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Guided by a theoretical framework emphasizing the importance of fidelity of 
implementation (FOI), this paper explores how Grades 3, 4 and 5 teachers implemented 
an early algebra intervention, and the relationship between FOI and student learning. 
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which 3,208 students from 46 schools were followed for three years. Videotaped 
classroom observations, our primary source of FOI data, were coded to capture 
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intervention. Results revealed a significant positive relationship between aspects of 
teachers’ implementation and their students’ performance.  
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Putting Early Algebra in the Hands of Elementary School Teachers: Examining Fidelity 
of Implementation and its Relation to Student Performance 

 
 The position of algebra in school mathematics has changed dramatically over the 

past two decades. The traditional view of algebra as an isolated topic that is taught in 

secondary school has been challenged, as this approach creates numerous obstacles for 

students. In the United States (US) in particular, the well-known path of “first arithmetic 

then algebra” has been shown to be inadequate in preparing students for formal algebra 

(Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, & Human, 2005; National Center 

for Education Statistics [NCES], 1998; Stigler, Gonzales, Kawanaka, Knoll, & 

Serrano,1999), and has acted as a gatekeeper rather than a facilitator for college entrance 

(Schoenfeld, 1995). In response, reform documents in the US (e.g., National Council of 

Teachers of Mathematics [NCTM], 2000; National Governors Association Center for 

Best Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010) have 

worked to instantiate the calls by several scholars (e.g., Kilpatrick, Swafford, & Findell, 

2001; RAND Mathematics Study Panel, 2003) for algebraic reasoning to start as early as 

Kindergarten and span across the grades.  

While broadening the scope of algebra instruction in this way is viewed as 

paramount to improving students’ success in algebra, research is still needed to 

understand the impact such a significant shift in our approach might have on students’ 

mathematical thinking. Promising research illustrating that elementary students are 

capable of engaging with algebraic ideas (e.g., Carpenter, Franke, & Levi, 2003; 

Carraher, Schliemann, Brizuela, & Earnest, 2006) has set the stage for exploring 

questions regarding what impact a sustained, comprehensive early algebra education 

would have on students’ algebra understanding as compared to a traditional arithmetic-

focused education. 

In seeking to address the aforementioned questions regarding the effectiveness of 

early algebra, we initially designed a small-scale, quasi-experimental studies in which we 

examined the effectiveness of an early algebra intervention in Grades 3-5 (Blanton, Isler, 

et al., 2018; Blanton et al., 2015). We investigated the impact of our early algebra 

intervention by comparing the performance of students who participated in the 

intervention (as implemented by a member of the research team) with the performance of 



students who received their district’s regularly-planned curriculum. We found that 

students who participated in the intervention outperformed their peers who received 

regular instruction with respect to their understanding of algebraic ideas.  Given the 

positive results from the small-scale study, we implemented a large-scale, cluster 

randomized study of the impact of our early algebra intervention when taught by regular 

classroom teachers. We report on the results of that study here, focusing in particular on 

the fidelity of implementation (FOI) of Grades 3, 4, and 5 teachers (of students ages 8, 9, 

and 10 years old, respectively) as they implemented our early algebra intervention, as 

well as the relationship between FOI and student performance.  

Rationale: Measuring Intervention Effectiveness 

Historically, in the US algebra was reserved for successful secondary students. 

More recently, due to “Algebra for All” movements, the majority of US students take a 

minimum of one year of algebra by the time they graduate from secondary school, but not 

necessarily with success. During their elementary school years, students have typically 

only been exposed to mathematics that includes arithmetic, and algebra only appeared as 

a course upon their entry to secondary school. However, research has shown that this 

approach has been unsuccessful (Hiebert et al., 2005; NCES, 1998; Stigler et al., 1999), 

leading to the marginalization of students in school and society (Kaput 1999; Schoenfeld, 

1995). Moses and Cobb (2001) argue that algebra functions as a gateway to academic and 

economic success, disenfranchising students in non-dominant groups even further. Calls 

for reform urged schools to consider a more longitudinal approach; to introduce algebraic 

ideas early in elementary school along with arithmetic (e.g., NCTM, 2000; NGA and 

CCSSO, 2010; RAND Mathematics Study Panel 2003). 

Several studies have demonstrated that elementary students are capable of 

engaging with algebraic ideas (e.g., Carpenter et al., 2003; Carraher et al., 2006; and 

Kaput et al., 2008). However, systematic, instructional approaches for building children’s 

algebraic reasoning are still lacking. Our work, which was informed by the pioneering 

work of Carraher et al. (2006) and Carpenter et al. (2003), is a step in that direction. In 

particular, using a learning progressions approach (described in Fonger et al., 2018), we 

designed an early algebra intervention for Grades 3-5 that focuses on developing 

students’ abilities to generalize, represent, justify, and reason with mathematical structure 



and relationships across a variety of mathematical contexts. We then initiated a series of 

studies to examine the impact of this intervention in Grades 3-5 comparing the 

performance of students who participated in the intervention with the performance of 

students who received their district’s regularly-planned curriculum. The first study in the 

series was a small-scale, cross-sectional efficacy study with about 120 students 

participating, in which the intervention was taught by a member of the study team 

(Blanton et al., 2015). This was followed by a small-scale longitudinal study in which 

approximately 170 intervention and comparison students were followed across Grades 3-

5 (Blanton et al., 2018). As is the case with most efficacy studies, the main objective of 

these studies was to demonstrate that the program could, under the most favorable 

conditions, lead to the desired outcomes (O’Donnell, 2008; Raudenbush, 2007). In that 

study, we found that the intervention group significantly outperformed the comparison 

group on an assessment designed to measure understanding of core algebraic concepts 

and were more apt to use algebraic strategies in responding to the assessment items than 

were students in the comparison classrooms.  

In our most recent study in the series, we have extended the prior studies by 

examining the effectiveness of our early algebra intervention at scale, with about 3200 

students participating in a randomized study in which the intervention was implemented 

by classroom teachers. Effectiveness is defined by Dorland (1994) as "the ability of an 

intervention to produce the desired beneficial effect in actual use" (p. 531). As O’Donnell 

(2008) notes, effectiveness research complements efficacy research and refers to the 

degree to which the program achieves its outcome in actual field settings (e.g., Mihalic, 

2002; Raudenbush, 2007; Summerfelt & Meltzer, 1998). Both efficacy (internal validity) 

and effectiveness (external validity - which can be generalized) are complementary, 

critical aspects of evaluating interventions (Summerfelt & Meltzer, 1998).  

Because effectiveness studies are concerned with the ability of the program to 

produce the desired effect in actual use, it is important to study teachers' fidelity to that 

program in practice. Fidelity of implementation (FOI) is the commitment to using the 

intended instructional practices and procedures accurately and consistently when 

delivering a program or intervention (National Center on Response to Intervention, n.d., 

online). As such, FOI is closely related to effectiveness in that “no program—no matter 



how sound it is—can have impact if its essential elements are not used” (Yap, 

Aldersebaes, Railsback, Shaughnessy, & Speth, 2000). FOI studies can reveal important 

information about how likely an intervention can and will be implemented with fidelity in 

the classroom. Dusenbury and colleagues (2003) state, "If it is difficult to achieve fidelity 

of implementation in practice, a program has low feasibility. Programs that are 

implemented with high levels of fidelity but fail to produce desired effects may need to 

be redesigned" (p. 240)1.  

In this study, we examine the FOI of Grades 3, 4, and 5 teachers as they 

implemented our early algebra intervention from our first efficacy study, and the 

relationship between FOI and student performance. The data from this study are taken 

from the entire three years of our experimental study that tests the hypothesis that 

children who receive comprehensive, longitudinal early algebra instruction integrated in 

their curriculum and delivered by their teachers during the elementary grades are better 

prepared for algebra in middle school than children who have only “business-as-usual” 

(i.e., arithmetic-based) experiences during elementary grades. 

Our goal was to measure the fidelity with which teachers in diverse demographic 

settings implemented the intervention, and how this intervention affected students’ 

learning outcomes. This is a critical factor in evaluating an intervention’s effectiveness 

(Mowbray, Holter, Teague, & Bybee, 2003; NRC, 2004; Summerfelt & Meltzer, 1998) 

and promoting external validity (O’Donnell, 2008). Thus, the questions guiding the study 

are the following: 

1. To what extent are teachers implementing the intervention with fidelity?  

2. To what extent does the fidelity with which teachers implement the 

intervention impact student learning?  
 

Method 

                                                
1 FOI can be measured using different tools all of which involve tracking classroom instruction. Due to the 
size of this study. it was not feasible to be in all the classrooms day-to-day, hence we only observed a 
subset of the classrooms, and we further employed other tools as such as lesson logs. However, we 
acknowledged the limitations of self-report data so we did on-site visits to verify that the lessons were 
being implemented with fidelity as a means of triangulation with the lesson logs. Second, we selected the 
use of the MQI to complement our cognitive load measures because we wanted to use an established 
instrument (rather than just one that we'd developed) to ensure our data weren't too biased towards the 
curriculum. More detail is provided in the next section. 



The data for this study are taken from a three-year longitudinal, cluster 

randomized trial (CRT) in which an early algebra intervention was implemented in 

Grades 3 –5. The longitudinal aspect concerned the students who were followed for 3 

years. Pre- and post-intervention written assessments were administered to students in 

both the experimental and control groups. Implementation data in the form of monthly 

surveys and implementation logs were also collected from all participating experimental 

teachers. A subset of those teachers also participated in a more detailed round of data 

collection including videotaped classroom observations and interviews. 

Participants 

Participants included 3,208 students from 46 schools (23 experimental, 23 

control) in three school districts in the Southeast US. In the first year of the study, the 

experimental schools included 98 participating Grade 3 teachers who taught the 

intervention, while the control schools included 108 Grade 3 teachers who taught only 

their regularly-planned curriculum2. The number of participating teachers and students 

changed each year for a variety of reasons (e.g., attrition, students moving between 

schools, changes in school structures such as departmentalization in some schools in 5th 

grade). Table 1 provides the numbers of teachers and students participating in the study 

each year. Note that these are the same students each year, with numbers of students 

decreasing each year due to attrition. In other words, students in Grade 5 are a subset of 

students in Grade 4, and students in Grade 4 are a subset of students in Grade 3.  

 

Table 1. Participating Teachers and Students Each Year 

Grade Experimental Control 

 Students Schools Teachers Students Schools Teachers 

3 1,637 23 98 1,448 23 108 

4 1,341 23 82 1,245 23 75 

5 1,087 23 49 1,079 23 52 

 
                                                
2 In the US, districts (and often individual schools within districts) can use a curriculum of their choice. The 
curriculum, however, must be aligned with state standards to prepare students for end-of-year state 
examinations. The three districts chose different curricula and provided teachers with recommended pacing 
and implementation guides.  Our surveys and interviews indicated a great degree of similarity in addressing 
state standards across the three districts. 



The three districts were diverse in terms of race and socioeconomic status, as well 

as location (rural/urban). Table 2 provides further detail on the demographics of the three 

districts. 

Table 2. Demographics of Participating Districts 

School district Non-white students Students qualifying for 
free/reduced lunch 

A (mostly rural) 36% 20% 
B (suburban) 40% 54% 

C (urban) 82% 62% 
 

Schools were comparable demographically within districts, but not between districts. Our 

cluster-randomized design, where randomization occurred at the school level, allowed us 

to account for these differences, as well as to avoid intervention spillover effects. In other 

words, the school-randomization ensured that the control classrooms remained in the 

control condition, in that they did not have any access to the intervention.  

 To study FOI, we examined the implementation practices of a sub-set of teachers 

and the performance on the assessments exhibited by their students. We observed about 

half of the teachers in the experimental condition at each grade level. The number of 

teachers and lessons to be observed was determined by considerations of statistical power 

and possible attrition. In other words, we calculated the number of teachers and sessions 

that we would need to perform quantitative analyses, while also considering that it was 

possible that we might lose access to certain teachers over time. In Grade 3, 50 teachers 

were observed, and we collected assessment data from a total of 670 students in those 

classrooms. In Grades 4 and 5, we observed 44 and 33 teachers, respectively, and 

collected assessment data from 826 and 777 of their students respectively (see Table 3). 

 

Table 3. Classroom Observations 

Grade Number of teachers 
observed 

Number of students whose 
teachers were observed 

3 50 670 
4 44 826 
5 33 777 

 

Intervention 



Intervention Development. In our prior work, we designed a sequence of lessons 

across Grades 3-5. Each grade level sequence consisted of 18 one-hour lessons3 that were 

designed to engage students in a range of critical algebraic thinking practices 

(generalizing, representing, justifying, and reasoning with mathematical structure and 

relationships) as they occur in the context of different big ideas regarding algebraic 

content (e.g., generalized arithmetic; equivalence, expressions, equations, and 

inequalities; and functional thinking). This approach to teaching and learning algebra, 

which has guided our prior work (see, e.g., Blanton et al., 2015; Fonger et al., 2018), is 

informed by Kaput’s (2008) content analysis of algebra. Overall, these lessons used novel 

tasks as well as modified existing tasks from research that showed potential to facilitate 

students’ construction of algebraic ideas (e.g., Brizuela & Earnest, 2008; Carpenter et al., 

2003; Carraher, Schliemann, & Schwartz, 2008) and allowed for multiple points of entry 

so as to engage students at varying levels of understanding (see Appendix A for a sample 

lesson). This instructional sequence was refined through cycles of testing and revision 

during the earlier studies. The intervention lessons were implemented approximately 

weekly between the second and eighth month of the school year, following a common 

pacing guide.  

Teacher Professional Development. As part of the work, we designed a series of 

professional development workshops for the teachers who were implementing the 

intervention in each of the three districts. Each year, participating teachers attended a 

one-day workshop before the school year started and subsequent half-day meetings once 

per month throughout the intervention. During professional development meetings, the 

intervention lessons were used to build teachers’ content knowledge and pedagogical 

content knowledge around the teaching of early algebra. While focusing on the big ideas 

framing each lesson’s content, teachers were consistently asked to engage in the algebraic 

thinking practices of generalizing, representing, justifying, and reasoning with 

relationships, and to think about how to engage their students in these practices across the 

different big ideas. Participating teachers were also provided with additional resources 

such as extended lesson plans, which offered teachers further information regarding 
                                                
3 These lessons were not added to students’ mathematics instructional time. Rather, one hour of regular 
instructional time each week was replaced by an intervention lesson. Hence, the time spent on mathematics 
instruction remained the same across experimental and control groups.  



expected student responses to tasks, common student misconceptions, and instructional 

questions that might help move students’ thinking forward. Furthermore, teachers had at 

their disposal video-taped “model” lessons (taught by a team researcher in one of the 

previous small-scale studies) that they could access at any time, as well as on-line or 

phone access to project members for more help. 

 

Data Collection 

Student written assessment. Grade-level, one-hour written assessments were 

designed and validated in our prior work to align with the algebraic thinking practices 

and concepts (e.g., the relational view of the equal sign) targeted by our instructional 

intervention. Students in both the experimental and control conditions completed 

identical written assessments prior to the intervention in Grade 3 (as pre-test), as well as 

at the end of each year of the intervention (as post-test). The assessments were 

constructed using novel items as well as items that had performed well in previous 

studies, and, like those used in the instructional intervention, often allowed for multiple 

points of entry. Each assessment consisted of 12-14 items, almost all of which were open 

response. Many of the items contained multiple parts and were designed to be used 

longitudinally (i.e., across Grades 3–5). Nine of these items were used across the 

assessments in order to measure longitudinal growth. The remaining items were grade 

specific. See Appendix B for a copy of the assessment that was given as pre-test and 

post-test in Grade 3. Because most of the items were designed to be used longitudinally, 

they were rather challenging. Because of this, we were not expecting students to 

demonstrate mastery by the end of Grade 3. Rather, we were interested in the growth 

experimental students might show relative to control students (see Blanton et al., 2015, 

for a description of this instrument’s development and validation process).  

 Instructional Data – Fidelity of Implementation (FOI). Each year, a randomly 

selected subset of teachers was observed and videotaped twice—once in the fall and once 

in the spring—while teaching intervention lessons. During the first year, 50 Grade 3 

teachers were selected to be observed and videotaped, resulting in a total of 994 

observations. During the second year, 29 Grade 4 teachers were observed twice and 16 

                                                
4 Due to a logistical complication, one teacher was only observed once at the beginning of the year  



were observed once for a total of 74 observations. Finally, in the third year, 33 Grade 5 

teachers were observed twice and 6 were observed once for a total of 72 observations. 

Across all grades we observed 245 lessons. One member of the research team completed 

all of the videotaping. One stationary camera was used at the back of the room, focusing 

on the teacher. An additional lapel microphone on the teacher ensured clear sound 

reception. Students were seated in the classroom such that only consenting students were 

captured on camera. Lesson videotaping took place throughout each school year with the 

exception of Grade 5, when all videotaping was completed during the first half of the 

year. 

 It is important to note that the longitudinal aspect of the study refers to students, 

not to teachers. As this was an effectiveness study, in which the intervention was 

implemented in natural school environments, teachers differed from year to year. 

Teachers were assigned to the classrooms at the schools’ discretion5. Students, too, were 

moved to different classrooms with different teachers from year to year. However, our 

cluster-randomized design, where randomization occurred at the school level, allowed for 

experimental students to remain in the experimental condition for three years. Students 

who moved from an experimental school to a control school (or vice versa) during the 

course of the study were removed from subsequent analyses. 

All participating experimental teachers were asked to complete an online lesson 

log corresponding to each intervention lesson taught. The log was designed to capture 

aspects of teachers’ implementation with regard to the amount of time spent on each 

lesson, the kinds of lesson structures used, the use of practices that suggest a focus (or 

lack thereof) on students’ algebraic thinking practices (e.g., whether they asked students 

to share their solution strategies with their peers or to justify their solutions), and which 

of the available resources they used, if any, to prepare to teach the lesson (e.g., whether 

they used the extended lesson plans, watched videos, searched for additional resources, or 

discussed the lessons with their colleagues). Additionally, all teachers were asked to 

complete a monthly survey regarding their regular instructional practices as a way to 

                                                
5 Only in two cases teachers followed the same group of students from 3rd to 5th grade as this was regular 
practice in their schools.  



gauge potential similarities and differences in their regular instruction and the instruction 

that corresponded to the intervention. 

 

Data Analysis 

Written assessment data. Responses to the assessment items were coded for both 

correctness and strategy use, although for the purposes of this paper we focus only on the 

former6..  

Instructional Data – Fidelity of Implementation (FOI). For FOI we collected two 

types of data – we conducted videotaped classroom observations and self-reported lesson 

logs.  

Videotaped classroom observations were analyzed to examine the implementation 

of the two main objectives of the curriculum –the big ideas regarding algebraic content 

and the critical algebraic thinking practices. To examine whether the big ideas and the 

lesson structure were implemented we explored several factors related to an aspect of 

implementation: time spent on the lesson; lesson structures used such as whole class 

discussion, the use of group work or independent work; the use of worksheets; and 

presentation of tasks in oral or written form; whether tasks were read aloud; whether 

teachers demonstrated methods of presenting numerical information that might be 

unfamiliar to students (e.g., how to use a T-chart), and for those who did so, whether or 

not they used information from the lesson activity itself; and whether the teacher 

introduced new terms and definitions. By examining whether these factors were present, 

we examined whether the big ideas regarding algebraic content were introduced and 

explored as intended in the lesson plans.  

We also coded whether or not students worked on their own (either independently 

or in groups) for most of the remaining class time as group work was suggested in the 

lessons teachers were asked to implement. Finally, during individual/group work, 

teachers were rated on whether they were active or passive. An active teacher would 

actively visit individuals/groups to help students with questions, and to challenge their 

thinking. A passive teacher would go around to groups only when asked, and would be 

                                                
6 Responses to assessment items were also coded for strategy use, though this is beyond the scope of this 
paper. For a description of this development and results, see Blanton et al., 2015, submitted) 



largely reactive to students’ needs rather than being proactive and challenging their 

mathematical thinking. Once again, this was related to the way lessons were designed. 

To examine whether the critical algebraic thinking practices were implemented 

teachers were additionally rated on a five-point Likert scale on variables measuring the 

degree to which they engaged students in those practices that were the focus of the 

intervention. In particular, these ratings indicated the degree to which teachers asked 

students to engage in generalization, representation, and justification (briefly described 

below).  

• Generalize: extent to which the teacher engages students in extrapolating a rule or 

property from a specific case to a more general case. Examples of this practice might 

include the teacher asking  “will this work for all numbers?” or “Is it always true that 

if we add zero to a number we will always get the same number?”; 

• Represent: extent to which the teacher engages students in representing their thinking 

with variables and discusses with them the meaning of the representation7, as for 

example explicitly asking students to use a variable to represent a quantity; and, 

• Justify: extent to which a student’s line of reasoning in the development of an 

argument to support a claim is probed and explored in its entirety. For example, the 

teacher requires the student to explain an answer with words or a drawing be it 

correct or incorrect, and follows up with additional questions.  

The unit of analysis is the teacher. In other words, the analysis identified whether 

a teacher engaged with a practice during each lesson, and not the frequency with which 

he/she did so, and subsequently, the Likert scale ratings were averaged across the number 

of lessons observed for each practice. In general, a score of 1 on the five-point Likert 

scale indicated that teachers did not engage students in the thinking practices of 

generalizing, representing, or justifying. A score of 1 was rare. A score of 2 indicated that 

teachers followed the written lesson plan in terms of asking questions that prompted 

students to generalize, represent, and justify but did not pursue students’ thinking. A 

score of 3 indicated at least minimal follow-up on students’ attempts to generalize, 

represent, and justify (e.g., in the form of a follow-up question). A score of 4 indicated 
                                                
7 While we take representations to include a variety of forms, such as natural language, variable notation, 
tables, graphs, and pictures, we focus here on variable notation because of its seminal role in algebra (see, 
e.g., Kaput, 2008; Kline 1972) 



that teachers pursued a line of questioning with individual students to really try to “get to 

the bottom” of their thinking. Finally, a score of 5 indicated that the lesson was 

characterized by these algebraic thinking practices and that these practices were 

pervasive, whether students’ initial responses to questions were correct or incorrect. 

Furthermore, the rating was done both at the whole class level (when teachers 

interacted with the whole class) and at a small group level (when teachers had discussions 

with smaller groups of students). The distinction is important: During whole class 

discussions, teachers were more likely to follow suggested questions and prompts 

(presented in the experimental curriculum), while in small groups teachers were more 

likely to follow students’ work and the engagement in the practices of generalization, 

representation, and justification were more likely to be specific to the teacher and more 

spontaneous. In other words, group work discussions were less scripted by the 

experimental curriculum and were more often initiated by the teacher . Table 4 explores 

the time spent, on average, at each grade level in whole class and small group activities. 

Whole class time was recorded when the teacher was addressing all students 

simultaneously, while individual/group time referred to when students were working in 

small groups, independently, or when students were presenting their work to their teacher 

and classmates. 

 

Table 4. Average Time Spent on Whole Class8 vs. Individual/Group Activities 
 Grade 3 Grade 4 Grade 5 Overall 

Whole Class 30:44 29:16 30:35 30:15 
Individual/Group 19:15 23:06 20:14 20:51 

 

Finally, observations were coded and rated on a five-point Likert scale on six 

variables adapted9 from the Mathematical Quality of Instruction (MQI) instrument 

(National Center for Teacher Effectiveness, 2014). The MQI was used as an externally 

designed and validated tool that provided a means of triangulation to our analysis: 
                                                
8 Class time varied. However, as the two categories (whole class vs. individual/group 
work) are mutually exclusive, they give us an average class time of 50 minutes across 
grades.  
9 We made a few adaptations of the MQI: we looked at fewer variables as they fit the 
focus of our study,and we also used a different segment length (the MQI only examines 
20 minute sections, while we examined complete lessons).  



• Efficiency: extent to which lesson time is used efficiently and class is on task; 

• Clarity: extent to which the mathematics of the lesson is clear and not distorted; 

• Engagement: extent to which the classroom environment is characterized by student 

engagement; 

• Attention to student difficulty: extent to which teacher attends to student difficulty 

with the material; 

• Use of Student Ideas: extent to which teacher uses student ideas and solutions to 

move the lesson forward; and, 

• Precision: extent to which the mathematical language or notation used is precise (or 

not). 

Once again, the unit of analysis is the teacher. With the exception of precision, all 

items were coded using a 5-point Likert scale. For these items, 1 is the most negative 

rating, indicating inefficient use of class time, severely distorted mathematics, total lack 

of student engagement with the lesson, student difficulty without any teacher 

remediation, and no substantive use of student ideas. Five is the most positive rating, 

indicating highly efficient use of class time, clarity in the math presented, high student 

engagement, high teacher attentiveness to student difficulty, and frequent inclusion of 

student ideas and solutions to help build the mathematics of the lesson. Precision was 

coded using a 4-point Likert scale10. Again, 1 is the most negative and indicates a level of 

imprecision that obscures the mathematics of the lesson, while 4 is the most positive and 

indicates high precision in notation or language. 

In sum, what we attempted to capture in measuring FOI includes both the “nuts 

and bolts” details of lessons (e.g., the completion of required tasks, the amount of time 

students spent in various classroom configurations), as well as more nuanced 

characteristics that we believe are indications of effective teaching. Some of these 

characteristics are general to teaching mathematics (i.e., those measured by the adapted 

MQI variables), while others are more specific to the teaching of early algebra (i.e., those 

measured by the core algebraic practice variables). 

Videos were coded independently by two members of the research team. 

Approximately 15% of videos were double coded in order to assess inter-rater reliability. 
                                                
10 As it was in original MQI.  



The analysis suggested that raters had acceptable levels of agreement (kw > .60) for all 

MQI variables and for the three individual/group core algebraic practice variables (see 

Table 5). However, there was only moderate agreement for the whole class core algebraic 

practice variables at grades 3 and 4. Hence, while these variables are presented and 

explored here to a certain extent, subsequent factor analyses do not include the whole 

class core algebraic practice variables. 

 

Table 5. Weighted Cohen’s Kappa for MQI and Core Algebraic Practice Variables 
 Grade 3 Grade 4 Grade 5 Overall 

Generalize – Whole Class 0.49 0.59 0.87 0.65 
Generalize – Ind/Group 0.88 0.80 1.00 0.90 

Represent – Whole Class 0.53 0.54 0.82 0.61 
Represent – Ind/Group 0.86 0.70 0.86 0.82 
Justify – Whole Class 0.45 0.58 0.77 0.63 
Justify – Ind/Group 0.68 0.93 0.95 0.86 

Efficiency 0.65 0.73 0.88 0.73 
Precision 0.67 0.77 1.00 0.78 
Clarity 0.86 0.90 0.90 0.89 

Engagement 0.75 0.70 0.78 0.74 
Student Difficulty 0.70 0.63 0.73 0.69 

Use of Student Ideas 0.71 0.60 0.90 0.70 
 

Factor analysis was employed at each grade level to identify composite variables 

that could be used as teacher-level predictors of student outcomes (i.e., student 

performance on the early algebra assessments). After the latent factors (that is, underlying 

factors that are inferred from directly measured factors, in this case, the MQI variables 

and the core algebraic practice variables) were identified, multi-level regression analyses, 

with students nested within classrooms, was used to explore the potential impact of each 

composite variable on student performance. 

Results 

Student Performance 

It is important to understand not only the fidelity with which teachers 

implemented the intervention, but also the relationship between FOI and student 

performance. As noted earlier, effective interventions are those that ultimately produce 

beneficial outcomes (Dorland, 1994). In an educational intervention such as ours, it is 

important to understand how improvements in students understanding of algebraic 



concepts and practices (i.e., beneficial outcomes) were influenced by the fidelity with 

which teachers implemented the intervention. In what follows, we describe results of 

analyses of student performance and FOI, and examine connections between the two. 

Figure 1 illustrates students’ overall performance, in terms of percent correct, 

across grades 3 through 511. Using a 3-level longitudinal piecewise hierarchical linear 

model, we found the steepest increase in performance between the Grade 3 pre- and post-

test, with students in the experimental condition gaining significantly faster than their 

peers in the control condition (Authors, submitted). Though there was a leveling off of 

the treatment effect in Grades 4 and 5, students who received the intervention maintained 

their advantage across the length of the study (see Table 6). It is also worth noting that 

there was no difference on students’ performance on the pre-test across experimental and 

control groups. 

 

 
 

Figure 1. Overall percentage correct on assessment by testing time (Blanton, Stephens, et 
al., 2018). 

 

Table 6. Percent Correct on the Algebra Assessment by Year and Treatment Condition. 
 Treatment Control 

Grade 3 Pre-Test 13.96% (10.88%) 15.18% (11.41%) 
Grade 3 Post-Test 41.34% (21.24%) 28.56% (16.18%) 

Grade 4 48.00% (21.63%) 35.10% (17.39%) 
Grade 5 57.88% (22.36%) 41.75% (19.43%) 

*Standard deviation in parentheses. 

                                                
11 It is beyond the scope of this paper to provide a full report on the student performance growth. For a 
complete report of the longitudinal analysis of student performance, see Authors (in preparation). Similarly, 
for a report on students’ strategy use see Authors (submitted).  
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Videotaped Classroom Observations 

In analyzing videotaped classroom observations, we were particularly interested 

in how teachers engaged with the intervention curriculum and the pedagogical strategies 

they chose to implement the lessons. Table 7 provides descriptive statistics by grade level 

as well as across grades regarding specific pedagogical strategies teachers used. 

Table 7. Summary of Instructional Activities. 
 Grade 3 Grade 4 Grade 5 Overall 

Read aloud 90% 85% 79% 85% 
Define 52% 41% 53% 49% 
Demo 42% 28% 25% 33% 

Demo info from 
lesson activity 

98% 100% 94% 98% 

Post-intro work 71% 78% 71% 73% 
Active teacher 69% 77% 88% 77% 

 

Overall, 85% of observed classroom teachers read the problem aloud or had a 

student read the problem aloud. However, the reading aloud of problems steadily 

decreased as students moved up the grades from 90% in Grade 3 to 79% in Grade 5, 

likely due to students’ increasing reading ability and ability to engage with tasks 

autonomously. In about half of the classrooms, teachers tried to ensure that students 

understood any terms or concepts that might be unfamiliar to them. In about one third of 

the classrooms, teachers demonstrated methods of presenting numerical information that 

might be unfamiliar to students, and of those who did, 98% used information from the 

lesson itself. 

After the lesson was introduced, in 73% of the observed classrooms students 

worked either independently or in groups on the remainder of the lesson activity– a 

number that stayed relatively consistent over the three grade levels. Finally, in 77% of 

observed classrooms, the teacher was coded as “active,” that is, he or she actively visited 

individuals or groups to help students with questions and to challenge their thinking.  

As described above, teachers were rated on a 5-point Likert scale on three 

variables intended to capture engagement with algebraic thinking practices in the 

classroom: generalize a mathematical relationship, represent with variables, and justify a 

generalization. Separate codes were given for whole class work and individual/group 



work, though we only report results for individual/group here due to reliability issues 

discussed previously. Table 8 shows the average ratings teachers received on these 

variables at each grade separately, and overall.  

 
Table 8: Mean Algebraic Thinking Practices Observation Ratings. 

  Grade 3 Grade 4 Grade 5 Overall 
Generalize      

 Whole Class 3.51 (1.08) 3.54 (1.04) 3.51 (1.05) 3.52 (1.05) 
 Individual/Group 2.55 (1.33) 2.32 (1.23) 2.76 (1.22) 2.54 (1.28) 

Represent      
 Whole Class 3.00 (1.25) 3.12 (1.15) 3,29 (1.16) 3.40 (1.05) 
 Individual/Group 2.10 (1.34) 1.93 (1.10) 2.62 (1.21) 2.35 (1.29) 

Justify      
 Whole Class 3.75 (1.02) 3.62 (0.89) 3.69 (0.96) 3.69 (0.96) 
 Individual/Group 2.91 (1.39) 2.66 (1.20) 3.11 (1.21) 2.89 (1.29) 

Note. Standard deviation in parentheses. 
 

The results suggest that teachers relatively faithfully met the expectations 

expressed in the lesson plans in terms of asking students to engage in generalization, 

representation, and justification though teachers did not go far beyond these written 

expectations.  

Finally, Table 9 shows the average ratings teachers received for the six 

variables—Efficiency, Clarity, Engagement, Student Difficulty, Use of Student Ideas, and 

Precision—adapted from the MQI instrument (ratings range from 1 to 5). On average, 

teachers at each grade level scored fairly high across all six variables.  

Table 9: Mean Adapted MQI Classroom Observation Ratings. 
 Grade 3 Grade 4 Grade 5 Overall 

Efficiency 3.33 (1.11) 3.43 (1.05) 3.86 (0.72) 3.52 (1.01) 
Clarity/Distortion 4.24 (.96) 4.51 (0.81) 4.46 (0.82) 4.39 (0.88) 

Engagement 3.80 (1.00) 3.61 (1.06) 3.90 (0.79) 3.77 (0.96) 
Student Difficulty 3.56 (.99) 3.59 (1.11) 3.79 (0.89) 3.64 (1.00) 
Uses Student Ideas 3.85 (.93) 4.05 (1.12) 4.31 (0.80) 4.04 (0.97) 

Precision* 3.31 (.83) 3.51 (0.69) 3.61 (0.59) 3.46 (0.73) 
Note. Standard deviation in parentheses. *Precision was coded on a 4-point scale. 

 

Relationship Between Teaching Practices and Student Performance 

In order to identify underlying latent variables, factor analysis using principal 

components analysis was utilized at each grade level. For teachers who were observed 

twice, codes were first averaged across observations to create one set of variables per 



teacher. The six MQI variables and the three individual/group algebraic thinking practice 

variables were entered. Solutions for two, three, and four factors were each examined at 

each grade level using varimax rotations of the factor loading matrix. Solutions were 

chosen based on: (a) the ‘leveling off’ of eigenvalues on the scree plot; and (b) the 

insufficient number of primary loadings and difficulty of interpreting the subsequent 

factors. The analysis resulted in a two-factor solution at grades 3 and 5, and a three-factor 

solution at grade 4 (see Table 8). In other words, in grades 3 and 5, the variations 

amongst the nine observed variables reflected two underlying factors: the six MQI 

variables loaded onto one factor, while the three algebraic thinking practice variables 

loaded onto another. In Grade 4, however, the six MQI variables loaded onto two distinct 

factors, while the three algebraic practices variables again loaded onto one, for a total of 

three factors at this grade level (see Table 10).  

 

Table 10: Factor Loadings Based on a Principal Components Analysis with Varimax 
Rotation. 
 Grade 3 Grade 4 Grade 5 
 Factor 

1 
Factor 

2 
Factor 

1 
Factor 

2 
Factor 

3 
Factor 

1 
Factor 2 

Generalize  0.86  0.88   0.92 
Represent  0.82  0.81   0.91 

Justify  0.81  0.82   0.90 
Efficiency 0.67  0.77   0.65  

Clarity 0.85    0.87 0.81  
Engagement 0.64  0.86   0.74  

Student 
Difficulty 

0.75  0.80   0.78  

Student Ideas 0.66  0.77   0.88  
Precision 0.84    0.90 0.82  

Note. Factor loadings < .4 are suppressed. 
 

At grades 3 and 5, the two factors that emerged are referred to as “core algebraic 

practice” and “MQI.” In grade 4, three factors emerged: 1) the three individual/group 

algebraic thinking practice codes (generalize, represent, justify) were averaged to create a 

composite variable (“core algebraic practice”), 2) “precision” and “clarity” were 

averaged to create a composite variable (“teacher precision”), and the remaining four 

MQI variables (“efficiency,” “engagement,” “student difficulty,” and “use of student 

ideas”) were averaged to create a composite variable (“student-focused”) (see Table 11). 



 
Table 11. Descriptive Statistics for Composite Variables. 

 Mean (SD) Minimum Maximum 
Grade 3    

Core algebraic practice 2.64 (1.01) 1.00 4.67 
MQI 3.67 (0.68) 1.92 4.83 

 
Grade 4 

   

Core algebraic practice 2.39 (1.00) 1.00 5.00 
teacher precision 3.97 (0.67) 2.00 4.50 
student-focused 3.62 (0.88) 1.00 5.00 

 
Grade 5 

   

Core algebraic practice 2.90 (1.01) 1.00 5.00 
MQI 3.98 (0.50) 2.75 4.67 
 

 To determine whether there was a relationship between teachers’ practice, as 

measured by the composite variables, and student performance on the algebra 

assessment, we used Hierarchical Linear Modeling (HLM) with separate two-level, 

random intercept models at each grade level. HLM methods were utilized because of the 

hierarchical nature of the data, with students nested within classrooms (Raudenbush & 

Bryk, 2002). Given that students typically had different teachers at each grade level and 

different students were present in observed classrooms each year, it was not feasible to 

take a longitudinal approach to data analysis. Therefore, separate cross-sectional models 

were explored at each grade level.  

Due to the hierarchical structure, the variance in the outcome measure of student 

scores on the algebra assessment at each grade level can be partitioned into two parts: 

variability due to individual differences and variability due to teacher characteristics. The 

intraclass correlation coefficient (ICC), which was estimated in an unconditional model 

(one with no predictor variables), indicated that, at each grade level, a significant 

proportion of the variance occurred at the teacher level: 39.5%, 29.7%, and 35.8% at 

grades 3, 4, and 5, respectively. These results suggest that student performance on the 

outcome measure is affected not only by individual differences, but also by 

characteristics of the classroom practice, and thus support the use of a two-level model 

for analysis at each grade level.  



We present here the results from HLM analyses that describe the effects of 

teacher practice on each grade’s post-test assessment performance. The models we used 

in our analyses are shown in Appendix C. First, in Grade 3 we explored the relationship 

between teachers’ practice and student performance. Table 12 presents results from both 

the unconditional model (with no predictor variables) and the full model (with student- 

and teacher-level predictors included). In the full model, grade 3 pre-test performance 

was used as a level-1 (student-level) covariate, and core algebraic practice and MQI were 

included as level-2 (teacher-level) predictors. 

 

Table 12. Effects of Teacher Practice on Grade 3 Algebra Assessment Post-Test 

Performance. 

 Unstandardized b coefficients (with standard errors) 

 Model 1: Unconditional Model 2: Full 

Intercept 41.161 (2.107)*** 41.399 (1.434)*** 

Student variable   

     Grade 3 pre-test  0.862 (0.060)*** 

Teacher variables   

     Core Algebraic Practice  4.552 (1.854)* 

     MQI  1.601 (2.780) 

 Variance in algebra performance by source 

Variance estimates   

     Student-level variance 299.623 234.708 

     Teacher-level variance 195.839 82.791 
*p<.05;  **p<.01; ***p<.001 

 

As indicated in the full model, there was a statistically significant positive relationship (a 

= .02) between teachers’ average score on the core algebraic practice composite variable 

and student performance on the algebra assessment, though the relationship between MQI 

and student performance was not significant. For each one-unit increase in a teacher’s 

average core algebraic practice score, the estimated student score on the algebra 

assessment increased by 4.6%. Given the possible range of the core algebraic practice 



variable from 1 to 5, this equates to an 18.4% difference in average scores between 

students with teachers who received the lowest possible scores (core algebraic practice = 

1) and those with teachers who received the highest possible score (core algebraic 

practice = 5). In other words, the average algebra score for a student in a classroom where 

the teacher was rated average on core algebraic practice was 41.4%. However, that score 

increased to 50.6% for students in a classroom where the teacher scored 2 points above 

average on core algebraic practices, and dropped down to 32.2% for students whose 

teacher scored two points below average on that measure. 

Similarly, we continued this analysis with Grade 4. Table 13 presents the results 

of the unconditional and full models. Here, grade 3 post-test was used as the level-1 

covariate, as it was the most recent prior measure of student performance, and the three 

teacher-level variables identified in the factor analysis were included at level 2. 

 

Table 13. Effects of Teacher Practice on Grade 4 Algebra Assessment Post-Test 

Performance. 

 Unstandardized b coefficients (with standard errors) 

 Model 1: Unconditional Model 2: Full 

Intercept 47.276 (1.951)*** 48.534 (0.819)*** 

Student variable   

     Grade 3 post-test  0.713 (0.024)*** 

Teacher variables   

     Core Algebraic Practice  -0.650 (1.047) 

     Precision  0.800 (1.490) 

     Student-Focused  4.221 (1.205)*** 

 Variance in algebra performance by source 

Variance estimates   

     Student-level variance 334.683 164.778 

     Teacher-level variance 141.313 17.839 
*p<.05;  **p<.01; ***p<.001 

 



Contrary to what was found in Grade 3, there was no statistically significant 

relationship between teachers’ average score on the core algebraic practice composite 

variable and student performance on the assessment, and also no relationship between 

precision and student performance. However, there was a significant relationship between 

the student-focused variable and student performance (a < .001). For each one-unit 

increase in a teacher’s student-focused score, the estimated student score on the 

assessment increased by 4.2%. Given the possible range of the student-focused variable 

from 1 to 5, this equates to a 16.8% difference in average scores between students with 

teachers who received the lowest possible scores (student-focused = 1) and those with 

teachers who received the highest possible score (student-focused = 5). In other words, 

the average algebra score for a student in a classroom where the teacher was rated 

average on the student-focused variable was 48.5%. However, that score increased to 

56.9% for students in a classroom where the teacher scored 2 points above average on the 

student-focused variable, and dropped down to 40.1% for students whose teacher scored 

two points below average on that measure. 

Finally, in Grade 5, the general structure of the model was identical to that of 

Grade 3, with the exception of the use of the grade 4 post-test as the level 1 covariate. 

Table 14 presents the results of the unconditional and full models. 

 

Table 14. Effects of Teacher Practice on Grade 5 Algebra Assessment Post-Test 

Performance. 

 Unstandardized b coefficients (with standard errors) 

 Model 1: Unconditional Model 2: Full 

Intercept 56.568 (2.678)*** 58.097 (1.039)*** 

Student variable   

     Grade 4 post-test  0.755 (0.024)*** 

Teacher variables   

     Core Algebraic Practice  3.109 (1.315)* 

     MQI  1.473 (2.604) 

 Variance in algebra performance by source 

Variance estimates   



     Student-level variance 367.554 234.708 

     Teacher-level variance 205.210 82.791 
*p<.05;  **p<.01; ***p<.001 

 

The Grade 5 results parallel the results found in Grade 3. There was a statistically 

significant positive relationship (a = .03) between teachers’ average score on the core 

algebraic practice composite variable and student performance on the algebra assessment, 

though the relationship between MQI and student performance was not significant. For 

each one unit increase in a teacher’s average core algebraic practice score, the estimated 

student score on the algebra assessment increased by 3.1%. Given the possible range of 

the core algebraic practice variable from 1 to 5, this equates to a 12.4% difference in 

average scores between students with teachers who received the lowest possible scores 

(core algebraic practice = 1) and those with teachers who received the highest possible 

score (core algebraic practice = 5). In other words, the average algebra score for a student 

in a classroom where the teacher was rated average on core algebraic practices was 

58.1%. However, that score increased to 64.3% for students in a classroom where the 

teacher scored 2 points above average on core algebraic practices, and dropped down to 

51.9% for students whose teacher scored two points below average on that measure. 

 

Discussion 

 This study aimed to explore the relationship between the fidelity with which 

teachers implemented the early algebra intervention (as part of their regular classroom 

practice) and the development of students’ understanding of algebraic concepts and 

practices. However, to do that, we needed to step out of the realm of the efficacy studies 

and move towards an effectiveness study that is more closely aligned to “regular” 

practice – taught by practicing teachers to a large number of students. While our smaller 

efficacy studies provided valuable information on how students engage with algebraic 

ideas and a glimpse of the possible affordances and gains early algebra instruction might 

offer, we needed to investigate the question of early algebra’s feasibility and value to a 

larger number of students in regular classrooms. Here, we examined the effectiveness of 



an early algebra intervention at scale, aiming to understand how early algebra instruction 

impacts learning.  

As we reported in depth elsewhere (Blanton, Stephens, et al., 2018) and briefly 

here, students in the experimental group who experienced the early algebra intervention 

over the three years of the study significantly outperformed their counterparts who 

received a more traditional arithmetic-based curriculum. These findings were 

encouraging and prompted us to more closely examine instruction during the intervention 

in experimental classes for distinctions that might help further explain our findings about 

experimental students’ performance. This article reported on our findings.  

In addressing the question of whether teachers implemented the intervention with 

fidelity, we found that teachers generally followed the intervention lessons as intended. 

On average, they dedicated the time and resources needed to follow the intervention 

lessons, and followed all the steps of the lessons as they were intended by the curriculum 

designers. Furthermore, teachers, for the most part, faithfully met the expectations 

expressed in the lesson plans in terms of asking students to engage in generalization, 

representation, and justification. We note, however, that participating teachers did not go 

far beyond these written expectations. In other words, most teachers did not ask other 

questions of an algebraic nature, nor did they explore algebraic tasks beyond what was 

expected of them. This is not surprising as research suggests that it is only through 

sustained professional development and implementation of a given curriculum over 

several years that teachers engage with more nuanced aspects of mathematical practices 

(see e.g., Jacobs, Lamb, & Philipp, 2010; Superfine, 2008).  

Given such findings it was important for us to investigate what teacher-related 

instructional characteristics and approaches impacted and predicted student learning 

outcomes. A factor analysis revealed some important findings that were not necessarily 

consistent across the grades. Specifically, Grade 3 and 5 findings were aligned, while 

Grade 4 appeared to take a different direction. 

In Grades 3 and 5, we found that the extent to which teachers engaged students in 

“core algebraic practices” of generalization, representation, and justification of 

mathematical structure and relationships significantly predicted students’ post-test scores 

on the algebra test.  In Grade 3 in particular, for each one-unit increase in a teacher’s 



average core algebraic practice score, the estimated student score on the assessment 

increased by 4.6%. Similarly, in Grade 5 for each one-unit increase in a teacher’s average 

core algebraic practice score, the estimated student score on the assessment increased by 

3.1%. In other words, students whose teachers implemented the intervention with greater 

emphasis in engaging students in these core algebraic practices significantly 

outperformed students whose teachers did not engage them as deeply in algebraic 

practices. Thus, it seems clear that not only are the step-by-step following of the intended 

curriculum and the attention to the core algebraic ideas needed to increase student 

performance, but also teachers’ engagement with core algebraic practices played a key 

role in strengthening and solidifying students’ algebraic learning. The results suggest that 

teachers did not fall into two categories (those who engage students with core algebraic 

practices and those who fail to do so). Rather, the results clearly show a growth pattern – 

the more teachers engage students with core algebraic practices, the more the student 

performance grows. These findings support that a sustained and deeper engagement with 

core algebraic practices increases student learning and performance in early algebra. 

Our findings in Grade 4 differed from those in Grades 3 and 5. In this case, the 

most important characteristic in predicting student learning outcomes was the teacher 

focus on student ideas. We found a significant relationship between the student-focused 

variable and student performance. For each one unit increase in a teacher’s student-

focused score, the estimated student score on the algebra assessment increased by about 

4%. But, what exactly does it mean for a teacher to be “student-focused”? Teachers 

received a high score on the student-focused score when they pursued in more depth their 

students’ ideas in algebraic meaning making. This did not mean that the teacher was only 

correcting or remediating student errors, but rather, the teacher attended to student 

contributions that emerged from the algebra lessons and used them to move instruction 

forward. Student contributions might include “student answers to questions (including 

one-word answers), comments, mathematical ideas, explanations, representations, 

generalizations, questions to the teacher, and student work” (quote from the MQI 

manual). It is then worth considering that it is not only engagement with algebraic ideas 

that predicted growth, but good teaching in general that attended to student needs and 

engaged with students’ developmental and mathematical needs. Although we are not sure 



why the engagement with the actual core algebraic practices was not significant in Grade 

4 as it was in Grades 3 and 5, it is still noteworthy that teachers’ pursuit of students’ ideas 

was a significant predictor of student learning outcomes.    

Overall, emphasis on algebraic thinking practices (whether they originate from 

teachers or students) was the core predictor of improved student performance. This 

finding is aligned with our early algebra framework and its emphasis on algebraic 

practices (see Fonger et al., 2018 for an extensive discussion of this progression). 

However, our findings underscore the importance of further refinement of our 

observation instruments and our coding practices. As the study was not a laboratory-

controlled study, but rather steeped in the reality of hundreds of teachers and thousands 

of students as any effectiveness study should be, lessons can be messy, and a more 

refined instrument might allow us to see beyond the haze of the realities of the classroom 

and better attend to the instructional practices. We acknowledge our limitations with 

respect to our observation instrument and coding.  

Before closing, we briefly discuss how the results of our work can potentially 

impact teacher preparation programs as well as in-service education and professional 

development programs. Our professional development sessions focused explicitly on 

engaging participating teachers with algebraic practices and on modeling classroom 

instruction that promoted these practices. Elementary education teachers often receive 

limited instruction and training on early algebra concepts. Our work shows the 

importance of appropriate and in-depth use of core algebraic practices in the early 

mathematics classrooms as they impact student learning in significant ways. The stronger 

the presence of these core algebraic practices in the classroom, the more students benefit. 

As teacher educators, we are still learning how to incorporate these practices into our 

elementary preservice teacher education courses.   

The early algebra field in mathematics education is currently in the process of 

navigating various standards and curricula across countries, and searching for ways to 

weave the big ideas and practices of early algebra into these curricula. Our study comes 

at this critical time to provide supporting evidence that, indeed, early algebra programs 

can be implemented with fidelity in actual field settings (not only in limited research 

environments) and can impact student learning in positive and rich ways. We will 



continue to explore how to strengthen these curricula, how to better support teachers, and 

how to measure what practicing teachers bring to our expanding field. 
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Appendix A: 
Sample Lesson 

 
 
 
 

 
 
 
 
 
 

 

Begin to develop arithmetic generalizations about sums of even numbers and odd numbers. Continue to 
develop an understanding of representation-based arguments for justifying a conjecture.

 

 
 

CCSS.MP3	
CCSS.MP5	
CCSS.MP6	
CCSS.MP7	
CCSS.MP8	

CCSS.MC.1.OA.7	
CCSS.MC.2.OA.3	
CCSS.MC.2.NBT.5	
CCSS.MC.6.EE.4	

 

 

Jumpstart 
1. Find the missing value:  14 + ___ = 15 + 6 
2. True or False: 34 + 10 = 44 + 9 
3. What numbers make the equation r + 0 = r true? 
4. Find 19 + 52 17. Think about how you can use the properties 

you have learned. 
 

 
ACTIVITY  

 
 
 

 
 
 
 
 
 
 
 
 

Allow students plenty of time to explore various 
numbers and come to think of numbers as 
combinations of pairs and leftovers.  
 
For groups that need support, help them by using 
discussion building strategies (found in Teaching Tips 
section). Sit with groups and observe what they are 
saying. Use this to select students who may help you 
lead whole group discussions. Select students who 
exhibit different ways of thinking. 
 



Based on your 
observations 
today, develop 

a definition for “even numbers” and for “odd numbers.” 
 

  
 
 

 

ü Spend sufficient time on the table portion of lesson activity. Exploration and group discussion 
are key to students’ understanding of evens and odds. Students will refer back to what they 
learn in this activity when they begin building arguments about evens and odds. 

ü Discussion is essential in this lesson. Continue to encourage students to discuss their 
mathematical thinking. Encourage them to think about the ways their classmates are thinking, 
and discuss with each other the possible differences in their thinking. 

ü Questions that help build discussion: 

o Do you think your conjecture is true? How do you know? 
o For what numbers do you think your conjecture is true? Why? 
o Do you think your conjecture is true for all numbers? How do you know? 
o How would you argue to me (or to a classmate) that your conjecture is true? 
o Do your examples show that your conjecture is always true? 
o Can you think of another argument for your conjecture that does not look at specific 

numbers? 

ü Encourage students to explore representation-based reasoning. Ask students to show you 
what they know. Encourage the use of cubes to represent generic examples in their 
arguments. 

 
 

 Common Misconceptions 
 

When asked to explore the sum of any two 
even numbers, students almost always 
turn immediately to examples. Some try 
one example (e.g., 2 + 4 = 6) and 
conclude that the sum of any two even 
numbers is always even. Some try a few 
examples. We want to begin moving them 
away from this strategy and help them 
build other types of arguments.  
Reminding them of the definitions of even 
numbers and odd numbers and the work 
they did in the first problem will get them 
thinking in a different way. 

 

 
 
 
 

Targeted Student Thinking 
 
“I noticed that any time there is an even number it 
breaks into pairs with no leftovers, but when we have 
an odd number like three I can only make one pair 
and then I have a leftover.” 
 
“I know that Jesse’s answer is going to be even 
because two even numbers added together will 
always give us an even answer.  I know this because 
if I take the first even number and break it into pairs 
and add those pairs with the pairs from the other 
even number, then I will still have all pairs with no 
leftovers.  Like this: 
               4       +     2     =           6 
 
  

 

 

Teaching Tips 

Lesson Materials: 
Activity  
Unifix cubes  

Even Number 
Odd Number 





 

Name: _________________________________ Date: ____________ 

Explore and Discuss with a partner: 

Sums of Evens and Odds                           
 
How Many Pairs? 
In this activity, you are going to “build” different numbers using cubes and think 
about how many pairs make up various numbers. 
How many pairs of cubes are in the number 6? How many cubes are left over after you’ve made 
your pairs? 
 
Use your cubes to complete the following table for the given numbers. 
 
Number  Number of pairs created Number of cubes left over 

3   

4   

5   

6   

7   

 
What do you notice? What (kinds of) numbers have no cubes left over after all 
pairs are made? What (kinds of) numbers have a cube left over?  
Write a sentence to describe each of your observations. 
 

Exploring the sum of two even numbers 
 

A. Jesse is adding two even numbers. Do you think his answer will be an even number or 
an odd number? 

 
 

B. Develop a conjecture to describe what you found. 
 
 

C. Is your conjecture true for any two even numbers you add together? How do you know? 
Use numbers, pictures, cubes, or words to explain your thinking.  



Appendix B: Algebra Assessment 
 

1. Fill in the blank with the value that makes the number sentence true.  
7 + 3 = ____ + 4 
Explain how you got your answer.  
 

2. Circle True or False. Explain how you got your answer 
a) 12 + 3 = 10 + 5     
b) 57 + 22 = 58 + 21    
c) 39 + 121 = 121 + 39 
 

3. Marcy‘s teacher asks her to solve “23 + 15.” She adds the two numbers and gets 
38. The teacher then asks her to solve “15 + 23.” Marcy already knows the answer 
is 38 because the numbers are just “turned around.” 
a) Do you think Marcy’s idea will work for any two numbers? Why or why not? 
b) Write an equation using variables (letters) to represent the idea that you can 

add two numbers in any order and get the same result.   
 

4. Brian knows that if you add any three odd numbers, you will get an odd number. 
Explain why this is true. 
 

5. Tim and Angela each have a piggy bank. They know that their piggy banks each 
contain the same number of pennies, but they don’t know how many. Angela also 
has 8 pennies in her hand. 
a) How would you represent the number of pennies Tim has? 
b) How would you represent the total number of pennies Angela has? 
c) Angela and Tim combine all of their pennies. How would you represent the 

number of pennies they have altogether? 
Suppose Angela and Tim now count their pennies and find they have 16 all 
together. Write an equation that represents the relationship between this total 
and the expression you wrote above. 
 

6. Circle the equation that best represents the following story: 
Owen had 10 stickers. Eric gave him some more. Now Owen has 27 stickers.  
a) 10 + 27 = c      b) 10 + c = 27      c) 10 – c = 27      d) 27 – c = 10 
 

7. Nicole baked some cookies. She ate 3 cookies and now has only 9 cookies.  
a) Write an equation with a variable (letter) to represent this story. 
b) What does your variable (letter) in the equation in part a represent? 
 

8.   Find the value of n in the following equation. Show or explain how you got your 
answer.  

5×n + 2 = 42 
 

  



9. Brady is celebrating his birthday at school. He wants to make sure he has a seat 
for everyone. He has square desks. 

 
 
 
 
 
 
 
 
  

 
 
If he joins another desk to the second one, he can seat 6 people: 
 
 
 
 

 
 
 

a) Fill in the table below to show how many people Brady can seat at different 
numbers of desks. 

Number of desks Number of people 
1 2 
2 4 
3  
4  
5  
6  
7  

 
b) Do you see any patterns in the table from part a? If so, describe them. 
c) Think about the relationship between the number of desks and the number of 

people. 
Use words to write the rule that describes this relationship. 
Use variables (letters) to write the rule that describes this relationship. 

d) If Brady has 100 desks, how many people can he seat? Show how you got 
your answer. 

e) Brady figured out he could seat more people if two people sat on the ends of 
the row of desks. For example, if Brady had 2 desks, he could seat 6 people. 

 
 
 
 

 

He can seat 2 people at one desk in the 
following way: 
 

If he joins another desk to the first one, he 
can seat 4 people: 



How does this new information affect the rule you wrote in part c? 
 Use words to write your new rule: 
 Use variables (letters) to write your new rule: 
 

10. The table below shows the relationship between two variables, k and p. 
The rule p = 2×k + 1 describes their relationship.  
a) Some numbers in the table are missing. Use this rule to fill in the missing 

numbers. 
k p 
1 3 
2  
  
 9 

 
b) What is the value of p when k = 21? Show how you got your answer. 
c) What is the value of k when p = 61? Show how you got your answer. 
 

11. A fourth-grade class needs 5 leaves each day to feed its 2 caterpillars.  
 

 
 

 
 
 
 

a) How many leaves would they need each day for 12 caterpillars? Explain how 
you got your answer. 

b) How many leaves would they need each day for 15 caterpillars? Explain how 
you got your answer. 

  



12. Answer the following question for the graph given below: 

 
Which of the following tables could have been used to construct the graph? Circle 
the table and explain why you think it is the correct table. 

x y  x y 

1 2  1 5 

2 4  2 7 

3 6  3 9 

4 8  4 11 

 
 
 
  



Appendix C: HLM models 
 
Grade 3 
At grade 3, the student-level model included a grand-mean centered covariate, 

performance on the grade 3 pre-test. The level 1 model was: 

Yij = b0j + b1(Grade 3 pre-test)ij + rij 

In this model, the dependent variable Yij represents the Grade 3 post-test algebra 

assessment score of student i with teacher j; b0j (intercept) represents the mean LEAP 

assessment score of the students taught by teacher j; b1 is the Level 1 coefficient that 

measures the effects of Grade 3 pre-test score on an individual student’s Grade 3 post-test 

score; and rij is the unique effect of student i on the assessment. 

The full teacher-level model for analysis included the two composite variables 

that emerged from the factor analysis of grade 3 data: core algebraic practice and MQI. 

Both teacher-level variables were also grand-mean centered. The level 2 model was: 

b0j = g00 + g01(Core Algebraic Practice)j + g02(MQI)j + µ0j 

The dependent variable b0j is the average LEAP assessment score of students taught by 

teacher j; g00 is the average LEAP assessment score of students across teachers; g01 and g0s 

are the Level 2 coefficients that measure the effects of composite variables for teacher 

practices; µ0j is the residual (unexplained) variance at Level 2. 
 

Grade 4: 

The general structure of the models remained the same for Grade 4, with the exception 

that the teacher-level predictor variables differed based on the results of the factor 

analysis. Specifically, in grade 4, the teacher-level variables were core algebraic practice, 

teacher precision, and student focused. The Level 1 and Level 2 models were: 

Level 1: Yij = b0j + b1(Grade 3 post-test)ij + rij 

Level 2: b0j = g00 + g01(Core Algebraic Practice)j + g02(Precision)j + g03(Student-Focused)j + 

µ0j 

 

At Level 1, students’ Grade 3 post-test LEAP assessment score was used as the grand-

mean centered covariate, as that was the most recent performance assessment prior to the 

Grade 4 assessment. All Level 2 variables were grand-mean centered. 



Grade 5: 

The general structure of the model for Grade 5 was identical to that of Grade 3. 

The Level 1 and Level 2 models were: 

Level 1: Yij = b0j + b1(Grade 4 post-test)ij + rij 

b0j = g00 + g01(Core Algebraic Practice)j + g02(MQI)j + µ0j 

 

At Level 1, students’ Grade 4 post-test LEAP assessment score was used as the grand-

mean centered covariate, as that was the most recent performance assessment prior to the 

Grade 5 assessment. All Level 2 variables were grand-mean centered. 
 
 
 


