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Optimizing practice scheduling requires quantitative tracking
of individual item performance
Luke G. Eglington 1✉ and Philip I. Pavlik Jr1

Decades of research has shown that spacing practice trials over time can improve later memory, but there are few concrete
recommendations concerning how to optimally space practice. We show that existing recommendations are inherently suboptimal
due to their insensitivity to time costs and individual- and item-level differences. We introduce an alternative approach that
optimally schedules practice with a computational model of spacing in tandem with microeconomic principles. We simulated
conventional spacing schedules and our adaptive model-based approach. Simulations indicated that practicing according to
microeconomic principles of efficiency resulted in substantially better memory retention than alternatives. The simulation results
provided quantitative estimates of optimal difficulty that differed markedly from prior recommendations but still supported a
desirable difficulty framework. Experimental results supported simulation predictions, with up to 40% more items recalled in
conditions where practice was scheduled optimally according to the model of practice. Our approach can be readily implemented
in online educational systems that adaptively schedule practice and has significant implications for millions of students currently
learning with educational technology.
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INTRODUCTION
There are large potential benefits to applying findings from the
cognitive science of learning to educational contexts. Two
especially promising findings are spacing and retrieval practice
(testing). Spacing practice trials across time has been shown to
benefit memory1,2. Testing has also been shown to benefit
memory, relative to restudying3,4. Taken together, spaced retrieval
practice has been shown to provide substantial benefits to later
memory5. Successfully integrating these findings into educational
technology could benefit millions of students who currently learn
in online educational systems. However, implementation of these
findings has been elusive—research has been unclear regarding
exactly how much and when to practice specific information. We
demonstrate how standard methods to uncover optimal practice
schedules are confounded by fundamental characteristics of
memory and that any single conventional schedule (see Fig. 1)
applied to a set of items will be inherently suboptimal. We provide
evidence that adaptive schedules lead to superior performance,
better accommodate item and learner variability, and are
implementable with a mixture of computational memory models
and relatively simple economic decision rules.
Researchers have explored the effects of various spacing

intervals on memory6–8, frequently while enforcing fixed trial
durations and numbers of trials. Figure 1 depicts several popular
spacing schedules compared in the literature: the inter-trial
interval could be a fixed value (first row of Fig. 1), gradually
increase over time (second row), or decrease over time (third row).
Those three cases in Fig. 1 have the same average interval, but the
distribution of the spacing could influence performance and
difficulty. For instance, the longer initial retention interval for the
uniform condition (Fig. 1) may increase potential learning but also
entails a higher risk of retrieval failure. More generally, there is a
trade-off between the potential gain from more spacing and the
risk of retrieval failure. This trade-off is relevant to a popular
theoretical explanation of the spacing effect named study-phase

retrieval, which states that retrieving memories of previous
exposures to an item strengthens the memory trace9,10. Retrieval
difficulty is thought to influence the benefit—more difficult
retrieval is thought to better strengthen a memory but is riskier
since it may fail.
There is also empirical evidence that practice can slow

forgetting11, which implies that as practice accumulates retrieval
becomes easier. This finding of slowed forgetting, in combination
with study-phase retrieval theories, implies that gradually increas-
ing difficulty (via spacing) may balance difficulty and lead to better
memory via an expanding schedule. Surprisingly, research
findings have been more mixed than may have been predicted
by the theories and empirical results described above. For
instance, Landauer and Bjork12 found that an expanding schedule
of test trials without feedback resulted in better memory at a final
test than both uniform and contracting schedules. In contrast,
Karpicke and Roediger13 showed that providing feedback could
lead to a benefit of uniform scheduling. Recently, Kang et al.14

found that expanding intervals provided higher average recall
probability across multiple sessions but equal memory to uniform
intervals at a final test.
Some heuristic schedules that adapt to item-level differences

have been evaluated, such as dropping an item from practice
once it has been answered correctly a specific number of times15.
These methods offer the possibility to shift practice time from
items that are easier (have been recalled successfully) to those
that are more difficult. Using vocabulary word pairs for learning
materials, Pyc and Rawson compared the memorial benefits of
conventional spacing schedules (e.g., a uniform schedule) to those
that dropped items from practice after being successfully recalled.
They found that a drop schedule in which word pairs were spaced
by 23 intervening pairs and were dropped after one successful
retrieval resulted in superior final test memory than conventional
schedules. However, variation in item difficulty and participant
performance make it unlikely that the number of intervening
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items or number of correct answers to allow before dropping (1)
would be generally optimal. Drop heuristics are also silent
regarding when an item should be reintroduced after being
dropped from practice.
A promising approach that values efficiency is the Region of

Proximal Learning (RPL) framework. RPL recommends that
students should choose to practice items that are “..slightly
beyond the individual’s grasp”16. Relatedly, Tullis et al.17 showed
that allowing students to choose what to study provided
significant learning benefits. A challenge for many of these
frameworks is that it is not clear when previously practiced items
should be reintroduced. If left up to the student, then their
subjective judgments would need to be well calibrated. Allowing
student choice may also introduce additional time costs: the
candidate study items would need to be presented in some
fashion for one to be selected. A related challenge with RPL,
common to many approaches, is one of implementation. Time
cost is considered important and used to justify the practice of
easier items16, but difficulty and time costs are not quantified,
which makes it unclear how to apply the principles broadly.
Additionally, whether easier items are more efficient depends on
the learning gains from successes and the informativeness of
feedback when failures occur. Considering time cost could reveal
in some cases that easy items are preferable (when success causes
strong learning and feedback is more time-consuming) but in
others that more difficult items should be practiced instead (if
feedback after failures is informative and relatively quicker).
Many proposed practice schedules manipulate difficulty in

search of improved learning outcomes. However, an under-
appreciated consequence of varying difficulty is the effect of
difficulty on the time needed to complete the task, since students
and educators are limited in the time they can spend being
instructed or instructing. Both learning gains and time costs are
objectively important measures. Thus gains in learning should be
valued in relation to their time cost, and costly learning methods
are relatively less valuable than faster methods. Considering both
cost and gain leads to practice decisions that are sensitive to the
value of the item (in terms of learning gains per second). If
practice is too difficult, learners may take longer to recall when
correct, and they will more consistently fail, which may be time-
consuming due to review costs and lead to less learning
per second.
Microeconomics provides the conceptual tools to consider the

gain from a trial along with its cost (in time); maximizing gain and
minimizing costs is a common concern in economics research. In
short, determining the optimal practice schedule is a fundamen-
tally economic problem: find the maximally efficient level of
difficulty that provides the most gains in learning per unit of time.
To motivate simulations and experiments, below we describe the
important relationship between practice and latency. We then
describe the economic principles that motivate scheduling
according to efficiency, in contrast with conventional practice

schedules that frequently have focused on gain unconditional on
time cost.
There is strong evidence that as practice accumulates, the time

it takes for a participant to respond decreases (response time,
henceforth RT). Correct trials are also frequently faster than
incorrect trials, especially if feedback is required after errors18. As
Kahana and Loftus19 describe, correctness and RT are typically
considered in isolation even when they can be mutually
informative. As we will show below, using only one measure to
determine practice scheduling can be misleading. The reliable
relationship between practice and RT has been shown in many
contexts and paradigms20,21. Many researchers have shown strong
relationships between practice and RT with declarative concepts.
Anderson et al.22 demonstrated this consistent relationship with
participants learning declarative concepts and rule application.
Anderson23 showed that RT can be accurately modeled as an
exponentially decaying function of memory activation. Similarly,
Newell and Rosenbloom24 showed that RT can follow a power
function of prior practice attempts.
The importance of the practice–RT relationship remains

regardless of whether the relationship follows a power law or an
exponential decay curve, the critical point is that the efficiency of
practice (in terms of time) is related to when and how much
practice has already occurred. The importance of the efficiency of
practice has been mentioned in research concerned with
improving learning outcomes with study techniques such as
testing and spacing, although RT has not usually influenced
interpretation when comparing conditions15,25–27. To optimize a
schedule of practice gain relative to time spent, the relationship
between practice latency and gain must be included in the
analysis. Longer spacing intervals may increase the effect size of
spacing, but if a wide interval takes substantially longer overall
than a narrower interval, it may be a suboptimal use of a learner’s
time. For instance, Yan et al.28 found that a very wide spacing
interval provided comparable (or slightly higher) memorial
benefits than a narrower spacing schedule. However, RTs during
practice were significantly longer in the wider spacing schedule,
resulting in the wider spacing interval being slightly less efficient
per second of practice.
Although the primary measure of interest in many studies on

spacing is final test performance, correctness during practice is
also critical because it is an important determinant of efficiency.
For instance, while feedback after failed retrieval attempts
increase the benefit of testing29, this feedback takes time.
However, If a participant is correct, feedback may be unneces-
sary30. Thus, in the context of vocabulary learning and other
paradigms where processing and responding to the stimulus are
fast, correct trials are often a faster and relatively more efficient
use of a learners’ time.
In sum, if the efficiency of a practice attempt is defined as the

gain in retrievability at some final test divided by the time cost of the
current practice, there is strong theoretical reasoning and empirical
evidence that the efficiency of an individual practice attempt will
vary as practice accumulates for most learning tasks, depending
on the number of prior practice attempts and their temporal
spacing.
When using a model of practice to schedule learning activities,

the goal is to use model predictions to make pedagogical
decisions that maximize learning. One approach would be to
choose the item which will provide the most gain (e.g., in the
probability of recall) at a final test. However, there are several ways
to measure gain with different shortcomings. For instance, percent
gain31 or logit gain could be maximized. An efficiency score32

could also be composed from either as a measure of gain. In
economics, this choice of the gain metric is a choice about how to
measure utility (or value) in the domain. Utility in learning
represents some way to order our preferences for learning events
(practice trials) such that we can compare which learning events

Fig. 1 Common conventional spacing schedules. Several conven-
tional spacing schedules.
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are more useful than other learning events. Adapting this term to
education, we need a measure of learning value to compare
different possible outcomes of instruction to guide practice
scheduling decisions.
However, choosing a gain metric without considering time costs

can result in inefficient practice. For instance, if maximal
percentage gain in recall probability determines item selection,
more difficult (lower probability items) will be chosen, causing
higher error rates and increased time per trial. Selection focused
on higher error rates tends to be inefficient unless time costs are
ignored18,33.
Considering both variable cost and valuation leads to an

alternative formulation of gain—the efficiency of practice.
Computing the efficiency of practice is an inherently economic
calculation in which the expectancy of the choices’ outcomes are
relevant. Learning tasks are frequently tests where the attempt
can fail or succeed, and each of these outcomes has different
consequences. Calculating efficiency requires a measure of
learning utility and of the cost, typically in terms of time. An
economic interpretation of practice utility could be the following:

U ¼ ðpÞ correct gain
correct cost

þ ð1� pÞ incorrect gain
incorrect cost

; (1)

where p is the probability of correctness. Gains and costs for
correct and incorrect trials can be quite different, and thus
practice difficulty is highly relevant to optimizing practice
scheduling.
If the success or failure of a trial influences efficiency, at what

probability of recall (difficulty) should items be practiced to
maximize efficiency? In the present study, we aimed to find this
optimal efficiency threshold (OET) via simulation, which requires a
model that can accurately estimate the probabilities of recall and
gain from practice and spacing. We subsequently tested the
results of the simulation with an experiment. Next we describe
candidate models as well as how they can be used to
accommodate our efficiency-oriented approach.
Several excellent computational models of memory have been

proposed34–36. These models have attempted to account for
effects of repeated practice, spacing, forgetting (interference), and
the cross-over interaction between practice spacing and the
retention interval between the practice session and the final
test36,37. The models described below track the most critical
patterns found in studies manipulating practice and spacing.
Pavlik and Anderson18,38 attempted to account for the complex

interactions associated with spacing practice over time by
assuming decay to be a function of base-level activation. Higher
activation at the time of practice led to faster forgetting, such as
when practice is massed together, and slower forgetting when
practice was spaced. Their model accounted for many aspects of
practice and spacing. Lindsey et al.39 introduced a model of
spacing and forgetting and demonstrated its use in an applied
setting. Finally, recent work by Walsh et al.35 improved upon prior
models of spacing by accounting for accelerated relearning after
forgetting. Their model compared favorably with alternative
models. The success of these models at predicting recall, and
their sensitivity to individual item differences, suggests that they
can be used to schedule efficient practice.
Although time efficiency is critically relevant for students, it is

only occasionally discussed in the context of scheduling practice
(e.g., Metcalf and Kornell16). It has rarely been included in
calculations of optimal practice scheduling according to a model.
For instance, Khajah et al.40 simulated the effects of using difficulty
thresholds to decide practice and found that practicing items
close to being forgotten (probability of recall= 0.40) resulted in
superior memory performance. This recommendation is similar to
Bjork’s41 argument that items should be practiced when they are
about to be forgotten. However, if a students’ time is a valuable
resource, such recommendations by Bjork and Khajah et al. are

contradicted by research showing that information is recalled
substantially faster at higher probabilities20,42. This aforemen-
tioned recall probability–latency relationship implies that while a
policy such as p= 0.40 may improve memory it may be inefficient
relative to a policy with a higher probability decision rule (e.g., p=
0.80). In short, we agree with the policy of guiding practice based
on a predicted probability threshold, but we believe that the time
cost of practice at these probabilities needs to be considered
when determining an optimal policy.
In sum, conventional spacing schedules can be suboptimal

relative to an adaptive scheduling algorithm due to variable item
difficulty, the slowing of forgetting as practice accumulates, and
the interaction between difficulty and RT. RT is especially relevant
if total study time is constrained, but trial duration is not. We also
highlighted the possibility of an optimal amount of difficulty to
maximize learning, based on arguments by Hebb43, Bjork41, and
Pavlik and Anderson18. Tracking probability of retrieval (our
operationalization of difficulty) throughout learning was also
shown to be achievable, both with our methods and given the
existence of several accurate models of memory38,40,44,45. The
following simulations combine these ideas by evaluating how
scheduling according to a model and difficulty thresholds
compared to conventional practices schedules and heuristics. An
important aspect of our approach was to also simulate RT, which
led to different conclusions than prior research. Finally, we tested
the simulation predictions with an experiment that compared the
relative benefits of valuing efficiency, discrepancy reduction
(focusing on more difficult trials), or a traditional nonadaptive
approach.

RESULTS
Simulated students practiced according to various schedules of
practice. Correctness probability and RTs were estimated by
models with parameters estimated by fitting a dataset (Experi-
ment 1) in which participants practiced Japanese–English word
pairs across two sessions wherein spacing, repetitions, and
retention interval were manipulated (see methods). See Supple-
mentary Materials for Experiment 1 results.
Each simulated student completed a practice session and a test

3 days later. The primary constraints were (A) the total duration of
the practice session (22 min, see “Methods”) and (B) that feedback
was provided when a retrieval attempt was unsuccessful (which
lasted 4 s). We show how conventional practice schedules (e.g.,
uniform spaced schedule) under conditions of fixed and variable
trial durations fare as well as heuristic methods15. Finally, we show
the effects of scheduling practice based on different OETs that
schedule practice according to the probability of correctness.
In all OET conditions, a simulated student practiced whichever

item the model estimated was closest to (but less than) the recall
probability threshold. If all items were above the threshold, the
item closest to the threshold was practiced. The process would
repeat until the time ran out.
The primary goals of the simulations were to (a) recreate typical

patterns of results found in prior work and (b) evaluate the effects
of using a model to schedule practice at different OETs that may
balance the benefit of spacing and practice with the time costs
associated with higher item difficulties.

Simulation results
Figure 2 depicts many of the critical simulation results. All spaced
conditions were superior to the massed condition. Conditions with
more spacing also provided a larger benefit than those with less
spacing. These results are broadly consistent with what is found in
studies comparing conventional spaced and massed conditions2.
The conventional schedules in which trial duration was deter-
mined by the latency model were better than if trial duration was
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fixed; more trials were possible, especially if simulated students
were successful more often. As a result, simulated student skill was
highly correlated with the number of trials experienced in
conventional schedules without fixed trial durations (see Fig. 6).
The best performing conditions were those that adaptively
selected which item to practice on each trial according to model
predictions and an OET. The best OET in this simulation was 0.94. It
is important to note that this does not mean items were always
practiced at this probability, especially early in practice (see Fig. 3).
The benefit of this approach was apparent in many of the OET

conditions. OETs of ≥0.8 provided 39–55% better memory at final
test than the next best conventional schedule. This result indicates
that scheduling according to item difficulty and prior practice
history while considering efficiency provides superior perfor-
mance, within the same timeframe, as conventional schedules.
Note the achieved probability of the conventional schedule in Fig.
3. On average, conventional schedule probabilities remained low
because item difficulty and simulated student ability played no

role in deciding what should be practiced next. As a result, items
were frequently too difficult. The optimal zone of difficulty we
found supports prior suggestions that some difficulty is bene-
ficial41,43, with the practical benefit that our method quantified the
amount of difficulty, which can in turn be leveraged in
combination with a model. Interestingly, the optimal zone that
we found indicates imposing less difficulty than previously
suggested40,41. This is because our methodology considered the
time costs of difficulty.
Inspection of item-level model behavior provides more

examples of the adaptivity of the efficiency-based approach
(model+OET). Figure 4 depicts the strong relationship between
item difficulty on the x axis (item intercept) and average spacing
and how it differed between high and low OET simulations. Easier
items (higher intercept) experienced wider spacing intervals. This
supports findings by Metzel-Baddeley and Baddeley46 who
showed that applying narrower spacing to harder items benefited
memory. Figure 5 show that, as practice progressed, spacing for
individual items also widened. This adaptivity means that difficulty
adjusted as items were learned, due to the item probability of

Fig. 2 Simulation results for adaptive and conventional conditions. Simulated final test performance after a 3-day delay. There were
200 simulated students per condition. Schedules on the left denote the probability threshold (OETs) for different simulated conditions. 0, 15,
and 30 denote spacing in terms of trials (0 being massed). Text on bottom axis shows which simulations fixed trial duration or allowed them to
be determined by the latency model (i.e., correct trials being faster than incorrect). Drop1 denotes a heuristic in which items were dropped
from practice after successful retrieval, until all items were retrieved and the process restarted. Error bars denote +/−1 SEM.

Fig. 3 Predicted achieved probability for several conditions.
Rolling recall probability (window= 5 trials) of practiced items
across 5 conditions. Note that an OET does not dictate the actual
probability of recall for practiced items but is a threshold
determining what is practiced (closest item underneath threshold).
All conditions had the same total time to complete as many trials as
possible. Rolling mean computed up to the number of trials N
completed by 95% of simulated students in each condition. Gray,
blue, green, and black dashed lines denote the respective OET
thresholds.

Fig. 4 Relation between item difficulty and spacing depends on
OET condition. The relation between item difficulty and achieved
spacing in OET 40 and OET 94 conditions. In both conditions, easier
items (positive intercepts) have wider spacing, while harder items
(negative intercepts) have narrower spacing. The increased spacing
in OET 40 leads to worse performance. Lines depict a linear
regression fit.
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recall keeping it above the OET (and thus out of contention for
practice) for increasingly longer time intervals. Note the positive
trend in Fig. 5, which indicates that an expanding schedule can
naturally develop within the adaptive scheduling condition. Given
the reasonable assumption that items vary in difficulty, non-
adaptively conventional schedules are likely to provide practice
schedules that are too easy for some items and too difficult for
others (and thus inefficient).
Simulated student-level skill also influenced the behavior of the

adaptive model behavior. In the conventional schedule in which
trial duration could vary (and thus the number of trials), the skill of
the simulated student (here as the intercept) was strongly
correlated with the number of trials (see Fig. 6). Thus “better”
simulated students got more opportunities to practice. In contrast,
in the adaptive conditions, there was no correlation between
simulated student intercept and the number of trials they
experienced. The adaptivity of the model meant that difficulty

was kept consistent across ability levels and item difficulties.
Lower-ability simulated students would receive relatively more
practice on easier items than higher-ability simulated students. In
other words, the adaptive model+OET is fairer, on top of leading
to superior recall.

Experimental results
This following experiment (Experiment 2 in “Methods,” the
parameterization dataset was Experiment 1) was intended to test
several related predictions of the simulation. First, we expected
high OETs to lead to better memory retention than both
conventional schedules and low OETs. However, we also expected
OETs beyond the optimal value (e.g., OET= 0.98) to lead to worse
performance on a delayed test due to shorter spacing and
overpractice of a subset of items. We had participants practice in
one of the six conditions. Five were adaptive (OETs= 0.40, 0.70,
0.86, 0.94, 0.98) and were chosen to test the hypothesis implied by
the simulation that a difficulty threshold of 0.94 was optimal, with
additional conditions 0.40, 0.70, 0.86, and 0.98 to facilitate
estimating the shape of the optimality curve. The nonadaptive
condition was intended as an additional control (referred to as
S15) and repeated items every 15 trials on average. Trial duration
was self-paced in all six conditions, except that feedback after
incorrect answers lasted 4 s. OET 40 was included to test an
alternate theory in which practice is optimal when directed
toward more difficult items33.
As can be seen on Fig. 7, final memory test performance in the

OET conditions followed a skewed inverted-U shaped pattern as
predicted in the simulation. A one-way non-parametric analysis of
variance (Kruskal–Wallis H test) indicated a significant difference
across conditions in average performance on the final test, H(4)=
16.5, p < 0.01. Post hoc comparisons indicated this difference was
driven by the OET 86 and 94 conditions having significantly higher
recall performance than the OET 40 (ps 0.017 and 0.023,
respectively), OET 98 (ps < 0.011), or S15 conditions (ps < 0.01).
There was not a significant difference between OETs 94, 86, and
70, ps > 0.17. OET 70 was not significantly different from other
conditions, ps > 0.07. OET 86 was numerically higher than OET 94
(Ms 0.48 and 0.47, respectively), and highest overall, but was not
significantly different than OET 94, p= 0.64. We also compared
performance across conditions with a mixed-effects model with
random intercepts for items and participants. This analysis
indicated the same pattern of statistically significant differences.
Including condition as a factor significantly improved the model
relative to a model with only random effects, ▫2 = 18.72, p=
0.002. Final test performance of both OET86 and OET94 was

Fig. 5 Spacing interval may expand or contract depending on
OET condition. The average number of intervening trials since the
last attempt as a function of the number of prior attempts in OET 40
and OET 94. In OET 94, as practice accumulates for an item, spacing
interval tended to increase. The opposite was true for OET 40,
spacing intervals contracted. Each condition plotted to the number
of attempts that at least 95% of simulated students attained in the
condition (6 and 10 for OET 40 and OET 94, respectively).

Fig. 6 Relation between simulated student intercept and com-
pleted trials. The relationship between simulated student intercept
and the number of practice trials in two self-paced conditions, an
optimal threshold condition (OET 94), and a conventional spaced
practice schedule (self-paced with average spacing of 15 trials). Lines
indicate linear regression fits. The strong interaction highlights a
consequence of the lack of adaptivity in the conventional schedule
that leads to better simulated students receiving more practice
trials. In contrast, adaptive scheduling led to similar numbers of
practice opportunities across various simulated student intercepts.

Fig. 7 Experimental results testing simulation predictions indi-
cate benefit of high OETs. Experiment 2 results with overlaid
original simulation predictions. The symbols †, ¥, and * denote the
condition being significantly different than OET 40, OET 98, and S15,
respectively. Error bars represent +/−1 SEM.
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significantly higher than OET 40, OET 98, and S15, Zs > 2.83,
ps < 0.005.
In addition to predicting an advantage of high OETs over lower

OETs and nonadaptive schedules, the simulation predicted a
skewed inverted U relationship between OET and memory
retention at final test. As a basic test of this prediction, we
compared the fit of a linear relationship between OET condition
value (as a numeric predictor) and average final test performance
of each participant to a model with an additional quadratic term.
A likelihood ratio test indicated that the model with an additional
quadratic term was a significantly better fit (▫2= 23.47, p < 0.001)
and importantly predicted that performance would eventually
decrease as the OET approached 1 (maximally easy). In other
words, some difficulty is desirable. The model used to schedule
practice fit the data well, McFadden’s pseudo-R2= 0.37. McFad-
den’s scores from 0.2 to 0.4 are considered evidence of a good
fit47. There was a strong correlation between predicted and actual
average performance on the final test, r= 0.775, p < 0.001. An
analysis of the sensitivity and specificity of the model also
indicated a good fit, AUC= 0.871, 95% confidence interval=
0.868–0.874.
The OET 94 condition led to approximately 40% higher memory

retention than conventional scheduling (S15), as well as the OET
40 condition, which served as a test for a different approach in
which higher difficulty items are practiced more often (e.g., a
discrepancy reduction approach). The simulation was reasonably
successful at predicting the relative ordering and differences
among conditions but underestimated performance overall (e.g.,
experimental OET 94 was ~0.47 but was closer to 0.4 in the
simulation). This discrepancy was more pronounced in conditions
with higher per-trial difficulty, such as OET 40. This discrepancy
could be due to a larger gain from failures or a larger spacing
effect than estimated from our model and the previous dataset.

DISCUSSION
The present research used a computational model to simulate the
outcomes of 6 conventional and 22 model-scheduled practice
conditions that used different hypothetical OETs. OET 94 was
predicted to provide the best recall performance at a final test for
learning Japanese–English vocabulary, with several other high
OETs providing comparable results. An experiment confirmed that
high OETs (0.86 and 0.94) conferred significantly better memory
retention at a final test than conventional scheduling and were
also superior to adaptive scheduling that focused practice on
more difficult items (OET40) or easier items (OET 98). We conclude
that, given a correct OET, model-scheduled practice can allow
selection of items for practice in a way that is optimal for learning.
Our results indicate that practice time is likely to be misallocated
in all practice schedules that are insensitive to participants’
practice history, item difficulties, and time costs.
The OET methodology offers several benefits. For one, easier

items will go beyond the decision rule threshold sooner and
(temporarily) be excluded from practice. Other harder items will
then be more likely to be practiced. The OET method also includes
a natural mechanism for the critical issue of when to introduce
new items—when all other items are currently above the OET. As
practice accumulates, inter-trial spacing increases between
repetitions in OET-guided scheduling conditions. Thus model-
based scheduling naturally leads to an expanding schedule. The
critical difference that distinguishes the conventional expanding
schedule from the model-based schedule is that in the conven-
tional schedule the exact interval between repetitions is identical
for all items regardless of difficulty. Here our expanding schedules
were adaptive based on the dynamic model predictions at the
item level.
One rebuttal to the proposed model-based approach may be

that it requires too much information to be useful (i.e., model

parameters). However, it is quite rare for content to be taught for
the first time to a student. There is frequently prior data from
which to estimate model parameters and intercepts of the items
themselves. The difficulty is in whether the dataset contains the
necessary conditions from which to fit the model (e.g., variety in
spacings and repetitions) or whether it is biased in some way that
precludes meaningful model fitting. These potential issues can be
overcome by embedding experimental conditions within educa-
tional systems45 or running controlled experiments during the
educational system design process. Our experiment demonstrated
that adaptively scheduling practice using model predictions and
difficulty thresholds (OETs) is both possible and can benefit
memory. While more data across a wider variety of spacing
intervals and learning contexts will be helpful to strengthen these
arguments, we believe these methods will generalize to tasks
where failure has larger time costs than success and where
forgetting is a substantial effect.
In the present study, we focused on word pair learning as a

simplifying assumption. Such materials are common in learning
research and allow easier interpretation of results due to the
independence among the items. Of course, learners do need to
learn vocabulary and sets of facts, but those materials differ in
ways that justify testing the OET approach with other materials.
For one, the speed and learning gains of successes and necessity
of feedback with paired associates means that a high OET will
tend to perform best. But with materials in which failures provide
larger gains, or are faster, lower OETs may be preferable (see Fig. 8).
Additionally, another important property of other educational
materials is that they contain educationally relevant interrelations.
Complete models of memory will need to account for such
interrelations and model possible learning transfer among related
concepts. An important extension of the present research will be
to account for such transfer to improve adaptive scheduling of
educationally relevant learning materials and the possible
changes in scheduling and OET selection.
A further improvement could be to adjust model parameters

based on model prediction errors48. Relatedly, recording students’
preferred study targets may be helpful for improving the model,
and there is evidence that their metacognitive judgments can
positively improve practice selection17. However, this limitation to
the adaptivity of the present model does not detract from the

Fig. 8 Results of simulations with alternate assumptions indicate
that optimal difficulty threshold may vary. The original simulation
(in black) as well as two additional simulations in which the
efficiency of failures is increased. An alternative simulation in red
shows performance if feedback time cost for failures was set to 0 s
(instead of 4). Another simulation in blue shows performance if
failures provided 25% more learning gains than successes (but time
cost was same as original). Optimal threshold for paired associate
learning remains high for all of them, but the relative benefits over
lower OETs is clearly influenced by gains from failures and time cost.
S15 (repetitions every 15 trials, trial duration not fixed) was also
simulated under the three sets of assumptions and serves as a point
of comparison.
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general conclusion that scheduling practice based on the most
efficient threshold is superior to any conventional schedule, just
that the model to estimate probability could be adjusted to adapt
to its own performance.
Readers may have inferred that sometimes items would be

practiced far from the intended OET, typically early in practice. The
efficiency of trials early in practice (or for items that are especially
difficult) could be improved by adaptively manipulating the
strength of retrieval cues. For instance, Fiechter and Benjamin49

demonstrated how adaptively changing cue strength can benefit
memory (e.g., cue—Targ__ instead of cue—____). Adaptive
cueing could be integrated into the model+OET framework by
estimating the probability of recall for each item with different cue
strengths. This would change the decision rule from selecting
among one probability per item to each item having multiple
probabilities due to varying cue strengths. A newly introduced
item would have strong cues (e.g., cue—Targ__), gradually
weakening until “cue—____” was the only cue under the OET
for that item.
Features of the adaptive learning context (e.g., variable

numbers of trials and lower difficulty) may meaningfully influence
performance and need to be studied further. For instance, in high
OET conditions, there is likely to be less interference, because new
items are gradually introduced, reducing the average difficulty of
intervening practice. In other words, at any given moment most
items that could interfere with retrieval tended to be more well
learned as a function of OET, which was not necessarily the case in
traditional practice schedules or our initial parameterization
experiment. The model we used did not account for this varying
interference during practice and may explain why our simulation
underestimated the benefit of high OETs, similar to results of
Pavlik and Anderson18, which showed better learning of fixed
schedule items under conditions of reduced difficulty of the
surrounding adaptively scheduled practice.
We have emphasized throughout that we are not arguing for

the superiority or the use of a particular model of memory. There
are several that have been shown to accurately model spacing
and practice effects in various learning contexts34,35,38,50. In our
view, accurately estimating recall probability is not the primary
issue. Rather, our focus has been on how these computational
models allow scheduling to be sensitive to individual differences
and efficiency. We focused on using the model to estimate recall
probability, given a history of practice, and on using those
estimates to practice items closest to a target threshold of optimal
difficulty. Our argument differed from prior research in how we
believe an optimal threshold should be chosen and how the
efficacy of practice should be evaluated. Considering time cost in
our simulations (making them sensitive to efficiency of practice)
led to different conclusions than prior recommendations—the
relationship between latency and recall probability, coupled with
the large time costs of being incorrect, meant that practicing
paired associates at an OET of 0.40 was less efficient than higher
OETs. Our experimental data supported our arguments—practi-
cing paired associates near an optimal high OETs caused
significantly higher memory retention than alternative OETs as
well as better than a conventional spaced practice condition.
However, a high OET may not always be preferable. In fact, it

will always be the case that, if there is any spacing effect or
advantage to difficulty, as the OET approaches 1 (maximally easy),
efficiency will decline. An OET of 1 can only be efficient if learning
is optimal with perfect correctness (i.e., if Skinner was correct). A
higher OET will be best when gains from successes are equal to or
greater than failures while also being faster. This is true for many
learning materials but not necessarily all of them. Situations in
which failures provide more learning gains or are faster will result
in lower recommended OETs.
The critical takeaway of the present work is that, if an accurate

computational model is used, adaptively scheduling practice with

model predictions according to an optimal efficiency threshold will
confer superior memory relative to conventional practice sche-
dules. Although the exact value of the OET will vary across
learning materials and types of feedback, practice efficiency will
be relevant unless the learning gains and time costs of successes
and failures are equal. Our simulation and results demonstrate
how important this consideration can be for scheduling practice.
The benefit of our approach relative to conventional spacing was
clear (Cohen’s d= 0.64) and comparable in magnitude to that of
the spacing effect itself51 (Cohen’s d= 0.42).
Finally, shifting the focus away from fixed schedules and trial

durations and toward an adaptive framework offers new exciting
avenues of research, such as modifying the component parts of
the adaptive framework (models for predicting correctness and
RT, estimating OETs) to accommodate learning more complex
materials that contain inter-item relations.

METHODS
Experiment 1 methods (model parameterization)
Materials. Learning materials were Japanese–English word pairs. Pairs
were chosen such that the target English words contained four letters and
had average familiarity and imageability according to the MRC Psycho-
linguistic Database. Each participant studied 48 Japanese–English word
pairs, divided equally among the conditions described below.

Participants. The experiment was approved by the institutional review
board of the University of Memphis. Informed consent from obtained from
all participants before the task began. One hundred and thirty-two
participants were recruited via Amazon Mechanical Turk. Sixty-six
Participants were female, and 59% were aged between 18 and 34 years.
Our sample size left us highly powered to detect within-participant effects
of practice and spacing (e.g., >90% chance to detect an effect of d= 0.28)
and the likely large between-participant effect of retention interval on final
test recall. There were 43, 45, and 44 participants in the 2-min, 1-day, and
3-day retention interval conditions, respectively. These retention intervals
were chosen to measure the curvature of the forgetting function over the
intervals relevant for the planned simulation, for which we expected rapid
initial forgetting (hence the inclusion of the 2-min condition).

Method. Participant data collection was completed using the MoFacTS
system, which is a software designed to allow practice scheduling
according to a model as well as more traditional approaches52. Participants
completed two practice sessions. In the first session, the number of
learning trials per item (2, 4, 8) was manipulated within participants. The
amount of spacing between these trials was also manipulated within
participants; the number of intervening trials could be very narrow (0 or 1
intervening trials), narrow (approximately 4 intervening trials), wide
(approximately 8 intervening trials), or very wide (approximately 13
intervening trials). To reduce the chance that participants would recognize
particular schedule patterns, the exact positions of item repetitions within
a sequence were randomly jittered (e.g., +/−1 position from original
assignment). The delay between the first and second sessions was
manipulated between participants and was 2min, 1 day, or 3 days. In the
second session, participants were tested three times with feedback on
each item. The items in the second session were presented in blocks,
randomized within each block. In other words, items in the second session
were not tested again until all other items had been tested.
There were two types of trials possible in both experiments (and the

simulations). The first trial for all items was a study trial, in which the intact
Japanese–English word pair was presented for 7 s. Subsequently, all trials
for each item were test trials, in which participants were presented with
the Japanese word as a cue and asked to type in the English target word
(e.g., “awa—____”). Participants had 7 s to type in an answer and press
enter to continue. If they were correct, a brief “correct!” message would
appear for 500ms. Then there would be a 500-ms delay before the next
trial began. If they were incorrect (or did not provide an answer), the intact
word pair would be presented for 4 s along with a message telling them
they were incorrect or that time had expired. To ensure that participants
were not cut off while typing their answer (e.g., if they began typing after
6.9 s had elapsed), the timeout timer for the trial reset once the participant
began typing. This accommodation was rarely necessary (approximately
4.7% of trials, across both sessions).

L.G. Eglington and P.I. Pavlik Jr

7

Published in partnership with The University of Queensland npj Science of Learning (2020)    15 



Simulation model fitting. For the simulations, we fit a logistic regression
model (see Eq. (2)) to predict recall probability, inspired by PPE35 and Base450.

y ¼ β1a
�dsNs S

c þ β2a
�dfNf S

c: (2)

There are two additive components, meant to allow differential contribu-
tions of successes and failures. Parameter a represents the time since first
practice, with d representing a decay parameter (separate for successes and
failures). N represents counts of prior practice (separate for successes and
failures). Parameter S is average spacing in between practice attempts, with
curvature parameter c. See Supplementary Materials for more details. The
model was fit with intercepts for participants and items. There are many
candidate models that would probably account for the general patterns found
in the present data. However, we want to emphasize that our motivation is not
to find the best computational model of memory but rather to investigate how
to use such models. We believe the general conclusions of the results below
would extend to other computational memory models. A model for RT was
also fit. The RT model allowed the total number of trials within a fixed duration
to vary according to correctness, given that correct answers would be faster
than incorrect answers (see the Supplementary Materials for a simulation using
a simpler RT model that provided similar results). The RT model was as follows:

RT ¼ ce�a þ fc; (3)

with the two free parameters c and fc estimated via maximum likelihood.
Parameter a was the log odds prediction from the correctness model
described above23. In other words, the RT model sought to translate the
correctness model predictions into RT. This model was solely intended to track
RT for correct answers (RT for incorrect answers is typically estimated with a
constant18).

Simulation methods. Each run of a simulation represented 2 sessions of a
single student studying 30 word pairs for 22min, followed by a test 3 days
later. The total duration and number of items was chosen to match the
duration and practice characteristics of typical paradigms in which
participants study approximately 30 items, practicing them 4 times each,
with 7 s trial durations for initial study trials, 11 s for subsequent tests with
feedback (7+ 4 s), 0.5 s inter-stimulus interval (ISI), for a total of 1320 s
(22min). We believe simulating a scenario that is common to the literature
on this topic makes it easier for researchers to compare our findings and
conclusions to prior literature. Two hundred students were simulated for
each condition. Item and student intercepts were sampled from their
respective distributions estimated from fitting the model on the
experimental dataset. As a concrete example, to compute the probability
of success on a given trial for each item, the computational model would
predict recall probability with the (simulated) history of practice for each
item for the student as well as the intercept for that particular item and
student. The correctness of a trial was determined probabilistically using
the prediction from the model (e.g., if the model predicted 68% probability
of recall, the trial was correct with 68% probability).
Simulated students that were in “optimal” conditions practiced

whichever item was closest (but less than) the target OET for their
condition (e.g., 90%). For instance, if an item was practiced at 89%, its post-
practice estimated probability would go beyond the optimal value (90%),
and it could not be practiced again until it decayed to <90%. If all items
had a predicted recall probability greater than the OET, the item with the
closest probability was chosen. Figure 9 shows a time course of item
probabilities for a student practicing in the 90% optimal condition, with
one item highlighted to show the consequences of scheduling practice
according to the computational model and the 0.90 OET.

Optimal probability (OET) conditions. These conditions differed according
to their target probability threshold at which to practice (or the decision
rule). There were 22 optimal probability conditions depicted here, in
intervals of 0.05 from 0.2 to 0.8 and intervals of 0.02 from 0.8 onward to
0.98. We simulated across the range to illustrate the efficiency curve; the
particular intervals were simply intended to help the reader gauge the
general pattern. For example, a student in the 0.80 condition would
practice whichever item was closest to (but less than) 0.8 probability. Items
above the optimal value were not practiced until they decayed below the
threshold unless all items were above the threshold, in which case
whichever item was closest to 0.8 would be practiced.

Conventional conditions. Given that our focus is on practice of word pairs
or other similarly independent facts, we simulated schedules common to

that literature. Schedules could be simulated either with a fixed trial
duration (common to the spacing literature) or a variable trial duration in
which trial duration was determined by the latency model. One adaptive
heuristic schedule was included (Drop-1), in which an item was dropped
from practice after being recalled (if all items were answered correctly
before the time elapsed, the process restarted). Thus, in fixed trial duration
conditions the number of trials was also fixed, while in variable duration
conditions the number of trials could vary. If a student was successful more
often, and thus faster, they could complete more trials within the
maximum allotted time.
The critical comparison was among the conventional variable duration

spacing conditions, Drop-1, and the OET conditions, because in these three
types of conditions successes are faster and may lead to additional practice
attempts. The question is whether employing an OET (e.g., the rule
“practice whichever item is nearest but <0.90 recall probability”) improves
the efficiency of practice above and beyond conventional spacing
schedules that do not use a model.

Simulating latency. Although computational models do not necessarily
differentiate between successes and failures (counts of all attempts are
frequently used instead), outcomes still have important consequences for
trial duration. Most importantly, failure trials may require feedback,
whereas successful trials may not. Given that failures (with feedback)
and successes (with or without feedback) can provide the same memorial
benefit53, successful trials can be more efficient per second. In simulated
“optimal” conditions, trial duration was decided based on success and
failure and thus also influenced the total number of completed trials for a
student within the allotted time.
The duration for the first trial for each simulated student was set to 7 s,

to represent an initial study trial. Subsequently, if the condition allowed the
simulated student to proceed at their own pace, the duration of correct
trials was estimated with the latency model described above plus 500ms
to simulate the correctness feedback. Incorrect trial durations were set to
be the median trial duration for incorrect trials found in the experimental
data plus 4 s feedback (8.98 s total). In simulated conditions with fixed trial
durations (common in many experimental designs), the duration was fixed
at 11 s (7 s to recall plus 4 s feedback). There was a 1-s ISI between trials in
all conditions. The values chosen for trial duration and ISI are typical for
spacing experiments45.

Experiment 2 methods
Materials. Materials were Japanese–English word pairs used in the
parameterization dataset. Each participant was assigned a randomly
selected subset of 30 word pairs to practice.

Participants. The experiment was approved by the institutional review
board of the University of Memphis. Informed consent from obtained from
all participants before the task began. In Experiment 2, 322 participants
recruited from Amazon Mechanical Turk (Mturk) via TurkPrime54 com-
pleted the task. Data from 25 participants were excluded from analysis for
reporting that they had at least moderate ability to read the Japanese

Fig. 9 Estimated probability of all items for one simulated
student. A plot of the estimated probability of all items during
optimized practice for one simulated student (at OET= 0.90). The
blue line indicates the probability of one item across the sessions.
Squares indicate when that item was chosen to be practiced. Gray
lines represent other items (squares indicating when other items
were practiced were omitted to avoid clutter). The black dashed line
denotes the OET.
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language. Six participants were excluded for showing no evidence of
completing the task (e.g., timing out on all trials). Participants were
excluded at similar rates across the conditions. We aimed for approxi-
mately 50 participants for each condition. The one exception was OET 98,
in which we aimed to collect fewer participants (20) because simulations
indicated that participants would overpractice a small set of the items and
thus there would be very little variance. In other words, we were very
confident the condition would be suboptimal, and we collected data in it
solely to concretely demonstrate the inefficiency of extremely high OETs.
Ultimately, the Ns per condition were 59, 53, 57, 50, 56, and 16 for S15 and
OETs 40, 70, 86, 94, and 98, respectively. The number of participants was
chosen based on effect sizes observed in past research on adaptive
practice scheduling18,33,55. These prior findings indicated the potential for a
medium-to-large effect size (Cohen’s d of 0.56 to >1). We powered our
experiment to detect an effect size of d= 0.55. Using the BUCSS statistical
package56, which corrects for publication bias and sample uncertainty, we
estimated we had approximately 89% probability to detect a significant
difference among conditions.

Method. Participant data collection was again completed using the
MoFacTS system52. All participants completed two sessions. In the first
session, after providing informed consent, participants studied 30 word
pairs for 22min. Twenty-two minutes was chosen to approximately match
previous research on learning word pairs that typically involves studying
about 30 word pairs a few times each13,28. Twenty-two minutes also
ensured four exposures to each item during the first session given
maximum trial durations. The format and duration for initial study trial for
items, subsequent test trials, and feedback for correct and incorrect trials
was the same as Experiment 1. As before, when a participant began typing
an answer, the timer would reset so the trial did not end as they were
typing. This accommodation again rarely extended the test portion of the
trial beyond 7 s (~3% of trials). After completing the first session, all
participants completed a brief survey asking them for demographic
information as well as their knowledge of Japanese vocabulary.
Participants were informed that their answers would not influence their
payment. Data from participants that reported knowledge of Japanese
vocabulary prior to the experiment were discarded. The conditions differed
in terms of how practice was scheduled during the first session,
described below.
Three days later, an email was automatically sent to all participants

inviting them to return for a final test. Participants were allowed up to 48 h
from when they received the email to complete the final test. During the
final test, participants were tested for their memory of all Japanese–English
word pairs selected for them during the first session. The order in which
word pairs were tested was randomized, and feedback was presented in
the same way as in the first session (i.e., a brief “correct”message if correct,
and corrective feedback if incorrect).

Model. The practice scheduling model was highly similar to what was fit
to the parameterization dataset and used to schedule practice in the
simulation. The only difference was that, due to not having participant
intercepts (due to having not collected data from these new participants
yet), the participant intercept was excluded. The previously estimated
parameters were fixed (e.g., spacing and decay parameters), and the model
was refit with only item intercepts (because we do have previous data for
all word pairs from the previous experiment).

Adaptive scheduling method. If participants were assigned to an adaptive
scheduling condition, they practiced according to 1 of the 5 difficulty
thresholds—0.40, 0.70, 0.86, 0.94, or 0.98. This approach proceeded as
follows: for each trial, the probability that each item could be recalled was
estimated by the model (the difficulty). This estimate was determined by
the model using the prior history of practice for that item for that
participant (including counts of successes, failure, average spacing, and
elapsed time since those attempts), or if there was no prior history just the
item intercept was used. Whichever item was closest to (but less than) the
difficulty threshold was chosen to be practiced. If all items were above the
threshold, the item closest to the threshold was chosen. After each trial,
the model re-estimated the recall probabilities for all items, and the
process continued until the allotted time elapsed.

Conventional scheduling method. If participants were assigned to the
conventional scheduling condition, their practice was separated into two
consecutive blocks, with 15 items randomly assigned to be practiced
within each block. In each block, items were repeated approximately every

15 trials (maximally spaced within block). The exact ordering was slightly
jittered to reduce the probability that participants could predict the
presentation of upcoming items. We chose this spacing interval due to
evidence in initial pilot studies that maximal spacing within one block (i.e.,
repeating every 30 trials) was exceedingly difficult. Maximal spacing has
been shown to be suboptimal in prior research as well2, and so this
implementation may have served as a stronger control. The implementa-
tion of initial study trials, test trials, and feedback (when incorrect) was the
same as in the difficulty threshold conditions.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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