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I diVcXVV hoZ WhUee SUeVeUYice maWhemaWicV WeacheUV¶ (PSTV¶) coYaUiaWional UeaVoning supported 
the mathematization of a simple energy balance model (EBM) for global warming, and how such 
maWhemaWi]aWion VhaSed PSTV¶ XndeUVWanding of Whe link CO2 SollXWion and global ZaUming. I 
XVe ThomSVon & CaUlVon¶V (2017) leYelV of coYaUiaWional UeaVoning and Thompson, Carlson, 
Byerley, and Hatfield (2014) descriptions of understanding and meaning to inform the discussion 
of results. The PST completed the EBM Task during an individual, task-based interview. The 
analysis revealed that Chunky Continuous Covariation level supports the mathematization of the 
EBM in WeUmV of a coYaUiaWion¶V UaSidiW\ of change. The anal\ViV alVo UeYealed WhaW SaUWicXlaU 
mathematizations resulted in particular meanings for radiative equilibrium, which in turn have 
implications for understanding the link between CO2 pollution and global warming. 
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Introduction and Purpose 
Global warming refers to an increase in the mean global surface temperature caused by 

human emissions of greenhouse gases. The planetary scale of this phenomenon makes it difficult 
for a single person to experience it in its entirety. Mathematical modeling can make global 
warming visible for people (Barwell & Suurtamm, 2011; Barwell, 2013a, 2013b; Gonzalez, 
2016, 2018; Mackenzie, 2007), thus helping them understand it and take action against this new 
horizon. I consider preservice mathematics teachers an important group to be informed about 
global warming because they will educate the members and future leaders of this democratic 
society. Thus, there is a need for studies examining how preservice mathematics teachers can 
learn the mathematics behind global warming. 

Lambert and Bleicher (2013) have found that there are two key concepts from climate 
sciences that preservice science teachers need to learn about in order to understand global 
warming: (a) the Earth’s energy balance, and (b) the link between carbon dioxide (CO2) 
pollution and global warming. Extending this premise to mathematics education, preservice 
mathematics teachers (PSTs) can model global warming by reasoning about these two concepts 
as dynamic situations involving covariation between quantities. In this paper, I discuss how three 
PSTs’ covariational reasoning supported the mathematization of a simple energy balance model 
(EBM) for global warming, and how such mathematization shaped PSTs’ understanding of the 
link CO2 pollution and global warming. 

Conceptual Framework 
Covariational reasoning refers to “the cognitive activities involved in coordinating two 

varying quantities while attending to the ways in which they change in relation to each other” 
(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002, p. 354). Thompson and Carlson (2017) have 
identified six distinctive levels of covariational reasoning (Table 1). Thompson and Carson 
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suggested that “a researcher could use [the levels] to describe a class of behaviors, or she could 
use it as a characteristic of a person’s capacity to reason … covariationally.” For the current 
study, I used Thompson and Carlson’s levels as a framework to characterize PSTs’ covariational 
reasoning as they mathematize the EBM. Mathematization refers to the process of translating a 
real-life, non-mathematical situation into a mathematical problem, and then using mathematical 
tools and processes to solve it (Freudenthal, 1991). 

I also made use of Thompson and colleagues’ (Thompson, Carlson, Byerley, & Hatfield, 
2014) descriptions of understanding, meaning, and way of thinking, in order to characterize 
PSTs’ understandings of the EBM and meanings for radiative equilibrium. Thompson et al. 
suggests that a person’s understanding is an in-the-moment state of equilibrium resulting from 
assimilating sensory information to the person’s current schemes, or from accommodating those 
schemes to assimilate the new information. A person’s meaning, then, is the space of 
implications that emerges from the assimilation to or accommodation of the person’s current 
schemes. A person’s way of thinking is that person’s “pattern of utilizing specific meanings or 
ways of thinking in reasoning about particular situations” (Thompson et al., 2014, p. 12). 
 

Table 1: Major Levels of Covariational Reasoning 
Level Description 
Smooth continuous 
covariation 

The person envisions increases or decreases (hereafter, changes) in one 
quantity’s or variable’s value (hereafter, variable) as happening simultaneously 
with changes in another variable’s value, and the person envisions both 
variables varying smoothly and continuously. 

Chunky continuous 
covariation 

The person envisions changes in one variable’s value as happening 
simultaneously with changes in another variable’s value, and they envision 
both variables changing by intervals of a fixed size (not necessarily of the 
same size). The person imagines, for example, the variable’s value varying 
from 0 to 1, from 1 to 2, from 2 to 3 (and so on), like laying a ruler. Values 
between 0 and 1, between 1 and 2, between 2 and 3, and so on, “come along” 
by virtue of each being part of a chunk—like numbers on a ruler—but the 
person does not envision that the quantity has these values in the same way it 
has 0, 1, 2, and so on, as values. 

Coordination of 
values 

The person coordinates the values of one variable (x) with values of another 
variable (y) with the anticipation of creating a discrete collection of pairs (x, 
y). 

Gross coordination of 
values 

The person forms a gross image of quantities’ values varying together, such as 
“this quantity increases while that quantity decreases.” The person does not 
envision that individual values of quantities go together. Instead, the person 
envisions a loose, nonmultiplicative link between the overall changes in two 
quantities’ values. 

Preccordination of 
values 

The person envisions two variables’ values varying, but asynchronously—one 
variable changes, then the second variable changes, then the first, and so on. 
The person does not anticipate creating pairs of values as multiplicative 
objects. 

No coordination The person has no image of variables varying together. The person focuses on 
one or another variable’s variation with no coordination of values. 
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Methodology 
This paper is part of a larger study that investigated how PSTs make sense of introductory 

mathematical models for global warming. Three secondary PSTs �hereafter Jodi, Pam, and 
Kris� enrolled in a mathematics education program at a large Southeastern university 
participated in the larger study. These PSTs had completed Calculus I and II and an Intro to 
Higher Mathematics course and were completing a Math Modeling for Teachers course by the 
time the larger study took place. The PSTs were asked to complete an original sequence of 
mathematical tasks while participating in individual, task-based interviews (Goldin, 2000). In 
this paper, I focus on the PSTs’ responses to the EBM task. 
The Energy Balance Model (EBM) Task 

An energy balance model (EBM) describes the continuous heat exchange between the sun, 
the planet’s surface, and the atmosphere (Figure 1a). The sun warms up the planet’s surface at an 
approximately constant rate S. As the surface heats up, it radiates heat to the atmosphere (R), the 
majority of which (B) is absorbed by greenhouse gases (GHG). The atmosphere then re-radiates 
a fraction of the absorbed heat back to the surface (A), further increasing its temperature. The 
continuous heat exchange between the surface and the atmosphere is known as the greenhouse 
effect, which is responsible for enhancing the SlaneW¶V mean VXUface WemSeUaWXUe T(t). Changes 
in the greenhouse effect result in changes in T(t). Let 𝑁(𝑡) = [𝑆 + 𝐴(𝑡)] − 𝑅(𝑡) be the net 
planetary energy imbalance, then it is said that the energy balance is in radiative equilibrium 
when 𝑁(𝑡) = 0, which implies that T(t) remains constant. There are forcing agents that can push 
the energy balance out of radiative equilibrium, resulting in 𝑁(𝑡) ≠ 0. My study focuses on 
modeling the impact that an increase in the atmospheric CO2 concentration has over the Earth’s 
energy balance, and how such impact affects the planet’s mean surface temperature. CO2 
pollution is one of the main drivers of global warming (Intergovernmental Panel on Climate 
Change [IPCC], 2013). 

The Energy Balance Model (EBM) Task (Figure 1b) describes a simplified scenario with a 
unique, instantaneous increase in the Atmospheric CO2 Concentration Function, C(t), at time t = 
0. This increase results in an initial positive heat imbalance 𝑁(0) = [𝑆 + 𝐴(0)] − 𝑅(0) > 0. 
This initial imbalance is known as positive forcing by CO2 and is denoted by 𝐹 = 𝑁(0). The 
positive forcing results in a surface absorbing heat at a higher rate than that at which it is 
releasing it. Thus, the surface warms up as time passes, which causes it to radiate heat at an 
increasing rate R(t). The atmosphere then absorbs more heat from the surface, which causes it to 
radiate heat back to the surface at an increasing rate A(t). This feedback process continues until 
radiative equilibrium is restored so that 𝑁(𝑡) → 0 and 𝑇(𝑡) → 𝑇ோ as time increases, where 𝑇ோ 
represents a new and higher equilibrium temperature. 

The EBM Task thus required PSTs to reasoning about the above process and draw the graphs 
of the functions N(t) and T(t). The EBM Task has two prompts: (a) Determine how N vary over 
time t (in years) and sketch the graph of N(t) and (b) Determine how T vary over time t (in years) 
and sketch the graph of T(t). 
Data Collection 

PSTs watched a 7-minute long video introducing the concept of EBM, followed by a Q&A 
session with me. I next gave them the EBM task. PSTs were also given a diagram of the EBM 
showing initial values for S, R, B, and A. They were expected to sketch the graphs of N(t) and 
T(t) assisted by the recursive rules 𝐵 = 0.794 ∙ 𝑅, 𝐴 = ଵ

ଶ
∙ 𝐵, 𝑅ାଵ = 𝑆 + 𝐴, and 𝑁 =

[𝑆 + 𝐴] − 𝑅 (for i = 0, 1, 2, …). The rules were meant to give PSTs a sense of how the heat 
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flows change after a positive forcing. Each PST completed the task in a 60-minute, semi-
structured, task-based interview (Goldin, 2000). The interview was video recorded and 
transcribed for analysis. PSTs’ work on paper was also collected for analysis. 
 

  
FigXUe 1: (a) The EaUWh¶V EneUg\ Balance (LefW) and (b) The EBM TaVk (RighW) 

 
Data Analysis 

Videos and transcripts were analyzed through Framework Analysis (FA) method (Ward, 
Furber, Tierney, & Swallow, 2013). FA has five stages of data analysis: the familiarization with 
the data, the development of the analytic framework, indexing and pilot charting of the data, 
summarizing data into the analytic matrix, and the synthetization of the data by mapping and 
interpreting. Through these stages the research develops an analytic framework and uses it to 
analyze, reduce, and index data into analytic matrices, FA’s distinctive feature. 

I watched all interview videos and took notes while doing so. The videos were separated into 
shorter, more manageable episodes. An episode showed evidence of PSTs’ ways of 
understanding the EBM or ways of reasoning about covariation. The notes informed my first 
round of coding. Then, the episodes were sorted according to particular ways of understanding 
the Earth’s energy balance. Looking for patterns in participants’ responses, I developed six 
energy balance (EB) codes. I repeated the process with PSTs’ ways of envisioning covariation, 
which resulted in four covariational reasoning (CR) codes. These codes represented the Analytic 
Framework for the study. 

Using the analytic framework, I indexed all episodes into three analytic matrices, one per 
participant. I looked for patterns in the distribution of CR codes in relation to EB codes across all 
three matrices, examining ways in which covariational reasoning supported PSTs’ 
mathematization of the EBM. Then, I compared EB codes across participants in order to identify 
particular ways of thinking about the EBM. The analysis of such patterns provided the 
information needed to meet the research goals. 

Results 
The analysis of PSTs’ responses revealed that coordination of values and coordination of 

change are key to mathematize the EBM for global warming. The analysis also revealed that 
particular mathematizations resulted in particular meanings for radiative equilibrium. 
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Covariational Reasoning and Mathematizing the EBM 
Coordinating values represented a key step in mathematizing the notion that the energy 

balance restores radiative equilibrium over time. Coordinating values allowed PSTs to translate 
radiative equilibrium into a quantity, N(t), that decreases as time increases (direction of change). 
For instance, Jodi’s initial understanding of the EBM did not include an energy balance restoring 
radiative equilibrium after a positive forcing. For her, the increase in C (atmospheric CO2 
concentration) pushed the energy balance out of its normal state, and it would remain out of that 
normal state unless C decreased to its original value, which is reflected in the way she described 
change in N(t) (“[N] wouldn’t increase or decrease if CO2 is kept stable”). Coordinating t-values 
and N-values using the given recursive rules allowed her to create and plot a collection of pairs 
(𝑡 , 𝑁) with which she drew a accurate graph for N(t) (Figure 2a). She interpreted the graph as 
follows “[the graph means] that we are going back to an equilibrium, or we are not as far from 
equilibrium as we were.” While looking at her graph, she added “each time we are increasing t, 
we are decreasing N by smaller amounts.” Jodi’s understanding of the EBM extended to include: 
(a) the idea of radiative equilibrium being restored over time, and (b) a mathematized 
representation of such process in terms of a covariation, N(t), that decreases (direction of change) 
by decreasing amounts of change (rapidity of change) as t increases. Describing rapidity of 
change of N(t), I would argue, reveals a more sophisticated mathematization of radiative 
equilibrium than describing direction of change alone; it represents a higher degree of 
complexity in understanding and describing a covariation. 

 

 
 

FigXUe 2: (a) Jodi¶V GUaph of N(W) (LefW) and (b) Jodi¶V GUaph of T(W) (RighW) 
 
Pam’s initial understanding of the EBM included the idea of radiative equilibrium being 

restored over time; she correctly anticipated N(t) to be a decreasing function of time. Her 
mathematization of radiative equilibrium, however, was limited to indicating direction of change 
alone (“[N] was five, and then it would decrease to be zero again”) and did not support drawing a 
graph for N(t). After coordinating t-values and N-values using the given recursive rules, Pam 
noticed that: 

[N] decreased pretty quickly, like 3 units of J/s/m2. Then, it decreased by about 1 J/s/m2 … I 
am assuming [N] is going to decrease by a little bit, and a little bit, and a little bit, until it 
reaches zero again. 

Coordinating values allowed Pam to think about changes in t in relation to changes in N. 
This, in turn, helped her draw an accurate graph for N(t) (Figure 3a). Pam’s mathematization of 
radiative equilibrium extended from describing direction of change alone (“[N] was 5, and then 
it would decrease to be zero again”) to describing rapidity of change (“[N] is going to decrease 
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by a little bit, and a little bit, and a little bit, until it reaches zero again”). Pam reasoned about 
rapidity of change by coordinating two sequences indicating change in N: the sequence of values 
of N and the sequence of amounts of change ∆𝑁. The coordination of these two sequences 
allowed her to mathematize radiative equilibrium as a covariation, N(t), that decreases by 
decreasing amounts of change as t increases. 
 

  
FigXUe 3. (a) Pam¶V GUaph of N(W) (LefW) and (b) Pam¶V GUaph of T(W) (RighW) 

 
Kris’s initial understanding of the EBM included the idea of radiative equilibrium being 

restored over time. She, however, struggled to see that idea reflected in the covariation N(t). 
Since the heat flows R and A were increasing as t increased, Kris thought that N(t) would be 
increasing too given that 𝑁(𝑡) = [𝑆 + 𝐴(𝑡)] − 𝑅(𝑡). She, however, expressed surprise about her 
conclusion “So, as R increases, A increases [points at R and A in 𝑁 = (𝑆 + 𝐴) − 𝑅] … [N] can’t 
just keep increasing!” Coordinating values by using the given recursive rules helped Kris clarify 
her confusion. She noticed that the heat flow B(t) was increasing by decreasing amounts of 
change 

Well, this difference right here, between 320 and 328 (∆ଵ𝐵 = 328 − 320 = 8), is greater 
than the difference between these two values, the 328 and 331.5 (∆ଶ𝐵 = 331.5 − 328 =
3.5), and the difference between these two (∆ଷ𝐵 = 332.9 − 331.5 = 1.4) is less than those 
[points at 328 and 331.5], which is less than that [points at 320 and 328]. That tells me that 
there is eventually going to be a limit … Yeah, it is going to reach a new equilibrium point 
somewhere 

The coordination of values helped Kris reconcile (and mathematize) radiative equilibrium 
with (and in terms of) the covariation N(t). Her analysis of the rapidity of change of B(t) 
supported drawing an accurate graph for N(t) (Figure 4a). Like Pam, Kris’s extended her 
mathematization of radiative equilibrium from direction of change to rapidity of change by 
coordinating two sequences indicating change in B: the sequence of values of B and the 
sequence of amounts of change ∆𝐵. The coordination of these two sequences allowed her to 
mathematize radiative equilibrium as a covariation, N(t), that decreases by decreasing amounts 
of change as t increases. 
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FigXUe 4. (a) KUiV¶V GUaph of N(W) (LefW) and (b) KUiV¶V GUaph of T(W) (RighW) 

 
PSTs use the recursive rules to coordinate values of an independent variable t and a 

dependent variable y. Coordination allowed them to mathematize radiative equilibrium in terms 
of the direction of change of a covariation N(t). Coordination also made sequences of values and 
graphs available to PSTs. They used such objects to coordinate changes in t with changes in y. 
The coordination of changes, in addition to the coordination of values, helped them extend their 
mathematization of radiative equilibrium from direction of change (N(t) decreases as t increases) 
to rapidity of change (N(t) decreases by decreasing amounts of change as t increases). The later 
represents a higher level of complexity in describing covariation. 
Mathematization and Understanding Global Warming 

PSTs’ ways of thinking about their mathematization of EBM resulted in two different 
meanings for radiative equilibrium: Single Equilibrium Meaning (SEM) and Multiple 
Equilibrium Meaning (MEM). The distinctive feature between the two meanings for radiative 
equilibrium was the PSTs’ conception of what is measured by N(t) in the EBM. 

I asked PSTs to interpret their graphs of N(t) in terms of whether the energy balance was 
losing heat (cooling down) or gaining heat (warming up) as time increased. Jodi and Pam 
concluded that the energy balance was losing heat or cooling down as time increased. Jodi stated 
that “the line (the graph of N(t)) is going in the negative direction, and we know that as N 
decreases, the surface is losing energy,” while Pam stated that “we are losing because if we have 
gained energy [the surface] would get hotter, but it is not getting hotter because N is smaller so 
it’s cooling off.” It seems that Jodi and Pam arrived to such conclusion because they conceived 
N(t) as a measure of how much heat needs to be lost for the energy balance to return to radiative 
equilibrium (e.g., Jodi: “when the input is greater than the output, then we need to decrease N 
[writes −𝑁 on the right side of (𝑆 + 𝐴) = 𝑅] so we can get back to equilibrium”). Jodi and Pam 
saw N(t) as an amount of excess heat in the energy balance. Therefore, if N(t) is decreasing, then 
the energy balance must be losing heat. Notice that seeing N(t) as excess heat also involves 
envisioning the energy balance returning to radiative equilibrium. I use the word returning to 
indicate that Jodi and Pam thought of radiative equilibrium as a unique state, the original state 
before the forcing by CO2. For her, the energy balance is returning to its original equilibrium 
because the excess heat, caused by the initial forcing by CO2, is decreasing. I called this meaning 
of radiative equilibrium Single Equilibrium Meaning (SEM). 

SEM led Jodi and Pam to draw graphs of T(t) showing an overall decline in temperature as 
time increased (Figure 2b and Figure 3b, respectively). The particular shape of Jodi and Pam’s 
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graphs for T(t) were rooted in the way they reasoned about graphs and covariation, particularly 
in terms of the rapidity of change. A discussion of Jodi’s case is presented elsewhere (Author, 
2018). As for Pam, a discussion of the particular shape of her graph is beyond the scope of this 
paper. For now, I am drawing attention to the fact that both, Jodi and Pam, drew a graph of T(t) 
showing an overall decline in temperature. Their graphs indicate that the planet’s surface warms 
up solely when C increases. Thus, if C stops changing, then the energy balance returns to its 
original radiative equilibrium and the planet’s surface cools down as time increases. 

When I asked Kris to interpret her graph of N(t) in terms of whether the energy balance was 
losing heat or gaining heat, she concluded that the energy balance was gaining heat. 

Well, [the surface] keeps in taking. I think it is warming up because once we added more 
CO2, that is less of the emitted energy that is getting just like shut out passed the atmosphere, 
leaks from it. So then, more [radiation] is going to be absorbed by the atmosphere … 
Whatever is absorbed by the atmosphere [points at B] is going to be absorbed back into the 
[SoinWV aW Whe SlaneW¶V VXUface] … which is going to keep increasing. 

Kris did not demonstrate any conflict between the energy balance gaining heat and N(t) 
decreasing as t increased. This suggests that Kris saw N(t) as another representation of heat gain 
in the EBM. A possible explanation is that Kris conceived N(t) as measuring how much heat 
needed to be gained for the energy balance to reach a new radiative equilibrium. When Kris drew 
the graph of the Planet’s Mean Surface Temperature T(t) (Figure 4b), she wanted to show that 
T(t) was increasing but stabilizing at a certain value. Such graph implied that: (a) the energy 
balance gains heat to reach radiative equilibrium, and (b) radiative equilibrium is not unique and 
can occur at higher levels of heat. These are distinctive characteristics of a Multiple Equilibrium 
Meaning (MEM) for radiative equilibrium. This meaning includes attention to the increasing 
values of R, B, and A, and their implications in the context of the EBM. It also includes 
understanding the feedback of heat between the atmosphere and the surface: a fraction of the 
heat released by the surface is reabsorbed by it, enhancing its temperature. 

Conclusion 
I use Thompson and Carlson’s (2017) levels of covariation to characterize PSTs’ 

covariational reasoning. PSTs needed to reason about covariation at the Coordination of Values 
Level in order to mathematize radiative equilibrium in terms of direction of change of the Net 
Planetary Energy Imbalance N(t). Through coordinating values, PSTs can notice that N(t) 
decreases as time increases, which indicates that the Earth’s energy balance is restoring radiative 
equilibrium. When PSTs coordinated changes ∆𝑦 with equal changes ∆𝑥, in addition to 
coordination of y-values with x-values, they were able to mathematize radiative equilibrium in 
terms of the rapidity of change of N(t). In other words, PSTs envisioned changes in t and N as 
occurring simultaneously and by intervals of fixed size. This suggests that covariational 
reasoning at the Chunky Continuous Level supports the mathematization of radiative equilibrium 
in terms of rapidity of change. 

PSTs’ mathematizations of the EBM resulted in two different meanings for radiative 
equilibrium; these meanings have different implications for understanding the link between CO2 
pollution and global warming. In particular, PSTs’ conception of what is measured by N(t) led to 
two meanings for radiative equilibrium. SEM includes conceiving N(t) as an amount of excess 
heat that must be lost for the energy balance to return to radiative equilibrium. SEM also 
includes understanding radiative equilibrium as a unique state, the original equilibrium. SEM 
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leads to the idea that the planet’s surface cools down after a positive forcing by CO2. This way of 
thinking about global warming is unproductive because CO2 pollution has long-term and long-
lasting effects on the planets mean surface temperature (IPCC, 2013). SEM may also open the 
door for misconceptions regarding global warming (e.g., “we can stop global warming at the 
moment we stop CO2 emissions” or “as long as we maintain our current level of CO2 emissions, 
the planet wouldn’t get any hotter”). MEM includes conceiving N(t) as an amount of heat to be 
gained for the energy balance to reach radiative equilibrium. MEM also includes understanding 
that there are radiative equilibriums at higher levels of heat. MEM leads to the idea that the 
planet’s surface warms up after a positive forcing by CO2, even after the atmospheric CO2 
concentration is stabilized. This way of thinking about the link between CO2 pollution and global 
warming is a productive one. It supports an understanding of the real impact of CO2 emission in 
the climate, as well as their long-lasting effect in the planet’s mean surface temperature. 

Reference 
Barwell, R. & Suurtamm, C. (2011) Climate change and mathematics education: making the invisible visible. 

Proceedings Paper presented at the 7th Congress of the European Society for Research in Mathematics 
Education. Rzeszow, Poland: University of Rzeszow.  

Barwell, R. (2013a). Climate change. In A. Coles, R. Barwell, T. Cotton, J. Winter & L. Brown (Eds.), Teaching 
mathematics as if the planet matters (pp. 31-49). New York, NY: Routledge.  

Barwell, R. (2013b). The mathematical formating of climate change: Critical mathematics education and post-
normal science. Research in Mathematics Education, 15(1), 1-16.  

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling 
dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. 

Freudenthal, H. F. (1991). Revisiting mathematics education. China lectures. Dordrecht: Kluwer. 
Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education 

research. In A. Kelly & R. A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science 
Education (pp. 517–545). Mahwah, NJ: Lawrence Erlbaum Associates. 

Gonzalez, D. (2018). A preservice mathematics teacher’s covariational reasoning as mediator for understanding of 
global warming [Long Paper]. Proceeding of the 21st annual Conference on Research in Undergraduate 
Mathematics Education (pp. 154-168). San Diego, California. 

Gonzalez, D. (2016). Preservice mathematics teachers’ conceptions of intensive quantities commonly used to model 
global warming. Proceeding of the 38th annual conference of the North American Chapter of the International 
Group for the Psychology of Mathematics Education (pp. 861-864). Tucson, Arizona: The University of 
Arizona. 

Intergovernmental Panel on Climate Change (IPCC). (2013). Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. 
Bex & P. M. Midgley (Eds.). New York: Cambridge University Press. 

Lambert, J. L., & Bleicher, R. E. (2013). Climate change in the preservice teacher's mind. Journal of Science 
Teacher Education, 24, 999-1022. 

Mackenzie, D. (2007). Mathematics of climate change. In I. Fung & D. Eisenbud (Co-Chairs), Climate change: from 
global models to local action. Symposium conducted at the meeting of Mathematics Science Research Institute, 
Berkeley, California. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking 
mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). Reston, 
VA: National Council of Teachers of Mathematics. 

Thompson, P. W., Carlson, M. P., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with magnitudes: A 
hypothesis about foundational reasoning abilities in algebra. In K. C. Moore, L. P. Steffe, & L. L. Hatfield 
(Eds.), ESiVWemic algebUa VWXdenWV: EmeUging modelV of VWXdenWV¶ algebUaic knoZing, WISDOMe Monographs 
(Vol. 4, pp. 1-24). Laramie, WY: University of Wyoming. 

Ward, D. J., Furber, C., Tierney, S., & Swallow, V. (2013). Using Framework Analysis in nursing research: a 
worked example. Journal of Advanced Nursing, 69(11), 2423–2431. 


