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This paper presents strategies identified in Mexican rural school students in seeking structure on 
equivalence tasks that involve the equal sign and tasks that do not. The results arise from the 
pilot study of a research project on the structure of numbers and numerical operations – a key 
aspect of early algebraic thinking. 
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Research on algebraic thinking in young students is a trending topic worldwide (Kieran, 
2018; Singh & Kosko, 2017). In this and other works, different approaches to early algebra that 
recognize in arithmetic a strong algebraic feature can be identified (Carraher & Schliemann, 
2007). Studies on equivalence in numerical sentences have centered on relational thinking 
(Carpenter, Franke, & Levi, 2003; Molina & Ambrose, 2008), as well as on generalization, as 
main aspects of algebraic thinking. However, another important aspect is that of structure in 
arithmetic (Kieran, 2018). 

Recent studies show some of the relationships between expressing the structural and the 
operational on equivalence tasks. For instance, Asghari and Khosroshahi (2016), with tasks that 
do not involve the equal sign, propose the existence of an operational approach in developing 
algebraic thinking in the context of the associative property. According to these researchers, 
mathematical thinking in elementary school may involve both an operational and a structural 
conception. Hence, the authors identify the development of algebraic thinking as operationally 
experienced in the ability to transform a numerical structure. 

Schifter (2018) states that an important feature of early algebra includes observation, 
development, and justification of structural properties in numerical operations expressed in 
students’ computational strategies. This is seen, for instance, in students’ verbalizations of the 
property that in an addition, adding and subtracting the same amount does not affect the value of 
the expression. Thus, it is important to engage students in discussions on their strategies to 
determine the veracity or not of numerical sentences such as 57 + 89 = 56 + 90. If students 
indicate a relational mode of thinking, it suggests that they are focused on the structure of such 
equalities. Schifter also analyzed students’ thinking when they explored structural properties in 
related expressions in a sequence of expressions not involving the equal sign (14+1, 13+2, 12+3, 
11+4). 

In another work, Pang and Kim (2018) using sentences such as 67 + 86 = 68 + 85 reported 
that participants tended to use computational strategies; however, they also showed their ability 
to use a structural approach. According to Pang and Kim, one structural strategy consists in 
observing that an addend increases by one and the other decreases also by one. In Schwarzkopf, 
Nührenbörger, and Mayer (2018), however, it is considered that describing patterns in a 
sequence of expressions such as 30 + 20 =  , 31 + 19 =  , 32 + 18 =  , … is not actually structural 
reasoning, even if they point out the importance of such thinking in patterns or regularities. 
These researchers agree with Mason, Stephens, and Watson (2009) in the sense that structural 
thinking is much more than only observing patterns. 

It is clear, then, that there are different perspectives regarding the structural in arithmetic as a 
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component of algebraic thinking, as well as the importance of its development. From here, the 
purpose of our work is to research the reasoning of Mexican students from rural schools in 
seeking structure on equivalence tasks that involve the equal sign and tasks that do not. The 
research question was: What are the strategies used by Mexican students from rural schools 
regarding structure on equivalence tasks? 

Theoretical Framework 
Structure in Numbers and Numerical Operations 

One of the key aspects in developing algebraic thinking is the notion of structure; however, 
there are different perspectives on this notion. As mentioned in Kieran (2018), several 
researchers have worked in this area in the teaching and learning of algebra. Linchevski and 
Livneh (1999), for instance, recognize that students experience difficulties with structure in 
algebra and that these difficulties are due to lack of understanding of structure in arithmetic. 
Mason et al. (2009) have suggested that working with tasks that focus on relations rather than on 
procedures strengthens students’ attention to the structural aspect of arithmetic. They refer to this 
as structural thinking and propose that it allows students to move away from the particular in a 
situation. 

According to Kieran (2018) generalization-oriented activities encompass a structural aspect, 
but more attention is needed to the process that is complementary to generalizing, that is, the 
process of seeing through mathematical objects, decomposing and recomposing them in several 
structural ways. Kieran (2018, pp. 80-81) argues that to observe the structure of mathematical 
objects is to see through them. This means being aware of possible and different ways to 
structure number and numerical operations, for example, observing that 989 may be decomposed 
as 9 x 109 + 8, as 9 x 110 – 1, or as 9 x 102 + 8 x 101 + 9 x 100. According to this researcher, the 
generalization of mathematical ideas in arithmetic is linked to the idea of expressing structure. 
So generalization involves identifying the structural, and the structural involves identifying the 
general. Kieran (2018, p. 82) states that structure in numbers and numerical operations may be 
explained, firstly, by drawing on Freudenthal (1983, 1991, quoted in Kieran, 2018). That is, that 
the system of whole numbers constitutes an order structure, where addition is based on the order 
of this structure: in the addition structure, to each pair of whole numbers a third number (its sum) 
can be assigned. It is emphasized that, in Freudenthal’s discussions of structure, there is not just 
one all-encompassing structure. He refers, for example, to order structure, additive structure, 
multiplicative structure, structure according to divisors, structure according to multiples, etc. 

Based on the literature regarding perspectives on mathematical structure, specifically 
arithmetical structure, Kieran (2018) suggests promoting student experiences with equivalence 
through decomposition, recomposition, and substitution. Following Freudenthal, she points out 
that the structure in numbers and operations involves different means of structuring, according to 
factors, multiples, powers of 10, evens and odds, decomposition of primes, etc. Such structures 
expressed through decomposition, in other words, uncalculated forms, have properties. This 
perspective on structure constitutes a wider conceptualization of the fundamental aspect of 
structure in number and numerical operations as a means to develop early algebraic thinking. 
Taking into account the points made by Kieran (2018), as well as the suggestion of Schifter 
(2018) that structural properties can be implicit in students’ procedures, this work will explore 
Mexican students’ structure sense in equivalence tasks as evidenced through their strategies. 

Methodological Considerations 
Included in this report we present the preliminary results from an ongoing qualitative 
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research aimed at investigating the strategies that students use in equivalence tasks. 
Initial Task Design 

Three tasks were designed in order to explore students’ strategies; two of these did not 
include the equal sign. Task 1 aims at identifying the way in which students relate two numbers a 
and b with a third one c (i.e., its sum) and the rationale they use. It is a 4-item task with a main 
question: Can number c be written from numbers a and b? (a and b being specific numbers). 
Also, the task includes a generalization question: Can any number be written from other 
numbers? For all the questions, students were asked to provide an explanation. 

Task 2 was based on the sequence proposed by Schifter (2018) and includes seven items. The 
aim is to observe the regularities students find in the proposed sequence based on this first item: 

14+1 
13+2 
12+3 
11+4 
10+5 

The rest of the items focus on two particular expressions from the sequence (e.g., 14+1 and 
13+2). Students are asked to explain how to write an expression from the other. Another set of 
items focuses on discussing the equivalence of expressions without computation. The task ends 
with a question where a sequence of the same type is proposed, but involves subtracting; here we 
want to observe if students extrapolate from the discussion involving the case of adding. 
Task 3 involves the use of the equal sign to show the equivalence of expressions, for instance, 4 
+ 5 = 4 + 3 + 2. The aim is to explore if students indicate relational thinking based on the 
structure of such equalities. The main goal in the task is to determine if the numeric sentences are 
true, as well as the possibility of rewriting them in an equivalent form. Task 3 also included 
numerical sentences with “big numbers”. 
Participants 

Six sixth graders, ages 10 and 11, from a public Mexican school participated. This grade 
level was chosen because such students are finishing primary school and have been exposed to 
the official Mexican public education curricula. In the curriculum for the elementary school 
(SEP, 2016) the equivalence of numerical expressions is not mentioned. However, several tasks 
from the official textbooks have the potential to promote students’ early algebraic thinking 
(Cabañas, Salazar, & Nolasco, 2017). 
Data Collection 

Prior to the unfolding of the designed activity, the teacher in charge of the group reviewed it. 
In her opinion, the students had never solved similar tasks; they had only worked with the use of 
the equal sign in an operational sense. The data collection technique was that of the Group 
Interview, so that students could verbalize their rationales. Data were obtained during three 
sessions, one session per task, with sessions lasting 30-40 minutes each. All six students 
participated in each of the three sessions. 

Results and Discussion 
The preliminary results of an ongoing study are herein reported. The analysis focuses on the 

work of three students (S1, S2, and S3), those who participated most fully in the group 
interviews. Data for these results come from students’ worksheets, videotaped footage of the 
sessions, and researcher’s field notes. 
Results from Task 1 

Task 1 does not include the equal sign so as to see whether students use it spontaneously and, 
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if so, in which way. Three of the items were the following:  

1. May number 7 be written from numbers 6 and 1? If so, how? 
2. May number 19 be written from numbers 14 and 5? If so, how?  
3. Is it correct to write number 7 as 3 + 4? As 8 + 2? Explain.  

The students answered affirmatively items 1 and 2, their explanation being based on what in the 
literature is known as an operational use of the equal sign. For example, see S1’s work in Fig. 1. 

 

 
 
 

 

Figure 1. S1’s operational form of justification. 

In his explanation, S1 relates 7 with 6 and 1 in an operational sense: 6 + 1 = 7, through a 
computational strategy. None of the students write, for example, 7 = 6 + 1, which would be 
recognized as a not strictly operational response. From a structural point of view, 6 and 1 can be 
interpreted as a decomposition of the number 7, which can then be recomposed from these 
numbers. In item 3, students answer in the same sense (Fig. 2) based on the result they must 
obtain. 
 

 
Figure 2. S3’s justification in terms of the result. 

The same idea is present in the answers involving a generalization. Can any number be written 
from other numbers? Students identify the generality in terms of the response that they must 
arrive at. This is observed in S1’s final explanation (Fig. 3) where he states “…only if I get what 
I want”. 
 

 
 
 
 

Figure 3. S1’s general statement. 

Students’ answers show a lack of relational thinking by their use of the equal sign as a symbol 
that indicates the result. In other words, their strategy doesn’t match with a notion of number 
decomposition, but with the idea of operating with numbers in order to get a result. The way in 
which they justify their answers – according to their teacher – shows how they have been 
systematically exposed to this way of thinking. In order to test whether the way in which Task 1 
was designed led to the strategy that students used, Tasks 2 and 3 were designed differently. 
Results from Task 2 

The analysis of data from Task 2 (involving the sequence from Schifter, 2018) focuses on the 

May number 7 be written from numbers 6 and 1?  Yes  If so, how? 6 + 1 = 7 
 

B) 
Is it correct to write number 7 as 3+4? Yes As 8+2? . No 
Explain 
Because 3+ 4 = 7 and 8 +2 = 10 and [3+4] does not ask for a 10 

Can any number be written from other numbers? 
Explain why 
Yes, “…only if I get what I want 
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features of the a + b form of expressions that were observed by the students, as well as on the 
possibility of transforming one expression of the sequence into another expression of the same 
sequence. Regarding the first aspect, students’ answers show that they identify the regularity in 
the sequence. For instance, they write about the involved operation (addition), the sum (the 
result) and the existence of an order in the sequence (increase and decrease of the addends). See 
S2’s and S3’s answers to the first item (Fig. 4). 
 

 

 
 
 
 
 
 

Figure 4. Features of the sequence as indicated by S2 (above) and S3 (below). 

The kind of answers students produce regarding the presented sequence relates, on the one 
hand, to the kind of thinking they show throughout Task 1. That is, they identify the expression 
as an operation that must be carried out in order to obtain a result. This feature is clear in S2’s 
response when he writes: “…all of them are additions and they are not answered and all the 
additions result in 15”. This suggests that these students do not see the expression as a 
mathematical object in itself, reflecting what is described in the literature as the lack of closure 
dilemma. On the other hand, there is some evidence of a train of thought that could be associated 
with the structural. According to Pang and Kim (2018), to identify patterns such as “increases by 
one and decreases by one” is a part of structural sense. This can be seen in S3’s work (the lower 
half of Fig. 4) when he states: “…and the biggest number becomes small, the smaller becomes 
big”.  However, he does not relate the feature he observes to the equivalence of the expressions. 
In the second part of Task 2, the students were asked how to obtain one expression in the 
sequence (e.g., 13 + 2) from another (e.g., 14 + 1). In these cases, all the students use an additive 
compensation strategy, as observed in Fig. 5. 
 

  

Figure 5. S1’s additive compensation strategy. 

The aim of our research was to study how students move from one expression to another, if 
they decompose and recompose the involved numbers. It was noticed that they identify the parts 
of the expressions, but not as a mathematical object that can be decomposed and recomposed to 

B) Write what you observe on the sequence 
There is an order, in the 14 to 10 and in the 1 to 5, all of them are additions, they are not answered and all 
the additions result in 15. 
 
In all the sums the result is 15, you have 14+1=15 then 13+2=15 and the biggest number becomes small, 
the smaller becomes big. 

E) Is it possible to write from 14+1 the expression 13+2?  Yes 
In which way? Explain 
We have to add. For instance 1+1=2 and subtract 14 -1=13 

H) Is it possible to write from 10+5 the expression 13+2?  Yes 
In which way? Explain 
[Student illustrates an additive compensation strategy] 
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transform one expression into another. It was also seen that students use a compensation 
strategy: adding and subtracting the same amount to and from the involved addends in order to 
obtain the second expression. The following is an extract from an interview when, in the course 
of presenting the task, the interviewer asked for a generalization of the student’s strategy: 
 

Researcher: …Can you do it [referring to his strategy] in any case? Is there a rule for it? 
[After other students offer suggestions, S2 answers] 

S2:  It’s only a matter of adding and subtracting, depending on the required numbers. 
 

Despite such structurally-related responses as S2 produced, there is not enough evidence, 
however, to determine if students identify an equivalence relationship among the expressions 
(e.g., 14+1 and 13+2). Nor is there enough evidence, with respect to the additive compensation 
strategy, to determine if they are aware that their strategy is generalizable to all additions (e.g., 
that 27 + 15 can be converted to, say, 30 + 12 or that 44 + 19 can be converted to 43 + 20) or 
simply applicable to the set of additive expressions provided in Task 2. If the latter, then — as 
suggested in Schifter (2018) — this would be an ad hoc strategy aimed at getting the numbers 
needed for the second expression from the first one, and viceversa. 
Results from Task 3 

This task includes the equal sign – in expressions such as a + b = c + d. As mentioned, Task 
3 involves “big” numbers to see if this deters the use of computational strategies. 
On the one hand, students accept expressions such as a + b = c + d; however, they justify the 
equality of both sides by calculating the result on each side. Again, this computational strategy 
demonstrates that students are not relying on relational thinking. Their computational strategy is 
called upon in both cases, whether with “small” or “big” numbers (Fig. 6). 

 

  
 
 
 

 
Figure 6. S3’s computational strategy. 

On the other hand, students rewrite the equalities in the form of other equivalent equalities 
according to two strategies. In the first of these strategies, they decompose each of the addends, 
but not in a way that shows a clear relationship between one side and the other of the equality 
(see S1’s work in Fig. 7). In the second, which is based on calculating the total (the result) for 
each side without first decomposing the involved addends, students then look for two or more 
numbers for which they could obtain the same total (see S3’s work in Fig. 8). 
 
 

Observe the following expression: 480 + 6 + 123 = 486 + 123 
Is the equality True or False?   T 
Explain with your own words 
              Because we get the same result 
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Figure 7. S1’s equality rewriting.  

 

 

 

Figure 8. S3’s equality rewriting. 

This task shows that students accept equalities in the form of a + b = c + d. However, they 
transform them without relating the right and left sides except according to their totals. Their 
strategy is to maintain the equivalence through the two above-mentioned strategies. Hence, as 
observed in Figs. 7 and 8, there is not a natural inclination in students to re-express the equalities 
in such a way that both sides of the equalities look alike; for instance, 172 + 10 + 50 + 25 = 172 
+ 10 + 50 + 25, or 170 + 2 + 10 + 50 + 25 = 170 + 2 + 10 + 50 + 25, or even as 182 + 75 = 182 + 
75. However, S1’s work shows some structural sense according to the reviewed literature. Even 
when S1 and S3 write correct equalities, each side is considered on an individual basis. The left 
side is decomposed in one fashion and the right side in a different way, without showing 
explicitly the equality of both sides. S1 (Fig. 7) does not explain that both sides look more or less 
the same, he only mentions that the result (on both sides) is the same. 

Conclusions 
From the strategies students used, only one can be considered to illustrate a structural 

approach (S1 in Task 3, as shown in Fig. 7), even though the accompanying explanation refers to 
the result of both sides of the equality. The rest of the students’ strategies are clearly 
computational, referring to the expected result, whether it involves operating with the numbers of 
an expression so as to calculate the result on both sides of an equality (the strategy observed in 
Tasks 1 and 3), or operating with the addends of one expression to obtain the addends of the 
other expression (the strategy observed in Task 2). In this sense, the presence or absence of the 
equals sign in the tasks seems not to influence the students in their chosen strategy. 

Our results coincide with those reported by Pang and Kim (2018), in the sense that students 
tend to use computational strategies. This means that they show a strong operational sense, even 
when they accept equalities in the form of a + b = c + d. Nevertheless, this acceptance could be 
used as a base to promote the development of structural sense within algebraic thinking by 
designing tasks in such a way that students are explicitly requested not to pass through the 
intermediate step of computing the total for each expression in their work on judging the 
equivalence of the component expressions. Accepting expressions as bona fide numerical 
objects, and operating with and on these objects, is essential to seeking and expressing structure 
within the domain of arithmetic and thereby fostering the development of algebraic thinking. 

Acknowledgements 
We thank the Mexican Secretariat of Public Education (Secretaría de Educación Pública, 

SEP) for funding this research, through the PRODEP Program (Announcement 2017). We also 
thank the primary school where data was gathered, the teachers, and the participating students.  

Observe the following expression: 172 + 10 + 75 = 182 + 50 +25 
Is the equality True or False?  T   
In which other way could you re-write the previous equality?   .Yes.  
Why it is correct re-write the expression in such a way? 
100 + 72 + 5 + 5 + 60 + 15 = 100 + 82 + 30 + 20 +20 + 5 
Because I get the same result 

Observe the following expression: 172 + 10 + 75 = 182 + 50 +25 
Is the equality True or False?  Yes   
In which other way could you re-write the previous equality?   .Yes.  
Why it is correct re-write the expression in such a way? 
207 + 50 = 150 + 107 
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