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and conduct empirical 
investigations of the study of meaningful understanding of function. We provide empirical data to 
support our approach to examining representational fluency and functional thinking from this 
networked stance. Our research articulates how the coordination of theories can be productive 

meaningful math learning with a focus on functional thinking.  
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Motivation and Aim  

mathematical ideas remains a key challenge in mathematics education (Drijvers, 2019). In 
studying such a complex phenomena, Sfard (1998) articulates a tension of relying on one 
metaphor or theory of learning to the detriment of another. Consistent with this view on a need 
for multiple theories, in this work we aim to coordinate two theoretical orientations on 
understanding the mathematical idea of function multiple representations and quantitative 
reasoning. Networking theories is one approach to theory development to advance knowledge in 
the field of mathematics education that may help to address such key challenges (BiknerAshbahs 
& Prediger, 2010; Cobb, 2007; Johnson & McClintock, 2018; Johnson, McClintock, Gardner, 
2019). As such, this theoretical report is driven by an aim to coordinate theories for the purpose 
of developing new theory (cf. Cobb, 2007), not to supplant or replace existing theories.  

We aim to network theories to better articulate a local theory for the purpose of addressing an 
enduring challenge of characterizing meaningful learning of mathematics with multiple 
representations. This theoretical report seeks to extend prior studies by offering both (a) a step 
toward the articulation of theory development focused on meaningful learning vis-à-vis the 
networking of theories, and (b) additional empirical investigation of the relationship between 

m emerged from both a 
review of empirical studies in the domain of scholarship on functions, a functions approach to 
mathematics, and functional thinking (e.g., Cai et al., 2010; Stephens et al., 2017a; Stephens et 
al., 2017b), and a discernment for the utility of networking of theories to expand possibilities for 
framing problems and understandings (e.g., Cobb, 2007).   

In this report we also enact some of the recommendations and lessons learned from 
participating in a recent international conference working group focused on theoretical 
perspectives, networking theories, and methodological implications (Bikner-Ashbahs, Bakker, 
Johnson, Chan, 2019). We focus on the following recommendations of the working group as a 
structure for this report: (a) elaborate how the networking of theories helps to address a research 
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problem, (b) take care in elaborating not only theoretical constructs being coordinated but 
background theories and underlying assumptions, and (c) communicate how the networking of 
theories and methodologies are in symbiotic exchange in all phases of research. We draw on 
empirical findings to bring these issues to life.  

 
Theoretical Orientation on Meaningful Learning  

Meaning is a creative act. Our current framing of meaningful understanding involves a 
critical focus on students conceptual or relational understanding (Skemp, 1976). We follow 

meanings, which 
, and operations (Thompson & 

Saldanha, 2003; Voigt, 1994); and (b) connections, which include the specific links or ways of 
integrating representations, ideas, objects, and/or situations (Hiebert & Carpenter, 1992; Hiebert 

iginal, p. 2-3). From this stance, a person (e.g., student) is 
viewed as active in their meaning-making processes through the activities of creating and 
interpreting invariant features among representations.  
Multiple Representations  

We conceptualize representations as different "faces" of the same mathematical object; 
looking at an object through only one representation cannot reveal all features of the object 

b

conceptual understanding of mathematics is prevalent in mathematics education research, 
practice, and policy in the United States (e.g., NGO & CCSSO, 2010; NCTM, 2000, 2014). 
Some argue that creating and interpreting representations are "important cognitive processes that 
lead students to develop robust mathematical understandings" (Huntley, Marcus, Kahan, & 
Miller, 2007, p. 117). This work draws predominantly on a theory of multiple representations 
(e.g., Dreyfus, 1991; Lesh, Post, Behr, 1987).   

From this theoretical stance, scholarship contributes to an understanding of how the practices 
of representing and the processes of learning are complexly intertwined and emerge over time in 
symbiotic relation (Fonger, 2019; Selling, 2016). However, a lens on characterizing 
sophistication in representational fluency alone is often insufficient for garnering evidence of the 

meaningful learning with multiple representations, a coordination of lenses is needed (as we have 
argued in earlier work Fonger, 2019; Fonger, Ellis, Dogan, 2016). In our work, we aim to grow 

activity in creating and connecting representations, but also hypotheses of the meanings students 
hold of the mathematical objects being represented.  
Quantitative Reasoning and Functional Thinking   

We narrow our focus in this report on the domain of scholarship on supporting and 
nking (FT) the ability to 

generalize and represent functional relationships (Stephens et al., 2017a; Kaput, Blanton, & 

theory of quantitative reasoning (Thompson, 1994, 2011). Much of this work is grounded in 
constructivism a background theory of learning (Glasersfeld, 1995; Piaget, 2001). From this 
perspective, an individual constructs knowledge through processes of assimilation and 
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accommodation, creating mental models that are viable according to their interactions. A 
researcher then aims to build models of the mathematics of students (Steffe & Olive, 2010).  

measurable and that vary are key (cf. Johnson, McClintock, & Gardiner, 2019). We see an 

ation, 
correspondence, and recursive.   

graphs. Along a related line of investigation, Moore et al. (2013) found that pre-service 

their attachment to canonical forms (e.g., horizontal axis is x, vertical axis is y), limiting their 
ability to draw meaning about a graphical representation of x as a function of y. In another study, 
Fonger, Ellis, & Dogan (2016) found students engaged in covariational and correspondence 
reasoning to support their sense-making of symbolic function rules as generalizations of 

(Moore, 2014). Moreover, the meanings students hold of representations and representational 
conventions may constrain their meanings of mathematical ideas such as angles or linear 
functions (Moore, 2012; Moore et al., 2013). In the domain of research on functional thinking, 
we see a need to more explicitly integrate attention to how students are creating and connecting 
representations to shed light on the creative aspects of doing mathematics with representations as 

mathematics (cf. Brownell, 1947).  
 

Methodology  
In this section we focus on how the networking of theories and methodologies are in 

symbiotic exchange in all phases of research.  
Data Sources and Mode of Inquiry  

We employed a case study methodology (Stake, 1995) in our focus on meaningful 
understanding of quadratic function. The participant of this case study was a secondary 
preservice teacher in her second semester of a two-semester methods sequence. The authors 
conducted a 60-minute audio-recorded semi-structured task-based interview with the PT. We 
prompted the PTs to think aloud and clarify the meanings of her thoughts, such as: Can you tell 
me what connections do you see?; and Did you see the acceleration in your table/graph? In this 

interpreted a diagram and table to make sense of a quadratic relationship. We created enhanced 
 written artifacts into verbatim transcripts. This method 
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Task. Consider the following series of diagrams 
illustrating how a rectangle grows in several iterations.  

In general, what is the 
relationship between 
height, h, and area, A, 
in the growing 
rectangle context? 
Why?  

  
  
  

Structured Interview Probes.  
How did the diagram help you to notice the pattern 
you observed?   
Can you describe any connections across the 
methods you used? Does it make sense?  
What is the connection between the symbolic 
generalizations you wrote? What about the rules 
and the diagram, or tables?  

   How would you sequence representations to teach 
this task? Why?  

Figure 1: Task Design (adapted from Ellis, 2011) and Structured Interview Probes 
 

Data Analysis Techniques 
We used cyclic methods of coding (Miles, Huberman, & Saldana, 2013). In the first cycle of 

cycle of coding we employed axial coding (Strauss, 1987) by analyzing instances of coding-
cooccurrences (i.e., where in a code for FT and RF was applied in the same data segment). In this 

representational fluency. The cycles of coding were an iterative process of questioning and 

preexisting data and situated it in existing literature (Baxter, & Jack, 2008).  
Coding for Representational Fluency 

types to inform distinctions of when the participant was drawing on one or more of symbolic, 
numeric, graphic, or diagram representations. From this conceptualization or theoretical stance 
on the use and connection of one o
framework for representational fluency (Table 1) to characterize the nature of the PTs discursive 
activity in creating, interpreting, and connecting across multiple representations in solving a 
task. The framework developed by Fonger (2019) builds on a structure of observed learning 
outcome taxonomy (Biggs & Collis, 1982) and employs an actor-oriented approach (Lobato, 
2012) to problem solving. Each method or approach to a problem was analyzed as a unit of 
analysis to discern meaningfulness in representational fluency according to eleven levels (8 are 
below). 
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Lower levels include: Pre-structural students create and interpret a representation with 

incomplete understanding and Multi-structural students interpret, create, or connect more than 
one representation type without making sense of a mathematical object. Higher levels include: 
Unistructural students create and interpret a representation without making a connection to more 
than one representation, and Relational students create, interpret, and connect multiple 
representations with sophisticated understanding of a mathematical object. 

 
Coding for Functional Thinking 

e reasoning and ways of 
thinking about function, we employed an analytic framework on functional thinking as 
articulated in the literature (e.g., Confrey & Smith, 1991; Stephens et al., 2017a; Thompson & 
Carlson, 2017; Fonger, Ellis, Dogan, 2016) as an a priori lens. We attended to three types of 
functional thinking: recursive, correspondence, and coordinated change. 

 
Table 2: A Quantitative Lens on Modes of Functional Thinking 

Functional 
Thinking  

nctional relationships  

Coordinated 
change  change across these different quantities (e.g., change in x and change in y) with explicit 

quantification of the magnitude of both changes (e.g., change of 1 in x and 3 in y) (Fonger, 
Ellis, Dogan, 2016).  

Correspondence  students determine output values (range) related to input values (domain) as a direct 
mapping or dependency relation  

Recursive  
 

2017, p. 145)  
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Coding Co-occurrences 
In the second round of analysis we re-analyzed instances of code co-occurrences for themes. 

ways of thinking about function. In essence, this thematic analysis was concerned with 

analytic lenses it taken together?  
 

Characterizing Meaningful Understanding in Problem Solving  
In this section we highlight Vignettes to elaborate how the coordination of lenses enriches 

 
Meaning May Emerge from Representational Disfluencies  

In Vignette 1 (Figure 2a, b, lines 1-5) we show how meaning may emerge in problem 
solving.  

 

  
(a)           (b)           (c)  

 
 

1  Emy: The question is like what is the relationship between height and area and the 
growing rectangle? So the relationship between the height and length is that it grows a 1 box 
in height for every 3 boxes in length, which makes it grow.  So if the height is 1,  the area is 
3, if the height is 2 to the area is 12, then 1, 2, 3; 1, 2, 3; 4, 5, 6 times.  Height is 3, an area is 
27. So it's relation between height and area and the growing rectangle context. So it's 3, 3 
times 1.  Yeah,  2 times 6, 3 times 9, 3 times 9. So, I would say that the area equals 3, 3 
times. Yeah. Three times the height (see left side of Figure 2a) 
2  Nicole: How did you get a equals three h [A=3h]?  
3 Emy: how we got the area, which would be the height was type 1 times 3 and then 

Yeah. Area equals the height times 3 times of height. So, this is what we are equals 3 height 

starting out and then this is the high times 3, height times 3 times 3.  
4 Nicole: So what was this, like 3h, like how did you get, how did you know to 
change your rule?  
5 Emy: Well, because if you try to apply this to this one, it doesn't work. So area 
equals 3h would work for a 3 times 1, but it doesn't work for the height of two because 2 

u'll have to get 3h 
squared.  
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In interpreting this vignette from our networked lenses, we notice that Emy initially attended 

relationship between the height and length is that it grows a 1 box in height for every 3 boxes in 

A=3h (lines 1-2, multi-representationally grounded, coordinated change, correspondence).  
Prompted to elaborate (line 2), Emy initially expressed uncertainty about her generalization 

function rule, Emy articulated independent and dependent quantities that did and did not match 
her rule, leading her to express a corre

bidirectional translation, correspondence). Asked to 
explain (line 4), Emy interpreted the symbolic rules A=3h and A=3h2, and discerned that the 
rules give the same (height, area) only when h=1, while A=3h2 accurately generalizes heights 1, 
2, and 3 (line 5, unidirectional connection, correspondence).   

greater sophistication in her problem solving approach (multistructural to relational), and her 
engagement in functional thinking (coordinated change and correspondence reasoning) may 
have supported that shift as she interpreted the diagram, and created and interpreted a table of 

expressions of functional thinking give insight into her meaningful understanding of the growing 
rectangle situation as represented in diagrams, values, and a symbolic rule.  
Flexibility in Meanings of Functions Engenders Representational Fluency  

In Vignette 2 (see Figure 2c above, and lines 6-8 below), Emy was asked to solve the same 
problem in a different solution approach. Emy engaged in recursive thinking with greater 
sophistication in representational fluency across a diagram, table, and symbols. 

  
6 Emy: Because you're adding a 3 on the bottom to the original 3 and then 2, 3 is on 

nal one from 

then you're adding 3 times 5, but we're skipping 3 times 4 and you're adding 3 times 7 but no 
3 times 6 if that's like a pattern. But, um, I saw something like that. I don't know how to write 
that.   
7 Nicole: Does it make sense why that's occurring?  
8 Emy: Yes. Because you're adding a 3 on the bottom to the original 3 and then 2, 3 
is on the top. So you're always going to be adding an odd number of 3s because I'm here. 
You're adding two 3s to bottom and then an even number 1, 2, 3, 4, 5, 6, 7, 8.  This is an odd 

e adding an odd number of 3s to the 

write the odd groups of 3s. I guess this could be like 3 times 2 N minus 1. Would that 
work?...  This would be the formula [ ] for the area and I guess n would 
actually be h, it would be the height that would be a formula that relates height to area.  
 

quadratic growth situation from a recursive perspective. Emy engaged in recursive reasoning, 
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moving fluently between the diagram and the table she created to explain her generalization of 
adding an odd number of groups of three to the previous area in both the diagram and the table 
(line 6, bidirectional connection, recursive). Prompted for sense-making (line 7), Emy elaborated 

interpretation of the diagram, again concluding with a correct symbolization of a generalization 
(multidirectional translation, recursive).   

In this vignette we learn that in her solution approach Emy demonstrated greater 
sophistication in representational fluency at a relational level, and in moving among 
representations her ability to generalize the functional relationship was interpreted as meaningful 

representational fluency as going hand in hand with her functional thinking. For instance, if we 

a form of functional thinking, we observe important connections. For instance, Emy began with 
coordinated change on a diagram (Figure 3), and side bar chart (Figure 2c). Then she built 
correspondence reasoning on coordinated change by shifting into the summation formula. Emy 
used a correspondence approach to check if the summation formula she created is meaningful for 
her by plugging in values of height and area for each step through correspondence reasoning.    

  
and Functional Thinking 

 
Discussion and Conclusion Characterize Meaningful Understanding  

The networking of theories in this study was borne out of a need to address an enduring 

mathematics learning. In this paper we elaborated how a networking of theories of multiple 
representations and quantitative reasoning is one productive approach for characterizing 
meaningful learning of mathematics. The theoretical groundings and assumptions guiding this 
study span constructivist and semiotic lenses on cognition. In particular, we drew on theories of 
learning that posit that students learn by creating, interpreting, and connecting multiple 
representations in doing and communicating about mathematics (Dreyfus, 1991), with 
covariation, correspondence, and recursive reasoning about relationships among linked quantities 

1995; Ellis, 2011).   
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quantitative reasoning about relationships between varying and dependent quantities seemed to 
support and constrain one another. Results of this study highlight (a) how lesser meaningfulness 
in representational fluency may serve as a productive starting point for more sophisticated 
thinking and mathematical meaning to follow, and (b) how flexibility in thinking across multiple 
meanings of function (i.e., correspondence, covariation, and recursive modes) go hand in hand 
with representational fluency. We see these results as contributing evidence for the 
productiveness of networking theories to advance tools for characterizing meaningful learning.  
Lessons Learned on Networking Theories  

We have also learned that the activity of networking theories has contributed to our 
sensitivities as researchers to the importance of communicating explicit assumptions in 

learned new nuances in characterizing meaningful learning, we are left asking how other 
theoretical backgrounds and assumptions about learning might be brought to bear to paint a 

interaction. Such social interaction and proactive role of the teacher-researcher (e.g., lines 2, 4, 
and 7) needs to be accounted for in analyses of situations, even interviews that would otherwise 

 
Next Steps  

Next steps of this research program are to further investigate how the networking of theories 

learning, but also to elaborate design principles as the basis for instructional supports aimed at 
engendering meaning-making. Future studies can build on this networking across the design, 
enactment, analysis, and communication of research.   

We found the recommendations of the international working group (Bikner et al., 2019) to be 
a helpful grounding for continuing the work of theory development vis-à-vis networking theories 
in mathematics education. We encourage others to engage with and extend these 
recommendations for theory networking to advance theory building in mathematics education 
toward aims of addressing enduring challenges related to understa
meaningful mathematics learning.  
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