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Abstract

Misclassification means the observed category is different from the underlying one and it is

a form of measurement error in categorical data. The measurement error in continuous,

especially normally distributed, data is well known and studied in the literature. But the

misclassification in a binary outcome variable has not yet drawn much attention in

psychology. In this study, we show through a Monte Carlo simulation study that there are

non-ignorable biases in parameter estimates if the misclassification is ignored. To deal with

the influence of misclassification, we introduce a model with false positive and false

negative misclassification parameters. Such a model can not only estimate the underlying

association between the dependent and the independent variables but also provide the

information on the extent of misclassification. To estimate the model, the maximum

likelihood estimation method based on a Newton-type algorithm is utilized. Simulation

studies are conducted to evaluate the performance and a real data example is used to

demonstrate the usefulness of the new model. An R package is also developed to aid the

application of the model.

Keywords: Binary outcome, Fisher scoring algorithm, Logistic regression,

Misclassification, marijuana use
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Logistic Regression with Misclassification in Binary Outcome Variables: Method and

Software

Introduction1

Classical methods for binary data analysis, such as logistic regression and contingency2

table analysis, assume that there is no measurement error in the variables involved in the3

model. However, this assumption often does not hold because almost nothing can be4

measured perfectly in the social and behavioral research. Measurement error, the difference5

between a measured value of quantity and its true value, is well known to threaten the6

validity of statistical inference. For example, measurement error can result in diminished7

correlations or regression coefficients. To capture its categorical attributes, measurement8

error is often referred to as misclassification in categorical outcome variables, especially9

dichotomous response variables (e.g., Gustafson, 2003; Kuha et al., 2005). Different from10

the misclassification due to the prediction error of a model in some other studies, in this11

study it is purely referred to as measurement error in the data collection process.12

Misclassification can happen in many settings. For example, it can be due to respondent13

error such as aberrant responses such as careless errors and lucky guessing. It may also14

happen in a survey when the participants do not want to provide trustful responses. For15

instance, in a study of marijuana use, a participant who has used marijuana might choose16

not to report it due to concerns over potential consequences. In general, misclassification17

means the recorded value of a discrete response variable is different from its true value.18

The essential goal of measurement error analysis is to obtain unbiased parameter19

estimates and reliable inferences. Measurement error in continuous, especially normally20

distributed, data is well studied in the literature (e.g., Klepper & Leamer, 1984; Carroll et21

al., 2006). It is usually assumed to be normally distributed and independent with the22

underlying variable. There are many techniques/models dealing with continuous23

measurement error (Bagozzi, 1981; Fuller, 2009; Stefanski, 2000). For example, factor24

analysis is a multivariate technique that can be used to deal with measurement error in25
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correlated variables (e.g., Cattell, 1952). The association of the observed scores with26

measurement errors and their underlying true score is modeled by factor loading (e.g.,27

Child, 2006). Nonetheless, relatively fewer studies have investigated the influence of28

misclassification and proposed methods to handle it. This is partially due to the fact29

misclassification has very specific forms. For instance, in binary data, it can only be 0 if30

the true score is 1, and 1 if the true score is 1. As a result, the technique used in31

continuous measure error analysis is hardly extended to misclassifications.32

Misclassification influences the validity of statistical inferences. The marginal33

misclassification may exist in a two-way contingency table (e.g., Bross, 1954; Goldberg,34

1975), and it causes lower power of tests for independence (e.g., Assakul & Proctor, 1967;35

Chiacchierini & Arnold, 1977). The misclassification in the covariates caused both biases36

and misleading standard errors of parameter estimates (e.g., Carroll et al., 2006; Copeland37

et al., 1977; Davidov et al., 2003; Liu et al., 2013). To handle the problems of the38

misclassified covariates, it has been suggested that external information regarding39

misclassification rates be incorporated into the model (e.g. Davidov et al., 2003).40

Misclassification in binary dependent variables in regression modeling have drawn41

great attention of researchers. To study the influence of misclassification on the regression42

coefficients estimates, Neuhaus (1999) derived a consistent estimator for the true43

association between the covariates and the outcome variable, which was a function of the44

observed association, the true slope parameter, and misclassification rates. It was shown45

that the association between the outcome variable and the covariates was attenuated when46

the outcome variable was subject to misclassification. However, it is hard to apply this47

method in practice for three reasons. First, this expression is optimal only when the true48

coefficients are close to 0, because the Taylor expansion technique was used in the49

derivation. Second, the derived consistent estimator is a function of true slope parameter,50

which is not available with misclassification in the data. Third, one needs to have51

prespecified misclassification rates in the data set, which are typically unknown. If the52
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assumed misclassification rates are not consistent with the true misclassification rates, the53

estimator is still inconsistent. Similarly, to use the simulation and extrapolation (SIMEX)54

method proposed by Küchenhoff et al. (2006), the misclassification rates are either known55

or can be estimated from a separate sample available for the analysis.56

Some other techniques are also proposed to account for the misclassification in the57

regression analysis. For instance, Edwards et al. (2013) used a multiple imputation method58

to reduce the bias, which also required a validation data set with no misclassification to59

provide information on the misclassification rates. A Bayesian method using data60

augmentation technique is adopted to do covariate selection when the binary outcome61

variable is subject to misclassification (Gerlach & Stamey, 2007). In this study, the62

imperfectly measured sample is treated as missing data and a perfectly measured one is63

required to augment the missing data. In some practical studies such as in Savoca (2011)64

and Magder & Hughes (1997), researchers also tried to adjust the influence of65

misclassification on the parameter estimates with given known misclassification rates or66

additional information on it. However, we are very often lack of such information and67

would like to estimate the extents of misclassification using the data at hand.68

Hausman et al. (1998) proposed a modified model with two misclassification69

parameters: false negative and false positive parameters. The false negative (FN)70

parameter represents the probability of an observed value 0 having a true value 1 and the71

false positive (FP) parameter is the probability that an observed 1 is truly 0. Through72

such a model, one can estimate not only the parameters of the original research questions73

but also the extent of misclassification. However, the study can still be improved in several74

ways. First, the simulation study in Hausman et al. assumed that the false positive and75

false negative parameters were the same. Thus in that model, there was only one76

misclassification parameter even though there were two types of misclassification in the77

data. The performance of the model with free false positive and false negative parameters78

is not known to researchers and deserves further investigation. Second, the focus of the79
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simulation study was on how severe the consequence of ignoring the misclassification, but80

not on how well the modified model works under different scenarios. Thus more81

comprehensive simulation studies are needed to understand the performance of the model.82

Third, in statistical inference, the standard error estimates are important, but it is not83

clear how reliable the standard error estimates from the modified model are. Fourth,84

Hausman et al. (1998) did not describe the algorithm they used and there is currently no85

easy-to-use software that can be used to estimate the models.86

Therefore, the purpose of this study is to extend Hausman et al. (1998) with the87

following aims. First, we introduce the logistic regression model with misclassification88

parameters proposed by Hausman et al.. Second, we develop a Fisher scoring algorithm to89

obtain model parameter estimates and standard errors. Third, simulation studies are90

conducted to demonstrate the consequence of ignoring misclassification and to evaluate the91

performance of the new models in terms of both parameter estimates and their standard92

errors. Fourth, we introduce a newly developed R package to facilitate the application of93

the models.94

The rest of the paper is organized in the following way. First, we formulate the model95

and elucidate the interpretation of the parameters to be estimated. Second, we derive the96

Fisher scoring algorithm for model estimation as well as the standard errors for parameter97

estimates, which is lacked in the literature. Third, simulation studies are conducted to98

address the problems caused by ignoring misclassification and to evaluate the performance99

of the Fisher scoring algorithm. Fourth, we illustrate how to analyze a set of real data on100

marijuana use collected by the National Longitudinal Survey of Youth study in year 1997101

using the new models. Fifth, we demonstrate the use of our new developed R package102

“logistic4p” using the same data as in the empirical study. The last section concludes the103

study with discussion.104
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Logistic Regression with Misclassification Correction105

In this section, we are going to introduce the logistic models with misclassification106

parameters. Following traditional assumptions on misclassification in binary response107

variables (e.g., Hausman et al., 1998; Neuhaus, 1999), we assume non-differential108

misclassification in the binary dependent variable. Non-differential misclassification means109

that the probability of being misclassified is the same across all subjects (e.g., Jurek et al.,110

2005). In addition, we consider the model involving at least one covariate and there is no111

measurement error in covariates as commonly assumed in most statistical models.112

In the following, we use Ỹ to represent the true state of the binary response variable.113

To model the probability of Ỹ being 1, logistic regression model can be fitted to the114

response variable with a set of predictors X1, . . . , Xp (e.g., McCullagh & Nelder, 1989;115

Nelder & Baker, 1972),116 

Ỹ ∼ bernoulli(F )

F = 1
1+exp(−η)

η = β0 + β1X1 + · · ·+ βpXp

(1)

where β1, · · · , βp represent the association between covariates and the binary outcome117

variable Ỹ .118

Let {(yi, xi), i = 1, · · · , n} be a set of data collected from n participants. Without119

misclassification, the recorded binary data y′is are the true realization of Ỹ . By fitting the120

above model to the data, we could obtained the estimates of β1, · · · , βp, which are121

consistent estimates of the population parameters. When some of true status are122

misclassified, the recorded binary data {y1, · · · , yn} are different from the true status123

{ỹ1, ỹ2, · · · , ỹn}, which are however blind to us. For instance, a participant i smoked124

marijuana, i.e., ỹi = 1, but the recorded data indicates he/she did not, i.e, yi = 0. Under125

the assumption of non-differential misclassification, the chance of misclassification is only126

related to the true status ỹi through the transition probability distribution function as127
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follows,128

Pr(yi = 1|ỹi = 0) = r0 (2)

Pr(yi = 0|ỹi = 0) = 1− r0 (3)

Pr(yi = 0|ỹi = 1) = r1 (4)

Pr(yi = 1|ỹi = 1) = 1− r1 (5)

where r0 and r1 are called false positive (FP) and false negative (FN) rates, respectively,129

which represent the extent of misclassification (e.g., McCullagh & Nelder, 1989). Subject130

to misclassification, the observed yi and the true ỹi can be different. If one simply ignores131

the misclassification and fits a logistic regression model directly to yi using Equation (1),132

the estimated logistic regression coefficients will not necessarily represent the true133

association between Ỹ and its predictors (e.g., Neuhaus, 1999).134

In order to account for the misclassification, we need to find the true distribution of135

yi ’s . For an observation yi = 1, there are two possibilities. First, the underlying ỹi = 1136

and the response is not misclassified. Second, the underlying ỹi = 0 but yi = 1 because of137

misclassification. Therefore, if πi is the probability of yi = 1 conditional on the vector of138

features of subject i, denoted by xi = (1, x1i, · · · , xpi)
′ , base on the law of total probability,139

we have,140

πi = Pr(yi = 1|xi)

= Pr(yi = 1|ỹi = 1,xi)Pr(ỹi = 1|xi) + Pr(yi = 1|ỹi = 0,xi)Pr(ỹi = 0|xi)

= (1− r1)Pr(ỹi = 1|xi) + r0[1− Pr(ỹi = 1|xi)]

= r0 + (1− r0 − r1)Pr(ỹi = 1|xi)

= r0 + (1− r0 − r1)Fi. (6)

As a consequence, the regular logistic regression model can be extended to include both141
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false positive and false negative misclassification parameters as follows:142



yi ∼ bernoulli(πi)

πi = r0 + (1− r0 − r1)Fi

Fi = 1
1+exp(−ηi)

ηi = β0 + β1x1i + · · ·+ βpxpi

(7)

with r0 and r1 defined earlier.143

Let 1 be a n−dimensional column vector of 1, Xj, j = 1, . . . , p be a vector of144

observed data for the j’th predictor, and X = (1,X1,X2, · · · ,Xp) be a n× (p+ 1) design145

matrix. The model defined in Equation (7) is identifiable if it satisfies two regularity146

conditions (e.g., Hausman et al., 1998; Newey & McFadden, 1994). One is r0 + r1 < 1,147

which is called monotonicity condition. The other is E(X′X) <∞ and X′X is148

non-singular. In practice, the misclassification rates r0 and r1 are expected to be small,149

generally less than 0.50. Otherwise, the misclassification would not happen purely due to150

chance. As a consequence, the monotonicity condition holds automatically in most general151

cases. The second condition is also required in the regular regression analysis, otherwise152

the parameter estimates would be extremely unstable from sample to sample. Therefore,153

the two conditions are usually met in practice.154

The proposed model with misclassification parameters defined by Eqn (7) is closely155

relevant to the four-parameter logistic (4PL) IRT model, in which the predictor is a latent156

variable(Loken & Rulison, 2010) though. The false positive parameter r0 corresponds to157

the guessing parameter in the 4PL IRT model, which is the lower asymptote of the mean158

curve. While, 1− r1 corresponds to the upper asymptote parameter in the 4PL IRT model.159

When r1 = 0, the upper asymptote is 1, the model corresponds to the tree-parameter160

logistic (3PL) IRT model (e.g., van der Linden & Hambleton, 2013). In Figure 1, we plot161

the probability Pr(Y = 1) with the same regression coefficients β0 = −1 and β1 = 1 with162
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different false positive and false negative rates. When r0 = 0 and r1 = 0, the lower and163

upper asymptotes are 0 and 1, which corresponds to the conventional logistic regression164

model. When r0 > 0, the lower asymptote is larger than 0 and therefore, the probability of165

Pr(Y = 1) is always at least r0. When r1 > 0, the upper asymptote can never reach 1.166

We denote the model with both misclassification parameters as LGFPFN , where167

“FP” and “FN” are the short forms of “false positive” and “false negative”. When168

r0 = r1 = 0, the model reduces to the conventional logistic regression model (LG). In169

certain situations, one can also constrain the false positive and false negative rates to be170

the same (r0 = r1 = r). This model was studied in the simulation of Hausman et al. (1998)171

and will be referred to as LGE. Furthermore, if false positive is the primary concern, we do172

not need to estimate r1 but only r0 (LGFP ), and if false negative parameter is of interest,173

we can set r0 = 0 (LGFN). These four models have fewer parameters and are easier to174

handle than LGFPFN .175

Fisher Scoring Algorithm176

To estimate the parameters in the logistic models, the maximum likelihood (ML)177

estimation method is used here because it readily provides standard error estimates. Due178

to the nonlinear structure and the interaction between the misclassification parameters and179

the regression coefficients, no direct solution of ML estimates for the logistic regression180

models with misclassification parameters exists. Therefore we resort to numerical methods.181

Although the Newton-Raphson method is often used in obtaining ML estimates, we employ182

the Fisher scoring algorithm because its results are less dependent on the starting values183

and have better convergence rates (e.g., Schworer & Hovey, 2004; Longford, 1987).184

The algorithm is based on the estimating equations from the ML estimation. For any185

yi either 0 or 1, and xi = (1, xi1, · · · , xip) the conditional probability density function of Yi186
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on the features of subject i is187

Pr(Yi = yi|xi) = πyi
i (1− πi)1−yi = exp{yiθi − log(1 + exp(θi))} (8)

with θi = log πi

1−πi
, πi = r0 + (1− r0 − r1)Fi, Fi = exp(ηi)

1+exp(ηi) , and ηi = x′iβ. Given n188

independent observations (xi, yi)ni=1, the likelihood function is189

L = exp{
n∑
i=1

yiθi −
n∑
i=1

log(1 + exp(θi))}

with the corresponding log-likelihood,190

l =
n∑
i=1

li =
n∑
i=1

[yiθi − log(1 + exp(θi))]. (9)

Recall that the unknown parameters in the model include the misclassification parameters191

r0 and r1 as well as the regression coefficients β = (β0, β1, · · · , βp)
′ . For convenience, we192

use γ = (r0, r1,β
′)′ to denote the column vector of all parameters.193

To obtain the ML estimates of γ, denoted by γ̂ = (r̂0, r̂1, β̂′)′, we need to get the194

solutions to the following set of estimating equations:195

gn =



∂l
∂r0

= ∑n
i=1

∂li
∂θi

∂θi

∂πi

∂πi

∂r0
= ∑n

i=1
yi−πi

πi(1−πi)
∂πi

∂r0
= 0

∂l
∂r1

= ∑n
i=1

∂li
∂θi

∂θi

∂πi

∂πi

∂r1
= ∑n

i=1
yi−πi

πi(1−πi)
∂πi

∂r1
= 0

∂l
∂β0

= ∑n
i=1

∂li
∂θi

∂θi

∂πi

∂πi

∂β0
= ∑n

i=1
yi−πi

πi(1−πi)
∂πi

∂β0
= 0

∂l
∂β1

= ∑n
i=1

∂li
∂θi

∂θi

∂πi

∂πi

∂β1
= ∑n

i=1
yi−πi

πi(1−πi)
∂πi

∂β1
= 0

...

∂l
∂βp

= ∑n
i=1

∂li
∂θi

∂θi

∂πi

∂πi

∂βp
= ∑n

i=1
yi−πi

πi(1−πi)
∂πi

∂βp
= 0

. (10)

If a probability density function is from the exponential family, the following relationship196
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holds (e.g., Agresti, 2013),197

E[ ∂l2i
∂γ1γ2

] = −E[ ∂li
∂γ1

∂li
∂γ2

]

for a pair of parameters γ1, γ2. According to Equation (8), the density function of Yi is198

from the exponential family even with the misclassification parameters. Therefore, for the199

logistic model with misclassification, we have for j, k = 0, 1, · · · , p,200

E(∂
2li
∂r2

0
) = −E( ∂li

∂r0
)2 = − 1

πi(1− πi)
(∂πi
∂r0

)2

E(∂
2li
∂r2

1
) = −E( ∂li

∂r1
)2 = − 1

πi(1− πi)
(∂πi
∂r1

)2

E( ∂2li
∂βj∂βk

) = −E[( ∂li
∂βj

)( ∂li
∂βk

)] = − 1
πi(1− πi)

(∂πi
∂βj

)( ∂πi
∂βk

)

E( ∂2li
∂r0∂r1

) = −E( ∂li
∂r0

∂li
∂r1

) = − 1
πi(1− πi)

(∂πi
∂r0

)(∂πi
∂r1

)

E( ∂2li
∂r0∂βj

) = −E( ∂li
∂r0

∂li
∂βj

) = − 1
πi(1− πi)

(∂πi
∂r0

)(∂πi
∂βj

)

E( ∂2li
∂r1∂βj

) = −E( ∂li
∂r1

∂li
∂βj

) = − 1
πi(1− πi)

(∂πi
∂r1

)(∂πi
∂βj

)

with ∂πi

∂r0
= 1− Fi, ∂πi

∂r1
= −Fi, and ∂πi

∂βj
= (1− r0 − r1)Fi(1− Fi)xij with xi0 = 1 The Fisher201

information is202

I(γ) = −E
(

n∑
i=1

∂2li
∂γk∂γs

)
k,s

=
n∑
i=1

E

(
∂li
∂γk

∂li
∂γs

)
k,s

.

Because we have p+ 3 parameters in the model, thus I(γ) is a (p+ 3)× (p+ 3) matrix.203

Let D be a n by p+ 3 matrix with i’th row being the gradient of πi with respect to the204

parameters, i.e., (∂πi

∂r0
, ∂πi

∂r1
, ∂πi

∂β0
, ∂πi

∂β1
, · · · , ∂πi

∂βp
) and W be a diagonal matrix with the diagonal205

elements 1
πi(1−πi) . As a result,206

I(γ)(p+3)×(p+3) = D′

(p+3)×nWn×nDn×(p+3). (11)

Let u = [ ∂l
∂r0
, ∂l
∂r1
, ∂l
∂β0
, · · · , ∂l

∂βp
]′ , the gradient of the likelihood function in Equation (9) with207
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respect to the parameters. Using the same notation, we have208

u = [
n∑
i=1

yi − πi
πi(1− πi)

∂πi
∂r0

,
n∑
i=1

yi − πi
πi(1− πi)

∂πi
∂r1

,
n∑
i=1

yi − πi
πi(1− πi)

∂πi
∂β0

, · · · ,
n∑
i=1

yi − πi
πi(1− πi)

∂πi
∂βp

]′

= D′W(y − π) (12)

where y = (y1, . . . , yn)′ and π = (π1, . . . , πn)′.209

With the Fisher information matrix, the parameter estimates can be obtained using210

the Fisher scoring algorithm. Given a set of starting values, we update the parameters at211

step t+ 1 using212

γ(t+1) = γ(t) + (I(t))−1u(t) = [(D(t)′W(t)D(t))−1D(t)′W(t)][y − π(t) + D(t)γ(t)]. (13)

where γ(t) are the parameter estimates at step t. Note that D(t), W(t), and π(t) are213

evaluated with γ(t) at step t. The iterative procedure stops when it satisfies certain214

stopping criterion. In the study, we stop the algorithm if max(|γ(t+1) − γ(t)|) < 10−6, which215

means that in two consecutive steps, the maximum absolute difference for all parameters is216

smaller than 10−6. The parameter estimates obtained in the last step is an approximation217

of the ML estimates for the model, denoted by γ̂. A good starting value can improve the218

speed of convergence. In our current algoritm, the default starting values are based on the219

parameter estimates from the conventional logistic regression (LG), which is best guess of220

parameter values without considering misclassifications.221

Under some regularity conditions (e.g., Newey & McFadden, 1994), γ̂ is222

asymptotically unbiased and follows a normal distribution with the covariance matrix as223

the inverse of the Fisher information matrix,224

√
n(γ̂ − γ)→ N(0, I−1), asymptotically.

where I is the population Fisher information matrix. Therefore, the asymptotic covariance225
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matrix for γ̂ can be estimated by the inverse of estimated Fisher information matrix226

evaluated at the parameter estimates γ̂,227

ĉov(γ̂) = Î−1(γ̂) = (D̂′ŴD̂)
−1
.

The standard errors of the parameter estimates are readily available as the square roots of228

the corresponding diagonal elements of the covariance matrix.229

Although the above Fisher scoring algorithm is derived for the model with both false230

positive and false negative misclassification parameters, its extension to other models is the231

same and thus is not repeated here.232

In practice, a critical question is how to select a model that fits the data best.233

Because of the use of the ML estimation method, we can conduct a likelihood ratio test for234

two nested models. Let M0 be a null model, e.g., a logistic regression model, which is235

nested in the model M1, e.g., the logistic model with false positive and/or false negative236

parameters. Because M1 contains more parameters than M0, it fits the data at least as well237

as M0. Whether M1 fits the data significantly better than M0 can be evaluated through238

hypothesis testing. The test statistics239

D = −2[logL(M0)− logL(M1)].

asymptotically follows a Chi-squared distribution with degrees of freedom being the240

difference between the numbers of parameters in the two models.241

For the non-nested models, Akaike information criterion (AIC) and Bayesian242

information criterion (BIC) can be used to compare the relative fit of models,243

AIC = −2 logL(M) + 2k

BIC = −2 logL(M) + k log n
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where k is the number of parameters and n is the sample size. A model with smaller AIC244

and/or BIC is preferred.245

Simulation Study246

In the previous section, we derived an iterative procedure to obtain parameter estimates,247

whose performance is still not clear. Thus, the goal of the simulation study is twofold.248

First, we would like to demonstrate the influence of misclassification on covariate parameter249

estimates. Second, we will evaluate the performance of the algorithm that we developed.250

Study design251

The data are generated according to the population model with four predictors in Equation252

(7). The population regression coefficients are set to be253

β = (β0, β1, β2, β3, β4)′ = (−3.5,−0.5, 3, 0.6,−1)′ , which are similar to those in the254

empirical study introduced in the next section. In addition, we consider three potentially255

influential factors in the simulation study: the sample size, the population distributions of256

predictors, and the misclassification rates.257

Sample size. In practice, the misclassification rates are usually very small and thus258

hard to be detected. A relatively larger sample size is required to detect such small effects.259

For the 4PL IRT model, Loken & Rulison (2010) used the Bayesian estimation method and260

a sample size at least 600 is used. Hausman et al. (1998) used the sample size n = 5000 in261

the simulation study to estimate the model with only one misclassification parameter. In262

our model, we consider two misclassification parameters, thus a larger sample size is263

needed. In addition, we are interested in how the sample size influences the performance of264

the estimation procedure. Hence, we consider three different sample sizes n = 1, 000, 2, 000,265

and 5, 000, which are smaller than both the one used by Hausman et al. (1998) and the one266

in the empirical study. For sample size less than 1, 000, we still could fit the the model with267

misclassification parameters, but the convergence rates might be low.268
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Predictors. In the simulation, we manipulate four predictors, among which the269

first three follow the Bernoulli distribution with parameter values p = 0.5, 0.4, and 0.75270

respectively. The fourth predictor follows the standard normal distribution. This design271

covers both continuous and categorical predictors, which is the same as in the empirical272

example.273

Misclassification rates. In the study, both r0 and r1 take one of the 4 values: 0,274

0.05, 0.10, and 0.20. Therefore, there are 16 different combinations for (r0, r1) in total.275

Data generating and model fitted276

Combing the sample sizes and misclassification rates, we evaluate 48 different277

conditions in total. Under each condition, we simulate 1, 000 data sets. For each generated278

data set, we estimate the conventional logistic regression model (LG), the model with both279

misclassification parameters (LGFPFN), and the model used to generate the data set.280

However, when the data generating model is the LG or LGFPFN model, the true model is281

the same as LG or LGFPFN , hence only two models are actually estimated. The data282

generating model and model fitted are summarized in Table 1.283

Evaluation criteria284

The performance of the models are evaluated according to the relative bias, standard285

errors estimates, coverage rates of confidence intervals, and convergence rates. Each of286

these are described below.287

Let γ represent a parameter. And let R be the number of converged solutions among288

T replications. The convergence rate is289

CV = R

T
× 100%.



MISCLASSIFICATION IN BINARY OUTCOME VARIABLE 17

With R sets of parameter estimates γ̂r, r = 1, . . . , R , the average parameter estimate is ,290

¯̂γ =
R∑
r=1

γ̂r/R.

The relative bias is the relative discrepancy of the parameter estimate from its true value,291

bias =


100× ¯̂γ γ = 0

100× ¯̂γ−γ
|γ| γ 6= 0

, (14)

which evaluates the accuracy of the parameter estimates. Typically, a bias less than 5% is292

ignorable, a bias between 5% and 10% is moderate, and a bias above 10% is significant293

(Muthén & Muthén, 2002). For each replicate γ̂r, its estimated standard error is denoted294

by se(γ̂r). The average of estimated standard errors (a.se) of the parameter estimate is295

a.se = 1
R

R∑
r=1

se(γ̂r)

and the empirical standard error (e.se) is the standard deviation of R converged replicates:296

e.se =

√√√√ 1
R− 1

R∑
r=1

(γ̂r − ¯̂γ)2.

If the standard error is estimated well, we expect the average of estimated standard errors297

(a.se) is close to the empirical standard error (e.se). We construct the 95% confidence298

interval of γ in the r′th replication as [γrL, γrU ] with γrL = γ̂r − 1.96 · se(γ̂r) and299

γrU = γ̂r + 1.96 · se(γ̂r). The coverage rate of the 95% confidence interval is300

CR = 1
R

R∑
r=1

Ir,

where Ir = 1 if γrL ≤ γ ≤ γrU , otherwise, 0. With R independent replications, according to301

the Central Limit Theorem, the CR converges to a normal distribution with mean 0.95 and302
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standard error
√

0.95×0.05
R

asymptotically. Hence, a CR that falls in the range303

[0.95− 1.96
√

0.95× 0.05/R, 0.95 + 1.96
√

0.95× 0.05/R] is considered to be acceptable. In304

the case R = 1000, the range should be about [0.935, 0.965].305

Results306

For the sake of space, only parts of the results are included in the manuscript.307

Complete results are available on request and on our website. In reporting the results, we308

focus on (1) whether the model with misclassification parameters can fit the data generated309

from a logistic model without misclassification, and (2) how much better the model with310

misclassification parameters performs compared to the regular logistic regression model311

(LG) if there is misclassification in the data.312

Data without misclassification. We first investigate the performance of the313

logistic model with misclassification parameters when analyzing data without314

misclassification. Under this scenario, we first generated data from a logistic regression315

model with the regression coefficients specified in the simulation design. Then, we fit both316

the logistic regression model (LG) and and the model with both false positive and false317

negative misclassification parameters (LGFPFN) to each generated data set. Results under318

this scenario are provided in Table 2.319

When the logistic regression model was fitted to the data, our estimation algorithm320

never failed to converge. The biases of parameter estimates were ignorable (< 5%) even321

when the sample size was as small as 1, 000. The coverage rates of 95% confidence intervals322

were generally close to the nominal level. In addition, the average of estimated standard323

errors (a.se) were close to the empirical standard errors (e.se), indicating the standard324

errors were also estimated accurately.325

When the logistic model with both false positive and false negative parameters was326

fitted to the data, the convergence rate was low, although it increased along the sample327

size. When the sample size was 1, 000, the convergence rate was 38.4% and when the328
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sample size was 5, 000, it was 67.8%. The bias was ignorable when n = 5, 000, moderate329

when n = 2, 000 and significant when n = 1, 000. Although the biases for the330

misclassification parameters were generally small, they were overestimated consistently.331

The coverage rates of 95% confidence intervals were underestimated for the332

misclassification parameters but reasonable for the regression coefficients.333

To summarize, when data were generated from a logistic model without334

misclassification, the logistic model performed very well. When the sample size was large,335

the model with misclassification parameters can also recover the regression parameters336

reasonably well.337

Data with equal false positive and false negative parameters (r0 = r1 = r).338

With r0 = r1 = r, the true model is thus LGE, the logistic model with equal false positive339

and false negative parameters. For each generated data set from the LGE model, we fitted340

the logistic model (LG), the LGFPFN model assuming unequal false positive and false341

negative parameters, and the LGE models to it. Note that the logistic model was342

misspecified and the LGFPFN model overfitted the data. The simulation results with343

r0 = r1 = 0.05 are presented in Table 3.344

When the true model LGE was fitted to the data, our algorithm converged well and345

the biases in parameter estimates were ignorable for n = 1, 000 and they were smaller when346

the sample size increased. The coverage rate of confidence intervals were also generally347

acceptable. The average of estimated standard errors (a.se) were close to the empirical348

standard errors (e.se). Thus the algorithm provided reliable standard error estimates.349

Although it is not clear to us which algorithm was used by Hausman et al. (1998), our350

parameter estimates are very close to those reported by them and the discrepancy of351

relative biases are within 1%, which is purely due to random seeds of data generating352

process.353

When we ignored the misclassification and fitted the LG model to the generated354

data, the parameter estimates were all biased, around 25− 30%. The coverage rates of the355
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95% confidence intervals were lower than the nominal level, especially for β0, β2 and β4.356

When the LGFPFN model was fitted to the simulated data, the convergence rate was357

low, 70.3%, with n = 1000 but increased to 94.9% with n = 5, 000. The biases in parameter358

estimates decreased as the sample size increased. The biases for all parameter estimates359

were ignorable with the sample size n = 5, 000. The coverage rates and standard error360

estimates generally performed well.361

When the misspecification was more severe such as r0 = r1 = r = 0.10, 0.20, the362

performance of LGE model was still very well, but the problems of fitting the LG model363

became even worse. The LGFPFN model still offered acceptable results especially when the364

sample size was large.365

Therefore, when the data was generated from the model with equal false positive and366

false negative rates, the LGE model worked well even with the sample size not larger than367

1, 000. The LGFPFN performed well too but required a large sample size to converge due to368

extra parameters to be estimated. The LG model caused severely biased parameter369

estimates and extremely low coverage rates. The problems of fitting the LG model did not370

disappear even when the sample size was large.371

Data with misclassification, unequal false positive and false negative372

parameters (r0 = 0.05, r1 = 0.1 and r0 = 0.1, r1 = 0.05). The results for data with373

unequal false positive and false negative parameters are presented in Table 4 when374

r0 = 0.05 and r1 = 0.1, and in Table 5 when r0 = 0.1 and r1 = 0.05.375

When the LG model was fitted to the data, the biases in the regression coefficients376

were all significant, about 30% when r0 = 0.05, r1 = 0.1 and 40% when r0 = 0.1, r1 = 0.05,377

and the coverage rates were very problematic. The results from the LGFPFN model seemed378

to be related to the sample size. When the sample size was 1, 000, the he convergence rates379

were low and the biases in both regression coefficients and the false negative parameter380

were substantial. When the sample size was 2, 000, both convergence rates and parameter381

estimates were improved. Finally, when the sample size was 5, 000, everything seemed to382
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perform reasonably well.383

Data with either false positive (r0 = 0.1, r1 = 0) or false negative384

(r0 = 0, r1 = 0.1). With false positive misclassification only, the LGFP is the true model385

and with false negative misclassification only, the LGFN is the correct model. The LG386

model under-fits the data while the LGFPFN over-fits the data. The simulation results are387

summarized in Table 6 and Table 7.388

First, when the true model, either the LGFP or LGFN , was fitted to the data, the389

results were generally good with ignorable biases in parameter estimates and reasonably390

good coverage rates of confidence intervals except for data with the false negative391

misclassification and small size (n = 1, 000). When the misclassification was ignored by392

fitting the LG model to the generated data sets, the parameter estimates had severe biases393

and the coverage rates of the 95% the confidence intervals were low. For data with only394

false negative misclassification, the LG model provided reasonable parameter estimates but395

still bad coverage rates. Especially, the results from the LG model did not improve with396

the increase of sample size. When the LGFPFN was fitted to the simulated data, the397

convergence can be a problem but improved with the increase of the sample size. The biases398

of parameters became ignorable in general when the sample size was as large as 5, 000.399

Summary of simulation findings400

When ignoring misclassification in data, the use of ordinary logistic regression led to401

severe biases in parameter estimates. The estimated regression coefficients were biased402

towards 0, thus the association between the predictors and outcome variables were403

underestimated. The logistic regression with both false positive and false negative404

parameters was able to correctly recover both regression coefficients and misclassification405

parameters but required a large sample size. For example, with a sample size 2, 000, the406

results were acceptable and with a sample size 5, 000, the results were generally accurate.407

It was also worth noting that for the model with either false positive or false negative408
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parameter, the results can be very good even with a smaller sample size 1, 000.409

Real Data Analysis410

We now illustrate how to apply the proposed model by analyzing a set of empirical data.411

The data were from the National Longitudinal Survey of Youth 1997 (NLSY). All the data412

used in the current analysis were collected in 1997. The outcome variable of interest is413

whether a participant has ever used marijuana and the predictors include gender, residence414

area, smoking cigarettes, and peer’s life style reported by participants. The primary415

interest of the analysis is to estimate the true proportion of marijuana use and evaluate the416

relationship between marijuana use and the four predictors.417

The sample size of the data is 5399. About half (49.2%) of the participants were418

identified as female and 74.8% of the participants lived in urban areas. Around 40% of the419

participants reported ever tried cigarettes. In the data, 20.3% of the participants reported420

that they had used marijuana ever before the survey. Peer’s life style was measured by421

self-reported scores on six items. The higher score, the healthier their peers lived.422

Because we did not know which model would fit the data best, we fitted and423

compared five models: the ordinary logistic regression model (LG), and four models with424

misclassification parameters (LGFPFN , LGFP , LGFN , LGE). Among the five models, the425

LGFP and LGE model did not converge. If they were the true model, they should converge426

almost surely according to our simulation results in Table 3 and Table 6. Thus, the427

nonconvergence of the two models was owing to the lack of fit of the models to the data.428

The results for other three models were provided in Table 8.429

To determine which model fitted the data best, we compared the three converged430

models based on AIC, BIC and likelihood ratio tests. The AIC and BIC indices for the431

three models were offered in Table 8a. The LGFN model had the smallest AIC and BIC,432

indicating that it fitted the data best among the three converged models. The results for433

the likelihood ratio tests were provided in Table 8b. First, comparing the LG against the434
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LGFPFN and LGFN models, the χ2 statistics were 14.29 and 13.84 with p-values 0.0008435

and 0.0002, respectively. Therefore, the LG model fitted the data significantly worse than436

both the LGFPFN and LGFN models. However, the LGFN and LGFPFN models appeared437

to fit the data equally well with the estimated χ2 statistic 0.46 and p-value 0.4986. Since438

the LGFN model had one parameter less, we accepted it as the best fit model for the NLSY439

data based on the parsimony principle. Thus, we used the LGFN model as our final model440

for further analysis and interpretation.441

In the LGFN model, the estimated false negative rate (FN) was 0.1947 with p-value442

less than 0.001, which indicated among the people who had used marijuana indeed, 19.47%443

of them reported they did not. As a consequence, the observed proportion of marijuana use444

was smaller than the true proportion. According to Equation (6), the proportions of the445

true marijuana use (F ) and the observed marijuana use (π) satisfy the following446

relationship447

π = r0 + (1− r0 − r1)F

or equivalently F = (π − r0)/(1− r0 − r1). For the NLSY data, the observed proportion of448

marijuana use was 20.3%. Therefore, the estimated proportion of true marijuana use after449

the correction of misclassification should be450

true proportion = observed proportion− r0

1− r1 − r0
= 20.3%− 0

1− 19.47%− 0 ≈ 25.21%,

which was about 5% larger than the observed proportion on average.451

In terms of the association between the predictors and marijuana use, we observed452

the following. First, girls were less likely to use marijuana than boys as indicated by the453

coefficients for gender (-0.6139) given other covariates the same. Second, if a participant454

smoked cigarettes, it is more likely for him/her to use marijuana. Third, participants who455

lived in urban areas were more likely to use marijuana than those who lived in rural areas456

when other predictors were controlled at the same level. Finally, for a participant whose457



MISCLASSIFICATION IN BINARY OUTCOME VARIABLE 24

peers lived healthier lives, he or she was less likely to use marijuana.458

R Package459

The R package “logistic4p” is developed to facilitate the use of logistic models with460

misclassification parameters. The package computes the misclassification rates, regression461

coefficients, and their standard errors based on the model and iterative procedure462

introduced in Section 2 and 3. In addition, it also offers the p-values, log-likelihood, and463

model fit indices such as AIC and BIC. The codes will run in any system that can run R464

for they are created within R. The NLSY data set is included as an example in the R465

package. In the remainder of this section, we illustrate how to use the R package using the466

NLSY data set.467

In order to use the R package, one needs to install it on your computer first with468

install.packages("logistic4p", repos="http://r-forge.r-project.org") and then469

load it using the command library(logistic4p). To estimate a model, users can use the470

R function logistic4p(x, y, initial, model = c("lg", "fp.fn", "fp", "fn",471

"equal"), max.iter = 1000, epsilon = 1e-06, detail = FALSE), in which x is the472

matrix or data frame including the predictors and y is the vector of the binary dependent473

variable. The users may provide initial values for the parameters to be estimated,474

otherwise the default one, which is based on the estimates of the conventional LG model,475

will be used. Through this function, users can fit the five models discussed in the study to476

the data. The default model is the logistic model without misclassification parameter (lg)477

but can be changed by the model argument. The default maximum number of iterations478

and tolerance are 1, 000 and 1e− 06, which are subject to change by users.479

The R input and output of analyzing the nested data is provided in Figure 2. First480

load the data using data(nlsy). The dependent variable is the marijuana use, which is the481

first variable in the data set. The other four variables are the predictors. For illustration,482

we ran the logistic model with both false positive and false negative misclassification483
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parameters with command logistic4p(x, y, model="fp.fn") using the default initial484

values. The output is provided in Figure 2. The algorithm converged after 299 iterations.485

The log-likelihood, AIC, and BIC are -1725.302, 3464.605, and 3510.763, respectively. In486

addition, the parameter estimates, standard errors, z.values, and two-sided p-values are487

also provided.488

Discussion and Conclusion489

Binary data are often collected in the social and behavioral research, such as in cognitive490

testing (e.g., right or wrong) and in diagnostic analysis (e.g., cancer or not). To analyze the491

binary outcome data, logistic regression models are typically used. In the conventional492

logistic regression (LG) analysis, it is assumed that there is no response error or493

misclassification on the outcome variable. However, in practice, this assumption hardly494

holds. As a consequence, the parameter estimates and statistical inference based on the495

conventional logistic regression may not be trustworthy.496

In this study, we investigated the consequences of ignoring misclassification in binary497

outcome variables and presented several alternative models that can handle498

misclassification. The alternative models included the logistic model with only the false499

positive parameter (LGFP ), the logistic model with only the false negative parameter500

(LGFN), the logistic model with equal false positive and false negative parameters (LGE)501

and the logistic model with free false positive and false negative parameters (LGFPFN). To502

estimate the models, we employed a Fisher scoring algorithm that provided both parameter503

estimates and standard error estimates.504

Through simulation studies, we showed that the parameters in the models with505

misclassification parameters can be estimated well with correctly specified models and506

sufficient large sample size. Blindly fitting a logistic regression model to the data with507

misclassification resulted in severely biased parameter estimates. However, overfitting the508

data without misclassification with a model with misclassification parameters can still509
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provide reasonable results. In the real data analysis, we showed that different models can510

be compared using AIC and BIC, and a model with smaller AIC and BIC is usually511

suggested. For nested models, the likelihood ratio test can also be used. The alternative512

model is preferred over the null model when it is significantly better; otherwise the null513

model is recommended.514

Our simulation results showed that both the parameter estimates and coverage rates515

suffered a lot if the misclassification in the data was ignored. The algorithm we developed516

offers accurate parameter and standard error estimates when the population model was517

fitted to the data. Although the LGFPFN model contains extra parameters when fitted to518

the data set with no or only one type of misclassification, it still works well especially when519

the sample size is large. Compared to the true model, the LGFPFN requires relatively520

larger sample sizes to perform well. In general, a sample size at least 5, 000 can ensure the521

parameters are well recovered. And to estimate the model with just one misclassification522

parameter, a sample size of 2, 000 is a safe bet although a smaller sample size, e.g., 1, 000,523

can also achieve reasonable results.524

If a model is badly misspecified, our software and algorithm may not provide525

converged results, although intermediate results are still available for diagnostic purposes.526

For example, if the data are truly from a model with the false positive parameter but the527

model with the false negative parameter is used, it almost never converges. Therefore,528

when getting non-convergent results, one may consider fitting a different model. There are529

situations that even with the correct model, our algorithm might not converge. To deal530

with the problem, our R package allows a user to provide customized starting values to531

improve convergence. The default starting values are based on the parameter estimates532

from the conventional logistic regression (LG).533

As in other regression analysis, we assume that there are no measurement errors in534

predictors. However, it is possible to extend the model to account for the measurement535

error in them. In addition, although this study has focused on the binary outcome variable,536
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the idea of introducing misclassification parameters in the model can be extended to537

ordinal data or nominal data analysis.538

For the misclassification rates are generally small and hard to detect, a relatively539

large sample is required for the estimation of a logistic model with misclassification540

parameters. Bayesian estimation method can be useful taking its advantages of541

incooperating relevant prior information on the misclassification parameters (McInturff et542

al., 2004), if such kind of prior information is available. A systematic evaluation is lacked543

in the literature. In addition, it has some potential problems such as the boundary issues.544

Bayesian estimation of misclassification parameters are always positive, regardless the fact545

that the misclassification rates could be exactly 0 in the population. Model selection among546

the five different forms of models is subtle and further investigation is still demanded.547

To summarize, if one suspects that a binary outcome variable is not reliably548

measured, a logistic regression model with misclassification parameters can be applied. The549

comparison between the new model and a logistic regression model can provide insight on550

whether it is necessary to estimate the misclassification parameters.551
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Data generating model Model fitted
LG r0 = 0, r1 = 0 LG, LGFPFN

LGE r0 = r1 ∈ {0.05, 0.10, 0.20} LG, LGFPFN , LGE

LGFPFN r0 6= r1 ∈ {0.05, 0.10, .20} LG, LGFPFN

LGFP r0 ∈ {0.05, 0.10, 0.20}, r1 = 0 LG, LGFP , LGFPFN

LGFN r0 = 0, r1 ∈ {0.05, 0.10, 0.20} LG, LGPN , LGFPFN

Table 1
Data generating model and fitted models
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Table 2
Analysis of data from the model without misclassification (r0 = 0, r1 = 0).

LG LGFPFN

Par True bias(%) a.se e.se CR(%) bias(%) a.se e.se CR(%)
n = 1, 000

r0 0 - - - - 0.73 0.0099 0.0091 92.2
r1 0 - - - - 6.51 0.1128 0.1083 85.4
β0 -3.5 -1.38 0.2975 0.3008 94.8 -9.36 0.4901 0.4738 97.1
β1 -0.5 -1.25 0.1947 0.1940 95.3 -20.66 0.2478 0.2474 95.1
β2 3 1.20 0.2349 0.2395 95.2 14.90 0.5593 0.5443 94.5
β3 0.6 2.67 0.2357 0.2426 94.7 19.64 0.2955 0.2932 96.4
β4 -1 -1.05 0.1122 0.1146 94.8 -17.54 0.2362 0.234 95.1
CV(%) 100 38.4

n = 2, 000
r0 0 - - - - 0.87 0.0072 0.0701 86.1
r1 0 - - - - 3.86 0.0857 0.1058 84.1
β0 -3.5 -0.65 0.2087 0.2123 95.0 -4.30 0.3132 0.5583 94.0
β1 -0.5 -0.13 0.137 0.1369 95.3 -5.80 0.1606 0.1652 96.4
β2 3 0.55 0.1647 0.1676 94.0 6.85 0.3575 0.5083 95.6
β3 0.6 0.98 0.1657 0.1676 94.9 8.25 0.1937 0.2099 95.4
β4 -1 -0.57 0.079 0.0775 96.6 -8.34 0.1538 0.1955 95.2
CV(%) 100 49.6

n = 5, 000
r0 0 - - - - 0.27 0.0042 0.0406 87.9
r1 0 - - - - 0.92 0.0562 0.0732 86.1
β0 -3.5 -0.16 0.1313 0.1356 95.0 -1.13 0.1791 0.3105 94.0
β1 -0.5 -0.79 0.0864 0.0873 94.3 -2.74 0.0957 0.106 95.0
β2 3 0.33 0.1037 0.1075 94.7 1.98 0.2048 0.3031 94.7
β3 0.6 -0.55 0.1043 0.1058 95.3 2.18 0.1148 0.1222 94.5
β4 -1 -0.29 0.0498 0.049 95.0 -2.33 0.0894 0.1137 95.0
CV(%) 100 67.8

Note. A bold number is either a significant bias (bias>10%) or a bad coverage rate (CR< 90%).
LG represents the logistic regression with no misclassification parameter and LGFPFN is the

logistic regression model with both false positive and false negative parameters. The CR and CV
denote the coverage rates and convergence rates respectively.
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Table 4
Analysis of data from the model with r0 = 0.05, r1 = 0.10.

LG LGFPFN

Par True bias(%) a.se e.se CR(%) bias(%) a.se e.se CR(%)
n = 1, 000

r0 0.05 - - - - 4.44 0.0202 0.0209 93.04
r1 0.1 - - - - 13.59 0.17 0.1794 82.20
β0 -3.5 26.44 0.2361 0.2437 5.1 -11.20 0.7808 0.8709 96.92
β1 -0.5 31.32 0.172 0.1748 84.2 -19.72 0.3203 0.358 95.45
β2 3 -30.32 0.1829 0.1908 1.0 16.13 0.8945 1.0136 95.45
β3 0.6 -31.32 0.2068 0.2102 83.8 19.42 0.3818 0.4052 96.52
β4 -1 32.13 0.0926 0.0952 9.8 -18.36 0.3406 0.3709 97.05
CV(%) 100 74.7

n = 2, 000
r0 0.05 - - - - 0.49 0.015 0.0156 93.59
r1 0.1 - - - - -12.91 0.1273 0.1392 87.18
β0 -3.5 26.54 0.1663 0.1747 0.1 -4.26 0.4809 0.4999 95.39
β1 -0.5 32.68 0.1213 0.1246 71.4 -4.44 0.2035 0.2125 94.49
β2 3 -30.46 0.1288 0.1303 0.0 4.91 0.5603 0.5820 94.26
β3 0.6 -31.50 0.1458 0.1419 74.6 7.00 0.2452 0.2443 95.73
β4 -1 32.69 0.0651 0.0665 0.3 -5.28 0.2186 0.2294 94.15
CV(%) 100 88.9

n = 5, 000
r0 0.05 - - - - -0.06 0.0095 0.0095 94.32
r1 0.1 - - - - -8.31 0.0805 0.0827 91.43
β0 -3.5 26.78 0.1048 0.1054 0.0 -1.59 0.2909 0.2903 95.56
β1 -0.5 31.43 0.0766 0.0763 44.7 -3.47 0.1254 0.1273 95.05
β2 3 -30.48 0.0813 0.0806 0.0 1.68 0.3438 0.3507 93.70
β3 0.6 -32.47 0.0918 0.0895 43.7 2.62 0.1501 0.1481 96.28
β4 -1 32.40 0.0411 0.0423 0.0 -1.95 0.1353 0.1381 94.01
CV(%) 100 96.9

Note. A bold number is either a significant bias (bias>10%) or a bad coverage rate (CR< 90%).
LG represents the logistic regression with no misclassification parameter and LGFPFN is the

logistic regression model with both false positive and false negative parameters. The CR and CV
denote the coverage rates and convergence rates respectively.
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Table 5
Analysis of data from the model with r0 = 0.10, r1 = 0.05

LG LGFPFN

Par True bias(%) a.se e.se CR(%) bias(%) a.se e.se CR(%)
n = 1000

r0 0.1 - - - - 1.69 0.025 0.026 92.14
r1 0.05 - - - - 72.07 0.1539 0.1573 78.78
β0 -3.5 43.13 0.2050 0.2138 0.0 -13.73 0.9133 1.1235 96.59
β1 -0.5 42.57 0.1574 0.1559 72.2 -22.04 0.3461 0.4406 94.51
β2 3 -40.89 0.1612 0.1695 0.0 20.69 1.0082 1.2644 96.59
β3 0.6 -44.76 0.1873 0.1991 68.4 20.80 0.4130 0.4874 94.66
β4 -1 43.34 0.0832 0.0872 0.2 -23.12 0.3783 0.4938 95.55
CV(%) 100 67.4

n = 2, 000
r0 0.1 - - - - 1.74 0.0186 0.0439 93.24
r1 0.05 - - - - 13.63 0.1140 0.1238 85.28
β0 -3.5 43.16 0.1443 0.1453 0.0 -4.65 0.5519 0.6522 94.21
β1 -0.5 43.19 0.1109 0.1097 51.2 -9.12 0.2165 0.2316 95.42
β2 3 -41.26 0.1136 0.1121 0.0 6.63 0.6135 0.6969 94.45
β3 0.6 -43.76 0.1319 0.1293 48.4 8.85 0.2597 0.2701 95.17
β4 -1 43.11 0.0587 0.0564 0.0 -7.76 0.2344 0.2543 95.17
CV(%) 100 82.9

n = 5, 000
r0 0.1 - - - - -0.50 0.0117 0.0119 94.54
r1 0.05 - - - - -8.24 0.0735 0.0765 90.90
β0 -3.5 43.09 0.0911 0.093 0.0 -1.51 0.3283 0.3369 94.75
β1 -0.5 42.82 0.0701 0.0666 12.2 -2.32 0.1292 0.1273 95.29
β2 3 -41.07 0.0718 0.0718 0.0 1.87 0.367 0.3683 94.43
β3 0.6 -43.69 0.0832 0.0827 11.5 2.47 0.1556 0.1601 94.33
β4 -1 43.18 0.0371 0.0385 0.0 -2.20 0.1409 0.1421 93.58
CV(%) 100 93.4

Note. A bold number is either a significant bias (bias>10%) or a bad coverage rate (CR< 90%).
LG represents the logistic regression with no misclassification parameter and LGFPFN is the

logistic regression model with both false positive and false negative parameters. The CR and CV
denote the coverage rates and convergence rates respectively.
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Table

7
Analysis

ofdata
from

the
m
odelwith

only
false

negative
m
isclassification:

r0 =
0.00,r1 =

0.10.

LG
LG

F
P
F
N

LG
F
N

Par
True

bias(%
)

a.se
e.se

C
R

(%
)

bias(%
)

a.se
e.se

C
R

(%
)

bias(%
)

a.se
e.se

C
R

(%
)

n
=

1,000
r1

0
-

-
-

-
1.04

0.0103
0.0625

92.81
-

-
-

-
r1

0.1
-

-
-

-
39.31

0.1365
0.145

83.21
-9.98

0.1389
0.1467

85.8
β

0
-3.5

-2.01
0.3021

0.2997
95.9

-10.25
0.5403

0.6827
95.68

-1.87
0.3363

0.3372
96.2

β
1

-0.5
8.37

0.1962
0.1994

93.4
-15.37

0.2711
0.278

96.16
-2.89

0.2267
0.2339

94.0
β

2
3

-4.50
0.2367

0.2371
90.0

15.24
0.6376

0.7216
96.16

2.99
0.3671

0.3906
94.9

β
3

0.6
-5.92

0.2386
0.2376

94.5
18.81

0.3255
0.3681

95.44
4.88

0.2724
0.2784

95.8
β

4
-1

6.88
0.1110

0.1083
89.3

-18.57
0.2684

0.2932
94.48

-4.23
0.1760

0.1836
94.8

C
V

(%
)

100
41.7

88.7
n

=
2,000

r0
0

-
-

-
-

0.60
0.0069

0.0477
88.61

-
-

-
-

r1
0.1

-
-

-
-

20.11
0.1066

0.1125
87.72

-6.86
0.0999

0.108
89.7

β
0

-3.5
-1.86

0.2127
0.2097

95.8
-5.20

0.3417
0.466

94.48
-1.34

0.2329
0.2368

95.6
β

1
-0.5

9.26
0.1383

0.1426
92.8

-5.85
0.1779

0.1908
95.37

0.46
0.1577

0.1669
94.0

β
2

3
-4.68

0.1666
0.1613

86.0
7.64

0.414
0.4869

94.84
1.67

0.2559
0.2651

94.0
β

3
0.6

-6.44
0.1681

0.1676
94.8

7.92
0.2135

0.2254
95.73

2.14
0.1896

0.1931
95.2

β
4

-1
7.81

0.0782
0.0785

82.9
-7.95

0.1754
0.1986

94.31
-1.61

0.123
0.1300

92.9
C

V
(%

)
100

56.2
94.9

n
=

5,000
r0

0
-

-
-

-
0.37

0.0042
0.0489

82.88
-

-

-
-

r1
0.1

-
-

-
-

7.91
0.0695

0.0878
90.16

-5.34
0.0638

0.0694
92.8

β
0

-3.5
-1.31

0.1337
0.1298

94.6
-1.28

0.1947
0.4094

93.80
-0.53

0.1449
0.142

96.2
β

1
-0.5

8.17
0.0873

0.0859
93.1

-1.74
0.1062

0.1171
94.74

-0.04
0.0987

0.0973
94.7

β
2

3
-5.09

0.1048
0.103

65.8
1.99

0.2382
0.3904

94.47
0.51

0.1599
0.1629

94.7
β

3
0.6

-7.37
0.1059

0.1066
92.7

3.20
0.1277

0.1441
94.07

0.60
0.1184

0.1196
94.7

β
4

-1
7.47

0.0493
0.0514

65.6
-2.83

0.1035
0.1488

94.61
-0.99

0.0772
0.0812

94.9
C

V
(%

)
100

74.2
99.2

N
ote.

A
bold

num
ber

is
either

a
significant

bias
(bias>

10%
)
or

a
bad

coverage
rate

(C
R
<

90%
).

LG
represents

the
logistic

regression
m
odelwith

no
m
isclassification

param
eter,LG

F
P
F
N

is
the

logistic
regression

m
odelwith

both
false

positive
and

false
negative

param
eters,and

LG
F
N

is
the

logistic
m
odelwith

the
false

negative
param

eter.
T
he

C
R

and
C
V

denote
the

coverage
rates

and
convergence

rates
respectively.
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Table 8
Analysis of the NLSY1997 data

(a) Parameter estimates. Gender: 0, boy; 1, girl. Smoke: 0, not smoking cigarettes; 1, smoking cigarettes.
Residence: 0, urban; 1, rural. Peer: the higher score, the healthier their peers lived. AIC represents the Akaike
information criterion and BIC is the short form of Bayesian information criterion. The model with smaller AIC
and BIC is preferred in general. FP and FN mean the false positive and false negative rates. LG, LGF P F N , and
LGF N are the models with no misclassification parameter, with both false positive and false negative
misclassificaiton parameters, and with only false negative parameter, respectively.

LG LGFPFN LGFN

Par est s.e p(>|z|) est s.e p(>|z|) est s.e p(>|z|)
FP - - - -0.0017 0.0031 0.5826 - - -
FN - - - 0.1816 0.0478 < 0.001 0.1947 0.0392 < 0.001

intercept -3.5914 0.1370 < 0.001 -3.500 0.2045 < 0.001 -3.5753 0.1613 < 0.001
gender -0.4582 0.0870 < 0.001 -0.5837 0.1181 < 0.001 -0.6139 0.1140 < 0.001
smoke 2.8980 0.1097 < 0.001 3.1976 0.2395 < 0.001 3.2975 0.1667 < 0.001

residence 0.4270 0.1021 < 0.001 0.5549 0.1315 < 0.001 0.5822 0.1300 < 0.001
peer -0.9384 0.0471 < 0.001 -1.1462 0.1136 < 0.001 -1.1888 0.0862 < 0.001

-2logL 3464.896 3450.604 3451.062
#pars 5 7 6

AIC 3474.896 3464.605 3463.063
BIC 3507.866 3510.763 3502.626

(b) Model comparison

Comparison Test summary
M0 M1 χ2 statistic df p.value
LG LGFPFN 14.29 2 0.0008
LG LGFN 13.83 1 0.0002
LGFN LGFPFN 0.458 1 0.4986
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Figure 1 . Plot of the conditional probability with one predictor:
Pr(Y = 1|X = x) = r0 + (1− r0 − r1)/(1 + exp(−x+ 1))
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#-----Input-----#
data(nlsy)
head(nlsy)
y=nlsy[, 1]
x=nlsy[, -1]
logistic4p(x,y, model="fp.fn")

#-----Output-----#

The algorithm converged in 299 iterations.
LogLikelihood = -1725.302
AIC = 3464.605 BIC= 3510.763
Parameter estimates:

Estimates Std.Error z.value Pr(>|z|)
FP -0.001698437 0.003090713 -0.5495293 5.826423e-01
FN 0.181610754 0.047847397 3.7956246 1.472722e-04
Intercept -3.499980460 0.204547275 -17.1108633 0.000000e+00
gender -0.583676758 0.118093479 -4.9424978 7.712798e-07
smoke 3.197646524 0.239526685 13.3498551 0.000000e+00
residence 0.554866523 0.131470417 4.2204667 2.437970e-05
peer -1.146240383 0.113631343 -10.0873610 0.000000e+00

Figure 2 . R input and output for the logistic regression model with both false positive and
false negative parameters




