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Abstract

Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand

repeating patterns in time series data, are often used to facilitate the identification of model orders

of time series models, e.g., moving average (MA) and autoregressive (AR) models. Asymptotic

methods for testing autocorrelation and partial autocorrelation such as the 1/T approximation

method and the Bartlett’s formula method may fail in finite samples and are vulnerable to

nonnormality. Resampling techniques such as the moving block bootstrap and the surrogate data

method are competitive alternatives. In this study, we used a Monte Carlo simulation study and a

real data example to compare asymptotic methods with the aforementioned resampling

techniques. For each resampling technique, we considered both the percentile method and the

bias-corrected and accelerated method for interval construction. Simulation results showed that

the surrogate data method with percentile intervals yielded better performance than the other

methods. An R package pautocorr is developed and demonstrated to carry out tests evaluated

in this study.
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Testing Autocorrelation and Partial Autocorrelation: Asymptotic Methods versus Resampling

Techniques

Growing interest in studying behavioral change via time series analysis has been observed

in social and behavioral sciences (Browne & Nesselroade, 2005; Borckardt et al., 2008; Ferrer &

Zhang, 2009). By collecting repeated observations of the same individual, researchers are able to

study patterns of change unique to the individual and model lagged effects of the same variable or

among variables. Among the classic time series models for delineating lagged linear relations are

autoregressive models (AR), moving average (MA) models, and the combination of these two

models, i.e., autoregressive moving average (ARMA) models (e.g., Shumway & Stoffer, 2006).

In an AR model of order p, abbreviated as AR(p), the current value of the series can be predicted

as a function of the p past values. Likewise, in an MA model of order q, abbreviated as MA(q),

the current value of the series can be predicted as a function of the q past shock variables

(unpredicted factors). As the integration of AR and MA models, the current value of an ARMA

model can be explained as a function of the p past values and q past shock variables.

To build ARMA models, one key step is to identify model orders, i.e., to get preliminary

values of p and q. Traditionally, researchers determine the values of p and q by testing the

significance of the autocorrelation / partial autocorrelation function (ACF / PACF). Similar to

correlation coefficients for independent data, the ACF is the correlation between the current value

of the series and values at different time points. In other words, it quantifies the similarity

between observations as a function of the time lag between them. The PACF, as implied by its

name, is a “partial correlation” version of the ACF. Specifically, the PACF is the correlation

between the current value of the series and values at different time points after partialling out the

effects of the values in-between. Statisticians have found that the behavior of the ACF and PACF

of stationary and invertible ARMA models1 is linked to the values of p and q. More specifically,
1There are strict and weak forms of stationarity. Strict stationarity ensures that the cumulative distribution function

of every collection of values is invariant across time points. Weak stationarity means that statistical properties such as

mean, variance, and covariance agree with their counterparts in the shifted sets. In this paper, stationarity refers to the

latter. Invertibility ensures model uniqueness. Two different MA (ARMA) models can produce the same time series

(e.g., Shumway & Stoffer, 2006, pp. 91-92; du Toit & Browne, 2007, Tables 6-7). In particular, one of these MA

(ARMA) models can be “inverted” to be an AR model of an infinite order and thus is defined as being invertible. In

this light, invertibility helps solving the problem of nonuniqueness. More formally, an ARMA(p, q) model is stationary
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for AR(p) models, the ACF tails off and the PACF cuts off after lag p; for MA(q) models, the

PACF tails off and the ACF cuts off after lag q; and for ARMA(p, q) models, both the ACF and

PACF tail off. Making use of the association between model orders and the (P)ACF, researchers

can determine the values of p and q by studying the behavior of the (P)ACF. However, in real data

analysis, the ACF and PACF are sample estimates. Consequently, researchers have to rely on

hypothesis testing to examine the significance of the ACF and PACF.

Two well-established asymptotic methods for testing autocorrelations are the 1/T

approximation (e.g., Shumway & Stoffer, 2006, p.519-520) and the Bartlett’s formula methods

(Bartlett, 1955, p.289; Shumway & Stoffer, 2006, p.519-520; Zhang & Browne, 2010). The 1/T

approximation method has been adapted for partial autocorrelations whereas the Bartlett’s method

has not. Given the limitations of asymptotic methods in small samples (e.g., unwarranted finite

sample performance and the vulnerability to nonnormality in small samples), resampling

techniques have been developed for assessing (partial) autocorrelations. Usually, the bootstrap

comes into play when an analytical solution is difficult to be adapted to small samples. To address

the problem of the lack of independence in time series data, the moving block bootstrap has been

proposed for inference on (partial) autocorrelations (Künsch, 1989; Efron & Tibshirani, 1994,

p.99-102). While the bootstrap resamples from a distribution assumed to generate the observed

data, the surrogate data method resamples under the null hypothesis (Theiler et al., 1992). In

other words, the bootstrap method tries to preserve the time dependence of the data whereas the

surrogate data method destroys the time dependence to resemble the null. The jackknife is

another commonly used resampling technique for estimating the bias, the standard error and the

influence function (Efron, 1994). To study the bias and the variability of the estimator, the

jackknife creates replications by sequentially deleting one or more observations. Because only

one or a few observations are altered, estimates based on the resulting replications are correlated

with each other and thus the variability (difference) across jackknife replications is much smaller

and invertible only when the roots of A (z) = 1 ≠
qp

j=1 ajzj and B (z) = 1 +
qq

j=1 bjzj with ajs and bjs being

AR and MA weights respectively lie outside the unit circle. Practically, with population ajs and bjs, one may check

the stationarity and invertibility of an ARMA model by constructing the A matrix in du Toit & Browne (2007, Equ.

16) using ajs or bjs and examining whether the absolute eigenvalues of the matrix are less then one. In finite samples,

the augmented Dickey-Fuller test is often used to test whether differencing is needed to make the observed series

stationary (e.g., Brockwell & Davis, 2002, pp. 193-196).
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than that of the sampling distribution. To take into account the non-independence, the jackknife

estimators of the bias and the standard error use a correction factor to enlarge the difference or the

variability. Because for different statistics, the correction factor may or may not be valid, the

bootstrap is usually more general than the jackknife.

Although how to determine model orders of ARMA models has been extensively discussed

in the literature, two issues have complicated the implementation of these existing methods in

reality. First, small sample size and nonnormality pose a threat to the validity of asymptotic

methods. Sample size in psychological studies is usually small to moderate. Thus asymptotic

methods that are based on large sample behavior may fail in small samples. In addition,

asymptotic methods usually assume normality to achieve mathematical simplicity. However,

psychological data rarely follow normal distributions (Micceri, 1989). Therefore, whether

asymptotic methods for testing (partial) autocorrelations are robust to small sample size and

nonnormality awaits further investigation.

Second, although bootstrapping (partial) autocorrelations to make inference has been

largely relied on the moving block bootstrap, it is not necessary that the moving block bootstrap is

superior to the surrogate data method when the interest is to test (partial) autocorrelations. A

related study on tests of correlations for independent data showed that univariate bootstrap which

resamples under the null outperformed bivariate bootstrap which resamples under the alternative

when testing correlations (Lee & Rodgers, 1998). In addition, among the several interval

construction methods for resampling techniques, bias-corrected and accelerated (BCa) intervals

are often recommended because they are second-order accurate, as opposed to the first order

accurate percentile intervals (Efron & Tibshirani, 1994, p.187)2. As we will show in this study,

BCa intervals may not always be superior to percentile intervals. This exception is likely related

to the computation of the bias-correction factor during the construction of BCa intervals for the

surrogate data method.

In sum, because the relative performance of the aforementioned tests of (partial)

autocorrelations is largely unknown, the objective of this study is 1) to compare the relative finite

sample performance of various tests (i.e., the 1/T approximation method, the Bartlett’s formula

2Second-order accurate means that the error in matching the intended miss-coverage rates goes to zero at a rate of

1/T in terms of sample size or time series length T . For first-order accurate, the rate is 1/
Ô

T .
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method, the moving block bootstrap and the surrogate data method) of (partial) autocorrelations

with normal and nonnormal data, 2) to develop an easy-to-use R package pautocorr to

implement the aforementioned tests, and 3) to provide a practical guideline on applications of

those tests under various circumstances.

The rest of the article is organized as follows: the two asymptotic tests are described first,

followed by a section on resampling techniques. A simulation study is presented to evaluate the

performance of those tests. An R package and a real data example are included to illustrate the use

of different tests of (partial) autocorrelations. Finally, this article ends with concluding comments.

Asymptotic Methods

The 1/T approximation method for (partial) autocorrelation testing is motivated by the fact

that under the null hypothesis which assumes that all autocorrelations are zero, time series data

reduce to uncorrelated data. Therefore, the well-established standard error estimator for

correlation, 1/
Ô

T where T is the sample size, can be used directly for (partial) autocorrelations.

More formally, let y1, y2, . . ., yT be a stationary time series of length T whose statistical

properties such as mean, variance and covariance are invariant across different time points. The

concurrent variance “0 = Var (yt) and the lagged covariances

“l = Cov (yt+l, yt) = E [(yt+l ≠ µ) (yt ≠ µ)] are estimated by their sample counterparts using

“̂l = 1
T

t=T ≠lÿ

t=1
(yt+l ≠ ȳ) (yt ≠ ȳ)Õ

where ȳ is the sample mean ȳ = 1
T

qT
t=1 yt. The 1/T approximation method assumes that under

the null, autocorrelation estimates follow a normal distribution fl̂l ≥ N
1
0, 1

T

2
where fll = “l

“0
is

the population autocorrelation at lag l and fl̂l = “̂l
“̂0

is its sample counterpart.

The partial autocorrelation „l for stationary series is defined as „1 = fl1 and

„l = Corr
1
yt ≠ yt≠l+1

t , yt≠l ≠ yt≠l+1
t≠l

2
for l Ø 2. Here yt≠l+1

t denotes the best linear prediction of

yt based on yt≠1, yt≠2, . . . , yt≠(l≠1)
3. In plain language, „l is the correlation between yt and yt≠l

after removing the association attributable to yt≠1, yt≠2, . . . , yt≠(l≠1). Under the null, „l reduce to

fll because both yt and yt≠l are unrelated with
Ó
yt≠1, yt≠2, . . . , yt≠(l≠1)

Ô
:

3Theoretically, yt≠l+1
t can be obtained by regressing yt on yt≠1, yt≠2, . . . , yt≠(l≠1) in the population and calculat-

ing the predicted value for yt using the obtained regression coefficients.
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„l = Corr
1
yt ≠ yt≠l+1

t , yt≠l ≠ yt≠l+1
t≠l

2
= Corr (yt, yt≠l) = fll. In other words, under the null that

data points are uncorrelated with each other, the sampling distribution of „̂l, the estimate of „l,

should be the same as that of fl̂l. Hence, the 1/T approximation method assumes the same

distribution for „̂l, „̂l ≥ N
1
0, 1

T

2
. Put it together, the 1/T approximation method computes the

test statistic fl̂l

1/
Ô

T
or „̂l

1/
Ô

T
and compares it to a critical value of Z–/2 or Z1≠–/2 where

Z ≥ N (0, 1) and – is the chosen significance level.

Because partial autocorrelations remove the dependence between yt and yt≠l due to
Ó
yt≠1, yt≠2, . . . , yt≠(l≠1)

Ô
, estimating „l is not as straightforward as estimating fll. The

Durbin-Levinson algorithm is a widely used iterative algorithm for computing „̂l for stationary

series. Let „lk denotes the regression coefficient of yt≠k in the one-step-ahead prediction

yt ≥ „l1yt≠1 + „l2yt≠2 + . . . + „llyt≠l. By the property of best linear prediction, stationarity, and

matrix algebra, it can be shown that „ll = „l
4. The Durbin-Levinson algorithm is used to compute

the regression coefficients in the one-step-ahead prediction. In particular, with „̂0 = 0, for l Ø 1,

the algorithm computes „̂l as well as other regression coefficients as follows (e.g., see Shumway

& Stoffer, 2006, pp.113-114),

„̂ll = „̂l = fl̂l ≠ ql≠1
k=1 „̂l≠1,kfl̂l≠k

1 ≠ ql≠1
k=1 „̂l≠1,kfl̂k

where for l Ø 2 and k = 1, 2, . . . l ≠ 1,

„̂lk = „̂l≠1,k ≠ „̂l„̂l≠1,l≠k.

Clearly, the Durbin-Levinson algorithm computes „̂l using sample autocorrelations fl̂l rather than

raw data. In this study, when raw series are not available, we rely on the Durbin-Levinson

algorithm to obtain sample partial autocorrelations5.

The Bartlett’s formula was originally developed for obtaining the asymptotic distribution

for autocorrelations under general conditions, not only under the null hypothesis. According to

the Bartlett’s formula (Bartlett, 1955, p. 289), the asymptotic distribution of
Ô

T (fl̂l ≠ fll) is

N (0, Wl) where

Wl =
Œÿ

u=≠Œ

Ó
2fl2

l fl
2
u ≠ 2fllflu (flu+l + flu≠l) + fl2

u + flu≠lflu+l

Ô
. (1)

4Detailed discussion can be found in Exercise 3.12 in Shumway & Stoffer (2006).
5The first author has tested that the resulting sample partial autocorrelations were exactly the same as those obtained

from the built-in function pacf in the widely used statistical software R.
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In short, tests based on the Bartlett’s formula first construct the confidence interval for fll using

fl̂l ± Z–/2

Ò
Ŵl
T where Ŵl is obtained by replacing population autocorrelations in Wl with their

sample counterparts, and then examine whether the test value, 0, falls into the obtained

confidence interval. One practical concern of this method is that in Equation (1) the asymptotic

variance of fl̂l is a function of concurrent and lagged correlations up to infinity. In practice, we

need to set an upper limit for the number of summed terms. Studies indicated that 30 works

satisfactorily (Zhang & Browne, 2010). Thus in this study, we use 30. According to our

knowledge, the Bartlett’s formula has not been adapted for partial autocorrelations. Thus, when

evaluating tests of partial autocorrelations, we would not consider the Bartlett’s formula method.

Resampling Techniques

Requiring fewer assumptions and spurred by the advance of computer technology,

resampling techniques have become increasingly popular. Two resampling techniques proposed

for testing autocorrelation and partial autocorrelation are the bootstrap method and the surrogate

data method. Because these two methods often make statistical inference through confidence

intervals, we first briefly review two widely used interval construction methods. We then move on

to the bootstrap method. The surrogate data method is next.

Interval Construction Methods

Two widely used interval construction methods for resampling techniques are the percentile

method and the bias-corrected and accelerated (BCa) method. Interested readers can refer to

Efron & Tibshirani (1994) and Efron (1987) for detailed discussion. Here, we summarize the

main ideas from the book and the paper. Let ◊̂ı(–/2) be the 100–
2 th percentile of (partial)

autocorrelation estimates from B resampling replications. The percentile interval of intended

coverage 1 ≠ – is obtained by finding the corresponding percentiles, i.e., [◊̂ı(–/2), ◊̂ı(1≠–/2)]. For

example, suppose that we decide to use a certain resampling procedure, e.g., the bootstrap.

Following this procedure, we form a replication sample and we compute the estimate for this

replication. This process is repeated for 2000 times and 2000 estimates are obtained. The

percentile interval endpoints are the 50th and the 1950th ordered values of the 2000 estimates.

According to Efron (1987), percentile intervals are ideal for statistics in which there exists a
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monotonic transformation g such that g(◊̂)≠g(◊)
‡g(◊̂)

≥ N (0, 1) where ‡g(◊̂) is the constant standard

error of g
1
◊̂

2
. A related example is the sample correlation coefficient for bivariate normally

distributed data. The sampling distribution of a sample correlation is skewed if the true

correlation is far away from zero. In addition, the standard error of the sample correlation gets

larger as the true correlation gets closer to zero. Fisher’s z transformation is one of the g

transformation mentioned above because it normalizes the sampling distribution (the transformed

statistic follows a normal distribution) and stabilizes the standard error (the standard error

becomes independent of the true correlation). Analytically, researchers may find out the interval

endpoints for g
1
◊̂

2
first, and then transform them back to the metric of ◊̂ to obtain interval

estimates for ◊̂. As pointed out by Efron (1987), the bootstrap automatically goes through this

process and there is no need to find out the exact transformation g.

BCa intervals, however, are preferable to percentile intervals when the transformation g can

only normalize the statistic but fail to correct bias and stabilize the standard error. More

specifically, the transformed statistic g
1
◊̂

2
is allowed to have bias and a non-constant standard

error, g(◊̂)≠g(◊)
‡g(◊̂)

≥ N (≠z0‡, ‡2) where ‡ = 1 + cg (◊) (Efron, 1987). The two quantities z0 and c

are called bias and acceleration constants. Obviously, z0 is proportional to the difference between

the expectation (or median) of g
1
◊̂

2
and g (◊). This is how z0 gets its name. To estimate z0, Efron

& Tibshirani (1994) suggested assessing the amount of median bias by counting the proportion of

replications less than the original estimate. The corresponding percentile in the standard normal

distribution reflects the size of median bias on the scale of the standard normal distribution and

thus can be used as ẑ0, the estimate of z0. Similarly, acceleration c gets its name because it is the

rate of change of the standard error with respect to the true parameter value. Efron (1987)

proposed to approximate c by one-sixth of the “skewness” of the influence function. The influence

function generally measures how the estimator changes if the distribution of data changes slightly.

Because the jackknife slightly “changes” the empirical distribution of data by deleting one or a

few observations sequentially, there is a close connection between the jackknife and the influence

function. Thus, the jackknife is often used to estimate the influence function and hence is

recommended for obtaining ĉ, the estimate of c (Frangos & Schucany, 1990). Let y≠t be the

original sample with yt omitted and ◊̂(t) be the estimate of (partial) autocorrelations from sample
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y≠t. Define ◊̂(·) = qT
t=1 ◊̂(t)/T . The acceleration ĉ can be obtained using the following equation

ĉ =
qT

t=1
1
◊̂(·) ≠ ◊̂(t)

23

6
5qT

t=1
1
◊̂(·) ≠ ◊̂(t)

2263/2 .

With ẑ0 and ĉ, the BCa interval of intended coverage 1 ≠ – is obtained by finding the following

percentiles [◊̂ı(–L), ◊̂ı(–U )] where

–L = �
A

ẑ0 + ẑ0 + z(–/2)

1 ≠ ĉ (ẑ0 + z(–/2))

B

–U = �
A

ẑ0 + ẑ0 + z(1≠–/2)

1 ≠ ĉ (ẑ0 + z(1≠–/2))

B

.

Here z(–/2) is the 100–/2th percentile of the standard normal distribution and � (·) is the

cumulative distribution function of the standard normal distribution.

When z0 = c = 0, BCa intervals reduce to percentile intervals. One may expect comparable

performance of these two methods. When z0 and c are nonzero, Efron (1987) has shown that BCa

intervals are second-order accurate whereas percentile intervals are only first-order accurate. In

other words, empirical miss-coverage rates of BCa intervals converge to the intended coverage

rate faster than do percentile intervals as the time series length increases. In the example of

correlation, if the true correlation is zero, whether or not the bivariate normality assumption is

violated, Fisher z transformation of sample correlation approximately shows zero bias and its

standard error is independent of the true correlation value (e.g., Hawkins, 1989). Hence, in this

situation, percentile intervals are comparable to BCa intervals, provided that our estimates of z0

and c are accurate. When the true correlation is nonzero and the bivariate normality assumption is

violated, the standard error of the transformed correlation depends on the true correlation value

(e.g., Hawkins, 1989). In this situation, BCa intervals are likely better than percentile intervals.

Similar results can be expected for autocorrelations and partial autocorrelations.

Moving Block Bootstrap

The bootstrap, originally proposed for independent data, is a computer based method of

statistical inference that can avoid the formidable wall of mathematics (Efron & Tibshirani,

1994): It samples with replacement from the original data points to form bootstrap samples and

makes inference of the original sample based on bootstrap samples in order to model the inference
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from sample data to a population. However, this naive bootstrap cannot be directly applied to time

series data because resampling with replacement can destroy the dependence in time series data.

Because autocorrelations of time series data are often substantial at initial lags but quickly

decay to zero, the dependence among observations can be captured by blocks consisting of

sufficient consecutive observations. In accordance with this property, moving block bootstrap

splits the original time series data into T ≠ b + 1 consecutive blocks of length b: y1 to yb will be

block 1, y2 to yb+1 will be block 2, and etc. (Efron & Tibshirani, 1994, p.99-102). These

T ≠ b + 1 blocks will then be resampled with replacement. Finally, a bootstrap sample is formed

by aligning the selected T/b blocks.

One limitation of this “simple” moving block bootstrap is that points connecting different

blocks are bad joints6. To avoid this problem, Künsch (1989) proposed the vectorized moving

block (VMB) bootstrap. This bootstrap forms blocks in the same way as does the simple moving

block bootstrap. The difference occurs when computing (partial) autocorrelations for a bootstrap

sample. Unlike the simple moving block bootstrap which treats the bootstrap series as the original

data and computes sample (partial) autocorrelations as in the original sample, the VMB bootstrap

computes sample autocorrelations based on pairs of observations l lags distant apart within each

block, when the parameter of interest is autocorrelation at lag l. After obtaining the first several

autocorrelation estimates, sample partial autocorrelations can be obtained via the

Durbin-Levinson algorithm. For example, suppose autocorrelation at lag 1 is of interest and the

first block consists of observations y1, y2, and y3, and the second block consists of y8, y9, and y10.

Then the VMB bootstrap computes an estimate of autocorrelation at lag 1 using pairs of

observations, (y1,y2), (y2,y3), (y3,y4), (y8,y9), (y9,y10), and (y10,y11). And according to the

Durbin-Levinson algorithm, the sample estimate of partial autocorrelation at lag 1 should be the

same as that for autocorrelation at lag 1.

To conduct a test on autocorrelations or partial autocorrelations at certain lags, we can first

construct a confidence interval using the VMB bootstrap and then examine whether the

constructed interval contains 0.

6It means that adjacent points in the generated bootstrap series may be distant away from each other in the original

series and hence are not likely to be correlated with each other despite that they are adjacent data points in the generated

series and are supposed to be correlated with each other.
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A noteworthy point regarding the VMB bootstrap is that a special jackknife procedure is

needed for BCa intervals because the usual jackknife procedure for independent data cannot be

directly applied to time series data. As a result, we used the jackknife procedure proposed by

Künsch (1989) for BCa interval construction of the VMB bootstrap in this study. Similar to the

VMB bootstrap, the Künsch’s jackknife first constructs T ≠ b + 1 consecutive blocks of length b.

In the second step, however, instead of sampling T/b blocks from the constructed T ≠ b + 1
blocks, this jackknife procedure iteratively deletes one block from the original series, yielding

T ≠ b + 1 new series. Then as in the VMB bootstrap, the Künsch’s jackknife computes estimates

of (partial) autocorrelations based on pairs of observations for each newly generated series.

Regarding the comparison between percentile and BCa intervals, because the VMB

bootstrap works under the alternative, Fisher’s z transformation fails to stabilize the standard error

of the transformed statistic. Hence, BCa intervals are likely preferable to percentile intervals

when combined with the VMB bootstrap.

Surrogate Data Method

While the bootstrap resamples from the original distribution that generates the observed

data, the surrogate data method examines the null hypothesis by simulating the sampling

distribution under the null and comparing the observed statistic with the confidence interval

obtained from the estimated sampling distribution (Theiler et al., 1992). In the context of testing

(partial) autocorrelations, the surrogate data method simulates the sampling distribution under the

null by shuffling the order of the original series, given that the null hypothesis assumes that all

lagged correlations are zero. The main difference between the surrogate data method and the

moving block bootstrap is that the former matches the logic of hypothesis testing whereas the

latter follows the logic of confidence interval construction.

A modification is needed when computing the bias constant z0 for BCa intervals. The BCa

method evaluates median bias by checking whether the original sample estimate (treated as the

population value in the world of resampling) equals the median of resampling replications

(treated as samples in the world of resampling). In the situation of testing (partial)

autocorrelations, because the surrogate data method works under the null, what is wanted is the

bias under the null. However, the observed series does not necessarily come from the null, and
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thus original sample estimates, i.e., the observed (partial) autocorrelations might not be

substitutes for population values under the null. Therefore, we instead used population values

under the null, i.e., zero. In particular, ẑ0 is obtained by counting the proportion of replications

with (partial) autocorrelation estimates less than zero (rather than sample estimates) and finding

the corresponding percentile from the standard normal distribution.

Regarding the comparison between percentile and BCa intervals, because the surrogate data

method works under the null, i.e., having zero population (partial) autocorrelations, Fisher’s z

transformation should satisfy the requirement of normalization and stabilization for percentile

intervals. As a result, percentile intervals are likely to be comparable to BCa intervals. However,

because population values are used instead of sample estimates when computing ẑ0, BCa intervals

might be inferior to percentile intervals. This possibility is explored in the simulation study.

A Simulation Study

In this section, we carried out a simulation study to evaluate and compare the performance

of the six tests of autocorrelations and the five tests of partial autocorrelations. In the simulation,

our main objective was to evaluate the performance of the tests under evaluation with complete

data. Specifically, we studied the effect of nonnormality and time series length. Normal data and

long series are preferred for accurate statistical inference. But these types of data are often

uncommon in reality. Therefore, it is desirable to know which test is most tolerant of nonnormal

data and short series.

Simulation Design

Data were simulated from a set of moving average (MA[3]) and autoregressive (AR[3])

models. Specifically, MA series were generated from MA models

yt = b1vt≠1 + b2vt≠2 + b3vt≠3 + vt with MA weights b1, b2, b3 determined by autocorrelations at

the first three lags specified in Table 17. To mimic real data, values for autocorrelations were

chosen based on the average sample autocorrelations of the 146 daily moral affect series collected

by Hardy et al. (2014), i.e., .266, .153, and .100 for the first three lags. Population partial

7Because the calculation of (partial) autocorrelations does not require explicit model fitting, instead of choosing

values for AR or MA weights directly, we set up values for (partial) autocorrelations first.
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autocorrelations were then computed using the ARMAacf function in R. Similarly, AR series

were generated from AR models yt = a1yt≠1 + a2yt≠2 + a3yt≠3 + vt with AR weights a1, a2, a3

determined by partial autocorrelations at the first three lags specified according to the average

sample partial autocorrelations up to lag 3, i.e., .266, .040, and .023. Population autocorrelations

were then computed accordingly. Model M0 with zero (partial) autocorrelations was used to

explore Type I error rates. All models are stationary and invertible in the population.

Three potential influential factors were considered, as summarized in Table 2. First, we

considered three time series lengths that are commonly seen in psychological studies: 50, 100 and

200. Second, distributions with heavy tails (t4.5, excess kurtosis =12 ) and/or skewness

(Gamma(1,1), skewness = 2 ; excess kurtosis = 6) were included to study the performance of

various tests of (partial) autocorrelations with nonnormal data. We also considered three different

levels of variance for the shock variable, from small to large: 0.5, 1, and 1.5.

In the simulation, we evaluated six tests of autocorrelations: the 1/T approximation method

(1/T ), the test based on the Bartlett’s formula (Bartlett), the vectorized moving block bootstrap

with percentile intervals (VMB) and with BCa intervals (VMB-BCa), the surrogate data method

with percentile intervals (Surrogate) and with BCa intervals (Surrogate-BCa). For partial

autocorrelations, the test based on the Bartlett’s formula is unavailable, rendering the total number

of tests to 5. All tests were used to test 1000 time series in every condition, and were evaluated in

terms of Type I error rates and statistical power. The number of bootstrap replications / surrogate

data sets was set to B = 2000. When implementing the VMB bootstrap, the block size b needs to

be determined beforehand. In this study, we followed the recommendation by Künsch (1989) who

suggested that an optimal block length b Ã T
1
3 , and thus we used a block length of b ¥ T

1
3 . If the

obtained b is not an integer, we rounded it to the nearest integer.

Results Regarding Autocorrelations

Figure 1 visualizes the empirical Type I error rates for different tests of autocorrelations

with various time series lengths, shock variable distributions, and shock variable variances.

Generally, the 1/T approximation method and the surrogate data method (with either percentile
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or BCa intervals) showed better control of Type I error than did the Bartlett’s formula method and

the VMB bootstrap (with either percentile or BCa intervals). When the time series length was

short (e.g., T = 50) or/and data did not follow normal distributions, the 1/T approximation

method was relatively conservative with underestimated Type I error rates and the surrogate data

method performed better in this situation. More specifically, among the 27 conditions and the

three parameters (autocorrelations at the first three lags) of interest, the 1/T approximation

method produced Type I error rates significantly different from the nominal level 23 of 81(27◊3)

times, as indicated by the number of times the solid line with triangles falling outside the 95%

confidence band of Type I error rates in Figure 1. In contrast, the number for the surrogate data

method was 5 with percentile intervals and 11 with BCa intervals, both of which are substantially

smaller than that of the 1/T approximation method.

Between the two types of tests with less satisfactory performance, the Bartlett’s formula

method was generally too conservative. As shown in Figure 1, this method produced conservative

Type I error rates 75 of 81 times. In contrast, the VMB bootstrap was generally too liberal,

especially when percentile intervals were used, which produced inflated Type I error rates 76 of

81 times. Results became better when BCa intervals were used, but still far from the acceptable

range: inflated Type I error rates were observed 60 of 81 times.

Because the VMB bootstrap with either percentile or BCa intervals produced inflated type I

error rates in most studied conditions, they were not included in the following power analysis.

Given that the 1/T approximation method is widely used, we contrasted it with the rest of

tests except the VMB bootstrap with either percentile or BCa intervals because they showed

inflated Type I error rates. As shown in Figure 2, the Bartlett’s formula method was less powerful

than the 1/T approximation method across all the studied conditions. The surrogate data method

with BCa intervals seemed to perform slightly worse than the 1/T approximation method. In

contrast, the surrogate data method with percentile intervals showed higher power than the 1/T

approximation method across all the studied conditions.

A regression analysis was used to further analyze under which conditions the differences in

power were substantial between the surrogate data method with percentile intervals and the 1/T

approximation method. Regression results (see Table 3) indicated that differences in power were

larger in conditions with normal or t distributed shock variables, or for shorter series.
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Results Regarding Partial Autocorrelations

Figure 3 visualizes the empirical Type I error rates for the five tests of partial

autocorrelations under conditions with various time series lengths, shock variable distributions,

and shock variable variances. Generally, the pattern of results was similar to that of tests of

autocorrelations. Specifically, the surrogate method with percentile intervals performed the best

(Type I error rates significantly different from the intended level 7 out of 81 times); the 1/T

approximation method and the surrogate data method with BCa intervals were comparable to

each other and both of them were inferior to the surrogate method with percentile intervals (Type

I error rates off the intended level 21 and 26 out of 81 times respectively); the VMB bootstrap was

generally too liberal, regardless of being combined with percentile or BCa intervals (producing

inflated Type I error rates 74 and 58 out of 81 times respectively).

Because the VMB bootstrap with either percentile or BCa intervals produced inflated type I

error rates in most studied conditions, they were not included in the following power analysis.

Regarding the empirical power, again, we used the widely used 1/T approximation method

as a benchmark. As shown in Figure 4, we found similar results as those for autocorrelations. In

particular, the surrogate data method with percentile intervals showed higher power than the 1/T

approximation method in most studied conditions, and when combined with BCa intervals, the

surrogate data method showed lower empirical power.

Regression analysis on power differences between the surrogate data method with

percentile intervals and the 1/T approximation method showed that differences were larger in

conditions with normal or t distributed shock variables, shorter time series lengths, or larger effect

sizes (see Table 4).

An R Package pautocorr

To ease the implementation of the six tests of autocorrelations and the five test of partial

autocorrelations, we developed an R package pautocorr. This package is written for univariate

time series. It calculates (partial) autocorrelation estimates, their standard errors or confidence

intervals using the six (five) evaluated methods in this study. Currently, the package can only

handle missing values using the available-case method8. Below, we introduce the use of this
8When computing (partial) autocorrelation estimates, pairs of observations with missing values are removed.
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package.

Included in Appendix is the example R code illustrating the use of the package. To use the

package within R, first to install the package using the command

install.packages("pautocorr",repos="http://R-Forge.R-project.org")

(Line 2) and then load it using the command library(pautocorr) (Line 3). The code in

Line 4 and Line 5 loads the data set daily.moral into R and extracts the moral affect series

from the data set. Often, observed series are not stationary and so are our example data. The

built-in function decompose is helpful in making observed series stationary (Line 7). To use

function decompose, researchers have to redefine the series in the format of time series data

using function ts (Line 6). Function pautocorr.test is the main function from the package

pautocorr to conduct the six tests of autocorrelations and the five tests of partial

autocorrelations. The lagmax argument in this function specifies a maximum time lag for

(partial) autocorrelations to be tested. The argument alpha sets the significance level. The

number of resampling replications can be changed via the argument B and the upper limit for the

summed terms in the Bartlett’s formula can be specified through the argument L. Numerical

results will be returned if the argument print is set to TRUE. To visualize results, use the

function plot. Normally, a graph with four plots visualizing the results of the tests under

evaluation will be generated. An example is given in the next section Real Data Illustration.

Real Data Illustration

We now demonstrate the use of the six tests of autocorrelations and the five tests of partial

autocorrelations using an empirical study. The data used for illustration included 50 days of

self-ratings on daily moral affect (assessed by the sum of scores for empathy, gratitude and

forgiveness emotions) from one participant. The series was extracted from a data set of a large

study by Hardy et al. (2014), which investigated the relationships among daily religious

involvement, spirituality and moral emotions. The current illustration focuses on lagged effects of

daily moral affect.

The history plot (see the top left graph in Figure 5) suggested that the original series

contained noticeable long term change which made the series nonstationary. To make the series

stationary, we removed the trend component that reflected long term change using the
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decompose function in R. We then tested the stationarity of the residual series through the

augmented Dickey-Fuller unit root test (Dickey & Fuller, 1979, 1981) using the ur.df function

in the urca package in R. Results confirmed that the residual series was stationary (t = ≠5.55 ,

p < 0.01). The history plot of the residual series echoed the results (see the top right graph in

Figure 5).

As shown by the ACF and PACF plots (see the two middle graphs in Figure 5), the results

of the 1/T approximation method and the surrogate data method with BCa intervals suggested

that the underlying model might be an MA(3) or AR(3) model since only autocorrelation and

partial autocorrelation at lag 3 were significant. One could subjectively interpret these results as

the ACF cut off after lag 3 and the PACF tailed off or the other way around. The results of the

surrogate data method with percentile intervals however showed that it was more likely to be an

AR(3) model given that autocorrelation at lag 5 was also significant.

The bottom two plots showed that the VMB bootstrap with BCa intervals and the Bartlett’s

formula method found similar results as did the 1/T approximation method and the surrogate

data method with BCa intervals. Just as in the simulation study, the VMB bootstrap with

percentile intervals rejected the null most frequently. Based on simulation results, we do not

recommend using the Bartlett’s formula method or the VMB bootstrap.

To sum up, the illustration here paralleled the results of the simulation study. In particular,

the surrogate data method with percentile intervals had higher power than the 1/T approximation

method and the surrogate data method with BCa intervals. And this difference might lead to

different conclusions in model order identification in real data analysis.

Discussion

In this study, we compared six tests of autocorrelations and five tests of partial

autocorrelations using a simulation study and a real data example. Generally, the surrogate data

method with percentile intervals outperformed the other tests in terms of better control of Type I

error and higher statistical power. This finding is generally in accordance with the study on tests

of correlations for complete but independent data (Lee & Rodgers, 1998). Additionally, the use of

BCa intervals resulted in substantial decrease in power, suggesting not to use BCa intervals

together with the surrogate data method. We believe that this is related to the inaccurate
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estimation of the median bias. With inaccurate estimates of median bias, bias correction is of

course inaccurate. Consequently, BCa intervals may perform less satisfactorily.

The advantage of the surrogate data method over the 1/T approximation method decreased

as time series length increased, which is as expected given its roots in large sample behaviors.

When time series length is sufficiently large (e.g., T Ø 200 in this study), the 1/T approximation

method can be used due to its simplicity.

Based on the simulation study, the test based on the Bartlett’s formula is generally not

recommended for testing (partial) autocorrelations because of its conservative Type I error rates

and low statistical power. The two VMB bootstrap methods are not suitable for testing (partial)

autocorrelations as well, as suggested by the inflated Type I error rates in the simulation study.

We believe that the main reason for the unsatisfactory performance of the VMB bootstrap is that

for statistics such as sample (partial) autocorrelations, the sampling distribution under the null has

a different shape compared to that under the alternative. Consequently, the chances of estimated

(partial) autocorrelations falling into the 95% confidence intervals under the null do not equal the

chances of H0 value, that is 0 in our situation, falling into the 95% confidence intervals under the

alternative. This finding is somewhat contradictory to the study on bootstrap standard error

estimates in dynamic factor analysis by Zhang & Browne (2010). In that study, Type I error rates

of the VMB bootstrap were inflated but still within the acceptable range. One possible

explanation is that in the simulation study, Zhang & Browne (2010) used normal shock variables

and error terms only. In the current study, we considered nonnormal shock variables as well. In

this study, the control of Type I error of the VMB bootstrap was worse in conditions with

nonnormal shock variables. Additionally, this study showed that compared to percentile intervals,

the VMB bootstrap worked better with BCa intervals. In conclusion, we recommend using the

surrogate data method with percentile intervals to test the hypothesis whether (partial)

autocorrelations at certain lags are zero or to build AR or MA models, given that it shows better

control on Type I error and higher power.

The current study has several limitations. First, we did not consider model selection

techniques such as the information criterion methods (e.g., AIC and BIC indices) and the

Hannan-Rissanen method (Hannan & Rissanen, 1982). Theoretically, the use of information

criteria requires explicitly fitting a model, which is avoided by the methods evaluated in this
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study. Additionally, the “model” estimated while applying information criteria not only specifies

the structural model but also the distributional model. Because normality is often assumed, for

nonnormal data with a small sample size, complicated modification is often necessary (e.g.,

Burnham & Anderson, 2002; Konishi & Kitagawa, 2008). Given these two considerations, we

decided to leave information criterion methods for future studies so that we could focus on the

objectives of the current study. The Hannan-Rissanen method avoids multiple model estimation

of the information criterion methods by comparing models through linear regression calculations.

However, this method and its improved version (e.g., Poskitt, 1987) still rely on minimizing

information criteria such as BIC or other indices. Their robustness to nonnormality in small

sample size conditions is unwarranted. Despite those considerations, we believe that the

information criterion methods and the Hannan-Rissanen method are competitive alternatives.

Future research may systematically compare those model selection techniques with the studied

methods here, especially for nonnormal data with small sample sizes.

Second, we did not consider other tests of autocorrelations such as the Box-Pierce test, the

Ljung-Box test and their extended versions (e.g., Box & Pierce, 1970; Ljung & Box, 1978;

Horowitz et al., 2006; Lobato et al., 2001, 2002). The Box-Pierce and Ljung-Box tests examine

whether the autocorrelations up to lag l are all zero. Hence, both tests are more suitable for testing

the overall randomness of a time series. If, however, testing the significance of the autocorrelation

at lag l is of interest, e.g., in the case of model order identification, it is generally difficult to make

inference based on the results of these two tests. For example, suppose the observed series is

generated from an AR(3) model. What can be inferred from the Box-Pierce and Ljung-Box tests

is that the observed series is or is not serially correlated. Researchers still need to rely on other

inferential techniques. Therefore, in this study, we did not examine the performance of the

Box-Pierce test, the Ljung-Box test and their extended versions.

Finally, we did not consider the missing data problem, which is a common problem in time

series data analysis. After years of study, it is clear that it is crucial to distinguish between

missing mechanisms. According to Little & Rubin (2002), there are three types of missing

mechanisms: missing completely at random (MCAR, the missing mechanism is a complete

random process), missing at random (MAR, the missingness can be fully predicted by observed

values), and missing not at random (MNAR, the missingness is related to unobserved values).
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When the missing mechanism is MCAR, observed data points can be viewed as a subsample of

the original sample. Consequently, one can expect that the studied tests of (partial)

autocorrelations combined with the available-case method (e.g., see Little & Rubin, 2002, pp.53)

for missing values would show similar patterns of results as those in this study. Other missing

mechanisms such as MAR or MNAR requires sophisticated methods to handle the missing data

problem, e.g., the imputation method or the EM algorithm with auxiliary variables (e.g., see Little

& Rubin, 2014). In time series analysis, the nature of time dependence makes it highly

challenging to deal with missing data at the stage of model order identification. This is because

the process of model order identification and missing data correction may influence each other

and become entangled with each other. We believe that there is no easy solution to the missing

data problem. Future research may systematically study this issue.

In sum, in this study, we have evaluated the finite sample performance of the six tests of

(partial) autocorrelations for both normal and nonnormal series. Based on simulation results, we

recommend the surrogate data method with percentile intervals given its robustedness to

nonnormality and high statistical power. Tests of (partial) autocorrelations are useful for model

order identification for AR or MA models. In real data analysis, model order identification is a

challenging task given the reality of small sample size, nonnormality and other issues. We believe

the surrogate data method with percentile intervals is useful for this task.
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Appendix: Example R Code

Example R code illustrating the use of the customized R functions for the six tests of

autocorrelations
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1 ## Input ##
2 install.packages(’pautocorr’,repos="http://R-Forge.R-project.org")

3 library(pautocorr)

4 data(’daily.moral’)

5 d = daily.moral[,’daily.moral’]

6 ts.d = ts(data = d,frequency = 7)

7 d.adj = na.omit(d - decompose(ts.d)$trend)

8 res = pautocorr.test(d.adj,lagmax=15,alpha=0.05,B=2000,print = TRUE)

9 plot(res)
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Table 1

Parameter / population values used in the simulation.

MA Weights Autocorrelations Partial Autocorrelations

Models b1 b2 b3 fl1 fl2 fl3 „1 „2 „3

M0 0 0 0 0 0 0 0 0 0

MA(3) M1 .187 .095 .052 .200 .100 .050 .200 .063 .020

M2 .382 .194 .120 .400 .200 .100 .400 .048 .006

AR Weights Autocorrelations Partial Autocorrelations

a1 a2 a3 fl1 fl2 fl3 „1 „2 „3

AR(3)
M3 .175 .091 .050 .200 .136 .092 .200 .100 .050

M4 .300 .168 .100 .400 .328 .266 .400 .200 .100
Note: Values for autocorrelations of MA models and partial autocorrelations of AR models were

chosen according to analysis results of real series. MA, AR weights, partial autocorrelations of MA

models and autocorrelations of AR models were computed according to the theoretical relationship

among MA (or AR) weights, autocorrelations and partial autocorrelations of MA (or AR) series.
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Table 2

Influential factors considered in Study 1.

Factors Description

Time series length (T ) 50,100,200

Population distribution of v1 ≠ vT N (0, ‡2
v), t4.5 (0, ‡2

v) , �(1,1) (0, ‡2
v)

variance (‡2
v) of v1 ≠ vT 0.5, 1, 1.5

Note: t4.5 (0, ‡2
v) and �(1,1) (0, ‡2

v) are the rescaled t and Gamma distributions with means and

variances specified inside the parenthesis respectively.
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Table 3

Regression analysis on power differences between the surrogate data method with percentile

intervals and the 1/T approximation method for tests of autocorrelations.

Coef. Est. Std. Err. p≠Value

Intercept 0.019 0.003 <.001

Normal 0.014 0.002 <.001

t4.5 0.018 0.002 <.001

T = 50 0.019 0.002 <.001

T = 200 -0.016 0.002 <.001

‡2
v = 1 0.000 0.002 0.837

‡2
v = 1.5 0.000 0.002 0.883

Effect Size 0.012 0.008 0.124
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Table 4

Regression analysis on power differences between the surrogate data method with percentile

intervals and the 1/T approximation method for tests of partial autocorrelations.

Coef. Est. Std. Err. p≠Value

Intercept 0.017 0.004 <.001

Normal 0.011 0.003 <.001

t4.5 0.013 0.003 <.001

T = 50 0.013 0.003 <.001

T = 200 -0.011 0.003 <.001

‡2
v = 1 0.001 0.003 0.809

‡2
v = 1.5 0.001 0.003 0.951

Effect Size 0.037 0.010 <.001
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Figure 1. Empirical Type I error rates for the six tests of autocorrelations (the 1/T approximation

method [1/T ], the Bartlett’s formula method [Bartlett], the surrogate data method with percentile

[Surrogate] and BCa intervals [Surrogate-BCa], and the vectorized moving block bootstrap with

percentile [VMB] and BCa intervals [VMB-BCa]) as a function of various time series lengths,

shock variable distributions and shock variable variances. Note: The 95% confidence band for

Type I error rates (.05 ± 1.96
Ò

0.05◊0.95
1000 ¥ [.036, .064]) was shaded in blue.
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Figure 2. Contrast the power of the 1/T approximation method with that of the remaining tests of

autocorrelations except for the moving block bootstrap. “BCa” is short for bias-corrected and

accelerated intervals.
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Figure 3. Empirical Type I error rates for the five tests of partial autocorrelations (the 1/T

approximation method [1/T ], the surrogate data method with percentile [Surrogate] and BCa

intervals [Surrogate-BCa], and the vectorized moving block bootstrap with percentile [VMB] and

BCa intervals [VMB-BCa]) as a function of various time series lengths, shock variable

distributions and shock variable variances. Note: The 95% confidence band for Type I error rates

(.05 ± 1.96
Ò

0.05◊0.95
1000 ¥ [.036, .064]) was shaded in blue.



TESTING AUTOCORRELATION AND PARTIAL AUTOCORRELATION 33

Surrogate with Percentile−1/T

PACF Power Differences

F
re

q
u
e
n
cy

0.00 0.04 0.08 0.12

0
2
0

4
0

6
0

Surrogate with BCa−1/T

PACF Power Differences
F

re
q
u
e
n
cy

−0.10 −0.05 0.00

0
2
0

4
0

6
0

8
0

Figure 4. Contrast the power of the 1/T approximation method with that of the surrogate data

method with percentile or BCa intervals for partial autocorrelation testing. “BCa” is short for

bias-corrected and accelerated intervals.
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Figure 5. Test the ACF and the PACF of a daily moral affect series. “1/T ”: the 1/T

approximation method; “Bartlett”: the Bartlett’s formula method; “Surrogate” and

“Surrogate-BCa”: the surrogate data method with percentile and BCa intervals respectively; and

“VMB” and “VMB-BCa”: the vectorized moving block bootstrap with percentile and BCa

intervals respectively.




