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PME-NA History and Goals

PME came into existence at the Third International Congress on Mathematical Education
(ICME-3) in Karlsriihe, Germany in 1976. It is affiliated with the International Commission for
Mathematical Instruction. PME-NA is the North American Chapter of the International Group of
Psychology of Mathematics Education. The first PME-NA conference was held in Evanston,
Ilinois in 1979.

The major goals of the International Group and the North American Chapter are:

1. To promote international contacts and the exchange of scientific information in the
psychology of mathematics education;

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the
cooperation of psychologists, mathematicians, and mathematics teachers;

3. To further a deeper and better understanding of the psychological aspects of teaching
and learning mathematics and the implications thereof.

PME-NA Membership

Membership is open to people involved in active research consistent with PME-NA’s aims or
professionally interested in the results of such research. Membership is open on an annual basis
and depends on payment of dues for the current year. Membership fees for PME-NA (but not
PME International) are included in the conference fee each year. If you are unable to attend the
conference but want to join or renew your membership, go to the PME-NA website at
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and
click on “Membership” at the left of the screen.
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Preface

Dear Colleagues,

On behalf of the 2018 PME-NA Steering Committee, the 2018 PME-NA Local Arrangements
Committee, the College of Education at the University of South Carolina, and the College of
Education at Clemson University, we would like to welcome you to South Carolina and the 40™
Annual Meeting of the International Group for the Psychology of Mathematics Education —
North American Chapter, held at the Hyatt Regency in Greenville, South Carolina.

As part of our celebration of 40 years of PME-NA, this year’s conference will focus on enduring
challenges in mathematics education research and look ahead to emerging opportunities in the
field. Plenary sessions will address our major conference themes: mathematical and pedagogical
demands for P-16 education, equitable mathematics teaching and research, leveraging new
technologies, and perspectives on the nature of mathematics and research.

Elham Kazemi will present the opening plenary session on Thursday evening, How Can
Understanding Student Experiences in the Mathematics Classroom Enrich, Challenge, and Help
us Improve our Own Learning as Teacher Educators and Researchers? The talk explores the
ways in which learning more about research on students’ experiences in mathematics classrooms
has the potential to transform the work we do with teachers in teacher preparation, professional
development, and research settings. Corey Drake will serve as the discussant. On Friday, Marta
Civil will present and Laurie Rubel will serve as discussant on the plenary session entitled
Looking Back, Looking Ahead: Equity in Mathematics Education, which explores funds-of-
knowledge, participation, and valorization of knowledge orientations towards mathematics
education. Rubel extends our understandings of the political dimensions of equity in
mathematics education, as well as articulates a vision for future work around equity in
mathematics education. Saturday’s plenary session features Margaret Niess with discussant
Jeremy Roschelle in a session entitled Transforming Teachers’ Knowledge for Teaching
Mathematics with Technology through Online Knowledge-Building Communities. Their session
describes the development and transformation of Technological Pedagogical Content
Knowledge among inservice teachers via online technology courses designed with intentional
opportunities to explore and discuss reform-based instructional strategies for teaching with
technologies within teachers’ communities. Finally, Anderson Norton and Julie Sarama present
Perspectives on the Nature of Mathematics and Research during Sunday’s plenary session.
Norton and Sarama provide unique and compelling notions of mathematics as a body of
knowledge, helping to ground our understandings of what it means to learn and do mathematics.
Each presenter provides powerful implications for the teaching, learning and research of
mathematics education.
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The concurrent and poster presentations serve to advance our field through a firm grounding in
where we have been, our current understandings of mathematical learning, and with an eye
towards the work ahead of us - truly, we are Looking Back, Looking Ahead. This year’s
conference will be attended by more than 500 researchers, faculty and graduate students from
around the world including Mexico, Canada, Australia, Republic of Korea, and 42 states from
the United States of America. The acceptance rate was 37% for research reports as research
reports, 69% for brief research reports as brief research reports, 94% for posters as posters, and
100% for working groups. The accepted proposals included 69 research reports, 137 brief
research reports, 133 posters, and 17 working groups.

We would like to thank the many people who generously volunteered their time over the past
year in preparation for this conference. In particular, we wish to thank Jessica Allen, Graduate
Assistant at the University of South Carolina, for her tireless efforts in facilitating planning,

communicating with various stakeholders and formatting the conference proceedings.

Professional regards,

Thomas E. Hodges George ]. Roy Andrew M. Tyminski
University of South Carolina University of South Carolina Clemson University
2018 PME-NA 2018 PME-NA 2018 PME-NA
Conference Co-chair Conference Co-chair Conference Co-chair
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HOW CAN UNDERSTANDING STUDENT EXPERIENCE IN THE MATHEMATICS
CLASSROOM ENRICH, CHALLENGE, AND HELP US IMPROVE OUR OWN
LEARNING AS TEACHER EDUCATORS AND RESEARCHERS?

Elham Kazemi Corey Drake
University of Washington Michigan State University
ekazemi@uw.edu cdrake@msu.edu

In this paper, we explore the ways in which learning more about research on students’
experiences in mathematics classrooms has the potential to transform the work we do with
teachers in teacher preparation, professional development, and research settings. We focus in
particular on questions of student access to and participation in mathematics and highlight
studies of the racialized and gendered experiences of students and the connections between these
experiences and broader narratives about race, gender, and ability/disability. We conclude with
questions and possibilities raised by these studies for our individual and collective efforts to
support and understand teacher learning and changes in teacher practice.

Keywords: Teacher learning, Student experience, Equity

The title of our paper is a question, not a statement, which we hope will provoke
conversation among us. To begin, we would like to introduce ourselves and then explain how
we came to ask the organizing question for this paper and use selected studies as cases to help us
dive into discussion.

How Did We Come to the Focus of this Paper?

We decided to use this occasion as an opportunity to further our own learning by highlighting
recent work in the field that we think can inform our work with teachers. To that end, we are not
attempting a comprehensive review of any kind. Instead, we selected articles, be they written for
researchers or practitioners, that would shed light into how particular students have experienced
the mathematics classroom. You will notice that some of these accounts and narratives are first-
person accounts, while others were generated through close collaboration between researchers
and students.

The ways we think about teacher practice and teacher learning in research and teacher
education focus heavily on teacher performance - along a variety of dimensions, with a variety of
foci. This focus can be seen in the many studies of changes in teachers’ practices, in recent
practice-based teacher education efforts, and in the variety of observation protocols used to
observe, understand, and sometimes evaluate teaching. Both personally and as a field, we have
learned a lot in recent decades from thinking about teaching in this way. In our own work, we
have learned about ways in which teaching is difficult and complex for teachers, particularly
novice teachers; approaches to supporting prospective teachers in developing ambitious teaching
practices; the roles of tools such as student work and frameworks of children’s mathematical
thinking in advancing changes in teachers’ practice; and how to design learning environments for
teachers to learn together. We have also learned from work that has examined relational aspects
of teaching, though primarily from the perspective of teachers, about the importance of teacher
care and productive relationships with students (e.g., Bartell, 2011; Jansen & Bartell, 2013).

Studies of teaching can benefit from more attention to the nature of student experience in
mathematics classrooms as a lens for understanding teacher practice and teacher learning. When
we make this claim, we want to be sure to note that attending to student experience is not the
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same as attending to student outcomes/achievement; many studies have tried to link teacher
practice and student achievement. Instead, we are interested in understanding teaching in terms
of student experience, which is broader than student achievement or even student learning, and
also takes into account students’ experiences of mathematics in relation to identity, participation,
motivation, and agency (Aguirre, Mayfield-Ingram, and Martin, 2013).

Our interest in this paper is in deepening our understanding of teaching by focusing on students
and their experiences because although we have learned many important ideas from focusing on
teacher performance and practice, we have yet to deeply understand the link between teaching
and student experiences or ways in which teaching might disrupt persistently inequitable
patterns in student experiences. Jansen & Bartell (2013) note that, “A teacher may intend to
enact care, but unless the care has been received by a student, the student will not feel cared
for.” (p. 36) This points to a key limitation of research on teacher education that focuses on
teacher performance without also considering student experience. In order to address this
limitation, we, as teacher educators and researchers of teaching, we are going to foreground
research on students’ experiences. Connecting and expanding the literatures we put into
conversation together can further our efforts to prepare teachers who can create transformative
and inclusive classroom and support students’ access to and participation in mathematics.

What do we Know about Student Experience that Might be Helpful for Thinking about
Teacher Practice?

In the cases that follow, we focus first on understanding individual students’ motivations and
experiences related to participation in mathematics discussions. We then move to cases of
studies that explored the racialized, gendered, and networked nature of students’ participation in
mathematics classes. Finally, we explore cases of participation in and access to mathematics in
relation to broader racialized, gendered, and ability-related narratives.

Understanding Students' Experiences as Listeners and Speakers in the Mathematics
Classroom

Hintz (2011) studied the experiences fourth-grade students had in two classrooms during
classroom discussions. She sat with them as they replayed video from a recent discussion and
asked the students to share with her what was happening for them during those segments. In
research on classroom discussions, studies have examined how discussions unfold, what children
say or do, and what decisions teachers make for discussions to be mathematically productive.
Hintz applies a different lens to understanding classroom discussions, as she carefully examines
the demands that these discussions place on students both as listeners and speakers and
illuminates how students experience those demands. In her 2011 article, Hintz presents the
complexities one student, Norah, experienced in a common discussion structure, called strategy-
reporting, during which students share the different ways they thought about a problem.

Hintz sat with Norah to look at a particular time when Norah shared her answer to a
multiplication problem while also making a hand gesture to indicate that she was not confident it
was right. During strategy reporting, teachers commonly ask questions about a student’s strategy
and often work through any errors that arise. But Norah did not like to share when her solution
had a mistake because she anticipated being asked to talk about it in front of the other students.
Hintz recounts what unfolded in the classroom and how Norah experienced it:

During one particular interview, Norah and I rewatched the videotape of an episode during a
lesson when she shared a mistake and I listened to her talk about that experience. After
solving the problem 14x5 mentally, she had offered up her answer saying, “I think it is 120.”
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As she said her answer she was grimacing with a look of uncertainty and concern. She turned
to her neighbor and gestured her hand back and forth in a flip-flop motion showing that she
was unsure about her answer. Later in the discussion, as a different answer was decided to be
correct, Norah raised her hand and said with a shy smile and shrugging downward, “I
counted wrong.” The teacher responded, “You counted wrong. And that’s OK, we do that all
the time don’t we? That’s part of our life,” and moved on with the discussion.

As Norah narrated her experience during this episode, she shared,

Since I did 14 x 5 = 120, I messed up because I added differently than I should have. I did 4
x 5 is 20 and then I put the one from the 10 right on as 100. I should have thought more
about it instead of going right to it. It is kind of embarrassing.

What she felt was embarrassing was “getting it wrong,” and she added, “But if you make a
mistake then you can keep practicing that problem and it will become a fact that you know.
Next time I would still start with 4 x 5 =20 but then I would do a different step.” This
comment reveals that she sees the potential for learning from your mistakes and continued
practice. Yet the social consequences of making a mistake publicly weighed heavy on her
mind and shaped how she chose to take on the roles of sharer and listener. An important part
of why Norah did not like to share when her solution had a mistake was because of how she
may have been asked to engage in talk about the mistake with her teacher in front of the other
students. It is common during strategy reporting for a teacher to ask questions about a
student’s strategy when there is a mistake in an effort to uncover a misconception and work
through an error. In talking about this experience, Norah said, “Sometimes I don’t like to
make mistakes because it’s kind of embarrassing when you thought you got it right and then
you got it wrong and then you have to keep working out loud” (Hintz, 2011, p. 268).

Norah explained she was happier not to be called on when her thinking was incorrect. It does
not seem, in the way she recounts her experience, that she does not like revising her thinking.
But, she feels badly doing it in front of others. The teacher, like many of us, tries to normalize
mistake making. Classrooms benefit when a norm is established that it is okay to be wrong. And
certainly we do not have evidence other students made Norah feel badly. Still, her worry was real
and impacted whether or not she wanted to participate. And Norah’s feelings about sharing and
listening are not unidimensional. She also told Hintz that she liked hearing and using other
students’ strategies, and that she was comfortable trying out multiple strategies until one worked
for her. If the teacher also understood the complexities of how Norah felt, what kind of dialogue
between them could help Norah process these experiences and grow from them?

Amanda Jansen’s work (e.g., Jansen, 2006, 2008) similarly focuses on students’ experiences
with participating in classroom mathematics discussions. In this work, she identifies
relationships among middle school students’ beliefs, motivation, and participation in whole-class
discussions. Through in-depth interviews with students and many hours of classroom
observation, she identified student beliefs that both constrained and supported student
participation in whole-class discussions. Some students she interviewed echoed Norah’s feelings
about the risks of verbal participation and the benefits of listening during mathematics
discussions.

Students in her study also demonstrated motivation to participate more actively in order to
meet social or behavioral goals, such as helping others. In particular, these students believed in
the value of participation for supporting their own learning and understanding of mathematics.
These views were exemplified by Becky:
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Becky: And when you have to do problems, don’t just sit there. You have to get into the
conversation in order to actually get it yourself and make you understand it, don’t just
understand it like how other kids do it. (Jansen, 2006, p. 417)

Consider Becky’s perspective and Norah’s side by side. One common practice in
mathematics classrooms is to collect answers and then ask students to share those answers.
While many conceptions of and research on ambitious pedagogy focus on the importance of
discussion for learning, it is important to also recognize the risks of participation that can be
inherent in participation for some students. Further, while teachers may work on class-wide
strategies for encouraging participation, we need to understand that these strategies will be
received and understood differently by different students, depending on their prior experiences,
beliefs, and goals. How often do we learn about what our students are experiencing in the
classroom? How can we create the time and gain the trust for students to tell us? Taken together,
Hintz’s and Jansen’s work remind us that participation in mathematics discussion can take many
forms and that understanding the ways in which listening, questioning, and other forms of
participation support learning is important work. Finally, Jansen’s findings illustrate the deep
interconnectedness of students’ social and academic goals and beliefs in shaping students’ access
to and participation in mathematics.

Understanding Students’ Participation and Positioning as Racialized and Socially
Networked

In the next section, we continue to learn from and about students’ experiences in
mathematics classrooms with a focus on the social aspect of participation as racialized, gendered,
networked, and closely connected to mathematics access and achievement.

Maisie Gholson’s and Danny Martin’s work (2014) takes a “microsociological (e.g., Shalin,
1978) approach” to understanding Black girls’ experiences in a mathematics classroom, “using
the girls’ voices in this study to make sense of the emergent social structures that organize access
to mathematics participation and learning.” (Gholson and Martin, 2014, p. 19). Through this
approach, they identify the shifting roles, identities, and social networks within a 3"-grade
classroom that not only affect the girls’ social identities, but also shape their access to and
success in the classroom mathematics. They find that even those students who identified as
“competent mathematics students” found their access to participation in mathematics class
“mediated” by their positioning within the social network of the classroom, especially their
positioning in relation to the “high-status cluster” within the network. (p. 30). The close
connection between social positioning and access to classroom content is illustrated through the
story of Shawna, a strong mathematics student who identified as good in mathematics, but often
found herself outside the “high-status cluster” of the classroom girls’ social network:

M(Gholson): Like if Ms. Robinson calls everybody to the rug, sometimes you’ll sit at
your desk or sit at the very back. Do you think that’s true?

S: [Nods affirmatively.] When she calls us to the rug, I’ll stay at my desk sometimes.
M: Why do you like to stay at your desk sometimes?

S: Because I don’t like to go to the rug.

M: Is it good to sit away from the rug and get away from people sometimes?

S: Yes.
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M: How does it make you feel when you sit away from the group? Does it make you feel
good? Does it make you feel bad?

S: Good.

M: It does? And why does it make you feel good?

S: Cause some of the people mess with me.

(Interview 03/01) (Gholson & Martin, 2014, p. 28)

Gholson and Martin go on to say that, “On the rare occasions when Shawna was included by
one or more of the girls in a classroom activity, she was highly engaged.” (Gholson & Martin, p.
28) Gholson and Martin conclude that, “It is not uncommon for reports of studies of mathematics
learning to state explicitly that any talk not related to mathematics was excluded from the
analyses. However, this necessarily dismissed children’s social worlds as unimportant and
misunderstands the intimate connection between children’s learning of disciplinary content, such
as mathematics, and their social relationships.” (p. 31).

In more recent work (Gholson & Martin, under review), the authors use a performative
framework to analyze classroom video and student interview data in order to understand how one
student, a Black middle school girl, positions herself within mathematics class. They focus in
particular on the movement of bodies within the mathematics classroom space and illustrate how
the performative lens allows us to see the ways in which “mathematics learning is a
contextualized performance, requiring and enabling children to simultaneously negotiate race,
class, and gender.” (p. 4) In doing so, they illuminate the ways in which mathematical practices,
described abstractly in documents such as the CCSSM, are realized through embodied
performances.

Gholson and Martin’s work helps us understand how we can miss salient aspects of students’
engagement with and access to mathematics when we focus only on overt teacher and student
behaviors and only on students’ interactions with and identities in relation to content.
Understanding students’ positioning with respect to one another, as well as to the content,
provides a lens for making sense of patterns of student participation. At the same time,
Gholson’s and Martin’s long-term and deep interactions with students lead to compelling
narratives of the personal, social, familial, and community contexts in which students’
mathematical development is situated. We wonder if and how teachers can engage in similar
long-term and deep interactions leading to the co-construction of student narratives. Finally,
Gholson and Martin point to the ways in which students’ classroom and network positioning is
situated in broader narratives of race, gender, and ability in mathematics classrooms. These
narratives are the focus of the next set of studies described below, by Shah, Lewis, and Rubel.
Understanding Students’ Experiences of Narratives of Race, Gender, and Ability/Disability
in Mathematics Classrooms

The classroom, while a community onto itself, is of course constitutive of the outside world.
Shah (2017) interviewed 35 high school students across 4 classrooms who went to the same high
school in Northern California. They identified as Asian, Black or African American, Latinx,
Polynesian, White, and mixed race. He was interested in how students invoked racial narratives
when they talked about mathematics learning, how these narratives worked in relation to one
another, and what these relationalities meant for how students were positioned with respect to
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race. A primary interest in his work is to study how students make sense of these racial
narratives and how it contributes to the shaping of racial ideologies and students’ own identify
formation.

It is not surprising that the adolescents he talked to reported hearing numerous racial
narratives at school and that they were in line with what Danny Martin (2009) has called a racial
hierarchy of who is good at mathematics. Within his data corpus, students invoked 98 different
racial narratives over a broad range of topics from intelligence, academic performance, and
ability to body type, personality, cultural practices and career paths. Shah examines how various
racial narratives and their interconnections impacted their everyday experience in the
mathematics classroom. For example, at the time of the study, Troi was a higher performing
senior in an advanced course of Precalculus. Troi’s statements about how a substitute teacher’s
might react to him conveys how he is aware of the racial hierarchy in mathematics with respect
to how Indians and Samoans are perceived in mathematics, “‘Yeah, so say a substitute teacher
would come in [to class] and she’ll see the Indian kid and think, ‘Oh he must be the best one
here in math,” and she’ll look at me and think, ‘How did he get into this class? What the heck is
he doing here?’” (p. 23). Moreover, as Shah explains in this next excerpt, for Troi, narratives
about intelligence were linked to narratives about physicality and mathematical ability:

Polynesian students at Eastwood High were a small but prominent population on campus.
Samoan and Tongan cultural practices were well represented in school events, and the
Polynesian male students in particular were known for their participation in contact sports,
such as football and rugby. Several of the faculty I spoke with viewed them as
“troublemakers” and found them difficult to manage in their classes. In the excerpt below,
Troi (Samoan, 12th grade) elaborates on how perceptions of Polynesian bodies and
personalities contributed to their being positioned as mathematically, academically, and
intellectually inferior:

Other students just see me as big and mean...and here [at Eastwood High], the
Polynesian kids are seen as like we’re big, that we do whatever we want. Like we’re not
very intellectual, and like we’re not smart. But once they meet me they’ll know that I’'m
actually very intelligent, and I can do math, I know how to do English, I can do
science...all that kind of stuff. I think when I come in they just see me as someone who’s
going to hurt them or beat them up or someone who freaking wants to kill. They’re not
going to take time out to sit and talk with me, and actually greet me and actually get to
know me.

In this excerpt, Troi draws connections among multiple categories of racial narratives.
Initially, he connects a narrative about Polynesians being “big” to narratives about
Polynesians being seen as “mean’ and “someone who’s going to hurt them or beat them up
or someone who freaking wants to kill.” The relations among these narratives evoke an
image of Polynesian students as angry and violent people that others should fear. Indeed,
Troi implies that classmates tend to avoid him, and do not attempt to “greet me and actually
get to know me.” But Troi perceives these narratives to be consequential in ways that go
beyond his social standing. They also matter for how Troi is positioned from an intellectual
standpoint. After invoking narratives about Polynesians’ body type and personality, he notes
that people view Polynesians as being “not very intellectual.” (Shah, 2017, p. 27-28)
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Reading Troi’s experience and the many others in Shah’s article provides us with a compelling
window into how students feel about the way they are read by others and the very real
consequences for the educational opportunities they pursue or not. Implicit in Troi’s description
is a rather segregated social space. If students do not have genuine opportunities to develop
friendships across cultural and racial groups, how does the lack of relationships figure into the
ways they are asked to interact in the academic setting of the classroom? How do teachers check
their own assumptions and views of particular racial and cultural groups in the school? Where do
the perceptions about troublemakers get challenged?

Understanding how students with learning disabilities developing systems to
compensate for cognitive differences. Katie Lewis studies the characteristics of mathematics
learning disabilities. Drawing on sociocultural frameworks, she analyzes how students make
sense of mediational tools such as symbols and representation when doing mathematics.
Importantly, she tries to understand the resources that students use not what they seem to lack.
One important turn in her recent work is to marry the Vygotskian notion of compensation with a
critical disability studies frame. By collaborating with individuals with mathematics learning
disabilities, she has been documenting the intentional actions that they take to gain access to
spaces, context, and mediational tools in mathematics that would otherwise be inaccessible to
them. This emancipatory research inverts the typical power dynamic between researcher and
researched.

In a recent paper, Lewis and Dylan Lynn (2018) discuss the significant and persistent
challenges Dylan, who graduated with a major in statistics from UC Berkeley, encountered when
doing mathematics and how she compensated for them in order to succeed. Together they
documented eight distinct compensatory strategies by analyzing videos of interactions between
and another college student with mathematics learning disabilities and interviews with Katie.
Dylan’s challenges included inverting numbers, distinguishing symbols, making sense of dense
notations, and understanding the impact of operations on values. She had developed her own
system of addressing these challenges which included the use of mathematical tools such as
graph paper, particular colored pens and pencils in ways that helped her navigate notations and
solution processes.

We will give you one particular example of these compensatory strategies. An important
aspect of understanding Dylan’s experience was how our education system’s policies were set up
to exclude her and actively discourage her from pursuing mathematics. When she was diagnosed
with a disability in college, the university’s response was to waive her mathematics requirement.
There was no real way for her to be supported to continue with mathematics, and she had to find
her own way to persevere. She learned what to ask her tutors to do, and she had to persist
through numerous course graders who complained about the length and verboseness of her
assignments. In the excerpt below, she explains how one strategy of rewriting mathematical
symbols into words supported her understanding of new concepts and notational system.

Dylan: “This is calculus, but you can see it illustrated with this notation [writes f(x) = x +
4x3; see Figure 2] this notation, the way people say this is “f of x”” which is also terrible. It’s
the function of x equals this [as writing “function of x = x + 4x3; see Figure 2]. This little
notation here [points to f{x)] would throw me off really badly in my classes, because f times
x? No, it’s a notation that is basically applying this function to the variable x. I would
sometimes write out something like this [writes bracket underneath ‘“‘function of x| right
underneath whatever it was and again, this is really verbose, [but] it might be helpful.”
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Figure 2. Dylan’s examples of rewriting mathematical symbols with words, which helped her translate
and make sense of the meaning of the notation.

Dylan noted that she often used this kind of translation in her notes to help her decode the
meaning of the symbols, and described it as her creation of metadata for the notation. ...

This translation of symbols into words took Dylan extra time both when writing notes and
when solving problems. Because this kind of translation was not available in her classes or
textbooks, she paid tutors to provide this kind of support. She explained that “I would force
tutors to give me the English words for the symbols, which was always funny because these
are grad students who haven’t thought about this stuff in years. ‘How would you use this in a
sentence? | haven’t thought about it that way.’” The kinds of supports that Dylan needed
were not something that the tutors were skilled at providing. Although this compensatory
strategy provided her with a way of understanding the mathematical symbols, it placed
additional demands upon her requiring that she spend more time and money than her peers to
have access to mathematics. (Lewis & Lynn, 2018, p. 6-7)

One theme that is beginning to emerge in the selections we have made is how much students are
doing and thinking about that is not available to the teacher. The full study documents many
more strategies that Dylan generated to help her understand and advance in her mathematics
coursework. Her brilliance and ingenuity are so clear, even though it appears that her college
instructors are not empathetic to how much more work she does in order to be sure she
understands.

Understanding students’ gendered experience in the mathematics classroom. There are
many issues with respect to gender and sexuality that we need to consider as mathematics
educators. Gender narratives around mathematics have been typically associated with
masculinity. In a brief article written for practitioners (Rubel, 2016), Laurie Rubel recounts her
own experience as a teacher in a professional development session led by a mathematician who
was engaging participants in how problems could be modeled with graph theory. He chose a
regularly used problem because its purportedly binary categories would simplify the
mathematics for learning purposes. But that is not how she experienced it, as she explains in this
next excerpt.
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When I was a beginning teacher and in my twenties, I attended a professional development
course for mathematics teachers, in which the Stable Marriage problem was explored as an
example of a problem that can be modeled with graph theory. The facilitator, a professor of
mathematics, led an activity similar to the one described above. He handed pink cards with
fictitious names to the people he identified as women in the room and blue cards to the men.
He told the women, holding the pink cards, to create rankings of their marriage preferences.
If you were a woman, you were holding a pink card, and you were allowed only to rank your
choices of men as spouses.

I remember feeling uncomfortable with this arrangement. When I voiced an objection to this
constraint, [ was told that this is the set-up of the problem. In other words, this problem is not
really about marriages. The problem refers to a particular kind of mathematical pairing
between set A and set B. The story about men and women and marriages is just a story to
lead us to a particular mathematical model. The story is supposed to help clarify the
parameters of the mathematical model. “Just focus on the mathematics,” I was told, even
though I was being handed a pink card and thereby being placed in a particular location on a
gender binary. Not only that, but heteronormativity was being reinforced with the statement
that, in this model, all women have to want to marry men. (Rubel, 2016, p. 438)

There are several important ideas here that are important for our work with teachers. As a
student in this context, Laurie, tried to speak out but was rebuffed. The teacher responded to her
by admonishing her to just focus on the mathematics, making her own reaction to the problem
irrelevant. So even though the algorithm they were studying had been applied to settings where
college applicants are matched with colleges or medical students with residencies, the context of
this problem was set in marriage between heterosexual couples, and students were not given a
choice in their gender assignment or whether they wanted to use the marriage context for an
extended discussion. Through her writing, Rubel pushes us to take up Rands’ (2013) idea about
gender-complex education, directly acknowledging gender diversity by making our curriculum
and pedagogy reflect the existence of transgender and gender nonconforming people. If
mathematics is a way of making sense of our world, it seems impossible to discount our world

to just focus on the mathematics.

What Theoretical Frameworks are Researchers Drawing on to Study Student Experience?

A rich array of critical theoretical perspectives are used across these studies to help us
interpret student experiences. Noting these are important for what theories we study in teacher
preparation, doctoral preparation, and our own ongoing learning. Psychological, cognitive, and
sociocultural theories of learning are likely to be insufficient in helping us understand students’
mathematical learning. In this small collection of articles, scholars are drawing on theories that
help us attend more to relations of power and how race, gender, class, ability, and sexuality
shape these relations. Social theorists, philosophers, critical race theorists, disability studies,
black feminist scholars, and poststructural theorists, to name a few, are being used to bring
depth and complexity to our understanding of teaching, learning, schooling in how they shape
students’ learning, their identification with mathematics, their experiences as learners and the
meanings of their education.
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How Did Researchers Learn about Student Experience?

Narrative plays a central role in the studies we have highlighted here. Spending time with
students over a long period of time to come to understand their varied experiences is common to
them all. Interviews aided by video enabled Lewis and Hintz to have moment-by-moment
interpretations of what students were thinking, and doing, and feeling. In his interview protocols,
Shah asked students to comment on cartoons that conveyed narratives that broadly circulate in
society. Rubel and Dylan use personal biography tell us their own stories, albeit in different
ways. Rubel shares her own stories as a way of speaking out and speaking up. Lewis, in her
collaboration with Dylan, provides an example of emancipatory research, which aims to
transform the relationship between researcher and researched. Many of these stories are not
readily shared by students with one another or with their teachers. So in some respects we can
expect that many of us through our teaching would not necessarily have access to these stories.
They demand then, that we think about the relationships we need to foster, and the kinds of
interactions we need to have with students in order to better understand what is happening for
them as they try to learn with one another.

What are the Implications of Thinking about Teacher Practice in Terms of Student
Experiences?

Students' participation in and access to mathematics is not solely or even primarily about the
student's mathematical competence or the teacher's moves. Instead, it is about the individual,
social, and cultural narratives within which the student is positioned and positions her/himself.
Therefore, any study of or work with teachers should include attention to ways in which teachers
can learn about these individual, social, and cultural factors, along with how the work of teaching
can respond to and/or disrupt their effects in ways that provide opportunities for greater access
and participation for all students, particularly those who find themselves marginalized in
classroom communities.

The cases we have selected here are not full of joy and delight and liberation while our goals
for teaching and education purportedly are. Instead they are filled with tension, with challenge,
with being unknown and unseen. Like Shah, we wonder, “Do all students have the opportunity to
be seen for what they are truly capable of doing in a classroom?” (p. 36). But we think it is
worth pondering how that can be difficult and perhaps not normative. The work discussed above
has important implications for the work of teaching and our work with teachers. In our work as
teacher educators, we must intentionally build time and space for teachers not to just reflect on
their own teaching, what went well and what did not, what did they observe and notice in their
classrooms, but also what did their students directly teach them. It leads us to ask how teachers
learn about student experiences and how they respond to what they have learned. What did
students think and feel and experience during a lesson? How did they feel they were treated?
What was challenging to do and what was not? What enables students to develop enough trust to
be in honest conversation with their teachers and their peers about how they are experiencing the
classroom community?

It would be an understatement to say coming to learn about how students are experiencing the
classroom takes a lot of skill and empathy on behalf of teachers and the ability to step outside of
one’s own worldview, to suspend judgement. What do teachers need to know and be able to do
to understand and engage with student experience? How can teacher educators support teachers
in learning these things? Is it possible for teacher and teacher educators, given their positioning
and authority in classroom spaces, to elicit and learn about student experiences in the ways that
researchers do? In many of the studies described above, teachers were not aware of the student
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perspectives and experiences uncovered by researchers. Students’ experiences remained hidden
from teachers, either because the experiences are happening in students’ worlds, where teachers
may not belong, and/or because teachers and students are not having the kinds of conversations
that researchers and students have had. Even if we acknowledge that it is not fully possible for
teachers to access students’ experiences in the ways that researchers are able to, how do we take
what we are learning from these researchers about the emotional, motivational, social, structural,
political, and identity-related aspects of students’ experiences in mathematics and use these
understandings to build mathematics classrooms and teaching practices that pull students in and
increase access to mathematics rather than pushing them out and preventing access?

Despite all of these questions, we can begin to imagine how this work related to student
experiences might transform the ways we work with teachers in teacher education and
professional development settings. For instance, what if the focus of a mathematics methods
course assignment or professional development experience was for teachers to deeply
understand the experiences of a student who was different from them along one or more
dimensions of identity? The goal would be to understand not just their knowledge and ways of
thinking about mathematics, not just their home and community-based funds of knowledge, as
has been explored in other projects (e.g., Aguirre et al., 2013), but the ways they experience
participation, their positioning in the networks of the classroom and community, their
relationship to broader racial, gendered, and ability-based narratives? What would this
understanding motivate teachers to want to know and be able to do in relation to mathematics
teaching? What further questions would they want to ask? What if teachers collected video and
sat with a few students to get their take on what was happening in the classroom?

The work on students’ experiences also has implications for studying teacher learning and
practice. In fact, it was in the context of a project studying novice teacher practice that Elham (a
member of the project’s advisory board) suggested the focus of this paper. As we explored
various protocols for studying (or measuring) teaching practice, we (the project team) asked
Elham what we might be missing when viewing teaching through the lens of these protocols.
She suggested that student experience was notably absent and asked the question at the center of
this paper — What if we focused on student experience as well as teacher performance when
studying teaching practice? How would that change the ways we study teaching or work with
teachers to improve teaching? Some research projects have begun to move in this direction and
we will be interested to follow the extent to which they are able to move the field forward in
understanding teaching in terms of student experience. For example, the work of several
researchers and partner districts on “practical measures of instruction” builds on ideas related to
improvement science (Bryk et al., 2015) to incorporate quick and actionable measures of student
experiences in class discussions into professional development and the improvement of teaching.
Another example might be the work of Reinholz and Shah (2018) on “equity analytics” -
quantitative measures of who is getting access to the mathematics and mathematical discourse
during classroom instruction. While neither of these examples fully capture the richness of
student experiences in the ways described above, they do provide tools and processes for
teachers and researchers to gain some understanding of student experiences as they unfold in the
context of instruction. These examples also suggest the importance of research-practice
partnerships in both understanding and improving teaching through a focus on student
experience.
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In conclusion, we wonder about directions for our own learning. How do we continue
learning about student experiences in mathematics classrooms and the ways in which those
experiences are related to learning, to power and participation, and to dimensions of identity
including race, gender, and class? How do we teach each other about these ideas and how do we
support teachers in learning about, responding to, and enhancing student experiences in ways
that promote access to rigorous mathematics for all students? An important aspect of the studies
described above is that they each draw on theories that go well beyond the theories of learning
we learned in graduate school. How will we and our doctoral students learn about these theories
and/or work together to bring multiple theoretical lenses to these questions? By addressing these
questions in collaboration with one another and with teachers, we can begin to make progress in
understanding and supporting teaching that disrupts inequitable patterns of participation and
provides access to mathematics for all students.
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LOOKING BACK, LOOKING AHEAD: EQUITY IN MATHEMATICS EDUCATION

Marta Civil
The University of Arizona
civil@math.arizona.edu

Drawing on the conference theme of looking back and looking ahead, in this paper I first look at
the placement of equity throughout PME-NA as a way to set the stage for where to go next. I then
focus on aspects of my work on the affordances and tensions around out-of-school and in-school
mathematics to discuss equity as opportunity to participate in mathematically rich and socio-
culturally grounded experiences. I argue for the need to develop classroom environments where
students’ mathematical funds of knowledge are brought to the forefront but also where students
can use their cultural ways of being and acting as resources for their learning of mathematics.

Keywords: Equity and Diversity

At the suggestion of the conference organizers we (Laurie Rubel and I) decided to
collaborate on the elaboration of the plenary and discussion / response papers. While we each
wrote our own paper, we exchanged drafts and had online discussions on what we wanted to
convey. We share some common interests and concerns in terms of equity and mathematics
education, yet our personal histories, trajectories and approaches are different. In particular, in
one of our first conversations I remember telling Laurie that sometimes in my own work I felt a
tension between socio-cultural and socio-political approaches. I can see my work clearly fitting
the socio-cultural framework, and I am aware that I am working with political issues (e.g.,
language policy, immigrant families), yet I do not necessarily see my work as “fitting” the
political category. It is clear to me that issues of power and privilege permeate my attention to
valorization of knowledge and participation in the mathematics classroom, but I feel like I leave
these issues somewhat implicit. In her response, Laurie’s section on “making the political
explicit”, drawing on one the examples from funds of knowledge that I present in this paper, was
particularly inspiring for me. This is just one example of the back and forth exchange of ideas
that Laurie and I engaged in as we each wrote our pieces.

In what follows I first provide some background to indicate my positionality with respect to
the idea of “equity in mathematics education.” Then, I provide a brief historical account of my
experience with PME-NA, given that the theme of the conference is “Looking back, looking
ahead: celebrating 40 years.” This is my personal (and I admit, incomplete) attempt at tracing
equity across PME-NA since the first conference I attended. The rest of the paper looks at some
aspects of my research around in-school and out-of-school mathematics.

Some Background

I was drawn to issues related to equity through my work with preservice elementary teachers.
I have always had an interest in how children and adults make sense of mathematics, how they
think about mathematics. To this end, I like to use tasks that may lead to cognitive conflict. In
listening to preservice teachers talking about mathematics, I noticed that some of them brought
their everyday experiences to the discussion. I also noticed that oftentimes, those who sought to
make sense of the mathematics (by connecting it to their life experiences) had had less
“successful” trajectories with school mathematics than their peers who basically played by the
rules and did not seem to be concerned about whether mathematics made sense outside (or even
inside) the classroom. What are we doing in our teaching (K-16+) that leads to this lack of
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connection between in-school and out-of-school? This lack of connection is what drives much of
my work. Shortly after I moved to the University of Arizona in 1990, I was fortunate to join the
Funds of Knowledge for Teaching project (Gonzélez, Moll, & Amanti, 2005), which was a
perfect fit for me. The project took me into working-class communities and schools attended
largely by students of Mexican origin, many of whom spoke Spanish as their home language, yet
another fit for me as that is my home language too. I was able to work with teachers dedicated to
developing learning experiences that built on students’ and their families’ funds of knowledge;
teachers who invited family members to come to the classroom to share their expertise. I saw
children engaged in discussions, participating in rich classroom activities. This is where my
definition of equity developed. For me equity is about the opportunity to participate in
mathematical experiences that are both rich from a “mathematics for the sake of mathematics”
point of view (“reform / standards-based”) and at the same time reflect the socio-cultural
experiences of the participants (culturally responsive / sustaining). It is about participants
maintaining their cultural identity while also engaging as doers of mathematics. Over the years, |
think that what has most influenced my approach is my work and friendship with immigrant
families. Learning from them and seeing their enjoyment and sense of humor in mathematical
discussions (whether it is a group of mothers or a group of seventh graders) constitute uplifting
experiences and are constant reminders of why I do this work. To me, this is particularly
important currently, given the stressful and depressing reality that many immigrant families are
experiencing.

Looking Back at PME-NA

I attended my first PME-NA when I was a graduate student in 1989. In looking at those
proceedings, these were the topics: Affective and cultural factors in mathematics learning (2
papers, 1 on cognitive and affective aspects with 2 prospective elementary teachers; the other
reports on a study done in Ciskei (South Africa, though an independent state at the time of the
study); that paper mentions “socio cultural” and “lack of continuity between the cultural world of
the family and that of school” (p. 13). The author was from a university in South Africa;
Algebra/Algebraic Thinking (4 papers); Calculus (3 papers); Computer environments in
mathematics learning (3 papers); number concepts (5 papers); geometry, measurement, and
spatial visualization (6 papers); multiplicative structures (8 papers); representations,
metacognition, and problem solving (6 papers); teacher beliefs (4) (my paper, “prospective
elementary teachers’ conceptions about the teaching and learning of mathematics in the context
of working with ratios”, was in that section); teacher education and teacher development (8
papers). There were two plenary lectures (and responses) (one on mathematical processes, the
other one around understanding of numbers (the authors have a section on the research on out-of-
school mathematics, in terms of how “non-schooled” children and adults understand numbers).
There were five Symposia: realistic mathematics education; sex differences in mathematics
ability; clinical investigations in mathematics teaching; assessment and function graphing tools;
probability.

The next PME-NA I attended was in 1993. In that one, there were several strands including
one on equity, which had a panel and discussion sessions. The panel has one Australian
researcher (Gilah Leder), one US researcher (Walter Secada), and one respondent from Brazil
(Ubiratan D’ Ambrosio). There was one paper in the section on language and mathematics (by
Judit Moschkovich). And there was a section on social and cultural factors affecting learning (5
papers), where one of my first papers on funds of knowledge was located (“Household Visits and
Teachers' Study Groups: Integrating Mathematics to a Socio-Cultural Approach to Instruction”).
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There were 14 discussion groups; one of them was on “cultural support for mathematics
understanding” (related to relationship between culture, language and numerical systems).

The strand on social and cultural factors (renamed later on as “sociocultural issues™)
remained till 2007. Then in 2009 through 2011, there was a strand called “equity and diversity”
(I am not including 2008 because that was a joint PME / PME-NA meeting). The strands we
currently have (with no specific strand for equity or similar terms) were implemented in 2012.
One possible argument for not having a strand on equity is that equity should permeate the work
we do (Aguirre et al., 2017). Having a separate strand seems to imply that some researchers do
equity work and others do not, or that equity is being addressed in one part of the conference and
we do not need to worry about it elsewhere. This is something that calls for further reflection.

Finally, I took a more in-depth look at the most recent PME-NA proceedings (2017) to see
how equity was featured. There was one plenary talk that focused on equity. There was also a
response to another plenary (not-equity focused) that looked at that talk with an equity lens.
Finally, one of the papers in the technology panel also addressed equity. Three of the 13 working
groups had something to do with equity, with one of them being explicitly about equity, one on
critical perspectives on disability, and the third one on special education. Two of the other
working groups mention equity a few times in the write-up. I then went through all the strands
and searched for the keyword equity. In some cases, where the term equity did not appear, I used
my judgment to classify some of the papers as pertaining to equity based on other terms (e.g.,
culturally relevant; social justice). This is not a scientific analysis and I am aware that I may have
missed some papers that are about equity. At the same time, there were some papers that had the
keyword equity, but it was not obvious to me why that keyword was there. Here is what I found
out: there were 75 research reports (RR) presented; 8 of them had something to do with equity. I
counted 134 brief research reports (BRR), with 26 of them mentioning equity. Finally, I counted
141 posters, with 22 mentioning equity.

While over the years I have attended quite a few PME-NA conferences, I have also skipped
several of them here and there. For a while, I felt that PME (rather than PME-NA) was more my
community. At PME, I always seemed to find several presentations, working groups, discussion
groups that related to my research interests in equity, while that was less the case with PME-NA.
And yet, even in that more international arena, I should note that there was dissatisfaction with
the attention to equity, in particular to social and political issues. In 1996, at PME in Valencia, I
recall a fascinating AGM (Annual General Meeting) that discussed dropping the “P” from PME
to reflect the fact that many research papers had moved away from the Psychology focus. Shortly
after that, in 1998 Mathematics Education and Society (MES) was created in great part as a
counter-space to PME (Gates & Jorgensen (Zevenbergen), 2015). In 2000, Lerman’s influential
chapter for the field, “the social turn in mathematics education research” was published (Lerman,
2000). In 2004, the book edited by Valero and Zevenbergen (Jorgensen) on the socio-political
dimensions in mathematics education research was published (Valero & Zevenbergen, 2004). Of
course there are several other researchers who have written on these issues since then. But for me
those are two pivotal pieces. For my own work, Lerman’s chapter is particularly relevant as it
refers to the influence of Vygostky’s work, which is central to the program of research around
Funds of Knowledge (Gonzélez et al., 2005); that chapter also discusses situated cognition and
mentions ethnomathematics, all of which are at the center of my long term interest in studying
the affordances and tensions around out-of-school and in-school mathematics. In what follows, I
turn my attention to this topic.
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Navigating Out-of-school and In-school Mathematics

In the 2006 PME-NA plenary (Civil, 2006), I trace my trajectory from mostly a cognitive
preparation to a sociocultural approach in my work, where concerns for equity became central. I
am bringing this up here because the cognitive aspect is still very present in my work, but at the
same time, I cannot interpret data (a video, students’ work) without wondering about
sociocultural elements (who is involved? What are their stories?). I argued then and I still argue
now that we need these two perspectives (and most likely others too) to make sense of the
teaching and learning of mathematics. In fact, what I wrote then is still very present in my
thinking now:

Sometimes I wonder if | have moved away from my initial cognitive-based interest in
research in mathematics education to address issues that focus largely on the social and
cultural context, with mathematics playing a very peripheral role. As I look over my writing
from the last few years, I notice that I often raise the question “where is the mathematics?”
Mathematics plays a central role in my work and recently, in our current project, I find
myself pushing for the mathematics in our activities and research discussions. (p. 30)

Thus, in this paper I am continuing this thread by focusing on three key elements in my
work: funds of knowledge; valorization of knowledge; and participation. As I wrote in 2006, “A
concern for those who are being left out of the mathematical journey seems to guide my work”
(Civil, 2006, p. 30). This concern has not changed.

Funds of Knowledge

Since the terms “funds of knowledge” is now so widely used in mathematics education
research, I thought that providing some history may be useful. Anthropologists Vélez-Ibafiez and
Greenberg (1992) are credited to have introduced this term, as they write, “strategic and cultural
resources, which we have termed funds of knowledge, that households contain” (p. 313).
Through their collaboration with educational researchers (in particular, Luis Moll and Norma
Gonzélez), the project Funds of Knowledge for Teaching (FKT) was developed in Tucson in the
80s (see Gonzalez, at al., 2005, for a detailed account of this project). When we bring these ideas
to mathematics education, what we are saying is that all communities and families have
mathematical funds of knowledge. Children come to school with mathematical funds of
knowledge. Yet, as we well know, whether these funds of knowledge are recognized and used as
resources for learning varies greatly. How did Alberto (Civil 2016; Civil & Andrade, 2002), a
recent immigrant, see himself as a mathematical learner in his fifth-grade class, as he kept
largely to himself and was not encountering success? A concerned teacher did not leave it at this
and sought to learn more about Alberto and his family, through a funds of knowledge household
visit. In that visit she learned about Alberto’s unwillingness to leave Mexico and move to the US
with his family. He left behind places, people, and activities he enjoyed, including actively
helping out with his family’s bakery business. He had his set of customers and was in charge of
all monetary and goods transactions, yet at school he was struggling with “basic” arithmetic?
Alberto’s case reminds me of the studies on street mathematics (e.g., Nunes, Schliemann, &
Carraher, 1993), which were very influential in my work. If we do not see the relevance in what
we are being asked to do, if we do not have an affective connection, is it surprising that we may
not do as well?

What about the several children (mostly in grades 5-8) who told me in interviews that they
were learning things in mathematics that they had already learned in prior years in Mexico, yet I
saw no evidence of them being given more challenging tasks, and in fact sometimes they seemed
to be placed at a lower level because they did not know English well yet? This school knowledge
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(e.g., different algorithms) and learning habits (e.g., use of a notebook for each subject to record
their work; bringing their own school tools instead of the school providing them) that they bring
from other contexts are part of their funds of knowledge, but schools do not necessarily know of
these. The lack of communication between families and school and the differing understandings
of each other’s roles and expectations are two of the most common findings in my work with
immigrant parents.

An example of funds of knowledge in a parents’ workshop. Elsewhere (Civil, 2002; 2007)
I have discussed examples of applications from funds of knowledge to the mathematics
classroom. Here I want to share a brief example (Menéndez & Civil, 2009) of how an activity on
comparing fractions became more meaningful when a father participant suggested a connection
to wrenches. While I do not know if in this case their children were familiar with how wrenches
work (in terms of the different sizes), based on my experience of many years working with
families, I would not be surprised if indeed several students at that school had a familiarity with
wrenches. Comparing fractions is a typical school activity that can be challenging for children
(and for adults, as we have seen in the Math For Parents courses that we have run for several
years). In this scenario, the facilitator had asked the participants (most of them mothers and
fathers of students at that middle school) to compare % and 6/8. One of the men (Isidoro)
successfully drew some pictures to show that they were equal. Another man (Marcos) then
mentioned something about wrenches and how they have different measures. The facilitator
encouraged both men to bring the wrenches to the next meeting. Isidoro brought “a few
wrenches” (people laughed when he said that he had only brought a few of them, as he had about
15 wrenches on display) (see Figure 1). Isidoro very confidently explained what the standard
measures are for the wrenches and the facilitator recorded those on chart paper, as Isidoro was
mentioning them: 1/4, 5/16, 3/8, 7/16, 1/2, 9/16, 5/8, 11/16, 7/8, 13/16, 15/16, 1) (the facilitator
noticed that 7/8 and 13/16 were switched but did not mention anything at that poing); Isidoro
commented that there were other wrenches but that these were the most commonly used. Marcos
noticed that the % was missing and Isidoro told the facilitator to put it between the 11/16 and the
7/8. Isidoro did not look at the wrenches to see the size, he seemed to have those visualized and
knew their ordering (despite the error in the list). The facilitator then said, “I’m not completely
convinced that these (the fractions on the chart paper) go like this, in this order. It’s just that I
have to believe it because I don’t know (participants laugh). Or is there a way to find out?”

Figure 1. Isidoro’s wrenches

The facilitator then encouraged the group to come up with a visual way to help him see how
to compare % and 3/8 and 7/8 and 13/16. The participants had grid paper and used this to come
up with a visual approach to compare the fractions and resolve the issue with the ordering of 7/8
and 13/16. At this point the activity is a typical school task with the participants representing the
different fractions on graph paper and comparing them. But the familiarity with the wrenches
provided a context for this activity. The participants remained engaged, and while there were
clear gender aspects with the men appearing as experts, some of the women asked questions,
probed, and made comments, indicating they were engaged in the task too. There are probably
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several other mathematical explorations that could use these participants’ knowledge of
wrenches as contexts. For example, Isidoro and Marcos referred to their knowledge of the metric
wrenches. Familiarity with the metric system is one aspect that has come up in other contexts
(e.g., recipes). I have noticed students bringing in a knowledge of the metric system either from
home or from having lived in Mexico and yet teachers teaching it as if it was new material for
everybody.

It could be argued that the wrenches’ example is a superficial or contrived context to promote
a deep understanding of the mathematics behind comparison of fractions. This is a tension that |
have expressed before in my work on funds of knowledge and mathematics (Civil, 2007;
Gonzalez, Andrade, Moll, & Civil, 2001). In Civil (2007) I refer to this tension as preserving the
purity of the funds of knowledge at the expense, maybe, of the mathematics. This tension is
related to what we decide counts as mathematics.

Valorization of Knowledge

I argue that questions around which mathematics for whom and for what purpose are at the
center of any equity debate. I am encouraged by the current discussions around school detracking
and, at the college level, around the efforts to create more avenues for students’ access to
mathematics beyond the standard college algebra (in a traditional sense), precalculus, and
calculus path. But I am also aware of the potential obstacles to those initiatives, obstacles mostly
based on what we count as a “good” mathematics education and who can “really” do it. I work in
a mathematics department and this discourse permeates how we talk about the content of the
courses, what needs to absolutely be in these courses to be a mathematics course, and who takes
which courses.

For me, this is a personal issue because in my own teaching and research I find myself going
back and forth between the need to engage students in activities that are culturally relevant (e.g.,
funds of knowledge based) and the need to engage students in rich mathematical learning
experiences. I do not mean to imply that this is an “either — or” situation. Obviously, both can
happen. But I do not find that easy to accomplish. Researchers engaged in social justice
mathematics teaching report a similar tension between the mathematical and the social justice
goals (Atweh & Ala’i, 2012; Bartell, 2013; Rubel, 2017).

My recent conversations with teachers and colleagues around after school projects with
middle school students and mathematical modeling of culturally relevant contexts with teachers
bring up these questions for me: is the context taking over the mathematics? Is the mathematics
superficial or contrived? In a chapter on modeling and culturally relevant pedagogy, we write,
“Teachers may encounter some tension between incorporating authentic cultural knowledge into
the modeling process while staying true to the goals and modes of analysis of the discipline of
mathematics” (Anhalt, Staats, Cortez, & Civil, 2018, p. 326). Elsewhere (e.g., Civil, 2002;
2016), I comment on the difficulty in seeing mathematics in culturally-based activity when our
only lens may be that of “academic / formal” mathematics. In these cases we may not be able to
appreciate the mathematics in the activity or we may risk trivializing both the mathematics and
the activity.

Throughout my current work and teaching, I often bring up the famous question, “where is
the math?” Yes, I do ask this question in part probably due to my own view of what counts as
mathematics, but in part too because of the many classrooms I have visited where students are
not being challenged in mathematics and are subjected to what I would consider quite dry and
uninteresting tasks. Most likely, tasks that are related to their funds of knowledge would be more
engaging, but they need to also be mathematically engaging. I also raise this question because I

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Plenary Papers 22

have seen these same students engaging in mathematical discussions of tasks that are largely
what I would describe as rich tasks, but not necessarily culturally relevant. In the next section I
discuss the concept of participation and in particular the importance of developing classroom
environments that let students use their cultural ways of being (which includes the use of their
home language(s)) as they do mathematics. So, while the tasks themselves may not have been
culturally relevant, developing trusting relationships and letting the students use their cultural
resources (language, humor, interaction style) seem to support their engagement with
mathematics (Civil & Hunter, 2015).

Participation

The idea of participation has been central to my work for many years. For example, in Civil
and Planas (2004) we look at “the effects of social and organizational structures on
students’ participation in the mathematics classroom” (p. 8) in two different contexts, Tucson
and Barcelona. In other pieces, I have looked at the effect of language policies on the
participation of emergent bilinguals (English Learners (ELs)) in the mathematics classroom (e.g.,
Civil, 2011) and of immigrant parents in their children’s schooling (Acosta-Iriqui, Civil, Diez-
Palomar, Marshall, & Quintos-Alonso, 2011). In Civil (2012, 2014), I look at participation and
issues around what language gets privileged? Whose experiences are represented in the tasks?
Whose knowledge and approaches get valued. Finally, in Civil and Hunter (2015) we look at
immigrant students’ participation in argumentation in the mathematics classroom through lenses
of culture and language in two different geographic contexts, New Zealand and the US.

In this section I present yet another example from the same classroom discussed in Civil,
(2011, 2012), and Civil and Hunter (2015) to illustrate how having an atmosphere where students
can basically be themselves, can lead to rich mathematical discussions and students’
participation. The setting is a small seventh grade class composed of only 8 students, most of
whom were recent immigrants from Mexico (within the previous two years) and all classified as
ELs. Elsewhere I have discussed the restrictive language policy in Arizona (Civil, 2011; Civil &
Menéndez, 2011) that places ELs in basically segregated classrooms for most of the school day.
This was the case for these students. I worked with the teacher (an EL herself) and the students
for close to a year. We videotaped 30 class sessions from February through May. It is important
to note that three of the students’ mothers regularly attended the mathematics sessions for parents
(and their children) we had at the school (Civil & Menéndez, 2011). The teacher also attended
those sessions. Thus, we had developed rapport not only with the students but with some of the
parents too. I have been arguing for quite some time for the importance of developing stronger
and trusting relationships between home and school, particularly in the communities where my
work is located, where families may be less familiar with the school system or worse, where
sadly, they have reasons to feel insecure and less trusty of organizations.

By the time formal data collection began (videotaping) the students were starting to become
used to the idea of discussing their work and having to justify their thinking to others. We let the
argumentation develop naturally, that is we did not use any norms or roles. We basically relied
on tasks that would create situations that promote argumentation. For example, in interpreting a
distance / time graph of a bike trip, students engaged in spirited discussions arguing about which
part of the graph showed the most progress made by the bike rider (Civil, 2012). When showing
the video clips to varied audiences, while some do appreciate the level of engagement and
mathematical argumentation that is taking place, others are somewhat surprised by the loudness
and ““chaotic” looking and sounding discussions. Yet, this “chaos” and “loudness” allowed for a
student like Octavio to find his mathematical voice. Octavio was somewhat quiet and did not
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seem very interested in engaging with mathematics. But it turns out that he liked to argue and
that gave him an entry into the mathematics. As we encouraged students to talk about
mathematics, we discovered a new (to us) Octavio. As he said in an interview towards the end of
the year:

Marta: What is it that you like most about math class, well if there is something that you
like, of course?

Octavio: To argue

Marta: And why do you like to argue?

Octavio: Because I feel, I feel like a good student when I think that the answer is right.
Marta: What other things do you like about the class?

Octavio: To chat and do work with my group.

Marta: Did you work in groups last year in math class?

Octavio: No, we worked individually.

(All the transcripts in this paper come from exchanges that took place in Spanish. For reasons
of space I have only included the English translation. I know that this is unfortunate as we miss
the idiomatic turns and the richness of the speakers’ home language.)

The example below shows different features of how students (and us) engaged with
mathematics, such as use of humor and teasing and use of their home language (Spanish). It was
a relaxed atmosphere. Students had been working in small groups on a problem on planning a
class party with three options (going to a pizza place and movie theater; going to a water park; or
to a skate ring, (Preston & Garner, 2003)). They were given some information on the cost of the
three options and the students were to decide which option may be best and why. Carlos and
Larissa are at the board to explain how they used equations to find how the cost of the water park
(W =100 + 5 P) and the cost of the skate ring compare (S =200 + 2 P). So what they are going
to solve is: 100 +5 P =200 + 2P. They have just subtracted 2P from both sides and have: 100 +
3P = 200.

1. Carlos: There it is. Here we take minus one hundred.

Octavio: But why?

Marta: Octavio is asking why

Carlos: Why did we take minus hundred? [smiling]

Octavio: Yes.

Marta: Yes, he is the one asking it. I wasn’t asking it, he’s the one who asked it
Carlos: Because that’s what we have to take away. Because here we subtracted minus
one hundred, and here, we also subtracted minus one hundred.

8. Marta: No, it’s a very valid question.

9. Octavio: Ah, yes, okay, it’s fine, it’s fine.

10. Carlos: Then here you get one hundred and here you get three P.

11. Octavio: Three P? [with a tone of surprise]

12. Simén: Why?

13. Octavio: Why?

14. Lucas: Why?

15. Carlos: Because I subtract one hundred.

16. Larissa: Because we subtracted one hundred.

17. Carlos: And you get three P.

18. Ms. Adams: But what was the reason for subtracting one hundred?

Nownkwbd
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19. Larissa: We wanted (incomprehensible) to know for--
20. Octavio: Positive. Why negative?
21. Carlos: Be quiet. [Softly and smiling in the direction of Octavio]

In this brief exchange we hear Octavio probing four times (lines 2, 11, 13, 20). He is
following the explanation and wants to make sure that he understands what they are doing. This
is quite different from other cases where students are presenting at the board but the rest of the
students are not really engaged. After that, Larissa and Carlos deciding how to solve for P
because that is one thing they had not done prior to coming to the board to explain. They end up
with P =33.333...There is also some joking around because the teacher and I ask them to erase
what is in blue from the white board (from a previous exercise) so that they can have more room
to show their work and Larissa points to the top of the board where part of the date is written in
blue. This is sort of an inside joke because from when I started coming to their class I was asking
them not to erase their work so that I could see how they were thinking, but it took a while for
students to let go of their attachment to the eraser. And this time I was telling them to erase, so
Larissa picks up on that.

Next, the teacher and I asked Larissa and Carlos about the meaning of having found P to be
33.333.

Carlos: That one P is equal to 33.33333.

Marta: Yes, but what does that mean?

Carlos: Because we divided it.

Marta: No, no, what does it mean in the problem?

Ms. Adams: What is P? What is P? People...

Marta: What does P represent?

Larissa: People.

Carlos: One person.

Ms. Adams: Okay—

10. Carlos: One person is going to pay 33...for the--

11. Octavio: Why 33 dollars if it’s two dollars per person?

12. Carlos: It’s cause, nosy [mitotero] [to Octavio, as implying stay out of it, in a joking
way|.

13. Larissa: It’s cause it’s wrong [slightly laughing]

14. Marta: It’s a good thing that Octavio is, is, really on the ball, eh?

15. Larissa: Yes.

16. Marta: He’s absolutely right

17. Larissa: This is the number of people that can go.

18. Carlos: That’s why!

19. Octavio: Ah [incomprehensible; some laughter]

20. Carlos: That’s what I was saying. [smiling]

21. Larissa: That’s why, it’s not the price! [smiling]

ARSI RO S e

Larissa and Carlos are confused about what the P represents. As soon as Carlos says that it is
the cost of one of the activities, Octavio jumps at that (line 11), since the cost of the activities are
$2 per person for the skating and $5 per person for the water park. In line 12, Carlos uses a
cultural term “mitotero” in a joking way to basically tell Octavio to stay out of it (“mitotero” in
Sonora, Mexico (which is where many of the families in my context come from) means
“gossipy”’ / “nosy”).
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Finally, once they have agreed that P is the number of people, and they decide on P=33, the
question of how much it is going to be comes up.

1. Ms. Adams: And how much would it cost?

2. Larissa: I mean we wanted to see, I mean we wanted, cause I mean we wanted to
see--

Carlos: The exact point.

Ernesto: How much would it cost?

Octavio: So how much would 33 people cost? (pause- someone else says something)
How much? Tell me, well!

Carlos: How mu—33 people?

Marta: Do it, do it, all of you --

Carlos: Ah well, here it is [looks at his notes again]

9. Ms. Adams: Let’s see, that table--

10. Marta: You can all do it, ¢h?

11. Carlos: In the graph.

12. Marta: How much does it cost for 33 people?

13. Carlos: You can all do it. [repeating what Marta has said / teasing]

14. Ms. Adams: How much does it cost for 33 people to go?

15. Marta: All of you, yes, yes.

whkw

o =N

Once again, we see Octavio engaged and asking in a challenging tone to tell him how much it
would cost for 33 people (line 5). I then turn it over to all of them and suggest that they all figure
it out (line 7 and again line 10). In line 13, Carlos repeats my saying “you can all do it” in a
teasing tone. Perhaps some could interpret his repeating what I said as mimicking me and not
being respectful, but that is not how I took it at all because it was part of our interaction style. I
had known Carlos since the year before; he and his two siblings came regularly to the
mathematics workshops for parents with their mother. We had developed a rapport over the two
years.

The concepts of “confianza” (trust) and family feeling are often mentioned in research with
Latinx communities (Gonzalez, et al., 2005; Rodriguez-Brown, 2010). The importance of
building relationships among students and teachers and more broadly, among school personnel
and families has been extensively documented in educational research with “diverse” students
(e.g., Gay, 2000; Nieto, 2013). This importance has also been documented in the teaching of
mathematics in non-dominant communities (e.g., Berlin & Berry, 2018; Guerra & Lim, 2017; 1d-
Deen, 2017; Kitchen, 2007; LépezLeiva, Celedon-Pattichis, Pattichis, & Morales, 2017; Martin,
2009; Musgrove & Willey, 2018). What I just presented is one more example of something we
have known for a long time: relationships matter. If my view of equity is about the opportunity to
participate, we need to develop an environment where students are going to want to participate. I
saw this happening in that 7% grade class, and 1 also saw it in another school, first in a 4%/5%
grade combination and then the year after (with the same teacher) in a 6™ grade class. While the
two settings were different, one aspect in common was a feeling of being a family and to a
certain degree, the teachers acted almost as if being a family member. Allowing students to be
themselves, to walk around the room and see what others were doing when working in groups, to
tease each other (including me), all of this seemed to contribute to developing a safe and
supportive environment where students were willing to take mathematical risks.

I have been wondering for quite some time whether what we are missing when working with
minoritized students in school is to bring in their home ways of being and acting. While in the
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work in the 7 grade class, I may have seen glimpses of that, I am certainly not claiming that we
succeeded, it was just that, glimpses. In Civil (2016), I argue for the need to gain a better
understanding of how people engage in out-of-school settings in practices that are potentially
mathematically rich and see how these ways of engaging relate to how, for example,
mathematicians engage in the practice of mathematics. Nasir, Rosebery, Warren, and Lee (2006)
argue that as learners we navigate through a variety of repertoires of practice as we move
through different settings (e.g., home, school, clubs, groups that we may belong to). In looking at
“the intersections between everyday practices and important disciplinary knowledge” they claim
that “educators can use the varied and productive resources youth develop in their out-of-school
lives to help them understand content-related ideas™ (p. 493). I wonder, is school helping or
hindering connecting these two practices, everyday practices and disciplinary (e.g., mathematics)
practices? When we develop learning activities that build on students’ funds of knowledge but
also engage them in rich mathematics, is it school mathematics that we are working with? Is it
disciplinary (mathematicians’) mathematics? Should it be something else? In discussing the
possible connections between different forms of mathematics (e.g., everyday mathematics,
school mathematics, mathematicians’ mathematics), Nemirovsky, Kelton, and Civil (2017) point
out that schools can only bring in “real world” problems to a certain point since school has its
own constraints and after all the students are not really engaged in that real world problem that
often serves mostly as a scenario to address school mathematics.

I started this section discussing participation but the questions I just raised relate back to
funds of knowledge and valorization of knowledge, thus bringing me back full circle. I want to
close with some further thoughts on these ideas in part inspired by my current work as well as
what I still see as challenges in the field when it comes to equity research.

Next Steps?

There are quite a few people now doing work in mathematics education building on the
concept of funds of knowledge. This is certainly very different from the early 90s. Some of this
work is informed by a variety of theoretical frameworks, which makes for a more robust account
of the research efforts. In this sense, we are making progress, as researchers build on the concept
and take it into different directions, contributing to the deepening of “the field’s knowledge base
related to equity-based research” (Aguirre et al., 2017, p. 125). I think we can all agree that there
seems to be more attention given to equity in mathematics education in recent years. Whether it
is because some conference proposals ask for an explicit connection, or whether it is an
expectation of funding agencies, or whether it is that there seem to be more researchers coming
out of doctoral programs (and some NSF-funded Centers for Learning and Teaching) where
equity is central to their preparation, I think that there are more people engaged in equity-related
research activity than when I started my career. In Aguirre et al., we argue for the need to make
equity part of research in mathematics education, no matter what our main topic of research may
be. That is, we call for the need to make equity part of our research as an “intentional collective
professional responsibility” (p. 128). In looking at the four political acts discussed by Aguirre et
al., I see equity as central to my work (Political Act 1). As for Political Act 2, I have occasionally
felt tokenized as the “equity expert” on projects but I would rather have that than the second
approach described in that political act, which is having researchers who are not grounded in
equity work provide superficial attention to equity issues. I believe that as researchers whose
expertise is in equity, we have a responsibility to support others who want to do this work but
may not feel knowledgeable. In looking at some of the recent PME-NA proceedings as well as
listening to a variety of talks in diverse conferences, I wonder about how widely “equity
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research” can be interpreted and whether we may be going in the direction that everything we do
addresses equity somehow. Is that the case? Do we risk watering down equity?

Where is the mathematics and what counts as mathematics are discussed in Political Acts 3
and 4 (Aguirre et al., 2017) and are the center of my work, as I have addressed earlier in this
paper. While I agree that to challenge equity work with the question of where is the mathematics
can be problematic and creates a separation that is not (or should not) be there, the reality is that I
have raised that question myself quite a few times, about my own work and about those of
others, as I mentioned earlier in this paper. Is it mostly related to my views of what counts as
mathematics? Are we doing enough in our writing and in our work to bring the centrality of
equity to mathematics and the centrality of mathematics to equity?

In my current work, I continue to explore questions centered on equity as opportunity to
participate and I wonder about the potential for K-16+ “formal” learning (as in a school / college
class) of looking at how people learn in everyday life or in informal mathematics settings (see
Nemirovsky et al., 2017 for more on the distinction between mathematics in school, in everyday
life, and in informal settings). In particular, as I have discussed elsewhere (Civil, 2007; 2016)
learning in everyday settings often takes place through participation in the practice, often by
observing first and then engaging with the activity. Lipka, Sharp, Brenner, Yanez, and Sharp
(2005) describe the case of a Yup’ik teacher, Nancy Sharp, using a Yup’ik approach to learning
(apprenticeship; observing and participating in the practice) to work with her students in
mathematics. Similarly in their work with teachers of Maori and Pasifika students in New
Zealand, Hunter and Anthony (2011) refer to how teachers draw on their “students’ concepts of
collectivism to develop communal responsibility” (p. 6) and build on these strengths to engage
students in mathematical discussions.

I am intrigued by the potential for mathematics teaching of building on students’ cultural
ways of being and acting, as I illustrated briefly with the 7" grade example earlier and elsewhere
(Civil, 2011; 2012; Civil & Hunter, 2015). Rogoft (2012; Rogoff et al., 2017) has been studying
how children of Indigenous origin learn in communities in Guatemala and other places in the
Americas, including some Mexican-origin children in the US, and contrasting these ways of
learning to those of children from middle-class families, mostly of European origin. An example
of this contrast is captured below:

The toddlers [in a Mayan community] observed keenly and engaged in multi-way interaction
with the group. In contrast, middle-class European American mothers’ approach resembled
Assembly-Line Instruction, with mock excitement and praise to engage the little one in mini
language lessons. These toddlers were less broadly attentive and seldom engaged with the
group as a whole. (Rogoff, 2012, p. 236)

Rogoff et al. (2017) discuss the concept of “sophisticated collaboration” that they have seen
among Indigenous children, including children in the US of Indigenous Mexican origin.
Sophisticated collaboration implies a form of working together that is fluid and coordinated.
They noted that “rural Mexican children were more likely to cooperate in a game than were
urban children in the United States, who competed with each other even at the expense of any of
them winning” (p. 880). Children engaged in sophisticated collaboration think and work
together. On the other hand, children from middle-class families tend to split a task and do less
sharing, less thinking together, and take bossy roles. In a study of children engaged in computer
programming, they note, “pairs from Indigenous-heritage U.S. Mexican backgrounds
collaborated twice as much as did pairs from highly schooled European American backgrounds”
(p. 880).
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One of the key components of equity as opportunity to participate involves productive group
work, in particular along the lines of Complex Instruction (Cohen & Lotan, 1997; Featherstone,
et al., 2011). Do immigrant origin students from certain communities (e.g., in Mexico) bring
strengths along the lines of sophisticated collaboration that we could be tapping onto? My work
with families of Mexican origin points to interactions between parents and children in the
mathematics workshops that range from direct instruction on the part of the parents to more
collaborative, joint meaning construction (Civil, Diez-Palomar, Menéndez-Gémez, & Acosta-
Iriqui, 2008; Menéndez, Civil, & Marino, 2009). Certainly, more work needs to be done to gain a
better understanding of the strengths that immigrant-origin students, such as the ones in the 7%
grade class I describe, bring with them. Children from different backgrounds are likely to bring
cultural ways of participation that may be different from the ones expected by the school. This is
an asset, as the example of sophisticated collaboration shows. I think it is worth noting that
students who belong to non-dominant groups often have rich experiences and skills such as
knowing more than one language (important in a global world), knowing how to collaborate
(important for teamwork, a trait that is valued in many professions), learning at home through
participation in the activity rather than through direct teaching, contributing to the household
functioning (e.g., helping out with the home economy; language brokers). What are the
implications of this richness of skills, knowledge, and experience for teachers and researchers in
mathematics education?

Why do I do this work? The words of Adrienne Rich (1986) say it much better than I could
ever say it:

When those who have power to name and to socially construct reality, choose not to see you
or hear you, whether you are dark-skinned, old, disabled, female, or speak with a different
accent or dialect than theirs, when someone with the authority of a teacher, say, describes the
world and you are not in it, there is a moment of psychic disequilibrium as if you looked into
a mirror and saw nothing (p. 199)

As we reflect on the work we do with teachers, students, communities, I hope that we can
provide accounts that counter these words. I would hope that the students and families with
whom we work see themselves in the mathematics worlds that we share with them in our
classrooms. I close with the words from a Pasifika student, as a reminder that this is indeed
possible: “When the maths is about us and our culture, it makes me feel normal, and my culture
is normal” (Hunter & Hunter, in press, p. 16).
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LOOKING BACK, AHEAD, AND IN NEW DIRECTIONS

Laurie H. Rubel
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In this paper, I respond to and expand on Civil’s plenary address (this volume), in which she
articulates key themes related to funds-of-knowledge orientations to mathematics education. 1
review the themes selected by Civil: funds of knowledge, participation, and valorization of
knowledge, and provide additional analysis. Next, I accentuate the often absent but inherent
political dimensions of work in mathematics education that emphasizes the cultural, as well as
the often absent but inherent cultural dimensions of work in mathematics education that
emphasizes the political. Finally, I contribute additional perspectives to future directions for the
research community around equity in mathematics education.

Keywords: Equity and Diversity

Introductions

I trace the origins of my work around equity in mathematics education to my involvement as
an undergraduate student in a spin-off project prompted by the then-contemporary study, in which
Treisman and colleagues (see Treisman & Fullilove, 1990) attributed difficulties in college
mathematics for African American students to their social and academic isolation. In 1991, the
mathematics department at the college where I was a student, inspired by Treisman’s findings,
created a co-curricular Calculus “workshop” for first-year students of color. I was tapped as a
senior student facilitator, and this experience contributed towards my extension of experience in
informal and Jewish education towards mathematics teaching as a profession.

I continue to benefit from the power and privilege that come with whiteness in the U.S., in
opportunities around education, employment, and housing. Yet white privilege only goes so far
for me, as a queer, gender non-conforming, Jewish woman. In general, through my intersecting
life experiences of Otherness (Du Bois, 1903) and my struggles from these marginalized positions,
I feel solidarity and identify with people and groups who are being othered, objectified, or
oppressed. Once I became a high school mathematics teacher in the mid-1990s, for example, |
discovered a system in the elite school in New York City where I taught that was supposedly
ability oriented but had produced its lowest track with nearly all of the school’s students of color.
After sizing up their brilliance, the students and I turned what was supposed to be a low-track
senior math class to preparing for and taking the AP Calculus AB exam. The impetus was
certainly inspired by my achieved standpoint (Harding, 1993) as a queer Jew, and likely also in
part by the then-contemporary Stand & Deliver.

In that popular Hollywood rendering of real-life Jaime Escalante’s classroom, we saw Latinx
students face racial discrimination as, presumed by the College Board to have been cheating, they
were forced to retake their AP Calculus exams. Though my students and I were spared the
attention of The College Board, they schooled me about the range of everyday racial
discrimination and microaggressions they experienced, from regularly being called one another’s
names by white teachers, to being tailed inside stores by local shopkeepers, to being targeted by
city truancy officers on route to school and then missing class while being “processed” by that
system, to having to absorb the feeling of being feared on the streets by white women. My love for
them as their teacher connected me in an emotional way to what was their marginalization, their
pain, their disappointment. I wanted to teach mathematics that would feel relevant, to support their
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and my own understandings of processes in the world, especially the structural and systemic
processes that were designed to keep power and material resources from them.

In my subsequent and ongoing work as a mathematics education researcher and teacher
educator, I continue to learn about the importance of providing students with windows through
which to use mathematics to understand the outside world but also of mirrors, through which to see
themselves and connections to their pasts and potential futures (Gutiérrez, 2007). As Gutiérrez
(2007) elaborates: “The goal is not to replace traditional mathematics with a pre-defined ‘culturally
relevant mathematics,’ but rather to strike a balance between the number of windows and mirrors
provided to any given student in his/her math career” (p. 3). Otherwise, like the poet Adrienne
Rich (1986) warns, without such “mirrors,” there is the potential for “psychic disequilibrium” as
the teacher, the school, the curriculum, and their aggregated power is describing the world, but
without you in it, and it “as if you looked in the mirror and saw nothing” (p.199).

Since the 1980s, mathematics education research and teacher education has considered an
array of related sociocultural perspectives about mathematics and its teaching and learning --
ethnomathematics (e.g., D’ Ambrosio, 1985), funds of knowledge for mathematics (e.g., Aguirre
et al., 2013; Civil, 1998), and culturally relevant or responsive mathematics teaching (e.g.,
Gutstein, Lipman, Hernandez & de los Reyes, 1997). A commonality among these perspectives
is around “centering” (Tate, 1995) mathematics on students’ experiences, their affiliations with
various cultural or social groups, or the everyday practices of those groups, by creating
opportunities for hybridity between the mathematical thinking in everyday practices or other out-
of-school domains and the formal school mathematics curriculum. Unlike an incremental or
vertical development of mathematical expertise typical to school-based learning, horizontal
expertise develops through coordination across the diverse set of contexts through which one
traverses (K. Gutiérrez, 2008).

In this volume, Civil (2018) reflects on such a perspective about mathematics teaching and
learning equity in mathematics education and identifies three interrelated themes that she views as
central in her own “looking back”: funds of knowledge; participation; and valorization of
knowledge. I have been greatly influenced by Marta’s corpus of scholarly contributions, and I
begin by addressing each of these themes. Next, I follow Marta’s lead and present ideas about
how we might “look forward,” or really, blaze new trails in mathematics education, in vision,
mission, and action.

Civil’s “Look Back”

Funds of Knowledge

Across the breadth of Civil’s work, she emphasizes a baseline premise that every community,
family, and person possess mathematical funds of knowledge, and that these funds of knowledge
can be leveraged as intellectual resources for school success. This approach to equity in
mathematics is considered “asset-based” (Celedon-Pattichis et al., 2018), in how it avoids a deficit
construction of minoritized youth, their families, communities, and material spaces. Civil’s
research includes studies of children’s mathematical thinking, mathematics teaching, and parents’
mathematical thinking and perceptions, and draws on a blend of cognitive and sociocultural
perspectives about learning. One of her most significant contributions to date is her work on
immigrant parents’ mathematical thinking, their cultural and linguistic funds of knowledge, their
views about their children’s mathematics education in the U.S., and implications for equity in
mathematics education (e.g., Civil & Andrade, 2002; Civil & Bernier, 2006; Civil & Menéndez,
2011).
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Much of the related scholarship around funds of knowledge in mathematics education is
practice-oriented, around processes or implications for teacher education. Beginning with Moll,
Amanti, Neff and Gonzalez’ (1992) outline of a process for teachers as co-researchers to conduct
home visits with the goal of identifying funds of knowledge, there exists a growing set of studies
that present potential protocols for, and demonstrate the effectiveness of, similar approaches in
teacher education (Aguirre et al., 2013; Civil & Andrade, 2002; Foote et al., 2013; Rubel, 2012;
Turner & Drake, 2015; Turner et al., 2016). In aggregate, these studies guide teacher education in
terms of how to foster orientations to teaching that value the funds of knowledge that youth bring
to the classroom and in so doing, deflect prevalent deficit framings of minoritized peoples. In
addition, these studies identify and analyze ways of supporting teachers in developing and
improving instructional practices that leverage those knowledge funds as intellectual resources.

A related area of research comprises curriculum design fueled by a funds of knowledge
orientation. The Math in Cultural Context project is an example, in which teachers, researchers,
and Yup’ik elders co-designed elementary school mathematics curriculum around mathematics of
Yup’ik cultural practices (Kisker et al., 2012). Less well-known examples around curriculum
design based on community funds of knowledge can be seen, for example, in Katsap and
Silverman’s (2015) work with geometry curriculum using traditional Bedouin weaving and
embroidery, or Massarwe, Verner and Bshouty’s (2010) example of plane geometry curriculum
with a focus on Arab art and design. Civil has endowed our field with a variety of such examples,
such as elementary mathematics curriculum around the theme of construction (Civil, 2002) or
garden-design (Civil & Kahn, 2001).

Curricular design that builds on students’ funds of knowledge typically relies on iterative
processes of studying one’s students to identify funds of knowledge domains, identifying
mathematics embedded in those everyday practices, and building curriculum that negotiates the
connections and tensions between the mathematical thinking inherent to this domain and the
desired school mathematics. Although such processes are productive as equity-directed
instructional practices, they extend beyond the normative scope of a teacher’s workload. As our
research and collaborations with teachers accumulate evidence that such processes are essential,
we must concurrently adjust the scale of teacher workload and advocate for teachers as our
collaborators in this endeavor so that there is not a disconnect between the necessary and the
realizable.

In this volume, Civil (2018) showcases an example of how a funds of knowledge domain
emerged in her mathematics workshop for parents of school students. Civil learned from the
parents that American wrench sizes are sized in inches and expressed as fractions. Ordering
wrenches by increasing size is, therefore, equivalent to ordering fractions. Civil presents the
comparison of wrench sizes as an authentic context that can elicit or support mathematical thinking
about fraction comparison. Here, with respect to this wrench dimension example, Civil reiterates
an essential tension that she has earlier described (e.g., Civil, 2007), between “preserving the
purity of the funds of knowledge” and the mathematical goals of instruction, in terms of how a
curricular focus on a real-world context might de-prioritize, limit, and constrain mathematical
exploration and mathematical content.

This tension is derived, in part, by how lesson planning in mathematics is traditionally driven
by a predefined set of mathematical definitions, concepts, and skills, and then so-called “real-
world” examples are provided as afterthought applications. Curricular design around a social
practice or a social theme takes the opposite starting-point, which in and of itself is new for
teachers or designers (Nicol, 2002; Wager, 2012). I have negotiated this tension in my work with
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mathematics teachers around a binary of teaching the real-world context in service of learning
mathematics or teaching mathematics in service of learning about the world. In navigating that
false binary, we lose sight of how we are teaching children: our children, the children of our
neighbors, and young people all. Their collective well-being, their sense of being cared for, and
how mathematics can support the development, cultivation, and refinement of their empathy,
creativity, curiosity, and capacity to care for one another and the natural world could be our
primary priorities.

Participation in Mathematics

Centering mathematics instruction on students using a funds of knowledge approach
typically implies designing thematic curriculum around a selected socio-cultural domain. An
alternative way that funds of knowledge can be leveraged in mathematics is in terms of using
analogies during instruction that relate a mathematical object or process to students’ existing
knowledge but without focusing the curriculum thematically around that knowledge domain.

For example, in one of my projects, I observed a teacher using one of her student’s breakdancing
hobby in relation to the mathematical concept of a triangle’s center of mass (Rubel & Chu,
2012). The lesson was not organized around breakdancing, but the breakdancing funds of
knowledge was used as an analogy to bridge students’ experiences with a mathematical object
and its definition. Similarly, the example in Moses and Cobb (2001) about using students’
experiences with the public transit system as a means of learning integers was absent a thematic
focus on the trains themselves.

Here, Civil (2018) presents an additional alternative, in her reminder that students from
minoritized groups can engage in mathematical content that is devoid of thematic connection to
specific lived experiences. She stresses that building on students’ experiences and their funds of
knowledge does not need to be limited to building a curriculum focused on a particular everyday
practice, real-world artifact or process, but could be implemented through the ways that teachers
organize their classroom for participation -- not necessarily what mathematical questions the
students are considering, but what kinds of participation are being made available to them, and if
or how those kinds of participation are in synch with or in opposition to their ways of participation
in other aspects of their lives. For example, apprenticeship models of gaining expertise or
assumptions of competence are endemic to various contexts and could be leveraged as resources
for classroom learning (Civil & Khan, 2001; Kisker et al., 2012; Nasir, 2005).

I would like to draw attention to this point, especially in the context of current educational
policies and mantras. We know that teachers’ beliefs about students and about learning underlie
how they think what doing mathematics is supposed to look like, and which forms of participation
they will make available for their students (Hand, 2012; Rubel & Stachelek, 2018). The common
perception of order and silence as prerequisites to learning mathematics constrains individual
teachers’ views about participation, can lead toward over-interpretation of student participation as
off-task or disruptive, and typically results in didactic teaching (Hand, 2010). In this volume, Civil
(2018) draws attention to a 7™ grade classroom vignette in which she was the instructor and her
students engage deeply with evaluating algebraic expressions. She credibly ascribes significance
to the blend of humor, use of the students’ home language, and confianza (trust) among
participants.

Civil’s observations remind me of my own, recent observations of two accomplished teachers
of color, Ms. Hudson and Ms. Garcia (pseudonyms), who collaborated with me on a recent project.
Civil’s description of the family-like environment in that 7 grade classroom is reminiscent for me
of the my sense of the atmosphere in Hudson’s and Garcia’s classrooms, notably different from the
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classrooms of the 9 white teachers in that group of teachers. Hudson created a family-life
atmosphere through her playfulness and use of youth or informal language. For instance, she
would ask the class, “Can I mess with you now?” as a way of initiating a more complicated
exercise. This playfulness initiated a kind of lightness and communicated both rapport, support,
and a sense of challenge. Garcia also connected to her students through language, but in her case,
she drew on strategically using Spanish (her and their first language), to translate mathematical
terms, to check in with students about their emotional state, and to redirect behavior. Garcia
positioned herself as a loving caretaker for her students by donning an apron around her waist, its
pockets filled with pencils, erasers, and calculators for their use. Civil’s description of her
experience in that 7th grade class corresponds with my observations of Hudson and Garcia, and of
the Lee example described in Clark, Badertscher, and Napp (2013). In sum, this suggests that we
expand our understandings about fostering hybridity in mathematics classes through participation
processes and language and that we could follow the guidance of expert teachers of color and their
community cultural wealth (Burciaga & Kohli, 2018). Other kinds of “disruptions” of traditional
learning environments, like situating formal learning in places outside of schools and classrooms,
are likely productive as well in creating opportunities for hybridity (Ma, 2016).
Valorization of Knowledge
The research literature describes interventions and provides teacher education modules designed

around supporting teachers about how to develop mathematics curriculum that builds on students’
experiences or everyday practices (Aguirre et al., 2013; Rubel, 2012; Taylor, 2012). As part of
this process, we are seemingly led to search in a cultural practice for what Noss, Hoyles and Pozzi
(200) have called “visible mathematics,” meaning recognizable as school mathematics. Here and
in other papers, Civil draws attention to the valorization of knowledge, in terms of the issue of
whose knowledge is being valued, meaning that oftentimes we do not sufficiently valorize the
mathematical thinking endemic to various cultural practices as mathematics. For example, one of
Civil’s exemplar funds of knowledge examples relates to a parent’s geometric design and
measurement work as a dressmaker (Civil & Andrade, 2002). As Civil has discussed, there is a
distinction between valorizing the dressmaker’s knowledge as itself mathematical or doing so
through potential connections to existing school mathematics.

At the same time, Civil cautions about organizing lessons around a real-world context and
then have the context “take over” the mathematics. Civil cautions that the social context might
be superficial or contrived and draws attention to the oft stated concern “where is the math?”
Elsewhere (Rubel & McCloskey, under review), I have written about how the “where is the
math?” critique is at times employed to protect Western mathematics as if it were universal and
as if success in school mathematics were inherently fair. Culturally relevant pedagogy, or
pedagogy organized around funds of knowledge, is then positioned as communicating a
“watering-down” of mathematics, for those seen as unable or unwilling to engage otherwise.
Here, in reiterating her “where is the math?” concern, Civil comes close to positioning
instruction and pedagogy that is fundamentally oriented around building on students’
experiences as potentially at odds with rigorous mathematics instruction. When we position
culturally relevant pedagogy as threatening mathematics, we falsely re-inscribe Western
mathematics as neutral and deny that school and academic mathematics are historically, socially,
spatially, and culturally bounded.

Indeed, while ethnomathematics could focus on the mathematics of any social or cultural
group, it is typically used as a catch-all term for mathematics among “identifiable cultural groups”
(D’ Ambrosio, 1985), and those groups are typically limited to subordinated social groups (Knijnik,
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1997). Western mathematics is then understood as separate from and in opposition to
ethnomathematics (Gutiérrez, 2017). But as Knijnik (2002) explains:

by considering the form of other, non-hegemonic ways of knowing and producing mathematics,
ethnomathematics relativises the “universality” of (academic) mathematics and, moreover,
questions its very nature. ... In problematising academic mathematics, ethnomathematics
emphasizes not only that mathematics is a social construction but, more than this, that such a
construction takes place in a terrain shaped by political dispute around what will be seen as
mathematics, around which will be considered the legitimate way of reasoning, and therefore,
around which groups are those that can legitimately produce science.....Thus, it is not a matter of
talking naively about different mathematics, but of considering that these mathematics are, in
terms of power, unequally different. (p.13)

Hence, if we legitimize mathematical funds of knowledge only in terms of connections to
Western mathematics, we are ignoring this political terrain. Using a Western gaze onto our
students’ funds of knowledge is different than valorizing cultural expertise, curiosity, and other
ways of knowing as avenues that will yield new mathematical questions, ideas, representations,
and ways of knowing. I call attention to the work of R. Gutiérrez (2002) in which she outlines
how making space for people “under the tent” of mathematics will necessarily change, expand, and
improve mathematics -- people pose mathematical questions and develop mathematical solutions
informed by their experiences. Mathematics is necessarily enriched by participation of a wider
variety of people from a broader range of experiences. As Gutiérrez teaches, it is not only that
marginalized people need mathematics. Of course, they can use mathematics in a variety of ways
to evade their marginalization. However, for mathematics to stay relevant and to be able to solve
many problems that remain unsolved, it is mathematics that needs a diversity of peoples.

The Cultural is Political

Although mathematics is an ongoing human creation, only some mathematics is recognized in
the Western cannon and included in school curriculum. For students in the U.S., from the White,
Christian power-majority, this is not experienced as exclusion, since this is the normative culture.
Teachers (as well as textbooks and test writers), who are largely from that power-majority, tend to
draw on their own funds of knowledge in selecting, creating, and implementing mathematical
tasks. In sum, this means that white students already have their funds of knowledge reflected in
typical mathematics instruction and curriculum, without need of intervention and unacknowledged
as such. Even when trying to connect to students’ funds-of knowledge, mathematics teachers have
been found to contextualize mathematics using contexts related to sports or consumer activities of
adults like home remodeling, shopping, banking, or budgeting (Bright, 2015; Watson, 2012),
domains that are seemingly “safe,” or germane for everyone in the same way. However, these
domains are neither arbitrary nor neutral, but correspond to the interests, life experiences, and
values of communities who already benefit from being part of the power-majority. Moreover, the
positioning of the importance of learning mathematics in school as preparation for roles as
marketplace consumers or corporate employees demonstrates how mathematics in schooling is
being used to support ideologies of individualism, competition, and capitalism, ideologies that
benefit that same white power-majority. How might our word problems in mathematics read if
they were guided instead around commitments to collective well-being or to the health of our
natural environment?
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Making the Political Explicit

There is a known tendency to avoid political questions like these in the teaching of
mathematics (e.g., Simic-Miller, Fernandes, & Felton-Koestler, 2015), which can be explained
by a combination of a lack of sociopolitical awareness among teachers, fear among teachers for
job security especially in the current nationalistic climate, or a result of the common
misperception that mathematics is apolitical. In one of my projects, for example, I observed
teachers struggle with how to take up issues of power and oppression in their teaching of
mathematics for all of these reasons. One white teacher with whom I collaborated, for example,
created interesting curriculum around using geometric loci as a language with which to analyze
or design home or facility location, relative to constraints like environmental pollution. Even
though her school was in a low-income area with high asthma rates, presumed to be related to
more extreme and multiple sources of environmental pollution, she built the lesson in
hypothetical, generic terms. In conversation afterwards, she agreed that she could have provided
the students the opportunity to use mathematics to articulate their own physical geometries in the
context of actual existing environmental hazards and disease rates. She reflected that she tended
to have “blinders on” about specifically engaging in hybridity between relevant political
concerns and her teaching of geometry (see Rubel, 2017). I, too, as a teacher educator struggle
with how to better support teachers in this regard.

Indeed, despite a vision of mathematics as socially constructed with political ambitions and
consequences, funds of knowledge projects in the literature are often described in cultural or
linguistic terms absent explicit socio-political contextualization. For example, taking Civil’s
(2018) new example about wrench sizing, she has demonstrated that this is an interesting and
likely productive context in which to explore comparison of fractions. The wrenches, and what
they are used for, as well as who is using them is seemingly put aside to focus on the wrench
dimensions themselves, because fractions and their relative magnitudes explicitly reside in those
dimensions. But what of the unasked question as to the mathematics of why these people, in this
moment of time, and in this place possess this specific knowledge about hand tools? What is the
mathematics of how this knowledge and expertise is capitalized on by those in power? What is
the mathematics of who owns the construction or tool companies, who gives the building
permits, and what the zoning processes value? How is this knowledge acquired and how is it
shared? Who invented this tool, for what purpose, and how is mathematics used to produce it?
What fraction of construction profit goes to those who are doing the actual back-breaking and
dangerous construction labor? What is the mathematics of labor unions in the U.S. and their
support for construction workers? What else are these tools used for? And further, what is the
mathematics of American persistence to have a unique measurement system?

The Political Crowding Out or Denigrating the Cultural

It is not only that funds-of-knowledge curriculum modules are often presented absent
political context. There are examples in the literature of projects that are explicitly organized
around political questions or themes but that do not honor or sufficiently leverage students’ funds
of knowledge. In my work with colleagues, as part of the City Digits project, for example, we
identified widespread participation in state lottery games as a cultural fund of knowledge in
which to explore probability, combinations, scale, measurement, data analysis with youth (see
Rubel, Lim, Hall-Wieckert, & Sullivan, 2016c). In a second example, we drew on rampant
participation in a local array of alternative financial institutions like pawn shops and check
cashers as an entry-point to evaluate spatial distribution of these alternative financial institutions
in the context of other social variables (Rubel, Lim, Hall-Wieckert, & Katz, 2016b). In both
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cases, students built new or more developed mathematical understandings, which contributed to
furthering their political formation (Rubel, Hall-Wieckert, & Lim, 2017). Their interest in and
curiosity about spatial justice engaged them in furthering their mathematical understandings
(Rubel, Lim, Hall-Wieckert, in press). Participating students reflected that contextualizing
mathematics through political issues that they identified as connected to their lives and the places
in which they live -- their funds of knowledge -- linked their learning to their sense of being
agents of change in their families in terms of lottery spending, or decisions about financial
institutions (Rubel et al., 2016¢).

At the same time, along with these important successes, these curricular modules and their
associated maps did not make sufficient use of funds of knowledge as resources and instead,
likely reinforced and highlighted common deficit notions about students and their families, at
least for some students. For example, central to these modules were data and map
representations that could have been interpreted as suggesting that participation in the lottery or
loan-taking from alternative financial institutions among low-income people are produced by a
lack of mathematical understanding, instead of as products of spatial injustice organized to
maintain the status-quo of white supremacy (Rubel, Hall-Wieckert, & Lim, 2016a). The
knowledge that the youth accessed in the community about people’s sense of hopelessness in the
context of their care for loved ones remained largely in the shadows of the project’s focus on
navigating probability and combinatorics ideas or on the mathematics of loans. How could
mathematics be directed at questions or problems related to hope or love instead of only on
analysis of or strategies about capital gain amd loss?

As another example, consider Cirillo, Bartell, and Wager’s (2016) presentation of a
mathematical modeling investigation around the theme of soda pricing techniques used by fast
food restaurants. By presenting data showing drink volume and corresponding price per ounce,
the finding is that over-sized drinks are sold at a cheaper rate per ounce than smaller,
recommended sizes, effectively enticing consumers to buy larger drinks. Since these drinks are
heavily caloric but without other dietary benefits, this becomes significant relative to obesity,
diabetes, and other health factors. Cirillo et al. (2016) direct readers to contextualize this finding
in terms of the density of fast food restaurant locations relative to demographic variables around
income, and speculate, indeed, that students in low-income areas saturated with fast food
restaurants might surmise that there is not concern for their health. Educating people about their
miniscule probability of winning the lottery can be seen as using mathematics to promote
abstinence from the lottery. This is akin to how teaching that interest rates charged by pawn
shops or check cashers are higher than other financial institutions might lead people to borrow
money elsewhere. Similarly, educating people about this value pricing of soft-drinks technique
relative to the health risks of drinking soda is intended to guide learners towards abstinence from
indulging in those drinks. A commonality across these types of mathematical investigations is
that they do not directly challenge why we accept a society that allows, supports, and even
encourages these kinds of predatory systems.

Fundamental to this distinction is our current paradigm of democracy, which is a power-over
system (Guinier & Torres, 2002), meaning that competition for power yields some who dominate
and more who are dominated. Even if one assumes that the current democratic systems in the
U.S. are fair and meritocratic, still, these systems are designed to generate inequalities, to yield
rewards only to some, and mathematics supports these systems that are designed to rank and
order of people (see Valero, 2017). One could argue that teaching young people to understand
the lottery as a social project, for example, which necessitates various mathematical
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understandings, is a way to bolster them in this competitive “power-over” notion of democracy.
It is one thing to support youth in navigating the world and its systems as they are, but it is
another thing to challenge this underlying conception of democracy. The power-over paradigm
could be replaced with a “power-with” democracy (Guinier & Torres, 2002), in which the focus
on the individual were shifted to a focus on the collective, wherein an essential value around
competition among individuals were replaced with solidarity, resistance, and collective struggle.
What would happen to our state-supported lottery systems, our loaning institutions, our fast-food
restaurants and their pricing techniques, for example, if our democracy were “power-with”
instead of “power-over”? How can mathematics help us to advocate for such a paradigm shift?

Next Steps

In summary of next steps, Civil (2018) reiterates the set of political acts from Aguirre et al.
(2017): “1) enhance mathematics education research with an equity lens, 2) acquire the
knowledge necessary to do genuine equity work, 3) challenge the false dichotomy between
equity and mathematics, and 4) expand the view of what counts as mathematics.” Civil’s
reflections, as well as my comments above, are largely concentrated around the latter two
political acts. Inspired by Political Acts #3 and #4 in particular, Civil asks: “Are we doing
enough in our writing and in our work to bring the centrality of equity to mathematics and the
centrality of mathematics to equity?”

I opened this piece by citing perspectives about learning that guide us in terms of giving
students opportunities to draw on their cultural and linguistic funds of knowledge as resources in
mathematics. I cited Gutiérrez’ (2002) call that we need to offer mathematics as a window
through which students can look out onto the world, but also as a mirror in which students can
see themselves, their families, their pasts, and their futures in mathematics. And yet, the notion
of mathematics as a mirror through which to see self seems not yet fully possible. For example, |
have bumped up against the gender binary in and with mathematics, by mathematics teachers, by
mathematics exercises and theories that indicate and support a set of untruths (see Rubel, 2016).
School mathematics tells me that I was born either a boy or a girl, and that this is a fixed state.
Schooling in the U.S. prescribes that liking or doing math is doing masculinity, and that girls
can excel at math but at the cost of sacrificing femininity. School mathematics decries sexuality,
race, and ethnicity as irrelevant, and that success in school mathematics is determined by a
fundamentally meritocratic system. In these and other ways, mathematics, even as a mirror,
distorts reality. I never felt safe enough to come out as queer as a classroom teacher, and my
physical and material vulnerability remain an issue, especially in the current political context.
Mathematics, windows or mirrors, does not protect me, and if anything, my work and interest in
mathematics likely make my ideas more threatening and put me in greater danger than if |
worked in education research around another school discipline. In the U.S., where mathematics
is intertwined with white supremacy, patriarchy, and heteronormativity, my scholarly critiques,
my publicly funded salary, and even my basic existence pose a challenge to that constellation of
hegemonic forces.

And so, what of the centrality of mathematics to equity and equity to mathematics? This
circles back to the first two Political Acts from Aguirre et al., 2018, which speak to our
participation as mathematics education researchers in the current political context. There is the
constant evidence of hegemony across mathematics education in the U.S. of review panels,
editorial boards, plenary panels, and faculty rosters comprised largely or exclusively of white,
CIS, straight, Christian, gender-normative people. We must acknowledge that by limiting who
participates in knowledge-building, including through entrenched processes of institutional
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elitism in the academy, we limit the knowledge building itself. Peruse the research that I have
cited in and across this paper as well as the references cited in this volume by Civil - in nearly all
cases, cited works are written by people from minoritized groups. Of course, it is reasonable and
appropriate that these scholars lead the field in thinking about equity -- after all, we build
knowledge in part on our own life experiences, the standpoints we have achieved, and we draw
from our own marginalization to recognize when, where, and how it happens to others (Harding,
1993). Those of you who are part of the power majority, either by being male, white, Christian,
straight, gender-normative, or tenured faculty at a research university: how might the workings
of our field be different and the knowledge we produce improve if we made space for other
bodies and voices, listened to critiques, were better allies and advocates, or if we ceded, or at
least shared, power with others who do not share our privileges?

Instead of token nods of inclusion, we should blaze new trails for our research community by
shaping our research agendas, methodologies, avenues for sharing knowledge, and ways of
collaborating around a priority of tikkun olam (Hebrew for “repair the world.”) and collective
productivity. We could refashion our national and international leadership around a vision for
mathematics education that focuses on cultivating kindness, empathy, curiosity, creativity, and
collaboration among people in a power-with democracy. That way, we would create
mathematics that helps in posing and solving pressing questions about our natural environment
and our wellness. As importantly, we would know when to put aside mathematics for other,
better suited tools or ways of knowing. Perhaps instead of, or at least in parallel to, the oft-asked
“where’s the math?” challenge, thinly veiled as a question, we ought to invoke the inverse
challenge: “where’s the justice?” After all, if a research project does not engage equity,
privilege, power or justice, and is not contributing toward repairing our world, then how can such
research be relevant to mathematics education?
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TRANSFORMING TEACHERS’ KNOWLEDGE FOR TEACHING MATHEMATICS
WITH TECHNOLOGIES THROUGH ONLINE KNOWLEDGE-BUILDING

COMMUNITIES
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Mathematics teacher educators are faced with designing teacher in-service professional
development experiences for developing and transforming Technological Pedagogical Content
Knowledge (TPACK) towards integrating digital technologies as mathematics learning tools.
Online environments provide opportunities to a broad range of teachers, yet, the asynchronous
nature presents communication and collaboration challenges. A researcher-conjectured,
empirically-supported learning trajectory guides this online TPACK program for engaging
teachers in knowledge-building communities. Three online technology education courses provide
teachers with experiences as students, learning about the technologies while confronting
challenges to their thinking about teaching with the technologies. The fourth course provides the
teachers with key experiences through blended instruction. Through online explorations and
discourses in their communities, they examine reform-based instructional strategies for teaching
with technologies. Concurrently, they design, implement, analyze and reflect on their teaching
experiences through their designed five-day unit in their mathematics classrooms. Four TPACK

components reveal how this experience in knowledge-building communities transforms their
TPACK.

Keywords: Learning Trajectory, Teacher Education-Inservice/Professional, Teacher Knowledge,
Technology

Introduction

Mathematics teachers are challenged to actively engage students with current, more effective
technologies as learning tools. A recent handbook chapter (Roschelle, Noss, Jackiw & Blikstein.,
2017) highlights three important research-based categories of effective learning digital tools:
tools like graphing calculators that can do some of the detail work and students can focus on
concepts; tools for providing guidance and feedback to students as they practice mathematics;
and tools that help students visualize concepts and develop understanding. With the rapid pace of
the development of digital tools, teachers cannot fully realize the value of these tools without
teacher professional development. While teachers may have heard about the technologies, this
simple knowledge is not sufficient for guiding students in learning mathematics with the
technologies. Now recognizing twenty-first century learning, teachers must engage their
students in developing four key skills (the 4 C’s) in preparation for effectively connecting with a
global society: Critical thinking, Communication, Collaboration and Creativity (Partnership for
21st Century Learning, 2015; Thoughtful Learning Organization, 2016). Through these skills,
students are prepared to effectively engage in the more complex social, cultural, and educational
environments that depend on the advantages offered through the reliance on multiple
technological resources. Taking advantage of these 4C’s, students participate through various
thinking and engagement strategies as they concurrently learn mathematics:
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e C(ritical thinking: Students use analysis as they engage in problem solving where they
make comparisons, contrast ideas, analyze ideas, categorize data, and evaluate results of
trials.

e Creative thinking: Students engage in open-ended invention and discovery of myriad
solution possibilities as they design, improvise, innovate, problem solve and ask
questions.

e Communication: Students interact with others, connecting through multiple modes (e.g.,
text, social media, cell phones, email, Internet and other avenues) where they examine the
messages with respect to the purpose, sender, receiver, medium and the context of
various communications.

e Collaboration: Student work together toward a common goal, brainstorming ideas,
making decisions as a group, delegating, evaluating, goal setting, managing time,
resolving conflicts, and team building.

As mathematics teachers consider integrating technologies in their instruction, they must not
only determine how the technologies support learning the mathematics, they must consider
which pedagogical strategies effectively engage students in learning the mathematics with the
tools as they incorporated the 4 C’s (Roschelle & Leinwand, 2011). Teachers must identify,
orchestrate, and manage different pedagogical strategies and learning tasks for integrating the
technologies in new and perhaps different mathematical topics. The challenge involves far more
than their understanding of the mathematics content. The experience ultimately challenges their
technological pedagogical content knowledge and reasoning (TPACK) with an array of
technologies. “Quality teaching requires developing a nuanced understanding of the complex
relationships between technology, content, and pedagogy, and using this understanding to
develop appropriate, context-specific strategies and representations” (Mishra & Koehler, 2006, p.
1029).

Today’s mathematics teachers must continue learning about teaching mathematics beyond
their learning in their pre-service teacher preparation programs and typically this learning
happens as they are actively teaching. Transforming in-service teachers’ TPACK requires more
than participation in short-term professional development experiences. Teachers need
experiences to actively engage them in the process of “working toward a more complete and
coherent understanding,” otherwise referred to as knowledge-building experiences (Scardamalia
& Bereiter, 1993, p. 39). Knowledge-building communities (e.g., Scardamalia & Bereiter, 1993,
2003; Bereiter, 2002) integrated with classroom teaching experiences are more likely to engage
teachers in relearning, rethinking, and redefining teaching and learning to take advantage of new
and emerging technologies and methods for teaching mathematics. Through such communities
combined with practical teaching experiences, teachers have opportunities to confront their
current pedagogical conceptions for integrating technologies as useful learning tools in their
content areas (Loughran, 2002) in the process of developing reformed understandings for
teaching in the twenty-first century with multiple technologies.

In this paper, we specifically consider the potential benefits but also the potential challenges
of providing teachers with learning experiences in online or blended formats that intend to
establish online knowledge-building communities. On one hand, online or blended learning is an
increasingly recognized educational setting for teachers’ professional learning experiences. It can
allow teachers more choice about how, when and where they learn, reduce cost, and provide
increased access for many more teachers across a broader geographical area. Yet, the primarily
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asynchronous nature of online learning poses additional challenges for the design of these
needed educational experiences (Means, Toyama, Murphy, & Bakia, 2013).

When considering these points, mathematics teacher educators are confronted with a primary
and critical question in the design of knowledge-building communities for transforming teachers’
TPACK:

What experiences are essential for guiding in-service teachers as they learn about
the technologies as well as about teaching mathematics with the technologies?

Building on this broad question, important sub-questions in the design of online professional
development instructional programs emerge:

1. What are the key features for online learning for guiding teachers in reframing their
current teacher knowledge?

2. What online learning trajectories are not only useful for engaging teachers in knowledge-
building communities but also for providing them with an understanding of the
pedagogical challenges in their classrooms?

3. How might teachers gain classroom-based learning experiences for applying their
theoretical ideas about teaching with technologies?

Through this paper, we report on the first author's research and development project,
addressing these questions in the process of developing ad analyzing the outcomes of a new
online in-service teacher TPACK program containing four graduate courses. The effort used a
researcher-conjectured and empirically-supported learning trajectory (Niess & Gillow-Wiles,
2013, 2014) to frame the experiences and pedagogical strategies to engage the in-service teacher
participants in online knowledge-building communities blended with practical teaching
experiences when teaching mathematics with technologies. The second author adds comments in
the Discussion section.

Theoretical Framework

Teachers’ knowledge for teaching with technologies requires far more than just
understanding the subject matter. It ultimately necessitates a strong pedagogical knowledge
merged with the knowledge for teaching mathematics using a vast array of technological
innovations. This task calls for Technological Pedagogical Content Knowledge (Angeli &
Valanides, 2009; Mishra & Koehler, 2006; Niess, 2005), otherwise referred to as TPACK (called
‘tee-pack’, Thompson & Mishra, 2007). TPACK, as shown in Figure 1, describes this teacher
knowledge through the intersection of content knowledge, pedagogical knowledge and
technological knowledge for guiding their strategic thinking of when, where, and how to guide
students’ learning of the content such as mathematics with technologies.

TPACK is the composite of the intersecting multiple domains (technological knowledge
(TK), pedagogical knowledge (PK), content knowledge (CK), technological pedagogical
knowledge (TPK), pedagogical content knowledge (PCK), technological content knowledge
(TCK) and TPACK) within the Contexts. Further, the center subset is also described as TPACK.
Mishra and Koehler (2008) described this center subset as:

The representations of concepts using technologies; pedagogical techniques that apply
technologies in constructive ways to teach content in differentiated ways according to
students’ learning needs; knowledge of what makes concepts difficult or easy to learn and
how technology can help redress conceptual challenges; knowledge of students’ prior
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content-related understanding and epistemological assumptions; and knowledge of how
technologies can be used to build on existing understanding to develop new epistemologies
or strengthen old ones. (p. 3)

Technological
Pedagogical Content
Knowledge
(TPACK)

Technological
Knowledge
(TK)

Content
Knowledge
(CK)

Technological
Pedagogical
Knowledge
(TPK)

Technological
Content

Knowledge
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Pedagogical
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Figure 1. Representation of Technological Pedagogical Content Knowledge (TPACK) as
teachers’ transformed knowledge. Reproduced by permission of the publisher, © 2012 by
tpack.org

Elaborating on TPACK

The TPACK construct is recognized and supported by extensive research and scholarly work.
Elaborating on TPACK, Niess (2005) extended from Grossman’s (1989, 1991) description of the
four components of PCK. The four TPACK components incorporate the influence of technology
in teachers’ instruction, considering the teachers’:

1. Overarching conceptions about the purposes for incorporating technology in teaching
mathematics topics;

2. Knowledge of students’ understandings, thinking and learning in mathematics topics with
technology;

3. Knowledge of instructional strategies and representations for teaching and learning
mathematics topics with technologies;

4. Knowledge of curriculum and curricular materials that integrate technology in learning
and teaching mathematics topics.

Building on these components, Niess, Sadri and Lee (2007) described TPACK development
as a process in transforming teachers’ TPACK. They linked Rogers’ (1995) five-step process in
the ultimate decision of whether to accept or reject a particular innovation with the analysis of
extensive observations of teachers’ learning about spreadsheets and how to integrate
spreadsheets as learning tools in their mathematics classrooms. Through this effort, they found
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the teachers at different stages in their TPACK transformations:

1. Recognizing (knowledge), where teachers are able to use the technology and recognize
the alignment of the technology with mathematics content yet do not integrate the
technology in teaching and learning of mathematics.

2. Accepting (persuasion), where teachers form a favorable or unfavorable attitude toward
teaching and learning mathematics with an appropriate technology.

3. Adapting (decision), where teachers engage in activities that lead to a choice to adopt or
reject teaching and learning mathematics with an appropriate technology.

4. Exploring (implementation), where teachers actively integrate teaching and learning of
mathematics with an appropriate technology.

5. Advancing (confirmation), where teachers evaluate the results of the decision to
integrate teaching and learning mathematics with an appropriate technology. (Niess et al.,
2009, p.9)

Here's a scenario: Mr. D is a middle school mathematics teacher with a degree in
mathematics who was excited as he learned to design dynamic spreadsheets for exploring
algebraic problems. However, he was constrained in his acceptance of students using
spreadsheets for exploring algebraic changes when thinking about constants and dependent
versus independent variables. He believed that students needed to create multiple graphs with
paper and pencil in order to identify changes in the constants and variables of different functions.
He was willing to use the spreadsheet for his summarization of the results, where he would
demonstrate the changes for the students; however, he was not willing to engage the students in
spreadsheet explorations. While he was considered to be at the recognizing level, even with more
work with spreadsheets, he resisted the idea of adding spreadsheets to his mathematics classes.

In a contrasting case, Mrs. A, a teacher with a mathematics education degree, was excited
with the ease and visualizations that resulted as she worked with her students in designing
dynamic spreadsheets in their explorations. She wanted her students to have this experience as
they worked in groups to explore changes in constants and variables. She felt that this more
visual approach helped them gain a better understanding than if they had to individually graph
each of the problems. As she worked with her students with the spreadsheets, she envisioned
additional experiences for using spreadsheets in her mathematics classes and was thus viewed at
the exploring stage.

These stages were proposed as an iterative process in the development of TPACK rather than
a strictly linear process. In essence, some aspects of what is learned about teaching a particular
topic with one technology may provide a disposition toward the acceptance of another
technology. But teachers need to explore different topics with each new technology, considering
its applicability for supporting learning mathematics with that technology
Developing In-service Teachers’ TPACK

Reconstructing in-service teachers’ knowledge to reflect the ideas as described in TPACK
requires teacher engagement in systematic inquiries about teaching, learning, subject matter and
curriculum, and schooling, much like that described in Cochran-Smith and Lytle’s (2001)
conception of “knowledge-of-practice” as a “transformed and expanded view of what ‘practice’
means” (p. 276). Such a reformed conception assumes that knowledge is “socially constructed by
teachers who work together and also by teachers and students as they mingle their previous
experiences, their prior knowledge, their cultural and linguistic resources, and the textual
resources and materials of the classroom” (p. 280). Transforming teachers’ knowledge suggests
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their involvement in an inquiry knowledge-building community where reflection is a central
component (Cochran-Smith & Lytle, 2001; Loughran, 2002; Schon, 1983).

Borko (2004) describes a process for identifying high—quality teacher change programs as
called for in transforming teachers” TPACK, as beginning with studies in a single site, exploring
relationships between teachers as learners in a specific learning trajectory. Confrey and Maloney
(2010) expand this thinking, describing the need for identifying a learning trajectory as a
“researcher-conjectured, empirically-supported” description of an “ordered network of
experiences” where teachers as students move from “informal ideas, through successive
refinements of representation, articulation, and reflection, towards increasingly complex
concepts over time” (Confrey & Maloney, 2010, p. 968). In this manner, teachers are engaged in
instruction designed to move from informal ideas through successive refinements toward a
transformed knowledge for teaching with technology. Through this purposeful learning
trajectory, they develop knowledge through their experiences as they are engaged in instructional
strategies that ultimately model teaching with technologies.

Teachers as learners are, thus, charged with becoming aware and critical of their own and
others’ assumptions about teaching to achieve a paradigm shift that transforms their thinking and
actions toward the ideas embedded in TPACK. McGonigal (2005) outlines five conditions and
processes for fostering such a transformative learning experience for enhancing teachers’
TPACK:

1. Teachers need an activating event to expose the limitations of their current knowledge.
Teachers need opportunities to identify and articulate underlying assumptions in their
teaching knowledge.

3. Teachers need to engage in critical self-reflection, specifically considering the origin of
underlying assumptions, and how these assumptions have influenced or limited their
understandings about teaching.

4. Teachers need to engage in critical discourse with other teachers and the adult teacher
educator in the process of examining alternative ideas and approaches.

5. Teachers need opportunities to test and apply their new perspectives.

Online TPACK Learning Trajectory

We investigated an educational setting where in-service teachers’ professional learning
experience is provided through online programs. The first author’s research group designed an
approach based on Niess and Gillow-Wiles (2013, 2014) empirically-supported learning
trajectory, to frame online TPACK learning experiences to engage teachers in knowledge-
building communities designed toward transforming the teachers’ TPACK. The trajectory
recognized key instructional strategies through a social metacognitive constructivist instructional
framework that identified key tools and processes for organizing the TPACK content
development in online asynchronous, text-based inquiry learning experiences.

Tools. Two tools support the online professional development: (1) a community of learners
and (2) reflection. With the challenge for establishing connections among the learners and the
instructor in online learning, establishing a community of learners provides an important tool for
supporting the learners in communicating and interacting through discussions about the tasks and
ideas being developed. This tool provides a social presence such that the community functions as
a knowledge-building community. Through this community, the construction of knowledge is a
“social activity, with new information and ideas brought into the discourses of a community that
shares goals for knowledge advancement and recognizes contribution” (Scardamalia & Bereiter,
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1993, p. 38-39). Such a social presence establishes community member participation and
educational experiences for meaningful learning, open communication, and group cohesion as
the learners engage in active roles to make sense of new information and ideas (Bereiter, 2002;
Garrison, Anderson, & Archer, 1999; Garrison & Cleveland-Innes, 2005; Hill, Song, & West,
2009; Kinsel, Cleveland-Innes, & Garrison, 2005; Rourke, Anderson, Garrison, & Archer, 1999;
Scardamalia & Bereiter, 1993; Sung & Mayer, 2012; Swan & Shih, 2005).

Reflection was the second important tool in the online learning trajectory. Critical reflection
supported the cognitive presence in the online learning trajectory. Learner engagement through
reflection happened in multiple ways, such as having learners prepare content reflective essays,
reflective essays on the community engagement and peer reviews of another learners’ work. The
online portfolio provided a consistent way for each teacher to capture, reflect on and share their
progress. Basically, the community of learners dynamically integrated the social, cognitive, and
teaching presences in the online environment, supporting higher order learning through the
reflective actions that result in deep approaches to learning (Garrison & Cleveland-Innes, 2005).

Processes. The online learning trajectory also includes two key processes for incorporating
the tools: (1) shared/individual knowledge development and (2) inquiry learning. As the learners
participates in the community of learners’ activities, they share their understandings of how they
are interpreting the ideas. As the discussions evolve through their interactions, the learner’s
individual knowledge matures. The learners move between group and individual knowledge-
building so as to ultimately create an understanding that more clearly reflects a world view with
respect to the learning experiences (Dunlap & Lowenthal, 2014; Rienties, Tempelaar, & Lygo-
baker, 2013; Swan, 2001). As a result, the learners’ individual knowledge expands beyond that
which they were able to develop independently.

The second key process with the knowledge-building communities relies on inquiry-based
activities to provide the learners with tasks, opportunities and experiences where they negotiated
their understandings of the content. The inquiry process immerses them in constructing their
understandings, where they take ownership of their learning, beginning with questions and their
explorations where they investigated worthy questions, issues, problems or ideas. They ask
questions, gathers and analyzes information, generates solutions, make decisions, and justifies
their conclusions. The resulting actions interweaves multiple technologies, instructional
approaches, and content topics through multiple units. Throughout the process, the participants
consistently engage in thinking and reflecting about the dynamic interactions among content,
pedagogy and technology that emerges from the tasks in their online learning experiences
(Roberts, 2002; Wheatley, 1992).

An Online TPACK Instructional Program

Our program for transforming mathematics teachers” TPACK for teaching with technologies
developed four new university graduate level courses. Three of the courses are fully online and
focused on technology education. These courses are combined with a blended course that
incorporates teachers’ practical experiences where they implement their newly developed
technological knowledge in their own classrooms with an online experience through a
community of learners’ inquiry and discourse about reformed-based pedagogical strategies.
Technological Education Courses

Three courses (SED 520, SED 521, and SED 522) engaged the teachers in experiences as
students where they learn about and with some technologies in ways that challenge and advance
their thinking about learning mathematics with these technologies. During these experiences, the
teachers interact in small communities of learners in discourse, responding to the experiences as
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students and then as teachers. They use critical reflection in considering the dilemmas, their
personal experiences and their discussions to inform their TPACK understandings.

For each unit in these courses, inquiry tasks challenge the teachers to examine and explore
specific technologies. For example, in SED 520 one unit challenges them to examine and
explore the temperature probe, a technology with which they are typically unfamiliar. They are
provided with 10 laboratory experiments to guide their explorations as they learn how to collect
temperature data and use the accompanying software to analyze the data, both graphically and
numerically. As they work with the experiments, they also engage in questioning and discussion
with their assigned small community of learner groups, discussing key questions as they examine
the readings and their experiences in learning about and with the probeware. The unit
emphasizes higher order thinking and inquiry learning to shape their ideas for integrating the
technology as a learning tool in mathematics. To conclude the unit, the students prepare a critical
reflection on their experiences with the technology, on the key questions and the inquiry
processes and how their shared/individual experiences through the community of learner’s
discussions as well as their individual experiences form their understandings in this unit.

SEDS20. Integrating Technology and Literacy in Learning Mathematics (SED 520) is a
course focused on multimedia technologies for twenty-first century mathematical literacy
incorporating the 4 C’s in teaching and learning mathematics. The course is arranged in five,
two-week unit experiences. The technologies are purposefully selected and organized with the
content. Unit 1 begins with presentation software, a technology with which teachers typically
have experience. They are charged with using a Google presentation in a cooperative,
collaborative experience to inquiry and examine new Web 2.0 technologies (Diigo, Wordle,
Blabberize, Glogster, Voki, and Popplet for example). Each class member has responsibility for
creating one slide that describes one specific technology term and how it can be used in
education and a second slide that introduces them as new members of the class. Unit 2 promotes
the teachers as learners exploring a technology with which they are unfamiliar — the temperature
probe, as previously described. This experience engages them as students, where they must
become familiar with the technology and consider how it might be used in learning mathematics;
additionally, in their roles as teachers they consider what instructional strategies are needed to
engage students in learning with this technology. The Web Inquiry Unit 3 pairs teachers in the
design of a web presentation to guide students in specific mathematical explorations. This unit
uses a framework similar to that in WebQuests (http://webquest.org/) to guide students in
mathematical inquiries through web experiences (see http://webinquiry.org/ for sample
inquiries). Unit 4 expects the teachers to work individually in designing three lessons that require
use of a specific web application for learning mathematics. Teachers typically consider
applications such as those available through the National Library of Virtual Manipulatives
(http://nlvm.usu.edu/en/nav/vlibrary.html) or other similar libraries of interactive mathematics
experiences. Finally, Unit 5 organizes the teachers as small cooperative groups for group
analysis and writing experiences. These last two units expect the teachers to think about the
comparison of knowledge gained as individuals (in Unit 4) versus that gained through
cooperative and collaborative sharing with technologies (in Unit 5). The culminating product for
this course is a web portfolio that presents the various products produced in each of the units of
the course, demonstrating their knowledge of multimedia mathematical literacy.

SED 521. The second course, SED 521 (Teaching Mathematics With Digital and Video
Technologies), uses inquiry experiences with digital images and videos to engage the teachers as
students in higher order thinking and inquiry in mathematics. The major course difference
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between this course and SED 520 is the organization of the technology experiences into two
major units, one focused on teaching mathematics with digital images and the second on
incorporating videos as mathematics learning tools. Weekly, specific inquiry tasks confront the
teachers. For example, during the first unit, they are challenged to gather digital images that
afford opportunities for engaging students in twenty-first century learning of mathematics. The
teachers are challenged to engage in their communities of learners, exploring these images to
respond to this question: How might students’ selection, acquisition, and presentation of digital
images be beneficial for their learning of mathematics topics? The teachers engage in discourse
with their assigned communities of learners and complete critical reflections through this
question and the accompanying tasks and experiences with multiple digital images. Over the
course of all the units they discuss the key questions and how their shared/individual experiences
as well as their individual experiences influence their developing understandings. The
culminating course product is a collection of digital images and videos with lessons for using
them as mathematics learning tools. The collection also includes a video that portrays an
example of what students might develop to communicate their higher order thinking when
solving mathematics problem.

SED 522. The third course (SED 522), Dynamic Spreadsheets as Learning Tools in
Mathematics, provides teachers with opportunities to explore algebraic reasoning when engaging
students in learning with spreadsheets. Throughout the 10 units, inquiry tasks that involve
developing skills with spreadsheets, the teachers’ understanding for designing dynamic and
dependable spreadsheets as a mathematics learning technology develops. The units model
specific problems for gaining knowledge through access to spreadsheets. For example, Figure 2
presents a problem the teachers as students are to solve using relative cell referencing.

B C D E F G H 1 J K L M N o P Q R S T

»

-

M 10 M 10mi
s A B From A to B A B From B to A A B

16 _Red | Blue | Red [ Blue Red | Blue Red | Blue | Red [ Blue Red [ Blue Red | Blue | Red [ Blue
f%8 o [ 100 [ 100 ] © o [ 10

One beaker (A) has 100 ml of a blue liquid and the other beaker (B) has 100 ml of red liquid.
First move 10 ml from A to B. Then move 10 ml from B to A. How many exchanges are needed
before the liquid in both bottles contains the same concentration of blue and red liquids?

Figure 2. Mixture spreadsheet problem for SED 522
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After designing a solution, they must develop a graphical representation (Figure 3) of their
design and engage with their communities of learners’ knowledge-building communities to
explore multiple TPACK-related questions:

1. Where might this problem be useful in the mathematics curriculum?
2. What spreadsheet skills do students need for designing such a spreadsheet solution?
3. How should the students be organized for solving this problem?
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Figure 3. Graphical representation of the solution

In completing this spreadsheet course, the teachers’ final project is a portfolio containing
their collection of mathematics problems with solutions, curriculum plan for integrating
spreadsheets as tools for exploring mathematics problems, and a final reflection on preparing
their students to use the spreadsheet as a mathematical tool.

Blended Online and Practical Course: SED 594

Given these new online courses, the program designers questioned whether the experiences
actually translated to the teachers’ classrooms. For this reason, a fourth course, SED 594
(Advanced Teaching Strategies in Mathematics), was added to the TPACK program. As a
blended course, this course combines online discussions and explorations about reform-based
instructional strategies with practical teaching experiences in the teachers’ own classrooms.
Through the online explorations and discussions in their knowledge-building communities, they
examine reform-based instructional strategies. Concurrently with their communities of learners’
discussions, the teachers individually design, implement, analyze and extensively reflect on their
personal, practical teaching experiences in their five-day unit in their mathematics classrooms.
Essentially, they engage in action research about their own teaching as they gather artifacts to
describe their instructional strategies, tools, and processes for engaging their students in learning
mathematics with the selected technologies.

They incorporate extensive reflections in their electronic portfolios. These portfolios
incorporate critical reflections from throughout the course to demonstrate how they implement
their knowledge for teaching in their classrooms as they integrate technologies in
teaching/learning mathematics. They gather two videos of their classroom instruction. They
gather student products, examining whether the students demonstrate a strong understanding,
average understanding or weak understanding of the concepts or processes. They complete
multiple critical reflections throughout their instructional experiences (on the lesson designs
before teaching, after teaching the lessons, about their students’ work in the lessons, after
watching videos of their instruction, and at the completion of the instruction). Weekly, they also
reflect on their community of learners’ explorations and discussions about the reformed-based
instructional strategies. They peer review another teachers’ portfolio, providing
recommendations for enhancing the communication of the ideas. And, they complete a final in-
depth analysis and reflection of the experiences they have had in their classroom teaching and
their community of learner’s discussions and interactions.

While they engage in the practical teaching experiences, they use the online community of
learner groups to explore and discuss different instructional strategies, tools, and processes for
teaching with technologies. Throughout their discussions, they cooperatively explore and
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examine reform-based instructional strategies — visible thinking, student discourse, grouping
structures, and multiple representations for motivation and engagement. They peer-review
another’s electronic portfolio with the goal of improving the communication of the events and
thinking. This review prepares them for the final critical reflection on the entire blended course
experience, including the instructional experiences, video analyses, plans for improving their
future instruction, and discourse in their community of learners where they discuss and consider
instructional strategies for teaching with technologies. This final critical reflection reveals how
their TK, TPK, and TCK merges with their PCK in the process of transforming their TPACK.

Teachers’ TPACK Transformations

To investigate the influence of the online TPACK instructional program on teachers'
knowledge transformations, we analyzed observations using the teachers’ artifacts, expressions
and reflections describe. The analysis reveals their knowledge, thinking and reflection with
respect to the four TPACK components (Niess, 2005). Three representative cases (using
pseudonyms Janis, Judy, and Lucy) were purposefully selected to display the patterns in the
diversity of classroom situations and teaching levels. Janis, an elementary teacher, designed a
fraction unit combining concrete and virtual manipulatives and games and activities she found on
various websites for building students’ understandings for representing, comparing and ordering
fractions. Judy, a ninth-grade mathematics teacher chose to incorporate graphing calculators as a
technology for her geometry course as they explored properties of transversals and the created
angles, parallel lines, and perpendicular lines. Lucy, a high school mathematics teacher,
incorporated the temperature probe with spreadsheet software in her pre-calculus class to engage
her students in examining exponential, logarithmic and logistic functions.

Overarching Conceptions

As the teachers used technology in their own classrooms in the culminating SED 594 course,
they were challenged to evaluate the value of the mathematical learning experiences for their
students. In essence they were confronted with the question of whether or not the technology
would support student learning in a purposeful and useful way.

Janis had previously taught her unit using only concrete manipulatives to build the students’
understanding of fractions. “Using the virtual manipulatives was new and did cause me to
change the way that students completed some of the tasks from previous years. The virtual
manipulatives were nice because they didn’t take up space like the concrete ones, and students
were able to work with partners more instead of their whole table group.” Janis saw the virtual
manipulatives as adding to learning in an important way: “It allowed the students to make an
instant connection between the manipulative and the mathematical concept because the symbolic
notation was also shown on the screen.” Reflecting on the value of the virtual manipulatives, she
revised her original conceptions since the technologies provided a larger variety of learning
experiences that she found important for student understanding of the concepts.

Judy’s conception of graphing calculators as learning tools was intertwined with the
importance of having students in working groups. She concluded that having the students work
in groups led to solving problems and exploring ideas through technology tasks and deepened
their learning because they were developing their own plans for solving the problems.

When students worked in the groups with the graphing calculators, they helped each other
when they were stuck. The groups also allowed students to explore many different equations
of lines at the same time. They were exposed to many more possibilities of equations of lines
than they would have been if I were leading the whole group.
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Lucy designed her instruction to integrate technology and science in her mathematics
instruction “The learners were supported in their learning through the computers and the
Go!Temp Probe which collected data modeling a logistic curve. They were able to make real-
world connections to their learning.” She concluded “The connection to science makes the
learning richer and fuller.”

Students’ Understandings, Thinking and Learning

Another concern for the teachers involved the question of how the technology aided in
students’ understandings, thinking and learning of specific mathematics topics. They were
confronted with assessing the students’ understandings and whether that understanding and
thinking supported a stronger knowledge.

Janis noted that her students struggled to represent a given fraction three different ways but
with the addition of the virtual manipulatives and other applications, she noted that when they
built their fractions “on the fraction bar site they were forced to re-examine their ideas.” She
often talked about students’ thinking and how their understandings and learning were impacted:

Many students are visual learners, and it would not be enough for them to simply listen to
another students’ [explanation]. The combination of visual and auditory increased the
number of students...engaged during group sharing and discussions and [increased] the
chances that students [would] effectively process and retain the information in a meaningful
way.

Judy gained an appreciation for the use of small group work with technologies for
understanding students’ thinking and understandings. During a Think-Pair-Share activity, she
observed many conversations and heard many students mention slope. “It helped that they did
not have to share among the larger class first ... more students [were] willing to share than usual,
and I feel it is due to sharing with a neighbor first.” She noted how using technology in the group
work helped her understand the students’ thinking. “Students were very engaged within the
group work today. Perhaps the most engaged I have seen them in [the] group work. I feel the use
of technology was a key factor.”

Lucy realized her students’ knowledge and thinking in one class did not necessarily transfer
to other content areas. After the second day of her unit, she reflected that even though students
had used microscopes in their biology class, they had a hard time translating that knowledge into
the mathematics classroom. With a little guidance, “they got on track nicely and I anticipate this
task to go faster as the days go on.”

Instructional Strategies and Representations

Since the teachers were expected to design and implement a five-day unit, they were
confronted with the task of identifying and scaffolding multiple instructional strategies to support
students in learning the mathematics topics. They recognized the additional challenge for also
scaffolding the instruction in such a manner that it supported student engagement with the
technologies.

Janis connected the online discussions with her community of learners with her ideas for
instructional strategies: “I incorporated some of the research-based instructional strategies that
we have been discussing...Primarily, I used a lot of discourse, questioning, and collaborative
learning...I tried to provide multiple representations...whenever possible, allowing students to
connect their ideas with a visual.” She gained a deeper understanding of strategies for
integrating technologies through her video analysis. She saw the need to provide more direct
instruction with the technologies. “What went really well was engaging students in the lessons
and giving them opportunities to share their thinking as they worked collaboratively on the
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tasks.” She also recognized that with students’ ages and the novelty of using the technology, “I
had to make sure that the tasks we did in the computer lab were very structured.”

For Judy, the emphasis in the online discussions and her experiences with her instruction
aligned her thinking about instructional strategies with grouping, problem solving, questioning
and student discourse because these strategies “allow[ed] the learning environment to be
centered on students who are actively engaged.” From her work with these various strategies,
she indicated that “Overall I want my classroom to be more student-centered and less teacher-
centered.”

The strategies Lucy implemented included discourse, questioning, inquiry, motivation,
multiple representations, compare and contrast, cooperative and collaborative learning, providing
feedback, and technology and science integration. Throughout the various science lab lessons,
she was a guide. “I did not measure any pH, nor did I tell them which number it best matched.
They asked each other and worked very collaboratively during this lesson...I know the more
consistent I am with being a guide rather than the sole provider of information, the sooner it will
become a habit.”

Curriculum and Curricular Materials

A critical concern for the teachers in this final work was to identify a topic that was best
suited for the technologies they wanted to include. They each want to make sure they were
teaching the expected curriculum in order to support students as they advanced to future topics.

Janis’ knowledge and thinking about her curriculum and curriculum materials changed as she
reflected on the experiences in the lessons and what she saw in her lesson videos. She saw clear
evidence about the importance of allowing students time to learn about and become familiar with
the technology tools. “The students really enjoyed using the virtual manipulatives and they were
motivated to complete the relevant tasks. However, I simply had not factored in enough time to
let them explore with the manipulatives so that they could effectively utilize them during the
lessons.”

Judy indicated she needed to look for more ways to integrate technology: “Technology can
aid in their learning and provide opportunities for them to be engaged.” However, she noted that
adding technologies to the learning required extending the curriculum and the need to “find
activities and tasks” that would support students in learning with the technology.

A main objective in Lucy’s unit was to “connect mathematics and science with the help of
technology.” She claimed that a promising practice might be for team teaching with the science
teacher, where they would co-teach, and she would have the responsibility for the mathematics.
“We plan to team teach using real-world data for mathematics...[making] an even better
connection [of] math, science, and technology.”

In Sum: Teachers’ TPACK Transformations

After designing the online TPACK instructional program, our research effort focused on
identifying the influence on the teachers’ TPACK. The challenge was to identify how the
teachers’ thinking was transformed as a result of their engagement in their experiences. The
most significant shift in their knowledge and thinking for all the teachers was a shift in their
thinking about instruction. The majority of the teachers’ primary approach prior to this program
involved teacher-centered instruction. Yet, through the program, they shifted to valuing student-
centered instructional strategies for teaching with technologies. This shift was reflected in the
examination of the TPACK components.

Their overarching conceptions of the purposes for incorporating technology in teaching
mathematics expanded, identifying the importance and value of multiple technologies,
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considering more than just content and thinking about the pedagogical strategies and the
technological features. For example, they now considered technologies for communication,
collaboration, and inquiry as important technologies for displaying mathematical ideas. In other
words, their overarching conceptions shifted to a broader range of technologies for teaching in
ways that were more student-centered.

Their reflections about student-centered strategies caused them to think more about student
thinking and understanding. They reflected more on students’ thinking with the technologies and
what strategies were more supportive of their learning of mathematics with the technologies.
They reflected on how students needed time to practice and work with the technologies before
moving to more in-depth problems. They discussed and reflected on the scaffolding that they
needed to do in their lessons as they integrated the technologies. They needed to allow students
opportunities to discover and explore ideas with the technologies. Based on their experiences of
working in groups and engaging in discourse with their communities of learners, they tested
more student-centered strategies as they taught their lessons. After observing their videos, they
saw how they needed to be “a guide rather than the sole provider of information.”

The expanded vision on technologies in mathematics instruction also influenced their
thinking about the curriculum. They shifted to the importance of expanding the curriculum to
include teaching about the technology before expecting students to automatically gain
understanding of mathematics immediately from working with the technology. During their work
with various probeware technologies, they were engaged as students; through these experiences
they identified the importance of learning about the technologies within content-specific
explorations. As they designed and taught their lessons, they tried to incorporate explorations of
mathematical ideas during the time in which their students were learning about the technologies.

In essence, the most obvious transformation in the teachers” TPACK was toward student —
centered instructional strategies and the integration of multiple technologies for teaching in their
classrooms. As teacher educators consider the design of programs to support the transformation
of teachers’” TPACK, they need to remember the importance of practical experiences. This work
also identified the importance of combining practical experiences with opportunities for the
teachers to engage in discourse through the knowledge-building communities of learners and
extensive critical reflection on teaching in their classrooms. The combination provides teachers
with opportunities to rethink, unlearn and relearn in ways that result in changing, revising and
adapting their mathematical content and pedagogical strategies in light of the affordances of the
multiple technologies — a TPACK transformation that reveals a deeper understanding of the role
of technology and meaningful integration into their mathematics classrooms.

Discussion

From an outside perspective (that of the second author), this paper is a case study of how
ambitious and laudatory teacher professional development goals can be achieved in an online or
blended environment. The dual challenge it focuses on — of helping teachers learn to use
technology effectively, through the medium of online and blended coursework — is also a key
challenge of our time. Here I reflect on what general lessons and open issues emerge from
thinking about this program as an example of where we should head in the future.
Transforming, Not Only Translating

Studies of successful online and blended learning highlight that when it works, it is not
simply a matter of putting existing courses online (Bakia, Means & Murphy, 2004). Here, the
dramatic shift is from a set of courses to a knowledge building community. Clearly, essential
content from the courses was important to the firm foundations of the knowledge-building
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community. A knowledge-building community, however, implies a long-term structure of
engagements, activities and supports that is much different from a typical course. For example,
the engagements may start much more from teachers' own problems of practice. The activities
may involve elements closer to that of lesson study (Hurd & Lewis, 2011) than to case studies in
conventional courses. The supports involve more peer reflection and coaching, and less feedback
from an authority. The concept of a knowledge-building community is also aspirational and
would go beyond the results reported here. This report emphasized progress on individualized
problems of practice, but a yet-richer knowledge-building community would also define
community-level challenges and community-level knowledge about them.

From Courses to Competencies

The shift in this case also evokes a broader shift latent in professional learning more widely,
a shift from counting course credit hours to recognizing new competencies (Nodine, 2016).
Clearly, courses provided initial structure to the online experience. And yet, it is not clear that
giving course credit is the most appropriate way to give teachers' recognition — course credit is
normally tied to how many hours a teacher spent in activity and completion of assignments, but
course credit much less frequently recognizes what a teacher now can actually do in a classroom.
The focus here is nicely balanced, with clear opportunities to both shape teacher's experience
based on course content but also to focus on and recognize classroom practice changes — not just
seat time and assignment completion.

An emerging framework that would recognize this shift is the framework of educator micro-
credentials (Berry, Airhart & Byrd, 2016). In this framework, complex shifts in teaching practice
are broken down into smaller component competencies, and teachers have an opportunity to be
recognized as they demonstrate the competencies. Importantly, there is no requirement to spend
a fixed number of hours learning the competency, or to follow a set path in doing so. It seems in
this example, and in many to follow in the future, online and blended learning will offer teachers
lots of choices in how they learn and develop — and teachers clearly are not only showing a
commitment in time and assignment completion, they are also reporting what they really do
differently in their classrooms. This challenges us to think harder about how we will recognize
and reward teachers for their learning, and the micro-credential movement gives one clear
alternative (still much in development) to think with.

Coherent and Cumulative Frameworks, Leveraging Personal Experiences

A positive feature of online and blended learning is that the asynchronous and non-linear
nature can make learning more relevant and timely given immediate challenges. It is clear these
features can help teachers too, but if not balanced might lead to fragmentary knowledge. For
example, the specific cases give a good sense of how this environment allowed teachers to
effectively pursue personal goals. At the same time, this case also makes clear the value of a
framework that helps organizing teacher learning to be coherent and cumulative — not just a
reversion to the feels good, low calorie "take away" that old fashioned workshops have been
critiqued for. In this case, the framework is TPACK, and the case shows how TPACK can
organize the kinds of advances in individual teachers' practice into a more coherent whole. For
example, TPACK can help us to see when teachers are making advances on many fronts — in
their content knowledge, their technology knowledge, and pedagogical knowledge, and also in
the relationships among these. Clearly, we need teachers who are learning on all these fronts.

And yet, TPACK is far from the only high-quality framework available. What TPACK
appears best at — at least in this paper, is organizing qualitative observations of what teachers
learned into categories. It is less obvious that TPACK is powerful in giving teacher's a sense of

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Plenary Papers 59

coherence and direction in their journeys. For example, if the journey is primarily towards
student-centered learning, one might like a broad theoretical frame to organize the why, how,
and what of that transformation. What might be the role of a framework like the one from How
People Learn (National Research Council, 2000), which describes the best learning
environments as learner-centered (one of the characteristics here), but also knowledge-centered,
assessment-centered, and community-centered? There are also recommendations like the TRU
framework (Schoenfeld and the Teaching for Robust Understanding Project, 2016), which is
more specific to mathematics, and focuses on content, cognitive demand, equitable participation,
agency, and formative assessment — and a framework like this might give coherence and
direction to what teachers are learning overall. Overall, TPACK is clearly a valuable guiding
framework, but for the field as a whole, it is not clear if focusing on the categorical differences
among types of knowledge gives enough of a normative of what great math teaching with
technology looks like to direct and make coherent teachers' long-term growth.
Further Challenges of Digital Professional Development Futures

One huge advantage that is apparent in this case is that the presenting problem is that
teachers do not have enough prior experience as digital learners. And thus, it seems highly
appropriate that professional development position the teachers themselves as digital learners.
For example, as the case shows, teachers can more directly experience learning with the types of
virtual manipulatives, online spreadsheets, and algebraic tools that their students can use. This is
valuable because as mathematics is represented in digital form, how conceptual understanding
arises shifts — new paths to learning emerge. For example, in the case of Dynamic Geometry,
construction becomes more powerful in digital form than with compass and straight edge and a
fuller counterpoint to proof in the learning experience (De Villiers, 2004). Social learning is also
transformed through digital possibilities, such as the possibility to contribute to share
mathematical constructions and experiences (Stroup et al., 2002). Teachers need to experience
this first hand and be supported to reflect on their experience as learners and what implications
this can have for their teaching, in a process of Instrumental Genesis (Drijvers et al., 2010).

Finally, challenges of access and equity arise constant in a digital world, and careful work is
needed to understand who participates and how the online experience can produce beneficial or
harmful experiences. We cannot pretend naively that online experiences will be safe and positive
for all. There are also likely major challenges of data sharing as teachers share their classroom
experience not just in a closed course classroom, but also now in an online environment where
there is no limit to where the content they share may end up. There are also the positive and
potentially negative implications of teachers' online activities producing data. On the positive
side, we can potentially track and learn much more about the trajectories of teacher professional
growth by studying the trajectories of their online activities (through the data those activities
leave behind). Rather than a single university course progression, we can learn in detail about the
multiple varied paths that teachers take towards professional knowledge; the different resources
they use; the nature and range of social interactions that support them. But on the challenging
side, there is always the possibility of such data being exploited in inappropriate ways, and the
need to develop guards against this.

Conclusion
As more and more technologies become available as mathematics learning tools, teacher
educators will be challenged to identify professional development avenues for supporting
teachers in transforming their skills for teaching with the technologies. The online TPACK
instructional program provides only one example of an online professional development program
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focused as a knowledge-building community to engage teachers in experiences that influence
how their TPACK is transformed as they think about and learn from their experiences while
learning as students and as they are implementing their accumulated knowledge in classroom
practices. The combination of online learning with practical experiences provides a context
within which these experiences were provided. The impact supports them in recognizing and
valuing shared knowledge for expanding and enhancing their individual knowledge about
learning with technologies. A significant teacher knowledge shift from their personal experiences
found a change in their beliefs about their primary instruction to actively engaging students for
learning with technologies — toward more cooperative and collaborative inquiry activities where
students engage in discourse and reflection. The impact of the collective transformative learning
experiences provides an important direction for in-service teacher professional development in
the twenty-first century.
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PERSPECTIVES ON THE NATURE OF MATHEMATICS

Anderson Norton
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As mathematics educators, we teach and research a particular form of knowledge. However, in
reacting to Platonic views of mathematics, we often overlook its unique characteristics. This
paper presents a Kantian and Piagetian perspective that defines mathematics as a product of
psychology. This perspective, based in human activity, unites mathematical objects, such as
shape and number, while explaining what makes mathematics unique. In so doing, it not only
privileges mathematics as a powerful form of knowledge but also empowers students to own its
objects as their own constructions. Examples and interdisciplinary research findings (e.g.,
neuroscience) are provided to elucidate and support the perspective.

Keywords: embodied cognition, mathematical epistemology, neuroscience, radical
constructivism, reflective abstraction

Mathematics has been described as both a science and a language. Most sources define it as a
collection of abstract sciences, but its objects of study are so varied that, according to Wikipedia,
“mathematics has no generally accepted definition” (“Definitions of mathematics,” n.d.)
Consider the following attempts:

e “the abstract science of number, quantity, and space” (“Mathematics,” n.d.)

e “the science of numbers and their operations, interrelations, combinations,
generalizations, and abstractions and of space configurations and their structure,
measurement, transformations, and generalizations. Algebra, arithmetic, calculus,
geometry, and trigonometry are branches of mathematics” (“Mathematics,” n.d.)

e “agroup of related sciences, including algebra, geometry, and calculus, concerned with
the study of number, quantity, shape, and space and their inter-relationships by using a
specialized notation” (“Mathematics,” n.d.)

What do number, quantity, space, and the various branches of mathematics have in common?

Mathematics is a unique body of knowledge owing to its apparent infallibility. Across
millennia, continents, and cultures, mathematics has produced stubborn facts, so much so that we
confidently assume that any alien life form, if intelligent enough, would recognize the prime
numbers (Sagan, 1975). Students often appreciate the way that mathematics builds on itself, such
as the way real numbers build on rational numbers, which build on integers. Scientists marvel at
the “unreasonable effectiveness of mathematics in the natural sciences” (Wigner, 1960), such as
when mathematical models predicted the existence and location of Neptune before it was
discovered (see Norton, 2015). No wonder Platonism still holds sway in society and scientific
communities alike.

As a mathematics education community, we often confront Platonist ideals, which position
mathematics as something that lies beyond human experience. We understand the cultural
influences and psychological roots of mathematical development and mathematics itself. We
challenge mathematical myths but rarely acknowledge their persistent epistemological basis. For
example, we cite Kline’s (1982) “Loss of Certainty” to break down perceptions of mathematics
as a collection of immutable truths because such perceptions disinvite students to participate in
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creating mathematics (e.g., Chazan, 1990). However, we overlook the apparent certainty of
mathematics as a feature that garners students’ interests to begin.

Popular characterizations of mathematics do have a valid basis. There is a sense in which
mathematics is infallible and builds upon itself, and mathematics holds a privileged position of
predictive power among the sciences. However, these characterizations require psychological
explanation rather than a Platonic dodge. Moreover, we need a definition that presents
mathematics as a unified field of study rather than a collection of abstract sciences. What unifies
mathematics? What are its objects of study? What is the basis for its reliability, utility, and
ubiquity?

This paper presents a Kantian/Piagetian response —one grounded in cognitive psychology
and buttressed by recent findings from neuroscience. Kline (1982) summarized the Kantian
position as follows: “mathematics is not something independent of and applied to phenomena
taking place in an external world but rather an element in our way of conceiving the phenomena”
(p- 341). Piaget (1942), with Inhelder (1967), built upon this position by specifying children’s
development of mathematical structures used to organize the world, such as space and number.
These structures depend on operations that, at once, demonstrate the unity and power of
mathematics.

Mathematical Objects

Mathematical objects arise from our own activity within the worlds we experience. This is a
view espoused by social constructivists, radical constructivists, and embodied cognitionists alike
(Nunez, Edwards, & Matos, 1999; Vygotsky, 1986). The distinguishing feature of the Piagetian
perspective concerns the role of abstraction, particularly reflective abstraction, in constructing
those objects. Reflective abstraction is a psychological process that is notoriously difficult to
grasp. As Chomsky lamented during a debate with Piaget, “my uneasiness with reflective
abstraction is ... that I do not know what the phrase means, to what processes it refers, or what
are its principles” (Piattelli-Palmarini, 1980, p. 323). Here, we will attempt to specify the process
of reflective abstractions and its principles, as well as its role in constructing mathematical
objects.

We find Piaget’s plainest description of reflective abstraction in Genetic Epistemology
(1970). There, he describes the sensorimotor basis for logic and mathematics: “the roots of
logical thought are not to be found in language alone, even though language coordinations are
important, but are to be found more generally in the coordination of actions, which are the basis
of reflective abstraction” (p. 19). He goes on to describe how actions become coordinated with
one another, through reflective abstraction; but reflective abstraction does not apply to any and
all actions—only those that are reversible.

Reversibility is another distinguishing feature of mathematics. Addition-subtraction, greater
than-less than, integration-differentiation all form inverse pairs. However, Piaget (1970) refers
primarily to reversibility of the mental actions that constitute these formalized operations, rather
than the formalized operations themselves. For example, a student might know the sum of 10 and
5 but not know the sum of 9 and 6, even if she also knows that 9 is 1 less than 10 and 6 is 1 more
than 6. In other words, she has not yet coordinated the actions of iterating (repeatedly
integrating) units of 1 and disembedding them (separating units of 1 within the whole). Such a
coordination relies upon organizing the actions of iterating and disembedding within a structure
for composing and reversing them (compared to 5, 6 has an extra iterated unit of 1, which can be
disembedded and composed with 9 to make 10). As educators, we might think about these as
strategies, but through reflective abstraction, strategically coordinated actions become structures
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for assimilating mathematical situations so that the two sums become the same mathematical
object, 15. Of course, numbers do not exist in isolation, so the coordination of mental actions like
iterating and disembedding reorganize the child’s entire number sequence, including 5, 6,9, 10,
and 15 (see Steffe, 1992).

Figure 1 illustrates the process of reflective abstraction. Several mathematics educators have
recognized this process, or similar processes, as essential for mathematical development: Sfard
(1992) referred to it as reification; Dubinski (2002) as interiorization; and Tall as encapsulation
(Tall, Thomas, Davis, Gray, & Simpson, 2000). They all describe a process by which existing
mental actions become coordinated to constitute a new mathematical object.

Action A

Action B

Figure 1. Reflective abstractions and the construction of mathematical objects.

The table on the right side of Figure 1 represents the organization of actions within a
mathematical group. This is a researcher’s model for describing how the students’ mental actions
become coordinated with one another as composible and reversible operations; it does not imply
that students are aware of a group structure (Piaget, 1970). Figure 1 illustrates the simplest
example of coordinating mental actions, wherein two actions (A and B) are coordinated as
inverses of one another and where i represents the identity element of the group (note that Piaget
also referred to group-like structures that do not satisfy all conditions of a mathematical group
but nonetheless model the coordination of reversible mental actions). The two arrows in Figure 1
represent the two aspects of objects noted by Piaget and Garcia (1986): “First of all, it is ‘what
can be done with them’ either physically or mentally... (2) The meaning of object is also ‘what it
is made of,” or how it is composed. Here again, objects are subordinate to actions” (pp. 65-66).

The coordination of mental actions within group-like structures explains many of the unique
features of mathematics. In particular, the reversibility of mental actions within the structure
explains the reliability of mathematics. In the sciences, reliability is repeatability. The natural
sciences never attain perfect repeatability because the initial conditions of a situation cannot be
precisely reproduced. However, in mathematics, reversing one action with another action (e.g., A
and B compose to form i, in Figure 1) returns one to the same exact starting point every time.

Coordinations of action also explain the ubiquity of mathematics because they become
structures for organizing experience. For example, when I see seven cars in a parking lot, nothing
in the parking lot imposes 7 upon me. Instead, I assimilate my perceptual experience by
coordinating mental actions of unitizing (separating out each perceived car and treating it as a
unit identical to the others) and iterating resulting units in one-to-one correspondence with my
number sequence.

Furthermore, coordinations of action explain how mathematics builds upon itself, because
the process of reflective abstraction does not end with the construction of the first structures.
Rather, those structures, as objects, become material for further operating. For example, I can
consider any multiplicity of 7 by acting upon one copy of my number sequence with another
copy of it (Steffe, 1992). Such structures explain the subjectivity of mathematical experience
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when, for example, I see three rows of seven cars and assimilate them as three 7s, whereas a
young child might see a spatial pattern but not the numerical structure of 3 times 7.

Evidence from Neuroscience

As noted in the introduction, definitions of mathematics generally refer to the study of a
collection of objects, usually including number and space. As mathematics educators, the
construction of number may seem more familiar, but Piaget and Inhelder (1967) used space
(along with number; Piaget, 1942) as a primary example of a mathematical object. They
demonstrated that space does not exist as an innate construct, as Kant had assumed, but that
children construct it through the coordination of displacements within a group for composing and
reversing them. In this section, we will see tight connections between space and number as
psychological and neurological phenomena that depend on coordinated actions, beginning with
sensorimotor activity.

One early connection concerns object permanence and the onset of self-locomotion
(crawling). Developmental psychologists take object permanence as a critical marker in early
child development, whereby children learn that objects persist in space even when removed from
the child’s perceptual field. Bell and Fox (1996, 1997) conducted studies on 76 eight-month-old
infants, separated into four groups: pre-crawlers, crawlers with 1-4 weeks of experience, 5-8
weeks of experience, and 9 or more weeks of experience. Greater experience in crawling was
associated with the development of object permanence.

Piaget and Inhelder (1967) had tied object permanence to children’s construction of
sensorimotor space, wherein objects would have residence. More recently, psychologists have
associated object permanence with “spatial working memory”, wherein children coordinate
spatial transformations, such as displacements and rotations (e.g., Bell, 2001). Together with the
findings from Bell and Fox (1996, 1997), the collective literature suggests that crawling provides
sensorimotor experience that is critical to the construction of space as a coordination of
displacements. After all, crawling enables children to transform their perceptual fields through
voluntary movement, which (from the child’s perspective) amounts to a displacement of space
itself, similar to the transformations of space described by a vector field (or the group of vectors,
under addition).

We find similar connections between embodied/sensorimotor experience and the child’s
construction of number. In particular, manual and numerical digits go hand-in-hand, in a manner
that transcends etymology (see Norton, Ulrich, Bell, & Cate, 2018). For example, as
mathematics educators, we know that children generally learn to count with the aid of their
fingers as manipulatives, but recent neuroimaging studies indicate that the connection persists
into adulthood. Specifically, neural substrates for finger recognition and finger use (e.g. pointing)
overlap with those for counting and arithmetic, even among adults (Soylu, Lester, & Newman,
2018)—so much so that researchers now hypothesize that areas of the brain that evolved for
manual dexterity (e.g., tool use) have been re-purposed to support mathematical development
(Penner-Wilger & Anderson, 2013). In considering these neural substrates, the intraparietal
sulcus (IPS) stands out.

Figure 2 presents a diagram of the neo-cortex—the outer layer of the human brain—and a
few of its main regions. The frontal lobe lies above the eyes and plays the leading role in
executive function (working memory, inhibitory control, and decision making). The parietal lobe
rests toward the back of the brain and is generally associated with spatial reasoning, including
hand-eye coordination. Between those two lobes sits the sensorimotor cortex, which initiates
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voluntary movement. The IPS aligns with the sensorimotor area associated with hand movement
and runs between the upper and lower halves of the parietal lobe. This positioning would suggest
that the IPS plays an important role in the manipulation of objects in space, which it does.

Parietal
Frontal

Figure 2. Neo-cortex.

In addition to its role in tool use and other coordinated actions involving the hand (e.g.,
Mruczek, von Loga, & Kastner, 2013), the IPS is implicated in virtually every neuroimaging
study of numerical and spatial reasoning (e.g., Dehaene, 1997; Kucian et al., 2007). In and
around the IPS we find the common neural substrate for the two primary objects of the
mathematical sciences: space and number. There we also find their common link to coordinated
sensorimotor activity, especially involving the hands.

The IPS exists as part of a network that includes the frontal lobe and the angular gyrus—an
area in the lower part of the parietal lobe associated with memorized tables of information (e.g.,
multiplication tables). Studies of mathematical development generally show a shift, from frontal
to parietal areas of the network, as children learn: “Solving a new multiplication problem
involves the IPS bilaterally and also the frontal lobes, while dealing with the same problem a
second time shifts the focus of activity to the angular gyrus in the left parietal lobe” (Butterworth
& Walsh, 2011, pp. 19-20). Other studies (e.g., Ansari, 2008), show a similar frontal-parietal
shift associated with age.

As we have mentioned, executive function is a primary role of the frontal lobe. It directs
limited working memory resources (including spatial working memory) to solve novel problems.
As children learn—either rotely through memorizing multiplication tables or through the
development of conceptual structures—working memory is offloaded so that the same task
becomes less demanding. We posit that areas in and around the IPS serve as the neural substrate
for spatial-numerical structures. This view, too, is supported by neuroimaging studies (Hubbard,
Piazza, Pinel, & Dehaene, 2005) and implies that the IPS is heavily involved in assimilating
mathematical experiences. Resources from the frontal lobe are recruited when the assimilated
experience becomes problematic. As such, frontal-parietal coherence (areas within the two lobes
working in tandem, as indicated by brain wave frequencies) would be the neural correlate of
mathematical development.

Returning to Bell and Fox’s (1996) study of crawling, infants with 1-4 weeks of crawling
experience exhibited greater frontal-parietal coherence than pre-crawling infants and infants with
more crawling experience. Thus, self-locomotion appears to provide a sensorimotor foundation
for the development of object permanence and the construction of space—the play space for
subsequent geometric construction. In the next section, we consider the case of Euclidean
geometry.
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Euclidean Objects

Euclid was the first mathematician to formalize mathematics on an axiomatic basis. The
purpose of the Elements, Book I, was to prove the Pythagorean (sic) theorem from common
notions and postulates (axioms). This is evidenced by the appearance of the Pythagorean theorem
and its converse as the final two propositions in the book (Propositions 47 & 48). But what was
the basis for these axioms and formal arguments? Evidence appears in the axioms and arguments
themselves. The first three axioms (Postulates 1-3) are Plato’s rules for straight edge and
compass constructions, indicating their sensorimotor basis within Greek culture. The chain of
propositions leading from those axioms to the Pythagorean theorem indicates the kinds of mental
actions behind Euclid’s intuitions. Here, we demonstrate how coordinations of spatial
transformations, like sweeping, shearing, and rotating, form the psychological basis for
geometric objects.

Figure 3 illustrates the diagram Euclid used to support his arguments for the Pythagorean
theorem. Essentially, he argued that the areas of the yellow and blue squares were equivalent to
the areas of the yellow and blue rectangles, respectively (Proposition 47). The argument
depended on previous propositions demonstrating that shearing triangles and parallelograms does
not affect their areas (Propositions 35-38). In Figure 3, triangle DAC is the result of shearing
triangle DAG (half of the blue rectangle) along segment FC. Likewise, triangle ABE is the result
of shearing triangle ACE (half of the blue square) along segment HB. Because these triangles are
congruent (Euclid relied on Proposition 4 —a side-angle-side argument, which he demonstrated
through Common Notion 4, displacing those elements from one triangle onto another and
showing that the remaining sides must also coincide), the areas of the blue rectangle and blue
square (each having twice the area) are equivalent. The same argument works for the yellow
regions, thus proving the Pythagorean theorem.

D

Figure 3. Euclid’s proof of the Pythagorean theorem.

In sum, Euclid proved the Pythagorean theorem by transforming mathematical objects (e.g.,
squares) through mental actions of bisecting, displacing, and shearing. The mathematical objects
being transformed are themselves the result of mental actions, such as sweeping (sweeping a
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point to make a line segment and sweeping a line segment to make a square, as in Proposition
46). Constructing and transforming mathematical objects in this way fits Piaget’s descriptions of
mathematical objects as coordinations of mental actions, as indicated by the two arrows in Figure
1: (1) mathematical objects arise through the coordination of actions and (2) can be subsequently
transformed through further action. Thus, mathematical objects are characterized by both the
actions that constitute them and the manner in which actions transform them, particularly aspects
of the objects that remain invariant under transformation (e.g., the area of a parallelogram as
invariant under the transformation of shearing).

Consider the simpler example of angle sums within a triangle (Proposition 32). Like number,
children have to construct triangles: “children are able to recognize and especially to represent,
only those shapes which they can actually reconstruct through their own actions” (Piaget &
Inhelder, 1967, p. 43). Understanding triangles as mathematical objects requires children to
move beyond the figurative material that represents or symbolizes them and to focus on the
underlying mental actions that constitute them. The perfect triangle does not exist as a Platonic
ideal, but rather as a coordination of actions, including sweeping and rotating.

To demonstrate that the angles in a triangle sum to a straight angle (pi, or 180 degrees),
consider the construction of the triangle itself. It begins with a segment (side) swept from one
vertex to another. Each pair of adjacent sides forms an angle, which measures the degree of
openness, or rotation, between them (Moore, 2013). Figure 4 illustrates the three rotations (A, B,
and C) that occur between pairs of adjacent sides. Each rotation is a transformation of one side
onto the adjacent side, preserving the property of being a straight segment (a sweep from one
vertex to another) but transforming its length and direction. After three such transformations, the
original segment has been transformed back onto itself but in the reverse direction. In other
words, the combined effect of composing the three angle rotations is a rotation of 180 degrees.

=

Figure 4. Sum of angles in a triangle.

What we see in the Elements is the historical trace of Euclidean geometry from sensorimotor
activity all the way up to the first axiomatic system. Thus, we can trace formal mathematical
objects, such as right triangles with all of their properties, all the way back to their psychological
roots. Like numbers, shapes and their properties (e.g., the Pythagorean theorem) depend upon the
coordination of mental actions. For the Greeks, those mental actions were derived from the
sensorimotor activity of playing in the sand with compass and straight-edge. Reflective
abstraction provides the mechanism for moving from each stage to the next: from sensorimotor
activity to mental actions, to the construction and transformation of triangles, to the formal
demonstration of the Pythagorean theorem.
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Summary

From the Kantian/Piagetian perspective described here, mathematics can be defined as the
study of reversible mental actions and the structures that organize them (Piaget, 1970). This
unifying definition applies to shape as well as number, both of which arise from the coordination
of actions that have a sensorimotor basis (Piaget, 1942; Piaget & Inhelder, 1967). The definition
also explains unique features of mathematics while empowering students to construct, transform,
and study mathematical objects on the basis of their own activity. The infallibility of students’
constructions owes to the reversibility of the mental actions that undergird them (Piaget, 1970).
For example, if a child has defined a triangle on the basis of its three planar angles (rotations),
composing those rotations with one another inevitably leads to the conclusion that they form a
straight angle—a single 180-degree rotation that can be partitioned into the three angles that
constitute it. The trick is to find a way to compose all three rotations without appealing to the
drawn figure itself but rather to the organization it represents. This process of organizing
rotations within a structure for composing and reversing them is the process of reflective
abstraction.

When we focus on students’ available mental actions and their engagement in sensorimotor
activity, we are valuing students’ mathematics as they construct new mathematical objects —
objects that empower students to model and structure the worlds they experience. Thus, the
appeal to students’ mental actions is an appeal for equity in mathematics education. Building
from the work of Noddings (1999), Hackenberg (2010) has described the appeal in terms of
mathematical caring relations, wherein the teacher builds models of the students’ available
mental actions and engages the student with tasks likely to foster new coordinations.

Although Kant and Piaget set the stage for investigating students’ mathematical
constructions, researchers have just begun the work of describing those constructions as
coordinated mental actions. The task before us is compounded when we consider the entire body
of formal mathematics, ultimately entailing an account of the sensorimotor basis of the mental
actions that undergird it. For example, can we account for the development of geometry from the
onset of crawling to the Pythagorean theorem? This work too is mathematical because it requires
us to explicitly identify the structures that organize reversible mental actions. Only then will we
fully understand mathematics as a human construction rather than a Platonic ideal.
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PERSPECTIVES ON THE NATURE OF MATHEMATICS AND RESEARCH
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When people address early mathematics education, commonly they write or reference
policies, standards, “scope and sequences” and curriculum, or documents on instructional
strategies. These are important; however, we believe that the core consideration should be the
nature of mathematics and the development of mathematics in children.

An 80-year-old incident illustrates what we mean. A mother attending parents’ night asked
Fawcett (1938), “How is Willie doing in mathematics?” Fawcett replied: “Madam, you ask the
wrong question. You should ask, ‘How is mathematics doing in Willie?”

This is what we mean by the “nature of mathematics and the development of mathematics in
children”: The mathematics that does well in Willie and all other children. We develop this
position by describing learning trajectories and our theoretical framework for them, Hierarchic
Interactionalism.

Learning Trajectories: Construct and Theory

Learning trajectories are a device whose purpose is to support the research-grounded
development of a curriculum or other unit of instruction, as well as to conduct rigorous research
in learning and teaching. The term “curriculum” stems from the Latin word for race course,
referring to the course of experiences through which children grow. Thus, the notion of a path, or
trajectory, has always been central to curriculum development and study. Simon stated that a
“hypothetical learning trajectory” included “the learning goal, the learning activities, and the
thinking and learning in which the students might engage” (Simon, 1995, p. 133). Building on
Simon’s definition, emphasizing a cognitive science perspective and a base of empirical
research, “we conceptualize learning trajectories as descriptions of children’s thinking and
learning in a specific mathematical domain, and a related, conjectured route through a set of
instructional tasks designed to engender those mental processes or actions hypothesized to move
children through a developmental progression of levels of thinking, created with the intent of
supporting children’s achievement of specific goals in that mathematical domain” (Clements &
Sarama, 2004, p. 83).

The name “learning trajectory” reflects its roots in a constructivist perspective. That is,
although the name emphasizes learning over teaching, both these definitions clearly involve
teaching and instructional tasks. Some appropriations of the learning trajectory construct
emphasize only the “developmental progressions.” Although studying either psychological
developmental progressions or instructional sequences separately can be valid research goals,
and studies of each can and should inform mathematics education, we believe the power and
uniqueness of the learning trajectories construct stems from the inextricable interconnection
between these all three components, goal, developmental progression, and correlated
instructional tasks.

Our learning trajectories base goals on both the expertise of mathematicians and research on
students’ thinking about and learning of mathematics (Clements, Sarama, & DiBiase, 2004;
Fuson, 2004; National Governor’s Association Center for Best Practices & Council of Chief
State School Officers, 2010; Sarama & Clements, 2009). This results in goals that are organized
into the “big” or “focal” ideas of mathematics: overarching clusters and concepts and skills that
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are mathematically central and coherent, consistent with students’ (often intuitive) thinking, and
generative of future learning. Our goals also include productive dispositions, including,
curiosity, imagination, inventiveness, risk-taking, creativity, and persistence (National Research
Council, 2001). With that in mind, we turn to the question of 4ow children think about and learn
mathematics.

Research is reviewed to determine if there is a natural developmental progression (at least for
a given age range of students in a particular culture) identified in theoretically- and empirically-
grounded models of children’s thinking, learning, and development (Carpenter & Moser, 1984;
Griffin & Case, 1997). That is, researchers build a cognitive model of students’ learning that is
sufficiently explicit to describe the processes involved in the construction of the mathematical
goal across several qualitatively distinct structural levels of increasing sophistication,
complexity, abstraction, power, and generality.

The issue of what is meant by a natural developmental progression is sure to arise. We
believe the research supports a synthesis of aspects of previous theoretical frameworks that we
call Hierarchic Interactionalism (for a full explication, see Sarama & Clements, 2009). The term
indicates the influence and interaction of global and local (domain specific) cognitive levels and
the interactions of innate competencies, internal resources, and experience (e.g., cultural tools
and teaching). Mathematical ideas are represented intuitively, then with language, then
metacognitively, with the last indicating that the child possesses an understanding of the topic
and can access and operate on those understandings. The tenets of Hierarchic Interactionalism
therefore lay the foundation for the creation of both the developmental progression and
instructional tasks of research-based learning trajectories.

1. Developmental progression. Most content knowledge is acquired along developmental
progressions of levels of thinking. These progressions play a special role in children’s
cognition and learning because they are particularly consistent with children’s intuitive
knowledge and patterns of thinking and learning at various levels of development,

2. Domain specific progression. These developmental progressions often are most
propitiously characterized within a specific mathematical domain or topic. Children's
knowledge, that is, the objects and actions they have developed in that domain, are the
main determinant of the thinking within each progression, although hierarchic
interactions occur at multiple levels within and between topics, as well as with general
cognitive processes (e.g., executive, or metacognitive processes, potentialities for general
reasoning and learning-to-learn skills, and some other domain general developmental
processes). See Figure 1 for an illustration.

3. Hierarchic development. Development is less about the emergence of entirely new
processes and products and more an interactive interplay among specific existing
components of knowledge and processes. Also, each level builds hierarchically on the
concepts and processes of the previous levels. The learning process is more often
incremental and gradually integrative than intermittent and tumultuous. A critical mass of
ideas from each level must be constructed before thinking characteristic of the subsequent
level becomes ascendant in the child’s thinking and behavior. Successful application
leads to the increasing use of a particular level. However, under conditions of increased
task complexity, stress, or failure this probability level decreases and an earlier level
serves as a fallback position.

4. Co-mutual development of concepts and skills. Concepts constrain procedures, and
concepts and skills develop in constant interaction.
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5. [Initial bootstraps. Children have important, but often inchoate, premathematical and
general cognitive competencies and predispositions at birth or soon thereafter that
support and constrain, but do not absolutely direct, subsequent development of
mathematics knowledge.

6. Different developmental courses. Different developmental courses are possible within
those constraints, depending on individual, environmental, and social confluences.

7. Progressive hierarchization. Within and across developmental progressions, children
gradually make connections between various mathematically-relevant concepts and
procedures, weaving ever more robust understandings that are hierarchical in that they
employ generalizations while maintaining differentiations.

8. Consistency of developmental progressions and instruction. Instruction based on learning
consistent with natural developmental progressions is more effective, efficient, and
generative for the child than learning that does not follow these paths.

9. Learning trajectories. A particularly fruitful instructional approach is based on
hypothetical learning trajectories. Curriculum developers design instructional tasks that
include external objects and actions that mirror the hypothesized mathematical activity of
children as closely as possible. These tasks are sequenced, with each corresponding to a
level of the developmental progressions, to complete the hypothesized learning trajectory.
Specific learning trajectories are the main bridge that connects the "grand theory" of
hierarchic interactionalism to particular theories and educational practice.

10. Instantiation of hypothetical learning trajectories. Hypothetical learning trajectories must
be interpreted by teachers and are only realized through the social interaction of teachers
and children around instructional tasks.

For example, consider one goal regarded as important in all standards documents: young
children should learn to be competent in whole number, including meaningful verbal and object
counting and the application of counting to solve a variety of arithmetic problem types. The
developmental progressions for each of these learning trajectories are sampled in the left column
of Figure 1. The second column provides an example of children’s behavior and thinking for
each level. The third column presents an example of an instructional task designed to catalyze
that level of thinking.

In summary, learning trajectories describe the goals of learning, the developmental
progression through which children pass, and the learning activities in which students might
engage. The source of the developmental progressions— the thinking and learning processes of
children at various levels—are extensive research reviews and empirical work that cannot be
presented here due to space constraints. Also beyond the scope of this chapter are the complex,
cognitive actions-on-objects that underlie the LTs (see Sarama & Clements, 2009). Here we will
provide one illustration of both cognitive actions-on-objects and how different trajectories grow
not in isolation, but interactively.

Consider learning a critical competence—counting on, used especially at the Counting
Strategies level in Figure 1b. Children need to develop competencies from three trajectories:
counting (Fig. 1a), subitizing (not shown, but see Clements & Sarama, 2009; Sarama &
Clements, 2009), and the addition and subtraction trajectory (Fig. 1b) to learn to count on
meaningfully. From the counting trajectory, they learn to count forward from any number. Then
they learn to understand explicitly and apply the idea that each number in the counting sequence
includes the number before, hierarchically. That is, 5 includes 4, which includes 3, and so forth.
From the subitizing trajectory they quickly learn to recognize the number of—not just visual

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Plenary Papers

75

sets, but also rhythmic patterns. From the addition and subtraction trajectory, children learn to
interpret situations mathematically, such as interpreting a real-world problem as a “part-part-
whole” situation. They also learn to use counting to determine what is missing. The creative
combination of these developments allows them to solve meaningfully problems such as, “You
have three green candies and six orange candies. How many candies do you have in all?” by
counting on. They understand that these numbers are two parts and that they need to find the
whole. They also understand that the order of numbers does not matter in addition. They know,
in practice, that the sum is the number that results by, starting at the first number and counting on
a number of iterations, equal to the second number. They can use counting to solve this, starting

6 (because 6 includes 5...). They know how many more to count because they use the subitized
“rhythm of three” “Du de Du” (“Doo — Day — D00”) “seven (du...), eight (day...), nine (du)—

nine!”

Consider Justin, who participated in the successful scale-up of the learning-trajectories-based
Building Blocks curriculum (Clements, Sarama, Spitler, Lange, & Wolfe, 2011). At pretest, he
operated at the Reciter level of counting, as he verbally counted correctly but when counting toy
bananas, broke one-to-one correspondence as he counted a space between the bananas. He did
not solve any arithmetic problems. After 7 months moving through the learning trajectories for
counting, subitizing, and the counting-based addition and subtraction trajectories (among others),
Jason showed remarkable growth. He counted up to 30 randomly-arranged objects accurately
and could verbally count up or down from any number in that range. In arithmetic, he solved a
variety of problems. For “...you have 3 candies and I gave you 2 more; how many do you
have?” Justin put out 3 fingers, then 2 more, and then said, “Five. I was just counting but no
words” (i.e., he didn’t count out loud). Later, , shown 6 blocks, which were then covered with a
cloth, and 4 secretly removed, leaving 2, he said “Two. There were six.” “So, how many am I
hiding?”” Justin quickly counted the two and then counted, pointing to the table and said, “Four.”
These solutions suggest he was now operating at the Counting Strategies level of arithmetic.

a. Counting

Developmental Progression

Example Behavior

Instructional Tasks

Reciter Verbally counts with
separate words, not necessarily
in the correct order.

Count for me.

“one, two, three, four,

Provide repeated, frequent
experience with the counting

(one word for each object), at
least for small groups of objects
placed in a line.

But answers the
question, “How
many?”’ by re-counting
the objects or naming
any number word.

six, seven.” sequence in varied contexts.
Corresponder Keeps one-to- Counts: Kitchen Counter Students click on
one correspondence between e K % objects one at a time while the
counting words and objects “1, 2, 3, 4 numbers from one to ten are counted

aloud.
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Counter (Small Numbers)
Accurately counts objects in a
line to 5 and answers the “how
many” question with the last
number counted.

Can you count these?
Pk A Gk GlIA ¢

“1, 2, 3, 4...four!”

How Many? Tell students you have
placed as many cubes (3, hidden) in
your hand as you can hold. Ask
them to count with you to see how
many. Take out one at a time as you
say the number word (so, when they
say “two” they see two). Repeat the
last counting number, “three,”
gesturing in a circular motion to all
the cubes, and say “That’s how
many there are in all.”

Counter and Producer (10+)
Counts and counts out objects
accurately to 10, then beyond.

Counts a scattered
group of 19 chips,
keeping track by
moving each one as
they are counted.

Road Race Board game.

Counter from N (N+1, N-1)
Counts verbally and with
objects from numbers other
than 1 (but does not yet keep
track of the number of counts).

Asked to “count from 5
to 8,” counts:

“5,6,7,8!”
Determines numbers

just after or just before
immediately.

One more!. Have the children count
two objects. Add one and ask, “How
many now?”” Have children count on
to answer. Add another and so on,
until they have counted to ten.

b. Arithmetic

Developmental Progression

Example Behavior

Instructional Tasks

Small Number +/- Finds sums

for joining problems up to 3 + 2

by counting-all with objects.

Asked, “You have 2
balls and get 1 more.
How many in all?”
counts out 2, then
counts out 1 more,

then counts all 3: “1,
2,3,31”

Finger Word Problems Tell children to
solve simple addition problems with
their fingers.

Find Result +/- Finds sums by
direct modeling, counting-all,
with objects.

Asked, “You have 2
red balls and 3 blue
balls. How many in
all?” counts out 2 red,
then counts out 3
blue, then counts all

Places Scenes (Addition)—Part-part-
whole, whole unknown problems.

Children play with toy on a background

scene and combine groups.
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5.
Counting Strategies +/- Finds  Counting-on. “How How Many Now? Have the children
sums for joining (you had 8 much is 4 and 3 count objects as you place them in a
apples and get 3 more...) and more?” box. Ask, “How many are in the box
part-part-whole (6 girls and 5 “Fourrrrr...five, six, = now?” Add one, repeating the question,
boys...) problems with finger seven [uses rhythmic  then check the children’s responses by
patterns and/or by counting on. or finger pattern to counting all the objects. Repeat,

keep track]. Seven!”  checking occasionally.

Figure 1. Selected Levels/Descriptions_from the Learning Trajectories for Counting and
counting-based Arithmetic (these and other figures adapted from Clements & Sarama, 2014)
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This study compared area lessons from Korean textbooks and US standards-based textbooks to
understand differences and similarities among these textbooks, as well as how these textbooks
address known learning challenges in area measurement. Several well-known challenges have
been identified in previous studies, such as covering, array structure, and linking array structure
to area formula. We were interested in knowing if textbooks addressed these issues in their
treatments of area measurement, and in doing so provided students with opportunities to
overcome or become familiar with known challenges. The results show that both countries
textbooks demonstrated similar limitations, only few area and area related lessons are covered
and three important learning challenges in area measurement are not covered well, which need
to be informed to practicing teachers.

Keywords: Area, Textbooks, Learning Challenges

For the last few decades, mathematics education researchers have been interested in how
students in different countries learn mathematics. Such interests are the result of studies such as
the Trends in International Mathematics and Science Study (TIMSS) and Programme for
International Student Assessment (PISA), which indicate that students in East Asian countries
perform consistently well. One important area we can examine among various opportunities to
learn (OTL) is what textbooks offer to students for their learning, as textbooks play an important
role in lesson enactment process, teachers use textbooks and other resources to select and modify
tasks to prepare their lessons (Remillard & Heck, 2014). Among many mathematical topics, US
students’ performance in measurement is weaker than any other content area on TIMSS (Mullis,
Martin, Foy, & Hooper, 2016). While researchers conducting international comparative studies
of textbooks have examined various mathematical topics (Cady, Hodges, & Collins, 2015; Son &
Hu, 2016), area lessons have not been examined and compared often. The purpose of this study
was to examine and compare area lessons in US Common Core-aligned textbooks and Korean
textbooks, and explore how textbooks address well-known learning challenges in area
measurement.

Related Literature

Textbooks in the curriculum enactment process

Although not all contents in textbooks will automatically be transformed to mathematics
lessons directly (teachers will likely modify textbook contents), examining the treatment of
mathematical topics in textbooks can tell us how much attention is given to that specific topic. In
the curriculum enactment process, teachers select and possibly modify mathematical tasks and
activities from textbooks and other curriculum materials (Remillard & Heck, 2014). Textbook
content and how teachers enact their lessons jointly influence what students experience in their
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classrooms (Smith, Males, Dietiker, Lee, & Mosier, 2013). For example, if textbooks do not
address well-known challenges, we can interpret that as a possible reason for students’ struggle
because it is possible that those challenges are not well reflected in the teacher’s lesson plans and
decrease students’ OTL to learn and get familiar with those challenges (Smith, Males, &
Gonulates, 2016). We cannot say textbooks are the only reason for students’ struggle in learning
area measurement. However, limited coverage of topics will limit opportunities to learn for
students and is a possible explanation for their performances.
How Students Learn Area Measurement

Foundational concepts for area include covering a region without gaps or overlaps, counting
unit measures, iterating, understanding array structure and linking the number of squares to
length and width (Battista, 2004). Being able to use same — sized units repeatedly to cover a
region and iterating are fundamental skills to understand measurement in general (Smith et al.,
2016). However, studies have shown that it is challenging for students to develop a good
conceptual understanding of area. Students are not able to cover a two dimensional region with
equal-sized units. Instead, they often use unequal unit or leave gaps or overlaps (Battista, 2004;
Outhred & Mitchelmore, 2000). Without having conceptual understanding, students often use the
area formula length width without understanding why and for the wrong figures (Zacharos,
2006). However, when students learn using the conceptual approaches of partitioning and
covering (partitioning, filling a given space and seeing array structure), they are more likely to
develop a better understanding of area measurement (Huang, 2017; Na, 2012; Outhred &
Mitchelmore, 2000). Here are research questions that we attempt to answer.

e How do US and Korean textbooks distribute attention to area and area-related lessons?

e In what order do the curricula present concepts related to measuring area, and do the
sequences differ significantly between textbooks?

e How well do the curricula address well-known students’ challenges in learning area
measurement?

Methods
Data Sources

Three textbooks series - enVisionMath, Go Math, and MyMath - are Common Core-aligned
textbooks, which were not examined in recent study (Smith et al., 2016). A total of 9 US
textbooks were examined, three textbooks from grade 1 through grade 3 from each publisher.
Two recent studies examined length and area lessons in other non - Common Core American
textbooks and also several other studies examined textbooks that were developed before the
introduction of the Common Core State Standards (CCSS) (Hong & Choi, 2014, 2018; Smith et
al., 2013; Smith et al., 2016; Son & Senk, 2010). Therefore, examining these common core
aligned textbooks series may expand our understanding of how more current American textbooks
treat volume measurement. In all, 431 (enVision Math), 441 (My Math) and 550 (Go Math) items
were analyzed.

For Korea, the textbooks examined in this study, Elementary School Mathematics, were
published by the government and the only mathematics textbooks used in elementary schools in
Korea. For Korean textbooks, we examined 129 items from grades 1, 3 and 5. Table 1 describes
the number of pages and lessons examined for this study.
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Table 1: Textbooks used in the study

82

Text‘pook Publisher Publication Pages Items Lessons
Series Date
envisionMath | o con 2015 86 431 18
series
Go Math Houghton
series Mifflin 2015 133 550 15
MyMath | \/ o Graw-Hill 2014 69 441 12
series
K The Ministry
orean of Education | 2014, 2015 31 129 6
Textbooks )
in Korea

Framework for Analyzing Textbooks

When textbooks are analyzed, exposition (e.g. introductory paragraphs, text boxes with
definitions, formulas, or theorems), worked examples (problems presented together with an
explained solution) and exercise problems (mathematical items students are expected to solve)
should be examined because they can provide potentially different OTL for students.

We also searched for studies that examined measurement lessons in textbooks. Smith and his
colleagues (2013, 2016) examined length and area measurement in US textbooks. Their
framework specifically targets how textbooks address challenges in learning length and area. We
adopted and modified Smith and colleagues’ framework to analyze area measurement lessons.
Table 2 describes our framework for this study.

Table 2: Analysis framework of content and problems

Area of Focus

e Number of area and area related lessons

e Timing and topic sequence

e Procedural and conceptual knowledge

e Known challenges in learning area measurement
o Covering with equal-sized units
o Row and column array structure
o Area formula and definition

e Response type

Coding Procedures and Examples

Each exposition, worked example, and exercise problem in textbooks has its own
instructional purpose (potentially different OTL). Each exposition introduces mathematics
content including definitions, formulas, and procedures; each worked example demonstrates how
certain problems are solved; and each exercise problem gives students opportunities to engage in
problem solving. Thus, when we discussed our unit of analysis, we first considered each worked
example, exercise problem, and exposition as one unit of analysis as each item provides OTL to
teachers and students. Figure 1 shows examples of how we coded each item.
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Translation:
e This is the floor plan for Chul Soo’s home. Find out the area of each room.
Parents’ Room
Chul Soo’s Room
Brother’s Room
Figure 1. Coding examples from a Korean textbook (The Ministry of Education in Korea, 2015,
p. 139)

First, we decided there are three items (three exercise problems or three units) to be coded.
Students are asked to use the area formula to compute the area of each room. In terms of topic,
these items are coded as area formula because students just need to multiply numbers to get the
correct answers. In terms of procedural and conceptual knowledge types, these were coded as
procedural (only multiplying two numbers is required). Finally for response type, these were
coded as short response (only numbers are required). For all other textbook pages, we used the
same method to identify expositions, worked examples, and exercise problems to count the
number of units to be coded from each page.

Reliability

Each textbook included exposition, worked examples and exercise problems. After
discussing the established codes, two authors coded approximately 20% of the textbook items to
check inter-rater reliability. After comparing codes for sample items and finding an acceptable
high inter-rater reliability, the authors coded all textbook items jointly to produce a final set of
tables for analysis, resolving coding differences of individual items when they arose. To
determine reliability, we applied a generalizability theory D study (Alkharusi, 2012). This
technique produced a reliable coefficient of 0.964.

Results
Area Measurement Lessons in Textbooks

Table 3: Number and Percentage of Area and Area Related Lessons to the Total Lessons

Area and Area-
Grade Related Lessons Total
1 5 (4.5%) 110
enVision Math 2 8 (6.9%) 116
3 5(4.2%) 119
1 3 (3.0%) 101
Go Math 2 4 (3.6%) 110
3 8 (7.6%) 105
1 3(3.2%) 95
MyMath 2 2 (2.2%) 92
3 7 (6.2%) 113
1 1 (1.4%) 70
Korean Textbooks 3 1 (1.5%) 68
5 4 (5.7%) 70
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Table 3 indicated that little curricula attention was given to area and area-related topics in
these textbook series, supporting earlier findings by Smith et al. (2016). These percentages were
less than the 1% to 12% range found by Smith et al. (2016).

Time and Sequence

With regards to the sequencing of topics, Korean and US textbooks differed. The Korean
textbook series first introduced area in grade 1, with a lesson titled “Comparing Area”. This was
a short lesson that asked students to compare and make visual judgments between two objects.
These items were not found in US textbooks. After a brief introduction to area in grade 1,
Korean textbooks had one lesson about partitioning shapes into equal parts in grade 3. Lessons
on area then began in grade 5, where the textbook introduced unit squares, area of rectangles and
the area formula. In contrast, all three US textbook series included several lessons in grades 1
and 2 about partitioning regions, including rectangles and circles. Then, the area formula was
introduced in grade 3 US textbook series. In terms of timing, it appeared that Korean textbooks
introduced area first in grade 1, but ideas of partitioning, understanding and finding area of
rectangles were found earlier in US textbook series.

Procedural, Conceptual and Conventional Knowledge

The majority of items (83 to 100 % in all textbooks) in both countries’ textbooks were
procedural. This finding supports previous work examining American textbooks, where
procedural items accounted for more than 87% of items in US textbooks (Smith et al., 2016).
Such findings imply that the focus of area lessons in both American and Korean textbooks are
more about procedures than concepts. Again, this can be one way to lead both countries’ students
to a more procedural understanding of area.

Knowledge Needed in Understanding Area Measurement

Covering. Covering may be introduced with drawing, using tiles or iterating. Only limited
number of covering items were included in textbooks (less than 17 % area items in each grade).
Compared to US textbooks, Korean textbooks included covering items much later, only
introducing them in the fifth grade. Such a lack of inclusion is problematic, as previous studies
have shown that it was challenging to second graders to cover a region completely without gaps
or overlaps (Battista, Clements, Arnoff, Battista, & Caroline Van Auken, 1998; Lee, 2010). We
also noticed that when textbooks include covering items, the terms “gaps” and “overlaps” are
used only few times: less than 10 times in each American textbook series and never in the
Korean textbooks. Since students often struggle with covering a region without gaps and
overlaps (Outhred & Mitchelmore, 2000; Sarama & Clements, 2009), careful attention to
covering and explicit remarks about why gaps and overlaps are important will lead students to a
more conceptual understanding of what it means to measure area.

Array structure. Items in this group included drawing, tiling or partitioning a region into
rows or columns (the terms “rows” or “columns” needed to be included, or students needed to
have opportunities to show array structure) and then counting them or using partial array
structure. In US textbook series, partitioning a rectangle into rows and columns appeared first in
grade 2, and grade 3 but coverage of the topic was brief and limited (less than 7 % area items in
each grade). In Korean textbooks, the topic of array structures appeared in grade 5 but limited
number of items were included (about 11 % of its area-related items).

Area definition and formula. [tems were coded as area formula if they showed that
multiplying two numbers gives the area, or if they used the length width formula to compute the
area. Both countries’ textbooks used array structure to introduce the area formula. Korean
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textbook lets students derive the formula after working on tasks counting unit squares in grade 5
textbook. US textbook series also used an array structure in grade 3. As previously mentioned,
with limited opportunities to explore how array structure and the area formula are related,
students are likely to resort to more procedural approaches to area. Such a tendency was
reinforced by every textbook, as they all moved quickly to items, where students were only
required to use a procedure, multiplying length and width.
Other area topics

One of the frequent topics in both countries’ textbooks is counting unit squares in a shape
without focusing on array structure (ranging from 23% to 41% of items in grade 3 textbooks and
about 26 % in grade 5 Korean textbook). With such a heavy focus on counting squares, paired
with limited experience with array structures in previous years, it will be challenging for students
to connect array structure to the area formula. Prior studies have shown that even with drawn
lines and squares, the connection between counting unit squares and area is not apparent to
elementary students (Battista, 2004; Battista et al., 1998). Students may count unit squares
procedurally without seeing array structure or understanding the purpose of not having gaps or
overlaps. With limited opportunities to experience covering and array structure in grades 1 and 2,
it will be challenging for students to see array structure when they are trying to count unit
squares.

Summary and Conclusion

This study compared area lessons from Korean textbooks and US textbooks to understand
differences and similarities among these textbooks, as well as how these textbooks address
known learning challenges in area measurement. Our results indicated that textbooks from both
countries paid modest or limited attention to area measurement lessons. In terms of timing, US
textbook series introduced area related topics, partitioning, covering, array structure and area
formula much earlier than Korean textbooks. In terms of sequence, US textbooks progressed
through partitioning, tiling and then presenting the area definition and formula. Studies showed,
274 and 3™ graders often struggled with covering and array structure (Battista, 2004; Sarama &
Clements, 2009). However, textbooks from both countries introduced such topics either later or
not at all. Such findings indicate that both timing and sequencing were an issue for both
countries’ textbook.

Both countries textbooks placed strong focus on procedures rather than concepts. Also, the
most frequent items were partitioning regions without array structure. Compounded with issues
of sequencing and timing, a procedural focus, and limited coverage of important conceptual area
ideas are highly like to lead to students’ challenges in learning area measurement. What may we
conclude from our findings? As we mentioned previously, although textbooks do not provide
mathematics lessons directly (content will likely be modified by teachers), they are one of the
main resources teachers use when planning lessons. With the issues identified in these textbook
series thus far, it is possible that limitations in textbooks can lead to area lesson plans that do not
reflect challenges and important concepts of area measurement. In turn, limited coverage may
lead to limiting elementary students’ learning opportunities and they may be inclined to adopt a
more procedural understanding of area, without attaining a conceptual understanding. With our
findings, it will be important to provide teachers with additional supports so that they can attempt
to modify tasks in these textbooks to properly address students’ learning challenges in area
measurement.

In terms of international comparative studies, we cannot say that the learning opportunities
these textbooks offered are directly related to US students’ performances in TIMSS. However,
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our results showed that how these textbooks treat area measurement could be one of the reasons
for US students’ TIMSS results. Despite Korean students’ high performances in measurement,
we did find that Korean textbooks shared many of the same conceptual limitations as US
textbooks. As Smith and colleagues (2016) noted, further studies are required to examine the link
between curriculum use and students’ performances in assessments in order to make more
distinct claims about influence of textbooks on students’ performances.
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A lo largo de los afios la modelacion matematica ha ganado gran atencion internacional, no
solo en la investigacion sino también en el desarrollo de propuestas curriculares y en su
implementacion en salones de clases. Pero, a pesar de la muy extensa cantidad de
publicaciones, existen pocas revisiones de literatura sistemdticas. En este reporte presentamos
algunos resultados de una revision de 485 publicaciones internacionales sobre modelacion
matematica. Nos centramos en las publicaciones que reportan estudios realizados en América
Latina y encontramos que, en términos de la cantidad de publicaciones, la produccion es
relativamente modesta; sin embargo, la vitalidad de los temas actualmente discutidos y la
innovacion de sus perspectivas dan cuenta de la importancia que tiene el trabajo desarrollado
en la region.

Keywords: Modelacion matematica, Investigacion documental, Investigaciones en América
Latina

La Necesidad de una Revision de la Literatura

La incorporacion de la modelacion matematica a los curriculos de varios paises tiene sus
raices en un movimiento de finales de los afios 1950’s, cuando defensores de la modelacion
pugnaron por restaurar el foco en la utilidad de las aplicaciones de las matematicas en escuelas y
universidades (Niss, Blum y Galbright, 2007).

Un momento clave para el movimiento internacional de la modelacion matematica fue la
inauguracion de la Conference on the Teaching of Mathematical Modelling and Applications,
organizada en 1983 por la International Community of Teachers of Mathematical Modelling and
Applications (ICTMA). Otro momento importante tuvo lugar en el afio 2004 con la realizacion
del estudio sobre Modelacion Matematica organizado por la International Commission on
Mathematical Instruction (ICMI). La publicacion derivada de este ICMI Study (Blum, Galbraith,
Henn y Niss, 2007) sigue siendo una referencia basica para la investigacion en este tema. Desde
entonces, los estudios en modelizacion se han incrementado significativamente ampliando los
métodos e intereses mas alla de las aproximaciones tradicionales (Stillman, Blum y Kaiser,
2017). No obstante, a pesar de la gran cantidad de publicaciones en educacion sobre modelacion
matematica, son escasas las revisiones sistematicas del estado del arte sobre el tema.

En la revision efectuada por Kaiser y Sriraman (2006) se propone una clasificacion de las
investigaciones en la que se identifica seis perspectivas en modelacion matematica: la
perspectiva realista que tiene por objetivo resolver problemas de la vida real, mas alla de las
matematicas; la perspectiva epistemologica que se centra en el desarrollo de teorias matematicas
e incluye modelos intra-matematicos que son usados en la teoria matematica avanzada; la
perspectiva educacional que considera que la modelacion debe servir armoniosamente a
propositos practicos, cientificos y matematicos; la perspectiva contextual, también llamada
enfoque de modelacion provocada (model-eliciting) que se centra actividades de resolucion de
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problemas usando principios de disefo instruccional especificos; la perspectiva socio-critica que
enfatiza la necesidad de desarrollar una postura critica frente al rol y la naturaleza de los modelos
matematicos y su impacto en las problemadticas sociales; y la perspectiva cognitiva que es
transversal a las anteriores y se centra en aspectos cognitivos de los procesos de modelacion
matematica.

A pesar de que la clasificacion de Kaiser y Sriraman sigue siendo vigente, la gran cantidad de
trabajos y de perspectivas producidos en la ultima década demanda actualizarla y ajustarla. En
nuestra revision de la literatura, retomamos esta clasificacion para identificar y contrastar temas
contemporaneos sobresalientes, para ello analizamos sistematicamente algunas de las
publicaciones internacionales mas importantes, tanto en revistas como en libros, como
describimos a continuacion.

Metodologia de la Revision de Literatura

Nuestra revision es resultado del trabajo realizado en un seminario interinstitucional en el
que participamos investigadores, profesores y estudiantes de grado y de posgrado de
universidades de México y Canada. Identificamos una vasta cantidad de literatura y gran
variedad de perspectivas en modelacion matematica. También notamos que las revisiones
sistematicas, como la realizada por Frejd (2013), son muy escasas. Esta escasez defini6 nuestro
interés en realizar nuestra propia revision, la cual comenzamos a en el primer semestre del afio
2017.

Desarrollamos nuestra revision en dos etapas. En la primera, recurrimos a la base de datos
SpringerLink y buscamos las palabras “modeling” o “modelling” en el titulo. Filtramos la
busqueda usando “education” como disciplina y “mathematics education” como subdisciplina.
Los articulos que no se relacionaban con modelacion matematica fueron eliminados. De esta
manera obtuvimos una lista de 73 articulos. A pesar de las restricciones impuestas en esta
primera busqueda, consideramos que la lista es representativa de los articulos de modelacion
publicados en Springer ya que la busqueda centrada en los titulos sugiere que la modelacion
matematica es el principal foco de interés de estos articulos. El andlisis de los articulos de esta
lista nos ayud¢ a clarificar y refinar nuestras categorias de analisis; ademas, nos permitio
identificar otras publicaciones clave en libros y articulos de otras editoriales.

En la segunda etapa de nuestra revision incluimos: (a) los articulos provenientes de nimeros
especiales de revistas de Springer y completamos la revision de articulos publicados en 2017,
que no habian sido incluidos antes (debido al traslape de tiempos de edicion, sélo fueron
consideradas las versiones preliminares publicadas en linea de los dos numeros especiales sobre
modelacién publicados por ZDM en 2018); (b) los articulos del Journal for Research in
Mathematics Education (JRME); (c) los cinco libros derivados del ICTMA y publicados por
Springer y el libro correspondiente al 14th /CMI Study (Blum et al, 2007); (d) los articulos de
algunas revistas internacionales de investigacion en espafiol; (e) un libro publicado
recientemente que reporta investigacion latinoamericana sobre modelacion matematica (Arrieta y
Diaz, 2016); y (f) los reportes de investigacion, presentaciones de grupos de trabajo y
conferencias plenarias de los ultimos 10 afios de las memorias del PME-NA.

Elegimos incluir JRME porque, de acuerdo con Toerner and Arzarello (2012), es la revista de
mayor importancia a nivel internacional en el area de la Educacion Matematica, junto con
Educational Studies in Mathematics. Incluimos las revistas en espafiol y el libro sobre
investigacion latinoamericana para ampliar nuestra mirada mas alla de las publicaciones
realizadas en lengua inglesa. Las revistas en espanol seleccionadas fueron Revista Educacion
Matematica y Revista Latinoamericana de Investigacion en Matematica Educativa, debido a que
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se especializan en Educacion Matemadtica, son relevantes en la region y pertenecen a indices
internacionales prestigiosos (Scopus y JCR). Para la busqueda de articulos en estas revistas se
procedid con los mismos criterios que con las revistas en inglés.

En nuestro analisis nos concentramos en identificar aspectos metodologicos y teoricos de las
investigaciones. Especificamente, ubicamos: propoésitos de las investigaciones, poblacion,
instrumentos de levantamiento de datos, tipo de disefio metodoldgico (cualitativo, cuantitativo,
mixto, etc.), perspectiva tedrica y perspectiva de modelacion, pais donde se realiza la
investigacion y pais de los autores, asi como contenidos matematicos abordados. Es necesario
sefialar, que el trabajo fue arduo pues muchas veces la definicion de los aspectos tedrico-
metodoldgicos no esta hecha explicitamente por los autores y hay que inferirlos de lo que se dice
y hace en el articulo. Por ejemplo, para la definicion de la perspectiva de modelizacion, partimos
de las caracteristicas sefialadas por Kaiser y Sriraman (2006), identificamos los propositos y
elementos tedricos sefialados en los articulos, cruzamos con las conclusiones y, finalmente,
revisamos a los autores citados como referencias clave. Los articulos fueron revisados en
paralelo por dos investigadores. En caso de diferencias en la determinacion de las caracteristicas,
los investigadores se juntaron a revisar los detalles y tomar una decision; los casos mas dificiles
se discutieron en reuniones plenarias. Los criterios de analisis fueron ajustados continuamente a
lo largo de los meses que dur¢ la revision.

Un total de 485 documentos fueron revisados: 111 articulos de revistas de investigacion, 341
capitulos de libros y 33 contribuciones del PME-NA. En el presente articulo reportamos los
resultados de nuestro andlisis sobre produccion de América Latina en modelaciéon matematica
encontrados en estos documentos.

Tendencias y Produccion en Modelacion Matematica en América Latina

En contraste con la afirmacion de Blum y Niss’s (1991) de que la modelacion matematica fue
inicialmente desarrollada en regiones como Alemania y el Reino Unido, nuestra revision revela
actividad significativa en modelacion matematica en América Latina desde los afios 90’s. De
hecho, de acuerdo con Biembengut (2016) en el caso de Brasil esta actividad puede rastrearse
hasta los afios 70’s. En nuestra revision identificamos dos tendencias en las publicaciones sobre
modelacion matematica en América Latina: por una parte, la cantidad de produccion es
relativamente pequena; pero, por otra parte, las aproximaciones y problematicas abordadas
presentan aproximaciones innovadoras para la investigacion educativa en modelacion
matematica.
La Cantidad de Publicaciones

Identificamos en total 66 publicaciones de autores latinoamericanos del total de 485 que
ubicamos en nuestra base de datos, es decir, aproximadamente el 13% de las publicaciones. En
las publicaciones de lengua inglesa (las cuales fueron en total 454) identificamos 47
contribuciones de autores latinoamericanos (aproximadamente el 10%). La mayor parte de ellas
pertenecen a capitulos de libro de la serie International Perspectives on the Teaching and
Learning of Mathematical Modelling (41 contribuciones). Estos capitulos representan
aproximadamente 14% del total de los capitulos de la serie. Hay que sefalar que una cantidad
significativa de las investigaciones fueron reportadas en el volumen 2013 de la serie ICTMA (11
capitulos). Es posible que esto se deba a que en ese afio la conferencia del ICTMA fue realizada
en Brasil.

Respecto a las aproximaciones y problematicas abordadas, encontramos que gran parte de las
investigaciones latinoamericanas son de tipo cualitativo (21 publicaciones), incluyendo
metodologias de estudios de caso y etnograficas; ademas, la mayor parte de las investigaciones
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se realiza en los niveles de secundaria, post-secundaria y formacion inicial de profesores.
También es importante sefalar que la perspectiva socio-critica aglutina al conjunto mas
numeroso investigaciones latinoamericanas publicadas en lengua inglesa (8 publicaciones). La
presencia de investigaciones realizadas bajo la perspectiva contextual también es significativa (6
publicaciones).

En las publicaciones realizadas en lengua espafiola identificamos en total 15 contribuciones
de autores latinoamericanos, la mayor parte de las cuales involucra a autores mexicanos (10
publicaciones). La mayoria de estas investigaciones se realiz6 en los niveles de secundaria y
post-secundaria (10 investigaciones) y practicamente todas son de tipo cualitativo (14
publicaciones). El conjunto mas numeroso de investigaciones latinoamericanas (8 publicaciones)
se ubica en las perspectivas socio-critica y la educacional. Es necesario sehalar que hay 4
investigaciones que no pudimos clasificar debido a que los autores no mencionan su adherencia a
alguna de las perspectivas, ni encontramos las caracteristicas que permiten clasificarlas (Kaiser y
Sriraman, 2006; Preciado-Babb et al., 2018).

Finalmente, respecto a nuestra revision de las memorias de los 10 tltimos afios de PME-NA,
es importante sefialar que con nuestros criterios de busqueda ubicamos unicamente 4
contribuciones que involucran a autores latinoamericanos: dos del grupo de trabajo en “Models
and Modeling” (2016 y 2017), el foro de investigacion “Mathematical Modeling in School
Education” (2014) y un reporte de investigacion (2009).

Aproximaciones, Propositos y Temas Innovadores en Modelacion Matematica

Aunque numéricamente son pocas, las investigaciones latinoamericanas que identificamos
tienen tendencias innovadoras en problematicas y aproximaciones; en particular, enfatizan los
aspectos sociales y culturales de la educacion en modelacion.

Al respecto, Stillman, Blum y Biembengut (2015) identificaron elementos de “a unique Latin
American perspective to modelling” en el trabajo del autor brasilefio Ubiratan D’ Ambrosio,
quien discute la generacion de conocimiento (cognicion), su organizacion individual y social
(epistemologia) y los modos en que es confiscado, institucionalizado y devuelto a las personas
que lo generan (politica). Su aproximacion a la modelacion matematica extiende la perspectiva
socio-critica y constituye una estrategia para la construccion de sistemas de conocimiento en
contextos culturales diversos. D’ Ambrosio senala:

Through models, humans try to give explanations of myths and mysteries, and these
explanations are organized as arts, techniques, theories, as strategies to explain and deal with
facts and phenomena. These strategies, have been historically organized, in different groups,
in different spatial and temporal contexts, which are the support of cultures, as systems of
knowledge. (D’ Ambrosio, 2015, p. 43)

Otra tendencia de la modelacion en América Latina corresponde a las investigaciones reportadas
como socio-epistemoldgicas (ver por ejemplo Arrieta Vera y Diaz Moreno, 2016). Esta
aproximacion comprende la modelacion matematica en términos de practicas sociales, tanto
escolares como en las matematicas formales.

Es importante sefialar también que entre las investigaciones mexicanas reportadas resultan
significativas las realizadas en el nivel de educacion superior y especificamente en la formacion
de ingenieros (Dominguez, de la Garza y Zavala, 2015; Rodriguez, 2015).

Sobre los Propositos de 1a Modelacion Matematica

La revision de los articulos y capitulos de libro permiti6 identificar propositos de la
modelacion que extienden la lista propuesta por Kaiser y Sriraman (2006), ver Tabla 1 (la
discusion detallada de la extension de estos propdsitos se hace en un reporte de investigacion
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presentado por Preciado-Babb et al., (2018). En la parte inferior de esta tabla presentamos los
propositos caracteristicos de las perspectivas epistemologicas y critica-social, notables en
publicaciones de América Latina.

Tabla 1: Propdositos de la modelacion matematica

Propésitos Ejemplos

Aprender contenidos matematicos Algebra, Geometria, Calculo, Estadistica

Aplicar matematicas Resolucion de problemas

Aprender otras disciplinas Quimica, Biologia, Economia, Ciencias de la salud

Investigar sobre la conducta Investigacion sobre aprendizaje en ambientes virtuales

Disefiar ambientes de aprendizaje Disefio de simuladores y ambientes virtuales de
aprendizaje

Desarrollo de competencias de Elementos de modelacion, criterios para determinar la

modelacion calidad de la modelacion matematica

Desarrollar habilidades de aprendizaje Generalizar la solucién de un problema a problemas
similares

Propdsitos especificos de los estudios latinoamericanos

Generar teoria matematica Comprension conceptual y prueba matematica

Desarrollar pensamiento critico Juzgar modelos usados en la vida diaria; cuestionar los
propositos y los supuestos de diferentes modelos

Comprender las matematicas como una Aspectos historicos, sociales y politicos de las

disciplina matematicas como una disciplina

Desarrollar conciencia de problemas Crear y criticar modelos usados para predecir crecimiento
sociales y globales econdmico, calentamiento global, recaudacion fiscal
Promover actitudes participativas Comprometerse en la solucion de problemas reales y la

toma de decisiones dentro de la comunidad

Promover la cultura de la innovacion Crear soluciones para clientes, programar software para
distintas audiencias

Participacion en estrategias de Descolonizacion, practicas culturales en matematicas y
emancipacion modelacion matematica

De esta tabla se puede destacar que varios de los propositos caracteristicos en las
perspectivas latinoamericanas buscan modificar entornos especificos, y promueven culturas de
innovacion y actitudes participativas. Por ejemplo, Orey y Rosa (2017) reportan tareas que
abordan problematicas reales de tarifas de transporte publico con lo cual los autores no solo
abordan un problema auténtico, sino que también buscan proponer soluciones que orienten la
toma de decisiones de la comunidad afectada.

Contribuciones a Temas en Debate

Uno de los temas en que los estudios latinoamericanos han contribuido ampliamente es el
relacionado con el reciente debate sobre las nociones de “autenticidad” y “mundo real”. Desde la
llamada perspectiva realista, Kaiser y Sriraman (2006) afirman que los procesos de modelacion
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se realizan como harian los matematicos y cientificos en la practica. En este sentido, la
autenticidad del conocimiento generado en el salon de clases puede considerarse a partir de su
analogia con la actividad cientifica. Sin embargo, Jablonka (2007) ha sugerido que la
recontextualizacion de practicas de modelacion de fendémenos cientificos es problematica porque
“causes a transformation of the unmediated discourses found in out-of-school practices of
mathematical modelling, even though a modelling perspective overcomes the philosophy of
naive realism encapsulated in traditional word problems” (Jablonka, 2007, p. 196).

Respecto a este debate, han surgido varias posiciones a las que se han sumado las
investigaciones latinoamericanas. Por ejemplo, una propuesta consiste en considerar los
elementos de la modelacion auténtica dentro de algunas tareas especificas, y no para todo el ciclo
de modelacion. Al respecto, Silva Soares (2015) considera la modelacion como una perspectiva
de ensefanza en la cual los estudiantes analizan modelos ya existentes en lugar de crear algun
modelo a partir de datos reales; es decir, no se comienza con el “mundo real”.

Mas recientemente, Carreira y Baioa (2017) participan en este debate introduciendo el
concepto de “credibilidad” de las tareas matematicas. Mientras que otros autores consideran que
las situaciones de la “vida real” tienen potencial para convertirse en situaciones de aprendizaje
atractivas, el enfoque de la credibilidad coloca la relevancia a nivel personal para los estudiantes.
Finalmente, otros trabajos en Latinoamérica han usado simulaciones computacionales como
modelos para ensefar contenidos matematicos y cientificos especificos (por ejemplo, Gomes
Neves, Carvalho y Duarte, 2011). Aunque quizas los estudiantes no se involucren con datos
reales, en estos casos si pueden hacer experimentos con el comportamiento de los modelos y
aprender tanto contenidos matematicos como extra-matematicos.

Reflexiones Finales

Este reporte complementa otros estados del arte y se centra en las contribuciones que sobre
modelacion matematica se han realizado por investigadores de América Latina. Encontramos
que, en términos de la cantidad de publicaciones, la produccion sobre modelacion realizada en
Latinoamérica es relativamente modesta: aproximadamente el 10% de las revistas de
investigacion en lengua inglesa revisadas y 12% de las contribuciones en las memorias de los
ultimos 10 afios del PME-NA (reportes de investigacion, grupos de trabajo y conferencias
plenarias). Sin embargo, de nuestra revision se deriva también que hay una riqueza de temas y
perspectivas innovadoras en los estudios sobre modelacion matematica que se realizan en
América Latina. Cabe destacar en particular, la tendencia a realizar estudios que enfatizan las
influencias sociales y culturales de la educacion en modelacion. Esta tendencia se refleja tanto en
la adopciodn de perspectivas innovadoras (como la de U. D’ Ambrosio), como en la identificacion
de propdsitos comunes a un amplio nimero de investigaciones latinoamericanas.

Consideramos que las cantidades modestas de las publicaciones sobre modelacion no se
deben tnicamente a un problema de lengua (publicaciones en inglés en relacion a publicaciones
en espaiol), pues la mayor cantidad de publicaciones realizadas por investigadores
latinoamericanos esta hecha en publicaciones en inglés (aproximadamente el 77%). Ademas, la
vitalidad de los temas actualmente discutidos en América Latina da cuenta de la importancia que
estd cobrando el trabajo en modelacion matematica en la region. Pensamos que es necesario
promover la realizacién de mas investigaciones en los temas y perspectivas identificadas, pero
también difundir el importante trabajo regional ya desarrollado.
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LATINAMERICAN TRENDS IN MATHEMATICAL MODELING

Throughout the years, Mathematical Modeling has gained international attention, not only in
research but also in the development of curricula and its applications in the classroom.
However, systematic literary surveys are scarce. In this paper, we present some findings from a
survey of 485 international publications related to different aspects of mathematical modeling.
While the number of Latin-American publications is rather small compared to the number of
international publications, the vitality of the currently discussed themes in this region and their
innovative perspectives testify to the international relevance of this developed work on
mathematical modeling.

Need for a Survey

The incorporation of mathematical modeling into the curricula has its roots in a movement in
the late 1950s, when modeling advocates attempted to restore focus on the utility and
applications of mathematics in schools and universities (Niss, Blum y Galbright, 2007).

A key moment for this international movement was the inauguration of the biennial
Conference on the Teaching of Mathematical Modelling and Applications in 1983, organized by
the International Community of Teachers of Mathematical Modelling and Applications
(ICTMA). Another important moment took place in 2004 with the study on Mathematical
Modeling organized by the International Commission on Mathematical Instruction (ICMI). The
publication derived from this ICMI Study (Blum, Galbraith, Henn y Niss, 2007) continues to be
a basic reference for research in this subject. Since then, international research has increased
significantly, and research methods and focuses have extended beyond traditional approaches
(Stillman, Blum y Kaiser, 2017). Despite the large number of publications on mathematical
modeling in education, systematic reviews of the literature are scarce.

In their review, Kaiser and Sriraman (2006) proposed a classification identifying six
perspectives on mathematical modeling research: the realistic perspective aims to solve real-life
problems beyond mathematics; the epistemological perspective focuses on the development of
mathematical theories, and includes intra-mathematical models that are used to advance theory in
mathematics; the educational perspective considers different aims for modeling that serve
scientific, mathematical and pragmatic purposes harmoniously; the contextual perspective, also
called the model-eliciting approach, focuses on problem-solving activities constructed using
specific instructional design principles; the socio-critical perspective emphasizes the need to
develop a critical stance towards the role and nature of mathematical models, as well as their
impact on social issues; and the cognitive perspective on modeling is transversal to the previous
five and focuses on cognitive aspects of the mathematical modeling process.

Although Kaiser and Sriraman’s classification is still in use, the large amount of work and
perspectives produced in the last decade demands updating and adjusting it. In our review of the
literature, we retake this classification to identify and contrast outstanding contemporary issues
for which we systematically analyze some of the most important international publications, both
in journal and book form, as described below.

Literature Review Methodology
This survey is the result of a seminar consisting of graduate and undergraduate students and
educators from universities in Mexico and Canada. We identified multiple perspectives on
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modeling and found the literature on this topic to be vast. We also noticed that systematic
reviews, such as the one conducted by Frejd (2013), were scarce. This influenced our decision to
conduct our own review, which we started at the beginning of the year 2017.

We conducted the review in two stages. In the first stage, we searched peer-reviewed articles
with ‘modeling’ or ‘modelling’ in the title through the SpringerLink database. Then, we refined
the search using ‘Education’ as discipline and ‘Mathematics Education’ as subdiscipline. Articles
that did not relate to mathematical modeling were excluded, resulting in a list with 73 articles.
Despite the restrictions imposed in this first search, we consider that this list is representative of
the modeling articles published in Springer because the use of these key words in the titles
suggests that mathematical modeling was a main focus for the selected articles. The analysis of
the articles in this list helped us to clarify and refine the categories that guided the review, and it
also allowed us to identify key publications in books and articles from other publishers.

In the second stage of the review we included: (a) articles from the special issues on
mathematical modeling, as well as articles published in 2017 not included previously (due to the
overlap of editing times, we only considered Online First versions of the two special issues on
modeling published by ZDM in 2018); (b) articles from the Journal for Research in Mathematics
Education (JRME); (c) five books related to ICTMA and the 14th ICMI Study (Blum et al.,
2007); (d) articles from journals on mathematics education published in Spanish; (¢) a recent
Latin-American book addressing research on mathematical modeling (Arrieta & Diaz, 2016);
and (f) research reports, presentations of working groups, and plenary conferences from the last
10 years in the proceedings of PME-NA.

We chose JRME because it is at the top of the list of journals identified by Toerner and
Arzarello (2012), along with Educational Studies in Mathematics. The same search criteria for
the titles used in the first stage was followed to search articles in this journal. We included the
Spanish journals and the Latin-American book to extend the scope of the review beyond
publications in English. The selected journals were Revista Educacion Matematica and Revista
Latinoamericana de Investigacion en Matematica Educativa, because they are specialized in
mathematics education, are relevant among the Spanish journals, and appear in prestigious
international indexes (Scopus and JCR). For the search in these journals, we proceeded with the
same criteria as with the English journals.

In our analysis we focused on identifying methodological and theoretical aspects of the
research. Specifically, we identified: research objectives, target populations, data collection
instruments, type of methodological design (qualitative, quantitative, mixed, etc.), theoretical and
modeling perspectives, country where research was carried out and authors’ country of
residence, and mathematical themes.

It is necessary to point out that the work was arduous: often, authors did not explicitly state
the theoretical-methodological underpinnings of their work and we had to infer these from the
content. For example, for the definition of the perspective of modeling, we started from the
characteristics pointed out by Kaiser and Sriraman (2006); then, we identified the purposes and
theoretical elements indicated in the articles, triangulated this information with the conclusions,
and, finally, considered the cited authors as key indicators.

Papers were also reviewed in parallel by two researchers. In case of differences in their
analysis, the researchers reviewed the details together in order to come to a consensual decision;
the most difficult cases were discussed in plenary meetings. The analysis criteria were adjusted
continuously throughout the months when the review was conducted.
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A total of 485 documents were included for this paper: 111 journal articles, 341 book chapters,
and 33 PME-NA papers. Here, we report the results of our analysis of Latin American
contributions to mathematical modeling found in these documents.

Latin American Trends in and Contributions to Mathematical Modeling Literature

In contrast to Blum and Niss's (1991) assertion that mathematical modeling was initially
developed in regions such as Germany and the United Kingdom, our review reveals significant
activity in mathematical modeling in Latin America since the 1990s. In fact, according to
Biembengut (2016), this activity can be traced back to the 1970s in the case of Brazil. In our
review, we identified two trends in publications on mathematical modeling in Latin America: on
the one hand, the number of publications is relatively small; but, on the other hand, the
approaches and problems addressed present innovative approaches for educational research in
mathematical modeling.

Number of Publications

We identified a total of 66 publications by Latin American authors out of 485 documents in
our database — approximately 13% of all the publications.

In the English publications (454 in total), we identified 47 contributions from Latin American
authors (approximately 10%). Most were book chapters in the series International Perspectives
on the Teaching and Learning of Mathematical Modelling (41 contributions). These represent
approximately 14% of the total chapters that constitute the series. It should be noted that a
significant number of studies was reported in the 2013 ICTMA volume (11 chapters). This is
possibly related to the fact that the ICTMA conference was held in Brazil that year.

Regarding the approaches and problems addressed in the surveyed documents, we find that a
large amount of Latin American research is qualitative (21 publications), including case study
and ethnographic methodologies. In addition, most of the research deals with secondary and
post-secondary education, and initial teacher training. It is also important to note that the socio-
critical perspective brings together the largest group of Latin American research published in
English (8 publications). The presence of research carried out under the contextual perspective is
also significant (6 publications).

Within the category of articles published in Spanish, we identified 15 contributions from
Latin American authors, most involving Mexican authors (10 publications). The majority of
these studies focus on secondary and post-secondary levels (10 publications) and practically all
are qualitative (14 publications). Most of the research (8 publications) assume socio-critical and
educational perspectives. It is necessary to note that we could not classify four publications
because the authors did not mention their adherence to any of the perspectives, and we could not
identify particular classification characteristics (Kaiser & Sriraman, 2006; Preciado-Babb et al.,
2018).

Finally, regarding our review of the last 10 years of the PME-NA proceedings, our search
criteria only allowed us to find four contributions involving Latin American authors: two from
the working group in “Models and Modeling” (2016 and 2017); a research forum “Mathematical
Modeling in School Education” (2014); and a research report (2009).

Approaches, Purposes and Innovative Themes on Mathematical Modeling

Despite the reduced number of publications, the Latin American studies identified in our
survey propose innovative ideas regarding addressed issues and approaches. They particularly
emphasize the social and cultural aspects of education in modeling.

Stillman, Blum, and Biembengut (2015) identified elements of a unique Latin American
perspective to modelling in the work of Brazilian author, Ubiratan D’ Ambrosio, who discusses

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Curriculum and Related Factors 97

knowledge generation (cognition), its individual and social organization (epistemology), and the
way it is confiscated, institutionalized and given back to the people who generated it (politics).
This approach to mathematical modeling extends the socio-critical perspective and is a strategy
for building up systems of knowledge in different cultural environments. As D’ Ambrosio notes:

Through models, humans try to give explanations of myths and mysteries, and these
explanations are organized as arts, techniques, theories, as strategies to explain and deal with
facts and phenomena. These strategies, have been historically organized, in different groups,
in different spatial and temporal contexts, which are the support of cultures, as systems of
knowledge. (D’ Ambrosio, 2015, p. 43)

Another Latin American modeling trend corresponds to research reported as socio-
epistemological (see, for instance, Arrieta & Diaz, 2016). This approach understands
mathematical modeling in terms of social practices, both in school and in formal mathematics.
The studies carried out at institutions of higher education, specifically in the training of
engineers, stand out among the Mexican publications (Dominguez, de la Garza y Zavala, 2015;
Rodriguez, 2015).
Purposes of Mathematical Modeling

Our review of articles and book chapters allowed us to identify some modeling purposes that
extend the list proposed by Kaiser and Sriraman (2006) as presented in Table 1 (a detailed
discussion of this extended list is presented by Preciado-Babb et al. (2018). In the lower part of
Table 1 we present the characteristic purposes of the epistemological and critical-social
perspectives notable in Latin American publications.

Table 1: Purposes of mathematical modeling

Purposes Examples

To:

Learn mathematics content Algebra, Geometry, Calculus, Statistics

Apply mathematics Problem solving

Learn other disciplines Chemistry, Biology, Finances, Heath Care

Conduct research Research on learning in virtual environments

Design learning environments Design simulators and virtual environments for learning
purposes

Develop modeling competencies Elements of modeling; criteria for quality in mathematical
modeling

Develop learning skills Generalize the solution of a problem to other similar
problems

Specific purposes of Latin American studies

To:

Generate mathematical theory Conceptual understanding; mathematical proof

Develop critical thinking skills Judge models used in daily life; question purpose and
assumptions of different models

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Curriculum and Related Factors 98

Understand mathematics as a discipline Historical, social and political aspects of mathematics as a
discipline

Develop awareness of social and global Create and critique models used to predict economic

issues growth, global warming, tax revenue, etc.

Promote a participatory attitude Engage in addressing real problems and decision-making

within the community

Promote a culture of innovation Create something for a customer; create program software
for an audience

Engage in emancipation strategies Decolonization initiatives; cultural practices in
mathematics and mathematical modeling

From Table 1, it is worth mentioning that several of the Latin American purposes seek to
modify specific environments and promote cultures of innovation and participative attitudes. For
example, Orey and Rosa (2017) reported a task addressing a real issue of tariffs in public
transportation. Through their study, the authors not only addressed a real problem but also sought
to propose solutions that guide the decision-making of the affected community.

Emergent Discussion Themes

Latin American studies have contributed extensively to the recent debate on the notions of
‘authenticity’ and ‘real world’. Regarding the realistic perspective, Kaiser and Sriraman (2006)
claimed that modeling processes are carried out in a similar way to what mathematicians and
scientists would do in practice. In this sense, the authenticity of the knowledge generated in the
classroom can be considered based on its analogy with the scientific activity. However, Jablonka
(2007) has suggested that recontextualization of modeling practices of scientific phenomena is
problematic because it “causes a transformation of the unmediated discourses found in out-of-
school practices of mathematical modeling, even though a modeling perspective overcomes the
philosophy of naive realism encapsulated in traditional word problems” (Jablonka, 2007, p. 196).

Regarding this debate, several positions have emerged — and Latin American research has
contributed to the discussion. For instance, one position is to consider the elements of authentic
modeling within some specific tasks, not including the whole process of modeling. In this
respect, Silva Soares (2015) suggested model analysis as a teaching approach in which students
analyze an already existing model instead of creating a model from real data — in other words, it
is not necessary to begin with the ‘real world.’

Most recently, Carreira and Baioa (2017) participated in this debate introducing the concept
of ‘credibility’ of mathematical tasks. While authors have argued that real life situations have the
potential to make the learning experience more attractive, this focus on credibility places the
relevance at a personal level for students.

Finally, other Latin American studies have focused on computer simulations as models to
teach specific mathematical and scientific content (e.g. Gomes, Carvalho & Duarte, 2011). While
students may not engage with real data when using a simulator, they can experiment within the
model and learn both mathematical and extra-mathematical content.

Final Remarks
This report complements other reviews of the state of the art focusing on the contributions
made by Latin American researchers to mathematical modeling. We found that, in terms of
number of publications, Latin American production on modeling is relatively modest:
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approximately 10% of the contributions in English research journals and 12% of the reports from
last 10 years of PME-NA (research reports, working groups and plenary conferences). However,
we also found richness of innovative themes and perspectives in Latin American studies. It is
particularly noteworthy the tendency to conduct studies that emphasize the social and cultural
influences of modeling education. This trend is reflected both in the adoption of innovative
perspectives (such as that of D'Ambrosio), and in the identification of the common purposes of a
large number of Latin American research projects.

We consider that the modest number of publications is not solely due to language issues
(English publications compared to Spanish publications), since we found that the largest number
of Latin American research is published in English (approximately 77%). In addition, the vitality
of the currently discussed themes in Latin America reveals the importance that mathematical
modeling is gaining in this region. We think that it is necessary not only to promote more
research in the identified topics and perspectives, but also to disseminate the significant regional
work already developed.
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The Common Core State Standards (CCSS) Initiative was initially met with great enthusiasm
from politicians and education experts. However, as states began rolling out the standards,
backlash against the Common Core became widespread, and several states ended up pulling out
of the initiative. To explore and better understand why there was such a negative reaction to the
Common Core, we make use of the sociology construct of moral panics, and present an
argument that the response to the CCSS was indeed a moral panic.

Keywords: Standards, Curriculum, Policy Matters

For decades, mathematics educators and politicians have called for a uniform, national set of
mathematics standards as a way of improving mathematical instruction in the US. In 1989, the
National Research Council, in the book Everybody Counts (National Research Council, 1989),
asserted that “America needs to reach consensus on national standards for school mathematics”
(p. 46). In 2009, President Barrack Obama called for states to work together to set higher
standards and combat the disparities that arise from the fifty states’ different sets of educational
benchmarks (Montopoli, 2009). More recently, mathematics educators Deborah Ball, Mark
Thames, and James Hiebert (Hiebert, 2013; Thames & Ball, 2013) argued “that the lack of a
central or a common [national] curriculum is a major impediment” (Thames & Ball, 2013, p. 34)
to improving the mathematical education of children in the US, and suggest that by unifying the
nation on the mathematical learning goals for our students, we can greatly improve the teaching
of mathematics.

With so many advocating for a set of national mathematics standards as a way to improve
mathematics education in the US, it is no wonder that the Common Core State Standards
Initiative ("Common Core State Standards Initiative," 2015), was initially met with great
enthusiasm. The Common Core State Standards (CCSS) ("Common Core State Standards for
English Language Arts," 2010; "Common Core State Standards for Mathematics," 2010) were
developed by a state-led initiative in 2009, that included

... governors and state commissioners of education from 48 states, two territories and the
District of Columbia, through their membership in the National Governors Association
Center for Best Practices (NGA Center) and the Council of Chief State School Officers
(CCSSO). State school chiefs and governors recognized the value of consistent, real-world
learning goals and launched this effort to ensure all students, regardless of where they live,
are graduating high school prepared for college, career, and life ("Standards in Your State,"
2015).

Through examining the best state standards then in existence, consulting with teachers,
educational leaders, state political leaders, and leading thinkers, and eliciting and reviewing
feedback from the public, the CCSS were developed to achieve the goal of unifying the states’
learning goals for students across the nation.

Many in the mathematics education community had largely positive outlooks at the time the
CCSS were unveiled. The 2010 Critical Issues in Mathematics Education conference at the
Mathematical Sciences Research Institute (Rehmeyer, 2010) called the CCSS ““an unprecedented
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opportunity to promote reasoning and sense-making across the United States,” (p. 5), and further
described the standards as “coherent: build[ing] the mathematical concepts in a logical, orderly
way, introducing new ideas only when students have had a chance to master the concepts they
are built on” (p. 5). The National Council for Teachers of Mathematics (NCTM) President Diane
J. Briars also described how political leaders and educators were enthusiastic about the CCSS
“and how having common, rigorous, world-class college- and career-ready standards would
benefit both their students and the nation” (Briars, 2014). It seemed the CCSS would be a major
step in improving the mathematical education of students in the US, unifying the mathematical
learning goals of a majority of the states, and fulfilling a dream of many mathematics educators.

Despite the overwhelming optimism that the CCSS originally generated, these standards
grew hugely controversial after their initial implementation. Views among large numbers of
parents, educators, and politicians soured, and many began acting for the repeal of the CCSS,
citing numerous negatively charged reasons for disposing of them.

As we examine how hostility towards the CCSS grew and became more widespread, it makes
sense to ask: What happened? Why did a unified, research-based, national set of mathematics
standards designed to improve mathematics education in the US become so controversial? To
explore these questions and better understand the nation’s reaction to the Common Core, we
make use of a sociology construct originally developed by Stanley Cohen (2002), namely that of
a moral panic.

The Moral Panic
Cohen (2002) defined moral panics as moments when

A condition, episode, person or group of persons emerges to become defined as a threat to
societal values and interests; its nature is presented in a stylized and stereotypical fashion by
the mass media; the moral barricades are manned by editors, bishops, politicians, and other
right-thinking people; socially accredited experts pronounce their diagnoses and solutions;
ways of coping are evolved or (more often) resorted to; the condition then disappears,
submerges or deteriorates ... Sometimes the panic passes over and is forgotten, except in
folklore and collective memory; at other times it has more serious and long-lasting
repercussions and might produce such changes as those in legal and social policy or even in
the way the society conceives itself. (p. 1).

These moral panics arise quite suddenly when a large, empowered sector of society labels
something as deviant and threatening to the norms of that society, and urges that steps must be
taken to repair the damage and prevent the perpetrators from further destruction of the moral
order (Goode & Ben-Yehuda, 2009). These perpetrators become “folk devils” (Cohen, 2002),
and are seen as “legitimate and deserving targets of self-righteous anger, hostility, and
punishment” (Goode & Ben-Yehuda, 2009, p. 35).

Elements of a Moral Panic

Goode and Ben-Yehuda (2009) elaborated on the initial definition of the moral panic given
by Cohen (2002) by identifying five crucial elements that appear within moral panics. First, there
must be a heightened level of concern over the actions of a certain group or category of society
whose behavior supposedly endangers other sectors of society. This concern should be manifest
through a variety of outlets, such as public opinion polls, public commentary, media attention,
and proposed legislation.

Second, there must be an increased level of hostility towards the deviant group, for the harm
thought to be caused by them. In other words, “not only must the condition, phenomenon, or
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behavior be seen as threatening, but a clearly identifiable group in or segment of the society must
be seen as responsible for the threat” (Goode & Ben-Yehuda, 2009, p. 38). As society begins to
see a split between “us” — good, honest members of society — and “them” — the troublemakers or
deviants — stereotyping of these outsiders occurs. This results in the creation of “folk devils” or
villains whom society can blame for the phenomenon, and fight against, in order to maintain
societal order.

Third, there must be substantial agreement or consensus that an actual threat exists, and is
being caused by the behavior of the deviant group. “This sentiment must be fairly widespread,
although the proportion of the population who feels this way need not be universal or, indeed,
even make up a literal majority” (Goode & Ben-Yehuda, 2009, p. 38). Thus, if only a few
scattered, separate individuals believe that a threat exists, then there is no moral panic, despite
these individuals heightened emotions and concerns.

Fourth, as implicitly assumed in the term moral panic, the reaction to the supposedly harmful
occurrence or behavior needs to be disproportionate. This disproportion is manifest through: (1)
a belief that a more sizeable number of individuals are engaged in the deviant behavior than
actually are; (2) a belief that the threat, danger, or damage is far more extensive than what is
warranted; and (3) the wild exaggeration of numbers and figures, such as the number of deaths,
violent acts, crimes committed, injuries, and dollars of damage caused by the behavior of the
misbehaving group. “In short, the term moral panic conveys the implication that public concern
is in excess of what is appropriate if concern were directly proportional to objective harm”
(Goode & Ben-Yehuda, 2009, p. 40).

Fifth, moral panics are volatile, erupting suddenly onto the scene of social conscience, and,
almost as suddenly, subsiding from the awareness of the concerned members of society. Some
moral panics become institutionalized, that is, the concerns that arose during the moral panic lead
to the creation of social movement organizations, legislation, or rules of enforcement. Other
moral panics simply fade away, with little to no trace or effect on society. The volatility of moral
panics does not mean that the issues involved had no structural or historical antecedents; in fact,
“the specific issue that generates a particular moral panic may have done so in the past, perhaps
even the not-so-distant past” (Goode & Ben-Yehuda, 2009, p. 42). However, the degree of
hostility generated during a moral panic flares up quickly and is not typically sustainable, hence
its volatile nature.

Actors in a Moral Panic

Goode and Ben-Yehuda (2009) further point out that within a moral panic, there are usually
five main “actors” or groups of participants. The first and most important actor is the press or
mass media. As noted by Cohen (2002), within industrialized societies, the information that
society uses to build ideas about societal norms, and who or what should be labeled as deviants,
is received second hand. In other words, what the general public receives as “news” has already
been processed by the mass media, who determine what is newsworthy and how it should be
presented, based upon the commercial and political constraints within which the media outlets
operate. Thus, one of the main instigators and sustainers of a moral panic is the press, who plays
a large part in defining and displaying to the public the groups or episodes that should be
considered as “the enemy,” by exaggeration and over-reporting of events, as well as stereotyping
characters and behaviors (Goode & Ben-Yehuda, 2009). The second actor is the public. A moral
panic cannot erupt unless the issues pointed out by the media strike a responsive chord within the
general public, where the perpetrators identified can be focused on and vilified as a symbol for
larger problems plaguing society. The third actor in a moral panic is the social control culture, or
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those who are responsible for keeping order within society. Within most moral panics studied in
sociology, this group consists of police and the courts, or law enforcement. Public concern about
a supposed threat within a moral panic leads to the creation of public attitudes about what law
enforcement should be doing to quash the problems “the enemy” is producing. The fourth actor
within a moral panic is the group consisting of politicians and legislators. In past moral panics,
when politicians and legislators recognized that the media and general public identified a threat
to society, they “... aligned themselves against the devil and on the side of angels; the fact is,
they picked an ‘easy target’ ... What counted was not the nature of the target but what side they
were on and what they were against.” (Goode & Ben-Yehuda, 2009, p. 26). These politicians and
legislators within a moral panic push for immediate action within government and the law to end
the disturbances to society caused by the groups or events branded as deviants. The fifth actor
comprises “action groups,” or members of the public who come together to advocate for
solutions to the problems created by the deviants to society, usually claiming that existing
remedies are insufficient.

While some of the actors involved in the reaction to the Common Core fall into the above
categories (e.g. the press, the public, politicians, and action groups), there are some differences.
First, since the Common Core does not involve crime or criminal acts, the police, courts, and law
enforcement are not relevant. However, the analog of law enforcement within education, those
who are part of the social control culture that are expected to uphold and enforce societal norms
and improve the quality of the education of children locally, are state school boards. Thus, in
examining the reaction to the CCSS, it is important to study how school boards reacted to the
standards. Second, in the past few years, social media has vastly changed (1) the way people
interact with one another, (2) the ease and accessibility of creating groups that call for action and
change, and (3) how the public receives and interprets news. In fact, a recent study by the Pew
Research Center found that about 30% of US citizens get their news on Facebook (Anderson &
Caumont, 2014). Hence, in studying the nation’s reaction to the CCSS, we also must pay
particular attention to the public opinions, “news” displayed, and action groups active on social
media.

Methods

Data sources for this paper include social media posts, news outlets, school board meeting
notes, and legislative action. In particular, four states were chosen to examine in depth: Indiana,
Massachusetts, South Carolina, and Utah. Data analysis consisted of descriptive statistics to
examine volatility and consensus, and qualitative coding and thematic analysis (Braun & Clarke,
2006) of various sources to identify concerns, hostility, and disproportionate reactions of the
public towards the common core. In the next section, we present evidence that all of the elements
of a moral panic existed in the reaction against the Common Core.

Evidence of the Common Core Moral Panic
Concern
A wide variety of concerns arose as the Common Core was implemented, as illustrated by a
popular picture circulated on Facebook, presented in Figure 1. These concerns manifested
through Facebook posts, school board meetings, legislation, and news outlets, and include loss of
state and local control over education decisions, developmentally and age inappropriate
standards, relentless testing that students will be subjected to, and the privatization of education.
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The MANY Heads of Hhe
Common Core lzeasf...

www.StopCommonCoreinNewYorke

Local Flawed &
Control Experimental
Standards

Figure 1. Widely circulated Facebook illustration from
www.StopCommonCoreinNewY ork.com.

Hostility and Folk Devils

Through examination of hundreds of Facebook posts of anti-Common Core groups, we were
able to identify two categories of folk devils that were vilified as those responsible for the CCSS.
The first category consisted of those who could be blamed for taking over state and local control
of educational decisions, such as President Barrack Obama, Education Secretary Arne Duncan,
or the federal government in general. The second category consisted of people or companies that
people felt would benefit financially from adoption of the standards, including Bill Gates,
Pearson, and other educational “big businesses” or test developers. In each post, the identified
folk devil was blamed for the problems that the CCSS were believed to cause, including
concerns mentioned in the previous section, as well as criticized for trying to make money
through exploiting children’s education.

Consensus

We identified three types of evidence for consensus that the CCSS were problematic. First,
hundreds of anti-Common Core Facebook groups were created, with some consisting of
thousands of members. Second, numerous articles about the CCSS were produced by national
news outlets in 2013 and 2014. Third, because the voice of opposition became so loud, and had
such a large number of people behind it, several states were forced to legislative action, such as
Governor Herbert of Utah organizing a team to review the quality and legality of the standards
(Herbert, 2014), or states (e.g. Indiana, Oklahoma, South Carolina) choosing to completely pull
out of the standards altogether (Strauss, 2014).

Disproportion

Disproportionate claims that the CCSS were detrimental and causing great harm were not
uncommon. Klein (2015) reported on five of the extreme claims, including that the Standards (a)
“turn kids gay,” (b) “indoctrinate kids under a Nazi society,” or (¢) “turn kids into communists or
socialists.” Considering that the CCSS are only a set of learning goals and not a brainwashing
effort, these claims were clearly unfounded and over-reactive.

As another example of the disproportionate reaction towards the CCSS, consider what
happened in the state of Indiana. On May 11, 2013, Governor Mike Pence signed a bill that
paused implementation of the CCSS (Castleman, 2013), and by March of 2014, Pence signed
legislature that completely withdrew Indiana from the Common Core Initiative (Nicks, 2014).
Despite clear warnings from the Obama administration that fines would be enacted if the state’s
new standards were subpar (Lucas, 2015), Indiana pushed forward trumpeting their actions as an
act of support toward state’s rights. “By signing this legislation, Indiana has taken an important
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step forward in developing academic standards that are written by Hoosiers, for Hoosiers, and
are uncommonly high,” Governor Pence said in a statement (Calvert, 2015). The committee for
creating new state standards met in October 2013, but after a draft of these new standards was
released, the Indiana Department of Education found that 70 percent of the standards were
exactly the same as the CC with another 20 percent of the content simply a modified version of
the CC (“Open the Floodgates”, 2014). These similarities to the CCSS continued on through to
the final draft, with many seeing the new standards as little more than a “rebrand” (Kurtz, 2014)
or a “warmed-over version of Common Core’s standards” (Calvert, 2015). Hence, it seems that
the negative reaction towards the standards themselves was unwarranted, and most likely an
overreaction, as the state found it difficult to write high-quality standards that were different
from the Common Core.
Volatility

Despite the CCSS development in 2009-2010, and the adoption of the standards by a large
majority of states from 2010-2012, news coverage about the CCSS was fairly minimal until
midway through 2012, when the number of news articles mentioning the CCSS grew rapidly.
According to a LexisNexis Newspaper article search analysis of US publications conducted by
the American Enterprise Institute (Hess & McShane, 2014), this rapid growth in articles
reporting on the Common Core rose quickly from August 2012 to a peak in the number of
articles in August 2013 (see Figure 1).

FIGURE 1
Common Core Referenced in Articles, by Month, 2009-13
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Source: LexisNexis search by month: term “Common Core” and category “US Publications.”

Figure 2. Number of US newspaper articles mentioning “Common Core” per month. From Hess
& McShane (2014). Adapted with permission.

As additional evidence of the volatility of the reaction towards the CCSS, Figure 2 presents
the number of anti-Common Core Facebook groups created by month, from a sample of 191 of
the largest of these groups across the US:
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Figure 3. Number of anti-Common Core Facebook groups created per month from a sample of
191 of the largest groups in the US.
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From these two figures, it is clear that public and press awareness of, and concern with, the
CCSS erupted during the spring and summer of 2013, but over the past five years, concern and
calls for repealing the CCSS have lost their prominence in the public square. However, this is not
to say that distress over the Common Core will not reach these levels again, as some moral
panics can become “a conceptual grouping of a series of more or less discrete, more or less
localized, more or less short-term panics” (Goode & Ben-Yehuda, 2009, p. 42). Thus, other
spikes in concern about the CCSS may still occur in the future.

Discussion

As education is a highly politicized, highly charged discussion within the US, it might not
seem surprising that such opposition to the CCSS arose during their implementation. However,
the sociological construct of moral panic gives us a more detailed description of the negative
reaction towards the Common Core, helping us see why it was so easy for the public and media
to paint the CCSS as a terrible idea.

Intriguingly, the Common Core moral panic afforded both sides of the political spectrum
concerns and arguments against the Common Core. For those on the Left, the idea of big
businesses profiting from the education of the nation’s children was maddening. For those on the
Right, Federal Government taking over local control was a large overstep of power. In both
cases, calls for the repeal of the CCSS ran rampant across the country.

This leads us to end with the following question: if more educational reforms are desired,
how can we avoid another moral panic in the future? Sadly, because education is so politicized,
the answer may be that a moral panic cannot be avoided; nevertheless, it could be minimized.
Better communication with parents and teachers, and a slower implementation of standards could
have benefitted the CCSS greatly. Future educational reformers, including educators and
politicians, should look closely at the Common Core Moral Panic, and consider carefully how
mistakes made in its implementation could be avoided in implementing future reform.
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Math Mapper 6-8 (MM638) is a digital learning system (DLS) that scaffolds curricular
coherence, supporting assembly and iterative improvement of diversely-resourced curricula.
MMG68 includes a learning map consisting of learning trajectories organized around the big
ideas in middle grade mathematics and a diagnostic assessment and reporting system. We report
on how a design-based implementation research (DBIR) study supported the development of a
new framework for curriculum enactment, the “agile curriculum framework,” and explore how
such a framework can productively blur lines among curriculum designer, user, and researcher.

Keywords: classroom assessment, learning trajectories, agile curriculum, digital learning system

Perspectives or Theoretical Framework for the Research

The research is grounded in constructivist learning theory (Confrey & Kazak, 2006;
Thompson, 2002; von Glasersfeld,1982): student thinking around key ideas goes through
predictable, albeit probabilistic, transformations from naive to sophisticated thinking to reach a
target concept. The sequence of the transformations can be described as learning trajectories
(LTs) or progressions (Confrey, Maloney & Corley, 2014; Sarama & Clements, 2009; Simon,
1995). They begin from students’ prior knowledge, which is refined and revised based on their
interactions with a carefully sequenced set of curricular tasks. Those tasks challenge students to
solve new problems that represent more sophisticated reasoning. We emphasize that a learning
trajectory draws fundamentally from genetic epistemology (Piaget,1970), enacting the idea that
to “know” something, one has to consider what conditions create and render the need for the
idea. However, LTs do not assume Piagetian stage theory (Lehrer & Schauble, 2015), and they
do not manifest as biological development such as maturation. Movement along a trajectory
occurs via building and refining schemes, through a process of assimilation and accommodation
as students solve tasks (Simon & Tzur, 2004). It depends on instructional experiences and on
students’ “opportunities to learn”: opportunities to undertake the carefully sequenced tasks, use
appropriate tools, and engage in discussions and debates with teachers and peers. Unlike most
meanings of instructional design, which involve logical deconstruction of how to reach targeted
ideas (Gagne, 1965), LTs are grounded in empirical research on the patterns of responses shown
by students in learning (sometimes called “emergent” (Gravemeijer, 1999)).

The Study
This study reports on the “agile curriculum framework™ (Confrey, et al., 2018) and how it
can be supported by Math Mapper 6-8 (MM68), a new type of digital learning tool. The agile
curriculum framework (figure 1) describes how curricula are enhanced through iterative short-

term (during instructional units) and long-term (across months and years) cycles, based on
feedback.
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An Agile Curriculum Framework
(leveraging two-cycle feedback)
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Figure 1. The agile curriculum framework (Confrey et al., 2018, p.7).

MMB68 is a digital learning system (DLS) (Confrey, 2015) that is built on an explicit
research-based foundation in learning trajectories (LTs), aligned to the Common Core State
Standards in Mathematics (CCSS-M) (Confrey et al., 2014). MM68’s front end is a learning map
that organizes the content of middle grades math around nine “big ideas,” each of which is
subdivided into 2-5 “relational learning clusters.” Each cluster comprises a set of constructs
whose interconnected meaning supports the big idea. Each construct is embodied by an LT of 5-
12 progress levels, which are used to build periodic “classroom assessments” (Pellegrino,
DiBello, & Goldman, 2016). MM68 generates ongoing assessment reports—for teachers and
students—that are used to refine instruction. In this paper, we present the results of a 4-week
design study investigating if—and, if so, how—three elements interact to have positive impacts
on students’ learning: 1) teacher knowledge of LTs, 2) a curriculum designed to promote student
progress along related LTs, and 3) the use of diagnostic assessments to monitor progress on those
LTs. The goals of the study were to: a) improve sixth grade students’ ratio reasoning, b) learn
how teachers share, discuss, and act with students on assessment data, and c¢) use classroom
observations and student data as one source of validation of the LT-based assessments.
Methods

To hold one critical factor constant in this complex system, a single set of curricular
materials was created to be implemented across all sixth grade sections at a high needs middle
school. The materials were aligned to the LTs in two ratio clusters: “key ratio relationships”
(cluster 4) and “comparing ratios and finding missing values” (cluster 5). We conducted a
design-based implementation research (DBIR) study (Penuel & Fishman, 2012). Our research
conjecture (Confrey & Lachance, 2000) was that if teachers understand the LTs, they can assist
students in progressing through the materials to build and demonstrate more sophisticated ratio
reasoning. We further conjectured that 4ow the teachers discussed the data from periodic
assessments with students would provide an explanatory framework on how the LTs can most
directly support improvement in practice. Therefore, we sought to observe how the teachers
discussed and reviewed the data with students, how they adjusted their instruction, and whether
and how students resolved to improve.

Data Sources and Analysis

Five assessments were administered during the study: One pretest and one posttest, scored
digitally, both containing items from both clusters 4 and 5; two diagnostic assessments
administered following instruction on each cluster (one containing only cluster 4 items and one
containing only cluster 5 items), scored digitally; and an independent posttest from Student
Achievement Partners administered on paper, scored manually by two members of the research
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team. The mean scores on the pretest, diagnostic assessments, and posttest were computed and
the difference between the means was determined. Results are reported for students completing
both the pretest and posttest (n=165 for cluster 4 and n=143 for cluster 5). Some students
mistakenly took a cluster 4 assessment as a posttest, and others mistakenly took a cluster 5
assessment as a posttest, resulting in a difference between the number of students completing
both the pretest and posttest for cluster 4 and the number of students completing both tests for
cluster 5. Teachers were also observed implementing the curricular materials, administering
assessments, and reviewing assessment feedback with their students. Teachers and students were
interviewed to understand how they were interpreting and acting on assessment feedback.

Results and Discussion

For students who completed both the pretest and posttest, mean scores increased from
35.59% (SD=20.67%) to 50.19% (SD=22.85%) in cluster 4 (a gain of +14.6), and from 31.59%
(SD=21.53) to 47.14% (SD=25.34%) in cluster 5 (a gain of +15.55). The effect sizes were 0.67
(cluster 4) and 0.66 (cluster 5). On the independent posttest, students achieved a mean score of
38.3% (SD=20.6%, n=262). Some difference between the independent posttest and the MM68
posttest is to be expected. The curriculum, diagnostic assessments, and MM68 posttests were
built with the LTs as a common framework, providing a coherent classroom experience. The
independent posttest was not built using this framework and the alignment between assessment
and classroom experience was not as strong. However, as will be discussed below, the results of
the independent posttest informed revisions to both the LT levels and long-cycle modifications to
the curricular materials.

Examples of the type of short-cycle and long-cycle revisions described by the agile
curriculum framework were evident in the ways researchers and teachers presented, discussed,
and shared results and insights. These insights took the form of: a) recommendations about
reporting and acting on diagnostic assessment data, b) general instructional suggestions, c)
content-specific suggestions, and d) proposed changes to the curricular materials.

To encourage student discussion and reflection, and to help ensure that students perceived the
diagnostics as constructive, teachers encouraged each other to focus on both strengths and
weaknesses of students. Researchers worked with teachers to emphasize the LTs as a way of
monitoring progress and guiding future learning. Teachers, in turn, focused on the interpretation
of the scores as “getting started,” “showing some understanding,” or “showing proficiency”
rather than the specific percent correct score. Students reported positive attitudes about revising
and resubmitting answers and were observed “taking up the language” of the constructs and
clusters to focus their learning. Researchers leveraged diagnostic assessment data to address gaps
in student understanding by providing supplemental activities to be used during the unit.

Researchers also made long-cycle revisions to the curricular materials based on assessment
data. Responding to weak performance in the construct “finding unit ratios,” researchers revised
the curricular materials for future use by strengthening the treatment of unit ratio. Similarly, the
independent posttest revealed insufficient treatment of the connection between part-to-part and
part-to-whole ratios. The materials were revised to specifically address this gap.

Finally, researchers provided content-specific suggestions to inform future implementation of
the curriculum. For example, researchers suggested teachers encourage students to consistently
make, label, and use ratio tables and ratio boxes, and to use “broken arrow” diagrams to stress
the multiplicative relations both as covariation and as correspondence (Vergnaud, 1988).

Conclusion
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The DBIR work carried out in this partnership led to a variety of means of ongoing
improvement, including professional development, curricular revisions, and tool redesign aimed
at strengthening and supporting short-cycle and long-cycle instructional adaptations
characteristic of the agile curriculum framework. Although this study reports on findings from
one grade level team in one school, it nevertheless demonstrates how a school partnership can be
formed to work together for ongoing improvements and the types of learning gains that can be
achieved when students, teachers, and researchers all have a stake and a role in that
improvement.
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RE-LEARNING CURRICULUM THROUGH FOCAL EXPERIENCES TO CREATE
SPACE FOR DIALOGIC CURRICULUM

Jennifer Y. Kinser-Traut
New York University
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Learning to teach mathematics is a complex endeavor. Particularly challenging is making sense
of the various levels of curriculum (societal, technical, and enactment) and engaging in problem-
solving, or dialogic, mathematics curriculum. This self-study examines how one early career
teacher transformed her enactment of curriculum, through specific experiences during her first
five years teaching science and mathematics. Narrative inquiry was used to examine past
artifacts (i.e., lesson plans) and experiences. The findings highlight the importance of specific
focal experiences that support teachers throughout their first five years of teaching to create
space in the technical curriculum for enacting dialogic mathematics.

Keywords: Curriculum, Teacher Beliefs, Teacher Education-Inservice

Experience is the foundation for learning (Dewey, 1902), as such prospective teachers (PSTs)
draw upon their many years of experience as mathematics student when they are learning to
teach. Despite recent calls for dialogic instruction, which includes challenging problem-based
curriculum, group work, and an emphasis on mathematical thinking over finding correct answers
(NCTM, 2000, 2010), PSTs often draw on their own classroom experiences to define
mathematics teaching. These formative experiences as a learner, often learning mathematics
through direct mathematics instruction, limit PSTs’ understanding of elementary mathematics
(Ma, 1999). This self-study, drawing on levels of curriculum (Doyle, 1992), utilizes a narrative
approach to examine how specific focal experiences can transform one’s mathematics
curriculum enactment. I begin by unpacking my learning to teach experience, using the lens of
extant literature, and conclude with implications for teacher education.

Theoretical Framework

In this proposal, I utilize the levels of curriculum—societal, technical, and classroom
enactment (Doyle, 1992)—to examine how an early career teacher’s (ECT) understanding of
curriculum levels changed as her experiences changed.
Societal Level of Understanding Curriculum

PSTs enter mathematics methods with varying beliefs about how school should be taught
based on their own experiences (Ambrose, 2004). These ideas and understandings come from
their experience of being students. This level of curricular understanding is termed the societal
level. Such an understanding “may mislead prospective teachers into thinking that they know
more about teaching than they actually do” making “it harder for them to form new ideas and
new habits of thought and action" (Feiman-Nemser, 2001, p. 1016). Therefore, one of the first
goals of many mathematics teacher educators (MTEs) is supporting PSTs in expanding their pre-
existing beliefs of mathematics curriculum. Here the emphasis is often placed on support PSTs in
gaining a better understanding of the realities and complexities of dialogic curriculum enactment
(e.g., Ambrose 2004). Unfortunately, the societal level of curricular understanding is often in
conflict with the ideas in mathematics methods.
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Technical Level of Understanding Curriculum

The technical level of curriculum is often concrete, albeit frequently changing, and includes
standards, textbooks, and curriculum documents (Doyle, 1992). While these standards can be
straightforward they can also be challenging for prospective teachers to enact for a myriad of
reasons, i.e., prospective elementary teachers may not have sufficient mathematical content
knowledge (e.g., Ambrose, 2004). Additionally, as Westbury (2002) highlighted prospective
teachers may view standards-based textbooks as "curriculum-as-a-document.” In other words,
novice teachers may view the textbook as the curriculum that they enact—not something that
supports the curriculum. Due to this conflation between the technical curriculum and the
enactment level of curriculum, ECTs too often rely on their understanding of mathematics
curriculum at the societal level to support their enactment, rather than their new understandings
from methods.
Enactment Level of Understanding Curriculum

As ECTs experience teaching they begin to understand curriculum at the level of enactment.
At this level of understanding, teachers have more experiences and are more familiar with
classroom variables. ECTs draw on these experiences and the resulting stories when deciding on
their daily classroom curricula (or lesson plans). Ideally, by building on their understandings of
dialogic mathematics from mathematic methods, ECTS understanding of curriculum will begin
to expand. However, ECTs often face a tension between the technical curriculum and what
works in classrooms, or at the enactment level of curriculum. This tension, can be viewed as
recontextualization, or how teaching practices and ideas introduced in methods are enacted, or
not, by ECTs (Ensor, 2001). In summary, the enactment level is the actual implementation (or
teaching) of the curriculum, building on understandings that include their societal view, the
technical curriculum, and understandings from teaching and mathematics methods.

Methods

In this self-study, I took my first five years of teaching as a case to offer a “deep and critical
look at practices and structures of teacher education” (Zeichner, 1999, p. 11). I utilized a
narrative approach (Carter, 1993) to identify both my curricular enactment and my understanding
of curriculum levels. I open-coded (Strauss & Corbin, 1990) lessons plans, journal entries, and
specific recalled experiences that comprised my narrative of learning-to-teach. Through this
process | identified five specific focal experiences that impacted my curricular enactment and my
understanding of curriculum levels.

Findings

The Starting Point—Societal View of Curriculum

Growing up particularly engaged in my classroom education I believed I understood
curriculum. However, my view changed as I advanced in high school mathematics. We were
learning material that was engaging on its own, yet I had no idea why we were learning it. I tried
to trust the teacher, but while learning Conic Sections in Algebra II, I finally had to ask, "How do
we use conic sections in the real-world?" In response, we (the class) were given a new project,
to explore how Conic Sections are used in real life. As I was learning to teach, I regularly
reflected on this early experience questioning how content, and curriculum were taught in
schools. Specifically, I wondered why the real-world was often separate from the classroom.
Technical Curriculum and the Foundation for Creating Space

Several years later, I had earned a BS in Biology with a minor in environmental education,
and I was an AmeriCorps member, responsible for running a Title 1 elementary school garden.

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Curriculum and Related Factors 115

Through one school garden conference and a handful of education courses (for my minor and
general interest), I knew I should connect the garden activities to standards. I thought this
connection would facilitate classroom engagement. Having limited support in making
connections | turned to the standards, and thus began my first real experience with the technical
curriculum. I read (and re-read) the state standards, which formed the foundation for three garden
activities I created. Each activity addressed several mathematics and literature state standards.

Through my narrative analysis, I also recognized that this year provided the foundation for
developing my knowledge of students and their communities, or Community Funds of
Knowledge (CFoK). I worked with families before and after school and I began to understand
the wealth of knowledge, or CFoK, that each family had to offer. I found that connecting to and
eliciting CFoK helped the garden flourish. During this year, I began to think of ways to connect
this knowledge with the technical curriculum (a key component of my future curricular
enactment). In this position, I experienced both the value of state standards and the importance of
working with families and community.

Dialogic Curriculum Enactment in Three Steps

Phase 1: Technical curriculum is not enough. The following year, as I started my first
teaching position, at a relatively new charter school, my developing understanding of curriculum
was challenged. In preparing for the school, I studied the standards for middle school science and
mapped these onto to the school calendar, ensuring I would “hit” each standard. During this
process, my curricular understanding was limited to the technical level, despite having worked in
the same neighborhood the year before, recognizing the value of CFoK. Yet, as my students
filled the classroom, my view of curriculum complexified as I was met with the realities of being
a new teacher in a school with few resources. Throughout this first year teaching my curricular
focus included my students and my attempts of curricular enactment. I still recognized that
standards had value, but I now understood that they were not sufficient to teach diverse middle
school students. Rather there were many more details to attend to and I began to develop and
implement approaches to connect to families and the community.

Phase 2: Engaging students in their education. The following year I taught at a well-
established private school where my understanding of enacted curriculum changed again. This
child-centered school was aligned with Dewey's (1902) emphasis on student experience as a
critical component of learning. Therefore, with the support of a colleague and veteran math
teacher, my students (and not the standards) became my key focus when developing lesson
plans. My classes were much smaller, yet much more individualized and involved. Here I
connected my understandings from my prior focal experiences (the importance of real-world
mathematics, CFoK, and standards), and when I developed or enacted curriculum I drew on my
knowledge of students, their engagement, and real-world mathematics. For example, through
problem-solving lessons, I had students derive pi and identify real-life applications for quadratic
functions. Overall, this teaching experience proved essential in my understanding of successful
curriculum enactment, specifically my expanding view of what enactment could include—
dialogic mathematics.

Phase 3: Creating space in the technical curriculum to engage students. When I began
teaching at a large public high school, I was provided with structured mentoring, re-introduced to
state standards and introduced to new technical aspects of the district. As such, my enactment
level of curriculum began with the state standards and incorporated the district level
expectations, but I also made space for student engagement, real-world applications, and student
interest in their own education. For example, I began each year with the students writing a short
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essay entitled, “Why Mathematics?,” in which students researched and explained why math was
personally important. Building on my prior focal experiences, I now saw room in the technical
curriculum to include enactment of curriculum that created a community of learners, supported
each student in understanding why we were learning the content, focused on problem-solving,
and sought to authentically addressed the standards.

Conclusion

This narrative approach to self-study offers insights into the complexities ECTs face when
learning to teach, specifically understanding the varying levels of curriculum. For me, it took
five years of teaching and key focal experiences to understand the complexities of curricular
enactment and to recognize that, contrary to my pre-existing beliefs, there is space in the
technical curriculum for a dialogic approach to teaching mathematics. While moving schools
provided me with specific focal experiences that pushed my understanding of curricular levels, it
is not a sustainable model for teacher education. Yet, my experience and narrative, highlights the
challenges MTEs face (often in one-year or less) in supporting PSTs to move beyond a societal
understanding of curriculum to one that includes enactment of research-based practices. This
study suggests implementing explicit focal experiences (i.e., focus on child-centered learning) to
support PSTs and ECTs in developing a comprehensive understanding of mathematics
curriculum.

This and other self-studies, presented as case studies, may offer MTEs opportunities to begin
the conversation around curriculum levels and identify additional focal experiences (Zeichner,
1999). Introducing case studies and focal experiences addressing curricular levels may support
ECTs successful transition from a societal understanding of curriculum to an understanding that
recognizes there is space in the technical curriculum for enacting dialogic mathematics. Future
research examining the impact of case studies and curriculum level work in methods classes and
during professional development would support the refinement of such an approach.
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THIRD GRADE TEXTBOOKS’ MODELS FOR MULTIPLICATION & DIVISION
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Multiplication and division are important topics that are formally introduced in third grade.
Visual models and representations are key scaffolds for facilitating the teaching and learning of
these topics, but there is little research on the prevalence of these models in classrooms. The
present study examined six U.S. textbooks and found that three quarters of independent practice
and homework tasks did not incorporate visual models. Additionally, textbooks vary significantly
regarding which specific models are incorporated.

Keywords: Curriculum; Elementary School Education; Number Concepts and Operations.

Overview & Purpose

Multiplicative reasoning is an important topic that is typically introduced formally in third
grade in U.S. schools. Analyses of textbooks suggest that many different visual representations
are used in various textbooks in different nations (Davydov, 1991; Harries & Sutherland, 2000;
Watanabe, 2003). The variety of representations available for multiplication and division is
extensive, with Lay (1963) noting the benefits of set models, length models, area models, tree
diagrams, and tables/figures. Although some research has focused on the affordances and
constraints of particular models (e.g., Barmby et al., 2009; Huang & Witz, 2013), there has been
relatively little research examining the prevalence of particular models in U.S. textbooks or their
use by elementary teachers.

Various researchers have found that textbook content influences teachers’ instructional
decisions and content selection (Grouws et al., 2004; Porter, 2002). International comparisons of
U.S. textbooks to those of other nations suggests that U.S. textbooks do not sufficiently promote
the relationship between a visual representation and the symbolic notation associated, and there
is less focus within such representations on the structure of multiplication (Harries & Sutherland,
2000; Watanabe, 2003). In his implementation of visual representations in a textbook, Davydov
(1991) suggests that not only the use but the means of using representations is essential in
promoting multiplicative meaning for children. Specifically, Davydov (1991) notes that while
visual representations are important, they are not “equivalent to demonstrating the object
conditions of multiplication...that create a basis for the subsequent transfer to operation with
signs” (p. 30). Thus, the types of representations that are used in textbooks matter and may affect
how teachers scaffold students’ learning of multiplication and division. Although the prior
literature suggests a comparison of children’s engagement is both necessary and useful, the
current study takes a different approach. In addition to the need for understanding which models
(and the pedagogy associated with their use) promote multiplicative reasoning, there is a need to
understand which models are currently promoted in U.S. textbooks. Thus, the purpose of the
present study is to examine various U.S. third grade textbooks for the visual representations
provided or solicited for students in tasks for independent work.

Sample & Methods
Six third grade textbooks were selected for analysis, based on their prevalence of use in area
school districts. The textbooks include: enVision Math (2016); Eureka Math (2016); Everyday
Mathematics (2016); GoMath! (2012); Investigations in Mathematics (2017); and My Math
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(2018). Analysis focused on tasks most likely to be assigned to students for individual practice in
class, or for individual homework. Additionally, tasks were analyzed only from sections of the
book explicitly designated as focusing on multiplication or division by the publisher. For
example, analysis of enVision Math included tasks within independent practice and homework &
practice for sections the publisher aligned with multiplication and division mathematics
standards. The current sample includes 4,937 tasks across all six textbooks.

Tasks were coded as either providing or soliciting specific visual representations. Although
we did code for variations of representation, the present study focuses on eight specific nominal
codes: no visual representation, set model, length model, area model, number line, tree diagram,
table/figure, other visual representation. Each task was coded for types of provided and solicited
representations it included. Provided representations are those illustrated within tasks whereas
solicited representations required students to construct them in some manner. Both authors
independently coded 100 tasks from one textbook. Interrater reliability was computed using the
Kappa statistic and indicated near perfect agreement for provided representations (K=.96) and
solicited representations (K=.89) between both authors (Landis & Koch, 1977). This supported
the use of independent coding of remaining tasks across textbooks.

Analysis & Results

Figure 1 illustrates the distribution of provided and solicited models used to represent
multiplication or division across all textbooks. Given the coding process, there are some tasks
(n=31) that included both provided and solicited models. However, the descriptive statistics still
provide a clear indication of how prevalent particular models are across textbook tasks designed
to be individually assigned to students. Evident in Figure 1 is the relative dominance of tasks
with no visual model for multiplication/division either provided or explicitly solicited. When
such tasks did provide or solicit a visual model, the most common model across textbooks was
the set model, followed by tables or figures, and then length models (excluding number lines).
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Figure 1. Prevalence of multiplicative models across textbooks.
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Next, we sought to examine whether textbooks differed comparatively in regards to the
visual models provided or solicited. The distribution of observed and expected counts for both
provided (P) and solicited (S) visual models is presented in Table 1. A Chi-square statistic for
provided models suggests that the observed distribution was independent from chance
(xX(df=35)=554.78, p<.001), and a similar result was found regarding solicited models
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(x*(df=35)=350.88, p<.001). An examination of differences in both observed and expected
counts in Table 1 suggests that while Eureka Math had fewer observed tasks with no visual
model provided than was expected by chance, all other textbooks had more such tasks than were
expected. However, it should be noted that 71.9% of Eureka Math tasks provided no visual
representation. Other trends of note reveal that Eureka Math had comparatively higher
frequencies of providing and soliciting set models, while enVision and Investigations had
comparatively lower frequencies in both regards. Some textbooks differed in their consistency
with either providing or soliciting the same model. For example, Everyday Math provided set
models for only one task, but solicited a much higher frequency. Numerous other trends emerged
across models, suggesting that, in general, certain textbooks emphasized the use of particular
visual models over others, and these differences were statistically significant.

Table 1: Observed and Expected Counts for Visualizations of Multiplication and Division

Set Length | Area : Number Tree Table/ : Other None
Model | Model | Model Line | Diagram : Figure | Visual
P S P S P S P S P S P S P S P S
S 39 823 S 1 0 28 3 0 0 28 1 0 21 & 725 806
69 37.:20 & 8 5 16 2 1 0 39 1 8 26 i 682 766
Tl P13 it L T D G et T T D
Math 92 SR 2y AWy Il ® 22 2 1 0 S ] 11 35 911 1023
Everyday 1 36: 0 0 {10 6 0 0 0 0 6 0 4 8 167 138
Math 15 8 2 2 1 4 0 0 0 0 2 6 152 171
: 96 2SO O 8ly i 3l < 0 0 70 2 3 30 ; 869 1022
GoMathl| o0 75 56 1o 1 s 21 21 g ol g g s g0
Investiga 13 2 136 8 i21 10 0 2 0 0 11 0 0 19 | 419 459
tions 41 22012 ) 5 3 10 1 1 0 23 0 5 15 ; 404 454
My Math 109 53 : 0 0 0 0 37 0 6 0 30 0 1 44 : 1000 1086
97 52:28 11:12 7 23 2 1 0 998 11 36 956 1074

Note: Italicized numbers are expected by chance, and non-italicized numbers are observed. Provided
models are designated in black text in column P, and solicited models are designated in gray text in column
S.

Discussion

The present study describes the preliminary findings of an ongoing analysis of visual models
in third grade textbooks. Findings suggest that current third grade textbooks’ tasks for
independent student work (both within and outside of class) engage students with few visual
models of multiplication or division. Specifically, when accounting for both provided and
solicited visual representations, approximately a quarter (27.7%) of analyzed tasks were
designed to engage students with a visual model of multiplication and/or division. Additionally,
there appeared to be little consistency across textbooks in regards to which visual models were
more prevalent.

The results presented in this brief report reflect our preliminary analysis of models used in
U.S. textbooks. Further analysis of the present data will focus on when representations are
incorporated in each textbook, and with what aspects of multiplication and/or division. For
example, a surface level analysis does suggest that textbooks differ in regards to the prevalence
of visual representations in later chapters on multiplication/division, but analysis is currently
ongoing.
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There are several potential implications from the preliminary analysis provided here. One
implication is that the relatively infrequent use of visual models appears at odds with research
literature promoting specific use of such models (Sherin & Fuson, 2005). Another potential
implication is that the inconsistency between textbooks on the use of particular models may
promote confusion in professional discourse on such models for teachers (and students) who
have used and are familiar with different textbooks. Although research suggests that textbooks
do influence teachers’ pedagogical decisions (Grouws et al., 2000; Porter, 2002), future research
is needed to understand whether, and to what degree, the use of specific visual models in
textbooks affects teachers’ use of such representations in their lessons.

The present study focused on independent practice and homework assignment tasks, in
regards to provided and solicited visual representations for multiplication and division. Results
indicate that textbooks provide relatively few such tasks that incorporate visual models (27.7%).
However, it is unknown how teachers use these tasks. It is possible that some teachers select
primarily tasks with visual models, while other teachers may select mostly tasks without visual
models. There are likely many factors that influence such task selection including pedagogical
content knowledge, teaching philosophy, institutional obligations, etc. This preliminary analysis
provides a report on only what visual models are present in tasks designed for independent work.
Future work is needed to unpack how such distributions influence teachers’ decision making, and
affect students’ mathematical learning.
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THE ROLE OF THE TWO-COLUMN PROOF IN THE GEOMETRY CLASSROOM
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Our research team surveyed members of the mathematics education community to gain insight
into the community’s perceptions of the two-column proof. We asked participants to describe the
value of the two-column proof and discuss whether they would be in favor of eliminating it from
the high school curriculum. There was a wide-range of diversity in the responses and we present
several themes that we observed. We found that about 36% of the respondents were definitely or
probably in favor of eliminating the two-column proof, 42% were definitely or probably not in
favor of eliminating it, while about 22% were unsure.

Keywords: Reasoning and Proof, Geometry and Geometric and Spatial Thinking, Curriculum

Reform documents (e.g., Common Core State Standards Initiative, 2010; National Council of
Teachers of Mathematics, 2000) have longed called for mathematical proof to be a part of K-16
students mathematical education. However, despite these efforts, proof still has a marginal role
in schools (Stylianides, Stylianides, & Weber, 2017). Historically in the U.S., most students’
experience with proof is limited to geometry; and a common way of engaging students with
proof is through the two-column format (Herbst, 2002b). According to Stylianides et al. (2017),

At least in the United States, proofs in geometry are sometimes written in a two-column
format where a geometry statement appears in the left column and a reason for why that
statement is logically permissible appears in the right column (Herbst, 2002b). Herbst
(2002a) observed that this format places implicit (and sometimes conflicting) demands on
teachers and students that constrain what is possible in a secondary school classroom. For
instance, the two-column format implicitly requires giving students a statement (in the form
of premises) and a conclusion, and testing students’ abilities to reason logically from the
statement to the conclusion. This practice discourages students from generating key ideas
from a proof, constructing their own diagrams, or making conjectures by choosing their own
premises and conclusions (Herbst & Brach, 2006). (p. 248)

Herbst (2002b) described how the two-column format developed as a way to meet a
Committee of Ten mandate, introduced in 1893, that students learn to prove in geometry. The
intention of this mandate, decreed by college professors, was to prepare students for college and
create opportunities for students to develop mental discipline. The two-column proof emerged as
a way to make it “possible for teachers to claim that they were teaching students how to prove
and for students to demonstrate that their work involved proving” (Herbst, 2002b, p. 283).
Conceptions of mathematics, and proof specifically, have shifted significantly since 1893, yet the
ways in which proof is taught, especially in geometry, have not undergone much change.

How do members of the mathematics education community currently view the role of the
two-column proof in high school geometry? Through an e-mail survey, we sought to gain insight
into the perceptions held amongst members of the mathematics education community regarding
the perceived value of the two-column proof and opinions regarding its place in the curriculum.
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The Authors’ Perspective on Proving as a Disciplinary Practice

Proving is an important aspect of mathematical practice (Hemmi, 2010), and students of all
ages should have the opportunity to learn mathematics through proof (Stylianou, Blanton, &
Knuth, 2010). Proof has a variety of meaningful functions and can be useful for engaging
students in verification, explanation, discovery, and communication (Bleiler-Baxter & Pair,
2017; de Villiers, 1990). But the dominant two-column proof approach for teaching and
practicing proof in high school geometry is counterproductive to students’ productive
engagement in mathematics. The two-column proof has evolved into a one-sided
conceptualization of proof as a means of logical verification that deemphasizes the
communicative aspects (e.g., negotiating the norms for acceptable evidence and explanations) of
problem solving (De Villiers, 1998).

Herbst (2002b) argued that the two-column proof separates the practices of proving from the
practices of knowing. We agree with Herbst (2002b) that “proving should be as natural [as other
disciplinary practices such] as defining, modeling, representing, or problem solving” (p. 283). In
order to reconceptualize proof as a disciplinary practice and to change the way we teach proof,
we need to deemphasize the two-column proof because it is antiquated and counterproductive to
the kind of thinking mathematics educators aim to foster in today’s classrooms. Through our
survey, we sought not only to determine if our views of the two-column proof were shared in the
mathematics education community at large, but also to learn more about perceptions of the two-
column proof that differ from our own.

Methodology

What are the perceptions of the two-column proof held by members of the mathematics
education community? To answer this question, we designed a five-question survey which we
sent to about 900 e-mail addresses gathered from public lists of attendees of mathematics
education conferences. Each question received 152-172 responses. Question 1 asked the
participants to describe whether they were a university professor, in-service teacher K-12
teacher, graduate student, or other. Question 2 was “Is there value in having students write two-
column proofs?” Participants were asked to respond “yes” or “no.” Question 3 requested an open
response: “Why or why not?” Question 4 was “Do you support eliminating the two-column proof
from the high school geometry curriculum?” The participants responded either definitely yes,
probably yes, might or might not, probably no, or definitely no. Question 5 requested an open
response: “Why or why not?” We present a summary of the quantitative results and a
preliminary summary of qualitative themes that we see emerging from our data at this time.

Results

Quantitative Results

Participants included 133 university professors, 22 graduate students, 5 in-service K-12
teachers, and 12 participants who fell into the category “other.” Regarding Q2, “Is there value in
having students write two-column proofs?”” we found 132/169 or 78% of participants responded
“yes” and 37/169 or 22% of participants responded “no.” In response to Q4, “Do you support
eliminating the two-column proof from the high school geometry curriculum?”, 28/171 or 16%
responded definitely not, 44/171 or 26% responded probably not, 37/171 or 22% responded
might or might not, 34/171 or 20% responded probably yes, and 28/171 or 16% responded
definitely yes. Note that about 36% were probably or definitely in favor of eliminating the two-
column proof, 22% might or might not, and 42% probably or definitely were not in favor of
eliminating the two-column proof.
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Qualitative Results

We now present fives themes that are emerging from our data during the preliminary stages
of our analysis of the open responses to questions 3 and 5.

Theme 1: Proof is needed in the curriculum. Many participants expressed worry that if the
two-column proof was eliminated, then proof would disappear entirely from the K-12
curriculum. Such participants wrote that they see value in students’ reasoning, argumentation,
and justification, and if the two-column proof was eliminated, they would like to see it replaced
by another form of proof.

Theme 2: The two-column proof should be regarded as one, but not the only way to
write proofs. Participants expressed a desire for students to be exposed to multiple formats,
perhaps with two-column proof as a scaffold to other formats. Furthermore, students should
choose the type of format with which they are most comfortable.

Theme 3: The two-column proof format helps students think logically and organize
their thinking. Many participants described the value of the two-column proof as helping
students to think logically or organize their thinking. Some participants wrote that the two-
column proof format might help students understand the way mathematical theorems are
logically dependent upon prior results.

Theme 4: The two-column proof format does not meet our goals for students’
engagement with mathematics. Many participants wrote about how the two-column proof
format runs contrary to other goals we have for our students (e.g., view proof as
communication). Some participants noted that mathematicians do not write two-column proofs,
and such proofs are inauthentic and contrary to the goal of having students think like
mathematicians. Others claimed that the two-column proof emphasizes form rather than
reasoning. Some participants claimed that high school students are not ready for the formal
reasoning required by the two-column proof and would be better served by other justification and
reasoning activities.

Theme 5: We would need professional development and detailed planning if we were to
eliminate the two-column proof from the high school curriculum. Many participants noted
that if there was a decision made to eliminate the two-column proof from the curriculum, then a
lot of planning and professional development would be needed. Other participants had a desire to
become more familiar with the research literature before making a decision about keeping the
two-column proof in the curriculum.

Discussion

Our analysis reveals that members of the field of mathematics education have diverse
opinions about the place of the two-column proof in the geometry curriculum. While most
participants stated that the two-column proof does have pedagogical value, many of those
participants’ comments were reserved, noting that the two-column proof may do more harm than
good. However, participants were also hesitant to say that they were in favor of eliminating the
two-column proof from the high school geometry curriculum, citing concerns that this may lead
to the total removal of proof from the curriculum.

Beyond expressing the need for more alternative types of proof formats in the schools, some
participants expressed serious concerns regarding the negative aspects of the two-column proof.
We do not believe it is wise to ignore these concerns. Herbst (2002b) noted,

The two-column proving custom was an accomplishment of geometry instruction in the sense
that it helped comply with a mandate. But that accomplishment did not come for free. It

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Curriculum and Related Factors 124

brought to the fore the logical aspects of a proof at the expense of the substantive role of
proof in knowledge construction. (p. 307)

The mandate that students learn to prove in geometry still exists today in the Common Core
(2010). The requirement that students prove in geometry is part of the state standards for all fifty
states, including those not using the Common Core standards. The two-column format developed
as a way to meet this mandate, and it is questionable whether the two-column format’s dominant
place in the curriculum could be diminished unless we remove entirely the standard that students
learn to prove in geometry. Perhaps there are other creative options for making proof more
meaningful for students in school. Moving forward, we believe that the field could benefit from
research that explores students’ understandings, proficiency in constructing, and comprehension
of a variety of types of proof formats. The research community needs to be informed about the
benefits and constraints of having students write proofs both in the two-column format and other
formats. Additionally, we agree with many of our participants that teachers need professional
development with proof if it is to gain more than a marginal place in K-12 mathematics
classrooms.
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Textbooks remain a common source of content, pacing, and instruction for mathematics
educators. With this in mind, it is critical to examine how the textbooks that educators use as a
primary resource introduce essential concepts. The purpose of this study is to explore how
calculus textbooks introduce and display the definition of derivative, along with the specific
examples and definitions they provide.

The following textbooks were selected for analysis from the College Board’s suggested AP
Calculus textbooks list: Anton & Biven (2015); Finney et al. (1999); Foerster (2005); Larson &
Edwards (2018); and Stewart (2016); see poster for references. Each textbook was analyzed for
the first instance of the definition of derivative, then recorded along with the context, and the
examples immediately following the definition. Analysis suggests three distinct methods of
introducing the concept and definition of derivative. Anton and Biven’s Calculus textbook
(2015) is denoted as an AP Edition, introducing the definition of derivative as follows: “The
function > defined by the formula f°(x) = is called the derivative of f with respect to x” (p. 90).
The example immediately following the definition uses the function f(x) = x> and asks the reader
to find the derivative at x = 2. In this particular case f(2) = £*(2), which could be misleading as a
primary example for students to record in their notes. The structure of the Foerster (2005)
textbook lends pedagogically to a more problem-based approach to teaching calculus. The
definition provided in the text box of section 3.4 states, “Derivative as a function (Ax or h form)
f(x) = ” (p. 86). This textbook emphasizes Ax, possibly because of the focus on application
problems. The current version of James Stewart’s calculus textbook, (2016), begins with the
definition of derivative at a point, also stated in a text box, says “The derivative of a function f
at a number a, denoted by f(a), is f°(a) = if this limit exists” (p. 151).

The choice of Foerster, (2005), and Larson and Edwards, (2018) to use Ax instead of h has
several implications. While this is a robust definition and should be included when teaching the
concept of derivatives, it may be intimidating and discouraging for students who do not come to
calculus with a strong sense of context in math and/or science coursework to be exposed to as a
primary definition (Sofronas et al., 2011). The pedagogical implications in this analysis range
from introducing a critical concept in a variety of ways, to making the conscious decision not to
begin with an example where f(2) = °(2). While the latter seems like a minor detail, not
attending to a pedagogical decision such as this can have an impact on students’ conceptual
understanding of the concept of derivative.
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Local implementation of changes in state educational policy initiatives has proven to be a
broad challenge for the field. One challenge to these efforts are the mixed messages and multiple
interpretations that arise as policy change efforts are enacted locally and the infrastructuring
work necessary to overcome these challenges (Spillane, et al., 2002). In other system-wide
change efforts, social media tools have been used to mitigate this challenge (Terantino, 2012),
however, there is a gap in the literature in mathematics education on the ways in which social
media tools can be used to address these challenges.

After the recent adoption of new state mathematics standards, a partnership between our state
education agency and researchers from four universities in our state was formed to assist in
implementing new state mathematics standards. As a part of these efforts, we use organizational
sensemaking (Weick, 1995) to guide the use of social media tools aimed at promoting common
messages and interpretations of the new state mathematics standards and the ways in which these
standards can be embodied in reform-based instruction with students. Theoretically,
organizational sensemaking is the process that individuals within organizations go through when
they encounter moments of uncertainty and ambiguity as they make sense of change (Weick,
1995). During sensemaking, researchers highlight three cyclic processes: cues that trigger
sensemaking; intersubjective meaning making among members of organizations, and the action
needed to continue to promote organizational sensemaking (Maitlis & Christianson, 2014).

For this proposed poster, we share how we have leveraged Twitter to support the statewide
implementation of new mathematics standards. Using organizational sensemaking, we share an
emerging framework for using social media to promote systemic coherence during
implementation that goes beyond dissemination and communication to promote individual and
collective learning. This poster will provide examples of how the framework guided our use of
Twitter to provide opportunities to engage in the sensemaking processes.
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The purpose of this study was to examine two textbook units on trigonometric functions to
understand what opportunities to learn they provide to students. Despite its reputed content
difficulty, trigonometry is under-researched in the field. Obstacles to understanding trigonometry
may stem from a lack of opportunities to develop deep conceptual knowledge, which the
Common Core State Standards for Mathematics (CCSS-M) were designed to address. Two
features associated with tasks that give students such opportunities are grappling with
mathematics and explicit connections to concepts (Hiebert & Grouws, 2007). These features
define high cognitive demand tasks, as operationalized by Stein and Lane (1996). Thus, to fully
understand how each text gave students opportunities to learn trigonometry meant examining
both the content and the intended cognitive demand of tasks. My research questions were:

1. What specific mathematics content do students have opportunities to learn by studying
trigonometric functions using each of the two selected texts?
2. What are the intended levels of cognitive demand of tasks in the two selected texts?

The textbooks selected for this study were Pearson’s Algebra 2: Common Core and the
second (2011) edition of Key Curriculum Press’s Interactive Mathematics Program: Year 3.1
conjectured there would be important differences between the two texts; for example, IMP, an
NSF-funded “reform” textbook, might have a higher percentage of problems at high levels of
cognitive demand than Pearson, a “traditional” textbook. Over 950 student tasks were coded for
trigonometry concepts implicated, using author-developed codes from a collapsing coding
methodology, and level of cognitive demand, using the framework of Stein and Lane (1996).

Analysis revealed Pearson’s text covered all trigonometry topics required by the CCSS-M,
but it emphasized procedural fluency, with relatively few opportunities for students to engage
with high cognitive demand tasks to build conceptual understanding. IMP, in contrast, provided
ample opportunities for students to first develop conceptual understandings by using high
cognitive demand tasks, followed by opportunities to build procedural fluency. However, IMP
omitted some trigonometry content crucial to prepare students for Calculus from the CCSS-M.
As a result, both texts may have shortcomings for students if enacted as intended. This work
invites discussion of ways curricula can balance development of deep conceptual understandings
of trigonometric functions with procedural fluency skills given limits on instructional time.

References
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K.
Lester (Ed.), Second handbook of research on mathematics teaching and learning (371-404). Reston, VA:
NCTM.
Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An
analysis of the relationship between teaching and learning in a reform mathematics project. Educational
Research and Evaluation, 2(1), 50-80.

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Curriculum and Related Factors 128

HOW TWO PROJECT-BASED MATHEMATICS TEXTBOOKS POSITION
STUDENTS TOWARDS MATHEMATICS

Kelly Curtis
University of Delaware

kbcurtis@udel.edu
Keywords: textbook analysis, positioning theory, cognitive demand, voice of textbook

Mathematics is often seen as neutral and free of bias and subjectivity because it is comprised
of numbers and calculations. However, the way that we use words and language to teach and
communicate about mathematics sends a powerful message to students about who they are and
what they can do in relation to mathematics (Langer-Osuna, 2017). Therefore, we need to attend
more carefully to the language we use in mathematics curriculum materials.

Inspired by prior analyses of tasks and curriculum materials, I created a framework to
analyze two problem-based textbooks: Core Plus (CP) 1 and the Mathematics Visions Project
(MVP), Year 1. Herbel-Eisenmann (2007) analyzed the inclusive and exclusive imperatives used
in textbooks and found that textbooks either position (Harre & van Langenhove, 1999) students
as thinkers (asked to draw a conclusion or make a connection) or scribblers (asked to simply
make a calculation). Additionally, I drew upon Stein and Lane’s (1996) work with cognitive
demand of mathematical tasks because the task itself sends messages to students about whether
they are expected to engage as high thinkers, low thinkers, high scribblers, or low scribblers.

On in-class tasks, students were positioned as high thinkers in CP 50% of the time while
students were positioned as high thinkers in MVP only 18% of the time. Students in the MVP
curriculum were positioned most frequently as low thinkers on in-class tasks, 74% of the time.
For CP, the percentage of times students were positioned as 4igh scribblers increased from 13%
(on the in-class tasks) to 36% (on homework). For MVP, the number of problems with high
cognitive demand decreased (from the in-class tasks to homework) while the number of
problems with low cognitive demand increased which resulted in students being positioned as
scribblers 88% of the time on the homework! The CP materials collectively (in-class tasks and
homework) almost equally position students as high thinkers, low thinkers, and high scribblers.
The MVP materials collectively position students as high scribblers the majority of the time.

Because these curriculum materials both claim to align with the NCTM standards and the
CCSS-M, I expected to find more similarities than differences. However, I found that the CP
tends to position students more as thinkers than MVP does and that the CP homework problems
tend to be more cognitively demanding than the MVP homework. I also found that there may be
more opportunities for students to move out of the scribbler position in the CP materials.
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In many districts, pacing guides strongly filter the sequencing, planning, and timing of
instruction. Furthermore, they often vary from district to district and are created by local
individuals or teams who may or may not have particular expertise in mathematics education.
Research suggests that while pacing guides can support teachers in learning of curriculum
(Bauml, 2015), pacing guides and the pressure to comply with them can also undermine the
professionalization of teaching, prevent teachers from meeting the individual needs of their
students, and decrease teachers’ use of cognitively demanding tasks for the sake of “covering”
the content in the pacing guide (Bauml, 2015; David, 2008). We report on a research-practice
partnership (Penuel, Allen, Coburn, & Farrell, 2015) in which multiple partners across our state
collaborated to mediate these challenges by designing pacing guides, which we renamed as
instructional frameworks, to support districts and teachers in their implementation of new
statewide mathematics standards adopted in 2017.

In this poster session, we provide an overview of activity theory (Engestrom, Miettinen, &
Punamaéki, 1999) as our theoretical perspective and design-based implementation research
(Fisherman, Penuel, Allen, Cheng, & Sabelli, 2013) as our approach to share how a co-design
team of 70 diverse stakeholders (state agency consultants, administrators, district curriculum
directors, teachers, and higher education faculty) brought different lenses to inform decision-
making about the clustering and sequencing of content standards and the duration needed to
teach them. We report on the tensions in critical conversations about clustering and sequencing
of standards during the initial phases of our design process, highlighting the ways in which actors
drew on previous experiences, assessment concerns, curriculum materials, and mathematical
learning progressions/trajectories to inform decision-making during the development of the
instructional frameworks.
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Recent research has shown the importance of including STEM education programs in
elementary schools (Dringenberg, Wiener, Groh, & Purzer, 2012). Teachers may integrate the
STEM disciplines at varying degrees (Nathan, Tran, Atwood, Prevost, & Phelps, 2010), focusing
more on one discipline than another. Given more and more teachers are being asked to integrate
STEM into their instruction, we examined two fourth grade teachers, Ms. Khanna and Ms.
Devries, implementation of DESCARTES, an integrated STEM curricula. We analyzed how
DESCARTES influenced the teachers’ conceptions of teaching and their instructional practices.

In the DESCARTES curriculum, students construct their own knowledge by engaging in an
authentic context (designing and building boats) to solve a real-world problem (shipping cargo
efficiently across a body of water). The students are presented with a challenge of designing a
boat that could carry the most load across a body of water. The students engage in multiple
hands-on activities to examine and test buoyancy, pressure, cross-sections, water displacement,
speed, and volume. The students test similar factors in the DESCARTES software environment,
which is a gamified design, simulation, prototyping, and collaborative environment.

Both teachers participated in a 45—minute initial interview prior to implementing
DESCARTES. Field notes were recorded each day of the 42 week unit. At the end of the unit,
the teachers participated in a 45—minute final interview. Data were analyzed using an inductive
approach.

Although the teachers were “veteran” teachers, they experienced some trepidation prior to
implementing the DESCARTES curriculum. Ms. Khanna expressed, “I was unsure first [about
the DESCARTES curriculum]. I was like, oh gosh! What did I get myself into? You know,
thinking this is going to be hard. And it was.” (Final Interview, 2016). Both Ms. Khanna and Ms.
DeVries became aware how their STEM instruction showed different outcomes compared to
their siloed-discipline instruction— learning gaps amongst students were almost non-existent and
the teachers observed students’ “willingness to not give up. They don’t ever feel like they are
trying to achieve the right answer. They are just constantly making it better” (Final Interview,
2016). After implementing the DESCARTES curriculum, the teachers noticed the positive
effects it had on their instruction, student learning, and student engagement.
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Project and problem based learning are commonly used interchangeably. There are, however,
important differences between the two. The Buck Institute for Education (2017) defined project
based learning as a method focused on students learning by working for a period of time on an
investigation in response to a problem or task. While problem based learning is a student-
centered approach where learning is done through group work to explore open-ended problems
(Center for Teaching Innovation at Cornell University). It appears problem based learning is
driven by the problem, while project based is driven by the project, but both have the
overarching goal of letting students lead the investigation.

The purpose of this study was to conduct a literature review to compare how researchers
have used project and problem based learning to enhance mathematical learning over the last two
years (2015 to 2017). The articles reviewed provided insight into contemporary ways researchers
have enacted problem and project based learning. The goal of the literature review was to
provide insight on how the different conceptualizations of project and problem based learning
may influence the choices made by the researchers.

To collect the most recent articles about project and problem based learning, I conducted an
EBSCO and ERIC search within scholarly peer-reviewed journal and keywords problem based
learning in the title and mathematics and education within the entire paper. We repeated these
searches in EBSCO and ERIC for project based learning. Initial search results found 65 articles
total. Out of the 65 articles (37 problem based learning and 28 project based learning), only 36
matched the criteria of being empirical studies in English language peer-reviewed scholarly
journals. Twenty articles were classified as focused on problem based learning and 16 articles
were classified as focused on project based learning.

Conducting a literature review of both project and problem based learning has afforded the
opportunity to research how the two methods are enacted in classrooms. Initial findings
demonstrate a lack of consistency in both defining problem and project based learning and how
they are used. Preliminary results also yield limited empirical studies within the last two years of
project based and problem based learning in the discipline of mathematics. Mathematics was
included or part of the project but the studies did not focus on mathematical concepts. Studies are
also limited within the United States. The results across both studies show project and problem
learning do enhance the instruction of mathematics.
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This study compares teachers’ manuals from the U.S. and Japan to determine the extent and
the ways in which mathematical knowledge for teaching (MKT) is developed in teacher manuals
from each country. Ball, Thames, & Phelps (2008) discuss the importance of MKT because, in
part, it plays a critical role in planning and enacting the intended curriculum (p. 399).

In addition to providing opportunities to develop MKT, there are other ways in which
curriculum materials can support students’ learning. According to Davis and Krajcik (2005),
curriculum materials could be educative if they provide teachers with opportunities to learn why
developing pedagogical content knowledge (PCK) is important. Therefore, this study is not only
an analysis of the comparison of the textbooks that are educative, and the level at which MKT is
developed. It is also an analysis between Japan and the US textbooks, which can provide insights
into the differences in the materials provided to the teachers in each country. This study was
guided by the following research questions:

1. In what ways do teachers’ manuals provide opportunities for Japanese and US teachers to
develop their mathematical knowledge for teaching (MKT) about triangle congruency
statements? What are the similarities and differences?

2. In what ways do the teachers’ manuals in Japan and the US provide opportunities for
teachers to learn about the mathematics in the lesson and students’ thinking about the
mathematics? What are the similarities and differences?

For the purposes of this exploratory study, to draw a fair comparison between the teachers’
manuals in Japan, Core-Plus Mathematics (Hirsch, 2008), a reform-based curriculum, was
selected to represent the U.S. manual. The U.S. and Japanese curriculum materials had similar
numbers of instances to develop MKT, although the Japanese curriculum instances were spread
more widely among the different categories of MKT. However, there were more differences than
similarities in the other opportunities teachers had to learn from these materials. The Japanese
curriculum devoted more space and time to helping the teachers understand the why behind
certain decisions, which could help teachers develop a deeper understanding of the lesson and
also can provide insight into possible student thinking. In contrast, the US textbook focused
mostly on areas where the students may struggle. Therefore, the curriculum materials were
similar in providing opportunities to develop MKT, but they varied otherwise in the level at
which they were educative for teachers.
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As Dynamic Geometry Software (DGS) becomes more ubiquitous in secondary mathematics
classrooms, it is important that the development of tasks in mathematics curricula mirrors
research findings concerning its use. Textbooks have a strong influence on teachers’ selection of
the content that they include and the instructional strategies that they utilize (e.g. Banilower et
al., 2013). While research shows that the strategic use of technology has the potential enhance
students’ mathematical thinking and understanding (e.g., Hollebrands & Dove, 2011), the
question remains as to whether the use of DGS as promoted in current secondary curricula
leverages that potential. Thus, we pose the following research questions: (a) to what extent is
DGS integrated into current secondary curricula, (b) how is DGS used in secondary curricula?

A nationally representative sample of 20 textbooks was chosen, the unit of analysis for
coding each textbook being a mathematical task. Tasks were coded for whether or not they used
technology, and what type (e.g., DGS, calculator). To answer the second research question, tasks
were coded as using technology as amplifier or reorganizer (Pea, 1985), and whether the use of
DGS involved one of three types of reasoning: exploration, justification, or verification (Oner,
2009). Technology is used as an amplifier if it is only used to perform computations with
increased speed or precision, and is considered to be used as a reorganizer if the purpose of
using technology is to support a shift in students’ focus or thinking. Exploration involves
observing relationships or patterns, justification involves providing reasoning for a conjecture,
and verification involves testing a result; these codes are not mutually exclusive as a single task
could ask students to do more than one.

A total of 1316 of 10,100 tasks were identified as making use technology, with 110 of those
using DGS. Results indicate that 39 tasks used DGS as an amplifier, while 71 used DGS as a
reorganizer. With regard to DGS use, 90 tasks included exploration, 22 included justification,
and 48 included verification. Results will highlight associations (and implications) between
these distinctions and whether the curriculum was (a) investigate vs. conventional, and (b)
integrated vs. subject-specific.
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Addressing problems of practice and implementation at scale is an issue that continues to
challenge education researchers (Cobb & Jackson, 2011). As part of a statewide research-
practice partnership, we are currently using a design implementation research (Fishman et al.,
2013) approach to organize the collaborative design of a multifaceted intervention for new state
mathematics standards and the promotion of more equitable classroom learning opportunities for
teachers. We convened multiple education partners in an ongoing project to create a statewide
curriculum framework to support the implementation of new state mathematics standards.

Considerable research suggests that pacing guides and the pressure to comply with them
can undermine the professionalization of teaching (Bauml, 2015). Novice teachers fear
reprimand from administrators if they do not strictly adhere to the sequence and timing of the
guides.

Teachers may sacrifice cognitively demanding, real world tasks to “cover” the content in
the guide (David & Greene, 2007). Some schools with pre-packaged instructional programs
require teachers to teach the same lessons on the same day (Achinstein & Ogawa, 2000).
Despite the negative consequences, Kauffman, Johnson, Kardos, Liu, & Peske (2002) found
that curriculum guides can be a significant resource for new teachers who are still building
their professional knowledge. Our research-practice partnership convened K-5 and 6-8
Framework Design Teams to create two statewide collaboratively-designed Instructional
Frameworks that could be adapted by all districts to implement the new state mathematics
standards.

In this poster presentation, we describe our purposes for creating K-5 and 6-8 statewide
instructional frameworks (i.e., pacing guide and instructional resources) and how findings from
research shaped our work in the Design Teams. We then describe the processes we used to
ensure that all stakeholders were invited to design (e.g., teachers, administrators, higher
educators, etc.), and enough resources were included so that all districts would be able to adapt
the frameworks to their specific community. We also present preliminary findings from
“framework rollout” meetings across the State that illuminate the ways in which instructional
leaders anticipate challenges to plan professional development in their personal districts.
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The increase of worldwide social relations promoted by a global economy links the local to
the distant in unprecedented ways. This interconnectedness plays a unique role in education
highlighting common problems for education by providing opportunities for generalization and
creating a system of lending and borrowing of educational ideas (Arnove, 2013). Contrasting
different systems of education provides opportunities to illuminate factors that would otherwise
go unnoticed (Cai, 2002). This research space has the potential to provide insights into successes
and failures of educational policies to promote productive change. Mathematics education
provides a unique space for cross-national comparisons. The purpose of this study is to uncover
what is considered valued research in the realms of cross-national comparative educational
research. This research was guided by the following research question: what are the trends in
cross-national research in mathematics education top-tier journals in the last ten years?

Empirical research articles from five of the top peer reviewed journals ranked by Williams
and Leathams (2017) were searched for studies focused on international comparisons: Journal of
Research in Mathematics Education, Educational Studies in Mathematics, Journal of
Mathematical Behavior, Mathematical Thinking and Learning, and Journal of Mathematics
Teacher Education. To collect the articles, I did a keyword search for each journal using “cross-
cultural comparison,” “international comparison,” and ““cross-national comparison”. I also set a
range for publication between 2007 and 2017. Initially 39 articles matched the search criteria.
After closer examination, 26 articles matched the criteria of empirical international comparisons.
Examining the studies matching the criteria provided a picture of the current landscape in cross-
national comparative education in mathematics education in the last 10 years. A spreadsheet was
used to organize and analyze the data extracted from each article including
mathematical/pedagogical topic discussed, databases or test used (e.g. PISA), and countries
compared.

Initial findings indicate an under representation of articles that include a South American or
African country in their study. While comparisons between the United States and China
accounted for 30% of cross-national comparisons in top tier mathematics education journals.
Additionally, seven of the 26 articles were textbook comparisons and fractions were the most
common mathematical topic discussed.
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Twenty-four Grade 5 students participated in clinical interviews where they solved integer
multiplication number sentences. Drawing on the theoretical perspective of strategies that
students use with whole number multiplication and integer addition and subtraction, we describe
the strategies that students employ when negative integers are incorporated with multiplication.
The students, although drawing on similar strategies for whole number multiplication (e.g.,
repeated addition, direct modeling), used these strategies differently (e.g., using Unifix cubes to
represent -1). The students also used unconventional strategies for solving integer
multiplication, such as analogies and invented procedures. The results highlight the important
constructions of students prior to formal instruction on integer multiplication, where prior
research has been mainly situated in thinking about integer addition and subtraction.

Keywords: Number Concepts and Operations, Elementary School Education, Cognition

Investigations of strategies that students invent, and even struggle with, for integer
multiplication number sentences, will provide teachers and researchers with insight into students’
thinking about integers. With this understanding, we can begin to develop instructional strategies
that support building on students’ thinking about integer multiplication, a neglected topic in our
field. In order to improve instructional approaches, we must first investigate students’
constructions and reasoning.

Children invent sophisticated and robust ways of reasoning about integers and integer
addition and subtraction (e.g., Bofferding, 2014; Bishop et al., 2014). As children approach
addition and subtraction of integers for the first time, they use different strategies (Bofferding,
2010), ways of reasoning (e.g., Bishop et al., 2014; Bishop, Lamb, Philipp, Whitacre, &
Schappelle, 2016), and conceptualizations (e.g., Aqazade, Bofferding, & Farmer, 2017;
Bofferding & Wessman-Enzinger, 2017; Wessman-Enzinger, 2015). Although there has been an
increased focus on children’s reasoning about integers (e.g., Aquazade et al., 2017; Bofferding,
Agqazade, & Farmer, 2017; Bishop et al., 2016), investigations into integer multiplication remain
overlooked.

The goal of this research report is to present an inaugural framework of strategies students
created as they engaged with integer multiplication number sentences for the first time. Our
research question focuses on students’ invented strategies for integer multiplication number
sentences (e.g., -2 X 3 = 0): What strategies do Grade 5 students use as they solve integer
multiplication number sentences?

Theoretical Perspective
Because children often build on their whole number knowledge and extend this to integer
reasoning (Bofferding, 2014), looking towards strategies that children employ with whole
number multiplication may provide insight into how children may begin to reason about integer
multiplication. Multiplication and division problems are often approached by children through a
variety of invented strategies, such as repeated addition or direct modeling with grouping
collections of countable objects (Carpenter, Fennema, Franke, Levi, & Empson, 2015).
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Carpenter et al. (2015) and Baek (1998) demonstrate that children are able to understand
multiplication when they can invent their own strategies. Some of the strategies for single-digit
(Carpenter et al., 2015) and multi-digit (Baek, 1998) multiplication with whole number include:
direct modeling strategies, counting strategies, repeated addition, and derived fact strategies. The
extent to which students will use similar strategies with negative integer multiplication is an open
question.

With direct modeling, students model groups using manipulatives (e.g., Unifix cubes) or
drawings. When students use counting strategies they may skip count accounting for groups,
sometimes using fingers or choral counting. Students draw on repeated addition or doubling
(e.g., 4 x3=3+3+3+3). Derived facts strategies include drawing on factual knowledge and
creating a new algorithm based on previously known facts (e.g., 2 x 3 may be solved by know
that 2 x 2 = 4 and then 2 more added to that product is 6).

From the integer addition and subtraction literature, we know that students use a variety of
strategies different from the CGI frameworks. These include using computations or procedures
(Bishop et al., 2014), drawing on recalled facts (Bofferding & Wessman-Enzinger, in press), and
making comparisons or analogies (Bishop et al., 2016; Bofferding, 2011; Wessman-Enzinger,
2017; Whitacre et al., 2017).

As we began our study, we drew on both single-digit and double-digit strategies for
multiplication with whole numbers and strategies for integer addition and subtraction. We
thought these strategies would provide insight into the ways that students may solve
multiplication problems involving negative integers.

Methods: Participants, Interviews, and Analysis

We conducted clinical interviews (Clement, 2000) with 24 Grade 5 students from the rural
Pacific Northwest. We selected Grade 5 students that did not have formal school experiences
with integers; Common Core State Standards recommendations include integer operations in
Grade 7 (National Governors Association Center for Best Practices & Council of Chief State
School Officers, 2010). We interviewed each student once, using the following integer
multiplication number sentences (see Figure 1). Students solved the integer multiplication
number sentences, with each number sentence provided on a singular piece of paper.
Manipulatives and tools provided during this interview included: Unifix cubes, two-colored
chips, empty number lines, and markers. We asked prompting questions throughout the
interviews, without giving the students the answer or additional information. These types of
questions included: “How did you come up with that?”’; “Can you explain your thinking?”

3X5=0

2X3=0
3X-4=0
4X-2=0

Figure 1. Integer multiplication number sentences provided to students.

We videotaped and transcribed each interview. Our unit of data included the video clip,
drawings, and transcripts associated with each integer multiplication number sentence. We began
coding with the framework delineated in the analytical framework (Baek, 1998; Carpenter et al.,
2015). For instance, we looked for the use of manipulatives and drawings for direct modeling
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strategies. We looked for choral counting, skip counting, and use of fingers for counting
strategies. Using the definitions established for these various strategies, we employed constant
comparative methods (Merriam, 1998). We modified the strategies to include the ways that
students used negative integers, not previously captured with only positive integer multiplication
strategies or integer addition and subtraction strategies. We met to compare codes and negotiated
any disagreements. In the results section, we highlight the integer multiplication strategies that
the students in our study used.

Results: Strategies for Integer Multiplication

We highlight the descriptions of the strategies, rather than focusing on correctness or
incorrectness. Because the students have powerful strategies paired with some correctness, this is
provides a space to understand children’s thinking as a vehicle for leveraging discourse in the
classroom in the future.
Direct Modeling

Example of direct modeling. Edie solved -2 x 3 = O, using a direct modeling strategy, that
resulted in a solution of -6 (see Figure 2). Edie assigned the value of -1 to each Unifix cube. She
constructed three groups of two blocks (see white blocks in Figure 2). Because she attributed the
value of -1 to each of the white Unifix cubes, she modeled -2 x 3 = 0O, instead of 2 x 3 = 0.

Figure 2. Example of direct modeling strategy for -2 x 3 = [1.

The following transcript excerpt illustrates how Edie shared her strategy:

(Reaches for Unifix cubes) I'm going to pretend this is negative... okay this is negative 2

(pulls off 2 white Unifix cubes) negative plus a negative would be a negative... so if these

are negatives then that would 3 times the 2 negatives which would equal 6 negative (writes

“-6” on paper).

Description of direct modeling. Students used a direct modeling strategy when they
illustrated integer multiplication with physical tools (e.g., Unifix cubes, two-colored chips,
pictures)}—modeling (number of groups) X (number of things in each group) = total. The students
who used direct modeling strategies determined the solutions to integer multiplication through
physically manipulating and modeling with these objects.

The students used two-colored chips (one yellow side, one red side) to be a physical
representation of the difference between a negative number and a positive number. Notably, the
students flexibly used the colors. Sometimes, red chips represented negative integers and yellow
chips represented positive integers; other times, red chips represented positive integers and
yellow negative integers.

Using Unifix cubes, the students used the cubes to model multiplication as groups of the
same amount of quantities. The students who used the cubes mapped values of -1 to each of the
cubes. The cubes represented a way to account for groups of negative quantities and provided a
physical way to add the groups together in order to determine their solutions.
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Use of direct modeling. The students used direct modeling strategies seven times for 3 x 5 =
[1. For the number sentences with negative integers, the students used direct modeling strategies
five times for -2 x 3 = [] and four times for 3 x -4 = []. Direct modeling was used only once for
-4 x -2 =[], which is not surprising given the physical limitations of negative amounts of
groups.
Repeated Addition and Subtraction

Example of repeated addition. Eliza solved 3 x -4 = 0 using repeated addition (see Figure
3) and obtained the solution, -12. Eliza demonstrated repeated addition as she repeatedly added
-3 four times in order to get her product of -12. Notably, she added -3 four times, instead of
adding -4 three times; her strategy actually aligns to 4 x -3 = 0 instead of 3 x -4 = 0. Essentially,
Eliza implicitly recognized the equality of 4 x -3 and 3 x -4, without commenting on it. In Figure
3, the black writing illustrates her final computed product. However, the red writing illustrates
her repeated addition, which she wrote first.

Y

X3
XL

Figure 3. Example of repeated addition strategy.

Description of repeated addition and subtraction. Repeated addition, as a strategy,
describes multiplication with adding positive integers repeatedly (Baek, 1998; Carpenter et al.,
2015). The students in our study drew on repeated addition with negative integers. However,
they also used repeated subtraction of positive integers.

Use of repeated addition and subtraction. The students used repeated addition strategies
ten times for 3 x 5 = []. For the number sentences with negative integers, the students used
repeated addition and subtraction four times for -2 x 3 = [] and three times for 3 x -4 =[], A
student used repeated addition and subtraction only once for -4 x -2 = [, which is also not
surprising given the challenges of adding -4 “negative two” times.

Recalled Fact

Example of recalled fact. Zoe first solved -2 x 3 = O and obtained -6 as a recalled fact, even
though it was her first time engaging with integer multiplication. She quickly stated the answer,
-6, before the interviewers even completely finished reading the multiplication number sentence,
-2 x 3 = 0. Zoe relied on her factual knowledge of the product of 2 x 3 = 6, when questioned.
With probing she justified her solution with a procedure “you just do 2 times 3 and then you
make it a negative,” which will be discussed later.

Description of recalled fact. Within the CGI strategy framework, students often draw on
facts to make derived facts (e.g., Carpenter et al., 2015). In our study with integer multiplication,
students did not seem to use derived facts, but did use their factual knowledge about whole
number multiplication quickly for integer multiplication without verbal explanation. Students
used recalled facts when they stated their solutions to integer multiplication as a fact, likely
memorized from whole numbers. Or, they drew on their memory so much that it did not require
any form of deliberation. Students stated their solution quickly with an often “just is”
explanation.
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Use of recalled fact. The students used recalled fact four times for -2 x 3 = 0O, six times for 3
x -4 = O, and five times for -4 x -2 = 0. The students demonstrated confidence with single digit
whole number multiplication (e.g., fifteen stated the answer of 3 x 5 = O as a recalled fact).
Procedure

Example of procedure. Lia solved 3 x -2 = O with a solution of 4, using a procedure as a
strategy. In this example, Lia solved the integer multiplication sentence by using a “negative
integer as a singular subtrahend” procedure (see Figure 4). She first computed 3 X 2 by solving 3
+ 3. Then, Lia incorporated the singular integer in the number sentence, -2, by subtracting 2 from
the product of 3 x 2. This procedure is one of various types used in this study by the students.

3
i)
6
Sd

L\

Figure 4. Example of procedure strategy.

Description of procedure. When students used an algorithm or created an invented
procedure to find the solution they used the procedure strategy. Although this represents an
addition to existing CGI framework for multiplication strategies (e.g., Baek, 1998), many integer
researchers have stated that students use computational reasoning (Bishop et al., 2016) or
procedures (Wessman-Enzinger, 2015; Bofferding & Wessman-Enzinger, in press) as they solve
integer addition and subtraction problems. Thus, it seems to be a natural extension that students
would also use computational and procedural strategies with integer multiplication.

The students in this study used different types of procedures (e.g., appending a negative sign
to the solution, negative numbers as equivalent to zero, exclusive negativity). Describing the
extensive use of procedures is beyond the realm of this research report. But, Zoe used the
“appending a negative sign” procedure in her justification of derived fact strategy -2 X 3 = -6
when she stated that the negative sign is just “added on.” Other students said that number
sentences, such as -4 x -2 = 0O, needed to be “all negative,” concluding that -4 x -2 = -8 based on
a procedure of “exclusive negativity.”

Use of procedure. Students used or invented various procedures for dealing with integer
multiplication throughout the study (e.g., eleven times for -2 x 3 = [, sixteen times for 3 x -4 =
[], and fifteen times for -4 x -2 = []). The students did not use a procedure for 3 x 5= [] and
used procedures only for multiplication number sentences with negative integers (e.g., -2 x 3 =
[D).

Counting

Example of counting. Cittie used counting on a number line to solve -2 x 3 = 0O, obtaining a
solution of 7. Figure 5 illustrates Cittie’s number line. She reasoned that she could start at -2 and
counted in sequential order on the number line, moving right, to her destination, 7; she skip
counted by 3, three times. Although this does not represent a correct solution, Cittie ordered the
negative and positive numbers correctly and started her counting at -2, which represents
beginning, ordered integer reasoning necessary for integer multiplication.

AR
EERETIREL DL

Figure 5. Example of counting strategy.
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Description of counting. Students, sometimes with the help of a number line, counted in
sequential order when solving multiplication number sentences. Students often described their
strategies as “skip counting.” The students sometimes drew on the number line, as a tool for
facilitating their skip counting. In addition to number lines, students also used fingers and even
cubes as number paths (Bofferding, 2010). Challenges with negative integer multiplication for
students included deciding which direction to count in, as directions are not fixed like they are
with whole number numbers, and determining the quantities of the skip counts (see, e.g., Cittie
counting amounts of 3 three times).

Use of counting. The students used counting strategies three times for 3 x 5 = O, four times
for -2 x 3 =0, three times for 3 X -4 = 0O, and eight times for -4 X -2 = 0. When the students
used counting strategies with integer multiplication, they sometimes did so with a number line. It
is likely that students used counting strategies the most for -4 x -2 = 0 because of challenges in
physically representing this number sentence with strategies like direct modeling.

Analogy

Example of analogy. Jaxon first solved -2 x -4 = O, with analogy, determining that -2 x -4 =

-8. The following transcript highlights Jaxon’s reasoning:

Well, because it wouldn’t really make as much sense for a negative multiplied by a negative
to equal a positive. It’s like, um, ’'m not sure how to ... it just wouldn’t make as much sense.
Because if a positive multiplied by a positive would equal a positive, then I would assume
that it would be the same for a negative. And, it would be a negative times a negative would
equal a negative.

In this excerpt, Jaxon compared -2 x -4 = O to 2 x 4 = O. Reasonably, he concluded that because
a positive number times a positive number is positive (e.g., 2 X 4 = §), then a negative number
times a negative number is another negative number (e.g., -2 x -4 = -8). Again, like the previous
example where we highlighted a strategy with an incorrect solution, there is still powerful
reasoning embedded in Jaxon’s strategy. Jaxon connected his reasoning about whole numbers in
a logical way (albeit not a culturally/mathematically correct way).

Description of analogy. Students used analogy when they connected previous knowledge
about whole numbers to integers and compared it to a whole number multiplication number
sentence for constructing or justifying new claims when solving the integer multiplication
number sentences. Although this is an addition to the CGI framework for multiplication
strategies, there is evidence that students use analogies with integer addition and subtraction
(Bishop et al., 2016; Bofferding, 2011; Wessman-Enzinger, 2017; Whitacre et al., 2017). We
distinguish this from recalled facts or procedures in that the students made explicit comparisons,
with reasoning focused on these comparisons.

Use of analogy. The students did not use an analogy strategy for 3 x 5=0,-2 x3 =0, 0r 3
x -4 = 0. But, students used analogy twice for -4 x -2 = 0. Although not used often in this
study, students use analogies frequently with integer addition and subtraction (e.g., Whitacre et
al., 2017). We conjecture that if we gave more “negative number multiplied by negative number”
number sentences we would have seen analogy strategies employed more—analogies seem like
potentially productive strategies for these types of integer multiplication number sentences.
Counter Movement

Example of counter movement. Warren solved -2 x -4 = 0O, determining a solution of 8.
The following transcript excerpt highlights Warren’s solution of 8.
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Um. So. I... this subtraction, this negative symbol. Scratch out this one and this one ...
counters this one too. So it takes both these out and then it’s just 4 times 2. ... I just thought
that since they’re both negative numbers and that one’s whole, it’s basically, kinda like
dividing except you’re multiplying. And... you just kinda just... I just thought that you
counter them. ... It’s kind of like dividing because instead of making this uh... -8, you just
make it normal 8, which means that the number ... if these numbers were whole numbers ...
well no since their negative numbers... if like cause they’re not equal to ... they’re not equal
to 0 they’re this way (left of 0) and the whole numbers are this way (right of 0) it’s kind of
like since these numbers were divided ...these ones were dividing they would get smaller or
go the opposite way. Like if these ones they would go this way.

At first, Warren’s strategy sounds procedural because he talks about “scratching” out symbols,
referencing the negative symbols in front of -2 and -4. Then, Warren references a “countering”
of movements in the negative and positive direction (e.g., -1 x -1 =1 or -1 p3-1 = 1), making -8
“anormal 8.” He discusses how we can treat this multiplication problem as “whole numbers”
since multiplying the negative integers “counter” the directions of each other. Multiplying by -1
moves a number “this way (left of 0)” and multiplying it by -1 changes the direction.
Description of counter movement. Students use the counter movement strategy when they
employ continuous movement or motion that “counters” each other. Use of this strategy includes
a reference to changing directions, where the movement is countered or balanced. Consider this
equation: -2 X -4 = (-1 x 2) x (-1 x 4) = (-1 x -1) x (2 x 4). Multiplying by negative one refers to
a movement or translation in one direction and multiplying by the other negative one is a
movement or translation in the other direction—consequently countering the overall movement.
Use of counter movement. Of the twenty-four students we interviewed, only one student
constructed this strategy. Although this may not warrant the creation of a new category, the
strategy uniquely helped Warren construct a correct solution to -2 x -4 = O, a notoriously
challenging problem type. Honoring the student’s use of the word “counter” and the use of
continuous movement for constructing meaning, we called this strategy “counter movement.”

Discussion and Final Remarks

The results of this work are significant in that we provide an inaugural framework for integer
multiplication strategies that students use prior to school instruction, modified from CGI
multiplication strategies frameworks and integer addition and subtraction literature. Previous
research has focused on thinking and strategies of integer addition and subtraction (e.g.,
Bofferding, 2010; Bishop et al., 2014) and we extend the scholarly discussion on students’
thinking about integers by describing their invented strategies for integer multiplication.

Our focus is on the powerful ways that students, prior to formal school instruction, solved
integer multiplication number sentences, whether correct or incorrect. If we wish to support
student inventions and discourse in the mathematics classroom, we must first understand their
sophisticated reasoning (Carpenter et al., 2015). Jaxon, for example, obtained -2 x -4 = -8.
Although we know this to be an incorrect solution, it is rooted in a logical analogy (e.g., if 2 x 4
= 8§, then -2 X -4 = -8). As teachers and researchers, how do we promote conceptual change when
students invent strategies that are logical, but not mathematically correct? We might consider
pairing number sentences like 2 x -4 = O, where students had success in correct answers, with
number sentences like -2 x -4 = O, where students had more difficulty, to leverage growth or
change in the students’ sophisticated reasoning (Bofferding et al., 2017).

Empowering students in the classroom requires building on their thinking. Consequently, we
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must first learn about the ways students enter the mathematics classrooms and the invented
strategies they construct; then, we can draw on their reasoning to build future instructional
interventions.
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Middle school is a critical time when students begin formal study of functional relationships in
algebra. However, many students struggle in understanding functions as relationships between
quantities that change according to a dependency relationship. We report on the influence of
Scaling Continuous Covariation in fostering productive ideas about graphical relationships and
rates of change. Scaling Continuous Covariation entails the ability to imagine a re-scaling to
any increment for x and coordinate that scaling with associated values for y. We present findings
from two students, one who reasoned with Scaling Continuous Covariation and one who did not,
and report on how Scaling Continuous Covariation supported students’ reasoning in three ways:
(a) sense making about graphs, (b) forming constant rates of change, and (c) understanding
constantly-changing rates of change.

Keywords: Algebra and Algebraic Thinking, Cognition, Middle School Education

Introduction: Supporting Function Understanding in Middle School

Functions and relations comprise a critical aspect of secondary mathematics, with
recommendations for supporting students’ algebraic reasoning emphasizing an early introduction
to functional relationships in late elementary and middle school (Stephens, Ellis, Blanton, &
Brizuela, 2017). Middle school in particular represents a key time when students enter a formal
investigation of function and begin to develop the algebraic tools to express and represent
different functional relationships. However, students’ difficulty in acquiring the function concept
is well documented (e.g., Stephens et al., 2017; Thompson & Carlson, 2017). In particular,
students struggle to use functions to model real-world contexts that require a conceptualization
of quantities and how they change together (Carlson et al., 2002; Monk & Nemirovsky, 1994).

One potentially fruitful approach to better support students’ understanding of function and
rates of change is an instructional emphasis on variational and covariational reasoning (Carlson,
Smith, & Peterson, 2003; Kaput, 1994; Thompson & Carlson, 2017). Early research suggests that
providing students with opportunities to reason covariationally can position them to make
meaningful sense of functions (e.g., Ellis, 2007, 2011; Johnson, 2012; Moore, 2014), as well as
the ideas in calculus (Thompson & Carlson, 2017). We report on a study investigating the
reasoning of two middle school students who explored linear and quadratic growth within the
context of continuously co-varying quantities. We found that a particular form of covariational
reasoning, scaling continuous covariation, supported a robust understanding of graphical
relationships and rates of change.

Background and Theoretical Framework
One contribution to the challenges in building and supporting a robust understanding of
function is the lack of attention to variation in algebra curricula. Thompson and Carlson (2017)
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reviewed seventeen U.S. secondary textbooks, ranging from Algebra I through Precalculus, and
found that all relied on a correspondence definition of function. Under this definition, y is a
function of x if each value of x has a unique value of y associated with it (Farenga & Ness, 2005).
This static view underlies much of school mathematics, with the associated set theoretic meaning
of variable becoming the foundation for school definitions of function (Cooney & Wilson, 1996).
Students’ function concepts are consequently dominated by static images of arithmetic
computations used to evaluate outcomes at individual values (Carlson & Moore, 2015). This
results in students viewing functions through the lens of symbolic manipulations rather than as a
mapping (Carlson, 1998).

Integrating the mathematics of change into students’ investigation of functional relationships
provides opportunities to interpret how a function’s output values can change in relation to its
input values, which is an essential component of making sense of dynamic situations (Carlson &
Moore, 2015). These opportunities are typically reserved for introductory calculus courses, thus
effectively restricting access to these forms of reasoning to the minority of students who will
reach the highest level of high-school mathematics (Roschelle, Kaput, & Stroup, 2000). Thinking
about functions covariationally, however, can support students’ abilities to make sense of linear
(Ellis, 2007; Johnson, 2012), quadratic (Ellis, 2011), exponential (Ellis et al., 2015), and
trigonometric (Moore, 2014) functions.

Covariational Reasoning

Researchers have addressed covariational reasoning in a number of ways, but for the
purposes of this paper we draw on work that considers the possible imagistic foundations that
can support students’ abilities to think covariationally (e.g., Castillo-Garsow, Johnson, & Moore,
2013; Thompson & Carlson, 2017). These researchers describe covariational thinking as the act
of holding in mind a sustained image of two quantities’ values varying simultaneously. One can
imagine how one quantity’s value changes while imagining changes in the other. A person
thinking covariationally can couple two quantities in order to form a multiplicative object
(Thompson & Carlson, 2017); once such an object is formed, one can then track either quantity’s
value with the immediate understanding that the other quantity also has a value at every moment.

Castillo-Garsow (2013) distinguished between two types of continuous variation, chunky and
smooth. Chunky continuous variation entails thinking about values varying discretely, except
that one has a tacit image of a continuum between successive values. One imagines that a change
in values occurs in completed chunks, without imagining that variation occurs within the chunk.
In contrast, smooth continuous variation entails an image of a quantity changing in the present
tense; one can map from one’s own experiential time to a time period within the mathematical
context, thinking about a value varying as its magnitude increases in bits while simultaneously
anticipating smooth variation within each bit (Thompson & Carlson, 2017). Building on these
distinctions, Thompson and Carlson (2017) created a covariational reasoning framework that
attends to students’ images of quantities’ values varying. They stressed that smooth continuous
variational and covariational reasoning necessarily involves thinking about motion.

Ely and Ellis (in press) subsequently introduced a related but distinct form of reasoning they
call scaling continuous covariation, which entails imagining that at any scale, the continuum is
still a continuum and a variable takes on all values on the continuum. One can conceive of the
continuum as arbitrarily or even infinitely “zoomable”, in which the process of zooming will
never reveal any holes or atoms. Thus, one can imagine a re-scale to any arbitrarily small
increment for x and coordinate that scaling with associated values for y. Importantly, unlike
smooth continuous covariation, this way of thinking does not fundamentally rely on an image of
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motion.

Just like chunky continuous covariation, scaling continuous covariation relies on partitioning
a domain and then reasoning about the corresponding chunks of the covarying quantity. A
chunky reasoner can re-chunk the domain to a different sized chunk, but then must re-run his or
her chunking scheme from scratch. A person using scaling continuous reasoning, on the other
hand, can abstract the chunking process and imagine the result of this chunking scheme for
chunks at all scales. This enables one to generalize properties of the covarying quantity’s chunks
at all of these scales as well, enabling him or her to coordinate the covariation of the two
quantities on increments of any scale. With this in mind, we can distinguish between students’
use of chunky continuous and scaling continuous covariation and study how these reasoning
types support their understanding of rates of change.

Methods

We conducted a 10-day, 15-hour videotaped teaching experiment (Steffe & Thompson,
2000) with two 7%-grade students in general general mathematics (neither had yet taken algebra).
The first author was the teacher-researcher. We assigned gender-preserving pseudonyms to each
student. The aim of the teaching experiment was to support the students’ emerging understanding
of linear, piece-wise linear, quadratic, and higher-order polynomial functions from a rate-of-
change perspective.

Building on the literature emphasizing the importance of continuously-covarying quantities,
we developed tasks to support a conception of linear growth as a representation of a constant rate
of change, and quadratic growth as a representation of a constantly-changing rate of change. The
tasks emphasized these ideas within the contexts of speed and area. The area tasks presented
“growing rectangles”, “growing stair steps”, and “growing triangles” via dynamic geometry
software, in which the students could manipulate the figure by extending the length and
observing the associated growth in area (Figure 1).

— —p
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Action
' Y ) -
Length Length Length

Figure 1. Growing rectangle, stair step, and triangle tasks.

Relying on the videos and transcripts of each teaching session and copies of the students’
work, we used the constant-comparative method (Strauss & Corbin, 1990) to analyze the
teaching-experiment data in order to identify (a) students’ forms of covariational reasoning, and
(b) the students’ conceptions of constant and changing rates of change. For the first round of
analysis we drew on Thompson and Carlson’s (2017) framework of variational and covariational
reasoning. We used open coding to infer categories reasoning based on students’ talk, drawings
and graphs, gestures, and task responses. The first round led to an initial set of codes, which then
guided subsequent rounds of analysis in which the project team met regularly to refine and adjust
the codes in relation to one another. This iterative process continued until no new codes
emerged. The final round of analysis was descriptive and supported the development of an
emergent set of relationships between students’ covariational reasoning and their conceptions of
constant, changing, and instantaneous rates of change.
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Results

One student, Wesley, exhibited evidence of scaling continuous covariation, while the other
student, Olivia, exhibited evidence of chunky continuous covariation. We report three ways in
which the form of covariational reasoning influenced students’ sense-making about functional
relationships: (a) reasoning about graphs, (b) constant rates of change, and (c) constantly
changing rates of change. We address each in turn.
Reasoning about Graphs

Wesley and Olivia interpreted and discussed their graphs of quadratic phenomena differently.
Wesley conceived of his graphs as smooth continuous curves that, for any given increment,
regardless of its size, did not reduce to a straight line within the increment. In contrast, Olivia
conceived of curved graphs as being composed of line segments. For instance, the students
graphed the relationship between the total accumulated area and the length swept for a shaded
cm by 5 cm triangle in which the area and the length swept out together (Figure 2).

2
———) > 2cm
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. . H ’
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(a) (b) (c)
Figure 2. Wesley (b) and Olivia’s (c) graphs for the growing triangle (a).

Both students plotted five points in order to draw their graphs, and also drew the “average
journey” graph that would be represented by a rectangle sweeping out the same total area for a
length of 5 cm. The teacher-researcher (TR) asked the students whether their triangle graphs
were curved everywhere, or whether they were piecewise linear. Wesley’s response was that the
graph was curved everywhere, explaining, “I think in between these points [indicates two points
on his graph], if you added a bunch of little points in between, it would make a curve.” Wesley
understood that the total accumulated area increased with respect to each additional centimeter
swept, but he also understood that this relationship would hold even for a smaller increment. He
did not need an increment to be any particular size, such as 1 cm, in order to claim that the graph
would be curved in between any two points; he already had an image of growth occurring with
each increment, no matter how small. In contrast, Olivia could imagine re-sizing an increment,
but within each increment, the graph would be a straight line:

I think, because, if you made the increments even smaller like into 0.1 as your first point then
I think it’d be, all the little lines together, I think they’d make a very subtle curve but
relatively straight. So, when I did it with the increments as 1, I see them as straight, but if
they were smaller they might /ook as if they were curved to make one big curve.

In order to better probe the students’ thinking, the teacher-researcher asked the students to
consider what the graph would look like if a perfectly precise robot could construct the graph
with almost imperceptibly tiny increments:

TR: Would it be curved in between the points or straight in between the points?
Wesley: 1 believe it would be curved.
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TR: What do you [Olivia] think?

Olivia: I think [long pause]. Well I mean, I think it’d be small enough to the point
because the way I think of curves is a whole bunch of straight lines together to
make a curve. So, I think if it was to the smallest possible thing even if it could go
to infinity, but if it had to be down to the smallest possible things I think it’d be
straight lines.

Olivia’s remarks suggest that she still saw the graph as composed of straight segments for
infinitesimal increments. She could explain the change in area with respect to each additional
centimeter, but she viewed the rate of change in area with respect to length swept within a given
increment to be constant. This imagery is consistent with chunky continuous covariation, in
which one does not imagine change within a given increment. Wesley, however, remained
consistent in his belief that such a graph would be everywhere curved, and provided supporting
remarks such as: “There’s tiny points in between those tiny points”, “It goes on infinitely, kind
of, the points”, and “In between those, there’s still more points, and it goes on forever.”

Wesley appealed to a scaling image in his explanations. He described zooming to smaller and
smaller scales, a process that could go on forever and never ground out at an atomic level. In this
iterative process, he treated each re-scaled increment as being similar to the bigger increments.
This image of scaling continuous variation supported his scaling continuous covariation,
because he generalized across scales a property he noticed about the covariation of area and
length: Namely, because the area grows at a changing rate over a large increment, it must also
grow at a changing rate over increments at each smaller scale, and thus be curved everywhere.
This generalization could extend to an infinitesimal scale just as his image of scaling continuous
variation appeared to.

Constant Rates of Change

Wesley and Olivia could both discuss length and area growing together. However, their
conceptions of the ratio of area to length differed. Olivia conceived of this relationship as a static
ratio, whereas for Wesley, it was a rate of change. For instance, at one point the students
investigated the way the area changed as a rectangle with a constant height of 4 cm grew in
length (Figure 1). Both students produced a number of equivalent ratios to represent the rate at
which the area accumulated relative to length. Olivia could not produce a ratio for a length less
than 1 cm, whereas Wesley generated equivalent ratios such as 2 cm?:0.5 cm, 0.4 cm?:0.1 cm,
and 4xcm?:x cm. Wesley explicitly referenced both quantities, but Olivia’s descriptions appealed
to an image of breaking the area into parts. We believe that Wesley’s ratio of 4 cm? for 1 cm of
length represented a rate. Thompson and Thompson (1992) described a rate as a reflectively
abstracted constant ratio. A ratio is a multiplicative comparison of two taken-as-unchanging
quantities, whereas a rate is a conception of a constant ratio variation as being a single quantity.
It symbolizes the ratio structure as a whole while giving prominence to the constancy of the
result of the multiplicative comparison. In order to understand the ratio as a rate, Wesley needed
to have an image of change such that 4 cm?:1 cm represented an equivalence class. Thus, he
would need to understand that the unit ratio was simply a convenient measure of expressing the
growth in area for a standard unit of length, and was just one of infinitely many equivalent ratios.
A scaling continuous covariation image could enable this understanding, as Wesley would be
able to mentally zoom in and out for different length increments, generalizing that any
arbitrarily-sized increment of length would imply an associated amount of area adhering to the
4:1 ratio.
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Both students also produced drawings of a 4 cm-high rectangle, but only Wesley believed
that the shape of the rectangle would not change if the provided rate of 4 cm?:1 cm were
represented as 8 cm?:2 cm. In justifying his belief, Wesley explained, “The height doesn’t — like,
it’s not a different shape, it’s the same. So, it [the rectangle] would be the same, I think.” Wesley
recognized that all of the ratios were instantiated in the same rectangle height; he appeared to
understand the height as a representation of the rate of change of area, which does not depend on
an amount swept. In contrast, Olivia could only justify the sameness of the picture for any
equivalent ratio by converting the new ratio to the original 4 cm?:1 cm ratio and comparing.
Constantly Changing Rates of Change

The students were also asked a series of questions about situations in which area was
constantly changing, such as when the growing area was bounded by a line slanting upward at
45°-angle, or a slope of 1 (Figure 1). Wesley expressed his answer using the quantities length and
area: “Every time you increase by 1 in. in length, the area for that will grow by [an additional] 1
in2.” Wesley’s care in expressing the change in the growth in area for a specific length increase is
additional evidence that he understood the unit ratio as a convenient representation of the
constantly-increasing rate that depended on a particular increment. In contrast, Olivia had to
draw pictures to visually determine the amount of increase from one increment to the next
(Figure 3). She came to the same conclusion, but conceived of the 1-inch increments as
“columns”. When asked whether the size of the length increment mattered in terms of
determining that the rate of change was constantly increasing, Olivia was uncertain and had to
check with a new column size of 2 cm. She found that the new constantly-increasing rate was 4
cm?:2c¢m for each of the columns. Wesley knew without having to check that the rate of the rate
of change would remain invariant for any given increment, even though that value was
dependent on the increment size. Scaling-continuous reasoning enabled him to generalize this
observed property across all possible scales.

Figure 3. Olivia’s drawing to find the amount of area accumulated for each 1-cm increment.

In a second example, when investigating the constantly-increasing rate of change of the area
for a 3 cm:2 cm triangle, Olivia again relied on a visual strategy, explaining, “I counted it out.”
Wesley did not have to draw increments or make any calculations. He instead wrote “1.5”, and
then explained, “It [the rate of change] increased by the slope.” Olivia’s drawing, partitioning,
and counting strategy was sensible given her image of growth across completed chunks. It
enabled her to make calculations for each column and then compare the increases from one
column to the next. Wesley’s reliance on the slope of the triangle indicates a different conceptual
foundation. He could conceive of the slope as a convenient way to express a unit ratio while also
understanding that it was dependent on a particular chosen increment of 1 cm. For Wesley, the
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slope was a multiplicative object (Thompson & Carlson, 2017), which was produced by mentally
uniting accumulated area and accumulated length simultaneously. Scaling continuous covariation
could potentially support the development of such a multiplicative object because an image of re-
scaling the continuum to any increment for x, including infinitesimal increments, while
simultaneously coordinating that scaling with associated values for y provides a set of operations
conducive to creating a new conceptual object “that is, simultaneously, one and the other”
(Thompson & Carlson, 2017, p. 433, emphasis original). Scaling-continuous covariation enables
the generalization of the ratio over any elapsed increment.

Discussion

Our findings indicate that scaling continuous covariational reasoning has the potential to
support a meaningful understanding of constant and constantly-changing rates of change. In
particular, it affords productive generalization of covariational properties across arbitrarily small,
even infinitesimal, scales. Thompson and Carlson (2017) noted that the idea of a non-constant
rate of change “is actually constituted by thinking of the function having constant rates of change
over small (infinitesimal) intervals of its argument, but different constant rates of change over
different infinitesimal intervals of the argument” (p. 452). As evidenced by Wesley’s language,
this image is compatible with scaling continuous covariation, in which one can imagine zooming
to any scale, even an infinitesimal one, to visualize a tiny interval over which the function’s rate
of change is constant. Wesley recognized that the changes in the changes of area under a sloping
line were uniform no matter the scale, which is precisely the constant second-differences
characteristic that is unique to quadratic growth. Because he could imagine this at arbitrarily
small scales, he could also connect this idea to the curvature of the area graphs he made.

In addition, scaling continuous covariational reasoning has the potential to support an image
of instantaneous rate of change and other foundational ideas in calculus. A student who reasons
with chunky continuous covariation may struggle to think about a rate of change that is not
dependent on an elapsed amount of swept length. This was the case for Olivia, who needed to
imagine a completed increment and an associated amount of area in order to create comparisons
across same-size increments (Ely & Ellis, 2018). Wesley, however, was able to construct the
height of a figure at any given instant as a multiplicative object representing the rate of change of
the area compared to the length swept. This enabled him to conceive of the height as a
potentiality; once it would sweep out, it would turn the potential rate into an amount of area
depending on how much length has been swept. Alternatively, one could imagine the rate of
change at a point to be an average rate of change over an infinitesimal interval, which offers a
natural motivation for the limit definition of the derivative.

The case of Olivia and Wesley offers evidence that middle school students can develop
powerful ideas about constant and changing rates, and that scaling continuous covariation could
potentially offer a foundation for building sophisticated ideas about instantaneous rates of
change. Situating students’ exploration of functional relationships within contexts that foster
images of covariation and address ideas of infinitesimal increments is critical for providing this
foundation. Given the potential of scaling continuous covariation for supporting important ideas
about function, we advocate for additional research to better understand the nature of this form of
reasoning and its affordances for algebraic thinking.
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This proposal explores relationships between young children’s unit development/coordination
and young children’s subitizing. In particular, this theoretical commentary considers students’
degrees of abstraction, students’ development of actions on units, and students’ operations with
units when subitizing. As a result of this commentary, this author offers questions regarding how
subitizing may elicit actions on units and perceptual/figurative material in a different order.
These questions indicate possible alternative means in which comprehensive operations with
natural numbers may develop. Possible educational implications and future research around
these questions are also discussed.

Keywords: Early Childhood Education, Number Concepts and Operations

Steffe’s (2017) plenary for PME-NA outlined comprehensive means in which radical
constructivist learning theory has explained children’s construction of mathematical concepts
that have children’s construction and coordination of units as a foundation. Steffe also explained
that on average about 40% of first graders do not yet use figurative material to stand in for
perceptual material when counting and unitizing. By third grade, this figure remains at about 5-
8% of students. This finding suggests differences in children’s number abstractions in early
elementary grade levels that may also indicate distinct differences in their unitizing activity later.
This theoretical commentary explores how young children’s unitizing may relate to subitizing
activity (individuals’ quick apprehension towards the numerosity of a small set of items), which
may explain differences in children’s number abstractions in early grade levels.

Freeman (1912) first proposed that subitizing requires an individual’s attention towards units
of units when encoding number. MacDonald and Wilkins (under review) found that one child’s
subitizing activity may relate to her composite unit development. However, these findings are
still exploratory and provide more questions than answers. In particular, if young children are
developing units and/or acting on these units through their subitizing activity, how might this
affect the development of their actions and operations? For instance, Steffe and Cobb (1988)
found that young children develop a singular unit through their counting activity, which they
iterate before engaging with partitioning. However, subitizing activity requires students partition
patterned sets of items to associate with number before they iterate singular units.

If children order their actions on material differently, how might this affect their ability to
coordinate actions and form operations? If both counting and subitizing promote children’s
coordination of actions earlier, which promotes early operation development, how would this
affect children’s number development? Therefore, when considering subitizing activity in
relation to students’ composite unit development, there seems to be new perspectives when
investigating learning trajectories in number. Through this theoretical commentary, I will discuss
how actions and operations may develop differently when young children subitize versus count.
Resulting from this commentary are future research directions and educational implications.

The purpose of this commentary is to consider alternative learning trajectories that take on
theoretical aspects in the Neo-Piagetian literature and may explain how subitizing relates to
young children’s development and their coordination of units. To discuss the intersect between
subitizing and children’s development of units, I will (a) provide a theoretical framework, (b)
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define unit construction, (c) describe how subitizing activity may relate to unit construction, and
(d) propose future research that should consider how the two types of activity may relate.

Theoretical Framework

This theoretical commentary is grounded in the radical constructivist paradigm and more
specifically, a Neo-Piagetian perspective. Essentially, in adopting a radical constructivist
paradigm, I acknowledge that children learn through active engagement and reflection of their
perceived reality. By adopting this paradigm, I also acknowledge that each individual constructs
a unique mathematical reality that can be partially understood by others developing a second-
order model of his or her mathematics.
Abstractions

With this paradigm, Piaget explains changes in mathematical realities in varying means
through degrees of abstraction children rely on when engaging in mathematics. Piaget
(1977/2001) described abstractions students rely as beginning as a reliance on empirical
abstractions (abstractions of actions on perceived objects) towards reflective abstractions
(abstractions on projected operations). Glasersfeld (1995) explains that individuals rely on two
types of empirical abstractions (empirical abstractions and pseudo-empirical abstractions).
Empirical abstractions explain children’s attention towards rules and patterns when acting on
perceived objects (e.g., counting manipulatives and knowing the last number word signifies the
total). Pseudo-empirical abstractions are defined as children’s ability to coordinate figurative
material, which is indicative when students represent perceived objects with figurative material
(e.g., fingers, tapping, verbal utterances), when solving a task. Students transitioning from
empirical abstractions towards pseudo-empirical transitions internalize mathematical patterns
and rules while coordinating their unitizing, regardless of material presented to them. As children
internalize their actions and further step away from perceived material presented to them their
degree of abstraction transitions from empirical abstractions towards reflective abstractions.

Piaget (1968/1970) first defined reflective abstractions as simply “coordinated actions” (p.
18). Glasersfeld (1995) further interpreted Piaget’s (1977/2001) reflective abstraction
delineations by describing two types of reflective abstractions (reflective abstraction and
reflected abstraction) that children rely on when interiorizing mathematical patterns to form
logical structures. Reflective abstraction (first subset of reflective abstraction) explains an
individual’s projection and reorganization of his or her coordinated actions or operations at
another conceptual level (1995). Reflected abstraction (second subset of reflective abstraction)
explains this same activity, but also explains that an individual is also aware of his or her
projection and reorganization (1995).
Actions Versus Operations

As children rely on different degrees of abstractions, they develop operational fluency with
number operations, as structures for number become interiorized. Boyce (2014) explained how
these structures develop in weak forms versus relatively stronger forms. Essentially, Boyce
distinguishes between children’s development and coordination of actions versus their
development and coordination of operations to explain different forms of reflective abstractions.
For instance, if a child is capable of coordinating his or her actions to create a goal and develop a
means in which to take a unit and iterate it, then the child has created goal-activity and an
iterable unit (an abstract unit capable of iteration). The unit has become abstracted, but the
operational structure has not been developed to allow student anticipation of his or her actions on
the unit and in coordination with his or her other actions. This is an example of a lower form of
reflective abstraction because the unit is acted upon in activity. An operation to anticipate this
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activity is not created. This would explain why a child may be transitioning away from a reliance
on perceptual material towards figurative material, but still struggles to interiorize structures for
natural numbers. Comparatively, if a child is capable of developing an iterating operation, then
the operation is one that can be acted upon, not the unit. This allows for anticipated activity (c.f.,
Tzur & Simon, 2004; Steffe, 1992; Ulrich & Wilkins, 2017), which allows a child’s natural
number schema to become interiorized.

In this commentary, I will not focus on the operations, which are beyond the capability of a
young child in the early childhood years, but on how early perceptual actions may explain later
conceptual operations. For instance, Piaget (1968/1970) posits, “in developmental psychology ...
there is never an absolute beginning” (p. 19). What Piaget seems to be referring to as the
“absolute beginning” in this argument is the beginning of logical structures. When the
coordination of actions begin framing our discussion, Piaget posits that the coordination of
actions can go back to biological or organic coordination of actions.

I posit that many of these early roots of biological coordination do not directly relate to a
child’s development of his or her mathematical structures for number, but may explain the root
of his or her early perceptions and coordination of activity when explaining latter operation
development and unitizing (Glasersfeld, 1981). Therefore, I want to focus in on the roots of early
development and coordination of actions to determine how early forms of operations may
explain unitizing that young children engage in. Coupling this focus with subitizing development
may explain differences in young children’s unit development. Thus, this proposal will further
discuss how particular actions with subitizing may be important for young children and how the
coordination of these actions with their counting actions may relate to earlier forms of
operations.

Unit Construction and Unit Coordination

The term unit has become polysemous in the Neo-Piagetian field, as a unit symbolizes a
variety of means in which unitizing develops relative to the context the proposed unit is set in.
Ulrich (2015) cited Glasersfeld (1981) when defining unitizing as the “generalized and
generative process of abstracting out the ‘one’-ness from some aspect of experience” (as cited by
Ulrich, 2015, p. 3). Frege (1884/1974) and Husserl (1887/1970) found in their work that children
engaged in conceptual activity when required to cut “discrete items out of the flow of
experience,” which were found to promote the construction of “unitary wholes and ultimately of
countable units” (as cited by Steffe & Cobb, 1988, p. 3). Steffe and Cobb posited that children
younger than two years of age are capable of this activity, yet it is rare to find studies
investigating or even theorizing this development or its nature in the early childhood years. For
instance, Clements (1999) first proposed that subitizing relates to young children’s number
development and MacDonald and Wilkins (Under Review) found that one preschool student’s
subitizing activity related to her conceptual forms of units that she used when solving a counting
task. However, it has not been determined how subitizing activity may relate to unitizing and
how this development may relate to latter counting development.
A Unit

Boyce (2014) defines a unit as “something that has been unitized or set apart for further
action” (p. 3) and characterizes a unit as “an object that can be transformed” (p. 4) and
something that can be iterated (p. 24). A very different definition comes from Ulrich and
Wilkins’s (2017) study where they define a unit as “interiorized counting acts, so they can be
used to enumerate the size of the sets of visible or invisible items and can themselves be
counted” (p. 2). Finally, a third (very different) definition from Ulrich (2015) where a unit is
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defined as that, which “allows [students] to measure the number of items in a collection” (p. 3).
These definitions are distinctly different because each researcher investigated different aspects of
students’ mathematics learning. Thus, the term unit becomes polysemous because this one word
has multiple meanings that are related, but not alike. As described earlier, when the context
becomes more sophisticated, the word, unit represents that which is the basis for measuring what
the children are developing and coordinating within their respective mathematical structures. To
provide insight into how a unit and unitizing action might relate or not relate to early childhood
subitizing and number development, I will adopt Boyce’s definition in hopes to explain early
forms of empirical and pseudo-empirical abstraction development.

Actions and Operations on Units

The coordination of actions upon a unit explain how students develop operations. Boyce
(2014) explains that a coordination of operations allow anticipatory frameworks (see Tzur &
Simon, 2004) to develop, as operations are acted upon and allow for anticipation. This iterative
cycle explains the nature of development and learning in mathematics. For instance, Norton and
Boyce (2015) explain that children produce and coordinate four actions (unitizing, iterating,
partitioning, and disembedding) when developing operations (e.g., distributing operation) that
promote unit coordination. When students are able to operate flexibly and anticipate appropriate
actions and results within a particular mathematics domain, Norton and Boyce posit they are able
to do so because they have produced and coordinated levels of units. Coordination of these units
results from students’ development and coordination of the aforementioned actions.

Steffe and Cobb (1988) also found that young children evoked counting actions to develop
early forms of units described as prenumerical singular units. These prenumercial singular units
were described as evidence of young children’s reliance on actions with perceptual material,
figural patterns, motor patterns, verbal utterances, and abstract numbers (1988). As children
distance themselves from perceptual material towards more abstract material, Steffe and Cobb
found that children unitized the perceptual and figurative material before developing actions
upon singular abstract units. Once actions upon abstract singular units are developed, children
are able to iterate these units to construct numerical sequences that they segment. Through their
segmenting actions, children develop composite abstract units. Once children iterate and
partition composite units, they are capable of disembedding parts from whole sets. These actions
promoted more operational understandings so that they are able to be aware of and work within
mathematical structures for number. Steffe and Cobb found that when children could (1) count-
on, (2) double count (i.e., 1, 2, 3, ... one three; 4, 5, 6, ... two threes), and (3) count by multiples
(i.e., 3, 6,9, 12) to solve problems, they were using all four actions to develop a nesting of sums
for multiplicative and fractional reasoning.

With this learning theory in place, mathematics educational researchers have been able to
explain nuanced development of children’s counting, fractions, and multiplication. However, it is
still not clear how subitizing activity may relate or not relate to children’s unit development and
coordination. Thus, these unit development and coordination learning theories will be discussed
as related to different types of perceptual and conceptual subitizing.

Perceptual and Conceptual Subitizing Related to Composite Unit Development
Subitizing, initially defined in the psychology field (Kaufman, Lord, Reese, & Volkmann,
1949), describes individuals’ quick attention to the numerosity of a small set of items. Unitizing
and unit coordination have not been described in this research. Historically, subitizing has been
described in the psychology field as a quantification encoding process and visual information
processor where the numerosity of a small sets of items (ranging 1 to 5) are identified (Klahr,
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1973). More recently in the mathematics education field, Sarama and Clements (2009) delineated
a hypothetical trajectory of subitizing activity and explained subitizing as relying on either
perceptual or conceptual activity when developing early number understanding. More
specifically, Sarama and Clements explain that individuals perceptual subitizing use an
encoding process for small numerosities, but also draw from attentional resources when
associating a number word with the numerosity of the set. Individuals engaging with conceptual
subitizing use relatively more advanced number understandings to make sense of larger sets of
items (> 5) (Sarama & Clements, 2009). However, unit development and coordination may
explain, in more nuanced ways, how conceptual subitizing develops in relation to number
understanding.

Perceptual Subitizing and Unit Development

Freeman (1912) initially proposed that subitizing may introduce children to the perception of
“units of units” when encoding number. To consider early forms of unit development with
subitizing activity, I consider actions students use to determine how “units of units” may be
produced through subitizing activity. Clements (1999) first described perceptual subitizing and
conceptual subitizing activity as relying on actions that promote early unit development.
Perceptual subitizing was defined as students’ ability to intentionally quantify a set of items
through their subitizing activity yet be unable to be aware of any mathematical processes. To be
capable of engaging in perceptual subitizing, Sarama and Clements (2009) suggest that students
would need to be capable of cutting away a set of items to determine these as a unit. Sarama and
Clements defines conceptual subitizing as children’s ability to be aware of units of units when
quickly associating sets of items with number words. However, it is not yet clear what type of
units students may be developing and coordinating when subitizing.

MacDonald and Wilkins (2016) found in an exploratory study that preschool children engage
in unitizing that may relate to early forms of composite unit development. For instance, children
were found to engage in Initial Perceptual Subitizing where simple associations were made
between shapes or motion when intentionally naming a number word. I argue this is very similar
to Sarama and Clements (2009) description for perceptual subitizing and explains early forms of
figural or motor singular unit item development. This form of unit development would explain
how students rely on patterns shown to them visually with figurative patterns and how they may
even represent them rhythmically with motor patterns. Through this unit development, young
children may begin acting upon the rules of the patterns instead of simply acting on the actions
related to the patterns. This would be indicative of a child pointing to his or her paper to show
the pattern or shape when justifying why he or she knows she saw “three.”

MacDonald and Wilkins (2016) also found that young children could subitizing two or more
subgroups of items before they were capable of composing these subgroups. This type of
perceptual subitizing activity was described as Perceptual Subgroup Subitizing. Quite often, the
orientations shown to the students were clustered and regular. For instance, an orientation shown
to a child may have two dots in a column on the right-hand side of the mat and three dots in a
triangular orientation on the left-hand side of the mat. These orientations afforded students the
opportunity to unitize more than one subgroup without requiring them to partition or iterate.

MacDonald, Boyce, Xu, and Wilkins (2015) also found that when students were shown
orientations with regular patterns that were symmetrical (i.e., four dots in a rectangular
orientation) in nature, they were capable of unitizing and iterating subgroups. For instance, when
Frank, a four year-old student, was shown four dots in a rectangular orientation he initially said
he saw, “T ... four” (p. x). This suggests that he iterated two to build up towards four. This also
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suggests that he was capable of using a unit of two and partitioning a unit of four. Through these
actions, MacDonald et al. posited that Frank was capable of coordinating actions to produce a
unit for four. The symmetrical aspects of the orientation may have also afforded Frank the
opportunity to partition because the line of reflection fell upon these same partitioning lines.
Empson and Turner (2006) found that early forms of partitioning that began with paper folding
were foundational for students’ construction of functional relationships. Thus, this activity may
provide foundations for more sophisticated coordination of units later.

Perceptual Subitizing and Actions on Units

If students are capable of (1) subitizing and then composing units after subitizing —
Perceptual Ascending Subitizing, or (2) composing and subitizing and then decomposing units —
Perceptual Descending Subitizing, then MacDonald and Wilkins (2016) found students were
building necessary activity for conceptual subitizing. The distinction between this activity and
conceptual subitizing is that students are shown items that are clustered and patterned, which
does not require partitioning. Thus, this Perceptual Ascending Subitizing and Perceptual
Descending Subitizing can allow students to unitize and act on the units developed. It is not clear
how these operations develop and what type of composite unit (perceptual or figurative) students
are developing or coordinating. These early operations may develop through a coordination of
counting actions, through a segmenting of numerical sequences, or through students’
development of patterned or figurative patterns. Regardless, this transition from students’
development of actions to their development of operations is key, as students are now capable of
being aware of number structures that afford them units of units perspectives.

Furthermore, when children engage in Perceptual Descending Subitizing, MacDonald and
Wilkins (2016) argue that children are engaging in bi-directional activity. For instance, students
who subitize two clustered subgroups may state that they saw “two and three.” Once asked,
“how many is that altogether?” they may then compose these units and state “five.” MacDonald
and Wilkins explain that this is Perceptual Ascending Subitizing because the student is ascending
from the groups to the total set. However, students who subitize and compose two clustered
subgroups may state that they saw “five.” When asked, “how do you know there are five there?”
they would then need to reflect on their actions and decompose the total set. Steffe, Glasersfeld,
Richards, and Cobb (1983) described this bi-directional activity when children reversed their
counting actions and found that this activity provided foundation actions for reversible counting
later. Steffe explained that the distinction between bi-directional counting and reversible
counting was that in bi-directional counting children would rely on prenumerical units and in
reversible counting, children would rely on abstract units. This distinction leaves a lot to
educators to determine the nuances of the development between bi-directional counting and
reversible counting. Thus, in Perceptual Descending Subitizing, I argue that children are not
relying on abstract composite units and therefore require the activity and other means to
represent these units when reversing their activity. Also, questions arise from some this
development in subitizing. For instance, how could different types of perceptual subitizing
activity describe different types of prenumercial composite units?

Conceptual Subitizing and Unit Action Coordination

Once children are capable of partitioning and unitizing subgroups from a total set of items,
MacDonald and Wilkins (2016) found that children were capable of conceptual subitizing. When
children conceptually subitize, it seems that are capable of partitioning and unitizing before they
iterate units. Children inverse these actions when they are counting. For instance, when counting,
Steffe and Cobb found that children iterated units before they were capable of partitioning or
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segmenting numerical sequences. As students develop operations, they begin coordinating
actions, which I posit occurs when students reverse the order of these actions. For instance, if
children only engage in counting, then they will develop schemes that promote a particular order
of actions. Children will first unitize to develop units and then iterate their actions in accordance
with these units in a 1:1 correspondence. Here the actions are still in the material presented to the
children and number is also present in their actions on these objects. However, through a
distancing of these, children’s reliance upon particular items shown to them (e.g., through use of
fingers, through use of motor actions) children’s units become more abstract until they are
capable of operating on a series of abstract units. These early operations involve children
segmenting numerical sequences that they built through their unitizing and iterating of abstract
units. Thus, when counting children unitize, iterate, and then partition.

Comparatively, if children only engage in subitizing, then they may develop schemes that
promote a different order of actions. Children will first unitize to develop units (perceptual
subitizing) and then partition these units to develop a unit of units understanding (conceptual
subitizing). Only then, will they begin to iterate units (e.g., five and five make ten) to
(de)compose multiplicative units. Thus, when subitizing children unitize, partition, and then
iterate. I posit that when children engage in counting and subitizing, their actions become
operations because they are now asked to change the order of their actions and coordinate them
in operational structures that are more comprehensive. This allows for more sophisticated
reflective abstractions where children can use when anticipating actions and solutions in
mathematics (Boyce, 2014).

In closing, by investigating relationships between subitizing and composite unit
development, mathematics educational researchers may be able explain differences in children’s
composite unit development and provide alternative trajectories in learning mathematics.

Future Research and Possible Educational Implications

This theoretical commentary provided insight into how subitizing may or may not relate to
unit development and coordination. From this discussion, it seems evident that when students
engaging in counting activity they unitize and iterate before partitioning their developed number
sequences. This allows students opportunities to develop actions and abstract these actions on
their developed units. However, students engaging in subitizing activity may be unitizing and
partitioning before iterating their developed spatial patterns. This allows students opportunities to
develop these same actions on their developed units, but in a different order. However, if
students develop more than one order of actions, would this provide a more comprehensive set of
operations and allow students operation development earlier? By leveraging this development, I
posit that gaps that Steffe (2017) and others (e.g., Clements & Sarama, 2011; Siegler & Ramani,
2008) have found in early elementary school may shrink. Thus, future research should focus on
how different forms of activity in early elementary years may provide students alternative means
to develop operation and units in which to operate on. Findings from studies like this might serve
educators alternative actions that would serve children’s disembedding actions and distributive
operations. Also, when engaging in trajectories with different ordered actions, would children be
capable of simultaneously coordinating these actions to develop operations similar to a splitting
operation (see Wilkins & Norton, 2011)? Finally, how might alternative trajectories be used to
leverage development for students who require different curricula or educational support (e.g.,
students identified as having a learning disability)? Thus, future research in how subitizing and
counting relate to unit development and coordination could serve theoretical frameworks and
educational curricula and should be explored further.
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This paper presents strategies identified in Mexican rural school students in seeking structure on
equivalence tasks that involve the equal sign and tasks that do not. The results arise from the
pilot study of a research project on the structure of numbers and numerical operations — a key
aspect of early algebraic thinking.

Keywords: Algebra and Algebraic Thinking, Elementary School Education.

Research on algebraic thinking in young students is a trending topic worldwide (Kieran,
2018; Singh & Kosko, 2017). In this and other works, different approaches to early algebra that
recognize in arithmetic a strong algebraic feature can be identified (Carraher & Schliemann,
2007). Studies on equivalence in numerical sentences have centered on relational thinking
(Carpenter, Franke, & Levi, 2003; Molina & Ambrose, 2008), as well as on generalization, as
main aspects of algebraic thinking. However, another important aspect is that of structure in
arithmetic (Kieran, 2018).

Recent studies show some of the relationships between expressing the structural and the
operational on equivalence tasks. For instance, Asghari and Khosroshahi (2016), with tasks that
do not involve the equal sign, propose the existence of an operational approach in developing
algebraic thinking in the context of the associative property. According to these researchers,
mathematical thinking in elementary school may involve both an operational and a structural
conception. Hence, the authors identify the development of algebraic thinking as operationally
experienced in the ability to transform a numerical structure.

Schifter (2018) states that an important feature of early algebra includes observation,
development, and justification of structural properties in numerical operations expressed in
students’ computational strategies. This is seen, for instance, in students’ verbalizations of the
property that in an addition, adding and subtracting the same amount does not affect the value of
the expression. Thus, it is important to engage students in discussions on their strategies to
determine the veracity or not of numerical sentences such as 57 + 89 = 56 + 90. If students
indicate a relational mode of thinking, it suggests that they are focused on the structure of such
equalities. Schifter also analyzed students’ thinking when they explored structural properties in
related expressions in a sequence of expressions not involving the equal sign (14+1, 13+2, 12+3,
11+4).

In another work, Pang and Kim (2018) using sentences such as 67 + 86 = 68 + 85 reported
that participants tended to use computational strategies; however, they also showed their ability
to use a structural approach. According to Pang and Kim, one structural strategy consists in
observing that an addend increases by one and the other decreases also by one. In Schwarzkopf,
Niihrenborger, and Mayer (2018), however, it is considered that describing patterns in a
sequence of expressions such as 30 +20= ,31+19= ,32+ 18 = , ... is not actually structural
reasoning, even if they point out the importance of such thinking in patterns or regularities.
These researchers agree with Mason, Stephens, and Watson (2009) in the sense that structural
thinking is much more than only observing patterns.

It is clear, then, that there are different perspectives regarding the structural in arithmetic as a
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component of algebraic thinking, as well as the importance of its development. From here, the
purpose of our work is to research the reasoning of Mexican students from rural schools in
seeking structure on equivalence tasks that involve the equal sign and tasks that do not. The
research question was: What are the strategies used by Mexican students from rural schools
regarding structure on equivalence tasks?

Theoretical Framework
Structure in Numbers and Numerical Operations

One of the key aspects in developing algebraic thinking is the notion of structure; however,
there are different perspectives on this notion. As mentioned in Kieran (2018), several
researchers have worked in this area in the teaching and learning of algebra. Linchevski and
Livneh (1999), for instance, recognize that students experience difficulties with structure in
algebra and that these difficulties are due to lack of understanding of structure in arithmetic.
Mason et al. (2009) have suggested that working with tasks that focus on relations rather than on
procedures strengthens students’ attention to the structural aspect of arithmetic. They refer to this
as structural thinking and propose that it allows students to move away from the particular in a
situation.

According to Kieran (2018) generalization-oriented activities encompass a structural aspect,
but more attention is needed to the process that is complementary to generalizing, that is, the
process of seeing through mathematical objects, decomposing and recomposing them in several
structural ways. Kieran (2018, pp. 80-81) argues that to observe the structure of mathematical
objects is to see through them. This means being aware of possible and different ways to
structure number and numerical operations, for example, observing that 989 may be decomposed
as9x109+8,as9x 1101, 0oras 9x 10>+ 8x 10! + 9 x 10°. According to this researcher, the
generalization of mathematical ideas in arithmetic is linked to the idea of expressing structure.
So generalization involves identifying the structural, and the structural involves identifying the
general. Kieran (2018, p. 82) states that structure in numbers and numerical operations may be
explained, firstly, by drawing on Freudenthal (1983, 1991, quoted in Kieran, 2018). That is, that
the system of whole numbers constitutes an order structure, where addition is based on the order
of this structure: in the addition structure, to each pair of whole numbers a third number (its sum)
can be assigned. It is emphasized that, in Freudenthal’s discussions of structure, there is not just
one all-encompassing structure. He refers, for example, to order structure, additive structure,
multiplicative structure, structure according to divisors, structure according to multiples, etc.

Based on the literature regarding perspectives on mathematical structure, specifically
arithmetical structure, Kieran (2018) suggests promoting student experiences with equivalence
through decomposition, recomposition, and substitution. Following Freudenthal, she points out
that the structure in numbers and operations involves different means of structuring, according to
factors, multiples, powers of 10, evens and odds, decomposition of primes, etc. Such structures
expressed through decomposition, in other words, uncalculated forms, have properties. This
perspective on structure constitutes a wider conceptualization of the fundamental aspect of
structure in number and numerical operations as a means to develop early algebraic thinking.
Taking into account the points made by Kieran (2018), as well as the suggestion of Schifter
(2018) that structural properties can be implicit in students’ procedures, this work will explore
Mexican students’ structure sense in equivalence tasks as evidenced through their strategies.

Methodological Considerations
Included in this report we present the preliminary results from an ongoing qualitative
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research aimed at investigating the strategies that students use in equivalence tasks.
Initial Task Design
Three tasks were designed in order to explore students’ strategies; two of these did not
include the equal sign. Task 1 aims at identifying the way in which students relate two numbers a
and b with a third one c (i.e., its sum) and the rationale they use. It is a 4-item task with a main
question: Can number ¢ be written from numbers a and ? (a and b being specific numbers).
Also, the task includes a generalization question: Can any number be written from other
numbers? For all the questions, students were asked to provide an explanation.
Task 2 was based on the sequence proposed by Schifter (2018) and includes seven items. The
aim is to observe the regularities students find in the proposed sequence based on this first item:
14+1
13+2
12+3
11+4
10+5
The rest of the items focus on two particular expressions from the sequence (e.g., 14+1 and
13+2). Students are asked to explain how to write an expression from the other. Another set of
items focuses on discussing the equivalence of expressions without computation. The task ends
with a question where a sequence of the same type is proposed, but involves subtracting; here we
want to observe if students extrapolate from the discussion involving the case of adding.
Task 3 involves the use of the equal sign to show the equivalence of expressions, for instance, 4
+5=4+ 3+ 2. The aim is to explore if students indicate relational thinking based on the
structure of such equalities. The main goal in the task is to determine if the numeric sentences are
true, as well as the possibility of rewriting them in an equivalent form. Task 3 also included
numerical sentences with “big numbers”.
Participants
Six sixth graders, ages 10 and 11, from a public Mexican school participated. This grade
level was chosen because such students are finishing primary school and have been exposed to
the official Mexican public education curricula. In the curriculum for the elementary school
(SEP, 2016) the equivalence of numerical expressions is not mentioned. However, several tasks
from the official textbooks have the potential to promote students’ early algebraic thinking
(Cabanas, Salazar, & Nolasco, 2017).
Data Collection
Prior to the unfolding of the designed activity, the teacher in charge of the group reviewed it.
In her opinion, the students had never solved similar tasks; they had only worked with the use of
the equal sign in an operational sense. The data collection technique was that of the Group
Interview, so that students could verbalize their rationales. Data were obtained during three
sessions, one session per task, with sessions lasting 30-40 minutes each. All six students
participated in each of the three sessions.

Results and Discussion
The preliminary results of an ongoing study are herein reported. The analysis focuses on the
work of three students (S1, S2, and S3), those who participated most fully in the group
interviews. Data for these results come from students’ worksheets, videotaped footage of the
sessions, and researcher’s field notes.
Results from Task 1
Task 1 does not include the equal sign so as to see whether students use it spontaneously and,
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if so, in which way. Three of the items were the following:

1. May number 7 be written from numbers 6 and 1? If so, how?
2. May number 19 be written from numbers 14 and 5? If so, how?
3. Is it correct to write number 7 as 3 + 4? As 8 + 2?7 Explain.

The students answered affirmatively items 1 and 2, their explanation being based on what in the
literature is known as an operational use of the equal sign. For example, see S1’s work in Fig. 1.

A) Sh
¢El niimero 7 puede escribirse a partir de los nimeros 6y 1? 28 ;Como? _ &+ | -

May number 7 be written from numbers 6 and 1? Yes If so, how? 6 +1 =7

Figure 1. S1’s operational form of justification.

In his explanation, S1 relates 7 with 6 and 1 in an operational sense: 6 + 1 =7, through a
computational strategy. None of the students write, for example, 7 = 6 + 1, which would be
recognized as a not strictly operational response. From a structural point of view, 6 and 1 can be
interpreted as a decomposition of the number 7, which can then be recomposed from these
numbers. In item 3, students answer in the same sense (Fig. 2) based on the result they must
obtain.

B)
B) L9 Is it correct to write number 7 as 3+4? Yes As 8+2? . No
¢Es correcto escribir el nimero 7 como 3+47 > | ccomo 8+27 )\L_) Explain
Explic: é: )
xp! l\c“i\':gr g,un o e i v ik Ode I;: Because 3+ 4 =7 and 8 +2 = 10 and [3+4] does not ask for a 10
laat do 4 de g

Figure 2. S3’s justification in terms of the result.

The same idea is present in the answers involving a generalization. Can any number be written
from other numbers? Students identify the generality in terms of the response that they must
arrive at. This is observed in S1°s final explanation (Fig. 3) where he states “...only if I get what
Iwant”.

¢Cualquier nimero puede puede ser escrito a partir de otros nimeros?
Explica por qué:

SN —— ) solamente  #w  poyandgse Cur b
> pora A (

Na sl i e) ¢ yGs NN e rce

Ve Ao Y VY

Can any number be written from other numbers?
Explain why
Yes. “...onlv if I get what I want

Figure 3. S1’s general statement.

Students’ answers show a lack of relational thinking by their use of the equal sign as a symbol
that indicates the result. In other words, their strategy doesn’t match with a notion of number
decomposition, but with the idea of operating with numbers in order to get a result. The way in
which they justify their answers — according to their teacher — shows how they have been
systematically exposed to this way of thinking. In order to test whether the way in which Task 1
was designed led to the strategy that students used, Tasks 2 and 3 were designed differently.
Results from Task 2

The analysis of data from Task 2 (involving the sequence from Schifter, 2018) focuses on the
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features of the @ + b form of expressions that were observed by the students, as well as on the
possibility of transforming one expression of the sequence into another expression of the same
sequence. Regarding the first aspect, students’ answers show that they identify the regularity in
the sequence. For instance, they write about the involved operation (addition), the sum (the
result) and the existence of an order in the sequence (increase and decrease of the addends). See
S2’s and S3’s answers to the first item (Fig. 4).

B) Escribe lo que observas en la secuencia:

Que  Uan ordenados en 1 a 10 0 Ao B O A Y
“3 e J(ylnl Sa O SomQ.S, v Qa4 es lan (o lr‘f(nv/(‘lj
Y 1os @S annas  Reso Yo, 1%
B) Escribe lo que observas en |a secuencia:
)qU( qf\»‘ A4 )(43 ' S 0 ey /%41 ]5 )/ S\
ey Ybr = 18 leYe 14 49215 5 i el AU nag ang ) Secande
e hete Cayasg e s Re4efie  Sa P Geoad e

B) Write what you observe on the sequence
There is an order, in the 14 to 10 and in the 1 to 5, all of them are additions, they are not answered and all
the additions result in 15.

In all the sums the result is 15, you have 14+1=15 then 13+2=15 and the biggest number becomes small,
the smaller becomes big.

Figure 4. Features of the sequence as indicated by S2 (above) and S3 (below).

The kind of answers students produce regarding the presented sequence relates, on the one
hand, to the kind of thinking they show throughout Task 1. That is, they identify the expression
as an operation that must be carried out in order to obtain a result. This feature is clear in S2’s
response when he writes: “...all of them are additions and they are not answered and all the
additions result in 15”. This suggests that these students do not see the expression as a
mathematical object in itself, reflecting what is described in the literature as the lack of closure
dilemma. On the other hand, there is some evidence of a train of thought that could be associated
with the structural. According to Pang and Kim (2018), to identify patterns such as “increases by
one and decreases by one” is a part of structural sense. This can be seen in S3’s work (the lower
half of Fig. 4) when he states: “...and the biggest number becomes small, the smaller becomes
big”. However, he does not relate the feature he observes to the equivalence of the expressions.
In the second part of Task 2, the students were asked how to obtain one expression in the
sequence (e.g., 13 + 2) from another (e.g., 14 + 1). In these cases, all the students use an additive
compensation strategy, as observed in Fig. 5.

E) ;Es posible escribir a partir de 14+1 la expresion 13+2? D H) ;Es posible escribir a partir de 1045 la expresion 13427

¢De qué manera? Explica: : iDe qué manera? Explica e

Yomiom LU e VICAL ) Por eJemvic [ Tt ol
145 sl 1352 _? i L L SRR 1342 4 10+5 Y v
e TN 5 e =

E) Is it possible to write from 14+1 the expression 13+2? Yes H) Is it possible to write from 10+5 the expression 13+2? Yes

In which way? Explain In which way? Explain

We have to add. For instance 1+1=2 and subtract 14 -1=13 [Student illustrates an additive compensation strategy]

Figure 5. S1’s additive compensation strategy.

The aim of our research was to study how students move from one expression to another, if
they decompose and recompose the involved numbers. It was noticed that they identify the parts
of the expressions, but not as a mathematical object that can be decomposed and recomposed to
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transform one expression into another. It was also seen that students use a compensation
strategy: adding and subtracting the same amount to and from the involved addends in order to
obtain the second expression. The following is an extract from an interview when, in the course
of presenting the task, the interviewer asked for a generalization of the student’s strategy:

Researcher: ...Can you do it [referring to his strategy] in any case? Is there a rule for it?
[After other students offer suggestions, S2 answers]
S2: It’s only a matter of adding and subtracting, depending on the required numbers.

Despite such structurally-related responses as S2 produced, there is not enough evidence,
however, to determine if students identify an equivalence relationship among the expressions
(e.g., 14+1 and 13+2). Nor is there enough evidence, with respect to the additive compensation
strategy, to determine if they are aware that their strategy is generalizable to all additions (e.g.,
that 27 + 15 can be converted to, say, 30 + 12 or that 44 + 19 can be converted to 43 + 20) or
simply applicable to the set of additive expressions provided in Task 2. If the latter, then — as
suggested in Schifter (2018) — this would be an ad hoc strategy aimed at getting the numbers
needed for the second expression from the first one, and viceversa.
Results from Task 3

This task includes the equal sign — in expressions such as a + b = ¢ + d. As mentioned, Task
3 involves “big” numbers to see if this deters the use of computational strategies.
On the one hand, students accept expressions such as a + b = ¢ + d; however, they justify the
equality of both sides by calculating the result on each side. Again, this computational strategy
demonstrates that students are not relying on relational thinking. Their computational strategy is
called upon in both cases, whether with “small” or “big” numbers (Fig. 6).

Observa la siguiente expresion: 480 + 6 + 123 = 486 + 123 " 93 Ve
\2

¢(Laigualdad es Verdadera o Falsa??__\/ s 4 ,.75 tyfe

Explica con tus propias palabras tu respuesta cod Uy

) " ~ 2
Yordi " NoY da €| JLRAY SN \ AV fedQ

Observe the following expression: 480 + 6 + 123 =486 + 123
Is the equality True or False? _T
Explain with your own words

Because we get the same result

Figure 6. S3’s computational strategy.

On the other hand, students rewrite the equalities in the form of other equivalent equalities
according to two strategies. In the first of these strategies, they decompose each of the addends,
but not in a way that shows a clear relationship between one side and the other of the equality
(see S1’s work in Fig. 7). In the second, which is based on calculating the total (the result) for
each side without first decomposing the involved addends, students then look for two or more
numbers for which they could obtain the same total (see S3’s work in Fig. 8).
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Observa la siguiente expresion: 172 + 10+ 75 = 182+ 50 + 25

;Laigualdad es Verdadera o Falsa?? N Observa la siguiente expresion: 172 + 10 + 75 = 182 + 50 + 25
¢De qué otra manera podrias reescribir la igualdad anterior? ! ;Laigualdad es Verdadera o Falsa?? S :: 5’/
(;Por. qué es correcto reescribirla como lo hiciste? ¢De qué otra manera podrias reescribir la igualdad anterior? x=
OM3I2 L9 %60 ¥\S = 00 LR ) ; e . $ )
A00 ¥ 1] 58+ 60 V1St 0 0l + 30+90 Y20YS  ,por qué es correcto reescribirla como lo hiciste? >
ool e R\ NG PANTRAD Q07 160 2 jxo 4 107

Observe th? following expression: 172 + 10 +75 = 182 + 50 +25 Observe the following expression: 172 + 10 + 75 = 182 + 50 +25

Is the equality True or False? T ) ) Is the equality True or False? Yes

In which other way could you re-write the previous equality? _Yes. In which other way could you re-write the previous equality? _Yes.

Why it is correct re-write the expression in such a way? Why it is correct re-write the expression in such a way?

100+ 72+5+5+60+15=100+82+30+20+20+5 207 + 50 = 150 + 107
Because I get the same result

Figure 7. S1’s equality rewriting. Figure 8. S3’s equality rewriting.

This task shows that students accept equalities in the form of @ + b = ¢ + d. However, they
transform them without relating the right and left sides except according to their totals. Their
strategy is to maintain the equivalence through the two above-mentioned strategies. Hence, as
observed in Figs. 7 and 8, there is not a natural inclination in students to re-express the equalities
in such a way that both sides of the equalities look alike; for instance, 172 + 10 + 50 + 25 =172
+10+50+25,0r170 +2+10+50+25=170+2 + 10 + 50 + 25, or even as 182 + 75 =182 +
75. However, S1’s work shows some structural sense according to the reviewed literature. Even
when S1 and S3 write correct equalities, each side is considered on an individual basis. The left
side is decomposed in one fashion and the right side in a different way, without showing
explicitly the equality of both sides. S1 (Fig. 7) does not explain that both sides look more or less
the same, he only mentions that the result (on both sides) is the same.

Conclusions

From the strategies students used, only one can be considered to illustrate a structural
approach (S1 in Task 3, as shown in Fig. 7), even though the accompanying explanation refers to
the result of both sides of the equality. The rest of the students’ strategies are clearly
computational, referring to the expected result, whether it involves operating with the numbers of
an expression so as to calculate the result on both sides of an equality (the strategy observed in
Tasks 1 and 3), or operating with the addends of one expression to obtain the addends of the
other expression (the strategy observed in Task 2). In this sense, the presence or absence of the
equals sign in the tasks seems not to influence the students in their chosen strategy.

Our results coincide with those reported by Pang and Kim (2018), in the sense that students
tend to use computational strategies. This means that they show a strong operational sense, even
when they accept equalities in the form of @ + b = ¢ + d. Nevertheless, this acceptance could be
used as a base to promote the development of structural sense within algebraic thinking by
designing tasks in such a way that students are explicitly requested not to pass through the
intermediate step of computing the total for each expression in their work on judging the
equivalence of the component expressions. Accepting expressions as bona fide numerical
objects, and operating with and on these objects, is essential to seeking and expressing structure
within the domain of arithmetic and thereby fostering the development of algebraic thinking.
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LEARNING FROM NAEP RELEASED ITEMS: U.S. ELEMENTARY STUDENTS’
GRASP OF MULTIPLICATIVE RELATIONSHIPS
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Curricular analysis indicates that the U.S. students are introduced to multiplication in additive
terms (as the replication of equal groups and repeated addition). But the virtue of this
introduction for supporting students’ understanding of the full range of multiplicative
relationships is unclear. This paper reports an analysis of all grade 4 released NAEP items that
expressed a multiplicative relationship, focusing on the range of relationship types, related
quantities, and item difficulty. Results show that multiplicative items (1) frequently presented
discrete quantities and equal group situations, (2) were easier when they involved discrete
versus continuous quantities, and (3) within discrete items, equal groups and array items were
easier than other types. These results provide measured support for the conjecture the additive
introduction to multiplication may limit the development of elementary students’ understandings.

Keywords: Number Concepts and Operations, Elementary School Education, Assessment and
Evaluation
Objectives of the Study

Can analyses of released items from the National Assessment of Educational Progress
(NAEP)—the “nation’s report card”—and performance on those items shed light on questions of
interest to mathematics educators, beyond what has been reported in summary volumes (e.g.,
Klosterman & Lester, 2007)? This analysis addressed that question for the broad content area of
multiplicative relationships. “Multiplicative relationships” designates a set of tasks and
situations, numerical and quantitative, that engage students in multiplicative reasoning and in
carrying out numerical operations of multiplication or division. Given the introduction of
multiplication and multiplicative relationships in grades 2 and 3 in U.S. classrooms, the analysis
examined released items from grade 4.

Multiplicative relationships are significantly more diverse and challenging for students to
master than additive relationships (Nunes & Bryant, 1996; Vergnaud, 1983, 1988). Students
work on multiplicative relationships for many years, and this work is intensive in the upper
elementary through middle school years. They are introduced to the operations of multiplication
and division and some “applied” situations in grades 2 and 3. In the U.S., this introduction is
essentially additive in nature. Quantitatively, multiplication is presented as involving the
replication of equal-sized groups of discrete objects; numerically, it is presented as repeated
addition (Smith, 2017). Research on students’ understanding of different multiplicative
relationships raises questions about whether this instructional foundation effectively supports
students’ access to and understanding of the full range of multiplicative relationships. This
analysis of released NAEP items is one small step in a larger effort to address that critical
question. The NAEP analysis complements the results of many prior studies that have assessed
students’ understanding of multiplicative relationships (as summarized in Greer [1992] and Harel
& Confrey [1994]).

Two main questions focused the analysis: (1) what multiplicative situations (type and
frequency) appear in released Grade 4 items and (2) how well do the performance results align
with the additive introduction to multiplication? For example, are items presenting the
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replication of equal groups easier than other types of situations that are less amenable to
replication and repeated addition?

Theoretical Perspective

Broadly, the larger inquiry that motivated this analysis was framed in constructivist terms. If
learning is a social and psychological process of adapting prior understandings to cope with new
and problematic mathematical situations (e.g., Wood, Cobb, Yackel, & Dillon, 1993), then how
we introduce students to multiplicative relationships matters greatly for their subsequent work to
engage the full multiplicative conceptual field (Vergnaud, 1983). Understanding multiplication
and division means knowing where and why situations encountered in the world are
“multiplicative,” not additive. Mastery of the numerical aspects multiplication and division (i.e.,
basic facts, algorithms, and properties of operations) may contribute to understanding
multiplicative relationships but is neither sufficient nor central.

A framework of types of multiplicative reasoning and quantitative situations that typically
elicit such reasoning framed the analysis of the released items. Quantities are countable or
measureable attributes of objects or collections of objects that are constituents of situations that
student encounter and reason about in school and the everyday world (Smith & Thompson,
2008). To use their mathematical knowledge effectively in reasoning about and resolving these
situations, students must consider the quantities involved and how they are related. Table 1
presents (and relates) different types of multiplicative reasoning and types of situations. But
situations do not determine students’ reasoning about them. Rather, the correspondence below
reflects how prior research has characterized situations in relation to multiplicative reasoning.
“Replication,” an additive form of reasoning, has been included for “coverage” of the released
items and because U.S. curricula treat replication as multiplicative.

Table 1: Types of Multiplicative Reasoning and Situations

Types of Multiplicative Reasoning | Types of Quantitative Situations

Replication Equal groups; rectangular arrays;
some area and volume situations

One-to-many Unit conversion

Scaling Comparison; price (discrete);
rate/cost (continuous)

Successive partitioning Folding; splitting

Composition Cartesian product (discrete); area;
volume (continuous)

Central to the analysis of situation types is the distinction between discrete and continuous
quantities. Discrete quantities are sets of objects; their numerical value can be determined by
counting. Continuous quantities are initially attributes of unsegmented objects (e.g., distances or
lengths, areas, time periods between two events). Their measurement requires the selection and
iteration of a unit (a smaller piece of the target quantity). Their numerical value is the number of
such units that collectively fill up or “exhaust” the initial quantity.

Rectangular arrays and some area and volume situations are listed in Table 1 along with
equal groups because (1) array situations support replication reasoning (when a row or column of
objects is interpreted as a group) and (2) area and volume situations are often presented as arrays
of squares or stacks of cubes that similarly support replication. Price indicates situations where
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some discrete number of items has been purchased. It is related to, but a special case of the more
general set of rate/cost situations that accept measured quantities (e.g., “9.45 gallons of gas”).
Cartesian product and area/volume are both multiplicative compositions, where the product
differs from both factor quantities. In the former, “pants” and “shirts” are different quantities
than “outfits.” Similarly, both rectangular area and prism volume are different quantities than the
lengths from which they are composed.

The entries in Table 1 suggest that understanding multiplication involves grasping
fundamentally different forms of multiplicative relationship that many students may see as
conceptually distinct, especially early in their mathematical experience.

Methods

Items from nine Mathematics assessments (administered in 1990, 1992, 1996, 2003, 2005,
2007, 2009, 2011, and 2013) have been released for public examination
(https://nces.ed.gov/nationsreportcard/nqt/). NAEP characterizes items by content area—Number
properties and operations (NPO), measurement (M), geometry (G), data, statistics and
probability (DSP), and algebra (A) and by format—multiple-choice, short constructed response,
and extended constructed response. Released NAEP items are characterized by difficulty, as
“easy” (performance > 60% correct), “medium” (performance is between 40% and 59% correct),
or “hard” (performance <40% correct).

All 388 released grade 4 items were examined and coded by the author as either additive,
multiplicative, or other. Multiplicative items presented one of the situation types listed above in
Table 1 (including replication). Additive items presented one of three types of additive
relationship—combine, separate, or compare. Additive items included area and volume/capacity
items that presented collections of squares and cubes that supported counting and (additive)
comparison. Other items presented content topics such as place value, ordering, estimating,
fractions, graphing, and stating probability, where neither an additive nor multiplicative
relationship between numbers or quantities was expressed.

Multiplicative items were found in all five content areas but were most common in NPO and
M domains. All multiplicative items were first coded as “numerical” or “quantitative.”
Numerical items presented written numerals and operations with minimal prose. “Quantitative”
items were primarily expressed in words, where numerals were associated with quantities. Some
items were presented entirely in prose (as “word problems”); others presented tables or figures
with the written text, and the tabular or figural information was necessary for solving the item.
Quantitative items were then coded for the type of quantities involved, discrete or continuous.
Discrete items were further distinguished according to the type of relationship presented. Eight
types proved sufficient for coding all discrete items: Equal groups, equal shares, rectangular
arrays, money, price, multiplicative comparison, unit conversion, and Cartesian product.
Continuous items presented length, area, or volume/capacity measurement situations where the
quantity could not be evaluated with additive reasoning. Four types were sufficient for coding
continuous items: Unit conversion, equal shares, multiplicative comparison, and computation.

Results
For a broad overview, Table 2 presents an overview of all 388 released grade 4 items by
year. Column 3 lists the total number of multiplicative items; column 4 lists the total number of
additive items; and columns 5—8 characterize the multiplicative items, first as numerical or
quantitative items and then for quantitative items, as discrete and continuous.
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Table 2: General Character of Grade 4 Items (1990-2013)

Year | All | Mult | Add M; M; M, Quan; M, Quan;
Number | Quan Discrete Continuous
2013 46 14 9 6 8 6 2
2011 49 20 14 7 13 10 3
2009 31 6 8 1 5 3 2
2007 54 14 12 3 11 9 2
2005 32 5 11 2 3 3 0
2003 59 23 9 3 20 16 4
1996 25 9 6 1 8 6 2
1992 59 20 13 6 14 12 2
1990 33 10 7 6 4 3 1
Total 388 | 121 89 35 86 68 18

The number of released items and the number of multiplicative items varied substantially across
the nine assessments, but multiplicative items were generally more frequent than additive items.
In most years, multiplicative quantitative items outnumbered multiplicative numerical items,
often dramatically. Among quantitative items, those presenting discrete quantities were at least
twice as frequent as those presenting continuous quantities.

More substantively, the distribution of discrete items across the eight types listed above was
not uniform (Table 3).

Table 3: Frequency of Grade 4 Discrete Multiplicative Items by Type (1990-2013)

Year | Disc | Grps | Share | Array | Comp | Unit | Money | Price | C.P.
2013 6 2 0 0 2 1 0 0 1
2011 10 3 2 0 2 3 0 0 0
2009 3 1 0 0 0 1 1 0 0
2007 9 3 0 0 1 3 1 1 0
2005 3 2 0 0 1 0 0 0 0
2003 | 16 5 2 1 1 1 0 5 1
1996 6 2 0 2 0 1 0 1 0
1992 | 12 5 0 0 0 0 1 5 1
1990 3 0 0 1 0 0 0 2 0
Total | 68 23 4 4 7 10 3 14 3

~

Note: “Grps” = equal groups,
Cartesian product

‘Comp” = comparison, “Unit” = unit conversion, “C.P.” =
9 9

Equal groups was by far the most frequent type of situation presenting discrete quantities in
multiplicative relationship, followed by price and unit conversion. Equal groups and unit
conversion items always involved quantities with whole number values, where price items
involved some whole number of items at a cost represented as decimal (e.g., $0.87 or $2.79).

Many authors have argued that multiplicative relationships are intrinsically more difficult for
students to master than additive relationships (e.g., Vergnaud, 1983, 1988). Is this claim reflected
in the NEAP results? Overall, the entries in Table 4 indicate an affirmative answer.
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Table 4: Relative Difficulty of Grade 4 Additive and Multiplicative Items (1990-2013)

Year | All | Mult. | Add. | Avg % Corr; A | Avg % Corr; M | %A — %M
2013 46 14 9 46.8 43.6 3.2
2011 49 20 14 58.2 48.8 9.4
2009 31 6 8 57.4 52.8 4.6
2007 54 14 12 61.3 46.0 15.3
2005 32 5 11 53.3 58.2 -4.9
2003 59 23 9 57.8 50.8 7.0
1996 25 9 6 54.2 42.0 12.2
1992 59 20 13 45.2 40.4 4.8
1990 33 10 7 44.6 44.2 0.4
Total | 388 | 121 89

On seven of nine assessments, multiplicative items were more difficult than additive items, and
in three (1996, 2007, and 2011) significantly so. The difference was negligible in 1990 and had
the opposite sign in 2005.

But item difficulty across types of multiplicative relationships was the central focus of this
analysis. Table 5 below reports percent correct for items presenting each type of discrete
multiplicative relationship. The first value in right-most column lists the average percent correct
for all items of that type. The values in parentheses are the average percent correct for a
meaningful subset of those items, as explained below. The other columns list the number of
items rated “easy,” “medium,” and “hard” and the percent correct for each item in those three
categories.

Table 5: Difficulty of Grade 4 Discrete Multiplicative Items by Type (1990-2013)

Discrete N N % N % N % Avg %
sub-type Easy Med Hard
Equal 23 4 75,61,80, | 11 |50, 53,59, 53, 8 |38, 35, 23, 49.0
groups 70 56, 46, 57, 50, 21, 36, 39, (56.4)
55,47, 48 37, 37
Price 14 2 70, 62 4 | 58,58, 53,48 8 14,3539,31, | 393
17,8, 9, 21 (53.2)
Unit 10 6 66, 75, 65, 2 | 53,44 2 17; 39 58.3
Conversion 85,78, 61 (62.9)
Compare 7 1 72 2 | 47,47 4 |32, 34,24, 43.0
34 (36.3)
Array 4 1 79 2 50,48 1 35 53.0
Money 3 60 1 58 1 20 46.0
Equal shares | 4 2 47,51 2 23; 38 39.8
Cartesian 3 1 48 2 24; 28 333
product
Total 68 | 15 25 28 45.9

Items in three discrete types were somewhat easier overall (Unit Conversion, Array, and
Equal Groups, in descending order), with average correct at or slightly above 50%. Six of the 10
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Unit Conversion items provided the conversion ratio explicitly in the item (e.g., 1 qt. = 2 cups).
The two “hard” conversion items (39% and 17% correct) both presented 3:1 ratios, where the
other eight items presented conversion ratios of 2:1, 5:1, 10:1, or 100:1. Arrays were either
represented directly in diagram (n = 1) or described in words (n = 3). The “easy” item (79%
correct) described a particularly familiar array—two rows of six cookies on a cookie sheet.

As shown, Equal Groups and Price items were often difficult; eight items of both types were
“hard.” But within both types, hard items often involved two or more steps, where a
multiplicative relationship was involved in at least one step. For example, some two-step Price
items asked for the change received for the purchase of a set of items at a given price when a
specific bill was given for payment—requiring both multiplicative and additive reasoning. Some
two-step Equal Groups items introduced more than one group (e.g., students in a class and buses
with maximum capacity for students). Most multi-step items were more difficult than single step
items of the same type. The average percent correct for the thirteen single-step Equal Groups
items was 56.4% (as shown), where the corresponding average for the ten multi-step items was
39.2%. Similarly, the six single-step Price items were considerably easier (average 53.2%
correct) than the eight multi-step items (average 28.9% correct).

By contrast, Compare, Equal Shares, and Cartesian Product items were more challenging, at
43%, 39.8%, and 33.3% average correct, respectively. The majority of Compare and Cartesian
Product items were “hard,” even when six of the seven Compare items involved a 2:1 ratio. Only
one, presenting ten stars and five triangles in a 3 by 5 array and four possible ratios, was “easy”
(72% correct). Without that item, average correct fell to 36.3%. Of the four Equal Shares items,
none called for simply distributing some discrete quantity equally to a given number of
recipients. One “hard” item (38% correct) asked students to distribute 24 wheels to bikes and
wagons in two different ways; one “medium” item (47% correct) required interpreting the
remainder after equal sharing. Cartesian Product items were difficult even though support was
provided for solving two of the three (i.e., items provided the solution for smaller factors).

Finally, Table 6 presents the performance on the N = 18 multiplicative items that presented
length, area, or volume/capacity quantities and within each quantity, the type of multiplicative
relationship involved.

Table 6: Difficulty of Grade 4 Continuous Multiplicative Items by Type (1990-2013)
Continuous N N % |NMed| % N % Avg
Sub-type Easy Hard %
Length 7 1 6 30.6
compare 2 27,33 30.0
equal shares 4 47 27,26,23 30.8
unit convert 1 31 31
Area 6 1 1 4 36.5
compute rect 4 23,24,24,19 22.5
compare 2 78 51 64.5
Volume/capacity | 5 2 1 2 47.4
unit convert 3 67, 61 32 533
compute stack 1 56 56
compare 1 21 21
Total 18 3 3 12 37.2
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Overall, the results show that multiplicative items presenting continuous quantities were
generally more difficult than those with discrete quantities. Six of seven length items were
“hard,” as were four of six area items—even when the area items involved a single-step.
However, the two items comparing areas— both presenting sectors of partitioned circles—were
markedly easier (average 64.5% correct) than the corresponding discrete comparison items (n =
7; average 43.0% correct). The three volume/capacity unit conversion items were somewhat
more difficult (average 53.3% correct) than the discrete unit conversion items (n = 10; average
58.3% correct). As was true for the discrete items, all three continuous items stated the
conversion ratio in the item text.

Discussion

The analysis was revealing in two principal ways. First and generally, the careful
examination of released NAEP items supported a finer-grained analysis of U.S. grade 4 students’
successes and challenges—as a proxy measure of national understanding—than the published
volumes have thus far (Klosterman & Lester [2007] and prior volumes in that series). The
released item set provided greater access to the items as presented to students, their difficulty,
and the details of item performance. Second and more specific to this inquiry, the analysis
provided a measure of empirical support for the concern that the additive introduction of
multiplication may present challenges for the growth of students’ understanding beyond equal
groups of discrete objects and repeated addition. However, that support was mixed and
complicated by many factors outside the frame of the analysis. Since many factors other than
quantity and relationship type likely contribute to item difficulty, the analysis shows the
difficulty inherent in establishing what makes an item easy (or challenging) for students.

Some of the results are consistent with (a) the curricular introduction of multiplication as the
replication of equal groups of discrete quantities and repeated addition and (b) the concern that
that an additive foundation likely makes extension to a wider set of situations problematic.
Additive items were on average easier than multiplicative items. Second, items posing
multiplicative relationships among discrete quantities were much more frequent and generally
easier than item involving continuous quantities. Third, situations involving Equal Groups were
the most frequent of type of discrete multiplicative relationship and were easier than other
discrete item types that are less amenable to interpretation as equal groups—specifically,
Comparison and Cartesian Product. But this was not always the case; Unit Conversion items
were easier on average than both Equal Groups and Array items. Overall, the results are
consistent with and do not remove the concern that the additive introduction to multiplication
and multiplicative relationships may support initial access to multiplicative relationships, but at
the cost of later conceptual challenges as application extends both quantitatively and numerically
(e.g., to fractions, decimals, and negative numbers).

There are numerous limitations to this analysis and more broadly to using NAEP released
items to address questions about the effects of curricular approaches on student learning. Perhaps
the most important is that the released item set stands in uncertain relationship to the larger
corpus of items where NAEP has performance data. The conditions under which a NAEP item is
released to the public are unknown. Also, where the type of multiplicative item and the type of
related quantities may well influence the item difficulty, other factors do so as well, including the
numerical values of the quantities (even within the set of whole numbers), the length and clarity
of item prose, and the nature of support provided (e.g., stating conversion ratios or not). Third,
multi-step problems present challenges for characterizing items as additive or multiplicative and
for judging the sources of difficulty. Fourth, though the capacity to explain one’s reasoning may
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be a better indicator of understanding than producing the right numerical answer, the number of
released NAEP items requiring explanation (that is, both short and extended constructed-
response items) have been small in number, in this target content area and likely in most others.
The smaller the item set, the more perilous any conclusion drawn from such data becomes. Last,
the analysis has been completed by a single person and the coding scheme must be shown to be
reliable.

Despite these limitations, released NAEP items are an underused resource for mathematics
education researchers who wish to address questions of learning at a national level. Where it is
unlikely that any similar analysis of items selected for a given topic or response type (e.g.
constructed-response) will resolve questions about student understanding, they may contribute to
inquiries that draw on multiple sources of evidence. NAEP released item data, reflecting such a
large and nationally-representative sample of students, is a unique source of evidence. Its
analysis can provide either general support (as in this case), no support, or contradictory
evidence for a given hypothesis.
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A LONGITUDINAL STUDY: THE EFFECTS OF TIME AND EARLY INSTRUCTION
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Mahtob Agazade Laura Bofferding Lizhen Chen
Purdue University Purdue University Purdue University
maqazade@purdue.edu Ibofferd@purdue.edu chen1905@purdue.edu

Twenty-nine second graders received integer instruction (instruction-only) and three years later
participated in our study again as fifth graders (instruction + time). In addition, we analyzed
data from an additional 73 fifth graders to investigate the effect of time without having had the
second-grade instruction (time-only). The findings indicate no significant difference between
instruction-only and time-only groups, a significant improvement from the instruction-only to
instruction + time group on integer addition and subtraction problems, and a significantly better
performance for the instruction + time group on integer subtraction problems.
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The transition from a whole to negative number understanding requires conceptual change
and sufficient time to process (Vosniadou, Vamvakoussi, & Skopeliti, 2008). Children as early
as first grade can reason with negative numbers (e.g., Bofferding, 2014); however, they often do
not learn negative number operations until seventh grade (National Governors Association
Center for Best Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010).
Therefore, upper elementary students may generate a conception of negative numbers based on
their whole number understanding (e.g., Bofferding, 2014) without getting formal feedback. For
example, students may always subtract a smaller number from a larger number (e.g., Murray
1985). In fact, Aqazade (2017) found fifth graders’ preconceptions limited their ability to refine
their conceptions of negative numbers and achieve higher scores compared to second graders.
Through the conceptual change lens, we explored the role of time and early instruction on
students’ performance on integer addition and subtraction problems.

1. After being exposed to integer operations in second grade (instruction-only group, Year 1
of the study), how does students’ performance on integer addition and subtraction
problems differ three years later as fifth graders (instruction + time group, Year 4 of the
study)?

2. In Year 4, how do the fifth graders who had integer instruction in second grade
(instruction + time group) perform on integer addition and subtraction problems
compared to fifth graders who did not have the instruction (time-only group)?

Framework Theory Approach to Conceptual Change

The framework theory for conceptual change refers to enrichment or restructuring of
children’s existing knowledge to accommodate new knowledge. Consistent with this, students
initially interpret integer arithmetic through a whole number lens (Bofferding, 2014; Vosniadou,
Vamvakoussi, & Skopeliti, 2008).
Interpretation of the Minus Sign, Addition, and Subtraction

The minus sign holds three different meanings: binary, symmetric, and unary (Vlassis, 2004).
With the binary meaning or subtraction sign, students treat the minus sign as subtraction (e.g.,
solving -1 + 8 as 8 — 1 = 7; Bofferding, 2010). The symmetric meaning designates taking the
opposite (Vlassis, 2004); with this interpretation, students may treat negative numbers as positive
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and add the negative sign to their answer (e.g., solving -7 — -7 = -0; Bofferding 2010). The unary
meaning indicates negative numbers, as seen when students start with the negative number and
count towards negative or positive directions (Bofferding, 2010). With positive numbers,
subtraction involves a decrease in magnitude (Vosniadou, Vamvakoussi, & Skopeliti, 2008), but
with integers, subtraction can result in a decrease or increase (Bofferding, 2014). Students’ ideas
of only subtracting the smaller number from a larger one, subtraction as moving downward, and
addition as moving upward are challenged with integers (e.g., Bofferding, 2014; Murray, 1985).

Methods
Participants and Setting

We have collected data for four years as part of a larger study. Twenty-nine students
participated as second graders in Year 1 of the study (instruction-only group) and three years
later as fifth graders in Year 4 of the study (instruction + time group). Seventy-three additional
fifth graders were in Year 4 who did not have integer instruction in their second-grade year
(time-only group). All students were recruited from two rural, elementary schools in the Midwest
(about 30% were English Language Learners, and 80% qualified for reduced-price lunch).
Design and Analysis

In Year 1, second graders (instruction-only group) completed a pretest on integer addition
and subtraction. Then over three sessions, groups of two to four students explored integer order
and symbols and played a movement game on a number path. Next, students individually
compared integers and received immediate feedback. After the sessions, students participated in
a whole-class lesson on integer addition and subtraction. Then, they completed a posttest. After
both tests, we interviewed 20% of the students about their strategies. In Year 4, fifth graders
(time-only and instruction + time groups) took an interviewed pretest involving integer addition
and subtraction problems. We focus on the data from the Year 1 posttest and Year 4 pretest.

For analysis, we used a repeated measure ANOVA to compare the instruction-only and
instruction + time groups’ performance on the common test items (i.e., 1 —4, -2 — -6, -5 — -5, -1
+ 8, -9 + 2, and 7 + -3), which provided information about the role of time. Afterwards, we
explored students’ most frequent answers and strategies on the items. We used a median test to
compare students’ performance in the instruction-only group from Year 1 to students’
performance in the time-only group from Year 4 on the common items to investigate the role of
time only versus early instruction only. Finally, we used a median test to compare time-only and
instruction + time groups on all 29 integer problems from the Year 4 pretest.

Findings

Research Question One: Role of Time

Students who participated in Year 1 as second graders performed significantly better on the
addition and subtraction problems when solving the same problems three years later as fifth
graders (addition, F(1, 27) = 5.32, p =.029 and subtraction, F(1, 27) = 12.385, p =.002).

Instruction-only versus instruction + time, solving 1 — 4. A majority of students responded
3, incorrectly commuting the problem; the average percentage of students answering 3 remained
stable over time. Moreover, 11 (37%) students answered 3 in both years, suggesting time
influenced little to change this conception of subtraction. A larger percentage of students
answered -3 in Year 4 than Year 1, suggesting some students changed their thinking. In fact, 6
(21%) students correctly changed their answer from -5, 3, or -2 to -3. Those who changed from -
5 to -3 indicated attention to the operation, those who changed from -2 to -3 indicated more
accurate counting, and those who changed from 3 to -3 indicated advances in integer subtraction.
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Table 1: Most Frequent Answers on Common Integer Subtraction Problems
1-4 2--6 5--5

Groups 0 3 3 4 -4 -8 0 -0 10 -10

Instruction + Time 3%  55% 38% 34%  48% 14% 86% 10% 0% 3%
Instruction-Only 3% 52% 24% 28% 17% | 34% 59% 3% 10% 28%
Time-Only 0%  70% 22% 21% = 47%  23% 58% 25% 0% 14%

Note. Grey cells indicate the most frequent response in each group for each problem.

Instruction-only versus instruction + time, solving -2 — -6. For students in the instruction-
only group, -8 was their most common response. Students answering -8 often added the absolute
values of the integers and made the answer negative, a symmetric meaning of the minus sign.
Likewise, they could get -4 by solving 6 — 2 =4 and making the answer negative. Another
strategy to get -8 was to start at one number and move in the negative instead of positive
direction, a unary meaning of the minus sign. Students could get the correct response using their
whole number understanding and solving 6 — 2 = 4; however a correct strategy would be to start
at -2 and move in a less negative direction. Among students who were in both instruction-only
and instruction + time groups, 5 (17%) students changed their answer from -8 (Year 1) to -4
(Year 4), and 4 (14%) changed their answer from 4 to -4. In addition, 7 (24%) students correctly
changed their answers from -4, -8, and 8 to 4. Those who changed from -4 or -8 to 4
demonstrated an understanding of the binary and unary minus signs and directed subtraction;
those who changed from 8 to 4 realized the problem involved subtraction, not addition.

Instruction-only versus instruction + time, solving -5 — -5. Students in the instruction-only
group more often responded -10 compared to students in the instruction + time group. Students
could answer -10 based on two solution strategies: using the unary meaning of the minus sign
without correct directional movement or using the symmetric meaning with an incorrect use of
operation. Compared to 1 —4 and -2 — -6, students performed higher on this problem. Among
students in both instruction-only and instruction + time groups, 15 (52%) students continued to
answer 0, and 10 (34%) changed their answers from -10, 10, or -0 to 0. Those who changed from
10 to 0 noticed that the problem involved subtraction. Those who changed from -10 or -0 no
longer relied on the symmetric meaning of the minus sign. Even though few students responded
-0 in both groups, 2 (7%) students in the instruction-only group changed their correct answer to -
0 three years later. This often occurred for students who initially ignored the negatives.
Research Question Two: Role of Early Instruction

Comparing the time-only versus instruction-only group’s scores on the common items with
the median test indicated no significant difference between their performances. These findings
suggest the effects of early instruction could play a similar role as the effects of time without
early instruction. Students’ performance in the instruction + time group compared to the time-
only group on integer addition and subtraction problems revealed no significant difference on the
integer addition problems and a significant difference favoring the instruction + time group on
the subtraction problems (X? = 4.254, p = .039) (see Table 1).

Instruction + time versus time-only, solving 1 —4. Students in the time-only group
answered 3 more frequently than students in the instruction + time group. Further, 7% of
students in the time-only group provided negative answers close to -3 (i.e., -2, -1, -4).
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Instruction + time versus time-only, solving -2 — -6. Interestingly, -4 was the most regular
answer among both groups. The slightly more frequent responses of -8 among students in the
time-only group compared to the instruction + time group is related to their lower percentage of
correct answers. However, students in the time-only group answered with -0 in two instances,
indicating a symmetric meaning of the minus sign. Actually, students in the time-only group
responded with negative answers more often than the instruction + time group (73% versus
55%). Students in this group also provided positive answers including 7, 6, and 2.

Instruction + time versus time-only, solving -5 — -5. Even though both groups did not have
10 as their answers, the time-only group had positive answers such as 5 and 2. An answer of 5
could result if considering one of the -5’s as worth as 0 and interpreting the other one as a
positive five. Similar to -2 - -6, students in the time-only group had more negative numbers
compared to students in the instruction + time group. For example, students in the time-only
group more frequently answered -0, representing a symmetric treatment of the minus sign.

Implications and Discussion

We investigated the effects of time and early instruction on negative number operations on
students’ integer addition and subtraction performance. Consistent with conceptual change
theory, time played an important role (Vosniadou, Vamvakoussi, & Skopeliti, 2008). The
instruction-only group shifted toward a unary conception of the minus sign and interpreting the
subtraction operation as corresponding to a directional movement three years later in the
instruction + time group. The significant difference between the instruction + time and time-only
groups on subtraction problems suggests early integer instruction can support understanding. The
time-only group provided more negative answers, which could correspond to overusing the
symmetric meaning of the minus sign. Overall, an early exposure to negative numbers was
beneficial for students’ integer learning, which could conceptually develop through time.
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We explored 105 second and fifth graders’ performance on integer subtraction problems before
and after analyzing different contrasting worked examples involving integers. The students, as
part of a larger study, completed a pretest, were randomly assigned to intervention groups --
which differed in the problems they compared -- and participated in two small-group sessions,
one whole-class lesson on integer subtraction, and a posttest. The students made progress in
solving integer problems from pretest to posttest. In this paper, we focus on students who
provided only positive or zero answers on their pretest. The trends in their posttest answers show
important differences among the intervention groups concerning their use of number order and
interpretations of operations in integer arithmetic.
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Theoretical Framework

Based on a framework theory view of conceptual change, children initially interpret
mathematics numerical problems through a whole number lens, due to their experiences
interacting with objects (Vosniadou, Vamvakoussi, & Skopeliti, 2008). Learning about negative
numbers can challenge their framework theory of numbers in several ways, including their
interpretation of minus signs and the meaning they ascribe to operations. Older students may
refer to rules about the use of signs when solving problems with negative numbers rather than
articulating conceptual justifications for their solutions (Bishop, Lamb, Philipp, Whitacre, &
Schappelle, in press), possibly because they are less willing to change their prior conceptions
(Aqazade, Bofferding, & Farmer, 2017). However, some research has shown that young children
are willing to play with and make sense of negative numbers (Aze, 1989). We investigate how
different problem contrasts might promote conceptual change with second and fifth graders.
Interpretations of Minus Signs and Operations

Using their framework theory for numbers, children’s initial interpretations of the minus sign
correspond to the subtraction operation, the binary meaning (Vlassis, 2004). With this
interpretation, they often treat negatives as subtraction signs (e.g., solving 9 —-2as 9 -2 -2 =35;
Bofferding, 2010) or ignore them completely. However, there are two additional meanings of the
minus sign. The symmetric meaning of the minus sign corresponds to taking opposite of a
number (Vlassis, 2004), as seen when students operate with integers as positive and make the
answer negative or draw comparisons between positive and negative forms (e.g., solving -7 —- 7
= -0; Bofferding, 2010). The unary meaning of the minus sign designates a negative number
(Vlassis, 2004), as seen when students start at a negative number and count in a correct or an
incorrect direction (Bofferding, 2010).

Students learn positive number subtraction as counting down, which corresponds to a
decrease in numerical magnitude (Vosniadou et al., 2008). However, with negative numbers,
students need to learn that subtracting a negative number corresponds to counting up
(Bofferding, 2014) and that subtraction could result in a decrease or increase in magnitude from
the initial number. One way to help students distinguish the roles of the minus sign in operations
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involving negative numbers is through analyzing contrasting cases with worked examples.

Worked Examples and Contrasting Cases

Worked examples can help reduce the cognitive load of managing many new concepts or
steps at a time so that students can focus on understanding the problems and using them to solve
related problems (e.g., Hilbert, Renkl, Kessler, & Reiss, 2008). Likewise, contrasting cases can
help students to notice important differences between problems to discern an underlying
structure (Schwartz, Tsang, & Blair, 2016), learn new solution methods (e.g., Rittle-Johnson &
Star, 2011), refine their prior understanding, and promote conceptual understanding (e.g., Namy
& Gentner, 2002). With subtraction, helpful contrasts could include comparing positive minus
positive problems with a) negative minus negative, b) negative minus positive, or ¢) positive
minus negative problems. This research investigated the following questions: When learning
integer subtraction, how do these contrasts and a short lesson benefit second and fifth grade
students? What contrasts best help them make sense of integer subtraction problems?

Methods

Participants and Design

Participants included 95 second graders (from the larger study with 133 second graders) and
10 fifth graders (from a larger group of 74 fifth graders) from two rural, elementary schools in
the Midwest (Free and reduced lunch: 30% and English Language Learners: 79%). This subset
consistently answered with positive numbers or zero on the pretest (which is why the number of
fifth graders in the subsample is so small). After a pretest, students were randomly assigned to a
control or one of three experimental groups, participated in two small-group sessions, engaged in
a whole-class lesson on integer subtraction, and took a posttest.
Data Sources and Procedure

Pretest and posttest. We focused our analysis on four, single-digit integer addition and 17
subtraction problems involving negative integers that were identical on both tests. We
interviewed at least 20% of the larger sample after each test to learn more about their reasoning.

Small-group sessions. In two small-group, 20-minute sessions, groups of 2-3 students
analyzed sets of contrasting integer addition problems (control group: Add) or subtraction
problems (experimental groups: Negative Minus Negative, Negative Minus Positive, and
Positive Minus Negative, named based on the problem type they initially saw contrasted with 5 —
3 in their first session). See Table 1 for the groups’ contrasting examples seen each session.

Table 1: Examples of problems control and experimental groups compared each session

Groups First Session Second Session

Add (control) (n = 25) P+Pvs.P+N N+Pvs. N+N
= Negative Minus Negative (n=21) P—-Pvs.N—-N N-Pvs.P-N
&  Negative Minus Positive (1 =26) P-Pvs. N-P P-Nvs.N-N

Positive Minus Negative: (n=23) P—-Pvs.P-N N-Nvs.N-P
= Add (control) (n =4) P+Pvs.P+N N+Pvs. N+N

=)

0 Negative Minus Positive: (n = 6) P-Pvs. N—P P-Nvs.N-N
Note: N = Negative number, P = Positive number
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In their small-group sessions, students discussed the similarities and differences between the
problems and pictures in contrasting, worked-examples (see Figure 1). Students solved related
integer addition or subtraction problems at the end of each session.

Correct: 5-3 =2 Correct: -5—-3=-8
Figure 1. Comparison of worked examples and corresponding problems that students analyzed.

Whole-class instruction. During the 30-minute lesson, students helped solve problems on a
number path, where subtracting a negative number corresponded to moving in a less negative
direction (or up) and subtracting a positive number corresponded to moving in a less positive
direction (or down). We ordered the problems to emphasize differences (e.g., 3 — 3 then 3 — 4).
Analysis

First, we coded students’ strategies based on the possible ways they could have obtained their
answers. Then, we looked at their pattern of responses (e.g., Widjaja, Stacey, & Steinle, 2011)
and only gave credit for correct answers if they followed a pattern of using knowledge of
negatives. For example, a student who solved 1 -4=5,-5-9=14,and 9—-2 =11 was
classified as adding the absolute values of two integers. Therefore, we did not give credit for 9 —
-2 =11. When possible, we used our interview data to check the identified pattern of responses.

Results, Discussion, and Implications
On the pretest, based on students’ overall strategies and verbal reports, the only problems
students got correct happened without knowledge of negatives, so we treated all pretest scores as
zero. On the posttest, based on the same analysis, students improved from the pretest. Table 2
shows students’ average number correct for the posttest subtraction items.

Table 2: Overall subtraction average scores on the posttest across groups
2" Add 2" NMN 2MNMP 2" PMN 5t Add 5t NMP
(n=25) (n=21) (n=26) (n=23) (n=4 (n=26)

0.88 0.62 1.23 0.43 0.75 0.17

Overall
Subtraction
Note. Add = Control group, NMN = Negative Minus Negative group, NMP = Negative
Minus Positive group, PMN = Positive Minus Negative group,

Overall, second graders in the Negative Minus Positive experimental group had the highest
performance across the majority of items. The performance of the groups followed an interesting
pattern based on their answers. Second graders in the Positive Minus Negative group frequently
reversed the order of the numbers—49% on average for the P — P problems and 35% on average
for N — P problems—and subtracted the smaller absolute value from the larger, indicating a strong
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framework theory conception. The Add and Negative Minus Negative groups used this strategy
frequently on two of the P — P problems (solving 1 —4 with 3 and 0 — 9 with 9) and one of the
four N — P problems (solving -7 — 4 with 3); otherwise, the majority of second graders answered
0, suggesting they ignored the negative sign without switching the order of the numbers. The
second graders in the Negative Minus Positive group primarily answered 0 for for 1 —4 (27%)
and 4 — 5 (38%) and answered 9 for 0 — 9 (62%); overall, their performance on these items was
double that of their second grade peers in other groups. Although they were most likely to
answer 4 for -5 — 9 (27%), on -3 — 3, 46% answered 0, followed by 19% who correctly answered
-6, and on -2 — 3, their top answers were evenly split amongst -5, 0, and 1 (each 19%). This
group’s initial comparisons better preserved their understanding of subtraction in terms of which
direction to count when subtracting a positive number and helped them develop a better sense of
the unary meaning of the minus sign. The fifth graders in the Negative Minus Positive group
were most likely to reverse the numbers for 1 — 4 and 4 — 5 (42% on average) but answered 0 for
0—-9(50%). On -5 -9, they were equally likely to answer 4 or -4 (33% each), and 50%
answered -2 for -7 - -9, suggesting they were more likely to use the symmetric meaning of the
minus sign. Even with our conservative analysis, students did make important changes from
pretest to posttest in just over an hour of engagement; however, it may be worthwhile to have
students participate in additional sessions, so that all problem types can be better contrasted.
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COMPARISONS WITH CLOSEST AND MOST: SECOND AND FIFTH GRADERS’
CONCEPTIONS OF INTEGER VALUE
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Elementary students have difficulty learning integer values as the new knowledge conflicts with
their whole number understanding. We administered a pretest and a posttest to 204 second and
fifth graders and collected their answers to three types of integer comparison problems: which
number is closest to 10, is most positive, and is most negative among three integers. Results
showed that second and fifth graders had difficulty determining which of three negative numbers
was most positive. They found it relatively easy to determine which of three positive numbers was
most positive and which of three negative numbers was most negative. Students had some
improvement in their integer value mental models, although their mental model shifts varied by
the question phrasing.

Keywords: Number Concepts and Operations, Cognition, Elementary School Education

Traditional numerical comparison questions involving negative numbers largely test
students’ knowledge of convention as opposed to their conceptions of the numbers. These
questions typically ask students to identify which of two integers is greater, larger, or most (e.g.,
Bofferding, 2014; Whitacre et al., 2017). Determining the larger of two negatives requires that
students know that this question prioritizes order and not magnitude (i.e., even though -4 has a
greater magnitude than -2, -2 is considered larger because it is further to the right on a number
line). However, comparison questions rarely ask specifically about order (i.e., which number is
closest to another number). In order to capture students’ understanding of integer comparisons
without forcing them to rely on convention, we explored the following research questions.

1. How do second and fifth graders’ integer comparison performance differ based on the
language of the comparisons (question phrasing: closest to 10, most positive, and most
negative) and the numbers involved (all positive, all negative, positive or zero and
negative)?

a. In terms of number of students to correctly compare the integers?
b. In terms of their mental models for integer values?

2. For second and fifth graders with initial value mental models on the pretest, how do their

mental models change, depending on the question phrasings?

Theoretical Framework

Bofferding (2014) categorized students’ mental model models of integer order and values
into initial, synthetic, and formal, along with two transitional levels. Students exhibiting initial
integer mental models ignore negative signs by operating with negative numbers as if they are
positive. Students exhibiting a transition I mental model can differentiate between negative and
positive numbers but sometimes treat the negative numbers as zero or positives. Students
exhibiting synthetic integer mental models perceive the negative numbers as numbers below
zero; though, they consider negative numbers with larger absolute values as greater than negative
numbers with smaller absolute values (e.g., -6 > -1). In between the synthetic and formal integer
mental models are transition II mental models, when students sometimes interpret negative
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numbers at the synthetic level but sometimes interpret them correctly. Students holding formal
mental models know that positive and negative numbers are symmetric around zero and that
negative numbers with bigger magnitudes have smaller values.

Students need to shift from a categorical to a continuum-based understanding of integers.
With the introduction of negative numbers, the language use of more and less associated with
numbers becomes challenging. Students with a categorical understanding might think that more
corresponds to a greater absolute value (e.g., -5 > 3) and /ess corresponds to a smaller absolute
value. They need to develop an understanding of directed magnitude language on a continuum
where more has two meanings: more positive or more negative (Bofferding, 2014).

Methods

Participants and Setting

Participants came from three rural elementary schools in the midwestern United States where
74% to 87% of the students in each school received free or reduced price meals and 25% to 38%
of the students were English Language Learners. Overall, 102 second graders and 102 fifth
graders participated in this study to completion.
Design and Materials

The study involved a pretest, four small group sessions, a whole-class lesson, and a posttest.
On the pretest, we conducted a whole-class written test including comparisons with the three
question phrasings, and students chose answers from three positive numbers, three negative
numbers, and a mixed set of positive or zero and negative numbers. Then students, who were
randomly assigned to small groups, analyzed pairs of worked examples about integer operations.
All groups saw similar problems but in different orders, and all students heard the language of
more positive and more negative as part of the sessions. Next, students received a 30-minute,
whole-class lesson that emphasized language use in integer operations. Finally, we conducted the
posttest, which contained the same comparison problems as in the pretest.
Analysis

First, we calculated the number of students at each grade level who correctly answered each
comparison problem. Next, based on each students’ pattern of responses, we determined
students’ integer and value mental models for each question phrasing by using Bofferding’s
(2014) mental model framework. For example, we classified students who determined which
integer was closest to 10, most positive, or most negative by selecting the largest absolute value
for each question as exhibiting initial mental models. We aimed to find patterns in the shifts of
students’ mental models between pretest and posttest.

Results

Fifth and Second Graders’ Gains from Pretest to Posttest

Both on the pretest and the posttest, second graders had difficulty determining which of three
negative numbers was most positive; whereas, they had a much easier time determining which of
three negative numbers was most negative. This is likely because they only had to consider the
numbers’ absolute values. Interestingly, they did better than chance in identifying which of three
positive numbers was most negative. This required them to avoid focusing on the word “most”
in the term. Their higher performance on identifying the most negative of positive numbers as
opposed to the most positive of negative numbers may reflect their overall greater familiarity
with positive numbers.

Second graders experienced an overall improvement from the pretest to the posttest, with the
greatest improvement occurring on mixed comparison problems for the most positive question
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phrasing. This result suggests that students were attuned to the word positive; perhaps that
reminder helped them avoid focusing solely on the largest absolute value, which may have been
more likely if they interpreted closer to ten as closer to a ten.

Unsurprisingly, fifth graders had better overall performance than second graders on all
integer comparisons. A similar, but slightly different, pattern was visible for fifth graders as
second graders. Fifth graders did better on all positive comparisons than on all negative
problems, even for the most negative question phrasing unlike second graders. They scored
relatively low (71.0 on pretest and 82.6 on posttest) when choosing the most positive numbers
from all-negative integers, as found with the second graders.

Mental Models on Pretest and Posttest

On the pretest, 61.8% of fifth graders, on average, exhibited formal integer value mental
models while an average of 23.5% of fifth graders exhibited initial mental models. On the other
hand, at the pretest, a majority of second graders did not know about negative numbers yet, so
49.3% of second graders exhibited initial integer value mental models while an average of 7.5%
exhibited formal mental models.

On the pretest closest to 10 problems, 90.7% of second graders on average chose numbers
with the biggest absolute values when all numbers were positive. The likelihood that students
responded this way decreased for the most positive problems and was lowest for the most
negative problems. These decreases indicate that those who exhibited initial mental models did
not solely choose numbers with the biggest absolute values. Therefore, second graders tried to
make sense of the compound meanings of most positive and most negative.

Second graders seemed to be more sensitive to most than positive or negative when they
decided the meaning of most positive and most negative. This is consistent with Bofferding and
Farmer’s (2018) findings that students chose least of the cold (i.e., smallest negative) instead of
least cold (i.e., warmest or biggest positive). For most positive, students would get similar
answers if they focused on either most or positive. This is not the case for most negative. This
mismatch could be a reason why the choices between biggest and smallest absolute values
became more varied even for these comparisons. A second grader FO8, for example, thought of
most negative as most and least negative as less.

Mental Model Changes

Overall, we categorized both fifth and second graders as exhibiting higher integer value
mental models on the posttest than on the pretest. The number of students classified as exhibiting
Random, Initial, and T1 mental models decreased on the posttest while those classified as
exhibiting Magnitude, T2, and Formal mental models increased. When focusing on students who
started with initial mental models, the improvement took on different patterns between fifth and
second graders (see Table 1).

On the posttest, fifth graders’ mental models mostly shifted to Formal (with some at the
Synthetic and Transition II levels). By contrast, most second graders either remained at the initial
level or shifted their mental models across T1, Synthetic, and Formal, a much broader range.
Interestingly, second graders who started with initial mental models had the largest percent of
students exhibiting formal mental models on the posttest for the most negative question phrasing;
whereas, fifth graders had the most formal mental models for the closest to 10 question phrasing.
The numbers show that students did not always have the same mental model classifications for
each question phrasing. Take second grader B04 as an example. This student “saw the negatives
down and the rest that didn’t have negatives were up” and exhibited a formal mental model for
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the closest to 10 phrasing. For most positive, though, the student chose the largest absolute
values, and for most negative, the student chose the smallest absolute values.

Table 1: Students’ Mental Model Shifts in terms of Percent for Those with Initial Mental
Models on the Pretest for each Question Phrasing

Second Graders Fifth Graders
Mental Model Closest  Most Most Closest ~ Most Most
Changes to 10  Positive Negative to 10  Positive Negative

(n=69) (0n=49) (n=33) (n=22) (n=26) (n=29)
Initial to Random 8.7% 4.1% 0% 0% 3.8% 0%
Initial to Initial 53.6% 36.7% 51.5% 273% 11.5% 31.0%
Initial to Transition I 87%  24.5% 15.2% 4.5% 3.8% 3.4%
Initial to Synthetic 13.0%  22.4% 3.0% 4.5% 11.5% 3.4%
Initial to Transition I  5.8% 2.0% 0% 4.5% 0% 24.1%
Initial to Formal 10.1%  10.2% 30.3% 59.0%  50.0% 37.9%

Conclusions

Second graders’ higher performance on the mixed questions for most positive and most
negative compared to closest to 10 suggests that students do not necessarily coordinate order and
value when they learn about negative integers. The implication of these results is that early
integer activities need to explicitly highlight both elements of order and value to help students
attend to these concepts. Moreover, regardless of their different grade levels, most students found
it difficult to determine which integer was most positive among three negatives and which was
most negative among three positives. This result might suggest that students need additional
language support to shift from categorical to a continuum-based understanding of integers.
Considering that those who started with initial mental models had different areas of improved
progress, elementary teachers might consider multiple instructional ways to address students’
various needs.
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This study investigated the differences in conceptions of variable among the groups of students
labeled as having mathematics difficulties (MD) and typical mathematics achievement (TMA).
Analysis students’ responses on items involving the comparison of expressions involving
generalized quantities provided data. The theoretical framework for this study was based upon
the learning trajectory (LT) of the levels of sophistication of students’ conceptions of variable.
Data analysis included descriptive and inferential statistics. Results revealed little evidence of
differences between MD and LMA students’ conceptual understandings. That students labeled as
MD and TMA can have similar levels of sophistication of conceptions of variables suggests that
current measures of achievement provide an incomplete picture of students’ understandings of
algebra, and also disproportionately disadvantage those labeled as low-achieving.

Keywords: Algebra and Algebraic Thinking, Equity and Diversity, Instructional activities and
practice

Algebra is often identified as an exemplar of mathematical abilities. Moses and Cobb (2001)
described algebra as necessary for all students in to understand and succeed in a world with ever-
increasing technological integration. Opportunities to be successful in algebra have been called
equity and civil rights issues because of the limitations that low algebra achievement places upon
individuals’ career opportunities (Kaput, 1998; Moses & Cobb, 2001). Kaput and Blanton (2000)
describe students’ disappointing algebra understandings, public dislike of mathematics, and the
inequity of academic tracking as problematic. These aspects can be linked to U.S. teaching
practices and curricula that are focused on procedural skills instead of conceptual understanding.
Kieran (2013) described the separation of procedural and conceptual understanding as a “false
dichotomy” that has especially impacted the field of school algebra. She states that despite
traditional instructional practices, even the symbolic aspects of algebra, have conceptual
foundations that students need to develop. Since variable use is a major component of algebra
and students’ understanding of algebra has been identified as problematic, it is reasonable to
hypothesize that students’ understanding and use of variable may also be problematic. Students
who see a variable as representing a single unknown value are more limited algebraic thinking,
problem solving, equation solving, and making generalizations than those with a more
sophisticated conception of variable. (Cai, Moyer, Wang, & Nie, 2011).

While the work done in this area is substantial, there is a gap in the research around
examining specifically how the uses and conceptions of variables differ between successful
algebra students and those who have difficulties in algebra. Research has suggested that students
who have difficulties in mathematics differ from their typically-achieving peers in both
mathematics-specific and more general characteristics. These differences have been attributed to
environmental and cognitive factors. Mathematics-specific characteristics of students who have
been labeled as low-achieving in mathematics are reported to include difficultly both storing and
recalling basic arithmetic facts, which impact students’ ability to achieve fluency in computation
(Geary et al., 2012). They also experience delays in achieving accuracy and fluency in arithmetic
operations and procedures and typically have a limited conceptual understanding of how and
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why the procedures work leading to a reliance upon less advanced solution strategies than their
typically-achieving peers. I describe these students as having mathematics difficulties (MD).

There is not consensus about how to identify MDs from their typically-achieving peers
(TMA) (Mazzocco, 2007). The “single-cutoff method”, where students with MD are identified
by creating one low-achieving and one typically achieving group of students based on their score
on a standardize assessment is most commonly used. But this method has several draw backs
including only providing a snapshot of a student’s performance and typically focusing on
procedural proficiency. Lewis (2014) warned the limited focus of research on MD students has
resulted in low procedural fluency as a de facto defining characteristic of students with MDs.
This neglects the more complex and conceptually-based aspects of mathematics. The cut-off
score of 25% is most commonly used to identify students as MDs (Geary et al., 2012).

Statement of the Problem

Students are labeled as low-achieving and/or as having a MD based on the results of a single
standardized and typically primarily procedural assessment. Such an assessment only provides
insight into a portion of the mathematics that we want our students to know and understand. This
leaves a significant gap in our understanding of specific differences between conceptions and use
of variables amongst students with MD and TMA students. The purpose of this study is to
investigate the differences between the responses of low- and typically-achieving students in an
Algebra 1 course on items designed to assess students’ ability to compare expressions involving
variables.

Research Question
The general question under investigation is: Do the responses of students who are at or below
the 25" percentile on the lowa End of Course assessment (IEOC), and those of students who are
above the 25" percentile differ on eight items designed to assess students’ ability to compare
expressions involving generalized quantities on a conceptual progress-monitoring tool at the
beginning of an algebra course?

Theoretical Framework

The theoretical framework guiding this study builds on the notion that different uses of
variables suggest corresponding levels of sophistication of conceptions of variable. A student’s
conception of variable is the student’s idea of what a variable is, how it acts, and what it can
represent. A student’s use of variables refers to the actions that the student does in connection
with this conception of variable. While we cannot know exactly what a student’s conception of
variable is, we can make inferences about that conception based on how the student uses
variables. Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens (2015) described a
progression of these conceptions and uses of variable in their learning trajectory (LT) that
characterized increasingly sophisticated levels in students’ thinking about variable and variable
including: Pre-Variable, Letter as Representing Variable with Deterministic Value, Letter as
Representing Variable with Fixed but Arbitrarily Chosen Value, Letter as Representing Variable
as Varying Unknown, and Letter as Representing Variable as Mathematical Object.

In addition to this perspective about the connections between students’ uses, misconceptions
and conceptions of variables, the theoretical perspective taken with respect to students with MD
is influential in the structure of my study. In this study, I view all learners as part of a normal
distribution of mathematics achievement and growth as described by Geary et al. (2012). While
groups of learners are not independent of each other, this does not preclude different, but
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overlapping, sets of characteristics. The perspective that all students are part of this distribution
does not require that all students have the same factors in their mathematical achievement and
growth. Specifically, I take the perspective that these MDs that students experience are the result
of cognitive differences in comparison with their TMA peers (Lewis, 2014; Mazzocco, 2007).
These differences are not deficits in the sense that students with MLDs are deficient in the
ability, or are unable, to learn the content with which they are experiencing difficulty. Rather,
students with MLDs have different connections and conceptions than their TMA peers within the
foundational aspects of the content which inhibit the typical connections from these foundational
topics to next level of content. Thus, these few who exhibit abnormal connections can be thought
of as the left tail of the normal distribution described by Gearyet al. (2012).

Methodology

Using data collected as part of the Algebra Screening and Progress Monitoring project
(Foegen & Dougherty, 2010), I analyzed students’ responses to a subset of items on a conceptual
algebra progress monitoring measure to identify and describe differences among the MD and
TMA groups of students. The Project (Funding information) provided the context for my study.
From the literature on students with MD (e.g., Geary et al., 2012), students were separated into
two groups: TMA and MD. Students were assigned to one of these groups based on percentile
rank of their [owa End of Course (IEOC) assessment score. Students with scores at or below the
25" percentile MD. Students with scores higher than the 25™ percentile were considered TMA.

Using the levels of sophistication of conceptions of variable from Blanton et al.’s (2015) LT,
I coded student responses and multiple-choice options as consistent with of a specific TL level or
misconception. In my study, these different descriptions of how students think of and use
variables were used to classify students’ responses on items designed to assess students’ ability
to compare expressions involving generalized quantities. These classifications were then
compared across the MD and TMA groups using descriptive and inferential statistics and coded
for the concepts of variable. It is important to note that letters as variables can have different
roles in different situations. In all of the items that were considered for this study, the variables
represented generalized quantities that were not dependent on other quantities. For example, one
of the items asked students to compare the expressions “5 + ¢’ and “¢ + 3”.

Summary

Both the similarities and the differences identified in this study between MD and TMA
student responses to items designed to assess their ability to compare expressions involving
variables support the claim that most students in an algebra 1 course do not have and are not
developing a conception of variable that allows for the variable to represent more than one value
at a time. The few differences identified suggest that items with more complex operational,
procedural, or property-based contexts are less accessible to MD students. The similarities
identified support the claim that procedurally focused assessments provide incomplete
descriptions of students. In both cases, MD students are disproportionately disadvantaged and
these disadvantages impact not only their school experiences, but can have long-lasting impacts
on career opportunities as well. These findings have implications for the classroom.

Closing Statement
In closing, this investigation revealed that the differences between MD and TMA students are
limited and seem to be related to the level of complexity of the operations, procedures, and
properties that are incorporated into an item. More than these differences, the similarities that
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were illuminated by this study impact how we perceive what successful and struggling students
may look like, and what they need. The overall low proportion of students who have a
sophisticated conception of variable suggests that all students need access to better conceptual
instruction and experiences in algebra. The context and content of this instruction need to be
appropriate for all students, which may mean that MD students required additional support than
their TMA peers in developing these sophisticated conceptions of variables.

Despite the similarities that were identified in this study, students who are identified as MLD
or MD may be disproportionally disadvantaged by traditional instructional practices and data-
based decision making based on procedurally focused assessments and instruction these
disadvantages need to be further investigated. These are the students most at risk to be
“innumerate” (Geary et al., 2012, p. 206) because of the long-lasting impact that being labeled as
low-achieving can have on school mathematics opportunities and on future career options. These
are the students who need our help. Through experiences with and exposure to variables that
represent more than just one value from a younger age, these students can begin to develop a
solid foundation upon which to build their future successes, both mathematically and as a
contributing member of society.

The identification of these limitations of the current ways in which we label students as
provides an opportunity to reexamine how students are labeled and what we call a “successful
student”. This examination must lead us to consider how can we change our current instructional
practices to provide more equitable access to all students, regardless of how they perform on a
standardized test.
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The construction and interpretation of graphs is a key mathematical activity, particularly at the
middle school level, when students’ experiences form the foundation for their reasoning about
functions and relations. However, research demonstrates that students experience challenges in
interpreting and understanding graphs. One promising avenue is an emphasis on graphs as
representations of quantities varying in tandem. We present a case of two middle-school
students, one who emphasized quantities and their relationships and one who did not. We found
that attention to quantities fostered ratio concepts and supported appropriate slope conceptions.
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Graphing is a key aspect of mathematical understanding and represents a “critical moment”
in middle school mathematics for its opportunity to foster powerful learning (Leinhardt,
Zaslavsky, & Stein, 1990). However, students experience a number of challenges in
constructing, interpreting and making sense of graphs (e.g., Moore & Thompson, 2015). In
addressing these challenges, researchers have offered several characterizations of students’
understanding of graphs. For instance, Lobato, Rhodenhamel, and Hohensee (2012)
differentiated between understanding slope as a mathematical object (a relationship between
quantities’ values) versus a physical object (a property of visual steepness), which is similar to
Zaslavsky, Sela, and Leron’s (2002) two conceptions of slope, analytic and visual. Moore and
Thompson (2015) distinguished between static and emergent shape thinking, in which the former
involves conceiving of a graph as a shape qua shape, and the latter entails envisioning a graph as
a trace of covariation. In their work, Moore and Thompson (2015) point to the need to support
students’ abilities to make sense of graphs emergently. This is particularly true at the middle-
school level, which is when students are typically introduced to function graphs and develop
graph-related conceptions that will influence their future mathematics experiences. One
potentially promising way to support productive conceptions is to emphasize covariation, in
which students conceive of graphs as a representation of quantities varying in tandem (Moore &
Thompson, 2015). Thus, we investigate the following question: How does attending to covarying
quantities affect middle-school students’ construction and interpretation of graphs? In order
address this question, we present a case study of two students, one who regularly referenced
quantities in graph construction and interpretation and one who did not, and discuss these
students’ resulting conceptions and sense making.

Theoretical Framework: Quantitative and Covariational Reasoning

Thompson (1994) defines a quantity as an individual’s conception of the measurement of an
attribute of an object. It is composed of a conception of an object, an attribute, an appropriate
unit, and a process for assigning a value to the attribute. Speed, area, and length are all attributes
that can be conceived as quantities. When students coordinate the variation in the values of
quantities that change together, this is termed covariational reasoning (Thompson & Carlson,
2017). Covariational reasoning entails tracking either quantity’s value with the explicit
understanding that at every instance, the other quantity also has a corresponding value.
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Researchers have characterized students’ reasoning about quantities that change in tandem with
respect to their graphing activities (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). This body
of work indicates that students and pre-service teachers benefit from opportunities to use a
covariation perspective when making sense of graph features such as slope, intercept, and root
(e.g., Ayalon, Watson, & Lerman, 2015). We propose that an approach emphasizing covarying
quantities can also be effective in supporting middle-school students’ emerging conceptions of
graphs.

Methods

We conducted a 10-day, 15-hour videotaped teaching experiment (Steffe & Thompson,
2000) with two 7"-grade pre-algebra students, Wesley and Olivia. The first author was the
teacher-researcher. We developed tasks to support a conception of linear growth as a
phenomenon of a constant rate of change, and quadratic growth as a constantly-changing rate of
change. The tasks emphasized these ideas within the contexts of speed and area. The area tasks
presented “growing rectangles”, “growing stair steps”, and “growing triangles” via dynamic
geometry software, in which the students could manipulate the figure by extending the length

and observing the associated growth in area (Figure 1).

—_— —_—
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Figure 1. (a) Growing rectangle, (b) stair step, and (c) triangle tasks.

Data sources included video and transcripts of each teaching session and copies of the students’
work. Our analysis relied on the constant comparative method (Glaser & Strauss, 1967), and was
guided by an attempt to account for the commonalities and differences in Wesley’s and Olivia’s
graphical thinking. We developed explanatory accounts of these differences based on evidence
from their written work, descriptions of their ideas, their drawings, and their gestures. We then
compared and discussed these explanatory themes as a research team until we reached
consensus.

Results: Quantitative Reasoning Influences Students’ Ratio and Slope Conceptions

Wesley regularly referenced two quantities (area and length) when constructing and
discussing his graphs, while Olivia did not. As an example, the students graphed the relationship
between area with respect to the length of a growing triangle with a length to height ratio of 5 cm
to 2 cm (see Figure 1.c), as well as the area of a rectangle that would sweep out the same total
amount of area after a length of 5 cm (Figure 2). Both students labeled the y-axis “area” and the
x-axis “length”, although this is not shown in the cropped graphs in Figure 2.

Oliva discussed her graph’s shape while Wesley discussed his graph’s constituent quantities.
When describing her graph, Olivia said, “It starts kind of low and then it gradually gets more
curved and then steeper.” Olivia described the visual features of the graph itself and did not
reference the associated quantities of area and length in the growing triangle context. In contrast,
when Wesley explained why the graph of the growing rectangle was straight, he said, “So every
1 cm in length, it’s always going to be 1 cm in area.” For Wesley, the graph represented a trace
of the associated growth between area and length. Olivia did also at times reference the
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associated attributes area and length, but in a non-quantified manner, which we discuss below.

Figure 2. Wesley’s (left) and Olivia’s (right) graphs of the growing triangle (in red) and
rectangle (in blue).

We found two major implications of an explicit attention to both quantities: (a) the development
of ratio and rate, and (b) a conception of slope as a ratio. We illustrate these implications through
Olivia and Wesley’s approach to the “two growing rectangles” task, in which the rectangles grew
in length while maintaining the same height (see Figure 1.a). The students observed one growing
rectangle with an unspecified height, and then compared it to a second growing rectangle with a
larger height (Figure 3).

] &L/pﬁﬁ\\(\
Figure 3. Wesley’s (left) and Olivia’s (right) graphs of the growing rectangles.

Olivia referenced the attributes length and area when explaining why her graphs were linear: “I
sort of pictured it in my head...I knew it would line up because for every length that you’ve
pulled it should be the same amount of area.” Olivia mentally coordinated the two attributes, but
did not quantify them. In contrast, Wesley decided to think of the height as 1 meter: “If you drag
it out 1 meter, so that’s the length is 1 meter and the height is 1 meter, and then to find the area
you actually times the length by the height which is 1 times 1 is 1 square meter actually.” When
explaining why the graph of the second rectangle was steeper than the first, Wesley said, “The
height is bigger than 1 meter now, then for every length that you pull it I meter, it gets more area
[than before].” Olivia, in contrast, explained, “The steeper it is, the longer height of the wall it
is”, where “wall” meant the height of the rectangle.

For Olivia, the slope of her graphs represented one attribute, area, rather than a ratio of area
to length. This attention to one attribute also encouraged Olivia to rely on thematic associations
(Moore & Thompson, 2015) when considering a graph’s slope. Namely, a feature of the graph,
such as constant slope, represented a quality of the motion she observed when a rectangle grew,
which she described as “consistent”. For instance, Olivia justified a constant slope for a growing
rectangle graph by stating, “It went consistently as like a straight line”, and “The rectangle, it
grew at a consistent rate.” The association between “consistent” growth and a constant slope also
resulted in Olivia initially graphing the area versus length of a growing triangle as a straight line
rather than a curve. Her justification was similar in this case: “Mine is going up consistently.”
Wesley, in contrast, described slope as the ratio of two quantities: “[Slope] means the area
covered in a certain length.”
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Both students frequently created a standard unit for length so that they could compare
amounts of area across uniform intervals of length. For Olivia, this process reduced her attention
to one attribute, area. In contrast, Wesley attended to both quantities, and created unit ratios. This
was evident in his decision to consider the area of the rectangles from Figure 2 in relation to 1
meter of length. In another case, Wesley explained his linear graph of a growing rectangle by
remarking, “The height is 1 cm. So, every time it’s pulled out 1 cm, the area gets greater by 1 cm
squared.” Wesley could also conceive of this as a multiplicative comparison; for instance, for a
4-cm high rectangle, he explained, “To get how much the area accumulates by, you do x [an
unknown length] times 4.” When considering growing triangles, Wesley also compared amounts
of area accumulated per a standard unit of length, and the unit remained explicit: “Every inch it
goes it, like, it goes, it covers more area for that inch so it keeps getting steeper and steeper.”

Discussion

Explicit attention to both quantities and a coordinated change in quantities offered
meaningful affordances for the creation of unit ratios, the understanding of slope as a ratio, and
the ability to conceive of a graph as a representation of coordinated change. Given students’
difficulties in conceiving slope as a ratio-of-change (e.g., Lobato et al., 2012), the case of Wesley
and Olivia suggests that an emphasis on quantitative reasoning can be a productive route towards
meaningful sense-making with graphs. However, simply relying on the use of quantitatively-rich
contexts is not sufficient; it does not guarantee that students will attend to both quantities or
develop images of coordinated change. Teachers should therefore encourage students to attend to
both quantities represented in graphs, to make that attention explicit in their language, and to ask
questions that require students to coordinate variation in quantities.
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We used interviews to examine future middle grades teachers’ capacities to coordinate
reasoning with quantities and with multiplication equations. Results include a mathematical
analysis of multiplication as coordinated measurement and a (still emerging) psychological
framework. In particular, we characterize future teachers’ expanding coordination as
incremental refinement and alignment of diverse knowledge resources.
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Despite decades of research on topics in the multiplicative conceptual field (MCF; Vergnaud,
1983), multiplication and division with whole numbers and fractions, proportional relationships,
and linear functions of the form y = mx continue to pose significant challenges for many students
and teachers. In contrast to research that has emphasized teachers’ deficits with respect to topics
in the MCF, we are investigating ways that a measurement approach to multiplication can help
future teachers construct sound explanations for mathematics they will teach.

Theoretical Frame

Our framework combines mathematical and psychological perspectives. Figure 1 shows the
quantitative definition of multiplication upon which we have converged. It applies to situations
in which there is a quantity (the product amount) that is simultaneously measured with two
different measurement units (a “base unit” and a “group”). The most important aspects of this
definition are (a) writing the multiplicand and multiplier in a consistent order to highlight a
common underlying structure for multiplication, division, and proportional relationships (e.g.,
Beckmann & Izsak, 2015) and (b) interpreting N, M, and P in Figure 1 as numbers that result
from measuring quantities in terms of some designated unit (a base unit or a group).

N . M = P
How many base How many groups How many base units
units make one make the product make the product
group exactly? amount exactly? amount exactly?

Figure 1. A quantitative definition for multiplication based in measurement.

The definition in Figure 1 can be used to coordinate an important swathe of the MCF—for
instance, by viewing division as multiplication with an unknown factor and proportional
relationships as instances where values for two of N, M, and P co-vary while the value for the
third remains fixed (Beckmann & Izsdk, 2015). Furthermore, the definition in Figure 1 can be
used equally well with both whole numbers and with fractions. Figures like that shown in Figure
2a can support the measurement perspective on unit fractions if one asks how many of the long
strip make the short strip exactly (1/3). We have found that future teachers have little problem
answering such questions and can extend this measurement perspective from unit fractions to
non-unit fractions, including improper fractions (Figure 2b). This appears to be a reliable
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foothold for future teachers when extending the measurement definition of multiplication shown
in Figure 1 from whole numbers to fractions.

I |
13 113 Lz 113 113

@ ®)
Figure 2. Interpreting fractions from a measurement perspective. (a) 1/3 of the long strip makes

the short strip exactly. (b) 4/3 of the short strip (4 copies of 1/3) makes the long strip exactly.

Our psychological perspective is informed by diSessa’s (2006) knowledge-in-pieces
epistemology. Knowledge-in-pieces is a constructivist perspective in which learners come to
know by using and refining knowledge as they construct interpretations of their interactions with
the physical and social environment. The perspective characterizes the evolution from novice to
expert knowledge as piecemeal construction, refinement, and reorganization of diverse fine-
grained knowledge resources that are connected to varying degrees and whose use is often
sensitive to context. Examples of cognitive mechanisms include refining the contexts in which
resources are applied, forming new connections among resources, and loosening connections
among others. In the present study, we examined the ecology of resources that future middle
grades teachers used as they coordinated the definition of multiplication shown in Figure 1 with
diverse problem situations that are contained in Vergnaud’s (1983) MCF.

Methods

In Fall 2016, we recruited six future middle grades teachers who were enrolled in a 2-
semester sequence of mathematics content courses (Number and Operations followed by
Algebra). The second author taught both courses; the first author conducted semi-structured
interviews. The interviews were spaced a few weeks apart and were coordinated with whole-
class instruction, most often so that the interviews provided information about the future
teachers’ reasoning before specific topics were treated in the course. We video recorded the
interviews, collected all written work generated during the interviews, and transcribed the
interviews verbatim. The present report is based on analysis of talk, gesture, and inscription as
captured in the interview videos, transcripts, and written work. We wrote analytic notes to
capture our interpretations of how future teachers were reasoning moment-to-moment. In some
cases, we took future teachers’ statements as direct, reliable reports of their thinking. In other
cases, we made inferences about aspects of future teachers’ reasoning that they would not likely
be able to report directly.

Results

All of the future teachers demonstrated some alignment between reasoning with quantities
and with arithmetic computations—for instance, all connected iterating groups of units with
multiplication and connected partitioning quantities into equal-sized pieces with division by a
whole number. At the same time, not all future teachers connected partitioning quantities into
equal-sized pieces with multiplication by a unit fraction. More generally, to different degrees, the
future teachers experienced challenges expanding the range of situations in which they
successfully aligned reasoning with quantities and with arithmetic computations (from their point
of view and ours). Consistent with the knowledge-in-pieces epistemological perspective, such
expanding alignment appeared to involve refinement and reorganization of a complex ecology of
knowledge resources.
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We organized knowledge resources we identified into four groups having to do with (a)
meanings for multiplication (e.g., repeated addition, “of”), (b) meanings for the equal sign (e.g.,
correspondence, balance), (¢) meanings for numbers (e.g., counts, measures), and (d)
computation (e.g., algorithms, factor-product combinations). We make three points, first, from a
knowledge resources point of view, reasoning at any given moment is supported by a set of
activated resources. In some cases, those resources can be well-connected and support one
another. The discussion above about connections among partitioning, division by a whole
number, and multiplication by a unit fraction is one example. Second, differences in sets of
resources activated by an individual helps explain variation in how that individual reasoned both
within and across tasks. An individual might interpret the equal sign at one point as indicating a
correspondence and, a few moments later, as stating that the numbers of units on the left and
right hand sides are the same (balance). Such variation in reasoning, which was not uncommon
in the interviews, can both support and constrain incremental alignment. Third, coming to
perceive a common underlying structure, like the meaning of multiplication shown in Figure 1,
across situations can be characterized as a gradual expansion in which one aligns thinking about
quantities in those situations and about multiplication equations. Such expansion can occur
through the gradual accumulation of fine-grained adjustments to the organization of knowledge
resources.

We draw examples from Nina’s reasoning to illustrate gradually expanding coordination.
During her first interview, she demonstrated facility modeling problem situations with whole-
number multiplication and connecting partitioning, division by a whole number, and multiplying
by a unit fraction. At the same time, she reported that she had not thought before about a
consistent interpretation of multiplication that worked both with whole numbers and with
fractions. During the interview, Nina wrote equations to model word problems that described 4
cans with 3 tennis balls in each, 2 bags with 5 soccer balls in each, 1/5 of 4 ounces of tomato
paste, and 1/5 of 1/3 cup of oatmeal. For the whole-number examples, Nina drew appropriate
pictures to generate and explain her equations, “4 x 3 = 12” and “2 x 5 = 10.” For the examples
involving fractions, she again drew appropriate pictures of the situations but struggled at first to
use those pictures to explain equations. She was able, however, to use her connection that “of
means multiply” to calculate the correct answers of 4/5 and 1/15.

Nina was able to expand her coordination of reasoning with quantities and arithmetic
computation by asking “what times 5 makes 4” and “what 5 things of equal amount will add up
to 1/3.” Thus, she reinterpreted situations presented with a fractional multiplier (e.g., 4+ 1/5=7)
as one using a whole-number multiplier (e.g., ? * 5 = 4). The particular form in which Nina
aligned her drawing and her computation appeared influenced by a further expectation she
articulated that multiplication should make numbers larger. This incremental alignment appeared
supported by her initial connection between partitioning and multiplying by a unit fraction.
During her second interview, Nina continued to expand connections she made between reasoning
with quantities and with arithmetic as she worked on the following problem:

A full bottle contained 4/5 of a liter of juice. Then you drank 1/3 of the juice in the bottle.
What fraction of liter [sic] of juice did you drink?

Nina began by drawing a strip diagram that showed appropriate relationships between the bottle
partitioned into 4 parts (each of which was also 1/5 liter) and partitioned into 3 parts (see Figure
3a). She knew she needed further partitions to answer the question but had two competing ideas:
“I don’t know if I should find a common denominator between 3 and 4, because there’s only 4
pieces, or if I need to find it between 3 and 5, because I want to know how much of a liter.”
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Faced with competing, reasonable ideas and no apparent way to prioritize one approach to
partitioning over the other, Nina chose the second option.

Nina continued her work by drawing a new strip and shading 5 of 15 mini-pieces (see Figure
3b). She interpreted the shaded region: “So this is 1/3 of the juice. Also 5/15 a liter, I think.”
When the first author asked if she had other ways of thinking about the task, Nina explained “1/3
of 4/5” meant to multiply and computed “1/3 x 4/5 = 4/15.” She recognized that she had two
different answers but did not understand how to reconcile them. After Nina spent approximately
3 minutes trying to diagnose her inconsistent answers, the interviewer moved on to other tasks.

Nina took a fresh pass at the Juice problem 25 minutes later at the end of the second
interview and this time accomplished greater coordination between her reasoning with drawn
quantities and with computations. She considered the equivalent fractions 4/5 and 12/15, saw
that she should partition the bottle into 12 parts, and created a new drawing that coordinated the
liter, the juice bottle, partitioning, and her calculated answer of 4/15. Nina’s final comment
suggested that she perceived new alignment that had eluded her during her first attempt: “That
makes me feel better.” Although Nina did not make any specific comment, she might have
learned that partitions in drawings (4 parts and 3 parts in this case) can be a reliable guide for
partitioning. Such an adjustment is a further example of refinement in her ecology of resources
that supported alignment of reasoning with quantities and with arithmetic computation.

T3 = :

(a) (b) (c) (d)

Figure 3. (a) Nina’s initial drawing for the bottle situation. (b) Nina interprets her drawing to

show 5/15 as the solution. (¢) Nina makes a new drawing at the end of the interview. (b) Nina
partitions the bottle into 12 pieces.

Conclusion
Future teachers entered our courses with initial capacities to coordinate reasoning with
quantities and with arithmetic; and, we examined the knowledge resources that they used and
transformed to achieve alignment across a wider range of situations in the MCF.
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A COVARIATIONAL UNDERSTANDING OF FUNCTION: PUTTING A HORSE
BEFORE THE CART
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Supporting students developing understandings of function has been a notoriously elusive task.
In this report, we present Thompson and Carlson’s (2017) description of a covariational
meaning of function and provide an empirical example of a student who maintains meanings
compatible with this description. We use this students’ activity to illustrate nuances in Thompson
and Carlson’s description and to highlight how such meanings can be powerful.

Keywords: Function, Cognition, Teaching Experiments

Several researchers have examined teachers’ and students’ understandings of univalence and
arbitrariness, key mathematical properties typical to a formal function definition. Univalence is
the property that for each element in the domain there is a unique element in the range.
Arbitrariness refers to a function needing not be defined by a known correspondence rule.
Researchers have shown that students and teachers do not perceive a need for the univalence and
arbitrariness properties of function (e.g., Breidenbach, Dubinsky, Hawks, & Nichols, 1992).
Addressing the property of univalence, Even (1990) noted, “some serious questions are raised by
the fact that, without prompting, none of the subjects could come up with a reasonable
explanation for the need for the property of univalence” (p. 531). In an effort to re-conceptualize
the notion of function in school mathematics, Thompson and Carlson (2017) presented a
covariational meaning of function, which we elaborate on in the next section. We include an
example of student activity to highlight nuances in Thompson and Carlson’s (2017) description
of a covariational meaning of function and illustrate how such a meaning can be productive for a
student. Our goal is to show how a student who has developed such a meaning has the horse (i.e.
foundational understandings) needed to pull a cart (i.e. the formal definition of function).

Theoretical Perspective: A Covariational Understanding of Function

Drawing on their body of work and the growing body of literature highlighting the
importance of students reasoning about quantities that change in tandem, Thompson and Carlson
(2017) proposed a definition of function rooted in covariational reasoning. They described, “A
function, covariationally, is a conception of two quantities varying simultaneously such that there
is an invariant relationship between their values that has the property that...every value of one
quantity determines exactly one value of the other” (p. 444). Rather than foregrounding
univalance, Thompson and Carlson (2017) foregrounded an individual constructing an invariant
relationship; once an individual has conceived of such a relationship, she can begin to investigate
properties of that relationship. Hence univalence becomes a particular property of this invariant
relationship. Thompson and Carlson (2017) avoid including dependent and independent
variables in their definition. They explained, “What is independent and what is dependent will
depend entirely on the person’s conception of the situation and which way they envision
dependence, if they envision dependence at all” (p. 444). Thompson and Carlson highlighted,
however, a conceived function entails some cognitive sense of dependency of one quantity to
another, as an individual must think of one quantity before the other. Thompson and Carlson
(2017) added, “it is through covariation that the dependency becomes crystalized in her thinking
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as being invariant across quantities’ values” (p. 444). However, the extent to which students
absolutely maintain a dependency of one quantity in relation to another when conceiving of an
invariant relationship between two quantities remains an open question.

Data Sources and Results

To provide an example of a student who maintained meanings consistent with those
described by Thompson and Carlson (2017), we draw from data collected during a semester-long
teaching experiment (Steffe & Thompson, 2000) with an undergraduate student, Arya.
Throughout the semester, Arya repeatedly conceived of and constructed relationships between
covarying quantities in dynamic situations and represented these covariational relationships
graphically. During these activities we intentionally gave little to no focus on univalence and
arbitrariness. In what follows, we focus on Arya’s activity towards the end of the teaching
experiment that is particular to Thompson and Carlson’s (2017) description of a covariational
meaning of function and refer the reader to Paoletti (2015) for detail on her specific activities.
Conceiving of an invariant relationship in the Car Problem

Arya addressed an adaptation of the Car Problem designed by Saldanha and Thompson
(1998). Consistent with Saldanha and Thompson’s use of the task, we asked Arya to represent
the relationship between an individual’s (Homer’s) distances from two cities (Shelbyville and
Springfield) as he travels back-and-forth on a road (Figure 1a). We adapted the task by asking
about “function” after Arya constructed her graph. Because the relationship is such that neither
represented distance is a function of the other distance, we conjectured Arya may spontaneously
consider other quantities in the situation that were not directly represented in the graph.

Arya’s activity suggests she conceived of “two quantities varying simultaneously such that
there is an invariant relationship between their values” (Thompson & Carlson, 2017, p. 444).
Arya consistently focused on the relationship between Homer’s distances from the two cities
through constructing the relationship in the situation and then representing her conceived
relationship graphically. To illustrate, she first described the directional covariation of Homer’s
distance from each city (e.g., as Homer moves from the beginning of his trip, the distance from
each city decreases), and then drew a segment from right to left corresponding to decreasing
ordinate and abscissa magnitudes (indicated by (1) in Figure 1b). Arya pointed to the applet and
described, “We start off... far from Springfield and pretty close to Shelbyville [pointing to Beg.
on computer screen then traces along road]. Then... you’re getting closer to Shelbyville for a
little ways and closer to Springfield as we’re moving along the road”. With respect to her graph,
Arya marked horizontal and vertical dashed lines from each graphed point to the vertical and
horizontal axes, respectively, to verify that she represented distances from Shelbyville and
Springfield each decreasing (indicated by (2) and (3) in Figure 1b). Arya continued such actions
to construct and justify the other two segments in her graph (Figure 1c¢).

Consistent with claims by Piaget et al. (1977) and Thompson and Carlson (2017), Arya did
conceive of one quantity first when constructing a relationship in the situation and graph;
however, Arya’s actions did not imply she conceived an explicit dependent-independent
relationship of either distance to the other. Arya first described how Homer’s distance from
Springfield varied. Before drawing her second segment (seen in Figure 1c), Arya first described
how Homer’s distance from Shelbyville varied . Finally, before drawing the third segment, Arya
again first described how Homer’s distance from Springfield varied. Arya maintained a focus on
two quantities simultaneously covarying whilst alternating which quantity she considered first in
order to accurately construct and represent the relationship she conceived.
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] 1. Draws segment from right to left. .
. . i Distance from
Distance from 2. Plots points, from topidown, on Shelbyville
*Springfield | Shelbyville vertical axis representing Homer's
distance from Shelbyville decreasing.
3. Plots points, from right to left, on
horizontal axis representing Homer's
distance from Springfield decreasing.

T |
«Shelbyville | Distance from Distance from

s oo 3 @ Spr:ingﬁeld Springfield
(a) (b) ()

Figure 1. (a) The Car Problem applet, (b) a recreation of Arya’s initial work, and (c) a
recreation of Arya’s final graph.

Addressing questions about “function” in the Car Problem

We next asked Arya if she could “talk about anything in this situation in terms of things
being functions?” Arya first determined that neither graphed quantity was a function of the other
graphed quantity, stating, “If you take either like the distance from Springfield or the distance
from Shelby][ville] as your input you’re going to have more than one output in some places.” A
researcher then asked, “Is there anything else we could have asked you about that may or may
not have represented a function?”” Arya considered either distance from a city “and how it travels
over total distance.” Specifically, she considered using either Homer’s distance from a city or
total distance as the input quantity to make conclusions regarding the ‘function-ness’ of each
possiblw input-output pair (e.g., she concluded that Homer’s distance from Springfield is a
function of his total distance traveled, see Table 1). Notably, Arya referred only to the dynamic
image of the situation as she considered if each distance from a city corresponded to exactly one
total distance traveled and vice versa; Arya did not use a graph, equation, or table.

Because Arya added an arrow to her completed graph (Figure 1c), we conjectured she may
reason about the trace of her graph as being defined parametrically. A researcher asked, “What if
your input was total distance traveled and your output was... like a pair of values. Where that
pair is your distance from Springfield and your distance from Shelbyville... What do you think
about that case?” Arya discussed two possible total distances: (1) Homer making one trip from
Beg. to End and (2) Homer traveling back and forth along the road accumulating total distance.
Arya stated that in either case the relationship represented a function if she considered total
distance as the input but the inverse relationship only represented a function in the first case.

We use Arya’s activity to highlight how a student who conceives of an invariant relationship
between quantities consistent with Thompson and Carlson’s (2017) description can use this
understanding to determine if there was a “relationship between their values that has the property
that... every value of one quantity determines exactly one value of the other” (Thompson &
Carlson, 2017 p. 444). In total, Arya’s image of the situation enabled her to consider 10 different
possible functional relationships (see Table 1), regardless if the relationship was explicitly
represented by a graph, equation, or table.

Table 1: The relationships Arya considered as possibly representing functions

Input Output Function?
Distance from Springfield Distance from Shelbyville No
Distance from Shelbyville Distance from Springfield No
Total distance traveled Distance from Springfield Yes
Distance from Springfield Total distance traveled No
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Total distance traveled Distance from Shelbyville Yes

Distance from Shelbyville Total distance traveled No

Total distance traveled (one trip) (Distance from Shelbyville, Distance from Springfield) Yes

Total distance traveled (accumulated) (Distance from Shelbyville, Distance from Springfield)  Yes

(D. from Shelbyville, D. from Springfield)  Total distance traveled (one trip) Yes

(D. from Shelbyville, D. from Springfield)  Total distance traveled (accumulated) No
Discussion

Arya’s activity highlights how a student who understands “two quantities varying
simultaneously such that there is an invariant relationship between their values” can leverage this
understanding to determine if “every value of one quantity determines exactly one value of the
other” (Thompson & Carlson, 2017 p. 444). Further, Arya’s activity highlights how a conceived
relationship between covarying quantities can serve as the something that students are reasoning
about when discussing ‘function’ in various representations (e.g., Thompson, 1994).

Arya’s activity addressing the Car Problem allowed us to clarify Thompson and Carlson’s
(2017) elaboration of Piaget et al.’s (1977) notion that an individual must conceive of one
quantity varying first, but this does not imply necessary dependency. We note that the quantity
Arya considered first switched throughout her activity, illustrating that a student can move
flexibly between considering either of two quantities first as she conceives of and represents a
relationship between these quantities. Returning to the opening analogy, we posit that supporting
students in constructing invariant relationships between quantities has the potential to provide
them with the horse to pull the cart that is the definition of function in school mathematics.
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Because functions cut across many areas within mathematics, they are especially important for
mathematical understanding. Yet research shows that students struggle to develop the functional
representation fluency needed for more sophisticated mathematics. This pilot study examines
how students use multiple representations of functions in a unit that incorporates functions to
program the movement of a robot. Preliminary results indicate that students conceptualize a
bidirectional relationship between the algebraic and robotic representations of a function but
that the relationships between the other representations remain unidirectional or disconnected.
We hypothesize that students’ strong connection between the algebraic and robotic
representations can be leveraged to facilitate increased understanding of the relationship
between the other representations.

Keywords: Algebra and Algebraic Thinking, High School Education, Middle School Education

The concept of a function is essential to the study of mathematics. While students might be
most comfortable with one representation of a function, they need the competency to compare,
relate, select, use, and flexibly convert between the multiple representations (National Council of
Teachers of Mathematics, 2000). The functional representation fluency expected by the NCTM
Standards and needed for more sophisticated mathematics has been shown to be difficult for
students (Knuth, 2000; Leinhardt, Zaslavsky, & Stein, 1990; Pérez, 2014; Van Dyke & Craine,
1997; Van Dyke & White, 2004). Students have trouble making the connections between
different representations even when they contain the same information (Knuth, 2000). In
studying 12th grade students’ performance on function questions in the 2009 National
Assessment of Educational Progress (NAEP) mathematics assessment, Pérez (2014) found that
students had more difficulty with function items that involved identifying the appropriate graphs
and equations in real-world contexts. This pilot study looks at learner engagement with multiple
representations of functions in the context offered by using functions to program robots.

Background

This study in progress is part of a larger National Science Foundation study on integrating
computational thinking practices and dispositions in the mathematics curriculum. Following an
initial engagement with modeling and programming, several participating teachers have
expanded on the project’s original conception to develop a unit on functions, programming, and
robots. The teachers created a unit where students would apply their knowledge of a velocity-
time function of the form within a programming script to control the velocity of a
small robot’s physical movement. In the equation, the y-value represents the velocity at which
the robot travels, the m-value represents the acceleration, the x-value is the time in seconds, and
the b-value represents the initial velocity of the robot.
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The robots were built using Arduino microcontrollers and students were exposed to
programming through the Arduino language. Within the programming script, students
manipulated a linear equation by changing the slope and y-intercept (Figure 1, Line 33) to
control their robot’s velocity. The domain, incrementing from 0 to 5, was manipulated in the
for-loop (Figure 1, Line 30).

29

30~ for(float x=8; x<=5; x++) {
31

32

33 float y=(0*x+8);

34

Figure 2. Linear Equation and Domain Conveyed in the Arduino Code

Data Collection
The unit was implemented in 8" grade mathematics classes at a public middle school and 11
grade mathematics classes at a career-technical public high school. One lead teacher taught all
8t grade classes and another lead teacher taught all 11™ grade classes. The middle school unit
lasted 7 days, while the high school unit lasted 10 days. Each class was video and audio
recorded during the unit. There was also a research assistant present to observe, take field notes,
and interact with the students and teachers during the sessions.

Representations of Functions: Challenges and Opportunities for Students
The three common representations of functions engaged in classroom settings are algebraic
equations, tables, and graphs. The relationships are represented in Figure 2 (see also Leinhardt,
Zaslavsky, & Stein, 1990; Van Dyke & Craine, 1997). The double arrows indicate bidirectional
fluency between those representations for information and the ability to create those
representations in either direction.

Figure 2. Ideal Configuration of Three Representation Fluency

In the context of the programming robots unit, where the robot’s velocity is controlled by a
linear function, a fourth physical representation of the robot’s movement is conceptualized. The
relationships between the four representations are represented in Figure 3.

Figure 3. Ideal Configuration of Four Representation Fluency
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During initial activities, students discovered how the slope and y-intercept in the linear
equation affected the robot’s velocity and movement over a fixed interval of time. This created
an equation-to-robot relational connection. The students were then confronted with a series of
challenges to further develop these connections and their reasoning with functions. For example,
one challenge was to drive the robot forward past a target, stop, reverse, and then finally stop on
the target. To achieve these goals, students programmed the robot by modifying a linear
equation (Figure 1, Line 33) and its domain (Figure 1, Line 30).

One goal of the unit was for students to develop and reinforce fluency in the different
functional representations. The meaningfulness of tables and graphs as functional
representations was enhanced by their role as tools for inferring the robot’s behaviors and the
appropriateness of the equation for a given task. For example, the tables and graphs offered
salient representations for the behavior of the robot in moving forward, stopping, and then
reversing back to its original position. In this task, the robot’s behavior represented in tabular
form would translate to an equal number of positive and negative velocities that sum to zero over
the domain. Understanding this representation can guide students’ selection of appropriate slope
and y-intercept values in the equation to satisfy the required outcome.

Expected Findings

Preliminary data show that students conceptualized a bidirectional relationship between the
equation and robot. However, the relationship between the equation, table, and graph were
unidirectional. In other words, most students only completed the table and drew the graph after
they determined an appropriate equation for the robot to complete the challenge. In this
scenario, tables and graphs served as documents for record of occurrence. They were not used to
make predictions. This supports the idea that students did not yet recognize that the tables and
graphs offered salient information to help them identify an appropriate equation for the task.
This also suggests that, for many learners, there was not a connection between the robot’s
movement representation and the tabular or graphical representations since those representations
were considered last and created from the equation. Thus, based on whole class observations, a
general preliminary conception of the students’ understanding of the relationships between the
four functional representations is expressed in Figure 4.

Figure 4. Observed Configuration of Students’ Four Representation Fluency

Discussion
Students’ strong understanding of the behavior of the robot in relation to the equation is an
opportunity to leverage more fluency between all the representations. This bidirectional
equation-to-robot connection can be used to build fluency between the robot’s movement
representation and the tabular and graphical representations. When tables and graphs are readily
displayed at the time the robot moves, then there is opportunity for the robot’s behavior to be
related to these representations. The representation of the robot’s movement constrains and
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grounds the more abstract functional representations (Ainsworth, 2008). The robot’s movement
is a familiar action to the students that can be used to support their understanding and reconcile
any misconceptions regarding the information displayed through algebraic, tabular, and graphical
representations (Figure 5a = Figure 5b). Then those developed connections with the robot could
be used to mediate the bidirectional relationships between the equation, table and, graph.

A possible trajectory in using a fourth representation — which is contextualized here with the
robot’s movement — is displayed in Figure 5. A focused look at this trajectory hypothesis will
happen during future iterations of the design experiment. Our goal is developing students’
proficiency with mathematics to operationalize functions in all their representations and in real
world situations. This is an important area for our nation’s students to show growth (Pérez,
2014).

Equation

<—I—

(@) (b) (c)

= Table | »[ Graph

Figure 5. A Hypothesized Trajectory to the Ideal Configuration of Four Representation Fluency

Presentation Overview
The presentation will provide an overview and background of the pilot study. This will be
followed by a discussion of the opportunities for student growth in functional representation
fluency. The presentation will conclude with how the findings will inform future iterations of
the design experiment.
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The difficulty that students demonstrate when it comes to learning algebra in secondary school
has been long documented and researched. The authors conducted a research synthesis of the
literature that uses data from the High School Longitudinal Study of 2009 with a focus on
algebra achievement. We 've summarized the results of 13 dissertations across 2 outcome
variables (9th and 11th grade algebra achievement). We employed optimal resource theory
(ORT) as a research framework to inform best-practices for improving student outcomes. Our
findings reveal that several malleable factors at the student-, teacher-, school-, and parent-level
were found to be related to algebra achievement.

Keywords: HSLS:09 Data, Algebra Achievement, High School, and Dissertation Review

Given the importance of high school students’ performance in algebra and the role of algebra
as a gatekeeper to higher level mathematics and the pursuit of a career in Science, Technology,
Engineering, and Mathematics (STEM) fields, it is imperative we have a clear understanding of
the factors that are related to high schoolers’ algebra achievement. The purpose of this paper is to
summarize the results of dissertations using the nationally representative High School
Longitudinal Study of 2009 (HSLS:09) to investigate the malleable student-, teacher-, school-,
and parent-level characteristics that are associated with algebra achievement.

Theoretical Framework

This study employs optimal resource theory (ORT) introduced by Anderson (2015) as a
research framework to inform best-practices for improving student outcomes. Positive student
achievement is among the main interests of ORT. Five principles governing this growth advise
to: (1) account for the multiplicity and complexity of factors that influence student development,
(2) account for externally controlled factors where practicable, (3) examine manipulable factors
that may be internally controlled, (4) focus on incremental progress or reasonable outcomes
rather than on comprehensive change, and (5) focus on maximizing progress with available
resources, despite external circumstances. Therefore, to advise schools on improving student
achievement, ORT would target influential factors that are within school control (such as
teaching practices, course offerings, etc.) while taking into account available resources and
external factors beyond school-based control that also affect student achievement (such as race,
gender, socioeconomic status, etc.). ORT was chosen for this study because the nature of
HSLS:09 allowed the dissertations we reviewed to examine a multitude of factors associated
with student achievement in algebra while controlling for various external circumstances.
Furthermore, our research synthesizes the findings of these studies with a focus on malleable
factors. Guided by ORT framework, this synthesis should help to inform teachers, schools, and
parents’ decisions regarding how best to improve their students’ mathematics achievement. Our
research question was: What are the student, teacher, school, and parent level factors that are
related to high school students’ algebra achievement in the U.S.?
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Method

In this study, we conducted a synthesis of research literature that used data from the High
School Longitudinal Study of 2009 (HSLS:09) and focused on mathematics achievement as the
outcome variable. The HSLS:09 is an ongoing nationally representative study consisting of about
24,000 9th-graders from 944 schools in fall 2009. The first follow-up was of 11th graders in
spring 2012. The surveys were completed by students, parents, math and science teachers,
administrators, and counselors. The students also took a cognitive mathematical assessment,
which was designed to provide a measure of student achievement in algebraic reasoning at two
points in time (9th and 11th grade). The test framework was designed to assess a cross-section of
understandings representative of the major domains of algebra and the key processes of algebra.
The test and item specifications describe six domains of algebraic content (the language of
algebra; proportional relationships and change; linear equations, inequalities, and functions;
nonlinear equations, inequalities, and functions; systems of equations; sequences and recursive
relationships) and four algebraic processes (demonstrating algebraic skills; using representations
of algebraic ideas; performing algebraic reasoning; solving algebraic problems) (Ingels, et al,
2011, p. v).
Data Sources

We performed a search of the literature through June 2017 that used data from the HSLS:09
and related to mathematics. We excluded all reports and executive summaries from our search,
and focused on journals, dissertations, research briefs, conference proceedings, and books. Data
collection occurred in 4 stages: (1) Identification: identify records through database searching
using variations of the search terms HSLS:09 and math; (2) Screening: screen the records’
abstracts for HSLS:09 and Mathematics; (3) Eligibility: screen the methods section for algebra
achievement as an outcome variable; and (4) Inclusion: determine the number of studies included
in the qualitative synthesis. We searched the following databases: Google Scholar, ERIC,
PsycINFO, Education Source, Academic Search Complete, Mental Measurements Y earbook
with Tests in Print, JSTOR, Project MUSE, Sociological Abstract, and ProQuest Dissertation and
Thesis A&I. We used RefWorks to eliminate duplicate records. The number of records remaining
after duplicates were removed was 70. Out of the 70 records, we found 28 articles, one research
brief, 35 dissertations, 5 conference proceedings, and one book. Preliminary results from a focus
on the articles were presented at the 2018 National Council of Teachers of Mathematics (NCTM)
Research conference. This study will focus on the dissertations. The methods and results section
of each dissertation was reviewed to screen for the use of either 9th or 11th grade algebra
achievement as the outcome or dependent variable. After this screening, we were left with 13
dissertations to review. Data was extracted from each dissertation that met our inclusion criteria.
The studies were categorized based on the two primary outcome variables; 9th grade algebra
achievement (Amar, 2016; Briggs, 2014; Cope, 2013; He, 2014; Kim-Choi, 2015; Larrain, 2015;
Onsongo, 2015; & Rochmes, 2014) and 11th grade algebra achievement (Alexander, 2015;
Howard, 2015, John, 2017; Maldonado, 2016; & Saw, 2016). Across the 13 dissertations, we
classified the level of the factors/predictors/independent variables (IV) as either parent, school,
teacher, or student. The factors were then cross tabulated and classified within the four levels and
two outcomes with the reported significance level.

Results
The results of the systematic review included both non-malleable and malleable variables at
the student, teacher, parent, and school levels that were related to high school students’ algebra
achievement. Since socio-economic status (SES) was defined as a composite of parent/guardian

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Early Algebra, Algebra, and Number Concepts 213

education, occupation, and family income status, we classified SES as a parent level variable.
The significant (p <.05) non-malleable factors found were related to SES, region/location of
school, race/ethnicity, gender, prior achievement or previous coursework, disability status, first
language, and nationality. Next, we will focus on the significant (p <.05) malleable IV variables,
since these are variables that can be influenced directly.
Parent Level

Parent involvement (as reported by the parents) was found to be positively associated with
11th grade algebra achievement (Howard, 2015).
School Level

Percentage of Advanced Placement (AP) enrollment was found to be positively associated
with both 9th and 11th grade algebra achievement (Larrain, 2015; Saw, 2016).
Teacher Level

Class achievement (math teacher perception of the average level of achievement of students
in their class) was found to be positively associated with both 9th and 11th grade algebra
achievement (Cope, 2013; John, 2017). Also, math literacy (conceptual teaching emphasized by
the teacher) was found to be positively associated with 11th grade algebra achievement
(Maldonado, 2016). Cope (2013) found that heavy emphasis on teaching math concepts,
effectively explaining math ideas, and performing computations with speed and accuracy were
positively associated with 9th grade algebra achievement, while heavy emphasis on developing
computational skills, the nature and history of math, and reasoning mathematical were negatively
associated with 9th grade algebra achievement. In addition, teaching experience (the number of
years taught) was positively associated with 9th grade algebra achievement (Cope, 2013).
Student Level

Math identity (students see themselves as a “math person” and believe others do too), math
self-efficacy (students’ confidence in their ability to do math), and school engagement (arriving
on time and bringing proper materials for class) were found to be positively associated with both
9th and 11th grade algebra achievement (Alexander, 2015; Briggs, 2014: Cope, 2013; Howard,
2015; John, 2017; Kim-Choi, 2015; Larrain, 2015; Onsongo, 2015). Math interest (math is the
student’s favorite course and they enjoy it) was found to be positively associated with 9th grade
algebra achievement, but negatively associated with 11th grade algebra achievement (Howard,
2015; Kim-Choi, 2015). The number of hours spent per day on homework and math utility
(perception of the usefulness of math) were found to be negatively associated with 9th grade
algebra achievement (Kim-Choi, 2015; Larrain, 2015). However, student-teacher relationship
(students’ perceptions of whether they were treated fairly and with respect) and educational
aspiration (highest level of education students expects to attain) were positively associated with
9th grade algebra achievement (Kim-Choi, 2015; Onsongo, 2015). Math effort (how often
students pay attention in class, turn in assignments, or keep trying in class) and Peer network
(peer academic orientation and peer communication) were found to be positively associated with
11th grade algebra achievement (Alexander, 2015; John, 2017).

Discussion
Based on the ORT theoretical framework and summary of the 13 dissertations that used a
nationally representative dataset, we found that one-third of the significant factors affecting
algebra achievement were external (non-malleable) factors beyond school-based control (such as
race/ethnicity, gender, socioeconomic status, etc.). The remaining factors (that are within school
control) were represented at the parent-, school-, teacher-, and student-level, noting that most of
these factors explored by researchers were at the student level (approximately 68%). In
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accordance with ORT principle (1), the dissertations included several factors that may influence
algebra achievement. Principle (2) recognizes that these factors likely operate differently
depending on external circumstances, thus, race/ethnicity and socioeconomic status—factors out
of the student or high school’s control—were included as controls. Principle (3) stipulates a
focus on malleable factors, so parent involvement, advanced placement course enrollment, and
teaching emphasis—something that schools, teachers, or parents could look to change—were
included as the main factors of interest. Based on these findings, researchers may provide
practical recommendations for schools by considering ORT principles (4) and (5) which respect
that progress may be gradual and that schools have finite resources.
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In the present study, we conduct conceptual analysis based on schemes and operations to explain
how students with different mathematical levels would solve equal sharing problems. We suggest
two distinctive schemes (distributive sharing scheme and splitting scheme for composite units) as
the key schemes each of which independently supports the students’ solving equal sharing
problems.
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Equal sharing problems provide students with an opportunity to conceive fraction as a
complex entity of multiplication, division, and ratio (Empson, 1999; Empson, Junk, Dominguez,
& Turner, 2006). As Kieren (1988) notes, to support students’ development of more advanced
fraction knowledge, students are to reason with partitive quotient construct as well as part-whole
construct. Abstraction of the partitive quotient notion of fraction could be established when
students engage in equal sharing activities (Charles & Nason, 2000). The purpose of this study is
to present our conceptual analysis of students’ schemes and operations to solve equal sharing
problems. In particular, we suggest the two distinctive schemes — distributive sharing scheme
and splitting scheme for composite units — as the schemes, each of which supports students
solving equal sharing problems.

Distributive Sharing Scheme with Partitioning

Young students construct what it means to share fairly based on their prior experiences of
dealing out collections to establish fair shares (Wilson, Edgington, Nguyen, Pescosolido, &
Confrey, 2011). Thus, students can spontaneously develop, what we named, distributive sharing
schemes (DS schemes) from their very early age. The situation of a DS scheme is to share a
whole number, p units of quantity among a whole number, ¢ persons and the goal is to equally
share the quantity among the people. The activities of the scheme consist of distributing
operations. The student with the DS scheme distributes a unit or multiple units of the to-be-
shared quantity to each of the sharing people in turn and the result is one person’s share
accumulated by repeating the distributing activities. The scheme is closed when the quantity is
exhausted by the distribution and each person has an equal share. Quantifying the result of the
sharing activity (i.e., measuring the accumulated amount gaining from the distributing activities)
is not part of the DS scheme. For instance, for sharing 20 cookies among five people, which is
normatively called a partitive division problem, a student whose DS scheme activates for the
situation distributes 20 cookies one by one to each person until all the cookies are allotted to the
people. She might not realize that one person gets to have four cookies until reflecting on her
activities and results upon a teacher’s request. One reason for implementing a DS scheme in
partitive whole number division is spontaneity of its development from young students’ daily life
experiences, and another reason would be their lack of operating with a three-levels-of-units
structure. In this case, they are to construct a composite unit, 20, as a unit of five units each
containing four units so that they can take one part (four cookies) from the equally partitioned
five-part whole (20 cookies). As students’ multiplicative concepts deepen enough to construct
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such a three-levels-of-units structure, they are unlikely to use a DS scheme for the partitive
whole number division due to its inefficiency.

However, when those students encounter a situation of equally sharing some number of
same-sized objects among some number of people, where the result is a fractional quantity,
because it requires more than their whole number knowledge, they may feel challenged in
figuring out the quantity for one person’s share. When establishing a goal of sharing, say, three
pizzas among five people, they might attempt to partition the three pizzas into five equal parts at
one go. As they realize there is no easy or practical way of cutting the three pizzas into five
pieces, the students may go back to use their DS scheme, which would let them attend to sharing
subsets of the whole rather than partitioning the whole at once. On the other hand, as students
start to learn fractions and thus diverse partitioning operations are ready at hand for their
mathematical activities, they should be able to use them as assimilating operations of their DS
schemes for solving equal sharing problems. For the problem situation stated above, sharing
three pizzas among five people, they can give one-half pizza to each person by halving each of
the three pizzas and then partition the remaining one-half pizza into five equal shares. Especially,
when students understand sharing multiple units as “multiple instances of sharing a single unit”
(Wilson et al., 2011, p. 233), we judge that the students engage in distributive partitioning
operations (Steffe & Olive, 2010). As reported in previous literature (e.g., Charles & Nason,
2000; Empson et al., 2006; Lamon, 1996; Hackenberg & Lee, 2016), the levels of sophistication
in students’ use of partitioning strategies increase as their understandings of fraction become
more mature. However, one common characteristic of the partitioning strategies derived from
students’ use of DS schemes is to partition subsets (one or more items) of the whole at a time at
their convenience, rather than the whole multiple items at once. In terms of three hierarchical
multiplicative concepts based on the ways by which students generate and coordinate composite
units (Hackenberg & Tillema, 2009; Steffe, 1992), we conjecture students with the second
multiplicative concept (MC2) can construct distributive partitioning operation for sharing p items
among g people, where ¢ does not evenly divide p. However, a deficiency in the distributive
partitioning operation by a DS scheme at the MC2 level is its inability to switch a referent unit in
naming the resulting share. For example, even if an MC2 student succeeds to find one person’s
share by partitioning each of three pizzas into five, taking one part from each pizza, and

combining them, she might not know the sharing result is both f a pizza and f the whole

three pizzas. To view the result in relation to the two referent units requires “being able to switch
between three-levels-of-units structures, which is outside of MC2 students’ ways of operating.”
(Hackenberg & Lee, 2016, p. 260)

Splitting Scheme for Composite Units

A splitting operation for composite units “simultaneously splits each unit in a composite unit
containing the units into an equal but unknown number of subunits” (Steffe & Olive, 2010, p.
320). The assimilating operations of the splitting scheme for composite units (SCU scheme) are
the operations that produce the generalized number sequence whose operations “entail
coordinating the basic units of two number sequences, such as the unit of three of a sequence of
such units and a unit of four of a sequence of such units, prior to engaging in activity” (Steffe &
Olive, 2010, p. 320). Such coordinating ability, considered as a functional accommodation of the
splitting operation for composite units (Hackenberg, 2010), plays a critical role in transforming
equal sharing problems into the situations for an SCU scheme. For example, for the sharing
problem of four bars among 10 people, a student may want to split four units of a bar into 10
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parts at once. Then the student would attempt to partition each of the four units into some
number of parts to generate enough number of parts in total with a goal that the generated
number of parts could be evenly divided by the number of people. To find an appropriate number
that serves the goal prior to partitioning activities, the student should be able to coordinate two
three-levels-of-units structures. In other words, she needs to implement the following steps
simultaneously at the level of mental representation: 1) to distribute some number of parts, say,
10 parts to each of the four bars and form a composite unit, 40 as a unit of four units each
containing 10 units, 2) to view the composite unit, 40 as a unit of 10 units each of which contains
four units. Such coordinating operation enables her to transform an equal sharing problem into a
situation for her SCU scheme so that the student can take a fractional part of the same-sized
multiple items, which turns into the situation of whole number partitive division. Thus, from the
perspective of the student with SCU scheme, to solve an equal sharing problem is equivalent to
taking a fractional part of the whole, of which the student is explicitly aware throughout the
problem solving process. Moreover, given that construction of the SCU scheme is predicated on
the construction of the third multiplicative concept (MC3), we hypothesize that the student
potentially construct flexibility in viewing the sharing result in relation to two referent units (a
bar and the whole four bars) without much difficulty. Behavioral distinction between the splitting
operation in an SCU scheme from the distributive partitioning operation in a DS scheme is the
way to take one person’s share. To make one person’s share with four bars each of which is
partitioned into 10 parts, a student using distributive partitioning operation gathers one part from
each of the four bars because each part is the result of sharing each bar. In contrast, a student
whose SCU scheme activates for the problem takes a chunk of four parts (maybe the leftmost

four parts) of 40 parts because four is —of 40.

Our conceptual analysis of schemes and operations in solving equal sharing problems
informs that distributive partitioning scheme (Steffe & Olive, 2010) develops as the most
sophisticated form of DS scheme when splitting operations for composite units are available for
the DS scheme as assimilating operations. Despite that, a student who can solve the above
problem using her SCU scheme might not feel the necessity to activate her DS scheme with
distributive partitioning operation. The SCU scheme with the coordinating ability of two three-
levels-of-units structures is enough to find one person’s share by splitting the to-be-shared
quantity by the number of people at once.

Conclusions and Implications

In this paper, we suggest DS scheme and SCU scheme as the schemes, each of which have its
own developmental path and independently supports students’ problem solving in equal sharing
situations. We separated the two schemes for their distinctive characteristics in nature. DS
scheme, itself, is a non-measuring scheme constructed from a very early age of young students,
and its main activity (operation) is distribution which is directly linked to kinetic motion of
sharing even though partitioning operations can be embedded in the assimilatory structure. SCU
scheme is a quantitative scheme, and its main operations are various partitioning operations
including a splitting operation for composite units. Thus, the activities implemented by the
scheme entail quantification process of the sharing result. The results of our conceptual analysis
are aligned with previous research findings that even lower grade students could successfully
find one person’s share (using DS scheme from our perspective) but were challenged when they
were to name the amount of share in terms of referent units due to the lack of other mathematical
resources such as multiplicative reasoning and fractional knowledge (Empson et al., 2006;
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Hackenberg & Lee, 2016; Lamon, 1996, Steffe & Olive, 2010). Our results also complement the
study of Hackenberg & Lee (2016) by explaining why four out of the six MC2 students, in their
clinical interview, showed distributive partitioning operations, but not distributive partitioning
schemes, and only one of the MC3 students used the distributive partitioning operation. We
conjecture that the four MC2 students might have implemented distributive partitioning
operations as parts of their DS schemes. Five other MC3 students, ironically due to their matured
multiplicative reasoning, might not have felt logical necessity to activate their DS schemes with
distributive partitioning operations. In this study, we argue that the required partitioning schemes
and operations for solving equal sharing problems (and naming one person’s share) are on a par
with MC3, which is a highly advanced multiplicative concept at the elementary school level.
Thus, mathematics teachers are advised to be sensitive to students’ level of multiplicative
concepts and partitioning operations. Hasty introduction of various partitioning strategies to
students at the level of 2™ multiplicative concept or lower might produce an unexpected result
that they adopt the partitioning solutions only as efficient, algorithmic strategies for finding one
person’s share, ignoring quantification process of the share in relation to relevant referent units.

References

Charles, K., & Nason, R. (2000). Young children’s partitioning strategies. Educational Studies in Mathematics,
43(2), 191-221.

Empson, S. B. (1999). Equal sharing and shared meaning: The development of fraction concepts in a first-grade
classroom. Cognition and Instruction, 17(3), 283-342.

Empson, S. B., Junk, D., Dominguez, H., & Turner, E. (2006). Fractions as the coordination of multiplicatively
related quantities: A cross-sectional study of children’s thinking. Educational Studies in Mathematics, 63(1), 1-
28.

Hackenberg, A.J. (2010). Students’ reasoning with reversible multiplicative relationships. Cognition and
Instruction, 28(4), 383-432.

Hackenberg, A.J., & Lee, M. Y. (2016). Students’ distributive reasoning with fractions and unknowns. Educational
Studies in Mathematics, 93(2), 245-263.

Hackenberg, A.J., & Tillema, E. S. (2009). Students’ whole number multiplicative concepts: A critical constructive
resource for fraction composition scheme. Journal of Mathematical Behavior. 28, 1-18.

Kieren, (1988). Personal knowledge of rational numbers: Its intuitive and formal development. In J. Hiebert & M.
Behr (Eds.), Number concepts and operations in the middle grades (pp. 162-181). Hillsdale, NJ: Lawrence
Erlbaum.

Lamon, S. J. (1996). The development of unitizing: Its role in children’s partitioning strategies. Journal for
Research in Mathematics Education, 27(2), 170-193.

Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and Individual
Differences, 4(3), 259-309.

Steffe, L. P. & Olive, J. (2010). Children’s fractional knowledge. New York, NY: Springer.

Wilson, P. H., Edgington, C. P., Nguyen, K. H., Pescosolido,R. C., & Confrey, J. (2011). Fractions: How to share
fair. Mathematics Teaching in the Middle School, 17(4), 230-236.

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Early Algebra, Algebra, and Number Concepts 219

USING VISUAL MODELS IN FRACTION DIVISION: NUMBER LINES SUPPORT
CHILDREN’S ACCURACY AND CONCEPTUAL UNDERSTANDING

Pooja Gupta Sidney Clarissa A. Thompson Ferdinand D. Rivera
Kent State University Kent State University San Jose State University
psidneyl @kent.edu cthomp77@kent.edu ferdinand.rivera@sjsu.edu

Reasoning about fraction division is difficult for children and adults. We examined the relative
effectiveness of three types of diagrams, number line, rectangular area, and circular area
diagrams, for increasing children’s accuracy and conceptual understanding of fraction division
as compared to no diagram at all. Children who used number line and circular area diagrams to
solve fraction division problems had the highest rates of accuracy. Children rated problems
presented with circular area diagrams as the least difficult. Children who completed fraction
division problems with number lines were most likely to consistently reason with conceptually
sound, quotitive division models.
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Reasoning about fraction operations is a critical aspect of the development of children’s
mathematics understanding (e.g., National Mathematics Advisory Panel, 2008, p. xviii). Despite
its importance, fraction division is difficult for children (e.g., Mack, 2001; Siegler, Thompson, &
Schneider, 2011) and teachers (e.g., Luo, Lo, & Leu, 2011). The Common Core State Standards
for Mathematics (CCSSM) places an emphasis on using visual models (especially, the number
line) to learn the effects of fraction operations and to represent them in a variety of situations,
with visual models for fraction magnitudes introduced in first and second grade and visual
models for fraction multiplication and division in fourth and fifth grade (CCSSM Writing Team,
2013). In practice, empirical studies demonstrate that area models are particularly common
during classroom instruction (e.g., Webel & DeLeeuw, 2016). However, there has been no
systematic investigation of the relative benefits and limitations of area models and number lines.

Across the fields of mathematics education, psychology, and mathematics, as well as among
practitioners, there is considerable disagreement over which models best support students’
fraction reasoning. For example, U.S. preservice teachers appear to be most accurate when
reasoning in area contexts (Luo et al., 2011). However, reasoning with number lines may prevent
common misconceptions that stem from the whole number bias (e.g., Ni & Zhou, 2005). Looking
back, there is a wealth of research on visual models and models for division, but little is known
about how differences in visual models affect children’s fraction division understanding. Looking
ahead, we hope our collaboration across Psychology and Mathematics Education fosters new
perspectives, increased collaboration, and crosstalk between these disciplines.

We propose that number lines are more effective at supporting children’s deep understanding
of fraction operations than commonly-used area models. Our work is guided by a prominent
psychological theory of numerical development, the integrated theory of whole number and
fractions development (Siegler et al., 2011), which suggests the centrality of number lines as a
tool for understanding the magnitude of all rational numbers. Number lines may better support
children’s fraction operation understanding because they better support children’s fraction
magnitude understanding (e.g., Hamdan & Gunderson, 2017; Siegler et al., 2011). Also, given
that number lines support children’s understanding of both fraction and whole number
magnitudes, they are theorized to facilitate transfer and integration across whole number and
fraction concepts (e.g., Siegler at al., 2011). Additionally, a number line allows students to
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represent more than one numerical magnitude on a single, common scale, which may better serve
to highlight the multiplicative structure of fractions. Among area models, Wu (2011) notes the
inflexible and limited nature of circular over rectangular models.

We investigated which types of diagrams best support children’s accuracy, and elicit sound
conceptual models of division, when solving fraction division problems. We hypothesized that
any diagram would be beneficial in comparison to no diagram. However, we expected that
children who completed problems with number line diagrams would have higher accuracy rates
and show greater conceptual understanding than those who completed problems with circular
area diagrams. We expected that rectangular area diagrams would elicit similar performance to
number line diagrams, due to their linear nature. However, it is possible that children are more
familiar with area models, and therefore more accurate on them.

Method

Participants

Participants were 62 children in late Spring of 5th grade or Fall of 6th grade (M age = 11.6y,
SD = 1.4y; 45.6% gitls; 75.0% White) from one public school in Northeast Ohio. Ohio state
standards for mathematics education are aligned with the CCSSM, with fraction division first
introduced in 5th grade. At this school, 18.30% of children qualify for the free and reduced price
lunch program. Data collection occurred in two phases. Phase 2 included an additional 70
children.
Tasks

Children were randomly assigned to one of four between-subjects diagram conditions (see
Figure 1) as they solved 18 fraction division problems: (a) circular area diagrams (n = 17), (b)
rectangular area diagrams (n = 14), (¢) number line diagrams (n = 16), and (d) no diagrams
provided (n = 15). Problems varied by divisor and dividend type, including unit fractions, proper
fractions, mixed numbers, and whole numbers (e.g., 1/3+1/9=2,21/4+1/4=72,2/5+4=7).
Each provided diagram represented six whole units (e.g., six circles). Whole units were
partitioned into the denominator units of the smaller operand. Each problem was presented on a
separate page in a random order. Children received no feedback. After solving each problem,
children rated their confidence (0% to 100%) and perceived difficulty (not difficult at all [1] to
very difficult [4]).
Procedure

Participants were tested individually in their school by the first author or an undergraduate
researcher. We introduced the task by telling children that we were interested in the strategies
they used to solve “new kinds of math problems”, and asking children to show their work for
each problem. Then, the researcher demonstrated “how you can show your work” using a whole
number division example (6 + 2). The researcher spoke about making “a group of six” and
showing or thinking about “how big six is”, making “a group of two” and showing or thinking
about “how big two is”, and finding “how many times a group of two goes into a group of six”. In
the diagram conditions, the researcher drew a diagram, matching that child’s randomly-assigned
diagram condition, to demonstrate a quotitive relationship between six, two, and three. In the no
diagram condition, the experimenter simply wrote the numerals ‘6’ and ‘2’. Instructions were
scripted, and apart from instructions to “show” (diagram conditions) or “think about” (no
diagram condition) the numbers, the script was identical in all conditions. We chose to model
whole number division given previous research suggesting that children are more likely to
successfully model fraction division immediately after modeling whole number division (Sidney
& Alibali, 2017). We chose to model quotitive division given that children favor quotitive
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models for fraction division (e.g., Fischbein, Deri, Nello, & Marino, 1985).

Results & Discussion

Accuracy

We coded accuracy as whether or not the children wrote the correct answer to each problem
somewhere on its page. For each child, we calculated the percentage of correctly answered
problems out of the total number of problems attempted. All but six children attempted all 18
problems; data from all children were included in the analyses. Children were more accurate
with fraction divisors (43% accuracy) than whole number divisors (25%), #(56) = 3.30, p <.01.
This may be unsurprising given the nature of the quotitive example we provided; division of a
fraction by a whole number may be better understood through a partitive model of division. Note
that we did not observe this striking difference in accuracy by divisor type in the no diagram
condition, #(56) = 0.15, p = 0.88. This may be indirect evidence that, in contrast to the children in
the diagram conditions, children given no diagrams were not thinking about the conceptual
structure of fraction division (either partitive or quotitive); reasoning with a diagram may invite
children to reason conceptually. Furthermore, children in the number line condition had the
highest overall rate of accuracy (48%), followed by children in the circular condition (43%), no
diagram condition (33%), and rectangular condition (31%). However, in an ANCOVA on
children’s average accuracy, with diagram condition as the independent variable and problem
order as a covariate, the overall effect of condition did not differ from zero, F(3, 57) = 0.90, p =
.45. The pattern of accuracy suggests that there may be advantages to both number lines and
circular area diagrams.
Conceptual Models

We examined children’s conceptual models in each condition by coding children’s written
work on each problem based on a coding scheme (see Sidney & Alibali, 2017) aimed at
categorizing children’s overt strategies for fraction division. Critically, children’s work on each
problem was categorized as reflecting quotitive division, partitive division, or neither. In the
number line condition, 12 out of 16 children demonstrated a quotitive or partitive divison model
on at least 50% of problems. In contrast, children in either area diagram condition, circular
(35%) or rectangular (43%), demonstrated quotitive or partitive division less often: 12 out of 16
children vs. area diagrams: 12 out of 31 children, p = .01, Fisher’s exact probability test. In the
no diagram condition, students’ work rarely reflected a conceptual model. Thus, number line
diagrams were most likely to elicit sound conceptual models of fraction division.
Difficulty

Finally, we examined children’s difficulty ratings. Children in the circular condition rated
problems as being less difficult (M = 1.52) than children in the rectangular (M = 2.01), number
line (M =1.92), and no diagram conditions (M = 1.90), #(57) = -2.73, p < .01. Looking across
our analyses of accuracy and difficulty, children in the number line and circular conditions had
similar levels of accuracy, and yet children in the circular condition reported less difficulty. If
these findings are replicated in our full sample, it may be important for teachers and students to
know that number lines may be challenging to reason with, but the benefits in conceptual
understanding are “worth” the difficulty.

Conclusion
Overall, our findings suggest that diagrams support children’s thinking about the conceptual
structure of division, and that number lines in particular may elicit sound conceptual models of
division. Both circular area models and number line models were beneficial for problem solving
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accuracy. Finally, because we reminded children of quotitive whole number division, our
findings may provide evidence that children who reasoned with number lines were more likely to

transfer across whole number and fraction division problems. In the full study, we hope to more
closely examine this idea.

Use the diagram below to find the answer to 4 + 1/4 = 2. Show your work and your answer using the diagram. Use the diagram below to find the answer to 4 + 1/4 = 2. Show your work and your answer using the diagram.
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Use the diagram below to find the answer to 4 + 1/4 = 2. Show your work and your answer using the diagram. Use any method to find the answer to 4 + 1/4 = 2. Show your work below.
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Figure 1. Solved fraction division problems, by condition. An example of correct student work
from each condition is shown: circular (a), rectangular (b), number line (¢), and no diagram (d).

£ e\ g
£T o g0
R

-\ o
4:\_4’_\— =5~

Acknowledgments
This work was supported by a KSU Farris Family Fellowship awarded to Clarissa
Thompson. The authors thank Carly Nelson, Holly Donofrio, Jessica Kotik, and Rachel Hall for
their assistance in collecting, entering, and coding the data.

References

Common Core Standards Writing Team. (2013). Progressions for the Common Core State Standards in
Mathematics: Fractions. Tucson, AZ: Institute for Mathematics and Education, University of Arizona.

Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal
problems in multiplication and division. Journal for Research in Mathematics Education, 16(1), 3-17.

Hamdan, N., & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence
from a fraction intervention. Developmental Psychology, 53(3), 587-596.

Luo, F., Lo, J.-J., & Leu, Y.-C. (2011). Fundamental fraction knowledge of preservice elementary teachers: A cross-
national study in the United States and Taiwan. School Science and Mathematics, 111(4), 164-177.

Mack, N. K. (2001). Building on informal knowledge through instruction in a complex content domain: Partitioning,
units, and understanding multiplication of fractions. Journal for Research in Mathematics Education, 32, 267—
295.

Ni, Y. & Zhou, Y. (2005). Teaching and learning fraction and rational numbers: The origins and implications of
whole number bias. Educational Psychology, 40(1), 27-52.

NMAP (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington,
DC: U.S. Department of Education.

Sidney, P. G., & Alibali, M. W. (2017). Creating a context for learning: Activating children’s whole number
knowledge prepares them to understand fraction division. Journal of Numerical Cognition, 3(1), 31-57.

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions
development. Cognitive Psychology, 62(4), 273-296.

Webel, C., & DeLeeuw, W. W. (2016). Meaning for fraction multiplication: Thematic analysis of mathematical talk
in three fifth grade classes. The Journal of Mathematical Behavior, 41, 123-140.

Wu, H. H. (2011). Understanding elementary school mathematics. Washington, DC: Mathematical Association of
America.

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Early Algebra, Algebra, and Number Concepts 223

CONNECTIONS AMONG CURRICULUM, TASKS, AND LINGUISTICALLY
DIVERSE SECONDARY STUDENTS' UNDERSTANDINGS OF RATES OF CHANGE
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We examine how two 9th grade integrated mathematics teachers from a linguistically diverse
school introduced linear and exponential rates of change, and we describe how their students
demonstrated learning on a written assessment and a set of clinical interviews. The teachers
collaborated on some aspects of their lesson planning, but used different curriculum materials.
We found evidence that students in these two classes learned different concepts. Our preliminary
analysis, using Lobato et al.’s (2013) focusing framework, indicates that students’ performance
can be traced back to the teachers’ use of particular curricularly-influenced tools in the
instructional environment such as “ratio tables.”

Keywords: Algebra, Rate of Change, Curriculum

How does a teacher’s use of curriculum materials shape student learning in linguistically
diverse classrooms? This paper grows from a five-year design-based research study investigating
how secondary mathematics teachers can design learning environments in which English
Learners (ELs) develop robust understandings of critical concepts. Our study is conducted in a
linguistically diverse school and is focused on the content area of linear and exponential rates of
change. The first phase of the design research included an analysis of student assessments and
interview tasks. In this analysis, we noticed that the students in two different teachers’ classes
answered both interview and assessment questions in consistent, but different ways. For
example, students in one class used the general formulas for linear and exponential functions
more frequently than students in the other class, yet they struggled more so than the students in
the other class to use the formulas in a contextualized problem. The teachers had used different
curriculum materials to teach the exponential rate of change unit. These observations lead to the
following research question: What connections can be found among the curriculum, tasks, and
student understandings of concepts related to exponential rates of change? More specifically,
what were the different foci of the classroom activities that may have supported the students’
interpretations of the tasks involving exponential rates of change? Given the use of two different
curricula, what different concepts were in evidence in the students’ learning?

Theoretical Framework

This study is rooted in a sociocultural approach to researching the mathematics learning of
linguistically diverse students (Moschkovich, 2015), connecting students’ opportunity to learn to
broader dimensions of the learning environment such as curriculum and assessment (Zahner,
2015). Our analytical approach is informed by Lobato, Hohensee, and Rhodehamel's (2013)
focusing framework for students’ mathematical noticing, based on the notion that “what students
notice mathematically has consequences for their subsequent reasoning” (p. 809). Lobato et al.
described that what students notice is shaped by social interactions in the classroom, their
interactions with mathematical tasks or curricular materials, and the nature of the mathematical
activity in which they participate. The framework has four components. First, centers of focus
are the mathematical features of a task that individual students notice that can be inferred
through their written work, what they say, or through their gestures. The next three components,
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focusing interactions, mathematical tasks, and the nature of mathematical activity, all contribute
to the emergence of the centers of focus. To illustrate the use of this focusing framework, Lobato
et al. discussed the mathematical activities of two classrooms both focused on learning about
slope as a rate of change, but with different types of activities. As they hypothesized, the
students in each class developed different ways of reasoning about slope, influenced by the
nature of the mathematical activities, tasks, and social interactions in their respective classes.

Although we adopt a focus on the appropriation of mathematical discourse (Moschkovich,
2015), we noticed a phenomenon similar to Lobato et al.’s (2013) in our study. Specifically, we
noted that students in one teacher’s class tended to use the equation, both recursive and explicit,
as a resource for reasoning about exponential functions. At the same time, students in the other
class were fairly adept at using the ratio / difference table to identify and build exponential /
linear functions. We hypothesized that both of these trends could be traced back to the
instructional environment and the centers of focus that emerged in each class (Lobato et al.,
2013).

Methods

Setting

Our study was conducted at City High School (a pseudonym), a linguistically diverse
comprehensive high school in California. We observed two Integrated Mathematics 1 (IM1)
classes with two different teachers. The IM1 students at City High are primarily in the ninth
grade. In the 2016-2017 school year when we collected this data, about 30% of the 9" grade
students at City High were classified as English Learners (ELs) and about 56% of the 9" graders
were formerly classified as ELs. The classes we observed for our study had similar proportions
of ELs and former ELs as the overall ninth grade population.
Participants

We worked with two IM1 teachers, whom we call Mr. S and Ms. G. We observed their
classes as they taught both the linear and exponential rates of change units in the fall and spring,
respectively, but we focus on the results of the spring classroom observations, student interviews,
and student assessments that reflected the introduction of exponential rates of change and a
comparison of linear and exponential rates. Mr. S, who had taught at City High for eight years,
was in his third consecutive year of teaching IM1. He has a mathematics degree and speaks both
English and Spanish. Ms. G had 12 years of experience teaching at City High School and was
teaching IM1 for the second year. She has a chemistry degree and holds a credential in
mathematics. She is a monolingual English speaker. The IM1 students in their classes also
participated in our study. All students were asked to take a pre- and post-assessment. Forty-nine
students completed the assessments and 20 students volunteered to participate in problem-based
interviews.
Data Sources

The data for this report came from three sources: classroom observations, pre- and post-
assessments, and student interviews. The classroom observations coincided with the main
instructional days during one unit on linear and exponential functions. These observations were
video recorded, and the observer took structured field notes. We spent eight days observing in
Mr. S’s class and 10 days in Ms. G’s class. The assessments consisted of four questions
consisting of three problems from the IM1 textbook adopted at the school and one problem from
map.mathshell.org. A total of 49 students completed both the pre- and the post-assessment. The
student interviews were 45-minute long problem-based interviews using tasks from the IM1
textbook. The interviews were conducted in English and Spanish depending on the students’

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Early Algebra, Algebra, and Number Concepts 225

language preference. A total of 20 students participated in the 17 interviews we conducted. Three
interviews were conducted with pairs of students.
Data Analysis

After observations, each researcher wrote reflections about the observation noting interesting
mathematical and linguistic moments in the class as well as highlighting notes most pertinent to
our study and questions that arose that we may wish to investigate at a later time. A high-level
overview of each teacher’s unit was created, consisting of the number of days in the unit, a basic
outline of topics covered, and notable moments that highlighted the relationship between
mathematics and language. Next, a detailed summary of each day of the unit was written, noting
what mathematical content was covered, the types of contexts and activities used, unexpected or
salient student contributions, and the ways the teachers supported language access and
development.

The student assessments were scored using a researcher-created rubric, and all student
responses were recorded in a database for further analysis. Statistical analyses showed that there
were no significant differences between Mr. S’s and Ms. G’s classes before or after instruction,
but the pre-post gain for the classes was statistically significant (#(48)=5.7509, p<0.001, using a
paired #-test). Overall, about 78% of the students earned a higher score on the post-assessment,
with an average gain of 20.5%. We then analyzed the database for patterns in the data. While the
overall class performances were not statistically different from each other, we found interesting
patterns in the data revealing a difference in foci.

Each of the student interviews were transcribed and coded. Each researcher created a
summary of each interview by question and recorded overall impressions of the interview as well
as any questions that arose for future interviews or analysis. We created content-analytic
summary tables (Miles, Huberman, & Saldafia, 2014) for each question to summarize responses
across all student interviews in order to find any patterns that emerged in the data.

Results
As we observed the teachers, we noticed differences in their presentations of the exponential
rates of change units and we linked these to the different curriculum resources they were using.
Table 1 below summarizes some of these differences. Note the use of multiple representations
and multiple contexts in Ms. G’s presentation compared to the primary use of tables and bank
accounts in Mr. S’s presentation of the material.

Table 1: Comparison of Features of the Exponential Rates of Change Units

Teacher | Days | Curriculum | Representations Task Contexts Common Difference &
Emphasized Common Ratio
Mr. S 10 CME Tables Bank accounts Delta column in table (1%
day)
Ratio column in table (4"
day)
Ms. G 8 MVP Multiple Allowance Arithmetic & Geometric
representations Filling/draining a pool Sequences
(tables, graphs, Book shipments
equations) Repeatedly cutting paper (Delta and ratio columns
into equal pieces were not introduced until
Growing dot patterns the 8" day.)

Our analysis of the assessments led to several observations, and, in the interest of brevity, we
will share two. First, of the students who could correctly identify an exponential function written
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in recursive function notation (36.7%) and explain why it was exponential (18.4%), all of these
students were in Ms. G’s class. We traced this difference in student answers back to the more
frequent use of function notation and the focus on arithmetic and geometric sequences in Ms. G’s
class. Ms. G’s emphasis on using phrases such as “multiply by three to get to the next term”
instead of “multiply by three each time” was reflected in the student’s explanations. Second, the
majority of the students who could correctly fill in the output and “ratio” columns of a table for a
given exponential equation (68.4%) were in Mr. S’s class. As shown in the table above, this
difference in student performance can be traced back to the earlier introduction of and continued
emphasis on using a ratio column in a function table in Mr. S’s class.

During the student interviews, the students were asked to describe, in their own words, what
it means to be a linear function and what it means to be an exponential function. The students
gave a variety of descriptions including graphical descriptions, recursive descriptions, and
general equations in explicit or recursive forms. Of the students who gave the explicit forms of
the equations (20%), all of these students were in Ms. G’s class. Of those who referenced delta
and ratio columns (20%), all were in Mr. S’s class. Ms. G introduced the explicit forms on the 4
day of her unit and emphasized their use throughout the rest of the unit (7 days), whereas Mr. S
emphasized the use of delta and ratio columns in tables throughout his unit (7 days).
Additionally, on a question involving a comparison of banks offering simple interest versus
compound interest, of the students who could correctly identify which offer would be the best in
the long run and explain why, 83.3% were in Mr. S’s class. As shown in the table above, Mr. S
focused on a similar context (bank accounts) during his unit, while Ms. G’s unit consisted of
multiple contexts.

Discussion

Although we found differences in students’ understanding of concepts related to exponential
rates of change, it is important to recall that there were no significant differences in the post-
assessment results of the two classes and that both classes had significant gains on the post-
assessment. However, it is clear that what happens in the classroom, what emerges as centers of
focus, impacts student learning. Our results don’t clearly indicate that one approach is better than
the other, only that the differing approaches yielded different profiles of student understandings.
These results led us to consider the following question. What are the affordances of having an
equation-centric view versus a table-centric view? An equation-centric view more easily
suggests the existence of continuous covarying quantities, whereas the table-centric view points
to the structure of the invariant ratio, which is a nice parallel to the collinear points conception
(i.e., invariant slope).
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We report on data from a 14-session paired-student constructivist teaching experiment
investigating relationships between calculus students’ /evels of units and their understandings of
differential and integral calculus concepts. We describe our initial assessments of students’ units
coordination (Norton, Boyce, Phillips, Anwyll, Ulrich, & Wilkins, 2015), students’ reasoning
during subsequent video-recorded teaching experiment activities, and conjectures of connections
between students’ levels of units and reasoning about graphs, including their covariational
reasoning (Thompson & Carlson, 2017).

Methods, Results, Discussion

In Summer 2017 we conducted clinical interviews with students enrolled in Calculus I at a
public university to assess their levels of units. Debbie was assessed as assimilating with two
levels of units, and Trevor was assessed as assimilating with three levels of units. Our learning
goals for students in a follow-up paired-student teaching experiment were for them to construct
(a) more powerful ways of reasoning about functions, (b) connections between different contexts
of the derivative, concavity of its graph, and second differences of average rates of change over
intervals of uniform width, and (c) the accumulation function and fundamental theorem of
calculus (Thompson & Silverman, 2008). Our goal was understanding affordances and
constraints in students’ constructions. We noticed persistent differences in students’ reasoning
about rates of change of linear functions, particularly through the ways the students reasoned
with tables and graphs. Debbie reasoned more often with coordination of values; Trevor had a
greater propensity for engaging in continuous covariational reasoning. Assimilating with three
levels of units does not explain the plethora of differences noticed in their schemes, however, as
Trevor’s lack of imagery for trigonometric functions constrained his understanding of the

integral . Future work may explore both how to support students’ construction of

covariational reasoning before they get to calculus and to continue to support conceptual
understandings of calculus for students who assimilate with two levels of units.
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EVOLUTION OF DEVELOPMENTAL STUDENTS’ MATHEMATICS BACKGROUND
KNOWLEDGE

Eyob Demeke
California State University

Far too many students began their postsecondary mathematics education in remedial
mathematics (Bailey, 2009, Schwartz, 2007). In the California State University (CSU) system,
approximately a third of their incoming freshmen are considered unprepared for college level
mathematics courses (CSU, 2012). For some students in the CSU, a year will elapse before they
can enroll in a college level mathematics course. Across the CSU, unless exempted, every
admitted student is required to take the Entry Level Mathematics (ELM) test, which aims to
measure proficiency in basic skills need to succeed in a college level mathematics course. 50 on
the ELM is a cutoff score that determines whether a student needs mathematics remediation or
not.

It is important to note that the ELM is not a diagnostic test; as such, it does not shed light on
specific contents that students are struggling with. To that end, in this study, we used Second
Year Algebra Readiness Test (SYART) to understand the mathematical background knowledge
of 1100 students who received a score below 50 on their ELM test. These students were enrolled
in a two, four-week courses designed to prepare them for a college math course: beginning
algebra and intermediate algebra. In both classes, students met their instructor five times a week,
and every class, except exam days, they would spend approximately 30 minutes in cooperative
learning that utilizes active learning strategies such as think-pair share, peer lesson, and wait
time. A pre/posttest analysis of SYART showed that students’ overall score improved
significantly. On average, beginning algebra students’ SYART score improved by approximately
39.5%. Using a two-sample t-test, session one witnessed a statistically significant growth with a
p-value of 3.3 x 10~ %3]

To summarize, students improved their performance in several topics of the test. However,
the biggest growth were observed in the following topics: Exponents and square roots; Scientific
notation, Linear equations and inequalities, Polynomial and quadratic equations. However,
several students were still below a critical level in some topics. Specifically, students continue to
struggle in graphical representation of solution of equations and inequalities. Still, there is a
strong evidence to conclude that the four-week intervention in math remediation has a
considerable impact.
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Introduction

A growing body of research has established associations between children’s early patterning
skills and their formal mathematics knowledge (e.g., Rittle-Johnson, Fyfe, Hofer, & Farran,
2017). To better understand these associations, we sought to assess whether children “see the
mathematics” in repeating patterns — that is, whether they spontaneously attend to mathematical
information in patterns, such as the number of items in the part that repeats (e.g., the pattern is
two circles followed by one square, then it repeats). Research in cognitive development suggests
there is high variability in how often children attend to this type of precise quantitative
information—referred to as children’s “spontaneous focusing on numerosity”” or SFON—and
that individual differences in SFON predict later mathematics performance (Hannula, Lepola, &
Lehtinen, 2010). In this study, we assess children’s spontaneous attention to numerical
information in a repeating pattern task and examine how this relates to their mathematics skills.

Method and Results

Participants were 36 children ranging from 5 to 13 years old. The same sample was studied
in Fyfe, Evans, Matz, Hunt, and Alibali (2017), but for a different set of research questions.
Children completed 24 pattern extension problems (e¢.g., ® ® H ® ® B ® ) by predicting the
next item in the sequence and explaining their selection. We categorized these explanations
based on whether they focused explicitly on numerical information in the pattern (i.e., the
quantity of specific elements in the unit of repeat, such as “the pattern goes two-one, then two-
one”) or focused solely on the feature information (i.e., the concrete characteristics of the
elements in the unit of repeat including size and shape, such as “it goes circle circle square then a
circle”). Children also solved 9 arithmetic problems (e.g.,2 +4+5+2=_,4+7-7=_).

Children provided number explanations on close to 20% of pattern items, with 58% of
children providing a number explanation at least once. The frequency of providing number
explanations was not correlated with total pattern scores, 7(34) = .08, p = .65; thus, attention to
numerical information was not related to success on the pattern task. However, attention to
numerical information was predictive of children’s calculation skills. The frequency of providing
number explanations was a significant, positive predictor of children’s total score on the
arithmetic problems, = .28, p = .04, even after controlling for total pattern scores, nonverbal
IQ, and verbal working memory capacity. In contrast, the frequency of providing feature
explanations was not a predictor of children’s scores on the arithmetic problems, f= .06, p = .68.
These results provide a window into how children “see the mathematics” in patterns.
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Introduction/Theoretical Framing

Students sometimes experience success in school mathematics if they learn to reason with
three levels of units in activity, which means they “build” an ephemeral third level of units as
part of their way of reasoning rather than assimilating situations with a units (of units (of units))
structure—this difference has implications for the development of multiplicative and algebraic
reasoning in the middle grades (Ulrich, 2015). Some students pursue STEM majors in college
assimilating with two levels of units, and research suggests connections between students’ ways
of coordinating units and their ways of understanding rates of change in Calculus (Byerley,
2016). What connections exist, if any, between students’ units coordination and their readiness
for Calculus? One measure of student readiness for Calculus is The Precalculus Concept
Assessment [PCA] (Carlson, Oehrtman, & Engelke, 2010). Past results suggest that a 50% score
on the 25-item assessment differentiates student success in calculus: 77% of students scoring
more than 12 passed their introductory calculus course, while 60% of students scoring less than
13 received a grade of D or F, or withdrew from the course.

Methods/Results

We assessed the units coordination and calculus readiness of 32 students enrolled in first-
term Calculus at a university in United States. Each student completed the PCA and participated
in a 15-minute clinical interview, conducted by the second author using the methods and
descriptors described in Norton, Boyce, Phillips, Anwyll, Ulrich, & Wilkins (2015). Each student
was assessed as either assimilating with three levels of units [S3] (14 students) or as assimilating
with two or fewer levels of units [S2] (18 students). A Wilcoxon Signed-Ranks Test indicated
that mean PCA scores for students in group S3 (M = 15.71) and students in group S2 (M = 9.78)
were significantly different (Z =4.94, p < 0.001). Additionally, 71% of students in group S3
scored more than 12 on the PCA compared to 33% of students in group S2. These results suggest
a connection between students’ units coordination and Calculus readiness. Implications for
attending to students’ units coordination and teaching and learning Calculus are discussed.
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M-capacity is an age-dependent construct (ranging from 2 to 5 among middle school
students) describing the number of schemes or actions one can simultaneously hold in working
memory at a time (Pascual-Leone, Johnson, & Agostino, 2010). We present a model that uses M-
capacity to explain and predict students’ performance on tasks across different mathematical
domains (multiplicative reasoning, fractions, algebraic reasoning), integrating schemes and
actions from units coordination research. Units coordination (Steffe, 1992) describes students’
engagement with various levels of units in mathematical tasks. Students can assimilate up to
three levels of units at a time and account for additional levels of units through activity. Students
are able to solve tasks with different levels of cognitive demand depending on their stage of units
coordination and their M-capacity.

In the model, circles, boxes, and triangles represent schemes for assimilating one, two, and
three levels of units, respectively; arrows represent mental actions. A uni-directional arrow
represents a mental action carried out in activity; a bi-directional arrow represents a reversible
action interiorized as part of a scheme. Figures 1(a)-(c) illustrate theoretical capacities for
students at each of three stages of units coordination to reason through a multiplicative task: 8x3.
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Figure 1: (a)-(c) Stage 1-3 unit coordination; (d) Stage 2 student solving a fractions task.

Figure 1(d) is our model applied to a students’ work found in the literature (Hackenberg &
Tillema, 2009). Sara was solving the task: “You decide to share that piece (one-fifteenth) of cake
between two people. How much of the cake would one person get?” (page 7). The task involved
six levels of units for the student to coordinate (circles). As a Stage 2 student, Sara could
assimilate the units into three two-level schemes (boxes). Assuming a middle school student M-
capacity of 5, she could carry out mental actions for coordinating the first two schemes with the
third, through activity (short arrows). However, limited to five schemes/actions, she would not
be able to coordinate results from the third scheme (30) back to the whole (long arrow) without
relying on figurative material, which fits Hackenberg and Tillema’s (2009) descriptions.
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Review of Literature & Conceptual Framework
Students struggle to solve quadratic functions in authentic contexts (Didis & Erbas, 2015),
due in part to reading comprehension (Pape, 2004). This paper therefore outlines a preliminary
genetic decomposition (Dubinsky & McDonald, 2001) of the mental constructions that support
student’s conceptions of introductory-level authentic quadratic relationships including function,
covariation, and reading comprehension.

Methods & Results

APOS Theory suggests students construct increasingly sophisticated mental structures
(Action, Process, Object, and Schema) to understand mathematical concepts. The function strand
is from Arnon et al. (2014), and the covariation strand is based on Carlson, Jacobs, Coe, Larsen,
and Hsu (2002). For covariation, an Action conception constitutes students identifying how
changes in one variable relate to changes in the other, and a Process conception involves students
explaining the directionality of related values. An Object conception describes students
recognizing that different coefficients cause the relationship between the x- and y-values to differ
in measurable ways, and a Schema conception shows students can differentiate between
quadratic relationships based on the relationships between the x- and y-values.

Interpreting Pape’s (2004) work to coincide with the stages of APOS finds students have a
Direct Translation Approach (DTA) approach to reading comprehension at the Action and
Process levels, meaning they cannot translate the text, context, units, or mathematical
relationships to a problem solution. Meaning-Based Approach (MBA) full-context reading
comprehension occurs at the Object level when students can translate the text to mathematical
symbols and justify their choices based on context. An MBA-justification approach occurs at the
Schema level when students can comprehend at the MBA full-context level while justifying their
choices mathematically.

References

Arnon, L., Cottrill, J., Dubinsky, E., Oktag, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2014). APOS theory: A
framework for research and curriculum development in mathematics education. New York, NY: Springer.

Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling
dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378.

Didis, M. G., & Erbas, A. K. (2015). Performance and difficulties of students in formulating and solving quadratic
equations with one unknown. Educational Sciences: Theory & Practice, 15(4), 1137—-1150. doi:
10.12738/estp.2015.4.2743

Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics
education research. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI
study (pp. 275-282). Dordrecht: Kluwer Academic Publishers.

Pape, S. J. (2004). Middle school children's problem—solving behavior: A cognitive analysis from a reading
comprehension perspective. Journal for Research in Mathematics Education, 35(3), 187-219.

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Early Algebra, Algebra, and Number Concepts 233

COVARIATION GRAPHING PRACTICES: THE CHANGE TRIANGLE

Konda Luckau Daniel K. Siebert
Brigham Young University Brigham Young University
kondaluckau@gmail.com dsiebert@mathed.byu.edu

Keywords: Algebra and Algebraic Thinking

Creating and interpreting graphs in algebra remains challenging for many students. Past
research has identified important ideas and common misconceptions related to graphing
(Leinhardt, Zaslavsky, & Stein, 1990). Roth and Bowen (2001) challenge this work by noting
that experts in science sometimes demonstrate misconceptions in their interpretation of graphs
common in science but not directly related to their research. Roth and Bowen suggest that
competent interpretation of graphs requires knowing graphing practices that are associated with
specific types of graphs and the social contexts in which they are situated. In this study, we
identified a family of practices associated with the use of the change triangle (see Figure 1) in a
function-based algebra class (Carlson, 2016). We recorded instances of an experienced function-
based algebra teacher using the change triangle while teaching, and then analyzed those instances
to create descriptions of the ways the instructor attended to and reasoned about different
elements of the change triangle.
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Figure 1. Change Triangle. Elements include a starting point, horizontal and vertical vectors, an
ending point, and a dotted or solid line or line segment connecting the two points.

The change triangle is superimposed on graphs to invoke and support covariational reasoning
(Thompson & Carlson, 2017) while solving a variety of problems (e.g., finding the vertical
intercept of a line given a constant rate of change and an ordered pair). Different elements and
multiple copies of the change triangle are attended to and coordinated in different ways to
support a variety of quantitative comparisons and achieve multiple purposes. By making these
practices more explicit to students, we not only support students in creating and using change
triangles to identify and reason about covariation, but also allow for discussions about the norms
and strategies for creating and using diagrams to support mathematical thinking.
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Given that analogical reasoning is a cognitive mechanism that humans use to understand new
ideas (Gentner & Bowdle, 2008), instructional metaphors have their place in mathematics
education and specifically base-ten number instruction (English, 2013; Pimm, 1981). Metaphors
used while learning base-ten number require still more nuanced investigation (Nurnberger-Haag,
2018). The term trade, for example, has been treated in practice and research as though it is the
target mathematical idea (e.g., Fuson & Briars, 1990; Saxton & Cakir, 2006); however, this is an
instructional metaphor that arose due to Dienes blocks (Nurnberger-Haag, 2018). Thus, this
study asked: What instructional metaphors do elementary textbooks use for base-ten number?

A preliminary analysis of base-ten number in the second through fourth-grade teachers’
editions of 12 U.S. textbook series were coded for metaphors expressed in words (verbal
metaphors; Nurnberger-Haag, 2018; see poster for list of textbooks). Ten series expressed more
than one metaphor. Metaphors such as grouping, composing/decomposing, and bundling reflect
crucial early number concepts (CCSSI, 2010), yet these insufficiently represent base-ten number
because these terms imply these processes occur within same unit levels, rather than building the
crucial base-ten number concept of composite units (Nurnberger-Haag, 2018; Steffe & Cobb,
1988). Nevertheless, these were the most common metaphors, occurring in 92% of the textbook
series. Despite trade metaphors violating base-ten number concepts by failing to communicate
the idea of units within units, modeling unintended operations, and opening what should be a
closed problem system (Nurnberger-Haag, 2018), 75% used a trade metaphor. Four series used
carry/borrow along with other metaphors. The packing/unpacking metaphors theoretically
predicted to best represent base-ten number operations and concepts (Nurnberger-Haag, 2018)
were found in the teacher, but not student pages, of a single series. This analysis combined with
future research on how students learn with specific metaphors could inform revisions of
textbooks for improved base-ten number understanding for all learners in elementary classrooms.
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Fractions are difficult for many people. One source of difficulty is people’s tendency to
overextend natural number reasoning to fractions. For example, when people are asked to choose
the larger of two fractions, natural number components can interfere with reasoning about
magnitudes, yielding a “natural number bias” (Ni & Zhou, 2005). However, not all studies
reveal the bias, and some studies have revealed a reverse bias (e.g., DeWolf & Vosniadou,
2015). In this study, we investigated whether encouraging people to use benchmarks (reference
numbers, e.g., /2) in fraction comparisons would help them to activate fraction magnitudes and
overcome a potential bias. We also examined patterns of strategy use.

Adults solved complex fraction comparison problems and reported their strategies on a trial-
by-trial basis. All fractions were smaller than 1, and none of the pairs had common numerators or
denominators. Half of the pairs were congruent (i.e., the larger fraction had the larger
components) and half were incongruent (i.e., the larger fraction had the smaller components).
The congruent and incongruent sets were balanced in terms of the fractions’ magnitudes relative
to common “benchmarks” (i.e., reference points, specifically, Y4, 4, or %). In “straddling”
problems, one fraction was smaller and the other larger than one of these benchmarks. In “in-
between” problems, both fractions were in between two adjacent benchmarks. In a special
subcategory of “in-between” problems, both fractions were either smaller than % or larger than
%; in these problems, one fraction was close to 0 or 1, which may be especially salient
benchmarks. Some participants also received a tip that benchmarks could be useful.

Overall, we found a reverse “smaller components—Iarger fraction” bias. Participants varied
in their strategy use across problem types, indicating that they used strategies adaptively. On
problems in which one fraction was close to 0 or 1, they used generally incorrect, component-
based strategies much more often than on other problems. For the other two problem types,
participants used component-based strategies less often, and used benchmark strategies
somewhat more often. The tip about using benchmarks had little effect.

Participants used strategies adaptively in ways that made good use of the affordances of
different problems (Alibali & Sidney, 2015), including the fractions’ relative positions to
benchmarks. Thus, patterns of strategy use may at least partially explain the occurrence and the
direction of the natural number bias in fraction comparison. To better understand the natural
number bias and why it varies across studies and across samples, it will be critical to understand
the strategies people use in making specific fraction comparisons.

References
Alibali, M. W., & Sidney, P. G. (2015). Variability in the natural number bias: Who, when, how, and why. Learning
and Instruction, 37, 56-61.
DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias
reconsidered. Learning and Instruction, 37, 39-49.
Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: the origins and implications of
whole number bias. Educational Psychologist, 40, 27-52.

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Early Algebra, Algebra, and Number Concepts 236

ASSESSMENT OF K-2 RELATIONAL REASONING SKILLS: STRENGTHS AND
LIMITATIONS OF ITEM TYPES AND FORMATS

Lindsey Perry Leanne Ketterlin-Geller
Southern Methodist University Southern Methodist University
leperry@smu.edu lkgeller@smu.edu

Keywords: Assessment and Evaluation, Number Concepts and Operations, Reasoning and Proof,
Elementary School Education

Numeric relational reasoning is often defined as the ability to recognize and analyze
relationships between numbers or expressions (Baroody, Purpura, Eiland, Reid, & Paliwal, 2016;
Jacobs, Franke, Carpenter, Levi, & Battey, 2007). Students using numeric relational reasoning
can use known facts to derive new facts (e.g., using 5 + 5 to solve 6 + 5), solve complex
equations by transforming expressions using composition and properties of operations (6 +5 =
[J + 4), and recognize when calculations aren’t necessary (e.g., 5+ 8 = [] + 5). Due to the
predictive relationship between numeric relational reasoning and mathematics achievement
(Aunio & Niemvirta, 2010; Nunes et al., 2007), it is important to understand how numeric
relational reasoning can be assessed so that instruction can be modified to improve students’
competence with this construct.

The purpose of this literature synthesis was to (1) identify what instruments currently exist
that assess K-2 students’ numeric relational reasoning competence, (2) determine different item
types and formats for assessing this construct, and (3) determine the depth of reasoning needed
by students for each item type.

After an extensive search, seven assessments were found that include items to assess K-2
students’ numeric relational reasoning skills. These assessments include differing levels of
content representation for numeric relational reasoning and its main components. Three main
item types were utilized on these assessments: items with concrete or visual representations,
word problems, and items with abstract notation only. The depth of reasoning elicited by these
items varied, in part because the item formats did not make the students’ reasoning visible. It is
recommended that items focus not only on the correct answer but also evaluate students’
reasoning strategies to better capture whether students are reasoning relationally.
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This paper reports on a project aimed at developing a system of professional support for the
improvement of the Geometry for Teachers course that mathematics departments teach to
preservice secondary teachers. We share data from interviews with 20 instructors to report on
how they perceive their position of geometry instructors and the work they do in the course. To
inspect this set of interviews, we use the framework of professional obligations to the discipline,
to individual students, to the institution, and to the classroom community. We share how
references to these professional obligations emerged in the interview data.

Keywords: Geometry and Geometrical and Spatial Thinking, Post-Secondary Education, Teacher
Education-Preservice

Introduction

This paper reports on a study of instruction at the college level, specifically focused on the
geometry course that many universities offer and is taken by prospective secondary teachers
(Geometry for Teachers, or GeT hereafter). We report how GeT instructors perceive their
position and the work they do in the GeT course in relation to institutional stakeholders. The
literature on instruction at the college level is emerging (Mesa, Wladis, & Watkins, 2014) and in
order to frame our focus, we can profit from considering as background the literature on K-12.

The study of mathematics instruction at the K-12 level has often considered the classroom as
a container within which interactions among teacher, students, and content unfold. The influence
of institutional context on instruction has not always been part of that consideration. Cohen et
al.’s (2003) instructional triangle calls attention to the environments in which instruction is
situated but most studies of instruction pay little attention to how those environments influence
instruction. Some of that is justified on the received wisdom that instruction is “loosely coupled”
with administration (Weick, 1976). Awareness in our field of the importance to look at the
relationships between institutional and instructional issues has been brewing, particularly from
research focused on systemic reform (e.g., Cobb, Jackson, Smith, Sorum, & Henrick, 2013) and
on equity (e.g., Lubienski, 2002; Walker, 2007). The realization, particularly from the latter
research, is that some of the phenomena that happen at the classroom level (e.g., little access to
good mathematics) owes to issues that are structural (e.g., tracking, teacher placement, school
climate). As the era of accountability starts to affect also higher education (Levine, 2017), there
is reason to consider how environments affect instruction also at the college level. On this matter
the K-12 literature can provides some theoretical resources.

Chazan, Herbst, and Clark (2016) describe the position of the teacher as one that connects the
institution and its stakeholders with the roles and relationships at play in instruction. Attempts to
improve instruction have often relied on the agency of teachers. Chazan et al. (2016) contend
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that such attention to agency needs to be complemented with attention to structural issues at play
in educational institutions and in society at large if we are to understand how instruction can be
improved. This paper argues that the GeT course is one that could benefit from instructional
improvement and asks the question of how instructors of this course experience the influence of
institutional issues that might support or hinder that improvement.

We inscribe the paper within an improvement effort that tries to follow the approach
described Bryk, Gomez, Grunow, and Le Mahieu (2015), which challenges the usual
improvement paradigm of diffusion of innovation. Rather than conceiving a solution to a
problem and seeking to implement it with fidelity and evaluate its results, the approach described
by Bryk et al. (2015) starts from creating a networked improvement community (NIC). Using an
organizational learning perspective, this approach engages the whole network in designing,
monitoring, and continuously developing solutions that might improve the system, particularly
by attending to variation in performance. This methodology for improvement starts from
understanding the system that produces the outcomes that need to be improved. Our attention to
how instructors perceive their institutional positions, at the hinge between the institution and
classroom instruction, is key in understanding the system in question.

The Need for Improving the Geometry Course for Teachers

A geometry course (HSG, hereafter) has been part of the US high school curriculum for more
than 100 years (Sinclair, 2008) and it has traditionally been key in inducting students into
mathematical practices such as conjecturing and proving. The changes proposed by the Common
Core (Common Core State Standards Initiative, 2010), and the corresponding state assessments
have substantial impacts on the HSG curriculum (Wu, 2014). These changes have been
accompanied by an increase in the use of students’ achievement for individual teachers’
accountability (Roth McDuffie et al., 2015). Likewise, the description of “highly qualified
teachers” ushered in by the No Child Left Behind [NCLB] legislation (Bush, 2002) suggests the
need for teachers to have substantial content preparation in the disciplines they will teach. This
suggests an institutional pressure on those who prepare teachers, to align what they teach
preservice teachers with what the latter will need to teach their own students. This pressure can
be seen in the CAEP standards adopted by 33 states through partnership with NCATE which
state that teacher education provider programs must “ensure that candidates demonstrate skills
and commitment that afford all P-12 students access to rigorous college- and career-ready
standards (e.g., [...] Common Core State Standards).” The pressure can also be understood by
examining the MET II documents that call secondary teacher preparation programs to offer
courses specifically designed to focus on mathematics at the high school level from an advanced
perspective, including “address[ing] the CCSS approach to Euclidean geometry based upon
translations, rotations, reflections and dilations” (CBMS, 2012, p. 7). But, are GeT courses
providing teacher candidates with the knowledge they need in order to teach HSG? Grover and
Connor (2000) surveyed the content and instructional practices of geometry courses at 108
randomly selected U.S. colleges and universities and found that GeT course content varies
greatly: From a review of middle and high school topics to the development of elementary
axioms or a study of non-Euclidean and projective geometries using alternative transformational
and analytic approaches. A comparison of the textbooks used for GeT courses produced similar
differences. Grover and Connor (2000) concluded that there is no typical curriculum for GeT.
This variability in GeT courses prompts questioning their usefulness for teachers (Wu, 2011).

It seems that institutions should have reason to be interested in improving the GeT course by
better aligning what is taught to future teachers with the knowledge they need to teach HSG.
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However, because Euclidean geometry is no longer an area of active mathematical research, the
geometry content high school students study has few stewards in university mathematics
departments (Steen, 1988; see also Atiyah, 2001). With the GeT course being a service course
for fewer students than other service courses (such as calculus or linear algebra), it is hard for
mathematics departments to create local communities to steward the GeT course. Improvement
is needed but it may need more than local attention; it could use a network approach.

We are interested in improving the GeT course using the approach described by Bryk et al.
(2015), which requires us to start from understanding the system in need of improvement. The
GeT course is one where environmental influences (e.g., instructors need to prepare PSTs to
teach geometry) could connect with the outcomes of the course (viz., better mathematical
knowledge for teaching geometry of preservice teachers). As some research has shown
connections between MKT and the mathematical quality of instruction as well as K-12 student
outcomes (Hill, Rowan, & Ball, 2005; Hill et al., 2008), increasing MKT would be desirable.
Based on performance data, Clements (2003) suggested that students’ knowledge of geometry
could use improvement. Increasing MKT in geometry might be one lever. Given that the need
for improvement in HS geometry instruction points to the possibility to improve the GeT course,
a question that can be asked is whether a process of continuous improvement based on principles
of organizational learning can be used productively to improve geometry for teachers.

Our project has started developing a networked improvement community by bringing
individuals together. We began by locating institutions with large teacher preparation
programs—as we are interested in the undergraduate geometry course serving future teachers,
rather than geometry courses in general. Within those institutions, we looked at mathematics
departments for geometry courses serving secondary mathematics pre-service teachers and
identified instructors of those courses as the natural candidates to be members of this
community. We are also incorporating other stakeholders, including high school geometry
teachers and mathematics supervisors who influence certification policies at state levels. Our
first step has been to do a set of initial interviews of instructors of the GeT course. The
interviews help us describe members of this group in terms of their professional position as
instructors of college students.

Theoretical Framework: Practical Rationality of GeT Instructors

As we consider the effort involved in improving GeT, we are keen to note that like the case
in K-12 instructional improvement, the improvement of curriculum and instruction for GeT is
likely to need more than resources and networks: It needs know-how, anchored in an
understanding of what instructional practice is like in its institutional context (Halverson, 2003).
In a review of the research literature on collegiate mathematics, Speer, Smith, and Horvath
(2010) reported that there exists "very little research [that] has focused directly on teaching
practice—what teachers do and think daily, in class and out, as they perform their teaching
work” (p. 99). Further, they argue that “the community’s efforts to support instructors as they
learn to teach college mathematics is often not informed by data and research on what is
involved in teaching college mathematics” and recommend conducting research in this area to
guide the professional development efforts designed to improve collegiate mathematics (p. 111).
Specifically, in considering what is involved in the improvement of GeT, it would be helpful to
understand how GeT instructors negotiate the multiple demands of their role preparing HSG
teachers. How do faculty relate to the dual expectation that GeT be a university mathematics
class and prepare students to teach high school geometry?
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In their account of the practical rationality of mathematics teaching, Herbst and Chazan
(2012; see also Chazan, Herbst, & Clark, 2016) identify sources of justification that instructors
might use to make their actions reasonable or sensible. Many actions in teaching mathematics go
without saying, they don’t call for justification but rather are habitual or normative. But quite
often instructors deviate from the norm—e.g., instead of correcting a mistaken response, an
instructor might ask his or her class to consider whether the response makes sense. Herbst and
Chazan (2012) propose that such departures from the norm might be perceived as justifiable by a
professional if they help meet one or more of four professional obligations: An obligation to the
discipline of mathematics, an obligation to students as individuals, an obligation to the class as a
community, and an obligation to the institutions that make room for instruction.

The obligations framework has important implications for the ways we think about
supporting GeT instructors in improving their instructional practice. In particular, we can use this
framework to unpack the tensions that they perceive as undergirding GeT instruction. For
example, the institutional obligation (to the Teacher Education program and State certification
agency calling for mathematics departments to offer GeT courses) might compel the GeT
instructor to cover the content that his or her students would need to teach in schools, while the
instructor’s obligation to the discipline of mathematics might compel them to bring in
considerations that are more general (e.g., that Euclidean geometry is only one geometry, but
different choices of postulates might give rise to different geometries) in order to better represent
the discipline. Because time is limited, instructors can’t just avoid these tensions, they need to
manage them. We see the many tensions that might exist among the professional obligations of
undergraduate instructors as fertile places where to start an inquiry toward the systemic
improvement of the GeT course. In this paper, we begin that work by sharing what we’ve learned
from GeT instructors through a set of initial interviews. Our research questions are: (1) How
does the framework of professional obligations help us understand the professional position of
geometry instructors? and (2) How does such understanding help us move toward alignment
between the GeT course and the HSG course?

Methods

We recruited 20 participants (8 men and 12 women) from 17 universities across the U.S., all
of whom were identified as mathematics department faculty, hold doctoral degrees in
mathematics or mathematics education, and have recently taught a geometry course aimed at
serving pre-service teachers in large teacher preparation programs. We developed a semi-
structured interview protocol to learn about the instructor, their context, and their dispositions
toward improving the GeT course. The protocol had three sections: 16 questions about the GeT
course and the challenges that come with teaching it, 3 questions (with follow-ups) about the
various forms of content covered in the course, and 3 questions about the background of the
participant. In this paper we focus responses to the first section, and questions such as: “What
experiences do you aim for your students to have in the geometry course for teachers?” and
“What are the expectations that shape the geometry course for teachers that you teach?”

We piloted the interview with two non-participants who are experienced instructors of the
GeT course before administering it to the rest of the participants. We conducted the interviews
using online video-conferencing software that allowed us to capture audio and video records of
the interaction. The analysis of the interview data was a multi-step process. We began by taking
field notes during the interview and then improving those notes with one or two reviews of the
video after the fact. Using the professional obligations framework, we individually coded
participants’ contributions across the first section’s interview questions, meeting together to
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compare, discuss, and reconcile our understanding of each category as well as identify emerging

themes.

Results

In this section, we use the professional obligations of mathematics teaching to organize initial
gleanings from the interviews. We share the various ways that each of the professional
obligations emerged in the data, illustrating each theme with examples from the data. Lastly,
because part of what we aim to do is to understand how well the obligations framework helps us
account for instructors’ perceptions of their position as instructors of the GeT course, we also
share data that did not fall neatly within any of the four professional obligations framework.
Instructors Dispositions toward the Disciplinary Obligation

We had hypothesized that that GeT instructors would relate to their professional position by
recognizing an obligation to the discipline of mathematics. Unsurprisingly, we observed a
plethora of responses that illustrated various dispositions toward the disciplinary obligation.
Three themes emerged from that analysis; a disposition to attend to (1) geometry as a body of
confirmed and correct knowledge that GeT students need to know; (2) mathematics as a practice
of inquiry, discovery, invention, or knowledge development that people need to engage in; (3)
geometry as a set of models which are useful for solving problems. In Figure 1 we illustrate these
themes with participants’ responses:

Mathematics as ...

Participant Response

A body of
confirmed and
correct knowledge

“I do think it’s important for mathematicians to teach this course... it’s a
surprisingly mathematically sophisticated course. I think that it’s
mathematically sophisticated enough that mathematicians should be
teaching it” (MV).

A practice of
inquiry, discovery,
invention, or
knowledge
development

“High school teachers were definitely as good as I was in recognizing
patterns or solving problems. But when they found an answer, they were
happy to move on. They didn’t seem to me to need to have a rigorous
argument about why this pattern worked or why things were the way
they were...that’s something that I want to convey to my students” (RR).

Providing models
useful for solving
problems

“[Community members such as businesses] want their people to be
problem solvers and have the ability to deal with an unfamiliar situation.
... I think that that’s the main value of the class to the society as a
whole” (SA).

Figure 1. Examples of data coded as evidence of GeT instructors’ disciplinary obligation.
Note: Two letters are used to refer to each of the different participants.

Instructors Dispositions toward the Individual Obligation

We hypothesized that GeT instructors would relate to their professional position through a
recognition of their obligation to the individual student. While not as prevalent as the evidence
for instructors’ disciplinary obligation, we observed many participant responses that we agreed
would be categorized under the individual obligation. We share two themes that emerged from
that analysis: the obligation to attend to the individual as: (1) a cognitive being (who can think,
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process mentally, etc.); (2) an emotional being (who can feel anger, joy, fear, disgust, sadness,
etc.). Figure 2 illustrates these themes with participants’ responses:

Individual as Participant Response

A cognitive
being

“[The mathematical experience is] a good thing for a person’s spirit...to be
challenged and succeed” (IL).

An emotional
being

“So I’ve definitely have gotten some good feedback about people who were
scared about, or nervous about teaching geometry at the high school level
and after they took the college geometry course at our university they felt

like they were ready, or maybe even excited about teaching geometry” (RL).

Figure 2. Examples of data coded as evidence of GeT instructors’ individual obligation.

Instructors Dispositions toward the Institutional Obligation

We hypothesized that GeT instructors would relate to their professional position through a
recognition of their obligation to the institution. Three themes emerged from that analysis: the
obligation to attend to the institution as: (1) a place that provides service to young members of
society; (2) a place that has external accountability (teacher preparation programs and
certification agencies); (3) an organization that has rules, policies, etc. We illustrate these
themes (see Figure 3) with participants’ responses to various interview questions:

Institution as ...

Participant Response

A place that
provides service to
young members of
society

“[TThe content in the course and the student work in the course is related
to how well they do on things like Praxis tests as well as how it relates to
how they actually teach in the classroom two years later” (IF).

A place that has
external
accountability

“We redesigned it based on the MET II document, actually based on the
MET and then revised again with the MET II, and also focusing on the
um Common Core Stand—State Standards as to what geometry the
teachers are going to have to teach. And so we have totally revamped the
course so the focus is on those aspects of geometry” (IF).

An organization
that has rules,
budgets, etc

“The catalogue affects me - the description talks about axiomatics and
finite geometries. While finite geometry is a nice playground, because
they can build the models and see everything, I wouldn’t have to do that.
That course description constrains me” (SL).

Figure 3. Examples of data coded as evidence of GeT instructors’ institutional obligation.

Instructors’ Dispositions toward the Interpersonal Obligation

We hypothesized that GeT instructors would relate to their professional position through a
recognition of their obligation to the interpersonal collective of the classroom. Unlike the
previous three obligations, we found few of the instructors’ responses that could be filed under
the interpersonal obligation. Thus, here we have just one theme that emerged from our analysis:
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the obligation to attend to the group of students as a discourse community, that needs to partake
of communicative exchanges (Figure 4).

Group of students as ... Participant Response

A discourse community, that [ “So I want them to collaborate mathematically in and outside
needs to partake of of class, I want them to get experience communicating
communicative exchanges mathematics both in person, we do a lot of presentations at
the board, a lot” (MV).

Figure 4. Examples of data coded as evidence of GeT instructors’ institutional obligation.

Those Responses Falling Outside the Four Professional Obligations

Prior to closing this section, we take a moment to review some of the instructor responses
that felt important to describe how GeT instructors relate to their professional position but were
not captured by the professional obligations. These exceptions are rare in the data, as we have
only found two instances. These instances can be attributed to instructor’s personal resources,
including knowledge, experience, beliefs, and identity. One of the responses came in the context
of discussing whether or not GeT instructors held any responsibility for teaching students how to
engage in work that was specific to the work of teaching, like creating questions for a geometry
exam or understanding students’ difficulties with geometric proof. RR’s response serves as an
example of how an individual’s knowledge or experiences can elevate the tensions that one
experiences in teaching the GeT course:

I was trained as a mathematician, I was not given any formal training on student
teaching/learning - anything I know about student teaching/learning is something that I’ve
read or picked up from [a mathematics education colleague] but there are other
[mathematicians] who don’t have [mathematics education colleagues] who come at these
courses - geometry, or upper level algebra/analysis course who don’t have any of that
experience. (RR)

Conclusion
The professional obligations framework is useful to understand the professional position of
GeT instructors, positions toward the GeT course, though the data speaks also about the
importance to attend to personal resources. The interviews suggest that efforts to improve the
course by developing a networked improvement community may need collective awareness of
the variety of ways in which individuals relate to their positions as instructors.
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Teaching geometry courses for preservice elementary teachers, we observed that difficulty with
classifying shapes (and, in particular, composite 3-D shapes) persists even after work with
simple shapes to support the writing of accurate and unambiguous definitions. We conducted a
self-study of our teaching of 3-D concepts to uncover the concept images of pyramid and prism
that emerge. We sought to understand the nature of those observed difficulties. We found that
using both simple and composite shapes in classification activity exposed more nuanced and
complex concept imagery than simple shapes alone. Opportunities to articulate assumptions
create a space for all learners to make the language more precise and to create concept
definitions that are more resilient.

Keywords: Geometry and Geometrical and Spatial Thinking, Instructional Activities and
Practices, Teacher Education-Preservice

Background

Human perceptions of the physical world are primarily made up of 3-D shapes. Many
curricula around the world provide opportunities to identify and name three-dimensional solids
in early grades (Sinclair, Cirillo, & de Villiers, 2017). However, only a few studies on learners’
definitions and conceptions of 3-D solids were discussed in the review conducted by Sinclair,
Cirillo, and de Villiers (2017). Bozkurt and Koc (2012) reported that many of the first-year
Turkish pre-service elementary teachers (PSETSs) in their study found it difficult to define prism;
60% of them either could not provide a definition for prism or could not go beyond stating the
fact that it was a term for 3-D shape. Another study identified a variety of concept images that
Turkish PSETs hold about the base of 3-D shapes. Many were limited and/or contradictory in
nature (Horzum & Ertekin, 2017). Tanguay and Grenier (2010) found that preservice secondary
teachers had difficulty defining and describing regular polyhedra, which hindered their later
attempts to develop a proof for the existence of only five possible regular polyhedra.

In our geometry courses for PSETs, we have observed the difficulty that our students have in
classifying shapes, and, in particular, composite 3-D shapes. This difficulty persists even after
significant work with simple pyramids and prisms to support the writing of accurate and
unambiguous definitions. Initially, we speculated that this difficulty was related to our PSETSs’
ability to write and apply formal definitions, but wondered if it was also related to unarticulated
concept imagery. The challenge was to create opportunities to articulate problematic concept
images and expose the hidden contradictions that make classification difficult. Our analyses have
uncovered layers of complexity in PSETs’ conceptions of prism and pyramid.

We will provide findings related to two research questions:

1. What concept images of pyramid and prism emerged from in-class activities that focused
on defining and classifying 3-D solids?

2. What is the nature of PSETs’ difficulty in using established concept definitions and
images to classify composite 3-D shapes as pyramids, prisms, or neither?
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Theoretical Framework

In our work to help PSETSs understand prisms, pyramids, and related concepts, we strive to
create opportunities for PSETs to experience cognitive disequilibrium (Piaget, 1985). This is the
moment when there is an imbalance between prior knowledge (schema) and experiences that
cannot (yet) be explained by it. The process of engaging students in the act of defining is one of
iteration and revision; we move back and forth between examining concrete shapes built from
wooden models or other commercially made building materials, and writing and revising
emerging concept definitions. The activity described later in this paper, Prism, Pyramid or
Neither? is one of our attempts to perturb the equilibrium of our students in the hopes that they
are able to articulate deeply held concept imagery about these shapes and to demonstrate how
resilient their conceptions have become.

We used Tall and Vinner’s (1981) framework of concept definition and concept image to
frame our PSETs’ experiences with classification activity. Tall and Vinner describe a concept
image as “the total cognitive structure that is associated with the concept which includes all the
mental pictures and associated properties and processes” (p. 152). These authors distinguish this
from a concept definition or “a form of words used to specify that concept” (p. 152). For
example, one of our students described a pyramid as having ““a tippy or pointed top, a base
opposite to the top, and triangles around the top point.” Individual concept definitions may be
different from the “formal concept definition,” which is a definition accepted by the
mathematical community.

Data Collection and Analysis

This study followed the Self-study of Teacher Education Practices as we undertook action
research to systematically study our own practices and to make our knowledge and beliefs, along
with the dilemmas, decisions, and reflections, explicit (Vanassche & Kelchtermans, 2015). Self-
study research makes it possible to share what we have learned from our practices so that it can
be examined and transformed by other teacher educators (Bullough & Pinnegar 2001). We
adopted an “inquiry as a stance” approach and acknowledged that self-study is an ongoing and
complex process (Cochran-Smith, 2003).

We collected data in a geometry course required for all PSETs in a Midwest university
including lesson plans and observation notes of about 100 minutes of lessons, lesson stories
written by assigned students spanning the first two lessons of the semester, as well as written
work from 58 students from three different sections taught by the same instructor on classifying
composite polyhedrons.

We will present three stories, built from our data. First, we will use collected data to describe
two episodes of classroom instruction related to classifying polyhedra and creating concept
definitions for prisms and pyramids. Data collected at the classroom level were analyzed in order
to examine existing and emergent concept imagery as the class worked to construct concept
definitions for prism and pyramid. Once these definitions had been constructed, we used the
quantitative results of the Prism, Pyramid or Neither? assignment to determine areas of both
success and struggle for individuals involving classifying polyhedra using those classroom-
constructed concept definitions. In this activity, we showed PSETs composite polyhedra built by
composing pyramids and prisms in different ways. We asked them to identify each as a prism,
pyramid, or neither. We were able to interpret their written justifications and identify specific
concept images that interfered with classification activity.
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Findings and Discussion
Emergent Images and Definitions

In this section, we discuss two classroom episodes. These episodes are amalgams of data
from three separate teachings of the same content. They are written to represent the depth and
breadth of conversations that occurred, even if each varied in minor ways from the others.

Episode 1. Working in small groups of 3 to 4, preservice elementary teachers were asked to
come up with different ways to categorize a set of 15 wooden 3-D shapes that included both
polyhedra (e.g., triangular prism, rectangular pyramid) and non-polyhedra (e.g., cylinder, sphere)
as seen in Figure 1a. They were asked to record their thoughts on the question, “How are items in
a category like one another and how are they different from other shapes?” A variety of
categories was proposed and discussed during the follow-up whole-class discussion.

Many issues emerged during this part of the lesson that gave rise to the need for more precise
definitions. For example, students had different meanings for the word face. Some considered
flatness as part of their definitions of face; thus, a hemisphere would have only one face. Others
argued that a hemisphere had two faces—a flat one and a curved one. The word side was also
problematic. Some used the word side to refer to the faces of a prism, while others used that
word to refer to the edges of a prism.

These discussions led to a classification scheme that separated polyhedra from non-
polyhedra, with polyhedra being 3-D shapes that had only straight edges and flat faces. The
instructor then assigned students to learn more about polyhedra, prisms, and pyramids by visiting
the interactive 3-D shapes by Annenberg Learner
(https://www.learner.org/interactives/geometry/3d.html).

Episode 2. To begin the second lesson, PSETs shared what they had learned from the
website about the definitions as well as their current thoughts on the similarities and differences
between pyramids and prisms. Initially, many students had a limited conception of base, similar
to their Turkish counterparts (Horzum & Ertekin, 2017). The instructor helped students to
transcend orientation-dependent conceptions of base by drawing attention to identical triangular
and hexagonal prisms placed in different orientations (Figure 1b, 1c).

Figure 1. Classifying wooden models.

Our definition for the base of a prism as a special type of paired, opposite, congruent, and
parallel faces required more clarification. When exposed to the hexagonal prisms in Figure 1c,
PSETs encountered multiple pairings that fit this description. Introducing the idea of congruent
cross-sections encouraged the distinction between base and lateral faces (non-base face).
Similar discussions explored the idea of apex in pyramids as a special kind of vertex where all
the edges from the base connected. Finally, the PSETs arrived at the class definitions: prisms are
polyhedra with two congruent, parallel bases and all lateral faces are rectangles; and pyramids
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are polyhedra with a base, an apex opposite to the base, and all lateral faces triangles.

To further solidify the concept definitions and images, the instructors passed out to each
group two composite shapes that were made up of two prisms, two pyramids, or one of each and
asked the students to name the two shapes that made up the composite shape, describe the way
they were connected, and decide whether the composite shape was a prism, pyramid, or neither.

This proved to be a challenging task for many students. For example, one group of students
was not sure if the composite shape in Figure 2 was a pyramid. They could identify that this
composite shape was made by connecting the base of a square pyramid with a lateral face from a
hexagonal prism. They thought it could be named a pyramid because there were an apex and a
base, but they admitted it didn’t quite look like a typical pyramid. The instructor reminded
students to justify their decision using the definition of pyramid that the class had agreed upon.
Finally, students examined the shape further and noticed that some of the lateral faces weren’t
triangles, thus confirming that this composite shape was not a pyramid.

Figure 2. Is this composite shape a pyramid?

Classification Difficulty

We were also able to document our PSETs’ difficulties in using established concept
definitions and images to classify composite 3-D shapes. After the class activities described
above, PSETs were asked to complete an online quiz. The online quiz had two components. The
first component asked them to determine if each of 12 composite shapes was a prism, pyramid,
or neither. The second part asked them to “write a careful justification to explain whether a
composite shape shown is a prism, pyramid, or neither” for three composite shapes selected at
random from a subset of 4 of the original 12 shapes.

Because of space limitations, we included here results from only six items: two from the
items with the highest percentage of correct responses and four from the items of lowest
percentage to provide insights into PSETs’ overall performance. We use bold print to indicate
correct responses. While the majority of PSETs were able to correctly identify that Figure 3a was
a prism and 3b a pyramid, the other shapes were not so easily classified. The quantitative data
alone are evidence of the difficulty our students faced in applying definitions to classify 3-D
shapes. However, the justifications for these classifications (provided in the next section)
illustrate strongly held concept images that might help explain the nature of these difficulties.
Below, we describe several concept definitions and images strongly held by some PSETs when
classifying composite shapes. We drew support from both the analysis of the quantitative data
summarized above and the analysis of the written work.

Difficulties associated with pyramid. Despite the class discussion tending to the
classification of the composite shape in Figure 2, about a quarter of PSETs still classified the
shape in Figure 3c as a pyramid because it had an apex, a base, and triangular lateral faces. For

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Geometry and Measurement 251

example, Dakota (mistaking the hexagon for an octagon) wrote, “The composite shape is a
pyramid because it has an octagonal prism with another octagon pyramid on top. The definition
of a pyramid includes a polygonal base—an octagon, and lateral faces that are triangles that run
into one vertex.” She and many PSETs still ignored the fact that some lateral faces on Figure 3¢
were not triangles; thus, it could not be a pyramid.

—

o —

Prism 94.83% 5.17% 6.90%
Pyramid 0.00% 84.48% 25.86%
Neither 5.17% 10.34% 67.26%

_©

.

Prism 32.76% 3.45% 41.38%
Pyramid 1.72% 48.48% 6.90%
Neither 65.52% 48.48% 51.72%

Figure 3. Classification of composite shapes by PSETs (N = 58).

Shape 3e was another difficult one to classify. It was made up of a hexagonal pyramid and a
triangular prism connecting through their lateral triangular faces. Half of the PSETs judged it to
be a pyramid and half of them judged it to be neither. Our analyses of the written justifications
revealed that the class definition of pyramid as “polyhedra with a base, an apex opposite to the
base, and all lateral faces are triangles” might not be explicit enough to help PSETs to correctly
classify Figure 3e. For example, Ryann wrote, “Pyramid. Because it has one face that is a
polygon and all the other lateral faces are triangles they also come to a point.” Ryann’s concept
definition of pyramid was previously sufficient to classify all of the wood blocks in Figure 1a,
but it was not sufficient to tackle the complexity of this composite figure.

Some PSETs did recognize that there seemed to be odd faces disconnected from the apex that
were not bases. This was a moment of disequilibrium (Piaget, 1985) that proved important. Some
decided to modify their concept definition to accommodate the new type of face. Katelyn wrote,
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The composite shape is a pyramid because even though it has an extension on one of the
lateral faces, all lateral faces are triangles and both bases are polygons. It is a combination of
a triangular pyramid and a hexagonal pyramid. It fits the definition of a pyramid, which is a
polyhedron where the base is a polygon and all lateral faces are triangles. It breaks no rules
and meets all the requirements to be considered a pyramid.

Our analysis uncovered additional concept images and definitions of pyramid that were useful in
helping the PSETs to make the correct classification. For example, some PSETs decided that
Figure 3e was not a pyramid because “it had a side stick out.” Alex stated that for a shape to be
classified as a prism or pyramid, “The shape would have to be able to lay on any one of its
sides.” Jasmin said this is not a pyramid because it is “capable of rocking back and forth.” The
concept image of a pyramid that could lay stable on each of its many faces was a strong one.
Others had included in their concept definitions of pyramid the requirement of having only one
base. As Anjou reasons, Figure 3e isn’t a pyramid because it has two bases:

Our definition for pyramid is—a polyhedron where the lateral faces are triangles, has one
base which is a polygon. Now. Although all the lateral faces meet at a common point, this
shape has more than one base so it has more than one base so it can’t be a pyramid either.

Difficulties associated with prism. About 51.72% of the students declared that Figure 3f
was neither a prism nor a pyramid. Most justified eliminating pyramid as a choice due to the lack
of an apex. However, the fixed orientation impacted PSET’s ability to see it as a prism. As
Jessica says, “This shape is not a prism because all of the lateral faces are not rectangles, some
are triangles and also this shape does not have two congruent bases.”

Just like Jessica, many PSETs had the concept image of a base as a face on which the whole
3-D shape sits. So if a student assumes the square as the base, the octagons become lateral faces
and it is impossible to find another congruent square parallel to that square base. The idea that
shapes retain their form as they are rotating in space (or, for 2-D, on a plane) is a critical
conceptual understanding that students need to develop in making sense of both 2-D and 3-D
shapes. Some were able to overlook the orientation and identified this shape as a prism, as Jamal
wrote, “This composite shape is a prism because it has two congruent bases when I flip the
shapes sideways (yellow shapes at the bottom) and the rest of the lateral faces are rectangles
which fits in the definition of a prism.”

What is it about the shown orientation that renders it unrecognizable? The answer is to return
to concept imagery around the term base. When classifying simple polyhedra in class, students
always oriented their prisms so that they were resting on one of the bases. By doing so, it became
a habit to define base as a face on which the whole 3-D shape “sits.” The singular case is also
described as “the bottom” (as in a basement) and the pair of bases as “the bottom and top” of a
prism. Jessica explains: “This shape is not a prism because all of the lateral faces are not
rectangles, some are triangles and also this shape does not have two congruent bases.”

The case of overgeneralization. As seen in Figure 3a and 3b, the majority of the PSETs
were able to recognize the composite shape in 3a as a 9-gonal prism made by connecting a
hexagonal prism and a pentagonal prism at a congruent lateral face. Also, they recognized the
shape in 3b as a pyramid made by connecting two triangular pyramids at a congruent lateral face.
Unfortunately, that led some students to believe that the overall shape of a 3-D composite is a
prism if it is made up of two prisms, and is a pyramid if it is made up of two pyramids, and is
neither if it is made up of a prism and a pyramid.

The statement is obviously false but the challenge is to recognize what parts of this statement
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contain some truth. It is true that composing a prism and a pyramid will always result in a shape
that is neither a prism nor a pyramid. Figure 3c is one example. In the composition process, the
figure cannot retain the property of having two congruent parallel bases (thus, not a prism) nor
can it cannot retain the property that all lateral faces are triangles (thus, not a pyramid).

The first two parts of the generalization, however, are not always true. In Figure 3e we see a
counterexample of a composite shape, made up of two pyramids, that is not a pyramid. The two
shapes were connected via a lateral face such that their bases did not create a composed pyramid;
their bases are not in the same plane as in Figure 3b. Another counterexample is shown in Figure
3d, which was composed of the same two prisms in Figure 3a by matching the same lateral faces,
but twisted so that their original bases would not lie on the same plane.

The composite polyhedra were selected for this activity because they had the potential to
bring a variety of concept imagery to the surface related to the terminology used to define prisms
and pyramids. However, this last discussion indicates that this activity has the potential to
generate even more false generalizations if we do not recognize the complexity of this topic.

Conclusions and Implications

We have chosen to closely examine our instruction related to prisms and pyramids partly
because of the difficulties we observed PSETs having with classification activity related to both
3-D and 2-D shapes. However, we were surprised at the depth to which we were able to take our
analysis, indicating that composing, decomposing, and classifying 3-D shapes is far more
complex than we previously thought. The power of self-study is to uncover assumptions, and we
feel that the methodology was successful in that regard.

From this experience, we find that it’s not enough to use simple ready-made solids such as
wooden blocks when exploring 3-D concepts with PSETs. While they are sufficient to sort
polyhedra from non-polyhedra, they lack the complexity necessary to lead to a deep discussion
about related concepts (e.g., base, lateral face, edge, side, and apex) to make the properties of
prisms and pyramids clear. Using simple polyhedra allows for ambiguity and assumption.

Composite shapes and complex polyhedra (including platonic solids) have the power to cause
disequilibrium (Piaget, 1985) and perturb the concept imagery that PSETs take for granted. The
concept images that PSETs have of prisms and pyramids as well as related concepts are myriad
and rich, but often go unarticulated. Opportunities to articulate assumptions create a space to
make the language more precise and to create concept definitions that are more resilient.

Supporting students in their examination and classification of polyhedrons has long-term
implications at all levels. The act of composing and decomposing are central to the development
of measurement concepts (Feikes, Schwingendorf, & Gregg, 2008). A robust understanding of
prism and pyramid is important to the future study of measurement concepts such as volume and
surface area. Many concept images are formed throughout the teaching episodes presented here.
Specifically, using cross sections to make distinctions between bases and lateral faces on prisms
has great promise when it comes time to develop formulas for volume.

Furthermore, teaching the act of defining rather than a memorized definition (de Villiers,
1998) creates a space to challenge and refine concept imagery that conflicts with more formal
concept definitions. This, in turn, supports a more robust understanding of the concepts we are
trying to define. Providing a myriad of activities that help students assimilate increasingly
complex shapes into their schema for polyhedra, prisms, and pyramids challenges assumptions
and opens up opportunities for nuance and precision in the way we are all able to collectively
negotiate meaning and shared understanding.

Both the theoretical frameworks by Piaget and Tall and Vinner have supported the design
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and analyses of numerous mathematics education research projects in the last 40 years. In this
study, we found them also to be helpful in illuminating our quest for understanding the nature of
difficulties behind 3-D classification. One area for future research is to continue to explore the
use of their constructs to understand the nature of student difficulty with other challenging topics
related to 3-D solids, such as surface area and volume, for both PSETs and K-12 learners.
Another study could focus more on the general conceptions of definition held by PSETs and the
impact of curricular moves on those conceptions. Leikin and Zazkis (2010), looking across
multiple research studies, argued that teachers’ concept images and their understanding of the
notion of definition influence the ways in which teachers introduce mathematical content to their
students. Working in conjunction with methods instruction, it would be important to extend the
study into a field experience where PSETs were tasked with designing and/or implementing
lessons on 3-D shapes with elementary students.
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Definitions are fundamental to the work of geometry, but many students struggle with
understanding terms, and fail to learn the role of definitions in mathematics. We explore how ten
college-level students created and evaluated definitions for common geometric terms. Using the
idea of concept image and definition, we hoped to learn about the links between how students
think about geometric terms, how they define them, and how they evaluate definitions. We found
that despite demonstrating strengths in their understanding, none of them evaluated definitions
by constructing a biconditional argument. We suggest ways of addressing the issue.

Keywords: Geometry and Geometrical and Spatial Thinking, Reasoning and Proof

Definitions play an essential role in teaching and learning mathematics (Vinner, 2002; Zazkis
& Leikin, 2008). They shape the relationship between a concept image and a concept definition
and form an essential part of one’s knowledge structure that affects their thinking processes (Tall
& Vinner, 1981). However, research has demonstrated that students experience difficulties in
constructing and evaluating definitions (e.g., Zazkis & Leikin, 2008). The definitions that
learners generate mirror their understanding of particular mathematical concepts (Zazkis &
Leikin, 2008), and serve as a lens for examining their understanding of what a mathematical
definition entails. Examples are illustrations of concepts and principles, and we view the act of
defining and evaluating definitions similarly, which allows us to draw inferences about the
participants’ knowledge of the concepts involved in the definitions. The purpose of this study is
threefold: (1) to investigate the process of constructing and evaluating definitions for basic
geometrical concepts, (2) to investigate concept images of college students for these concepts,
and (3) to analyze the relationship between college students’ concept images with how they
construct and evaluate definitions.

Theoretical Framework

Three tools framed our research; concept image, concept definition, and proof schemes.
Hershkowitz (1990) described types of behaviors that explain the quality of the concept images
an individual has. We used two in this study, limited and complete concept image. Individuals
with a limited concept image make judgments based on a few prototypical examples plus some
properties drawn from those examples. Whereas, individuals who can provide a wide variety of
examples and all the important properties of these examples are considered to have a complete
concept image. Images can either be static or dynamic. To have a dynamic image of rectangle,
for example, would mean to have an image of all the possible variations in rectangle that still
maintain the defining properties. Whereas having a static image includes only few examples of
the figure and being unaware of how changes to one image might lead to another. We consider
this type of image to be related to Harel and Sowder’s (1998) transformational reasoning.

Only definitions by property are discussed because they were the only types of definitions the
participants created. Zaskis and Leikin (2008) evaluated participants’ definitions using a
framework, with three criteria: accessibility and correctness, richness, and generality. We
adopted these criteria except accessibility. The correctness of a definition means that the
definition includes a set of necessary and sufficient conditions. Richness addresses whether the
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definitions include properties other than the well-known properties (i.e. sides and angles), and
targets whether the definition shows signs of a robust understanding. Generality refers to whether
the definition relates to general objects of the concepts being defined rather than specific ones,
and is similar to de Villiers’s and colleagues (2009) meaning for economical definitions.

Definitions are arbitrary, and it is valuable to have a diversity of equivalent definitions
because one can chose which definition best suits their problem solving interests (Borsai, 1992;
Sinclair, et al., 2012). Having a rigid understanding of definitions might imply that the individual
sees definitions as given a priori and fails to see the role that humans play in creating them. By
equivalent definitions, we mean logically equivalent where one must show that a biconditional
relationship exists. However, we examined the types of reasons the participants gave using Harel
and Sowder’s (1998) taxonomy of proof schemes, where a proof scheme is a way of thinking
about how to ascertain or persuade for an individual or a community.

Methodology

In this section we describe the participants, data sources, and the analysis of the data. Ten
college students participated in the study. Nine were secondary mathematics education or
mathematics majors, one was an accounting major with a minor in mathematics. They were
given between four and five geometry terms and asked the following questions in sequence. Can
you draw an example of the term? They were continually asked for a new, different example
until they described aspects of the image they were changing. We hoped by asking these
questions we would get a sense of the images that students had for the terms, how diverse those
images were, and whether or not their images were dynamic. Next, we asked them to define the
term in as many ways as they could. This was followed by asking them if are there any
properties they felt were important for someone to know about that were not included in their
definition(s). With these questions we hoped to get a sense of the types of definitions they had
for the terms in regards to the definitions correctness, richness, and generality. Finally, they were
presented definitions and asked to decide if the definitions were valid or not and to explain their
reasoning. The interviews were recorded with one camera capturing the participant’s work and
another camera capturing the interaction. Any work that was performed was scanned, and thick
descriptions were created that included, transcripts, work, drawings, gestures, and tone.

To analyze the data, we independently watched each participant’s video, collecting all the
images they created for each term and their names. Each definition the participant gave was
coded for correctness, richness, and generality. This gave us a sense of their concept image.
Finally, we coded the participants’ reasons for accepting or rejecting the alternative definitions
using proof schemes. We met to discuss the summaries of our work and resolved disagreements
collaboratively. After doing this for all of the participants’ videos, we met to discuss key themes.
After elaborating our meaning for these themes we went back through and again watched one
participant’s interview at a time to categorize their work by these themes.

Results

In this section, we describe the participants’ concept images and definitions as well as how
they evaluated definitions in the sections that follow.
Participants’ Concept Images

All of the participants had a complete concept image for the majority of the terms. However,
we noted four relevant features. First, all the participants were consistently able to create an
example of each figure in the class with one exception explained below. Second, almost all
demonstrated evidence of thinking hierarchically and transformational reasoning (Harel &
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Sowder, 1998). For example, Sally drew the black parallelogram in Figure 1(a), marked the
angle and said she could continually draw new, different examples by changing the angle, but
keeping the sides the same length. When asked to draw an example of what she meant, she drew
the red parallelogram. The subtle, but important, distinction between what Sally claimed to be
doing and the image she drew is captured in Figure 1(b). Similarly, many participants had
difficulties creating the images they described, and when they did create the images in their
minds, the images did not behave the way they drew them. So, although they demonstrated
transformational reasoning, their images could misrepresent their thinking.

G

@ ®)
Figure 1. (a) Sally’s drawing to demonstrate how to dynamically change angle measure while
maintaining side lengths in a parallelogram. (b) Researchers’ construction of Sally’s description.

The exception described above came when the participants were asked to draw a generic
term like quadrilateral. Almost all participants consistently drew a special case as their first
image, and continued to draw special cases. As Sally put it, “when I’'m asked to draw a triangle, I
always just draw a right triangle.” Because the participants regularly reasoned empirically, their
specialized images left them open to verifying false claims, and making false claims. For
example, it was not uncommon for them to claim a median of a triangle is also perpendicular to
the opposite side because the shapes they reasoned with were specialized.

Participants’ Concept Definitions

We asked the participants for several definitions, but only three participants were able to
create multiple definitions. And in these cases, the definitions were not different. For example,
James originally defined a rectangle as a quadrilateral with four right angles. When asked for
another, different definition, he simply swapped quadrilateral for parallelogram. In total, 50
definitions were created and only four were invalid. Another fifteen definitions failed to meet
necessary conditions because the participants used terms like shape or figure instead of polygon
or quadrilateral. We considered these omissions to be minor. While evaluating the following
definition for triangle — a triangle has 3 sides and 3 angles — Cameron said, “It would help if
there was some other information ... like it’s a polygon ... but that’s probably understood.” We
felt that the participants were quite skilled at creating at least one definition. Eighteen of them
not only meet necessary and sufficient conditions, but were also economical.

Evaluating Researcher-Generated Definitions

Given their rich concept images and ability to create definitions, we felt the participants
would do well at evaluating definitions. They evaluated 38 definitions in total, seven incorrectly,
and three correct justifications used invalid reasons. Thus, the participants were inaccurate when
evaluating definitions over 25% of the time. Given their success in the other areas, we wondered
what the cause was.

The participants evaluated definitions three ways, using non-examples, examples, and
arguments. To use non-examples, the participants tried to imagine a figure that was a non-
example of the term that fit the properties used in the researcher-generated definition. There were
two different ways that they evaluated definitions using examples. For the first way, they
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imagined examples and checked whether the term had the properties in the researcher-generated
definition. James, for instance, was evaluating the definition, a parallelogram is a quadrilateral
with diagonals that bisect each other, when he said, “Yeah, I think so. I’'m just thinking by
looking at these [pointing to the pictures of parallelograms he had drawn]. Yeah, they bisect each
other”. For the second way, they imagined what figure(s) could be created if they drew an
example with the properties in the researcher-generated definition and checked to see if those
examples matched their concept image. For example, Eve drew several examples that fit the
following definition: a parallelogram is a quadrilateral that has a pair of opposite sides that are
parallel and equal in length. Then said, “Anything you could give would fit the description of a
parallelogram.” Interestingly, none of the participants used both methods when evaluating the
definitions. Had they done so, they would have, at least empirically, proved the biconditional
nature of the definition. The participants’ arguments additionally only proved the conditions in
the researcher-generated definition produced the conditions in their definition. Again, not
proving the biconditional nature of the definition. We explore the potential reasons for this next.

Discussion

Students need to take a greater role in the process of creating and evaluating definitions
(Borsai, 1992; Vinner, 2002). Kobiela and Lehrer (2015) showed that when 6"-grade students
were given these opportunities they learned about the concepts and about the process of creating
a definition. Evaluating definitions, valid and not, presents an opportunity for valuable and
difficult mathematical work. By examining non-definitions, students get the opportunity to learn
about how definitions are created. Examining alternative definitions provides students with an
opportunity to work in an authentic mathematical environment, and see that some, but not all,
properties meet necessary and sufficient conditions. Moreover, it provides students with an
authentic opportunity to use proof; something the participants did spontaneously and regularly.
Finally, students will have the opportunity to sharpen their own understanding of the terms as
alternative definitions help students make connections between terms they see as distinct, and to
see distinctions between terms that are similar.
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We examined conceptual understandings of preservice secondary mathematics teachers as they
reasoned about chord length and arc length in a directed-length representation related to the
sine function. We characterized the ways in which our participants understood the functional
relationship between the geometric objects by describing various aspects of their concept
images, and the progression of the images over time. Concept image components progressed
from less useful to more useful, eventually aligning with components of a standard definition of
function and key features of the sine function.
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Understanding trigonometric functions is important as that understanding is “a pre-requisite
for understanding topics in Newtonian physics, architecture, surveying, and many branches of
engineering” (Weber, 2005, p. 91). However, practices for teaching trigonometry have led to
difficulties including “underdeveloped angle measure understandings” (Moore, 2014, p. 103) as
well as poor connections to the unit circle (Moore, LaForest, & Kim, 2016). Even with a
knowledge of right-triangle trigonometry, students may not be able to define function, a
foundational concept in mathematics, nor know how to describe sine as a function (Weber,
2005). Clement (2001) described common perceptions of function including: (a) a relation that
passes the vertical line test; (b) a machine that gives an output for an input; and (c) a
correspondence following a clear pattern, rather than arbitrarily matched values. Many believe
functions should be: (a) given by a rule, (b) continuous, and (c) one-to-one (Clement, 2001).

Weber (2005) and Moore (2014) concluded that using quantitative reasoning was a
promising avenue for learners to make sense of and articulate properties of the sine function.
However, in Weber’s study, students used measurements, rather than focusing on quantities.
Hertel and Cullen (2011) found that preservice teachers (PSTs) were able to make sense of
trigonometric relationships when using a directed-length representation of the basic functions. In
a directed-length representation, a vector (i.e., with direction and length), related to a circle arc,
represents a trigonometric function. We build on the work of Hertel and Cullen by considering
PSTs’ sense making using directed lengths as objects or quantities about which to reason.

This study focused on the first in a sequence of learning activities in which PSTs reasoned
quantitatively about two dynamically changing objects in a circle, and whether those objects
could be considered inputs and outputs of a function. Our work was guided by the research
question: Which aspects of PSTs’ conceptual understanding are activated when exploring
directed-length representations related to the sine function?

Theoretical Perspectives
The design of our instruction was informed by quantitative reasoning. Thompson (1990)
defined a quantity as “a quality of something that one has conceived as admitting some
measurement process. Part of conceiving a quality as a quantity is to explicitly or implicitly
conceive of an appropriate unit” (p. 5). Quantities in our study were related in a single diagram,
implying the presence of a common unit. In our analysis, we distinguished between PSTs’
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concept images and the concept definition (Moore, 1994; Tall & Vinner, 1981; Vinner &
Hershkowitz, 1980). One’s concept image “refers to the set of all mental pictures that one
associates with the concept, together with all the properties characterizing them” (Moore, 1994,
p. 252). Concept definition “refers to a formal verbal definition that accurately explains the
concept in a non-circular way, as might be found in a mathematics textbook™ (Moore, 1994, p.
252).

Methods

The participants in this study were 23 PSTs, working in groups, who had completed at least
60 hours toward a degree in mathematics with a focus on secondary education. The context of
the study was a semester-long course focused on technology in mathematics education. In this
report, we discuss data from the first week of a 6-week instructional sequence on trigonometry.

The instructor displayed an arc and a chord, in Geogebra (see Figure 1). Both objects
changed as point C rotated counterclockwise around the circle. The instructor gestured to the
animated model and asked “Is this a function?”

L C C

arc is red

arc is red arc is red

chord is blue

ché?ci is blue ch~6}a—is blue
Figure 1: Covarying quantities as point C varies.

Results

All groups traversed a similar path in which the following aspects of their concept images
were activated: (a) the vertical line test, (b) function matching, (c¢) independent and dependent
variables, (d) univalence, and, finally (e) function matching revisited: the sine function. PSTs are
identified by their group. For example, StudentA-1 is person number 1 in group A. Text in
parentheses, describes gestures or tone; text in brackets offers contextual clarification.
The Vertical Line Test

PSTs in groups A and C initially attempted to use the vertical line test to determine whether
the relationship constituted a function, indicating that this test was part of their concept image of
“function.” However, in this situation, it was not reasonable to use the vertical line test, which
would require interpreting the dynamically changing components of the circle as “graphs” on a
coordinate plane. StudentC-3 claimed the chord isn’t a function because “the vertical line goes
through the whole thing.” Eventually, StudentC-2 said the vertical line test cannot be used as a
criterion for determining whether the quantities are related by a function “because we’re not
dealing with a coordinate plane. You can only use vertical lines for a coordinate plane.”
A Collection of Known Functions

Students in groups B and C seemed to reason that if they could map the situation they were
investigating to a known function, then they could conclude that the situation they were
discussing must represent a function. For example, StudentB-1 described the behavior of the
dynamic diagram components as a parabola, noting “...as the length of that’s increasing it gets
bigger and then smaller and bigger again...”

The next concept image components, discussed by all three groups, were independent aspects
of the concept definition: the identification of independent and dependent variables and the

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Geometry and Measurement 261

univalence requirement, that is, the requirement of one unique output for any input (Even, 1993).
Independent and Dependent Variables: Quantifying Length and Angle

To identify the independent and dependent variables, PSTs considered the length of the blue
chord and length or angle of the red arc as quantities. StudentC-1 asked, “What is your output
when you’re talking about the chord?” To which StudentC-2 stated “It could be the length of the
chord. Because the length of the chord depends on the position.” StudentC-1 noted a connection
between the position of point C and the length of the arc, “So given the length of the arc is the
length of the chord?” and later clarified “Well, that place (pointing to animated diagram) is also
in reference to the length of the arc and then it repeats as soon as you hit 360 (rotated his finger
in a circle). StudentC-2 also made reference to an angle of 360°, but it was not clear whether the
PST was referring to the arc angle or the measure of the associated central angle.

Univalence

While clarifying independent and dependent variables, PSTs explored ramifications of
repeated value situations. In so doing, PSTs focused on univalence and struggled to distinguish a
function from a one-to-one function. StudentC-2 wanted to “restrict it to an interval” from 0 to
n/2 to ensure the relationship was a function. StudentC-1 challenged the limitation, implying
repeated outputs are allowed, by asking “Why isn’t it a function all the way to n?” StudentC-2
responded “Because once we go all the way to « [past w/2] the chord starts shrinking again and
we go back to the lengths that we’ve already had.” StudentC-1 pointed out that “it’s a different
position on the circle” and StudentC-4 then explained “it would still be a function. It won’t be
one-to-one, but it will be a function.”

After deeming the relationship a function on [0,r], the group considered whether more than
two of the same outputs was acceptable, as when point C was more than halfway around the
circle. To avoid dealing with additional repeated outputs, StudentC-1 proposed the idea of
directed length, “Oh yeah, you’re technically doing negatives. Like an opposite. You could
interpret it [the blue chord’s repeated length] as the opposite ‘cause that length would be like
flipped over.”

Function Matching Revisited: The Sine Function

StudentB-1 claimed the relationship between objects constituted a sine function. This
conclusion followed mention of oscillation, unit circle, and key ordered pairs. StudentB-1 said
each key input value (0, n/2, wr, 3n/2, and 27) and stated or nodded for the corresponding output
values. Likewise, StudentC-1 followed up on his earlier conjecture that the chord could be signed
(i.e., positive when the arc was between 0 and w and negative when the arc was between m and
2m). StudentC-1 concluded “This is like (moved his finger counterclockwise around an
imaginary circle)... Right?...Wait a second.... Hold up, this is like the sine function? You start at
zero and the length gets longer up to m/2... and then it goes back down. This is like sine!”

PSTs concluded that the relationship between the arc and chord could be conceived of as a
function by considering quantities (i.e., the length of the arc and chord) and labeling them as
independent and dependent variables. Their work sorting independent and dependent variables
also resulted in articulating differences between the univalence requirement for functions and the
criteria for one-to-one functions. However, most PSTs had not yet recognized that unless they
only considered directed length, they were dealing with an absolute value. And no PST had
realized that the function based on the full chord was actually twice the sine function.

Discussion
As PSTs explored quantitative relationships we noted two conclusions. First, PSTs engaged
in reasoning and sense making. Like PSTs in Even’s study (1993), our PSTs had a preference for
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the vertical line test. But our PSTs identified limitations of this test, the importance of dependent
and independent variables, as well as differences between one-to-one and univalence. Second, as
we tracked concept image components activated as PSTs determined whether or not a situation
could be a function, we noted a path that lead them away from a less helpful aspect of a concept
image (i.e., vertical line test) toward more effective components linked to a concept definition.

Throughout this exploration, PSTs determined the relationship between the arc and the chord
could be conceived of as a function by considering each as quantities and noting that length was
the quality of the object (Thompson, 1990) that was relevant. We see this move toward precision
as important in the PSTs’ development of more robust conceptual understanding of trigonometric
functions and functions in general.

Although we hoped that representing the angle as an arc of a circle would help PSTs
negotiate a geometric definition of sine, it was clear PSTs still struggled with representations of
angle (Akkoc, 2008), using radian and degree measure interchangeably. Likewise, they appear to
have conflated central angle, arc angle, and arc length, without noting the need to consider the
magnitude of the circle’s radius.

After the PSTs reached consensus that the relationship between the arc and the chord was
indeed a function, some PSTs conjectured it was the sine function. For those PSTs, the
recognition of familiar aspects of their concept images of sine (e.g., embedded in circle,
oscillating behavior, known ordered pairs), may have led to the conjecture. In that moment, those
PSTs may have added to their concept image of sine as they encountered a function defined by a
relationship between a circle’s arc and related chord. Having reorganized their concept image of
the sine functions in this way, perhaps the PSTs were more ready to consider a directed-length
definition of sine, build connections among this definition, the right triangle definition, and the
unit circle definition, and use that connected understanding as a potent tool for making sense of
all trigonometric functions.

References

Akkoc, H. (2008). Pre-service mathematics teachers’ concept images of radian. International Journal of
Mathematical Education in Science and Technology, 39(7), 857-878. doi:10.1080/00207390802054458

Clement, L. L. (2001). What Do Students Really Know about Functions? Mathematics Teacher, 94(9), 745-748.

Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: Prospective secondary teachers and
the function concept. Journal for Research in Mathematics Education, 24(2), pp. 94-116. doi:10.2307/749215

Hertel, J., & Cullen, C. (2011). Teaching trigonometry: A directed length approach. In L. R. Wiest & T. Lamberg
(Eds.), Proceedings of the 33rd Annual Meeting of the North American Chapter of the International Group for
the Psychology of Mathematics Education (pp. 1400-1407). Reno, NV: University of Nevada, Reno.

Moore, K. C. (2014). Quantitative reasoning and the sine function: The case of Zac. Journal for Research in
Mathematics Education, 45(1), 102—138. doi:10.5951/jresematheduc.45.1.0102

Moore, K. C., LaForest, K. R., & Kim, H. J. (2016). Putting the unit in pre-service secondary teachers’ unit circle.
Educational Studies in Mathematics, 92, 221-241. doi:10.1007/s10649-015-9671-6

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266.
doi:10.1007/BF01273731

Tall, D., & Vinner, S. (1981). Concept images and concept definition in mathematics with particular reference to
limits and continuity. Educational Studies in Mathematics, 12, 151-169. doi:10.1007/BF00305619

Vinner, S., & Hershkowitz, R. (1980). Concept images and common cognitive paths in the development of some
simple geometrical concepts. In R. Karplus (Ed.), Proceedings of the 4th International Conference for the
Psychology of Mathematics Education (pp. 177-184). Berkeley, CA: University of California.

Thompson, P. W. (1990). A theoretical model of quantity-based reasoning in arithmetic and algebra. San Diego:
Center for Research in Mathematics & Science Education, San Diego State University.

Weber, K. (2005). Students’ understanding of trigonometric functions. Mathematics Education Research Journal,
17(3), 91-112. doi:10.1007/BF03217423

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Geometry and Measurement 263

EXPLORING GENDER DIFFERENCES IN A SYMMETRY SOFTWARE
INTERVENTION FOR YOUNG CHILDREN

Nicole Fletcher Diego Luna Bazaldta Herbert P. Ginsburg
Teachers College, Universidad Nacional Teachers College,

Columbia University Auténoma de México Columbia University
nsf2109@tc.columbia.edu diegobazaldua@gmail.com ginsburg@tc.edu

Symmetry is a foundational geometric concept that receives minimal attention in early childhood
mathematics. Differing informal play experiences involving symmetry exploration may
contribute to gender differences in symmetry understanding. This study sought to explore
whether boys’ and girls’ performance on symmetry tasks differs after a symmetry software
intervention. A significant gender effect benefiting boys was found on post-test rotation tasks but
not on reflection or translation tasks, controlling for pre-test scores. A gender effect was also not
significant for identifying or explaining symmetric transformations at post-test. The findings
have implications for learning opportunities and modes of assessment for all children.
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Symmetry is present in everyday life and is a theme in children’s play and creative activities.
Despite children’s natural interest in symmetry, learning standards addressing symmetry do not
appear in the Common Core State Standards until grade four (NGACBP, 2010). A software
program was developed to expand young children’s understanding of three symmetric
transformations—reflection, translation, and rotation. The purpose of this study is to explore
whether there were differences between boys’ and girls” symmetry understanding following the
symmetry software intervention. This study sought to answer the following questions: (1) Do
boys and girls differ in their ability to accurately create symmetric transformations after the
intervention when controlling for pre-intervention symmetry aptitude (measured by the
Symmetry Graphical Assessment) and treatment status? (2) Are there differences between boys
and girls in their identification and explanations of symmetric transformations, as measured by
the Video Transformation Task, after the intervention when controlling for treatment status?

Theoretical Perspectives

This research is based on the theoretical perspectives of constructivism, socio-cultural theory,
and, to a lesser extent, the idea of intellectual honesty. The software and study design were
informed by constructivism—the theory of learning that posits that learners do not simply absorb
information but instead actively construct knowledge from their experiences (e.g., Piaget, 1970).
The software functions as a “phenomenaria” (Perkins, 1991), intentionally designed to allow
children to manipulate and explore symmetric transformations. Vygotsky’s (1978) socio-cultural
theory, especially the idea that social interaction is key to learning, was embedded into the study
design with a research assistant (RA) facilitating exploration and prompting the child to
verbalize observations. The software served as the “more knowledgeable other” (Vygotsky,
1978) by providing definitions and examples and offering feedback and solution strategies. The
introduction of the mathematically complex topic of symmetric transformations to young
children was influenced by Bruner’s (1960) idea that “any subject can be taught effectively in
some intellectually honest form to any child at any stage of development” (p. 33).

Because geometry is often taught in a cursory manner in early childhood (Clements, 2004),
children’s symmetry experiences often occur in informal contexts. Gender differences benefiting
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boys in symmetry-related spatial tasks such as mental rotation have been documented (e.g.,
Maeda & Yoon, 2013), but gender differences may be attributable to socio-cultural or
experiential factors (e.g., Fennema & Sherman, 1977). For example, symmetry is a recurring
characteristic of children’s block building (Seo and Ginsburg, 2004), but boys engage in block
play more frequently than girls (Kersh, Casey, & Young, 2008). Though certain play experiences
may help children develop symmetry understanding, gender differences in engagement in these
types of play may contribute to gender differences in symmetry understanding.

Methods
Materials: Symmetry Software

A computer program was designed to teach reflection, translation, and rotation to young
children. Cognitive principles for the design of mathematics software for young children guided
software development (Ginsburg, Jamalian, and Creighan, 2013). Visual and audio feedback
identify mistakes and provide solution strategies to the users.

Research Design and Procedure

The study was conducted using a pre- and post-test between-subjects randomized
experimental design with two conditions: the treatment condition, which consisted of nine
symmetry software sessions (three each for reflection, translation, and rotation), and the control
condition, which consisted of nine sessions using a non-symmetry-focused mathematics
software. Experimental group software activities included guided explorations (during which an
RA prompted the child to verbalize observations), viewing instructional videos with real world
examples, and completing tasks that involved placing shapes on the screen to create the specified
symmetric transformation and receiving feedback from the software.

Setting and Participants

The study was conducted in an urban public elementary school in the Northeastern US. The
participants included 86 children from the school’s first and second grade classrooms—43 were
randomly assigned to the experimental group (24 girls and 19 boys) and 43 were assigned to the
control group (21 girls and 22 boys). Participants’ ages ranged from 5.8 to 7.8 years.

Measures

Symmetry Graphical Assessment. The Symmetry Graphical Assessment, a paper-and-
pencil instrument designed by the primary investigator (PI) to measure students’ ability to
generate reflections, translations, and rotations, was administered at pre- and post-test. The
instrument included explanations and examples for the symmetries to ensure that it assessed
symmetry concept understanding rather than familiarity with relevant vocabulary. Two RAs
were trained to implement the pre-/post-test scoring scheme. Inter-rater reliability, estimated
using Cohen’s kappa, was equal to 0.878.

Video Transformation Task. The Video Transformation Task was designed by the PI to
measure participants’ ability to identify and explain reflection, translation, and rotation and was
implemented at post-test. Participants watched six short videos of symmetric transformations and
were asked to identify the symmetry and explain their reasoning. Identification of the symmetric
transformation in each video was scored for accuracy (0 or 1). Explanations were coded for the
presence of words or phrases indicating conceptual understanding of the symmetries.
Explanations were assigned a score of 1 for indicating conceptual understanding or 0 for not
indicating conceptual understanding of the symmetry. One RA coded students’ explanations for
indicating conceptual understanding of the symmetric transformation. Inter-rater reliability
between the coding by the RA and master coding by the PI, estimated using Cohen’s kappa, was
equal to .90.
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Post-Test Outcomes

Results

Treatment group girls achieved, on average, higher reflection task scores than boys in the

same group; however, treatment group boys achieved higher average scores on translation and

rotation tasks than girls in the same group. Similar gender patterns on post-test reflection,
translation, and rotation tasks were observed in the control group (see Table 1).

Table 1: Descriptive Statistics on the Post-Test Outcomes by Group

Post-test outcome Treatment group Control group
Boys (N = 19) | Girls (N =24) | Boys (N =22) | Girls (N =21)
Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Reflection 53.57(16.99) | 56.93 (18.68) | 49.19 (19.40) | 51.43 (16.82)
Translation 60.28 (20.37) | 55.49 (25.36) | 47.10 (19.00) | 45.02 (21.31)
Rotation 58.70 (12.87) | 51.60 (16.11) | 61.53 (13.84) | 53.11 (19.59)

A MANCOVA model was estimated to test for the joint effect of treatment condition and
gender on the three outcomes, controlling for pre-existing abilities in the outcomes as measured
at pre-test. MANCOVA model assumptions for multivariate normality of the outcomes and
homogeneity of variance covariance of the outcomes among groups were met. A statistically
significant effect for treatment condition (Pillai=0.17, F=5.39, p=.002) and gender (Pillai=0.09,
F=2.73, p=0.049) on the three outcomes was observed, controlling for pre-test score. On average,
boys’ scores were 1.24% higher on reflection tasks, 5.38% higher on translation tasks, and
10.19% higher on rotation tasks than girls. Separate ANCOVA models on each outcome showed
a significant gender effect on rotation tasks [F(1, 82)=4.56, p=0.035], but not reflection [F(1,
82)=2.64, p=0.108] or translation tasks [F(1, 82)=0.09, p=0.76].

Video Transformation Task Outcomes

Descriptive statistics showed that girls in the treatment group achieved, on average, higher
scores in the identification and explanation of symmetries than boys in the same group on the
Video Transformation Task (see Table 5). For control group participants, boys achieved higher
average scores on accurate symmetry identification than girls, but girls achieved higher average
scores on explanations of symmetries than boys.

A MANOVA model was estimated to test the joint effect of treatment condition and gender
on accuracy and explanations in the video transformation task. MANOVA model assumptions
for multivariate normality of the outcomes and homogeneity of the variance covariance matrix
among groups were met. There was a statistically significant treatment effect on accuracy and
explanations [Pillai=0.27, F(1, 81)=14.90, p<0.001,], but a gender effect was not significant
[Pillai=0.04, F(1, 81)=1.56, p=.22]. Separate ANOV A models were estimated for accuracy and
explanations. The results show a significant effect on accuracy scores for treatment [F(1,
82)=17.86, p <0.001] but not for gender [F(1, 82)=0.03, p =.86.]. Similarly, the results show a
significant treatment effect on explanation scores [F(1, 82)=27.71, p<0.001] but not a gender
effect [F(1, 82)=1.88, p=.17].
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Table 2: Descriptive Statistics on the Video Transformation Task Outcomes by Group
Treatment group Control group
Boys (N =19) | Girls (N =24) | Boys (N =21) | Girls (N =21)
Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Accuracy 4.63 (1.26) 4.75 (1.54) 3.41 (1.74) 3.19 (1.44)
Explanations | 3.95 (0.97) 4.42 (1.21) 2.62 (1.32) 2.90 (1.51)

Discussion and Scholarly Significance

After a symmetry software intervention, a significant gender effect benefiting boys was
found on post-test rotation tasks but not on reflection or translation tasks, controlling for pre-test
scores. A gender effect was not significant for identifying or explaining symmetries. Boys’ more
accurate performance on rotation tasks at post-test is in line with existing literature (Maeda &
Yoon, 2013). However, even though boys have more play experiences that lend themselves to
symmetry exploration than girls, boys and girls were similar in their identification and
explanation of reflection, translation, and rotation and in their performance on reflection and
translation tasks. Boys’ and girls’ similar performance on certain symmetry tasks indicates the
importance of testing for aptitude in different types of symmetry content.

The presence of a significant gender effect on post-test rotation items, and the absence of a
significant gender effect on accuracy and explanations on the video transformation tasks, points
to the importance of multiple means of assessment for young children. While some children may
feel confident taking a paper-and-pencil task, others may feel less comfortable with the written
format. Including verbal tasks in assessments for children provides an important opportunity to
reveal understanding not observed in traditional written assessments.

The absence of significant gender differences on almost every measure in the study indicate
that teaching symmetry concepts to young children has the opportunity to benefit both girls and
boys—building on their natural interest in symmetry and preparing them for success in higher
level mathematics and career opportunities both in and out of mathematics.
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MEASUREMENT AND CONSERVATION OF LENGTH: A TEACHING
EXPERIMENT WITH TONY AND SAM
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The way measurement is taught in elementary school differs from the Piagetian concept of
operational measurement and conservation of length. The purpose of this study is to investigate
how two first grade students conceptualize measurement and conservation of length. Results
show that although both students began at the same Piagetian stage, one student progressed
further and achieved operational measurement and conservation of length. Differences in each
Student’s thinking are analyzed and insights to future research are offered.
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The concept of measurement and the process of measuring are connected, but different.
When students construct operational measurement, they internalize how to coordinate sub-
division and change of position (Piaget, Inhelder, & Szeminska, 1960/1981). Measuring however
occurs when students compare objects to see which one is longer or taller; examples of
measuring include directly comparing objects, relating object lengths with nonstandard items, or
reporting standardized units from a ruler (VDOE, 2016). This examination mirrors Lamon’s
(2007) findings that demonstrate that some students are not being taught the concept of
measurement, but rather the process of measuring. This inhibits students from learning that some
objects cannot be measured, which stunts their conceptual understanding of measurement and
rational numbers. National standards, however, have kindergarteners measure by comparing
objects before first-graders iterate a tool the length of an object (CCSSI, 2018; NCTM, 2000).
This suggests a focus on sub-division and change of position which helps students develop
measurement. The purpose of this paper is to investigate how two first-grade students
conceptualize measurement and conservation of length.

Conceptual Framework

When a student coordinates sub-division and change of position, Piaget et al. (1960/1981)
believe conservation of length is attained, resulting in operational measurement. Three stages
precede operational measurement. In Stage 1, four to five-year olds compare objects with visual
and perceptual estimates. Students five to six years old manually transfer objects side by side for
comparisons in Stage II. More sophisticated students at this stage use their body (e.g., hand) to
compare objects. Between Stage II and 111, six to seven-year olds compare lengths intuitively
with tools, but can only compare the tool to each object, not between both objects. Finally, in
Stage I1I students seven and older develop conservation through operational measurement and
can use tools to compare between objects. These stages suggest students in first grade may
develop operational measurement and conservation of length. National standards (e.g., CCSSI,
2018; NCTM, 2000) support this argument, but some state standards (e.g., VDOE, 2016) fail to
address the development of conservation of length through operational measurement, implying
students may learn measuring without learning measurement.

Methods
Sam and Tony (pseudonyms) were two first grade boys who attended a public elementary
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school and had similar demographics. Three, fifteen-minute clinical interviews (Clement, 2000)
using tasks from Piaget et al. (1960/1981) were conducted to determine how Sam and Tony each
conceptualized measurement, conservation of length, and their zones of potential construction
(ZPC; Norton & D’ Ambrosio, 2008). From this data, individual constructivist teaching
experiments (Steffe & Thompson, 2000) were designed consisting of six, fifteen-minute teaching
episodes during which hypotheses were made and later tested. Tasks from Everyday
Mathematics, Grade 1 (McGraw Hill, 2014) were chosen based on their ZPC and research
hypotheses. Sam’s and Tony’s responses were compared against Piaget et al.’s (1960/1981)
stages to build a second-order model of conceptualization of measurement and conservation of
length. Each teaching episode was recorded, transcribed, and coded for observations according to
Piaget et al.’s stages. Conceptual analysis was used to determine what mental structures Sam and
Tony used while performing each task (Thompson, 2008), which afforded a refined second-order
model of how Sam and Tony conceptualized measurement and conservation of length.

Results
Sam

The preliminary second-order model proposed during Sam’s clinical interviews was
consistent with Stage IIA for conservation (Piaget et al., 1960/1981). He could compare
endpoints of objects visually or in activity with his fingers, but never realigned the moved
objects to show length was conserved, and could not explain curves have length. He did
manually move a tower he built next to another tower to compare their heights. He could not use
a common measure to compare the lengths of objects. Sam also showed no desire to sub-divide a
whole or change a tool’s position along the whole, counting the moves between endpoints.

Sam began the first teaching episode using manual transfer to measure a table side with a
string of Unifix cubes. He could not however measure his toys with tools that were shorter or
longer than the toy because the tools were “too long” or “too short.” If the tools did not exactly
align with the toy’s length, Sam rounded his measure up. For example, when a pencil was longer
than his transformer, Sam reverted to visual transfer and guessed the length of the transformer
was one pencil long. During another episode, Sam measured the perimeter of a table with a
pencil, but repeatedly lost count and ignored when the pencil was longer or shorter than the
table’s edge. Subsequent episodes were used to practice counting and the motor skills involved
in change of position. Sam still struggled to count by ones while pointing to each count, and
consistently lost his count on tasks. Because he regularly did not align his countable unit with the
endpoint of the measured object and put his finger between units without noticing it took up
space, episodes three and four focused on sub-division. After much practice, he accurately
measured the height of a table and sofa with a marker, and did not lose count. Since Sam
improved in counting, motor skills, and sub-division, episode five entailed comparative length
tasks. Sam again reverted to visual transfer to relate the lengths of objects, and only used a
paperclip to measure when prompted. Sam ended the teaching episodes being intuitively able to
state that a pen moved to a different location would not change length.

Sam’s re-assessment of Piaget et al.’s (1960/1981) tasks from the clinical interviews, showed
his behaviors were slightly more sophisticated than Stage IIA. He inconsistently accounted for
the lengths of curves between a straight and curvy pipe cleaner using visual transfer. He claimed
the lengths were the same even though “one is bent and curled around so it’s shorter.” Similarly,
he knew two parallel rows of toothpicks had the same length because he counted them, but when
one row was zig-zagged he said the straight row was longer without counting. When assessing
the lengths of two identical parallel pipe cleaners with one moved forward, Sam tried measuring
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the lengths with a paperclip, but lost count and concluded one was longer. He then ignored this
finding and noticed the moved pipe cleaner was “longer” on one side than the unmoved pipe
cleaner. Finally, when comparing the heights of a tower he built to one prebuilt on a higher
surface, he used manual transfer to compare the towers until satisfied their heights were equal.
He knew the uneven surfaces made a difference in the tower heights, but when his tower was
moved back to the lower surface, he added blocks to make the heights “equal.”

Tony

The preliminary second-order model proposed during Tony’s clinical interviews was
consistent with Stage IIA for conservation (Piaget et al., 1960/1981). He based measurements on
visual estimates, focused on the endpoints of objects and used his fingers to compare lengths. He
also used manual transfer to relate objects, but his explanations suggested he was beginning to
see measurement as the intervals between two endpoints.

During the first episode, Tony measured his shoe with his hand, reporting it as seven hands
long, but recognized this was incorrect and used eight Unifix cubes instead. This suggested he
was transitioning to Stage IIB. Tony consequently practiced iterating a tool to determine lengths
and compared objects using paperclips. He struggled at first using a shorter or longer tool but
improved. When asked to measure a paper strip, Tony resisted using a longer pencil as his unit,
but then decided the paper strip was half a pencil. Tony needed support with fractions since he
independently noticed tools either did not exhaust the whole or surpassed it. It was hypothesized
that part-whole relationships (Norton & McCloskey, 2008; Steffe, 2010) were in his ZPC.

Tony had no prior knowledge of fractions at this point in the year. Using Cuisenaire rods, he
developed an understanding of halves, thirds, and fourths, as exemplified by his explanation:
“1/3 is like if there’s one whole piece and there’s 3 pieces and these are the same, that’s 1/3.” In
another task, he showed that four individual units made up the whole, demonstrating a part-
whole fraction scheme (Norton & McCloskey, 2008; Steffe, 2010). Tony was also able to
partition a whole into units, and understood unit pieces needed to be equal in size. For example,
Tony made two approximate “cuts” to a pencil, but then realized the pieces were not equal and
adjusted his cuts. Tony verified each piece was identical to the others, indicating he was able to
equipartition a whole to determine an iterable unit (Steffe, 2010), and knew he could iterate any
one of them to recreate the whole (Norton & McCloskey, 2008). Tony further demonstrated his
fraction scheme by drawing lines to segment a paper strip into thirds on one side and fourths on
the other. This indicated partitioning, disembedding, and iterating, giving way to an
equipartitioning fractional scheme in activity (Norton & McCloskey, 2008; Steffe, 2010). Tony
applied this knowledge to iterate a tool, and then partition the tool in the last iteration to
determine what fractional piece of the tool was left over. When measuring a pencil with
paperclips, he estimated six, then determined it was five and one third paperclips. This suggested
Tony had progressed to Stage IIB. Through explorations, Tony learned curves have length,
making curved objects longer than straight ones. For example, he measured a straight path of 6.5
paperclips and a curved path of 9.5, and knew, “9.5 is bigger than 6.5 so it [the curved path] is
longer.” He also learned that once objects have a measurement, length is conserved.

Tony’s re-assessment of Piaget et al.’s (1960/1981) tasks, showed he progressed beyond
Stage I1A. He knew a curved pipe cleaner would be longer than a straight one due to the curves,
and justified his answer with a paperclip. He understood the length of the pipe cleaner would not
change despite its shape, and that two equivalent pipe cleaners would be the same length, no
matter how they were arranged. Tony then counted the number of toothpicks to determine the
two rows were equal and knew zig-zagging made no difference. He was initially confused when
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one toothpick was broken in half, but then demonstrated that two halves completed a whole,
making the rows the same. In the final task, he used a paperclip to measure the heights of two
towers, and knew the difference in table heights affected that of the towers. Tony’s behaviors
therefore supported operational conservation of length indicative of Stage III.

Conclusions

This study shows that although students may begin in the same developmental stage, each
student needs different supports to cultivate more sophisticated ways of thinking. Both students,
however, were able to progress in their conceptualization of measurement. Sam progressed from
Stage IIA to transitioning between Stage IIA to 1B, whereas Tony progressed from Stage ITA to
Stage 111, reaching operational measurement and conservation of length (Piaget et al.,
1960/1981). In the teaching experiment, Tony needed support to use fractions, a concept Sam
never entertained. This is supported by Lamon’s (2007) findings that measurement is directly
related to fraction concepts. However, it is unclear why Tony was able to make conceptual
strides while Sam was unsuccessful. Addressing this is beyond the scope of this paper, so future
research is needed to explore the factor that may have caused a difference in each student’s
development of operational measurement and conservation of length. Overall, this study also
shows that the way measurement is being taught in some schools hinders the development of
operational measurement and conservation of length, at least in the case of Sam.
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This study aims to engage students in dynamic tasks of extruding surfaces on a certain heights
and reasoning about volume as a continuous quantity that depends on the size of the base and
the height of extrusion, what we call as Dynamic Measurement for Volume (DYME-V). This
paper describes two of our DYME-V tasks and presents data from a design experiment with one
pair of fifth grade students showing DYME-V'’s potential for developing students’ conceptual
understanding of volume as a multiplicative relationship of base times height.

Keywords: volume, capacity, technology, dynamic measurement

The different ‘faces’ of Volume

In school mathematics, volume measurement focuses on packing the space within a three-
dimensional object with a two-dimensional array of cubic units iterated in the third dimension
(Curry & Outhred, 2005) and quantifying that packing in terms of the total number of cubic units
used. In other words, students need to develop a mental picture of a unit structure, find the
number of units required to cover the base of the 3-D shape and multiply that number by the
number of layers (Curry, Mitchelmore, & Outhred, 2006). This approach of volume
measurement is called volume as packing (Clements & Sarama, 2009, Curry & Outhred, 2005).

The literature presents several difficulties that students experience while packing a 3-D space
by unit cubes. Examples include students just counting the number of cubes that are visible to
them ignoring the other cubes, or counting the number of squares on the cubic units shown on
the visible two faces and double that count (Figure 1), ignoring in that way the three dimensions
of the object (Ben-Haim, Lappan &Houang, 1985). Similarly, Battista and Clements (1996)
argued that students struggle in coordinating the separate views of arrays and integrate them to
form a coherent mental model. This struggle is also present even when students are given a real
3D objects and are asked to use real cubes to measure it. Curry and Outhred (2005) found that
students have difficulty in packing a bigger cuboid by enumerating smaller cubes, because
students cannot always determine the successive positions of the cubes while iterating. As a
result, students leave gaps and overlaps in the empty space.

Figure 1. Students count (a) the faces of the cubic units and (b) the visible cubic units

The literature on volume measurement in math education distinguishes between Volume as
packing) versus Volume as filling. Volume as filling is about filling a 3-dimensional space with
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iterations of a fluid unit that takes up the space of the container (Clements & Sarama, 2009,
Curry & Outhred, 2005), an approach that seems to be a more continuous approach towards
measuring the volume of an object over volume as packing. According to Piaget (1960), in order
for students to understand the multiplicative relationship of volume, they need to conceptualize it
as a continuous quantity, therefore the volume as filling approach seems promising for
developing a conceptual understanding of the volume formula.

While exploring volume as filling, Curry and Outhred (2005) asked students to find the
number of cups of rice that would fit into a jug after one cup was poured in the jug. They found
that students treated the height of the rice in the cups as a unit length, which they iterated to fill
the jug, ignoring the other dimensions of the jug. Similarly, while studying students’ conceptions
of volume, Piaget and his colleagues (Piaget, 1968; Piaget, Inhelder & Szeminska, 1960) found
that elementary school students thought that the volume had been reduced when the liquid was
poured into a wider glass. This predominant use of a single dimension to make three-dimensional
judgments was termed by Piaget as ‘centration hypothesis’ and it is found to occur even when
adults perceive volume in boxes at the grocery store (Raghubir, 1999).

Exploring volume dynamically

The literature above comes in contrast with research stating that students already have a
dynamic sense of volume that we may use to develop students’ conceptual understanding of this
concept. While exploring similarity, Lehrer, Strom and Confrey (2002) discussed how students
visualized volume “like pulling” the area through the height of the cylinder, in other words
looking at three-dimensional objects as 2-D unfoldings (Lehrer, Strom & Conftrey, 2002). The
same study reported that students were able to find the volumes of cylinders by estimating the
surface area of the base and then calculating the volume as the product of area and height.

The idea of “pulling” an area through a height is conceptually different than filling a jar with
cups of liquid. In exploring students’ thinking of dimensions in geometry, Panorkou & Pratt
(2016) discussed the dual nature of capacity stating that “one can see the space as incorporating
objects; in this sense, the space contains the objects. At the same time, the space can be thought
of as generated by the objects” (p. 213). The generation component of volume is also described
by Lehrer, Slovin, Dougherty and Zbiek (2014) who discussed how we can generate attributes
through motion and gave the example of a volume being generated by sweeping an area through
a length. To illustrate this generation, imagine extruding a two-dimensional rectangular surface
of area ‘ab’ for a height or depth of ‘c’ to generate a space of ‘abc’ (Figure 2).

Figure 2. Volume as a continuous structure

The difference between this approach and the filling/packing approaches lies in the
distinction between a matrix which is made up of a limited number of elements [a certain number
of blocks/cups] and “one which is thought of as a continuous structure with an infinite number of
elements” (Piaget et al. 1960, p. 350). We call this approach to measurement Dynamic
Measurement for Volume (DYME-V), and it involves extruding surfaces on a certain height and
reasoning about volume as a continuous quantity that depends on the size of the base and the
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height of extrusion. DYME-V seems promising not only for developing a meaning of volume for
rectangular cuboids but also for other 3-D objects, such as triangular prisms and cylinders.
Consequently, our goal was to test the conjecture that it is possible for children to visualize
volume as a dynamic continuous structure and as a product of the area of base and height
through careful task design. More specifically we explored: a) What type of tasks and tools may
be used for developing students” DYME-V? b) What forms of DYME-V reasoning are made
visible and can be seen to develop as a result of students’ systemic engagement in these tasks?
We used a design-based research methodology to engineer particular forms of learning and
study how those forms of learning develop with the particular context of volume measurement
(Cobb et al., 2003). For our task design, we used the dynamic feature of extrusion and tracing of
Geogebra to enable students to generate 3-D objects by extruding 2-D surfaces and reason about
volume. This paper presents two tasks that we implemented with one pair of fifth grade students,
Ashley and Maggie, and discuss the generalizations they made about volume during their
interaction with the specific tasks. We met with Ashley and Maggie for 8 one-period sessions
(45-50 min). The students represented various abilities according to their teacher and the prior
knowledge they had on measuring volume was by water displacement from their science class.

The Case of Ashley and Maggie
In the first task, we asked students to extrude surfaces in different planes and reason about
what they observe (Figure 3). As they dragged the surfaces, students reasoned that, ‘it spreads
out and looks like it is layering itself.” When we asked them if they could count the number of
layers they stated, ‘there are millions of layers and together they make a 3D cube,’ claiming that
the size of the shape ‘depends on how far you stretch them out.’

Figure 3. Extruding rectangular surfaces to create 3D shapes

Building on the students’ notion of layers and stretching, the next task aimed to shift their
attention to the value of base in order to make judgements about volume. We presented two
surfaces of different area to students and asked them to stretch them for 1-inch each (Figure 4).

Figure 4. Stretching a 5 x 6 inches? and a 5 x 2 inches? surfaces by 1-inch height.

Researcher: ~ What is the size of each box?

Ashley: This one is 10 [right] and this one is 30 [left].

Researcher:  How much space will each one fit? How much space is the first one and how
much is the second one?

Maggie: The same amount?
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Ashley: I don’t think so. It cannot be, because if this one [yellow on the left] is bigger,
then it has to have more space.

Researcher:  How much more though?

Ashley: This one is 5 times 6 which is 30 and times 1 is 30. That’s for the yellow one.
And that one is 5 times 2 which is 10 and 10 times 1 is 10. So 30 minus 10 is
20.

As we prompted the students to say more about why they multiplied, Maggie responded,
‘because it just added on to another one. So like a second one, which means multiplying by 2’
[describing how two stretches of 1-inch are equal to one 2-inch stretch]. It appeared that they
considered composites of 1-inch stretches and could realize volume as filling and continuous. In
subsequent tasks, when we asked the students to state how they can find the space covered they
responded, ‘by multiplying the height and area, well, area is typically the base.’

Concluding remarks

DYME-V is an exploratory study which examines how students reason about volume as a
continuous quantity when they are exposed to technological tasks developed in Geogebra. Our
results suggest that the approach of dynamic measurement has the potential to engage students in
dynamic tasks that foster the development of volume as a continuous construct to ultimately
reasoning about volume as base times height. Moving forward we plan to conduct more design
experiments for exploring the progression of students’ DYME-V reasoning as they interact with
the tasks, and examine patterns and difference between different pairs of students.

Acknowledgements
This research was supported by a fellowship from the National Academy of Education/
Spencer Foundation awarded to Nicole Panorkou.

References

Battista, M. T., & Clements, D. H. (1996). Students' understanding of three-dimensional rectangular arrays of cubes.
Journal for Research in Mathematics Education, 258-292.

Ben-Haim, D., Lappan, G., & Houang, R. T. (1985). Visualizing rectangular solids made of small cubes: Analyzing
and effecting students' performance. Educational Studies in Mathematics, 16(4), 389-409.

Clements, D. H. & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach.
Routledge: New York.

Cobb, P., Conftey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research.
Educational researcher, 32(1), 9-13.

Curry, M., Mitchelmore, M., & Outhred, L. (2006, July). Development of children’s understanding of length, area,
and volume measurement principles. Paper presented at the Thirtieth Annual Meeting of the International
Group for the Psychology of Mathematics Education, Prague, Czech Republic.

Curry, M., & Outhred, L. (2005). Conceptual understanding of spatial measurement. Building connections: Theory,
research and practice, 265-272.

Lehrer, R., Slovin, H., Dougherty, BJ, and Zbiek RM (2014) Developing essential understanding of geometry and
measurement for teaching mathematics in grades 3-5. Reston: National Council of Teachers of Mathematics.

Lehrer, R., Strom, D. & Conftrey, J. (2002). Grounding metaphors and Inscriptional resonance: Children’s emerging
understanding of Mathematical Similarity. Cognition and Instruction, 20(3), 359-398.

Panorkou, N. and Pratt, D. (2016). Using Google SketchUp to research students’ experiences of dimension in
geometry. Digital Experiences in Mathematics Education, 2 (3), pp. 199-227.

Piaget, J. (1968). Quantification, conservation, and nativism. Science, 162(3857), 976-979.

Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child's conception of geometry. London: Routledge and Kegan
Paul.

Raghubir, P., & Krishna, A. (1999). Vital dimensions in volume perception: Can the eye fool the stomach? Journal
of Marketing Research, 36(3), 313-326.

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of
the North American Chapter of the International Group for the Psychology of Mathematics
Education. Greenville, SC: University of South Carolina & Clemson University.



Geometry and Measurement 275

INVESTIGATING STUDENTS’ PROOF REASONING AS THEY TRANSITION FROM
VERBAL PLANNING TO WRITTEN PROOF

Michael L. Winer Michael T. Battista
Eastern Washington University The Ohio State University
mwiner@ewu.edu battista.23@osu.edu

The importance of doing formal axiomatic proofs and students' difficulties with proof have been well
documented in research. This paper focuses on formal proofs that use triangle congruence
postulates, which students create in high school geometry. Examining student work with proofs in an
clinical interview setting, we analyzed students' transition from planning their proofs to writing their
formal proofs using a two-column format. We found that much of the reasoning students described in
their planning did not match the reasoning they used in their written proofs. Using a lens of
spatial/logical structuring, we illustrate this finding by providing an illustrative example in which a
student’s planning does not match the deductions that she wrote in her formal proof.
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It has been well documented in research that the majority of students struggle to construct
valid proofs in high school geometry (Chazan, 1993; McCrone & Martin, 2004; Senk, 1985).
This paper focuses on formal proofs that use triangle congruence postulates, which students
create in high school geometry. It takes a psychological constructivist perspective (Battista,
2001) to investigate how students transition from orally planning their proofs to writing their
proofs formally using the two-column format. It illustrates how the reasoning students convey
during the planning of their proofs many times does not match the reasoning conveyed in their
written formal proofs, and how this mismatch provides researchers insights into students’ proof
reasoning.

Conceptual Framework

The reasoning involved in constructing geometric proofs is quite complex and involves using
four types of structuring: spatial, geometric, logical, and axiomatic (Battista, 2008). Spatial
structuring is the cognitive operation of constructing a spatial organization or form for an object
or set of objects (Battista, 2008). Battista (2008) defined geometric structuring as using formal
geometric concepts and properties (e.g., congruence, parallelism, slope, length etc.) to describe a
geometric shape’s spatial structure. For a geometric structuring of a shape to make sense to a
person, it must evoke an appropriate interiorized spatial structuring of the shape as well as
interiorized formal geometric concepts used to describe the shape (Battista, 2008). Both spatial
and geometric structuring are needed to begin constructing a geometric proof as students
view/draw a diagram in terms of both its visual-spatial properties and the geometric
conceptualizations that are given to describe it.

However, to construct a geometric proof, not only does an individual need a linked spatial
and geometric structuring, but he/she must also be able to integrate this linked spatial and
geometric structuring to the third and fourth types of structuring—Ilogical and axiomatic
structuring. Logical structuring is the process of making a series of deductions assumed to be
consistent with the rules of logic in an attempt to prove the desired conclusion from the given
premises. In the two-column proof format, logical structuring is the set of conclusions that one
deduces and writes in the left-hand column. One major error that can occur in a proof’s logical
structure is when the argument has a logical gap in it. A logical gap occurs between two
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deductions when students deduce a conclusion by applying an axiom or theorem whose premises
have not been established by the given conditions or prior deduced conclusions in their proof.
Axiomatic structuring is the process of situating and justifying deductions and logical structuring
within a given axiomatic system. In the two-column proof format, axiomatic structuring can be
thought of as the sequence of deductions in the left-hand column coupled with the required
justifications in the right-hand column. A two-column proof exhibits a correct logical structure if
the sequence of conclusions in the left-hand column is correct in that each conclusion can be
justified with one axiom or previously proved theorem in the axiomatic system. A two-column
proof exhibits a correct axiomatic structure if every conclusion exhibits a logically valid
deduction (correct logical structuring) and each conclusion is correctly justified in the right-hand
column by a relevant axiom or theorem.

Method

The data was collected by conducting a series of one-on-one semi-structured task-based
interviews to seven high school geometry students who were asked to complete a series of proof
problems. All participants were volunteers who were currently enrolled in a proof-based
geometry course in which they had already completed a unit on triangle congruence proofs.
Students were interviewed for five one-hour sessions in which they "thought aloud" as they
worked on twelve proof problems. For each proof problem, students were first asked to verbally
(orally) plan their proof and only after they had described their proof plan verbally were they
asked to write out their formal proof. All interviews were video recorded, transcribed, and later
analyzed using the constant comparative method and retrospective analysis.

Sample Results and Discussion

In this paper, we discuss how students transitioned from verbally planning their proofs to
writing their proofs formally using the two-column format, along with difficulties they faced,
and differences between their plans and written proofs. When evaluating a written proof with a
gap, the proof itself typically provides little to no insight as to the reason(s) why the students
might have skipped/missed deductions. In contrast, in this interview setting, many students
demonstrated important proof reasoning in their verbal explanations that was not explicitly
conveyed in their written deductions for proof. Therefore, the present study found that students’
verbal explanations many times provided critical insight into the reasons why some students
missed or skipped deductions in their written proofs. Due to space limitations, we only present
one example of student work to illustrate that what many students said during their verbal proof
planning did not always match what they wrote later in their formal proofs and how this
mismatch affected their proofs’ logical and axiomatic structuring.

Rose's Verbal Plan for Problem M {See Figure 1 below for Problem M}
Rose: So, DE is perpendicular to EG is down here [marks ZDEF as a right angle]. And then the same thing with
BF [marks £BFG as a right angle]. ...

IN: And how did you know they were right angles?

Rose: I was marking for perpendicular. If'it is perpendicular it has to be a right angle. So, F is the midpoint of
EG, which means that since it is the midpoint these [points to EF and FG] have to be the same length. [Rose marks
EF and FG congruent]. And then DF is parallel to BG. So [marks DF and BG parallel] I drew parallel signs. And
[Triangles] DEF and BFG; so, proving that those two triangles [are congruent]. So, since this [points at EG] is a
straight line and these [outlines DF and BG] are parallel they intersect at the same angle [make X gesture with her
arms]| which makes these [marks ZDFE and £BGF congruent] Corresponding Angles. And I just proved that the
triangles because Angle-Side-Angle [points to LBGF, FG, and £BFG].[Later in the episode, after Rose has
completed her written proof for Problem M].
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IN: These ones right here [points to ZBFG and 2DEF] you said were 90-degree angles. Is that right?
Rose: Yeah. I feel like it is a self-explanatory given that they are perpendicular they would have to be right
angles.

Rose’s Formal Written Proof for Problem M

Problem M Rose" Correct Formal Proof for Problem M
B — ose’s Proof for Problem M BE L BEG A
Given: DE L EG, BF 1EG, 1. DE L EG 1. Given

T DELEG f 2. BF LEG 2.Gi
F is the midpoint of EG, DF//BG v DELEG 1 Given 3 Fis the midpoint 3. Given
prove: ADEF = ABFG 2. BF LEG 2.Given of EG
. . . — " 4. DF /| IBG 4. G
2 L4 3.Fis the midpoint of EG 3. Given 4a. <Eand 2BFG 4. ,;v::(,f
4, ITF :ITG 4, Given are right angles 1 lines
(Gaps accur here) 4b. £E = £BFG 4b. Right Angles are
. Congruent Theorem
5. LDFE= LBGF 5. Corresponding Angles 4c. EF =FG 4c. Def. of midpoi
ADEF " 5. /DFE = / BGF 5. Corresponding Angles
s + L : > 6. ADEF = ABFG 6. ASA Triangle Congruence o ADEF o ABRG € ASA Postalate
Figure 1 Figure 2

Rose had three errors in her formal proof’s logical structure due to missing deductions that
were relevant and critical to the validity of her formal proof. First, Rose never explicitly wrote a
deduction in her proof that stated that Angles E and BFG are right angles by the definition of
perpendicular segments. From her oral description (in particular her statement about “self-
explanatory”), we infer that Rose did not write this deduction because she assumed that the
argument was intuitively obvious, therefore there was no need to write it out. Although Rose had
clearly demarcated these right angles (in red) on the diagram (see Figure 1), since she did not
write it as a deduction there is no explicit evidence in her written proof on how this conclusion
was justified within the axiomatic system. If Rose’s proof was evaluated solely from what she
had written, one would have to make presumptions about whether Rose understood that these
angles are right angles by definition of perpendicular segments, which might or might not be
reflective of Rose’s reasoning. Since it is not clear from only reading Rose’s written proof that
she understood this issue, the missing deduction would need to be classified as a gap in her
written proof’s logical structure. However, when considering her oral explanations with her
written proof, it is clear that Rose had the correct intuitive reasoning about the missing
deduction, but failed to formalize it in her written proof.

Second, Rose did not explicitly state a second deduction about the two right angles being
congruent in either her verbal explanations or her written proof. This missing deduction was
critical to the proof’s logical structure because it was used later to draw the last deduction that
Triangles DEF and BFG congruent by the ASA Postulate. This is evidenced in her verbal
planning when Rose explicitly pointed to Angle BGF, Segment FG, and Angle BFG on the
diagram to represent the congruent parts from Triangle BFG when explaining why the two
triangles, BFG and DEF, were congruent. From her gesture to Angle BFG, which she had
demarcated as a right angle on the diagram (see Figure 1), it can be inferred that Rose used the
notion that the two right angles were congruent to satisfy the premise for a second pair of
congruent angles needed to apply the ASA Postulate. However, Rose had not explicitly
established that these two angles are right angles nor that they are congruent in her written proof.
From reading her written proof, it is not clear how Rose was applying the ASA Postulate when
she only had one pair of congruent angles (see line 5 in Figure 1) explicitly established in her
proof. As a result, this is a gap in her formal proof’s logical structure.

The third error that Rose made in her written proof was that she needed to explicitly write a
deduction that stated that Segments EF and FG are congruent by the definition of midpoint. This
missing deduction was also critical to her proof’s logical structure because she used it as the
corresponding congruent sides premise to apply the ASA Postulate in line 6 of her written proof
(see Figure 1). This was exhibited when Rose pointed to Segment FG as her congruent side in
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Triangle BFG as she was explaining why she could deduce the triangles congruent by the ASA
Postulate. Importantly, Rose verbally stated that Segments FG and EF have the same length by
definition of midpoint during her verbal planning of the proof, indicating that Rose had the
conceptual understanding of the premises of this deduction, but she did not explicitly convey this
understanding in her written proof. This illustrates again that students can have gaps in their
written proofs even when they actually have correct reasoning about missing deductions. So, it
is not so much a gap in logical structuring but one of axiomatic structuring, misconceiving the
level of detail needed for a written formal proof.

Concluding Remarks and Implications

Findings from all the clinical interviews suggest that most of the proofs that students wrote
were not formally correct, but that many students wrote proofs that were not reflective of the
sound proof reasoning evidenced in their oral plans. In many instances, students had developed
sound intuitive ideas for proofs, but they did not write proofs that were rigorous enough to stand
up to scrutiny due to gaps/omissions in their written proofs’ logical and/or axiomatic structures.
Most of the time, teachers and researchers assess students’ proof reasoning only by evaluating
their written proofs. The present study shows that in many instances there is more going on with
students’ proof reasoning than what is reflected in their writing. A two-column proof provides
only so much information about what the student was thinking when he or she drew a deduction,
especially in flawed proofs. Many times, when students make errors or omissions in their written
proofs, it is not clear or evident from simply reading their proof what student reasoning was
behind these errors. For example, when students are missing deductions in their written proofs,
the teacher or researcher usually cannot distinguish between students who did so intentionally
because they thought the deductions were obvious from students who did it because of faulty
reasoning.

In contrast, as the present study illustrates, evaluating students’ proofs using both their verbal
explanations and their written proofs can provide teachers and researchers with deeper insight
into students’ reasoning. This insight not only helps teachers and researchers better understand
students’ proof reasoning difficulties, but also helps them diagnose students' errors and
misconceptions so they can develop more effective curriculum and instructional interventions to
remedy the difficulties. Additionally, this paper illustrates that having students verbally plan their
proofs before writing them reveals that some students have correct intuitive reasoning about
some deductions absent from their written proofs. Due to the deeper insight gained into students’
reasoning, it is recommended here that when possible, teachers and researchers should evaluate
students’ proofs using both their verbal explanations and their written proofs.
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Over the last 30 years, professional organizations (e.g., NCTM, 1989; NCTM, 2000) and
policy makers (CCSSI, 2010) have continued to make recommendations that high school
geometry students should learn proof, but students have continued to struggle with it (McCrone
& Martin, 2009; Senk 1985). Furthermore, some geometry teachers have claimed that they do
not have any instructional strategies to scaffold the learning of proof and that students must
either “sink or swim” when learning it (Cai & Cirillo, 2014).

In response to the continued struggles, the present study established baseline data on
achievement on proof for students who learned geometry using a recently developed curriculum
that emphasizes a semester of making conjectures through investigations followed by a five-part
proof progression. For a detailed description of the proof progression, see Nirode (2018).

Out of 78 students in four classes at a single high school, 56 students enrolled in the study.
Near the end of the third quarter, students took an 8-question test. Questions 1 and 2 asked
students to put a proof in order given all the statements and reasons. Questions 3 and 4 had
students filling in blanks for a partially completed proof. For questions 5 and 6, students wrote a
proof after being provided with a diagram, the given, and what to prove. For questions 7 and 8,
students wrote a complete proof from a conditional statement.

The researcher scored the tests. The proof puzzles both had 8 statements and 8 reasons for
students to put in order for a total of 16 points. The next two questions both had 6 blanks in the
proof for students to complete for a total of 6 points. Then, the researcher scored questions 5—8
using Senk’s (1985) four-point rubric. Also, like Senk’s study, for questions 58, a proof with a
score of 3 or 4 was classified as correct.

Students did exceptionally well with both proof puzzles (M = 15.25, SD = 1.08 and M =
15.39, SD = 1.89). Next, students did well on filling in the blanks (M = 3.91, SD = 1.40 and M =
4.34, SD = 1.40). For the two proofs where students were provided with a diagram, the given,
and what to prove, the means for both proofs were essentially correct scores (M = 3.25, SD =
1.22 and M =2.93, SD = 1.42). Finally, students struggled when writing a proof from a given
conditional statement (M = 1.29, SD = 1.29 and M = 1.29, SD = 1.29).
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Studies of young children highlight relations between their cognitive development and
experiences moving in space (Oudgenoeg-Paz et. al., 2015). Yet, current early mathematics
instruction often ignores the resources children have to make sense of foundational properties of
space. Recent programs highlight the accessibility of geometric concept for young children
(Hawe et al., 2017), but less is known about how early experiences of space can also support
their engagement in mathematical practices. Expanding attention to young children’s
development of mathematical practice aligns with sociocultural views of mathematics as situated
in the everyday activity and evolving practices of local communities (Lave et al.,1984). I present
a design study conducted in a rural 1% grade classroom aimed at co-developing children’s
concepts of 3D shape and defining practices to answer these research question: What resources
from children’s everyday experiences with 3D shape and space help them define and
conceptualize properties of 3D shape? How do children’s resources support the development of a
new classroom practice of defining?

Using grounded theory, I analyzed video and field notes from eight days of instruction. I first
categorized ways students described, built, and interacted with 3D structures. Then, I traced how
these different categories supported episodes of collective defining practices using Kobiela and
Lehrer’s (2015) framework of aspects of defining. I found four themes in students’ engagement
with 3D structures. These included judgements about a structure’s smoothness (i.e., sliding a
hand around a structure; ability to roll; stability in relation to properties of closure; and height
versus width. These four themes also proved consequential to the classroom’s development of a
practice of defining. In particular, the teacher’s press on students to articulate what properties of
structures they used to make judgement corresponding to these themes helped establish
definitions for properties and classes of 3D shapes. For example, when comparing examples of
right prisms, students noted each could roll around their rectangular faces but some rolled better.
By exploring what impacted the structures ability to roll, students coordinated rolling to the
number of sides on the bases. Students then generated a generalization that these bases needed to
match and that they played an important structural role of holding all the rectangles or squares
together. This final generalization was later positioned as a definition for prisms.
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