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SUMMARY. In this paper, we analyze a two-level latent variable model for longitudinal data

from the National Growth of Health Study where surrogate outcomes or biomarkers and covariates

are subject to missingness at any of the levels. A conventional method for efficient handling of

missing data is to reexpress the desired model as a joint distribution of variables, including the

biomarkers, that are subject to missingness conditional on all of the covariates that are completely

observed, and estimate the joint model by maximum likelihood, which is then transformed to the

desired model. The joint model, however, identifies more parameters than desired, in general. We

show that the over-identified joint model produces biased estimation of the latent variable model,

and describe how to impose constraints on the joint model so that it has a one-to-one correspon-

dence with the desired model for unbiased estimation. The constrained joint model handles miss-

ing data efficiently under the assumption of ignorable missing data and is estimated by a modified

application of the expectation-maximization (EM) algorithm.

KEYWORDS. Longitudinal data analysis; Multivariate outcomes; Random effects; Missing

data; Latent variable; the EM algorithm



1. Introduction

The National Heart, Lung, and Blood Institute initiated the Growth and Health Study (NGHS) to

investigate ethnic disparities in dietary, family, psychosocial and physical activity factors of obesity

about 2,379 girls in 1985. It collected data on development of obesity and factors associated with

the development from 1,213 African-American and 1,166 white girls. The study followed the

subjects from 1987-1988 when they were 9 to 10 years old until 1996-1997 when they were 18 to

19 years old. The subjects were assessed on development of obesity and related factors annually

[1].

We consider multiple biomarkers of obesity: body mass index (BMI), sum of skinfolds at

triceps, subscapular, and suprailiac sites (Skinfold), maximum below-waist circumference (Waist),

and percent body fat by bioelectrical impedance analysis (PercentFat). Many investigators have

identified the risk factors of child obesity using one of these biomarkers as an outcome variable

[2-6]. Although useful, some of these biomarkers do not differentiate the fat mass from body mass

while others are measured with error. For example, BMI, the ratio of body weight in kilograms

to height in meters squared, is widely used to define obesity (BMI≥ 30) for men and women.

Consequently, it is a broadly analyzed outcome variable as a surrogate body fat. However, it

cannot distinguish muscle mass from body adiposity, in particular, for children and adolescents

[7-9].

Our analysis aims to quantify child obesity via multiple biomarkers and study its risk factors

simultaneously. Specifically, we want to control for ethnic and social disparities in the growth

of obesity, and ask how environmental factors such as TV watching and mother’s BMI influence

the development of child obesity. Because obesity is not directly observable, NGHS collected

the four biomarkers of obesity. We formulate a latent-variable model (LVM) of simultaneous

equations where biomarkers, given the latent obesity, are independent in a measurement model, and

the obesity is regressed on covariates in a structural model [10-19]. Given completely observed

covariates and biomarkers having ignorable missing data [20], the LVM may be estimated by

maximum likelihood (ML) via standard LVM software such as Amos [21], EQS [22], and Mplus
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[23].

This paper focuses on a longitudinal multilevel model where occasions at level 1 are nested

within individuals at level 2 and where missing data are present at both levels under the assump-

tion of ignorable missing data [20, 24]. Roy and Lin [25] estimated a longitudinal LVM given

nonignorable dropouts and level-1 covariates missing not at random by ML. Das et al. [26] es-

timated a structural equation model by a Markov Chain Monte Carlo method where continuous

responses and covariates at level 1 may be missing at random in the measurement model. Both

approaches handle level-1 outcomes and covariates subject to missingness.

Recent advances enable efficient handling of missing data in a hierarchical linear model (HLM)

by ML [27-30] or by Bayesian approaches [27, 31-33]. Shin and Raudenbush [28] formulated

a univariate HLM as a joint normal distribution of variables, including the outcome, subject to

missingness conditional on completely observed covariates. The authors estimated the joint model

by ML via the EM algorithm [34], and then transformed the estimated joint model to the HLM.

They showed that the unconstrained joint model, in general, over-identifies the HLM and that the

over-identified HLM leads to biased inferences. Therefore, the authors estimated a constrained

joint model to just identify the HLM for unbiased estimation. The method, however, cannot be

used for the complicated LVM of simultaneous equations. In this paper, we extend the method to

the LVM where multiple biomarkers and covariates are subject to missingness at any of the levels.

We analyze the LVM given biomarkers and covariates that are subject to missingness with

a general missing pattern at any of the levels. A conventional method for efficient handling of

the missing data is to reexpress the LVM as a joint distribution of the variables, including the

biomarkers, that are subject to missingness conditional on all of the covariates that are completely

observed, and estimate the joint model which is then transformed to the LVM. The unconstrained

joint model, however, identifies more parameters than desired in the LVM. Furthermore, the LVM

is not nested within the joint model, in general. The consequence is that the over-identified joint

model leads to biased estimation of the LVM. This paper explains how to characterize the joint

model so that it is a one-to-one transformation of the LVM for unbiased estimation. To yield un-
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biased estimation of the LVM while handling missing data efficiently, we estimate the constrained

joint model according to the LVM within each iteration of the EM algorithm.

The next section introduces an LVM of our interest given incomplete data. Section 3 explains

a joint model for efficient handling of missing data and shows how to impose proper constraints

on the joint model for unbiased estimation of the LVM. Section 4 describes the EM algorithm for

efficient handling of the constrained joint model. Section 5 simulates an LVM to show that the

conventional method produces biased estimation of the LVM and that our approach corrects the

bias. Section 6 illustrates unbiased and efficient analysis of the desired LVM given the NGHS data.

Section 7 discusses the limitations and future extensions of our method.

2. Latent Variable Model

This section introduces the LVM of interest [15]. The structural model is

Uik = ATikα +BT
ikbi + εik, bi

iid∼ N(0, D), εik
iid∼ N(0, 1), (1)

where Uik is a univariate latent obesity score, Aik is a vector of covariates having fixed effects α,

Bik is a vector of known covariates having level-2 unit-specific random effects bi independent of

a level-1 unit-specific random error εik, and level-1 unit or occasion k is nested within level-2 unit

or subject i for k = 1, · · · , ki and i = 1, · · · , n, and D is a positive definite matrix. This model

cannot be directly estimated due to unobservable Uik. However, Uik is related to biomarkers by a

measurement model

Rik = γ0 + γ1Uik + ai + eik, (2)

where Rik is a vector of J biomarkers, γ0 = [γ01 γ02 · · · γ0J ]T is a vector of J intercepts, γ1 =

[γ11 γ12 · · · γ1J ]T is a vector of the J effects or factor loadings of Uik, and subject-specific ran-

dom effects ai
iid∼ N(0,⊕Jj=1ξj) are independent of level-1 random errors eik

iid∼ N(0,⊕Jj=1τj)

for a diagonal matrix ⊕J`=1ψ` = diag(ψ1, ψ2, · · · , ψJ) with diagonal elements or submatrices

(ψ1, ψ2, · · · , ψJ) and all other elements equal to zero. To make parameters identifiable in the
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model (1), we assume that var(εik)=1 and that Aik does not contain an intercept. Note that the

jth and j′th biomarkers of subject i at occasion k are correlated and their covariance is equal to

γ1jγ1j′var(Uik).

Our goal is to identify the obesity factors Aik and Bik and explain their associations with the

obesity Uik by efficient analysis of the LVM, that is, by analyzing all available sample data with-

out dropping any observations. The challenge is to efficiently handle missing data in (Rik, Aik),

which is explained in the next section. In this paper, we refer to the associations as the “effects”

of the factors, but do not mean causality. Such use of the term “effects” is pervasive in the literature.

3. Missing Data

To handle missing data in Rik and Aik efficiently, we reparameterize the LVM in terms of a joint

distribution of the response variables Rik and all covariates subject to missingness in Aik condi-

tional on all covariates completely observed. Because Aik may have covariates subject to missing-

ness as well as covariates completely observed, we decompose Aik = [STik Y
T
2i W

T
1ik W

T
2i ]

T where

p1-vector Sik and p2-vector Y2i are level-1 and -2 covariates subject to missingness, respectively,

and p3-vector W1ik and p4-vector W2i are level-1 and -2 covariates completely observed, respec-

tively. Then, the joint model is a multivariate distribution of level-1 Y1ik = [RT
ik S

T
ik]

T and level-2

Y2i that are subject to missingness conditional on W1ik, W2i and Bik that are completely observed.

In this section, we explain that this joint model over-identifies the LVM, in general. The conse-

quence is biased estimation of the LVM as will be illustrated in Section 5. For a positive integer

m, let Im and 1m denote an m-by-m identity matrix and a vector of m unities, respectively.

3.1. Over-identification Problem

If we were able to observe Uik, we would directly analyze the structural model (1) without involv-

ing the measurement model (2). To analyze all observed data in the model (1), we would estimate

the multivariate distribution of (Uik, Sik, Y2i) given completely observed (W1ik,W2k, Bik). In this

simple case, we are able to not only reveal the over-identification problem explicitly, but also ex-
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plain how to correct the problem clearly. In the following subsection, we extend the multivariate

distribution to efficient handling of missing data in (Y1ik, Y2k) conditional on (W1ik,W2k, Bik) for

the general LVM.

If Uik were observed, efficient handling of the missing data in the desired model (1) might be

achieved, without the measurement model (2), by
Uik

Sik

Y2i

 =


βTu1 βTu2

βs1 βs2

0 β22


 W1ik

W2i

+


BT
ik 0 0

0 Ip1 0

0 0 Ip2



bui

bsi

b2i

+


εuik

εsik

0

 , (3)

where βTu1 and βs1 are 1-by-p3 and p1-by-p3 matrices of the fixed effects of W1ik on Uik and Sik,

respectively, βTu2, βs2, and β22 are 1-by-p4, p1-by-p4 and p2-by-p4 matrices of the fixed effects of

W2i on Uik, Sik and Y2i, respectively, and


bui

bsi

b2i

 iid∼ N

0,


Tuu Tus Tu2

Tsu Tss Ts2

T2u T2s T22


 is independent of

εuik
εsik

 iid∼ N

0,

Σuu Σus

Σsu Σss


. We center level-1 Sik and W1ik around respective sample means

and level-2 Y2i andW2i around respective weighted sample means
∑

i kiY2i∑
i ki

and
∑

i kiW2i∑
i ki

in Equation

(3), except for Bik that is centered around its group mean for precise estimation of the variance

matrix [35]. The centering ensures that we identify the model (1) with no intercept and model

(2). Shin and Raudenbush [28] expressed [βTu1 βTu2]

W1ik

W2i

 = βTuWuik, βs1W1ik + βs2W2i =

(Ip1 ⊗W T
uik)βs and β22W2i = (Ip2 ⊗W T

2i)β2, and efficiently estimated the model (3) by ML via

the EM algorithm where Uik was observable.

Although the conditional model (1) expresses a single effect of each covariate in Sik on Uik,

the multivariate model (3) expresses a distinct covariance at each level between the covariate and

obesity to identify p1 extraneous parameters than desired in the model (1). The two distinct co-

variances identify the within-child association between the time-varying covariate and outcome

that may be different from the between-child association, the association between the child-mean
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covariate and outcome. The associations identify a contextual effect of the covariate that is defined

as the difference between the between- and within-child associations [35, 36]. Controlling for the

within-child association, the contextual effect explains the expected difference in obesity between

two children who have the same value of the covariate at an occasion, but who differ by one unit

in their child-mean covariates. Consequently, the multivariate model identifies a contextual effects

model where each covariate in Sik has a contextual effect, controlling for the within-child effect

of the covariate [29]. Because the model (1) expresses no contextual effect of the covariate, im-

plying identical between- and within-child associations between the covariate and outcome [36],

the multivariate model (3) over-identifies the model (1) and expresses the single effect of each

covariate in Sik as a weighted average of the two associations [30, 35]. The weighted average is

different from the single effect when model (1) is directly estimated [35, 36]. The consequence

is that the desired model (1) is not nested within or congenial to the multivariate model (3) [37].

The over-identified model (3) yields biased estimation of the desired model (1) unless constrains

are imposed on the model (3) [28]. We illustrate the over-identification problem causing biased

estimation by a simulation study in Section 5.

In order to correct the bias, we impose p1 constraints on the model (3) so that it represents

a one-to-one transformation of the LVM. For clarity, we describe the constraints for a random-

intercept model (1) having Bik = 1. Appendix A explains the constraints for a random- coefficient

model (1). To simplify the notation, let cov(bui, bsi |b2i) =

Tuu|2 Tus|2

Tsu|2 Tss|2

. Given Y2i, we constrain

the covariances between Uik and each covariate in Sik to equal, i.e.

αT1 = Tus|2T
−1
ss|2 = ΣusΣ

−1
ss , (4)

which says that the association between Uik and each of the level-1 covariates is the same at each

level given Y2i. The constraints imply cov(Uik, Sik|Y2i)[var(Sik|Y2i)]−1 = (Tus|2 + Σus)(Tss|2 +

Σss)
−1 = αT1 for Tus|2 = αT1 Tss|2 and Σus = αT1 Σss, and the one-to-one transformations between
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the LVM and the multivariate model (3)

α1 = Σ−1ss Σsu, α2 = T−122 (T2u − T2sα1),

α3 = βu1 − βTs1α1, (5)

α4 = βu2 − βTs2α1 − βT22α2, 1 = Σuu − αT1 Σssα1,

D = Tuu − αT2 T22α2 − 2αT1 Ts2α2 − αT1 Tssα1.

3.2. Efficient Handling of Missing Data

Because Uik is unobservable, we need to estimate the measurement model (2) in addition to the

desired model (1). Because observed biomarkers are also subject to missingness, the multivariate

model (3) cannot handle the missing data in both Aik and Rik. Instead, we formulate the joint

distribution of (Ri, Si, Y2i) subject to missingness given completely observed covariates for Ri =

[RT
i1 R

T
i2 · · ·RT

iki
]T and Si = [STi1 S

T
i2 · · ·STiki ]

T based on the aggregated models (2) and (3)
Ri

Si

Y2i

 =


1ki ⊗ γ0 + (Wuiβu +Bibui + εui)⊗ γ1

Wsiβs + (1ki ⊗ Ip1)bsi + εsi

X2iβ2 + b2i

+


1ki ⊗ ai

0

0

+


ei

0

0

 , (6)

for Wui = [Wui1 Wui2 · · ·Wuiki ]
T , Bi = [Bi1 Bi2 · · ·Biki ]

T εui = [εui1 εui2 · · · εuiki ]T , ei =

[eTi1 e
T
i2 · · · eTiki ]

T , Wsi = [Ip1 ⊗Wui1 Ip1 ⊗Wui2 · · · Ip1 ⊗Wuiki ]
T , εsi = [εTsi1 ε

T
si2 · · · εTsiki ]

T , and

X2i = Ip2 ⊗W T
2i . To derive estimators, we reexpress model (6) parsimoniously as Y1i

Y2i

 =

X1i 0

0 X2i


 β1

β2

+

Z1i 0

0 Ip2


 b1i

b2i

+

 ε1i

0

+

 a1i + c1i

0

 , (7)

for Y1i =

Ri

Si

,X1i =

IJ×ki Wui ⊗ IJ 0

0 0 Wsi

, β1 =


1ki ⊗ γ0

βu ⊗ γ1

βs

, Z1i =

Bi ⊗ IJ 0

0 1ki ⊗ Ip1

,

b1i =

bui ⊗ γ1
bsi

, ε1i =

εui ⊗ γ1
εsi

, a1i =

1ki ⊗ ai

0

, and c1i =

ei
0

, where var(b1i, b2i) =
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τ11 τ12

τT12 τ22

, var(ε1i) =

Iki ⊗ (Σuuγ1γ
T
1 ) Iki ⊗ (γ1Σus)

Iki ⊗ (Σsuγ
T
1 ) Iki ⊗ Σss

, var(a1i) =

(1ki1
T
ki

)⊗ (⊕Jj=1ξj) 0

0 0

,

and var(c1i) =

Iki ⊗ (⊕Jj=1τj) 0

0 0

 for τ11 =

Tuu ⊗ (γ1γ
T
1 ) Tus ⊗ γ1

Tsu ⊗ γT1 Tss

, τ12 =

 Tu2 ⊗ γ1

Ts2

,

and τ22 = T22. Note that the joint model (7) enables us to analyze a subject who has at least a

single value observed in (Y1i, Y2i) for efficient analysis of the LVM.

To efficiently handle missing data, let O1i and O2i be matrices of the observed value indicators

(1 if observed, 0 otherwise) in Y1i and Y2i, respectively, such that they extract all observed data

Y o
1i = O1iY1i and Y o

2i = O2iY2i from Y1i and Y2i, respectively [28]. The model (7) for the observed

data is  Y ◦1i

Y ◦2i

 =

X◦1i 0

0 X◦2i


 β1

β2

+

Z◦1i 0

0 O2i


 b1i

b2i

+

 a◦1i + ε◦1i + e◦1i

0

 , (8)

for X◦1i = O1iX1i, X◦2i = O2iX2i, Z◦1i = O1iZ1i, a◦1i = O1ia1i, ε◦1i = O1iε1i, and e◦1i = O1ie1i. We

reexpress the model (8) parsimoniously as Y ◦i ∼ N(µ◦i , V
◦
i ) for Y ◦i = [Y ◦T1i Y ◦T2i ]T ,

µ◦i =

X◦1iβ1
X◦2iβ2

 , V ◦i =

Z◦1iτ11Z◦T1i +O1i[var(ε1i) + var(a1i) + var(c1i)]OT
1i Z◦1iτ12O

T
2i

O2iτ21Z
◦T
1i O2iτ22O

T
2i

 . (9)

4. Estimation via the EM Algorithm

This section sketches efficient estimation of the joint model (7) by a modified application of the EM

algorithm [34]. See Appendices B, C and D for details. The modification is due to the fact that we

efficiently estimate the LVM to find the constraints (4) that will be imposed on the joint model (7)

within each iteration of the EM algorithm. We view (Y1i, Y2i, Ui, bui, bsi, ai) as complete data and

Y ◦i observed within unit i for Ui = [Ui1 Ui2 · · ·Uiki ]. The constraints (4) require that the parameters

α of the LVM be estimated. Within each iteration of the EM algorithm, we estimate the parameters

α and translate them into the parameters of the joint model (7) according to the transformations (5).

To estimate α, let Ai = [Ai1 Ai2 · · ·Aiki ]T , εi = [εi1 εi2 · · · εiki ]T , γj = [γ0j γ1j]
T , U∗ik = [1 Uik]

T ,
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ε1ik = [εuik εsik]
T , ε∗1i = [εui εsi] for the LVM, b∗1i = [bui bsi]

T , b∗i = [b∗1i b2i]
T , β∗1 = [βu βs]

T ,

T11 =

Tuu Tus

Tsu Tss

, T12 =

Tu2
Ts2

, T =

T11 T12

T T12 T22

, Σ =

Σuu Σus

Σsu Σss

, Wusi =

Wui 0

0 Wsi

,

and T2|1 = T22 − T21T
−1
11 T12 for the joint model. The complete data ML estimators in iteration

k are α̂(k) = α̂(k−1) +
(∑n

i=1

∑ki
k=1AikA

T
ik

)−1∑n
i=1

∑ki
k=1Aikεik and D̂ =

∑
i bib

T
i /n for the

structural model (1) and

γ̂
(k)
j = γ̂

(k−1)
j +

(
n∑
i=1

ki∑
k=1

U∗ikU
∗T
ik

)−1 n∑
i=1

ki∑
k=1

U∗ikeikj,

ξ̂j =
1

n

n∑
i=1

a2ij,

τ̂j =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

e2ikj,

Σ̂ =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

ε1ikε
T
1ik, (10)

T̂ =
1

n

n∑
i=1

b∗i b
∗T
i ,

β̂
∗(k)
1 = β̂

∗(k−1)
1 +

(
n∑
i=1

Σ−1 ⊗ (W T
usiWusi)

)−1 n∑
i=1

Σ−1 ⊗ (W T
usiε
∗
1i),

β̂
(k)
2 = β̂

(k−1)
2 +

(
n∑
i=1

T−12|1 ⊗ (W2iW
T
2i)

)−1 n∑
i=1

T−12|1 ⊗W2i

(
b2i − T21T−111 b

∗
1i

)
for the joint model (7). At the E step, we obtain conditional expectations, E(AikA

T
ik|Y ◦i ), E(Aikεik

|Y ◦i ), E(bib
T
i |Y ◦i ), E(Uik|Y ◦i ), E(U2

ik|Y ◦i ), E(Uikeikj|Y ◦i ), E(eikj|Y ◦i ), E(e2ikj|Y ◦i ), E(a2ij|Y ◦i ),

E(ε1ik ε
T
1ik|Y ◦i ), E(b∗i |Y ◦i ), E(b∗i b

∗T
i |Y ◦i ), and E(ε∗1i|Y ◦i ) from the distribution of Y1i, Y2i, Ui, ei, ε∗1i,

b∗i , ai|Y ◦i . Let V (A) denote a vector of distinct elements in a variance-covariance matrix A. At

convergence, the Fisher information matrix is obtained from the observed log-likelihood of pa-

rameters (γ0, γ1, β
∗
1 , β2, τ, Tuu, V (Tss), V (T2s), V (T22), ξ, V (Σss), α1, α2). The variance matrix

associated with the parameter estimates in the constrained joint model (7) is produced by invert-

ing the Fisher information matrix. We obtain the point estimates and the standard errors associated

with the parameters of the LVM by the invariance property of MLEs and multivariate delta method,
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respectively.

The next two sections illustrate the method by analyses of simulated and NGHS data. The

convergence is taken to be the difference in the observed log-likelihoods between two consecutive

iterations less than 10−6.

5. Simulation

In this section, we simulate a simple LVM involving two biomarkers (J = 2), a level-1 covariate

Sik, and a level-2 covariate W2i. The goal is to show that given W2i, the over-identified joint model

(7) of (Rik, Sik) leads to biased estimation of the LVM and that the constrained joint model (7),

according to equations (4), corrects the bias. Next, we simulate ignorable missing data to show

that our method via the constrained joint model estimates the desired LVM well given incomplete

data.

5.1. Over-identification Problem

Five occasions (ki = 5) are nested within each of 1000 subjects (n = 1000) in the simulated LVM

Uik = Sik +W2i + bi + εik, bi ∼ N(0, 1), εi ∼ N(0, 1),

Rik = 12 + 12Uik + ai + eik, ai ∼ N(0, 0.25I2), eik∼N(0, 0.25I2),
(11)

where α2 = α3 = 0, α1 = α4 = D = γ01 = γ02 = γ11 = γ12 = 1, τ1 = τ2 = ξ1 = ξ2 = 0.25,

Sik ∼ N(0, 1), and W2i ∼ Bernoulli (0.5). We simulate the model with no missing data because

the corresponding unconstrained joint model (7) identifies more parameters than desired to yield

biased estimation of the LVM regardless of whether there are missing data or not. Given the

simulated data, we estimate the LVM (11) by three different ML methods via the EM algorithm:

direct estimation of the LVM given complete data; estimation of the corresponding constrained

joint model (7), according to Equations (4), which is then transformed to the LVM; and estimation

of the unconstrained joint model that is transformed to the LVM. We call the three approaches

benchmark, just-identified and over-identified estimation methods. An estimation method works

well if it produces all point estimates close to the benchmark counterparts. Note that we do not

10



simulate missing data because the complete data analysis illustrates the over-identification problem

and the consequential biased estimation.

Table 1 displays the results. The benchmark estimates are shown under column heading

“Benchmark”. All point estimates are close to their true values. The standard errors are very small.

The just-identified LVM estimates and their standard errors in the next column under heading “Just-

identified” are identical to the benchmark counterparts. The last column under “Over-identified”

shows over-identified LVM estimates. It is apparent that all point estimates of the model (1) and

their standard errors are comparatively underestimated while the effects of Uik and their standard

errors in the model (2) appear overestimated relative to the benchmark counterparts.

5.2. Missing Data

To compare the performance of the just-identified and over-identified estimations given incomplete

data, we simulate ignorable missing values (Rik, Sik) in the simulated data set of Table 1. LetMRik

be 1 if Rik is missing, and 0 otherwise. We define MSik for Sik likewise, and draw missing values

according to

logit(pi) = 1 +W2i + δi, δi ∼ N(0, 1)

for the W2 simulated completely observed so that

MRik ∼ binomial(ki, pi), if logit(pi) > t1

MSik ∼ bnomial(ki, 1− pi), if logit(pi) < −t2

We set thresholds t1 = 2.09 and t2 = 0.91 which are equal to the 70th and 30th percentiles of

logit(pi), respectively. Consequently, we drop 28.14% and 13.14% of Rik and Sik, respectively.

Note that the parameters of LVM (11) are distinct from those of the missing data mechanism above.

Then, the missing values are missing at random or ignorable because the missing data mechanism

depends on completely observed covariate W2i [20].

The estimated LVMs appear in Table 2 under the same column headings as those of Table 1.

Both just-identified and over-identified points estimates are close to their complete-data counter-
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parts in Table 1. Due to the missing values, however, the standard errors are inflated relative to

their complete-data counterparts, in general. Therefore, the just-identified LVM estimates appear

unbiased under the simulated missing rate.

6. Analysis of NGHS Data

Now, we estimate a just-identified LVM to analyze the NGHS data. Each subject in the study

was scheduled to visit a clinic for measurement once a year, but a number of subjects had item-

nonresponse, or missed their visits to produce unit-nonresponse. We analyze all these subjects, in-

cluding those having unit-nonresponse, in the joint model (7) as they have at least person-specific

characteristics observed to strengthen the inferences at level 2 [29]. Table 3 summarizes the lon-

gitudinal data for analysis where level-1 variables are time-varying while level-2 variables are

individual-level or base-line characteristics. The biomarkers have high correlations ranging from

0.81 to 0.92 as shown in Table 7. We reason that the high positive correlations result because they

are the biomarkers of obesity. The previous studies identified influential covariates of the biomark-

ers as age (Age), race ethnicity (Race), single-parent family (OneParent), maturation categorizing

prepuberty, puberty, post-menarche, and ≥ 2 years after post-menarche (Maturation), maximum

parental education categorizing high school or less, and some college or more (ParentEd), house-

hold yearly income (Income, categorizing ≤ $19, 999, $20, 000 − $39, 999, and ≥ $40, 000), the

weekly number of hours of TV watching (TV), overall physical activity pattern score (PhysicalAct,

the higher, the more physically active), and mother’s BMI (MotherBMI). Maturation and Income

are coded as 0, 1, 2, 3 and 0, 1, 2, respectively. Our preliminary analysis shows that the linear

associations between the coded covariates and obesity are reasonable. Specifically, we took the

first principal component of the biomarkers as the obesity outcome, explaining 91.4% of the total

variability in the biomarkers. Figure 1 draws the obesity outcome against the coded covariates,

revealing that the linear associations are reasonable. We analyze dummy indicator variables for

white students (White), single-parent family (OneParent), and and the maximum parent education

of some college or more (ParentEd). Except for Age, White, OneParent and ParentEd, nine other
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variables miss up to 32% of their values.

We use all available data to efficiently analyze a random-intercept LVM and a random-coefficient

LVM. The random intercept LVM has Rik=[BMI Skinfold PercentFat Waist]T , Sik=[Maturation

TV PhysicalAct]T , Y2i=[MotherBMI Income]T , W1ik=[Age Age2 Age ×White]T , W2i = [Par-

entEd White OneParent]T , and Bik = 1, while the random-coefficient model has every compo-

nent the same as the random-intercept counterpart except forBik=[1 Ageik]T andD =

D00 D01

D10 D11

.

The estimated structural and measurement models of the random-intercept LVM appear in

Tables 4 and 5, respectively. From the fitted structural model under column-heading “MAR” in

Table 4, TV, Maturation, MotherBMI, Age, and OneParent are positively associated while Physi-

calAct, quadratic Age, Age-by-White interaction and White are negatively associated with obesity,

ceteris paribus. Controlling for other covariates, Income and ParentEd are not statistically signifi-

cant, unlike previous studies [38-40]. The estimated measurement model in Table 5 shows that all

biomarkers are highly significant and, thus, predictive of the latent obesity.

The estimated random-coefficient LVM is also displayed in Tables 4 and 5. The last column

of Table 4 under column heading “MAR” shows the estimated structural model. The statistical

inferences on all fixed effects stay the same as they are in the random-intercept LVM. However,

the effects of linear and quadratic Age, Age-by-White interaction and White strengthen, compared

to the random-intercept counterparts. In particular, the negative gap of white girls’ obesity relative

to black girls’ triples. Besides, the variance of the random intercept in the random-coefficient

LVM doubles from that of the random-intercept LVM. The measurement model in Table 5 shows

that the obesity has attenuating effect on biomarkers, comparatively with the random-intercept

counterparts. The likelihood ratio test for the null hypothesis H0 : D01 = D11 = 0 produces the

p-value< 0.01. Although the p-value is conservative [41-43], the small p-value reveals evidence

that the effect of age varies randomly across individuals. To confirm the evidence, we compute the

Akaike’s Information Criterion (AIC) for the random-coefficient model AIC1=498,993.00 and the

AIC for the random-intercept model AIC2=507,572.40. The ∆AIC= 8579.4 > 10, which is the

13



difference between AIC2 and AIC1, also indicates that age has a random effect on the child obesity

[44].

Figure 2 displays the effects of age for black and white girls based on the random-coefficient

LVM. Adjusting for the effects of other covariates in the model, Age is positively associated with

obesity [3, 45, 46]. However, we find that the positive association weakens more rapidly for white

girls than for black girls toward the later stage of adolescence, thereby widening the racial gap in

obesity between the two subpopulations of girls. The gap starts widening rapidly from about age

14 where a 95% confidence interval for obesity is (0.05, 0.59).

Table 4 compares the complete-case analysis under column heading “MCAR” with our missing

data analysis under “MAR” of the random-intercept and -coefficient structural models. We dropped

57.22% of occasions and 37.16% of subjects for the MCAR analyses. The estimated random in-

tercept model under MCAR reveals that the effects of Maturation and Income are comparatively

over-represented while the effect of Age-by-White interaction is relatively under-estimated. Fur-

thermore, the statistical inferences of the complete-case analysis are relatively biased. The effect

of Income is statistically significant under MCAR, but insignificant in our missing data analysis

while the effects of quadratic Age, Age-by-White interaction, White and OneParent are statistically

insignificant in the complete-case analysis, but significant under MAR. The biased inferences re-

sult mainly because the standard errors of the complete-case analysis are up to 142.22% more

inflated than the MAR counterparts. For analysis of the random-coefficient model, the complete-

case analysis over-represents the effects of Maturation and Income , but under-represents those of

Age-by-White interaction and White, relative to the MAR counterparts. The Age-by-White in-

teraction effect is statistically insignificant under MCAR, but significant under MAR. The biased

inference is due to the MCAR standard error that is 240% as large as the MAR counterpart.

Table 6 shows the complete-case analyses of the measurement models. The effects of obesity

on biomarkers and their standard errors are comparatively overestimated. Overall, the complete-

case analyses appear comparatively biased and inefficient.
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7. Discussion

In this paper, we presented a maximum likelihood method for unbiased estimation of a latent

variable model of simultaneous equations where biomarkers are related to latent obesity in a mea-

surement equation and the latent obesity is regressed on covariates in a structural equation. Both

covariates and biomarkers may be subject to missingness with a general missing pattern at any level

of the hierarchy. The method handles missing data efficiently under an assumption of ignorable

missing data. To handle missing data efficiently, we reexpressed the LVM as a joint distribution of

the variables, including the biomarkers, subject to missingness conditional on completely observed

covariates. The joint model, however, over-identifies the desired LVM when level-1 covariates are

subject to missingness. The consequence is that the over-identified LVM may produce considerably

biased inferences as was illustrated in Section 5. To overcome the problem of over-identification,

we constrained the joint model to be a one-to-one transformation of the LVM, efficiently estimated

the constrained joint model by ML via the EM algorithm and, then, transformed the estimated joint

model to the LVM for unbiased and efficient estimation. We simulated an LVM to show that the

just-identified LVM estimates are unbiased while the over-identified LVM counterparts are biased.

We wrote a SAS IML program to estimate a constrained (and unconstrained) joint model,

which was then transformed to the desired LVM via the one-to-one transformation formulas (5).

The convergence criterion was the difference in observed log likelihoods between two-consecutive

iterations, which was taken to less than 10−6.

An alternative approach to our efficient ML estimation of LVM (1) given incomplete data is via

multiple imputation (MI) [47]. Given the estimated joint model (7), we may randomly draw MI of

completed data for subsequent analysis of the LVM [28, 30]. The MI may include the latent obesity.

Existing statistical software packages cannot impute the level-1 and -2 missing data efficiently

according to the joint model (7) to the best knowledge of the authors. Therefore, researchers may

be tempted to use MI of missing values using standard imputation software packages such as SAS

PROC MI and NORM [48], followed by complete-data analysis given the imputation by standard

LVM software [47]. When MI of single-level data is applied to multilevel data, the variance-
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covariance structure of the imputed data sets will not accurately represent the multilevel process

(7) that generated the data, nor will the structural relations at each level be captured correctly.

The resulting inferences may be substantially biased [48]. If MI is applied correctly according to

the data-generating process (7), subsequent complete-data analysis of the LVM given the MI will

produce estimation of the LVM comparable to the estimated LVM by our method. Both of our

ML method and the MI approach require efficient estimation of the joint model (7). Following

the estimation, our method requires technical transformation of the joint model to the LVM by the

multivariate Delta method while the MI approach includes the cumbersome extra step of drawing

MI for subsequent complete-data analysis of the LVM [30]. However, once generation of MI is

automated, the MI approach will be less technical and, thus, broadly accessible to a wide range of

researchers. We would like to take on this research in near future.

A limitation of the current approach is our assumption that the covariate having a random ef-

fect is completely observed. When such a covariate has missing values, it should be modeled on

the left-hand side of the joint model in order to handle missing data efficiently. At the same time,

the covariate appears on the right-hand side of the joint model for estimation of the random ef-

fect. Such a joint model is non-normal so that normal factorization of the joint model that leads to

the desired LVM as a conditional distribution of biomarkers given covariates does not apply. One

possible solution is a Bayesian approach where parameters are assumed to have their prior distri-

butions, and the missing data are imputed from their posterior distributions given the parameters.

Although the relaxed assumption will make our method more applicable, it is beyond the scope of

the current research.

Another limitation of our current approach is the multivariate normal joint model to handle

missing data efficiently. We analyzed discrete covariates, household income and maturation stage,

subject to missingness. Although it is not appropriate to handle such discrete missing values under

the joint normality, the identified model is the desired LVM we want to analyze [14, 16, 19]. The

advantage is that we analyze the covariates subject to missingness by the efficient missing data

method [11, 28, 29, 49]. Robust handling of a mixture of discrete and continuous missing data is
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in our future research agenda.

Finally, we assumed the independence of biomarkers given obesity in the measurement model.

To see how plausible the assumption is for each LVM, we computed the correlations between

biomarkers implied by each fitted LVM and compared them to the corresponding sample correla-

tions. Table 7 reveals that the random-intercept LVM explains 54 to 89% of the sample correlations

while the random-coefficient LVM does 62 to 93%. The random-coefficient LVM explains high 87

to 93% of the sample correlations in three pairs involving waist circumferences while it explains

comparatively low 62 to 72% of the sample correlations between other three pairs of the biomark-

ers. Although the random-coefficinet LVM does a better job of explaining the sample correlations

than the random-intercept LVM, it can be further improved, in particular, for the biomarker pairs

that do not involve the waist circumference by relaxing the independence assumption. Another

way is to consider a more elaborate structural model having autoregressive random effects of the

latent child obesity as the obesity is likely to be correlated between occasions within a person [50,

51].
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Appendix A

Transformation Formular Deviation

It is easily to derive that the responses in models (1) and (3) are distributed as

Uik|Sik, Y2i ∼ N(µ1ik, V1ik), [Uik S
T
ik Y

T
2i ]

T ∼ N(µ2ik, V2ik), (a)

where

µ1ik = STikα1 + Y T
2iα2 +W T

1ikα3 +W T
2iα4, V1ik = BT

ikDBik + 1,

µ2ik =


βTu1W1ik + βTu2W2i

βs1W1ik + βs2W2i

β22W2i

 , V2ik =


BT
ikTuuBik + Σuu BT

ikTus + Σus BT
ikTu2

TsuBik + Σsu Tss + Σss Ts2

T2uBik T2s T22

 .
Let us express model (3) such that it recognizes the latent random effect bsi of Sik as

[Uik (Sik − bsi)T bTsi Y
T
2i ]

T ∼ N(µ3ik, V3ik) (b)

with

µ3ik =



βTu1W1ik + βTu2W2i

βs1W1ik + βs2W2i

0

β22W2i


, V3ik =



BT
ikTuuBik + Σuu Σus BT

ikTus BT
ikTu2

Σsu Σss 0 0

TsuBik 0 Tss Ts2

T2uBik 0 T2s T22


.

Then, a regression of Uik on the other variables leads to

Uik|Sik − bsi , bsi , Y2i ∼ N(µ4ik, V4ik) (c)

where

µ4ik = (BT
ikTus|2T

−1
ss|2 − ΣusΣ

−1
ss )bsi + STikΣ

−1
ss Σsu + Y T

2i T
−1
22

(
Tu2 − T2sT−1ss|2Tsu|2

)
Bik

+W T
1ik(βu1 − βTs1Σ−1ss Σsu) +W T

2i

(
βu2 − βT22T−122 (T2u − T2sT−1ss|2Tsu|2)Bik − βTs2Σ−1ss Σsu

)
,

V4ik = Σuu − ΣusΣ
−1
ss Σsu +BT

ik(Tuu|2 − Tus|2T−1ss|2Tsu|2)Bik.
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Model (c) implies model (a) if bsi = 0. Model (c) with bsi = 0, however, has too strong assumption

that Sik does not vary across level-2 unit. The violation of the assumption leads to substantially

biased inferences. Alternatively, model (c) implies model (a) if

αT1 = BT
ikTus|2T

−1
ss|2 = ΣusΣ

−1
ss and Σuu − αT1 Σssα1 = 1. (d)

In the following, we discuss constraints and transformation formulas for two cases: Bik = 1 and

BT
ik = [1 XT

dik] with p5 covariates Xdik having random coefficients in model (1). If Bik = 1, then

one-to-one transformation formulas between models (a) and (c) are

α1 = Σ−1ss Σsu, α2 = T−122 (T2u − T2sα1), α3 = βu1 − βTs1α1,

α4 = βu2 − βTs2α1 − βT22α2, D = Tuu − αT2 T22α2 − 2αT1 Ts2α2 − αT1 Tssα1, (e)

1 = Σuu − αT1 Σssα1, Tus = αT1 Tss + αT2 T2s.

If BT
ik = [1 XT

dik], then let bui = [bu0i b
T
u1i

]T , Tuu =

Tu0u0 Tu0u1

Tu1u0 Tu1u1

, Tus =

Tu0s
0

, Tsu = T Tus,

and Tu2 = [T Tu02 0]T . Note that we assume cov(bu1i, bsi) = cov(bu1i, b2i) = 0. Non-zero covari-

ances can be estimated, but they introduce extraneous terms and make interpretable difficulty. Let

T̃ =

αT2 T22α2 + 2αT1 Ts2α2 + αT1 Tssα1 0

0 0

. Then the one-to-one transformation formulas for

α2, D, and Tu0s are

α2 = T−122 (T2u0 − T2sα1), D = Tuu − T̃ , Tu0s = αT1 Tss + αT2 T2s, (f)

and the others keep same as these in (e).

Appendix B

Parameter Estimation

The maximum likelihood estimators (MLE) of the complete data derived from their likelihood

24



L(θ|Ri, Ui, S1i, Y2i, bui , bsi , bri) are

γ̂
(k)
j = γ̂

(k−1)
j +

(
n∑
i=1

ki∑
k=1

U∗ikU
∗T
ik

)−1 n∑
i=1

ki∑
k=1

U∗ikeikj,

β̂
∗(k)
1 = β̂

∗(k−1)
1 +

(
n∑
i=1

Σ−1 ⊗ (W T
usiWusi)

)−1 n∑
i=1

Σ−1 ⊗ (W T
usiε
∗
1i),

β̂
(k)
2 = β̂

(k−1)
2 +

(
n∑
i=1

T−12|1 ⊗ (W2iW
T
2i)

)−1 n∑
i=1

(T−12|1 ⊗W2i)
(
b2i − T21T−111 b1i

)
, (g)

ξ̂j =
1

n

n∑
i=1

a2ij, τ̂j =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

e2ikj,

Σ̂ =
1∑n
i=1 ki

n∑
i=1

ki∑
k=1

ε1ikε
T
1ik, T̂ =

1

n

n∑
i=1

b∗i b
∗T
i ,

α̂(k) = α̂(k−1) +

(
n∑
i=1

ki∑
k=1

AikA
T
ik

)−1 n∑
i=1

ki∑
k=1

Aikεik, D̂ =
1

n

n∑
i=1

bib
T
i .

Given α̂ and D̂ for a random-intercept model (1), we update the estimators Σ̂us, Σ̂uu, T̂uu, β̂u1, β̂u2,

T̂u2, and T̂us in model (7) via formulas (e). Given α̂ and D̂ for a random-coefficient model (1), we

update the estimators, Σ̂us, Σ̂uu, T̂uu, β̂u1, β̂u2, T̂u02, and T̂u0s in model (7) via formulas (f) and set

Tu12 = Tu1s = 0.

At E-step, we estimate the following conditional expectations.

Ũik = βTu1W1ik + βTu2W2i + ∆u(V
◦
i )−1(Y ◦i − µ◦i ),

E(U2
ik|Y ◦i ) = Ũ2

ik +BT
ikTuuBik + Σuu −∆u(V

◦
i )−1∆T

u ,

ẽikj = ∆er(V
◦
i )−1(Y ◦i − µ◦i ), E(e2ikj|Y ◦i ) = ẽ2ikj + τj −∆er(V

◦
i )−1∆T

er,

ãij = ∆a(V
◦
i )−1(Y ◦i − µ◦i ), E(a2ij|Y ◦i ) = ã2ij + ξj −∆a(V

◦
i )−1∆T

a , (h)

E(ε∗1i|Y ◦i ) = ∆es(V
◦
i )−1(Y ◦i − µ◦i ), ε̃1ik = ∆e(V

◦
i )−1(Y ◦i − µ◦i ),

b̃∗i = ∆b(V
◦
i )−1(Y ◦i − µ◦i ), E(b∗i b

∗T
i |Y ◦i ) = b̃∗i b̃

∗T
i + T −∆b(V

◦
i )−1∆T

b ,

E(Uikeikj|Y ◦i ) = Ũikẽikj −∆u(V
◦
i )−1∆T

er, E(ε1ikε
T
1ik|Y ◦i ) = ε̃1ik ε̃

T
1ik + Σ−∆e(V

◦
i )−1∆T

e ,

where ∆u =
[
∆u1 ∆u2 BT

ikTu2
]
OT
i , ∆er = [01×((k−1)J+j−1) τj 01×(J−j) 01×((ki−k)J+p1ki+p2)]O

T
i ,
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∆a = [01×(j−1)ki 1Tkiξj 01×((J−j)ki+p1ki+p2)]O
T
i , ∆es =

Iki ⊗ Σuu ⊗ γT1 Iki ⊗ Σus 0

Iki ⊗ Σsu ⊗ γT1 Iki ⊗ Σss 0

OT
i ,∆e =

Σuu ⊗∆T
k ⊗ γT1 ∆T

k ⊗ Σus 0

Σsu ⊗∆T
k ⊗ γT1 ∆T

k ⊗ Σss 0

OT
i , and ∆b =


(TuuB

T
i )⊗ γT1 1Tki ⊗ Tus Tu2

(TsuB
T
i )⊗ γT1 1Tki ⊗ Tss Ts2

(T2uB
T
i )⊗ γT1 1Tki ⊗ T2s T22

OT
i for ∆u1 =

(BT
ikTuuB

T
ik+[01×(k−1) Σuu 01×(ki−k)])⊗γT1 , ∆u2 = 1Tki⊗(BT

ikTus)+[01×(k−1)p1 Σus 01×(ki−k)p1 ],

and ∆k is a vector with the kth element equal to 1 and zero otherwise,

In addition, we calculate E(AikA
T
ik|Y ◦i ), E(Aikεik|Y ◦i ), and E(bib

T
i |Y ◦i ) in the LVM.

E(AikA
T
ik|Y ◦i ) =



E(SikS
T
ik|Y ◦i ) E(SikY

T
2i |Y ◦i ) S̃ikW

T
1ik S̃ikW

T
2i

E(Y2iS
T
ik|Y ◦i ) E(Y2iY

T
2i |Y ◦i ) Ỹ2iW

T
1ik Ỹ2iW

T
2i

W1ikS̃
T
ik W1ikY

T
2i W1ikW

T
1ik W1ikW

T
2i

W2iS̃
T
ik W2iỸ

T
2i W2iW

T
1ik W2iW

T
2i


, (i)

E(Aikεik|Y ◦i ) =



S̃Tik ε̃ik −∆s(V
◦
i )−1∆T

ec

Ỹ T
2i ε̃ik −∆y(V

◦
i )−1∆T

ec

W1ik ε̃ik

W2iε̃ik


, (j)

E(bib
T
i |Y ◦i ) = b̃ib̃

T
i +D −∆ac(V

◦
i )−1∆T

ac (k)

where S̃ik = βs1W1ik + βs2W2i + ∆s(V
◦
i )−1(Y ◦i − µ◦i ), E(SikS

T
ik|Y ◦i ) = S̃ikS̃

T
ik + Tss + Σss −

∆s(V
◦
i )−1∆T

s , Ỹ2i = β22W2i+∆y(V
◦
i )−1(Y ◦i −µ◦i ), E(Y2iY

T
2i |Y ◦i ) = Ỹ2iỸ

T
2i +T22−∆y(V

◦
i )−1∆T

y ,

E(SikY
T
2i |Y ◦i ) = S̃ikỸ

T
2i+Ts2−∆s(V

◦
i )−1∆T

y , and ε̃ik = ∆ec(V
◦
i )−1(Y ◦i −µ◦i ) for ∆s = [∆s1 ∆s2 1Tki

⊗Ts2]OT
i , ∆s1 =

(
(TsuB

T
i ) + [0p1×(k−1) Tsu 0p1×(ki−k)]

)
⊗γT1 , ∆s2 = 1Tki⊗Tss+[0p1×(k−1)p1 Σss

0p1×(ki−k)p1 ], ∆y = [(T2uB
T
i )⊗γT1 1Tki⊗T2u T22]O

T
i , ∆ec = [01×(k−1)J γT1 01×(kiJ−kJ+p1ki+p2)]O

T
i ,

b̃i = ∆ac(V
◦
i )−1(Y ◦i − µ◦i ) and ∆ac = [(DBT

i )⊗ γT1 0 0]OT
i .

Appendix C

Calculation of the Information Matrix
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The information matrix is obtained by differentiating twice the observed marginal multivariate

normal log-likelihood with mean and covariance given in (9), but we introduce new parameters

α1 and α2, which are defined in (5). Consequently, parameters Σus, Tu2, Tus, and Σuu are the

functions of α1, α2 and the other elements in Σ and T as

Σus = αT1 Σss, Tu2 = αT2 T22 + αT1 Ts2,

Tus = αT1 Tss + αT2 T2s, Σuu = 1 + αT1 Σssα1.
(l)

Let W (A) denote a vector by horizontally arranging the elements in the matrix A and γ =

(γ0, γ1, β
∗∗) in which β∗∗ = [βTu W (βs1)

T W (βs2)
T W (β22)

T ]T . The arrangement makes us easily

extract the covariances between W (βs1), W (βs2), W (β22) and α1, α2 to estimate the variances of

α3, α4 andD by multivariate Delta method. letHi = Oi⊕3
j=1Hij withHi1 = [1ki ⊗ IJ (Wuiβu)⊗ IJ ],

Hi2 = [1ki ⊗ Ip1 W1i ⊗ Ip1 W2i ⊗ 1ki ⊗ Ip1 ], and Hi3 = [Ip2 Ip2 ⊗W2i], Fi = Oi ⊕3
j=1 Fij

with Fi1 = [1ki ⊗ IJ Wui ⊗ γ1], Fi2 = Hi2, and Fi3 = Hi3, Gi = Hi

 IJ

0(J+p3p1+p4p2)×J

,

Mi = Hi


0J×J

IJ

0(p3p1+p4p2)×J

, and Qi = Fi

 0J×(p3+p3p1+p4p2)

Ip3+p3p1+p4p2

. The expected information ma-

trix for the MLE of γ = (γ0, γ1, β
∗∗) is

Iγγ =
n∑
i=1


GT
i (V ◦i )−1Gi GT

i (V ◦i )−1Mi GT
i (V ◦i )−1Qi

MT
i (V ◦i )−1Gi A+MT

i (V ◦i )−1Mi MT
i (V ◦i )−1Qi

QT
i (V ◦i )−1Gi QT

i (V ◦i )−1Mi QT
i (V ◦i )−1Qi,

 (m)

where A has its (j, k)th component 1
2
tr
(

(V ◦i )−1
∂V ◦i
∂β1j

(V ◦i )−1
∂V ◦i
∂β1k

)
.

Define V (A) a vector by vertically arranging the distinct elements of the matrix A. Let δ =

(ξ, τ, Tuu, V (Tss), V (T2s), V (T22), V (Σss), α1, α2) = (δ1, δ2, · · · , δM) for M = 35 and M = 36
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in a random-intercept model (1) and in a random-coefficient model (1), respectively. Then

Iδjβ1k = 1
2

n∑
i=1

tr
(

(V ◦i )−1
∂V ◦i
∂δj

(V ◦i )−1
∂V ◦i
∂β1k

)
,

Iδjδk = 1
2

n∑
i=1

tr
(

(V ◦i )−1
∂V ◦i
∂δj

(V ◦i )−1
∂V ◦i
∂δk

)
,

(n)

and Iδγ0 = 0, Iδβ∗∗ = 0, where ∂V ◦i
∂δm

is an element-wise derivative with respect to δm for m =

1, 2, · · · ,M .

Appendix D

The variance calculation of the parameters in the LVM

The variances of the estimators α1, α2, β0, β1, ξ and τ in the LVM are estimated in Appendix C. Let

θ1 = [βTu1 W (βs1)
T αT1 ]T , θ2 = [βTu2 W (βs2)

T W (β22)
T αT1 α

T
2 ]T , and θ3 = [Tuu V (Tss)

T V (Ts2)
T

V (T22)
T αT1 α

T
2 ]T . From the transformation formulas (5) and Delta method, the covariances of α̂3,

α̂4, and D̂ with Bik = 1 are estimated as

covα̂3 = ∇̂f 1covθ̂1∇̂f
T

1 , covα̂4 = ∇̂f 2covθ̂2∇̂f
T

2 , covD̂ = ∇̂f 3covθ̂3∇̂f
T

3 (o)

where covθ̂i can be extracted from the inverse of the fisher information matrix in Appendix C,

∇f1 =
[
Ip3 − αT1 ⊗ Ip3 − βTs1

]
, ∇f2 = [Ip4 −

(
αT1 ⊗ Ip4

)
−
(
αT2 ⊗ Ip4

)
− βTs2 − β

T
22], and

∇f3 =

[
1
(

∂D
∂V (Tss)

)T (
∂D

∂V (Ts2)

)T (
∂D

∂V (T22)

)T (
∂D
∂α1

)T (
∂D
∂α2

)T]
for ∂D

∂V (Tss)j
= −αT1 ∂Tss

∂V (Tss)j
α1,

∂D
∂V (Ts2)j

= −2αT1
∂Ts2

∂V (Ts2)j
α2,

∂D
∂V (T22)j

= −αT2 ∂T22
∂V (T22)j

α2, ∂D
∂α1

= −2Ts2α2 − 2Tssα1, and ∂D
∂α2

=

−2T22α2 − 2T2sα1.

Note that ∂Tss
∂V (Tss)j

, ∂Ts2
∂V (Ts2)j

, and ∂T22
∂V (T22)j

are unknown. We know for any p-by-p matrix $1 the

first derivative of the (l, k)th (k > l) element is

∂$1

∂$1kl

=


δkδ

T
l + δlδ

T
k k > l

δkδ
T
l k = l,

(p)
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and for any p-by-q (p 6= q) matrix $2 the first derivative of the (l, k)th element is

∂$2

∂$2kl

= δkη
T
l , k = 1, 2, · · · , p, l = 1, 2, · · · , q (q)

where δh and ηh are p-by-1 and q-by-1 vectors with the hth element equal to one and zero otherwise,

respectively. After we vertically arrange the distinct elements in $1 and $2, the first derivative of

the jth element for j = 1, 2, · · · , p(p + 1)/2 or j = 1, 2, · · · , pq has a one-to-one transformation

with equations (p) and (q), respectively. Similarly, the variances of distinct elements in D could be

estimated for a random-coefficient model (1).
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Table 1: Estimation of the simulated LVM (11) by three different estimation methods

Model Para. True value Estimate (S.E.a)

Benchmark Just-identified Over-identified

(1) α 1 1.031 (0.075) 1.032 (0.075) 0.901 (0.065)

1 1.007 (0.024) 1.007 (0.024) 0.882 (0.021)

D 1 0.999 (0.069) 0.999 (0.069) 0.751 (0.052)

(2) γ0 1 0.993 (0.054) 0.993 (0.054) 0.993 (0.054)

1 1.026 (0.055) 1.026 (0.055) 1.026 (0.054)

γ1 1 0.987 (0.014) 0.987 (0.014) 1.129 (0.016)

1 0.987 (0.014) 0.987 (0.014) 1.129 (0.016)

ξ 0.25 0.268 (0.035) 0.268 (0.035) 0.267 (0.035)

0.25 0.291 (0.035) 0.291 (0.036) 0.291 (0.036)

τ 0.25 0.240 (0.018) 0.240 (0.018) 0.240 (0.018)

0.25 0.258 (0.019) 0.258 (0.019) 0.258 (0.018)
astandard error

Table 2: Estimation of the simulated LVM (11)
given ignorable missing data

Model Para. True value Estimate (S.E.a)

Just-identified Over-identified

(1) α 1 0.994 (0.033) 0.878 (0.031)

1 1.061 (0.081) 0.932 (0.058)

D 1 1.010 (0.082) 0.763 (0.040)

(2) γ0 1 0.987 (0.056) 0.987 (0.044)

1 1.013 (0.056) 1.013 (0.045)

γ1 1 0.984 (0.019) 1.120 (0.033)

1 0.981 (0.019) 1.117 (0.033)

ξ 0.25 0.248 (0.025) 0.248 (0.031)

0.25 0.317 (0.041) 0.318 (0.033)

τ 0.25 0.249 (0.025) 0.249 (0.018)

0.25 0.260 (0.025) 0.260 (0.018)
astandard error



Table 3: NGHS data for analysis

level variable description mean (S.E.) missing (%)

BMI BMI(kg/m2) 22.42 (5.81) 308 (1.5)

Skinfold sum of skinfolds (mm) 45.11 (24.88) 783 (3.8)

Waist max. below-waist circumference (cm) 93.95 (12.87) 2807 (13.5)

level 1 PercentFat percent fat by BIA 25.29 (11.49) 1694 (8.1)

Age age in years at time of visit 14.36 (2.99) 0 (0.0)

TV TV watching (hours/week) 31.35 (21.32) 4834 (23.2)

PhysicalAct physical activity pattern score 17.35 (17.75) 6573 (31.5)

Maturation maturation stage 2.10 (1.03) 1063 (5.1)

MotherBMI mother’s BMI 27.35 (6.91) 6772 (32.4)

ParentEd amaximum parental education 0.75 (0.43) 0 (0.0)

level 2 Income bhousehold income 1.06 (0.83) 1156 (5.5)

White crace (white/black) 0.48 (0.50) 0 (0.0)

OneParents dsingle-parent family 0.31 (0.46) 0 (0.0)
a 1 if some college or more, 0 otherwise
b 0 if < $20k, 2 if ≥ $40k, 1 otherwise
c 1 if white, 0 if black
d 1 if single parent family, 0 if two-parent family



Table 4: Estimated model (1)

Para. Covariate Estimate(S.E.)

Random intercept Random coefficient

MCAR MAR MCAR MAR

α1 TV 0.005 ‡ (0.001) 0.004‡ (0.001) 0.006‡ (0.001) 0.004‡ (0.001)

PhysicalAct -0.004‡ (0.001) -0.003‡ (0.001) -0.002† (0.001) -0.002† (0.001)

Maturation 0.504‡ (0.043) 0.347‡ (0.021) 0.606‡ (0.051) 0.387‡ (0.024)

α2 MotherBMI 0.149‡ (0.012) 0.150‡ (0.011) 0.156‡ (0.015) 0.133‡ (0.013)

Income -0.285† (0.127) -0.183 (0.096) -0.176 (0.158) 0.078 (0.114)

α3 AGE 0.454 ‡ (0.047) 0.502‡ (0.020) 0.647‡ (0.057) 0.713‡ (0.024)

AGE2 -0.025 (0.013) -0.025‡ (0.005) -0.039† (0.015) -0.031‡ (0.005)

AGE×White -0.032 (0.063) -0.057† (0.026) -0.081 (0.079) -0.124‡ (0.033)

α4 ParentEd 0.041 (0.219) 0.012 (0.155) 0.094 (0.237) 0.144 (0.179)

White -0.330 (0.176) -0.309† (0.137) -0.694 ‡ (0.225) -0.938‡ (0.186)

OneParent 0.357 (0.217) 0.380† (0.159) 0.610† (0.271) 0.568‡ (0.185)

Da
00 8.735 (0.575) 8.040 (0.386) 16.935 (0.802) 16.482 (0.560)

D01 0.818 (0.060) 0.942 (0.043)

D11 0.154 (0.009) 0.155 (0.006)
a D00 = D in a random-intercept model (1)
†

p-value< 0.05, ‡ p-value< 0.01

Table 5: Estimated model (2) given incomplete data

Model (2) with Biomarker β̂0j β̂1j τ̂j ξ̂j

random intercept BMI 22.74 (0.09) 1.46 (0.01) 1.06 (0.02) 1.07 (0.09)

Skinfold 47.30 (0.37) 5.24 (0.04) 75.05 (0.83) 73.38 (2.73)

Waist 93.46 (0.29) 4.37 (0.03) 2.02 (0.10) 29.72 (1.16)

PercentFat 25.88 (0.19) 2.69 (0.02) 15.29 (0.18) 21.00 (0.75)

random coefficient BMI 22.74 (0.09) 1.08 (0.01) 0.54 (0.01) 0.86 (0.08)

Skinfold 47.37 (0.38) 3.95 (0.03) 65.06 (0.73) 69.98 (2.56)

Waist 93.49 (0.28) 3.04 (0.02) 6.04 (0.11) 24.79 (0.97)

PercentFat 25.85 (0.19) 1.95 (0.02) 15.40 (0.18) 21.88 (0.76)



Table 6: Complete-case analysis of model (2)

Model (2) with Biomarker β̂0j β̂1j τ̂j ξ̂j

random intercept BMI 22.94 (0.12) 1.74 (0.02) 0.80 (0.02) 1.12 (0.10)

Skinfold 46.98 (0.48) 6.41 (0.07) 70.74 (1.25) 58.82 (2.88)

Waist 95.02 (0.33) 4.52 (0.04) 3.55 (0.15) 18.22 (0.97)

PercentFat 26.52 (0.25) 3.15 (0.04) 14.58 (0.26) 19.96 (0.93)

random coefficient BMI 23.01 (0.12) 1.21 (0.01) 0.44 (0.02) 0.93 (0.09)

Skinfold 47.25 (0.49) 4.46 (0.06) 66.98 (1.18) 52.75 (2.77)

Waist 95.20 (0.32) 3.05 (0.04) 5.51 (0.15) 17.88 (0.93)

PercentFat 26.63 (0.25) 2.13 (0.03) 15.74 (0.28) 20.54 (0.94)

Table 7: Correlations and % sample correlations explained by LVM

Correlation Sample Model % of correlation
between correlation correlation explained by

RIM RCM RIM RCM

BMI and Skinfold 0.89 0.48 0.56 53.50 62.27
BMI and WC 0.92 0.77 0.83 83.44 89.63
BMI and PBF 0.82 0.53 0.59 64.71 72.43
Skinfold and WC 0.81 0.65 0.71 79.84 87.39
Skinfold and PBF 0.81 0.45 0.51 55.29 63.07
WC and PBF 0.81 0.72 0.76 88.73 93.39

RIM: random-intercept model; RCM: random-coefficient model; WC:
waist circumference; PBF: percent body fat



Figure 1: Scatter Plots of Obesity Score against
Houshold Income and Maturation Stages

Figure 2: Obesity growth curves for blacks and whites


