. Investigating the effect of auxiliary
objectives for the automated grading of learner
English speech transcriptions. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 2258–2269, Online,
July 2020. Association for Computational Linguistics.

[10] R. Cummins and M. Rei. Neural multi-task learning in
automated assessment. CoRR, abs/1801.06830, 2018.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

[12] S. Goodwin. A many-facet rasch analysis comparing
essay rater behavior on an academic english
reading/writing test used for two purposes. Assessing
Writing, 30:21–31, 2016. Innovation in rubric use:
Exploring different dimensions.

[13] K. Gwet. Inter-rater reliability: Dependency on trait
prevalence and marginal homogeneity. Stat Methods
Inter-Rater Reliab Assess, 2, 01 2002.

[14] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[15] Z. Ke and V. Ng. Automated essay scoring: A survey
of the state of the art. In Proceedings of the
Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pages 6300–6308.
International Joint Conferences on Artificial
Intelligence Organization, 7 2019.

[16] E. Mayfield and A. W. Black. Should you fine-tune
BERT for automated essay scoring? In Proceedings of
the Fifteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 151–162,
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APPENDIX
A. FULL PAIR-WISE RESULTS
We include, in the Appendix, individual pair-wise inter-rater and rater-to-AES performance, across the 5 examiners, for
operational scores (Op), each human examiner (Ex1–Ex5) and the AES models for SCC, PCC, AC2 and RMSE. Results in
the last row in each table, the average of the Ex1–Ex5 scores in each column, can be seen in Table 1 .

Table 7: SCC (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 0.76 0.69 0.76 0.72 0.75 0.73 0.73 0.79 0.77 0.77
Ex1 0.76 ∗ 0.69 0.79 0.76 0.82 0.80 0.80 0.84 0.84 0.84
Ex2 0.69 0.69 ∗ 0.73 0.74 0.72 0.69 0.66 0.72 0.72 0.70
Ex3 0.76 0.79 0.73 ∗ 0.73 0.77 0.75 0.74 0.80 0.80 0.78
Ex4 0.72 0.76 0.74 0.73 ∗ 0.75 0.72 0.73 0.75 0.76 0.76
Ex5 0.75 0.82 0.72 0.77 0.75 ∗ 0.78 0.77 0.82 0.81 0.81
Avg (Ex1–Ex5) 0.74 0.77 0.72 0.75 0.74 0.77 0.75 0.74 0.78 0.79 0.78

Table 8: PCC (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 0.75 0.68 0.76 0.73 0.72 0.73 0.74 0.77 0.77 0.77
Ex1 0.75 ∗ 0.66 0.79 0.76 0.82 0.79 0.79 0.83 0.83 0.83
Ex2 0.68 0.66 ∗ 0.71 0.70 0.68 0.68 0.65 0.69 0.70 0.69
Ex3 0.76 0.79 0.71 ∗ 0.76 0.79 0.75 0.73 0.80 0.80 0.79
Ex4 0.73 0.76 0.70 0.76 ∗ 0.77 0.73 0.74 0.76 0.77 0.77
Ex5 0.72 0.82 0.68 0.79 0.77 ∗ 0.76 0.76 0.81 0.81 0.80
Avg (Ex1–Ex5) 0.73 0.76 0.69 0.76 0.75 0.76 0.74 0.73 0.78 0.78 0.77

Table 9: AC2 (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 0.90 0.88 0.91 0.89 0.90 0.88 0.89 0.89 0.89 0.90
Ex1 0.90 ∗ 0.90 0.93 0.93 0.94 0.93 0.94 0.94 0.94 0.95
Ex2 0.88 0.90 ∗ 0.94 0.92 0.93 0.92 0.90 0.92 0.92 0.92
Ex3 0.91 0.93 0.94 ∗ 0.95 0.95 0.94 0.94 0.95 0.95 0.95
Ex4 0.89 0.93 0.92 0.95 ∗ 0.95 0.94 0.93 0.94 0.94 0.94
Ex5 0.90 0.94 0.93 0.95 0.95 ∗ 0.94 0.94 0.95 0.95 0.95
Avg (Ex1–Ex5) 0.90 0.92 0.92 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94

Table 10: RMSE (best score per row shown in bold).

Op Ex1 Ex2 Ex3 Ex4 Ex5 TAP TAP1 NN TAP+NN TAP1+NN
Op ∗ 2.72 2.92 2.58 2.72 2.78 2.93 2.71 2.74 2.79 2.64
Ex1 2.72 ∗ 2.77 2.30 2.30 2.28 2.29 2.15 2.05 2.10 1.99
Ex2 2.92 2.77 ∗ 2.30 2.20 2.48 2.22 2.40 2.26 2.17 2.24
Ex3 2.58 2.30 2.30 ∗ 2.08 2.07 2.20 2.24 2.06 2.07 2.05
Ex4 2.72 2.30 2.20 2.08 ∗ 2.15 1.95 2.01 1.90 1.85 1.84
Ex5 2.78 2.28 2.48 2.07 2.15 ∗ 2.34 2.25 2.20 2.21 2.13
Avg (Ex1–Ex5) 2.74 2.41 2.44 2.19 2.19 2.25 2.20 2.21 2.09 2.08 2.05
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