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Abstract

Exploratory structural equation modeling (ESEM) is an approach for analysis of latent

variables using exploratory factor analysis (EFA) to evaluate the measurement model.

This study compared ESEM with two dominant approaches for multiple regression with

latent variables, structural equation modeling (SEM) and manifest regression analysis

(MRA). Main findings included: (1) ESEM in general provided the least biased

estimation of the regression coefficients; SEM was more biased than MRA given large

cross-factor loadings. (2) MRA produced the most precise estimation, followed by

ESEM and then SEM. (3) SEM was the least powerful in the significance tests;

statistical power was lower for ESEM than MRA with relatively small target-factor

loadings, but higher for ESEM than MRA with relatively large target-factor loadings.

(4) ESEM showed difficulties in convergence and occasionally created an inflated type I

error rate under some conditions. ESEM is recommended when non-ignorable

cross-factor loadings exist.

Keywords: exploratory structural equation modeling, latent variables, Monte

Carlo simulation, multiple regression



ESEM LATENT MULTIPLE REGRESSION 3

Comparing Exploratory Structural Equation Modeling and Existing Approaches for

Multiple Regression with Latent Variables

Introduction

Multiple regression is an essential methodological tool in modern social science,

especially in psychological and educational research (Keith, 2014). For multiple

regression with latent variables, there are two common modeling approaches. One is

structural equation modeling (SEM) that typically assumes the latent variables have

concise factor structures without cross-loadings, evaluating the measurement model by

confirmatory factor analysis (CFA). The other is manifest regression analysis (MRA)

that treats the latent variables as observed variables, usually scoring each latent

variable with mean (or sum) item scores (e.g., Coffman & MacCallum, 2005;

Stephenson & Holbert, 2003) or factor scores (e.g., Lu, Kwan, Thomas, & Cedzynski,

2011). Theoretically, SEM is preferred to MRA for analyzing latent variables given an

adequate sample size because SEM allows the correction for the measurement errors,

while observed variable approaches ignore the potential measurement errors (Bollen,

1989; P. Cohen, Cohen, Teresi, Marchi, & Velez, 1990; Rigdon, 1994). In practice, both

SEM and MRA have strengths and weaknesses.

With respect to estimation accuracy for regression coefficients, the SEM approach

in general outperforms MRA. Simulation studies (Coffman & MacCallum, 2005;

Skrondal & Laake, 2001; Stephenson & Holbert, 2003) demonstrated that MRA

underestimated the coefficients due to ignoring the measurement errors, and the

underestimation became severer as the measurement reliability decreased (Ledgerwood

& Shrout, 2011). Regarding estimation precision, the simulation study by Ledgerwood

and Shrout (2011) showed that SEM produced larger standard errors than
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mean-item-score MRA. Similarly, the study by Devlieger, Mayer, and Rosseel (2016)

found that SEM had larger empirical standard deviation but less biased standard errors

of the coefficient estimates compared with factor-score MRA. One reason could be that

the optimization for SEM involves a more complex sample covariance matrix and more

parameters than MRA. To consider the trade-off between accuracy and precision,

Ledgerwood and Shrout (2011) used figures to demonstrate that MRA outperformed

SEM (sample size = 100) while Devlieger et al. (2016) employed mean square error to

conclude that SEM worked better than most MRA approaches. For significance tests,

MRA was found to have a higher power but an inflated type I error rate than SEM

(Hoyle & Kenny, 1999; Ledgerwood & Shrout, 2011). In terms of model convergence

and proper solutions, SEM was more likely to have problems than MRA particularly

when the sample size was small (Devlieger et al., 2016; Devlieger & Rosseel, 2017;

Ledgerwood & Shrout, 2011). While MRA worked well with a small sample (Devlieger

et al., 2016; Ledgerwood & Shrout, 2011) SEM required a large sample (e.g., 10 cases

per variable; Nunnally, 1978) to guarantee its good performance.

Since neither SEM nor MRA is satisfactory, improved approaches were

introduced. For instance, the bias-correcting MRA proposed by Croon (2002) was found

to have a higher standard error bias but a comparable bias, efficiency, mean square

error, power, and type I error rate relative to SEM (Devlieger et al., 2016). However,

the Croon method currently cannot analyze models with cross-loadings or correlated

residual errors (Devlieger & Rosseel, 2017).

To better adjust for the cross-factor loadings, exploratory structural equation

modeling (ESEM) was proposed as an alternative approach for latent variables analysis,

which evaluates the measurement model of latent variables using exploratory factor
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analysis (EFA) instead of CFA (Marsh et al., 2009; Sass, 2011; Schmitt, 2011). Studies

have demonstrated the impressive performance of ESEM compared to CFA in

investigating the measurement structure of latent variables (Marsh, Liem, Martin,

Morin, & Nagengast, 2011; Marsh et al., 2010; Marsh, Morin, Parker, & Kaur, 2014;

Mattsson, 2012; Myers, Chase, Pierce, & Martin, 2011). In addition, ESEM instead of

item-parcel methods was suggested to be a viable alternative to SEM for latent

regression analysis when a number of cross-factor loadings exist (Marsh, Lüdtke,

Nagengast, Morin, & Von Davier, 2013) because using item parcels can result in

distorted relations among latent variables when the unidimensionality assumption of the

items (see Little, Cunningham, Shahar, & Widaman, 2002) is violated by cross-factor

loadings. Similarly, using item composite sores in MRA without adjusting for

cross-factor loadings can also lead to distorted estimation.

Drawing insights from the above review, we expect that ESEM can be a viable

alternative to SEM or MRA in multiple regression analysis of latent variables when

there are substantive non-zero cross-factor loadings. This study aims to (a) compare

ESEM with SEM and MRA in terms of estimation accuracy, estimation precision,

statistical power, type I error rate, model convergence and goodness of fit, when

applying to latent multiple regression and (b) provide an updated strategy for choosing

modeling approaches in latent multiple regression. We will carry out a Monte Carlo

simulation study to fulfill the aims. This simulation study will consider mean-item-score

MRA as the representative MRA approach.
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Methods

Population Model

Figure 1 portrays the latent regression model employed to generate data. The

structural equation is η1 = γ1ξ1 + γ2ξ2 + ζ1, where η1 regressions on ξ1 and ξ2 with

regression coefficients γ1 and γ2, respectively. The variance of each latent variable is set

to be one. The endogenous latent variable η1 has three observed indicators, y1, y2, and

y3. The indicators have equal factor loadings of .7, corresponding to a scale composite

reliability (Raykov, 1997) of .74 for η1. The two exogenous latent variables, ξ1 and ξ2,

are correlated with the Pearson correlation coefficient ρ = .3, corresponding to a

medium size of correlation (J. Cohen, 1988). They have six indicators, x1 ∼ x6.

Specifically, ξ1 is the target factor of x1, x2, and x3; and ξ2 is the target factor of x4, x5,

and x6. The corresponding target-factor loadings for the six indicators are λ11, λ21, λ31,

and λ42, λ52, λ62, respectively. In addition, x1, x2, and x3 each has a cross-factor

loading, λ12, λ22, and λ32, respectively, on ξ1; and x4, x5, and x6 each has a cross-factor

loading, λ41, λ51, and λ61, respectively, on ξ2. The corresponding measurement error

terms for the indicators y1 ∼ y3 and x1 ∼ x6 are ε1 ∼ ε3 and δ1 ∼ δ6, respectively. Their

variances are denoted by θε1 ∼ θε3 and θδ1 ∼ θδ6 , respectively. The model has the

following assumptions: (1) The expectation of each error term equals zero; (2) The

covariance of any two error terms equals zero, which means the error terms are

independent from each other; and (3) Any of the error terms is independent from ξ1, ξ2,

and η1.

Experimental Design

In the simulation we manipulated six experimental factors as follows.

1. The standardized value of target-factor loadings: λT = .55, .7, .84, or .95.
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2. The standardized value of cross-factor loadings: λC = 0, .05, .10, .15, .20, or

.25. Note that λC = 0, .05, or .10 but neither .20 nor .25 when λT = .95 in our study.1

Table 1 depicts the scale composite reliability (CR; Raykov, 1997) for the single latent

variable ξ1 (also called construct reliability in a measurement model; Hair, Black, Babin,

Anderson, & Tatham, 2009) corresponding to different combinations of λT and λC .

3. The standardized value of regression coefficients γ11 = γ12 = γ = .14, .36, or

.51. The corresponding coefficient of determination for the overall regression model R2

is .05, .34, and .68, respectively. Being compared with only one predictor ξ1 in the

regression model, the change in R2 (i.e., ∆R2 ) is .03, .21, and .42, respectively.

4. The sample size: N = 100, 200, or 500. We used 100 as the minimum sample

size following the suggestion by Boomsma (1982) for latent variable models.

5. The distribution of observed variables (y1 ∼ y3 and x1 ∼ x6) and latent

variables (η1, ξ1, and ξ2) can be normal or nonnormal. We used χ2(df = 6) as the

nonnormal distribution.

6. The modeling approaches included ESEM, SEM, and MRA. We used the

maximum likelihood estimator (MLE) for all three approaches. Note that MRA using

the Ordinal Least Square estimator will provide the same results as using MLE in

normal case.

The first five experimental factors were between-subject factors resulting in 378

experimental conditions for generating data. The last one was a within-subject factor.

That is, the three modeling approaches were separately employed to fit the model with

the generated data for each experimental condition.
1Since λT and λC are standardized factor loadings of each of the indicators x1 ∼ x6 on the correlated

latent variables ξ1 and ξ2, respectively, λ2
T + λ2

C + 2ρλTλC ≤ 1 is a restriction to be satisfied. Given
ρ = .3, the restriction is not satisfied when λT = .95 and λC = .20 or .25.
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Simulation and Comparison Procedure

The procedure included three steps. First, given the predefined parameter values,

we generated 1000 replicates of sample data for each experimental condition. Second, we

fit ESEM, SEM, and MAR separately with each replicate of the generated data. Third,

we compared the results from ESEM, SEM, and MRA using the criteria stated in the

Results section. R program (R 2.1.5) was used for generating data and comparing the

results and Mplus 7.0 (Muthén & Muthén, 1998-2012) was used for model estimation.

In data generation, we employed a sequential approach. For each experimental

condition, we first generated random data of the exogenous latent variables ξ1 and ξ2

given ρ, as well as the error term ζ1 in the structural equation. We then generated

random data of the endogenous latent variable η1 based on the structural equation

given γ11 = γ12 = γ. Using the generated data of the latent variables and given factor

loadings, we generated random data of the observed variables. We finally divided the

data of the first indicator of each latent variable by its factor loading. For example,

ỹ1 = y1/0.7 (see Marsh, Hau, & Wen, 2004). By doing this, SEM or ESEM would

result in the same scale of a latent variable by fixing the loading of its first indicator at

one or by fixing the variance of the latent variable at one. Thus the estimated

regression coefficients from both ways can be compared directly.

Results

We employed six criteria for comparisons: the rate of model convergence and

convergence with proper solutions, goodness of fit, estimation accuracy, estimation

precision, statistical power, and type I error rate. The last five criteria were calculated

using only the replications that were convergent with proper solutions. In our results,

we focused on the estimate of regression coefficient γ11, since the population model is
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symmetrical with respect to the two predictors and the regression coefficients γ11 and

γ12.

Model Convergence and Convergence with Proper Solutions

Model-convergence rate (MCR) was calculated as the number of convergent

replications divided by the total number of replications under each experimental

condition. Convergence-with-proper-solution rate (CPSR) was calculated as the number

of convergent replications having proper solutions divided by the total number of

replications.

The results for both normal and nonnormal data showed that ESEM had

problems with MCR and CPSR when target-factor loadings were small (λT = .55) and

sample size was not large (N = 100, 200). The situation became worse as cross-factor

loadings increased, with minimum MCR of 67%/65% and minimum CPSR of 49%/45%,

for normal/nonnormal data, respectively. SEM also had problems (but less severe than

ESEM) with CPSR when having small target-factor loadings and small sample size

combined with very large cross-factor loadings(λC = .25). It had a minimum CPSR of

81%.

Goodness of Fit

The indices of goodness of fit used in the study included χ2/df , root mean square

error of approximation (RMSEA), comparative fit index (CFI), standardized root mean

square residual (SRMR), Akaike’s information criterion (AIC), Bayesian information

criterion (BIC), and T-size fit indexes RMSEAt and CFIt (Marcoulides & Yuan, 2017;

Yuan, Chan, Marcoulides, & Bentler, 2016). For χ2/df , RMSEA, RMSEAt, SRMR,

AIC, and BIC, the smaller is considered the better; while for CFI and CFIt the larger is

considered the better. Following the decision rules of Hu and Bentler (1999; also see
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Marsh et al., 2004), model fitness is considered to be good when χ2/df < 5, CFI > .95,

RMSEA < .06, and SRMR < .08. AIC and BIC are usually used to compare models

either nested or not. The model with the smaller AIC and BIC is considered the better.

In our case given sample size N = 200, RMSEAt < .085 and CFIt > .890 are considered

to be good for SEM; while for ESEM the corresponding criteria are RMSEAt < .082

and CFIt > .891 (see calculation in Yuan et al., 2016). Note that we mainly compared

ESEM and SEM in goodness of fit as MRA always has the smallest AIC/BIC and

perfect values of other goodness-of-fit indices.

When the data were normally distributed, both ESEM and SEM performed well

in terms of goodness of fit. ESEM consistently had smaller SRMR than SEM.

Compared with SEM, ESEM in general had slightly larger values in CFI/CFIt and

smaller values in RMSEA /RMSEAt, but larger values in AIC/BIC. The differences

between ESEM and SEM were more apparent as the cross-factor loadings became

larger. Table 2 showed the detailed results for normal data with γ = .14, λT = .55, and

N = 200. Similar results were observed for nonnormally distributed data (see the

supplementary materials).

Estimation Accuracy and Precision

To quantify the estimation accuracy, we used the relative bias of estimation. To

evaluate the estimation precision, we used the standard deviation of the estimates. The

relative bias for standard error was also presented. To consider the trade-off between

estimation accuracy and precision, we employed the mean square error.

Relative bias of estimation. Relative bias was defined as the ratio of bias to

the population value, where the bias was calculated by subtracting the population value

from the average estimate across replications under each experimental condition.
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Relative bias of estimation (RBEST) larger than zero implies overestimation while

RBEST less than zero indicates underestimation. According to the recommendations of

Hoogland and Boomsma (1998), RBEST is considered acceptable if its absolute value is

smaller than .05.

For normal data, in the case of zero cross-factor loadings, the median RBEST is

.048, .007, and −.083, with the range [−.011, .081], [−.035, .094], and [−.263, −.027] for

ESEM, SEM, and MRA, respectively. With respect to the absolute value of RBEST,

SEM < ESEM < MRA in general. ESEM and SEM both had acceptable RBEST under

most conditions while MRA systematically underestimated the regression coefficient. In

the case of non-zero cross-factor loadings, the median RBEST is −.021, −.146, and

−.151, with the range [−.104, 0.058], [−.318, −.016], and [−.232, −.056] for ESEM,

SEM, and MRA, respectively. Acceptable RBEST was observed for ESEM under most

conditions except for very large cross-factor loadings (λC = .25). SEM and MRA both

systematically underestimated the regression coefficient. In both cases, as target-factor

loadings became larger RBEST became less severe for MRA, while it did not apparently

change for ESEM or SEM. As cross-factor loadings became larger the absolute RBEST

became larger for SEM, while it did not apparently change for MRA or ESEM. Figure 2

portrays the comparison in RBEST when γ = .14 and data were normally distributed.

Similar patterns were observed for nonnormal data (see the supplementary materials).

Standard deviation of estimates. Standard deviation of the estimates (SD)

was the standard deviation of the estimates under each experimental condition, which

was the empirical standard error and treated as the population value of standard error

in the study. For each experimental condition, the smaller SD indicates the more

precise estimation.
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Figure 3 depicts the comparison in SD when γ = .14 and data were normally

distributed. In the case of zero cross-factor loadings, the median SD is .083, .088, and

.072, with the range [.046, .148], [.048, .199], and [.044, .101] for ESEM, SEM, and

MRA, respectively. In the case of non-zero cross-factor loadings, the median SD is .100,

.113, and .077, with the range [.045, .245], [.046, .300], and [.045, .137] for ESEM, SEM,

and MRA, respectively. In both cases, SD had the pattern MRA < ESEM < SEM in

general. SD decreased for all three approaches as sample size increased. It became

smaller for ESEM and SEM as target-factor loadings became larger. There were

pronounced increases in SD associated with larger cross-factor loadings for ESEM and

SEM, particularly when target-factor loadings were small (λT = .55); while the

associated increases for MRA were not sizable. The differences in SD among the three

approaches shrank toward zero as sample size and target-factor loadings became larger.

For other population values of regression coefficient (γ = .36, .51) or for nonnormal

data the results showed the similar patterns (see the supplementary materials).

Relative bias for standard error. To calculate the relative bias for standard

error (RBSE), SD was treated as the population value of standard error. RBSE larger

than zero implies overestimation while RBSE smaller than zero indicates

underestimation. RBSE is considered acceptable if its absolute value is smaller than .10

(Hoogland & Boomsma, 1998).

For normal data and zero cross-factor loadings, the median RBSE is .002, −.015,

and −.002, with the range [−.042, .044], [−.079, .049], and [−.026, .054] for ESEM,

SEM, and MRA, respectively. RBSE was acceptable for all three approaches. Given

non-zero cross-factor loadings, the median RBSE is −.007, −.001, and −.001, with the

range [−.176, .077], [−.073, .380], and [−.065, .056] for ESEM, SEM, and MRA,
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respectively. RBSE was acceptable for MRA across all conditions and for ESEM and

SEM under most conditions. When sample size was not large (N = 100, or 200),

target-factor loadings were small, and cross-factor loadings were larger than .10, RBSE

was not acceptable for ESEM or SEM. Specifically, ESEM underestimated the standard

error while SEM overestimated the standard error. Figure 4 presents the comparison in

RBSE given γ = .14 and normal data. Similar patterns were observed for nonnormal

data (see the supplementary materials).

Mean square error. Mean square error was calculated as the average of the

squared deviations, where the deviations were calculated by subtracting the population

value from the parameter estimates under each experimental condition. The smaller

MSE is considered the better.

Figure 5 portrays the results given γ = .14 and normal data. With zero

cross-factor loadings, the median MSE is .007, .008, and .005, with the range [.002,

.022], [.002, .039], and [.002, .011] for ESEM, SEM, and MRA, respectively. With

non-zero cross-factor loadings, the median MSE is .010, .013, and .006, with the range

[.002, .060], [.002, .091], and [.002, .019] for ESEM, SEM, and MRA, respectively. In

general, MSE had the pattern MRA < ESEM < SEM. The patterns for MSE were

similar to those for SD.

Statistical Power

Two-sided Z-tests along with α = .05 were employed to test for non-zero regression

coefficients. The test statistic was calculated as the estimate divided by its standard

error for each replication under an experimental condition. The statistical power was

calculated as the number of significant results divided by the number of replications.

Figure 6 depicts the comparison in statistical power when γ = .14 and data were
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normally distributed. In the case of zero cross-factor loadings, the median statistical

power is .449, .379, and .442, with the range [.180, .879], [.089, .822], and [.204, .862] for

ESEM, SEM, and MRA, respectively. In the case of non-zero cross-factor loadings, the

median statistical power is .328, .222, and .343, with the range [.147, .895], [.023, .804],

and [.152, .806] for ESEM, SEM, and MRA, respectively. In both cases, SEM had the

lowest statistical power across conditions among the three approaches. Statistical power

was higher for MRA than ESEM when target-factor loadings had small or median size

(λT = .55, .7). It was higher for ESEM than MRA when target-factor loadings were

large or very large (λT = .84, .95). For all three approaches, higher statistical power

was associated with larger target-factor loadings, larger sample size, and smaller

cross-factor loadings.

Statistical power was higher for larger regression coefficients and lower for

nonnormal data than normal data. Detailed results on statistical power can be found in

the supplementary materials.

Type I Error Rate

Type I error rate was calculated in the same way as statistical power but under

the conditions with zero regression coefficient in the population (γ = 0). The acceptable

range is [.025, .075] when α = .05 (MacKinnon, Lockwood, & Williams, 2004; Williams

& MacKinnon, 2008).

Figure 7 presents the results with normal data. Under most conditions, type I

error rate was acceptable for all approaches. ESEM occasionally resulted in an inflated

type I error rate under conditions with small target-factor loadings, non-zero

cross-factor loadings, and not larger sample size. SEM produced a type I error rate

lower than the acceptable lower band under conditions with small target-factor
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loadings, cross-factor loadings larger than .15, and not large sample size. Similar

patterns of type I error rate were observed for nonnormal data.

Discussion

Summary

Regarding estimation accuracy, ESEM and SEM both performed well but MRA

resulted in considerable underestimation when having zero cross-factor loadings. ESEM

provided the least biased estimation while SEM and MRA resulted in systematical

underestimation when having non-zero cross-factor loadings. SEM could be worse than

MRA with relatively large cross-factor loadings (e.g., λC ≥ .10). With respect to

estimation precision, MRA produced the smallest standard deviation (SD) of the

coefficient estimates, followed by ESEM and then SEM. The disparities in SD among

the three approaches became smaller as sample size and target-factor loadings

increased. All three approaches had an acceptable relative bias for standard error

estimation under most conditions. Based on the trade-off between estimation accuracy

and precision, MRA had the smallest mean square error (MSE), followed by ESEM and

then SEM. The differences became much smaller as sample size and target-factor

loadings became larger.

In terms of significance tests, SEM had the lowest statistical power across

conditions. MRA was more powerful than ESEM under conditions with relatively small

target-factor loadings (e.g., λT = .55, .7). Beyond our expectations, ESEM was slightly

more powerful than MRA under conditions with relatively large target-factor loadings

(e.g., λT = .84, .95). Overall, MRA was acceptable with respect to type I error rate.

ESEM occasionally resulted in unacceptable inflations of type I error rate while SEM

created flattened values under conditions with small target-factor loadings and small
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sample size.

Both ESEM and SEM had problems with model convergence and proper solutions

when target-factor loadings were small and sample size was not large (e.g., N < 500).

Strategies for Choosing a Method

Taking all the criteria into consideration, we suggested the following strategies to

choose among the three approaches when the sample size is no less than the minimum

requirement for ESEM or SEM.

1. When cross-factor loadings are not ignorable (e.g., λC ≥ .10), ESEM should be

used for both estimation and significance test. Since ESEM involves relatively more

complex models, large sample size is encouraged to avoid problems of non-convergence

and inflated type I error rates, especially for the situation of small target-factor loadings

and large cross-factor loadings.

2. When cross-factor loadings are close to zero (e.g., λC < .10) and the

target-factor loadings are very large (e.g., λT ≥ .84), corresponding to the situation of

very high composite reliability, MRA is recommended for both estimation and

significance test.

3. When cross-factor loadings are close to zero (e.g., λC < .10) and the

target-factor loadings are not large (e.g., λT < .84), SEM is preferred for estimation but

MRA is recommended for significance test if SEM fails to obtain significant results.

Unanticipated Findings and Implications

In addition to the anticipated findings such as the underestimation of the

coefficients by MRA (also found by Coffman & MacCallum, 2005; Ledgerwood &

Shrout, 2011; Skrondal & Laake, 2001; Stephenson & Holbert, 2003), the smallest SD of

MRA (consistent with the studies by Devlieger et al., 2016; Ledgerwood & Shrout,
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2011), and a lower statistical power for SEM than MRA (also shown by Hoyle & Kenny,

1999; Ledgerwood & Shrout, 2011), there were some findings beyond our expectations

as discussed below.

First, ESEM had the highest statistical power instead of MRA under conditions

with relatively large target-factor loadings, which was a surprise. As claimed by

Ledgerwood and Shrout (2011), MRA was more powerful than SEM because the

latent-variable approach tended to produce larger standard error (the estimate of SD)

and MRA had slighter underestimation of the coefficients given higher reliability

(because of larger target-factor loadings). Different from the previous study, we found

that the disparities in SD among the three approaches no longer existed when sample

size or target-factor loadings were large. Under these conditions, ESEM produced even

smaller SD than MRA given non-ignorable cross-factor loadings. Furthermore, the

results of MSE showed the similar pattern with SD. Thus, the statistical power for

ESEM could be higher than MRA. These findings also suggested that large sample size

may facilitate the good performance of ESEM.

Second, ESEM slightly overestimated the regression coefficients for population

models without cross-factor loadings. This indicated that ESEM with the inclusion of

all cross-factor loadings could be overly complex and contradict to the principle of

parsimony when non-zero cross-factor loadings do not exist.

Third, when compared with SEM, MRA led to less biased standard error estimates

under most conditions and smaller MSE regardless of the existence of non-zero

cross-factor loadings. These results differed from those in the study by Devlieger et al.

(2016) in which the focus was factor-score MRA but not mean-item-score MRA. The

differences suggested that MRA approaches using various types of scores should be



ESEM LATENT MULTIPLE REGRESSION 18

evaluated separately. Future studies could include factor-score MRA in comparisons.

Fourth, MRA provided less biased estimation of the coefficients than SEM as

cross-factor loadings became larger. In fact, we have expected MRA to have more

biased estimation compared with SEM, since MRA generally does not correct for the

measurement errors (e.g., Bollen, 1989; Ledgerwood & Shrout, 2011) or non-zero

cross-factor loadings. This unexpected result indicated that the distortion of structural

relations by MRA could be more complex than commonly believed. This study only

considered a balanced design with symmetric regression relations and factor loadings,

which might be the reason for that the distortion effects by MRA were not revealed.

Future studies should evaluate unbalanced designs to address this issue.
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Table 1
Composite Reliability for A Single Latent Variable (e.g., ξ1 ) in the Two-Factor Model

λT λC

0 .05 .10 .15 .20 .25
.55 .565 .585 .603 .622 .640 .658
.7 .742 .758 .774 .789 .804 .818
.84 .878 .891 .903 .916 927 .939
.95 .965 .976 .986 − − −

Note. λT =Target-factor loading. λC = Cross-factor loading.
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Table 2
Model-Convergence Rate, Convergence-with-Proper-Solution Rate, and Goodness of Fit
under Normal Distribution When γ = .14, λL=.55, and N = 200

Conditions Convergence Goodness of Fit

λC Method MCR CPSR χ2/DF CFI CFIt RMSEA RMSEAt SRMR AIC BIC

.00 ESEM .99 .97 1.00 .997 .976 .015 .056 .029 5460 5572
SEM 1.00 1.00 1.02 .997 .973 .016 .054 .035 5456 5555
MRA 1.00 1.00 .00 1.000 1.000 .000 .000 .000 1704 1733

.05 ESEM .98 .95 .99 .997 .977 .015 .055 .028 5435 5548
SEM 1.00 1.00 1.01 .997 .974 .016 .054 .034 5432 5531
MRA 1.00 1.00 .00 1.000 1.000 .000 .000 .000 1695 1725

.10 ESEM .96 .92 .99 .997 .978 .015 .056 .028 5400 5512
SEM 1.00 1.00 1.01 .997 .975 .016 .054 .033 5397 5496
MRA 1.00 1.00 .00 1.000 1.000 .000 .000 .000 1683 1713

.15 ESEM .95 .85 .97 .998 .980 .013 .054 .027 5361 5473
SEM 1.00 1.00 1.03 .997 .976 .016 .055 .032 5358 5457
MRA 1.00 1.00 .00 1.000 1.000 .000 .000 .000 1668 1697

.20 ESEM .89 .79 .96 .998 .981 .013 .053 .025 5312 5424
SEM 1.00 .99 1.03 .997 .977 .016 .055 .031 5308 5406
MRA 1.00 1.00 .00 1.000 1.000 .000 .000 .000 1648 1678

.25 ESEM .80 .67 .95 .998 .983 .012 .053 .023 5247 5359
SEM 1.00 .95 1.03 .997 .979 .016 .055 .029 5244 5343
MRA 1.00 1.00 .00 1.000 1.000 .000 .000 .000 1623 1653

Note. N = Sample size. γ = Regression coefficient. λT = Target-factor loading.
λC = Cross-factor loading. MCR = Model-convergence rate. CPSR =
Convergence-with-proper-solution rate. CFI = Comparative fit index. CFIt = T-size CFI.
RMSEA = Root mean square error of approximation. RMSEAt = T-size RMSEA. SRMR =
Standardized root mean square residual. AIC = Akaike’s Information Criterion. BIC =
Bayesian information criterion. ESEM = Exploratory structural equation modeling. SEM =
Structural equation modeling.
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Figure 1 . The Population Model.
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Figure 2 . Relative Bias of Estimation with γ = .14 and Normal Data.
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Figure 3 . Standard Deviation of the Estimates for γ = .14 and Normal Data.
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Figure 4 . Relative Bias for Standard Error with γ = .14 and Normal Data.
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Figure 5 . Mean Square Error for Estimation with γ = .14 and Normal Data.
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Figure 6 . Statistical Power with γ = .14 and Normal Data.
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Figure 7 . Type I Error Rate with Normal Data.




