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Abstract

In social and behavioral sciences, data are typically not normally distributed, which can

invalidate hypothesis testing and lead to unreliable results when being analyzed by

methods developed for normal data. The existing methods of generating multivariate

non-normal data typically create data according to specific univariate marginal

measures such as the univariate skewness and kurtosis, but not multivariate measures

such as Mardia’s skewness and kurtosis. In this study, we propose a new method of

generating multivariate non-normal data with given multivariate skewness and kurtosis.

Our approach allows researchers to better control their simulation designs in evaluating

the influence of multivariate non-normality.

Keywords: multivariate non-normal data, multivariate skewness, multivariate

kurtosis, random number generation
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A Method of Generating Multivariate Non-normal Random Numbers with Desired

Multivariate Skewness and Kurtosis

Introduction

In social and behavioral sciences, the normality of data is assumed in most

statistical methods. Nonetheless, data are rarely normally distributed in practice.

Therefore, the statistical inferences may not be valid, and the results may not be

reliable any more when procedures developed for normal data are used to analyze

non-normal data (Cain, Zhang, & Yuan, 2017; Micceri, 1989). Many studies in the

literature investigated the consequences of the violation of the normality assumption

and proposed some alternative procedures to analyze non-normal data. For instance,

Bradley (1980) showed that robustness of statistical procedures such as the classical Z,

t, and F tests suffered from the non-normality of data. Non-parametric tests and

procedures have won appreciation of researchers because they do not rely on the data

distribution and therefore, the violation of normality does not directly disqualify data

analysis (Hollander & Wolfe, 2015).

In the literature, discussions on non-normality mainly focus on the univariate

case; whereas the consequences of deviation from the multivariate normality is less

explored. However, the analysis of multivariate data is routinely conducted in social

and behavioral sciences research. Therefore, it is important to understand the influence

of the multivariate non-normality on the multivariate analysis, which can be done

through Monte Carlo simulations. To conduct such simulations, one needs to generate

multivariate data with the control of the degree of non-normality. In the literature,

most non-normal data generators are developed for univariate data, such as the

third-order polynomial power method (the power method; Fleishman, 1978), the

fifth-order polynomial method (Headrick, 2002), and the g-h distribution method (Field

& Genton, 2012).

The existing methods typically generate multivariate data according to specific

univariate marginal measures such as the univariate skewness and kurtosis, but not

multivariate measures such as Mardia’s (1970) skewness and kurtosis. For example, the
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widely-used simulation method proposed by Vale and Maurelli (VM; 1983) was built on

Fleishman’s (1978) polynomial approach. In addition to generating data for each

variable with specific first four moments, their method also controls for a correlation

matrix that allows researchers to have a desired multivariate data structure. This

method is very popular in the moment-based modeling area, such as structural equation

modeling (SEM). However, some researchers have questioned the generalization of this

method. Foldnes and Grønneberg (2015) derived the mathematical distribution of the

VM approach and showed that even though the approach could generate multivariate

data with user-specified marginal skewness and kurtosis, the generated data might not

be truly multivariate non-normal. Astivia and Zumbo (2015) have shown that the Vale

and Maurelli method has downward bias. In one of their later papers, Astivia and

Zumbo (2018) also found the multiplicity solution issue of the Fleishman’s polynomial

related method, which means that there are multiple possible solutions for the

polynomial coefficients (a, b, c, and d). This issue might lead to the difference in the

analysis even with the same inputs. To remedy the drawback, researchers have

developed other methods. Mair, Satorra, and Bentler (2012), for example, introduced a

multivariate approach based on copulas that could also generate data with a

pre-specified variance-covariance matrix. Foldnes and Olsson (2016) presented a method

using linear combinations of independent generator variables. Additionally, Lee and

Kaplan (2018) developed a generator for the multivariate ordinal data based on entropy

procedures.

Despite their usefulness, none of these methods allows the direct control of the

multivariate non-normality measures. Multivariate skewness and kurtosis have been

shown to directly impact statistical analysis. For example, Yuan, Bentler, and Zhang

(2005) noted that a robust procedure might be necessary for reliable SEM inferences

when a sample has a large multivariate kurtosis. More recently, Cain et al. (2017)

conducted a meta-analysis study on the multivariate non-normality of the data used in

254 published studies and found that the Type I error rates of testing the model fit

were remarkably higher in factor analysis when the multivariate normality was violated.
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Generating multivariate non-normal data with desired multivariate measures is the first

step to understand the type and severity of non-normality. This is because it relates to

both multivariate skewness and kurtosis on analysis procedures.

Generating multivariate non-normal random data requires the understanding of

the definition of the non-normality and the relationship between univariate and

multivariate data. Mardia (1970) introduced the measures of population multivariate

skewness and kurtosis as the natural extension of the univariate ones. In the univariate

case, with non-zero skewness, the distribution is asymmetry. When the excess kurtosis

is not 0 (excess kurtosis equals to kurtosis minus 3), the distribution density function is

different from a normal distribution. Similarly, Mardia’s multivariate kurtosis indicates

whether the tails are heavy or light in comparison to those of the multivariate normal

distribution (DeCarlo, 1997). On the other hand, the Mardia’s skewness is still a

measure of symmetry, but cannot take negative values. Higher values indicate severer

asymmetry.

To date, there is no available method for researchers to directly specify both

multivariate skewness and kurtosis for multivariate non-normal data generation. To fill

the gap, we introduce a new method of generating multivariate non-normal data with

specific multivariate measures. This approach allows researchers to better control their

simulation design in evaluating the influence of the multivariate non-normality. More

over, this technique will allow for a better understanding of the relationship between

multivariate non-normality and the marginal univariate non-normality.

The rest of the paper is organized as follows. We first propose a new generating

method and introduce an R package for the implementation of the method. We then

present a simulation study and the results with various conditions. We conclude the

study with a summary of our method.
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Method

Data Model

To generate the non-normal data, we specify the following data model. We use a

vector x of p variables as,

x = rAξ, (1)

and each marginal xi as,

xi = r
q∑
j=1

aijξj, (2)

where ξ = (ξ1, ..., ξq) is a vector containing q independent random variables. Each of the

variable ξj has first four ordered moments E(ξj) = 0, E(ξ2
j ) = 1, E(ξ3

j ), and E(ξ4
j ).

A = (aij) is a p× q matrix of rank p (p ≤ q), and AAt = Σ = cov(x). And r is a

random variable, which is independent of ξ, with the first four ordered moments

E(r), E(r2), E(r3), and E(r4).

The ordered moments are a set of quantitative measures describing the shape of a

distribution. When the ordered moments are normalized, they become the standardized

moments (or central moments). Skewness and kurtosis are the third and fourth

standardized moments. The ordered and standardized moments can convert to each

other as long as mean and variance are provided.

According to the definition of Mardia (1970), the population multivariate

skewness ( β1 ) and kurtosis ( β2 ) of x based on our model are computed as,

β1 = E{[(x− µ)tΣ−1(y− µ)]3} = [E(r3)]2
q∑
j=1

[E(ξ3
j )]2, (3)

β2 = E{[(x− µ)tΣ−1(x− µ)]2} = E(r4)[
q∑
j=1

E(ξ4
j ) + p(p− 1)].1 (4)

Using these formulas, population multivariate skewness and kurtosis can be calculated

when univariate measures2, the ordered moments of r and ξj, are given. The

2 In this paper, when it is in the multivariate setting, we refer the moments of xi as marginal measures.

And the univariate measures are the moments of r and ξj . The marginal skewness and kurtosis of xi are

γ1(xi) = E(r3)
∑q

j=1 a
3
ijE(ξ3

j )/σ3/2
ii ,

γ2(xi) = E(r4)[
∑q

j=1 a
4
ij(E(ξ4

j )− 3)/σ2
ii + 3] (Yuan & Bentler, 1997).
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standardized multivariate kurtosis formula, centering β2 by p(p+ 2), has been obtained

in Yuan, Zhang, and Zhao (2017). However, the solution of univariate measures cannot

be uniquely obtained based on these formulas from specified multivariate measures.

Although the solution is not on an one-to-one basis, multiple solutions are

available that sharing the same multivariate measures. Since we only care about the

measures at the multivariate level other than the univariate level (or the marginal

level), to remedy the lack of uniqueness of the solution, we establish one from

multivariate to univariate by applying some constraints.

First, we set r to be a constant 1 for convenience because it is only a scale factor.

Second, the number of variables in ξ is set to be the same as the number of variables in

X, so that p = q. Additionally, ξ1 to ξp are set to be independent and identically

distributed (i.i.d.). Thus, the 3rd and 4th ordered moments are the same for all ξj,

which are defined as E(ξ3) and E(ξ4). With these constraints, the multivariate

skewness and kurtosis above become,

β∗1 = E{[(x− µ)tΣ−1(y− µ)]3} = p[E(ξ3)]2, (5)

β∗2 = E{[(x− µ)tΣ−1(x− µ)]2} = pE(ξ4) + p(p− 1). (6)

When multivariate measures (β∗1 and β∗2) and number of variables (p) are provided,

E(ξ3) and E(ξ4) can be computed through Equations (5) and (6). Once we have the

moments for all ξj (i.e., E(ξ) = 0, E(ξ2) = 1, E(ξ3) and E(ξ4)), we can generate

random numbers of ξ and then transform them to multivariate random numbers of x by

Equation (1).

We acknowledge that relaxing some of the constraints would give researchers more

control of the univariate measures (e.g., allowing different univariate measures or setting

different scaling factors). However, based on a small-scale simulation, we found they did

not influence the behavior of the multivariate measures much (see Table 2 in the

supplementary materials). Therefore, we use the constraints for convenience in this

study.

For each ξj, we use a modified power method to generate random non-normal

numbers. The widely-used power method is proposed by Fleishman (1978), which is to
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generate non-normal data through a polynomial transformation

Y = a+ bZ + cZ2 + dZ3, (7)

where Z comes from a standard normal distribution. With the information of the first

four desired standardized moments (mean, variance, skewness γ1, and kurtosis γ2) of Y ,

Fleishman (1978) derived four equations to obtain the coefficients a, b, c, and d through

Newton’s method.

In our study, Y is replaced by each ξj as

ξj = a+ bZ + cZ2 + dZ3. (8)

Instead of including the standardized moments (skewness and kurtosis) as used in

Fleishman’s method, we use the third and fourth ordered moments of ξj. Therefore, the

four equations of solving the coefficients are revised as

a+ c = 0, (9)

b2 + 6bd+ 2c2 + 15d2 − 1 = 0, (10)

72bcd+ 6b2c+ 8c3 + 270cd2 − E(ξ3) = 0, (11)

3b4 + 60b2c2 + 60c4 + 60b3d+ 936bc2d+ 630b2d2 (12)

+4500c2d2 + 3780bd3 + 10395d4 − E(ξ4) = 0. (13)

With the value of a, b, c, and d, we first generate random numbers from the

standard normal distribution to form the sample Z with size n. Then, the sample of ξj

is obtained by the polynomial transformation in Equation (8). Repeatedly sampling Z

and conducting transformation for each ξj, one gets the multivariate data with

ξ =(ξ1, ..., ξp). The final step is to obtain x by applying the specific covariance matrix

A to ξ following the data model in Equation (1) with r = 1.

In summary, the following procedure can be used.

1. With the user-specified multivariate skewness (β∗1) and kurtosis (β∗2) and the

number of variables (p), calculate the third and fourth ordered moments of ξj

(j = 1, 2, · · · , p).
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2. Generate the standardized ξj by the modified power method to form ξ.

3. Use the Cholesky decomposition to decompose the user-specified correlation

matrix (or covariance matrix) to matrix A and multiply it to ξ (x = Aξ).

Through this process, the generated data x will have the desired multivariate

skewness and kurtosis. One shortcoming of applying the Cholesky decomposition

approach is that, after the linear transformations, the population marginal measures of

x (e.g., γ1 and γ2) will be different from the original univariate measures of ξ. However,

unlike the VM method, where the marginal measures are of interests, the focus of our

method is the multivariate measures and the marginal measures are nuisance

parameters. Therefore, our method does not require an intermediate correlation matrix

and can apply the Cholesky decomposition directly.

Limited Ranges of the Skewness and Kurtosis

The power method cannot cover all the possible combinations of univariate

skewness and kurtosis. This is because the method does not require the distribution of

Y , and thus the moments cannot be analytically derived. However, the range

relationship of univariate skewness (γ1) and kurtosis (γ2) of Y has been estimated

through simulation (Luo, 2011). Based on that relationship, we derived the range

relationship between the univariate ξj’s third and fourth moments with our modified

power method, which is

E(ξ4) ≥ 1.641[E(ξ3)]2 + 1.774. (14)

Plugging it into the data model in Equation (1), the relationship of xi’s skewness and

kurtosis is,

γ2 ≥
1.641∑
a4
ij

( γ1∑
a3
ij

)2 − 1.226
∑

a4
ij + 3, (15)

which is restricted compared to the theoretical relationship of the general univariate

skewness and kurtosis,

γ2 ≥ γ2
1 + 1. (16)
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Correspondingly, applying the inequality in Equation (13) to the multivariate skewness

and kurtosis formulas in Equations (5) and (6), the relationship of multivariate

skewness and kurtosis in our method can be derived as

β∗2 ≥ 1.641β∗1 + p(p+ 0.774). (17)

R package

An R package mnonr is developed based on our method to generate multivariate

non-normal random numbers with user-specified multivariate skewness and kurtosis as

well as the covariance matrix. If the values of the multivariate skewness and kurtosis

are beyond the valid range of our method, the users will get a warning message and the

allowed ranges. The package not only implements our multivariate method (function:

mnonr), but also provides the Vale and Maurelli (1983) method (function: unonr). In

addition, univariate and multivariate skewness and kurtosis significance tests are

included (function: mardia).

Example. We now illustrate how to generate non-normal data with the mnonr

package. Suppose the goal is to generate bivariate non-normal data with multivariate

skewness β∗1 = 3 and kurtosis β∗2 = 61. Both variables have mean 0 and variance 1. The

covariance between them is set to be 0.5. In total, we generate 10, 000 bivariate random

numbers with the desired features.

To generate the data, the R function mnonr was used in which we set n = 10, 000,

p = 2, ms = 3, mk = 61, and Sigma = matrix(c(1, 0.5, 0.5, 1), 2, 2). The meaning of

each argument is listed below:

• n: the size of random number to generate;

• p: the number of variables;

• ms: the value of multivariate skewness;

• mk: the value of multivariate kurtosis;

• Sigma: the covariance matrix of variables.
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For illustration, we also calculated the covariance matrix of the generated data

and conducted hypothesis testing of the univariate and multivariate skewness and

kurtosis through the function mardia.

The R input and output are given below.

1 > mvn.data= mnonr (n=10000 , p=2, ms=3, mk =61 , Sigma = matrix (c(1 ,0.5 ,0.5 ,1) ,2,2))

2 > cov(mvn.data)

3 [ ,1] [ ,2]

4 [1 ,] 1.0795673 0.5435589

5 [2 ,] 0.5435589 1.0378786

6 > mardia (mvn.data)

7 Sample size: 10000

8 Number of variables : 2

9

10 Marginal skewness and kurtosis

11 Skewness SE_skew Kurtosis SE_kurt

12 [1 ,] 0.9397589 0.02449122 24.99584 0.04897755

13 [2 ,] 1.1900858 0.02449122 17.70874 0.04897755

14

15 Mardia ’s multivariate skewness and kurtosis

16 b z p- value

17 Skewness 3.154189 5256.9822 0

18 Kurtosis 64.110259 701.3782 0

The sample data yield a multivariate skewness 3.15 and multivariate kurtosis

64.11. The covariance matrix is close to the specified one. It also shows clearly that the

marginal univariate skewness and kurtosis for the two variables are different. According

to marginal Equation (2), the theoretical skewness and kurtosis for marginal variables

are: γ1(x1) = 1.22, γ2(x1) = 29.50, γ1(x2) = 0.95, γ2(x2) = 19.56. The scatter-plot and

marginal histograms are shown in Figure 1. Even though both variables have

leptokurtic distributions, x1 has larger kurtosis than x2, which shows on the figure that

the distribution of x1 has a fatter tail. This is because when we form x, the

transformation x = Aξ would yield different distributions of each xj, j = 1, · · · , p, even

though the ξj, j = 1, · · · , p, are iid.

Simulation Study

To evaluate the performance of our method, we conducted the following

simulation study by varying the sample sizes, covariances, number of variables, and

different combinations of multivariate skewness and kurtosis.
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Study Design

The sample sizes are set to be 100, 1000, and 10000. We set the variances all to be

1 and varied the covariance between two variables from low to high with values 0, 0.1,

0.3, 0.5, 0.7 and 0.9. In each condition, the covariances of any two variables are set to

be the same. The numbers of variables in the multivariate data are set to be 2, 4, and 6

which are also the number of ξj in ξ.

The values of multivariate skewness and kurtosis are chosen based on Cain et al.

(2016). They provided a descriptive table of Mardia’s multivariate skewness and

kurtosis values collected from 136 multivariate studies. We choose the minimum, first

quartile, median, and third quartile values when the sample sizes are larger than 100.

The values of multivariate skewness are β∗1 = 0, 1, 3, and 15. The multivariate kurtosis

values are β∗2 = 10, 32, 61, and 91.

We deleted some conditions due to the restricted range of multivariate skewness

and kurtosis by Equation (16). In total, 480 conditions are evaluated, and 1,000

replications of data are generated under each condition.

Evaluation

We evaluated the performance of our random number generation method by

comparing the statistics of the generated data with the population ones used to

generate the data. Specifically, the statistics included multivariate skewness β∗1 ,

multivariate kurtosis β∗2 , ξj’s third moment E(ξ)3, and ξj’s fourth moment E(ξ)4. We

calculated the bias (B) and relative bias (RB) of the simulation results of the above

statistics. The bias is the difference between the mean of the sample statistic value (θ̂)

and its corresponding population parameter value (θ); and the relative bias is the

proportion of the bias of the population value, which are

B =
∑N θ̂

N
− θ, (18)

RB = B

θ
× 100% (19)
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Results

For the sake of space, we only report several representative conditions in Table 1

and the full results are available in the supplementary materials. They represent the

small (β∗1 = 1, β∗2 = 32), medium (β∗1 = 3, β∗2 = 61), and large (β∗1 = 15, β∗2 = 91)

multivariate skewness and kurtosis combinations.

When the sample size increases, the bias of both univariate and multivariate

measures becomes smaller. The performance of ξj verified that the modified power

method does not affect the accuracy of the power method for generating univariate

non-normal data. For multivariate measures, kurtosis tended to be underestimated and

skewness tended to be overestimated. Additionally, multivariate kurtosis had smaller

relative bias than multivariate skewness.

When comparing simulation results with various covariance settings, we found

that both multivariate skewness and kurtosis do not seem to be affected by covariances.

The multivariate skewness is only related to the number of variables and the value of

E(ξ)3. Similarly, the multivariate kurtosis is influenced by the number of variables and

the value of E(ξ)4. Covariance does not play a crucial role in multivariate skewness and

kurtosis via our generating method, and therefore, variance-covariance matrix only

affects the marginal measures rather other multivariate measures.

Increasing the number of variables leads to less biased skewness and kurtosis

estimates holding other conditions constant.

Conclusions and Future Directions

In this paper, we proposed a new method for generating multivariate non-normal

data. The advantage of our method is that it allows researchers to directly specify both

multivariate skewness and kurtosis to better control them. With the data generating

model, we established one possible solution to relate multivariate measures to univariate

measures: using univariate measures to generate ξ and apply the variance-covariance

matrix to produce multivariate x. Our method can help researchers better understand

the influence of the multivariate non-normality.
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The widely used VM method and our method are both based on Fleishman’s

polynominal related approach. Both can generate correlated multivariate random data.

However, the two methods also have important differences. The main difference lies in

the perspectives of the multivariate non-normality. First of all, the multivariate

non-normality can be simply because of the non-normality of the marginal distribution

and/or the multivariate distribution. The VM method concentrates on the univariate

non-normality without specifically controlling the multivariate non-normality. On

contrast, our method focuses on the multivariate non-normality but not controlling the

univariate marginal non-normality. For instance, in a bivariate distribution of

x = (x1, x2)′, through the VM method, researchers can specify the marginal univariate

skewness and kurtosis of x1 and x2, but not the multivariate measures. With our

method, one can directly determine multivariate skewness and kurtosis of x, but with

no control of the marginal distribution. The choice of the two methods should be based

on the particular research interest.

Because of the use of the power method, our method also inherits the same

problems associated with it, such as the Gaussian-like property and multiplicity

solution issue. First, as it is discussed by Foldnes and Grønneberg (2015), to evaluate

the robustness of Gaussian ML estimation using multivariate data with Gaussian-like

property, even with the marginal univariate measures showing severe non-normality, the

researchers might get the biased results. Without further exploration, we could not

identify the degree of the potential impact related to our method. Second, there are

different sets of coefficients (a, b, c, d) in the modified power method. For example, in

the limited simulation experiment in the supplementary materials (see Table 3), we

found that within each parameter (i.e., β∗1 , β∗2 , n, p) setting, there were four sets of

possible coefficients. Different starting values will yield different sets of coefficients,

which could affect the multivariate skewness and kurtosis. We recommend that the

researchers should try different starting values in data generating and our R package

provides such an option in addition to the default value.

As shown in the simulation results, with a small sample size (n = 100), the
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relative bias of the multivariate measures could be very high. With the increasing

number of variables (p) and sample sizes, this issue becomes less severe. When merging

the data of each marginal univariate variable, a small deviation could lead to a large

gap for multivariate data. This drawback is shared with other multivariate data

generators relating to the reliability of multivariate measures. As a future direction, we

plan to develop a sample size planning method of different multivariate skewness and

kurtosis to optimize the generating process.

Since our method only used one approach to generate univariate variables,

another related limitation as described in the method section is that some combinations

of skewness and kurtosis cannot be obtained. However, our procedure provides

researchers a simple data model to transform multivariate measures to univariate ones.

In the future, we will apply other univariate generators to our method in order to

improve the empirical performance of the multivariate generator and eliminate the

potential problems that are related to the current modified power method such as the

solution multiplicity and Gaussian-like property.

Open Practices Statement: The data in this study is based on simulation. None of

the data or materials is related to any experiments.
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Table 1

Simulation Results (Partial)

B(β̂∗
1 ) B(β̂∗

2 ) RB(β̂∗
1 )% RB(β̂∗

2 )% B(E(ξ̂)3) B(E(ξ̂)4)

p=2

(a)β∗
1 = 1, β∗

2 = 32

N=100 3.384 -11.147 338.4 -34.8 0.160 1.021

N=1000 1.180 -2.853 118.0 -8.9 -0.017 -0.824

N=10000 0.180 -0.411 18.0 -1.3 0.007 -0.159

(b)β∗
1 = 3, β∗

2 = 61

N=100 6.781 -29.623 226.0 -48.6 -0.032 1.238

N=1000 3.353 -9.331 111.8 -15.3 -0.060 -2.267

N=10000 0.654 -1.425 21.8 -2.3 0.015 -0.452

(c)β∗
1 = 15, β∗

2 = 91

N=100 1.486 -51.942 9.9 -57.1 -0.125 -9.706

N=1000 3.775 -17.465 25.2 -19.2 -0.081 -3.658

N=10000 1.025 -2.816 6.8 -3.1 0.015 -0.660

p=4

(a)β∗
1 = 1, β∗

2 = 32

N=100 1.066 -10.313 106.6 -32.2 -0.067 -1.377

N=1000 0.835 -4.332 83.5 -13.5 -0.027 -0.675

N=10000 0.227 -0.478 22.7 -1.5 0.002 -0.010

(b)β∗
1 = 3, β∗

2 = 61

N=100 5.834 -17.100 194.5 -28.0 -0.030 -0.761

N=1000 1.690 -3.570 56.3 -5.9 0.018 -0.143

N=10000 0.239 -0.239 8.0 -0.4 0.054 0.005

(c)β∗
1 = 15, β∗

2 = 91

N=100 2.080 -36.198 13.9 -39.8 -0.062 -0.135

N=1000 1.895 -8.388 12.6 -9.2 0.032 0.332

N=10000 0.359 -0.805 2.4 -0.9 0.003 -0.084

p=6

(b)β∗
1 = 3, β∗

2 = 61

N=100 2.554 -15.119 85.1 -24.8 -0.060 -1.265

N=1000 1.704 -4.756 56.8 -7.8 0.023 1.077

N=10000 0.320 -0.606 10.7 -1.0 0.011 0.048

(c)β∗
1 = 15, β∗

2 = 91

N=100 2.673 -20.626 17.8 -22.7 -0.030 0.166

N=1000 0.771 -3.770 5.1 -4.1 0.003 0.050

N=10000 0.175 -0.157 1.2 -0.2 0.000 0.000
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Figure 1 . Scatter-plot and marginal histograms of two-variable multivariate data




