
Automatically classifying student help requests: a
multi-year analysis

Zhikai Gao
North Carolina State

University
zgao9@ncsu.edu

Collin Lynch
North Carolina State

University
cflynch@ncsu.edu

Sarah Heckman
North Carolina State

University
sarah_heckman@ncsu.edu

Tiffany Barnes
North Carolina State

University
tmbarnes@ncsu.edu

ABSTRACT
As Computer Science has increased in popularity so too
have class sizes and demands on faculty to provide sup-
port. It is therefore more important than ever for us to
identify new ways to triage student questions, identify com-
mon problems, target students who need the most help, and
better manage instructors’ time. By analyzing interaction
data from office hours we can identify common patterns,
and help to guide future help-seeking. My Digital Hand
(MDH) is an online ticketing system that allows students
to post help requests, and for instructors to prioritize sup-
port and track common issues. In this research, we have
collected and analyzed a corpus of student questions from
across six semesters of a CS2 with a focus on object-oriented
programming course [17]. As part of this work, we grouped
the interactions into five categories, analyzed the distribu-
tion of help requests, balanced the categories by Synthetic
Minority Oversampling Technique (SMOTE) , and trained
an automatic classifier based upon LightGBM to automat-
ically classify student requests. We found that over 69% of
the questions were unclear or barely specified. We proved
the stability of the model across semesters through leave one
out cross-validation and the target model achieves an accu-
racy of 91.8%. Finally, we find that online office hours can
provide more help for more students.

Keywords
Office Hour, Computer Science Education Research, Text
Analysis, help-seeking request

1. INTRODUCTION
Over the past decade the popularity of CS majors has in-
creased and enrollments have skyrocketed [2]. This has cre-

ated challenges for instructors with increasing demands for
individual support, collaborative learning, and automated
guidance [12, 2, 16, 15]. As the size of courses and cohorts
have increased, the demand for office hours has begun to ex-
ceed the time that instructors and staff have available [12,
13]. To address these needs instructors have adopted a wide
range of innovative support models including virtual office
hours [10], peer support [7], and ticketing systems for help-
seeking interactions [13]. The last approach is exemplified
by My Digital Hand (MDH) [21], an online support sys-
tem for office hours which allows students to queue for office
hours, post questions in advance, and record the outcome
of interactions. MDH assists students in structuring their
help-seeking interactions with teaching staff. It also assists
instructors and teaching assistants (TA) in managing their
courses, by allowing them to triage student questions and
target their effort during office hours to be efficient and meet
group and individual needs. MDH also tracks help-seeking
and interaction data throughout the whole semester. Using
this data, we can identify patterns in students’ help requests
and automatically classify the questions. One common chal-
lenge for help-seeking interaction on large classes arises when
many students ask the same or similar questions but must
be dealt with separately thus eating up limited instructor
time. One approach to address this is to develop automated
Q&A systems which can leverage common problems. In or-
der for this to work however, students must provide sufficient
information about their problems so that they can receive
targeted support.

Our goal is to develop analytical methods to understand
what kinds of help students seek during office hours, how
they frame their questions to the instructors, and whether
or not we can automatically classify questions to support
guidance and time management. By analyzing students’
help requests across course offerings we can better under-
stand what kinds of challenges the students are facing, and
how the teaching staff can better anticipate students’ needs
and target their limited support. Moreover, by automat-
ically classifying help requests we can help teaching staff
to efficiently triage student questions and identify common
problems that may be solved with group support or peer
assistance. Over the long term we will develop summary

Zhikai Gao, Collin Lynch, Sarah Heckman and Tiffany Barnes “Automati-
cally classifying student help requests: a multi-year analysis”. 2021. In:
Proceedings of The 14th International Conference on Educational Data
Mining (EDM21). International Educational Data Mining Society, 81-92.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 81

statistics which can be used to support instructors in course
management, and we will augment our existing ticketing sys-
tem with support for automatic categorization.

In this paper we will address four specific research questions
in the context of a CS2, object-oriented-focused course:

• RQ1: What types of questions do students ask on
MDH during office hours and how do they formulate
their description?

• RQ2: How can we automatically classify student help
requests and tickets?

• RQ3: How robust is our classification model across
different offerings?

• RQ4: Compared to regular office hours, does online
office hours provide more benefits?

In order to address RQ1 we analyzed our dataset to iden-
tify common patterns of student questions and to classify
them into five categories. We then address RQ2 and RQ3 by
training an automated classifier for student questions with
the goal of evaluating its’ stability across semesters. Due
to the COVID-19 pandemic, all courses are operating online
in Fall 2020, which gives us an opportunity to study the
advantages and disadvantages of hosting office hour online.
Therefore we analyzed and compared the data pattern on
Fall 2020(F20) with other regular semesters in RQ4.

1.1 Background
Prior researchers have analyzed student help requests with
the goal of understanding student behaviors. Xu and Lynch,
for example applied deep learning approaches to classify stu-
dent question topics in MOOC discussion forums [24]. In
that work Xu and Lynch collected student posts from two
offerings of a MOOC on Big Data in Education. The authors
classified student questions into one of three types (Course
Content Question, Technique Question, and Course Logic
Question) and developed an automatic classifier using Re-
current Neural Networks to divide questions’ into those three
categories. While the models were successful within a single
offering they Xu and Lynch, found that they did not gener-
alize across offerings. Thus, the system suffered from a cold
start problem on each semester.

Vellukunnel et al. in turn collected Piazza posts from CS2
courses offered at two institutions and analyzed the type
and distribution of the questions students asked [22]. As
part of this work they manually partitioned the questions
into five categories and then analyzed the impact of stu-
dents’ question types on their final grades. They concluded
that asking constructive questions can help students to de-
velop a better understanding of the course materials and in
turn receive better grades. This analysis has informed our
own work. However the Piazza platform, unlike MDH, is
designed to support interactive discussion and online peer
support through the use of threads and replies. By contrast
the MDH system is focused on initial help seeking and not
on collaborative dialogue. Therefore it is unclear whether
our results will align with theirs.

Prior researchers have also studied how instructors man-
age office hours and how to make face to face support time
more efficient and effective. Guzdial, for example, argued
that office hours should incorporate diverse teaching tech-
niques including pair programming, peer instruction, and
backward design. These approaches, he argued, would po-
tentially work to reduce wait times and support enhanced
learning outcomes [8]. In order to provide more convenience
for students, Harvard University introduced virtual office
hours to an introductory programming course CS50 so that
students can interact with teaching staff online [14]. How-
ever, they found that those virtual sessions were often ineffi-
cient and took more time to address the students’ problems.
This research is complicated by the fact that students fre-
quently avoid seeking help from teaching staff when they
need it [1]. Some of the factors behind this help-avoidance
include a lack of trust in the tutor’s abilities, inaccessibil-
ity of office hours due to timing or other constraints, and a
desire for independence in learning [18]. While our research
provides some guidance on the design of office hours and the
need to reach out to students, the impact of how students
frame their help requests has not yet been analyzed exten-
sively. One notable exception is the work of Ren, Krish-
namurthi, and Fisler, who designed a survey-based method
to help track the students’ help-seeking interactions during
office hours in programming-based CS courses [20]. While
informative, their approach is difficult to generalize as it
depends on requiring the teaching staff to complete a de-
tailed form after every interaction. In MDH, by contrast,
we collect much of the data upfront as an integral part of
the process.

2. METHODS
2.1 MDH system
My Digital Hand (MDH) [21], is a ticketing system for office
hours that was developed to facilitate large CS courses. Stu-
dents using MDH request help during office hours by ”raising
a virtual hand”, that is creating a ticket which lists the topic
they need help on, describes the issue they are facing, and
the steps they have taken to address it. Once the ticket is
created it is visible to the teaching staff who can then use it
to prioritize interactions or even group students together for
help. Once the interaction is complete the teaching staff can
close the ticket and describe how the interaction played out.
Students are also given the opportunity to evaluate the help
received. These feedback questions are configurable and set
by instructors at the start of the semester.

This data allows instructors to identify common issues facing
students and to track the time it takes for students to re-
ceive support from the teaching staff as well as the duration
of each help session. A prior analysis of MDH data, Smith
et al. found that 5% of students in a course accounted for
50% of office hour time, and that long individual interaction
times, representing students who needed long and detailed
guidance, served to delay many other short questions [21].
They concluded that a small but critical group of students
are reliant on individual tutoring via office hours, while other
students who need intermittent help are often unable to ob-
tain support. These findings have motivated our own focus
on developing analytical tools which can be used to analyze,
prioritize, and manage help requests so that high-demand
students do not shut out their peers.

82 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

2.2 Data Collection
We analyzed data from seven semesters of a typical second-
semester Object-Oriented programming course [17] at a research-
intensive public university in the south-eastern United States.
Basic descriptive statistics for the dataset are shown in Ta-
ble 1. Students produced an average of 1477 tickets per
semester with higher volumes in the fall semesters due to
larger class sizes. The number of tickets also increased year
over year due in part to larger class sizes, greater emphasis
on tool use by the course instructor, and higher per-capita
demand for office hours.

The course is structured as a single lecture section with 12
small-group lab sessions which are held weekly. Over the
course of the semester students complete weekly lab assign-
ments, 2-3 individual or team Projects (C-Projects), and 3
separate Guided Projects (G-Projects). The G-Projects are
designed to provide a review of prerequisite materials and
introduce students to new concepts. The C-Projects are
generally structured as two sub-assignments, one focused on
design and system testing, and the other on implementa-
tion and unit testing. Students manage their code via the
GitHub platform with integrated support for the Jenkins au-
tomation testing server. When students commit code they
receive automated testing results from instructor-authored
test cases as well as test cases that they supplied. The stu-
dents use feedback from test failures to guide their work and
their help-seeking.[6]

In Fall 2020, this course was moved fully online due to the
pandemic. All office hours were hosted through zoom meet-
ing where students can share their screen with the teaching
staff to show their code or any problems.

Table 1: Number of tickets and students for each semester
(F= Fall, S=Spring)

F17 S18 F18 S19 F19 S20 F20
tickets 1146 609 1224 860 1650 1401 3452

students 208 157 259 174 256 191 303

The interaction data is the most important for our current
analysis. The format of the interaction records, along with
selected examples is shown in Table 2. For this analysis each
ticket consists of three major parts: the participants, time
and duration of interaction, and the context.

2.3 RQ1: Categorization of Questions
Our primary focus in RQ1 is to identify the types of ques-
tions the students are asking and to understand how they
describe their work. MDH allows students to frame their
question topic or description in any way that they wish.
The platform does not provide a list of suggested topics or
mandate content beyond the basic text. This, in turn, lead
students to vary widely in the descriptions and content that
they provide. We therefore studied two features of the ques-
tions with the goal of supporting classification, the students’
topic, as contained in the "I’m working on" field. And the
longer problem description, as stated in the "my problem

is" field.

2.3.1 Classified by Topic

Table 2: Attributes of the interaction data

Attributes Content Explain Example
interaction id Id for each ticket 30072
student id Id for the student

who raised this ticket
1950

teacher id Id for teacher who
deal with the ticket

20810

time raised hand Timestamp for each
tickets that are asked

2019-
03-08
19:34:09

time interaction
began

Timestamp for each
tickets began

2019-
03-08
19:38:39

time interaction
ended

Timestamp for each
tickets ended

2019-
03-08
20:01:02

I’m working on Topic for the ques-
tion of each ticket

Program1Part1

my problem is Detail statement for
the question of each
ticket

Null
Pointer on
TS test

I’ve tried The solution the stu-
dent tried before they
raised the tickets

Debugging

Rapidly identifying, or even anticipating, students’ question
topics would allow teaching staff to anticipate the kinds of is-
sues they should be prepared for and may also allow them to
set up mini-groups within office hours to deal with problems
assignment by assignment, or to separate code questions
from conceptual ones. We therefore performed a manual
analysis of the topics in our study dataset over all semesters
with the goal of determining how students label their topics,
and whether it is possible to either anticipate or sort their
posts as they come in.

Our preliminary analysis showed that in most cases the stu-
dents simply entered the name of their current assignment
or an abbreviation of it and provided no other details. More-
over, due to the structure of the course deadlines almost ev-
ery help request in a given session was focused on the same
assignment. In the newest version of MDH, the question is
now a check box and the instructor can set the assignments.
As a consequence we decided to omit this from our classifi-
cation task and focus on the types of help being sought.

2.3.2 Classified by Description
In the description section (“my problem is”), the students
can provide a rich summary of their problem including a
text description, bug reports, or even code snippets. If it is
possible to automatically classify student posts then we can
use that approach to triage student questions as they come
in, perhaps separating long questions from short. We there-
fore performed a manual analysis of the description content
as well with the goal of identifying useful categories of posts.
We also sought to examine how complex the problem de-
scriptions were. In our prior discussions with the teaching
staff they reported that many students provide too little
information in the description (e.g. a single word such as
”Errors”), provide too much (e.g. a full execution dump and
error log), or they simply type gibberish with the simple

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 83

goal of securing a place in line. All of these strategies are
problematic either because they provide too little informa-
tion to effectively triage posts, or because the dump is too
complex and likely out of date before the student reaches
the head of the line. In our analysis we analyzed both the
length and structure of the students’ submissions as well
with the goal of understanding whether we can provide au-
tomatic scaffolding for useful posts, and automatic triage of
the submissions.

Figure 1: Distribution of the number of words in the ques-
tions’ description

Figure 2: Top 20 Popular words in question description

We examined the length, content, and complexity of the stu-
dents’ problem description including the specific my prob-

lem is prompt. We also grouped common words to find
keywords that are associated with specific types of submis-
sions. We then used this information to inform our under-
standing of the students’ posting behavior and to inform the
design of the posting categories. This preliminary analysis
was consistent with the experience described by the teaching
staff. Figure 1 shows that the average description was less
than five words long. When reviewing those short posts we
noted that many students preferred to use keywords to indi-
cate their question topics and problems rather than spelling
their issues out. For example, when encountering an error
in implementing an add() function, they often put ”add()”
as the problem description assuming that the method name,

together with the assignment information, provided enough
context for the help request.

This led us to focus on the specific terms that students use
in their problem description. In this analysis, we grouped
words by stemming and ignored stopwords to focus on the
primary content information. The top 20 words are shown
in Figure 2, top among them being test. This is consis-
tent with the design of the assignments where students were
provided with tests and required to develop their own. It
is also consistent with the teaching staff’s observation that
many students focus on the tests as a guide for their progress
and for where they need help. Upon closer examination of
questions using this word we found that most interactions
were focused on failed test cases; a typical description for
a question of this type was ”2 test case fail”. It would be
difficult for instructors to interpret these without review-
ing the code and the test results in more detail but such a
review takes time. Another closely-related word that was
common in this dataset is error which was used primarily
when students encounter bugs or other failures. In these
cases in particular, the teaching staff noted that some stu-
dents would simply paste the crash report into the question
with little other context. This kind of behavior is rare in the
data but was also useful for instructors, we therefore used it
as an additional factor.

Based upon this preliminary analysis we defined five cate-
gories of help requests based upon the problem descriptions.
These categories are shown in Table 3. We then labeled
all interactions related to the problem manually. For each
question, we also ranked the clarity or comprehensibility of
student questions based upon the description provided. As
we discuss below, most of the questions provided insufficient
information to diagnose the problem. However as Figure 1
shows, some students did elaborate on their problem thor-
oughly as measured by the number of words in the problem
description.

2.4 Labeling Process
2.4.1 Code book

To investigate the distribution of the above five categories
in our data, we first need to set up a standard to categorize
our data and apply it. All seven semesters’ data was labeled
by one researcher by the following rules:

• Check if there is any text that is clearly an error mes-
sage copied from the compiler or a test failure. If so,
label it as Copied Error. Notice that if the student
describes the error message in their own words, then
it should also be classified as Sufficient.

• Check if there is any text indicating that this is a test
problem, no matter if the description gives you the
detail of their test error or not. If you are sure that it
is a test problem, label it as Test. If it also qualifies as
Copied Error, classified as Copied Error

• If the text does not provide any information about
their question and you cannot understand or deduce
anything that related to their question, classify as Use-
less

84 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 3: Explanation and example for all five categories we developed

Category Explanation Example description(my problem is)
Useless The description contain nothing re-

lated to the question
I would like to check of it

Insufficient The description contains partial in-
formation about the student ques-
tion, but not enough for instructors
to understand the details.

TicketManager getInstanceOf

Sufficient Contains enough detail on the ques-
tion for instructors to understand.
Usually a very clear sentence.

CourseRecordIOTest, I seem to be fail-
ing reading the files, at the moments it
is testing the size of the ArrayLists, but
I am passing writing the files

Copied Error Contains a copied error from the
compiler.

I got this error: TypeError: barh() got
multiple values for argument ’width’

Test Test case fail related problem 2 test cases failed

• If the text does provide what or where the problem is,
but not enough for you to fully understand or identify
what is their question, marked as Insufficient

• If the text only contains one or multiple words of the
method name associated with a problem, it can help to
localize the problem but provides no additional details.
It should be classified as Insufficient

• If the text is in a form of “I don’t understand xxxx”
without further explanation of which part they do not
understand or other details, classify as Insufficient

• If the text is in a form of “I don’t understand xxxx”
with some further explanation, classify as Sufficient

• If the text tells you what their question or describes
how they encounter this problem, classify as Sufficient

2.4.2 Inter rater reliability
After all data was labeled, we randomly generated a subset
of 150 unique questions(30 for each category) and sent it
to another researcher to rate. In this subset, we reveal the
label of 10 questions for each category as example data and
the rater classifies the remaining questions based on those
example data and the code book. Then we compare the
result with the original labels and calculate Kappa to repre-
sent the inter rater reliability. Kappa[4] is widely applied for
measuring the agreement between two coders that accounts
for chance agreement. Generally a score higher than 0.8 is
considered acceptable. In our cases, the final unweighted
Kappa value is 0.815 which is acceptable.

2.5 RQ2: Modeling
In addressing RQ2 we drew on our basic categorization de-
veloped in RQ1 to train automatic classifiers that can triage
posts by topic and content. We used the first six semester
data as training data to train our model and the last semester
(F20) as the testing set to evaluate our model. To train our
classification model, we first extracted training features from
the problem descriptions across our dataset. The features
included content features such as the keywords described
above as well as meta-text features such as length, the num-
ber of stop-words (as a general proxy for specificity), the

punctuation, and the character case. These meta-text fea-
tures have the advantage that they are easy to extract au-
tomatically and can therefore be used for automated triage.
Length, for example, is a suitable proxy for completeness
and coherence while punctuation and case shifting are com-
mon in error messages. The full list of these features is
shown in table 4.

We represented the text features as a tf-idf [19] matrix and
basic word count matrix over the content. The word count
matrix is simply a 2D Array which describe how many times
each term appears in each question text. The tf–idf ma-
trix is the product of two statistics, term frequency and
inverse document frequency. The term frequency uses the
raw count of a term in a text. The inverse document fre-
quency is a measure of how much information the word pro-
vides. Some common words like ”is” or ”that” do not pro-
vide much information but they do usually have a high term
frequency. Those words should have less inverse document
frequency(idf). We can calculate the value as:

idf(t) = ln(
Total number of documents

Number of documentswith term t in it
) (1)

In our preliminary analysis we found that the matrices per-
formed poorly in classification due to the fact that both
were extremely sparse. We therefore opted to compress them
so that they can be compatible with the dense feature ap-
proaches. To that end we built a Naive Bayes model [9]
using the tf-idf sparse features and then use the predictions
features. From this model we generated five shallow predic-
tion features which correspond to the probability that the
question belongs to each category. We followed this same
approach with the word count vector and used those fea-
tures as probabilities. The final list of extracted features is
shown in Table 5.

2.5.1 Model Training
We trained our classification models using LightGBM [11],
a Gradient Boosting Decision Tree (GBDT) algorithm pro-
vided by Microsoft. GBDT is an ensemble model of de-
cision trees trained in sequence. In each iteration, GBDT
learns the decision trees by fitting the negative gradients

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 85

Table 4: Text meta features list

Feature name Explanation value example
length number of words in the problem description 12

character number of characters in the problem description 12
stop words number of stop words in the problem description 2

punctuation number of punctuation in the problem description 0
uppercase number of uppercase words in the problem description 0

Table 5: Text content features lists

Feature name Explanation value example
prob-tf-useless the probability of this tickets belong to category ”useless” using tf-idf 0.75

prob-tf-ins the probability of this tickets belong to category ”insufficient” using tf-idf 0.82
prob-tf-suf the probability of this tickets belong to category ”sufficient” using tf-idf 0.77

prob-tf-error the probability of this tickets belong to category ”copied error” using tf-idf 0.99
prob-tf-test the probability of this tickets belong to category ”test” using tf-idf 0.65

prob-cnt-useless the probability of this tickets belong to category ”useless”using using common word count 0.75
prob-cnt-ins the probability of this tickets belong to category ”insufficient” using common word count 0.82
prob-cnt-suf the probability of this tickets belong to category ”sufficient” 0.77

prob-cnt-error the probability of this tickets belong to category ”copied error” common word count 0.99
prob-cnt-test the probability of this tickets belong to category ”test” common word count 0.65

(also known as residual errors). To reduce the complexity of
GBDT, LightGBM utilize two novel techniques to improve
the algorithm: Gradient-based One-Side Sampling and Ex-
clusive Feature Bundling. This method also utilizes a Leaf-
wise Tree Growth algorithm to optimize the accuracy of the
model and it applies a max depth of the trees to overcome
the over-fitting problem that it might cause. Further, it
optimizes the speed of training by calculating the gain for
each split and uses histogram subtraction. LightGBM is
known for its outstanding performance and relatively good
speed. Thus, many researches applied this method to ma-
chine learning tasks.

The implementation code for LightGBM was provided by
Microsoft[11] in 2013 and we are utilizing its Python li-
brary for modeling process. We applied features and the
label of training data by LightGBM to train a model, and
fit that model on the testing data to predict each question
in those data. By calculating the accuracy of the predic-
tion, we can evaluate the performance of this model. We
ran a series of 20 preliminary experiments to explore the
space of parameters before we settled on the values listed
in Table 6. A list of crucial parameters people generally
need to tune to improve classification model performance is
also in Table 6. Since our goal is to achieve better Accu-
racy, we will tuning toward larger max bin, smaller learn-
ing rate with larger num iterations, larger num leaves and
larger max depth each experiment until the accuracy is not
improving.

2.5.2 SMOTE
During the modeling process, another issue we faced is that
the categories are highly imbalanced. Over half of the ques-
tions are in the Insufficient category and the Copied Er-
ror category contained fewer than one percent of questions.
To address the problem, we applied SMOTE method which
over-samples examples in the minority class. SMOTE [5],
first selects one minority class instance at random, create a
synthetic instance by choosing one of the k nearest neigh-

bors at random and connecting those two instance to form
a line segment in the feature space. We applied this method
with k=5 and oversampling the data to generate the training
datasets and testing datasets for further model training.

2.6 RQ3: Model stability over semesters
For a trained model to be useful however, it must be stable
across semesters or else we suffer from a cold-start problem
[3]. In order to assess the model stability we ran a series
of experiments where we assessed the relative utility of the
models by applying a leave-one-out validation strategy on
a semester-by-semester basis. Showing that all models per-
form at a comparable level provides a strong indication that
the models themselves are consistent and useful, even early
in the semester.

2.7 RQ4: Online Office hour analysis
In Fall 2020, all the office hours were held online, which pro-
vided valuable data about online office hours interactions.
We are very curious to analyze and see whether the stu-
dents behavior changed with the move to online office hours
and if we should keep some online office hours sessions once
we resume in-person instruction.

We first analyzed whether the online session attracted more
students to seek help during office hours. For an in-person
session, students need to physically find the teaching staff
in the office and physically stay in line. For online sessions,
students only need to click the link to join the meeting with
teaching staff. With online office hours, the friction of phys-
ically going to a campus location has been removed. How-
ever, online office hours have additional overhead in creating
a connection between parties and transitioning between stu-
dents. To better understand online office hour help-seeking,
we calculated the average number of tickets per student
and the percentage of students who used office hour in each
semester and compared earlier semesters with in-person of-
fice hours to the Fall 2020 semester with online office hours.

86 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 6: LightGBM common training parameters and the final optimal value after tuning our model

parameter meaning final optimal value
num leaves number of leaves in one tree 1000
max depth Specify the max depth to which tree will grow. 10
max bin max number of bins to bucket the feature values. 150

learning rate learning rate of gradient boost 0.1
num iterations number of boosting iterations to be performed 32

num class number of classes. used only for multi-class classification 5

Table 7: Distribution of labeled questions on those five cat-
egories in all seven semesters

Useless Insufficient Sufficient Copied Error Test
3.01% 69.02% 12.04% 0.10% 15.83%

However, online office hours could have an impact on the effi-
ciency of communication. When teaching staff and students
meet online, it creates more challenges for teaching staff to
indicate problems to the students and to help explain why
their code is failing. Screensharing allows the staff to view
the students’ work, but physical interactions like pointing to
a portion of the screen to indicate which button to click is
lost. The teaching staff member needs to verbally describe
the debugging process and ask students to follow it. There-
fore, we calculated the interaction time and the wait time
for each ticket. The we compare the distribution of inter-
action time and wait time of F20 tickets with the rest of
tickets. Additional overhead is incurred when connecting to
a meeting. There is a lag when a student joins a meeting for
their audio to set up to start the conversation.

3. RESULTS
3.1 RQ1: Categorization Results
Table 7 shows the distribution of question categories across
our dataset. As the figure shows, the most common cate-
gory is Insufficient which occupies over 69 percent of the
questions. The Test category coming next at 15 percent.
Approximately 12 percent of the questions belong to the
Sufficient category while 3 percent were rated as Useless.
Surprisingly, despite comments from the teaching staff, the
least common category was Copied Error with at most 10-
15 questions per semester falling into this group. As our
results show, the students tended to use the system primar-
ily as a way of getting in line and typically provided little
useful information for the teaching staff. These results also
highlight the significance of testing tasks for the assignments
and for students’ help-seeking given the high proportion of
help tickets that are triggered by them.

To assess the stability of these results we also examined the
frequencies within each semester. Figure 3 shows this break-
down. We found that the relative distribution is generally
similar across semesters while the absolute percentages vary.
In more recent semesters the students have authored more
Sufficient tickets than in prior years suggesting that there
has been greater effort by the instructional staff to encour-
age good communication. Yet the persistence of the other
ticket type suggests that automatic classification and triage

Table 8: Average interaction time(in minutes) and standard
deviation of each semester

Useless Insufficient Sufficient
AVG 19.7 21.9 18.3
STD 125.3 237.0 103.6

Copied Error Test
AVG 11.5 24.8
STD 67.5 208.2

remain an important feature.

Table 8 shows the average and standard deviation of inter-
action time (the difference between when the interaction be-
gan and it was closed) of each category across the semesters.
For this calculation we did not consider tickets with an in-
teraction time less than 10 seconds in length or which were
longer than one hour. Our discussion with teaching staff
and the instructors showed that the former were cases that
were never seen as the student set a placeholder but fixed
their problem before their turn came up or changed their
mind, while the latter represents cases where the teaching
staff offered help but did not close the ticket, often until
well after the tutoring session was over. The Useless, In-
sufficient and Sufficient categories averaged around twenty
minutes in length with no meaningful difference in their in-
teraction times. The Copied Error category was slightly
shorter on average which may reflect the specificity of the
students’ problems while the Test category had a slightly
longer average interaction time. This may indicate that this
kind of question is more complex or more substantive rel-
ative to the others. Overall these results indicate that the
amount of information provided does not necessarily affect
the speed with which the issue can be addressed.

3.2 RQ2: Modeling Results
To evaluate the performance of our model, we trained the
model using the first six semesters’ data and tested it on Fall
20 data.The training dataset applied SMOTE method to
oversampling the minority categories and result in each cat-
egory having the same amount(5037) of questions in training
dataset. The model achieved an overall accuracy of 91.8%.
We then conducted a more detailed analysis of the perfor-
mance for precision, recall, and F-score on each question
type. The results are in Table 9. As our results show
the model is relatively balanced across the categories with
the exception of the Test category which had substantially
higher precision and lower recall. This indicates that it was
far more likely for other categories to be erroneously classi-

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 87

Figure 3: Frequency of each category for each semester

fied as Tests when the student submitted other information.
One comment that triggered this error was: ”Jenkins errors”.

Table 9: Precision, Recall and F-measure for each category

Useless Insufficient Sufficient Test AVG
Precision 0.902 0.915 0.913 0.967 0.922

Recall 0.901 0.903 0.905 0.877 0.901
F-measure 0.896 0.894 0.901 0.914 0.901

3.3 RQ3:Leave One out Results
Having shown that the model is relatively balanced across
categories we then analyzed the relative accuracy of the
model on each semester. The results are shown in Table
10. With the exception of Fall 2019, the model achieved
an accuracy of at least 0.91 across each semester. Fall 2019
was the largest and busiest semester in our training dataset
which may indicate that students were more diverse in their
habits or posting behavior but even still we achieved an ac-
curacy of 0.899. In light of these results we believe that our
modeling method is sufficiently stable to assist in processing
unseen semesters without a cold-start problem.

Table 10: Leave one out accuracy result

left-out
semester

F17 S18 F18 S19 F19 S20

accuracy 0.913 0.915 0.908 0.907 0.899 0.912

3.4 RQ4: Online Office Hour Analysis Results
Table 11 shows the various summary measures associated
with office hours interactions for the semesters studied. The

Fall 2020 semester had the highest number of average tickets
per student and the largest percentages of students utilizing
office hours. Additionally, the average tickets per student
in Fall 2020 is nearly twice the average tickets per students
in Fall 2019. This suggests that online office hours supports
increased student participation in office hours interactions.
However, this increment could be explained by other fac-
tors. The data shows that in general more students take
advantage of the help each year. This is consistent with the
increasing class sizes but it is important to note that there
are other patterns as well such as regular dips in each spring.
Overall it serves to highlight the need for better course man-
agement. Secondly, since the course lecture also holds online
in F20, the increase of office hour usage supports a general
expectation that students are facing additional challenges
with online classes however we still believe that online office
hours are a practical means to minimize the cost of help-
seeking and thus encourage more students.

The distribution of interaction times shown in Figure 4 in-
dicates that the teaching staff generally took slightly longer
to support students in Fall 2020 than other semesters. The
median interaction time of Fall 2020 is 8.78 minutes while
other semesters are 8.17 minutes. We believe that this is
caused by the inconvenience of remote instruction and de-
bugging. Additionally, the high percentages of interactions
within one minute in all semesters are usually caused by
teaching staff forgetting to open the tickets when the inter-
action begins. In Fall 2020, the percentage of short tickets
was much higher suggesting the teaching staff were more
likely to make such mistakes because they are working with
both MDH and the online interaction tool. After notify the
student, the teaching staff has to waited in the zoom until

88 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

Table 11: Statistic Analysis for each semester

F17 S18 F18 S19 F19 S20 F20
total tickets 1146 609 1224 860 1650 1401 3452

total students 208 157 259 174 256 191 303
students use office hour 104 63 141 84 158 108 209

average tickets per student 5.51 3.88 4.73 4.94 6.44 7.34 11.40
percentage of students using office hour 50.0% 40.1% 54.4% 48.3% 61.7% 56.5% 69.0%

(a) (b)

Figure 4: Histogram of Interaction time (time difference between open time and close time) for tickets in (a) Regular semesters
and (b)Fall 20

(a) (b)

Figure 5: Histogram of wait time (time difference between open time and raised time) for tickets in (a) Regular semesters
and (b)Fall 20

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 89

the student actually join the zoom meeting to start the in-
teraction. It is very common for the teaching staff just start
the interaction in zoom without open ticket in MDH. The
wait time in Fall 2020 is much longer than regular semesters,
as shown in Figure 5. While we had 37 hours of regular office
hour time each week for 17 TAs and 2 instructors, the in-
creased demand in office hour help-seeking did have impact
on student wait time and throughput. We additionally ob-
served an increase in the number of canceled tickets. While
online office hours lowers barriers for student attendance,
additional resources to support demand are needed to en-
sure timely support. As we transition back to in-person
instruction, the course instructor will continue to offer some
online office hours to support access to help-seeking.

4. CONCLUSIONS
The results of our analysis in RQ1 show that students’ use
of the MDH platform does vary substantially from the de-
velopers’ intentions. Far from using it to write complex help
requests many do use it merely to reserve a place in line. Of
the five categories, our labeling showed that most of the help
tickets submitted lack sufficient detail to be clear what the
student is asking about while those that do provide detail
are most commonly focused on test cases which constitute
a major feature of the class. Contrary to our initial expec-
tations, the students rarely use the system to enter specific
error messages, even if they have them. Thus the teaching
staff have relatively little to go on when triaging questions.
Clearly the proportion of useful information in the tickets
increased in more recent years of the course but insufficient
detail remains the most common feature. Despite this how-
ever, our results also show that there are clear categories of
use that we can build upon to assist teaching staff. And our
results show that it may be possible to extend the system
with minimal automated interventions such as detectors for
word counts or grammar that can be used to scaffold, or
simply enforce, good posting behavior.

Informed by our analysis, we were able to address our mod-
eling questions, RQ2 and RQ3 by developing accurate and
robust classification models that achieved an overall accu-
racy of 92.6% and individual accuracy of 0.899% to 0.91%
. Moreover, the results are robust on a per-category basis.
While these results are not perfect, they show that we have
the potential to use models of this type for effective triage of
student questions as well as to provide scaffolding and im-
mediate guidance for students as they author help tickets.
While such guidance has not been evaluated for its’ educa-
tional impact prior work on self-explanation (e.g. [23]) leads
us to conclude that it may help students to diagnose their
own challenges.

For RQ4, the comparison between an online session semester
and regular semester shows both the strength and weakness
of online office hours. The advantages of hosting office hours
online is that it can encourage students to utilize the help-
seeking resources; However, the large amount of help-seeking
requests can be overloaded for teaching staff and the remote
debugging through screen sharing is clearly less efficient than
face-to-face interactions.

5. LIMITATIONS

There are several limitations to our work that must be ac-
knowledged. While our results span semesters, they are still
taken from a single course with a single instructor. As a
consequence our results are necessarily dependant on the
training that students have received and it is not yet clear
whether this stability will be apparent in models created
from interaction data for other courses, particularly those
that are not as large, do not use the same assignment struc-
ture, or rely so heavily on tests.

Additionally, for our analysis toward online office hour, we
did not consider the influence of teaching lectures online
could raise more challenges for students and thus increase
the usage of office hour. Our conclusion of online office hour
encourage students to seek help is based on the assumption
that there is no significant difference of academic difficulty
between F20 and other semesters.

6. FUTURE WORK
This research can support future instructors in course man-
agement and the automatic categorization for MDH system.
We therefore plan to address these limitations, expand our
dataset, and build upon the models that we have obtained.
First, we plan to conduct a more robust process of tagging
and classifying our tickets with the goal of assessing the sta-
bility of our categories with other evaluators and of identify-
ing other important ways of grouping the tickets themselves.

Second, we will extend My Digital Hand to take advantage
of these trained models in supporting both the students and
instructors. We will support instructors by providing auto-
matic triage approaches that can help to guide their plan-
ning. And we will use automated guidance to prompt stu-
dents to produce better tickets in the first place.

Third, we also plan to investigate other aspects of the office
hours that are captured in the MDH data. These include:
whether students in the same office hours post similar tick-
ets, thus highlighting the potential of peer feedback; and the
presence or absence of serial ticketers; that is students who
keep multiple follow-up tickets going to monopolize support.
We plan to build models for these features with the goal of
understanding how help time is being used and by extension
how to better coordinate limited support.

Finally, we plan to apply our models to provide automated
scaffolding for students when they provide insufficient com-
ments or errors. Specifically, we will integrate this model
to the MDH system and every time a student raise a hand,
we will use our model to predict the question category. If
their description is insufficient or useless, then we can im-
mediately notify them to revise it. This will help students
to better frame their questions, and it will help the teaching
staff can be better prepared to answer the students’ ques-
tion. This initial filter can be followed by additional models
to suggest debugging steps or common answers based upon
their revised question.

7. ACKNOWLEDGEMENTS
This research was supported by NSF #1821475 “Concert:
Coordinating Educational Interactions for Student Engage-
ment” Collin F. Lynch, Tiffany Barnes, and Sarah Heckman
(Co-PIs).

90 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

References
[1] Vincent Aleven and Kenneth R Koedinger. “Limita-

tions of student control: Do students know when they
need help?” In: International conference on intelligent
tutoring systems. Springer. 2000, pp. 292–303.

[2] Computing Research Association et al. Generation CS:
Computer Science Undergraduate Enrollments Surge
Since 2006.(2017). 2017.

[3] Tiffany Barnes and John C. Stamper. “Toward Auto-
matic Hint Generation for Logic Proof Tutoring Using
Historical Student Data”. In: Intelligent Tutoring Sys-
tems, 9th International Conference, ITS 2008, Mon-
treal, Canada, June 23-27, 2008, Proceedings. Ed. by
Beverly Park Woolf et al. Vol. 5091. Lecture Notes in
Computer Science. Springer, 2008, pp. 373–382. doi:
10.1007/978- 3- 540- 69132- 7_41. url: https:

//doi.org/10.1007/978-3-540-69132-7%5C_41.

[4] Kenneth J. Berry and Jr. Paul W. Mielke. “A Gen-
eralization of Cohen’s Kappa Agreement Measure to
Interval Measurement and Multiple Raters”. In: Edu-
cational and Psychological Measurement 48.4 (1988),
pp. 921–933. doi: 10.1177/0013164488484007.

[5] N. V. Chawla et al.“SMOTE: Synthetic Minority Over-
sampling Technique”. In: Journal of Artificial Intel-
ligence Research 16 (June 2002), pp. 321–357. issn:
1076-9757. doi: 10.1613/jair.953.

[6] csc 216 software development fundamentals ,Engineer-
ing Online, NC state university. June 2020. url: https:
//www.engineeringonline.ncsu.edu/course/csc-

216-software-development-fundamentals/.

[7] Zhijiang Dong, Cen Li, and Roland H. Untch. “Build
Peer Support Network for CS2 Students”. In: Pro-
ceedings of the 49th Annual Southeast Regional Con-
ference. ACM-SE ’11. Kennesaw, Georgia: Associa-
tion for Computing Machinery, 2011, pp. 42–47. isbn:
9781450306867. doi: 10.1145/2016039.2016058.

[8] Mark Guzdial. “Cutting the Wait for CS Advice”. In:
Commun. ACM 62.8 (July 2019), pp. 12–13. issn:
0001-0782. doi: 10.1145/3339456.

[9] Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. The elements of statistical learning: data mining,
inference and prediction. 2nd ed. Springer, 2009. url:
http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

[10] Jeremy Johnson et al. “Virtual Office Hours Using
TechTalk, a Web-Based Mathematical Collaboration
Tool”. In: Proceedings of the 6th Annual Conference on
the Teaching of Computing and the 3rd Annual Con-
ference on Integrating Technology into Computer Sci-
ence Education: Changing the Delivery of Computer
Science Education. ITiCSE ’98. Dublin City Univ.,
Ireland: Association for Computing Machinery, 1998,
pp. 130–133. isbn: 1581130007. doi: 10.1145/282991.
283094.

[11] Guolin Ke et al. “LightGBM: A Highly Efficient Gra-
dient Boosting Decision Tree”. In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon et
al. Curran Associates, Inc., 2017, pp. 3146–3154. url:
http://papers.nips.cc/paper/6907-lightgbm-a-

highly-efficient-gradient-boosting-decision-

tree.pdf.

[12] Kevin Lin. “A Berkeley View of Teaching CS at Scale”.
In: arXiv preprint arXiv:2005.07081 (2020).

[13] Tommy MacWilliam and David J. Malan. “Scaling Of-
fice Hours: Managing Live Q&A in Large Courses”.
In: J. Comput. Sci. Coll. 28.3 (Jan. 2013), pp. 94–101.
issn: 1937-4771.

[14] David J. Malan. “Virtualizing Office Hours in CS 50”.
In: Proceedings of the 14th Annual ACM SIGCSE Con-
ference on Innovation and Technology in Computer
Science Education. ITiCSE ’09. Paris, France: Asso-
ciation for Computing Machinery, 2009, pp. 303–307.
isbn: 9781605583815. doi: 10.1145/1562877.1562969.

[15] Engineering National Academies of Sciences, Medicine,
et al. Assessing and responding to the growth of com-
puter science undergraduate enrollments. National Academies
Press, 2018.

[16] E. Patitsas, M. Craig, and S. Easterbrook. “How CS
departments are managing the enrolment boom: Trou-
bling implications for diversity”. In: 2016 Research on
Equity and Sustained Participation in Engineering, Com-
puting, and Technology (RESPECT). 2016, pp. 1–2.

[17] Leo Porter et al. “Developing Course-Level Learning
Goals for Basic Data Structures in CS2”. In: Proceed-
ings of the 49th ACM Technical Symposium on Com-
puter Science Education. SIGCSE ’18. Baltimore, Mary-
land, USA: Association for Computing Machinery, 2018,
pp. 858–863. isbn: 9781450351034. doi: 10.1145/3159450.
3159457.

[18] Thomas W. Price et al. “Factors Influencing Students’
Help-Seeking Behavior While Programming with Hu-
man and Computer Tutors”. In: Proceedings of the
2017 ACM Conference on International Computing
Education Research. ICER ’17. Tacoma, Washington,
USA: Association for Computing Machinery, 2017, pp. 127–
135. isbn: 9781450349680. doi: 10 . 1145 / 3105726 .

3106179.

[19] J. Ramos. “Using TF-IDF to Determine Word Rele-
vance in Document Queries”. In: 2003.

[20] Yanyan Ren, Shriram Krishnamurthi, and Kathi Fisler.
“What Help Do Students Seek in TA Office Hours?”
In: Proceedings of the 2019 ACM Conference on In-
ternational Computing Education Research. ICER ’19.
Toronto ON, Canada: Association for Computing Ma-
chinery, 2019, pp. 41–49. isbn: 9781450361859. doi:
10.1145/3291279.3339418.

[21] Aaron J. Smith et al. “My Digital Hand: A Tool for
Scaling Up One-to-One Peer Teaching in Support of
Computer Science Learning”. In: Proceedings of the
2017 ACM SIGCSE Technical Symposium on Com-
puter Science Education. SIGCSE ’17. Seattle, Wash-
ington, USA: Association for Computing Machinery,
2017, pp. 549–554. isbn: 9781450346986. doi: 10.1145/
3017680.3017800.

[22] Mickey Vellukunnel et al. “Deconstructing the Discus-
sion Forum: Student Questions and Computer Science
Learning”. In: Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education.
SIGCSE ’17. Seattle, Washington, USA: Association
for Computing Machinery, 2017, pp. 603–608. isbn:
9781450346986. doi: 10.1145/3017680.3017745.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 91

[23] Arto Vihavainen, Craig S. Miller, and Amber Settle.
“Benefits of Self-Explanation in Introductory Program-
ming”. In: SIGCSE ’15. Kansas City, Missouri, USA:
Association for Computing Machinery, 2015, pp. 284–
289. isbn: 9781450329668. doi: 10 . 1145 / 2676723 .

2677260.

[24] Yiqiao Xu and Collin F Lynch. “What do you want?
Applying deep learning models to detect question top-
ics in MOOC forum posts?” In:

92 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)

