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This study is part of a larger project exploring students’ thinking of Dynamic Measurement 
(DYME), an approach to area measurement that engages students in dynamic digital 
experiences of measuring rectangular surfaces through sweeping lengths. The goal of this study 
was to evaluate the extent to which students could bridge the mathematical knowledge they 
gained from these dynamic experiences to other activities that are more static in nature. A 
classroom of 19 third grade students participated in an 8-period design experiment (DE) 
centered on DYME. Data to evaluate the bridging were obtained from pre- and post-assessments 
administered before and after students’ participation in the DE. The results suggest that by 
working with the DYME tasks, students were able develop a conceptual connection between 
multiplicative reasoning and area measurement that were able to apply to solve static tasks. 
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Researcher: So, what did you learn from interacting with these tasks? 
Student: We learned how to paint inside the lines.   
(Excerpt from a design experiment after a series of sessions using DYME tasks) 
As researchers, we carefully design tools and tasks to engage students in experiences that 

would support their learning of mathematics. However, similar to the excerpt above we notice 
that “unfortunately mere experience is not sufficient for learning, for integrating into one’s 
functioning, or for making, more and more effective actions available to be enacted in the future” 
(Mason 2015, p. 334). Indeed, students learn how to play with the tool, engage with the task and 
make some generalizations, which a researcher may describe as powerful for developing 
advanced mathematical ideas, yet there is “little evidence that students can abstract beyond the 
modeling context” (Doerr & Pratt 2008, p. 272) or whether students are able to use this 
knowledge to make sense of other tools or apply it in other contexts.  

In fact, many researchers have tried to describe the situated nature of the generalizations that 
students develop as they engage with contextual problems and digital tools. An example is the 
work of Hoyles and Noss (1992) on the notion of “situated abstractions” in which they describe 
the gap between the generalizations that students form in one context but not in others. Many 
researchers tried to describe this as a failing “transfer” of knowledge. For instance, Broudy 
(1977) discussed transfer as the ability of students to apply their prior knowledge in order to 
solve new problems, while diSessa and Wagner (2005) discussed it as re-using the knowledge 
gained in one situation (or class of situations) to a new situation (or class of situations).  
In exploring students’ transition from a constructionist learning environment to formal algebra, 
Geraniou and Mavrikis (2015) raised the issue of what exactly is that “knowledge” being 
transferred, and chose to focus on “bridging” instead, a metaphor first used by Perkins and 
Salomon (1988) to describe “a process of abstraction and connection making” (p. 28). Following 
this notion, Geraniou and Mavrikis (2015) designed a series of “bridging activities” which 
assisted students in making the connections between the digital tool and the mathematics. These 
bridging activities included consolidation tasks that asked students to reflect on their interactions 
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with the software, collaborative tasks that focused on asking students to justify whether their 
rules were equivalent or not to each other, tool-like paper tasks that looked like the software 
tasks but were on paper, and finally textbook or exam-like tasks. This variety in the design of the 
bridging activities can be seen as aiming to expand what Pratt and Noss (2010) refer to as 
students’ contextual neighborhood, or the range of contexts and variety of circumstances in 
which the students’ knowledge is made relevant and accessible. 

In this paper, we describe our efforts in assisting students to expand their contextual 
neighborhood of measurement through dynamic measurement (which we describe in the next 
section), and discuss how our task design may have helped them bridge their dynamic digital 
experiences with typical static measurement tasks. 

Dynamic Measurement (DYME) 
DYME draws on research on visualizing area as ‘sweeping’ (e.g. Lehrer, Slovin, Dougherty, 

& Zbiek, 2014; Thompson, 2000) to engage students in digital experiences of visualizing the 
multiplicative relationship of length times width that underlies the area formula of a rectangle. 
To understand this approach, imagine a paint roller of length a being swept over a distance of b 
(width) to generate a rectangle of area ab (Figure 1). DYME presents area as a continuous 
dynamic quantity that depends on both the length of the roller and the length of the swipe. 
Aiming to explore students’ DYME reasoning for area, we conducted two cycles of design 
experiments (DE) (Cobb, Confrey, Lehrer, & Schauble, 2003) and developed an interactive book 
of tasks on Geogebra [www.montclair.edu/csam/DYME] and a learning trajectory (LT) (Simon, 
1995), illustrating how students’ thinking of DYME may progress over time. 

 

 
Figure 1. Area as a continuous structure using the ‘sweeping’ approach (Panorkou, 2017) 

Table 1 presents the LT, which consists of a set of DYME constructs from less sophisticated 
to more sophisticated (levels), a sample Geogebra task for each construct, and a set of observable 
student generalizations that are more likely to occur at each construct. The goals of Levels 1-3 
are for the students to build the idea of 2D space by visualizing area as a continuous structure 
that can change dynamically through ‘sweeping,’ recognize that the measurement of a surface 
requires the coordination of two dimensions (e.g. Reynolds & Wheatley, 1996), and recognize 
the multiplicative relationship between the two dimensions of a rectangle and its area (Izsak, 
2005). To help students identify this relationship, the tasks involve the use of a 1-inch roller to 
paint shapes of different lengths and widths and constructing a repeating pattern for covering the 
shape (e.g. Outhred & Mitchelmore, 2000), by considering the distance covered in one swipe 
with the number of swipes. Subsequently, Levels 4-6 present an exploration of what else is 
possible to learn after students develop their DYME thinking, therefore they do not follow a 
specific order (although in this paper we refer to them “levels”.) For instance, in Level 4 students 
use their DYME knowledge of area to identify the effects on the dimensions when the area of a 
shape is scaled, or in Level 5 students explore dimensions as factors that may give the same area. 
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Table 1. The hypothetical learning trajectory for DYME 
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The first two cycles of DE showed DYME’s potential for making the multiplicative 
relationship of the area formula more intuitive and accessible to students (e.g. Panorkou, 2017). 
However, the nature of DYME tasks is very different than any of the measurement tasks that 
students encounter in their classrooms and many of the generalizations they make are situated in 
the specific context of DYME. Therefore, in Cycle 3 we wanted to test out whether students 
could connect these situated experiences to their other measurement experiences. Our task design 
and questioning included many tasks that could help them do that. First, we used consolidation 
tasks that asked students to reflect on their interactions with the software, reflect on their learning 
in every session and generalize their strategies. An example of the latter was when we asked the 
students to advise a painter of how to measure the space of any rectangular surface. Second, we 
used whole class discussions at the end of each session that included collaborative tasks asking 
students to share different strategies of solving a task and discuss why different strategies 
generate the same answer. For instance, finding the space of a rectangular surface of 4 inches by 
5 inches, by using 4 one-inch swipes of 5 inches or 2 two-inch swipes of 5 inches or using 4 
inches times 5 inches. Third, in contrast to Geraniou & Mavrikis (2015) that used software-like 
paper tasks, we used paper-like dynamic tasks, that are similar to what students would encounter 
on paper but with technological affordances, such as presenting them with a rectangular surface 
which they can make bigger or smaller by modifying the length and width through dragging (e.g. 
Level 2 task in Table 1). We conjectured that this kind of design would help students build 
connections between DYME and other types of measurement. 

Aims 
This article describes our efforts to investigate how a whole class design experiment (DE) 

(Cobb et al., 2003) on DYME could help students develop their thinking of area as a 
multiplicative relationship and whether students are able to transfer knowledge gained from 
interacting with the DYME tasks to the static traditional area tasks they would encounter in the 
classroom. More specifically, our goals were to explore:  

1. To what extent did the students develop their thinking of area as a multiplicative 
relationship as a result of the design experiment and the use of the DYME tasks?  

2. To do extent did the students bridge the experiences gained from the dynamic 
environment of DYME tasks to traditional area tasks they encounter in the classroom?  

Methods 
Nineteen third-grade students from an elementary school in the Northeast participated in the 

whole class DE (Cobb et al., 2003). The students already had formal instruction on 
multiplication and area measurement using the common approach of using square units. The DE 
consisted of six 50-minute periods of instruction using the DYME Geogebra tasks.  
Assessment Design  

To answer our research questions, we designed and administered an assessment to students at 
the very beginning of the DE and at the end of the learning experience. The items in both pre- 
and post-assessments were identical aiming to create an initial and final “profile of strengths and 
weaknesses” (Huhta, 2008, p. 470) for each student. The assessments were pilot tested with a 
separate group of students and revised before they were used for the present study. Aiming to 
examine both the development of students’ thinking of area and the extent of bridging, we 
designed the items based on typical measurement assessments used in the literature (e.g. Battista, 
2004) and on questions found in standardized test assessments, such as PARCC. All the items 
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were aligned to a level of the LT and were designed to provoke responses that could indicate 
how students’ reasoning has changed following their interaction with the tasks during the DE.  

For example, one of the DYME goals is for students to recognize that a swipes of b cover the 
same amount of space as b swipes of a, what we refer to as commutativity in DYME. To do that, 
we engage students in dynamic tasks, such as the one presented in Figure 2 (left), where they use 
paint rollers of different orientations (horizontal/vertical) in order to find area and generalize that 
4 swipes of 5 cover the same space as 5 swipes of 4. Instead, typical measurement assessments 
evaluate the commutative property in static tasks similar to the Question A in Figure 2 (right), 
which assesses if students recognize that a 3ft by 4ft tabletop has the same area as a 4ft by 3ft 
tabletop. Question A was used as an item in our pre- and post-assessment. Each assessment 
included three to four items corresponding to each construct of the LT and these items were 
evenly distributed throughout the paper so that no two consecutive items were associated with 
the same LT construct. 
 

 

Figure 2. DYME Geogebra task (left); Question A, adopted from the PARCC assessment (right). 

Assessment Analysis  
For analyzing the students’ work, we read every student’s response and generated categories 

to capture the themes in their responses. We then developed a scoring protocol to measure the 
range of sophistication in their responses. To score the responses, we adopted Norton and 
Wilkins’ (2012) suggestion: 1 for indication of a particular reasoning level and 0 for counter-
indication of a particular reasoning level. The levels of reasoning adopted were consistent with 
the LT levels in Table 1. For instance, a response showing a Level 5 understanding was receiving 
a point for Level 5, while a response showing a Level 3 understanding was receiving a point for 
Level 3. The responses were scored by four researchers independently and then negotiated 
aiming to maximize reliability.  

For an illustrative example of the whole process, consider Question A in Figure 2 (right). 
Table 2 presents the scoring rubric we developed for Question A. In this question, we noticed 
three different levels of reasoning corresponding to constructs 2, 3 and 5 of the LT. Depending 
on how the student responded, they would get a point for that construct. For example, if a student 
used the commutative property to find equal rectangles, they received a point only under level 5. 

Results 
After each student response was scored, we summed the total scores received by all students 

under each level (L1 - L6) and color-coded the responses based on these scores in a contingency 
table (Norton & Wilkins, 2012) (Table 3). As aforementioned, each assessment included three to 

Tori and Leo set up four tables in their clubhouse as below:

Circle two tabletops with the same area (that cover the same 
space), and explain how you know that the areas are equal.
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four items corresponding to each level of the LT. For instance, we included four different items 
in which students could use level 5 reasoning to respond. If a student received 3 points of level 5 
that meant that the student used level 5 reasoning to respond to 75% of the level 5 questions.  

Table 2. Rubric for Question A created based on students’ responses 

 
 

If a student’s overall raw score for a given level was above 60%, then it was inferred that the 
student reached proficiency in that level and the cell under that level was colored dark grey. If a 
student’s overall score for a particular level was between 30%- 60% the cell was colored grey. 
For students whose total scores in any level of understanding were less than or equal to 30%, the 
cells were colored light grey to indicate that students showed some instances of the particular 
level of understanding. Some students did not answer all of the questions, and thus white cells 
indicate missing responses. Dotted lines (--) indicate students who did not take the assessment.  
Table 3 compares students’ responses to the pre- and post-assessments showing the extent to 
which the students’ thinking of area as a multiplicative relationship was developed due to their 
interaction with the DYME tasks. As Table 3 illustrates, out of the 19 third-grade students in the 
whole class design experiment, only 3 were able to think multiplicatively about area in the pre-
assessment (represented by level 3). However, in the post-assessment, 15 students showed an 
understanding of area as a multiplicative relationship of length times width. These results showed 
that not only students’ thinking of area as a multiplicative relationship was developed by 
engaging with the DYME tasks, but also, that they were able to use their DYME experiences to 
solve traditional area tasks.  

Table 3 also shows that in each level, students understanding was developed from the pre-
assessment to the post-assessment (with the exception of level 1 showing that students moved 
beyond that level.) This is illustrated both by the darker shading, which is more prominent for the 
post-assessment, and also by the increase in the average score in every level in post-assessment 
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compared to pre-assessment. For instance, in level 3, students scored an average of .2 during pre-
assessment, which increased to 2.0 during post-assessment. Similar development in students’ 
thinking of area is observed in other levels, especially in level 4, 5, and 6 where the average 
score of students’ responses increased from 0 to 0.6, 0.14 to 1 and 0.07 to 0.6 respectively.  

Table 3. Contingency table showing the total scoring of the assessment questions 

 
 

Although students exhibited an overall improvement in their level of understanding in the 
post-assessment compared to the pre-assessment, we found some exceptions in some students’ 
responses. For instance, though students E and J showed proficiency in coordinating the two 
sides of a rectangle (Level 2) during pre-assessment, they showed a decrease in their responses in 
the particular level during the post-assessment. This was most likely because during the post-
assessment, the level of understanding of the two students in the certain questions moved beyond 
level 2 and they showed a higher degree of understanding in level 3 and 5. Another case is 
student L, who reached level 5 during the pre-assessment but did not proceed beyond level 4 
during the post-assessment. On further analysis, we found that student L did not answer the last 9 
questions in the post-assessment, which explains the decrease in the level of understanding. 

Significance 
Researcher: What have you learned all these days? 
Student 1: I learned that there are other ways to measure length and width. You can use 

objects like paint rollers. 
Student 2:  Yes, and that to double area we need to double one of the measurements.   
(Excerpt from a design experiment after a series of sessions using DYME tasks) 
The findings from the pre- and post-assessment analysis show that students’ engagement 

with the DYME tasks helped them improve their understanding of area. The data analysis also 
showed that students were able to bridge their DYME experiences and generalizations with 
typical area tasks. Students extended their contextual neighborhood of measurement to include 
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sweeping-based reasoning as well as reasoning about area as length times width. Students not 
only developed their understanding of area as a multiplicative relationship but they also used this 
knowledge to respond to more advanced questions in levels 4-6. Among our future goals are to 
examine the order in the upper LT levels (4-6) and also to further examine the type of activities 
that assist students in bridging these connections between DYME and other area generalizations.  
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