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Abstract 

Background: The importance of reading motivation has led to the development of a large 

number of self-report reading motivation measures; however, there is still a need for a usable 

measure of adolescent reading motivation that captures a large number of theoretically and 

empirically distinct constructs.  

Methods: The current paper details the development and validation of a computer adapted 

measure of reading motivation, the Adaptive Reading Motivation Measure (ARMM), which 

assesses constructs of curiosity, involvement, interest, value, challenge, grades, recognition, 

competition, avoidance, self-efficacy, perceived difficulty, preference for autonomy, social 

motivation, prosocial goals, and antisocial goals for reading.  

Results: Model fit indicated that hierarchical multidimensional models fit better than models 

without a hierarchical structure. The validation results indicate that females scored higher than 

males and younger students scored higher than older students on most ARMM scores when 

scores were derived using a higher-order model. In addition, these scores correlated significantly 

to reading behavior, engagement, and achievement and indicated high reliability.  

Conclusions: The findings suggest that the ARMM would be a valid measure to assess a large 

number of reading motivation constructs in a short period of time within a classroom setting. 

 

Keywords: Reading Motivation, Measurement, Adolescents, Validity, Computer Adaptive 
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What is already known about this topic 

• Motivation to read is considered a critical contributor to reading achievement. 

• Although there are a number of adolescent reading motivation scales, most of these scales 

only measure a few reading motivation constructs. 

What this paper adds 

• The paper describes the development of the ARMM, which measures 15 separate 

constructs as well as a general reading motivation construct and, due to the computer 

adaptive nature, is only 45 items long. 

• Findings show that the ARMM scores were sensitive to gender and grade differences 

consistent with prior reading motivation research and correlated significantly to reading 

behavior, engagement, and achievement. 

Implications for theory, policy or practice 

• Being able to assess a large number of constructs could provide useful information to 

teachers implementing reading interventions and improving instruction.  

• The ARMM was developed for fifth through twelfth grade, which would facilitate grade 

comparisons in research studies. 
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A Computer Adaptive Measure of Adolescent Reading Motivation 

Motivation to read is considered a critical contributor to reading achievement (Retelsdorf 

et al., 2011; Schiefele et al., 2012). If students lack the motivation to engage in reading, reading 

improvement will be limited (Guthrie & Wigfield, 1999) and may actually decline (Baker & 

Wigfield, 1999; Unrau & Schlackman, 2006). In the end, it is motivation that activates the 

behavior to engage in reading, making motivation an important factor in efforts to improve 

literacy (Guthrie & Wigfield, 2000). The importance of reading motivation has led to the 

development of a large number of self-report reading motivation measures, as described in a 

recent review (Davis et al., 2018). Although there are many reading motivation measures for 

elementary school students, measures for adolescents have only been developed recently, and 

many measure only a few reading motivation constructs (Davis et al., 2018). There is a need for 

a usable measure of adolescent reading motivation that captures a large number of theoretically 

and empirically distinct constructs. 

Theoretical Perspectives 

In the review of reading motivation scales Davis et al. (2018) found that while quite a 

few scales of reading motivation were directed by one (De Naeghel et al., 2012) or even multiple 

theories of motivation (Wigfield & Guthrie, 1997), there were still a large number of scales that 

had no theory identified. To add to the confusion, although quite a few different theoretical 

perspectives have driven item development for these scales, items appear similar despite having 

different construct labels (Davis et al., 2018; Neugebauer & Fujimoto, 2018). Like Guthrie and 

Coddington (2009) we believe that focusing on only one theory of motivation may limit the 

scope and multidimensionality of a measure. Our understanding of reading motivation derives 

from several theories including self-determination theory (Ryan & Deci, 2000), achievement 
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goal theory (Meece et al., 2006), expectancy-value theory (Wigfield & Eccles, 2000), social 

cognitive theory (Schunk, 2003), and interest development theory (Hidi & Renninger, 2006). We 

define reading motivation as “students’ goals, values, beliefs, and dispositions towards reading” 

(Guthrie et al., 2013, p. 10), which implies that reading motivation is multidimensional and is 

based within many different theories related to goals, values, and beliefs.  

Adolescent Reading Motivation 

Reading motivation research has indicated that reading motivation declines over time 

(Schaffner et al., 2016). The decline in intrinsic reading motivation may be related to the typical 

reading practices of secondary schools such as less reading instruction in content area classes, 

lack of choice in reading, poorer personal connections with teachers, less connection with 

reading and real-world interactions, and more complex texts compared to elementary school 

(Guthrie & Davis, 2003). Due to this decline, it could be argued that it is important for secondary 

teachers to monitor reading motivation in their classrooms. However, assessing reading 

motivation through observation is difficult, especially in secondary schools where teachers see 

students for only a short time (Guthrie & Davis, 2003). Measuring engagement and motivation in 

reading can be difficult and time-consuming even for trained observers (Lutz et al., 2006; 

Neugebauer, 2016). 

A dynamic adolescent reading motivation measure could help teachers examine the 

nuances of reading motivation and determine interventions that could target specific constructs 

of reading motivation. However, out of the 16 measures reviewed by Davis et al. (2018) and 

additional two published after the review, only seven, which the Adapted Reading Motivation 

Measure (ARMM) is included, were written specifically for adolescent students. Of these seven 

adolescent reading scales, only three measure a wide range of motivational concepts; however, 
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one of these three can only be used to measure reading of non-fiction texts of middle school 

students, which can limit its use. Also, only three of the seven scales were developed for both 

middle and high school students. Limiting to only a few grades may make comparisons between 

grades or longitudinal studies over a series of grades more difficult. Further, only two of the 

scales measured extrinsic motivation. Although elementary studies indicate that extrinsic 

motivation may not correlate as highly to engagement and achievement compared to intrinsic 

motivation (Wang & Guthrie, 2004), as intrinsic motivation decreases with age (Lepper et al., 

2005; Schaffner et al., 2016), extrinsic motivation may play a larger role in motivating reluctant 

adolescent readers. Finally, social motivation can be highly important for adolescents (Moje et 

al., 2008); however, it is only measured by two of the measures. 

Computer Adaptive Testing 

One way to include more constructs on a measure without increasing the number of items 

is by using computer adapted technology. Computer adaptive measures use Item Response 

Theory (IRT) to select items for each respondent based on their previous answers, so that each 

respondent only has to answer a small subset of available items. In traditional measures, all 

respondents answer the same items, which makes them longer. Although the use of adaptive 

measures for questionnaire development is well established (e.g., Edelyn & Reeve, 2007) there 

are no computer adaptive measures of reading motivation (Davis et al., 2018).  

The Current Study 

 The goal of the current paper was to describe the development and large-sample 

validation of the Adaptive Reading Motivation Measure (ARMM), an adaptive adolescent 

reading motivation survey that assesses fifteen separate reading motivational constructs. The 

development process was a multi-stage process, which included an item-writing stage, a pilot 
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test, a large field test, and a validation study. In this paper the development process is explained 

and validation findings are be presented and discussed. The following questions in the validation 

study were addressed: 

1. Which of four models, varying on degree of multidimensionality and number of 

hierarchical levels, fit the ARMM data the best? 

2. Were the ARMM scores as measured by the computer adapted version reliable? 

3. Were there differences between male and female students on the ARMM, and if so, did 

those differences align to previous research? 

4. Were there differences between younger and older students on the ARMM, and if so, did 

those differences align to previous research? 

5. Did the ARMM scores correlate with measures of reading behavior, engagement, and 

achievement? Were these correlations higher than correlations with math achievement? 

Method 

Participants 

Development and Pilot Test 

In the pilot test we administered items to 2,258 fifth through twelfth students from 32 

schools in the Midwest and West Coast United States. At the school level there was an average 

of 76.2% white students, 3.0% black students, 12.0% Hispanic students, and 3.7% Asian students 

across the participating schools. In addition, there was an average of 41.8% of students receiving 

free or reduced meal prices across the schools. 

Field Test and Cognitive Interviews 

Participating in the field test were 7,457 public school students recruited from different 

research and teaching networks in the United States (813 fifth grade, 1,428 sixth grade, 1,160 
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seventh grade, 1,090 eighth grade, 1,355 ninth grade, 563 tenth grade, 576 eleventh grade, 413 

twelfth grade students, and 59 students who did not identify their grade). Self-identified gender 

included 3,030 males and 2,711 females; 1,716 students gave no response in regards to gender. 

At the school level there was an average of 36.5% white students, 34.0% black students, 21.0% 

Hispanic students, and less than 1% other across the 209 participating schools. In addition, there 

was an average of 59.5% of students receiving free or reduced meal prices across the schools. At 

the same time as the field test cognitive interviews with students from two elementary, one 

middle, and one high school (28 girls, 25 boys) were conducted. 

Validation Study 

Participating in the validation study were 1,905 students from 43 schools located in the 

Midwestern United States (720 fifth-grade, 1,046 sixth- to eighth-grade, and 139 high school 

students). Of these students, 1.8% were Black, 0.6% were Asian, 4.0% were Native American, 

93.1% were White, and 0.5% were other. Each student took the reading behaviors, engagement, 

and ARMM scales. One participating district provided achievement data for 605 students in the 

fifth grade and 287 in sixth to eighth grade. 

Measures 

Item Development 

A goal of the ARMM developers was to measure a wide range of reading motivation 

constructs; therefore, the team systematically reviewed reading motivation measures over the last 

25 years and consulted with reading motivation experts in order to build a comprehensive list of 

constructs. In their review of past measures, the team found that some constructs, like self-

efficacy and self-concept, were too similar at the individual item-level to warrant separate 
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constructs, and therefore these constructs were collapsed into one scale for the ARMM. See the 

final construct list in Table 1 and six-point scale in Figure 1. 

Seven middle school and six high school teachers with expertise in reading and language 

arts instruction were recruited to attend a summer item-writing workshop. ARMM project staff, 

including principal investigators and consultants, and an author of the Motivation for Reading 

Questionnaire, also attended. The workshop began with an overview of the hypothesized sub-

constructs of adolescent reading motivation. The teachers received a document with a definition 

of each construct, sample items, and an overview of item-writing procedures. Working in pairs, 

members of the panel then wrote over 700 items. Given the size of the item pool, the ARMM 

staff created a text mining program to calculate the proportion of identical words in every 

possible pair of items and deleted the items that were too similar. Additionally, an experienced 

test-item editor revised the items for clarity and reading level. 

Pilot Test. ARMM staff selected 600 items (40 for each of the 15 factors) for inclusion in 

the pilot study. A total of 10 different basic forms of items were specified, using a blocked 

design, with each individual form containing 20 unique items from each of three constructs, or 

60 total items per form. Across all the forms, each of the 15 constructs was presented twice; thus 

each construct was represented by 40 unique items, for a total of 600 items. Students who 

participated in the pilot were randomly assigned to an assessment form on their school 

computers. 

Field Test 

Classical test theory item statistics from the pilot test were used to select a final pool of 

20 items per construct (300 items in total) for a model comparison study. These items had higher 

item total correlations and non-extreme item average scores based on pilot data. A total of 10 
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forms containing the 300 unique items (20 items for each of the 15 constructs) were administered 

to public school students on their school computers. In order to collect enough student responses 

to calibrate for IRT models, sparse-matrix design was used to build the test form. Sparse-matrix 

design is a calibration data collection involving items overlapping across forms. The resulting ten 

forms were named Form A, Form B, Form C, … , Form J. Each form had 60 items, four items 

for each of the 15 constructs. All items appeared on two different forms, but each student only 

had to respond to 60 items on one form. This item overlapping across test forms allows items to 

be calibrated on a common set of IRT metrics and also collects enough data without students 

taking all 300 items at one time. 

Model Comparisons. A confirmatory IRT model comparison method was used to 

compare models generated based on different construct relationship assumptions. Four either 

unidimensional or multidimensional graded response models (Samejima, 1969) were calibrated. 

In the unidimensional model only one general reading motivation dimension is extracted from 

the data. In the second model, the multidimensional model, fifteen construct factors were 

allowed to correlate with each other and items load on one of these fifteen. In the third model, 

the higher order model, the fifteen construct factors correlated with the general factor directly 

and correlated with each other indirectly through the relationships with the general factor. 

Finally, the last model was a bi-factor model (Gibbons & Hedeker, 1992), which allows for a 

general factor as well as multiple secondary factors. However, unlike the higher-order model, the 

fifteen construct factors do not correlate with the general factor. In the current paper, the fifteen 

construct factors using the bi-factor model did not correlate with each other and the covariance 

of all sixteen latent factors were set to zero. 
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Models were estimated using IRTPRO 2.1 (Cai et al., 2011), which uses the expectation–

maximization (EM) algorithm (Bock & Aitkin, 1981) and the Metropolis–Hastings Robbins–

Monro (MH-RM) algorithm (Cai, 2010). Akaike’s Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) were used to compare models. AIC and BIC are often used to 

choose among non-nested models, which one cannot do with regular fit indices like CFA. 

Cognitive Interviews. Cognitive interviews with students from two elementary, one 

middle, and one high school (28 girls, 25 boys) were conducted using an approach developed by 

Karabenick et al. (2007) to examine if students’ interpretation of the ARMM items matched with 

the research team’s intended meanings (Tonks et al., 2014).  Information from the cognitive 

interviews and IRT item discrimination parameters from the field test was used to further limit 

the number of items.  

Adaptive Reading Motivation Measure 

Findings from a simulation study (Wang & Kingston, 2018) indicated that a fixed length 

hierarchical IRT adaptive test with medium test length, administering 3 items per construct, 

could provide an accurate estimation of student scores. Since the ARMM has 15 constructs, the 

final adaptive measure would administer 45 items, 3 items per construct. In order to improve the 

quality of items administered in the ARMM, only 12 out of 20 items field tested per construct 

were selected to form the adaptive test item pool (see sample items in Table 1). These 12 

selected items per construct all had high IRT item discrimination parameters. However, for the 

grades construct the number of items with high IRT item discrimination parameters was very 

small, so only 6 items were kept for the adaptive item pool. The adaptive algorithm for ARMM 

only used the bi-factor secondary level item parameters calibrated in the field test to select items 

in order to speed the item selection and scoring process (Wang & Kingston, 2018).  
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During administration of the ARMM students are first shown one set of 15 items, one for 

each construct. Like in computer adaptive achievement tests, the items selected for the first 

round are selected to measure moderate levels of motivation. After a student takes all 15 items, 

the computer displays a new set of 15 items, one for each construct, that are selected based on 

the student’s responses from the first set. Thus, if students seem to be answering on the higher 

end of the reading motivation continuum, the student would receive items that differentiate more 

on the higher end of the continuum (“Getting good grades in reading is important to me” and “I 

enjoy reading about topics that interest me”). Likewise, if students seem to be answering on the 

lower end of the reading motivation continuum, the student would receive items that differentiate 

more on the lower end of the continuum (“I find ways to avoid reading in class” and “I make fun 

of students who like to read”). A third set is selected based on the student’s responses to the first 

two sets.  

The theta scores derived from the ARMM are decimal values that can include negative 

numbers. In order to make the scores more interpretable for teachers and researchers, we used a 

linear transformation (multiplying the scores by 16 and adding 50 points) that kept the rank and 

relevant ratings among students consistent, but changed the scores to positive integer numbers. 

Item discrimination parameters of three negative constructs (avoidance, perceived difficulty, and 

antisocial) were set to be negative (e.g. lack of avoidance) for the higher order model since that 

model assumes only positive correlation among constructs. Finally, the team used differential 

item functioning (DIF) analysis (Hidalgo & Lopez-Pina, 2004) to examine potential biases for 

grade or gender. No ARMM items showed gender or grade level DIF. 

Reading Behavior 
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Ten items measuring reading behavior were administered to the students after they were 

administered the ARMM assessment. Four of the items, three of which were adapted from the 

PIRLS 2011 student survey (International Association for the Evaluation of Educational 

Achievement, 2011), asked students to rate how often they completed certain reading tasks such 

as reading for fun or reading for homework. Another four items, adapted from four items from 

the PIRLS 2011 student survey, asked students to rate how often they read certain material (in 

print or on an electronic device) outside of school such as magazines, nonfiction texts, novels, or 

comic books. Finally, two items asked how often students read outside of school on a computer 

or electronic device. Each item had response categories of “0 - Never or almost never, 1 - Once 

or twice a month, 2 - Once or twice a week, 3 - Every day or almost every day.” These 10 items 

had a Cronbach reliability of .71. The IRT graded response model (Samejima, 1969) was used to 

score the responses of these 10 items to get IRT scores for reading behavior. 

Self-Reported Reading Engagement 

Ten reading engagement items were administered to the students after they completed the 

reading behavior items. Skinner et al. (2009) define engagement as “the quality of a student’s 

connection or involvement with the endeavor of schooling and hence with the people, activities, 

goals, values, and place that compose it” (p. 494). They further distinguish between emotional 

engagement which reflects emotional states such as “enthusiasm, interest, and enjoyment” and 

behavioral engagement which reflects “effort, exertion and persistence” (p. 495). We applied this 

to a reading context and had students rate two emotional reading engagement items (“I am very 

excited when the teacher gives us reading to do”) and eight behavioral engagement items (“I read 

a lot during free reading time in class”). Answer choices were on a scale of “0 – Not at all like 

me” to “5 – Very much like me.” These 10 items had a Cronbach reliability of .89. The IRT 
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graded response model (Samejima, 1969) was used to score the responses of these 10 items to 

get IRT scores for engaged reading. 

Measures of Academic Progress (MAP) 

MAP scores were obtained from one participating school district in the ARMM 

validation study and were used as measures of achievement in reading and mathematics. The 

Measures of Academic Progress is a computer adaptive achievement measure and was developed 

by the Northwest Evaluation Association (NWEA, 2003) in order to assess achievement level 

and growth in the areas of reading, language, math, and science. The reading MAP items are 

multiple choice and the assessment uses Rach Units that were developed by NWEA. According 

to the NWEA (2013, p. 5) the “numerical (RIT) value assigned to a student represents the level 

of test item difficulty at which he or she is capable of answering correctly approximately 50% of 

the time. The RIT scale is continuous across grades, making it ideal to track student achievement 

growth both within a school year and across adjacent school years.” Marginal reliability 

estimates (Green et al., 1984), used in IRT analysis, were high (.90 to .95) as was test-retest 

reliability (.76 to .91). 

Results 

Field test 

The first research question asked, “Which of four models, varying on degree of 

multidimensionality and number of hierarchical levels, fit the ARMM data the best?” Findings 

related to fit can be seen in Table 2. Since lower AIC and BIC estimates indicate greater fit, the 

bi-factor model was shown to be the best fitting of all four models for both AIC and BIC as well 

as the log likelihood estimate, with the higher-order model coming in a close second. The worst 

fitting was the unidimensional model. These model fit results also indicate the construct 
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relationships reflected by bi-factor or higher-order model, i.e. fifteen separate constructs and one 

general level, is closer to the true construct relationships than the one combined construct 

reflected by the unidimensional model or fifteen separate constructs without general level 

reflected by the multidimensional model. Due to these fit statistics, we decided to use both the 

bi-factor and higher-order models for the validation study with scores derived from the bi-factor 

model labeled ARMM-B and scores derived from the higher-order model labeled ARMM-H. 

Reliability 

The second research question asked, “Were the ARMM scores as measured by the 

computer adapted version reliable?” To answer this question we determined the reliabilities of 

the scores from the higher-order and bi-factor models. The marginal reliability (Green, et al., 

1984), calculated as (true score variance – the marginal posterior error variance of measurement) 

/ true score variance, is typically used in CAT IRT analysis (Wang, 2014) to provide a single 

value estimation of reliability. Thus, marginal reliabilities were used to estimate reliability for 

the ARMM-H and ARMM-B scores. Table 3 shows the reliabilities of the general and fifteen 

constructs measured with either a higher order or a bi-factor model. The reliabilities of the 

ARMM-H scores (.75 to .95) were generally higher than those of the bi-factor ARMM-B scores 

(.50 to .95) with the general scores for both were higher than all the other constructs. The lowest 

reliabilities were the bi-factor scores curiosity, value, interest, and involvement. Additionally, we 

examined the correlation between the ARMM-H and ARMM-B general scores and found it to be 

very high (r = .994, p < .001). Due to assumptions inherent in the hierarchical and bi-factor 

models, the ARMM-H construct scores correlated highly to the general ARMM-H score 

(average .79) and other ARMM-H construct scores (average .61), and the ARMM-B construct 

scores did not relate highly to the general ARMM-B score (average .045) and with the other 
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ARMM-B construct scores (average .02). On account of the low reliabilities of the fifteen 

ARMM-B scores, only the general ARMM-B score was used in further analysis. 

Gender Differences 

The third research question asked, “Were there differences between male and female 

students on the ARMM, and if so, did those differences align to previous research?” To answer 

this question, we examined differences in means among the female and male students for the 

ARMM-H scores and ARMM-B general score. Table 4 presents the means of the scores by 

gender. Females were significantly higher than males on all ARMM scores. Higher effect sizes 

were found for differences between genders on the two general scores, intrinsic reading 

constructs (involvement, value, and interest), grades, and social motivation. Those with the 

highest mean difference at the lower end of the confidence interval include social and antisocial 

motivation. 

Grade Differences 

The fourth research question asked, “Were there differences between elementary and 

secondary students on the ARMM, and if so, did those differences align to previous research?”  

To answer this question, we examined differences in means among elementary (Grade 5) and 

secondary (Grades 6-12) students for all of the ARMM-H scores and ARMM-B general score. 

Table 5 presents the means of the scores by elementary and secondary grades. Elementary 

students were significantly higher than secondary students on all ARMM scores except 

competition. Higher effect sizes were found for differences between grades on the two general 

scores, value, and anti-social motivation. Constructs with the highest mean difference at the 

lower end of the confidence interval include prosocial motivation and anti-social motivation. 

Reading Behavior, Engagement, and Achievement 
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The fifth research question asked, “Did the ARMM scores correlate with measures of 

reading behavior, engagement, and achievement?” In addition, “were these correlations higher 

than correlations with math achievement?” The correlations of the ARMM-H scores and 

ARMM-B general score with reading behavior and engagement are on Table 6. All ARMM-H 

scores were significantly correlated to both reading behavior and engagement with correlations 

somewhat higher for secondary students than elementary students. The constructs with the 

highest correlation to behavior and engagement included both general reading motivation scores, 

intrinsic reading constructs (curiosity, challenge, involvement, value, and interest), and grades.  

Table 7 presents correlations of the ARMM-H scores and ARMM-B general score with 

reading achievement scores. All ARMM-H scores were significantly correlated to reading 

achievement for eighth grade students with correlations ranging between .29 and .60. Constructs 

with high correlations to reading achievement (.3 or higher) across grades included both general 

reading motivation scores, challenge, involvement, grades, and difficulty. Looking across the 

grades there is variability on which constructs correlate highest in each grade. For example, 

difficulty reading texts was correlated the highest with reading achievement for the fifth and 

sixth grade students, but not in seventh and eighth grades. In seventh grade self-efficacy was just 

as high as difficulty reading texts. In eighth grade the autonomy construct was the most related to 

reading achievement.  

Using regression analysis we examined the relationship of ARMM scores with reading 

achievement while controlling for math achievement. As can be seen in Table 8, reading 

achievement significantly predicted most of the reading motivation scores even when controlling 

for math achievement for students in grades five, seven, and eight. Math achievement did not 

significantly predict reading motivation scores when reading achievement was controlled. This 
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finding indicates that reading achievement, and not math achievement, was uniquely associated 

with reading motivation. 

Discussion 

While some measures of adolescent reading motivation exist, there was a need for a 

flexible measure of adolescent reading motivation that could be used to assess a wide range of 

reading motivation constructs for both middle and high school students, but be feasible in length 

to use in a classroom setting. The ARMM measures 15 separate constructs as well as a general 

reading motivation construct and, due to the computer adaptive nature, is only 45 items long. The 

goal of the current paper was to describe the development and validation of the ARMM. We 

presented data regarding the structure and reliability of the measure, as well as examined gender 

and grade differences. In addition, we examined construct validity through relating scores from 

the ARMM with measures of reading engagement, behavior, and achievement. 

Model Comparisons 

In the development of the ARMM, four models (univariate, multivariate, higher order, 

and a bi-factor models) were examined for fit. Out of all the four models, the univariate (one 

general factor) had the worst fit, indicating that reading motivation measured by the ARMM is 

multidimensional. This aligns to past research on motivation measurement showing that 

multivariate models fit better than one-dimensional models (McKenna et al., 2012; Tunmer & 

Chapman, 1991). 

The current study also examined two models that measure a hierarchical structure of 

reading motivation. Using a hierarchical structure allows the researcher to study general reading 

motivation while retaining the multidimensional nature of reading motivation. Not accounting 

for the multidimensional nature of reading motivation is the reason why univariate models have a 
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poor fit compared to other models. In the current paper we examined two models that included a 

general reading motivation score in addition to fifteen sub-scores. These two models (higher 

order and bi-factor) fit better than the multidimensional model with no general reading 

motivation factor. This indicates that reading motivation constructs on the ARMM were related 

in a hierarchical structure. Due to the goodness of fit for both the bi-factor and higher-order 

models, and the similarity of the higher-order model to traditional measures, we decided to use 

scores from both in the validation study; however, due to low reliabilities of the scores for the 

ARMM-B model, only the general score was used in the analysis. 

Validity Results of the Higher-Order Model 

The examination into the validity of the higher-order model scores produced results 

similar to previous research. The ARMM-H scores had high reliabilities for all constructs. 

Females were significantly higher than males on all ARMM-H constructs, which aligns to past 

research regarding gender differences in reading motivation (Clark, 2011; Schaffner et al., 2013). 

Further, younger students scored significantly higher than older students on all but one of the 

ARMM-H scores, which also aligns to past research which found motivation decreases with age 

(Lepper et al., 2005; Unrau & Schlackman, 2006; Schaffner et al., 2016). Finally, these scores 

correlated significantly and positively to reading behavior, engagement, and achievement, which 

again relates to past research (Guthrie et al., 2007; Schaffner et al., 2016; Stutz et al., 2016). 

Most of the ARMM-H scores correlated significantly to behavior, engagement, and achievement 

for both elementary and secondary students. Most of the ARMM-H scores related to reading 

achievement even when controlling for math achievement, indicating discriminate validity. In 

addition, the ARMM-B general reading motivation score, correlated with each of these at the 

same magnitude and direction as the higher order model. 
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In examining extrinsic motivation in particular, the construct of motivation to receive 

good grades correlated to behavior, engagement, and reading achievement just as highly, if even 

higher than some of the intrinsic motivation constructs of involvement, value, interest, and 

challenge. For the eighth-grade participants, the motivation of receiving good grades correlated 

even higher than self-efficacy. Past research has indicated that secondary school teachers place a 

higher emphasis on performance goals, like getting good grades, than do elementary school 

teachers (Wigfield et al., 1998). This may translate to students also placing an emphasis on 

getting good grades. The finding of a positive and significant relationship of extrinsic motivation 

and reading behavior, engagement, and achievement is interesting since most of adolescent 

reading motivation scales do not measure extrinsic motivation constructs (Davis et al., 2018). 

The only other construct that correlated to achievement higher than grades for eighth grade 

students was autonomy. Research has shown that secondary school teachers often provide less 

choice than elementary school teachers (Guthrie & Davis, 2003), but it may be that adolescents 

may want more choice than they are currently receiving. 

Usefulness of the ARMM to Teachers and Researchers 

 Due to the computer adaptive nature of the ARMM it can measure 15 different reading 

motivation constructs and general reading motivation with only three items per construct and still 

maintain high levels of reliability and predictive validity. The ARMM is quite different from 

other measures of reading motivation. First, although it has very similar items to the Motivation 

for Reading Questionnaire (MRQ; Wigfield & Guthrie, 1997), the ARMM was written by 

secondary teachers for secondary students, so, unlike the MRQ, the ARMM items would be 

inappropriate for ages below fifth grade. Second, although there are other adolescent reading 

motivation scales, most of these scales only measure a few reading motivation constructs (Davis 
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et al., 2018). We argue that being able to assess a large number of constructs could help capture 

the multidimensional nature of adolescent reading motivation as well as provide useful 

information to teachers on implementing reading interventions. For example, teachers could use 

the ARMM to inform the development of interventions that align to what motivates their 

students to read (selecting their own texts, being social around reading) based on their ARMM 

scores. As teachers implement particular reading interventions, such as adding more 

collaboration around reading or helping students feel more competent reading the texts, they can 

use the ARMM to examine motivational changes over the course of a few months or the school 

year. Being able to see change in their students over time might encourage teachers to implement 

more reading interventions into their secondary classrooms. Finally, only a handful of adolescent 

reading motivation measures were developed for both middle and high school students and no 

other measure has been developed for fifth through twelfth grade. However, this range may be 

necessary for reading motivation researchers interested in examining grade comparisons and 

longitudinal studies of reading motivation, especially if the researcher wanted to examine a 

number of reading motivation constructs at the same time. 

Limitations 

 There are several limitations of the ARMM. First, the ARMM was developed for teacher 

use, so it primarily measures general or academic reading motivation and not specifically 

motivation to read at home. In addition, the ARMM, like the MRQ, is a general measure of 

reading motivation and does not differentiate among school subjects, non-fiction and fiction 

reading, nor digital and print reading. Although it can be argued that general reading motivation 

measures may not pick up on individual contexts, both general reading motivation and specific 

reading motivation scores are highly related (Neugebauer, 2014). In the current study we found 
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that the ARMM-H scores were highly related to the reading engagement measure, which asked 

students to report on engagement of reading both at home and school as well as the reading 

behavior measure that asked students to rate how often they read fiction, non-fiction, and on 

electronic devices. 

One major limitation of this study was the lack of diversity of participants in the pilot and 

validation studies due to the availability of participants. It could be argued that the field test, 

which included large percentages of white, black, and Hispanic students, was the most influential 

step for the selection of items and calculation of item characteristics for the final computer 

adaptive measure. Therefore, the ARMM would be appropriate for use in schools with diverse 

students. However, findings regarding the relationships between the ARMM scores with 

engagement, behavior, and achievement might not generalize to all students. 

Future Directions 

 In summary, we found the ARMM-H scores and ARMM-B general score from the 

ARMM to be reliable. These scores were sensitive to gender and grade differences consistent 

with prior reading motivation research. Further, the ARMM-H scores and ARMM-B general 

score correlated significantly to reading behavior, engagement, and achievement. Although these 

scores were sensitive to gender and grade differences, future research will need to be conducted 

to determine if these scores are sensitive to interventions related to reading motivation and in 

more diverse settings. 
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Table 1 
Definitions and Sample Items for the 15 Measured Reading Motivation Constructs 

Construct Sample Item 

Self-efficacy I am one of the best readers in my class 

Perceived Difficulty The books that teachers assign are often hard for me to read 

Challenge in Reading I enjoy reading difficult material 

Curiosity for Reading I get excited when reading about new things 

Involvement in Reading I get so involved in my reading that I often lose track of time 

Value for Reading It’s very important to read a lot 

Interest in Reading I have favorite topics I like to read about 

Preference for Autonomy Choosing what I want to read is important to me 

Reading for Grades Getting good grades in reading is important to me 

Reading for recognition  I feel proud when I am recognized as a good reader 

Reading to Compete It’s important to me that I read better than my classmates 

Social Motivation I like to talk with my friends about what we read in class 

Pro-Social Goals for Reading I like to help my classmates understand what they’ve read 

Antisocial Goals for Reading My friends and I laugh at classmates who don’t read well 

Reading Avoidance I find ways to avoid reading in class 

Note. A list of all items can be viewed at Kingston et al. (2017) 
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Table 2 
 
Models Used in Comparisons 
 
Model -2*loglikelihood AIC BIC 
Unidimensional 1,323,204.73 1,326,804.73 1,339,263.83 

Multidimensional  1,262,970.64 1,266,780.64 1,279,966.52 
Higher-Order 1,261,866.41 1,265,492.41 1,278,041.50 
Bi-factor 1,252,993.77 1,257,193.77 1,271,729.39 

Note. AIC = Akaike information criterion. BIC = Bayesian information criterion.  
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Table 3 

Reliabilities of Scores within Higher-Order and Bi-factor Models 
 
 Reliabilities 
Factor ARMM-H ARMM-B 
General 0.95 0.95 
Self-efficacy 0.85 0.70 
Curiosity 0.85 0.50 
Challenge 0.86 0.69 
Involvement 0.85 0.54 
Value 0.87 0.51 
Interest 0.88 0.52 
Autonomy 0.86 0.79 
Recognition 0.88 0.85 
Grades 0.88 0.57 
Competition 0.85 0.85 
Avoidance 0.83 0.73 
Difficulty 0.84 0.80 
Social  0.85 0.75 
Prosocial  0.85 0.76 
Antisocial  0.75 0.66 
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Table 4 
Differences in ARMM-H Scores and ARMM-B General Score by Gender 

 Females Males Significance Effect Size 
Mean 

Difference 
Lower CI 

Mean 
Difference 
Upper CI 

ARMM-B     
General 45.46 40.98 0.00 0.40 3.47 5.48 

ARMM-H     
General 45.01 40.70 0.00 0.40 3.34 5.28 
Self-efficacy 41.51 38.70 0.00 0.20 1.58 4.04 
Curiosity 44.20 39.66 0.00 0.34 3.35 5.74 
Challenge 45.58 41.58 0.00 0.29 2.78 5.23 
Involvement 44.31 39.30 0.00 0.43 3.98 6.05 
Value 43.95 39.09 0.00 0.40 3.76 5.97 
Interest 44.42 40.10 0.00 0.39 3.32 5.32 
Autonomy 37.53 33.18 0.00 0.33 3.16 5.54 
Recognition 41.44 37.05 0.00 0.29 3.05 5.74 
Grades 43.99 39.77 0.00 0.39 3.27 5.18 
Competition 41.43 38.70 0.01 0.12 0.70 4.75 
Avoidance (R) 57.94 53.19 0.00 0.34 3.51 6.00 
Difficulty (R) 62.94 60.99 0.03 0.10 0.18 3.72 
Social 48.70 42.57 0.00 0.42 4.83 7.44 
Prosocial 46.14 40.83 0.00 0.36 3.98 6.65 
Antisocial (R) 56.52 50.23 0.00 0.36 4.72 7.87 

Note. Females N=914, Males N=991, Scores with (R) indicate lack of a construct for the Higher Order Model, CI=Confidence 
Interval. 
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Table 5 
Differences in ARMM-H Scores and ARMM-B General Score by Grade Level 

 Elementary Secondary Significance Effect Size 
Mean 

Difference 
Lower CI 

Mean 
Difference 
Upper CI 

ARMM-B       
General 46.03 41.37 0.00 0.42 3.67 5.65 

ARMM-H       
General 45.51 41.10 0.00 0.41 3.45 5.37 
Self-efficacy 42.06 38.83 0.00 0.24 2.00 4.46 
Curiosity 45.16 39.82 0.00 0.40 4.15 6.53 
Challenge 46.89 41.44 0.00 0.40 4.25 6.65 
Involvement 43.94 40.34 0.00 0.31 2.56 4.64 
Value 44.72 39.42 0.00 0.43 4.21 6.38 
Interest 44.91 40.50 0.00 0.40 3.42 5.39 
Autonomy 36.87 34.29 0.00 0.19 1.40 3.77 
Recognition 42.62 37.05 0.00 0.37 4.22 6.92 
Grades 44.35 40.24 0.00 0.38 3.16 5.06 
Competition 40.23 39.88 0.74 0.02 -1.72 2.42 
Avoidance (R) 58.89 53.39 0.00 0.40 4.28 6.72 
Difficulty (R) 63.50 60.97 0.01 0.13 0.74 4.31 
Social 48.32 43.81 0.00 0.31 3.21 5.82 
Prosocial 46.97 41.20 0.00 0.39 4.42 7.12 
Antisocial (R) 57.75 50.51 0.00 0.41 5.64 8.85 

Note. Females N=914, Males N=991, Scores with (R) indicate lack of a construct for the Higher Order Model, CI=Confidence Interval 
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Table 6 
Correlations of ARMM-H Scores and ARMM-B General Score with Reading Behavior and Engagement 
 Behavior Engagement 
 All Elementary Secondary All Elementary Secondary 

ARMM-B       
General 0.61** 0.52** 0.64** 0.84** 0.80** 0.85** 

ARMM-H       
General 0.61** 0.52** 0.64** 0.83** 0.79** 0.85** 
Self-efficacy 0.42** 0.34** 0.44** 0.66** 0.60** 0.68** 
Curiosity 0.60** 0.53** 0.62** 0.78** 0.73** 0.80** 
Challenge 0.56** 0.43** 0.60** 0.77** 0.71** 0.80** 
Involvement 0.56** 0.44** 0.60** 0.78** 0.72** 0.80** 
Value 0.59** 0.51** 0.62** 0.81** 0.77** 0.82** 
Interest 0.61** 0.51** 0.64** 0.82** 0.77** 0.83** 
Autonomy 0.44** 0.33** 0.48** 0.58** 0.50** 0.60** 
Recognition 0.42** 0.34** 0.43** 0.55** 0.48** 0.57** 
Grades 0.59** 0.51** 0.62** 0.81** 0.77** 0.83** 
Competition 0.35** 0.29** 0.39** 0.42** 0.34** 0.46** 
Avoidance (R) 0.42** 0.29** 0.46** 0.66** 0.55** 0.71** 
Difficulty (R) 0.20** 0.11** 0.24** 0.42** 0.29** 0.47** 
Social 0.52** 0.42** 0.55** 0.70** 0.61** 0.73** 
Prosocial 0.50** 0.42** 0.53** 0.66** 0.57** 0.69** 
Antisocial (R) 0.30** 0.21** 0.33** 0.45** 0.36** 0.48** 

Note. * p < .05, ** p < .01, scores with (R) indicate lack of a construct for the Higher Order Model. 
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Table 7 
Correlations of ARMM-H Scores and ARMM-B General Score with Reading Achievement 
 Reading 

 Grade 5 Grade 6 Grade 7 Grade 8 
ARMM-B     

General 0.32** 0.31** 
 

0.38** 
 

0.52** 

ARMM-H     
General 0.32** 0.30** 0.37** 0.53** 
Self-efficacy 0.36** 0.29** 0.47** 0.49** 
Curiosity 0.23** 0.23* 0.30** 0.45** 
Challenge 0.33** 0.32** 0.45** 0.45** 
Involvement 0.33** 0.34** 0.47** 0.52** 
Value 0.28** 0.33** 0.33** 0.53** 
Interest 0.28** 0.26* 0.31** 0.49** 
Autonomy 0.28** 0.33** 0.32** 0.60** 
Recognition 0.14** -0.01 0.25** 0.37** 
Grades 0.31** 0.30** 0.34** 0.54** 
Competition 0.09* -0.13 0.28** 0.30** 
Avoidance (R) 0.33** 0.25* 0.34** 0.51** 
Difficulty (R) 0.41** 0.51** 0.47** 0.41** 
Social 0.16** 0.12 0.09 0.43** 
Prosocial 0.16** 0.11 0.05 0.37** 
Antisocial (R) 0.23** 0.35** 0.13 0.29** 

Note. * p < .05, ** p < .01, scores with (R) indicate lack of a construct for the Higher Order Model. 
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Table 8 
Standardized Regression Coefficients from Regression Analysis of Reading Achievement Predicting ARMM Scores, While Controlling 
for Math Achievement and Analysis of Math Achievement Predicting ARMM Scores, While Controlling for Reading Achievement  
 
 Reading Math 

 5 6 7 8 5 6 7 8 
ARMM-B 0.33** 0.16 0.39** 0.51** -0.01 0.24 -0.02 0.02 

General         
ARMM-H         

General 0.33** 0.16 0.38** 0.53** -0.01 0.23 -0.01 0.00 
Self-efficacy 0.36** 0.18 0.42** 0.49** -0.00 0.18 0.08 0.01 
Curiosity 0.26** 0.16 0.29* 0.49** -0.04 0.12 0.02 -0.04 
Challenge 0.32** 0.17 0.44** 0.48** 0.03 0.25 0.02 -0.01 
Involvement 0.34** 0.21 0.50** 0.51** -0.01 0.20 -0.04 0.03 
Value 0.28** 0.17 0.41** 0.47** 0.00 0.24 -0.13 0.08 
Interest 0.30** 0.10 0.32** 0.54** -0.03 0.26 -0.02 -0.04 
Autonomy 0.31** 0.25 0.27* 0.58** -0.04 0.14 0.08 0.04 
Recognition 0.15** -0.01 0.22 0.29 -0.01 -0.01 0.06 0.10 
Grades 0.31** 0.17 0.32** 0.54** 0.00 0.22 0.04 0.01 
Competition 0.12** -0.23 0.23 0.38* -0.04 0.15 0.10 -0.10 
Avoidance (R) 0.32** 0.23 0.42** 0.41** 0.02 0.03 -0.14 0.14 
Difficulty (R) 0.37** 0.53** 0.38** 0.40* 0.06 -0.02 0.15 0.02 
Social 0.18** 0.06 0.13 0.36* -0.02 0.10 -0.07 0.08 
Prosocial 0.20** -0.08 0.08 0.51** -0.06 0.32 -0.04 -0.16 
Antisocial (R) 0.20** 0.29* 0.20 0.35* 0.04 0.10 -0.13 -0.06 

Note. * p < .05, ** p < .01, scores with (R) indicate lack of a construct for the Higher Order Model. 
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Figure 1. ARMM presentation model 1; 6-point scale, with labels on all points. 


