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This study focuses on students’ understanding of multiple representations of functions. It 
examines student responses to a task in which calculus students are asked to evaluate the 
derivative at a point of the cubing function when represented piecewise. Results suggest that 
attending to the graph of the piecewise function does not improve students’ ability to 
differentiate it. Results also suggest that students tended to view a piecewise-defined function not 
as a singular function, but as a set of instructions for which function to use.  
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Introduction and Literature Review 
Multiple representations of functions play an important role in mathematics and mathematics 

education. There is a body of literature addressing college students’ difficulties linking multiple 
representations of functions, and some studies suggest that post-secondary students struggle 
translating between different representations (Even, 1998; Gagatsis and Shiakalli, 2004; 
Chinnappan and Thomas, 2001). The literature on multiple representations tends to focus on 
translation between multiple types of representations (e.g., graphical, analytical, and verbal), 
rather than multiple representations of the same type. However, working with multiple 
representations of the same type is also a crucial part of mathematics. Although there is no body 
of literature specifically devoted to within-representation-type translation, some authors have 
highlighted the importance of this for specific types of representations. For example, Moore and 
Thompson (2015) make the point that math students should be able to move flexibly between 
different coordinate systems, being able to recognize when the same graph has two different 
visual representations.  

I argue in Mirin (2017) that students’ understandings of sameness of representation of 
function, by which I mean student assessments of which function representations represent the 
same function, are inextricably linked to their concept of function. We can see how one’s 
concept of sameness-of-representation-of-function and the function concept itself are interlinked 
when we consider how a student might view derivative. If a student views a derivative as 
operating on a function, then his concept of function is inextricably tied to his concept of 
derivative. For example, his criteria for determining whether two function representations share a 
derivative might be influenced by his criteria for determining whether those representations refer 
to the same function. This leads us to the following research question: What are students’ 
understandings of multiple analytic representations of a single function as it relates to derivative?  

We follow Thompson’s (1982) constructivist approach of being sensitive to student 
understanding by asking, “What is the problem that this student is solving, given that I have 
attempted to communicate to him the problem I have in mind?”(p.153). This is akin to Harel, 
Gold, and Simon’s (2009) description of the “interpreting” mental act; in analyzing students’ 
responses to a task, we, as researchers, pay careful attention to how students interpret a task. 
Thompson makes the point that, when referring to representations of something, we ought to be 
clear about to whom these are representations of whatever “something” is (Thompson & Sfard, 
1994). In the case of this study, there is a representation of the cubing function to us (as 
mathematicians), but to students, it may not be. So, we ought to be sensitive to the fact that a 
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student might agree with the assertion that two representations of the same function share a 
derivative, but these students might have non-standard understandings of what “same function” 
is. In fact, this is precisely the sort of reasoning a particular student used to determine that 
sharing a graph was not sufficient for sameness of functions; she concluded that two particular 
representations of functions share the same graph but do not share a derivative, leading her to 
conclude that, to be the same function, having the same ordered pairs on the graph is not 
sufficient (Mirin, 2017). 

Task Design and Methodology 
This study arose from an anecdote that Harel and Kaput (1991) share in which calculus 

students, when prompted to differentiate the function g defined piecewise by S(2) = sin 2 if 2 ≠
0 and S(2) = 1 if 2 = 0, answered with SU(2) = cos2 if 2 ≠ 0 and SU(2) = 0 if 2 = 0, 
appearing to use the constant rule. To these students, the only aspect of the representation as 
relevant for determining the value of S′(0) is the second line of the piecewise function 
definition. It seems reasonable to believe that, if the definition of g were modified to instead have 
S(2) = 0 if 2 = 0 (resulting in a nonstandard representation of the sine function) students would 
answer identically. However, given the anecdotal nature of Harel and Kaput’s claim, there is no 
data available to substantiate how common such errors are or why they occur.  

This paper undertakes the task of studying this phenomenon more systematically. I designed 
the following task to address this issue: 

 

 
Figure 1. The Task on which This Study is Based (Quiz A) 

 
Henceforth, the task of evaluating  .′(2) for .defined piecewise as above will be referred to as 
“The Task”. Notice that the function	. is simply the cubing function, but represented in a non-
standard way. Whether students see it that way is part of the investigation.  
Subjects and Methods 

Initially, The Task, exactly as pictured in Figure 1, was given to 240 introductory calculus 
students during the last week of the semester at Anonymous State University (ASU). Referred to 
as “Quiz A”, it was administered in an exam environment by course instructors as part of the 
course, where students were required to work silently and independently. I conducted follow-up 
interviews of eight individual students. I collected and coded their responses before performing 
the interviews, and, informed by the interviews, re-coded the responses to reflect students’ 
rationales as suggested by the interviews.  

The interviews each lasted 60-90 minutes. The interviews operated according to clinical 
interview methodology (a la Clement, 2000) and served as establishing students’ rationale for 
their responses to The Task. Additionally, students were given similar problems, as well as asked 
to graph the function f and asked to make sense of their answer to The Task with their graph of f.  
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Results, Quiz A vs. Quiz B 
Results of Quiz A suggest that Harel and Kaput (1991)’s anecdote is indeed indicative of a 

wider phenomenon, as only 18.3% of students gave the correct answer. Like in Harel and 
Kaput’s story, the majority (53.6%) of students claimed that the answer was “0”. Further, many 
students (41.2% of total) explicitly cited the constant rule. 

Now that we have established that there is a larger phenomenon, the next natural question to 
ask is, “why”? It is possible that some students erred due to inattention or carelessness, rather 
than a major misconception.  That is, they might have simply seen the “8” and applied the 
constant rule out of habit or simply not realized that 23 is 8 and that the given function is in fact 
continuous. This would explain why some students answered “undefined,” and it is also 
consistent with some of the graphs that students volunteered (graphs with removable 
discontinuities). Further, it might not have occurred to students to compare the graph of f with 
that of the cubing function - as discussed earlier, the piecewise-defined f is a representation of 
the cubing function to us, but perhaps not to students. 
 

 
Figure 2. Quiz B (Visually Condensed) 

Accordingly, informed by Quiz A results, Quiz B (Figure 2, above) was created to test this 
possibility that inattention accounts for student responses. Quiz B involves The Task (multiple 
choice form), except, prior to attempting The Task, students are prompted to calculate 23 and to 
graph X = .(2) aside a provided graph of X = 2Y.  Also included on Quiz B is a task asking 
students to state their definition of when a function g is the same function as a function f.  If 
inattention accounts for student responses, then the following hypotheses should hold: 

(1) Overall, students will perform significantly better on The Task in Quiz B than Quiz A, 
leaving open the possibility that inattention or carelessness could account for students’ 
tendency to do poorly on The Task in isolation. Students might, because of the 
prompting, be more likely to compare f to that of the cubing function. 

(2) Quiz B students who answered “12” would be more likely than Quiz A students who 
answered “12” to provide a justification involving the comparison of f with the cubing 
function. 

(3) Students who provided a mathematically normative definition of function sameness 
(Problem 4) would be more likely to answer “12” than students’ who did not.  

As discussed earlier, a student’s criteria for determining whether two function representations 
share a derivative might be influenced by his or her criteria for determining whether those 
representations refer to the same function. If a student believes that having the same set of 
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ordered pairs is sufficient for function h to be the same as function g, then it seems she is more 
likely (than a student who does not believe this) to conclude that because g and h are the same 
function, their respective derivatives are the same function. These hypotheses center on the idea 
that if students are positioned to compare the ordered pairs on X = .(2) to that of X = 2Y, they 
are more prone to answer The Task correctly.  

Table 1: Student Answers to Quiz A and Quiz B 
 0 8 12 Undefined Multiple answers Other Blank Total 
Quiz A 
%, 
n 

56.3%, 
135 

4.6%, 
11 

18.3%, 
44 

5.8%, 
14 

(8.3%, 20) 5.4%, 
13 

1.3%, 
3 

100%, 
240 0&12: (5.8%, 14) 

0&undef: (2.5%, 6) 
Quiz B 
%, 
n 

40.2%, 
41 

7.8%, 
8 

23.5 %, 
24 

9.8%, 
10 

(18.7%, 19) N/A 0%, 
0 

100%, 
102 e: (12.8%, 13) 

f: (5.9%, 6) 
 

The data reveal no evidence to support that inattention could account for student responses. 
Although there was a slight improvement in correctness rate from Quiz A to Quiz B (see Table 
1), this improvement was not statistically significant (Z,=1.21, p>.05), contrary to (1). In other 
words, prompting students to compare the graph of  X = .(2) to that of	X = 2Ydid not appear to 
cause improvement, suggesting that students did not err simply due to inattention to the 
function’s graph. Moreover, the Quiz B students who answered “12” were no more likely than 
the Quiz A students who answered “12” to draw an explicit comparison between f and the cubing 
function (4.2% of Quiz A students who answered 12 did, whereas only 2.9% of Quiz B students 
did so), contrary to (2). Also, the students who provided a mathematically normative definition 
of function sameness were no more likely to answer “12” than those who did not, contrary to (3). 
These results suggest that, contrary to my hypotheses, prompting students to compare f to the 
cubing function did not appear to encourage them to infer that f and the cubing function share a 
derivative at 2. This naturally led to the emergent question: if inattention to the graph of f does 
not account for students’ tendency to answer incorrectly, then why are students answering the 
way they are answering?  

Phenomena and Student Rationale 
To answer this question, we turn to the student graphs together with the student interviews. 

Normatively, two graphs (of functions) are the same if and only if they consist of the same 
ordered pairs. It seems reasonable to believe that some students might not have this criterion for 
sameness of graph; indeed, interviews suggested that some students viewed a graph of 2Y with 
an extra “dot” placed at (2,8) as different from a graph of 2Y without one. Some students referred 
to the point (2,8) as “separate”. Accordingly, a sub-category (category B) of “correct” was 
created: mathematically normative graphs that highlighted (2,8) in the sense that they had a dot 
on (2,8) that was more prominent than any other dots. The remaining “correct” graphs - those 
that were correct but indicated nothing special about (2,8) - were grouped together as category. 
The remaining graphs were classified as follows: those with a single dot at (2,8) (2.0%), those 
with just a graph of X = 8 (6.9%), those with a removable discontinuity at x=2 (6.9%), blank 
(4.9%), those with graphs of both X = 8 and X = 2Y (2.9%), and other (8.8%). Among the 
correct graphs (A and B), graph A students were more likely than graph B students to answer 
“12” on The Task (Z,=3.932, p<.05), suggesting some sort of difference (in the graph B 
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students’ minds) between f and the cubing function. How students understand their graphs in 
relation to The Task will be further elaborated below.  

Now we turn to the qualitative data: the student interviews, which shed light on why students 
answer the way they do.  Musgrave and Thompson’s (2014) construct of “function notation as 
idiom” was useful in accounting for student responses. A student views function notation 
idiomatically when he or she views “.(2)” in its entirety as a name for a function (Musgrave & 
Thompson, 2014). Such students might view “.(2)” as no more than another name for “y” 
(Thompson, 2013). It appeared that many students used this way of thinking when evaluating 
.U(2), as students seemed to view “8” and “2Y” as names of functions with “.(2)” referring to 
both of these functions. Another common theme, appearing both on the written quizzes and in 
the interviews, was the viewpoint that the “if 2 ≠ 2” served as a restriction on the domain for 
students, rather than as a condition.  

Since there is not space to discuss every student in detail, we provide insight from the 
interviews that is consistent with various student responses. The following subsections should be 
viewed as descriptions and illustrations of student thinking that explain students’ answers, rather 
than rigorous evidence of such phenomena. Moreover, we discuss only the parts of the 
interviews that explain why students answered the way they did originally, rather than 
elaborating on the in-depth portions that were more exploratory. Each subsection begins with a 
direct, written quote from a student, which provides a concise summary of the way of thinking 
described in the subsection. We also discuss how, for the students, the point (2,8) was special 
and the way students made sense of their graphs. Additionally, we discuss how students’ ways of 
thinking are reflected in their responses to the interview prompt to find h’(5) for the function h 
defined by  ℎ(2) = 2Y	if x≠5, ℎ(2) = 2, + 100	if x=5. 
Students who answered “0” 

“When the graph is at the point x=2, the function is determined by the piecewise part ‘8’. So, 
.(2) itself equals 8. When 8 is derived, it becomes 0” [Pete, Quiz B student (emphasis added)]. 
The rationale summarized by Pete appears to exemplify a common way of thinking amongst 
students who answered “0”. For these students, the “.U(2)” tells them that they are in the 
situation “2 = 2,” which serves as an instruction to use the function “8”. Here, the “8” serves as 
a name of a function rather than a particular output, suggesting an idiomatic conception. Many of 
these students provided a category B graph of f (graph of X = 2Y but a special dot at (2,8)) and 
found no issue with the fact that they couldn’t “see” that .U(2) = 0 in their graph; when asked to 
explain graphically, they would provide a graph of X = 8	and explained why its derivative at 2 is 
0.  

Interviewed students extended this way of thinking to evaluating h’(5) for the function h 
defined by ℎ(2) = 2Y	if x≠5, ℎ(2) = 2, + 100	if x=5. It was common for students to answer 
“10” by evaluating the derivative of 2, + 100 as 2x and substituting x=5 to result in 10, with the 
rationale that “Um I used this part, the part that makes the parabola [X = 2, + 100]. Because 
we’re interested in the time when x equals 5. And that’s kind of the rule here, when x equals 5 to 
use the parabola” [Jennifer, Quiz A student]. She elaborated: “The derivative of h when x equals 
5 is gonna be 2x um…..if x were to equal some number other than 5, you would use this 
(underlines x3) function up here, but because x is 5 we use this one.” Jennifer’s rationale 
exemplifies the way of thinking that led students to answer “.U(2) = 0”: viewing the conditions 
on a piecewise-defined function as instructions for which function to use, and a piecewise-
defined function involving two different functions. 
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.′(2)  →   2 = 2   →  X = 8    →         →   XU = 0 

Figure 3. Student rationale for answering “0” 

 
Many of these students (Pete included) provided a graph of f that was like X = 2Y but with a 

dot at (2,8) (category B graph). It seems that students viewed the dot at (2,8) as separate or 
independent from the rest of the graph. For example, one student recreated his graph during the 
interview, explaining his reasoning as follows: “At the point (2,8) I draw a circle to show there is 
an opening there, there’s a gap. I’m excluding that point from what it is we are talking about in 
this point in time.” He elaborated: “So the two...they’re existing on the same coordinate system 
but existing independent of each other” (emphasis added).  
Students who answered both “12” and “0” 

“If f(x) does not equal 2, the function is 2Y. The derivative of 2Y equals 32,, then substitute 2 
for x, 3(2)2=12. However, if x is allowed to be 2, then the derivative of 8=0” [Carlos, Quiz A 
student]. The case of Carlos illustrates how a student can reason idiomatically to get the answers 
0 and 12. In the interview he reiterated his reasoning: “If x isn’t 2 then the function is 2Y. The 
derivative of 2Y is 32,. Then substitute 2 for x here and you get 12. However, if x is allowed to 
be 2, then the derivative of 8 is 0”. For Carlos, the “if x=2” condition told him that he was in the 
case in which “the function” is the function “.(2) = 8,” and that the “if x≠2” condition told him 
he was in the case in which “the function” is x3. Carlos did not even make the connection that the 
“2” in “.(2)” told him he was in the case where “2 = 2”; for him, the “.(2)” was just a 
shorthand for “y”. When prompted to graph f, he provided a graph of (what he thought was) y=8 
as well as a graph of X = 2Y , indicating that he viewed himself as graphing two separate 
functions.  When asked how.U(2) can be 12 while he had said prior that it was 0, he explained: 
“this is an entirely different function”, indicating that the conditions on the piecewise function 
were instructions about which function to use.  

 

Two cases: 2 = 2, 2 ≠ 2 

2 = 2 → X = 8→            → XU = 0 → .U(2) = 0 if 2 = 2 

2 ≠ 2→ X = 2Y→            → XU = 12→ .U(2) = 12 if 2 ≠ 2 

Figure 4. Student Rationale for answering “0 if ^ = _, 12 if ^ ≠ _” 

Carlos’ way of thinking was confirmed when he was asked to calculate h’(5) when h is 
defined by by ℎ(2) = 2Y	if x≠5, ℎ(2) = 2, + 100	if x=5. He graphed X = 2Y	and X = 2, +
100	on the same axes (Fig.4). When prompted to find the value of h’(5), he differentiated 2Y and 
plugged in 5 to get 75, and then he differentiated 2, + 100	and plugged in 5 to get 10. When 
asked which was the value of h’(5), he exclaimed confidently, “both! 75 and 10!”.  
Students who answered both “0” and “undefined” 

“If just looking at .(2) = 8, the derivative of a constant would make .U(2) = 0. If just 
looking at .(2) = 2Y, the derivative would be undefined because .(2)	is not on the graph of 2Y. 
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There is a hole at x=2” [Eric, Quiz B]. Eric’s reasoning exemplifies how students could have 
come to select choice “f” in Quiz B. A different student, Sarah, explained her reasoning in detail 
in the interview. Sarah initially answered that “both” are undefined, but during the interview, she 
revealed that she interprets “0” to mean the same thing as “undefined” (which was a common 
trend in student responses). Like Carlos, she viewed two functions as being involved, which was 
again confirmed when she was asked about the piecewise-defined function “h”. She appeared to 
reason about two different functions, and calculated .U(2) by treating the first function as “X =
2Y, 2 ≠ 2", and the second function as “X = 8, 2 = 2”. She interpreted the “2 ≠ 2” as a 
restriction on the first function, and the “2 = 2” a clarification that such a restriction did not exist 
on the second function. Thus, for the first function, .U(2)  is undefined, and for the second 
function, .U(2)  equals 12.  

 
Two cases, two functions 

X = 2Y, 2 ≠ 2→        → .U(2) undefined if 2 ≠ 2.  

X = 8, 2 = 2 → X = 8 and x can be 2   →     → .U(2) = 0 if 2 = 2. 

Figure 5. Student Rationale for answering “0 if 2 = 2, undefined if 2 ≠ 2” 

Conclusions and Discussion 
The results of Quiz A showed us that Harel and Kaput’s (1991) anecdote is indeed indicative 

of a larger phenomenon: many students appeared to differentiate a piecewise function formally 
by differentiating each expression as a separate function. By comparing the results of Quiz A to 
Quiz B, we confirmed that this phenomenon cannot be attributed merely to inattention. The 
interviews, together with the Quiz B results, suggest that a non-normative understanding of 
piecewise function notation, stemming from a view of function notation as idiom and the 
conditions on the domain as either instructions or as restrictions, accounts for many students’ 
responses. 

This study shows that students do not view the same function, represented in two different 
analytic ways, as sharing a derivative at a particular value. However, this last sentence was 
ambiguous; when we say “a function”, we are not being clear if students view these function 
representations as referring to the same function. Students might, for example, consider it 
possible for two distinct functions to share a graph, and we can ask: do students believe that 
same graph implies same derivative? The answer to this appears to be “no,” as many Quiz B 
students provided normative graphs of f yet did not evaluate .U(2) normatively.  Yet, we run into 
another ambiguity: what students view as “same graph” might not be consistent with the 
normative notion of “same graph,” as suggested by students’ insistence that the point (2,8) being 
highlighted. This means that, although it is tempting to conceptualize this study as one about 
students’ understanding of derivative, its results highlight how students think about function 
notation. To illustrate this point consider the way of thinking that accounted for students 
answering “0.” It arose from a misconception of function notation: no matter how strong of a 
meaning the student has of “derivative”, the student was still reasoning with the graph of “X =
8”, leading to an answer of “0”. 

As discussed earlier, it seemed reasonable to hypothesize that students who provided 
normative definitions of what it means for functions g and h to be the same (Problem 4, Quiz B) 
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would be more likely to correctly evaluate .U(2) ; this is because it seems these students would 
be more likely to assess piecewise-defined f and the cubing function as “the same,” positioning 
them to infer that f and the cubing function share a derivative. In light of the interviews and 
students’ ways of thinking, the counter-intuitive result – that this hypothesis did not hold – 
makes sense.  This is because, to students, f was not a function in the same way that the cubing 
function is; instead, f was two functions. Having a strong criteria for sameness of functions did 
not help students evaluate .U(2) because f was not in the category of “functions” to which 
sameness can apply!  
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