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As mathematics educators, we teach and research a particular form of knowledge. However, in 
reacting to Platonic views of mathematics, we often overlook its unique characteristics. This 
paper presents a Kantian and Piagetian perspective that defines mathematics as a product of 
psychology. This perspective, based in human activity, unites mathematical objects, such as 
shape and number, while explaining what makes mathematics unique. In so doing, it not only 
privileges mathematics as a powerful form of knowledge but also empowers students to own its 
objects as their own constructions. Examples and interdisciplinary research findings (e.g., 
neuroscience) are provided to elucidate and support the perspective. 

Keywords: embodied cognition, mathematical epistemology, neuroscience, radical 
constructivism, reflective abstraction 

Mathematics has been described as both a science and a language. Most sources define it as a 
collection of abstract sciences, but its objects of study are so varied that, according to Wikipedia, 
“mathematics has no generally accepted definition” (“Definitions of mathematics,” n.d.) 
Consider the following attempts: 

• “the abstract science of number, quantity, and space” (“Mathematics,” n.d.) 
• “the science of numbers and their operations, interrelations, combinations, 

generalizations, and abstractions and of space configurations and their structure, 
measurement, transformations, and generalizations. Algebra, arithmetic, calculus, 
geometry, and trigonometry are branches of mathematics” (“Mathematics,” n.d.) 

• “a group of related sciences, including algebra, geometry, and calculus, concerned with 
the study of number, quantity, shape, and space and their inter-relationships by using a 
specialized notation” (“Mathematics,” n.d.) 

What do number, quantity, space, and the various branches of mathematics have in common?  
Mathematics is a unique body of knowledge owing to its apparent infallibility. Across 

millennia, continents, and cultures, mathematics has produced stubborn facts, so much so that we 
confidently assume that any alien life form, if intelligent enough, would recognize the prime 
numbers (Sagan, 1975). Students often appreciate the way that mathematics builds on itself, such 
as the way real numbers build on rational numbers, which build on integers. Scientists marvel at 
the “unreasonable effectiveness of mathematics in the natural sciences” (Wigner, 1960), such as 
when mathematical models predicted the existence and location of Neptune before it was 
discovered (see Norton, 2015). No wonder Platonism still holds sway in society and scientific 
communities alike.  

As a mathematics education community, we often confront Platonist ideals, which position 
mathematics as something that lies beyond human experience. We understand the cultural 
influences and psychological roots of mathematical development and mathematics itself. We 
challenge mathematical myths but rarely acknowledge their persistent epistemological basis. For 
example, we cite Kline’s (!982) “Loss of Certainty” to break down perceptions of mathematics 
as a collection of immutable truths because such perceptions disinvite students to participate in 
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creating mathematics (e.g., Chazan, 1990). However, we overlook the apparent certainty of 
mathematics as a feature that garners students’ interests to begin. 

Popular characterizations of mathematics do have a valid basis. There is a sense in which 
mathematics is infallible and builds upon itself, and mathematics holds a privileged position of 
predictive power among the sciences. However, these characterizations require psychological 
explanation rather than a Platonic dodge. Moreover, we need a definition that presents 
mathematics as a unified field of study rather than a collection of abstract sciences. What unifies 
mathematics? What are its objects of study? What is the basis for its reliability, utility, and 
ubiquity? 

This paper presents a Kantian/Piagetian response—one grounded in cognitive psychology 
and buttressed by recent findings from neuroscience. Kline (1982) summarized the Kantian 
position as follows: “mathematics is not something independent of and applied to phenomena 
taking place in an external world but rather an element in our way of conceiving the phenomena” 
(p. 341). Piaget (1942), with Inhelder (1967), built upon this position by specifying children’s 
development of mathematical structures used to organize the world, such as space and number. 
These structures depend on operations that, at once, demonstrate the unity and power of 
mathematics. 

Mathematical Objects 
Mathematical objects arise from our own activity within the worlds we experience. This is a 

view espoused by social constructivists, radical constructivists, and embodied cognitionists alike 
(Núñez, Edwards, & Matos, 1999; Vygotsky, 1986). The distinguishing feature of the Piagetian 
perspective concerns the role of abstraction, particularly reflective abstraction, in constructing 
those objects. Reflective abstraction is a psychological process that is notoriously difficult to 
grasp. As Chomsky lamented during a debate with Piaget, “my uneasiness with reflective 
abstraction is … that I do not know what the phrase means, to what processes it refers, or what 
are its principles” (Piattelli-Palmarini, 1980, p. 323). Here, we will attempt to specify the process 
of reflective abstractions and its principles, as well as its role in constructing mathematical 
objects. 

We find Piaget’s plainest description of reflective abstraction in Genetic Epistemology 
(1970). There, he describes the sensorimotor basis for logic and mathematics: “the roots of 
logical thought are not to be found in language alone, even though language coordinations are 
important, but are to be found more generally in the coordination of actions, which are the basis 
of reflective abstraction” (p. 19). He goes on to describe how actions become coordinated with 
one another, through reflective abstraction; but reflective abstraction does not apply to any and 
all actions—only those that are reversible. 

Reversibility is another distinguishing feature of mathematics. Addition-subtraction, greater 
than-less than, integration-differentiation all form inverse pairs. However, Piaget (1970) refers 
primarily to reversibility of the mental actions that constitute these formalized operations, rather 
than the formalized operations themselves. For example, a student might know the sum of 10 and 
5 but not know the sum of 9 and 6, even if she also knows that 9 is 1 less than 10 and 6 is 1 more 
than 6. In other words, she has not yet coordinated the actions of iterating (repeatedly 
integrating) units of 1 and disembedding them (separating units of 1 within the whole). Such a 
coordination relies upon organizing the actions of iterating and disembedding within a structure 
for composing and reversing them (compared to 5, 6 has an extra iterated unit of 1, which can be 
disembedded and composed with 9 to make 10). As educators, we might think about these as 
strategies, but through reflective abstraction, strategically coordinated actions become structures 
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for assimilating mathematical situations so that the two sums become the same mathematical 
object, 15. Of course, numbers do not exist in isolation, so the coordination of mental actions like 
iterating and disembedding reorganize the child’s entire number sequence, including 5, 6, 9, 10, 
and 15 (see Steffe, 1992). 

Figure 1 illustrates the process of reflective abstraction. Several mathematics educators have 
recognized this process, or similar processes, as essential for mathematical development: Sfard 
(1992) referred to it as reification; Dubinski (2002) as interiorization; and Tall as encapsulation 
(Tall, Thomas, Davis, Gray, & Simpson, 2000). They all describe a process by which existing 
mental actions become coordinated to constitute a new mathematical object. 

 

 
Figure 1. Reflective abstractions and the construction of mathematical objects. 

The table on the right side of Figure 1 represents the organization of actions within a 
mathematical group. This is a researcher’s model for describing how the students’ mental actions 
become coordinated with one another as composible and reversible operations; it does not imply 
that students are aware of a group structure (Piaget, 1970). Figure 1 illustrates the simplest 
example of coordinating mental actions, wherein two actions (A and B) are coordinated as 
inverses of one another and where i represents the identity element of the group (note that Piaget 
also referred to group-like structures that do not satisfy all conditions of a mathematical group 
but nonetheless model the coordination of reversible mental actions). The two arrows in Figure 1 
represent the two aspects of objects noted by Piaget and Garcia (1986): “First of all, it is ‘what 
can be done with them’ either physically or mentally… (2) The meaning of object is also ‘what it 
is made of,’ or how it is composed. Here again, objects are subordinate to actions” (pp. 65-66).  

The coordination of mental actions within group-like structures explains many of the unique 
features of mathematics. In particular, the reversibility of mental actions within the structure 
explains the reliability of mathematics. In the sciences, reliability is repeatability. The natural 
sciences never attain perfect repeatability because the initial conditions of a situation cannot be 
precisely reproduced. However, in mathematics, reversing one action with another action (e.g., A 
and B compose to form i, in Figure 1) returns one to the same exact starting point every time.  

Coordinations of action also explain the ubiquity of mathematics because they become 
structures for organizing experience. For example, when I see seven cars in a parking lot, nothing 
in the parking lot imposes 7 upon me. Instead, I assimilate my perceptual experience by 
coordinating mental actions of unitizing (separating out each perceived car and treating it as a 
unit identical to the others) and iterating resulting units in one-to-one correspondence with my 
number sequence.  

Furthermore, coordinations of action explain how mathematics builds upon itself, because 
the process of reflective abstraction does not end with the construction of the first structures. 
Rather, those structures, as objects, become material for further operating. For example, I can 
consider any multiplicity of 7 by acting upon one copy of my number sequence with another 
copy of it (Steffe, 1992). Such structures explain the subjectivity of mathematical experience 

Articles published in the Proceedings are copyrighted by the authors.



Plenary Papers 
 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

66 

when, for example, I see three rows of seven cars and assimilate them as three 7s, whereas a 
young child might see a spatial pattern but not the numerical structure of 3 times 7.  

 

Evidence from Neuroscience 
As noted in the introduction, definitions of mathematics generally refer to the study of a 

collection of objects, usually including number and space. As mathematics educators, the 
construction of number may seem more familiar, but Piaget and Inhelder (1967) used space 
(along with number; Piaget, 1942) as a primary example of a mathematical object. They 
demonstrated that space does not exist as an innate construct, as Kant had assumed, but that 
children construct it through the coordination of displacements within a group for composing and 
reversing them. In this section, we will see tight connections between space and number as 
psychological and neurological phenomena that depend on coordinated actions, beginning with 
sensorimotor activity. 

One early connection concerns object permanence and the onset of self-locomotion 
(crawling). Developmental psychologists take object permanence as a critical marker in early 
child development, whereby children learn that objects persist in space even when removed from 
the child’s perceptual field. Bell and Fox (1996, 1997) conducted studies on 76 eight-month-old 
infants, separated into four groups: pre-crawlers, crawlers with 1-4 weeks of experience, 5-8 
weeks of experience, and 9 or more weeks of experience. Greater experience in crawling was 
associated with the development of object permanence.  

Piaget and Inhelder (1967) had tied object permanence to children’s construction of 
sensorimotor space, wherein objects would have residence. More recently, psychologists have 
associated object permanence with “spatial working memory”, wherein children coordinate 
spatial transformations, such as displacements and rotations (e.g., Bell, 2001). Together with the 
findings from Bell and Fox (1996, 1997), the collective literature suggests that crawling provides 
sensorimotor experience that is critical to the construction of space as a coordination of 
displacements. After all, crawling enables children to transform their perceptual fields through 
voluntary movement, which (from the child’s perspective) amounts to a displacement of space 
itself, similar to the transformations of space described by a vector field (or the group of vectors, 
under addition). 

We find similar connections between embodied/sensorimotor experience and the child’s 
construction of number. In particular, manual and numerical digits go hand-in-hand, in a manner 
that transcends etymology (see Norton, Ulrich, Bell, & Cate, 2018). For example, as 
mathematics educators, we know that children generally learn to count with the aid of their 
fingers as manipulatives, but recent neuroimaging studies indicate that the connection persists 
into adulthood. Specifically, neural substrates for finger recognition and finger use (e.g. pointing) 
overlap with those for counting and arithmetic, even among adults (Soylu, Lester, & Newman, 
2018)—so much so that researchers now hypothesize that areas of the brain that evolved for 
manual dexterity (e.g., tool use) have been re-purposed to support mathematical development 
(Penner-Wilger & Anderson, 2013). In considering these neural substrates, the intraparietal 
sulcus (IPS) stands out.  

Figure 2 presents a diagram of the neo-cortex—the outer layer of the human brain—and a 
few of its main regions. The frontal lobe lies above the eyes and plays the leading role in 
executive function (working memory, inhibitory control, and decision making). The parietal lobe 
rests toward the back of the brain and is generally associated with spatial reasoning, including 
hand-eye coordination. Between those two lobes sits the sensorimotor cortex, which initiates 
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voluntary movement. The IPS aligns with the sensorimotor area associated with hand movement 
and runs between the upper and lower halves of the parietal lobe. This positioning would suggest 
that the IPS plays an important role in the manipulation of objects in space, which it does. 

 

 
Figure 2. Neo-cortex. 

In addition to its role in tool use and other coordinated actions involving the hand (e.g., 
Mruczek, von Loga, & Kastner, 2013), the IPS is implicated in virtually every neuroimaging 
study of numerical and spatial reasoning (e.g., Dehaene, 1997; Kucian et al., 2007). In and 
around the IPS we find the common neural substrate for the two primary objects of the 
mathematical sciences: space and number. There we also find their common link to coordinated 
sensorimotor activity, especially involving the hands.  

The IPS exists as part of a network that includes the frontal lobe and the angular gyrus—an 
area in the lower part of the parietal lobe associated with memorized tables of information (e.g., 
multiplication tables). Studies of mathematical development generally show a shift, from frontal 
to parietal areas of the network, as children learn: “Solving a new multiplication problem 
involves the IPS bilaterally and also the frontal lobes, while dealing with the same problem a 
second time shifts the focus of activity to the angular gyrus in the left parietal lobe” (Butterworth 
& Walsh, 2011, pp. 19-20). Other studies (e.g., Ansari, 2008), show a similar frontal-parietal 
shift associated with age. 

As we have mentioned, executive function is a primary role of the frontal lobe. It directs 
limited working memory resources (including spatial working memory) to solve novel problems. 
As children learn—either rotely through memorizing multiplication tables or through the 
development of conceptual structures—working memory is offloaded so that the same task 
becomes less demanding. We posit that areas in and around the IPS serve as the neural substrate 
for spatial-numerical structures. This view, too, is supported by neuroimaging studies (Hubbard, 
Piazza, Pinel, & Dehaene, 2005) and implies that the IPS is heavily involved in assimilating 
mathematical experiences. Resources from the frontal lobe are recruited when the assimilated 
experience becomes problematic. As such, frontal-parietal coherence (areas within the two lobes 
working in tandem, as indicated by brain wave frequencies) would be the neural correlate of 
mathematical development.  

Returning to Bell and Fox’s (1996) study of crawling, infants with 1-4 weeks of crawling 
experience exhibited greater frontal-parietal coherence than pre-crawling infants and infants with 
more crawling experience. Thus, self-locomotion appears to provide a sensorimotor foundation 
for the development of object permanence and the construction of space—the play space for 
subsequent geometric construction. In the next section, we consider the case of Euclidean 
geometry. 
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Euclidean Objects 
Euclid was the first mathematician to formalize mathematics on an axiomatic basis. The 

purpose of the Elements, Book I, was to prove the Pythagorean (sic) theorem from common 
notions and postulates (axioms). This is evidenced by the appearance of the Pythagorean theorem 
and its converse as the final two propositions in the book (Propositions 47 & 48). But what was 
the basis for these axioms and formal arguments? Evidence appears in the axioms and arguments 
themselves. The first three axioms (Postulates 1-3) are Plato’s rules for straight edge and 
compass constructions, indicating their sensorimotor basis within Greek culture. The chain of 
propositions leading from those axioms to the Pythagorean theorem indicates the kinds of mental 
actions behind Euclid’s intuitions. Here, we demonstrate how coordinations of spatial 
transformations, like sweeping, shearing, and rotating, form the psychological basis for 
geometric objects. 

Figure 3 illustrates the diagram Euclid used to support his arguments for the Pythagorean 
theorem. Essentially, he argued that the areas of the yellow and blue squares were equivalent to 
the areas of the yellow and blue rectangles, respectively (Proposition 47). The argument 
depended on previous propositions demonstrating that shearing triangles and parallelograms does 
not affect their areas (Propositions 35-38). In Figure 3, triangle DAC is the result of shearing 
triangle DAG (half of the blue rectangle) along segment FC. Likewise, triangle ABE is the result 
of shearing triangle ACE (half of the blue square) along segment HB. Because these triangles are 
congruent (Euclid relied on Proposition 4—a side-angle-side argument, which he demonstrated 
through Common Notion 4, displacing those elements from one triangle onto another and 
showing that the remaining sides must also coincide), the areas of the blue rectangle and blue 
square (each having twice the area) are equivalent. The same argument works for the yellow 
regions, thus proving the Pythagorean theorem.  

 
Figure 3. Euclid’s proof of the Pythagorean theorem. 

In sum, Euclid proved the Pythagorean theorem by transforming mathematical objects (e.g., 
squares) through mental actions of bisecting, displacing, and shearing. The mathematical objects 
being transformed are themselves the result of mental actions, such as sweeping (sweeping a 
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point to make a line segment and sweeping a line segment to make a square, as in Proposition 
46). Constructing and transforming mathematical objects in this way fits Piaget’s descriptions of 
mathematical objects as coordinations of mental actions, as indicated by the two arrows in Figure 
1: (1) mathematical objects arise through the coordination of actions and (2) can be subsequently 
transformed through further action. Thus, mathematical objects are characterized by both the 
actions that constitute them and the manner in which actions transform them, particularly aspects 
of the objects that remain invariant under transformation (e.g., the area of a parallelogram as 
invariant under the transformation of shearing).  

Consider the simpler example of angle sums within a triangle (Proposition 32). Like number, 
children have to construct triangles: “children are able to recognize and especially to represent, 
only those shapes which they can actually reconstruct through their own actions” (Piaget & 
Inhelder, 1967, p. 43). Understanding triangles as mathematical objects requires children to 
move beyond the figurative material that represents or symbolizes them and to focus on the 
underlying mental actions that constitute them. The perfect triangle does not exist as a Platonic 
ideal, but rather as a coordination of actions, including sweeping and rotating.  

To demonstrate that the angles in a triangle sum to a straight angle (pi, or 180 degrees), 
consider the construction of the triangle itself. It begins with a segment (side) swept from one 
vertex to another. Each pair of adjacent sides forms an angle, which measures the degree of 
openness, or rotation, between them (Moore, 2013). Figure 4 illustrates the three rotations (A, B, 
and C) that occur between pairs of adjacent sides. Each rotation is a transformation of one side 
onto the adjacent side, preserving the property of being a straight segment (a sweep from one 
vertex to another) but transforming its length and direction. After three such transformations, the 
original segment has been transformed back onto itself but in the reverse direction. In other 
words, the combined effect of composing the three angle rotations is a rotation of 180 degrees.  

 

  

  
Figure 4. Sum of angles in a triangle. 

What we see in the Elements is the historical trace of Euclidean geometry from sensorimotor 
activity all the way up to the first axiomatic system. Thus, we can trace formal mathematical 
objects, such as right triangles with all of their properties, all the way back to their psychological 
roots. Like numbers, shapes and their properties (e.g., the Pythagorean theorem) depend upon the 
coordination of mental actions. For the Greeks, those mental actions were derived from the 
sensorimotor activity of playing in the sand with compass and straight-edge. Reflective 
abstraction provides the mechanism for moving from each stage to the next: from sensorimotor 
activity to mental actions, to the construction and transformation of triangles, to the formal 
demonstration of the Pythagorean theorem. 
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Summary 
From the Kantian/Piagetian perspective described here, mathematics can be defined as the 

study of reversible mental actions and the structures that organize them (Piaget, 1970). This 
unifying definition applies to shape as well as number, both of which arise from the coordination 
of actions that have a sensorimotor basis (Piaget, 1942; Piaget & Inhelder, 1967). The definition 
also explains unique features of mathematics while empowering students to construct, transform, 
and study mathematical objects on the basis of their own activity. The infallibility of students’ 
constructions owes to the reversibility of the mental actions that undergird them (Piaget, 1970). 
For example, if a child has defined a triangle on the basis of its three planar angles (rotations), 
composing those rotations with one another inevitably leads to the conclusion that they form a 
straight angle—a single 180-degree rotation that can be partitioned into the three angles that 
constitute it. The trick is to find a way to compose all three rotations without appealing to the 
drawn figure itself but rather to the organization it represents. This process of organizing 
rotations within a structure for composing and reversing them is the process of reflective 
abstraction. 

When we focus on students’ available mental actions and their engagement in sensorimotor 
activity, we are valuing students’ mathematics as they construct new mathematical objects—
objects that empower students to model and structure the worlds they experience. Thus, the 
appeal to students’ mental actions is an appeal for equity in mathematics education. Building 
from the work of Noddings (1999), Hackenberg (2010) has described the appeal in terms of 
mathematical caring relations, wherein the teacher builds models of the students’ available 
mental actions and engages the student with tasks likely to foster new coordinations. 

Although Kant and Piaget set the stage for investigating students’ mathematical 
constructions, researchers have just begun the work of describing those constructions as 
coordinated mental actions. The task before us is compounded when we consider the entire body 
of formal mathematics, ultimately entailing an account of the sensorimotor basis of the mental 
actions that undergird it. For example, can we account for the development of geometry from the 
onset of crawling to the Pythagorean theorem? This work too is mathematical because it requires 
us to explicitly identify the structures that organize reversible mental actions. Only then will we 
fully understand mathematics as a human construction rather than a Platonic ideal.   
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