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Abstract 

 
With increased availability of information in modern societies, individuals are often faced with 

complex decisions regarding how to integrate and judge the veracity of available information. 

Generally, these issues have been approached using computational techniques to detect and 

reduce the spread of information across social media. However, few researchers have examined  

theoretically-grounded characteristics of misinformation. The purpose of this chapter is to 

examine this phenomenon through the lens of discourse processing theories, which emphasize 

interactions among features of the discourse, the reader, and the context. We describe a proof of 

concept on how dynamical systems modeling combined with computational linguistics has  

strong potential to reveal underlying characteristics of the spread of misinformation. 

Additionally, we discuss potential directions for future research,  

as well as implications for interventions to help students accurately process information in the 

modern digital age. We call for research using a combination of computational linguistics, 

telemetry, and dynamical systems analytics in order to better understand the temporal 

organization of text and the spread of misinformation. 
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ABSTRACT

With increased availability of information in modern societies, individuals are

often faced with complex decisions regarding how to integrate and judge
the veracity of available information. Generally, these issues have been ap-

proached using computational techniques to detect and reduce the spread of

information across social media. However, few researchers have examined

theoretically-grounded characteristics of misinformation. The purpose of
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this chapter is to examine this phenomenon through the lens of discourse
processing theories, which emphasize interactions among features of the
course, the reader, and the context. we describe a proof of concept on how

modeling combined with computational linguistics has

song potential to reveal underlying characteristics of the spread of misin-
formation. Additionally, we discuss potential directions for future research,

as well as implications for interventions to help students accurately process
information in the modern digital age. We call for research using a combi-
nation of computational linguistics, telemetry, and dynamical systems analyt-
ics in order to better understand the temporal organization of text and the

spread of misinformation.

The prevalence ofonline news and social media (e.g., emails, blogs, tweets,

the 24-hour news cycle) in our modern society has dramatically increased
individuals' access to information. One consequence of this cultural shift
is that sources of information are widely varied in their quality and ve-

racity; thus, individuals are often faced with complex decisions regarding
how to evaluate and integrate these sources. Unfortunately, this task does

not come easily to all. An estimated 17% of adults in the United States

are illiterate (nces.ed.gov/surveys/piaac/results/summary.aspx), and the

majority of students graduating from high school are ill-prepared to com-
prehend, integrate, and evaluate information from complex texts (NAEP,

2015; OECD, 2013). Thus, an important question facing both educators
and researchers is how to train individuals to understand, learn from, and

critically evaluate text content in the Internet-age (Braasch, Wiley, Geae-

ser, & Brodwinska, 2012).
One response to this issue has been an increase in research examining

how individuals process information that is presented to them across mul-
tiple texts or documents (Braasch, Bråten, & McCrudden, 2018; Goldman,
2004; Goldman et al., 2016). This research is motivated by the widespread
availability of texts in modern, technology-driven societies, as well as the

abundance of daily tasks (e.g., dietary and medical decisions, evaluation of

political views) that rely on processing and learning from multiple docu-

ments. Like single text comprehension, the process of comprehending

multiple documents requires individuals to make connections between
information contained within texts. The difference for multi-document
comprehension lies in the additional task of generating links across the

vaious documents. Given that individuals often lack sufficient knowledge

and skills to understand single texts, their problems are compounded when
they are faced with understanding and integrating multiple documents.

To further complicate and demonstrate the urgency of this issue, there has

been a dramatic increase in the use ofsocial media by political groups and indi-
viduals to sway public opinion through the dissemination of misinformati0n'

Misinformation Through Discourse Dynamics • 161

rumors, and propaganda. For instance, botnets (i.e., networks of computers

that have been programmed to automatically perform specific tasks) have
been extensively relied on to spread misinformation across social media sites

(Agarwal, A1-khateeb, Galeano, & Goolsby, 2017; Woolley, 2016). A recent
report estimated that 8.5% of Twitter and 7% of Facebook accounts (over 50

million accounts) are fake (Lokot & Diakopoulos, 2016). Further, many of
these fake accounts are run by highly sophisticated bots that try to mimic hu-

man behaviors, which makes their detection quite challenging.

Researchers have generally addressed this issue through the develop-

ment of computational techniques to detect and reduce the spread of misin-

formation (e.g., Bajaj, Kavidayal, Srivastava, Akhtar, & Kumaraguru, 2016;
Qazvinian, Rosengren, Radey, & Mei, 2011). For example, a common ar
proach involves the identification of keywords within texts (e.g., headlines,

texts, tweets) to develop algorithms that can detect misinformation. Al-

though several of these approaches have been successful, a primary ob-

stacle to their implementation is that the production of fake news content

is consistently evolving in response to the development of these detection

tools. Thus, individuals cannot simply be taught to identify misinformation

based on specific features (e.g., linguistic properties) of texts, headlines, or
social media accounts. Instead, it is important that researchers identify the

specific cognitive processes that underlie the evaluation and uptake of mate-

rial in fake news sources so that individuals can adapt with these evolving

production strategies. This points to a significant gap in the field that re-

mains to be addressed. Namely, few researchers have examined the factors

involved in the spread and uptake of misinformation, such as the linguistic

content of misinformation and the dynamics of the cognitive processes and

strategies that are employed to detect false information in texts.

The purpose of this chapter is to examine these processes through the

lens of discourse processing and dynamical systems theories, which togeth-

er emphasize complex interactions among properties of discourse, read-
ers, and contexts. We first provide an overview of these theories along with
a review of state-of-the-art methods for automated text analysis. Next, we
propose an integration and extension of these fields that accounts for how

complex phenomena arise and unfold over time. In particular, we draw

On theory and methodologies from dynamical systems theory to develop

a proof of concept on how the spread and processing of misinformation
might be modeled. Finally, we discuss potential directions for future re-

search, as well as implications for educational interventions to help stu-

dents accurately process information in the modern digital age.
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Theoretical Accounts of Discourse Processing

Theoretical models of discourse describe comprehension as the pros

cess of interpreting and extracting meaningful information from text and
discotuse and linking that information to related knowledge in long-term

memory. This process of connecting discourse information to prior knowl-
edge readeß to construct a mental model of the concepts in the text

(Graesser, Singer, & Trabasso, 1994; Kintsch, 1988, 1998). A mental model
consists of a network of propositions that reflect explicit information from

the text, along with any generated inferences that establish how this con-
tent is interconnected and related to prior knowledge (Kintsch, 1988, 1998;

Zwaan & Radvansky, 1998).
Readers generate inferences to establish how text constituents (e.g., prop-

ositions) are related to one another (Graesser et al., 1994; Kintsch, 1988).
For example, bridging inferences establish how two elements of a text are
semantically connected, whereas knowledge-based inferences involve the

use of prior knowledge to elaborate on text content (McNamara & Maglia-
no, 2009a, 2009b). In turn, the relations established by the reader can be

at relatively shallow levels (e.g., overlap between words) or deeper seman-

tic levels (e.g., causal, spatial-temporal; Wolfe, Magliano, & Larsen, 2005).
These processes support the construction of a coherent mental model (Mc-

Namara & Magliano, 2009b).
Prior domain knowledge can help to facilitate text comprehension, and

particularly the process of generating inferences. Readers who have more
knowledge about the topic of a text are able to process the information

more quickly, remember more of the information, understand the infor-

mation at a deeper level, and more effectively ignore irrelevant informa-
tion (e.g., Alexander, Kulikowich, & Schulzse, 1994; Bransford & Johnson,
1972; Chiesi, Spilich, & Voss, 1979; Haenggi & Perfetti, 1994; McNamara &
Kintsch, 1996; McNamara & McDaniel, 2004). When readers have limited
prior knowledge of the topic, the construction of a coherent mental model

can be hindered. Moreover, when the text is challenging (e.g., difficult v()-

cabulary, complex syntax, low cohesion) , the negative effects of knowledge

gaps can be exacerbated (McNamara, O'Reilly, Best, & Ozuru, 2006).
Although there are ways of altering a text itself to make it more under-

standable (e.g., increasing cohesion, providing greater links to the world)'

in the real world students are faced with an abundance Of challenging texts

(McNamara, 2013). Texts with cohesion gaps are particularly challenging for

students with lower knowledge of the domain (McNamara & Kintsch, 1996)'
Cohesion gaps occur when there are few repeated words and concepts and
few cues (e.g., connectives) to specify the relations between ideas. These

cues are often found lacking from individual texts, but there are even fewer

cohesive cues to specify relations between multiple texts (Goldman et
2012; see also Stadtler, Scharrer, Brummernhenrich, & Bromme, 2013) •
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Research indicates that skilled readers more effectively tackle low cohe-
Sion texts primarily because they are more likely to use comprehension strat-

These strategies, such as comprehension monitoring, paraphrasing,egies.

and generating predictive, bridging, and elaborative inferences help stu-
dents to connect information across a text (Magliano, Trabasso, & Graesser,
1999; McNamara & McDaniel, 2004; O'Reilly & 2007a, 2007b).

prompting students to self-explain a text, that is, instructing them to explain
the text to themselves as they read, has been shown to increase the use of

comprehension strategies and, consequently, improve reading comprehen-
Sion (Chi, de Leeuw, Chiu, & LaVancher, 1994). Further evidence indicates
that students can be taught to use comprehension strategies (Brown, 1982;

Palincsar & Brown, 1984). Similarly, the quality of students' self-explanaüons
improves with comprehension strategy instruction and practice.

Comprehension of Multiple Documents

With the Internet now serving as a primary source of learning and in-
formation for individuals, there has been a dramatic increase in research

on the factors that influence the comprehension of multiple documents
(Braasch et al., 2018). The majority of this research has focused on how
individuals critically evaluate the sources of information that are presented

to them across texts. This is a particularly important issue, as a wealth of
false information is now available across a wide variety of sources on the
Internet. Source evaluation relies on a complex set of processes and skills
that require the reader to process features of the sources (e.g., author, pul>

lication venue) to make informed decisions about the quality and accuracy
of information in a given text or set of texts (Bråten, Stadtler, & Salmer6n,
2017). Research has shown that actively attending to source information
is crucial to the successful integration of information across documents

(Brand-Gruwel, Wopereis, & Walraven, 2009; Britt, Rouet, & Braasch, 2013;
Lawless, Goldman, Gomez, Manning, & Braasch, 2012; Perfetti, Rouet, &
Britt, 1999; Rouet, 2006; Rouet & Britt, 2011). However, in the absence of
domain expertise, individuals do not readily engage in these source evalua-
tion processes (Wineburg, 1991), and the effects of source evaluation train-

ing have been mixed (e.g., Wiley et al., 2009).

Automated Analyses of Text and Discourse

One way that researchers have attempted to examine the text compre-
hension processes is to identify and model the linguistic properties of texts
that influence comprehension. For instance, words that are more frequent

in the English language tend to be more familiar to readers and are, there-

fore, processed more quickly and deeply by readers (Beck, McKeown, &
can, 2002; Haberlandt & Graesser, 1985; Perfetti, 2007). Automated
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measures of these linguistic properties provide researchers with the means

to model these properties texts and examine whether and how they
influence comprehension processes. Researchers frequently rely on natural
language processing (NLP) techniques to provide computational analyses
ofvarious aspects of language as they relate to particular tasks. NLP tools
measur a variety of linguistic features that are important for Understand-

ing and producing text, including coherence, syntactic complexity, lexical
diversity, and semantic similarity. One common approach is to analyze the
incidence of individual words, or n-grams (i.e., groups of words where n

fets to the number of grams included in the group; Jarvis & Crossley, 2012).
These word and n-gram calculations allow researchers to examine the ex-

plicit content of a text. A different approach with a stronger potential to
generalize involves the calculation of the linguistic features of the words

and sentences in a text (McNamara, Allen, Crossley, Dascalu, & Perret,
2017). We have developed several NLP tools such as Coh-Metrix, which can
be used to extract linguistic features of text across multiple levels.

Using NLP, we can derive features of students' constructed responses

that are indicative of the cognitive processes that occur during learning
(Graesser & McNamara, 2011). Over the past 2 decades, there have been
substantial advances in the application of NLP techniques to support anal-
yses of constructed responses (Landauer, McNamara, Dennis, & Kintsch,
2007; Shermis, Burstein, Higgins, & Zechner, 2010). These advances have
been in the context of computer-based assessments of think-alouds and self-

explanations (Gilliam, Magliano, Millis, Levenstein, & Boonthum, 2007;
Magliano et al., 2011), grading of essays (Attali & Burstein, 2006; Burst-
ein, 2003; Burstein, Marcu, & Knight, 2003; Landauer, Laham, & Foltz,
2003; Shermis et al., 2010), grading of short answer questions (Leacock &
Chodorow, 2003) , and intelligent tutoring systems and trainers that require
students to produce responses during interactive conversations (McNama-
ra, Levinstein, & Boonthum, 2004).

There exist a number of automated systems and tutors that incorporate
a variety of NLP tools and algorithms to assess constructed responses, and

to make inferences about student comprehension, learning, and problem

solving. For example, Magliano and colleagues have developed Reading
Strategy Assessment Tool (RSAT; Magliano et al., 2011 RSAT involves hav-
ing students produce open-ended responses to prompts intended to engen-
der a think aloud or answer specific questions designed to tap into specific

levels of comprehension. RSAT uses rudimentary (word-based) computer
algorithms to analyze responses for evidence of comprehension processes'
in particular paraphrasing, bridging inferences, and elaborative inference S •
The algorithms exhibit construct (correlate with human coding of the
protocols), convergent (correlate with independent measures of compre-

hension proficiency) and predictive (correlated with experimenter gener-
ated measures of comprehension) validity. McNamara and colleagues have
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developed the Interactive Strategy Training for Active Reading and Think-
ing (iSTART; McNamara et al., 2004; Snow,Jacovina,Jackson, & McNamara,
2016) that uses a variety of NLP indices to identify and evaluate the quality
of comprehension strategies in student-generated self-explanations. These
algorithms also provide feedback to help students develop these strategies

and produce higher quality self-explanations.

Indeed, computational linguistic techniques can serve as a powerful

methodology for modeling individual differences and specific processes in

which students engage (Rus, McCarthy, Graesser, & McNamara, 2009). To
better understand the relations between linguistics and cognitive processes,
we can first consider the notion that there are multiple linguistic features

of texts that students comprehend and produce. These features impact the
quality and readability of a given text as a function of the prior knowledge
and skills of a given learner (Graesser & McNamara, 2011).

There are a multitude of linguistic features and dimensions to character-

ize text and discourse. Nonetheless, one heuristic is the consideration of

two broad categories: surface-level and discourse-level features. Surface-level
features relate to the characteristics of the words and sentences. Variations

in these features can alter the style of the text, and influence its readability

and perceived sophistication. For example, the frequency that a word oc-
curs in English is linked to the familiarity of that word, as well as how quickly
it is processed and how strongly it is linked to rich bodies of knowledge
(Beck et al., 2002; Haberlandt & Graesser, 1985; Perfetti, 2007). Thus, texts
that contain more frequent words will typically be easier than texts with less
frequent words.

Discourse-level features go beyond the individual words and sentences,
and reflect aspects of the mental model such as the degree of narrativity
in the text and the strength of the relations (i.e., cohesion) between ideas
across the text (Graesser & McNamara, 2011). These features influence the
ease at which the text can be understood and recalled, even when control-
ling for variance associated with students' familiarity of the topic and the

difficulty of the words (Haberlandt & Graesser, 1985).
Given the differential effects of surface- and discourse-level linguistic

features on text Processing and comprehension, it follows that these features
might vary across constructed responses as a function of learners' individ-

ual differences. A variety of NLP measures are correlated with individual
differences (Magliano & Millis, 2003). NLP indices have the capability of
revealing various cognitive processes (Lintean, Rus, & Azevedo, 2012) and
abilities, such as students' prior domain knowledge (Allen & McNamara,
2015), word knowledge (Allen & McNamara, 2015; Crossley, Allen, & Mc-
Namara, 2014), comprehension skills (Allen, Snow, & McNamara, 2015),
and Writing skills (Crossley & McNamara, 2012; Varner, Roscoe, & McNa-
mara, 2013). These results suggest that NLP techniques can inform assess-
ments and help to improve adaptivity in educational systems.
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Dynamical Systems Theory and Discourse Processing

A caveat to the strength of NLP pertains to a limitation with regard to the
detection of change over time. There are theoretical and practical limita-
tions in that current NLP algorithms identify evidence of comprehension
and skills, but do not provide information about how they occur in Com-
bination to support comprehension and learning, or how these processes
dpnmically unfold. We call for research that assesses the utility of com-
putational techniques based on dynamical systems theory to analyze the
temporal organization of students' responses to multiple texts (including

authentic texts and texts with misinformation), potentially in conjunction

other relevant time-varying data (e.g., ratings of engagement or key-
strokes during typing).

Importantly, dynamical systems theory subsumes a large analytical tool-
box, which provides a novel means with which researchers can characterize

patterns that characterize students' behaviors (e.g., language, system choic-

es) during learning tasks. Traditional inferential statistics often aggregate

variables across time, potentially discarding important information about

learning and performance. In contrast, dynamic methodologies consider
change over time to be a critical component of the analysis and explicitly
seek to characterize temporal patterns. Thus, rather than treating behavior

as a static process, these dynamic analyses have strong potential to more
precisely account for the complex, changing nature of behavior. Although

no studies have applied dynamic analyses to multiple text comprehension
and misinformation detection, these techniques have previously been used

across a wide variety of domains as a means to understand the complex
patterns that manifest in individuals' behaviors over time (e.g., Anderson,

Bischof, Laidlaw, Risko, & Kingstone, 2013; Dale & Spivey, 2005; Riley, Bala-
subramaniam, & Turvey, 1999; Shockley, Santana, & Fowler, 2003).

Dynamical Systems Theory
In order to illustrate the importance of dynamical systems theory, it is im-

portant to understand a number of the key concepts that are important to this

line of research. Dynamical systems theory (DST) provides a principled theoret-
ical framework for examining complexities associated with comprehension

of complex information (Dale, Kello, & Schoenemann, 2016). Dynamical
systems are composed of multiple components that interact over time (Kelso'

1995). Importantly, the complex patterns produced by these systems cannot
be explained by simply reducing them to their component parts. Instead'
these patterns emerge through a process of self-organization That is, high-

er-level patterns emerge, stabilize, change, and dissipate as a natural conse-
quence of local interactions among the system's components and constraintS
placed on the system. Constraints may be random fluctuations that come
from the environment or so-called nonspecific controlparameters, parameteß Of
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the system which change continuously but lead to a noncontinuous, qualita-

tive changes in the system's behavior—referred to as Phase transitions. The

DST approach to understanding human behavior is most well known in
mains involving physiological networks and motor control, but it has also
provided insight within the context ofother relevant domains such as brain

activity (Tognoli & Kelso, 2014), discourse (Fusaroli, Raczaszæk-læonardi, &
Tylen, 2014), performance variability (Harrison & Stergiou, 2015), and team
coordination (Gorman, Amazeen, & Cooke, 2010).
A simple illustration can help to make these ideas more concrete. A

commonly referenced system in the motor control literature is one that

emerges with alternating swinging of limbs, such as fingers, arms, and legs
(Amazeen, Amazeen, & Turvey, 1998; Haken, Kelso, & Brunz, 1985; Kugler
& Turvey, 1987). At slow speeds, two patterns dominate, an inphasepattern
where the angle between the limbs is 00, and an antiphase pattern where

the angle between the limbs is 1800. However, faster speeds result in a phase

transition such that only one pattern, 00, remains stable. In this simple ex-
ample, the phase relations between the limbs are the higher-order patterns
that emerge from the local interaction of the systems' components—here,

the limbs. The singular control parameter is the speed at which the limbs
are moving. When the speed of the limbs' movement reaches a critical
point (i.e., a critical speed), the system exhibits a qualitative change in

behavior: the elimination of the 1800 pattern and the movement towards

the inphase pattern. This simple system captures several properties ofa dy-

namical system (e.g., control parameters, phase transitions; Gilmore, 1981;

Kelso, 1995). This example is not provided as a template for the dynam-
ics expected to emerge from either students' natural language patterns, as

these processes generate patterns that are far more complex (e.g., Allen,
Perret, Likens, & McNamara, 2017; Dale & Spivey, 2005; Likens, Allen, &
McNamara, 2017). Nonetheless, the example tacitly emphasizes the impor-
tance of how higher order patterns emerge as a result of how dynamical
systems change over time, a feature that plays an important role in the iden-

tification and analysis of patterns in students' natural language responses.
Importantly, the processing and integration of information within and

across texts does not consist of uniform processes; the nature of these prcy

cesses changes as a function of the features of the text, metacognitive states

Of the reader, and the relevant prior knowledge that can be used to gener-
ate explanations about the text content (Kendeou & van den Broek, 2007;
McNamara & Magliano, 2009a). We argue that a DST approach will con-
tribute to a better understanding of the complex cognitive processes that

underlie the evaluation, processing, and production of information. Our

argument follows the assumption that language comprehension and

duction are driven by complex, dynamical systems with interacting compo-

nents and complex emergent properties.
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An underl)ing assurnption of DST is that similar dynamics can emerge
from systems with different compositions (Kelso, 1995). This has been re-
ferNd to as dynamical similitude. One objective of DST is to examine the pres-
ence and degree of dynamic similarity between systems that may appear to be
different based on static measures (e.g., different material substrates within

the context of engineering). For instance, the Haken-Kelso-Bunz .(HKB)

model (Haken et al., 1985) was developed to characterize the rhythmic co-

ordination of index fingers on the opposing hands of a single individual.

The main predictions of the HKB model were informally presented earlier
in the discussion of hallmark properties of a dynamical system, namely, the

presence and stability of 00 and 1800 coordination patterns. Given that the

same neuromuscular system that moves the fingers also moves the wrists and

legs, it is not surprising that the HKB model has been generalized to other
limbs within a single individual (see Amazeen, 2018; Amazeen et al., 1998; for
reGews). The HKB model has also been extended to phase synchronization,
patterns observed in brain dynamics (Bressler & Kelso, 2001 ). .2

More remarkably, however, the HKB model has been generalized to
settings where the coordinated elements do not share a common nervous
system. For example, Schmidt, Carello, and Turvey (1990) demonstrated
that the stable patterns (00 and 1800) and accompanying phase transitions
(annihilation of the 1800 pattern) predicted by the HKB model also hold
when two people rhythmically coordinate the swinging of their limbs. The
number and variety of instances in which this model has been applied is ex-

tensive and well beyond the scope of this chapter. These examples provide
only a hint of its generality. We emphasize this point because the HKB mod-
el's ability to characterize complex forms of coordination stands as a para-

mount example of the principle of dynamical similitude—systems ranging

from clusters of neurons to clusters of people exhibit similar dynamics.

Despite the remarkable utility of the HKB model, we do not wish to give
the impression that it is the only model in the DST toolbox. After all, the
model was designed to characterize rhythmic movement patterns, which
are only a small subset of the many behaviors typically found in human per
formance. Another example of dynamical similitude comes from the appli-
cation of fractal analysis, a form of dynamic modeling that has been used to

model complex systems emerging from the interaction of multiply-nested

time scales (Ihlen & Vereijken, 2010). The systems that have been studied
with approach extend over several orders of magnitude, ranging from indi-

vidual neurons (Schroter, Paulsen, & Bullmore, 2017) to geomagnetic radi-
ation (Picoli, Mendes, Malacarne, & Papa, 2007). Fractal analysis primarily
focuses on examining whether time series exhibit long-range autocorrelations

and scale dependence. When a time series is said to exhibit long-range auto-
correlations, an observation made at a specific point in time will be related
to subsequent observations in the future (Beran, 1994). Similarly, scale
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dependence means that time series measurements (e.g., variability) differ
as a function of the temporal scale at which they were measured (Man-

delbrot & Van Ness, 1968). Fractal analyses have been used to model nu-
merous cognitive phenomena, such as speech patterns (Kello et al., 2010),
engagement (Likens, Fine, Amazeen, & Amazeen, 2015), reaction times
(Van Orden, Holden, & Turvey, 2003), and eye movements (Aks, Zelinsky,
& Sprott, 2002). In our own research, we have found that fractal patterns
observed in the inter-keystroke intervals (i.e., the time between keystrokes

during essay writing) predict essay quality (Likens et al., 2017). In addition,
we have found that fractal patterns that characterize student choices pre-

dict performance in an intelligent tutoring system. Importantly, research-

ers generally suggest that variability in fractal properties of a time series

reflect the flexibility and adaptability necessary to complete cognitive tasks
that require the coordination of information across multiple time scales

(e.g., Van Orden et al., 2003; Stephen, Anastas, & Dixon, 2012).
Importantly, analytic techniques have been developed that highlight

the important role of time in complex systems. These techniques provide

researchers the means to both visualize and quantify important tempo-
ral variability in data across multiple time scales. For instance, Figure 9.1

2nd Bin

1

4th Bin

Figure 9.1 Example random walk representing one student's keystroke patterns over
time (Bin I = quick bursts; Bin 2 = medium bursts; Bin 3 = slow typing; Bin 4 = slow tyr

ing with pauses). The bins represent four quadrants of interke»u-oke interval speeds
and the gradient represents the time that the keystrokes were produced. The
dark blue represents the beginning of the essay and the red color represents the end

Of the essay typing process. This student typed relatively consistently throughout the

essay as evidenced by their walk hovering near the second bin consistently.
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depicts a random walk of an individual's keystrokes while gen-

erating an essay. Random walk analyses are mathematical tools that are
used to visualize patterns in data as they unfold across time (Benhamou

& Bovet, 1989; Lobry, 1996; Nelson & Plosser, 1982). In this example, we
first separated the intervals between keystrokes into four bins—-1 being

quick bursts of typing and 4 being long pauses. Each of these categories
was then assigned to a vector along a basic scatter plot. Therefore, if an

indÄidual began typing very quickly, the random walk would first move
towards the first bin, whereas if they then proceeded to slow down, they
would move down toward the 4th bin. Once each keystroke interval had
been assigned to a vector, we calculated a random walk for each student

that began at the origin of the scatter plot (0, 0). For each subsequent
intenal between keystrokes, the walk "steps" in the direction is consistent

with the assigned vector. The resulting walk represents each individual's
keystroke patterns over time. We additionally colored the keystrokes points
along a rainbow gradient to represent the time that the keystrokes were

produced. Figure 9.1 represents a student who stayed relatively consistent
in typing patterns over time, making small changes between bursts and

2nd Bin

4th Bin

Figure 9.2 Example random walk representing one student's keystroke patterns
over time (Bin 1 = quick bursts; Bin 2 = medium bursts; Bin 3 = slow typing; Bin
4 = slow typing with pauses). The bins represent four quadrants of interkeystroke

interval speeds and the rainbow gradient represents the time that the keystrokes

were produced. The dark blue represents the beginning of the essay and the red

color represents the end of the essay typing process. This student wentthrough

different phases of quick burst typing and slow pauses as evidenced by the move-
ment across the second and fourth bins.
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pauses. On the other hand, Figure 9.2 represents a student who engaged
in very different typing behaviors—moving over time between periods of

pauses and slow typing to periods of time where they typed in quick bursts.

These random walk images provide an example of a way in which dynamic
methods of visualization can be used to reveal important structure in lan-

guage production and comprehension over time.

Dynamical Systems Theory and Text Comprehension

We assume that comprehension processes fluctuate over time, and a
comprehender may fluctuate between states of understanding and misun-
derstanding. Our hypothesis is that the transition from a state of misunder-

standing to a state of comprehension will be preceded by critical fluctua-

tions, and these fluctuations will be revealed through the dynamic structure
of linguistic features of a student's constructed response. For example, the

use of more familiar (frequent) words has been associated with lower levels
of language proficiency and comprehension. Prior research has relied on

averaging word frequency across all ofa student's responses. However, fluc-
tuations in word use may reveal when a student shifts between states of suc-
cessful and less successful comprehension. Increases and decreases in word

frequency may characterize shifts toward resolution of misconceptions by

signifying that a phase transition is taking place.
Our aim here is to promote research on the topic of text comprehension

(e.g., evaluation of sources) that leverages concepts borrowed from DST
such as dynamical similitude. The motivating idea is that discourse processes

can exhibit the hallmark properties of a dynamical system (e.g., complex
patterns; Gilmore, 1981; Kelso, 1995). In particular, our objective is to le-

verage the assumption that we can observe and compare dynamic patterns
across multiple time series in order to understand how complex systems
unfold over time. In the context of fake news and misinformation, our ul-

timate objective is to explore the notion that dynamics of misinformation

comprehension emerge in the form of complex, dynamic patterns across
documents, constructed responses to these documents, and even lower lev-

el data produced during comprehension tasks, such as keystroke, reading
time, and eye movement patterns. For instance, we assume that linguistic
features, when extracted from complex texts or students' constructed re-
sponses, may provide suitable observables, which in turn can serve as impor-

tant parameters in dynamical analyses. If so, they will have the potential

to reveal themselves as a powerful lens through which to observe compre-

hension processes, particularly as they relate to the complex processes in-

Volved in misinformation comprehension. As mentioned earlier, one window
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to online comprehension is to elicit constructed responses to texts such as

think-aloud.One approach that has been used in the past is to examine the linguistic

features Ofeach think-aloud separately and then use averages across perfor-

mance to glean the quality of comprehension. For example, Magliano and
colleagues (2011) previously developed the RSAT, in which students pro.

duce think-aloud responses while reading. This tool uses algorithms based

on the presence of particular key words to analyze responses for evidence

of comprehension processes, including paraphrasing, bridging inferenses,
and elaborative inferences. The algorithms correlate with experts' coding
of the protocols as well as independent measures of comprehension abili-

ties. While RSAT algorithms provide indicators for the presence of para-

phrasing, bridging, and elaboration during comprehension, they do not
provide information about how they occur in combination to support com-
prehension, nor how those processes change over time.

As a proof of concept, we have combined linguistic and dynamic analyses

to understand comprehension behaviors through analyses of the temporal

organization of constructed responses. In a recent study (Allen et al., 2017),

students generated constructed responses (i.e., self-explanations or think-

alouds) while reading a science text and then answered comprehension ques-

tions. A dynamic methodology—Recurrence quantification analysis (RQA;
Webber & Zbilut, 2005) was used to visualize and quantify the extent to which
recurrent patterns in students' natural language text responses relate to their

reading comprehension processes. Recurrence quantification analysis is a

nonlinear data analysis technique that provides information about patterns
of repeated behavior (i.e., the number and duration of recurrences) in a
continuous or categorical time series. Like many techniques used in the DST
framework, this methodology has been used in a variety of domains, both

within and outside the realm of human behavior. For example, researchers
have utilized RQA to examine patterns of heart rate variability, postural fluc-
tuations, and eye movements (Anderson et al., 2013).

Beyond these physiological measures, RQA has the potential to provide
important information about recurrence in the content of students' lan-

guage. Dale and Spivey (2005), for example, have revealed that RQA can
be applied to categorical data sets, such as the words in a particular con-
versation. This flexibility of the RQA technique (i.e., the fact that it can be
applied to both continuous and categorical data sets) may be particularly
salient for the study of natural language. In particular, recurrence can be

measured at multiple levels of the text (e.g., word, semantic), rather than

relying only on one level of analysis.

The starting point of RQA is the development of a recurrence plot,
which is a visualization of a matrix wherein the individual elements repre-

sent points in a time series that are visited more than once (i.e., they recur) •
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In other words, this plot represents the times in which a dynamical system

visits the same area in a phase space. Within this plot, each point represents
a particular state that is revisited by the system. If multiple points occur con-

tinuously, they form diagonal lines, which represent times when the system
is revisiting an entire sequence of states.

As a simple illustration, consider the following sentence: "The ice cream

man brought ice cream on Friday." To generate a recurrence plot for this
sentence, the words in the sentence are first placed on both the X and Y
axes of a 2-dimensional plot (see Figure 9.3). Each time a word appears
both the X and Y axes, a dot is placed in that location on the plot. Because
this sentence is being plotted against itself, the recurrence plot is symmetri-

cal with a diagonal line through the center—the line of identity (LOI). The
points of interest in these recurrence plots are the points that do not occur

on the main diagonal. Individual points off the main diagonal represent the
times that a word is repeated later in the sentence. When multiple points
occur simultaneously, these points form diagonal lines (e.g., "ice cream" in

Figure 9.3), which represent sequences of words that are repeated in time.
Visualizing recurrent patterns is informative, but researchers also need

to quantify the structure contained in recurrence plots. Recurrence quan-

tification analysis offers multiple metrics that help to quantify recurrent

patterns to allow for statistical comparisons of recurrence plots. Table 9.1

o

o

the ice cream truck brought ice cream on friday

Figure 9.3 Example recurrence plot where a sentence is plotted against itselfand

the individual dots represent points where a word is repeated.
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TABLE 9.1 Common Metrics Used in Recurrence Quantification
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Analyses

Recunence

Rate

Detenninism

Average Line

Length

Maximum

Line Length

Entropy

A measure of the density of points represented in a recurrence plot A
recunence rate is calculated by dividing the total number of points in
a plot by the square of the length of the overall time series. This metric

represents the overall amount of recurrence that is present in the

recun•ence plot, regardless of the distributions of the points.

A measure of the number of recurrent points that tend to fall on
diagonal lines (ignoring the LOI) in the recurrence plot. Thus, this
metric provides information about the distribution of the recurrent

points. Diagonal lines in recurrence plots reflect time periods when the

system is revisiting a particular sequence of states. Thus, systems with low

determinism can exhibit short moments of repetitive states; however, they
are considered less ordered than highly deterministic systems.

This metric calculates the average length of the diagonal lines in the

recurrence plot. Thus, when the system repeats a sequence of states, this
metric provides information about the typical length of those sequences.

This metric calculates the length of the longest diagonal line in the

recurrence plot. Therefore, this metric reveals whether a system revisits a

long sequence of states at some point in time.

Entropy is calculated as the Shannon entropy of the distribution of the

line lengths in the recurrence plot. This metric quantifies the degree to

which the trajectory of the system exhibits order. Thus, entropy will be

higher if the system revisits a wider variety of state sequences over time.

Dynamic systems that continually revisit the same, or similar, sequences

of states, will have lower entropy.

200

150

100

50

50 100

Time

150 200

describes the most commonly used metrics in recurrence quantification
analyses.

To visualize the temporal distribution of words in students' self-expla-

nations, recurrence plots for each student were calculated using the pro-

cedure described in the previous sections. These recurrence plots varied

considerably among the students and provided us a means to qualitatively
analyze differences in the word recurrence in the self-explanations of stu-

dents who received low and high scores on the comprehension test.
Figures 9.4 and 9.5 illustrate two recurrence plots that were generated

using two students' actual self-explanations from the current study. Al-

though the students' self-explanations had a similar total number of words
(Figure 9.2 = 224; Figure 9.3 = 251), the plots demonstrate that these stu-

dents exhibited different patterns of word recurrence throughout their
self-explanations.

Figure 9.4 illustrates the recurrence plot of a student who received a
score of I (out of 8) on the comprehension test (text-based comprehen-

Sion score = 1; bridging comprehension score = O). As illustrated in the
plot, this student rarely produced self-explanations with similar words from

Figure 9.4 Recurrence plot for a student with a low text comprehension score.

their previous explanations. Additionally, in the situations when this stu-
dent did exhibit word recurrence, the words tended to occur in isolation,
rather than in sequences (diagonal lines) of words. In other words, the

recurrence plot suggests that this student did not generate explicit connec-

tions between the information explained in different sections of the text.

In contrast, the plot depicted in Figure 9.5 comes from a student who
received a perfect score of 8 on the comprehension test (text-based com-
prehension score = 4; bridging comprehension score = 4). Unlike the pre-

vious student, this student exhibited a high degree of recurrence across

self-explanations. Additionally, many of the recurrent points fell on diago-

nal lines, suggesting that this student was repeatedly referring to sequences

Of words, rather than individual words. Thus, while reading through the

text, the student continued to explain the new text information in connec-

tion with previously encountered text information.
Overall, these recurrence plots provide a means through which the com-

prehension processes of skilled and less skilled readers can be differenti-

ated. Despite the fact that these two students generated a similar amount

Of text during the self-explanation procedure, the temporal distribution of
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Time
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Figure 9.5 Recurrence plot for a student with a high text comprehension score.

the words they used varied widely. In particular, these plots reveal that the

student who continuously repeated words and phrases while self-explaining
ultimately developed a deeper comprehension of the text. In comparison,
the student who rarely repeated information across self-explanations dem-
onstrated low text comprehension.

In addition to these visualizations, the quantitative RQA indices gener-
ated from these recurrence plots were able to provide important informa-

tion about students' comprehension performance. In particular, the results

of correlation and regression analyses indicated that 32% of the variance in
students' comprehension scores were accounted for using a combination

of summative metrics of word use (i.e., total number of words, the number of

lettersperword, and the type-token ratio) , as well as indices related to recurrent

patterns of this word use (see Table 9.1 These analyses speak to the impor-

Lance of accounting for temporal patterns in analyses of students' language.

Analyses of students' language tend to rely on summative metrics of text
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features; however, the results of the work by Allen et al. (2017) suggest that

expanding these analyses to include temporality can provide critical infor-
mation about students' learning processes.

Notably, the work in Allen et al. (2017) was the first of its kind to exam-

ine constructed responses from a dynamical systems perspective; however,
several other studies have reported correlations between the dynamical

properties of comprehension (Wallot, 2017; Wallot, O'Brien, Haussmann,
Kloos, & Lyby, 2014; Wallot & Van Orden, 2011). In addition, the applica-
tion of DST has been broadly applied in other psychological settings (Kel-
so, 1995; Thelen, Schöner, Scheier, & Smith, 2001; Thelen & Smith, 1994;
Spivey, 2008) and educational domains (Koopmans & Stamovlasis, 2016).
In combination with our own work (e.g., Allen et al., 2017), the success
of the DST in various psychological domains leads to the hypothesis that
the dynamical systems approach will reveal valuable information regarding

comprehension processes, leading ultimately to improved measurement

and interventions.
Our overall proposal is that we can extend these types of studies to ex-

amine students' responses to the types of multiple and conflicting texts
that are readily encountered on the Internet. For instance, students could
be provided with multiple texts that contain both true and fake news in-

formation and asked to provide constructed responses to the texts as they
read. Our hypothesis is that the complex dynamics involved in evaluating,
integrating, and processing conflicting sources of information can be re-
vealed in the dynamics, such that they exhibit different patterns that can be

quantitatively modeled. Through aggregate analyses of these responses, we
may miss out on how students are switching amongst the texts and generat-
ing connections amongst the text concepts across time. Dynamic models,
on the other hand, provide researchers the means to examine the specific

parameters and processes that govern this complex comprehension system.

DISCUSSION

The ability to construct a coherent mental model from multiple documents
is an essential skill for school and the workforce. This is particularly impor-
tant in the Internet-age, as the texts presented to students often contain

conflicting and even false information. Having a better understanding of

the processes involved in these complex comprehension and production
tasks will help us develop the instruction needed to combat misinformation

and fake news in the modern age. We have argued that dynamic analyses
Of students' comprehension and production processes (in the form of con-

Structed responses, keystroke patterns, text properties, etc.) can provide

unique insights into the coherence-building processes underlying discourse
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production and comprehension. This is important because these processes

are a keystone to learning as well as understanding how to properly identify
and 0\ercome misconceptions. Given that the strategies and features

ing fake dissemination are constantly evolving, it is important that we

develop a deeper understanding of the complex Processes involved in reject.

ing or accepting this information. Dynamical systems theory provides an
to consider a variety of processes without having to focus on the in _

fluence of one individual variable in isolation of other potentially relevant

factors. Thus, our objective is to encourage researchers to combine CUrrent

theories of comprehension and dynamical systems to provide a better un-

derstanding of how comprehension and discourse production unfold.
Importandy, visualizations and analyses similar to the ones presented

throughout this chapter may be able to be used to improve tools for dis-

course instruction. In particular, educational technologies have been

developed to provide instruction and feedback on a variety of discourse
production and comprehension tasks. However, these tools often focus

on summative metrics of language use and fail to consider how students'

language and cognitive processes unfold dynamically. The methodological
techniques from DST may serve as a useful addition to the technologies,
by allowing researchers to provide visualizations and representations that
consider how students are learning and processing information over time.

As a final note, in this chapter, we only focused on a small subset of the
techniques that can be leveraged from the dynamical systems "toolbox." Ad-

ditionally, in our analyses, we did not account for the wide variety of lin-
guistic properties that can be calculated about a given text. We chose this
approach because our objective is to provide a broad proof of concept about
the power of the dynamic techniques when only surface-level features (such
as words) are considered. However, these techniques are highly flexible and

can be used to analyze any number of features of language. For instance,

categorical recurrence quantification analyses, such as the one presented
in this chapter, can be used to analyze recurrent patterns in the parts-of-

speech or topics of multiple documents or students' constructed responses

to those documents. Further, recurrence quantification analyses can be used

to model continuous data, such as word frequency, keystroke patterns, or
eye movements. Finally, these models can be combined using a number of

different dynamical techniques to account for the way in which multiple
features interact and unfold over time simultaneously. We urge researchers
to conduct studies that build on prior research to account for the multidi-

mensional properties of the language that students process and generate.
Overall, the aim of this chapter is to argue that the theoretical perspec-

tives and methodological techniques afforded by DST can be used to inform
both theory and practice related to misinformation processing. In particu-

lar, DST emphasizes a focus on complex systems that are not reducible to
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the sum of their parts and which unfold in complex patterns over time.
This theoretical perspective may provide key insights into the ways in which
individuals process fake news, as this information is highly complex and
contains multiple interacting variables that combine to influence compre-

hension and misconception resolution. Additionally, the field of DST has
developed a number of techniques that can be used to guide both qualita-
tive and quantitative assessments of students' comprehension processes. In
particular, these techniques can be combined with current approaches to

automated language analyses to model how individuals integrate and com-
prehend the wide variety of information presented to them on the Internet.

Thus, our ultimate proposal is that these dynamic visualizations and analy-

ses can be used as a step towards more adaptive educational technologies
for literacy, as well as for any system that automatically models language.
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ABSTRACT

Internet users encounter information from a wide array of sources with vary-

ing intents and standards of publication. The Internet, which is mostly un-

moderated, has largely replaced sources curated by experts, such as books,

Misinformation and Fake News in Education, pages 187—206
Copyright 0 2019 by Information Age Publishing
All rights of reproduction in any form reserved. 187


