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ABSTRACT

Effectively estimating student enrollment and recruiting stu-
dents is critical to the success of any university. However,
despite having an abundance of data and researchers at the
forefront of data science, traditional universities are not fully
leveraging machine learning and data mining approaches to
improve their enrollment management strategies. In this
project, we use data at a large, public university to increase
their student enrollment. We do this by first predicting the
enrollment of admitted first-year, first-time students using
a suite of machine learning classifiers (AUROC = 0.85). We
then use the results from these machine learning experiments
in conjunction with genetic algorithms to optimize scholar-
ship disbursement. We show the effectiveness of this ap-
proach using real-world enrollment metrics. Our optimized
model was expected to increase enrollment yield by 15.8%
over previous disbursement strategies. After deploying the
model and confirming student enrollment decisions, the uni-
versity actually saw a 23.3% increase in enrollment yield.
This resulted in millions of dollars in additional annual tu-
ition revenue and a commitment by the university to employ
the method in subsequent enrollment cycles. We see this as
a successful case study of how educational institutions can
more effectively leverage their data.

Keywords
education, funding, tuition, enrollment management, finan-
cial aid

1. INTRODUCTION

Managing student enrollment is one of the core administra-
tive tasks of any university. However, it is far from simple as
universities aim to attract and retain the best students with
limited resources [4, 10]. Enrollment management has wide-
ranging implications on institutions’ student body compo-
sition as well as their budgeting and finances, where a re-
liance on tuition income necessitates accurately forecasting
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student enrollments [9, 23]. One instrument that has con-
tinually been leveraged in the pursuit of enrollments and
the associated tuition income is financial aid as receiving
a financial aid award increases the likelihood of a student
enrolling at the award-giving institution [13, 10]. While fi-
nancial aid remains a powerful mechanism for institutions
to reach their admissions and revenue targets, miscalculat-
ing projected student enrollments and mismanaging finan-
cial aid funds can have severe implications (such as rescind-
ing over-committed offers')[2]. Furthermore, as institutions
face tightening budgets and find their pricing policies contin-
ually under scrutiny, it remains imperative for them to opti-
mize the resources they have by maximizing enrollments and
the associated tuition revenue from financial aid programs
[8, 12]. As such, accurately predicting enrollment and opti-
mizing how student aid is disbursed is critical to enrollment
management with financial implications that cascade across
the entirety of an institution. In this work, we developed
an approach to address this challenge, implemented it for
a recent entering class, and found that it far outperformed
previous strategies.

Predicting enrollment and optimizing the allocation of stu-
dent aid requires data on student admissions and opera-
tional budgets. This data is stored in institutions’ orga-
nizational databases or can be extracted from operational
records. However, despite having this data on previous en-
rollments and finances, institutions are often slow to lever-
age it to gain actionable insights and improve institutional
processes [20, 26, 14]. What’s more, using data for insights
in education is less prevalent at traditional campuses (i.e.
schools where learning is primarily on-campus) and more
common in online and computerized environments, which
are more amenable to the collection and analysis of digi-
tized data [17]. To this end, traditional universities remain
“data-rich” but are “information-poor” in that they have the
raw data needed to extract intelligible insights but are un-
able to do so due to infrastructure limitations and untrained
personnel, among other reasons [21]. This results in the out-
sourcing of data-centric enrollment work (including develop-
ing scholarship disbursement and enrollment strategies) to
full-service consulting firms, which do not disclose their pro-
prietary approaches or how their results are evaluated [11].
The lack of motivation for consulting services to dissemi-
nate their work coupled with institutions trying to maintain
competitive advantages in recruitment limits the extent of

!See https://bit.ly/2Scxqj6 as a recent example.
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published research on how institutions can utilize data to
improve recruitment processes. As a result, this dearth of
literature provides little to demonstrate how data mining
and machine learning can assist in the critical mission of
enrollment management and in allocating financial aid.

In this project, we mine data from a large, public univer-
sity in the United States (US) to optimize the disbursement
of a merit-based scholarship for domestic non-resident stu-
dents. We do this in two broad steps. In the first step, we
create a predictive model of student enrollment using his-
torical student application data. In the second step, we use
a genetic algorithm to optimize scholarship disbursement to
maximize student enrollment based on the predictive enroll-
ment model from steps. We conducted this work during a
recent admissions cycle of the university and the optimized
awards were given to a recent entering class. After seeing
improvement in student enrollment yield and an increase of
millions of dollars in annual tuition revenue, the university
incorporated our approach into their enrollment manage-
ment process. We believe this project is a case study for
other institutions seeking to similarly leverage institutional
data for improving enrollment forecasting and financial aid
allocation.

2. RELEVANT WORK

The following discussion of relevant work is not exhaustive
but is intended to give examples of relevant approaches with
a focus on more recent work. While there is some work show-
ing how to predict enrollment, there is very little showing
how to allocate scholarships and hardly anything that ties
the two together.

2.1 Predicting Enrollment

A few studies have employed machine learning and data min-
ing techniques to predict university enrollment using non-
neural approaches. DesJardins developed a logistic regres-
sion model using a dataset of approximately 14,400 students
from an undisclosed tier I research university in the US.
DesJardins’ model gave an area under the receiver operat-
ing characteristic curve (AUROC) of 0.72 when predicting
whether or not a student will enroll [5]. Similarly, Goenner
and Paul used logistic regression to predict which of over
15,000 students at a large US university would eventually
enroll [7]. Their predictive model gave an AUROC value of
0.87. Nandeshwar and Chaudhari used a suite of learners to
predict which of approximately 28,000 students would en-
roll at West Virginia University [16]. They were interested
in variables contributing to students’ decisions (finding fi-
nancial aid to be an important factor) and did not give an
assessment of how well their models fared outside of accu-
racy (which was about 84%).

In addition to the above studies examining non-neural ap-
proaches for predicting enrollment, studies have also found
that neural approaches fare very well for the same task and
often perform better than non-neural approaches. For ex-
ample, Walczak evaluated different neural network designs
when predicting student enrollment at a US liberal arts col-
lege, stressing the problem as one of resource allocation [24].
Using a few thousand students, Walczak found that back-
propagating neural networks fared best among those com-
pared. Walczak and Sicich later compared neural networks
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versus logistic regression to predict enrollment at two US
universities [25], finding that neural networks performed bet-
ter than logistic regression. Chang used logistic regression,
decision trees, and neural networks to predict the enrollment
of applicants at an undisclosed university, also finding that
neural networks outperformed other models when judging
by classification accuracy [3].

2.2 Scholarship Optimization

While there are some examples of works examining the use of
machine learning in predicting enrollment, there is very little
detailing scholarship disbursement strategies, especially ones
leveraging machine learning and/or numerical optimization
techniques. One example is the work of Alhassan and Lawal,
who demonstrated the use of tree-based models for deter-
mining which students would be awarded scholarships in
Nigeria [1]. Alhassan and Lawal describe the results as
“effective” compared to approaches previously used but did
not provide additional insight on the success of their ap-
proach. Spaulding and Olswang demonstrated the use of
discriminant analysis to model the enrollment decisions of
students based on varying need-based financial aid awards
at an undisclosed university in the US [22]. They found that
changes in their award policy would yield only small upticks
in enrollment.

One work used machine learning to predict enrollment in
conjunction with a numerical optimization technique to dis-
burse scholarships. Sarafraz et al. used neural networks with
genetic algorithms to optimize financial aid allocations and
while our research is similar in spirit, there are a few notable
differences [19]. Firstly, the scholarship fund optimized in
this work is merit-based, meaning there are upper and lower
bounds on scholarship awards that are specific to each stu-
dent. This makes for a more difficult optimization task. We
also examine alternative predictive models beyond just neu-
ral networks (such as ensemble approaches) and use a larger
dataset in terms of both the number of observations (i.e.
students) and the number of features (over 72,000 observa-
tions vs 4,082; over 100 features vs 6). We also provide a
comprehensive description of final model performance across
multiple metrics and a detailed outline of how genetic algo-
rithms can be used for aid disbursement, including a binning
framework to drive the optimization task. Finally, we share
real-world enrollment metrics after employing the scholar-
ship optimization to demonstrate the effectiveness of our
approach.

3. METHODS

We present the methods for this work by first giving an
overview of the setting; then, we describe the data and fea-
ture engineering; we then discuss how we predicted enroll-
ment; finally, we discuss optimization constraints and the
optimization process. The overall process for this work is
shown in Figure 1. Due to the sensitive nature of the data
and the fact that it contains personally identifiable infor-
mation (i.e. student names, addresses, and high schools),
we are unable to make it widely available. However, we
present the methods below with as much transparency as
we can to allow others to replicate the work. We used the
Python programming language and implemented feature en-
gineering and predictions using pandas and sci-kit learn, re-
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spectively [18]. We developed genetic algorithms using Dis-
tributed Evolutionary Algorithms in Python (DEAP) [6].

3.1 Setting

This scholarship optimization work was performed at a large,
public US University (the University?). The scholarship
fund examined was created to maintain the University’s aca-
demic standards while maximizing the enrollment of first-
time, first-year (freshmen) domestic non-resident (DNR) stu-
dents by giving them financial incentive to attend the Uni-
versity. DNR students are students from the US who are not
from the state in which the University is located. DNR stu-
dents account for larger tuition charges than their resident
counterparts so their enrollment is of high importance from
a budgeting perspective. Tens of millions of dollars in total
are awarded annually to these students from the scholarship
fund with millions eventually given to students who enroll.

The University is on a quarter-based term system and a
vast majority of incoming freshman students start in the fall
after applying during the preceding fall and being notified
of their acceptance in the preceding spring. The scholar-
ship fund (henceforth referred to as the “DNR scholarships”
for domestic non-resident scholarships) was designated to
be disbursed for equal amounts across three academic quar-
ters for each of four years (12 quarters total). The DNR
scholarships were to be disbursed based on merit. As such,
students with higher academic profiles, as defined later, were
given equal or larger scholarships than those with lower aca-
demic profiles, regardless of financial need. Additionally,
only freshmen DNR students who were accepted to the Uni-
versity were eligible for a DNR scholarship award. All ad-
mitted DNR students were automatically considered for a
DNR scholarship and students did not need to apply for the
scholarship.

In years prior, the disbursement strategies for the DNR
scholarship were developed by external consulting services.
Starting in 2018, the disbursement strategy was brought un-
der the technical stewardship of the University. The first
application cycle under the stewardship of the University
(i.e. the fall 2018 entering class) is the application cycle for
which we optimized scholarship disbursement and detail in
this writing. The models that were previously developed for
the disbursement of the scholarship fund were proprietary
to the consulting services and could not be leveraged. How-
ever, student application, enrollment, and scholarship data
from prior years was available. When describing results, we
compare the results from our approach to that developed by
the consulting services. We cannot compare the approach
detailed in this writing to a completely un-optimized ap-
proach or one that is randomized because the scholarship
has never been disbursed in such a manner.

Award-receiving students concurrently learned of the amount
of their scholarship and of their admittance to the Univer-
sity. However, not all applications were scored by admis-
sions officers when the first awards were given to students.
This was primarily due to the admissions review timeline at
the University. As such, we did not know of every admit-

2University administrative offices requested that the insti-
tution not be identified.

ted student at the time of optimization yet the scholarship
awards were only to be given to admitted students. Thus,
the 2018 entering class’s data could not be used directly in
the optimizations. Instead, we used data from prior years
to develop a fund allocation strategy and then applied this
strategy when disbursing scholarships to the 2018 entering
class. This was with the expectation that applicants in the
2018 applicant pool were statistically similar to years prior
across all the variables used in the modeling and we checked
to ensure that this was in fact the case using individual t-
tests.

3.2 Data

The data for this work consisted of information on all fresh-
men DNR applicants to the University from 2014-2017 with
usable data. This totaled 72,589 students. The data was
compiled from two major institutional sources: the students’
admissions applications and their Free Application for Fed-
eral Student Aid (FAFSA) information. The FAFSA is an
application prepared by incoming and current US college
students to determine their eligibility for financial aid. Ex-
amples of data from students’ admissions applications in-
clude their high school coursework, entrance exam scores,
college GPA (if they had taken classes for credit), whether
they were a first-generation college student, and their par-
ents’ educational attainment. These were all self-reported
and verified by the University as needed. Data directly from
and derived from student FAFSA filings included students’
family income, their expected family contribution to col-
lege expenses (as calculated by the University), and loan
amounts awarded to the student. About 66% of students
had filled a FAFSA. Also included in the data were indi-
cators of whether each student eventually enrolled at the
University. Of the 72,589 students in the dataset, 5,081 en-
rolled (7.00% of all). Demographic variables such as gender
and race were available but were not used as discussed in
Section 4.1.

The data included tuition amounts students would pay on
an annual basis, their financial aid grants and scholarships
awarded (outside of DNR scholarship awards), and their
DNR scholarship award amount. These variables were not
included in any prediction or optimization model on their
own. Instead, we created a “reduced_tuition” variable
which was the annual tuition amount for the students less
their total grants and scholarships (i.e. the other two vari-
ables summed). We used this variable as a single financial
aid and tuition-related feature for the optimization process.
This feature is not altered when developing the predictive
classifier but is altered during the optimization task, during
which the response of students to different award amounts
are simulated.

3.3 Feature Engineering

Prior to prediction and optimization, we engineered features
from existing variables. First, we either converted categor-
ical variables to dummy variables or replaced them with a
binary indicator variable. Then, we grouped students based
on their FAFSA award amounts into 6 discrete bins (which
were in line with University financial aid record-keeping),
each of which was used as a categorical feature. We cre-
ated binary indications of whether students attended each
of the 10 most popular high schools for student applications
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Figure 1: Process for optimizing scholarships, starting with data from institutional databases and ending with disbursements.

and did the same for the 10 most popular states from which
students applied. A binary indication was also created for
a student athlete designation as each sport had its own ap-
plication codes. In addition, we also created a separate bi-
nary indication for whether the student was transferring any
credits from a college in high school program. Students also
indicated their academic interests on their applications to
the University. We pulled these from their applications and
grouped them into 12 broader categories based primarily
on the college/department they were associated with at the
University (e.g. “Engineering”, “Humanities”, “Health Sci-
ences”, etc.). We then created binary indications of whether
a student was interested in each of the categories. Only stu-
dents’ first application to the University and the resulting
admissions/enrollment decisions were included in the data.
This ultimately resulted in a total of 108 features extracted
from students’ University and FAFSA applications.

Not all applicants filed a FAFSA form and we imputed miss-
ing FAFSA-related values. We performed this imputation by
building a separate gradient-boosted regression tree model
for each FAFSA-related feature using all features that were
complete. We then used these regression models to predict
the missing values. Only FAFSA-related values were missing
and no other features needed to be imputed.

3.4 Predicting Enrollment

To predict enrollment, we first randomly divided the data
using a 80-20 training-test split, with 57,359 students in the
training set and 14,340 students in the test set. We did
not re-balance the data with respect to classes. We scaled
the training data by subtracting the median of each fea-
ture and dividing by the feature’s interquartile range. We
subsequently scaled the test data using the scaling values
from the training data. The binary outcome variable indi-
cating whether the student enrolled at the University was
not scaled.

After performing the training-test split, we trained 7 ma-
chine learning (ML) classifiers on the training set to predict
enrollment. These classifiers were: a bagging tree ensemble
(BC), gradient boosted trees (XGB), K-nearest neighbors
(KNN), random forests (RF), regularized logistic regression
(LR), support vector machines (SVM), and a neural network
with 3 hidden layers (MLP). We tuned the hyperparameters
for each of the classifiers using 5-fold cross validation on
the training set. We report performance from all classifiers
on the test set, which was not used to train the classifiers
and only used to evaluate final performance. We used the
classifier with the best performance to optimize scholarship
disbursement.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

3.5 Optimizing Scholarships
3.5.1 Genetic Algorithms

After developing a classifier to predict enrollment, we used
the predictions from the classifier as an objective function
in optimization. The aim of the optimization was to de-
velop a strategy that maximized student enrollment from
the DNR scholarships. In other words, the optimized ap-
proach disbursed scholarships in a manner that maximized
the number of students who would enroll at the University
from a pool of admitted students to the University. In this
work, we used a genetic algorithm (GA) for optimization as
GAs are known to work well with a well-defined measure to
optimize (i.e. student enrollment) but not a well-defined,
continuous, and/or differentiable objective function. GAs
are also known to find near-optimal solutions quickly, which
was essential when we wanted to rapidly outline and iterate
across different budgeting scenarios early in our modeling.

GAs are a class of evolutionary algorithms and are inspired
by biological evolution. GAs generally involve iteratively
starting with a population of chromosomes, undergoing se-
lection across this population according to a measure of fit-
ness, using genetic crossover and mutation to produce off-
spring from the most fit individuals, and then using this
offspring as the population for the next iteration [15]. The
overall population fitness improves with each iteration and
the GA eventually converges towards an optimal solution.
In this work, we start with a population of award disburse-
ment strategies whose “genetic material” (chromosomes) are
a set of scholarship award values; the measure of fitness to
assess these individuals is based on predicted enrollment af-
ter accounting for constraints; and the crossover and muta-
tion functions used to create offspring are based on altering
scholarship award values.

We used the data for the 2017 admitted class in the opti-
mization of scholarship funds. In all, this was 9,479 students
(Ntotar). In this sense, we used data from the year prior to
optimize the disbursement for the 2018 entering class. We
pared the data used in optimizations down to a single year’s
application cohort to avoid having to consider if any of the
optimization constraints in Section 3.5.3 were being violated
for each of the application years simultaneously.

3.5.2 Binning Students
We generated a set of possible scholarship awards that spanned
Smin to a chosen maximum (Smax) in $300 increments and
included $0. We did not determine Smax beforehand but
instead set it such that the optimization procedure did not
generate an output that included a Smax scholarship award.
Smin Was evenly divisible by $300 and we generated possible
scholarship awards in $300 increments to satisfy constraint

32



(4) from Section 3.5.3. In all, there were over 20 unique
scholarship award values and only these award values were
used in the optimizations.

Part of the difficulty of this particular optimization task lies
in the fact that awards were to be given in a merit-based
manner. As such, the scholarship award for any student is
dependent on the awards of students with similar academic
profiles. For example, if one was to rank all admitted stu-
dents in the application pool based on a measure of merit,
the minimum possible award given to a particular student
would be determined by the award given to the student with
the merit that is immediately lower. Similarly, the maxi-
mum award for a particular student would be equal to the
award given to the student with the merit that is immedi-
ately higher. As such, if optimizing on a per-student basis,
altering the award for any given student to influence their
enrollment decision could result in a cascade that subse-
quently effects every other student’s award amount. This
results in a very complex fitness landscape when optimizing
scholarship awards on an individual basis.

To resolve this issue of an optimization cascade, we first
ranked and then binned students based on academic merit
such that all students in the same bin received the same
scholarship award. To perform this binning, we sequen-
tially ranked students based on 3 variables: their appli-
cation academic score, their high school GPA, and their
scores on college entrance exams, in that order. This rank-
ing was students’ “academic profile.” Each student’s ap-
plication academic score was based on a holistic scoring of
their academics and was the primary variable for determin-
ing their academic profile. We were provided this metric
by the University admissions office and it was not calcu-
lated/determined by us. Ties between students having the
same application academic score were broken by looking at
their high school GPA; any remaining ties thereafter were
broken using students’ entrance exam scores. Once students
were ranked, they were divided into 20 ventiles based on
their academic profiles (i.e. students were grouped across
every 5th percentile) with each ventile receiving the same
scholarship award amount. Using ventiles allowed for us to
have sufficient flexibility when exploring the fitness land-
scape during optimization while also not being so granular
as to continually be caught in local extrema. Additionally,
ventiles helped mitigate the effect of optimization cascades
by giving identical awards to students with similar academic
profiles. We refer to each of these ventiles as a “bin” and each
bin served as the chromosomal building block for the GA. A
single scholarship allocation strategy consisted of the schol-
arship awards across all 20 scholarship bins and is referred
to as an “individual” henceforth when used in the context
of the GA. Thus, each individual’s genetic material can be
thought of as being in the form of chromosomes composed
of scholarship award bins. It should be noted that we used
ventiles after examining the optimization results from other
binning strategies (namely using 10, 15, and 25 bins) and
finding them to give lower predicted enrollments. We did
not, however, attempt to find an optimal bin number be-
yond this but do intend to explore this in the future.

After binning students, we created a fitness function to eval-
uate the effect of altering the reduced_tuition variable on

student enrollment. Specifically, this function took the ge-
netic material of a scholarship individual (i.e. a set of schol-
arship awards for each bin) and then re-evaluated the re-
duced_tuition variable for each student based on their up-
dated DNR scholarship award. As noted above, we created
the reduced_tuition variable by taking the tuition due for a
student and subtracting their total grants and scholarships;
it was the only financial aid and tuition-related variable used
in the predictive model. The function re-calculated each stu-
dent’s likelihood for enrollment based on the updated values
for reduced_tuition using the predictive enrollment model.
The final output for the fitness function was a calculation of
the number of students predicted to enroll for a given schol-
arship individual, which we used as the fitness criterion for
evaluating individuals.

3.5.3 Modeling Constraints

Several constraints were posed on the scholarship disburse-
ment by University administrators. Due to University pol-
icy, exact values for awards and budgets will not be dis-
cussed. Some constraints on the disbursement strategy were
as follow, where F' represents funds in DNR scholarship of-
fers, B represents funds in the DNR scholarship budget, NV
specifies a count of students, and S specifies a scholarship
award amount:

1. The total amount spent on DNR scholarships (Fypent)
cannot exceed a pre-determined amount (Bspent ):
Fspcnt S Bspcnt

2. The total amount offered to students in DNR scholar-
ships regardless of whether they enroll (Fogered) cannot
exceed a pre-determined amount (Bofrered):

Foffered S Boffered

3. The percentage of admitted students who are awarded
scholarships (Noawardea ) Should be approximately equal
to a pre-determined percentage (Nogtarget):

N%awarded ~ N%target

4. The award amounts must be divisible by $300 to allow
for round hundred-dollar splits across three academic
terms.

5. There is a minimum value for a single scholarship award
(Smin) but no pre-determined maximum value.

The organization of the population, individuals, and bins for
the GA optimization is shown in Figure 2. We generated an
initial population of p individuals by randomly selecting K
scholarship awards (one for each bin) from the set of possi-
ble scholarship awards and sorting for each individual. For
this work, p = 1000 and K = 20. Each bin contained the
same number of students (Npin), which was equal to %
All students in the same bin received the same award for a
given individual; awards were not unique to each bin and
could be duplicated across a given individual. Npin, multi-
plied by the scholarship award value for each bin equalled
the funds awarded for that respective bin; the sum of these
across all K scholarship bins for an individual was Fofered
for that individual. The predicted number of enrollees for
each scholarship bin multiplied by the award for that re-
spective bin equalled the funds spent for that bin; the sum
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Figure 2: Genetic algorithm setup. Individuals (z) are schol-
arship allocation strategies of K scholarship bins (j). The
population consists of p individuals. Each S;; is a scholar-
ship award value for the " individual and the j*" schol-
arship bin. The bins are sorted based on academic profile
such that S;1 < Si2 < Siz... < S;k for any given ¢ (but not
necessarily across individuals). For this work, K = 20 and
p = 1000.

of these across all K scholarship bins for an individual was
Fypent for that individual. The number of bins with non-zero
award values divided by K was equal to Noawardea for an
individual.

We penalized each individual’s fitness if the optimization
constraints above were violated. We initialized a single penalty
coefficient (o) to 1.0 and then successively enforced each of
the following squared penalties for a given scholarship indi-
vidual:

e if too much was spent on scholarship awards:
Bspent \2
Fspent > Bspent — 0 =0 % (ﬁ)
e if too much was offered in scholarship awards:
By 2
F > B o = o * (Beotfered
offered offered ( Fofforod )

e if too many students were awarded a scholarship:
Mf

N > N — 0 =0%
Y%awarded Yotarget (N%awardcd

e if too few students were awarded a scholarship:
Neawarded )2

Ny < N — 0 =0%
Y%oawarded Yotarget ( N%target

Ultimately, we multiplied the output of the fitness function
(i.e. the predicted enrollment count for an individual) by
the penalty coefficient to penalize constraint-violating indi-
viduals. If there were no constraints violated, the penalty
coefficient was 1.0 and the fitness evaluation of the individ-
ual remained unchanged.

3.5.4 Optimization Process
The approach for the GA was as follows. We randomly
generated the initial population of individuals as described
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above. We then calculated the fitness of each individual and
took a subset of the most fit individuals (10%) as the basis
for the next generation of the population. We then employed
genetic crossover to this subset of the population to generate
offspring. We used two-point genetic crossover, wherein two
points were randomly selected along chromosomes and the
genetic material from one individual was swapped with that
from another between the two points, much like a two-point
crossover mutation in nature. In other words, for a pair
of randomly selected individuals, we randomly selected two
scholarship bins from ventiles 1 through 20 and all scholar-
ship award values between the two bins from one individual
were swapped with those from the other individual and vice
versa.

After using crossover to refill the population, the offspring
underwent mutation. We used three types of mutations: an
increase mutation, a decrease mutation, and a swap muta-
tion. For a mutation, we randomly selected an individual
and then randomly selected a bin from this individual. The
award for this bin was either increased to another possi-
ble award amount (increase mutation), decreased to another
possible award amount (decrease mutation), or swapped for
another randomly selected award amount (swap mutation).
The probability of performing either an increase, decrease,
or swap mutation were equal unless the scholarship award
value equaled Spmin Or Smax, in which case we eliminated
the possibility of a decrease or an increase mutation, re-
spectively. Once a particular mutation was selected for a
given individual and bin, a single award value was randomly
selected from all possible award values that satisfied the con-
dition of the mutation and used in the mutation. After mu-
tations, we re-sorted the awards across each individual to
ensure students with higher academic profiles received larger
awards. We kept the initial subset of the most fit individ-
uals unchanged during crossover and mutation; instead, we
altered replicas of these individuals to compare the most
fit individuals from one generation to those from the next
generation. The new generation of individuals then served
as the population for the next algorithmic iteration. We
repeated this process for 20 generations of the population
and used the most fit individual thereafter as the scholar-
ship allocation strategy. The process for the GA is shown
in Process 1.

Process 1: Genetic algorithm process for scholarship allo-
cation (parameters for this work are in parentheses)

1: Initialize population (p = 1000 with K = 20 bins each)

2: Evaluate fitness of each individual (where fitness is
enrollment count predicted by classifier)

: For each of G generations: (G = 20)

Keep subset of population with highest fitness (10%)

Use two-point crossover to fill population

Mutate random bins of random individuals

Evaluate fitness of each individual

: Use individual with highest fitness after G generations

SR o

4. RESULTS AND DISCUSSION

Using the methods described in Section 3, we developed a
predictive classifier of student enrollment and used it in con-
junction with a genetic algorithm that optimized the alloca-
tion of a scholarship fund. Ultimately, the university saw a
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Table 1: Classifier performance sorted by rank across all
metrics. Names of classifiers are provided in Section 3.4.

Model || Accuracy | AUC | F1-score
1. XGB 93.10% 0.846 0.905
2. RF 93.06% 0.848 0.901
3. MLP 93.01% 0.845 0.902
4. BC 93.05% 0.833 0.901
5. LR 92.96% 0.805 0.900
6. SVM 93.00% 0.780 0.900
7. KNN 92.80% 0.793 0.893

23.8% increase in enrollment yield after using our approach.
This resulted in millions of dollars of additional annual tu-
ition revenue. The following section presents these results
in greater detail in the same order as the methods.

4.1 Predicting Enrollment

Previous studies have shown the effectiveness of ML in pre-
dicting enrollment. We examined seven different predictive
classifiers for this task. We show the performance of these
classifiers in terms of prediction accuracy, AUROC, and F1-
score in Table 1. We used the same observations as a test
set when comparing performance across classifiers; for the
test set, the majority class represented 92.8% of observa-
tions (i.e. 7.2% of students in the test set eventually en-
rolled at the University). All classifiers performed similarly
in terms of both accuracy and F1-score. Because of the large
class imbalance, there were only modest gains in terms of
accuracy over the majority class representation. Ensemble
classifiers (RF, XGB, and BC) had the highest accuracies
while KNN performed on par with the majority class rep-
resentation (note: it was checked that the KNN model did
not predict that all observations were of the majority class).
The highest Fl-score, meanwhile, was given by the XGB
classifier, though it was not substantially higher than other
classifiers.

We show ROC curves for the classifiers in Figure 3. The gen-
eral shape of the ROC curves was similar across the classi-
fiers but with meaningful variation in AUROC. Specifically,
RF, XGB, and MLP tended to perform similarly in terms of
AUROC and had the highest AUROC values. This is in line
with previous work where neural networks tended to per-
form well when predicting enrollment, even without more
complex architectures in this case. That said, the ensemble
classifiers performed similarly well for the task at hand.

Demographic data was not used in the models. Including de-
mographic variables in the prediction models would improve
predictive performance to some degree, albeit at the expense
of potential explicit discrimination with respect to recipient
characteristics. As such, we decided to exclude demographic
variables when building the classifiers. While doing so lim-
its the degree of explicit discrimination, the possibility of
implicit discrimination remains - particularly with respect
to associations between demographics, income, geography,
and academics. Checking and controlling potential demo-
graphic imbalances is beyond the scope of this particular
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00 02 04 06 08 1.0
False Positive Rate

Figure 3: ROC curves for enrollment prediction

work but was handled by stewards of the DNR, scholarship
fund after optimization. It should again be noted that the
DNR scholarships were designated to be awarded in a merit-
based manner and financial need was not be considered in
the allocation process.

We examined classifier performance across all metrics and
decided to use XGB when optimizing scholarship alloca-
tion. Prior to optimization, we calibrated the classification
threshold for the prediction probability to the nearest one-
hundredth such that the number of students predicted to
enroll by the model was nearest to the actual enrollment
count. By calibrating the threshold in this manner, we used
a lower probability decision threshold (0.22) than the value
of 0.5 that is typically used in binary classification. We un-
derstood that doing so came at the expense of an increased
rate of false positives (Type I error) but it also allowed for
the predicted enrollment counts to be closer to actual counts,
which was necessary when discussing predictions with ad-
ministrative stakeholders. We show the effects of this cal-
ibration in Figure 4, where the confusion matrix using the
standard classification threshold of 0.5 is shown along with
the confusion matrix using the calibrated threshold of 0.22.

Of note from the confusion matrices is how well students who
did not enroll at the University could be identified. On the
other hand, it was much more challenging to identify those
who would enroll. This speaks to the selectivity of the Uni-
versity in that many of the candidates who would not enroll
were simply those who were not accepted to the University
(students’ acceptance to the University was not included as

Initial Adjusted
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Predicted Label: Enrolled?

Figure 4: Confusion matrices for predicting enrollment us-
ing XGB and a classification threshold of 0.5 (left) and a
calibrated classification threshold of 0.22 (right)
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Table 2: Predicted enrollments after calibrating the classifi-
cation threshold for test data and all data (training + test
data).

| Test Data | All Data

Actual 1,032 5,081
Predicted 1,049 5,166

a feature during predictions). Concurrently, the difficulty
with identifying students who will enroll aligns with the
fact that these DNR students are applying to a university
that is away from their respective homes and social bases.
Also, those that are accepted to the University tend to be of
higher academic standing, giving them more potential col-
lege choices. Thus, the general likelihood of a DNR student
enrolling is difficult to determine when considering potential
social factors and college options.

Lowering the classification threshold resulted in predicted
enrollment counts in line with what was seen in the data,
as shown in Table 2. Calibrating the classification thresh-
old also allowed for a greater number of true positives while
also balancing the number of false positives and false neg-
atives. We also examined the effect of similarly calibrating
the classification thresholds when using the other ML clas-
sifiers and determined that using XGB would still be viable
for scholarship optimization.

4.2 Optimizing Scholarships

After we developed a model for predicting student enroll-
ment, we used a GA to design a scholarship disbursement
strategy. We used the GA in a setup with students grouped
in ventiles and each ventile receiving the same award amount.
The genetic material (awards for each ventile) for individ-
uals (allocation strategies) was altered for each iteration of
the GA and then fitness was determined. Fitness was based
on predicted enrollment after accounting for the violation
of constraints. Due to the application review timeline at
the University, we did not know which students of the 2018
entering class would be admitted and used the prior year’s
application data (2017) to develop a disbursement strategy.
Because the disbursement strategy relied on students being
grouped into ventiles, we applied it to the most recent en-
tering class after checking that the two classes were similar
across academic-related variables using paired t-tests and
chi-squared tests. Additionally, the binning strategy and
the use of ventiles alleviated concerns about the size of the
entering class as specific award amounts were disbursed to
proportions of the admitted class and not to a fixed count
thereof.

We show fitness (predicted student enrollment) measures
across the population of individuals for each generation of
the GA in Figure 5. As expected, the maximum, mean, and
median values of fitness increase across generations, though
these increases are much smaller for later generations. The
minimum fitness values for the population follow a similar
trend with some variation. All metrics eventually converge
to the predicted enrollment, which is shown as a percentage.
We intend to use Monte Carlo simulations in the future to
outline a distribution of likely enrollment counts during the

optimization process.

The exact award amounts for the DNR scholarship cannot be
disclosed due to University policy. Additionally, the percent-
age of students receiving scholarship awards was not consis-
tent across previous years. For example, in some years, 30%
of accepted DNR students may receive a scholarship while
in other years, 70% of accepted DNR students may receive
a scholarship. Furthermore, tuition charges change annu-
ally at the University. Thus, in an attempt to provide a
normalized measure for comparison across entering classes
without disclosing exact award amounts, we compare award
allocation strategies across time based on the discount on
tuition. For example, a student receiving a $5,000 schol-
arship when tuition is $20,000 receives a 25% discount on
tuition. We show previous allocations of the DNR scholar-
ship to scholarship-receiving students as a discount on tu-
ition in Figure 6. This discount on tuition factors in tuition
cost for a full-time DNR student but not additional living
or educational expenses (i.e. housing, food, books, etc). To
further illustrate the use of discount on tuition, when look-
ing at Figure 6, it can be seen that approximately 15% of all
scholarship-receiving students received an award that dis-
counted their tuition by 8-12% in 2014 while in 2017, ap-
proximately 60% of students received a similar award. For
each of the bands in Figure 6 (six bands per entering class),
only a single scholarship award amount fitting within a given
band was given to students for a single entering class. It is
apparent from examining previous allocations that the man-
ner in which the awards were historically allocated shifted
greatly from year to year. As noted previously, these pre-
vious allocations were determined by a external consulting
services and we could not leverage their underlying approach
or insight in this work.

We also show the scholarship allocation strategy for the
2018 entering class (for which the scholarship disbursement
was optimized in this project) in Figure 6. This strategy
tended to favor smaller scholarships, which aligns with the
optimized allocation strategy that Sarafraz et al. reported
[19]. In fact, scholarship stewards had initially placed a
lower limit on the scholarship awards (Smin) during model-
ing, which was equal to the lowest scholarship amount that
had historically been awarded to students. This lower limit
was between a 8-12% discount on tuition. After we discussed
preliminary results of the optimization and the effectiveness
of smaller awards with the scholarship stewards, it was deter-
mined that the lower limit on the awards would be changed

max mean median min
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Figure 5: Fitness measures across generations of genetic al-
gorithm. Fitness was equivalent to predicted enrollment.
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Figure 6: Historical scholarship allocations for the DNR scholarship. The highlighted year (2018) shows the optimized
scholarship allocations from this work. Upper bounds for the bins indicating discounted tuition are inclusive. Percentages of
students given awards are percentages of award-receiving students only.

Table 3: Historical, predicted, and actual yields after schol-
arship disbursement.

|| Timeframe | Yield | % Increase
Historical | 2014-2017 | 10-12% | N/A
Predicted 2018 13.9% 15.8%
Actual 2018 14.8% 23.3%
Smin .

to Thus, the 2018 entering class had some scholar-
ship awards that were lower than those received by previous
entering classes. These lower awards discounted tuition by
4-8%. 1t is also noteworthy that the optimized disbursement
strategy gave a distribution of awards that was right-skewed
(with more of the awards being lower in value), in contrast
to previous allocation strategies, which were predominantly
left-skewed (with more of the awards being higher in value)
or near uniform. This speaks to the idea that smaller schol-
arships awarded to students of lower merit may be more ef-
fective than larger scholarships are for those of higher merit
(keeping in mind that students who received smaller awards
were also of lower merit for this merit-based scholarship).
This aligns with intuition that those with higher academic
profiles have more college options and require additional re-
cruitment, be it additional financial aid or in some other
form. It could also relate to the idea that higher-performing
students come from more advantaged socioeconomic back-
grounds, thereby diminishing the effect a scholarship may
have on their enrollment decisions.

After we developed the scholarship distribution strategy for
the 2018 entering class, the University distributed scholar-
ship awards to admitted DNR freshmen. We then waited
as these students indicated their enrollment decisions a few
months later. In recent years, the yield for DNR students at
the University was about 10-12% with little/no increase, as
verified by scholarship stewards, where “yield” refers to the
percentage of admitted students who enrolled at the Uni-
versity. Historical yields were not based on an un-optimized
or randomized scholarship allocation strategy but were the
product of the scholarship allocations derived by external
consulting services. Thus, because we were comparing the
results from our approach to those from a previously opti-
mized strategy (and not an un-optimized or random alloca-
tion strategy), we expected to see a modest improvement,
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if any at all. Instead, we saw a much higher increase in
yield. Table 3 shows the historical yields, the predicted yield
based on our optimized approach, and the actual yield based
on student enrollment for the 2018 entering class. When
comparing to the upper bound on historical yield (12%),
we anticipated that the scholarship optimizations would in-
crease student yield by 15.8% (12% to 13.9%) based on the
enrollment numbers we had seen during the optimizations
(which was computed using XGB and the calibrated clas-
sification threshold). In reality, yield increased by 23.3%.
This amounted to hundreds of additional students enrolling
with each paying tens of thousands of dollars annually in tu-
ition. There was also no discernible difference between the
academic aptitude of students from the 2018 entering class
and years prior. Overall, the net effect was an increase in
millions of dollars in annual tuition revenue for the Univer-
sity. The University has since incorporated our approach
into their enrollment modeling process for future disburse-
ments of this scholarship fund. Of note is that yields are
based on proportions of students that enrolled and the size
of the entering class makes little difference when compar-
ing yields. The University also admitted roughly the same
percentage of DNR students as years past and nearly all
conditions during the application process were identical to
previous entering classes. That said, the degree to which
this increased yield can be causally attributed to the schol-
arship optimizations warrants further investigation. This
may be in the form of A/B testing or some other controlled
experiment.

S. CONCLUSIONS

In this work, we show how existing data at a university can
be used to improve enrollment management. We combine
machine learning with numerical optimization and use stu-
dent application data at a public university to optimize a
scholarship fund. We find that the optimized approach in-
creased student enrollment and generated millions in tuition
revenue. Our approach has been incorporated into the uni-
versity’s enrollment forecasting.

We show that ensemble classifiers can give strong perfor-
mance when predicting enrollment and we use a binning
strategy based on student merit to make the optimization
task more tractable. This strategy eliminated the need for
per-student optimizations, thereby limiting the complexity
of the fitness landscape during optimization. After optimiza-
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tion, we see that smaller scholarship awards work better for
maximizing enrollment. In all, the University had histori-
cally seen little/no increase in enrollment yield and we pro-
jected that our optimized approach would increase yield by
15.8%. In reality, enrollment yield increased by 23.3%.

Universities are at the forefront of training the next genera-
tion of data scientists and developing data-centric tools and
techniques. However, they are far behind in applying data
science to their own administrative data and processes. This
project attempted to move them in this direction. Using a
suite of machine learning tools, we were able to increase a
university’s revenue from a scholarship fund by millions of
dollars. We think there are many similar opportunities to
harness the power of data science in the realm of education
administration, especially in resource allocation.
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