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Abstract. In the present study, we first examined the formality and use of aca-
demic language in students’ scientific explanations in the form of written claim, 
written evidence, and written reasoning (CER). Middle school students con-
structed explanations within an intelligent tutoring system after completing a 
virtual science inquiry investigation. Results showed that students tended to use 
more formal, academic language when constructing their evidence and reason-
ing statements. Further analyses showed that both the number of words and 
pronouns used by students were significant predictors for the quality of stu-
dents’ written claim, evidence, and reasoning statements. The quality of claim 
statements was significantly reduced by the lexical density (type-token ratio) of 
student writing, but quality of reasoning significantly increased with lexical 
density. The quality of evidence statements increased significantly with the in-
clusion of causal and temporal relationships, verb overlap as captured by latent 
semantic analysis, and inclusion of descriptive writing. These findings indicate 
that students used language differently when constructing their claim, evidence, 
and reasoning statements. Implications for instruction and scaffolding within in-
telligent tutoring systems are discussed in terms of how to increase students’ 
knowledge of and use of academic language.  
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1 Introduction 

The Common Core State Standards for English Language Arts [2] require that stu-
dents develop academic writing skills. This requirement is expanded upon in the Col-
lege and Career Readiness Anchor Standards for Reading and writing in Grades K-12 
[23]. The specific abilities outlined in the standards include “write arguments to sup-
port claims in an analysis of substantive topics or texts, using valid reasoning and 
relevant and sufficient evidence” [23, p. 18]. Moreover, the CCSS-ELA demands that 
students use academic discourse in their writing. As of 2011, however, the National 
Assessment of Educational Progress (NAEP) in writing [22] reported that secondary 
students face considerable challenges in meeting these standards. Unfortunately, there 
is little research on secondary students’ academic language use in the context of sci-
ence inquiry.  

Currently, the instruction and evaluation of academic writing in areas such as sci-
ence has focused on students’ understanding of scientific content and processes [30]. 
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With the development of automated scoring tools, researchers have the potential to 
examine the role of academic language in student writing in science inquiry. Prior 
studies, however, have primarily used linguistic features to automatically score the 
quality of student writing [3, 19, 29] rather than examining the use of academic lan-
guage. Therefore, the relationship between students’ writing in the context of science 
and use of academic language required by the CCSS-ELA have yet to be investigated.   

In this study, we examined students’ academic language use within scientific ex-
planations in the format of claim, evidence, and reasoning using the automated text 
analysis tool, Coh-Metrix [18]. Coh-Metrix automatically scores 100 linguistic fea-
tures of written text, which is extremely valuable when examining multiple compo-
nents of student language use. This study contributes to research on scientific expla-
nations, as well as research on students’ use of academic writing by addressing the 
gap in research on the relationship between students’ academic language use and 
writing performance in the context of science inquiry.  

This paper has four sections. First, we briefly review studies on academic lan-
guage, the use of the automated text analysis tool, Coh-Metrix, and scientific explana-
tions. Second, we describe the materials and measures used in the present study. 
Third, we display results and discuss the findings in terms of the overall level of aca-
demic language use and the individual language features used in students’ writing. 
Fourth, we present implications for teachers and researchers, as well as how the re-
sults of the present study contribute to instruction and scaffolding of scientific writing 
within the intelligent tutoring system, Inq-ITS. 

1.1 Academic Language 

Academic language, also called scientific language, refers to the use of language in 
scholarly contexts (the classroom, textbooks, etc.) that is often more sophisticated and 
complex than language used in common day-to-day interactions [26-27]. Snow and 
Uccelli [26] developed a comprehensive pragmatic-based framework of academic 
language that groups linguistic features according to: interpersonal stance (e.g., in-
formational or detached versus conversational), information load (e.g., concise infor-
mation versus redundant repetition), organization of information (e.g., embedded 
clauses, connective metadiscourse markers), lexical choices (e.g., academic vocabu-
lary versus colloquial expressions), and representational congruence (e.g., grammati-
cal incongruence, such as nominalization, passive voice). In addition to these linguis-
tic features, they included three core domains of cognitive accomplishment involved 
in academic-language performance: genre mastery (e.g., narration versus explana-
tion), command of reasoning/argumentative strategies (e.g., ways of argumentation 
and persuasion), and disciplinary knowledge taxonomies (e.g., facts versus construct-
ed knowledge).  
 This pragmatic-based framework provided a more comprehensive view and some 
possible measures for each level of the framework. Unfortunately, they failed to pro-
vide an automated text analysis tool to extract these linguistic features for educators 
and researchers. In summary, the current research on academic language still focuses 
on one or two shallow linguistic levels, such as lexical level and/or syntactic level [4-
6]. Some measures were manually analyzed, such as the number of embedded clauses 
[5]. Even though this comprehensive framework exists and has been applied through 



 

manual efforts, it is lacking a corresponding automated tool that would lessen the 
amount of time and effort spent on text analysis. Both a panoramic theoretical frame-
work and a related automated text analysis tool are needed to enable better research 
on language use. 
 Graesser and McNamara [11] developed another framework, used primarily for 
reading comprehension and writing, to analyze texts on many different levels. The 
multilevel components of the framework included the: surface code (e.g., words, syn-
tax), explicit textbase (e.g., overlapping of propositions and idea units), situation 
model (e.g., causal, intentional, temporal, relationships), the genre (e.g., narrative, 
expository), rhetorical structure, and pragmatic communication level.  While utilizing 
different labels, there is significant overlap between this framework and Snow and 
Ucelli’s [26] framework. Both frameworks cover multiple textual levels, including 
words (e.g., pronouns, concrete/abstract words, lexical density/diversity), syntax (e.g., 
embedded words, phrases, and clauses), referential cohesion (e.g., overlapping of 
propositions and ideas), deep cohesion (e.g., cohesion represented by connectives), 
and genre (narrative versus informational). Based on their multilevel framework, 
Graesser and McNamara [11] developed an automated text analysis tool, Coh-Metrix. 

1.2 Automated Text Analysis Tool: Coh-Metrix 

Coh-Metrix (cohmetrix.com) is a computer-based tool that automates many language- 
and text-processing mechanisms for hundreds of measures at multiple levels of lin-
guistic analysis, including word characteristics, sentence characteristics, and discourse 
relationships between ideas [18]. Specifically, Coh-Metrix (3.0) measures include 
descriptive (e.g., the number of syllables, words, sentences,), word information (e.g., 
incidence of noun, word frequency, concreteness, imageability), syntactic pattern 
density (e.g., density of noun phrase), syntactic complexity (e.g., left embedded words 
before main verbs), connectives (e.g., causal, temporal), lexical density (e.g., 
type/token ratio), latent semantic analysis, referential cohesion (e.g., noun overlap, 
argument overlap), and readability (e.g., Flesch-Kincaid grade level). Examination of 
these individual indices can often provide valuable information in addition to examin-
ing whole dimensions. For instance, Wiley et al. [29] found that cohesion, causality, 
and lexical diversity were correlated with the quality of students’ explanatory science 
essays, but only lexical diversity was a significant predictor. Li, Graesser, and Cai 
[15] used Coh-Metrix individual indices to automatically evaluate the quality of 
summaries after reading scientific texts.  

Coh-Metrix also includes five major components identified through a principal 
component analysis performed on 52 individual indices [18]. These five dimensions 
include: word concreteness (concrete words can evoke mental images and are thus 
assumed to be more meaningful to the writer relative to abstract words), syntactic 
simplicity (sentences are constructed with few words and simple, familiar syntactic 
structures), narrativity (narrative texts tell stories that are familiar to the reader and 
are closely associated with everyday oral conversation), referential cohesion (high-
cohesion writing contains words and ideas that overlap across sentences and the text 
as a whole, forming threads that connect the explicit textbase), and deep cohesion 
(causal, intentional, and other types of connectives are taken as evidence that writing 
reflects a more coherent and deeper understanding)[18].  



The five Coh-Metrix dimensions can be examined together in order to uncover in-
formation about the overall language style of a text, also referred to as formality 
[12,13]. Text formality provides information on the overall difficulty of a piece of 
writing based on the structure and content of the text. Specifically, formality increases 
with more abstract words, syntactic complexity, high cohesion, and more informa-
tional text. Li et al. [13] found that formality as captured by the five Coh-Metrix di-
mensions was better able to distinguish between text difficulty relative to a more tra-
ditional index of formality measured at the surface language level [15]. Overall, Coh-
Metrix can provide valuable information related to student writing and language use 
based on the individual indices, individual dimensions, and comprehensive measure 
of formality.  

1.3 Scientific Explanations 

Scientific explanations have been used to evaluate students’ science inquiry compe-
tencies for analyzing and interpreting data and engaging in argument from evidence 
[24]. Researchers have assessed written scientific explanations in various forms in-
cluding within the structure of claim, evidence, and reasoning (CER) [10, 21, 25]. The 
CER format is based on a modified version of Toulmin’s [28] framework for argu-
mentation in which students make a claim, provide evidence for their claim, and pro-
vide a justification for how their evidence supports their claim. CER has traditionally 
been scored according to the accuracy of content, as well as the completeness of 
claim, sufficient and appropriate use of evidence, and justification for how the evi-
dence supports the claim [20, 16, 17, 25]. To date, however, no studies have compre-
hensively examined students’ claims, evidence, and reasoning statements in terms of 
academic language used within each component. It is necessary to address this gap in 
the literature, as student performance on each component of CER has been found to 
vary according to content quality [20]. It would be valuable to understand how or if 
language use relates to this variation in performance for each component of CER. 
Also, even though the content may vary across claim, evidence, and reasoning state-
ments, students should still use consistent academic language across each component.   

This study examined students’ writing of claim, evidence, and reasoning state-
ments constructed within an intelligent tutoring system according to formality and 
academic language use. Specifically, this study investigated two research questions: 

RQ1: To what extent do students use academic (formal) language to write claim, 
evidence, and reasoning, respectively? 

RQ2: What specific language and discourse features are actually used in stu-
dents’ claim, evidence, and reasoning, respectively? 

The first question examines whether students used academic language when they 
wrote their claim, evidence, or reasoning statements. It is important that students use 
formal language at the appropriate grade level for each of these statements. Students’ 
claim, evidence, and reasoning writing should also meet the academic language re-
quirements for each component of formality (i.e., high levels of deep cohesion, etc.) 
[2]. 

The second question investigates which specific Coh-Metrix indices predict claim, 
evidence, and reasoning in order to determine the features that contribute to the con-
struction of high quality writing for each component of C, E, and R [16-17]. The 



 

measures of academic language and the Coh-Metrix indices that were used in this 
study are reported in detail in the Methods section.  

2 Method 

2.1 Participants and Materials 

The participants were 293 students in grades seventh through eighth from public mid-
dle schools located in Massachusetts, Minnesota, or Oregon. All participants had 
completed a Density Virtual Lab in Inq-ITS, an inquiry intelligent tutoring system [7-
9]. Inq-ITS virtual labs are for science topics in the domains of Life, Earth, and Phys-
ical Science. Inq-ITS uses machine learned detectors to automatically score students’ 
inquiry practice competencies as they engage in virtual labs [7]. Each virtual lab in-
volves three to six activities in which students conduct an investigation to address a 
directed question or goal.  

The Density Virtual Lab contains three different activities. The data used in the 
present study is from the Density, Shape of the Container activity. The goal of the 
Shape of the Container activity was to “determine how the shape of the container 
affects the density of the liquid.” The three possible container shapes included wide, 
narrow, or square. In the first stage of the virtual lab, students formed a hypothesis as 
to whether the density of a liquid would change or not when the container was 
changed. Students then manipulated a simulation to determine whether the shape of a 
container impacted a liquid’s density. Data from the students’ trials were automatical-
ly recorded and stored in a data table. In the third stage, students interpreted the data 
from their data table, made a claim regarding the relationship between the density of a 
liquid and the shape of a container using a widget (dropdown menu), and selected 
data to warrant their claim using a separate widget (clickable buttons). In the final 
stage of the activity, students responded to each of the following three open response 
prompts (i.e. CER) in order to explain the findings from their investigation: write a 
sentence that states what you found out about the scientific question you just investi-
gated (Claim), provide and describe scientific evidence from your data table that sup-
ports (or refutes) your claim (Evidence), and explain why your evidence supports 
your claim (Reasoning).  

The present study only uses student data from the final stage of the Shape of the 
Container Lab. Specifically, the data consisted of students’ written claim, evidence, 
and reasoning statements. Even though 293 students completed the activity, some 
students wrote gibberish responses for their claim, evidence, or reasoning. These gib-
berish responses were strings of letters such as “jhhhhhhhhhhhh” or “eciu3ghf.” Gib-
berish responses were removed for analyses resulting in: 288 written claim state-
ments, 288 written evidence statements, and 287 written reasoning statements. 

2.2 Measures 

Scientific Explanations of Claim, Evidence, and Reasoning. Students’ written sci-
entific explanations from the final stage of the Density Shape of the Container Activi-



ty in the form of a claim, evidence, and reasoning were scored according to fine-
grained rubrics developed by Li et al. [16-17].  

Students’ written claims were scored according to four sub-components, including 
identifying: the correct independent variable (IV; i.e. shape of the container), the spe-
cific shapes of the containers (IVR; i.e. narrow, square, or wide), the correct depend-
ent variable (DV; i.e. density), and whether the density was affected by changing the 
container shape (DVR; i.e. the density stayed the same). Each subcomponent of claim 
was worth a maximum of 1 point. Students could receive a maximum total score of 4 
points for claim. 

Written evidence statements were scored based on three sub-components of: de-
scribing at least two relevant trials (Sufficiency), stating numeric data for the mass 
and volume of a liquid (Appropriate Mass and Volume), and stating numeric data for 
the density of a liquid (Appropriate Density). Sufficiency was scored out of 2 points. 
Appropriate Mass and Volume, and Appropriate Density were scored out of 1 point. 
Students could receive a maximum total score of 4 points for evidence. 

Students’ written reasoning statements were scored according to five sub-
components of: interpreting whether or not the data described in the evidence sup-
ports (or refutes) the claim (Connection), describing the IV data and how it was 
changed (Data IV/IVR), describing the DV (Data DV), describing and interpreting 
data for the DV (Data DVR), and backing up conclusions with a scientific theory 
(Theory). The subcomponent of Theory was scored out of 2 points. Sub-components 
of Connection, Data IV/IVR, Data DV, and Data DVR were scored out of 1 point. 
Students could receive a maximum total score of 6 points for reasoning. 

Academic Language. Academic language of students’ written claim statements, writ-
ten evidence statements, and written reasoning statements was measured by Coh-
Metrix formality (12-14, 16-17]. Formality increases with word abstractness, syntac-
tic complexity, expository texts, and high referential cohesion and deep cohesion. The 
formula used to calculate formality is listed below: 

Formality = (deep cohesion + referential cohesion − narrativity − word con-
creteness − syntactic simplicity)/5              (1)  

Coh-Metrix formality uses the reference corpus TASA (Touchstone Applied Science 
Associates, now renamed Questar Assessment Inc.) [18], with numbers higher than 0 
representing more formal discourse, and numbers below 0 representing more informal 
discourse. Graesser et al. [12] compared formality in three genres across grades K-12 
using 37,650 texts in the TASA corpus and displayed that formality of science read-
ing for middle school students (Grade 6-8) was slightly below 0. This implies that if 
student formality in writing reaches 0, their use of academic language is equivalent to 
the academic language used in their informational reading materials. 

Individual Coh-Metrix Indices. Students’ actual use of language for written claim, 
written evidence, and written reasoning was measured using individual linguistic 
features from Coh-Metrix. Coh-Metrix captures and evaluates over 100 individual 
indices. Not all indices were used to evaluate students’ written claim, evidence, and 
reasoning statements, as there were too few data to apply such a large number of indi-
ces. In order to avoid overfitting of our regression model as a result of the small num-



 

ber of data (N = 285-288) available in the present study, we followed two regression 
assumptions. First, if the correlation between each pair of Coh-Metrix indices exceed-
ed the limit of the assumption (less than .70), we removed one variable. We followed 
the rule that if one index, such as sentence count (the number of sentences in writing) 
was highly correlated with more than one index, we kept sentence count, but removed 
other variables. If two indices were highly correlated, we kept the one that was used 
as a predictor in previous studies. Second, we removed indices whose correlations 
with the dependent variable were smaller than .30.  

The remaining independent indices for written claim scores were: lexical diversity 
measured by the type-token ratio calculated by the proportion of unique words out of 
all words (LDTTRa), the density of preposition phrases (DRPP), the incidence of 
pronouns (WRDPRO), the incidence of first person singular pronouns (WRDPRP1s), 
word frequency based on the CELEX word data base (WRDFRQc),  the mean of pol-
ysemy for content words (WRDPOLc), and the Flesch-Kincaid grade level 
(RDFKGL). The independent indices for written evidence scores were: the number of 
sentences (DESSC), the average number of words per sentence (DESSL), the standard 
deviation of the average number of words per sentence (DESSLd), LDTTRa, the inci-
dence of causal verbs and particles (SMCAUSvp), verb overlap based on latent se-
mantic analysis (SMCAUSlsa), temporal cohesion of the text (SMTEMP), the syntac-
tic simplicity based on the number of words that occur before the main verb 
(SYNLE), syntactic simplicity based on the average number of adjacent sentences 
with similar syntactic structures (SYNSTRUTa), WRDPRO, the average number of 
visually descriptive words (WRDIMGc), and the Coh-Metrix readability level 
(RDL2). The indices for written reasoning scores were: DESSC, DESSL, LDTTRa, a 
measure of textual lexical diversity based on the MTLD word data base (LDMTLD), 
the average number of modifiers per noun phrase (SYNNP), and WRDPRO [Graesser 
et al., 2011; McNamara et al., 2012]. 

3 Findings and Discussion 

3.1 Formality of Claim, Evidence, and Reasoning 

To answer the first research question, a One-Way ANOVA was performed to com-
pare the formality of language used in students’ claim, evidence, and reasoning state-
ments. An analysis of variance showed a significant effect of explanation component 
on formality, F(2, 860) =27.09, p < 0.001, ƞ2 = 0.06. Post hoc analyses using the Bon-
ferroni criterion for significance with adjustment for multiple comparisons indicated 
that claim formality (M = -.33, SD = .50) was significantly lower than evidence for-
mality (M = -.03, SD = .82, p < .001, Cohen’s d = .43) and reasoning formality (M = 
.08, SD = .72, p < .001, Cohen’s d = .67). No significant difference was found be-
tween evidence formality and reasoning formality.  

These findings indicate that students used more academic language when they con-
structed their evidence and reasoning statements relative to their claim statements. 
The average formality score for evidence and reasoning was about 0 points and the 
average claim formality score was about -.33 points. Graesser et al [12] indicated that 
the formality score of science reading texts for middle school students (Grade 6-8) 



was slightly below 0, whereas a formality score around -.30 points was for grades 2-3. 
Therefore, when the middle school students (grades 7-8) in the present study generat-
ed evidence and reasoning, they used academic language to the same extent encoun-
tered in their formal science readings (i.e. textbooks). Students were less likely, how-
ever to use academic language when constructing their claims relative to evidence and 
reasoning. Claims only involve stating a conclusion, whereas evidence involves de-
scribing at least two pieces of data and reasoning involves using data to support a 
claim. This difference between explanatory components may lead to different levels 
of formality between claim and evidence and reasoning. 

A simple, stepwise linear regression with 10-fold cross-validation was calculated 
to predict the written claim statement scores based on the formality scores. Results 
showed that formality was not a significant predictor for written claim scores. The 
same regression analysis was conducted for the written evidence scores and was sig-
nificant with an R2 of 0.119. The same regression analysis for the written reasoning 
scores was also significant with an R2 of 0.005. The predicted scores of written evi-
dence and written reasoning based on formality are displayed in equations (2) and (3), 
respectively. These findings further indicated that the more formal language that stu-
dents used when they generated evidence and reasoning, the higher the scores they 
received based on content. 
 Written evidence scores = 1.33 + 0.55 × Formality           (2) 

Written reasoning scores = 2.45 + 0.29 × Formality          (3) 
 Formality scores were computed by five major Coh-Metrix dimensions (word con-
creteness, syntactic simplicity, referential cohesion, deep cohesion, and narrativity). 
To further examine the extent to which student language differed across claim, evi-
dence, and reasoning, three multiple linear regressions with stepwise 10-fold cross-
validation were performed. Specifically, each of the five Coh-Metrix dimensions was 
used to predict scores on written claim, evidence, and reasoning, respectively. A sig-
nificant regression equation for written claim was found with an R2 of 0.073. Syntac-
tic Simplicity, Deep Cohesion, and Narrativity were significant predictors, but Refer-
ential Cohesion and Word Concreteness were not. Results showed a significant re-
gression equation with an R2 of 0.273. Significant predictors for evidence were Syn-
tactic Simplicity, Referential Cohesion, Deep Cohesion, and Narrativity, but not 
Word Concreteness. Results of the analyses for reasoning showed the same signifi-
cant predictors as evidence and a significant regression equation with an R2 of 0.169. 
The predicted scores of written claim, written evidence, and written reasoning based 
on the five Coh-Metrix dimensions are displayed in equations (4), (5), and (6), respec-
tively. 

Written claim scores = 2.61 – 0.30 ×  Syntactic Simplicity – 0.07 × Deep Cohe-
sion – 0.10 × Narrativity                  (4) 

Written evidence scores = 0.84 – 0.29 × Syntactic Simplicity + 0.23 × Referen-
tial Cohesion + 0.09 × Deep Cohesion – 0.15 × Narrativity      
                (5) 

Written reasoning scores = 2.33 – 0.44 × Syntactic Simplicity + 0.12 × Referen-
tial Cohesion + 0.09 × Deep Cohesion – 0.11 × Narrativity      
                (6)  

Findings from these find-grained analyses were consistent with those from anal-
yses for overall formality. Students’ quality of written evidence and reasoning in-



 

creased with more complex sentence structures, cohesion, and exposito-
ry/informational writing style. Word concreteness was not a significant predictor of 
evidence or reasoning performance because the density activity did not involve many 
extremely abstract or concrete words. Written claim showed a different pattern rela-
tive to evidence and reasoning. Students’ quality of written claim increased with more 
complex sentence structures and expository style, but less deep cohesion.  

The finding that the quality of claim decreases with high deep cohesion is contra-
dictory to written evidence and written reasoning. We examined the written claims 
where students achieved high scores on claim content, but low scores on the dimen-
sion of deep cohesion. We found that claims that received low content scores con-
tained some causal connectives (e.g., so, cause), which dramatically increased the 
scores of deep cohesion to above 6.00 points (e.g. “Cause I said so and it worked”), 
even though the content in these claims was inaccurate, irrelevant, or mistakenly 
spelt. On the other hand, we examined written claims that received high scores and 
found that students did not specify the causal relationship between the IV and DV 
(e.g., “i found out that the shape of container going from narrow to wide doesn't 
change its density”), which led to low deep cohesion scores (less than −4.00 points). 
We found that only 11% (N = 33) of students’ written claims (N = 288) showed high 
Deep Cohesion above the average score of 0 points. These findings reveal that stu-
dents were able to generally articulate the relationship between the IV and DV in their 
claims, but did not use causal connectives to state this causal mechanism. Students 
need to be instructed on how to use appropriate causal connectives in order to effec-
tively and explicitly express causal relationships when they generate a claim. It is 
important that claims involve causal language as used in evidence and reasoning, as 
claims specifically involve drawing a conclusion in regard to the relationship between 
variables.  

3.2 Student Language use for Claim, Evidence, and Reasoning 

In order to investigate the second research question, individual Coh-Metrix indices 
were used to predict students’ writing performance on claim, evidence, and reasoning, 
respectively. The process used to extract individual indices was based on regression 
assumptions, as detailed in the Individual Coh-Metrix Indices measures section.  

A multiple linear regression with stepwise 10-fold cross-validation was used to 
predict written claim performance based on seven individual Coh-Metrix indices 
(LDTTRa, DRPP, WRDPRO, WRDPRP1s, WRDFRQc, WRDPOLc, and RDFKGL). 
Five indices were significant predictors; DRPP and WRDPOLc were not significant. 
A significant regression model was found with an R2 of 0.332. The same analyses for 
written evidence were conducted based on 12 individual Coh-Metrix indices (DESSC, 
DESSL, DESSLd, LDTTRa, SMCAUSvp, SMCAUSlsa, SMTEMP, SYNLE, SYN-
STRUTa, WRDPRO, WRDIMGc, and RDL2). Eight indices were significant predic-
tors; DESSLd, LDTTRa, SyNSTRUTa, and RDL2 were not significant. A significant 
regression equation was found with an R2 of 0.44. The same analyses for written rea-
soning were performed based on six individual Coh-Metrix indices (DESSC, DESSL, 
LDTTRa, LDMTLD, SYNNP, and WRDPRO). Five indices were significant predic-
tors; LDTTRa was not significant. A significant regression equation was found with 
an R2 of 0.52. The predicted scores of written claim, written evidence, and written 



reasoning based on Coh-Metrix individual indices are displayed in equation (7), (8), 
and (9), respectively. 

Written claim scores = 6.32 – 2.35 ×  LDTTRa – 0.002 × WRDPRO – 0.004 × 
WRDPRP1s – 0.89 × WRDFRQc + 0.11 × RDFKGL        (7) 

Written evidence scores = – 0.38 + 0.23 × DESSC + 0.04 × DESSL – 0.001 × 
SMCAUSvp + 0.90 × SMCAUSlsa + 0.26 × SMTEMP + 0.03 × SYNLE – 
0.001 × WRDPRO + 0.002 × WRDIMGc            (8) 

Written reasoning scores = – 0.29 + 0.74 × DESSC + 0.08 × DESSL + 0.01 × 
LDMTLD + 0.65 × SYNNP – 0.003 × WRDPRO          (9) 

These findings indicated that the use of pronouns (WRDPRO) negatively predicted 
claim, evidence, and reasoning. Therefore high quality claim, evidence, and reasoning 
statements contained less pronouns. Pronoun use has been found to be highly corre-
lated with conversational language [1, 15], so the minimal use of pronouns in high 
quality CER implies that students were using more formal language. The following is 
an example of a claim that received a full score for quality and did not contain any 
pronouns: “when the shape was changed from narrow to wide and eventually square, 
the density of the liquid stayed the same.” Here is an example of a claim that received 
0 points and included the pronoun “it”: “It didn't support my answer.” For this claim, 
the reader cannot determine what “it” means without additional context. 

Other word information was also found to predict claim performance, but not per-
formance on evidence or reasoning. Specifically, when students used less first-person 
singular pronouns (WRDPRP1s) and less frequently used words (WRDFRQc), their 
claim scores were higher. This phenomenon was not found in either evidence or rea-
soning. It is likely that students more often used structures in claims such as “I 
found”, “my claim/hypothesis”, and “I changed”, compared to in their evidence and 
reasoning. Even though this pattern was not found in evidence, the use of content 
words that evoked mental images (WRDIMGc) increased the quality of evidence. The 
following two evidence statements demonstrate the value of including descriptive 
language: “When using the oil in both containers (wide and narrow) the mass equaled 
425 and the volume equaled 500, it gives you 0.85 for the density, there for the density 
remains the same,” and “My experiment proves my evidence.” The former had an 
extremely high WRDIMGc score relative to the latter, which received only 0 points. It 
is hard to obtain any useful information from the latter example, relative to the first 
example. 

Scores of evidence and reasoning increased with both the number of sentences 
(DESSC) and the number of words (DESSL). However, these two features were not 
selected as predictors of claim performance because written claims are usually gener-
ated within one sentence. Thus, the number of sentences (DESSC) had a low correla-
tion with written claim (r = 0.003) and DESSL was not selected because it was highly 
correlated with the Flesch-Kincaid Grade Level (RDFKGL) (r = 0.745), which was 
partially computed based on the mean number of words per sentence. Thus, RDFKGL 
was used to present DESSL and RDFKGL was a significant predictor of claim per-
formance. For this reason, we could conclude that number of words was a significant 
predictor for claim, evidence, and reasoning. 

Lexical density significantly predicted claim and reasoning, but not evidence. 
However, the method used to compute lexical density for claim was different from 
reasoning. Lexical density for claim was computed by the type-token ration 



 

(LDTTRa), namely the number of unique words in writing (i.e., types) divided by the 
overall number of words (i.e., tokens) in writing. The measure of Textural Lexical 
Density (LDMTLD) used to predict reasoning was computed based on the mean 
length of sequential word strings in writing that maintained a given type-token ratio. 
LDTTRa was a Lexical density measure that was entered as a predictor for reasoning, 
but was not a significant predictor based on the step-wise regression procedure. 
LDTTRa was also used as a predictor for evidence, but it could not significantly pre-
dict evidence. One possible explanation is that its function may be counterbalanced by 
other variables, such as syntactic complexity and the situation model. 

Additionally, lexical density largely decreased the scores of claim statements, but 
increased scores of reasoning statements. High lexical density indicates that there are 
more unique words, which involves the introduction of more new information. Low 
lexical density, on the other hand, implies repetition of words and redundancy. In 
claims with high scores, students tended to elaborate more, which likely led to the 
repetition of functional words, such as the article “the” in the following example: “My 
hypothesis said that if I changed the container from narrow to wide that the density of 
the liquid would increase” (LDTTRa = 0.59). On the contrary, in claims with low 
scores, students articulated general ideas, such as “My hypothesis was wrong,” in 
which each word was unique and resulted in a LDTTRa score of 1.00 point.  

Syntactic complexity was related to both evidence and reasoning, but different in-
dividual features were selected to predict evidence and reasoning, respectively. Spe-
cifically, for evidence, left embedded words before main verbs (SYNLE) was used as 
a predictor and was found to significantly increase evidence scores. For example, a 
high quality evidence statement involved left embeddedness with a large number of 
words before the main verb, such as “When using…” in the following example, 
“When using the oil in both containers (wide and narrow) the mass equaled 425 and 
…”. However, the low quality evidence statements did not contain a large number of 
words before main verb, such as in the example “stay the same in both container.” 

SYNLE was not used as a predictor for reasoning because its correlation with writ-
ten reasoning score was below 0.30. The mean number of modifiers per noun phrases 
(SYNNP) was used as a predictor and it significantly increased reasoning scores. For 
example, the following reasoning statement had a high score, “This shows that the 
container shapes, wide and narrow, will allow the densities of the liquid to stay the 
same, which supports the claim”, which contained some modifiers before and after 
the noun phrases, such as “the container” before “shapes,” “wide and narrow” after 
“shapes,” “the liquid” as a modifier of “densities,” and the “which” clause was at the 
end of the statement. Low SYNNP caused reasoning scores to decrease. For example, 
in this reasoning statement, “when u changed the container it got bigger”, no modifi-
ers occurred before or after the noun “container,” which meant the reader did not 
know what about the container was changed (i.e. shape, size, etc.). SYNNP was not 
used as a predictor for evidence because its correlation with evidence scores was be-
low 0.30.  

The indices used only to predict performance on evidence statements included 
causal verbs and causal particles (SMCAUSvp), LSA verb overlap (SMCAUSlsa), 
and temporal cohesion based on tense and aspect repetition (SMTEMP). These indi-
ces contribute to situation models that represent deep cohesion and clear causality. 
Here is an example that best illustrates a high quality evidence statement, “I used a 



narrow container of oil getting a mass of 212.5 and volume of 250 getting .85 as my 
density. Then I used the wide container getting mass 212.5 and volume of 250 and 
getting .85 again as the density.” In this example, the causality measure 
(SMCAUSvp) was zero, meaning no casual verbs or causal particles such as “impact” 
or “as a result” were used in this statement. However, this statement was replete with 
verbs that have clear links to actions, events, and states (e.g., “used” and “getting”), 
which is called LSA verb overlap. This example also showed high temporal cohesion 
(SMTEMP) as represented by the use of temporal particles such as “then,” and con-
sistency of tense (e.g., past tense of “used”) and aspect (e.g., progressive “getting”). 
However, these three indices had low correlations (below .30) with written claim and 
reasoning statement performance. Therefore, they were not included in the claim or 
reasoning predictive models. 

4 Conclusions and Implications 

This study examined students’ written scientific explanations from two perspectives: 
formality and actual language use. Results showed that students used academic lan-
guage when they generated evidence and reasoning statements, but not claim state-
ments. The analyses for the five major Coh-Metrix dimensions showed that students 
used more complex syntax and informational text when they generated high quality 
claim, evidence, and reasoning statements. Moreover, high quality evidence and rea-
soning statements tended to include more referential cohesion and deep cohesion. The 
quality of claim, however, decreased with deep cohesion. These findings imply that 
students need to be instructed on how to use deep cohesion when generating a high 
quality claim statement. 

Analyses with individual Coh-Metrix indices showed that students need to be in-
structed to use causal verbs or causal connectives to explicitly specify relationships in 
their claims. Additionally, students need to be instructed not to use first person pro-
nouns in their professional, academic writing. Similarly, they need to be instructed to 
avoid using vague pronouns to refer to a person or a thing when writing a claim, evi-
dence, and reasoning statement. Although students demonstrated deep cohesion and 
use of descriptive words in their evidence statements, they require support in order to 
transfer this language use to their claim and reasoning statements. These various gaps 
in linguistic formality and use could be addressed through integrating automated as-
sessments and scaffolding within intelligent tutoring systems. While the design of 
automated assessment and scaffolding of students’ CER in terms of content is under 
way [16-17], researchers have yet to design automated scoring and feedback specifi-
cally to address language use. 

The present study unpacks the academic language used when students generate a 
claim, evidence, and reasoning statement at both the macro-level and micro-level. The 
findings provide valuable information for teachers and researchers that can be used to 
enhance students’ academic writing. A limitation of this study is that the data came 
from just one density activity. Future studies may include more activities within the 
same topic or across topics in order to investigate whether familiarity with a particular 
domain is related to academic language use in writing scientific explanations in the 
form of claim, evidence, and reasoning.  
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