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PME-NA History and Goals 

 
PME came into existence at the Third International Congress on Mathematical Education 

(ICME-3) in Karlsrühe, Germany in 1976. It is affiliated with the International Commission for 
Mathematical Instruction. PME-NA is the North American Chapter of the International Group of 
Psychology of Mathematics Education. The first PME-NA conference was held in Evanston, 
Illinois in 1979. 

 
The major goals of the International Group and the North American Chapter are: 
 

1. To promote international contacts and the exchange of scientific information in the 
psychology of mathematics education; 

2. To promote and stimulate interdisciplinary research in the aforesaid area, with the 
cooperation of psychologists, mathematicians, and mathematics teachers; 

3. To further a deeper and better understanding of the psychological aspects of teaching 
and learning mathematics and the implications thereof. 
 
 
 

PME-NA Membership 
 
Membership is open to people involved in active research consistent with PME-NA’s aims or 

professionally interested in the results of such research. Membership is open on an annual basis 
and depends on payment of dues for the current year. Membership fees for PME-NA (but not 
PME International) are included in the conference fee each year. If you are unable to attend the 
conference but want to join or renew your membership, go to the PME-NA website at 
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and 
click on “Membership” at the left of the screen. 
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Preface 
	
Dear Colleagues, 
  
On behalf of the 2018 PME-NA Steering Committee, the 2018 PME-NA Local Arrangements 
Committee, the College of Education at the University of South Carolina, and the College of 
Education at Clemson University, we would like to welcome you to South Carolina and the 40th 

Annual Meeting of the International Group for the Psychology of Mathematics Education – 
North American Chapter, held at the Hyatt Regency in Greenville, South Carolina. 
  
As part of our celebration of 40 years of PME-NA, this year’s conference will focus on enduring 
challenges in mathematics education research and look ahead to emerging opportunities in the 
field. Plenary sessions will address our major conference themes: mathematical and pedagogical 
demands for P-16 education, equitable mathematics teaching and research, leveraging new 
technologies, and perspectives on the nature of mathematics and research. 
  
Elham Kazemi will present the opening plenary session on Thursday evening, How Can 
Understanding Student Experiences in the Mathematics Classroom Enrich, Challenge, and Help 
us Improve our Own Learning as Teacher Educators and Researchers? The talk explores the 
ways in which learning more about research on students’ experiences in mathematics classrooms 
has the potential to transform the work we do with teachers in teacher preparation, professional 
development, and research settings. Corey Drake will serve as the discussant. On Friday, Marta 
Civil will present and Laurie Rubel will serve as discussant on the plenary session entitled 
Looking Back, Looking Ahead: Equity in Mathematics Education, which explores funds-of-
knowledge, participation, and valorization of knowledge orientations towards mathematics 
education. Rubel extends our understandings of the political dimensions of equity in 
mathematics education, as well as articulates a vision for future work around equity in 
mathematics education. Saturday’s plenary session features Margaret Niess with discussant 
Jeremy Roschelle in a session entitled Transforming Teachers’ Knowledge for Teaching 
Mathematics with Technology through Online Knowledge-Building Communities. Their session 
describes the development and transformation of Technological Pedagogical Content 
Knowledge among inservice teachers via online technology courses designed with intentional 
opportunities to explore and discuss reform-based instructional strategies for teaching with 
technologies within teachers’ communities. Finally, Anderson Norton and Julie Sarama present 
Perspectives on the Nature of Mathematics and Research during Sunday’s plenary session. 
Norton and Sarama provide unique and compelling notions of mathematics as a body of 
knowledge, helping to ground our understandings of what it means to learn and do mathematics. 
Each presenter provides powerful implications for the teaching, learning and research of 
mathematics education. 
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The concurrent and poster presentations serve to advance our field through a firm grounding in 
where we have been, our current understandings of mathematical learning, and with an eye 
towards the work ahead of us - truly, we are Looking Back, Looking Ahead. This year’s 
conference will be attended by more than 500 researchers, faculty and graduate students from 
around the world including Mexico, Canada, Australia, Republic of Korea, and 42 states from 
the United States of America.  The acceptance rate was 37% for research reports as research 
reports, 69% for brief research reports as brief research reports, 94% for posters as posters, and 
100% for working groups. The accepted proposals included 69 research reports, 137 brief 
research reports, 133 posters, and 17 working groups.  
 
We would like to thank the many people who generously volunteered their time over the past 
year in preparation for this conference. In particular, we wish to thank Jessica Allen, Graduate 
Assistant at the University of South Carolina, for her tireless efforts in facilitating planning, 
communicating with various stakeholders and formatting the conference proceedings.  
  
Professional regards, 

		
	
	

	
		

	

	

	
	

	

Thomas	E.		Hodges	
University	of	South	Carolina	
2018	PME-NA		
Conference	Co-chair	

George	J.	Roy	
University	of	South	Carolina	
2018	PME-NA		
Conference	Co-chair	

Andrew	M.	Tyminski	
Clemson	University		
2018	PME-NA		
Conference	Co-chair	

		
		
 



Proceedings	of	the	40th	Annual	Meeting	of	PME-NA	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University

xii	

Contents 

PME-NA History and Goals ............................................................................... iii 
PME-NA Membership ........................................................................................ iii 
PME-NA Steering Committee ............................................................................ iv 
PME-NA Local Organizing Committee .............................................................. v 
Sponsors ............................................................................................................... vi 
Strand Leaders ................................................................................................... vii 
List of Reviewers ............................................................................................... viii 
Preface .................................................................................................................. x 

Chapter 
1 Plenary Papers ................................................................................. 1 

2 Curriculum and Related Factors .................................................. 78 

3 Early Algebra, Algebra, and Number Concepts .........................136 

4 Geometry and Measurement ........................................................237 

5 Inservice Teacher Education/Professional Development ............281 

6 Mathematical Knowledge for Teaching .......................................458 

7 Mathematical Processes ................................................................521 

8 Preservice Teacher Education ......................................................641 

9 Statistics and Probability ..............................................................838 

10 Student Learning and Related Factors ........................................886 

11 Teaching and Classroom Practice ..............................................1016 

12 Technology...................................................................................1151 

13 Theory and Research Methods ...................................................1289 

14 Working Groups .........................................................................1367 



Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University.

Chapter 1
Plenary Papers 

How Can Understanding Student Experience in the Mathematics Classroom 
Enrich, Challenge, and Help Us Improve Our Own Learning as Teacher  
Educators And Researchers? ................................................................................................... 2 

Elham Kazemi, Corey Drake 

Looking Back, Looking Ahead: Equity in Mathematics Education ..................................... 16 
Marta Civil 

Looking Back, Ahead, and in New Directions ....................................................................... 32 
Laurie H. Rubel 

Transforming Teachers’ Knowledge for Teaching Mathematics with 
Technologies Through Online Knowledge-Building Communities ...................................... 44 

Margaret L. Niess, Jeremy Roschelle 

Perspectives on the Nature of Mathematics ........................................................................... 63 
Anderson Norton 

Perspectives on the Nature of Mathematics And Research .................................................. 72 
Julie Sarama 



Plenary Papers 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University.

2 

HOW CAN UNDERSTANDING STUDENT EXPERIENCE IN THE MATHEMATICS 
CLASSROOM ENRICH, CHALLENGE, AND HELP US IMPROVE OUR OWN 

LEARNING AS TEACHER EDUCATORS AND RESEARCHERS? 

Elham Kazemi Corey Drake 
University of Washington Michigan State University 

ekazemi@uw.edu cdrake@msu.edu 

In this paper, we explore the ways in which learning more about research on students’ 
experiences in mathematics classrooms has the potential to transform the work we do with 
teachers in teacher preparation, professional development, and research settings. We focus in 
particular on questions of student access to and participation in mathematics and highlight 
studies of the racialized and gendered experiences of students and the connections between these 
experiences and broader narratives about race, gender, and ability/disability. We conclude with 
questions and possibilities raised by these studies for our individual and collective efforts to 
support and understand teacher learning and changes in teacher practice. 

Keywords: Teacher learning, Student experience, Equity 

The title of our paper is a question, not a statement, which we hope will provoke 
conversation among us.   To begin, we would like to introduce ourselves and then explain how 
we came to ask the organizing question for this paper and use selected studies as cases to help us 
dive into discussion. 

How Did We Come to the Focus of this Paper? 
We decided to use this occasion as an opportunity to further our own learning by highlighting 

recent work in the field that we think can inform our work with teachers.  To that end, we are not 
attempting a comprehensive review of any kind.  Instead, we selected articles, be they written for 
researchers or practitioners, that would shed light into how particular students have experienced 
the mathematics classroom.  You will notice that some of these accounts and narratives are first-
person accounts, while others were generated through close collaboration between researchers 
and students.

The ways we think about teacher practice and teacher learning in research and teacher 
education focus heavily on teacher performance - along a variety of dimensions, with a variety of 
foci. This focus can be seen in the many studies of changes in teachers’ practices, in recent 
practice-based teacher education efforts, and in the variety of observation protocols used to 
observe, understand, and sometimes evaluate teaching. Both personally and as a field, we have 
learned a lot in recent decades from thinking about teaching in this way. In our own work, we 
have learned about ways in which teaching is difficult and complex for teachers, particularly 
novice teachers; approaches to supporting prospective teachers in developing ambitious teaching 
practices; the roles of tools such as student work and frameworks of children’s mathematical 
thinking in advancing changes in teachers’ practice; and how to design learning environments for 
teachers to learn together. We have also learned from work that has examined relational aspects 
of teaching, though primarily from the perspective of teachers, about the importance of teacher 
care and productive relationships with students (e.g., Bartell, 2011; Jansen & Bartell, 2013). 

Studies of teaching can benefit from more attention to the nature of student experience in 
mathematics classrooms as a lens for understanding teacher practice and teacher learning. When 
we make this claim, we want to be sure to note that attending to student experience is not the
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same as attending to student outcomes/achievement; many studies have tried to link teacher 
practice and student achievement. Instead, we are interested in understanding teaching in terms 
of student experience, which is broader than student achievement or even student learning, and 
also takes into account students’ experiences of mathematics in relation to identity, participation, 
motivation, and agency (Aguirre, Mayfield-Ingram, and Martin, 2013).
Our interest in this paper is in deepening our understanding of teaching by focusing on students 
and their experiences because although we have learned many important ideas from focusing on 
teacher performance and practice, we have yet to deeply understand the link between teaching 
and student experiences or ways in which teaching might disrupt persistently inequitable 
patterns in student experiences. Jansen & Bartell (2013) note that, “A teacher may intend to 
enact care, but unless the care has been received by a student, the student will not feel cared 
for.” (p. 36) This points to a key limitation of research on teacher education that focuses on 
teacher performance without also considering student experience. In order to address this 
limitation, we, as teacher educators and researchers of teaching, we are going to foreground 
research on students’ experiences. Connecting and expanding the literatures we put into 
conversation together can further our efforts to prepare teachers who can create transformative 
and inclusive classroom and support students’ access to and participation in mathematics.

What do we Know about Student Experience that Might be Helpful for Thinking about 
Teacher Practice?

In the cases that follow, we focus first on understanding individual students’ motivations and 
experiences related to participation in mathematics discussions. We then move to cases of 
studies that explored the racialized, gendered, and networked nature of students’ participation in 
mathematics classes. Finally, we explore cases of participation in and access to mathematics in 
relation to broader racialized, gendered, and ability-related narratives. 

Understanding Students' Experiences as Listeners and Speakers in the Mathematics 
Classroom 
Hintz (2011) studied the experiences fourth-grade students had in two classrooms during 
classroom discussions. She sat with them as they replayed video from a recent discussion and 
asked the students to share with her what was happening for them during those segments.  In 
research on classroom discussions, studies have examined how discussions unfold, what children 
say or do, and what decisions teachers make for discussions to be mathematically productive. 
Hintz applies a different lens to understanding classroom discussions, as she carefully examines 
the demands that these discussions place on students both as listeners and speakers and 
illuminates how students experience those demands.  In her 2011 article, Hintz presents the 
complexities one student, Norah, experienced in a common discussion structure, called strategy-
reporting, during which students share the different ways they thought about a problem.
Hintz sat with Norah to look at a particular time when Norah shared her answer to a 
multiplication problem while also making a hand gesture to indicate that she was not confident it 
was right.  During strategy reporting, teachers commonly ask questions about a student’s strategy 
and often work through any errors that arise.  But Norah did not like to share when her solution 
had a mistake because she anticipated being asked to talk about it in front of the other students.  
Hintz recounts what unfolded in the classroom and how Norah experienced it:

During one particular interview, Norah and I rewatched the videotape of an episode during a 
lesson when she shared a mistake and I listened to her talk about that experience. After 
solving the problem 14×5 mentally, she had offered up her answer saying, “I think it is 120.” 
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As she said her answer she was grimacing with a look of uncertainty and concern. She turned 
to her neighbor and gestured her hand back and forth in a flip-flop motion showing that she 
was unsure about her answer. Later in the discussion, as a different answer was decided to be 
correct, Norah raised her hand and said with a shy smile and shrugging downward, “I 
counted wrong.” The teacher responded, “You counted wrong. And that’s OK, we do that all 
the time don’t we? That’s part of our life,” and moved on with the discussion. 
As Norah narrated her experience during this episode, she shared, 
Since I did 14 × 5 = 120, I messed up because I added differently than I should have. I did 4 
× 5 is 20 and then I put the one from the 10 right on as 100. I should have thought more 
about it instead of going right to it. It is kind of embarrassing. 
What she felt was embarrassing was “getting it wrong,” and she added, “But if you make a 
mistake then you can keep practicing that problem and it will become a fact that you know. 
Next time I would still start with 4 × 5 = 20 but then I would do a different step.” This 
comment  reveals that she sees the potential for learning from your mistakes and continued 
practice. Yet the social consequences of making a mistake publicly weighed heavy on her 
mind and shaped how she chose to take on the roles of sharer and listener. An important part 
of why Norah did not like to share when her solution had a mistake was because of how she 
may have been asked to engage in talk about the mistake with her teacher in front of the other 
students. It is common during strategy reporting for a teacher to ask questions about a 
student’s strategy when there is a mistake in an effort to uncover a misconception and work 
through an error. In talking about this experience, Norah said, “Sometimes I don’t like to 
make mistakes because it’s kind of embarrassing when you thought you got it right and then 
you got it wrong and then you have to keep working out loud” (Hintz, 2011, p. 268). 

Norah explained she was happier not to be called on when her thinking was incorrect.  It does 
not seem, in the way she recounts her experience, that she does not like revising her thinking. 
But, she feels badly doing it in front of others.  The teacher, like many of us, tries to normalize 
mistake making. Classrooms benefit when a norm is established that it is okay to be wrong. And 
certainly we do not have evidence other students made Norah feel badly. Still, her worry was real 
and impacted whether or not she wanted to participate.  And Norah’s feelings about sharing and 
listening are not unidimensional.  She also told Hintz that she liked hearing and using other 
students’ strategies, and that she was comfortable trying out multiple strategies until one worked 
for her.  If the teacher also understood the complexities of how Norah felt, what kind of dialogue 
between them could help Norah process these experiences and grow from them? 

Amanda Jansen’s work (e.g., Jansen, 2006, 2008) similarly focuses on students’ experiences 
with participating in classroom mathematics discussions. In this work, she identifies 
relationships among middle school students’ beliefs, motivation, and participation in whole-class 
discussions. Through in-depth interviews with students and many hours of classroom 
observation, she identified student beliefs that both constrained and supported student 
participation in whole-class discussions. Some students she interviewed echoed Norah’s feelings 
about the risks of verbal participation and the benefits of listening during mathematics 
discussions.  

Students in her study also demonstrated motivation to participate more actively in order to 
meet social or behavioral goals, such as helping others. In particular, these students believed in 
the value of participation for supporting their own learning and understanding of mathematics. 
These views were exemplified by Becky: 
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Becky: And when you have to do problems, don’t just sit there. You have to get into the 
conversation in order to actually get it yourself and make you understand it, don’t just 
understand it like how other kids do it. (Jansen, 2006, p. 417) 
Consider Becky’s perspective and Norah’s side by side.  One common practice in 

mathematics classrooms is to collect answers and then ask students to share those answers. 
While many conceptions of and research on ambitious pedagogy focus on the importance of 
discussion for learning, it is important to also recognize the risks of participation that can be 
inherent in participation for some students. Further, while teachers may work on class-wide 
strategies for encouraging participation, we need to understand that these strategies will be 
received and understood differently by different students, depending on their prior experiences, 
beliefs, and goals. How often do we learn about what our students are experiencing in the 
classroom? How can we create the time and gain the trust for students to tell us? Taken together, 
Hintz’s and Jansen’s work remind us that participation in mathematics discussion can take many 
forms and that understanding the ways in which listening, questioning, and other forms of 
participation support learning is important work. Finally, Jansen’s findings illustrate the deep 
interconnectedness of students’ social and academic goals and beliefs in shaping students’ access 
to and participation in mathematics.  
Understanding Students’ Participation and Positioning as Racialized and Socially 
Networked 

In the next section, we continue to learn from and about students’ experiences in 
mathematics classrooms with a focus on the social aspect of participation as racialized, gendered, 
networked, and closely connected to mathematics access and achievement. 

Maisie Gholson’s and Danny Martin’s work (2014) takes a “microsociological (e.g., Shalin, 
1978) approach” to understanding Black girls’ experiences in a mathematics classroom, “using 
the girls’ voices in this study to make sense of the emergent social structures that organize access 
to mathematics participation and learning.” (Gholson and Martin, 2014, p. 19). Through this 
approach, they identify the shifting roles, identities, and social networks within a 3rd-grade 
classroom that not only affect the girls’ social identities, but also shape their access to and 
success in the classroom mathematics. They find that even those students who identified as 
“competent mathematics students” found their access to participation in mathematics class 
“mediated” by their positioning within the social network of the classroom, especially their 
positioning in relation to the “high-status cluster” within the network. (p. 30). The close 
connection between social positioning and access to classroom content is illustrated through the 
story of Shawna, a strong mathematics student who identified as good in mathematics, but often 
found herself outside the “high-status cluster” of the classroom girls’ social network: 

M(Gholson):  Like if Ms. Robinson calls everybody to the rug, sometimes you’ll sit at  

your desk or sit at the very back. Do you think that’s true? 

S: [Nods affirmatively.] When she calls us to the rug, I’ll stay at my desk sometimes. 

M: Why do you like to stay at your desk sometimes? 

S: Because I don’t like to go to the rug. 

M: Is it good to sit away from the rug and get away from people sometimes? 

S: Yes. 
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M: How does it make you feel when you sit away from the group? Does it make you feel 

good? Does it make you feel bad? 

S: Good. 

M: It does? And why does it make you feel good? 

S: Cause some of the people mess with me.  

(Interview 03/01) (Gholson & Martin, 2014, p. 28) 
Gholson and Martin go on to say that, “On the rare occasions when Shawna was included by 

one or more of the girls in a classroom activity, she was highly engaged.” (Gholson & Martin, p. 
28) Gholson and Martin conclude that, “It is not uncommon for reports of studies of mathematics
learning to state explicitly that any talk not related to mathematics was excluded from the
analyses. However, this necessarily dismissed children’s social worlds as unimportant and
misunderstands the intimate connection between children’s learning of disciplinary content, such
as mathematics, and their social relationships.” (p. 31).

In more recent work (Gholson & Martin, under review), the authors use a performative 
framework to analyze classroom video and student interview data in order to understand how one 
student, a Black middle school girl, positions herself within mathematics class. They focus in 
particular on the movement of bodies within the mathematics classroom space and illustrate how 
the performative lens allows us to see the ways in which “mathematics learning is a 
contextualized performance, requiring and enabling children to simultaneously negotiate race, 
class, and gender.” (p. 4) In doing so, they illuminate the ways in which mathematical practices, 
described abstractly in documents such as the CCSSM, are realized through embodied 
performances. 

Gholson and Martin’s work helps us understand how we can miss salient aspects of students’ 
engagement with and access to mathematics when we focus only on overt teacher and student 
behaviors and only on students’ interactions with and identities in relation to content. 
Understanding students’ positioning with respect to one another, as well as to the content,  
provides a lens for making sense of patterns of student participation. At the same time, 
Gholson’s and Martin’s long-term and deep interactions with students lead to compelling 
narratives of the personal, social, familial, and community contexts in which students’ 
mathematical development is situated.  We wonder if and how teachers can engage in similar 
long-term and deep interactions leading to the co-construction of student narratives. Finally, 
Gholson and Martin point to the ways in which students’ classroom and network positioning is 
situated in broader narratives of race, gender, and ability in mathematics classrooms. These 
narratives are the focus of the next set of studies described below, by Shah, Lewis, and Rubel. 
Understanding Students’ Experiences of Narratives of Race, Gender, and Ability/Disability 
in Mathematics Classrooms  

The classroom, while a community onto itself, is of course constitutive of the outside world. 
Shah (2017) interviewed 35 high school students across 4 classrooms who went to the same high 
school in Northern California.  They identified as Asian, Black or African American, Latinx, 
Polynesian, White, and mixed race. He was interested in how students invoked racial narratives 
when they talked about mathematics learning, how these narratives worked in relation to one 
another, and what these relationalities meant for how students were positioned with respect to 
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race. A primary interest in his work is to study how students make sense of these racial 
narratives and how it contributes to the shaping of racial ideologies and students’ own identify 
formation.  

It is not surprising that the adolescents he talked to reported hearing numerous racial 
narratives at school and that they were in line with what Danny Martin (2009) has called a racial 
hierarchy of who is good at mathematics. Within his data corpus, students invoked 98 different 
racial narratives over a broad range of topics from intelligence, academic performance, and 
ability to body type, personality, cultural practices and career paths. Shah examines how various 
racial narratives and their interconnections impacted their everyday experience in the 
mathematics classroom. For example, at the time of the study, Troi was a higher performing 
senior in an advanced course of Precalculus.  Troi’s statements about how a substitute teacher’s 
might react to him conveys how he is aware of the racial hierarchy in mathematics with respect 
to how Indians and Samoans are perceived in mathematics,  “‘Yeah, so say a substitute teacher 
would come in [to class] and she’ll see the Indian kid and think, ‘Oh he must be the best one 
here in math,’ and she’ll look at me and think, ‘How did he get into this class? What the heck is 
he doing here?’” (p. 23).  Moreover, as Shah explains in this next excerpt, for Troi, narratives 
about intelligence were linked to narratives about physicality and mathematical ability: 

Polynesian students at Eastwood High were a small but prominent population on campus. 
Samoan and Tongan cultural practices were well represented in school events, and the 
Polynesian male students in particular were known for their participation in contact sports, 
such as football and rugby. Several of the faculty I spoke with viewed them as 
“troublemakers” and found them difficult to manage in their classes. In the excerpt below, 
Troi (Samoan, 12th grade) elaborates on how perceptions of Polynesian bodies and 
personalities contributed to their being positioned as mathematically, academically, and 
intellectually inferior: 

Other students just see me as big and mean…and here [at Eastwood High], the 
Polynesian kids are seen as like we’re big, that we do whatever we want. Like we’re not 
very intellectual, and like we’re not smart. But once they meet me they’ll know that I’m 
actually very intelligent, and I can do math, I know how to do English, I can do 
science…all that kind of stuff. I think when I come in they just see me as someone who’s 
going to hurt them or beat them up or someone who freaking wants to kill. They’re not 
going to take time out to sit and talk with me, and actually greet me and actually get to 
know me. 

In this excerpt, Troi draws connections among multiple categories of racial narratives. 
Initially, he connects a narrative about Polynesians being “big” to narratives about 
Polynesians being seen as “mean” and “someone who’s going to hurt them or beat them up 
or someone who freaking wants to kill.” The relations among these narratives evoke an 
image of Polynesian students as angry and violent people that others should fear. Indeed, 
Troi implies that classmates tend to avoid him, and do not attempt to “greet me and actually 
get to know me.” But Troi perceives these narratives to be consequential in ways that go 
beyond his social standing. They also matter for how Troi is positioned from an intellectual 
standpoint. After invoking narratives about Polynesians’ body type and personality, he notes 
that people view Polynesians as being “not very intellectual.” (Shah, 2017, p. 27-28)  



Plenary Papers 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University.

8 

Reading Troi’s experience and the many others in Shah’s article provides us with a compelling 
window into how students feel about the way they are read by others and the very real 
consequences for the educational opportunities they pursue or not. Implicit in Troi’s description 
is a rather segregated social space.  If students do not have genuine opportunities to develop 
friendships across cultural and racial groups, how does the lack of relationships figure into the 
ways they are asked to interact in the academic setting of the classroom? How do teachers check 
their own assumptions and views of particular racial and cultural groups in the school? Where do 
the perceptions about troublemakers get challenged? 

Understanding how students with learning disabilities developing systems to 
compensate for cognitive differences. Katie Lewis studies the characteristics of mathematics 
learning disabilities. Drawing on sociocultural frameworks, she analyzes how students make 
sense of mediational tools such as symbols and representation when doing mathematics. 
Importantly, she tries to understand the resources that students use not what they seem to lack.  
One important turn in her recent work is to marry the Vygotskian notion of compensation with a 
critical disability studies frame.  By collaborating with individuals with mathematics learning 
disabilities, she has been documenting the intentional actions that they take to gain access to 
spaces, context, and mediational tools in mathematics that would otherwise be inaccessible to 
them. This emancipatory research inverts the typical power dynamic between researcher and 
researched.    

In a recent paper, Lewis and Dylan Lynn (2018) discuss the significant and persistent 
challenges Dylan, who graduated with a major in statistics from UC Berkeley, encountered when 
doing mathematics and how she compensated for them in order to succeed. Together they 
documented eight distinct compensatory strategies by analyzing videos of interactions between 
and another college student with mathematics learning disabilities and interviews with Katie. 
Dylan’s challenges included inverting numbers, distinguishing symbols, making sense of dense 
notations, and understanding the impact of operations on values. She had developed her own 
system of addressing these challenges which included the use of mathematical tools such as 
graph paper, particular colored pens and pencils in ways that helped her navigate notations and 
solution processes.  

We will give you one particular example of these compensatory strategies. An important 
aspect of understanding Dylan’s experience was how our education system’s policies were set up 
to exclude her and actively discourage her from pursuing mathematics. When she was diagnosed 
with a disability in college, the university’s response was to waive her mathematics requirement. 
There was no real way for her to be supported to continue with mathematics, and she had to find 
her own way to persevere. She learned what to ask her tutors to do, and she had to persist 
through numerous course graders who complained about the length and verboseness of her 
assignments. In the excerpt below, she explains how one strategy of rewriting mathematical 
symbols into words supported her understanding of new concepts and notational system. 

Dylan: “This is calculus, but you can see it illustrated with this notation [writes f(x) = x + 
4x3; see Figure 2] this notation, the way people say this is “f of x” which is also terrible. It’s 
the function of x equals this [as writing “function of x = x + 4x3; see Figure 2]. This little 
notation here [points to f(x)] would throw me off really badly in my classes, because f times 
x? No, it’s a notation that is basically applying this function to the variable x. I would 
sometimes write out something like this [writes bracket underneath “function of x”] right 
underneath whatever it was and again, this is really verbose, [but] it might be helpful.” 
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Dylan noted that she often used this kind of translation in her notes to help her decode the 
meaning of the symbols, and described it as her creation of metadata for the notation. ... 
This translation of symbols into words took Dylan extra time both when writing notes and 
when solving problems. Because this kind of translation was not available in her classes or 
textbooks, she paid tutors to provide this kind of support. She explained that “I would force 
tutors to give me the English words for the symbols, which was always funny because these 
are grad students who haven’t thought about this stuff in years. ‘How would you use this in a 
sentence? I haven’t thought about it that way.’” The kinds of supports that Dylan needed 
were not something that the tutors were skilled at providing. Although this compensatory 
strategy provided her with a way of understanding the mathematical symbols, it placed 
additional demands upon her requiring that she spend more time and money than her peers to 
have access to mathematics. (Lewis & Lynn, 2018, p. 6-7) 

One theme that is beginning to emerge in the selections we have made is how much students are 
doing and thinking about that is not available to the teacher.  The full study documents many 
more strategies that Dylan generated to help her understand and advance in her mathematics 
coursework.  Her brilliance and ingenuity are so clear, even though it appears that her college 
instructors are not empathetic to how much more work she does in order to be sure she 
understands.   

Understanding students’ gendered experience in the mathematics classroom. There are 
many issues with respect to gender and sexuality that we need to consider as mathematics 
educators.  Gender narratives around mathematics have been typically associated with 
masculinity. In a brief article written for practitioners (Rubel, 2016), Laurie Rubel recounts her 
own experience as a teacher in a professional development session led by a mathematician who 
was engaging participants in how problems could be modeled with graph theory. He chose a 
regularly used problem because its purportedly binary categories would simplify the 
mathematics for learning purposes.  But that is not how she experienced it, as she explains in this 
next excerpt.  
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When I was a beginning teacher and in my twenties, I attended a professional development 
course for mathematics teachers, in which the Stable Marriage problem was explored as an 
example of a problem that can be modeled with graph theory. The facilitator, a professor of 
mathematics, led an activity similar to the one described above. He handed pink cards with 
fictitious names to the people he identified as women in the room and blue cards to the men. 
He told the women, holding the pink cards, to create rankings of their marriage preferences. 
If you were a woman, you were holding a pink card, and you were allowed only to rank your 
choices of men as spouses. 
I remember feeling uncomfortable with this arrangement. When I voiced an objection to this 
constraint, I was told that this is the set-up of the problem. In other words, this problem is not 
really about marriages. The problem refers to a particular kind of mathematical pairing 
between set A and set B. The story about men and women and marriages is just a story to 
lead us to a particular mathematical model. The story is supposed to help clarify the 
parameters of the mathematical model. “Just focus on the mathematics,” I was told, even 
though I was being handed a pink card and thereby being placed in a particular location on a 
gender binary. Not only that, but heteronormativity was being reinforced with the statement 
that, in this model, all women have to want to marry men. (Rubel, 2016, p. 438) 

There are several important ideas here that are important for our work with teachers. As a 
student in this context, Laurie, tried to speak out but was rebuffed. The teacher responded to her 
by admonishing her to just focus on the mathematics, making her own reaction to the problem 
irrelevant. So even though the algorithm they were studying had been applied to settings where 
college applicants are matched with colleges or medical students with residencies, the context of 
this problem was set in marriage between heterosexual couples, and students were not given a 
choice in their gender assignment or whether they wanted to use the marriage context for an 
extended discussion.  Through her writing, Rubel pushes us to take up Rands’ (2013) idea about 
gender-complex education, directly acknowledging gender diversity by making our curriculum 
and pedagogy reflect the existence of transgender and gender nonconforming people. If 
mathematics is a way of making sense of our world, it seems impossible to discount our world 
to just focus on the mathematics.

What Theoretical Frameworks are Researchers Drawing on to Study Student Experience? 
A rich array of critical theoretical perspectives are used across these studies to help us 

interpret student experiences.  Noting these are important for what theories we study in teacher 
preparation, doctoral preparation, and our own ongoing learning.  Psychological, cognitive, and 
sociocultural theories of learning are likely to be insufficient in helping us understand students’ 
mathematical learning.  In this small collection of articles, scholars are drawing on theories that 
help us attend more to relations of power and how race, gender, class, ability, and sexuality 
shape these relations.  Social theorists, philosophers, critical race theorists, disability studies, 
black feminist scholars, and poststructural theorists, to name a few, are being used to bring 
depth and complexity to our understanding of teaching, learning, schooling in how they shape 
students’ learning, their identification with mathematics, their experiences as learners and the 
meanings of their education. 
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How Did Researchers Learn about Student Experience? 
Narrative plays a central role in the studies we have highlighted here.  Spending time with 

students over a long period of time to come to understand their varied experiences is common to 
them all.  Interviews aided by video enabled Lewis and Hintz to have moment-by-moment 
interpretations of what students were thinking, and doing, and feeling.  In his interview protocols, 
Shah asked students to comment on cartoons that conveyed narratives that broadly circulate in 
society. Rubel and Dylan use personal biography tell us their own stories, albeit in different 
ways. Rubel shares her own stories as a way of speaking out and speaking up.  Lewis, in her 
collaboration with Dylan, provides an example of emancipatory research, which aims to 
transform the relationship between researcher and researched.  Many of these stories are not 
readily shared by students with one another or with their teachers. So in some respects we can 
expect that many of us through our teaching would not necessarily have access to these stories. 
They demand then, that we think about the relationships we need to foster, and the kinds of 
interactions we need to have with students in order to better understand what is happening for 
them as they try to learn with one another. 

What are the Implications of Thinking about Teacher Practice in Terms of Student 
Experiences? 

Students' participation in and access to mathematics is not solely or even primarily about the 
student's mathematical competence or the teacher's moves. Instead, it is about the individual, 
social, and cultural narratives within which the student is positioned and positions her/himself. 
Therefore, any study of or work with teachers should include attention to ways in which teachers 
can learn about these individual, social, and cultural factors, along with how the work of teaching 
can respond to and/or disrupt their effects in ways that provide opportunities for greater access 
and participation for all students, particularly those who find themselves marginalized in 
classroom communities. 

The cases we have selected here are not full of joy and delight and liberation while our goals 
for teaching and education purportedly are.  Instead they are filled with tension, with challenge, 
with being unknown and unseen. Like Shah, we wonder, “Do all students have the opportunity to 
be seen for what they are truly capable of doing in a classroom?” (p. 36).  But we think it is 
worth pondering how that can be difficult and perhaps not normative.  The work discussed above 
has important implications for the work of teaching and our work with teachers.  In our work as 
teacher educators, we must intentionally build time and space for teachers not to just reflect on 
their own teaching, what went well and what did not, what did they observe and notice in their 
classrooms, but also what did their students directly teach them. It leads us to ask how teachers 
learn about student experiences and how they respond to what they have learned. What did 
students think and feel and experience during a lesson? How did they feel they were treated? 
What was challenging to do and what was not? What enables students to develop enough trust to 
be in honest conversation with their teachers and their peers about how they are experiencing the 
classroom community? 

It would be an understatement to say coming to learn about how students are experiencing the 
classroom takes a lot of skill and empathy on behalf of teachers and the ability to step outside of 
one’s own worldview, to suspend judgement.  What do teachers need to know and be able to do 
to understand and engage with student experience? How can teacher educators support teachers 
in learning these things? Is it possible for teacher and teacher educators, given their positioning 
and authority in classroom spaces, to elicit and learn about student experiences in the ways that 
researchers do? In many of the studies described above, teachers were not aware of the student
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perspectives and experiences uncovered by researchers. Students’ experiences remained hidden 
from teachers, either because the experiences are happening in students’ worlds, where teachers 
may not belong, and/or because teachers and students are not having the kinds of conversations 
that researchers and students have had. Even if we acknowledge that it is not fully possible for 
teachers to access students’ experiences in the ways that researchers are able to, how do we take 
what we are learning from these researchers about the emotional, motivational, social, structural, 
political, and identity-related aspects of students’ experiences in mathematics and use these 
understandings to build mathematics classrooms and teaching practices that pull students in and 
increase access to mathematics rather than pushing them out and preventing access? 

Despite all of these questions, we can begin to imagine how this work related to student 
experiences might transform the ways we work with teachers in teacher education and 
professional development settings. For instance, what if the focus of a mathematics methods 
course assignment or professional development experience was for teachers to deeply 
understand the experiences of a student who was different from them along one or more 
dimensions of identity? The goal would be to understand not just their knowledge and ways of 
thinking about mathematics, not just their home and community-based funds of knowledge, as 
has been explored in other projects (e.g., Aguirre et al., 2013), but the ways they experience 
participation, their positioning in the networks of the classroom and community, their 
relationship to broader racial, gendered, and ability-based narratives? What would this 
understanding motivate teachers to want to know and be able to do in relation to mathematics 
teaching? What further questions would they want to ask?  What if teachers collected video and 
sat with a few students to get their take on what was happening in the classroom? 

The work on students’ experiences also has implications for studying teacher learning and 
practice. In fact, it was in the context of a project studying novice teacher practice that Elham (a 
member of the project’s advisory board) suggested the focus of this paper. As we explored 
various protocols for studying (or measuring) teaching practice, we (the project team) asked 
Elham what we might be missing when viewing teaching through the lens of these protocols. 
She suggested that student experience was notably absent and asked the question at the center of 
this paper – What if we focused on student experience as well as teacher performance when 
studying teaching practice? How would that change the ways we study teaching or work with 
teachers to improve teaching? Some research projects have begun to move in this direction and 
we will be interested to follow the extent to which they are able to move the field forward in 
understanding teaching in terms of student experience. For example, the work of several 
researchers and partner districts on “practical measures of instruction” builds on ideas related to 
improvement science (Bryk et al., 2015) to incorporate quick and actionable measures of student 
experiences in class discussions into professional development and the improvement of teaching. 
Another example might be the work of Reinholz and Shah (2018) on “equity analytics” - 
quantitative measures of who is getting access to the mathematics and mathematical discourse 
during classroom instruction. While neither of these examples fully capture the richness of 
student experiences in the ways described above, they do provide tools and processes for 
teachers and researchers to gain some understanding of student experiences as they unfold in the 
context of instruction. These examples also suggest the importance of research-practice 
partnerships in both understanding and improving teaching through a focus on student 
experience.
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  In conclusion, we wonder about directions for our own learning. How do we continue 
learning about student experiences in mathematics classrooms and the ways in which those 
experiences are related to learning, to power and participation, and to dimensions of identity 
including race, gender, and class? How do we teach each other about these ideas and how do we 
support teachers in learning about, responding to, and enhancing student experiences in ways 
that promote access to rigorous mathematics for all students? An important aspect of the studies 
described above is that they each draw on theories that go well beyond the theories of learning 
we learned in graduate school. How will we and our doctoral students learn about these theories 
and/or work together to bring multiple theoretical lenses to these questions? By addressing these 
questions in collaboration with one another and with teachers, we can begin to make progress in 
understanding and supporting teaching that disrupts inequitable patterns of participation and 
provides access to mathematics for all students.
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LOOKING BACK, LOOKING AHEAD: EQUITY IN MATHEMATICS EDUCATION 

Marta Civil 
The University of Arizona 
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Drawing on the conference theme of looking back and looking ahead, in this paper I first look at 
the placement of equity throughout PME-NA as a way to set the stage for where to go next. I then 
focus on aspects of my work on the affordances and tensions around out-of-school and in-school 
mathematics to discuss equity as opportunity to participate in mathematically rich and socio-
culturally grounded experiences. I argue for the need to develop classroom environments where 
students’ mathematical funds of knowledge are brought to the forefront but also where students 
can use their cultural ways of being and acting as resources for their learning of mathematics. 

Keywords: Equity and Diversity 

At the suggestion of the conference organizers we (Laurie Rubel and I) decided to 
collaborate on the elaboration of the plenary and discussion / response papers. While we each 
wrote our own paper, we exchanged drafts and had online discussions on what we wanted to 
convey. We share some common interests and concerns in terms of equity and mathematics 
education, yet our personal histories, trajectories and approaches are different. In particular, in 
one of our first conversations I remember telling Laurie that sometimes in my own work I felt a 
tension between socio-cultural and socio-political approaches. I can see my work clearly fitting 
the socio-cultural framework, and I am aware that I am working with political issues (e.g., 
language policy, immigrant families), yet I do not necessarily see my work as “fitting” the 
political category. It is clear to me that issues of power and privilege permeate my attention to 
valorization of knowledge and participation in the mathematics classroom, but I feel like I leave 
these issues somewhat implicit. In her response, Laurie’s section on “making the political 
explicit”, drawing on one the examples from funds of knowledge that I present in this paper, was 
particularly inspiring for me. This is just one example of the back and forth exchange of ideas 
that Laurie and I engaged in as we each wrote our pieces.  

In what follows I first provide some background to indicate my positionality with respect to 
the idea of “equity in mathematics education.” Then, I provide a brief historical account of my 
experience with PME-NA, given that the theme of the conference is “Looking back, looking 
ahead: celebrating 40 years.” This is my personal (and I admit, incomplete) attempt at tracing 
equity across PME-NA since the first conference I attended. The rest of the paper looks at some 
aspects of my research around in-school and out-of-school mathematics. 

Some Background 
I was drawn to issues related to equity through my work with preservice elementary teachers. 

I have always had an interest in how children and adults make sense of mathematics, how they 
think about mathematics. To this end, I like to use tasks that may lead to cognitive conflict. In 
listening to preservice teachers talking about mathematics, I noticed that some of them brought 
their everyday experiences to the discussion. I also noticed that oftentimes, those who sought to 
make sense of the mathematics (by connecting it to their life experiences) had had less 
“successful” trajectories with school mathematics than their peers who basically played by the 
rules and did not seem to be concerned about whether mathematics made sense outside (or even 
inside) the classroom. What are we doing in our teaching (K-16+) that leads to this lack of 
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connection between in-school and out-of-school?  This lack of connection is what drives much of 
my work. Shortly after I moved to the University of Arizona in 1990, I was fortunate to join the 
Funds of Knowledge for Teaching project (González, Moll, & Amanti, 2005), which was a 
perfect fit for me. The project took me into working-class communities and schools attended 
largely by students of Mexican origin, many of whom spoke Spanish as their home language, yet 
another fit for me as that is my home language too. I was able to work with teachers dedicated to 
developing learning experiences that built on students’ and their families’ funds of knowledge; 
teachers who invited family members to come to the classroom to share their expertise. I saw 
children engaged in discussions, participating in rich classroom activities. This is where my 
definition of equity developed. For me equity is about the opportunity to participate in 
mathematical experiences that are both rich from a “mathematics for the sake of mathematics” 
point of view (“reform / standards-based”) and at the same time reflect the socio-cultural 
experiences of the participants (culturally responsive / sustaining). It is about participants 
maintaining their cultural identity while also engaging as doers of mathematics. Over the years, I 
think that what has most influenced my approach is my work and friendship with immigrant 
families. Learning from them and seeing their enjoyment and sense of humor in mathematical 
discussions (whether it is a group of mothers or a group of seventh graders) constitute uplifting 
experiences and are constant reminders of why I do this work. To me, this is particularly 
important currently, given the stressful and depressing reality that many immigrant families are 
experiencing. 

Looking Back at PME-NA  
I attended my first PME-NA when I was a graduate student in 1989. In looking at those 

proceedings, these were the topics: Affective and cultural factors in mathematics learning (2 
papers, 1 on cognitive and affective aspects with 2 prospective elementary teachers; the other 
reports on a study done in Ciskei (South Africa, though an independent state at the time of the 
study); that paper mentions “socio cultural” and “lack of continuity between the cultural world of 
the family and that of school” (p. 13). The author was from a university in South Africa; 
Algebra/Algebraic Thinking (4 papers); Calculus (3 papers); Computer environments in 
mathematics learning (3 papers); number concepts (5 papers); geometry, measurement, and 
spatial visualization (6 papers); multiplicative structures (8 papers); representations, 
metacognition, and problem solving (6 papers); teacher beliefs (4) (my paper, “prospective 
elementary teachers’ conceptions about the teaching and learning of mathematics in the context 
of working with ratios”, was in that section); teacher education and teacher development (8 
papers). There were two plenary lectures (and responses) (one on mathematical processes, the 
other one around understanding of numbers (the authors have a section on the research on out-of-
school mathematics, in terms of how “non-schooled” children and adults understand numbers). 
There were five Symposia: realistic mathematics education; sex differences in mathematics 
ability; clinical investigations in mathematics teaching; assessment and function graphing tools; 
probability. 

The next PME-NA I attended was in 1993. In that one, there were several strands including 
one on equity, which had a panel and discussion sessions. The panel has one Australian 
researcher (Gilah Leder), one US researcher (Walter Secada), and one respondent from Brazil 
(Ubiratan D’Ambrosio). There was one paper in the section on language and mathematics (by 
Judit Moschkovich). And there was a section on social and cultural factors affecting learning (5 
papers), where one of my first papers on funds of knowledge was located (“Household Visits and 
Teachers' Study Groups: Integrating Mathematics to a Socio-Cultural Approach to Instruction”). 
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There were 14 discussion groups; one of them was on “cultural support for mathematics 
understanding” (related to relationship between culture, language and numerical systems).  

The strand on social and cultural factors (renamed later on as “sociocultural issues”) 
remained till 2007. Then in 2009 through 2011, there was a strand called “equity and diversity” 
(I am not including 2008 because that was a joint PME / PME-NA meeting). The strands we 
currently have (with no specific strand for equity or similar terms) were implemented in 2012. 
One possible argument for not having a strand on equity is that equity should permeate the work 
we do (Aguirre et al., 2017). Having a separate strand seems to imply that some researchers do 
equity work and others do not, or that equity is being addressed in one part of the conference and 
we do not need to worry about it elsewhere. This is something that calls for further reflection. 

Finally, I took a more in-depth look at the most recent PME-NA proceedings (2017) to see 
how equity was featured. There was one plenary talk that focused on equity. There was also a 
response to another plenary (not-equity focused) that looked at that talk with an equity lens. 
Finally, one of the papers in the technology panel also addressed equity. Three of the 13 working 
groups had something to do with equity, with one of them being explicitly about equity, one on 
critical perspectives on disability, and the third one on special education. Two of the other 
working groups mention equity a few times in the write-up.  I then went through all the strands 
and searched for the keyword equity. In some cases, where the term equity did not appear, I used 
my judgment to classify some of the papers as pertaining to equity based on other terms (e.g., 
culturally relevant; social justice). This is not a scientific analysis and I am aware that I may have 
missed some papers that are about equity. At the same time, there were some papers that had the 
keyword equity, but it was not obvious to me why that keyword was there. Here is what I found 
out: there were 75 research reports (RR) presented; 8 of them had something to do with equity. I 
counted 134 brief research reports (BRR), with 26 of them mentioning equity. Finally, I counted 
141 posters, with 22 mentioning equity.  

While over the years I have attended quite a few PME-NA conferences, I have also skipped 
several of them here and there. For a while, I felt that PME (rather than PME-NA) was more my 
community. At PME, I always seemed to find several presentations, working groups, discussion 
groups that related to my research interests in equity, while that was less the case with PME-NA. 
And yet, even in that more international arena, I should note that there was dissatisfaction with 
the attention to equity, in particular to social and political issues. In 1996, at PME in Valencia, I 
recall a fascinating AGM (Annual General Meeting) that discussed dropping the “P” from PME 
to reflect the fact that many research papers had moved away from the Psychology focus. Shortly 
after that, in 1998 Mathematics Education and Society (MES) was created in great part as a 
counter-space to PME (Gates & Jorgensen (Zevenbergen), 2015). In 2000, Lerman’s influential 
chapter for the field, “the social turn in mathematics education research” was published (Lerman, 
2000). In 2004, the book edited by Valero and Zevenbergen (Jorgensen) on the socio-political 
dimensions in mathematics education research was published (Valero & Zevenbergen, 2004). Of 
course there are several other researchers who have written on these issues since then. But for me 
those are two pivotal pieces. For my own work, Lerman’s chapter is particularly relevant as it 
refers to the influence of Vygostky’s work, which is central to the program of research around 
Funds of Knowledge (González et al., 2005); that chapter also discusses situated cognition and 
mentions ethnomathematics, all of which are at the center of my long term interest in studying 
the affordances and tensions around out-of-school and in-school mathematics. In what follows, I 
turn my attention to this topic. 
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Navigating Out-of-school and In-school Mathematics 
In the 2006 PME-NA plenary (Civil, 2006), I trace my trajectory from mostly a cognitive 

preparation to a sociocultural approach in my work, where concerns for equity became central.  I 
am bringing this up here because the cognitive aspect is still very present in my work, but at the 
same time, I cannot interpret data (a video, students’ work) without wondering about 
sociocultural elements (who is involved? What are their stories?). I argued then and I still argue 
now that we need these two perspectives (and most likely others too) to make sense of the 
teaching and learning of mathematics. In fact, what I wrote then is still very present in my 
thinking now:  

Sometimes I wonder if I have moved away from my initial cognitive-based interest in 
research in mathematics education to address issues that focus largely on the social and 
cultural context, with mathematics playing a very peripheral role. As I look over my writing 
from the last few years, I notice that I often raise the question “where is the mathematics?” 
Mathematics plays a central role in my work and recently, in our current project, I find 
myself pushing for the mathematics in our activities and research discussions. (p. 30) 
Thus, in this paper I am continuing this thread by focusing on three key elements in my 

work: funds of knowledge; valorization of knowledge; and participation. As I wrote in 2006, “A 
concern for those who are being left out of the mathematical journey seems to guide my work” 
(Civil, 2006, p. 30). This concern has not changed. 
Funds of Knowledge 

Since the terms “funds of knowledge” is now so widely used in mathematics education 
research, I thought that providing some history may be useful. Anthropologists Vélez-Ibañez and 
Greenberg (1992) are credited to have introduced this term, as they write, “strategic and cultural 
resources, which we have termed funds of knowledge, that households contain” (p. 313). 
Through their collaboration with educational researchers (in particular, Luis Moll and Norma 
González), the project Funds of Knowledge for Teaching (FKT) was developed in Tucson in the 
80s (see González, at al., 2005, for a detailed account of this project). When we bring these ideas 
to mathematics education, what we are saying is that all communities and families have 
mathematical funds of knowledge. Children come to school with mathematical funds of 
knowledge. Yet, as we well know, whether these funds of knowledge are recognized and used as 
resources for learning varies greatly. How did Alberto (Civil 2016; Civil & Andrade, 2002), a 
recent immigrant, see himself as a mathematical learner in his fifth-grade class, as he kept 
largely to himself and was not encountering success? A concerned teacher did not leave it at this 
and sought to learn more about Alberto and his family, through a funds of knowledge household 
visit. In that visit she learned about Alberto’s unwillingness to leave Mexico and move to the US 
with his family. He left behind places, people, and activities he enjoyed, including actively 
helping out with his family’s bakery business. He had his set of customers and was in charge of 
all monetary and goods transactions, yet at school he was struggling with “basic” arithmetic? 
Alberto’s case reminds me of the studies on street mathematics (e.g., Nunes, Schliemann, & 
Carraher, 1993), which were very influential in my work. If we do not see the relevance in what 
we are being asked to do, if we do not have an affective connection, is it surprising that we may 
not do as well? 

What about the several children (mostly in grades 5-8) who told me in interviews that they 
were learning things in mathematics that they had already learned in prior years in Mexico, yet I 
saw no evidence of them being given more challenging tasks, and in fact sometimes they seemed 
to be placed at a lower level because they did not know English well yet? This school knowledge 
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(e.g., different algorithms) and learning habits (e.g., use of a notebook for each subject to record 
their work; bringing their own school tools instead of the school providing them) that they bring 
from other contexts are part of their funds of knowledge, but schools do not necessarily know of 
these. The lack of communication between families and school and the differing understandings 
of each other’s roles and expectations are two of the most common findings in my work with 
immigrant parents.  

An example of funds of knowledge in a parents’ workshop. Elsewhere (Civil, 2002; 2007) 
I have discussed examples of applications from funds of knowledge to the mathematics 
classroom. Here I want to share a brief example (Menéndez & Civil, 2009) of how an activity on 
comparing fractions became more meaningful when a father participant suggested a connection 
to wrenches. While I do not know if in this case their children were familiar with how wrenches 
work (in terms of the different sizes), based on my experience of many years working with 
families, I would not be surprised if indeed several students at that school had a familiarity with 
wrenches. Comparing fractions is a typical school activity that can be challenging for children 
(and for adults, as we have seen in the Math For Parents courses that we have run for several 
years). In this scenario, the facilitator had asked the participants (most of them mothers and 
fathers of students at that middle school) to compare ¾ and 6/8.  One of the men (Isidoro) 
successfully drew some pictures to show that they were equal. Another man (Marcos) then 
mentioned something about wrenches and how they have different measures. The facilitator 
encouraged both men to bring the wrenches to the next meeting. Isidoro brought “a few 
wrenches” (people laughed when he said that he had only brought a few of them, as he had about 
15 wrenches on display) (see Figure 1). Isidoro very confidently explained what the standard 
measures are for the wrenches and the facilitator recorded those on chart paper, as Isidoro was 
mentioning them: 1/4, 5/16, 3/8, 7/16, 1/2, 9/16, 5/8, 11/16, 7/8, 13/16, 15/16, 1) (the facilitator 
noticed that 7/8 and 13/16 were switched but did not mention anything at that poing); Isidoro 
commented that there were other wrenches but that these were the most commonly used. Marcos 
noticed that the ¾ was missing and Isidoro told the facilitator to put it between the 11/16 and the 
7/8. Isidoro did not look at the wrenches to see the size, he seemed to have those visualized and 
knew their ordering (despite the error in the list). The facilitator then said, “I’m not completely 
convinced that these (the fractions on the chart paper) go like this, in this order. It’s just that I 
have to believe it because I don’t know (participants laugh). Or is there a way to find out?” 

 

 
Figure 1. Isidoro’s wrenches 

The facilitator then encouraged the group to come up with a visual way to help him see how 
to compare ¼ and 3/8 and 7/8 and 13/16. The participants had grid paper and used this to come 
up with a visual approach to compare the fractions and resolve the issue with the ordering of 7/8 
and 13/16. At this point the activity is a typical school task with the participants representing the 
different fractions on graph paper and comparing them.  But the familiarity with the wrenches 
provided a context for this activity. The participants remained engaged, and while there were 
clear gender aspects with the men appearing as experts, some of the women asked questions, 
probed, and made comments, indicating they were engaged in the task too. There are probably 
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several other mathematical explorations that could use these participants’ knowledge of 
wrenches as contexts. For example, Isidoro and Marcos referred to their knowledge of the metric 
wrenches. Familiarity with the metric system is one aspect that has come up in other contexts 
(e.g., recipes). I have noticed students bringing in a knowledge of the metric system either from 
home or from having lived in Mexico and yet teachers teaching it as if it was new material for 
everybody.  

It could be argued that the wrenches’ example is a superficial or contrived context to promote 
a deep understanding of the mathematics behind comparison of fractions. This is a tension that I 
have expressed before in my work on funds of knowledge and mathematics (Civil, 2007; 
González, Andrade, Moll, & Civil, 2001). In Civil (2007) I refer to this tension as preserving the 
purity of the funds of knowledge at the expense, maybe, of the mathematics. This tension is 
related to what we decide counts as mathematics. 
Valorization of Knowledge 

I argue that questions around which mathematics for whom and for what purpose are at the 
center of any equity debate. I am encouraged by the current discussions around school detracking 
and, at the college level, around the efforts to create more avenues for students’ access to 
mathematics beyond the standard college algebra (in a traditional sense), precalculus, and 
calculus path. But I am also aware of the potential obstacles to those initiatives, obstacles mostly 
based on what we count as a “good” mathematics education and who can “really” do it. I work in 
a mathematics department and this discourse permeates how we talk about the content of the 
courses, what needs to absolutely be in these courses to be a mathematics course, and who takes 
which courses. 

For me, this is a personal issue because in my own teaching and research I find myself going 
back and forth between the need to engage students in activities that are culturally relevant (e.g., 
funds of knowledge based) and the need to engage students in rich mathematical learning 
experiences. I do not mean to imply that this is an “either – or” situation. Obviously, both can 
happen. But I do not find that easy to accomplish. Researchers engaged in social justice 
mathematics teaching report a similar tension between the mathematical and the social justice 
goals (Atweh & Ala’i, 2012; Bartell, 2013; Rubel, 2017). 

My recent conversations with teachers and colleagues around after school projects with 
middle school students and mathematical modeling of culturally relevant contexts with teachers 
bring up these questions for me: is the context taking over the mathematics? Is the mathematics 
superficial or contrived? In a chapter on modeling and culturally relevant pedagogy, we write, 
“Teachers may encounter some tension between incorporating authentic cultural knowledge into 
the modeling process while staying true to the goals and modes of analysis of the discipline of 
mathematics” (Anhalt, Staats, Cortez, & Civil, 2018, p. 326). Elsewhere (e.g., Civil, 2002; 
2016), I comment on the difficulty in seeing mathematics in culturally-based activity when our 
only lens may be that of “academic / formal” mathematics. In these cases we may not be able to 
appreciate the mathematics in the activity or we may risk trivializing both the mathematics and 
the activity. 

Throughout my current work and teaching, I often bring up the famous question, “where is 
the math?” Yes, I do ask this question in part probably due to my own view of what counts as 
mathematics, but in part too because of the many classrooms I have visited where students are 
not being challenged in mathematics and are subjected to what I would consider quite dry and 
uninteresting tasks. Most likely, tasks that are related to their funds of knowledge would be more 
engaging, but they need to also be mathematically engaging. I also raise this question because I 
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have seen these same students engaging in mathematical discussions of tasks that are largely 
what I would describe as rich tasks, but not necessarily culturally relevant. In the next section I 
discuss the concept of participation and in particular the importance of developing classroom 
environments that let students use their cultural ways of being (which includes the use of their 
home language(s)) as they do mathematics. So, while the tasks themselves may not have been 
culturally relevant, developing trusting relationships and letting the students use their cultural 
resources (language, humor, interaction style) seem to support their engagement with 
mathematics (Civil & Hunter, 2015).    
Participation 

The idea of participation has been central to my work for many years. For example, in Civil 
and Planas (2004) we look at “the effects of social and organizational structures on 
students’ participation in the mathematics classroom” (p. 8) in two different contexts, Tucson 
and Barcelona. In other pieces, I have looked at the effect of language policies on the 
participation of emergent bilinguals (English Learners (ELs)) in the mathematics classroom (e.g., 
Civil, 2011) and of immigrant parents in their children’s schooling (Acosta-Iriqui, Civil, Díez-
Palomar, Marshall, & Quintos-Alonso, 2011). In Civil (2012, 2014), I look at participation and 
issues around what language gets privileged? Whose experiences are represented in the tasks? 
Whose knowledge and approaches get valued. Finally, in Civil and Hunter (2015) we look at 
immigrant students’ participation in argumentation in the mathematics classroom through lenses 
of culture and language in two different geographic contexts, New Zealand and the US. 

In this section I present yet another example from the same classroom discussed in Civil, 
(2011, 2012), and Civil and Hunter (2015) to illustrate how having an atmosphere where students 
can basically be themselves, can lead to rich mathematical discussions and students’ 
participation. The setting is a small seventh grade class composed of only 8 students, most of 
whom were recent immigrants from Mexico (within the previous two years) and all classified as 
ELs. Elsewhere I have discussed the restrictive language policy in Arizona (Civil, 2011; Civil & 
Menéndez, 2011) that places ELs in basically segregated classrooms for most of the school day. 
This was the case for these students. I worked with the teacher (an EL herself) and the students 
for close to a year. We videotaped 30 class sessions from February through May. It is important 
to note that three of the students’ mothers regularly attended the mathematics sessions for parents 
(and their children) we had at the school (Civil & Menéndez, 2011). The teacher also attended 
those sessions. Thus, we had developed rapport not only with the students but with some of the 
parents too. I have been arguing for quite some time for the importance of developing stronger 
and trusting relationships between home and school, particularly in the communities where my 
work is located, where families may be less familiar with the school system or worse, where 
sadly, they have reasons to feel insecure and less trusty of organizations. 

By the time formal data collection began (videotaping) the students were starting to become 
used to the idea of discussing their work and having to justify their thinking to others.  We let the 
argumentation develop naturally, that is we did not use any norms or roles. We basically relied 
on tasks that would create situations that promote argumentation. For example, in interpreting a 
distance / time graph of a bike trip, students engaged in spirited discussions arguing about which 
part of the graph showed the most progress made by the bike rider (Civil, 2012). When showing 
the video clips to varied audiences, while some do appreciate the level of engagement and 
mathematical argumentation that is taking place, others are somewhat surprised by the loudness 
and “chaotic” looking and sounding discussions. Yet, this “chaos” and “loudness” allowed for a 
student like Octavio to find his mathematical voice. Octavio was somewhat quiet and did not 
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seem very interested in engaging with mathematics. But it turns out that he liked to argue and 
that gave him an entry into the mathematics. As we encouraged students to talk about 
mathematics, we discovered a new (to us) Octavio. As he said in an interview towards the end of 
the year: 

Marta: What is it that you like most about math class, well if there is something that you 
like, of course? 
Octavio: To argue 
Marta: And why do you like to argue?  
Octavio: Because I feel, I feel like a good student when I think that the answer is right. 
Marta: What other things do you like about the class? 
Octavio: To chat and do work with my group. 
Marta: Did you work in groups last year in math class? 
Octavio: No, we worked individually. 

(All the transcripts in this paper come from exchanges that took place in Spanish. For reasons 
of space I have only included the English translation. I know that this is unfortunate as we miss 
the idiomatic turns and the richness of the speakers’ home language.) 

The example below shows different features of how students (and us) engaged with 
mathematics, such as use of humor and teasing and use of their home language (Spanish). It was 
a relaxed atmosphere. Students had been working in small groups on a problem on planning a 
class party with three options (going to a pizza place and movie theater; going to a water park; or 
to a skate ring, (Preston & Garner, 2003)). They were given some information on the cost of the 
three options and the students were to decide which option may be best and why. Carlos and 
Larissa are at the board to explain how they used equations to find how the cost of the water park 
(W = 100 + 5 P) and the cost of the skate ring compare (S = 200 + 2 P). So what they are going 
to solve is: 100 + 5 P = 200 + 2P. They have just subtracted 2P from both sides and have: 100 + 
3P = 200. 

1. Carlos: There it is. Here we take minus one hundred. 
2. Octavio: But why? 
3. Marta: Octavio is asking why 
4. Carlos: Why did we take minus hundred? [smiling] 
5. Octavio: Yes. 
6. Marta: Yes, he is the one asking it. I wasn’t asking it, he’s the one who asked it 
7. Carlos: Because that’s what we have to take away. Because here we subtracted minus 

one hundred, and here, we also subtracted minus one hundred. 
8. Marta: No, it’s a very valid question. 
9. Octavio: Ah, yes, okay, it’s fine, it’s fine. 
10. Carlos:  Then here you get one hundred and here you get three P. 
11. Octavio: Three P? [with a tone of surprise] 
12. Simón: Why?  
13. Octavio: Why? 
14. Lucas: Why? 
15. Carlos: Because I subtract one hundred. 
16. Larissa: Because we subtracted one hundred. 
17. Carlos: And you get three P. 
18. Ms. Adams: But what was the reason for subtracting one hundred? 
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19. Larissa: We wanted (incomprehensible) to know for-- 
20. Octavio: Positive. Why negative?  
21. Carlos: Be quiet. [Softly and smiling in the direction of Octavio] 

In this brief exchange we hear Octavio probing four times (lines 2, 11, 13, 20). He is 
following the explanation and wants to make sure that he understands what they are doing. This 
is quite different from other cases where students are presenting at the board but the rest of the 
students are not really engaged. After that, Larissa and Carlos deciding how to solve for P 
because that is one thing they had not done prior to coming to the board to explain. They end up 
with P = 33.333…There is also some joking around because the teacher and I ask them to erase 
what is in blue from the white board (from a previous exercise) so that they can have more room 
to show their work and Larissa points to the top of the board where part of the date is written in 
blue. This is sort of an inside joke because from when I started coming to their class I was asking 
them not to erase their work so that I could see how they were thinking, but it took a while for 
students to let go of their attachment to the eraser. And this time I was telling them to erase, so 
Larissa picks up on that. 

Next, the teacher and I asked Larissa and Carlos about the meaning of having found P to be 
33.333. 

1. Carlos: That one P is equal to 33.33333. 
2. Marta: Yes, but what does that mean? 
3. Carlos: Because we divided it. 
4. Marta: No, no, what does it mean in the problem? 
5. Ms. Adams: What is P? What is P? People… 
6. Marta: What does P represent? 
7. Larissa: People. 
8. Carlos: One person. 
9. Ms. Adams: Okay— 
10. Carlos: One person is going to pay 33…for the-- 
11. Octavio: Why 33 dollars if it’s two dollars per person? 
12. Carlos: It’s cause, nosy [mitotero] [to Octavio, as implying stay out of it, in a joking 

way]. 
13. Larissa: It’s cause it’s wrong [slightly laughing] 
14. Marta: It’s a good thing that Octavio is, is, really on the ball, eh? 
15. Larissa: Yes. 
16. Marta: He’s absolutely right 
17. Larissa: This is the number of people that can go. 
18. Carlos: That’s why!  
19. Octavio: Ah [incomprehensible; some laughter] 
20. Carlos: That’s what I was saying. [smiling]  
21. Larissa: That’s why, it’s not the price! [smiling] 

Larissa and Carlos are confused about what the P represents. As soon as Carlos says that it is 
the cost of one of the activities, Octavio jumps at that (line 11), since the cost of the activities are 
$2 per person for the skating and $5 per person for the water park. In line 12, Carlos uses a 
cultural term “mitotero” in a joking way to basically tell Octavio to stay out of it (“mitotero” in 
Sonora, Mexico (which is where many of the families in my context come from) means 
“gossipy” / “nosy”).  
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Finally, once they have agreed that P is the number of people, and they decide on P=33, the 
question of how much it is going to be comes up. 

1. Ms. Adams: And how much would it cost? 
2. Larissa: I mean we wanted to see, I mean we wanted, cause I mean we wanted to 

see-- 
3. Carlos: The exact point. 
4. Ernesto: How much would it cost? 
5. Octavio: So how much would 33 people cost? (pause- someone else says something) 

How much? Tell me, well! 
6. Carlos: How mu—33 people? 
7. Marta: Do it, do it, all of you -- 
8. Carlos: Ah well, here it is [looks at his notes again] 
9. Ms. Adams: Let’s see, that table-- 
10. Marta: You can all do it, eh? 
11. Carlos: In the graph. 
12. Marta: How much does it cost for 33 people? 
13. Carlos: You can all do it.  [repeating what Marta has said / teasing] 
14. Ms. Adams: How much does it cost for 33 people to go? 
15. Marta: All of you, yes, yes. 

Once again, we see Octavio engaged and asking in a challenging tone to tell him how much it 
would cost for 33 people (line 5). I then turn it over to all of them and suggest that they all figure 
it out (line 7 and again line 10). In line 13, Carlos repeats my saying “you can all do it” in a 
teasing tone. Perhaps some could interpret his repeating what I said as mimicking me and not 
being respectful, but that is not how I took it at all because it was part of our interaction style. I 
had known Carlos since the year before; he and his two siblings came regularly to the 
mathematics workshops for parents with their mother. We had developed a rapport over the two 
years. 

The concepts of “confianza” (trust) and family feeling are often mentioned in research with 
Latinx communities (González, et al., 2005; Rodríguez-Brown, 2010). The importance of 
building relationships among students and teachers and more broadly, among school personnel 
and families has been extensively documented in educational research with “diverse” students 
(e.g., Gay, 2000; Nieto, 2013). This importance has also been documented in the teaching of 
mathematics in non-dominant communities (e.g., Berlin & Berry, 2018; Guerra & Lim, 2017; Id-
Deen, 2017; Kitchen, 2007; LópezLeiva, Celedón-Pattichis, Pattichis, & Morales, 2017; Martin, 
2009; Musgrove & Willey, 2018). What I just presented is one more example of something we 
have known for a long time: relationships matter. If my view of equity is about the opportunity to 
participate, we need to develop an environment where students are going to want to participate. I 
saw this happening in that 7th grade class, and I also saw it in another school, first in a 4th/5th 
grade combination and then the year after (with the same teacher) in a 6th grade class. While the 
two settings were different, one aspect in common was a feeling of being a family and to a 
certain degree, the teachers acted almost as if being a family member. Allowing students to be 
themselves, to walk around the room and see what others were doing when working in groups, to 
tease each other (including me), all of this seemed to contribute to developing a safe and 
supportive environment where students were willing to take mathematical risks. 

I have been wondering for quite some time whether what we are missing when working with 
minoritized students in school is to bring in their home ways of being and acting. While in the 
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work in the 7th grade class, I may have seen glimpses of that, I am certainly not claiming that we 
succeeded, it was just that, glimpses. In Civil (2016), I argue for the need to gain a better 
understanding of how people engage in out-of-school settings in practices that are potentially 
mathematically rich and see how these ways of engaging relate to how, for example, 
mathematicians engage in the practice of mathematics. Nasir, Rosebery, Warren, and Lee (2006) 
argue that as learners we navigate through a variety of repertoires of practice as we move 
through different settings (e.g., home, school, clubs, groups that we may belong to). In looking at 
“the intersections between everyday practices and important disciplinary knowledge” they claim 
that “educators can use the varied and productive resources youth develop in their out-of-school 
lives to help them understand content-related ideas” (p. 493). I wonder, is school helping or 
hindering connecting these two practices, everyday practices and disciplinary (e.g., mathematics) 
practices? When we develop learning activities that build on students’ funds of knowledge but 
also engage them in rich mathematics, is it school mathematics that we are working with? Is it 
disciplinary (mathematicians’) mathematics? Should it be something else? In discussing the 
possible connections between different forms of mathematics (e.g., everyday mathematics, 
school mathematics, mathematicians’ mathematics), Nemirovsky, Kelton, and Civil (2017) point 
out that schools can only bring in “real world” problems to a certain point since school has its 
own constraints and after all the students are not really engaged in that real world problem that 
often serves mostly as a scenario to address school mathematics.  

I started this section discussing participation but the questions I just raised relate back to 
funds of knowledge and valorization of knowledge, thus bringing me back full circle. I want to 
close with some further thoughts on these ideas in part inspired by my current work as well as 
what I still see as challenges in the field when it comes to equity research.  

Next Steps? 
There are quite a few people now doing work in mathematics education building on the 

concept of funds of knowledge. This is certainly very different from the early 90s. Some of this 
work is informed by a variety of theoretical frameworks, which makes for a more robust account 
of the research efforts. In this sense, we are making progress, as researchers build on the concept 
and take it into different directions, contributing to the deepening of “the field’s knowledge base 
related to equity-based research” (Aguirre et al., 2017, p. 125). I think we can all agree that there 
seems to be more attention given to equity in mathematics education in recent years. Whether it 
is because some conference proposals ask for an explicit connection, or whether it is an 
expectation of funding agencies, or whether it is that there seem to be more researchers coming 
out of doctoral programs (and some NSF-funded Centers for Learning and Teaching) where 
equity is central to their preparation, I think that there are more people engaged in equity-related 
research activity than when I started my career. In Aguirre et al., we argue for the need to make 
equity part of research in mathematics education, no matter what our main topic of research may 
be. That is, we call for the need to make equity part of our research as an “intentional collective 
professional responsibility” (p. 128). In looking at the four political acts discussed by Aguirre et 
al., I see equity as central to my work (Political Act 1). As for Political Act 2, I have occasionally 
felt tokenized as the “equity expert” on projects but I would rather have that than the second 
approach described in that political act, which is having researchers who are not grounded in 
equity work provide superficial attention to equity issues. I believe that as researchers whose 
expertise is in equity, we have a responsibility to support others who want to do this work but 
may not feel knowledgeable. In looking at some of the recent PME-NA proceedings as well as 
listening to a variety of talks in diverse conferences, I wonder about how widely “equity 
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research” can be interpreted and whether we may be going in the direction that everything we do 
addresses equity somehow. Is that the case? Do we risk watering down equity? 

Where is the mathematics and what counts as mathematics are discussed in Political Acts 3 
and 4 (Aguirre et al., 2017) and are the center of my work, as I have addressed earlier in this 
paper. While I agree that to challenge equity work with the question of where is the mathematics 
can be problematic and creates a separation that is not (or should not) be there, the reality is that I 
have raised that question myself quite a few times, about my own work and about those of 
others, as I mentioned earlier in this paper. Is it mostly related to my views of what counts as 
mathematics? Are we doing enough in our writing and in our work to bring the centrality of 
equity to mathematics and the centrality of mathematics to equity? 

In my current work, I continue to explore questions centered on equity as opportunity to 
participate and I wonder about the potential for K-16+ “formal” learning (as in a school / college 
class) of looking at how people learn in everyday life or in informal mathematics settings (see 
Nemirovsky et al., 2017 for more on the distinction between mathematics in school, in everyday 
life, and in informal settings). In particular, as I have discussed elsewhere (Civil, 2007; 2016) 
learning in everyday settings often takes place through participation in the practice, often by 
observing first and then engaging with the activity. Lipka, Sharp, Brenner, Yanez, and Sharp 
(2005) describe the case of a Yup’ik teacher, Nancy Sharp, using a Yup’ik approach to learning 
(apprenticeship; observing and participating in the practice) to work with her students in 
mathematics. Similarly in their work with teachers of Maori and Pāsifika students in New 
Zealand, Hunter and Anthony (2011) refer to how teachers draw on their “students’ concepts of 
collectivism to develop communal responsibility” (p. 6) and build on these strengths to engage 
students in mathematical discussions. 

I am intrigued by the potential for mathematics teaching of building on students’ cultural 
ways of being and acting, as I illustrated briefly with the 7th grade example earlier and elsewhere 
(Civil, 2011; 2012; Civil & Hunter, 2015). Rogoff (2012; Rogoff et al., 2017) has been studying 
how children of Indigenous origin learn in communities in Guatemala and other places in the 
Americas, including some Mexican-origin children in the US, and contrasting these ways of 
learning to those of children from middle-class families, mostly of European origin. An example 
of this contrast is captured below:  

The toddlers [in a Mayan community] observed keenly and engaged in multi-way interaction 
with the group. In contrast, middle-class European American mothers’ approach resembled 
Assembly-Line Instruction, with mock excitement and praise to engage the little one in mini 
language lessons. These toddlers were less broadly attentive and seldom engaged with the 
group as a whole. (Rogoff, 2012, p. 236) 
Rogoff et al. (2017) discuss the concept of “sophisticated collaboration” that they have seen 

among Indigenous children, including children in the US of Indigenous Mexican origin. 
Sophisticated collaboration implies a form of working together that is fluid and coordinated.  
They noted that “rural Mexican children were more likely to cooperate in a game than were 
urban children in the United States, who competed with each other even at the expense of any of 
them winning” (p. 880). Children engaged in sophisticated collaboration think and work 
together. On the other hand, children from middle-class families tend to split a task and do less 
sharing, less thinking together, and take bossy roles. In a study of children engaged in computer 
programming, they note, “pairs from Indigenous-heritage U.S. Mexican backgrounds 
collaborated twice as much as did pairs from highly schooled European American backgrounds” 
(p. 880). 
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One of the key components of equity as opportunity to participate involves productive group 
work, in particular along the lines of Complex Instruction (Cohen & Lotan, 1997; Featherstone, 
et al., 2011). Do immigrant origin students from certain communities (e.g., in Mexico) bring 
strengths along the lines of sophisticated collaboration that we could be tapping onto? My work 
with families of Mexican origin points to interactions between parents and children in the 
mathematics workshops that range from direct instruction on the part of the parents to more 
collaborative, joint meaning construction (Civil, Díez-Palomar, Menéndez-Gómez, & Acosta-
Iriqui, 2008; Menéndez, Civil, & Mariño, 2009). Certainly, more work needs to be done to gain a 
better understanding of the strengths that immigrant-origin students, such as the ones in the 7th 
grade class I describe, bring with them. Children from different backgrounds are likely to bring 
cultural ways of participation that may be different from the ones expected by the school. This is 
an asset, as the example of sophisticated collaboration shows. I think it is worth noting that 
students who belong to non-dominant groups often have rich experiences and skills such as 
knowing more than one language (important in a global world), knowing how to collaborate 
(important for teamwork, a trait that is valued in many professions), learning at home through 
participation in the activity rather than through direct teaching, contributing to the household 
functioning (e.g., helping out with the home economy; language brokers). What are the 
implications of this richness of skills, knowledge, and experience for teachers and researchers in 
mathematics education?  

Why do I do this work? The words of Adrienne Rich (1986) say it much better than I could 
ever say it:  

When those who have power to name and to socially construct reality, choose not to see you 
or hear you, whether you are dark-skinned, old, disabled, female, or speak with a different 
accent or dialect than theirs, when someone with the authority of a teacher, say, describes the 
world and you are not in it, there is a moment of psychic disequilibrium as if you looked into 
a mirror and saw nothing (p. 199) 
As we reflect on the work we do with teachers, students, communities, I hope that we can 

provide accounts that counter these words. I would hope that the students and families with 
whom we work see themselves in the mathematics worlds that we share with them in our 
classrooms. I close with the words from a Pāsifika student, as a reminder that this is indeed 
possible: “When the maths is about us and our culture, it makes me feel normal, and my culture 
is normal” (Hunter & Hunter, in press, p. 16). 
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In this paper, I respond to and expand on Civil’s plenary address (this volume), in which she 
articulates key themes related to funds-of-knowledge orientations to mathematics education.  I 
review the themes selected by Civil: funds of knowledge, participation, and valorization of 
knowledge, and provide additional analysis.  Next, I accentuate the often absent but inherent 
political dimensions of work in mathematics education that emphasizes the cultural, as well as 
the often absent but inherent cultural dimensions of work in mathematics education that 
emphasizes the political.  Finally, I contribute additional perspectives to future directions for the 
research community around equity in mathematics education. 

Keywords: Equity and Diversity 

Introductions 
I trace the origins of my work around equity in mathematics education to my involvement as 

an undergraduate student in a spin-off project prompted by the then-contemporary study, in which 
Treisman and colleagues (see Treisman & Fullilove, 1990) attributed difficulties in college 
mathematics for African American students to their social and academic isolation.  In 1991, the 
mathematics department at the college where I was a student, inspired by Treisman’s findings, 
created a co-curricular Calculus “workshop” for first-year students of color.  I was tapped as a 
senior student facilitator, and this experience contributed towards my extension of experience in 
informal and Jewish education towards mathematics teaching as a profession. 

I continue to benefit from the power and privilege that come with whiteness in the U.S., in 
opportunities around education, employment, and housing.  Yet white privilege only goes so far 
for me, as a queer, gender non-conforming, Jewish woman.  In general, through my intersecting 
life experiences of Otherness (Du Bois, 1903) and my struggles from these marginalized positions, 
I feel solidarity and identify with people and groups who are being othered, objectified, or 
oppressed.  Once I became a high school mathematics teacher in the mid-1990s, for example, I 
discovered a system in the elite school in New York City where I taught that was supposedly 
ability oriented but had produced its lowest track with nearly all of the school’s students of color.  
After sizing up their brilliance, the students and I turned what was supposed to be a low-track 
senior math class to preparing for and taking the AP Calculus AB exam.  The impetus was 
certainly inspired by my achieved standpoint (Harding, 1993) as a queer Jew, and likely also in 
part by the then-contemporary Stand & Deliver.   

In that popular Hollywood rendering of real-life Jaime Escalante’s classroom, we saw Latinx 
students face racial discrimination as, presumed by the College Board to have been cheating, they 
were forced to retake their AP Calculus exams.  Though my students and I were spared the 
attention of The College Board, they schooled me about the range of everyday racial 
discrimination and microaggressions they experienced, from regularly being called one another’s 
names by white teachers, to being tailed inside stores by local shopkeepers, to being targeted by 
city truancy officers on route to school and then missing class while being “processed” by that 
system, to having to absorb the feeling of being feared on the streets by white women.  My love for 
them as their teacher connected me in an emotional way to what was their marginalization, their 
pain, their disappointment.  I wanted to teach mathematics that would feel relevant, to support their 
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and my own understandings of processes in the world, especially the structural and systemic 
processes that were designed to keep power and material resources from them. 

In my subsequent and ongoing work as a mathematics education researcher and teacher 
educator, I continue to learn about the importance of providing students with windows through 
which to use mathematics to understand the outside world but also of mirrors, through which to see 
themselves and connections to their pasts and potential futures (Gutiérrez, 2007).  As Gutiérrez 
(2007) elaborates: “The goal is not to replace traditional mathematics with a pre-defined ‘culturally 
relevant mathematics,’ but rather to strike a balance between the number of windows and mirrors 
provided to any given student in his/her math career” (p. 3).  Otherwise, like the poet Adrienne 
Rich (1986) warns, without such “mirrors,” there is the potential for “psychic disequilibrium” as 
the teacher, the school, the curriculum, and their aggregated power is describing the world, but 
without you in it, and it “as if you looked in the mirror and saw nothing” (p.199). 

Since the 1980s, mathematics education research and teacher education has considered an 
array of related sociocultural perspectives about mathematics and its teaching and learning -- 
ethnomathematics (e.g., D’Ambrosio, 1985), funds of knowledge for mathematics (e.g., Aguirre 
et al., 2013; Civil, 1998), and culturally relevant or responsive mathematics teaching (e.g., 
Gutstein, Lipman, Hernández & de los Reyes, 1997).  A commonality among these perspectives 
is around “centering” (Tate, 1995) mathematics on students’ experiences, their affiliations with 
various cultural or social groups, or the everyday practices of those groups, by creating 
opportunities for hybridity between the mathematical thinking in everyday practices or other out-
of-school domains and the formal school mathematics curriculum.  Unlike an incremental or 
vertical development of mathematical expertise typical to school-based learning, horizontal 
expertise develops through coordination across the diverse set of contexts through which one 
traverses (K. Gutiérrez, 2008). 

In this volume, Civil (2018) reflects on such a perspective about mathematics teaching and 
learning equity in mathematics education and identifies three interrelated themes that she views as 
central in her own “looking back”: funds of knowledge; participation; and valorization of 
knowledge.  I have been greatly influenced by Marta’s corpus of scholarly contributions, and I 
begin by addressing each of these themes.  Next, I follow Marta’s lead and present ideas about 
how we might “look forward,” or really, blaze new trails in mathematics education, in vision, 
mission, and action. 

Civil’s “Look Back” 
Funds of Knowledge 

Across the breadth of Civil’s work, she emphasizes a baseline premise that every community, 
family, and person possess mathematical funds of knowledge, and that these funds of knowledge 
can be leveraged as intellectual resources for school success.  This approach to equity in 
mathematics is considered “asset-based” (Celedón-Pattichis et al., 2018), in how it avoids a deficit 
construction of minoritized youth, their families, communities, and material spaces.  Civil’s 
research includes studies of children’s mathematical thinking, mathematics teaching, and parents’ 
mathematical thinking and perceptions, and draws on a blend of cognitive and sociocultural 
perspectives about learning.  One of her most significant contributions to date is her work on 
immigrant parents’ mathematical thinking, their cultural and linguistic funds of knowledge, their 
views about their children’s mathematics education in the U.S., and implications for equity in 
mathematics education (e.g., Civil & Andrade, 2002; Civil & Bernier, 2006; Civil & Menéndez, 
2011). 
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Much of the related scholarship around funds of knowledge in mathematics education is 
practice-oriented, around processes or implications for teacher education. Beginning with Moll, 
Amanti, Neff and Gonzalez’ (1992) outline of a process for teachers as co-researchers to conduct 
home visits with the goal of identifying funds of knowledge, there exists a growing set of studies 
that present potential protocols for, and demonstrate the effectiveness of, similar approaches in 
teacher education (Aguirre et al., 2013; Civil & Andrade, 2002; Foote et al., 2013; Rubel, 2012; 
Turner & Drake, 2015; Turner et al., 2016).  In aggregate, these studies guide teacher education in 
terms of how to foster orientations to teaching that value the funds of knowledge that youth bring 
to the classroom and in so doing, deflect prevalent deficit framings of minoritized peoples.  In 
addition, these studies identify and analyze ways of supporting teachers in developing and 
improving instructional practices that leverage those knowledge funds as intellectual resources.  

A related area of research comprises curriculum design fueled by a funds of knowledge 
orientation.  The Math in Cultural Context project is an example, in which teachers, researchers, 
and Yup’ik elders co-designed elementary school mathematics curriculum around mathematics of 
Yup’ik cultural practices (Kisker et al., 2012).  Less well-known examples around curriculum 
design based on community funds of knowledge can be seen, for example, in Katsap and 
Silverman’s (2015) work with geometry curriculum using traditional Bedouin weaving and 
embroidery, or Massarwe, Verner and Bshouty’s (2010) example of plane geometry curriculum 
with a focus on Arab art and design.  Civil has endowed our field with a variety of such examples, 
such as elementary mathematics curriculum around the theme of construction (Civil, 2002) or 
garden-design (Civil & Kahn, 2001). 

Curricular design that builds on students’ funds of knowledge typically relies on iterative 
processes of studying one’s students to identify funds of knowledge domains, identifying 
mathematics embedded in those everyday practices, and building curriculum that negotiates the 
connections and tensions between the mathematical thinking inherent to this domain and the 
desired school mathematics.  Although such processes are productive as equity-directed 
instructional practices, they extend beyond the normative scope of a teacher’s workload.  As our 
research and collaborations with teachers accumulate evidence that such processes are essential, 
we must concurrently adjust the scale of teacher workload and advocate for teachers as our 
collaborators in this endeavor so that there is not a disconnect between the necessary and the 
realizable.   

In this volume, Civil (2018) showcases an example of how a funds of knowledge domain 
emerged in her mathematics workshop for parents of school students.  Civil learned from the 
parents that American wrench sizes are sized in inches and expressed as fractions.  Ordering 
wrenches by increasing size is, therefore, equivalent to ordering fractions.  Civil presents the 
comparison of wrench sizes as an authentic context that can elicit or support mathematical thinking 
about fraction comparison.  Here, with respect to this wrench dimension example, Civil reiterates 
an essential tension that she has earlier described (e.g., Civil, 2007), between “preserving the 
purity of the funds of knowledge” and the mathematical goals of instruction, in terms of how a 
curricular focus on a real-world context might de-prioritize, limit, and constrain mathematical 
exploration and mathematical content.  

This tension is derived, in part, by how lesson planning in mathematics is traditionally driven 
by a predefined set of mathematical definitions, concepts, and skills, and then so-called “real-
world” examples are provided as afterthought applications.  Curricular design around a social 
practice or a social theme takes the opposite starting-point, which in and of itself is new for 
teachers or designers (Nicol, 2002; Wager, 2012).  I have negotiated this tension in my work with 
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mathematics teachers around a binary of teaching the real-world context in service of learning 
mathematics or teaching mathematics in service of learning about the world.  In navigating that 
false binary, we lose sight of how we are teaching children: our children, the children of our 
neighbors, and young people all.  Their collective well-being, their sense of being cared for, and 
how mathematics can support the development, cultivation, and refinement of their empathy, 
creativity, curiosity, and capacity to care for one another and the natural world could be our 
primary priorities. 
Participation in Mathematics 

Centering mathematics instruction on students using a funds of knowledge approach 
typically implies designing thematic curriculum around a selected socio-cultural domain.  An 
alternative way that funds of knowledge can be leveraged in mathematics is in terms of using 
analogies during instruction that relate a mathematical object or process to students’ existing 
knowledge but without focusing the curriculum thematically around that knowledge domain.  
For example, in one of my projects, I observed a teacher using one of her student’s breakdancing 
hobby in relation to the mathematical concept of a triangle’s center of mass (Rubel & Chu, 
2012). The lesson was not organized around breakdancing, but the breakdancing funds of 
knowledge was used as an analogy to bridge students’ experiences with a mathematical object 
and its definition. Similarly, the example in Moses and Cobb (2001) about using students’ 
experiences with the public transit system as a means of learning integers was absent a thematic 
focus on the trains themselves.  

Here, Civil (2018) presents an additional alternative, in her reminder that students from 
minoritized groups can engage in mathematical content that is devoid of thematic connection to 
specific lived experiences. She stresses that building on students’ experiences and their funds of 
knowledge does not need to be limited to building a curriculum focused on a particular everyday 
practice, real-world artifact or process, but could be implemented through the ways that teachers 
organize their classroom for participation -- not necessarily what mathematical questions the 
students are considering, but what kinds of participation are being made available to them, and if 
or how those kinds of participation are in synch with or in opposition to their ways of participation 
in other aspects of their lives.   For example, apprenticeship models of gaining expertise or 
assumptions of competence are endemic to various contexts and could be leveraged as resources 
for classroom learning (Civil & Khan, 2001; Kisker et al., 2012; Nasir, 2005).  

I would like to draw attention to this point, especially in the context of current educational 
policies and mantras. We know that teachers’ beliefs about students and about learning underlie 
how they think what doing mathematics is supposed to look like, and which forms of participation 
they will make available for their students (Hand, 2012; Rubel & Stachelek, 2018).  The common 
perception of order and silence as prerequisites to learning mathematics constrains individual 
teachers’ views about participation, can lead toward over-interpretation of student participation as 
off-task or disruptive, and typically results in didactic teaching (Hand, 2010).  In this volume, Civil 
(2018) draws attention to a 7th grade classroom vignette in which she was the instructor and her 
students engage deeply with evaluating algebraic expressions.  She credibly ascribes significance 
to the blend of humor, use of the students’ home language, and confianza (trust) among 
participants.  

Civil’s observations remind me of my own, recent observations of two accomplished teachers 
of color, Ms. Hudson and Ms. Garcia (pseudonyms), who collaborated with me on a recent project.  
Civil’s description of the family-like environment in that 7th grade classroom is reminiscent for me 
of the my sense of the atmosphere in Hudson’s and Garcia’s classrooms, notably different from the 
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classrooms of the 9 white teachers in that group of teachers.  Hudson created a family-life 
atmosphere through her playfulness and use of youth or informal language.  For instance, she 
would ask the class, “Can I mess with you now?” as a way of initiating a more complicated 
exercise.  This playfulness initiated a kind of lightness and communicated both rapport, support, 
and a sense of challenge. Garcia also connected to her students through language, but in her case, 
she drew on strategically using Spanish (her and their first language), to translate mathematical 
terms, to check in with students about their emotional state, and to redirect behavior.  Garcia 
positioned herself as a loving caretaker for her students by donning an apron around her waist, its 
pockets filled with pencils, erasers, and calculators for their use.  Civil’s description of her 
experience in that 7th grade class corresponds with my observations of Hudson and Garcia, and of 
the Lee example described in Clark, Badertscher, and Napp (2013).  In sum, this suggests that we 
expand our understandings about fostering hybridity in mathematics classes through participation 
processes and language and that we could follow the guidance of expert teachers of color and their 
community cultural wealth (Burciaga & Kohli, 2018).  Other kinds of “disruptions” of traditional 
learning environments, like situating formal learning in places outside of schools and classrooms, 
are likely productive as well in creating opportunities for hybridity (Ma, 2016). 
Valorization of Knowledge 

The research literature describes interventions and provides teacher education modules designed 
around supporting teachers about how to develop mathematics curriculum that builds on students’ 
experiences or everyday practices (Aguirre et al., 2013; Rubel, 2012; Taylor, 2012).  As part of 
this process, we are seemingly led to search in a cultural practice for what Noss, Hoyles and Pozzi 
(200) have called “visible mathematics,” meaning recognizable as school mathematics.  Here and 
in other papers, Civil draws attention to the valorization of knowledge, in terms of the issue of 
whose knowledge is being valued, meaning that oftentimes we do not sufficiently valorize the 
mathematical thinking endemic to various cultural practices as mathematics.  For example, one of 
Civil’s exemplar funds of knowledge examples relates to a parent’s geometric design and 
measurement work as a dressmaker (Civil & Andrade, 2002).  As Civil has discussed, there is a 
distinction between valorizing the dressmaker’s knowledge as itself mathematical or doing so 
through potential connections to existing school mathematics.  

 At the same time, Civil cautions about organizing lessons around a real-world context and 
then have the context “take over” the mathematics.  Civil cautions that the social context might 
be superficial or contrived and draws attention to the oft stated concern “where is the math?”  
Elsewhere (Rubel & McCloskey, under review), I have written about how the “where is the 
math?” critique is at times employed to protect Western mathematics as if it were universal and 
as if success in school mathematics were inherently fair.  Culturally relevant pedagogy, or 
pedagogy organized around funds of knowledge, is then positioned as communicating a 
“watering-down” of mathematics, for those seen as unable or unwilling to engage otherwise.  
Here, in reiterating her “where is the math?” concern, Civil comes close to positioning 
instruction and pedagogy that is fundamentally oriented around building on students’ 
experiences as potentially at odds with rigorous mathematics instruction.  When we position 
culturally relevant pedagogy as threatening mathematics, we falsely re-inscribe Western 
mathematics as neutral and deny that school and academic mathematics are historically, socially, 
spatially, and culturally bounded.  

Indeed, while ethnomathematics could focus on the mathematics of any social or cultural 
group, it is typically used as a catch-all term for mathematics among “identifiable cultural groups” 
(D’Ambrosio, 1985), and those groups are typically limited to subordinated social groups (Knijnik, 
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1997). Western mathematics is then understood as separate from and in opposition to 
ethnomathematics (Gutiérrez, 2017). But as Knijnik (2002) explains:  

by considering the form of other, non-hegemonic ways of knowing and producing mathematics, 
ethnomathematics relativises the “universality” of (academic) mathematics and, moreover, 
questions its very nature. … In problematising academic mathematics, ethnomathematics 
emphasizes not only that mathematics is a social construction but, more than this, that such a 
construction takes place in a terrain shaped by political dispute around what will be seen as 
mathematics, around which will be considered the legitimate way of reasoning, and therefore, 
around which groups are those that can legitimately produce science…..Thus, it is not a matter of 
talking naively about different mathematics, but of considering that these mathematics are, in 
terms of power, unequally different. (p.13)  

Hence, if we legitimize mathematical funds of knowledge only in terms of connections to 
Western mathematics, we are ignoring this political terrain. Using a Western gaze onto our 
students’ funds of knowledge is different than valorizing cultural expertise, curiosity, and other 
ways of knowing as avenues that will yield new mathematical questions, ideas, representations, 
and ways of knowing.  I call attention to the work of R. Gutiérrez (2002) in which she outlines 
how making space for people “under the tent” of mathematics will necessarily change, expand, and 
improve mathematics -- people pose mathematical questions and develop mathematical solutions 
informed by their experiences.  Mathematics is necessarily enriched by participation of a wider 
variety of people from a broader range of experiences.  As Gutiérrez teaches, it is not only that 
marginalized people need mathematics. Of course, they can use mathematics in a variety of ways 
to evade their marginalization.  However, for mathematics to stay relevant and to be able to solve 
many problems that remain unsolved, it is mathematics that needs a diversity of peoples.  

The Cultural is Political 
Although mathematics is an ongoing human creation, only some mathematics is recognized in 

the Western cannon and included in school curriculum.  For students in the U.S., from the White, 
Christian power-majority, this is not experienced as exclusion, since this is the normative culture. 
Teachers (as well as textbooks and test writers), who are largely from that power-majority, tend to 
draw on their own funds of knowledge in selecting, creating, and implementing mathematical 
tasks.  In sum, this means that white students already have their funds of knowledge reflected in 
typical mathematics instruction and curriculum, without need of intervention and unacknowledged 
as such.  Even when trying to connect to students’ funds-of knowledge, mathematics teachers have 
been found to contextualize mathematics using contexts related to sports or consumer activities of 
adults like home remodeling, shopping, banking, or budgeting (Bright, 2015; Watson, 2012), 
domains that are seemingly “safe,” or germane for everyone in the same way.  However, these 
domains are neither arbitrary nor neutral, but correspond to the interests, life experiences, and 
values of communities who already benefit from being part of the power-majority.  Moreover, the 
positioning of the importance of learning mathematics in school as preparation for roles as 
marketplace consumers or corporate employees demonstrates how mathematics in schooling is 
being used to support ideologies of individualism, competition, and capitalism, ideologies that 
benefit that same white power-majority.  How might our word problems in mathematics read if 
they were guided instead around commitments to collective well-being or to the health of our 
natural environment? 
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Making the Political Explicit 
There is a known tendency to avoid political questions like these in the teaching of 

mathematics (e.g., Simic-Miller, Fernandes, & Felton-Koestler, 2015), which can be explained 
by a combination of a lack of sociopolitical awareness among teachers, fear among teachers for 
job security especially in the current nationalistic climate, or a result of the common 
misperception that mathematics is apolitical.  In one of my projects, for example, I observed 
teachers struggle with how to take up issues of power and oppression in their teaching of 
mathematics for all of these reasons.  One white teacher with whom I collaborated, for example, 
created interesting curriculum around using geometric loci as a language with which to analyze 
or design home or facility location, relative to constraints like environmental pollution.  Even 
though her school was in a low-income area with high asthma rates, presumed to be related to 
more extreme and multiple sources of environmental pollution, she built the lesson in 
hypothetical, generic terms.  In conversation afterwards, she agreed that she could have provided 
the students the opportunity to use mathematics to articulate their own physical geometries in the 
context of actual existing environmental hazards and disease rates.  She reflected that she tended 
to have “blinders on” about specifically engaging in hybridity between relevant political 
concerns and her teaching of geometry (see Rubel, 2017).  I, too, as a teacher educator struggle 
with how to better support teachers in this regard. 

Indeed, despite a vision of mathematics as socially constructed with political ambitions and 
consequences, funds of knowledge projects in the literature are often described in cultural or 
linguistic terms absent explicit socio-political contextualization.  For example, taking Civil’s 
(2018) new example about wrench sizing, she has demonstrated that this is an interesting and 
likely productive context in which to explore comparison of fractions.  The wrenches, and what 
they are used for, as well as who is using them is seemingly put aside to focus on the wrench 
dimensions themselves, because fractions and their relative magnitudes explicitly reside in those 
dimensions.  But what of the unasked question as to the mathematics of why these people, in this 
moment of time, and in this place possess this specific knowledge about hand tools?  What is the 
mathematics of how this knowledge and expertise is capitalized on by those in power?  What is 
the mathematics of who owns the construction or tool companies, who gives the building 
permits, and what the zoning processes value?  How is this knowledge acquired and how is it 
shared?  Who invented this tool, for what purpose, and how is mathematics used to produce it?  
What fraction of construction profit goes to those who are doing the actual back-breaking and 
dangerous construction labor?  What is the mathematics of labor unions in the U.S. and their 
support for construction workers?  What else are these tools used for?  And further, what is the 
mathematics of American persistence to have a unique measurement system?   
The Political Crowding Out or Denigrating the Cultural 

It is not only that funds-of-knowledge curriculum modules are often presented absent 
political context.  There are examples in the literature of projects that are explicitly organized 
around political questions or themes but that do not honor or sufficiently leverage students’ funds 
of knowledge.  In my work with colleagues, as part of the City Digits project, for example, we 
identified widespread participation in state lottery games as a cultural fund of knowledge in 
which to explore probability, combinations, scale, measurement, data analysis with youth (see 
Rubel, Lim, Hall-Wieckert, & Sullivan, 2016c).  In a second example, we drew on rampant 
participation in a local array of alternative financial institutions like pawn shops and check 
cashers as an entry-point to evaluate spatial distribution of these alternative financial institutions 
in the context of other social variables (Rubel, Lim, Hall-Wieckert, & Katz, 2016b).  In both 
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cases, students built new or more developed mathematical understandings, which contributed to 
furthering their political formation (Rubel, Hall-Wieckert, & Lim, 2017).  Their interest in and 
curiosity about spatial justice engaged them in furthering their mathematical understandings 
(Rubel, Lim, Hall-Wieckert, in press).  Participating students reflected that contextualizing 
mathematics through political issues that they identified as connected to their lives and the places 
in which they live -- their funds of knowledge -- linked their learning to their sense of being 
agents of change in their families in terms of lottery spending, or decisions about financial 
institutions (Rubel et al., 2016c).  

At the same time, along with these important successes, these curricular modules and their 
associated maps did not make sufficient use of funds of knowledge as resources and instead, 
likely reinforced and highlighted common deficit notions about students and their families, at 
least for some students.  For example, central to these modules were data and map 
representations that could have been interpreted as suggesting that participation in the lottery or 
loan-taking from alternative financial institutions among low-income people are produced by a 
lack of mathematical understanding, instead of as products of spatial injustice organized to 
maintain the status-quo of white supremacy (Rubel, Hall-Wieckert, & Lim, 2016a).  The 
knowledge that the youth accessed in the community about people’s sense of hopelessness in the 
context of their care for loved ones remained largely in the shadows of the project’s focus on 
navigating probability and combinatorics ideas or on the mathematics of loans.  How could 
mathematics be directed at questions or problems related to hope or love instead of only on 
analysis of or strategies about capital gain amd loss?  

As another example, consider Cirillo, Bartell, and Wager’s (2016) presentation of a 
mathematical modeling investigation around the theme of soda pricing techniques used by fast 
food restaurants.  By presenting data showing drink volume and corresponding price per ounce, 
the finding is that over-sized drinks are sold at a cheaper rate per ounce than smaller, 
recommended sizes, effectively enticing consumers to buy larger drinks. Since these drinks are 
heavily caloric but without other dietary benefits, this becomes significant relative to obesity, 
diabetes, and other health factors.  Cirillo et al. (2016) direct readers to contextualize this finding 
in terms of the density of fast food restaurant locations relative to demographic variables around 
income, and speculate, indeed, that students in low-income areas saturated with fast food 
restaurants might surmise that there is not concern for their health.  Educating people about their 
miniscule probability of winning the lottery can be seen as using mathematics to promote 
abstinence from the lottery.  This is akin to how teaching that interest rates charged by pawn 
shops or check cashers are higher than other financial institutions might lead people to borrow 
money elsewhere.  Similarly, educating people about this value pricing of soft-drinks technique 
relative to the health risks of drinking soda is intended to guide learners towards abstinence from 
indulging in those drinks.  A commonality across these types of mathematical investigations is 
that they do not directly challenge why we accept a society that allows, supports, and even 
encourages these kinds of predatory systems.  

Fundamental to this distinction is our current paradigm of democracy, which is a power-over 
system (Guinier & Torres, 2002), meaning that competition for power yields some who dominate 
and more who are dominated.  Even if one assumes that the current democratic systems in the 
U.S. are fair and meritocratic, still, these systems are designed to generate inequalities, to yield 
rewards only to some, and mathematics supports these systems that are designed to rank and 
order of people (see Valero, 2017).  One could argue that teaching young people to understand 
the lottery as a social project, for example, which necessitates various mathematical 
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understandings, is a way to bolster them in this competitive “power-over” notion of democracy.  
It is one thing to support youth in navigating the world and its systems as they are, but it is 
another thing to challenge this underlying conception of democracy.  The power-over paradigm 
could be replaced with a “power-with” democracy (Guinier & Torres, 2002), in which the focus 
on the individual were shifted to a focus on the collective, wherein an essential value around 
competition among individuals were replaced with solidarity, resistance, and collective struggle.  
What would happen to our state-supported lottery systems, our loaning institutions, our fast-food 
restaurants and their pricing techniques, for example, if our democracy were “power-with” 
instead of “power-over”?  How can mathematics help us to advocate for such a paradigm shift?  

Next Steps 
In summary of next steps, Civil (2018) reiterates the set of political acts from Aguirre et al. 

(2017): “1) enhance mathematics education research with an equity lens, 2) acquire the 
knowledge necessary to do genuine equity work, 3) challenge the false dichotomy between 
equity and mathematics, and 4) expand the view of what counts as mathematics.”  Civil’s 
reflections, as well as my comments above, are largely concentrated around the latter two 
political acts.  Inspired by Political Acts #3 and #4 in particular, Civil asks: “Are we doing 
enough in our writing and in our work to bring the centrality of equity to mathematics and the 
centrality of mathematics to equity?”  

I opened this piece by citing perspectives about learning that guide us in terms of giving 
students opportunities to draw on their cultural and linguistic funds of knowledge as resources in 
mathematics.  I cited Gutiérrez’ (2002) call that we need to offer mathematics as a window 
through which students can look out onto the world, but also as a mirror in which students can 
see themselves, their families, their pasts, and their futures in mathematics.  And yet, the notion 
of mathematics as a mirror through which to see self seems not yet fully possible.  For example, I 
have bumped up against the gender binary in and with mathematics, by mathematics teachers, by 
mathematics exercises and theories that indicate and support a set of untruths (see Rubel, 2016).  
School mathematics tells me that I was born either a boy or a girl, and that this is a fixed state.  
Schooling in the U.S.  prescribes that liking or doing math is doing masculinity, and that girls 
can excel at math but at the cost of sacrificing femininity. School mathematics decries sexuality, 
race, and ethnicity as irrelevant, and that success in school mathematics is determined by a 
fundamentally meritocratic system. In these and other ways, mathematics, even as a mirror, 
distorts reality.  I never felt safe enough to come out as queer as a classroom teacher, and my 
physical and material vulnerability remain an issue, especially in the current political context.  
Mathematics, windows or mirrors, does not protect me, and if anything, my work and interest in 
mathematics likely make my ideas more threatening and put me in greater danger than if I 
worked in education research around another school discipline.  In the U.S., where mathematics 
is intertwined with white supremacy, patriarchy, and heteronormativity, my scholarly critiques, 
my publicly funded salary, and even my basic existence pose a challenge to that constellation of 
hegemonic forces.  

And so, what of the centrality of mathematics to equity and equity to mathematics?  This 
circles back to the first two Political Acts from Aguirre et al., 2018, which speak to our 
participation as mathematics education researchers in the current political context. There is the 
constant evidence of hegemony across mathematics education in the U.S. of review panels, 
editorial boards, plenary panels, and faculty rosters comprised largely or exclusively of white, 
CIS, straight, Christian, gender-normative people.  We must acknowledge that by limiting who 
participates in knowledge-building, including through entrenched processes of institutional 
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elitism in the academy, we limit the knowledge building itself.  Peruse the research that I have 
cited in and across this paper as well as the references cited in this volume by Civil - in nearly all 
cases, cited works are written by people from minoritized groups.  Of course, it is reasonable and 
appropriate that these scholars lead the field in thinking about equity -- after all, we build 
knowledge in part on our own life experiences, the standpoints we have achieved, and we draw 
from our own marginalization to recognize when, where, and how it happens to others (Harding, 
1993).  Those of you who are part of the power majority, either by being male, white, Christian, 
straight, gender-normative, or tenured faculty at a research university: how might the workings 
of our field be different and the knowledge we produce improve if we made space for other 
bodies and voices, listened to critiques, were better allies and advocates, or if we ceded, or at 
least shared, power with others who do not share our privileges?    

Instead of token nods of inclusion, we should blaze new trails for our research community by 
shaping our research agendas, methodologies, avenues for sharing knowledge, and ways of 
collaborating around a priority of tikkun olam (Hebrew for “repair the world.”) and collective 
productivity.  We could refashion our national and international leadership around a vision for 
mathematics education that focuses on cultivating kindness, empathy, curiosity, creativity, and 
collaboration among people in a power-with democracy.  That way, we would create 
mathematics that helps in posing and solving pressing questions about our natural environment 
and our wellness.  As importantly, we would know when to put aside mathematics for other, 
better suited tools or ways of knowing.  Perhaps instead of, or at least in parallel to, the oft-asked 
“where’s the math?” challenge, thinly veiled as a question, we ought to invoke the inverse 
challenge: “where’s the justice?”  After all, if a research project does not engage equity, 
privilege, power or justice, and is not contributing toward repairing our world, then how can such 
research be relevant to mathematics education? 
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TRANSFORMING TEACHERS’ KNOWLEDGE FOR TEACHING MATHEMATICS 
WITH TECHNOLOGIES THROUGH ONLINE KNOWLEDGE-BUILDING 

COMMUNITIES  

 Margaret L. Niess Jeremy Roschelle 
 Oregon State University Digital Promise Global 
 niessm@oregonstate.edu jroschelle@digitalpromise.org 

Mathematics teacher educators are faced with designing teacher in-service professional 
development experiences for developing and transforming Technological Pedagogical Content 
Knowledge (TPACK) towards integrating digital technologies as mathematics learning tools.  
Online environments provide opportunities to a broad range of teachers, yet, the asynchronous 
nature presents communication and collaboration challenges. A researcher-conjectured, 
empirically-supported learning trajectory guides this online TPACK program for engaging 
teachers in knowledge-building communities. Three online technology education courses provide 
teachers with experiences as students, learning about the technologies while confronting 
challenges to their thinking about teaching with the technologies.  The fourth course provides the 
teachers with key experiences through blended instruction. Through online explorations and 
discourses in their communities, they examine reform-based instructional strategies for teaching 
with technologies.  Concurrently, they design, implement, analyze and reflect on their teaching 
experiences through their designed five-day unit in their mathematics classrooms.  Four TPACK 
components reveal how this experience in knowledge-building communities transforms their 
TPACK. 

Keywords:  Learning Trajectory, Teacher Education-Inservice/Professional, Teacher Knowledge, 
Technology 

Introduction 
Mathematics teachers are challenged to actively engage students with current, more effective 

technologies as learning tools. A recent handbook chapter (Roschelle, Noss, Jackiw & Blikstein., 
2017) highlights three important research-based categories of effective learning digital tools: 
tools like graphing calculators that can do some of the detail work and students can focus on 
concepts; tools for providing guidance and feedback to students as they practice mathematics; 
and tools that help students visualize concepts and develop understanding. With the rapid pace of 
the development of digital tools, teachers cannot fully realize the value of these tools without 
teacher professional development.  While teachers may have heard about the technologies, this 
simple knowledge is not sufficient for guiding students in learning mathematics with the 
technologies.  Now recognizing twenty-first century learning, teachers must engage their 
students in developing four key skills (the 4 C’s) in preparation for effectively connecting with a 
global society: Critical thinking, Communication, Collaboration and Creativity (Partnership for 
21st Century Learning, 2015; Thoughtful Learning Organization, 2016).  Through these skills, 
students are prepared to effectively engage in the more complex social, cultural, and educational 
environments that depend on the advantages offered through the reliance on multiple 
technological resources.  Taking advantage of these 4C’s, students participate through various 
thinking and engagement strategies as they concurrently learn mathematics:  
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• Critical thinking: Students use analysis as they engage in problem solving where they 
make comparisons, contrast ideas, analyze ideas, categorize data, and evaluate results of 
trials.  

• Creative thinking: Students engage in open-ended invention and discovery of myriad 
solution possibilities as they design, improvise, innovate, problem solve and ask 
questions.  

• Communication: Students interact with others, connecting through multiple modes (e.g., 
text, social media, cell phones, email, Internet and other avenues) where they examine the 
messages with respect to the purpose, sender, receiver, medium and the context of 
various communications.  

• Collaboration: Student work together toward a common goal, brainstorming ideas, 
making decisions as a group, delegating, evaluating, goal setting, managing time, 
resolving conflicts, and team building.  

As mathematics teachers consider integrating technologies in their instruction, they must not 
only determine how the technologies support learning the mathematics, they must consider 
which pedagogical strategies effectively engage students in learning the mathematics with the 
tools as they incorporated the 4 C’s (Roschelle & Leinwand, 2011).  Teachers must identify, 
orchestrate, and manage different pedagogical strategies and learning tasks for integrating the 
technologies in new and perhaps different mathematical topics.  The challenge involves far more 
than their understanding of the mathematics content. The experience ultimately challenges their 
technological pedagogical content knowledge and reasoning (TPACK) with an array of 
technologies. “Quality teaching requires developing a nuanced understanding of the complex 
relationships between technology, content, and pedagogy, and using this understanding to 
develop appropriate, context-specific strategies and representations” (Mishra & Koehler, 2006, p. 
1029). 

Today’s mathematics teachers must continue learning about teaching mathematics beyond 
their learning in their pre-service teacher preparation programs and typically this learning 
happens as they are actively teaching. Transforming in-service teachers’ TPACK requires more 
than participation in short-term professional development experiences. Teachers need 
experiences to actively engage them in the process of “working toward a more complete and 
coherent understanding,” otherwise referred to as knowledge-building experiences (Scardamalia 
& Bereiter, 1993, p. 39). Knowledge-building communities (e.g., Scardamalia & Bereiter, 1993, 
2003; Bereiter, 2002) integrated with classroom teaching experiences are more likely to engage 
teachers in relearning, rethinking, and redefining teaching and learning to take advantage of new 
and emerging technologies and methods for teaching mathematics. Through such communities 
combined with practical teaching experiences, teachers have opportunities to confront their 
current pedagogical conceptions for integrating technologies as useful learning tools in their 
content areas (Loughran, 2002) in the process of developing reformed understandings for 
teaching in the twenty-first century with multiple technologies.  

In this paper, we specifically consider the potential benefits but also the potential challenges 
of providing teachers with learning experiences in online or blended formats that intend to 
establish online knowledge-building communities. On one hand, online or blended learning is an 
increasingly recognized educational setting for teachers’ professional learning experiences. It can 
allow teachers more choice about how, when and where they learn, reduce cost, and provide 
increased access for many more teachers across a broader geographical area.  Yet, the primarily 
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asynchronous nature of online learning poses additional challenges for the design of these 
needed educational experiences (Means, Toyama, Murphy, & Bakia, 2013). 

When considering these points, mathematics teacher educators are confronted with a primary 
and critical question in the design of knowledge-building communities for transforming teachers’ 
TPACK:   

What experiences are essential for guiding in-service teachers as they learn about 
the technologies as well as about teaching mathematics with the technologies?   
 
Building on this broad question, important sub-questions in the design of online professional 

development instructional programs emerge: 

1. What are the key features for online learning for guiding teachers in reframing their 
current teacher knowledge?   

2. What online learning trajectories are not only useful for engaging teachers in knowledge-
building communities but also for providing them with an understanding of the 
pedagogical challenges in their classrooms? 

3.  How might teachers gain classroom-based learning experiences for applying their 
theoretical ideas about teaching with technologies?  

 Through this paper, we report on the first author's research and development project, 
addressing these questions in the process of developing ad analyzing the outcomes of a new 
online in-service teacher TPACK program containing four graduate courses. The effort used a 
researcher-conjectured and empirically-supported learning trajectory (Niess & Gillow-Wiles, 
2013, 2014) to frame the experiences and pedagogical strategies to engage the in-service teacher 
participants in online knowledge-building communities blended with practical teaching 
experiences when teaching mathematics with technologies. The second author adds comments in 
the Discussion section. 

Theoretical Framework 
Teachers’ knowledge for teaching with technologies requires far more than just 

understanding the subject matter.  It ultimately necessitates a strong pedagogical knowledge 
merged with the knowledge for teaching mathematics using a vast array of technological 
innovations.  This task calls for Technological Pedagogical Content Knowledge (Angeli & 
Valanides, 2009; Mishra & Koehler, 2006; Niess, 2005), otherwise referred to as TPACK (called 
‘tee-pack’, Thompson & Mishra, 2007). TPACK, as shown in Figure 1, describes this teacher 
knowledge through the intersection of content knowledge, pedagogical knowledge and 
technological knowledge for guiding their strategic thinking of when, where, and how to guide 
students’ learning of the content such as mathematics with technologies.  

TPACK is the composite of the intersecting multiple domains (technological knowledge 
(TK), pedagogical knowledge (PK), content knowledge (CK), technological pedagogical 
knowledge (TPK), pedagogical content knowledge (PCK), technological content knowledge 
(TCK) and TPACK) within the Contexts. Further, the center subset is also described as TPACK. 
Mishra and Koehler (2008) described this center subset as: 

The representations of concepts using technologies; pedagogical techniques that apply 
technologies in constructive ways to teach content in differentiated ways according to 
students’ learning needs; knowledge of what makes concepts difficult or easy to learn and 
how technology can help redress conceptual challenges; knowledge of students’ prior 
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content-related understanding and epistemological assumptions; and knowledge of how 
technologies can be used to build on existing understanding to develop new epistemologies 
or strengthen old ones. (p. 3) 
 

 
 

Figure 1.  Representation of Technological Pedagogical Content Knowledge (TPACK) as 
teachers’ transformed knowledge. Reproduced by permission of the publisher, © 2012 by 

tpack.org 

Elaborating on TPACK 
The TPACK construct is recognized and supported by extensive research and scholarly work.  

Elaborating on TPACK, Niess (2005) extended from Grossman’s (1989, 1991) description of the 
four components of PCK.  The four TPACK components incorporate the influence of technology 
in teachers’ instruction, considering the teachers’: 

1. Overarching conceptions about the purposes for incorporating technology in teaching 
mathematics topics; 

2. Knowledge of students’ understandings, thinking and learning in mathematics topics with 
technology; 

3. Knowledge of instructional strategies and representations for teaching and learning 
mathematics topics with technologies; 

4. Knowledge of curriculum and curricular materials that integrate technology in learning 
and teaching mathematics topics. 

Building on these components, Niess, Sadri and Lee (2007) described TPACK development 
as a process in transforming teachers’ TPACK. They linked Rogers’ (1995) five-step process in 
the ultimate decision of whether to accept or reject a particular innovation with the analysis of 
extensive observations of teachers’ learning about spreadsheets and how to integrate 
spreadsheets as learning tools in their mathematics classrooms. Through this effort, they found 
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the teachers at different stages in their TPACK transformations: 

1. Recognizing  (knowledge), where teachers are able to use the technology and recognize 
the alignment of the technology with mathematics content yet do not integrate the 
technology in teaching and learning of mathematics. 

2. Accepting  (persuasion), where teachers form a favorable or unfavorable attitude toward 
teaching and learning mathematics with an appropriate technology. 

3. Adapting  (decision), where teachers engage in activities that lead to a choice to adopt or 
reject teaching and learning mathematics with an appropriate technology. 

4. Exploring  (implementation), where teachers actively integrate teaching and learning of 
mathematics with an appropriate technology. 

5. Advancing  (confirmation), where teachers evaluate the results of the decision to 
integrate teaching and learning mathematics with an appropriate technology. (Niess et al., 
2009, p. 9) 

Here's a scenario: Mr. D is a middle school mathematics teacher with a degree in 
mathematics who was excited as he learned to design dynamic spreadsheets for exploring 
algebraic problems.  However, he was constrained in his acceptance of students using 
spreadsheets for exploring algebraic changes when thinking about constants and dependent 
versus independent variables. He believed that students needed to create multiple graphs with 
paper and pencil in order to identify changes in the constants and variables of different functions.  
He was willing to use the spreadsheet for his summarization of the results, where he would 
demonstrate the changes for the students; however, he was not willing to engage the students in 
spreadsheet explorations. While he was considered to be at the recognizing level, even with more 
work with spreadsheets, he resisted the idea of adding spreadsheets to his mathematics classes. 

In a contrasting case, Mrs. A, a teacher with a mathematics education degree, was excited 
with the ease and visualizations that resulted as she worked with her students in designing 
dynamic spreadsheets in their explorations.  She wanted her students to have this experience as 
they worked in groups to explore changes in constants and variables. She felt that this more 
visual approach helped them gain a better understanding than if they had to individually graph 
each of the problems. As she worked with her students with the spreadsheets, she envisioned 
additional experiences for using spreadsheets in her mathematics classes and was thus viewed at 
the exploring stage. 

These stages were proposed as an iterative process in the development of TPACK rather than 
a strictly linear process. In essence, some aspects of what is learned about teaching a particular 
topic with one technology may provide a disposition toward the acceptance of another 
technology. But teachers need to explore different topics with each new technology, considering 
its applicability for supporting learning mathematics with that technology 
Developing In-service Teachers’ TPACK  

Reconstructing in-service teachers’ knowledge to reflect the ideas as described in TPACK 
requires teacher engagement in systematic inquiries about teaching, learning, subject matter and 
curriculum, and schooling, much like that described in Cochran-Smith and Lytle’s (2001) 
conception of “knowledge-of-practice” as a “transformed and expanded view of what ‘practice’ 
means” (p. 276). Such a reformed conception assumes that knowledge is “socially constructed by 
teachers who work together and also by teachers and students as they mingle their previous 
experiences, their prior knowledge, their cultural and linguistic resources, and the textual 
resources and materials of the classroom” (p. 280). Transforming teachers’ knowledge suggests 
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their involvement in an inquiry knowledge-building community where reflection is a central 
component (Cochran-Smith & Lytle, 2001; Loughran, 2002; Schön, 1983).  

Borko (2004) describes a process for identifying high–quality teacher change programs as 
called for in transforming teachers’ TPACK, as beginning with studies in a single site, exploring 
relationships between teachers as learners in a specific learning trajectory.  Confrey and Maloney 
(2010) expand this thinking, describing the need for identifying a learning trajectory as a 
“researcher-conjectured, empirically-supported” description of an “ordered network of 
experiences” where teachers as students move from “informal ideas, through successive 
refinements of representation, articulation, and reflection, towards increasingly complex 
concepts over time” (Confrey & Maloney, 2010, p. 968).  In this manner, teachers are engaged in 
instruction designed to move from informal ideas through successive refinements toward a 
transformed knowledge for teaching with technology.  Through this purposeful learning 
trajectory, they develop knowledge through their experiences as they are engaged in instructional 
strategies that ultimately model teaching with technologies. 

Teachers as learners are, thus, charged with becoming aware and critical of their own and 
others’ assumptions about teaching to achieve a paradigm shift that transforms their thinking and 
actions toward the ideas embedded in TPACK.  McGonigal (2005) outlines five conditions and 
processes for fostering such a transformative learning experience for enhancing teachers’ 
TPACK:   

1. Teachers need an activating event to expose the limitations of their current knowledge. 
2. Teachers need opportunities to identify and articulate underlying assumptions in their 

teaching knowledge. 
3. Teachers need to engage in critical self-reflection, specifically considering the origin of 

underlying assumptions, and how these assumptions have influenced or limited their 
understandings about teaching. 

4. Teachers need to engage in critical discourse with other teachers and the adult teacher 
educator in the process of examining alternative ideas and approaches. 

5. Teachers need opportunities to test and apply their new perspectives. 

Online TPACK Learning Trajectory 
We investigated an educational setting where in-service teachers’ professional learning 

experience is provided through online programs. The first author’s research group designed an 
approach based on Niess and Gillow-Wiles (2013, 2014) empirically-supported learning 
trajectory, to frame online TPACK learning experiences to engage teachers in knowledge-
building communities designed toward transforming the teachers’ TPACK.  The trajectory 
recognized key instructional strategies through a social metacognitive constructivist instructional 
framework that identified key tools and processes for organizing the TPACK content 
development in online asynchronous, text-based inquiry learning experiences.   

Tools.  Two tools support the online professional development: (1) a community of learners 
and (2) reflection.  With the challenge for establishing connections among the learners and the 
instructor in online learning, establishing a community of learners provides an important tool for 
supporting the learners in communicating and interacting through discussions about the tasks and 
ideas being developed. This tool provides a social presence such that the community functions as 
a knowledge-building community. Through this community, the construction of knowledge is a 
“social activity, with new information and ideas brought into the discourses of a community that 
shares goals for knowledge advancement and recognizes contribution” (Scardamalia & Bereiter, 
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1993, p. 38-39).  Such a social presence establishes community member participation and 
educational experiences for meaningful learning, open communication, and group cohesion as 
the learners engage in active roles to make sense of new information and ideas (Bereiter, 2002; 
Garrison, Anderson, & Archer, 1999; Garrison & Cleveland-Innes, 2005; Hill, Song, & West, 
2009; Kinsel, Cleveland-Innes, & Garrison, 2005; Rourke, Anderson, Garrison, & Archer, 1999; 
Scardamalia & Bereiter, 1993; Sung & Mayer, 2012; Swan & Shih, 2005).  

Reflection was the second important tool in the online learning trajectory.  Critical reflection 
supported the cognitive presence in the online learning trajectory. Learner engagement through 
reflection happened in multiple ways, such as having learners prepare content reflective essays, 
reflective essays on the community engagement and peer reviews of another learners’ work. The 
online portfolio provided a consistent way for each teacher to capture, reflect on and share their 
progress. Basically, the community of learners dynamically integrated the social, cognitive, and 
teaching presences in the online environment, supporting higher order learning through the 
reflective actions that result in deep approaches to learning (Garrison & Cleveland-Innes, 2005).   

Processes.  The online learning trajectory also includes two key processes for incorporating 
the tools: (1) shared/individual knowledge development and (2) inquiry learning. As the learners 
participates in the community of learners’ activities, they share their understandings of how they 
are interpreting the ideas.  As the discussions evolve through their interactions, the learner’s 
individual knowledge matures. The learners move between group and individual knowledge-
building so as to ultimately create an understanding that more clearly reflects a world view with 
respect to the learning experiences (Dunlap & Lowenthal, 2014; Rienties, Tempelaar, & Lygo-
baker, 2013; Swan, 2001). As a result, the learners’ individual knowledge expands beyond that 
which they were able to develop independently. 

The second key process with the knowledge-building communities relies on inquiry-based 
activities to provide the learners with tasks, opportunities and experiences where they negotiated 
their understandings of the content.  The inquiry process immerses them in constructing their 
understandings, where they take ownership of their learning, beginning with questions and their 
explorations where they investigated worthy questions, issues, problems or ideas. They ask 
questions, gathers and analyzes information, generates solutions, make decisions, and justifies 
their conclusions. The resulting actions interweaves multiple technologies, instructional 
approaches, and content topics through multiple units. Throughout the process, the participants 
consistently engage in thinking and reflecting about the dynamic interactions among content, 
pedagogy and technology that emerges from the tasks in their online learning experiences 
(Roberts, 2002; Wheatley, 1992). 

An Online TPACK Instructional Program  
Our program for transforming mathematics teachers’ TPACK for teaching with technologies 

developed four new university graduate level courses. Three of the courses are fully online and 
focused on technology education. These courses are combined with a blended course that 
incorporates teachers’ practical experiences where they implement their newly developed 
technological knowledge in their own classrooms with an online experience through a 
community of learners’ inquiry and discourse about reformed-based pedagogical strategies. 
Technological Education Courses  

Three courses (SED 520, SED 521, and SED 522) engaged the teachers in experiences as 
students where they learn about and with some technologies in ways that challenge and advance 
their thinking about learning mathematics with these technologies.  During these experiences, the 
teachers interact in small communities of learners in discourse, responding to the experiences as 
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students and then as teachers. They use critical reflection in considering the dilemmas, their 
personal experiences and their discussions to inform their TPACK understandings.   

For each unit in these courses, inquiry tasks challenge the teachers to examine and explore 
specific technologies.  For example, in SED 520 one unit challenges them to examine and 
explore the temperature probe, a technology with which they are typically unfamiliar.  They are 
provided with 10 laboratory experiments to guide their explorations as they learn how to collect 
temperature data and use the accompanying software to analyze the data, both graphically and 
numerically. As they work with the experiments, they also engage in questioning and discussion 
with their assigned small community of learner groups, discussing key questions as they examine 
the readings and their experiences in learning about and with the probeware. The unit 
emphasizes higher order thinking and inquiry learning to shape their ideas for integrating the 
technology as a learning tool in mathematics. To conclude the unit, the students prepare a critical 
reflection on their experiences with the technology, on the key questions and the inquiry 
processes and how their shared/individual experiences through the community of learner’s 
discussions as well as their individual experiences form their understandings in this unit. 

SED520.  Integrating Technology and Literacy in Learning Mathematics (SED 520) is a 
course focused on multimedia technologies for twenty-first century mathematical literacy 
incorporating the 4 C’s in teaching and learning mathematics. The course is arranged in five, 
two-week unit experiences. The technologies are purposefully selected and organized with the 
content. Unit 1 begins with presentation software, a technology with which teachers typically 
have experience. They are charged with using a Google presentation in a cooperative, 
collaborative experience to inquiry and examine new Web 2.0 technologies (Diigo, Wordle, 
Blabberize, Glogster, Voki, and Popplet for example).  Each class member has responsibility for 
creating one slide that describes one specific technology term and how it can be used in 
education and a second slide that introduces them as new members of the class.  Unit 2 promotes 
the teachers as learners exploring a technology with which they are unfamiliar – the temperature 
probe, as previously described. This experience engages them as students, where they must 
become familiar with the technology and consider how it might be used in learning mathematics; 
additionally, in their roles as teachers they consider what instructional strategies are needed to 
engage students in learning with this technology.  The Web Inquiry Unit 3 pairs teachers in the 
design of a web presentation to guide students in specific mathematical explorations. This unit 
uses a framework similar to that in WebQuests (http://webquest.org/) to guide students in 
mathematical inquiries through web experiences (see http://webinquiry.org/ for sample 
inquiries). Unit 4 expects the teachers to work individually in designing three lessons that require 
use of a specific web application for learning mathematics. Teachers typically consider 
applications such as those available through the National Library of Virtual Manipulatives 
(http://nlvm.usu.edu/en/nav/vlibrary.html) or other similar libraries of interactive mathematics 
experiences.  Finally, Unit 5 organizes the teachers as small cooperative groups for group 
analysis and writing experiences.  These last two units expect the teachers to think about the 
comparison of knowledge gained as individuals (in Unit 4) versus that gained through 
cooperative and collaborative sharing with technologies (in Unit 5). The culminating product for 
this course is a web portfolio that presents the various products produced in each of the units of 
the course, demonstrating their knowledge of multimedia mathematical literacy. 

SED 521.  The second course, SED 521 (Teaching Mathematics With Digital and Video 
Technologies), uses inquiry experiences with digital images and videos to engage the teachers as 
students in higher order thinking and inquiry in mathematics. The major course difference 
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between this course and SED 520 is the organization of the technology experiences into two 
major units, one focused on teaching mathematics with digital images and the second on 
incorporating videos as mathematics learning tools. Weekly, specific inquiry tasks confront the 
teachers.  For example, during the first unit, they are challenged to gather digital images that 
afford opportunities for engaging students in twenty-first century learning of mathematics.  The 
teachers are challenged to engage in their communities of learners, exploring these images to 
respond to this question: How might students’ selection, acquisition, and presentation of digital 
images be beneficial for their learning of mathematics topics?  The teachers engage in discourse 
with their assigned communities of learners and complete critical reflections through this 
question and the accompanying tasks and experiences with multiple digital images. Over the 
course of all the units they discuss the key questions and how their shared/individual experiences 
as well as their individual experiences influence their developing understandings. The 
culminating course product is a collection of digital images and videos with lessons for using 
them as mathematics learning tools. The collection also includes a video that portrays an 
example of what students might develop to communicate their higher order thinking when 
solving mathematics problem. 

SED 522.  The third course (SED 522), Dynamic Spreadsheets as Learning Tools in 
Mathematics, provides teachers with opportunities to explore algebraic reasoning when engaging 
students in learning with spreadsheets. Throughout the 10 units, inquiry tasks that involve 
developing skills with spreadsheets, the teachers’ understanding for designing dynamic and 
dependable spreadsheets as a mathematics learning technology develops. The units model 
specific problems for gaining knowledge through access to spreadsheets. For example, Figure 2 
presents a problem the teachers as students are to solve using relative cell referencing. 

 

 
Figure 2.  Mixture spreadsheet problem for SED 522 

After designing a solution, they must develop a graphical representation (Figure 3) of their 
design and engage with their communities of learners’ knowledge-building communities to 
explore multiple TPACK-related questions: 

1. Where might this problem be useful in the mathematics curriculum? 
2. What spreadsheet skills do students need for designing such a spreadsheet solution? 
3. How should the students be organized for solving this problem? 
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Figure 3.  Graphical representation of the solution 

In completing this spreadsheet course, the teachers’ final project is a portfolio containing 
their collection of mathematics problems with solutions, curriculum plan for integrating 
spreadsheets as tools for exploring mathematics problems, and a final reflection on preparing 
their students to use the spreadsheet as a mathematical tool. 
Blended Online and Practical Course: SED 594 

Given these new online courses, the program designers questioned whether the experiences 
actually translated to the teachers’ classrooms.  For this reason, a fourth course, SED 594 
(Advanced Teaching Strategies in Mathematics), was added to the TPACK program.  As a 
blended course, this course combines online discussions and explorations about reform-based 
instructional strategies with practical teaching experiences in the teachers’ own classrooms.  
Through the online explorations and discussions in their knowledge-building communities, they 
examine reform-based instructional strategies.  Concurrently with their communities of learners’ 
discussions, the teachers individually design, implement, analyze and extensively reflect on their 
personal, practical teaching experiences in their five-day unit in their mathematics classrooms. 
Essentially, they engage in action research about their own teaching as they gather artifacts to 
describe their instructional strategies, tools, and processes for engaging their students in learning 
mathematics with the selected technologies.  

They incorporate extensive reflections in their electronic portfolios.  These portfolios 
incorporate critical reflections from throughout the course to demonstrate how they implement 
their knowledge for teaching in their classrooms as they integrate technologies in 
teaching/learning mathematics.  They gather two videos of their classroom instruction.  They 
gather student products, examining whether the students demonstrate a strong understanding, 
average understanding or weak understanding of the concepts or processes. They complete 
multiple critical reflections throughout their instructional experiences (on the lesson designs 
before teaching, after teaching the lessons, about their students’ work in the lessons, after 
watching videos of their instruction, and at the completion of the instruction). Weekly, they also 
reflect on their community of learners’ explorations and discussions about the reformed-based 
instructional strategies.  They peer review another teachers’ portfolio, providing 
recommendations for enhancing the communication of the ideas. And, they complete a final in-
depth analysis and reflection of the experiences they have had in their classroom teaching and 
their community of learner’s discussions and interactions. 

While they engage in the practical teaching experiences, they use the online community of 
learner groups to explore and discuss different instructional strategies, tools, and processes for 
teaching with technologies. Throughout their discussions, they cooperatively explore and 
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examine reform-based instructional strategies – visible thinking, student discourse, grouping 
structures, and multiple representations for motivation and engagement. They peer-review 
another’s electronic portfolio with the goal of improving the communication of the events and 
thinking. This review prepares them for the final critical reflection on the entire blended course 
experience, including the instructional experiences, video analyses, plans for improving their 
future instruction, and discourse in their community of learners where they discuss and consider 
instructional strategies for teaching with technologies.  This final critical reflection reveals how 
their TK, TPK, and TCK merges with their PCK in the process of transforming their TPACK. 

Teachers’ TPACK Transformations 
To investigate the influence of the online TPACK instructional program on teachers' 

knowledge transformations, we analyzed observations using the teachers’ artifacts, expressions 
and reflections describe. The analysis reveals their knowledge, thinking and reflection with 
respect to the four TPACK components (Niess, 2005). Three representative cases (using 
pseudonyms Janis, Judy, and Lucy) were purposefully selected to display the patterns in the 
diversity of classroom situations and teaching levels.  Janis, an elementary teacher, designed a 
fraction unit combining concrete and virtual manipulatives and games and activities she found on 
various websites for building students’ understandings for representing, comparing and ordering 
fractions. Judy, a ninth-grade mathematics teacher chose to incorporate graphing calculators as a 
technology for her geometry course as they explored properties of transversals and the created 
angles, parallel lines, and perpendicular lines. Lucy, a high school mathematics teacher, 
incorporated the temperature probe with spreadsheet software in her pre-calculus class to engage 
her students in examining exponential, logarithmic and logistic functions. 
Overarching Conceptions 

As the teachers used technology in their own classrooms in the culminating SED 594 course, 
they were challenged to evaluate the value of the mathematical learning experiences for their 
students.  In essence they were confronted with the question of whether or not the technology 
would support student learning in a purposeful and useful way. 

Janis had previously taught her unit using only concrete manipulatives to build the students’ 
understanding of fractions. “Using the virtual manipulatives was new and did cause me to 
change the way that students completed some of the tasks from previous years. The virtual 
manipulatives were nice because they didn’t take up space like the concrete ones, and students 
were able to work with partners more instead of their whole table group.” Janis saw the virtual 
manipulatives as adding to learning in an important way: “It allowed the students to make an 
instant connection between the manipulative and the mathematical concept because the symbolic 
notation was also shown on the screen.” Reflecting on the value of the virtual manipulatives, she 
revised her original conceptions since the technologies provided a larger variety of learning 
experiences that she found important for student understanding of the concepts. 

Judy’s conception of graphing calculators as learning tools was intertwined with the 
importance of having students in working groups.  She concluded that having the students work 
in groups led to solving problems and exploring ideas through technology tasks and deepened 
their learning because they were developing their own plans for solving the problems. 

When students worked in the groups with the graphing calculators, they helped each other 
when they were stuck. The groups also allowed students to explore many different equations 
of lines at the same time. They were exposed to many more possibilities of equations of lines 
than they would have been if I were leading the whole group. 
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Lucy designed her instruction to integrate technology and science in her mathematics 
instruction “The learners were supported in their learning through the computers and the 
Go!Temp Probe which collected data modeling a logistic curve. They were able to make real-
world connections to their learning.”   She concluded “The connection to science makes the 
learning richer and fuller.”    
Students’ Understandings, Thinking and Learning 

Another concern for the teachers involved the question of how the technology aided in 
students’ understandings, thinking and learning of specific mathematics topics.  They were 
confronted with assessing the students’ understandings and whether that understanding and 
thinking supported a stronger knowledge.  

Janis noted that her students struggled to represent a given fraction three different ways but 
with the addition of the virtual manipulatives and other applications, she noted that when they 
built their fractions “on the fraction bar site they were forced to re-examine their ideas.”  She 
often talked about students’ thinking and how their understandings and learning were impacted: 

Many students are visual learners, and it would not be enough for them to simply listen to 
another students’ [explanation]. The combination of visual and auditory increased the 
number of students…engaged during group sharing and discussions and [increased] the 
chances that students [would] effectively process and retain the information in a meaningful 
way. 
Judy gained an appreciation for the use of small group work with technologies for 

understanding students’ thinking and understandings. During a Think-Pair-Share activity, she 
observed many conversations and heard many students mention slope. “It helped that they did 
not have to share among the larger class first ... more students [were] willing to share than usual, 
and I feel it is due to sharing with a neighbor first.” She noted how using technology in the group 
work helped her understand the students’ thinking. “Students were very engaged within the 
group work today. Perhaps the most engaged I have seen them in [the] group work. I feel the use 
of technology was a key factor.” 

Lucy realized her students’ knowledge and thinking in one class did not necessarily transfer 
to other content areas. After the second day of her unit, she reflected that even though students 
had used microscopes in their biology class, they had a hard time translating that knowledge into 
the mathematics classroom. With a little guidance, “they got on track nicely and I anticipate this 
task to go faster as the days go on.” 
Instructional Strategies and Representations 

Since the teachers were expected to design and implement a five-day unit, they were 
confronted with the task of identifying and scaffolding multiple instructional strategies to support 
students in learning the mathematics topics.  They recognized the additional challenge for also 
scaffolding the instruction in such a manner that it supported student engagement with the 
technologies.  

Janis connected the online discussions with her community of learners with her ideas for 
instructional strategies: “I incorporated some of the research-based instructional strategies that 
we have been discussing...Primarily, I used a lot of discourse, questioning, and collaborative 
learning…I tried to provide multiple representations…whenever possible, allowing students to 
connect their ideas with a visual.”  She gained a deeper understanding of strategies for 
integrating technologies through her video analysis. She saw the need to provide more direct 
instruction with the technologies. “What went really well was engaging students in the lessons 
and giving them opportunities to share their thinking as they worked collaboratively on the 
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tasks.” She also recognized that with students’ ages and the novelty of using the technology, “I 
had to make sure that the tasks we did in the computer lab were very structured.” 

For Judy, the emphasis in the online discussions and her experiences with her instruction 
aligned her thinking about instructional strategies with grouping, problem solving, questioning 
and student discourse because these strategies “allow[ed] the learning environment to be 
centered on students who are actively engaged.”  From her work with these various strategies, 
she indicated that “Overall I want my classroom to be more student-centered and less teacher-
centered.” 

The strategies Lucy implemented included discourse, questioning, inquiry, motivation, 
multiple representations, compare and contrast, cooperative and collaborative learning, providing 
feedback, and technology and science integration. Throughout the various science lab lessons, 
she was a guide. “I did not measure any pH, nor did I tell them which number it best matched. 
They asked each other and worked very collaboratively during this lesson…I know the more 
consistent I am with being a guide rather than the sole provider of information, the sooner it will 
become a habit.” 
Curriculum and Curricular Materials 

A critical concern for the teachers in this final work was to identify a topic that was best 
suited for the technologies they wanted to include. They each want to make sure they were 
teaching the expected curriculum in order to support students as they advanced to future topics. 

Janis’ knowledge and thinking about her curriculum and curriculum materials changed as she 
reflected on the experiences in the lessons and what she saw in her lesson videos. She saw clear 
evidence about the importance of allowing students time to learn about and become familiar with 
the technology tools. “The students really enjoyed using the virtual manipulatives and they were 
motivated to complete the relevant tasks. However, I simply had not factored in enough time to 
let them explore with the manipulatives so that they could effectively utilize them during the 
lessons.” 

Judy indicated she needed to look for more ways to integrate technology: “Technology can 
aid in their learning and provide opportunities for them to be engaged.” However, she noted that 
adding technologies to the learning required extending the curriculum and the need to “find 
activities and tasks” that would support students in learning with the technology. 

A main objective in Lucy’s unit was to “connect mathematics and science with the help of 
technology.” She claimed that a promising practice might be for team teaching with the science 
teacher, where they would co-teach, and she would have the responsibility for the mathematics. 
“We plan to team teach using real-world data for mathematics…[making] an even better 
connection [of] math, science, and technology.”  
In Sum: Teachers’ TPACK Transformations 

After designing the online TPACK instructional program, our research effort focused on 
identifying the influence on the teachers’ TPACK.  The challenge was to identify how the 
teachers’ thinking was transformed as a result of their engagement in their experiences.  The 
most significant shift in their knowledge and thinking for all the teachers was a shift in their 
thinking about instruction.  The majority of the teachers’ primary approach prior to this program 
involved teacher-centered instruction. Yet, through the program, they shifted to valuing student-
centered instructional strategies for teaching with technologies. This shift was reflected in the 
examination of the TPACK components. 

Their overarching conceptions of the purposes for incorporating technology in teaching 
mathematics expanded, identifying the importance and value of multiple technologies, 
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considering more than just content and thinking about the pedagogical strategies and the 
technological features.  For example, they now considered technologies for communication, 
collaboration, and inquiry as important technologies for displaying mathematical ideas.  In other 
words, their overarching conceptions shifted to a broader range of technologies for teaching in 
ways that were more student-centered. 

Their reflections about student-centered strategies caused them to think more about student 
thinking and understanding.  They reflected more on students’ thinking with the technologies and 
what strategies were more supportive of their learning of mathematics with the technologies.  
They reflected on how students needed time to practice and work with the technologies before 
moving to more in-depth problems.  They discussed and reflected on the scaffolding that they 
needed to do in their lessons as they integrated the technologies.  They needed to allow students 
opportunities to discover and explore ideas with the technologies.  Based on their experiences of 
working in groups and engaging in discourse with their communities of learners, they tested 
more student-centered strategies as they taught their lessons.  After observing their videos, they 
saw how they needed to be “a guide rather than the sole provider of information.”  

The expanded vision on technologies in mathematics instruction also influenced their 
thinking about the curriculum.  They shifted to the importance of expanding the curriculum to 
include teaching about the technology before expecting students to automatically gain 
understanding of mathematics immediately from working with the technology. During their work 
with various probeware technologies, they were engaged as students; through these experiences 
they identified the importance of learning about the technologies within content-specific 
explorations.  As they designed and taught their lessons, they tried to incorporate explorations of 
mathematical ideas during the time in which their students were learning about the technologies. 

In essence, the most obvious transformation in the teachers’ TPACK was toward student –
centered instructional strategies and the integration of multiple technologies for teaching in their 
classrooms. As teacher educators consider the design of programs to support the transformation 
of teachers’ TPACK, they need to remember the importance of practical experiences.  This work 
also identified the importance of combining practical experiences with opportunities for the 
teachers to engage in discourse through the knowledge-building communities of learners and 
extensive critical reflection on teaching in their classrooms.  The combination provides teachers 
with opportunities to rethink, unlearn and relearn in ways that result in changing, revising and 
adapting their mathematical content and pedagogical strategies in light of the affordances of the 
multiple technologies – a TPACK transformation that reveals a deeper understanding of the role 
of technology and meaningful integration into their mathematics classrooms.  

Discussion 
From an outside perspective (that of the second author), this paper is a case study of how 

ambitious and laudatory teacher professional development goals can be achieved in an online or 
blended environment. The dual challenge it focuses on – of helping teachers learn to use 
technology effectively, through the medium of online and blended coursework – is also a key 
challenge of our time. Here I reflect on what general lessons and open issues emerge from 
thinking about this program as an example of where we should head in the future. 
Transforming, Not Only Translating 

Studies of successful online and blended learning highlight that when it works, it is not 
simply a matter of putting existing courses online (Bakia, Means & Murphy, 2004). Here, the 
dramatic shift is from a set of courses to a knowledge building community. Clearly, essential 
content from the courses was important to the firm foundations of the knowledge-building 
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community. A knowledge-building community, however, implies a long-term structure of 
engagements, activities and supports that is much different from a typical course. For example, 
the engagements may start much more from teachers' own problems of practice. The activities 
may involve elements closer to that of lesson study (Hurd & Lewis, 2011) than to case studies in 
conventional courses. The supports involve more peer reflection and coaching, and less feedback 
from an authority. The concept of a knowledge-building community is also aspirational and 
would go beyond the results reported here. This report emphasized progress on individualized 
problems of practice, but a yet-richer knowledge-building community would also define 
community-level challenges and community-level knowledge about them. 
From Courses to Competencies  

The shift in this case also evokes a broader shift latent in professional learning more widely, 
a shift from counting course credit hours to recognizing new competencies (Nodine, 2016). 
Clearly, courses provided initial structure to the online experience. And yet, it is not clear that 
giving course credit is the most appropriate way to give teachers' recognition – course credit is 
normally tied to how many hours a teacher spent in activity and completion of assignments, but 
course credit much less frequently recognizes what a teacher now can actually do in a classroom. 
The focus here is nicely balanced, with clear opportunities to both shape teacher's experience 
based on course content but also to focus on and recognize classroom practice changes – not just 
seat time and assignment completion.  

An emerging framework that would recognize this shift is the framework of educator micro-
credentials (Berry, Airhart & Byrd, 2016). In this framework, complex shifts in teaching practice 
are broken down into smaller component competencies, and teachers have an opportunity to be 
recognized as they demonstrate the competencies. Importantly, there is no requirement to spend 
a fixed number of hours learning the competency, or to follow a set path in doing so. It seems in 
this example, and in many to follow in the future, online and blended learning will offer teachers 
lots of choices in how they learn and develop – and teachers clearly are not only showing a 
commitment in time and assignment completion, they are also reporting what they really do 
differently in their classrooms. This challenges us to think harder about how we will recognize 
and reward teachers for their learning, and the micro-credential movement gives one clear 
alternative (still much in development) to think with. 
Coherent and Cumulative Frameworks, Leveraging Personal Experiences 

 A positive feature of online and blended learning is that the asynchronous and non-linear 
nature can make learning more relevant and timely given immediate challenges. It is clear these 
features can help teachers too, but if not balanced might lead to fragmentary knowledge. For 
example, the specific cases give a good sense of how this environment allowed teachers to 
effectively pursue personal goals. At the same time, this case also makes clear the value of a 
framework that helps organizing teacher learning to be coherent and cumulative – not just a 
reversion to the feels good, low calorie "take away" that old fashioned workshops have been 
critiqued for. In this case, the framework is TPACK, and the case shows how TPACK can 
organize the kinds of advances in individual teachers' practice into a more coherent whole. For 
example, TPACK can help us to see when teachers are making advances on many fronts – in 
their content knowledge, their technology knowledge, and pedagogical knowledge, and also in 
the relationships among these. Clearly, we need teachers who are learning on all these fronts. 

And yet, TPACK is far from the only high-quality framework available. What TPACK 
appears best at – at least in this paper, is organizing qualitative observations of what teachers 
learned into categories. It is less obvious that TPACK is powerful in giving teacher's a sense of 
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coherence and direction in their journeys. For example, if the journey is primarily towards 
student-centered learning, one might like a broad theoretical frame to organize the why, how, 
and what of that transformation. What might be the role of a framework like the one from How 
People Learn (National Research Council, 2000), which describes the best learning 
environments as learner-centered (one of the characteristics here), but also knowledge-centered, 
assessment-centered, and community-centered? There are also recommendations like the TRU 
framework (Schoenfeld and the Teaching for Robust Understanding Project, 2016), which is 
more specific to mathematics, and focuses on content, cognitive demand, equitable participation, 
agency, and formative assessment – and a framework like this might give coherence and 
direction to what teachers are learning overall.  Overall, TPACK is clearly a valuable guiding 
framework, but for the field as a whole, it is not clear if focusing on the categorical differences 
among types of knowledge gives enough of a normative of what great math teaching with 
technology looks like to direct and make coherent teachers' long-term growth. 
Further Challenges of Digital Professional Development Futures   

One huge advantage that is apparent in this case is that the presenting problem is that 
teachers do not have enough prior experience as digital learners. And thus, it seems highly 
appropriate that professional development position the teachers themselves as digital learners. 
For example, as the case shows, teachers can more directly experience learning with the types of 
virtual manipulatives, online spreadsheets, and algebraic tools that their students can use. This is 
valuable because as mathematics is represented in digital form, how conceptual understanding 
arises shifts – new paths to learning emerge. For example, in the case of Dynamic Geometry, 
construction becomes more powerful in digital form than with compass and straight edge and a 
fuller counterpoint to proof in the learning experience (De Villiers, 2004). Social learning is also 
transformed through digital possibilities, such as the possibility to contribute to share 
mathematical constructions and experiences (Stroup et al., 2002). Teachers need to experience 
this first hand and be supported to reflect on their experience as learners and what implications 
this can have for their teaching, in a process of Instrumental Genesis (Drijvers et al., 2010). 

Finally, challenges of access and equity arise constant in a digital world, and careful work is 
needed to understand who participates and how the online experience can produce beneficial or 
harmful experiences. We cannot pretend naively that online experiences will be safe and positive 
for all. There are also likely major challenges of data sharing as teachers share their classroom 
experience not just in a closed course classroom, but also now in an online environment where 
there is no limit to where the content they share may end up. There are also the positive and 
potentially negative implications of teachers' online activities producing data. On the positive 
side, we can potentially track and learn much more about the trajectories of teacher professional 
growth by studying the trajectories of their online activities (through the data those activities 
leave behind). Rather than a single university course progression, we can learn in detail about the 
multiple varied paths that teachers take towards professional knowledge; the different resources 
they use; the nature and range of social interactions that support them. But on the challenging 
side, there is always the possibility of such data being exploited in inappropriate ways, and the 
need to develop guards against this.  

Conclusion 
As more and more technologies become available as mathematics learning tools, teacher 

educators will be challenged to identify professional development avenues for supporting 
teachers in transforming their skills for teaching with the technologies.  The online TPACK 
instructional program provides only one example of an online professional development program 
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focused as a knowledge-building community to engage teachers in experiences that influence 
how their TPACK is transformed as they think about and learn from their experiences while 
learning as students and as they are implementing their accumulated knowledge in classroom 
practices.  The combination of online learning with practical experiences provides a context 
within which these experiences were provided.  The impact supports them in recognizing and 
valuing shared knowledge for expanding and enhancing their individual knowledge about 
learning with technologies. A significant teacher knowledge shift from their personal experiences 
found a change in their beliefs about their primary instruction to actively engaging students for 
learning with technologies – toward more cooperative and collaborative inquiry activities where 
students engage in discourse and reflection.  The impact of the collective transformative learning 
experiences provides an important direction for in-service teacher professional development in 
the twenty-first century. 
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PERSPECTIVES ON THE NATURE OF MATHEMATICS 
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As mathematics educators, we teach and research a particular form of knowledge. However, in 
reacting to Platonic views of mathematics, we often overlook its unique characteristics. This 
paper presents a Kantian and Piagetian perspective that defines mathematics as a product of 
psychology. This perspective, based in human activity, unites mathematical objects, such as 
shape and number, while explaining what makes mathematics unique. In so doing, it not only 
privileges mathematics as a powerful form of knowledge but also empowers students to own its 
objects as their own constructions. Examples and interdisciplinary research findings (e.g., 
neuroscience) are provided to elucidate and support the perspective. 

Keywords: embodied cognition, mathematical epistemology, neuroscience, radical 
constructivism, reflective abstraction 

Mathematics has been described as both a science and a language. Most sources define it as a 
collection of abstract sciences, but its objects of study are so varied that, according to Wikipedia, 
“mathematics has no generally accepted definition” (“Definitions of mathematics,” n.d.) 
Consider the following attempts: 

• “the abstract science of number, quantity, and space” (“Mathematics,” n.d.) 
• “the science of numbers and their operations, interrelations, combinations, 

generalizations, and abstractions and of space configurations and their structure, 
measurement, transformations, and generalizations. Algebra, arithmetic, calculus, 
geometry, and trigonometry are branches of mathematics” (“Mathematics,” n.d.) 

• “a group of related sciences, including algebra, geometry, and calculus, concerned with 
the study of number, quantity, shape, and space and their inter-relationships by using a 
specialized notation” (“Mathematics,” n.d.) 

What do number, quantity, space, and the various branches of mathematics have in common?  
Mathematics is a unique body of knowledge owing to its apparent infallibility. Across 

millennia, continents, and cultures, mathematics has produced stubborn facts, so much so that we 
confidently assume that any alien life form, if intelligent enough, would recognize the prime 
numbers (Sagan, 1975). Students often appreciate the way that mathematics builds on itself, such 
as the way real numbers build on rational numbers, which build on integers. Scientists marvel at 
the “unreasonable effectiveness of mathematics in the natural sciences” (Wigner, 1960), such as 
when mathematical models predicted the existence and location of Neptune before it was 
discovered (see Norton, 2015). No wonder Platonism still holds sway in society and scientific 
communities alike.  

As a mathematics education community, we often confront Platonist ideals, which position 
mathematics as something that lies beyond human experience. We understand the cultural 
influences and psychological roots of mathematical development and mathematics itself. We 
challenge mathematical myths but rarely acknowledge their persistent epistemological basis. For 
example, we cite Kline’s (!982) “Loss of Certainty” to break down perceptions of mathematics 
as a collection of immutable truths because such perceptions disinvite students to participate in 
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creating mathematics (e.g., Chazan, 1990). However, we overlook the apparent certainty of 
mathematics as a feature that garners students’ interests to begin. 

Popular characterizations of mathematics do have a valid basis. There is a sense in which 
mathematics is infallible and builds upon itself, and mathematics holds a privileged position of 
predictive power among the sciences. However, these characterizations require psychological 
explanation rather than a Platonic dodge. Moreover, we need a definition that presents 
mathematics as a unified field of study rather than a collection of abstract sciences. What unifies 
mathematics? What are its objects of study? What is the basis for its reliability, utility, and 
ubiquity? 

This paper presents a Kantian/Piagetian response—one grounded in cognitive psychology 
and buttressed by recent findings from neuroscience. Kline (1982) summarized the Kantian 
position as follows: “mathematics is not something independent of and applied to phenomena 
taking place in an external world but rather an element in our way of conceiving the phenomena” 
(p. 341). Piaget (1942), with Inhelder (1967), built upon this position by specifying children’s 
development of mathematical structures used to organize the world, such as space and number. 
These structures depend on operations that, at once, demonstrate the unity and power of 
mathematics. 

Mathematical Objects 
Mathematical objects arise from our own activity within the worlds we experience. This is a 

view espoused by social constructivists, radical constructivists, and embodied cognitionists alike 
(Núñez, Edwards, & Matos, 1999; Vygotsky, 1986). The distinguishing feature of the Piagetian 
perspective concerns the role of abstraction, particularly reflective abstraction, in constructing 
those objects. Reflective abstraction is a psychological process that is notoriously difficult to 
grasp. As Chomsky lamented during a debate with Piaget, “my uneasiness with reflective 
abstraction is … that I do not know what the phrase means, to what processes it refers, or what 
are its principles” (Piattelli-Palmarini, 1980, p. 323). Here, we will attempt to specify the process 
of reflective abstractions and its principles, as well as its role in constructing mathematical 
objects. 

We find Piaget’s plainest description of reflective abstraction in Genetic Epistemology 
(1970). There, he describes the sensorimotor basis for logic and mathematics: “the roots of 
logical thought are not to be found in language alone, even though language coordinations are 
important, but are to be found more generally in the coordination of actions, which are the basis 
of reflective abstraction” (p. 19). He goes on to describe how actions become coordinated with 
one another, through reflective abstraction; but reflective abstraction does not apply to any and 
all actions—only those that are reversible. 

Reversibility is another distinguishing feature of mathematics. Addition-subtraction, greater 
than-less than, integration-differentiation all form inverse pairs. However, Piaget (1970) refers 
primarily to reversibility of the mental actions that constitute these formalized operations, rather 
than the formalized operations themselves. For example, a student might know the sum of 10 and 
5 but not know the sum of 9 and 6, even if she also knows that 9 is 1 less than 10 and 6 is 1 more 
than 6. In other words, she has not yet coordinated the actions of iterating (repeatedly 
integrating) units of 1 and disembedding them (separating units of 1 within the whole). Such a 
coordination relies upon organizing the actions of iterating and disembedding within a structure 
for composing and reversing them (compared to 5, 6 has an extra iterated unit of 1, which can be 
disembedded and composed with 9 to make 10). As educators, we might think about these as 
strategies, but through reflective abstraction, strategically coordinated actions become structures 
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for assimilating mathematical situations so that the two sums become the same mathematical 
object, 15. Of course, numbers do not exist in isolation, so the coordination of mental actions like 
iterating and disembedding reorganize the child’s entire number sequence, including 5, 6, 9, 10, 
and 15 (see Steffe, 1992). 

Figure 1 illustrates the process of reflective abstraction. Several mathematics educators have 
recognized this process, or similar processes, as essential for mathematical development: Sfard 
(1992) referred to it as reification; Dubinski (2002) as interiorization; and Tall as encapsulation 
(Tall, Thomas, Davis, Gray, & Simpson, 2000). They all describe a process by which existing 
mental actions become coordinated to constitute a new mathematical object. 

 

 
Figure 1. Reflective abstractions and the construction of mathematical objects. 

The table on the right side of Figure 1 represents the organization of actions within a 
mathematical group. This is a researcher’s model for describing how the students’ mental actions 
become coordinated with one another as composible and reversible operations; it does not imply 
that students are aware of a group structure (Piaget, 1970). Figure 1 illustrates the simplest 
example of coordinating mental actions, wherein two actions (A and B) are coordinated as 
inverses of one another and where i represents the identity element of the group (note that Piaget 
also referred to group-like structures that do not satisfy all conditions of a mathematical group 
but nonetheless model the coordination of reversible mental actions). The two arrows in Figure 1 
represent the two aspects of objects noted by Piaget and Garcia (1986): “First of all, it is ‘what 
can be done with them’ either physically or mentally… (2) The meaning of object is also ‘what it 
is made of,’ or how it is composed. Here again, objects are subordinate to actions” (pp. 65-66).  

The coordination of mental actions within group-like structures explains many of the unique 
features of mathematics. In particular, the reversibility of mental actions within the structure 
explains the reliability of mathematics. In the sciences, reliability is repeatability. The natural 
sciences never attain perfect repeatability because the initial conditions of a situation cannot be 
precisely reproduced. However, in mathematics, reversing one action with another action (e.g., A 
and B compose to form i, in Figure 1) returns one to the same exact starting point every time.  

Coordinations of action also explain the ubiquity of mathematics because they become 
structures for organizing experience. For example, when I see seven cars in a parking lot, nothing 
in the parking lot imposes 7 upon me. Instead, I assimilate my perceptual experience by 
coordinating mental actions of unitizing (separating out each perceived car and treating it as a 
unit identical to the others) and iterating resulting units in one-to-one correspondence with my 
number sequence.  

Furthermore, coordinations of action explain how mathematics builds upon itself, because 
the process of reflective abstraction does not end with the construction of the first structures. 
Rather, those structures, as objects, become material for further operating. For example, I can 
consider any multiplicity of 7 by acting upon one copy of my number sequence with another 
copy of it (Steffe, 1992). Such structures explain the subjectivity of mathematical experience 
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when, for example, I see three rows of seven cars and assimilate them as three 7s, whereas a 
young child might see a spatial pattern but not the numerical structure of 3 times 7.  

 

Evidence from Neuroscience 
As noted in the introduction, definitions of mathematics generally refer to the study of a 

collection of objects, usually including number and space. As mathematics educators, the 
construction of number may seem more familiar, but Piaget and Inhelder (1967) used space 
(along with number; Piaget, 1942) as a primary example of a mathematical object. They 
demonstrated that space does not exist as an innate construct, as Kant had assumed, but that 
children construct it through the coordination of displacements within a group for composing and 
reversing them. In this section, we will see tight connections between space and number as 
psychological and neurological phenomena that depend on coordinated actions, beginning with 
sensorimotor activity. 

One early connection concerns object permanence and the onset of self-locomotion 
(crawling). Developmental psychologists take object permanence as a critical marker in early 
child development, whereby children learn that objects persist in space even when removed from 
the child’s perceptual field. Bell and Fox (1996, 1997) conducted studies on 76 eight-month-old 
infants, separated into four groups: pre-crawlers, crawlers with 1-4 weeks of experience, 5-8 
weeks of experience, and 9 or more weeks of experience. Greater experience in crawling was 
associated with the development of object permanence.  

Piaget and Inhelder (1967) had tied object permanence to children’s construction of 
sensorimotor space, wherein objects would have residence. More recently, psychologists have 
associated object permanence with “spatial working memory”, wherein children coordinate 
spatial transformations, such as displacements and rotations (e.g., Bell, 2001). Together with the 
findings from Bell and Fox (1996, 1997), the collective literature suggests that crawling provides 
sensorimotor experience that is critical to the construction of space as a coordination of 
displacements. After all, crawling enables children to transform their perceptual fields through 
voluntary movement, which (from the child’s perspective) amounts to a displacement of space 
itself, similar to the transformations of space described by a vector field (or the group of vectors, 
under addition). 

We find similar connections between embodied/sensorimotor experience and the child’s 
construction of number. In particular, manual and numerical digits go hand-in-hand, in a manner 
that transcends etymology (see Norton, Ulrich, Bell, & Cate, 2018). For example, as 
mathematics educators, we know that children generally learn to count with the aid of their 
fingers as manipulatives, but recent neuroimaging studies indicate that the connection persists 
into adulthood. Specifically, neural substrates for finger recognition and finger use (e.g. pointing) 
overlap with those for counting and arithmetic, even among adults (Soylu, Lester, & Newman, 
2018)—so much so that researchers now hypothesize that areas of the brain that evolved for 
manual dexterity (e.g., tool use) have been re-purposed to support mathematical development 
(Penner-Wilger & Anderson, 2013). In considering these neural substrates, the intraparietal 
sulcus (IPS) stands out.  

Figure 2 presents a diagram of the neo-cortex—the outer layer of the human brain—and a 
few of its main regions. The frontal lobe lies above the eyes and plays the leading role in 
executive function (working memory, inhibitory control, and decision making). The parietal lobe 
rests toward the back of the brain and is generally associated with spatial reasoning, including 
hand-eye coordination. Between those two lobes sits the sensorimotor cortex, which initiates 
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voluntary movement. The IPS aligns with the sensorimotor area associated with hand movement 
and runs between the upper and lower halves of the parietal lobe. This positioning would suggest 
that the IPS plays an important role in the manipulation of objects in space, which it does. 

 

 
Figure 2. Neo-cortex. 

In addition to its role in tool use and other coordinated actions involving the hand (e.g., 
Mruczek, von Loga, & Kastner, 2013), the IPS is implicated in virtually every neuroimaging 
study of numerical and spatial reasoning (e.g., Dehaene, 1997; Kucian et al., 2007). In and 
around the IPS we find the common neural substrate for the two primary objects of the 
mathematical sciences: space and number. There we also find their common link to coordinated 
sensorimotor activity, especially involving the hands.  

The IPS exists as part of a network that includes the frontal lobe and the angular gyrus—an 
area in the lower part of the parietal lobe associated with memorized tables of information (e.g., 
multiplication tables). Studies of mathematical development generally show a shift, from frontal 
to parietal areas of the network, as children learn: “Solving a new multiplication problem 
involves the IPS bilaterally and also the frontal lobes, while dealing with the same problem a 
second time shifts the focus of activity to the angular gyrus in the left parietal lobe” (Butterworth 
& Walsh, 2011, pp. 19-20). Other studies (e.g., Ansari, 2008), show a similar frontal-parietal 
shift associated with age. 

As we have mentioned, executive function is a primary role of the frontal lobe. It directs 
limited working memory resources (including spatial working memory) to solve novel problems. 
As children learn—either rotely through memorizing multiplication tables or through the 
development of conceptual structures—working memory is offloaded so that the same task 
becomes less demanding. We posit that areas in and around the IPS serve as the neural substrate 
for spatial-numerical structures. This view, too, is supported by neuroimaging studies (Hubbard, 
Piazza, Pinel, & Dehaene, 2005) and implies that the IPS is heavily involved in assimilating 
mathematical experiences. Resources from the frontal lobe are recruited when the assimilated 
experience becomes problematic. As such, frontal-parietal coherence (areas within the two lobes 
working in tandem, as indicated by brain wave frequencies) would be the neural correlate of 
mathematical development.  

Returning to Bell and Fox’s (1996) study of crawling, infants with 1-4 weeks of crawling 
experience exhibited greater frontal-parietal coherence than pre-crawling infants and infants with 
more crawling experience. Thus, self-locomotion appears to provide a sensorimotor foundation 
for the development of object permanence and the construction of space—the play space for 
subsequent geometric construction. In the next section, we consider the case of Euclidean 
geometry. 
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Euclidean Objects 
Euclid was the first mathematician to formalize mathematics on an axiomatic basis. The 

purpose of the Elements, Book I, was to prove the Pythagorean (sic) theorem from common 
notions and postulates (axioms). This is evidenced by the appearance of the Pythagorean theorem 
and its converse as the final two propositions in the book (Propositions 47 & 48). But what was 
the basis for these axioms and formal arguments? Evidence appears in the axioms and arguments 
themselves. The first three axioms (Postulates 1-3) are Plato’s rules for straight edge and 
compass constructions, indicating their sensorimotor basis within Greek culture. The chain of 
propositions leading from those axioms to the Pythagorean theorem indicates the kinds of mental 
actions behind Euclid’s intuitions. Here, we demonstrate how coordinations of spatial 
transformations, like sweeping, shearing, and rotating, form the psychological basis for 
geometric objects. 

Figure 3 illustrates the diagram Euclid used to support his arguments for the Pythagorean 
theorem. Essentially, he argued that the areas of the yellow and blue squares were equivalent to 
the areas of the yellow and blue rectangles, respectively (Proposition 47). The argument 
depended on previous propositions demonstrating that shearing triangles and parallelograms does 
not affect their areas (Propositions 35-38). In Figure 3, triangle DAC is the result of shearing 
triangle DAG (half of the blue rectangle) along segment FC. Likewise, triangle ABE is the result 
of shearing triangle ACE (half of the blue square) along segment HB. Because these triangles are 
congruent (Euclid relied on Proposition 4—a side-angle-side argument, which he demonstrated 
through Common Notion 4, displacing those elements from one triangle onto another and 
showing that the remaining sides must also coincide), the areas of the blue rectangle and blue 
square (each having twice the area) are equivalent. The same argument works for the yellow 
regions, thus proving the Pythagorean theorem.  

 
Figure 3. Euclid’s proof of the Pythagorean theorem. 

In sum, Euclid proved the Pythagorean theorem by transforming mathematical objects (e.g., 
squares) through mental actions of bisecting, displacing, and shearing. The mathematical objects 
being transformed are themselves the result of mental actions, such as sweeping (sweeping a 
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point to make a line segment and sweeping a line segment to make a square, as in Proposition 
46). Constructing and transforming mathematical objects in this way fits Piaget’s descriptions of 
mathematical objects as coordinations of mental actions, as indicated by the two arrows in Figure 
1: (1) mathematical objects arise through the coordination of actions and (2) can be subsequently 
transformed through further action. Thus, mathematical objects are characterized by both the 
actions that constitute them and the manner in which actions transform them, particularly aspects 
of the objects that remain invariant under transformation (e.g., the area of a parallelogram as 
invariant under the transformation of shearing).  

Consider the simpler example of angle sums within a triangle (Proposition 32). Like number, 
children have to construct triangles: “children are able to recognize and especially to represent, 
only those shapes which they can actually reconstruct through their own actions” (Piaget & 
Inhelder, 1967, p. 43). Understanding triangles as mathematical objects requires children to 
move beyond the figurative material that represents or symbolizes them and to focus on the 
underlying mental actions that constitute them. The perfect triangle does not exist as a Platonic 
ideal, but rather as a coordination of actions, including sweeping and rotating.  

To demonstrate that the angles in a triangle sum to a straight angle (pi, or 180 degrees), 
consider the construction of the triangle itself. It begins with a segment (side) swept from one 
vertex to another. Each pair of adjacent sides forms an angle, which measures the degree of 
openness, or rotation, between them (Moore, 2013). Figure 4 illustrates the three rotations (A, B, 
and C) that occur between pairs of adjacent sides. Each rotation is a transformation of one side 
onto the adjacent side, preserving the property of being a straight segment (a sweep from one 
vertex to another) but transforming its length and direction. After three such transformations, the 
original segment has been transformed back onto itself but in the reverse direction. In other 
words, the combined effect of composing the three angle rotations is a rotation of 180 degrees.  

 

  

  
Figure 4. Sum of angles in a triangle. 

What we see in the Elements is the historical trace of Euclidean geometry from sensorimotor 
activity all the way up to the first axiomatic system. Thus, we can trace formal mathematical 
objects, such as right triangles with all of their properties, all the way back to their psychological 
roots. Like numbers, shapes and their properties (e.g., the Pythagorean theorem) depend upon the 
coordination of mental actions. For the Greeks, those mental actions were derived from the 
sensorimotor activity of playing in the sand with compass and straight-edge. Reflective 
abstraction provides the mechanism for moving from each stage to the next: from sensorimotor 
activity to mental actions, to the construction and transformation of triangles, to the formal 
demonstration of the Pythagorean theorem. 
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Summary 
From the Kantian/Piagetian perspective described here, mathematics can be defined as the 

study of reversible mental actions and the structures that organize them (Piaget, 1970). This 
unifying definition applies to shape as well as number, both of which arise from the coordination 
of actions that have a sensorimotor basis (Piaget, 1942; Piaget & Inhelder, 1967). The definition 
also explains unique features of mathematics while empowering students to construct, transform, 
and study mathematical objects on the basis of their own activity. The infallibility of students’ 
constructions owes to the reversibility of the mental actions that undergird them (Piaget, 1970). 
For example, if a child has defined a triangle on the basis of its three planar angles (rotations), 
composing those rotations with one another inevitably leads to the conclusion that they form a 
straight angle—a single 180-degree rotation that can be partitioned into the three angles that 
constitute it. The trick is to find a way to compose all three rotations without appealing to the 
drawn figure itself but rather to the organization it represents. This process of organizing 
rotations within a structure for composing and reversing them is the process of reflective 
abstraction. 

When we focus on students’ available mental actions and their engagement in sensorimotor 
activity, we are valuing students’ mathematics as they construct new mathematical objects—
objects that empower students to model and structure the worlds they experience. Thus, the 
appeal to students’ mental actions is an appeal for equity in mathematics education. Building 
from the work of Noddings (1999), Hackenberg (2010) has described the appeal in terms of 
mathematical caring relations, wherein the teacher builds models of the students’ available 
mental actions and engages the student with tasks likely to foster new coordinations. 

Although Kant and Piaget set the stage for investigating students’ mathematical 
constructions, researchers have just begun the work of describing those constructions as 
coordinated mental actions. The task before us is compounded when we consider the entire body 
of formal mathematics, ultimately entailing an account of the sensorimotor basis of the mental 
actions that undergird it. For example, can we account for the development of geometry from the 
onset of crawling to the Pythagorean theorem? This work too is mathematical because it requires 
us to explicitly identify the structures that organize reversible mental actions. Only then will we 
fully understand mathematics as a human construction rather than a Platonic ideal.   
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When people address early mathematics education, commonly they write or reference 
policies, standards, “scope and sequences” and curriculum, or documents on instructional 
strategies. These are important; however, we believe that the core consideration should be the 
nature of mathematics and the development of mathematics in children.  

An 80-year-old incident illustrates what we mean. A mother attending parents’ night asked 
Fawcett (1938), “How is Willie doing in mathematics?” Fawcett replied:  “Madam, you ask the 
wrong question.  You should ask, ‘How is mathematics doing in Willie?’” 

This is what we mean by the “nature of mathematics and the development of mathematics in 
children”: The mathematics that does well in Willie and all other children. We develop this 
position by describing learning trajectories and our theoretical framework for them, Hierarchic 
Interactionalism. 

Learning Trajectories: Construct and Theory 
Learning trajectories are a device whose purpose is to support the research-grounded 

development of a curriculum or other unit of instruction, as well as to conduct rigorous research 
in learning and teaching. The term “curriculum” stems from the Latin word for race course, 
referring to the course of experiences through which children grow. Thus, the notion of a path, or 
trajectory, has always been central to curriculum development and study. Simon stated that a 
“hypothetical learning trajectory” included “the learning goal, the learning activities, and the 
thinking and learning in which the students might engage” (Simon, 1995, p. 133). Building on 
Simon’s definition, emphasizing a cognitive science perspective and a base of empirical 
research, “we conceptualize learning trajectories as descriptions of children’s thinking and 
learning in a specific mathematical domain, and a related, conjectured route through a set of 
instructional tasks designed to engender those mental processes or actions hypothesized to move 
children through a developmental progression of levels of thinking, created with the intent of 
supporting children’s achievement of specific goals in that mathematical domain” (Clements & 
Sarama, 2004, p. 83). 

The name “learning trajectory” reflects its roots in a constructivist perspective. That is, 
although the name emphasizes learning over teaching, both these definitions clearly involve 
teaching and instructional tasks. Some appropriations of the learning trajectory construct 
emphasize only the “developmental progressions.” Although studying either psychological 
developmental progressions or instructional sequences separately can be valid research goals, 
and studies of each can and should inform mathematics education, we believe the power and 
uniqueness of the learning trajectories construct stems from the inextricable interconnection 
between these all three components, goal, developmental progression, and correlated 
instructional tasks. 

Our learning trajectories base goals on both the expertise of mathematicians and research on 
students’ thinking about and learning of mathematics (Clements, Sarama, & DiBiase, 2004; 
Fuson, 2004; National Governor’s Association Center for Best Practices & Council of Chief 
State School Officers, 2010; Sarama & Clements, 2009). This results in goals that are organized 
into the “big” or “focal” ideas of mathematics: overarching clusters and concepts and skills that 
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are mathematically central and coherent, consistent with students’ (often intuitive) thinking, and 
generative of future learning.  Our goals also include productive dispositions, including, 
curiosity, imagination, inventiveness, risk-taking, creativity, and persistence (National Research 
Council, 2001). With that in mind, we turn to the question of how children think about and learn 
mathematics. 

Research is reviewed to determine if there is a natural developmental progression (at least for 
a given age range of students in a particular culture) identified in theoretically- and empirically-
grounded models of children’s thinking, learning, and development (Carpenter & Moser, 1984; 
Griffin & Case, 1997). That is, researchers build a cognitive model of students’ learning that is 
sufficiently explicit to describe the processes involved in the construction of the mathematical 
goal across several qualitatively distinct structural levels of increasing sophistication, 
complexity, abstraction, power, and generality. 

The issue of what is meant by a natural developmental progression is sure to arise. We 
believe the research supports a synthesis of aspects of previous theoretical frameworks that we 
call Hierarchic Interactionalism (for a full explication, see Sarama & Clements, 2009). The term 
indicates the influence and interaction of global and local (domain specific) cognitive levels and 
the interactions of innate competencies, internal resources, and experience (e.g., cultural tools 
and teaching). Mathematical ideas are represented intuitively, then with language, then 
metacognitively, with the last indicating that the child possesses an understanding of the topic 
and can access and operate on those understandings. The tenets of Hierarchic Interactionalism 
therefore lay the foundation for the creation of both the developmental progression and 
instructional tasks of research-based learning trajectories.  

1. Developmental progression. Most content knowledge is acquired along developmental 
progressions of levels of thinking. These progressions play a special role in children’s 
cognition and learning because they are particularly consistent with children’s intuitive 
knowledge and patterns of thinking and learning at various levels of development,  

2. Domain specific progression. These developmental progressions often are most 
propitiously characterized within a specific mathematical domain or topic. Children's 
knowledge, that is, the objects and actions they have developed in that domain, are the 
main determinant of the thinking within each progression, although hierarchic 
interactions occur at multiple levels within and between topics, as well as with general 
cognitive processes (e.g., executive, or metacognitive processes, potentialities for general 
reasoning and learning-to-learn skills, and some other domain general developmental 
processes). See Figure 1 for an illustration. 

3. Hierarchic development. Development is less about the emergence of entirely new 
processes and products and more an interactive interplay among specific existing 
components of knowledge and processes. Also, each level builds hierarchically on the 
concepts and processes of the previous levels. The learning process is more often 
incremental and gradually integrative than intermittent and tumultuous. A critical mass of 
ideas from each level must be constructed before thinking characteristic of the subsequent 
level becomes ascendant in the child’s thinking and behavior. Successful application 
leads to the increasing use of a particular level. However, under conditions of increased 
task complexity, stress, or failure this probability level decreases and an earlier level 
serves as a fallback position. 

4. Co-mutual development of concepts and skills. Concepts constrain procedures, and 
concepts and skills develop in constant interaction. 



Plenary Papers 
 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

74 

5. Initial bootstraps. Children have important, but often inchoate, premathematical and 
general cognitive competencies and predispositions at birth or soon thereafter that 
support and constrain, but do not absolutely direct, subsequent development of 
mathematics knowledge. 

6. Different developmental courses. Different developmental courses are possible within 
those constraints, depending on individual, environmental, and social confluences.  

7. Progressive hierarchization. Within and across developmental progressions, children 
gradually make connections between various mathematically-relevant concepts and 
procedures, weaving ever more robust understandings that are hierarchical in that they 
employ generalizations while maintaining differentiations. 

8. Consistency of developmental progressions and instruction. Instruction based on learning 
consistent with natural developmental progressions is more effective, efficient, and 
generative for the child than learning that does not follow these paths. 

9. Learning trajectories. A particularly fruitful instructional approach is based on 
hypothetical learning trajectories. Curriculum developers design instructional tasks that 
include external objects and actions that mirror the hypothesized mathematical activity of 
children as closely as possible. These tasks are sequenced, with each corresponding to a 
level of the developmental progressions, to complete the hypothesized learning trajectory. 
Specific learning trajectories are the main bridge that connects the "grand theory" of 
hierarchic interactionalism to particular theories and educational practice. 

10. Instantiation of hypothetical learning trajectories. Hypothetical learning trajectories must 
be interpreted by teachers and are only realized through the social interaction of teachers 
and children around instructional tasks.  

For example, consider one goal regarded as important in all standards documents: young 
children should learn to be competent in whole number, including meaningful verbal and object 
counting and the application of counting to solve a variety of arithmetic problem types. The 
developmental progressions for each of these learning trajectories are sampled in the left column 
of Figure 1. The second column provides an example of children’s behavior and thinking for 
each level. The third column presents an example of an instructional task designed to catalyze 
that level of thinking. 

In summary, learning trajectories describe the goals of learning, the developmental 
progression through which children pass, and the learning activities in which students might 
engage. The source of the developmental progressions— the thinking and learning processes of 
children at various levels—are extensive research reviews and empirical work that cannot be 
presented here due to space constraints. Also beyond the scope of this chapter are the complex, 
cognitive actions-on-objects that underlie the LTs (see Sarama & Clements, 2009). Here we will 
provide one illustration of both cognitive actions-on-objects and how different trajectories grow 
not in isolation, but interactively.  

Consider learning a critical competence—counting on, used especially at the Counting 
Strategies level in Figure 1b. Children need to develop competencies from three trajectories: 
counting (Fig. 1a), subitizing (not shown, but see Clements & Sarama, 2009; Sarama & 
Clements, 2009), and the addition and subtraction trajectory (Fig. 1b) to learn to count on 
meaningfully. From the counting trajectory, they learn to count forward from any number. Then 
they learn to understand explicitly and apply the idea that each number in the counting sequence 
includes the number before, hierarchically. That is, 5 includes 4, which includes 3, and so forth. 
From the subitizing trajectory they quickly learn to recognize the number of—not just visual 
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sets, but also rhythmic patterns. From the addition and subtraction trajectory, children learn to 
interpret situations mathematically, such as interpreting a real-world problem as a “part-part-
whole” situation. They also learn to use counting to determine what is missing. The creative 
combination of these developments allows them to solve meaningfully problems such as, “You 
have three green candies and six orange candies. How many candies do you have in all?” by 
counting on. They understand that these numbers are two parts and that they need to find the 
whole. They also understand that the order of numbers does not matter in addition. They know, 
in practice, that the sum is the number that results by, starting at the first number and counting on 
a number of iterations, equal to the second number. They can use counting to solve this, starting 
by saying “siiiiix…” because they understand that word can stand for the counting acts from 1 to 
6 (because 6 includes 5…). They know how many more to count because they use the subitized 
“rhythm of three” “Du de Du” (“Doo – Day – Doo”)  “seven (du…), eight (day…), nine (du)—
nine!”  

Consider Justin, who participated in the successful scale-up of the learning-trajectories-based 
Building Blocks curriculum (Clements, Sarama, Spitler, Lange, & Wolfe, 2011). At pretest, he 
operated at the Reciter level of counting, as he verbally counted correctly but when counting toy 
bananas, broke one-to-one correspondence as he counted a space between the bananas. He did 
not solve any arithmetic problems. After 7 months moving through the learning trajectories for 
counting, subitizing, and the counting-based addition and subtraction trajectories (among others), 
Jason showed remarkable growth. He counted up to 30 randomly-arranged objects accurately 
and could verbally count up or down from any number in that range. In arithmetic, he solved a 
variety of problems. For “…you have 3 candies and I gave you 2 more; how many do you 
have?” Justin put out 3 fingers, then 2 more, and then said, “Five. I was just counting but no 
words” (i.e., he didn’t count out loud). Later, , shown 6 blocks, which were then covered with a 
cloth, and 4 secretly removed, leaving 2, he said  “Two. There were six.” “So, how many am I 
hiding?” Justin quickly counted the two and then counted, pointing to the table and said, “Four.” 
These solutions suggest he was now operating at the Counting Strategies level of arithmetic. 

a. Counting 
Developmental Progression Example Behavior Instructional Tasks 

Reciter Verbally counts with 
separate words, not necessarily 
in the correct order. 

Count for me. 
 “one, two, three, four, 

six, seven.” 

Provide repeated, frequent 
experience with the counting 
sequence in varied contexts.  

 

Corresponder Keeps one-to-
one correspondence between 
counting words and objects 
(one word for each object), at 
least for small groups of objects 
placed in a line.  

Counts: 
  ✰ ✰  ✰   ✰ 
“1,   2,   3,   4” 

But answers the 
question, “How 
many?” by re-counting 
the objects or naming 
any number word. 
 

Kitchen Counter Students click on 
objects one at a time while the 
numbers from one to ten are counted 
aloud.  
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Counter (Small Numbers) 
Accurately counts objects in a 
line to 5 and answers the “how 
many” question with the last 
number counted. 

Can you count these? 
  ✰ ✰  ✰   ✰ 
“1,   2,   3,   4… four!” 

 

How Many? Tell students you have 
placed as many cubes (3, hidden) in 
your hand as you can hold. Ask 
them to count with you to see how 
many. Take out one at a time as you 
say the number word (so, when they 
say “two” they see two). Repeat the 
last counting number, “three,” 
gesturing in a circular motion to all 
the cubes, and say “That’s how 
many there are in all.” 
 

Counter and Producer (10+) 
Counts and counts out objects 
accurately to 10, then beyond.  

Counts a scattered 
group of 19 chips, 
keeping track by 
moving each one as 
they are counted. 

 

Road Race Board game. 

Counter from N (N+1, N-1) 
Counts verbally and with 
objects from numbers other 
than 1 (but does not yet keep 
track of the number of counts).  

Asked to “count from 5 
to 8,” counts: 

“5, 6, 7, 8!” 

Determines numbers 
just after or just before 
immediately. 

 

One more!. Have the children count 
two objects. Add one and ask, “How 
many now?” Have children count on 
to answer. Add another and so on, 
until they have counted to ten. 

 

b. Arithmetic 

Developmental Progression Example Behavior Instructional Tasks 

Small Number +/- Finds sums 
for joining problems up to 3 + 2 
by counting-all with objects. 

 

Asked, “You have 2 
balls and get 1 more. 
How many in all?” 
counts out 2, then 
counts out 1 more, 
then counts all 3: “1, 
2, 3, 3!.” 

Finger Word Problems Tell children to 
solve simple addition problems with 
their fingers.  

 

Find Result +/- Finds sums by 
direct modeling, counting-all, 
with objects. 

 

Asked, “You have 2 
red balls and 3 blue 
balls. How many in 
all?” counts out 2 red, 
then counts out 3 
blue, then counts all 

Places Scenes (Addition)—Part-part-
whole, whole unknown problems. 
Children play with toy on a background 
scene and combine groups. 
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5. 

Counting Strategies +/- Finds 
sums for joining (you had 8 
apples and get 3 more…) and 
part-part-whole (6 girls and 5 
boys…) problems with finger 
patterns and/or by counting on.  

Counting-on. “How 
much is 4 and 3 
more?” 
“Fourrrrr…five, six, 
seven [uses rhythmic 
or finger pattern to 
keep track]. Seven!” 

 

How Many Now?   Have the children 
count objects as you place them in a 
box. Ask, “How many are in the box 
now?” Add one, repeating the question, 
then check the children’s responses by 
counting all the objects. Repeat, 
checking occasionally.  

 

Figure 1. Selected Levels/Descriptions from the Learning Trajectories for Counting and 
counting-based Arithmetic (these and other figures adapted from Clements & Sarama, 2014) 
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This study compared area lessons from Korean textbooks and US standards-based textbooks to 
understand differences and similarities among these textbooks, as well as how these textbooks 
address known learning challenges in area measurement. Several well-known challenges have 
been identified in previous studies, such as covering, array structure, and linking array structure 
to area formula. We were interested in knowing if textbooks addressed these issues in their 
treatments of area measurement, and in doing so provided students with opportunities to 
overcome or become familiar with known challenges. The results show that both countries 
textbooks demonstrated similar limitations, only few area and area related lessons are covered 
and three important learning challenges in area measurement are not covered well, which need 
to be informed to practicing teachers.  

Keywords: Area, Textbooks, Learning Challenges 

For the last few decades, mathematics education researchers have been interested in how 
students in different countries learn mathematics. Such interests are the result of studies such as 
the Trends in International Mathematics and Science Study (TIMSS) and Programme for 
International Student Assessment (PISA), which indicate that students in East Asian countries 
perform consistently well. One important area we can examine among various opportunities to 
learn (OTL) is what textbooks offer to students for their learning, as textbooks play an important 
role in lesson enactment process, teachers use textbooks and other resources to select and modify 
tasks to prepare their lessons (Remillard & Heck, 2014). Among many mathematical topics, US 
students’ performance in measurement is weaker than any other content area on TIMSS (Mullis, 
Martin, Foy, & Hooper, 2016). While researchers conducting international comparative studies 
of textbooks have examined various mathematical topics (Cady, Hodges, & Collins, 2015; Son & 
Hu, 2016), area lessons have not been examined and compared often. The purpose of this study 
was to examine and compare area lessons in US Common Core-aligned textbooks and Korean 
textbooks, and explore how textbooks address well-known learning challenges in area 
measurement.   

Related Literature 
Textbooks in the curriculum enactment process 

Although not all contents in textbooks will automatically be transformed to mathematics 
lessons directly (teachers will likely modify textbook contents), examining the treatment of 
mathematical topics in textbooks can tell us how much attention is given to that specific topic. In 
the curriculum enactment process, teachers select and possibly modify mathematical tasks and 
activities from textbooks and other curriculum materials (Remillard & Heck, 2014). Textbook 
content and how teachers enact their lessons jointly influence what students experience in their 
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classrooms (Smith, Males, Dietiker, Lee, & Mosier, 2013). For example, if textbooks do not 
address well-known challenges, we can interpret that as a possible reason for students’ struggle 
because it is possible that those challenges are not well reflected in the teacher’s lesson plans and 
decrease students’ OTL to learn and get familiar with those challenges (Smith, Males, & 
Gonulates, 2016).We cannot say textbooks are the only reason for students’ struggle in learning 
area measurement. However, limited coverage of topics will limit opportunities to learn for 
students and is a possible explanation for their performances.  
How Students Learn Area Measurement  

Foundational concepts for area include covering a region without gaps or overlaps, counting 
unit measures, iterating, understanding array structure and linking the number of squares to 
length and width (Battista, 2004). Being able to use same – sized units repeatedly to cover a 
region and iterating are fundamental skills to understand measurement in general (Smith et al., 
2016). However, studies have shown that it is challenging for students to develop a good 
conceptual understanding of area. Students are not able to cover a two dimensional region with 
equal-sized units. Instead, they often use unequal unit or leave gaps or overlaps (Battista, 2004; 
Outhred & Mitchelmore, 2000). Without having conceptual understanding, students often use the 
area formula length  width without understanding why and for the wrong figures (Zacharos, 
2006). However, when students learn using the conceptual approaches of partitioning and 
covering (partitioning, filling a given space and seeing array structure), they are more likely to 
develop a better understanding of area measurement (Huang, 2017; Na, 2012; Outhred & 
Mitchelmore, 2000). Here are research questions that we attempt to answer. 

• How do US and Korean textbooks distribute attention to area and area-related lessons?  
• In what order do the curricula present concepts related to measuring area, and do the 

sequences differ significantly between textbooks? 
• How well do the curricula address well-known students’ challenges in learning area 

measurement? 

Methods 
Data Sources  

Three textbooks series - enVisionMath, Go Math, and MyMath - are Common Core-aligned 
textbooks, which were not examined in recent study (Smith et al., 2016). A total of 9 US 
textbooks were examined, three textbooks from grade 1 through grade 3 from each publisher. 
Two recent studies examined length and area lessons in other non - Common Core American 
textbooks and also several other studies examined textbooks that were developed before the 
introduction of the Common Core State Standards (CCSS) (Hong & Choi, 2014, 2018; Smith et 
al., 2013; Smith et al., 2016; Son & Senk, 2010). Therefore, examining these common core 
aligned textbooks series may expand our understanding of how more current American textbooks 
treat volume measurement. In all, 431 (enVision Math), 441 (My Math) and 550 (Go Math) items 
were analyzed.  

For Korea, the textbooks examined in this study, Elementary School Mathematics, were 
published by the government and the only mathematics textbooks used in elementary schools in 
Korea. For Korean textbooks, we examined 129 items from grades 1, 3 and 5. Table 1 describes 
the number of pages and lessons examined for this study.  
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Table 1: Textbooks used in the study 
Textbook 

Series Publisher Publication 
Date Pages Items Lessons 

envisionMath 
series Pearson 2015 86 431 18 

Go Math 
series 

Houghton 
Mifflin 2015 133 550 15 

MyMath 
series McGraw-Hill 2014 69 441 12 

Korean 
Textbooks 

The Ministry 
of Education 

in Korea 
2014, 2015 31 129 6 

 
Framework for Analyzing Textbooks  

When textbooks are analyzed, exposition (e.g. introductory paragraphs, text boxes with 
definitions, formulas, or theorems), worked examples (problems presented together with an 
explained solution) and exercise problems (mathematical items students are expected to solve) 
should be examined because they can provide potentially different OTL for students.  

We also searched for studies that examined measurement lessons in textbooks. Smith and his 
colleagues (2013, 2016) examined length and area measurement in US textbooks. Their 
framework specifically targets how textbooks address challenges in learning length and area. We 
adopted and modified Smith and colleagues’ framework to analyze area measurement lessons. 
Table 2 describes our framework for this study.  

Table 2: Analysis framework of content and problems 
Area of Focus 

• Number of area and area related lessons 
• Timing and topic sequence 
• Procedural and conceptual knowledge 
• Known challenges in learning area measurement 

o Covering with equal-sized units 
o Row and column array structure 
o Area formula and definition 

• Response type 
  

Coding Procedures and Examples 
Each exposition, worked example, and exercise problem in textbooks has its own 

instructional purpose (potentially different OTL). Each exposition introduces mathematics 
content including definitions, formulas, and procedures; each worked example demonstrates how 
certain problems are solved; and each exercise problem gives students opportunities to engage in 
problem solving. Thus, when we discussed our unit of analysis, we first considered each worked 
example, exercise problem, and exposition as one unit of analysis as each item provides OTL to 
teachers and students. Figure 1 shows examples of how we coded each item.  
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Translation: 
• This is the floor plan for Chul Soo’s home. Find out the area of each room. 

Parents’ Room 
Chul Soo’s Room 
Brother’s Room  

Figure 1. Coding examples from a Korean textbook (The Ministry of Education in Korea, 2015, 
p. 139)  

First, we decided there are three items (three exercise problems or three units) to be coded. 
Students are asked to use the area formula to compute the area of each room. In terms of topic, 
these items are coded as area formula because students just need to multiply numbers to get the 
correct answers. In terms of procedural and conceptual knowledge types, these were coded as 
procedural (only multiplying two numbers is required). Finally for response type, these were 
coded as short response (only numbers are required). For all other textbook pages, we used the 
same method to identify expositions, worked examples, and exercise problems to count the 
number of units to be coded from each page.  
Reliability  

Each textbook included exposition, worked examples and exercise problems. After 
discussing the established codes, two authors coded approximately 20% of the textbook items to 
check inter-rater reliability. After comparing codes for sample items and finding an acceptable 
high inter-rater reliability, the authors coded all textbook items jointly to produce a final set of 
tables for analysis, resolving coding differences of individual items when they arose. To 
determine reliability, we applied a generalizability theory D study (Alkharusi, 2012). This 
technique produced a reliable coefficient of 0.964.  

Results 
Area Measurement Lessons in Textbooks 

Table 3: Number and Percentage of Area and Area Related Lessons to the Total Lessons 

 Grade Area and Area-
Related Lessons Total 

 1 5 (4.5%) 110 
enVision Math 2 8 (6.9%) 116 

 3 5 (4.2%) 119 
 1 3 (3.0%) 101 

Go Math 2 4 (3.6%) 110 
 3 8 (7.6%) 105 
 1 3 (3.2%) 95 

MyMath 2 2 (2.2%) 92 
 3 7 (6.2%) 113 
 1 1 (1.4%) 70 

Korean Textbooks 3 1 (1.5%) 68 
 5 4 (5.7%) 70 
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Table 3 indicated that little curricula attention was given to area and area-related topics in 
these textbook series, supporting earlier findings by Smith et al. (2016). These percentages were 
less than the 1% to 12% range found by Smith et al. (2016).  

 
Time and Sequence  

With regards to the sequencing of topics, Korean and US textbooks differed. The Korean 
textbook series first introduced area in grade 1, with a lesson titled “Comparing Area”. This was 
a short lesson that asked students to compare and make visual judgments between two objects. 
These items were not found in US textbooks. After a brief introduction to area in grade 1, 
Korean textbooks had one lesson about partitioning shapes into equal parts in grade 3. Lessons 
on area then began in grade 5, where the textbook introduced unit squares, area of rectangles and 
the area formula. In contrast, all three US textbook series included several lessons in grades 1 
and 2 about partitioning regions, including rectangles and circles. Then, the area formula was 
introduced in grade 3 US textbook series. In terms of timing, it appeared that Korean textbooks 
introduced area first in grade 1, but ideas of partitioning, understanding and finding area of 
rectangles were found earlier in US textbook series.  
Procedural, Conceptual and Conventional Knowledge  

The majority of items (83 to 100 % in all textbooks) in both countries’ textbooks were 
procedural. This finding supports previous work examining American textbooks, where 
procedural items accounted for more than 87% of items in US textbooks (Smith et al., 2016). 
Such findings imply that the focus of area lessons in both American and Korean textbooks are 
more about procedures than concepts. Again, this can be one way to lead both countries’ students 
to a more procedural understanding of area. 
Knowledge Needed in Understanding Area Measurement 

Covering. Covering may be introduced with drawing, using tiles or iterating. Only limited 
number of covering items were included in textbooks (less than 17 % area items in each grade). 
Compared to US textbooks, Korean textbooks included covering items much later, only 
introducing them in the fifth grade. Such a lack of inclusion is problematic, as previous studies 
have shown that it was challenging to second graders to cover a region completely without gaps 
or overlaps (Battista, Clements, Arnoff, Battista, & Caroline Van Auken, 1998; Lee, 2010). We 
also noticed that when textbooks include covering items, the terms “gaps” and “overlaps” are 
used only few times: less than 10 times in each American textbook series and never in the 
Korean textbooks. Since students often struggle with covering a region without gaps and 
overlaps (Outhred & Mitchelmore, 2000; Sarama & Clements, 2009), careful attention to 
covering and explicit remarks about why gaps and overlaps are important will lead students to a 
more conceptual understanding of what it means to measure area.  

Array structure. Items in this group included drawing, tiling or partitioning a region into 
rows or columns (the terms “rows” or “columns” needed to be included, or students needed to 
have opportunities to show array structure) and then counting them or using partial array 
structure. In US textbook series, partitioning a rectangle into rows and columns appeared first in 
grade 2, and grade 3 but coverage of the topic was brief and limited (less than 7 % area items in 
each grade). In Korean textbooks, the topic of array structures appeared in grade 5 but limited 
number of items were included (about 11 % of its area-related items).  

Area definition and formula. Items were coded as area formula if they showed that 
multiplying two numbers gives the area, or if they used the length  width formula to compute the 
area. Both countries’ textbooks used array structure to introduce the area formula. Korean 
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textbook lets students derive the formula after working on tasks counting unit squares in grade 5 
textbook. US textbook series also used an array structure in grade 3. As previously mentioned, 
with limited opportunities to explore how array structure and the area formula are related, 
students are likely to resort to more procedural approaches to area. Such a tendency was 
reinforced by every textbook, as they all moved quickly to items, where students were only 
required to use a procedure, multiplying length and width. 
Other area topics 

One of the frequent topics in both countries’ textbooks is counting unit squares in a shape 
without focusing on array structure (ranging from 23% to 41% of items in grade 3 textbooks and 
about 26 % in grade 5 Korean textbook). With such a heavy focus on counting squares, paired 
with limited experience with array structures in previous years, it will be challenging for students 
to connect array structure to the area formula. Prior studies have shown that even with drawn 
lines and squares, the connection between counting unit squares and area is not apparent to 
elementary students (Battista, 2004; Battista et al., 1998). Students may count unit squares 
procedurally without seeing array structure or understanding the purpose of not having gaps or 
overlaps. With limited opportunities to experience covering and array structure in grades 1 and 2, 
it will be challenging for students to see array structure when they are trying to count unit 
squares. 

Summary and Conclusion 
This study compared area lessons from Korean textbooks and US textbooks to understand 

differences and similarities among these textbooks, as well as how these textbooks address 
known learning challenges in area measurement. Our results indicated that textbooks from both 
countries paid modest or limited attention to area measurement lessons. In terms of timing, US 
textbook series introduced area related topics, partitioning, covering, array structure and area 
formula much earlier than Korean textbooks. In terms of sequence, US textbooks progressed 
through partitioning, tiling and then presenting the area definition and formula. Studies showed, 
2nd and 3rd graders often struggled with covering and array structure (Battista, 2004; Sarama & 
Clements, 2009). However, textbooks from both countries introduced such topics either later or 
not at all. Such findings indicate that both timing and sequencing were an issue for both 
countries’ textbook.  

Both countries textbooks placed strong focus on procedures rather than concepts. Also, the 
most frequent items were partitioning regions without array structure. Compounded with issues 
of sequencing and timing, a procedural focus, and limited coverage of important conceptual area 
ideas are highly like to lead to students’ challenges in learning area measurement. What may we 
conclude from our findings? As we mentioned previously, although textbooks do not provide 
mathematics lessons directly (content will likely be modified by teachers), they are one of the 
main resources teachers use when planning lessons. With the issues identified in these textbook 
series thus far, it is possible that limitations in textbooks can lead to area lesson plans that do not 
reflect challenges and important concepts of area measurement. In turn, limited coverage may 
lead to limiting elementary students’ learning opportunities and they may be inclined to adopt a 
more procedural understanding of area, without attaining a conceptual understanding. With our 
findings, it will be important to provide teachers with additional supports so that they can attempt 
to modify tasks in these textbooks to properly address students’ learning challenges in area 
measurement.  

In terms of international comparative studies, we cannot say that the learning opportunities 
these textbooks offered are directly related to US students’ performances in TIMSS. However, 
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our results showed that how these textbooks treat area measurement could be one of the reasons 
for US students’ TIMSS results. Despite Korean students’ high performances in measurement, 
we did find that Korean textbooks shared many of the same conceptual limitations as US 
textbooks. As Smith and colleagues (2016) noted, further studies are required to examine the link 
between curriculum use and students’ performances in assessments in order to make more 
distinct claims about influence of textbooks on students’ performances.  
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A lo largo de los años la modelación matemática ha ganado gran atención internacional, no 
sólo en la investigación sino también en el desarrollo de propuestas curriculares y en su 
implementación en salones de clases. Pero, a pesar de la muy extensa cantidad de 
publicaciones, existen pocas revisiones de literatura sistemáticas. En este reporte presentamos 
algunos resultados de una revisión de 485 publicaciones internacionales sobre modelación 
matemática. Nos centramos en las publicaciones que reportan estudios realizados en América 
Latina y encontramos que, en términos de la cantidad de publicaciones, la producción es 
relativamente modesta; sin embargo, la vitalidad de los temas actualmente discutidos y la 
innovación de sus perspectivas dan cuenta de la importancia que tiene el trabajo desarrollado 
en la región.  

Keywords: Modelación matemática, Investigación documental, Investigaciones en América 
Latina 

La Necesidad de una Revisión de la Literatura  
La incorporación de la modelación matemática a los currículos de varios países tiene sus 

raíces en un movimiento de finales de los años 1950’s, cuando defensores de la modelación 
pugnaron por restaurar el foco en la utilidad de las aplicaciones de las matemáticas en escuelas y 
universidades (Niss, Blum y Galbright, 2007).  

Un momento clave para el movimiento internacional de la modelación matemática fue la 
inauguración de la Conference on the Teaching of Mathematical Modelling and Applications, 
organizada en 1983 por la International Community of Teachers of Mathematical Modelling and 
Applications (ICTMA). Otro momento importante tuvo lugar en el año 2004 con la realización 
del estudio sobre Modelación Matemática organizado por la International Commission on 
Mathematical Instruction (ICMI). La publicación derivada de este ICMI Study (Blum, Galbraith, 
Henn y Niss, 2007) sigue siendo una referencia básica para la investigación en este tema. Desde 
entonces, los estudios en modelización se han incrementado significativamente ampliando los 
métodos e intereses más allá de las aproximaciones tradicionales (Stillman, Blum y Kaiser, 
2017). No obstante, a pesar de la gran cantidad de publicaciones en educación sobre modelación 
matemática, son escasas las revisiones sistemáticas del estado del arte sobre el tema.  

En la revisión efectuada por Kaiser y Sriraman (2006) se propone una clasificación de las 
investigaciones en la que se identifica seis perspectivas en modelación matemática: la 
perspectiva realista que tiene por objetivo resolver problemas de la vida real, más allá de las 
matemáticas; la perspectiva epistemológica que se centra en el desarrollo de teorías matemáticas 
e incluye modelos intra-matemáticos que son usados en la teoría matemática avanzada; la 
perspectiva educacional que considera que la modelación debe servir armoniosamente a 
propósitos prácticos, científicos y matemáticos; la perspectiva contextual, también llamada 
enfoque de modelación provocada (model-eliciting) que se centra actividades de resolución de 
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problemas usando principios de diseño instruccional específicos; la perspectiva socio-crítica que 
enfatiza la necesidad de desarrollar una postura crítica frente al rol y la naturaleza de los modelos 
matemáticos y su impacto en las problemáticas sociales; y la perspectiva cognitiva que es 
transversal a las anteriores y se centra en aspectos cognitivos de los procesos de modelación 
matemática.  

A pesar de que la clasificación de Kaiser y Sriraman sigue siendo vigente, la gran cantidad de 
trabajos y de perspectivas producidos en la última década demanda actualizarla y ajustarla. En 
nuestra revisión de la literatura, retomamos esta clasificación para identificar y contrastar temas 
contemporáneos sobresalientes, para ello analizamos sistemáticamente algunas de las 
publicaciones internacionales más importantes, tanto en revistas como en libros, como 
describimos a continuación. 

Metodología de la Revisión de Literatura  
Nuestra revisión es resultado del trabajo realizado en un seminario interinstitucional en el 

que participamos investigadores, profesores y estudiantes de grado y de posgrado de 
universidades de México y Canadá. Identificamos una vasta cantidad de literatura y gran 
variedad de perspectivas en modelación matemática. También notamos que las revisiones 
sistemáticas, como la realizada por Frejd (2013), son muy escasas. Esta escasez definió nuestro 
interés en realizar nuestra propia revisión, la cual comenzamos a en el primer semestre del año 
2017.  

Desarrollamos nuestra revisión en dos etapas. En la primera, recurrimos a la base de datos 
SpringerLink y buscamos las palabras “modeling” o “modelling” en el título. Filtramos la 
búsqueda usando “education” como disciplina y “mathematics education” como subdisciplina. 
Los artículos que no se relacionaban con modelación matemática fueron eliminados. De esta 
manera obtuvimos una lista de 73 artículos. A pesar de las restricciones impuestas en esta 
primera búsqueda, consideramos que la lista es representativa de los artículos de modelación 
publicados en Springer ya que la búsqueda centrada en los títulos sugiere que la modelación 
matemática es el principal foco de interés de estos artículos. El análisis de los artículos de esta 
lista nos ayudó a clarificar y refinar nuestras categorías de análisis; además, nos permitió 
identificar otras publicaciones clave en libros y artículos de otras editoriales. 

En la segunda etapa de nuestra revisión incluimos: (a) los artículos provenientes de números 
especiales de revistas de Springer y completamos la revisión de artículos publicados en 2017, 
que no habían sido incluidos antes (debido al traslape de tiempos de edición, sólo fueron 
consideradas las versiones preliminares publicadas en línea de los dos números especiales sobre 
modelación publicados por ZDM en 2018); (b) los artículos del Journal for Research in 
Mathematics Education (JRME); (c) los cinco libros derivados del ICTMA y publicados por 
Springer y el libro correspondiente al 14th ICMI Study (Blum et al, 2007); (d) los artículos de 
algunas revistas internacionales de investigación en español; (e) un libro publicado 
recientemente que reporta investigación latinoamericana sobre modelación matemática (Arrieta y 
Díaz, 2016); y (f) los reportes de investigación, presentaciones de grupos de trabajo y 
conferencias plenarias de los últimos 10 años de las memorias del PME-NA. 

Elegimos incluir JRME porque, de acuerdo con Toerner and Arzarello (2012), es la revista de 
mayor importancia a nivel internacional en el área de la Educación Matemática, junto con 
Educational Studies in Mathematics. Incluimos las revistas en español y el libro sobre 
investigación latinoamericana para ampliar nuestra mirada más allá de las publicaciones 
realizadas en lengua inglesa. Las revistas en español seleccionadas fueron Revista Educación 
Matemática y Revista Latinoamericana de Investigación en Matemática Educativa, debido a que 



Curriculum and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

90	

se especializan en Educación Matemática, son relevantes en la región y pertenecen a índices 
internacionales prestigiosos (Scopus y JCR). Para la búsqueda de artículos en estas revistas se 
procedió con los mismos criterios que con las revistas en inglés. 

En nuestro análisis nos concentramos en identificar aspectos metodológicos y teóricos de las 
investigaciones. Específicamente, ubicamos: propósitos de las investigaciones, población, 
instrumentos de levantamiento de datos, tipo de diseño metodológico (cualitativo, cuantitativo, 
mixto, etc.), perspectiva teórica y perspectiva de modelación, país donde se realiza la 
investigación y país de los autores, así como contenidos matemáticos abordados. Es necesario 
señalar, que el trabajo fue arduo pues muchas veces la definición de los aspectos teórico-
metodológicos no está hecha explícitamente por los autores y hay que inferirlos de lo que se dice 
y hace en el artículo. Por ejemplo, para la definición de la perspectiva de modelización, partimos 
de las características señaladas por Kaiser y Sriraman (2006), identificamos los propósitos y 
elementos teóricos señalados en los artículos, cruzamos con las conclusiones y, finalmente, 
revisamos a los autores citados como referencias clave. Los artículos fueron revisados en 
paralelo por dos investigadores. En caso de diferencias en la determinación de las características, 
los investigadores se juntaron a revisar los detalles y tomar una decisión; los casos más difíciles 
se discutieron en reuniones plenarias. Los criterios de análisis fueron ajustados continuamente a 
lo largo de los meses que duró la revisión.   

Un total de 485 documentos fueron revisados: 111 artículos de revistas de investigación, 341 
capítulos de libros y 33 contribuciones del PME-NA. En el presente artículo reportamos los 
resultados de nuestro análisis sobre producción de América Latina en modelación matemática 
encontrados en estos documentos. 

Tendencias y Producción en Modelación Matemática en América Latina 
En contraste con la afirmación de Blum y Niss’s (1991) de que la modelación matemática fue 

inicialmente desarrollada en regiones como Alemania y el Reino Unido, nuestra revisión revela 
actividad significativa en modelación matemática en América Latina desde los años 90’s. De 
hecho, de acuerdo con Biembengut (2016) en el caso de Brasil esta actividad puede rastrearse 
hasta los años 70’s. En nuestra revisión identificamos dos tendencias en las publicaciones sobre 
modelación matemática en América Latina: por una parte, la cantidad de producción es 
relativamente pequeña; pero, por otra parte, las aproximaciones y problemáticas abordadas 
presentan aproximaciones innovadoras para la investigación educativa en modelación 
matemática. 
La Cantidad de Publicaciones 

Identificamos en total 66 publicaciones de autores latinoamericanos del total de 485 que 
ubicamos en nuestra base de datos, es decir, aproximadamente el 13% de las publicaciones. En 
las publicaciones de lengua inglesa (las cuales fueron en total 454) identificamos 47 
contribuciones de autores latinoamericanos (aproximadamente el 10%). La mayor parte de ellas 
pertenecen a capítulos de libro de la serie International Perspectives on the Teaching and 
Learning of Mathematical Modelling (41 contribuciones). Estos capítulos representan 
aproximadamente 14% del total de los capítulos de la serie. Hay que señalar que una cantidad 
significativa de las investigaciones fueron reportadas en el volumen 2013 de la serie ICTMA (11 
capítulos). Es posible que esto se deba a que en ese año la conferencia del ICTMA fue realizada 
en Brasil. 

Respecto a las aproximaciones y problemáticas abordadas, encontramos que gran parte de las 
investigaciones latinoamericanas son de tipo cualitativo (21 publicaciones), incluyendo 
metodologías de estudios de caso y etnográficas; además, la mayor parte de las investigaciones 
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se realiza en los niveles de secundaria, post-secundaria y formación inicial de profesores. 
También es importante señalar que la perspectiva socio-crítica aglutina al conjunto más 
numeroso investigaciones latinoamericanas publicadas en lengua inglesa (8 publicaciones). La 
presencia de investigaciones realizadas bajo la perspectiva contextual también es significativa (6 
publicaciones). 

En las publicaciones realizadas en lengua española identificamos en total 15 contribuciones 
de autores latinoamericanos, la mayor parte de las cuales involucra a autores mexicanos (10 
publicaciones). La mayoría de estas investigaciones se realizó en los niveles de secundaria y 
post-secundaria (10 investigaciones) y prácticamente todas son de tipo cualitativo (14 
publicaciones). El conjunto más numeroso de investigaciones latinoamericanas (8 publicaciones) 
se ubica en las perspectivas socio-crítica y la educacional. Es necesario señalar que hay 4 
investigaciones que no pudimos clasificar debido a que los autores no mencionan su adherencia a 
alguna de las perspectivas, ni encontramos las características que permiten clasificarlas (Kaiser y 
Sriraman, 2006; Preciado-Babb et al., 2018). 

Finalmente, respecto a nuestra revisión de las memorias de los 10 últimos años de PME-NA, 
es importante señalar que con nuestros criterios de búsqueda ubicamos únicamente 4 
contribuciones que involucran a autores latinoamericanos: dos del grupo de trabajo en “Models 
and Modeling” (2016 y 2017), el foro de investigación “Mathematical Modeling in School 
Education” (2014) y un reporte de investigación (2009). 
Aproximaciones, Propósitos y Temas Innovadores en Modelación Matemática  

Aunque numéricamente son pocas, las investigaciones latinoamericanas que identificamos 
tienen tendencias innovadoras en problemáticas y aproximaciones; en particular, enfatizan los 
aspectos sociales y culturales de la educación en modelación. 

Al respecto, Stillman, Blum y Biembengut (2015) identificaron elementos de “a unique Latin 
American perspective to modelling” en el trabajo del autor brasileño Ubiratan D’Ambrosio, 
quien discute la generación de conocimiento (cognición), su organización individual y social 
(epistemología) y los modos en que es confiscado, institucionalizado y devuelto a las personas 
que lo generan (política). Su aproximación a la modelación matemática extiende la perspectiva 
socio-crítica y constituye una estrategia para la construcción de sistemas de conocimiento en 
contextos culturales diversos. D’Ambrosio señala: 

Through models, humans try to give explanations of myths and mysteries, and these 
explanations are organized as arts, techniques, theories, as strategies to explain and deal with 
facts and phenomena. These strategies, have been historically organized, in different groups, 
in different spatial and temporal contexts, which are the support of cultures, as systems of 
knowledge. (D’Ambrosio, 2015, p. 43) 

Otra tendencia de la modelación en América Latina corresponde a las investigaciones reportadas 
como socio-epistemológicas (ver por ejemplo Arrieta Vera y Díaz Moreno, 2016). Esta 
aproximación comprende la modelación matemática en términos de prácticas sociales, tanto 
escolares como en las matemáticas formales. 

Es importante señalar también que entre las investigaciones mexicanas reportadas resultan 
significativas las realizadas en el nivel de educación superior y específicamente en la formación 
de ingenieros (Domínguez, de la Garza y Zavala, 2015; Rodríguez, 2015). 
Sobre los Propósitos de la Modelación Matemática 

La revisión de los artículos y capítulos de libro permitió identificar propósitos de la 
modelación que extienden la lista propuesta por Kaiser y Sriraman (2006), ver Tabla 1 (la 
discusión detallada de la extensión de estos propósitos se hace en un reporte de investigación 
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presentado por Preciado-Babb et al., (2018). En la parte inferior de esta tabla presentamos los 
propósitos característicos de las perspectivas epistemológicas y critica-social, notables en 
publicaciones de América Latina. 

Tabla 1: Propósitos de la modelación matemática 
Propósitos Ejemplos 

Aprender contenidos matemáticos Álgebra, Geometría, Cálculo, Estadística 

Aplicar matemáticas Resolución de problemas 

Aprender otras disciplinas Química, Biología, Economía, Ciencias de la salud  

Investigar sobre la conducta Investigación sobre aprendizaje en ambientes virtuales  

Diseñar ambientes de aprendizaje  Diseño de simuladores y ambientes virtuales de 
aprendizaje 

Desarrollo de competencias de 
modelación 

Elementos de modelación, criterios para determinar la 
calidad de la modelación matemática  

Desarrollar habilidades de aprendizaje  Generalizar la solución de un problema a problemas 
similares 

Propósitos específicos de los estudios latinoamericanos 

Generar teoría matemática  Comprensión conceptual y prueba matemática  

Desarrollar pensamiento crítico Juzgar modelos usados en la vida diaria; cuestionar los 
propósitos y los supuestos de diferentes modelos 

Comprender las matemáticas como una 
disciplina  

Aspectos históricos, sociales y políticos de las 
matemáticas como una disciplina 

Desarrollar conciencia de problemas 
sociales y globales 

Crear y criticar modelos usados para predecir crecimiento 
económico, calentamiento global, recaudación fiscal  

Promover actitudes participativas  Comprometerse en la solución de problemas reales y la 
toma de decisiones dentro de la comunidad 

Promover la cultura de la innovación Crear soluciones para clientes, programar software para 
distintas audiencias 

Participación en estrategias de 
emancipación 

Descolonización, prácticas culturales en matemáticas y 
modelación matemática 

 
De esta tabla se puede destacar que varios de los propósitos característicos en las 

perspectivas latinoamericanas buscan modificar entornos específicos, y promueven culturas de 
innovación y actitudes participativas. Por ejemplo, Orey y Rosa (2017) reportan tareas que 
abordan problemáticas reales de tarifas de transporte público con lo cual los autores no solo 
abordan un problema auténtico, sino que también buscan proponer soluciones que orienten la 
toma de decisiones de la comunidad afectada. 
Contribuciones a Temas en Debate 

Uno de los temas en que los estudios latinoamericanos han contribuido ampliamente es el 
relacionado con el reciente debate sobre las nociones de “autenticidad” y “mundo real”. Desde la 
llamada perspectiva realista, Kaiser y Sriraman (2006) afirman que los procesos de modelación 
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se realizan como harían los matemáticos y científicos en la práctica. En este sentido, la 
autenticidad del conocimiento generado en el salón de clases puede considerarse a partir de su 
analogía con la actividad científica. Sin embargo, Jablonka (2007) ha sugerido que la 
recontextualización de prácticas de modelación de fenómenos científicos es problemática porque 
“causes a transformation of the unmediated discourses found in out-of-school practices of 
mathematical modelling, even though a modelling perspective overcomes the philosophy of 
naive realism encapsulated in traditional word problems” (Jablonka, 2007, p. 196). 

Respecto a este debate, han surgido varias posiciones a las que se han sumado las 
investigaciones latinoamericanas. Por ejemplo, una propuesta consiste en considerar los 
elementos de la modelación auténtica dentro de algunas tareas específicas, y no para todo el ciclo 
de modelación. Al respecto, Silva Soares (2015) considera la modelación como una perspectiva 
de enseñanza en la cual los estudiantes analizan modelos ya existentes en lugar de crear algún 
modelo a partir de datos reales; es decir, no se comienza con el “mundo real”.  

Más recientemente, Carreira y Baioa (2017) participan en este debate introduciendo el 
concepto de “credibilidad” de las tareas matemáticas. Mientras que otros autores consideran que 
las situaciones de la “vida real” tienen potencial para convertirse en situaciones de aprendizaje 
atractivas, el enfoque de la credibilidad coloca la relevancia a nivel personal para los estudiantes. 
Finalmente, otros trabajos en Latinoamérica han usado simulaciones computacionales como 
modelos para enseñar contenidos matemáticos y científicos específicos (por ejemplo, Gomes 
Neves, Carvalho y Duarte, 2011). Aunque quizás los estudiantes no se involucren con datos 
reales, en estos casos sí pueden hacer experimentos con el comportamiento de los modelos y 
aprender tanto contenidos matemáticos como extra-matemáticos. 

Reflexiones Finales 
Este reporte complementa otros estados del arte y se centra en las contribuciones que sobre 

modelación matemática se han realizado por investigadores de América Latina. Encontramos 
que, en términos de la cantidad de publicaciones, la producción sobre modelación realizada en 
Latinoamérica es relativamente modesta: aproximadamente el 10% de las revistas de 
investigación en lengua inglesa revisadas y 12% de las contribuciones en las memorias de los 
últimos 10 años del PME-NA (reportes de investigación, grupos de trabajo y conferencias 
plenarias). Sin embargo, de nuestra revisión se deriva también que hay una riqueza de temas y 
perspectivas innovadoras en los estudios sobre modelación matemática que se realizan en 
América Latina. Cabe destacar en particular, la tendencia a realizar estudios que enfatizan las 
influencias sociales y culturales de la educación en modelación. Esta tendencia se refleja tanto en 
la adopción de perspectivas innovadoras (como la de U. D’Ambrosio), como en la identificación 
de propósitos comunes a un amplio número de investigaciones latinoamericanas. 

Consideramos que las cantidades modestas de las publicaciones sobre modelación no se 
deben únicamente a un problema de lengua (publicaciones en inglés en relación a publicaciones 
en español), pues la mayor cantidad de publicaciones realizadas por investigadores 
latinoamericanos está hecha en publicaciones en inglés (aproximadamente el 77%). Además, la 
vitalidad de los temas actualmente discutidos en América Latina da cuenta de la importancia que 
está cobrando el trabajo en modelación matemática en la región. Pensamos que es necesario 
promover la realización de más investigaciones en los temas y perspectivas identificadas, pero 
también difundir el importante trabajo regional ya desarrollado. 
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LATINAMERICAN TRENDS IN MATHEMATICAL MODELING  

Throughout the years, Mathematical Modeling has gained international attention, not only in 
research but also in the development of curricula and its applications in the classroom. 
However, systematic literary surveys are scarce. In this paper, we present some findings from a 
survey of 485 international publications related to different aspects of mathematical modeling. 
While the number of Latin-American publications is rather small compared to the number of 
international publications, the vitality of the currently discussed themes in this region and their 
innovative perspectives testify to the international relevance of this developed work on 
mathematical modeling. 

Need for a Survey 
The incorporation of mathematical modeling into the curricula has its roots in a movement in 

the late 1950s, when modeling advocates attempted to restore focus on the utility and 
applications of mathematics in schools and universities (Niss, Blum y Galbright, 2007). 

A key moment for this international movement was the inauguration of the biennial 
Conference on the Teaching of Mathematical Modelling and Applications in 1983, organized by 
the International Community of Teachers of Mathematical Modelling and Applications 
(ICTMA). Another important moment took place in 2004 with the study on Mathematical 
Modeling organized by the International Commission on Mathematical Instruction (ICMI). The 
publication derived from this ICMI Study (Blum, Galbraith, Henn y Niss, 2007) continues to be 
a basic reference for research in this subject. Since then, international research has increased 
significantly, and research methods and focuses have extended beyond traditional approaches 
(Stillman, Blum y Kaiser, 2017). Despite the large number of publications on mathematical 
modeling in education, systematic reviews of the literature are scarce. 

In their review, Kaiser and Sriraman (2006) proposed a classification identifying six 
perspectives on mathematical modeling research: the realistic perspective aims to solve real-life 
problems beyond mathematics; the epistemological perspective focuses on the development of 
mathematical theories, and includes intra-mathematical models that are used to advance theory in 
mathematics; the educational perspective considers different aims for modeling that serve 
scientific, mathematical and pragmatic purposes harmoniously; the contextual perspective, also 
called the model-eliciting approach, focuses on problem-solving activities constructed using 
specific instructional design principles; the socio-critical perspective emphasizes the need to 
develop a critical stance towards the role and nature of mathematical models, as well as their 
impact on social issues; and the cognitive perspective on modeling is transversal to the previous 
five and focuses on cognitive aspects of the mathematical modeling process. 

Although Kaiser and Sriraman’s classification is still in use, the large amount of work and 
perspectives produced in the last decade demands updating and adjusting it. In our review of the 
literature, we retake this classification to identify and contrast outstanding contemporary issues 
for which we systematically analyze some of the most important international publications, both 
in journal and book form, as described below. 

Literature Review Methodology 
This survey is the result of a seminar consisting of graduate and undergraduate students and 

educators from universities in Mexico and Canada. We identified multiple perspectives on 
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modeling and found the literature on this topic to be vast. We also noticed that systematic 
reviews, such as the one conducted by Frejd (2013), were scarce. This influenced our decision to 
conduct our own review, which we started at the beginning of the year 2017. 

We conducted the review in two stages. In the first stage, we searched peer-reviewed articles 
with ‘modeling’ or ‘modelling’ in the title through the SpringerLink database. Then, we refined 
the search using ‘Education’ as discipline and ‘Mathematics Education’ as subdiscipline. Articles 
that did not relate to mathematical modeling were excluded, resulting in a list with 73 articles. 
Despite the restrictions imposed in this first search, we consider that this list is representative of 
the modeling articles published in Springer because the use of these key words in the titles 
suggests that mathematical modeling was a main focus for the selected articles. The analysis of 
the articles in this list helped us to clarify and refine the categories that guided the review, and it 
also allowed us to identify key publications in books and articles from other publishers. 

In the second stage of the review we included: (a) articles from the special issues on 
mathematical modeling, as well as articles published in 2017 not included previously (due to the 
overlap of editing times, we only considered Online First versions of the two special issues on 
modeling published by ZDM in 2018); (b) articles from the Journal for Research in Mathematics 
Education (JRME); (c) five books related to ICTMA and the 14th ICMI Study (Blum et al., 
2007); (d) articles from journals on mathematics education published in Spanish; (e) a recent 
Latin-American book addressing research on mathematical modeling (Arrieta & Díaz, 2016); 
and (f) research reports, presentations of working groups, and plenary conferences from the last 
10 years in the proceedings of PME-NA. 

We chose JRME because it is at the top of the list of journals identified by Toerner and 
Arzarello (2012), along with Educational Studies in Mathematics. The same search criteria for 
the titles used in the first stage was followed to search articles in this journal. We included the 
Spanish journals and the Latin-American book to extend the scope of the review beyond 
publications in English. The selected journals were Revista Educación Matemática and Revista 
Latinoamericana de Investigación en Matemática Educativa, because they are specialized in 
mathematics education, are relevant among the Spanish journals, and appear in prestigious 
international indexes (Scopus and JCR). For the search in these journals, we proceeded with the 
same criteria as with the English journals. 

In our analysis we focused on identifying methodological and theoretical aspects of the 
research. Specifically, we identified: research objectives, target populations, data collection 
instruments, type of methodological design (qualitative, quantitative, mixed, etc.), theoretical and 
modeling perspectives, country where research was carried out and authors’ country of 
residence, and mathematical themes.  

It is necessary to point out that the work was arduous: often, authors did not explicitly state 
the theoretical-methodological underpinnings of their work and we had to infer these from the 
content. For example, for the definition of the perspective of modeling, we started from the 
characteristics pointed out by Kaiser and Sriraman (2006); then, we identified the purposes and 
theoretical elements indicated in the articles, triangulated this information with the conclusions, 
and, finally, considered the cited authors as key indicators.  

Papers were also reviewed in parallel by two researchers. In case of differences in their 
analysis, the researchers reviewed the details together in order to come to a consensual decision; 
the most difficult cases were discussed in plenary meetings. The analysis criteria were adjusted 
continuously throughout the months when the review was conducted. 
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A total of 485 documents were included for this paper: 111 journal articles, 341 book chapters, 
and 33 PME-NA papers. Here, we report the results of our analysis of Latin American 
contributions to mathematical modeling found in these documents. 

Latin American Trends in and Contributions to Mathematical Modeling Literature 
In contrast to Blum and Niss's (1991) assertion that mathematical modeling was initially 

developed in regions such as Germany and the United Kingdom, our review reveals significant 
activity in mathematical modeling in Latin America since the 1990s. In fact, according to 
Biembengut (2016), this activity can be traced back to the 1970s in the case of Brazil. In our 
review, we identified two trends in publications on mathematical modeling in Latin America: on 
the one hand, the number of publications is relatively small; but, on the other hand, the 
approaches and problems addressed present innovative approaches for educational research in 
mathematical modeling. 
Number of Publications  

We identified a total of 66 publications by Latin American authors out of 485 documents in 
our database — approximately 13% of all the publications.  

In the English publications (454 in total), we identified 47 contributions from Latin American 
authors (approximately 10%). Most were book chapters in the series International Perspectives 
on the Teaching and Learning of Mathematical Modelling (41 contributions). These represent 
approximately 14% of the total chapters that constitute the series. It should be noted that a 
significant number of studies was reported in the 2013 ICTMA volume (11 chapters). This is 
possibly related to the fact that the ICTMA conference was held in Brazil that year. 

Regarding the approaches and problems addressed in the surveyed documents, we find that a 
large amount of Latin American research is qualitative (21 publications), including case study 
and ethnographic methodologies. In addition, most of the research deals with secondary and 
post-secondary education, and initial teacher training. It is also important to note that the socio-
critical perspective brings together the largest group of Latin American research published in 
English (8 publications). The presence of research carried out under the contextual perspective is 
also significant (6 publications). 

Within the category of articles published in Spanish, we identified 15 contributions from 
Latin American authors, most involving Mexican authors (10 publications). The majority of 
these studies focus on secondary and post-secondary levels (10 publications) and practically all 
are qualitative (14 publications). Most of the research (8 publications) assume socio-critical and 
educational perspectives. It is necessary to note that we could not classify four publications 
because the authors did not mention their adherence to any of the perspectives, and we could not 
identify particular classification characteristics (Kaiser & Sriraman, 2006; Preciado-Babb et al., 
2018). 

Finally, regarding our review of the last 10 years of the PME-NA proceedings, our search 
criteria only allowed us to find four contributions involving Latin American authors: two from 
the working group in “Models and Modeling” (2016 and 2017); a research forum “Mathematical 
Modeling in School Education” (2014); and a research report (2009). 
Approaches, Purposes and Innovative Themes on Mathematical Modeling  

 Despite the reduced number of publications, the Latin American studies identified in our 
survey propose innovative ideas regarding addressed issues and approaches. They particularly 
emphasize the social and cultural aspects of education in modeling. 

 Stillman, Blum, and Biembengut (2015) identified elements of a unique Latin American 
perspective to modelling in the work of Brazilian author, Ubiratan D’Ambrosio, who discusses 
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knowledge generation (cognition), its individual and social organization (epistemology), and the 
way it is confiscated, institutionalized and given back to the people who generated it (politics). 
This approach to mathematical modeling extends the socio-critical perspective and is a strategy 
for building up systems of knowledge in different cultural environments. As D’Ambrosio notes: 

Through models, humans try to give explanations of myths and mysteries, and these 
explanations are organized as arts, techniques, theories, as strategies to explain and deal with 
facts and phenomena. These strategies, have been historically organized, in different groups, 
in different spatial and temporal contexts, which are the support of cultures, as systems of 
knowledge. (D’Ambrosio, 2015, p. 43) 

Another Latin American modeling trend corresponds to research reported as socio-
epistemological (see, for instance, Arrieta & Díaz, 2016). This approach understands 
mathematical modeling in terms of social practices, both in school and in formal mathematics. 
The studies carried out at institutions of higher education, specifically in the training of 
engineers, stand out among the Mexican publications (Domínguez, de la Garza y Zavala, 2015; 
Rodríguez, 2015). 
Purposes of Mathematical Modeling 

Our review of articles and book chapters allowed us to identify some modeling purposes that 
extend the list proposed by Kaiser and Sriraman (2006) as presented in Table 1 (a detailed 
discussion of this extended list is presented by Preciado-Babb et al. (2018). In the lower part of 
Table 1 we present the characteristic purposes of the epistemological and critical-social 
perspectives notable in Latin American publications. 

Table 1: Purposes of mathematical modeling 
Purposes 
To: 

Examples 

Learn mathematics content Algebra, Geometry, Calculus, Statistics 

Apply mathematics Problem solving 

Learn other disciplines Chemistry, Biology, Finances, Heath Care 

Conduct research Research on learning in virtual environments 

Design learning environments Design simulators and virtual environments for learning 
purposes 

Develop modeling competencies Elements of modeling; criteria for quality in mathematical 
modeling 

Develop learning skills Generalize the solution of a problem to other similar 
problems 

Specific purposes of Latin American studies  
To: 
Generate mathematical theory Conceptual understanding; mathematical proof 

Develop critical thinking skills Judge models used in daily life; question purpose and 
assumptions of different models 



Curriculum and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

98	

Understand mathematics as a discipline Historical, social and political aspects of mathematics as a 
discipline 

Develop awareness of social and global 
issues 

Create and critique models used to predict economic 
growth, global warming, tax revenue, etc. 

Promote a participatory attitude Engage in addressing real problems and decision-making 
within the community 

Promote a culture of innovation Create something for a customer; create program software 
for an audience 

Engage in emancipation strategies Decolonization initiatives; cultural practices in 
mathematics and mathematical modeling 

 
From Table 1, it is worth mentioning that several of the Latin American purposes seek to 

modify specific environments and promote cultures of innovation and participative attitudes. For 
example, Orey and Rosa (2017) reported a task addressing a real issue of tariffs in public 
transportation. Through their study, the authors not only addressed a real problem but also sought 
to propose solutions that guide the decision-making of the affected community. 
Emergent Discussion Themes  

Latin American studies have contributed extensively to the recent debate on the notions of 
‘authenticity’ and ‘real world’. Regarding the realistic perspective, Kaiser and Sriraman (2006) 
claimed that modeling processes are carried out in a similar way to what mathematicians and 
scientists would do in practice. In this sense, the authenticity of the knowledge generated in the 
classroom can be considered based on its analogy with the scientific activity. However, Jablonka 
(2007) has suggested that recontextualization of modeling practices of scientific phenomena is 
problematic because it “causes a transformation of the unmediated discourses found in out-of-
school practices of mathematical modeling, even though a modeling perspective overcomes the 
philosophy of naive realism encapsulated in traditional word problems” (Jablonka, 2007, p. 196). 

Regarding this debate, several positions have emerged — and Latin American research has 
contributed to the discussion. For instance, one position is to consider the elements of authentic 
modeling within some specific tasks, not including the whole process of modeling. In this 
respect, Silva Soares (2015) suggested model analysis as a teaching approach in which students 
analyze an already existing model instead of creating a model from real data — in other words, it 
is not necessary to begin with the ‘real world.’ 

Most recently, Carreira and Baioa (2017) participated in this debate introducing the concept 
of ‘credibility’ of mathematical tasks. While authors have argued that real life situations have the 
potential to make the learning experience more attractive, this focus on credibility places the 
relevance at a personal level for students. 

Finally, other Latin American studies have focused on computer simulations as models to 
teach specific mathematical and scientific content (e.g. Gomes, Carvalho & Duarte, 2011). While 
students may not engage with real data when using a simulator, they can experiment within the 
model and learn both mathematical and extra-mathematical content. 

Final Remarks 
This report complements other reviews of the state of the art focusing on the contributions 

made by Latin American researchers to mathematical modeling. We found that, in terms of 
number of publications, Latin American production on modeling is relatively modest: 
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approximately 10% of the contributions in English research journals and 12% of the reports from 
last 10 years of PME-NA (research reports, working groups and plenary conferences). However, 
we also found richness of innovative themes and perspectives in Latin American studies. It is 
particularly noteworthy the tendency to conduct studies that emphasize the social and cultural 
influences of modeling education. This trend is reflected both in the adoption of innovative 
perspectives (such as that of D'Ambrosio), and in the identification of the common purposes of a 
large number of Latin American research projects. 

We consider that the modest number of publications is not solely due to language issues 
(English publications compared to Spanish publications), since we found that the largest number 
of Latin American research is published in English (approximately 77%). In addition, the vitality 
of the currently discussed themes in Latin America reveals the importance that mathematical 
modeling is gaining in this region. We think that it is necessary not only to promote more 
research in the identified topics and perspectives, but also to disseminate the significant regional 
work already developed. 
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THE COMMON CORE MORAL PANIC 

 Kevin Watson Steven Williams 
 Virginia Tech Brigham Young University 
 wk223@vt.edu williams@mathed.byu.edu 

The Common Core State Standards (CCSS) Initiative was initially met with great enthusiasm 
from politicians and education experts. However, as states began rolling out the standards, 
backlash against the Common Core became widespread, and several states ended up pulling out 
of the initiative. To explore and better understand why there was such a negative reaction to the 
Common Core, we make use of the sociology construct of moral panics, and present an 
argument that the response to the CCSS was indeed a moral panic. 

Keywords: Standards, Curriculum, Policy Matters 

For decades, mathematics educators and politicians have called for a uniform, national set of 
mathematics standards as a way of improving mathematical instruction in the US. In 1989, the 
National Research Council, in the book Everybody Counts (National Research Council, 1989), 
asserted that “America needs to reach consensus on national standards for school mathematics” 
(p. 46). In 2009, President Barrack Obama called for states to work together to set higher 
standards and combat the disparities that arise from the fifty states’ different sets of educational 
benchmarks (Montopoli, 2009). More recently, mathematics educators Deborah Ball, Mark 
Thames, and James Hiebert (Hiebert, 2013; Thames & Ball, 2013) argued “that the lack of a 
central or a common [national] curriculum is a major impediment” (Thames & Ball, 2013, p. 34) 
to improving the mathematical education of children in the US, and suggest that by unifying the 
nation on the mathematical learning goals for our students, we can greatly improve the teaching 
of mathematics. 

With so many advocating for a set of national mathematics standards as a way to improve 
mathematics education in the US, it is no wonder that the Common Core State Standards 
Initiative ("Common Core State Standards Initiative," 2015), was initially met with great 
enthusiasm. The Common Core State Standards (CCSS) ("Common Core State Standards for 
English Language Arts," 2010; "Common Core State Standards for Mathematics," 2010) were 
developed by a state-led initiative in 2009, that included 

… governors and state commissioners of education from 48 states, two territories and the 
District of Columbia, through their membership in the National Governors Association 
Center for Best Practices (NGA Center) and the Council of Chief State School Officers 
(CCSSO). State school chiefs and governors recognized the value of consistent, real-world 
learning goals and launched this effort to ensure all students, regardless of where they live, 
are graduating high school prepared for college, career, and life ("Standards in Your State," 
2015). 
Through examining the best state standards then in existence, consulting with teachers, 

educational leaders, state political leaders, and leading thinkers, and eliciting and reviewing 
feedback from the public, the CCSS were developed to achieve the goal of unifying the states’ 
learning goals for students across the nation. 

Many in the mathematics education community had largely positive outlooks at the time the 
CCSS were unveiled. The 2010 Critical Issues in Mathematics Education conference at the 
Mathematical Sciences Research Institute (Rehmeyer, 2010) called the CCSS “an unprecedented 
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opportunity to promote reasoning and sense-making across the United States,” (p. 5), and further 
described the standards as “coherent: build[ing] the mathematical concepts in a logical, orderly 
way, introducing new ideas only when students have had a chance to master the concepts they 
are built on” (p. 5). The National Council for Teachers of Mathematics (NCTM) President Diane 
J. Briars also described how political leaders and educators were enthusiastic about the CCSS 
“and how having common, rigorous, world-class college- and career-ready standards would 
benefit both their students and the nation” (Briars, 2014). It seemed the CCSS would be a major 
step in improving the mathematical education of students in the US, unifying the mathematical 
learning goals of a majority of the states, and fulfilling a dream of many mathematics educators. 

Despite the overwhelming optimism that the CCSS originally generated, these standards 
grew hugely controversial after their initial implementation. Views among large numbers of 
parents, educators, and politicians soured, and many began acting for the repeal of the CCSS, 
citing numerous negatively charged reasons for disposing of them. 

As we examine how hostility towards the CCSS grew and became more widespread, it makes 
sense to ask: What happened? Why did a unified, research-based, national set of mathematics 
standards designed to improve mathematics education in the US become so controversial? To 
explore these questions and better understand the nation’s reaction to the Common Core, we 
make use of a sociology construct originally developed by Stanley Cohen (2002), namely that of 
a moral panic. 

The Moral Panic 
Cohen (2002) defined moral panics as moments when 
A condition, episode, person or group of persons emerges to become defined as a threat to 
societal values and interests; its nature is presented in a stylized and stereotypical fashion by 
the mass media; the moral barricades are manned by editors, bishops, politicians, and other 
right-thinking people; socially accredited experts pronounce their diagnoses and solutions; 
ways of coping are evolved or (more often) resorted to; the condition then disappears, 
submerges or deteriorates … Sometimes the panic passes over and is forgotten, except in 
folklore and collective memory; at other times it has more serious and long-lasting 
repercussions and might produce such changes as those in legal and social policy or even in 
the way the society conceives itself.  (p. 1). 
These moral panics arise quite suddenly when a large, empowered sector of society labels 

something as deviant and threatening to the norms of that society, and urges that steps must be 
taken to repair the damage and prevent the perpetrators from further destruction of the moral 
order (Goode & Ben-Yehuda, 2009). These perpetrators become “folk devils” (Cohen, 2002), 
and are seen as “legitimate and deserving targets of self-righteous anger, hostility, and 
punishment” (Goode & Ben-Yehuda, 2009, p. 35).  
Elements of a Moral Panic  

Goode and Ben-Yehuda (2009) elaborated on the initial definition of the moral panic given 
by Cohen (2002) by identifying five crucial elements that appear within moral panics. First, there 
must be a heightened level of concern over the actions of a certain group or category of society 
whose behavior supposedly endangers other sectors of society. This concern should be manifest 
through a variety of outlets, such as public opinion polls, public commentary, media attention, 
and proposed legislation.  

Second, there must be an increased level of hostility towards the deviant group, for the harm 
thought to be caused by them. In other words, “not only must the condition, phenomenon, or 
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behavior be seen as threatening, but a clearly identifiable group in or segment of the society must 
be seen as responsible for the threat” (Goode & Ben-Yehuda, 2009, p. 38). As society begins to 
see a split between “us” – good, honest members of society – and “them” – the troublemakers or 
deviants – stereotyping of these outsiders occurs. This results in the creation of “folk devils” or 
villains whom society can blame for the phenomenon, and fight against, in order to maintain 
societal order. 

Third, there must be substantial agreement or consensus that an actual threat exists, and is 
being caused by the behavior of the deviant group. “This sentiment must be fairly widespread, 
although the proportion of the population who feels this way need not be universal or, indeed, 
even make up a literal majority” (Goode & Ben-Yehuda, 2009, p. 38). Thus, if only a few 
scattered, separate individuals believe that a threat exists, then there is no moral panic, despite 
these individuals heightened emotions and concerns. 

Fourth, as implicitly assumed in the term moral panic, the reaction to the supposedly harmful 
occurrence or behavior needs to be disproportionate. This disproportion is manifest through: (1) 
a belief that a more sizeable number of individuals are engaged in the deviant behavior than 
actually are; (2) a belief that the threat, danger, or damage is far more extensive than what is 
warranted; and (3) the wild exaggeration of numbers and figures, such as the number of deaths, 
violent acts, crimes committed, injuries, and dollars of damage caused by the behavior of the 
misbehaving group. “In short, the term moral panic conveys the implication that public concern 
is in excess of what is appropriate if concern were directly proportional to objective harm” 
(Goode & Ben-Yehuda, 2009, p. 40). 

Fifth, moral panics are volatile, erupting suddenly onto the scene of social conscience, and, 
almost as suddenly, subsiding from the awareness of the concerned members of society. Some 
moral panics become institutionalized, that is, the concerns that arose during the moral panic lead 
to the creation of social movement organizations, legislation, or rules of enforcement. Other 
moral panics simply fade away, with little to no trace or effect on society. The volatility of moral 
panics does not mean that the issues involved had no structural or historical antecedents; in fact, 
“the specific issue that generates a particular moral panic may have done so in the past, perhaps 
even the not-so-distant past” (Goode & Ben-Yehuda, 2009, p. 42). However, the degree of 
hostility generated during a moral panic flares up quickly and is not typically sustainable, hence 
its volatile nature. 
Actors in a Moral Panic  

Goode and Ben-Yehuda (2009) further point out that within a moral panic, there are usually 
five main “actors” or groups of participants. The first and most important actor is the press or 
mass media. As noted by Cohen (2002), within industrialized societies, the information that 
society uses to build ideas about societal norms, and who or what should be labeled as deviants, 
is received second hand. In other words, what the general public receives as “news” has already 
been processed by the mass media, who determine what is newsworthy and how it should be 
presented, based upon the commercial and political constraints within which the media outlets 
operate. Thus, one of the main instigators and sustainers of a moral panic is the press, who plays 
a large part in defining and displaying to the public the groups or episodes that should be 
considered as “the enemy,” by exaggeration and over-reporting of events, as well as stereotyping 
characters and behaviors (Goode & Ben-Yehuda, 2009). The second actor is the public. A moral 
panic cannot erupt unless the issues pointed out by the media strike a responsive chord within the 
general public, where the perpetrators identified can be focused on and vilified as a symbol for 
larger problems plaguing society. The third actor in a moral panic is the social control culture, or 
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those who are responsible for keeping order within society. Within most moral panics studied in 
sociology, this group consists of police and the courts, or law enforcement. Public concern about 
a supposed threat within a moral panic leads to the creation of public attitudes about what law 
enforcement should be doing to quash the problems “the enemy” is producing. The fourth actor 
within a moral panic is the group consisting of politicians and legislators. In past moral panics, 
when politicians and legislators recognized that the media and general public identified a threat 
to society, they “… aligned themselves against the devil and on the side of angels; the fact is, 
they picked an ‘easy target’ … What counted was not the nature of the target but what side they 
were on and what they were against.” (Goode & Ben-Yehuda, 2009, p. 26). These politicians and 
legislators within a moral panic push for immediate action within government and the law to end 
the disturbances to society caused by the groups or events branded as deviants. The fifth actor 
comprises “action groups,” or members of the public who come together to advocate for 
solutions to the problems created by the deviants to society, usually claiming that existing 
remedies are insufficient. 

While some of the actors involved in the reaction to the Common Core fall into the above 
categories (e.g. the press, the public, politicians, and action groups), there are some differences. 
First, since the Common Core does not involve crime or criminal acts, the police, courts, and law 
enforcement are not relevant. However, the analog of law enforcement within education, those 
who are part of the social control culture that are expected to uphold and enforce societal norms 
and improve the quality of the education of children locally, are state school boards. Thus, in 
examining the reaction to the CCSS, it is important to study how school boards reacted to the 
standards. Second, in the past few years, social media has vastly changed (1) the way people 
interact with one another, (2) the ease and accessibility of creating groups that call for action and 
change, and (3) how the public receives and interprets news. In fact, a recent study by the Pew 
Research Center found that about 30% of US citizens get their news on Facebook (Anderson & 
Caumont, 2014). Hence, in studying the nation’s reaction to the CCSS, we also must pay 
particular attention to the public opinions, “news” displayed, and action groups active on social 
media. 

Methods 
Data sources for this paper include social media posts, news outlets, school board meeting 

notes, and legislative action. In particular, four states were chosen to examine in depth: Indiana, 
Massachusetts, South Carolina, and Utah. Data analysis consisted of descriptive statistics to 
examine volatility and consensus, and qualitative coding and thematic analysis (Braun & Clarke, 
2006) of various sources to identify concerns, hostility, and disproportionate reactions of the 
public towards the common core. In the next section, we present evidence that all of the elements 
of a moral panic existed in the reaction against the Common Core. 

Evidence of the Common Core Moral Panic 
Concern 

A wide variety of concerns arose as the Common Core was implemented, as illustrated by a 
popular picture circulated on Facebook, presented in Figure 1. These concerns manifested 
through Facebook posts, school board meetings, legislation, and news outlets, and include loss of 
state and local control over education decisions, developmentally and age inappropriate 
standards, relentless testing that students will be subjected to, and the privatization of education. 
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Figure 1. Widely circulated Facebook illustration from 

www.StopCommonCoreinNewYork.com. 

Hostility and Folk Devils 
Through examination of hundreds of Facebook posts of anti-Common Core groups, we were 

able to identify two categories of folk devils that were vilified as those responsible for the CCSS. 
The first category consisted of those who could be blamed for taking over state and local control 
of educational decisions, such as President Barrack Obama, Education Secretary Arne Duncan, 
or the federal government in general. The second category consisted of people or companies that 
people felt would benefit financially from adoption of the standards, including Bill Gates, 
Pearson, and other educational “big businesses” or test developers. In each post, the identified 
folk devil was blamed for the problems that the CCSS were believed to cause, including 
concerns mentioned in the previous section, as well as criticized for trying to make money 
through exploiting children’s education. 
Consensus 

We identified three types of evidence for consensus that the CCSS were problematic. First, 
hundreds of anti-Common Core Facebook groups were created, with some consisting of 
thousands of members. Second, numerous articles about the CCSS were produced by national 
news outlets in 2013 and 2014. Third, because the voice of opposition became so loud, and had 
such a large number of people behind it, several states were forced to legislative action, such as 
Governor Herbert of Utah organizing a team to review the quality and legality of the standards 
(Herbert, 2014), or states (e.g. Indiana, Oklahoma, South Carolina) choosing to completely pull 
out of the standards altogether (Strauss, 2014). 
Disproportion 

Disproportionate claims that the CCSS were detrimental and causing great harm were not 
uncommon. Klein (2015) reported on five of the extreme claims, including that the Standards (a) 
“turn kids gay,” (b) “indoctrinate kids under a Nazi society,” or (c) “turn kids into communists or 
socialists.” Considering that the CCSS are only a set of learning goals and not a brainwashing 
effort, these claims were clearly unfounded and over-reactive. 

As another example of the disproportionate reaction towards the CCSS, consider what 
happened in the state of Indiana. On May 11, 2013, Governor Mike Pence signed a bill that 
paused implementation of the CCSS (Castleman, 2013), and by March of 2014, Pence signed 
legislature that completely withdrew Indiana from the Common Core Initiative (Nicks, 2014). 
Despite clear warnings from the Obama administration that fines would be enacted if the state’s 
new standards were subpar (Lucas, 2015), Indiana pushed forward trumpeting their actions as an 
act of support toward state’s rights. “By signing this legislation, Indiana has taken an important 
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step forward in developing academic standards that are written by Hoosiers, for Hoosiers, and 
are uncommonly high,” Governor Pence said in a statement (Calvert, 2015). The committee for 
creating new state standards met in October 2013, but after a draft of these new standards was 
released, the Indiana Department of Education found that 70 percent of the standards were 
exactly the same as the CC with another 20 percent of the content simply a modified version of 
the CC (“Open the Floodgates”, 2014). These similarities to the CCSS continued on through to 
the final draft, with many seeing the new standards as little more than a “rebrand” (Kurtz, 2014) 
or a “warmed-over version of Common Core’s standards” (Calvert, 2015). Hence, it seems that 
the negative reaction towards the standards themselves was unwarranted, and most likely an 
overreaction, as the state found it difficult to write high-quality standards that were different 
from the Common Core. 
Volatility 

Despite the CCSS development in 2009-2010, and the adoption of the standards by a large 
majority of states from 2010-2012, news coverage about the CCSS was fairly minimal until 
midway through 2012, when the number of news articles mentioning the CCSS grew rapidly. 
According to a LexisNexis Newspaper article search analysis of US publications conducted by 
the American Enterprise Institute (Hess & McShane, 2014), this rapid growth in articles 
reporting on the Common Core rose quickly from August 2012 to a peak in the number of 
articles in August 2013 (see Figure 1). 

 

 
Figure 2. Number of US newspaper articles mentioning “Common Core” per month. From Hess 

& McShane (2014). Adapted with permission. 

As additional evidence of the volatility of the reaction towards the CCSS, Figure 2 presents 
the number of anti-Common Core Facebook groups created by month, from a sample of 191 of 
the largest of these groups across the US: 

 
Figure 3. Number of anti-Common Core Facebook groups created per month from a sample of 

191 of the largest groups in the US. 
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From these two figures, it is clear that public and press awareness of, and concern with, the 
CCSS erupted during the spring and summer of 2013, but over the past five years, concern and 
calls for repealing the CCSS have lost their prominence in the public square. However, this is not 
to say that distress over the Common Core will not reach these levels again, as some moral 
panics can become “a conceptual grouping of a series of more or less discrete, more or less 
localized, more or less short-term panics” (Goode & Ben-Yehuda, 2009, p. 42). Thus, other 
spikes in concern about the CCSS may still occur in the future. 

Discussion 
As education is a highly politicized, highly charged discussion within the US, it might not 

seem surprising that such opposition to the CCSS arose during their implementation. However, 
the sociological construct of moral panic gives us a more detailed description of the negative 
reaction towards the Common Core, helping us see why it was so easy for the public and media 
to paint the CCSS as a terrible idea. 

Intriguingly, the Common Core moral panic afforded both sides of the political spectrum 
concerns and arguments against the Common Core. For those on the Left, the idea of big 
businesses profiting from the education of the nation’s children was maddening. For those on the 
Right, Federal Government taking over local control was a large overstep of power. In both 
cases, calls for the repeal of the CCSS ran rampant across the country. 

This leads us to end with the following question: if more educational reforms are desired, 
how can we avoid another moral panic in the future? Sadly, because education is so politicized, 
the answer may be that a moral panic cannot be avoided; nevertheless, it could be minimized. 
Better communication with parents and teachers, and a slower implementation of standards could 
have benefitted the CCSS greatly. Future educational reformers, including educators and 
politicians, should look closely at the Common Core Moral Panic, and consider carefully how 
mistakes made in its implementation could be avoided in implementing future reform. 

Acknowledgments 
We want to give sincere thanks to the help and efforts of the BYU Mathematics Education 

students who contributed to the work of this paper during the Winter 2015 seminar. 

References 
Braun, V., & Clarke, V.  (2006). Using thematic analysis in psychology.  Qualitative Research in Psychology, 3, 77-

101. 
Briars, D. J. (2014). Core truths. President's Messages. Retrieved from: http://www.nctm.org/News-and-

Calendar/Messages-from-the-President/Core-Truths/ 
Calvert, K. (2014, March 25). In an About-Face, Indiana Decides to Drop Common Core. PBS Newshour. Retrieved 

from http://www.pbs.org/newshour/rundown/face-indiana-decides-drop-common-core-education-standards 
Castleman, A. (2013). Pence signs bill 'pausing' reading, math standards. WTHR 13 News. Retrieved from 

https://www.wthr.com/article/pence-signs-bill-pausing-reading-math-standards. 
Cohen, S. (2002). Folk devils and moral panics (Third ed.). New York, NY: Routledge. 
Common Core State Standards for English Language Arts. (2010). Common Core State Standards Initiative.  

Retrieved from http://www.corestandards.org/wp-content/uploads/ELA_Standards.pdf 
Common Core State Standards for Mathematics. (2010). Common Core State Standards Initiative.  Retrieved from 

http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf 
Common Core State Standards Initiative. (2015).   Retrieved from http://www.corestandards.org/ 
Goode, E., & Ben-Yehuda, N. (2009). Moral panics: The social construction of deviance. (Second ed.). Oxford: 

Blackwell. 
Herbert, G. (2014). Governor remarks - Strengthening Utah education for our students. Salt Lake City, UT 

Retrieved from https://www.utah.gov/governor/standards/.  



Curriculum and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

108	

Hess, F. M., & McShane, M. Q. (2014). Flying under the radar? Analyzing Common Core media coverage. 
Retrieved from American Enterprise Institute website: https://www.aei.org/publication/flying-under-the-radar-
analyzing-common-core-media-coverage/ 

Hiebert, J. (2013). The constantly underestimated challenge of improving mathematics instruction. In K. R. Leatham 
(Ed.), Vital Directions in Mathematics Education Research (pp. 45-56). New York: Springer. 

Klein, R. (2015). 5 of the most extreme claims made against Common Core in the last 5 years. Huffington Post. 
Retrieved from https://www.huffingtonpost.com/2015/06/04/common-core-birthday_n_7506018.html 

Kurtz, S. (2014, May 1). Pence’s Common Core Miscalculation. The Corner. Retrieved from 
http://www.nationalreview.com/corner/376984/pences-common-core-miscalculation-stanley-kurtz  

Lucas, F. (2014, May 7). Federal Gov’t Issues Warning to State That Wants to Opt Out of Common Core. The 
Blaze. Retrieved from http://www.theblaze.com/stories/2014/05/07/federal-govt-issues-warning-to-state-that-
wants-to-opt-out-of-common-core/ 

Montopoli, B. (2009, March 10, 2009). Obama's Remarks on Education. CBS News. Retrieved from 
http://www.cbsnews.com/news/obamas-remarks-on-education/ 

National Conference of State Legislatures. (2015). Common Core status map. College and Career Readiness 
Standards Legislation.  Retrieved from http://www.ccrslegislation.info/CCR-State-Policy-Resources/common-
core-status-map 

National Research Council. (1989). Everybody counts: A report to the nation on the future of mathematics 
education. Washington, DC: National Academy Press. 

Nicks, D. (2014). Indiana drops Common Core education standards. Time. Retrieved from 
http://time.com/36779/indiana-drops-common-core-education-standards/ 

Open the Floodgates? Indiana Becomes First State to Scrap Common Core. (2014, March 25). Fox News. Retrieved 
from http://www.foxnews.com/politics/2014/03/25/indiana-becomes-first-state-to-drop-common-core-
standards/ 

Rehmeyer, J. (2010). Reasoning & sense-making in the math curriculum. Critical Issues in Mathematics Education, 
8(7). 

Standards in Your State. (2015). Common Core State Standards Initiative.  Retrieved June 18, 2015, from 
http://www.corestandards.org/standards-in-your-state/ 

Strauss, V. (2014). Two more states pull out of Common Core. The Washington Post. Retrieved from 
https://www.washingtonpost.com/news/answer-sheet/wp/2014/06/05/two-more-states-pull-out-of-common-
core/?utm_term=.ee8ed6ee8c62 

Thames, M. H., & Ball, D. L. (2013). Making progress in U.S. mathematics education: Lessons learned - Past, 
present, and future. In K. R. Leatham (Ed.), Vital Directions for Mathematics Education Research (pp. 15-44). 
New York: Springer. 

  



Curriculum and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

109	

USING A NEXT-GEN “AGILE CURRICULUM” TOOL TO STRENGTHEN WEAK 
RATIO REASONING 

 Jere Confrey Michael Belcher Meetal Shah 
 NC State University NC State University NC State University 
 jere_confey@ncsu.edu mjbelche@ncsu.edu mshah2@ncsu.edu 

 William McGowan Margaret Hennessey 
 NC State University NC State University 
 wgmcgowa@ncsu.edu margaret_hennessey@ncsu.edu 

Math Mapper 6-8 (MM68) is a digital learning system (DLS) that scaffolds curricular 
coherence, supporting assembly and iterative improvement of diversely-resourced curricula. 
MM68 includes a learning map consisting of learning trajectories organized around the big 
ideas in middle grade mathematics and a diagnostic assessment and reporting system. We report 
on how a design-based implementation research (DBIR) study supported the development of a 
new framework for curriculum enactment, the “agile curriculum framework,” and explore how 
such a framework can productively blur lines among curriculum designer, user, and researcher. 

Keywords: classroom assessment, learning trajectories, agile curriculum, digital learning system 

Perspectives or Theoretical Framework for the Research 
The research is grounded in constructivist learning theory (Confrey & Kazak, 2006; 

Thompson, 2002; von Glasersfeld,1982): student thinking around key ideas goes through 
predictable, albeit probabilistic, transformations from naïve to sophisticated thinking to reach a 
target concept. The sequence of the transformations can be described as learning trajectories 
(LTs) or progressions (Confrey, Maloney & Corley, 2014; Sarama & Clements, 2009; Simon, 
1995). They begin from students’ prior knowledge, which is refined and revised based on their 
interactions with a carefully sequenced set of curricular tasks. Those tasks challenge students to 
solve new problems that represent more sophisticated reasoning. We emphasize that a learning 
trajectory draws fundamentally from genetic epistemology (Piaget,1970), enacting the idea that 
to “know” something, one has to consider what conditions create and render the need for the 
idea. However, LTs do not assume Piagetian stage theory (Lehrer & Schauble, 2015), and they 
do not manifest as biological development such as maturation. Movement along a trajectory 
occurs via building and refining schemes, through a process of assimilation and accommodation 
as students solve tasks (Simon & Tzur, 2004). It depends on instructional experiences and on 
students’ “opportunities to learn”: opportunities to undertake the carefully sequenced tasks, use 
appropriate tools, and engage in discussions and debates with teachers and peers. Unlike most 
meanings of instructional design, which involve logical deconstruction of how to reach targeted 
ideas (Gagne, 1965), LTs are grounded in empirical research on the patterns of responses shown 
by students in learning (sometimes called “emergent” (Gravemeijer, 1999)). 

The Study 
This study reports on the “agile curriculum framework” (Confrey, et al., 2018) and how it 

can be supported by Math Mapper 6-8 (MM68), a new type of digital learning tool. The agile 
curriculum framework (figure 1) describes how curricula are enhanced through iterative short-
term (during instructional units) and long-term (across months and years) cycles, based on 
feedback. 
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Figure 1. The agile curriculum framework (Confrey et al., 2018, p.7). 

 
MM68 is a digital learning system (DLS) (Confrey, 2015) that is built on an explicit 

research-based foundation in learning trajectories (LTs), aligned to the Common Core State 
Standards in Mathematics (CCSS-M) (Confrey et al., 2014). MM68’s front end is a learning map 
that organizes the content of middle grades math around nine “big ideas,” each of which is 
subdivided into 2-5 “relational learning clusters.” Each cluster comprises a set of constructs 
whose interconnected meaning supports the big idea. Each construct is embodied by an LT of 5-
12 progress levels, which are used to build periodic “classroom assessments” (Pellegrino, 
DiBello, & Goldman, 2016). MM68 generates ongoing assessment reports—for teachers and 
students—that are used to refine instruction. In this paper, we present the results of a 4-week 
design study investigating if—and, if so, how—three elements interact to have positive impacts 
on students’ learning: 1) teacher knowledge of LTs, 2) a curriculum designed to promote student 
progress along related LTs, and 3) the use of diagnostic assessments to monitor progress on those 
LTs. The goals of the study were to: a) improve sixth grade students’ ratio reasoning, b) learn 
how teachers share, discuss, and act with students on assessment data, and c) use classroom 
observations and student data as one source of validation of the LT-based assessments. 
Methods 

To hold one critical factor constant in this complex system, a single set of curricular 
materials was created to be implemented across all sixth grade sections at a high needs middle 
school. The materials were aligned to the LTs in two ratio clusters: “key ratio relationships” 
(cluster 4) and “comparing ratios and finding missing values” (cluster 5).  We conducted a 
design-based implementation research (DBIR) study (Penuel & Fishman, 2012). Our research 
conjecture (Confrey & Lachance, 2000) was that if teachers understand the LTs, they can assist 
students in progressing through the materials to build and demonstrate more sophisticated ratio 
reasoning. We further conjectured that how the teachers discussed the data from periodic 
assessments with students would provide an explanatory framework on how the LTs can most 
directly support improvement in practice. Therefore, we sought to observe how the teachers 
discussed and reviewed the data with students, how they adjusted their instruction, and whether 
and how students resolved to improve. 
Data Sources and Analysis 

Five assessments were administered during the study: One pretest and one posttest, scored 
digitally, both containing items from both clusters 4 and 5; two diagnostic assessments 
administered following instruction on each cluster (one containing only cluster 4 items and one 
containing only cluster 5 items), scored digitally; and an independent posttest from Student 
Achievement Partners administered on paper, scored manually by two members of the research 
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team. The mean scores on the pretest, diagnostic assessments, and posttest were computed and 
the difference between the means was determined. Results are reported for students completing 
both the pretest and posttest (n=165 for cluster 4 and n=143 for cluster 5). Some students 
mistakenly took a cluster 4 assessment as a posttest, and others mistakenly took a cluster 5 
assessment as a posttest, resulting in a difference between the number of students completing 
both the pretest and posttest for cluster 4 and the number of students completing both tests for 
cluster 5. Teachers were also observed implementing the curricular materials, administering 
assessments, and reviewing assessment feedback with their students. Teachers and students were 
interviewed to understand how they were interpreting and acting on assessment feedback. 

Results and Discussion 
For students who completed both the pretest and posttest, mean scores increased from 

35.59% (SD=20.67%) to 50.19% (SD=22.85%) in cluster 4 (a gain of +14.6), and from 31.59% 
(SD=21.53) to 47.14% (SD=25.34%) in cluster 5 (a gain of +15.55). The effect sizes were 0.67 
(cluster 4) and 0.66 (cluster 5). On the independent posttest, students achieved a mean score of 
38.3% (SD=20.6%, n=262). Some difference between the independent posttest and the MM68 
posttest is to be expected. The curriculum, diagnostic assessments, and MM68 posttests were 
built with the LTs as a common framework, providing a coherent classroom experience. The 
independent posttest was not built using this framework and the alignment between assessment 
and classroom experience was not as strong. However, as will be discussed below, the results of 
the independent posttest informed revisions to both the LT levels and long-cycle modifications to 
the curricular materials.  

Examples of the type of short-cycle and long-cycle revisions described by the agile 
curriculum framework were evident in the ways researchers and teachers presented, discussed, 
and shared results and insights. These insights took the form of: a) recommendations about 
reporting and acting on diagnostic assessment data, b) general instructional suggestions, c) 
content-specific suggestions, and d) proposed changes to the curricular materials.  

To encourage student discussion and reflection, and to help ensure that students perceived the 
diagnostics as constructive, teachers encouraged each other to focus on both strengths and 
weaknesses of students. Researchers worked with teachers to emphasize the LTs as a way of 
monitoring progress and guiding future learning. Teachers, in turn, focused on the interpretation 
of the scores as “getting started,” “showing some understanding,” or “showing proficiency” 
rather than the specific percent correct score. Students reported positive attitudes about revising 
and resubmitting answers and were observed “taking up the language” of the constructs and 
clusters to focus their learning. Researchers leveraged diagnostic assessment data to address gaps 
in student understanding by providing supplemental activities to be used during the unit. 

Researchers also made long-cycle revisions to the curricular materials based on assessment 
data. Responding to weak performance in the construct “finding unit ratios,” researchers revised 
the curricular materials for future use by strengthening the treatment of unit ratio. Similarly, the 
independent posttest revealed insufficient treatment of the connection between part-to-part and 
part-to-whole ratios. The materials were revised to specifically address this gap.   

Finally, researchers provided content-specific suggestions to inform future implementation of 
the curriculum. For example, researchers suggested teachers encourage students to consistently 
make, label, and use ratio tables and ratio boxes, and to use “broken arrow” diagrams to stress 
the multiplicative relations both as covariation and as correspondence (Vergnaud, 1988).   

Conclusion 
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The DBIR work carried out in this partnership led to a variety of means of ongoing 
improvement, including professional development, curricular revisions, and tool redesign aimed 
at strengthening and supporting short-cycle and long-cycle instructional adaptations 
characteristic of the agile curriculum framework. Although this study reports on findings from 
one grade level team in one school, it nevertheless demonstrates how a school partnership can be 
formed to work together for ongoing improvements and the types of learning gains that can be 
achieved when students, teachers, and researchers all have a stake and a role in that 
improvement.  
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Learning to teach mathematics is a complex endeavor. Particularly challenging is making sense 
of the various levels of curriculum (societal, technical, and enactment) and engaging in problem-
solving, or dialogic, mathematics curriculum. This self-study examines how one early career 
teacher transformed her enactment of curriculum, through specific experiences during her first 
five years teaching science and mathematics. Narrative inquiry was used to examine past 
artifacts (i.e., lesson plans) and experiences. The findings highlight the importance of specific 
focal experiences that support teachers throughout their first five years of teaching to create 
space in the technical curriculum for enacting dialogic mathematics.  

Keywords: Curriculum, Teacher Beliefs, Teacher Education-Inservice  

Experience is the foundation for learning (Dewey, 1902), as such prospective teachers (PSTs) 
draw upon their many years of experience as mathematics student when they are learning to 
teach. Despite recent calls for dialogic instruction, which includes challenging problem-based 
curriculum, group work, and an emphasis on mathematical thinking over finding correct answers 
(NCTM, 2000, 2010), PSTs often draw on their own classroom experiences to define 
mathematics teaching. These formative experiences as a learner, often learning mathematics 
through direct mathematics instruction, limit PSTs’ understanding of elementary mathematics 
(Ma, 1999). This self-study, drawing on levels of curriculum (Doyle, 1992), utilizes a narrative 
approach to examine how specific focal experiences can transform one’s mathematics 
curriculum enactment. I begin by unpacking my learning to teach experience, using the lens of 
extant literature, and conclude with implications for teacher education.  

Theoretical Framework 
In this proposal, I utilize the levels of curriculum—societal, technical, and classroom 

enactment (Doyle, 1992)—to examine how an early career teacher’s (ECT) understanding of 
curriculum levels changed as her experiences changed.  
Societal Level of Understanding Curriculum 

PSTs enter mathematics methods with varying beliefs about how school should be taught 
based on their own experiences (Ambrose, 2004). These ideas and understandings come from 
their experience of being students. This level of curricular understanding is termed the societal 
level. Such an understanding “may mislead prospective teachers into thinking that they know 
more about teaching than they actually do” making “it harder for them to form new ideas and 
new habits of thought and action" (Feiman-Nemser, 2001, p. 1016). Therefore, one of the first 
goals of many mathematics teacher educators (MTEs) is supporting PSTs in expanding their pre-
existing beliefs of mathematics curriculum. Here the emphasis is often placed on support PSTs in 
gaining a better understanding of the realities and complexities of dialogic curriculum enactment 
(e.g., Ambrose 2004). Unfortunately, the societal level of curricular understanding is often in 
conflict with the ideas in mathematics methods. 
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Technical Level of Understanding Curriculum 
The technical level of curriculum is often concrete, albeit frequently changing, and includes 

standards, textbooks, and curriculum documents (Doyle, 1992). While these standards can be 
straightforward they can also be challenging for prospective teachers to enact for a myriad of 
reasons, i.e., prospective elementary teachers may not have sufficient mathematical content 
knowledge (e.g., Ambrose, 2004). Additionally, as Westbury (2002) highlighted prospective 
teachers may view standards-based textbooks as "curriculum-as-a-document.” In other words, 
novice teachers may view the textbook as the curriculum that they enact—not something that 
supports the curriculum. Due to this conflation between the technical curriculum and the 
enactment level of curriculum, ECTs too often rely on their understanding of mathematics 
curriculum at the societal level to support their enactment, rather than their new understandings 
from methods.  
Enactment Level of Understanding Curriculum  

As ECTs experience teaching they begin to understand curriculum at the level of enactment. 
At this level of understanding, teachers have more experiences and are more familiar with 
classroom variables. ECTs draw on these experiences and the resulting stories when deciding on 
their daily classroom curricula (or lesson plans). Ideally, by building on their understandings of 
dialogic mathematics from mathematic methods, ECTS understanding of curriculum will begin 
to expand. However, ECTs often face a tension between the technical curriculum and what 
works in classrooms, or at the enactment level of curriculum. This tension, can be viewed as 
recontextualization, or how teaching practices and ideas introduced in methods are enacted, or 
not, by ECTs (Ensor, 2001). In summary, the enactment level is the actual implementation (or 
teaching) of the curriculum, building on understandings that include their societal view, the 
technical curriculum, and understandings from teaching and mathematics methods. 

Methods 
In this self-study, I took my first five years of teaching as a case to offer a “deep and critical 

look at practices and structures of teacher education” (Zeichner, 1999, p. 11). I utilized a 
narrative approach (Carter, 1993) to identify both my curricular enactment and my understanding 
of curriculum levels. I open-coded (Strauss & Corbin, 1990) lessons plans, journal entries, and 
specific recalled experiences that comprised my narrative of learning-to-teach. Through this 
process I identified five specific focal experiences that impacted my curricular enactment and my 
understanding of curriculum levels. 

Findings 
The Starting Point—Societal View of Curriculum  

Growing up particularly engaged in my classroom education I believed I understood 
curriculum. However, my view changed as I advanced in high school mathematics. We were 
learning material that was engaging on its own, yet I had no idea why we were learning it. I tried 
to trust the teacher, but while learning Conic Sections in Algebra II, I finally had to ask, "How do 
we use conic sections in the real-world?"  In response, we (the class) were given a new project, 
to explore how Conic Sections are used in real life. As I was learning to teach, I regularly 
reflected on this early experience questioning how content, and curriculum were taught in 
schools. Specifically, I wondered why the real-world was often separate from the classroom.  
Technical Curriculum and the Foundation for Creating Space 

Several years later, I had earned a BS in Biology with a minor in environmental education, 
and I was an AmeriCorps member, responsible for running a Title 1 elementary school garden. 
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Through one school garden conference and a handful of education courses (for my minor and 
general interest), I knew I should connect the garden activities to standards. I thought this 
connection would facilitate classroom engagement. Having limited support in making 
connections I turned to the standards, and thus began my first real experience with the technical 
curriculum. I read (and re-read) the state standards, which formed the foundation for three garden 
activities I created. Each activity addressed several mathematics and literature state standards. 

Through my narrative analysis, I also recognized that this year provided the foundation for 
developing my knowledge of students and their communities, or Community Funds of 
Knowledge (CFoK). I worked with families before and after school and I began to understand 
the wealth of knowledge, or CFoK, that each family had to offer. I found that connecting to and 
eliciting CFoK helped the garden flourish. During this year, I began to think of ways to connect 
this knowledge with the technical curriculum (a key component of my future curricular 
enactment). In this position, I experienced both the value of state standards and the importance of 
working with families and community.  
Dialogic Curriculum Enactment in Three Steps 

Phase 1: Technical curriculum is not enough. The following year, as I started my first 
teaching position, at a relatively new charter school, my developing understanding of curriculum 
was challenged. In preparing for the school, I studied the standards for middle school science and 
mapped these onto to the school calendar, ensuring I would “hit” each standard. During this 
process, my curricular understanding was limited to the technical level, despite having worked in 
the same neighborhood the year before, recognizing the value of CFoK. Yet, as my students 
filled the classroom, my view of curriculum complexified as I was met with the realities of being 
a new teacher in a school with few resources. Throughout this first year teaching my curricular 
focus included my students and my attempts of curricular enactment. I still recognized that 
standards had value, but I now understood that they were not sufficient to teach diverse middle 
school students. Rather there were many more details to attend to and I began to develop and 
implement approaches to connect to families and the community.  

Phase 2: Engaging students in their education. The following year I taught at a well-
established private school where my understanding of enacted curriculum changed again. This 
child-centered school was aligned with Dewey's (1902) emphasis on student experience as a 
critical component of learning. Therefore, with the support of a colleague and veteran math 
teacher, my students (and not the standards) became my key focus when developing lesson 
plans. My classes were much smaller, yet much more individualized and involved. Here I 
connected my understandings from my prior focal experiences (the importance of real-world 
mathematics, CFoK, and standards), and when I developed or enacted curriculum I drew on my 
knowledge of students, their engagement, and real-world mathematics. For example, through 
problem-solving lessons, I had students derive pi and identify real-life applications for quadratic 
functions. Overall, this teaching experience proved essential in my understanding of successful 
curriculum enactment, specifically my expanding view of what enactment could include—
dialogic mathematics.  

Phase 3: Creating space in the technical curriculum to engage students. When I began 
teaching at a large public high school, I was provided with structured mentoring, re-introduced to 
state standards and introduced to new technical aspects of the district. As such, my enactment 
level of curriculum began with the state standards and incorporated the district level 
expectations, but I also made space for student engagement, real-world applications, and student 
interest in their own education. For example, I began each year with the students writing a short 
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essay entitled, “Why Mathematics?,” in which students researched and explained why math was 
personally important. Building on my prior focal experiences, I now saw room in the technical 
curriculum to include enactment of curriculum that created a community of learners, supported 
each student in understanding why we were learning the content, focused on problem-solving, 
and sought to authentically addressed the standards.  

Conclusion 
This narrative approach to self-study offers insights into the complexities ECTs face when 

learning to teach, specifically understanding the varying levels of curriculum. For me, it took 
five years of teaching and key focal experiences to understand the complexities of curricular 
enactment and to recognize that, contrary to my pre-existing beliefs, there is space in the 
technical curriculum for a dialogic approach to teaching mathematics. While moving schools 
provided me with specific focal experiences that pushed my understanding of curricular levels, it 
is not a sustainable model for teacher education. Yet, my experience and narrative, highlights the 
challenges MTEs face (often in one-year or less) in supporting PSTs to move beyond a societal 
understanding of curriculum to one that includes enactment of research-based practices. This 
study suggests implementing explicit focal experiences (i.e., focus on child-centered learning) to 
support PSTs and ECTs in developing a comprehensive understanding of mathematics 
curriculum.  

This and other self-studies, presented as case studies, may offer MTEs opportunities to begin 
the conversation around curriculum levels and identify additional focal experiences (Zeichner, 
1999). Introducing case studies and focal experiences addressing curricular levels may support 
ECTs successful transition from a societal understanding of curriculum to an understanding that 
recognizes there is space in the technical curriculum for enacting dialogic mathematics. Future 
research examining the impact of case studies and curriculum level work in methods classes and 
during professional development would support the refinement of such an approach.  
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Multiplication and division are important topics that are formally introduced in third grade. 
Visual models and representations are key scaffolds for facilitating the teaching and learning of 
these topics, but there is little research on the prevalence of these models in classrooms. The 
present study examined six U.S. textbooks and found that three quarters of independent practice 
and homework tasks did not incorporate visual models. Additionally, textbooks vary significantly 
regarding which specific models are incorporated. 

Keywords: Curriculum; Elementary School Education; Number Concepts and Operations. 

Overview & Purpose 
Multiplicative reasoning is an important topic that is typically introduced formally in third 

grade in U.S. schools. Analyses of textbooks suggest that many different visual representations 
are used in various textbooks in different nations (Davydov, 1991; Harries & Sutherland, 2000; 
Watanabe, 2003). The variety of representations available for multiplication and division is 
extensive, with Lay (1963) noting the benefits of set models, length models, area models, tree 
diagrams, and tables/figures. Although some research has focused on the affordances and 
constraints of particular models (e.g., Barmby et al., 2009; Huang & Witz, 2013), there has been 
relatively little research examining the prevalence of particular models in U.S. textbooks or their 
use by elementary teachers.  

Various researchers have found that textbook content influences teachers’ instructional 
decisions and content selection (Grouws et al., 2004; Porter, 2002). International comparisons of 
U.S. textbooks to those of other nations suggests that U.S. textbooks do not sufficiently promote 
the relationship between a visual representation and the symbolic notation associated, and there 
is less focus within such representations on the structure of multiplication (Harries & Sutherland, 
2000; Watanabe, 2003). In his implementation of visual representations in a textbook, Davydov 
(1991) suggests that not only the use but the means of using representations is essential in 
promoting multiplicative meaning for children. Specifically, Davydov (1991) notes that while 
visual representations are important, they are not “equivalent to demonstrating the object 
conditions of multiplication…that create a basis for the subsequent transfer to operation with 
signs” (p. 30). Thus, the types of representations that are used in textbooks matter and may affect 
how teachers scaffold students’ learning of multiplication and division. Although the prior 
literature suggests a comparison of children’s engagement is both necessary and useful, the 
current study takes a different approach. In addition to the need for understanding which models 
(and the pedagogy associated with their use) promote multiplicative reasoning, there is a need to 
understand which models are currently promoted in U.S. textbooks. Thus, the purpose of the 
present study is to examine various U.S. third grade textbooks for the visual representations 
provided or solicited for students in tasks for independent work.  

Sample & Methods 
Six third grade textbooks were selected for analysis, based on their prevalence of use in area 

school districts. The textbooks include: enVision Math (2016); Eureka Math (2016); Everyday 
Mathematics (2016); GoMath! (2012); Investigations in Mathematics (2017); and My Math 
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(2018). Analysis focused on tasks most likely to be assigned to students for individual practice in 
class, or for individual homework. Additionally, tasks were analyzed only from sections of the 
book explicitly designated as focusing on multiplication or division by the publisher. For 
example, analysis of enVision Math included tasks within independent practice and homework & 
practice for sections the publisher aligned with multiplication and division mathematics 
standards. The current sample includes 4,937 tasks across all six textbooks.   

Tasks were coded as either providing or soliciting specific visual representations. Although 
we did code for variations of representation, the present study focuses on eight specific nominal 
codes: no visual representation, set model, length model, area model, number line, tree diagram, 
table/figure, other visual representation. Each task was coded for types of provided and solicited 
representations it included. Provided representations are those illustrated within tasks whereas 
solicited representations required students to construct them in some manner. Both authors 
independently coded 100 tasks from one textbook. Interrater reliability was computed using the 
Kappa statistic and indicated near perfect agreement for provided representations (K=.96) and 
solicited representations (K=.89) between both authors (Landis & Koch, 1977). This supported 
the use of independent coding of remaining tasks across textbooks. 

Analysis & Results 
Figure 1 illustrates the distribution of provided and solicited models used to represent 

multiplication or division across all textbooks. Given the coding process, there are some tasks 
(n=31) that included both provided and solicited models. However, the descriptive statistics still 
provide a clear indication of how prevalent particular models are across textbook tasks designed 
to be individually assigned to students. Evident in Figure 1 is the relative dominance of tasks 
with no visual model for multiplication/division either provided or explicitly solicited. When 
such tasks did provide or solicit a visual model, the most common model across textbooks was 
the set model, followed by tables or figures, and then length models (excluding number lines).  

 

 
Figure 1. Prevalence of multiplicative models across textbooks. 

Next, we sought to examine whether textbooks differed comparatively in regards to the 
visual models provided or solicited. The distribution of observed and expected counts for both 
provided (P) and solicited (S) visual models is presented in Table 1. A Chi-square statistic for 
provided models suggests that the observed distribution was independent from chance 
(χ2(df=35)=554.78, p<.001), and a similar result was found regarding solicited models 



Curriculum and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

119	

(χ2(df=35)=350.88, p<.001). An examination of differences in both observed and expected 
counts in Table 1 suggests that while Eureka Math had fewer observed tasks with no visual 
model provided than was expected by chance, all other textbooks had more such tasks than were 
expected. However, it should be noted that 71.9% of Eureka Math tasks provided no visual 
representation. Other trends of note reveal that Eureka Math had comparatively higher 
frequencies of providing and soliciting set models, while enVision and Investigations had 
comparatively lower frequencies in both regards. Some textbooks differed in their consistency 
with either providing or soliciting the same model. For example, Everyday Math provided set 
models for only one task, but solicited a much higher frequency. Numerous other trends emerged 
across models, suggesting that, in general, certain textbooks emphasized the use of particular 
visual models over others, and these differences were statistically significant.  

Table 1: Observed and Expected Counts for Visualizations of Multiplication and Division 

 
Note: Italicized numbers are expected by chance, and non-italicized numbers are observed. Provided 
models are designated in black text in column P, and solicited models are designated in gray text in column 
S. 

Discussion 
The present study describes the preliminary findings of an ongoing analysis of visual models 

in third grade textbooks. Findings suggest that current third grade textbooks’ tasks for 
independent student work (both within and outside of class) engage students with few visual 
models of multiplication or division. Specifically, when accounting for both provided and 
solicited visual representations, approximately a quarter (27.7%) of analyzed tasks were 
designed to engage students with a visual model of multiplication and/or division. Additionally, 
there appeared to be little consistency across textbooks in regards to which visual models were 
more prevalent.  

The results presented in this brief report reflect our preliminary analysis of models used in 
U.S. textbooks. Further analysis of the present data will focus on when representations are 
incorporated in each textbook, and with what aspects of multiplication and/or division. For 
example, a surface level analysis does suggest that textbooks differ in regards to the prevalence 
of visual representations in later chapters on multiplication/division, but analysis is currently 
ongoing.  
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There are several potential implications from the preliminary analysis provided here. One 
implication is that the relatively infrequent use of visual models appears at odds with research 
literature promoting specific use of such models (Sherin & Fuson, 2005). Another potential 
implication is that the inconsistency between textbooks on the use of particular models may 
promote confusion in professional discourse on such models for teachers (and students) who 
have used and are familiar with different textbooks. Although research suggests that textbooks 
do influence teachers’ pedagogical decisions (Grouws et al., 2000; Porter, 2002), future research 
is needed to understand whether, and to what degree, the use of specific visual models in 
textbooks affects teachers’ use of such representations in their lessons.  

The present study focused on independent practice and homework assignment tasks, in 
regards to provided and solicited visual representations for multiplication and division. Results 
indicate that textbooks provide relatively few such tasks that incorporate visual models (27.7%). 
However, it is unknown how teachers use these tasks. It is possible that some teachers select 
primarily tasks with visual models, while other teachers may select mostly tasks without visual 
models. There are likely many factors that influence such task selection including pedagogical 
content knowledge, teaching philosophy, institutional obligations, etc. This preliminary analysis 
provides a report on only what visual models are present in tasks designed for independent work. 
Future work is needed to unpack how such distributions influence teachers’ decision making, and 
affect students’ mathematical learning.  
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Our research team surveyed members of the mathematics education community to gain insight 
into the community’s perceptions of the two-column proof. We asked participants to describe the 
value of the two-column proof and discuss whether they would be in favor of eliminating it from 
the high school curriculum. There was a wide-range of diversity in the responses and we present 
several themes that we observed. We found that about 36% of the respondents were definitely or 
probably in favor of eliminating the two-column proof, 42% were definitely or probably not in 
favor of eliminating it, while about 22% were unsure.  
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Reform documents (e.g., Common Core State Standards Initiative, 2010; National Council of 
Teachers of Mathematics, 2000) have longed called for mathematical proof to be a part of K-16 
students mathematical education. However, despite these efforts, proof still has a marginal role 
in schools (Stylianides, Stylianides, & Weber, 2017). Historically in the U.S., most students’ 
experience with proof is limited to geometry; and a common way of engaging students with 
proof is through the two-column format (Herbst, 2002b). According to Stylianides et al. (2017), 

At least in the United States, proofs in geometry are sometimes written in a two-column 
format where a geometry statement appears in the left column and a reason for why that 
statement is logically permissible appears in the right column (Herbst, 2002b). Herbst 
(2002a) observed that this format places implicit (and sometimes conflicting) demands on 
teachers and students that constrain what is possible in a secondary school classroom. For 
instance, the two-column format implicitly requires giving students a statement (in the form 
of premises) and a conclusion, and testing students’ abilities to reason logically from the 
statement to the conclusion. This practice discourages students from generating key ideas 
from a proof, constructing their own diagrams, or making conjectures by choosing their own 
premises and conclusions (Herbst & Brach, 2006). (p. 248) 
Herbst (2002b) described how the two-column format developed as a way to meet a 

Committee of Ten mandate, introduced in 1893, that students learn to prove in geometry. The 
intention of this mandate, decreed by college professors, was to prepare students for college and 
create opportunities for students to develop mental discipline. The two-column proof emerged as 
a way to make it “possible for teachers to claim that they were teaching students how to prove 
and for students to demonstrate that their work involved proving” (Herbst, 2002b, p. 283). 
Conceptions of mathematics, and proof specifically, have shifted significantly since 1893, yet the 
ways in which proof is taught, especially in geometry, have not undergone much change.  

How do members of the mathematics education community currently view the role of the 
two-column proof in high school geometry? Through an e-mail survey, we sought to gain insight 
into the perceptions held amongst members of the mathematics education community regarding 
the perceived value of the two-column proof and opinions regarding its place in the curriculum. 
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The Authors’ Perspective on Proving as a Disciplinary Practice 
Proving is an important aspect of mathematical practice (Hemmi, 2010), and students of all 

ages should have the opportunity to learn mathematics through proof (Stylianou, Blanton, & 
Knuth, 2010). Proof has a variety of meaningful functions and can be useful for engaging 
students in verification, explanation, discovery, and communication (Bleiler-Baxter & Pair, 
2017; de Villiers, 1990). But the dominant two-column proof approach for teaching and 
practicing proof in high school geometry is counterproductive to students’ productive 
engagement in mathematics. The two-column proof has evolved into a one-sided 
conceptualization of proof as a means of logical verification that deemphasizes the 
communicative aspects (e.g., negotiating the norms for acceptable evidence and explanations) of 
problem solving (De Villiers, 1998).  

Herbst (2002b) argued that the two-column proof separates the practices of proving from the 
practices of knowing. We agree with Herbst (2002b) that “proving should be as natural [as other 
disciplinary practices such] as defining, modeling, representing, or problem solving” (p. 283). In 
order to reconceptualize proof as a disciplinary practice and to change the way we teach proof, 
we need to deemphasize the two-column proof because it is antiquated and counterproductive to 
the kind of thinking mathematics educators aim to foster in today’s classrooms. Through our 
survey, we sought not only to determine if our views of the two-column proof were shared in the 
mathematics education community at large, but also to learn more about perceptions of the two-
column proof that differ from our own. 

Methodology 
What are the perceptions of the two-column proof held by members of the mathematics 

education community? To answer this question, we designed a five-question survey which we 
sent to about 900 e-mail addresses gathered from public lists of attendees of mathematics 
education conferences. Each question received 152-172 responses. Question 1 asked the 
participants to describe whether they were a university professor, in-service teacher K-12 
teacher, graduate student, or other. Question 2 was “Is there value in having students write two-
column proofs?” Participants were asked to respond “yes” or “no.” Question 3 requested an open 
response: “Why or why not?” Question 4 was “Do you support eliminating the two-column proof 
from the high school geometry curriculum?” The participants responded either definitely yes, 
probably yes, might or might not, probably no, or definitely no. Question 5 requested an open 
response: “Why or why not?” We present a summary of the quantitative results and a 
preliminary summary of qualitative themes that we see emerging from our data at this time. 

Results 
Quantitative Results 

Participants included 133 university professors, 22 graduate students, 5 in-service K-12 
teachers, and 12 participants who fell into the category “other.” Regarding Q2, “Is there value in 
having students write two-column proofs?” we found 132/169 or 78% of participants responded 
“yes” and 37/169 or 22% of participants responded “no.” In response to Q4, “Do you support 
eliminating the two-column proof from the high school geometry curriculum?”, 28/171 or 16% 
responded definitely not, 44/171 or 26% responded probably not, 37/171 or 22% responded 
might or might not, 34/171 or 20% responded probably yes, and 28/171 or 16% responded 
definitely yes. Note that about 36% were probably or definitely in favor of eliminating the two-
column proof, 22% might or might not, and 42% probably or definitely were not in favor of 
eliminating the two-column proof.  
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Qualitative Results 
We now present fives themes that are emerging from our data during the preliminary stages 

of our analysis of the open responses to questions 3 and 5.  
Theme 1: Proof is needed in the curriculum. Many participants expressed worry that if the 

two-column proof was eliminated, then proof would disappear entirely from the K-12 
curriculum. Such participants wrote that they see value in students’ reasoning, argumentation, 
and justification, and if the two-column proof was eliminated, they would like to see it replaced 
by another form of proof.  

Theme 2: The two-column proof should be regarded as one, but not the only way to 
write proofs. Participants expressed a desire for students to be exposed to multiple formats, 
perhaps with two-column proof as a scaffold to other formats. Furthermore, students should 
choose the type of format with which they are most comfortable.  

Theme 3: The two-column proof format helps students think logically and organize 
their thinking. Many participants described the value of the two-column proof as helping 
students to think logically or organize their thinking. Some participants wrote that the two-
column proof format might help students understand the way mathematical theorems are 
logically dependent upon prior results.  

Theme 4: The two-column proof format does not meet our goals for students’ 
engagement with mathematics. Many participants wrote about how the two-column proof 
format runs contrary to other goals we have for our students (e.g., view proof as 
communication). Some participants noted that mathematicians do not write two-column proofs, 
and such proofs are inauthentic and contrary to the goal of having students think like 
mathematicians. Others claimed that the two-column proof emphasizes form rather than 
reasoning. Some participants claimed that high school students are not ready for the formal 
reasoning required by the two-column proof and would be better served by other justification and 
reasoning activities.  

Theme 5: We would need professional development and detailed planning if we were to 
eliminate the two-column proof from the high school curriculum. Many participants noted 
that if there was a decision made to eliminate the two-column proof from the curriculum, then a 
lot of planning and professional development would be needed. Other participants had a desire to 
become more familiar with the research literature before making a decision about keeping the 
two-column proof in the curriculum.  

Discussion 
Our analysis reveals that members of the field of mathematics education have diverse 

opinions about the place of the two-column proof in the geometry curriculum. While most 
participants stated that the two-column proof does have pedagogical value, many of those 
participants’ comments were reserved, noting that the two-column proof may do more harm than 
good. However, participants were also hesitant to say that they were in favor of eliminating the 
two-column proof from the high school geometry curriculum, citing concerns that this may lead 
to the total removal of proof from the curriculum.  

Beyond expressing the need for more alternative types of proof formats in the schools, some 
participants expressed serious concerns regarding the negative aspects of the two-column proof. 
We do not believe it is wise to ignore these concerns. Herbst (2002b) noted,  

The two-column proving custom was an accomplishment of geometry instruction in the sense 
that it helped comply with a mandate. But that accomplishment did not come for free. It 
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brought to the fore the logical aspects of a proof at the expense of the substantive role of 
proof in knowledge construction. (p. 307) 
The mandate that students learn to prove in geometry still exists today in the Common Core 

(2010). The requirement that students prove in geometry is part of the state standards for all fifty 
states, including those not using the Common Core standards. The two-column format developed 
as a way to meet this mandate, and it is questionable whether the two-column format’s dominant 
place in the curriculum could be diminished unless we remove entirely the standard that students 
learn to prove in geometry. Perhaps there are other creative options for making proof more 
meaningful for students in school. Moving forward, we believe that the field could benefit from 
research that explores students’ understandings, proficiency in constructing, and comprehension 
of a variety of types of proof formats. The research community needs to be informed about the 
benefits and constraints of having students write proofs both in the two-column format and other 
formats. Additionally, we agree with many of our participants that teachers need professional 
development with proof if it is to gain more than a marginal place in K-12 mathematics 
classrooms.  
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Textbooks remain a common source of content, pacing, and instruction for mathematics 
educators. With this in mind, it is critical to examine how the textbooks that educators use as a 
primary resource introduce essential concepts. The purpose of this study is to explore how 
calculus textbooks introduce and display the definition of derivative, along with the specific 
examples and definitions they provide.  

The following textbooks were selected for analysis from the College Board’s suggested AP 
Calculus textbooks list: Anton & Biven (2015); Finney et al. (1999); Foerster (2005); Larson & 
Edwards (2018); and Stewart (2016); see poster for references. Each textbook was analyzed for 
the first instance of the definition of derivative, then recorded along with the context, and the 
examples immediately following the definition. Analysis suggests three distinct methods of 
introducing the concept and definition of derivative. Anton and Biven’s Calculus textbook 
(2015) is denoted as an AP Edition, introducing the definition of derivative as follows: “The 
function f’ defined by the formula f’(x) =  is called the derivative of f with respect to x” (p. 90). 
The example immediately following the definition uses the function f(x) = x² and asks the reader 
to find the derivative at x = 2. In this particular case f(2) = f’(2), which could be misleading as a 
primary example for students to record in their notes. The structure of the Foerster (2005) 
textbook lends pedagogically to a more problem-based approach to teaching calculus. The 
definition provided in the text box of section 3.4 states, “Derivative as a function (Δx or h form) 
f’(x) =  ” (p. 86). This textbook emphasizes Δx, possibly because of the focus on application 
problems. The current version of James Stewart’s calculus textbook, (2016), begins with the 
definition of derivative at a point, also stated in a text box, says “The derivative of a function f 
at a number a, denoted by f’(a), is f’(a) =  if this limit exists” (p. 151).  

The choice of Foerster, (2005), and Larson and Edwards, (2018) to use Δx instead of h has 
several implications. While this is a robust definition and should be included when teaching the 
concept of derivatives, it may be intimidating and discouraging for students who do not come to 
calculus with a strong sense of context in math and/or science coursework to be exposed to as a 
primary definition (Sofronas et al., 2011). The pedagogical implications in this analysis range 
from introducing a critical concept in a variety of ways, to making the conscious decision not to 
begin with an example where f(2) = f’(2). While the latter seems like a minor detail, not 
attending to a pedagogical decision such as this can have an impact on students’ conceptual 
understanding of the concept of derivative.  
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Local implementation of changes in state educational policy initiatives has proven to be a 
broad challenge for the field. One challenge to these efforts are the mixed messages and multiple 
interpretations that arise as policy change efforts are enacted locally and the infrastructuring 
work necessary to overcome these challenges (Spillane, et al., 2002). In other system-wide 
change efforts, social media tools have been used to mitigate this challenge (Terantino, 2012), 
however, there is a gap in the literature in mathematics education on the ways in which social 
media tools can be used to address these challenges.   

After the recent adoption of new state mathematics standards, a partnership between our state 
education agency and researchers from four universities in our state was formed to assist in 
implementing new state mathematics standards. As a part of these efforts, we use organizational 
sensemaking (Weick, 1995) to guide the use of social media tools aimed at promoting common 
messages and interpretations of the new state mathematics standards and the ways in which these 
standards can be embodied in reform-based instruction with students. Theoretically, 
organizational sensemaking is the process that individuals within organizations go through when 
they encounter moments of uncertainty and ambiguity as they make sense of change (Weick, 
1995).  During sensemaking, researchers highlight three cyclic processes: cues that trigger 
sensemaking; intersubjective meaning making among members of organizations, and the action 
needed to continue to promote organizational sensemaking (Maitlis & Christianson, 2014).   

For this proposed poster, we share how we have leveraged Twitter to support the statewide 
implementation of new mathematics standards. Using organizational sensemaking, we share an 
emerging framework for using social media to promote systemic coherence during 
implementation that goes beyond dissemination and communication to promote individual and 
collective learning. This poster will provide examples of how the framework guided our use of 
Twitter to provide opportunities to engage in the sensemaking processes.  
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The purpose of this study was to examine two textbook units on trigonometric functions to 
understand what opportunities to learn they provide to students. Despite its reputed content 
difficulty, trigonometry is under-researched in the field. Obstacles to understanding trigonometry 
may stem from a lack of opportunities to develop deep conceptual knowledge, which the 
Common Core State Standards for Mathematics (CCSS-M) were designed to address. Two 
features associated with tasks that give students such opportunities are grappling with 
mathematics and explicit connections to concepts (Hiebert & Grouws, 2007). These features 
define high cognitive demand tasks, as operationalized by Stein and Lane (1996). Thus, to fully 
understand how each text gave students opportunities to learn trigonometry meant examining 
both the content and the intended cognitive demand of tasks. My research questions were: 

1. What specific mathematics content do students have opportunities to learn by studying 
trigonometric functions using each of the two selected texts? 

2. What are the intended levels of cognitive demand of tasks in the two selected texts? 

The textbooks selected for this study were Pearson’s Algebra 2: Common Core and the 
second (2011) edition of Key Curriculum Press’s Interactive Mathematics Program: Year 3. I 
conjectured there would be important differences between the two texts; for example, IMP, an 
NSF-funded “reform” textbook, might have a higher percentage of problems at high levels of 
cognitive demand than Pearson, a “traditional” textbook. Over 950 student tasks were coded for 
trigonometry concepts implicated, using author-developed codes from a collapsing coding 
methodology, and level of cognitive demand, using the framework of Stein and Lane (1996). 

Analysis revealed Pearson’s text covered all trigonometry topics required by the CCSS-M, 
but it emphasized procedural fluency, with relatively few opportunities for students to engage 
with high cognitive demand tasks to build conceptual understanding. IMP, in contrast, provided 
ample opportunities for students to first develop conceptual understandings by using high 
cognitive demand tasks, followed by opportunities to build procedural fluency. However, IMP 
omitted some trigonometry content crucial to prepare students for Calculus from the CCSS-M. 
As a result, both texts may have shortcomings for students if enacted as intended. This work 
invites discussion of ways curricula can balance development of deep conceptual understandings 
of trigonometric functions with procedural fluency skills given limits on instructional time. 
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Mathematics is often seen as neutral and free of bias and subjectivity because it is comprised 
of numbers and calculations. However, the way that we use words and language to teach and 
communicate about mathematics sends a powerful message to students about who they are and 
what they can do in relation to mathematics (Langer-Osuna, 2017). Therefore, we need to attend 
more carefully to the language we use in mathematics curriculum materials. 

Inspired by prior analyses of tasks and curriculum materials, I created a framework to 
analyze two problem-based textbooks: Core Plus (CP) 1 and the Mathematics Visions Project 
(MVP), Year 1. Herbel-Eisenmann (2007) analyzed the inclusive and exclusive imperatives used 
in textbooks and found that textbooks either position (Harre & van Langenhove, 1999) students 
as thinkers (asked to draw a conclusion or make a connection) or scribblers (asked to simply 
make a calculation). Additionally, I drew upon Stein and Lane’s (1996) work with cognitive 
demand of mathematical tasks because the task itself sends messages to students about whether 
they are expected to engage as high thinkers, low thinkers, high scribblers, or low scribblers.  

On in-class tasks, students were positioned as high thinkers in CP 50% of the time while 
students were positioned as high thinkers in MVP only 18% of the time. Students in the MVP 
curriculum were positioned most frequently as low thinkers on in-class tasks, 74% of the time. 
For CP, the percentage of times students were positioned as high scribblers increased from 13% 
(on the in-class tasks) to 36% (on homework). For MVP, the number of problems with high 
cognitive demand decreased (from the in-class tasks to homework) while the number of 
problems with low cognitive demand increased which resulted in students being positioned as 
scribblers 88% of the time on the homework! The CP materials collectively (in-class tasks and 
homework) almost equally position students as high thinkers, low thinkers, and high scribblers. 
The MVP materials collectively position students as high scribblers the majority of the time. 

Because these curriculum materials both claim to align with the NCTM standards and the 
CCSS-M, I expected to find more similarities than differences. However, I found that the CP 
tends to position students more as thinkers than MVP does and that the CP homework problems 
tend to be more cognitively demanding than the MVP homework. I also found that there may be 
more opportunities for students to move out of the scribbler position in the CP materials. 
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In many districts, pacing guides strongly filter the sequencing, planning, and timing of 
instruction. Furthermore, they often vary from district to district and are created by local 
individuals or teams who may or may not have particular expertise in mathematics education. 
Research suggests that while pacing guides can support teachers in learning of curriculum 
(Bauml, 2015), pacing guides and the pressure to comply with them can also undermine the 
professionalization of teaching, prevent teachers from meeting the individual needs of their 
students, and decrease teachers’ use of cognitively demanding tasks for the sake of “covering” 
the content in the pacing guide (Bauml, 2015; David, 2008). We report on a research-practice 
partnership (Penuel, Allen, Coburn, & Farrell, 2015) in which multiple partners across our state 
collaborated to mediate these challenges by designing pacing guides, which we renamed as 
instructional frameworks, to support districts and teachers in their implementation of new 
statewide mathematics standards adopted in 2017.   

In this poster session, we provide an overview of activity theory (Engeström, Miettinen, & 
Punamäki, 1999) as our theoretical perspective and design-based implementation research 
(Fisherman, Penuel, Allen, Cheng, & Sabelli, 2013) as our approach to share how a co-design 
team of 70 diverse stakeholders (state agency consultants, administrators, district curriculum 
directors, teachers, and higher education faculty) brought different lenses to inform decision-
making about the clustering and sequencing of content standards and the duration needed to 
teach them. We report on the tensions in critical conversations about clustering and sequencing 
of standards during the initial phases of our design process, highlighting the ways in which actors 
drew on previous experiences, assessment concerns, curriculum materials, and mathematical 
learning progressions/trajectories to inform decision-making during the development of the 
instructional frameworks.  
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Recent research has shown the importance of including STEM education programs in 
elementary schools (Dringenberg, Wiener, Groh, & Purzer, 2012). Teachers may integrate the 
STEM disciplines at varying degrees (Nathan, Tran, Atwood, Prevost, & Phelps, 2010), focusing 
more on one discipline than another. Given more and more teachers are being asked to integrate 
STEM into their instruction, we examined two fourth grade teachers, Ms. Khanna and Ms. 
Devries, implementation of DESCARTES, an integrated STEM curricula. We analyzed how 
DESCARTES influenced the teachers’ conceptions of teaching and their instructional practices. 

In the DESCARTES curriculum, students construct their own knowledge by engaging in an 
authentic context (designing and building boats) to solve a real-world problem (shipping cargo 
efficiently across a body of water). The students are presented with a challenge of designing a 
boat that could carry the most load across a body of water. The students engage in multiple 
hands-on activities to examine and test buoyancy, pressure, cross-sections, water displacement, 
speed, and volume. The students test similar factors in the DESCARTES software environment, 
which is a gamified design, simulation, prototyping, and collaborative environment.    

Both teachers participated in a 45–minute initial interview prior to implementing 
DESCARTES. Field notes were recorded each day of the 4½ week unit. At the end of the unit, 
the teachers participated in a 45–minute final interview. Data were analyzed using an inductive 
approach.  

Although the teachers were “veteran” teachers, they experienced some trepidation prior to 
implementing the DESCARTES curriculum. Ms. Khanna expressed, “I was unsure first [about 
the DESCARTES curriculum]. I was like, oh gosh! What did I get myself into? You know, 
thinking this is going to be hard. And it was.” (Final Interview, 2016). Both Ms. Khanna and Ms. 
DeVries became aware how their STEM instruction showed different outcomes compared to 
their siloed-discipline instruction– learning gaps amongst students were almost non-existent and 
the teachers observed students’ “willingness to not give up. They don’t ever feel like they are 
trying to achieve the right answer. They are just constantly making it better” (Final Interview, 
2016). After implementing the DESCARTES curriculum, the teachers noticed the positive 
effects it had on their instruction, student learning, and student engagement. 
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Project and problem based learning are commonly used interchangeably. There are, however, 
important differences between the two. The Buck Institute for Education (2017) defined project 
based learning as a method focused on students learning by working for a period of time on an 
investigation in response to a problem or task.  While problem based learning is a student-
centered approach where learning is done through group work to explore open-ended problems 
(Center for Teaching Innovation at Cornell University). It appears problem based learning is 
driven by the problem, while project based is driven by the project, but both have the 
overarching goal of letting students lead the investigation. 

The purpose of this study was to conduct a literature review to compare how researchers 
have used project and problem based learning to enhance mathematical learning over the last two 
years (2015 to 2017). The articles reviewed provided insight into contemporary ways researchers 
have enacted problem and project based learning. The goal of the literature review was to 
provide insight on how the different conceptualizations of project and problem based learning 
may influence the choices made by the researchers.  

To collect the most recent articles about project and problem based learning, I conducted an 
EBSCO and ERIC search within scholarly peer-reviewed journal and keywords problem based 
learning in the title and mathematics and education within the entire paper. We repeated these 
searches in EBSCO and ERIC for project based learning. Initial search results found 65 articles 
total. Out of the 65 articles (37 problem based learning and 28 project based learning), only 36 
matched the criteria of being empirical studies in English language peer-reviewed scholarly 
journals. Twenty articles were classified as focused on problem based learning and 16 articles 
were classified as focused on project based learning. 

Conducting a literature review of both project and problem based learning has afforded the 
opportunity to research how the two methods are enacted in classrooms. Initial findings 
demonstrate a lack of consistency in both defining problem and project based learning and how 
they are used. Preliminary results also yield limited empirical studies within the last two years of 
project based and problem based learning in the discipline of mathematics. Mathematics was 
included or part of the project but the studies did not focus on mathematical concepts. Studies are 
also limited within the United States. The results across both studies show project and problem 
learning do enhance the instruction of mathematics.   
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This study compares teachers’ manuals from the U.S. and Japan to determine the extent and 
the ways in which mathematical knowledge for teaching (MKT) is developed in teacher manuals 
from each country. Ball, Thames, & Phelps (2008) discuss the importance of MKT because, in 
part, it plays a critical role in planning and enacting the intended curriculum (p. 399).   

In addition to providing opportunities to develop MKT, there are other ways in which 
curriculum materials can support students’ learning. According to Davis and Krajcik (2005), 
curriculum materials could be educative if they provide teachers with opportunities to learn why 
developing pedagogical content knowledge (PCK) is important. Therefore, this study is not only 
an analysis of the comparison of the textbooks that are educative, and the level at which MKT is 
developed. It is also an analysis between Japan and the US textbooks, which can provide insights 
into the differences in the materials provided to the teachers in each country. This study was 
guided by the following research questions: 

1. In what ways do teachers’ manuals provide opportunities for Japanese and US teachers to 
develop their mathematical knowledge for teaching (MKT) about triangle congruency 
statements? What are the similarities and differences? 

2. In what ways do the teachers’ manuals in Japan and the US provide opportunities for 
teachers to learn about the mathematics in the lesson and students’ thinking about the 
mathematics? What are the similarities and differences? 

For the purposes of this exploratory study, to draw a fair comparison between the teachers’ 
manuals in Japan, Core-Plus Mathematics (Hirsch, 2008), a reform-based curriculum, was 
selected to represent the U.S. manual. The U.S. and Japanese curriculum materials had similar 
numbers of instances to develop MKT, although the Japanese curriculum instances were spread 
more widely among the different categories of MKT. However, there were more differences than 
similarities in the other opportunities teachers had to learn from these materials. The Japanese 
curriculum devoted more space and time to helping the teachers understand the why behind 
certain decisions, which could help teachers develop a deeper understanding of the lesson and 
also can provide insight into possible student thinking. In contrast, the US textbook focused 
mostly on areas where the students may struggle. Therefore, the curriculum materials were 
similar in providing opportunities to develop MKT, but they varied otherwise in the level at 
which they were educative for teachers.   
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As Dynamic Geometry Software (DGS) becomes more ubiquitous in secondary mathematics 
classrooms, it is important that the development of tasks in mathematics curricula mirrors 
research findings concerning its use. Textbooks have a strong influence on teachers’ selection of 
the content that they include and the instructional strategies that they utilize (e.g. Banilower et 
al., 2013). While research shows that the strategic use of technology has the potential enhance 
students’ mathematical thinking and understanding (e.g., Hollebrands & Dove, 2011), the 
question remains as to whether the use of DGS as promoted in current secondary curricula 
leverages that potential. Thus, we pose the following research questions: (a) to what extent is 
DGS integrated into current secondary curricula, (b) how is DGS used in secondary curricula? 

A nationally representative sample of 20 textbooks was chosen, the unit of analysis for 
coding each textbook being a mathematical task. Tasks were coded for whether or not they used 
technology, and what type (e.g., DGS, calculator). To answer the second research question, tasks 
were coded as using technology as amplifier or reorganizer (Pea, 1985), and whether the use of 
DGS involved one of three types of reasoning: exploration, justification, or verification (Oner, 
2009).  Technology is used as an amplifier if it is only used to perform computations with 
increased speed or precision, and is considered to be used as a reorganizer if the purpose of 
using technology is to support a shift in students’ focus or thinking. Exploration involves 
observing relationships or patterns, justification involves providing reasoning for a conjecture, 
and verification involves testing a result; these codes are not mutually exclusive as a single task 
could ask students to do more than one. 

A total of 1316 of 10,100 tasks were identified as making use technology, with 110 of those 
using DGS.  Results indicate that 39 tasks used DGS as an amplifier, while 71 used DGS as a 
reorganizer.  With regard to DGS use, 90 tasks included exploration, 22 included justification, 
and 48 included verification.  Results will highlight associations (and implications) between 
these distinctions and whether the curriculum was (a) investigate vs. conventional, and (b) 
integrated vs. subject-specific. 
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Addressing problems of practice and implementation at scale is an issue that continues to 
challenge education researchers (Cobb & Jackson, 2011). As part of a statewide research-
practice partnership, we are currently using a design implementation research (Fishman et al., 
2013) approach to organize the collaborative design of a multifaceted intervention for new state 
mathematics standards and the promotion of more equitable classroom learning opportunities for 
teachers. We convened multiple education partners in an ongoing project to create a statewide 
curriculum framework to support the implementation of new state mathematics standards. 

Considerable research suggests that pacing guides and the pressure to comply with them 
can undermine the professionalization of teaching (Bauml, 2015). Novice teachers fear 
reprimand from administrators if they do not strictly adhere to the sequence and timing of the 
guides. 

Teachers may sacrifice cognitively demanding, real world tasks to “cover” the content in 
the guide (David & Greene, 2007). Some schools with pre-packaged instructional programs 
require teachers to teach the same lessons on the same day (Achinstein & Ogawa, 2006). 
Despite the negative consequences, Kauffman, Johnson, Kardos, Liu, & Peske (2002) found 
that curriculum guides can be a significant resource for new teachers who are still building 
their professional knowledge. Our research-practice partnership convened K-5 and 6-8 
Framework Design Teams to create two statewide collaboratively-designed Instructional 
Frameworks that could be adapted by all districts to implement the new state mathematics 
standards. 

In this poster presentation, we describe our purposes for creating K-5 and 6-8 statewide 
instructional frameworks (i.e., pacing guide and instructional resources) and how findings from 
research shaped our work in the Design Teams. We then describe the processes we used to 
ensure that all stakeholders were invited to design (e.g., teachers, administrators, higher 
educators, etc.), and enough resources were included so that all districts would be able to adapt 
the frameworks to their specific community. We also present preliminary findings from 
“framework rollout” meetings across the State that illuminate the ways in which instructional 
leaders anticipate challenges to plan professional development in their personal districts. 
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The increase of worldwide social relations promoted by a global economy links the local to 
the distant in unprecedented ways. This interconnectedness plays a unique role in education 
highlighting common problems for education by providing opportunities for generalization and 
creating a system of lending and borrowing of educational ideas (Arnove, 2013). Contrasting 
different systems of education provides opportunities to illuminate factors that would otherwise 
go unnoticed (Cai, 2002). This research space has the potential to provide insights into successes 
and failures of educational policies to promote productive change. Mathematics education 
provides a unique space for cross-national comparisons. The purpose of this study is to uncover 
what is considered valued research in the realms of cross-national comparative educational 
research. This research was guided by the following research question: what are the trends in 
cross-national research in mathematics education top-tier journals in the last ten years?  

Empirical research articles from five of the top peer reviewed journals ranked by Williams 
and Leathams (2017) were searched for studies focused on international comparisons: Journal of 
Research in Mathematics Education, Educational Studies in Mathematics, Journal of 
Mathematical Behavior, Mathematical Thinking and Learning, and Journal of Mathematics 
Teacher Education. To collect the articles, I did a keyword search for each journal using “cross-
cultural comparison,” “international comparison,” and “cross-national comparison”. I also set a 
range for publication between 2007 and 2017. Initially 39 articles matched the search criteria. 
After closer examination, 26 articles matched the criteria of empirical international comparisons. 
Examining the studies matching the criteria provided a picture of the current landscape in cross-
national comparative education in mathematics education in the last 10 years. A spreadsheet was 
used to organize and analyze the data extracted from each article including 
mathematical/pedagogical topic discussed, databases or test used (e.g. PISA), and countries 
compared. 

Initial findings indicate an under representation of articles that include a South American or 
African country in their study. While comparisons between the United States and China 
accounted for 30% of cross-national comparisons in top tier mathematics education journals. 
Additionally, seven of the 26 articles were textbook comparisons and fractions were the most 
common mathematical topic discussed. 
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GRADE 5 STUDENTS’ NEGATIVE INTEGER MULTIPLICATION STRATEGIES 

 Camilla H. Carpenter Nicole M. Wessman-Enzinger 
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Twenty-four Grade 5 students participated in clinical interviews where they solved integer 
multiplication number sentences. Drawing on the theoretical perspective of strategies that 
students use with whole number multiplication and integer addition and subtraction, we describe 
the strategies that students employ when negative integers are incorporated with multiplication. 
The students, although drawing on similar strategies for whole number multiplication (e.g., 
repeated addition, direct modeling), used these strategies differently (e.g., using Unifix cubes to 
represent -1). The students also used unconventional strategies for solving integer 
multiplication, such as analogies and invented procedures. The results highlight the important 
constructions of students prior to formal instruction on integer multiplication, where prior 
research has been mainly situated in thinking about integer addition and subtraction.   

Keywords: Number Concepts and Operations, Elementary School Education, Cognition 

Investigations of strategies that students invent, and even struggle with, for integer 
multiplication number sentences, will provide teachers and researchers with insight into students’ 
thinking about integers. With this understanding, we can begin to develop instructional strategies 
that support building on students’ thinking about integer multiplication, a neglected topic in our 
field. In order to improve instructional approaches, we must first investigate students’ 
constructions and reasoning.  

Children invent sophisticated and robust ways of reasoning about integers and integer 
addition and subtraction (e.g., Bofferding, 2014; Bishop et al., 2014). As children approach 
addition and subtraction of integers for the first time, they use different strategies (Bofferding, 
2010), ways of reasoning (e.g., Bishop et al., 2014; Bishop, Lamb, Philipp, Whitacre, & 
Schappelle, 2016), and conceptualizations (e.g., Aqazade, Bofferding, & Farmer, 2017; 
Bofferding & Wessman-Enzinger, 2017; Wessman-Enzinger, 2015). Although there has been an 
increased focus on children’s reasoning about integers (e.g., Aquazade et al., 2017; Bofferding, 
Aqazade, & Farmer, 2017; Bishop et al., 2016), investigations into integer multiplication remain 
overlooked.  

The goal of this research report is to present an inaugural framework of strategies students 
created as they engaged with integer multiplication number sentences for the first time. Our 
research question focuses on students’ invented strategies for integer multiplication number 
sentences (e.g., -2 × 3 = ☐): What strategies do Grade 5 students use as they solve integer 
multiplication number sentences?  

Theoretical Perspective  
Because children often build on their whole number knowledge and extend this to integer 

reasoning (Bofferding, 2014), looking towards strategies that children employ with whole 
number multiplication may provide insight into how children may begin to reason about integer 
multiplication. Multiplication and division problems are often approached by children through a 
variety of invented strategies, such as repeated addition or direct modeling with grouping 
collections of countable objects (Carpenter, Fennema, Franke, Levi, & Empson, 2015).  
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Carpenter et al. (2015) and Baek (1998) demonstrate that children are able to understand 
multiplication when they can invent their own strategies. Some of the strategies for single-digit 
(Carpenter et al., 2015) and multi-digit (Baek, 1998) multiplication with whole number include: 
direct modeling strategies, counting strategies, repeated addition, and derived fact strategies. The 
extent to which students will use similar strategies with negative integer multiplication is an open 
question.  

With direct modeling, students model groups using manipulatives (e.g., Unifix cubes) or 
drawings. When students use counting strategies they may skip count accounting for groups, 
sometimes using fingers or choral counting. Students draw on repeated addition or doubling 
(e.g., 4 × 3 = 3 + 3 + 3 + 3). Derived facts strategies include drawing on factual knowledge and 
creating a new algorithm based on previously known facts (e.g., 2 × 3 may be solved by know 
that 2 × 2 = 4 and then 2 more added to that product is 6).  

From the integer addition and subtraction literature, we know that students use a variety of 
strategies different from the CGI frameworks. These include using computations or procedures 
(Bishop et al., 2014), drawing on recalled facts (Bofferding & Wessman-Enzinger, in press), and 
making comparisons or analogies (Bishop et al., 2016; Bofferding, 2011; Wessman-Enzinger, 
2017; Whitacre et al., 2017).   

As we began our study, we drew on both single-digit and double-digit strategies for 
multiplication with whole numbers and strategies for integer addition and subtraction. We 
thought these strategies would provide insight into the ways that students may solve 
multiplication problems involving negative integers.  

Methods: Participants, Interviews, and Analysis 
We conducted clinical interviews (Clement, 2000) with 24 Grade 5 students from the rural 

Pacific Northwest. We selected Grade 5 students that did not have formal school experiences 
with integers; Common Core State Standards recommendations include integer operations in 
Grade 7 (National Governors Association Center for Best Practices & Council of Chief State 
School Officers, 2010). We interviewed each student once, using the following integer 
multiplication number sentences (see Figure 1). Students solved the integer multiplication 
number sentences, with each number sentence provided on a singular piece of paper. 
Manipulatives and tools provided during this interview included: Unifix cubes, two-colored 
chips, empty number lines, and markers. We asked prompting questions throughout the 
interviews, without giving the students the answer or additional information. These types of 
questions included: “How did you come up with that?”; “Can you explain your thinking?” 

 

 
Figure 1. Integer multiplication number sentences provided to students. 

We videotaped and transcribed each interview. Our unit of data included the video clip, 
drawings, and transcripts associated with each integer multiplication number sentence. We began 
coding with the framework delineated in the analytical framework (Baek, 1998; Carpenter et al., 
2015). For instance, we looked for the use of manipulatives and drawings for direct modeling 
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strategies. We looked for choral counting, skip counting, and use of fingers for counting 
strategies. Using the definitions established for these various strategies, we employed constant 
comparative methods (Merriam, 1998). We modified the strategies to include the ways that 
students used negative integers, not previously captured with only positive integer multiplication 
strategies or integer addition and subtraction strategies. We met to compare codes and negotiated 
any disagreements. In the results section, we highlight the integer multiplication strategies that 
the students in our study used.  

Results: Strategies for Integer Multiplication 
We highlight the descriptions of the strategies, rather than focusing on correctness or 

incorrectness. Because the students have powerful strategies paired with some correctness, this is 
provides a space to understand children’s thinking as a vehicle for leveraging discourse in the 
classroom in the future.  
Direct Modeling 

Example of direct modeling. Edie solved -2 × 3 = ☐, using a direct modeling strategy, that 
resulted in a solution of -6 (see Figure 2). Edie assigned the value of -1 to each Unifix cube. She 
constructed three groups of two blocks (see white blocks in Figure 2). Because she attributed the 
value of -1 to each of the white Unifix cubes, she modeled -2 × 3 = ☐, instead of 2 × 3 = ☐. 

 

 
Figure 2. Example of direct modeling strategy for -2 × 3 = ☐. 

The following transcript excerpt illustrates how Edie shared her strategy:  
(Reaches for Unifix cubes) I’m going to pretend this is negative… okay this is negative 2 
(pulls off 2 white Unifix cubes) negative plus a negative would be a negative… so if these 
are negatives then that would 3 times the 2 negatives which would equal 6 negative (writes  
“-6” on paper).  
Description of direct modeling. Students used a direct modeling strategy when they 

illustrated integer multiplication with physical tools (e.g., Unifix cubes, two-colored chips, 
pictures)—modeling (number of groups) × (number of things in each group) = total. The students 
who used direct modeling strategies determined the solutions to integer multiplication through 
physically manipulating and modeling with these objects.   

The students used two-colored chips (one yellow side, one red side) to be a physical 
representation of the difference between a negative number and a positive number. Notably, the 
students flexibly used the colors. Sometimes, red chips represented negative integers and yellow 
chips represented positive integers; other times, red chips represented positive integers and 
yellow negative integers.  

Using Unifix cubes, the students used the cubes to model multiplication as groups of the 
same amount of quantities. The students who used the cubes mapped values of -1 to each of the 
cubes. The cubes represented a way to account for groups of negative quantities and provided a 
physical way to add the groups together in order to determine their solutions.  
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Use of direct modeling. The students used direct modeling strategies seven times for 3 × 5 = 
☐. For the number sentences with negative integers, the students used direct modeling strategies 
five times for -2 × 3 = ☐ and four times for 3 × -4 = ☐. Direct modeling was used only once for   
-4 × -2 = ☐, which is not surprising given the physical limitations of negative amounts of 
groups.  
Repeated Addition and Subtraction 

Example of repeated addition. Eliza solved 3 × -4 = □ using repeated addition (see Figure 
3) and obtained the solution, -12. Eliza demonstrated repeated addition as she repeatedly added   
-3 four times in order to get her product of -12. Notably, she added -3 four times, instead of 
adding -4 three times; her strategy actually aligns to 4 × -3 = □ instead of 3 × -4 = □. Essentially, 
Eliza implicitly recognized the equality of 4 × -3 and 3 × -4, without commenting on it. In Figure 
3, the black writing illustrates her final computed product. However, the red writing illustrates 
her repeated addition, which she wrote first.   

 
 

 

 
 

Figure 3. Example of repeated addition strategy. 

Description of repeated addition and subtraction. Repeated addition, as a strategy, 
describes multiplication with adding positive integers repeatedly (Baek, 1998; Carpenter et al., 
2015). The students in our study drew on repeated addition with negative integers. However, 
they also used repeated subtraction of positive integers.  

Use of repeated addition and subtraction. The students used repeated addition strategies 
ten times for 3 × 5 = ☐. For the number sentences with negative integers, the students used 
repeated addition and subtraction four times for -2 × 3 = ☐ and three times for 3 × -4 = ☐. A 
student used repeated addition and subtraction only once for -4 × -2 = ☐, which is also not 
surprising given the challenges of adding -4 “negative two” times. 
Recalled Fact 

Example of recalled fact. Zoe first solved -2 × 3 = ☐ and obtained -6 as a recalled fact, even 
though it was her first time engaging with integer multiplication. She quickly stated the answer,  
-6, before the interviewers even completely finished reading the multiplication number sentence, 
-2 × 3 = ☐. Zoe relied on her factual knowledge of the product of 2 × 3 = 6, when questioned. 
With probing she justified her solution with a procedure “you just do 2 times 3 and then you 
make it a negative,” which will be discussed later. 

Description of recalled fact. Within the CGI strategy framework, students often draw on 
facts to make derived facts (e.g., Carpenter et al., 2015). In our study with integer multiplication, 
students did not seem to use derived facts, but did use their factual knowledge about whole 
number multiplication quickly for integer multiplication without verbal explanation. Students 
used recalled facts when they stated their solutions to integer multiplication as a fact, likely 
memorized from whole numbers. Or, they drew on their memory so much that it did not require 
any form of deliberation. Students stated their solution quickly with an often “just is” 
explanation. 
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Use of recalled fact. The students used recalled fact four times for -2 × 3 = ☐, six times for 3 
× -4 = ☐, and five times for -4 × -2 = ☐. The students demonstrated confidence with single digit 
whole number multiplication (e.g., fifteen stated the answer of 3 × 5 = ☐ as a recalled fact).  
Procedure 

Example of procedure. Lia solved 3 × -2 = ☐ with a solution of 4, using a procedure as a 
strategy. In this example, Lia solved the integer multiplication sentence by using a “negative 
integer as a singular subtrahend” procedure (see Figure 4). She first computed 3 × 2 by solving 3 
+ 3. Then, Lia incorporated the singular integer in the number sentence, -2, by subtracting 2 from 
the product of 3 × 2. This procedure is one of various types used in this study by the students.  
 
 
 
 

Figure 4. Example of procedure strategy. 

Description of procedure. When students used an algorithm or created an invented 
procedure to find the solution they used the procedure strategy. Although this represents an 
addition to existing CGI framework for multiplication strategies (e.g., Baek, 1998), many integer 
researchers have stated that students use computational reasoning (Bishop et al., 2016) or 
procedures (Wessman-Enzinger, 2015; Bofferding & Wessman-Enzinger, in press) as they solve 
integer addition and subtraction problems. Thus, it seems to be a natural extension that students 
would also use computational and procedural strategies with integer multiplication.  

The students in this study used different types of procedures (e.g., appending a negative sign 
to the solution, negative numbers as equivalent to zero, exclusive negativity). Describing the 
extensive use of procedures is beyond the realm of this research report. But, Zoe used the 
“appending a negative sign” procedure in her justification of derived fact strategy -2 × 3 = -6 
when she stated that the negative sign is just “added on.” Other students said that number 
sentences, such as -4 × -2 = ☐, needed to be “all negative,” concluding that -4 × -2 = -8 based on 
a procedure of “exclusive negativity.”  

Use of procedure. Students used or invented various procedures for dealing with integer 
multiplication throughout the study (e.g., eleven times for -2 × 3 = ☐, sixteen times for 3 × -4 = 
☐, and fifteen times for -4 × -2 = ☐). The students did not use a procedure for 3 × 5 = ☐ and 
used procedures only for multiplication number sentences with negative integers (e.g., -2 × 3 = 
☐).  
Counting  

Example of counting. Cittie used counting on a number line to solve -2 × 3 = ☐, obtaining a 
solution of 7. Figure 5 illustrates Cittie’s number line. She reasoned that she could start at -2 and 
counted in sequential order on the number line, moving right, to her destination, 7; she skip 
counted by 3, three times. Although this does not represent a correct solution, Cittie ordered the 
negative and positive numbers correctly and started her counting at -2, which represents 
beginning, ordered integer reasoning necessary for integer multiplication.  

 
Figure 5. Example of counting strategy. 
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Description of counting. Students, sometimes with the help of a number line, counted in 
sequential order when solving multiplication number sentences. Students often described their 
strategies as “skip counting.” The students sometimes drew on the number line, as a tool for 
facilitating their skip counting. In addition to number lines, students also used fingers and even 
cubes as number paths (Bofferding, 2010). Challenges with negative integer multiplication for 
students included deciding which direction to count in, as directions are not fixed like they are 
with whole number numbers, and determining the quantities of the skip counts (see, e.g., Cittie 
counting amounts of 3 three times).  

Use of counting. The students used counting strategies three times for 3 × 5 = ☐, four times 
for -2 × 3 = ☐, three times for 3 × -4 = ☐, and eight times for -4 × -2 = ☐.  When the students 
used counting strategies with integer multiplication, they sometimes did so with a number line. It 
is likely that students used counting strategies the most for -4 × -2 = ☐ because of challenges in 
physically representing this number sentence with strategies like direct modeling.  
Analogy  

Example of analogy. Jaxon first solved -2 × -4 = ☐, with analogy, determining that -2 × -4 = 
-8. The following transcript highlights Jaxon’s reasoning:  

Well, because it wouldn’t really make as much sense for a negative multiplied by a negative 
to equal a positive. It’s like, um, I’m not sure how to … it just wouldn’t make as much sense. 
Because if a positive multiplied by a positive would equal a positive, then I would assume 
that it would be the same for a negative. And, it would be a negative times a negative would 
equal a negative.  

In this excerpt, Jaxon compared -2 × -4 = ☐ to 2 × 4 = ☐. Reasonably, he concluded that because 
a positive number times a positive number is positive (e.g., 2 × 4 = 8), then a negative number 
times a negative number is another negative number (e.g., -2 × -4 = -8). Again, like the previous 
example where we highlighted a strategy with an incorrect solution, there is still powerful 
reasoning embedded in Jaxon’s strategy. Jaxon connected his reasoning about whole numbers in 
a logical way (albeit not a culturally/mathematically correct way).  

Description of analogy. Students used analogy when they connected previous knowledge 
about whole numbers to integers and compared it to a whole number multiplication number 
sentence for constructing or justifying new claims when solving the integer multiplication 
number sentences. Although this is an addition to the CGI framework for multiplication 
strategies, there is evidence that students use analogies with integer addition and subtraction 
(Bishop et al., 2016; Bofferding, 2011; Wessman-Enzinger, 2017; Whitacre et al., 2017). We 
distinguish this from recalled facts or procedures in that the students made explicit comparisons, 
with reasoning focused on these comparisons.  

Use of analogy. The students did not use an analogy strategy for 3 × 5 = ☐, -2 × 3 = ☐, or 3 
× -4 = ☐. But, students used analogy twice for -4 × -2 = ☐. Although not used often in this 
study, students use analogies frequently with integer addition and subtraction (e.g., Whitacre et 
al., 2017). We conjecture that if we gave more “negative number multiplied by negative number” 
number sentences we would have seen analogy strategies employed more—analogies seem like 
potentially productive strategies for these types of integer multiplication number sentences.  
Counter Movement 

Example of counter movement. Warren solved -2 × -4 = ☐, determining a solution of 8. 
The following transcript excerpt highlights Warren’s solution of 8.  
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Um. So. I… this subtraction, this negative symbol. Scratch out this one and this one … 
counters this one too. So it takes both these out and then it’s just 4 times 2. … I just thought 
that since they’re both negative numbers and that one’s whole, it’s basically, kinda like 
dividing except you’re multiplying. And… you just kinda just… I just thought that you 
counter them.  … It’s kind of like dividing because instead of making this uh… -8, you just 
make it normal 8, which means that the number … if these numbers were whole numbers … 
well no since their negative numbers… if like cause they’re not equal to ... they’re not equal 
to 0 they’re this way (left of 0) and the whole numbers are this way (right of 0) it’s kind of 
like since these numbers were divided …these ones were dividing they would get smaller or 
go the opposite way. Like if these ones they would go this way. 

At first, Warren’s strategy sounds procedural because he talks about “scratching” out symbols, 
referencing the negative symbols in front of -2 and -4. Then, Warren references a “countering” 
of movements in the negative and positive direction (e.g., -1 × -1 = 1 or -1  -1 = 1), making -8 
“a normal 8.” He discusses how we can treat this multiplication problem as “whole numbers” 
since multiplying the negative integers “counter” the directions of each other. Multiplying by -1 
moves a number “this way (left of 0)” and multiplying it by -1 changes the direction. 

Description of counter movement. Students use the counter movement strategy when they 
employ continuous movement or motion that “counters” each other. Use of this strategy includes 
a reference to changing directions, where the movement is countered or balanced. Consider this 
equation: -2 × -4 = (-1 × 2) × (-1 × 4) = (-1 × -1) × (2 × 4). Multiplying by negative one refers to 
a movement or translation in one direction and multiplying by the other negative one is a 
movement or translation in the other direction—consequently countering the overall movement.  

Use of counter movement. Of the twenty-four students we interviewed, only one student 
constructed this strategy. Although this may not warrant the creation of a new category, the 
strategy uniquely helped Warren construct a correct solution to -2 × -4 = ☐, a notoriously 
challenging problem type.  Honoring the student’s use of the word “counter” and the use of 
continuous movement for constructing meaning, we called this strategy “counter movement.”  

Discussion and Final Remarks 
The results of this work are significant in that we provide an inaugural framework for integer 

multiplication strategies that students use prior to school instruction, modified from CGI 
multiplication strategies frameworks and integer addition and subtraction literature. Previous 
research has focused on thinking and strategies of integer addition and subtraction (e.g., 
Bofferding, 2010; Bishop et al., 2014) and we extend the scholarly discussion on students’ 
thinking about integers by describing their invented strategies for integer multiplication.  

Our focus is on the powerful ways that students, prior to formal school instruction, solved 
integer multiplication number sentences, whether correct or incorrect. If we wish to support 
student inventions and discourse in the mathematics classroom, we must first understand their 
sophisticated reasoning (Carpenter et al., 2015). Jaxon, for example, obtained -2 × -4 = -8. 
Although we know this to be an incorrect solution, it is rooted in a logical analogy (e.g., if 2 × 4 
= 8, then -2 × -4 = -8). As teachers and researchers, how do we promote conceptual change when 
students invent strategies that are logical, but not mathematically correct? We might consider 
pairing number sentences like 2 × -4 = ☐, where students had success in correct answers, with 
number sentences like -2 × -4 = ☐, where students had more difficulty, to leverage growth or 
change in the students’ sophisticated reasoning (Bofferding et al., 2017).  

Empowering students in the classroom requires building on their thinking. Consequently, we 
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must first learn about the ways students enter the mathematics classrooms and the invented 
strategies they construct; then, we can draw on their reasoning to build future instructional 
interventions.  
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Middle school is a critical time when students begin formal study of functional relationships in 
algebra. However, many students struggle in understanding functions as relationships between 
quantities that change according to a dependency relationship. We report on the influence of 
Scaling Continuous Covariation in fostering productive ideas about graphical relationships and 
rates of change. Scaling Continuous Covariation entails the ability to imagine a re-scaling to 
any increment for x and coordinate that scaling with associated values for y. We present findings 
from two students, one who reasoned with Scaling Continuous Covariation and one who did not,  
and report on how Scaling Continuous Covariation supported students’ reasoning in three ways: 
(a) sense making about graphs, (b) forming constant rates of change, and (c) understanding 
constantly-changing rates of change. 

Keywords: Algebra and Algebraic Thinking, Cognition, Middle School Education 

Introduction: Supporting Function Understanding in Middle School 
Functions and relations comprise a critical aspect of secondary mathematics, with 

recommendations for supporting students’ algebraic reasoning emphasizing an early introduction 
to functional relationships in late elementary and middle school (Stephens, Ellis, Blanton, & 
Brizuela, 2017). Middle school in particular represents a key time when students enter a formal 
investigation of function and begin to develop the algebraic tools to express and represent 
different functional relationships. However, students’ difficulty in acquiring the function concept 
is well documented (e.g., Stephens et al., 2017; Thompson & Carlson, 2017). In particular, 
students struggle to use functions to model real-world contexts that require a conceptualization 
of quantities and how they change together (Carlson et al., 2002; Monk & Nemirovsky, 1994).  

One potentially fruitful approach to better support students’ understanding of function and 
rates of change is an instructional emphasis on variational and covariational reasoning (Carlson, 
Smith, & Peterson, 2003; Kaput, 1994; Thompson & Carlson, 2017). Early research suggests that 
providing students with opportunities to reason covariationally can position them to make 
meaningful sense of functions (e.g., Ellis, 2007, 2011; Johnson, 2012; Moore, 2014), as well as 
the ideas in calculus (Thompson & Carlson, 2017). We report on a study investigating the 
reasoning of two middle school students who explored linear and quadratic growth within the 
context of continuously co-varying quantities. We found that a particular form of covariational 
reasoning, scaling continuous covariation, supported a robust understanding of graphical 
relationships and rates of change. 

Background and Theoretical Framework 
One contribution to the challenges in building and supporting a robust understanding of 

function is the lack of attention to variation in algebra curricula. Thompson and Carlson (2017) 
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reviewed seventeen U.S. secondary textbooks, ranging from Algebra I through Precalculus, and 
found that all relied on a correspondence definition of function. Under this definition, y is a 
function of x if each value of x has a unique value of y associated with it (Farenga & Ness, 2005). 
This static view underlies much of school mathematics, with the associated set theoretic meaning 
of variable becoming the foundation for school definitions of function (Cooney & Wilson, 1996). 
Students’ function concepts are consequently dominated by static images of arithmetic 
computations used to evaluate outcomes at individual values (Carlson & Moore, 2015). This 
results in students viewing functions through the lens of symbolic manipulations rather than as a 
mapping (Carlson, 1998).  

Integrating the mathematics of change into students’ investigation of functional relationships 
provides opportunities to interpret how a function’s output values can change in relation to its 
input values, which is an essential component of making sense of dynamic situations (Carlson & 
Moore, 2015). These opportunities are typically reserved for introductory calculus courses, thus 
effectively restricting access to these forms of reasoning to the minority of students who will 
reach the highest level of high-school mathematics (Roschelle, Kaput, & Stroup, 2000). Thinking 
about functions covariationally, however, can support students’ abilities to make sense of linear 
(Ellis, 2007; Johnson, 2012), quadratic (Ellis, 2011), exponential (Ellis et al., 2015), and 
trigonometric (Moore, 2014) functions.  
Covariational Reasoning 

Researchers have addressed covariational reasoning in a number of ways, but for the 
purposes of this paper we draw on work that considers the possible imagistic foundations that 
can support students’ abilities to think covariationally (e.g., Castillo-Garsow, Johnson, & Moore, 
2013; Thompson & Carlson, 2017). These researchers describe covariational thinking as the act 
of holding in mind a sustained image of two quantities’ values varying simultaneously. One can 
imagine how one quantity’s value changes while imagining changes in the other. A person 
thinking covariationally can couple two quantities in order to form a multiplicative object 
(Thompson & Carlson, 2017); once such an object is formed, one can then track either quantity’s 
value with the immediate understanding that the other quantity also has a value at every moment.  

Castillo-Garsow (2013) distinguished between two types of continuous variation, chunky and 
smooth. Chunky continuous variation entails thinking about values varying discretely, except 
that one has a tacit image of a continuum between successive values. One imagines that a change 
in values occurs in completed chunks, without imagining that variation occurs within the chunk. 
In contrast, smooth continuous variation entails an image of a quantity changing in the present 
tense; one can map from one’s own experiential time to a time period within the mathematical 
context, thinking about a value varying as its magnitude increases in bits while simultaneously 
anticipating smooth variation within each bit (Thompson & Carlson, 2017). Building on these 
distinctions, Thompson and Carlson (2017) created a covariational reasoning framework that 
attends to students’ images of quantities’ values varying. They stressed that smooth continuous 
variational and covariational reasoning necessarily involves thinking about motion.  

Ely and Ellis (in press) subsequently introduced a related but distinct form of reasoning they 
call scaling continuous covariation, which entails imagining that at any scale, the continuum is 
still a continuum and a variable takes on all values on the continuum. One can conceive of the 
continuum as arbitrarily or even infinitely “zoomable”, in which the process of zooming will 
never reveal any holes or atoms. Thus, one can imagine a re-scale to any arbitrarily small 
increment for x and coordinate that scaling with associated values for y. Importantly, unlike 
smooth continuous covariation, this way of thinking does not fundamentally rely on an image of 
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motion.  
Just like chunky continuous covariation, scaling continuous covariation relies on partitioning 

a domain and then reasoning about the corresponding chunks of the covarying quantity. A 
chunky reasoner can re-chunk the domain to a different sized chunk, but then must re-run his or 
her chunking scheme from scratch. A person using scaling continuous reasoning, on the other 
hand, can abstract the chunking process and imagine the result of this chunking scheme for 
chunks at all scales. This enables one to generalize properties of the covarying quantity’s chunks 
at all of these scales as well, enabling him or her to coordinate the covariation of the two 
quantities on increments of any scale. With this in mind, we can distinguish between students’ 
use of chunky continuous and scaling continuous covariation and study how these reasoning 
types support their understanding of rates of change. 

Methods 
We conducted a 10-day, 15-hour videotaped teaching experiment (Steffe & Thompson, 

2000) with two 7th-grade students in general general mathematics (neither had yet taken algebra). 
The first author was the teacher-researcher. We assigned gender-preserving pseudonyms to each 
student. The aim of the teaching experiment was to support the students’ emerging understanding 
of linear, piece-wise linear, quadratic, and higher-order polynomial functions from a rate-of-
change perspective.  

Building on the literature emphasizing the importance of continuously-covarying quantities, 
we developed tasks to support a conception of linear growth as a representation of a constant rate 
of change, and quadratic growth as a representation of a constantly-changing rate of change. The 
tasks emphasized these ideas within the contexts of speed and area. The area tasks presented 
“growing rectangles”, “growing stair steps”, and “growing triangles” via dynamic geometry 
software, in which the students could manipulate the figure by extending the length and 
observing the associated growth in area (Figure 1). 

                    
Figure 1. Growing rectangle, stair step, and triangle tasks. 

Relying on the videos and transcripts of each teaching session and copies of the students’ 
work, we used the constant-comparative method (Strauss & Corbin, 1990) to analyze the 
teaching-experiment data in order to identify (a) students’ forms of covariational reasoning, and 
(b) the students’ conceptions of constant and changing rates of change. For the first round of 
analysis we drew on Thompson and Carlson’s (2017) framework of variational and covariational 
reasoning. We used open coding to infer categories reasoning based on students’ talk, drawings 
and graphs, gestures, and task responses. The first round led to an initial set of codes, which then 
guided subsequent rounds of analysis in which the project team met regularly to refine and adjust 
the codes in relation to one another. This iterative process continued until no new codes 
emerged. The final round of analysis was descriptive and supported the development of an 
emergent set of relationships between students’ covariational reasoning and their conceptions of 
constant, changing, and instantaneous rates of change.  
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Results 
One student, Wesley, exhibited evidence of scaling continuous covariation, while the other 

student, Olivia, exhibited evidence of chunky continuous covariation. We report three ways in 
which the form of covariational reasoning influenced students’ sense-making about functional 
relationships: (a) reasoning about graphs, (b) constant rates of change, and (c) constantly 
changing rates of change. We address each in turn. 
Reasoning about Graphs 

Wesley and Olivia interpreted and discussed their graphs of quadratic phenomena differently. 
Wesley conceived of his graphs as smooth continuous curves that, for any given increment, 
regardless of its size, did not reduce to a straight line within the increment. In contrast, Olivia 
conceived of curved graphs as being composed of line segments. For instance, the students 
graphed the relationship between the total accumulated area and the length swept for a shaded 
cm by 5 cm triangle in which the area and the length swept out together (Figure 2).  
 

                 
   (a)    (b)   (c) 

Figure 2. Wesley (b) and Olivia’s (c) graphs for the growing triangle (a). 

Both students plotted five points in order to draw their graphs, and also drew the “average 
journey” graph that would be represented by a rectangle sweeping out the same total area for a 
length of 5 cm. The teacher-researcher (TR) asked the students whether their triangle graphs 
were curved everywhere, or whether they were piecewise linear. Wesley’s response was that the 
graph was curved everywhere, explaining, “I think in between these points [indicates two points 
on his graph], if you added a bunch of little points in between, it would make a curve.” Wesley 
understood that the total accumulated area increased with respect to each additional centimeter 
swept, but he also understood that this relationship would hold even for a smaller increment. He 
did not need an increment to be any particular size, such as 1 cm, in order to claim that the graph 
would be curved in between any two points; he already had an image of growth occurring with 
each increment, no matter how small. In contrast, Olivia could imagine re-sizing an increment, 
but within each increment, the graph would be a straight line:  

I think, because, if you made the increments even smaller like into 0.1 as your first point then 
I think it’d be, all the little lines together, I think they’d make a very subtle curve but 
relatively straight. So, when I did it with the increments as 1, I see them as straight, but if 
they were smaller they might look as if they were curved to make one big curve.  

In order to better probe the students’ thinking, the teacher-researcher asked the students to 
consider what the graph would look like if a perfectly precise robot could construct the graph 
with almost imperceptibly tiny increments: 

TR: Would it be curved in between the points or straight in between the points? 
Wesley: I believe it would be curved. 



Early Algebra,	Algebra,	and	Number	Concepts	
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

151 

TR: What do you [Olivia] think? 
Olivia: I think [long pause]. Well I mean, I think it’d be small enough to the point   

 because the way I think of curves is a whole bunch of straight lines together to  
  make a curve. So, I think if it was to the smallest possible thing even if it could go 
  to infinity, but if it had to be down to the smallest possible things I think it’d be 
  straight lines. 

Olivia’s remarks suggest that she still saw the graph as composed of straight segments for 
infinitesimal increments. She could explain the change in area with respect to each additional 
centimeter, but she viewed the rate of change in area with respect to length swept within a given 
increment to be constant. This imagery is consistent with chunky continuous covariation, in 
which one does not imagine change within a given increment. Wesley, however, remained 
consistent in his belief that such a graph would be everywhere curved, and provided supporting 
remarks such as: “There’s tiny points in between those tiny points”, “It goes on infinitely, kind 
of, the points”, and “In between those, there’s still more points, and it goes on forever.”  

Wesley appealed to a scaling image in his explanations. He described zooming to smaller and 
smaller scales, a process that could go on forever and never ground out at an atomic level. In this 
iterative process, he treated each re-scaled increment as being similar to the bigger increments. 
This image of scaling continuous variation supported his scaling continuous covariation, 
because he generalized across scales a property he noticed about the covariation of area and 
length: Namely, because the area grows at a changing rate over a large increment, it must also 
grow at a changing rate over increments at each smaller scale, and thus be curved everywhere. 
This generalization could extend to an infinitesimal scale just as his image of scaling continuous 
variation appeared to. 
Constant Rates of Change 

Wesley and Olivia could both discuss length and area growing together. However, their 
conceptions of the ratio of area to length differed. Olivia conceived of this relationship as a static 
ratio, whereas for Wesley, it was a rate of change. For instance, at one point the students 
investigated the way the area changed as a rectangle with a constant height of 4 cm grew in 
length (Figure 1). Both students produced a number of equivalent ratios to represent the rate at 
which the area accumulated relative to length. Olivia could not produce a ratio for a length less 
than 1 cm, whereas Wesley generated equivalent ratios such as 2 cm2:0.5 cm, 0.4 cm2:0.1 cm, 
and 4xcm2:x cm. Wesley explicitly referenced both quantities, but Olivia’s descriptions appealed 
to an image of breaking the area into parts. We believe that Wesley’s ratio of 4 cm2 for 1 cm of 
length represented a rate. Thompson and Thompson (1992) described a rate as a reflectively 
abstracted constant ratio. A ratio is a multiplicative comparison of two taken-as-unchanging 
quantities, whereas a rate is a conception of a constant ratio variation as being a single quantity. 
It symbolizes the ratio structure as a whole while giving prominence to the constancy of the 
result of the multiplicative comparison. In order to understand the ratio as a rate, Wesley needed 
to have an image of change such that 4 cm2:1 cm represented an equivalence class. Thus, he 
would need to understand that the unit ratio was simply a convenient measure of expressing the 
growth in area for a standard unit of length, and was just one of infinitely many equivalent ratios. 
A scaling continuous covariation image could enable this understanding, as Wesley would be 
able to mentally zoom in and out for different length increments, generalizing that any 
arbitrarily-sized increment of length would imply an associated amount of area adhering to the 
4:1 ratio.  
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Both students also produced drawings of a 4 cm-high rectangle, but only Wesley believed 
that the shape of the rectangle would not change if the provided rate of 4 cm2:1 cm were 
represented as 8 cm2:2 cm. In justifying his belief, Wesley explained, “The height doesn’t – like, 
it’s not a different shape, it’s the same. So, it [the rectangle] would be the same, I think.” Wesley 
recognized that all of the ratios were instantiated in the same rectangle height; he appeared to 
understand the height as a representation of the rate of change of area, which does not depend on 
an amount swept. In contrast, Olivia could only justify the sameness of the picture for any 
equivalent ratio by converting the new ratio to the original 4 cm2:1 cm ratio and comparing. 
Constantly Changing Rates of Change 

The students were also asked a series of questions about situations in which area was 
constantly changing, such as when the growing area was bounded by a line slanting upward at 
45º-angle, or a slope of 1 (Figure 1). Wesley expressed his answer using the quantities length and 
area: “Every time you increase by 1 in. in length, the area for that will grow by [an additional] 1 
in2.” Wesley’s care in expressing the change in the growth in area for a specific length increase is 
additional evidence that he understood the unit ratio as a convenient representation of the 
constantly-increasing rate that depended on a particular increment. In contrast, Olivia had to 
draw pictures to visually determine the amount of increase from one increment to the next 
(Figure 3). She came to the same conclusion, but conceived of the 1-inch increments as 
“columns”. When asked whether the size of the length increment mattered in terms of 
determining that the rate of change was constantly increasing, Olivia was uncertain and had to 
check with a new column size of 2 cm. She found that the new constantly-increasing rate was 4 
cm2:2cm for each of the columns. Wesley knew without having to check that the rate of the rate 
of change would remain invariant for any given increment, even though that value was 
dependent on the increment size. Scaling-continuous reasoning enabled him to generalize this 
observed property across all possible scales.  
 

         
Figure 3. Olivia’s drawing to find the amount of area accumulated for each 1-cm increment. 

In a second example, when investigating the constantly-increasing rate of change of the area 
for a 3 cm:2 cm triangle, Olivia again relied on a visual strategy, explaining, “I counted it out.” 
Wesley did not have to draw increments or make any calculations. He instead wrote “1.5”, and 
then explained, “It [the rate of change] increased by the slope.” Olivia’s drawing, partitioning, 
and counting strategy was sensible given her image of growth across completed chunks. It 
enabled her to make calculations for each column and then compare the increases from one 
column to the next. Wesley’s reliance on the slope of the triangle indicates a different conceptual 
foundation. He could conceive of the slope as a convenient way to express a unit ratio while also 
understanding that it was dependent on a particular chosen increment of 1 cm. For Wesley, the 
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slope was a multiplicative object (Thompson & Carlson, 2017), which was produced by mentally 
uniting accumulated area and accumulated length simultaneously. Scaling continuous covariation 
could potentially support the development of such a multiplicative object because an image of re-
scaling the continuum to any increment for x, including infinitesimal increments, while 
simultaneously coordinating that scaling with associated values for y provides a set of operations 
conducive to creating a new conceptual object “that is, simultaneously, one and the other” 
(Thompson & Carlson, 2017, p. 433, emphasis original). Scaling-continuous covariation enables 
the generalization of the ratio over any elapsed increment. 

Discussion 
Our findings indicate that scaling continuous covariational reasoning has the potential to 

support a meaningful understanding of constant and constantly-changing rates of change. In 
particular, it affords productive generalization of covariational properties across arbitrarily small, 
even infinitesimal, scales. Thompson and Carlson (2017) noted that the idea of a non-constant 
rate of change “is actually constituted by thinking of the function having constant rates of change 
over small (infinitesimal) intervals of its argument, but different constant rates of change over 
different infinitesimal intervals of the argument” (p. 452). As evidenced by Wesley’s language, 
this image is compatible with scaling continuous covariation, in which one can imagine zooming 
to any scale, even an infinitesimal one, to visualize a tiny interval over which the function’s rate 
of change is constant. Wesley recognized that the changes in the changes of area under a sloping 
line were uniform no matter the scale, which is precisely the constant second-differences 
characteristic that is unique to quadratic growth. Because he could imagine this at arbitrarily 
small scales, he could also connect this idea to the curvature of the area graphs he made.   

In addition, scaling continuous covariational reasoning has the potential to support an image 
of instantaneous rate of change and other foundational ideas in calculus. A student who reasons 
with chunky continuous covariation may struggle to think about a rate of change that is not 
dependent on an elapsed amount of swept length. This was the case for Olivia, who needed to 
imagine a completed increment and an associated amount of area in order to create comparisons 
across same-size increments (Ely & Ellis, 2018). Wesley, however, was able to construct the 
height of a figure at any given instant as a multiplicative object representing the rate of change of 
the area compared to the length swept. This enabled him to conceive of the height as a 
potentiality; once it would sweep out, it would turn the potential rate into an amount of area 
depending on how much length has been swept. Alternatively, one could imagine the rate of 
change at a point to be an average rate of change over an infinitesimal interval, which offers a 
natural motivation for the limit definition of the derivative.  

The case of Olivia and Wesley offers evidence that middle school students can develop 
powerful ideas about constant and changing rates, and that scaling continuous covariation could 
potentially offer a foundation for building sophisticated ideas about instantaneous rates of 
change. Situating students’ exploration of functional relationships within contexts that foster 
images of covariation and address ideas of infinitesimal increments is critical for providing this 
foundation. Given the potential of scaling continuous covariation for supporting important ideas 
about function, we advocate for additional research to better understand the nature of this form of 
reasoning and its affordances for algebraic thinking. 
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This proposal explores relationships between young children’s unit development/coordination 
and young children’s subitizing. In particular, this theoretical commentary considers students’ 
degrees of abstraction, students’ development of actions on units, and students’ operations with 
units when subitizing. As a result of this commentary, this author offers questions regarding how 
subitizing may elicit actions on units and perceptual/figurative material in a different order. 
These questions indicate possible alternative means in which comprehensive operations with 
natural numbers may develop. Possible educational implications and future research around 
these questions are also discussed. 

Keywords: Early Childhood Education, Number Concepts and Operations 

Steffe’s (2017) plenary for PME-NA outlined comprehensive means in which radical 
constructivist learning theory has explained children’s construction of mathematical concepts 
that have children’s construction and coordination of units as a foundation. Steffe also explained 
that on average about 40% of first graders do not yet use figurative material to stand in for 
perceptual material when counting and unitizing. By third grade, this figure remains at about 5-
8% of students. This finding suggests differences in children’s number abstractions in early 
elementary grade levels that may also indicate distinct differences in their unitizing activity later. 
This theoretical commentary explores how young children’s unitizing may relate to subitizing 
activity (individuals’ quick apprehension towards the numerosity of a small set of items), which 
may explain differences in children’s number abstractions in early grade levels. 

Freeman (1912) first proposed that subitizing requires an individual’s attention towards units 
of units when encoding number. MacDonald and Wilkins (under review) found that one child’s 
subitizing activity may relate to her composite unit development. However, these findings are 
still exploratory and provide more questions than answers. In particular, if young children are 
developing units and/or acting on these units through their subitizing activity, how might this 
affect the development of their actions and operations?  For instance, Steffe and Cobb (1988) 
found that young children develop a singular unit through their counting activity, which they 
iterate before engaging with partitioning. However, subitizing activity requires students partition 
patterned sets of items to associate with number before they iterate singular units.  

If children order their actions on material differently, how might this affect their ability to 
coordinate actions and form operations? If both counting and subitizing promote children’s 
coordination of actions earlier, which promotes early operation development, how would this 
affect children’s number development? Therefore, when considering subitizing activity in 
relation to students’ composite unit development, there seems to be new perspectives when 
investigating learning trajectories in number. Through this theoretical commentary, I will discuss 
how actions and operations may develop differently when young children subitize versus count. 
Resulting from this commentary are future research directions and educational implications. 

The purpose of this commentary is to consider alternative learning trajectories that take on 
theoretical aspects in the Neo-Piagetian literature and may explain how subitizing relates to 
young children’s development and their coordination of units. To discuss the intersect between 
subitizing and children’s development of units, I will (a) provide a theoretical framework, (b) 
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define unit construction, (c) describe how subitizing activity may relate to unit construction, and 
(d) propose future research that should consider how the two types of activity may relate.  

Theoretical Framework 
This theoretical commentary is grounded in the radical constructivist paradigm and more 

specifically, a Neo-Piagetian perspective. Essentially, in adopting a radical constructivist 
paradigm, I acknowledge that children learn through active engagement and reflection of their 
perceived reality. By adopting this paradigm, I also acknowledge that each individual constructs 
a unique mathematical reality that can be partially understood by others developing a second-
order model of his or her mathematics.  
Abstractions 

With this paradigm, Piaget explains changes in mathematical realities in varying means 
through degrees of abstraction children rely on when engaging in mathematics. Piaget 
(1977/2001) described abstractions students rely as beginning as a reliance on empirical 
abstractions (abstractions of actions on perceived objects) towards reflective abstractions 
(abstractions on projected operations). Glasersfeld (1995) explains that individuals rely on two 
types of empirical abstractions (empirical abstractions and pseudo-empirical abstractions). 
Empirical abstractions explain children’s attention towards rules and patterns when acting on 
perceived objects (e.g., counting manipulatives and knowing the last number word signifies the 
total). Pseudo-empirical abstractions are defined as children’s ability to coordinate figurative 
material, which is indicative when students represent perceived objects with figurative material 
(e.g., fingers, tapping, verbal utterances), when solving a task. Students transitioning from 
empirical abstractions towards pseudo-empirical transitions internalize mathematical patterns 
and rules while coordinating their unitizing, regardless of material presented to them. As children 
internalize their actions and further step away from perceived material presented to them their 
degree of abstraction transitions from empirical abstractions towards reflective abstractions.  

Piaget (1968/1970) first defined reflective abstractions as simply “coordinated actions” (p. 
18). Glasersfeld (1995) further interpreted Piaget’s (1977/2001) reflective abstraction 
delineations by describing two types of reflective abstractions (reflective abstraction and 
reflected abstraction) that children rely on when interiorizing mathematical patterns to form 
logical structures. Reflective abstraction (first subset of reflective abstraction) explains an 
individual’s projection and reorganization of his or her coordinated actions or operations at 
another conceptual level (1995). Reflected abstraction (second subset of reflective abstraction) 
explains this same activity, but also explains that an individual is also aware of his or her 
projection and reorganization (1995). 
Actions Versus Operations 

As children rely on different degrees of abstractions, they develop operational fluency with 
number operations, as structures for number become interiorized. Boyce (2014) explained how 
these structures develop in weak forms versus relatively stronger forms. Essentially, Boyce 
distinguishes between children’s development and coordination of actions versus their 
development and coordination of operations to explain different forms of reflective abstractions. 
For instance, if a child is capable of coordinating his or her actions to create a goal and develop a 
means in which to take a unit and iterate it, then the child has created goal-activity and an 
iterable unit (an abstract unit capable of iteration). The unit has become abstracted, but the 
operational structure has not been developed to allow student anticipation of his or her actions on 
the unit and in coordination with his or her other actions. This is an example of a lower form of 
reflective abstraction because the unit is acted upon in activity. An operation to anticipate this 
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activity is not created. This would explain why a child may be transitioning away from a reliance 
on perceptual material towards figurative material, but still struggles to interiorize structures for 
natural numbers. Comparatively, if a child is capable of developing an iterating operation, then 
the operation is one that can be acted upon, not the unit. This allows for anticipated activity (c.f., 
Tzur & Simon, 2004; Steffe, 1992; Ulrich & Wilkins, 2017), which allows a child’s natural 
number schema to become interiorized.  

In this commentary, I will not focus on the operations, which are beyond the capability of a 
young child in the early childhood years, but on how early perceptual actions may explain later 
conceptual operations. For instance, Piaget (1968/1970) posits, “in developmental psychology … 
there is never an absolute beginning” (p. 19). What Piaget seems to be referring to as the 
“absolute beginning” in this argument is the beginning of logical structures. When the 
coordination of actions begin framing our discussion, Piaget posits that the coordination of 
actions can go back to biological or organic coordination of actions.  

I posit that many of these early roots of biological coordination do not directly relate to a 
child’s development of his or her mathematical structures for number, but may explain the root 
of his or her early perceptions and coordination of activity when explaining latter operation 
development and unitizing (Glasersfeld, 1981). Therefore, I want to focus in on the roots of early 
development and coordination of actions to determine how early forms of operations may 
explain unitizing that young children engage in. Coupling this focus with subitizing development 
may explain differences in young children’s unit development. Thus, this proposal will further 
discuss how particular actions with subitizing may be important for young children and how the 
coordination of these actions with their counting actions may relate to earlier forms of 
operations.   

Unit Construction and Unit Coordination 
The term unit has become polysemous in the Neo-Piagetian field, as a unit symbolizes a 

variety of means in which unitizing develops relative to the context the proposed unit is set in. 
Ulrich (2015) cited Glasersfeld (1981) when defining unitizing as the “generalized and 
generative process of abstracting out the ‘one’-ness from some aspect of experience” (as cited by 
Ulrich, 2015, p. 3). Frege (1884/1974) and Husserl (1887/1970) found in their work that children 
engaged in conceptual activity when required to cut “discrete items out of the flow of 
experience,” which were found to promote the construction of “unitary wholes and ultimately of 
countable units” (as cited by Steffe & Cobb, 1988, p. 3). Steffe and Cobb posited that children 
younger than two years of age are capable of this activity, yet it is rare to find studies 
investigating or even theorizing this development or its nature in the early childhood years. For 
instance, Clements (1999) first proposed that subitizing relates to young children’s number 
development and MacDonald and Wilkins (Under Review) found that one preschool student’s 
subitizing activity related to her conceptual forms of units that she used when solving a counting 
task. However, it has not been determined how subitizing activity may relate to unitizing and 
how this development may relate to latter counting development.  
A Unit 

Boyce (2014) defines a unit as “something that has been unitized or set apart for further 
action” (p. 3) and characterizes a unit as “an object that can be transformed” (p. 4) and 
something that can be iterated (p. 24). A very different definition comes from Ulrich and 
Wilkins’s (2017) study where they define a unit as “interiorized counting acts, so they can be 
used to enumerate the size of the sets of visible or invisible items and can themselves be 
counted” (p. 2). Finally, a third (very different) definition from Ulrich (2015) where a unit is 
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defined as that, which “allows [students] to measure the number of items in a collection” (p. 3). 
These definitions are distinctly different because each researcher investigated different aspects of 
students’ mathematics learning. Thus, the term unit becomes polysemous because this one word 
has multiple meanings that are related, but not alike. As described earlier, when the context 
becomes more sophisticated, the word, unit represents that which is the basis for measuring what 
the children are developing and coordinating within their respective mathematical structures. To 
provide insight into how a unit and unitizing action might relate or not relate to early childhood 
subitizing and number development, I will adopt Boyce’s definition in hopes to explain early 
forms of empirical and pseudo-empirical abstraction development.  
Actions and Operations on Units 

The coordination of actions upon a unit explain how students develop operations. Boyce 
(2014) explains that a coordination of operations allow anticipatory frameworks (see Tzur & 
Simon, 2004) to develop, as operations are acted upon and allow for anticipation. This iterative 
cycle explains the nature of development and learning in mathematics. For instance, Norton and 
Boyce (2015) explain that children produce and coordinate four actions (unitizing, iterating, 
partitioning, and disembedding) when developing operations (e.g., distributing operation) that 
promote unit coordination. When students are able to operate flexibly and anticipate appropriate 
actions and results within a particular mathematics domain, Norton and Boyce posit they are able 
to do so because they have produced and coordinated levels of units. Coordination of these units 
results from students’ development and coordination of the aforementioned actions.  

Steffe and Cobb (1988) also found that young children evoked counting actions to develop 
early forms of units described as prenumerical singular units. These prenumercial singular units 
were described as evidence of young children’s reliance on actions with perceptual material, 
figural patterns, motor patterns, verbal utterances, and abstract numbers (1988). As children 
distance themselves from perceptual material towards more abstract material, Steffe and Cobb 
found that children unitized the perceptual and figurative material before developing actions 
upon singular abstract units. Once actions upon abstract singular units are developed, children 
are able to iterate these units to construct numerical sequences that they segment. Through their 
segmenting actions, children develop composite abstract units. Once children iterate and 
partition composite units, they are capable of disembedding parts from whole sets. These actions 
promoted more operational understandings so that they are able to be aware of and work within 
mathematical structures for number. Steffe and Cobb found that when children could (1) count-
on, (2) double count (i.e., 1, 2, 3, … one three; 4, 5, 6, … two threes), and (3) count by multiples 
(i.e., 3, 6, 9, 12) to solve problems, they were using all four actions to develop a nesting of sums 
for multiplicative and fractional reasoning. 

With this learning theory in place, mathematics educational researchers have been able to 
explain nuanced development of children’s counting, fractions, and multiplication. However, it is 
still not clear how subitizing activity may relate or not relate to children’s unit development and 
coordination. Thus, these unit development and coordination learning theories will be discussed 
as related to different types of perceptual and conceptual subitizing.  

Perceptual and Conceptual Subitizing Related to Composite Unit Development 
 Subitizing, initially defined in the psychology field (Kaufman, Lord, Reese, & Volkmann, 

1949), describes individuals’ quick attention to the numerosity of a small set of items. Unitizing 
and unit coordination have not been described in this research. Historically, subitizing has been 
described in the psychology field as a quantification encoding process and visual information 
processor where the numerosity of a small sets of items (ranging 1 to 5) are identified (Klahr, 
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1973). More recently in the mathematics education field, Sarama and Clements (2009) delineated 
a hypothetical trajectory of subitizing activity and explained subitizing as relying on either 
perceptual or conceptual activity when developing early number understanding. More 
specifically, Sarama and Clements explain that individuals  perceptual subitizing use an 
encoding process for small numerosities, but also draw from attentional resources when 
associating a number word with the numerosity of the set. Individuals engaging with conceptual 
subitizing use relatively more advanced number understandings to make sense of larger sets of 
items (> 5) (Sarama & Clements, 2009). However, unit development and coordination may 
explain, in more nuanced ways, how conceptual subitizing develops in relation to number 
understanding. 
Perceptual Subitizing and Unit Development 

Freeman (1912) initially proposed that subitizing may introduce children to the perception of 
“units of units” when encoding number. To consider early forms of unit development with 
subitizing activity, I consider actions students use to determine how “units of units” may be 
produced through subitizing activity. Clements (1999) first described perceptual subitizing and 
conceptual subitizing activity as relying on actions that promote early unit development. 
Perceptual subitizing was defined as students’ ability to intentionally quantify a set of items 
through their subitizing activity yet be unable to be aware of any mathematical processes. To be 
capable of engaging in perceptual subitizing, Sarama and Clements (2009) suggest that students 
would need to be capable of cutting away a set of items to determine these as a unit. Sarama and 
Clements defines conceptual subitizing as children’s ability to be aware of units of units when 
quickly associating sets of items with number words. However, it is not yet clear what type of 
units students may be developing and coordinating when subitizing.  

MacDonald and Wilkins (2016) found in an exploratory study that preschool children engage 
in unitizing that may relate to early forms of composite unit development. For instance, children 
were found to engage in Initial Perceptual Subitizing where simple associations were made 
between shapes or motion when intentionally naming a number word. I argue this is very similar 
to Sarama and Clements (2009) description for perceptual subitizing and explains early forms of 
figural or motor singular unit item development. This form of unit development would explain 
how students rely on patterns shown to them visually with figurative patterns and how they may 
even represent them rhythmically with motor patterns. Through this unit development, young 
children may begin acting upon the rules of the patterns instead of simply acting on the actions 
related to the patterns. This would be indicative of a child pointing to his or her paper to show 
the pattern or shape when justifying why he or she knows she saw “three.”  

MacDonald and Wilkins (2016) also found that young children could subitizing two or more 
subgroups of items before they were capable of composing these subgroups. This type of 
perceptual subitizing activity was described as Perceptual Subgroup Subitizing. Quite often, the 
orientations shown to the students were clustered and regular. For instance, an orientation shown 
to a child may have two dots in a column on the right-hand side of the mat and three dots in a 
triangular orientation on the left-hand side of the mat. These orientations afforded students the 
opportunity to unitize more than one subgroup without requiring them to partition or iterate.  

MacDonald, Boyce, Xu, and Wilkins (2015) also found that when students were shown 
orientations with regular patterns that were symmetrical (i.e., four dots in a rectangular 
orientation) in nature, they were capable of unitizing and iterating subgroups. For instance, when 
Frank, a four year-old student, was shown four dots in a rectangular orientation he initially said 
he saw, “T … four” (p. x). This suggests that he iterated two to build up towards four. This also 
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suggests that he was capable of using a unit of two and partitioning a unit of four. Through these 
actions, MacDonald et al. posited that Frank was capable of coordinating actions to produce a 
unit for four. The symmetrical aspects of the orientation may have also afforded Frank the 
opportunity to partition because the line of reflection fell upon these same partitioning lines. 
Empson and Turner (2006) found that early forms of partitioning that began with paper folding 
were foundational for students’ construction of functional relationships. Thus, this activity may 
provide foundations for more sophisticated coordination of units later.  
Perceptual Subitizing and Actions on Units 

If students are capable of (1) subitizing and then composing units after subitizing – 
Perceptual Ascending Subitizing, or (2) composing and subitizing and then decomposing units – 
Perceptual Descending Subitizing, then MacDonald and Wilkins (2016) found students were 
building necessary activity for conceptual subitizing. The distinction between this activity and 
conceptual subitizing is that students are shown items that are clustered and patterned, which 
does not require partitioning. Thus, this Perceptual Ascending Subitizing and Perceptual 
Descending Subitizing can allow students to unitize and act on the units developed. It is not clear 
how these operations develop and what type of composite unit (perceptual or figurative) students 
are developing or coordinating. These early operations may develop through a coordination of 
counting actions, through a segmenting of numerical sequences, or through students’ 
development of patterned or figurative patterns. Regardless, this transition from students’ 
development of actions to their development of operations is key, as students are now capable of 
being aware of number structures that afford them units of units perspectives.  

Furthermore, when children engage in Perceptual Descending Subitizing, MacDonald and 
Wilkins (2016) argue that children are engaging in bi-directional activity. For instance, students 
who subitize two clustered subgroups may state that they saw “two and three.” Once asked, 
“how many is that altogether?” they may then compose these units and state “five.” MacDonald 
and Wilkins explain that this is Perceptual Ascending Subitizing because the student is ascending 
from the groups to the total set. However, students who subitize and compose two clustered 
subgroups may state that they saw “five.” When asked, “how do you know there are five there?” 
they would then need to reflect on their actions and decompose the total set. Steffe, Glasersfeld, 
Richards, and Cobb (1983) described this bi-directional activity when children reversed their 
counting actions and found that this activity provided foundation actions for reversible counting 
later. Steffe explained that the distinction between bi-directional counting and reversible 
counting was that in bi-directional counting children would rely on prenumerical units and in 
reversible counting, children would rely on abstract units. This distinction leaves a lot to 
educators to determine the nuances of the development between bi-directional counting and 
reversible counting. Thus, in Perceptual Descending Subitizing, I argue that children are not 
relying on abstract composite units and therefore require the activity and other means to 
represent these units when reversing their activity. Also, questions arise from some this 
development in subitizing. For instance, how could different types of perceptual subitizing 
activity describe different types of prenumercial composite units?  
Conceptual Subitizing and Unit Action Coordination 

Once children are capable of partitioning and unitizing subgroups from a total set of items, 
MacDonald and Wilkins (2016) found that children were capable of conceptual subitizing. When 
children conceptually subitize, it seems that are capable of partitioning and unitizing before they 
iterate units. Children inverse these actions when they are counting. For instance, when counting, 
Steffe and Cobb found that children iterated units before they were capable of partitioning or 
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segmenting numerical sequences. As students develop operations, they begin coordinating 
actions, which I posit occurs when students reverse the order of these actions. For instance, if 
children only engage in counting, then they will develop schemes that promote a particular order 
of actions. Children will first unitize to develop units and then iterate their actions in accordance 
with these units in a 1:1 correspondence. Here the actions are still in the material presented to the 
children and number is also present in their actions on these objects. However, through a 
distancing of these, children’s reliance upon particular items shown to them (e.g., through use of 
fingers, through use of motor actions) children’s units become more abstract until they are 
capable of operating on a series of abstract units. These early operations involve children 
segmenting numerical sequences that they built through their unitizing and iterating of abstract 
units. Thus, when counting children unitize, iterate, and then partition.  

Comparatively, if children only engage in subitizing, then they may develop schemes that 
promote a different order of actions. Children will first unitize to develop units (perceptual 
subitizing) and then partition these units to develop a unit of units understanding (conceptual 
subitizing). Only then, will they begin to iterate units (e.g., five and five make ten) to 
(de)compose multiplicative units. Thus, when subitizing children unitize, partition, and then 
iterate. I posit that when children engage in counting and subitizing, their actions become 
operations because they are now asked to change the order of their actions and coordinate them 
in operational structures that are more comprehensive. This allows for more sophisticated 
reflective abstractions where children can use when anticipating actions and solutions in 
mathematics (Boyce, 2014).  

In closing, by investigating relationships between subitizing and composite unit 
development, mathematics educational researchers may be able explain differences in children’s 
composite unit development and provide alternative trajectories in learning mathematics.  

Future Research and Possible Educational Implications 
This theoretical commentary provided insight into how subitizing may or may not relate to 

unit development and coordination. From this discussion, it seems evident that when students 
engaging in counting activity they unitize and iterate before partitioning their developed number 
sequences. This allows students opportunities to develop actions and abstract these actions on 
their developed units. However, students engaging in subitizing activity may be unitizing and 
partitioning before iterating their developed spatial patterns. This allows students opportunities to 
develop these same actions on their developed units, but in a different order. However, if 
students develop more than one order of actions, would this provide a more comprehensive set of 
operations and allow students operation development earlier? By leveraging this development, I 
posit that gaps that Steffe (2017) and others (e.g., Clements & Sarama, 2011; Siegler & Ramani, 
2008) have found in early elementary school may shrink. Thus, future research should focus on 
how different forms of activity in early elementary years may provide students alternative means 
to develop operation and units in which to operate on. Findings from studies like this might serve 
educators alternative actions that would serve children’s disembedding actions and distributive 
operations. Also, when engaging in trajectories with different ordered actions, would children be 
capable of simultaneously coordinating these actions to develop operations similar to a splitting 
operation (see Wilkins & Norton, 2011)? Finally, how might alternative trajectories be used to 
leverage development for students who require different curricula or educational support (e.g., 
students identified as having a learning disability)? Thus, future research in how subitizing and 
counting relate to unit development and coordination could serve theoretical frameworks and 
educational curricula and should be explored further. 
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STRATEGIES USED BY MEXICAN STUDENTS IN SEEKING STRUCTURE ON 
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This paper presents strategies identified in Mexican rural school students in seeking structure on 
equivalence tasks that involve the equal sign and tasks that do not. The results arise from the 
pilot study of a research project on the structure of numbers and numerical operations – a key 
aspect of early algebraic thinking. 

Keywords: Algebra and Algebraic Thinking, Elementary School Education. 

Research on algebraic thinking in young students is a trending topic worldwide (Kieran, 
2018; Singh & Kosko, 2017). In this and other works, different approaches to early algebra that 
recognize in arithmetic a strong algebraic feature can be identified (Carraher & Schliemann, 
2007). Studies on equivalence in numerical sentences have centered on relational thinking 
(Carpenter, Franke, & Levi, 2003; Molina & Ambrose, 2008), as well as on generalization, as 
main aspects of algebraic thinking. However, another important aspect is that of structure in 
arithmetic (Kieran, 2018). 

Recent studies show some of the relationships between expressing the structural and the 
operational on equivalence tasks. For instance, Asghari and Khosroshahi (2016), with tasks that 
do not involve the equal sign, propose the existence of an operational approach in developing 
algebraic thinking in the context of the associative property. According to these researchers, 
mathematical thinking in elementary school may involve both an operational and a structural 
conception. Hence, the authors identify the development of algebraic thinking as operationally 
experienced in the ability to transform a numerical structure. 

Schifter (2018) states that an important feature of early algebra includes observation, 
development, and justification of structural properties in numerical operations expressed in 
students’ computational strategies. This is seen, for instance, in students’ verbalizations of the 
property that in an addition, adding and subtracting the same amount does not affect the value of 
the expression. Thus, it is important to engage students in discussions on their strategies to 
determine the veracity or not of numerical sentences such as 57 + 89 = 56 + 90. If students 
indicate a relational mode of thinking, it suggests that they are focused on the structure of such 
equalities. Schifter also analyzed students’ thinking when they explored structural properties in 
related expressions in a sequence of expressions not involving the equal sign (14+1, 13+2, 12+3, 
11+4). 

In another work, Pang and Kim (2018) using sentences such as 67 + 86 = 68 + 85 reported 
that participants tended to use computational strategies; however, they also showed their ability 
to use a structural approach. According to Pang and Kim, one structural strategy consists in 
observing that an addend increases by one and the other decreases also by one. In Schwarzkopf, 
Nührenbörger, and Mayer (2018), however, it is considered that describing patterns in a 
sequence of expressions such as 30 + 20 =  , 31 + 19 =  , 32 + 18 =  , … is not actually structural 
reasoning, even if they point out the importance of such thinking in patterns or regularities. 
These researchers agree with Mason, Stephens, and Watson (2009) in the sense that structural 
thinking is much more than only observing patterns. 

It is clear, then, that there are different perspectives regarding the structural in arithmetic as a 
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component of algebraic thinking, as well as the importance of its development. From here, the 
purpose of our work is to research the reasoning of Mexican students from rural schools in 
seeking structure on equivalence tasks that involve the equal sign and tasks that do not. The 
research question was: What are the strategies used by Mexican students from rural schools 
regarding structure on equivalence tasks? 

Theoretical Framework 
Structure in Numbers and Numerical Operations 

One of the key aspects in developing algebraic thinking is the notion of structure; however, 
there are different perspectives on this notion. As mentioned in Kieran (2018), several 
researchers have worked in this area in the teaching and learning of algebra. Linchevski and 
Livneh (1999), for instance, recognize that students experience difficulties with structure in 
algebra and that these difficulties are due to lack of understanding of structure in arithmetic. 
Mason et al. (2009) have suggested that working with tasks that focus on relations rather than on 
procedures strengthens students’ attention to the structural aspect of arithmetic. They refer to this 
as structural thinking and propose that it allows students to move away from the particular in a 
situation. 

According to Kieran (2018) generalization-oriented activities encompass a structural aspect, 
but more attention is needed to the process that is complementary to generalizing, that is, the 
process of seeing through mathematical objects, decomposing and recomposing them in several 
structural ways. Kieran (2018, pp. 80-81) argues that to observe the structure of mathematical 
objects is to see through them. This means being aware of possible and different ways to 
structure number and numerical operations, for example, observing that 989 may be decomposed 
as 9 x 109 + 8, as 9 x 110 – 1, or as 9 x 102 + 8 x 101 + 9 x 100. According to this researcher, the 
generalization of mathematical ideas in arithmetic is linked to the idea of expressing structure. 
So generalization involves identifying the structural, and the structural involves identifying the 
general. Kieran (2018, p. 82) states that structure in numbers and numerical operations may be 
explained, firstly, by drawing on Freudenthal (1983, 1991, quoted in Kieran, 2018). That is, that 
the system of whole numbers constitutes an order structure, where addition is based on the order 
of this structure: in the addition structure, to each pair of whole numbers a third number (its sum) 
can be assigned. It is emphasized that, in Freudenthal’s discussions of structure, there is not just 
one all-encompassing structure. He refers, for example, to order structure, additive structure, 
multiplicative structure, structure according to divisors, structure according to multiples, etc. 

Based on the literature regarding perspectives on mathematical structure, specifically 
arithmetical structure, Kieran (2018) suggests promoting student experiences with equivalence 
through decomposition, recomposition, and substitution. Following Freudenthal, she points out 
that the structure in numbers and operations involves different means of structuring, according to 
factors, multiples, powers of 10, evens and odds, decomposition of primes, etc. Such structures 
expressed through decomposition, in other words, uncalculated forms, have properties. This 
perspective on structure constitutes a wider conceptualization of the fundamental aspect of 
structure in number and numerical operations as a means to develop early algebraic thinking. 
Taking into account the points made by Kieran (2018), as well as the suggestion of Schifter 
(2018) that structural properties can be implicit in students’ procedures, this work will explore 
Mexican students’ structure sense in equivalence tasks as evidenced through their strategies. 

Methodological Considerations 
Included in this report we present the preliminary results from an ongoing qualitative 
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research aimed at investigating the strategies that students use in equivalence tasks. 
Initial Task Design 

Three tasks were designed in order to explore students’ strategies; two of these did not 
include the equal sign. Task 1 aims at identifying the way in which students relate two numbers a 
and b with a third one c (i.e., its sum) and the rationale they use. It is a 4-item task with a main 
question: Can number c be written from numbers a and b? (a and b being specific numbers). 
Also, the task includes a generalization question: Can any number be written from other 
numbers? For all the questions, students were asked to provide an explanation. 

Task 2 was based on the sequence proposed by Schifter (2018) and includes seven items. The 
aim is to observe the regularities students find in the proposed sequence based on this first item: 

14+1 
13+2 
12+3 
11+4 
10+5 

The rest of the items focus on two particular expressions from the sequence (e.g., 14+1 and 
13+2). Students are asked to explain how to write an expression from the other. Another set of 
items focuses on discussing the equivalence of expressions without computation. The task ends 
with a question where a sequence of the same type is proposed, but involves subtracting; here we 
want to observe if students extrapolate from the discussion involving the case of adding. 
Task 3 involves the use of the equal sign to show the equivalence of expressions, for instance, 4 
+ 5 = 4 + 3 + 2. The aim is to explore if students indicate relational thinking based on the 
structure of such equalities. The main goal in the task is to determine if the numeric sentences are 
true, as well as the possibility of rewriting them in an equivalent form. Task 3 also included 
numerical sentences with “big numbers”. 
Participants 

Six sixth graders, ages 10 and 11, from a public Mexican school participated. This grade 
level was chosen because such students are finishing primary school and have been exposed to 
the official Mexican public education curricula. In the curriculum for the elementary school 
(SEP, 2016) the equivalence of numerical expressions is not mentioned. However, several tasks 
from the official textbooks have the potential to promote students’ early algebraic thinking 
(Cabañas, Salazar, & Nolasco, 2017). 
Data Collection 

Prior to the unfolding of the designed activity, the teacher in charge of the group reviewed it. 
In her opinion, the students had never solved similar tasks; they had only worked with the use of 
the equal sign in an operational sense. The data collection technique was that of the Group 
Interview, so that students could verbalize their rationales. Data were obtained during three 
sessions, one session per task, with sessions lasting 30-40 minutes each. All six students 
participated in each of the three sessions. 

Results and Discussion 
The preliminary results of an ongoing study are herein reported. The analysis focuses on the 

work of three students (S1, S2, and S3), those who participated most fully in the group 
interviews. Data for these results come from students’ worksheets, videotaped footage of the 
sessions, and researcher’s field notes. 
Results from Task 1 

Task 1 does not include the equal sign so as to see whether students use it spontaneously and, 
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if so, in which way. Three of the items were the following:  

1. May number 7 be written from numbers 6 and 1? If so, how? 
2. May number 19 be written from numbers 14 and 5? If so, how?  
3. Is it correct to write number 7 as 3 + 4? As 8 + 2? Explain.  

The students answered affirmatively items 1 and 2, their explanation being based on what in the 
literature is known as an operational use of the equal sign. For example, see S1’s work in Fig. 1. 

 

 
 
 

 

Figure 1. S1’s operational form of justification. 

In his explanation, S1 relates 7 with 6 and 1 in an operational sense: 6 + 1 = 7, through a 
computational strategy. None of the students write, for example, 7 = 6 + 1, which would be 
recognized as a not strictly operational response. From a structural point of view, 6 and 1 can be 
interpreted as a decomposition of the number 7, which can then be recomposed from these 
numbers. In item 3, students answer in the same sense (Fig. 2) based on the result they must 
obtain. 
 

 
Figure 2. S3’s justification in terms of the result. 

The same idea is present in the answers involving a generalization. Can any number be written 
from other numbers? Students identify the generality in terms of the response that they must 
arrive at. This is observed in S1’s final explanation (Fig. 3) where he states “…only if I get what 
I want”. 
 

 
 
 
 

Figure 3. S1’s general statement. 

Students’ answers show a lack of relational thinking by their use of the equal sign as a symbol 
that indicates the result. In other words, their strategy doesn’t match with a notion of number 
decomposition, but with the idea of operating with numbers in order to get a result. The way in 
which they justify their answers – according to their teacher – shows how they have been 
systematically exposed to this way of thinking. In order to test whether the way in which Task 1 
was designed led to the strategy that students used, Tasks 2 and 3 were designed differently. 
Results from Task 2 

The analysis of data from Task 2 (involving the sequence from Schifter, 2018) focuses on the 

May number 7 be written from numbers 6 and 1?  Yes  If so, how? 6 + 1 = 7 
 

B) 
Is it correct to write number 7 as 3+4? Yes As 8+2? . No 
Explain 
Because 3+ 4 = 7 and 8 +2 = 10 and [3+4] does not ask for a 10 

Can any number be written from other numbers? 
Explain why 
Yes, “…only if I get what I want 
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features of the a + b form of expressions that were observed by the students, as well as on the 
possibility of transforming one expression of the sequence into another expression of the same 
sequence. Regarding the first aspect, students’ answers show that they identify the regularity in 
the sequence. For instance, they write about the involved operation (addition), the sum (the 
result) and the existence of an order in the sequence (increase and decrease of the addends). See 
S2’s and S3’s answers to the first item (Fig. 4). 
 

 

 
 
 
 
 
 

Figure 4. Features of the sequence as indicated by S2 (above) and S3 (below). 

The kind of answers students produce regarding the presented sequence relates, on the one 
hand, to the kind of thinking they show throughout Task 1. That is, they identify the expression 
as an operation that must be carried out in order to obtain a result. This feature is clear in S2’s 
response when he writes: “…all of them are additions and they are not answered and all the 
additions result in 15”. This suggests that these students do not see the expression as a 
mathematical object in itself, reflecting what is described in the literature as the lack of closure 
dilemma. On the other hand, there is some evidence of a train of thought that could be associated 
with the structural. According to Pang and Kim (2018), to identify patterns such as “increases by 
one and decreases by one” is a part of structural sense. This can be seen in S3’s work (the lower 
half of Fig. 4) when he states: “…and the biggest number becomes small, the smaller becomes 
big”.  However, he does not relate the feature he observes to the equivalence of the expressions. 
In the second part of Task 2, the students were asked how to obtain one expression in the 
sequence (e.g., 13 + 2) from another (e.g., 14 + 1). In these cases, all the students use an additive 
compensation strategy, as observed in Fig. 5. 
 

  

Figure 5. S1’s additive compensation strategy. 

The aim of our research was to study how students move from one expression to another, if 
they decompose and recompose the involved numbers. It was noticed that they identify the parts 
of the expressions, but not as a mathematical object that can be decomposed and recomposed to 

B) Write what you observe on the sequence 
There is an order, in the 14 to 10 and in the 1 to 5, all of them are additions, they are not answered and all 
the additions result in 15. 
 
In all the sums the result is 15, you have 14+1=15 then 13+2=15 and the biggest number becomes small, 
the smaller becomes big. 

E) Is it possible to write from 14+1 the expression 13+2?  Yes 
In which way? Explain 
We have to add. For instance 1+1=2 and subtract 14 -1=13 

H) Is it possible to write from 10+5 the expression 13+2?  Yes 
In which way? Explain 
[Student illustrates an additive compensation strategy] 
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transform one expression into another. It was also seen that students use a compensation 
strategy: adding and subtracting the same amount to and from the involved addends in order to 
obtain the second expression. The following is an extract from an interview when, in the course 
of presenting the task, the interviewer asked for a generalization of the student’s strategy: 
 

Researcher: …Can you do it [referring to his strategy] in any case? Is there a rule for it? 
[After other students offer suggestions, S2 answers] 

S2:  It’s only a matter of adding and subtracting, depending on the required numbers. 
 

Despite such structurally-related responses as S2 produced, there is not enough evidence, 
however, to determine if students identify an equivalence relationship among the expressions 
(e.g., 14+1 and 13+2). Nor is there enough evidence, with respect to the additive compensation 
strategy, to determine if they are aware that their strategy is generalizable to all additions (e.g., 
that 27 + 15 can be converted to, say, 30 + 12 or that 44 + 19 can be converted to 43 + 20) or 
simply applicable to the set of additive expressions provided in Task 2. If the latter, then — as 
suggested in Schifter (2018) — this would be an ad hoc strategy aimed at getting the numbers 
needed for the second expression from the first one, and viceversa. 
Results from Task 3 

This task includes the equal sign – in expressions such as a + b = c + d. As mentioned, Task 
3 involves “big” numbers to see if this deters the use of computational strategies. 
On the one hand, students accept expressions such as a + b = c + d; however, they justify the 
equality of both sides by calculating the result on each side. Again, this computational strategy 
demonstrates that students are not relying on relational thinking. Their computational strategy is 
called upon in both cases, whether with “small” or “big” numbers (Fig. 6). 

 

  
 
 
 

 
Figure 6. S3’s computational strategy. 

On the other hand, students rewrite the equalities in the form of other equivalent equalities 
according to two strategies. In the first of these strategies, they decompose each of the addends, 
but not in a way that shows a clear relationship between one side and the other of the equality 
(see S1’s work in Fig. 7). In the second, which is based on calculating the total (the result) for 
each side without first decomposing the involved addends, students then look for two or more 
numbers for which they could obtain the same total (see S3’s work in Fig. 8). 
 
 

Observe the following expression: 480 + 6 + 123 = 486 + 123 
Is the equality True or False?   T 
Explain with your own words 
              Because we get the same result 
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Figure 7. S1’s equality rewriting.  

 

 

 

Figure 8. S3’s equality rewriting. 

This task shows that students accept equalities in the form of a + b = c + d. However, they 
transform them without relating the right and left sides except according to their totals. Their 
strategy is to maintain the equivalence through the two above-mentioned strategies. Hence, as 
observed in Figs. 7 and 8, there is not a natural inclination in students to re-express the equalities 
in such a way that both sides of the equalities look alike; for instance, 172 + 10 + 50 + 25 = 172 
+ 10 + 50 + 25, or 170 + 2 + 10 + 50 + 25 = 170 + 2 + 10 + 50 + 25, or even as 182 + 75 = 182 + 
75. However, S1’s work shows some structural sense according to the reviewed literature. Even 
when S1 and S3 write correct equalities, each side is considered on an individual basis. The left 
side is decomposed in one fashion and the right side in a different way, without showing 
explicitly the equality of both sides. S1 (Fig. 7) does not explain that both sides look more or less 
the same, he only mentions that the result (on both sides) is the same. 

Conclusions 
From the strategies students used, only one can be considered to illustrate a structural 

approach (S1 in Task 3, as shown in Fig. 7), even though the accompanying explanation refers to 
the result of both sides of the equality. The rest of the students’ strategies are clearly 
computational, referring to the expected result, whether it involves operating with the numbers of 
an expression so as to calculate the result on both sides of an equality (the strategy observed in 
Tasks 1 and 3), or operating with the addends of one expression to obtain the addends of the 
other expression (the strategy observed in Task 2). In this sense, the presence or absence of the 
equals sign in the tasks seems not to influence the students in their chosen strategy. 

Our results coincide with those reported by Pang and Kim (2018), in the sense that students 
tend to use computational strategies. This means that they show a strong operational sense, even 
when they accept equalities in the form of a + b = c + d. Nevertheless, this acceptance could be 
used as a base to promote the development of structural sense within algebraic thinking by 
designing tasks in such a way that students are explicitly requested not to pass through the 
intermediate step of computing the total for each expression in their work on judging the 
equivalence of the component expressions. Accepting expressions as bona fide numerical 
objects, and operating with and on these objects, is essential to seeking and expressing structure 
within the domain of arithmetic and thereby fostering the development of algebraic thinking. 
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Observe the following expression: 172 + 10 + 75 = 182 + 50 +25 
Is the equality True or False?  T   
In which other way could you re-write the previous equality?   .Yes.  
Why it is correct re-write the expression in such a way? 
100 + 72 + 5 + 5 + 60 + 15 = 100 + 82 + 30 + 20 +20 + 5 
Because I get the same result 

Observe the following expression: 172 + 10 + 75 = 182 + 50 +25 
Is the equality True or False?  Yes   
In which other way could you re-write the previous equality?   .Yes.  
Why it is correct re-write the expression in such a way? 
207 + 50 = 150 + 107 
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LEARNING FROM NAEP RELEASED ITEMS: U.S. ELEMENTARY STUDENTS’ 
GRASP OF MULTIPLICATIVE RELATIONSHIPS 

John P. Smith III 
Michigan State University 

jsmith@msu.edu 

Curricular analysis indicates that the U.S. students are introduced to multiplication in additive 
terms (as the replication of equal groups and repeated addition). But the virtue of this 
introduction for supporting students’ understanding of the full range of multiplicative 
relationships is unclear. This paper reports an analysis of all grade 4 released NAEP items that 
expressed a multiplicative relationship, focusing on the range of relationship types, related 
quantities, and item difficulty. Results show that multiplicative items (1) frequently presented 
discrete quantities and equal group situations, (2) were easier when they involved discrete 
versus continuous quantities, and (3) within discrete items, equal groups and array items were 
easier than other types. These results provide measured support for the conjecture the additive 
introduction to multiplication may limit the development of elementary students’ understandings. 

Keywords: Number Concepts and Operations, Elementary School Education, Assessment and 
Evaluation 

Objectives of the Study 
Can analyses of released items from the National Assessment of Educational Progress 

(NAEP)—the “nation’s report card”—and performance on those items shed light on questions of 
interest to mathematics educators, beyond what has been reported in summary volumes (e.g., 
Klosterman & Lester, 2007)? This analysis addressed that question for the broad content area of 
multiplicative relationships. “Multiplicative relationships” designates a set of tasks and 
situations, numerical and quantitative, that engage students in multiplicative reasoning and in 
carrying out numerical operations of multiplication or division. Given the introduction of 
multiplication and multiplicative relationships in grades 2 and 3 in U.S. classrooms, the analysis 
examined released items from grade 4. 

Multiplicative relationships are significantly more diverse and challenging for students to 
master than additive relationships (Nunes & Bryant, 1996; Vergnaud, 1983, 1988). Students 
work on multiplicative relationships for many years, and this work is intensive in the upper 
elementary through middle school years. They are introduced to the operations of multiplication 
and division and some “applied” situations in grades 2 and 3. In the U.S., this introduction is 
essentially additive in nature. Quantitatively, multiplication is presented as involving the 
replication of equal-sized groups of discrete objects; numerically, it is presented as repeated 
addition (Smith, 2017). Research on students’ understanding of different multiplicative 
relationships raises questions about whether this instructional foundation effectively supports 
students’ access to and understanding of the full range of multiplicative relationships. This 
analysis of released NAEP items is one small step in a larger effort to address that critical 
question. The NAEP analysis complements the results of many prior studies that have assessed 
students’ understanding of multiplicative relationships (as summarized in Greer [1992] and Harel 
& Confrey [1994]).  

Two main questions focused the analysis: (1) what multiplicative situations (type and 
frequency) appear in released Grade 4 items and (2) how well do the performance results align 
with the additive introduction to multiplication? For example, are items presenting the 
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replication of equal groups easier than other types of situations that are less amenable to 
replication and repeated addition? 

Theoretical Perspective 
Broadly, the larger inquiry that motivated this analysis was framed in constructivist terms. If 

learning is a social and psychological process of adapting prior understandings to cope with new 
and problematic mathematical situations (e.g., Wood, Cobb, Yackel, & Dillon, 1993), then how 
we introduce students to multiplicative relationships matters greatly for their subsequent work to 
engage the full multiplicative conceptual field (Vergnaud, 1983). Understanding multiplication 
and division means knowing where and why situations encountered in the world are 
“multiplicative,” not additive. Mastery of the numerical aspects multiplication and division (i.e., 
basic facts, algorithms, and properties of operations) may contribute to understanding 
multiplicative relationships but is neither sufficient nor central. 

A framework of types of multiplicative reasoning and quantitative situations that typically 
elicit such reasoning framed the analysis of the released items. Quantities are countable or 
measureable attributes of objects or collections of objects that are constituents of situations that 
student encounter and reason about in school and the everyday world (Smith & Thompson, 
2008). To use their mathematical knowledge effectively in reasoning about and resolving these 
situations, students must consider the quantities involved and how they are related. Table 1 
presents (and relates) different types of multiplicative reasoning and types of situations. But 
situations do not determine students’ reasoning about them. Rather, the correspondence below 
reflects how prior research has characterized situations in relation to multiplicative reasoning. 
“Replication,” an additive form of reasoning, has been included for “coverage” of the released 
items and because U.S. curricula treat replication as multiplicative. 

Table 1: Types of Multiplicative Reasoning and Situations 
Types of Multiplicative Reasoning Types of Quantitative Situations 
Replication Equal groups; rectangular arrays; 

some area and volume situations 
One-to-many Unit conversion 
Scaling Comparison; price (discrete); 

rate/cost (continuous) 
Successive partitioning Folding; splitting 
Composition Cartesian product (discrete); area; 

volume (continuous) 
 

Central to the analysis of situation types is the distinction between discrete and continuous 
quantities. Discrete quantities are sets of objects; their numerical value can be determined by 
counting. Continuous quantities are initially attributes of unsegmented objects (e.g., distances or 
lengths, areas, time periods between two events). Their measurement requires the selection and 
iteration of a unit (a smaller piece of the target quantity). Their numerical value is the number of 
such units that collectively fill up or “exhaust” the initial quantity. 

Rectangular arrays and some area and volume situations are listed in Table 1 along with 
equal groups because (1) array situations support replication reasoning (when a row or column of 
objects is interpreted as a group) and (2) area and volume situations are often presented as arrays 
of squares or stacks of cubes that similarly support replication. Price indicates situations where 
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some discrete number of items has been purchased. It is related to, but a special case of the more 
general set of rate/cost situations that accept measured quantities (e.g., “9.45 gallons of gas”). 
Cartesian product and area/volume are both multiplicative compositions, where the product 
differs from both factor quantities. In the former, “pants” and “shirts” are different quantities 
than “outfits.” Similarly, both rectangular area and prism volume are different quantities than the 
lengths from which they are composed. 

The entries in Table 1 suggest that understanding multiplication involves grasping 
fundamentally different forms of multiplicative relationship that many students may see as 
conceptually distinct, especially early in their mathematical experience. 

Methods 
Items from nine Mathematics assessments (administered in 1990, 1992, 1996, 2003, 2005, 

2007, 2009, 2011, and 2013) have been released for public examination 
(https://nces.ed.gov/nationsreportcard/nqt/). NAEP characterizes items by content area—Number 
properties and operations (NPO), measurement (M), geometry (G), data, statistics and 
probability (DSP), and algebra (A) and by format—multiple-choice, short constructed response, 
and extended constructed response. Released NAEP items are characterized by difficulty, as 
“easy” (performance ≥ 60% correct), “medium” (performance is between 40% and 59% correct), 
or “hard” (performance < 40% correct). 

All 388 released grade 4 items were examined and coded by the author as either additive, 
multiplicative, or other. Multiplicative items presented one of the situation types listed above in 
Table 1 (including replication). Additive items presented one of three types of additive 
relationship—combine, separate, or compare. Additive items included area and volume/capacity 
items that presented collections of squares and cubes that supported counting and (additive) 
comparison. Other items presented content topics such as place value, ordering, estimating, 
fractions, graphing, and stating probability, where neither an additive nor multiplicative 
relationship between numbers or quantities was expressed. 

Multiplicative items were found in all five content areas but were most common in NPO and 
M domains. All multiplicative items were first coded as “numerical” or “quantitative.” 
Numerical items presented written numerals and operations with minimal prose. “Quantitative” 
items were primarily expressed in words, where numerals were associated with quantities. Some 
items were presented entirely in prose (as “word problems”); others presented tables or figures 
with the written text, and the tabular or figural information was necessary for solving the item. 
Quantitative items were then coded for the type of quantities involved, discrete or continuous. 
Discrete items were further distinguished according to the type of relationship presented. Eight 
types proved sufficient for coding all discrete items: Equal groups, equal shares, rectangular 
arrays, money, price, multiplicative comparison, unit conversion, and Cartesian product. 
Continuous items presented length, area, or volume/capacity measurement situations where the 
quantity could not be evaluated with additive reasoning. Four types were sufficient for coding 
continuous items: Unit conversion, equal shares, multiplicative comparison, and computation. 

Results 
For a broad overview, Table 2 presents an overview of all 388 released grade 4 items by 

year. Column 3 lists the total number of multiplicative items; column 4 lists the total number of 
additive items; and columns 5–8 characterize the multiplicative items, first as numerical or 
quantitative items and then for quantitative items, as discrete and continuous. 
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Table 2: General Character of Grade 4 Items (1990-2013) 
Year All Mult Add M; 

Number 
M; 

Quan 
M, Quan; 
Discrete 

M, Quan; 
Continuous 

2013 46 14 9 6 8 6 2 
2011 49 20 14 7 13 10 3 
2009 31 6 8 1 5 3 2 
2007 54 14 12 3 11 9 2 
2005 32 5 11 2 3 3 0 
2003 59 23 9 3 20 16 4 
1996 25 9 6 1 8 6 2 
1992 59 20 13 6 14 12 2 
1990 33 10 7 6 4 3 1 
Total 388 121 89 35 86 68 18 

 
The number of released items and the number of multiplicative items varied substantially across 
the nine assessments, but multiplicative items were generally more frequent than additive items. 
In most years, multiplicative quantitative items outnumbered multiplicative numerical items, 
often dramatically. Among quantitative items, those presenting discrete quantities were at least 
twice as frequent as those presenting continuous quantities. 

More substantively, the distribution of discrete items across the eight types listed above was 
not uniform (Table 3). 

Table 3: Frequency of Grade 4 Discrete Multiplicative Items by Type (1990-2013) 
Year Disc Grps Share Array Comp Unit Money Price C.P. 
2013 6 2 0 0 2 1 0 0 1 
2011 10 3 2 0 2 3 0 0 0 
2009 3 1 0 0 0 1 1 0 0 
2007 9 3 0 0 1 3 1 1 0 
2005 3 2 0 0 1 0 0 0 0 
2003 16 5 2 1 1 1 0 5 1 
1996 6 2 0 2 0 1 0 1 0 
1992 12 5 0 0 0 0 1 5 1 
1990 3 0 0 1 0 0 0 2 0 
Total 68 23 4 4 7 10 3 14 3 

Note: “Grps” = equal groups, “Comp” = comparison, “Unit” = unit conversion, “C.P.” = 
Cartesian product 

 
Equal groups was by far the most frequent type of situation presenting discrete quantities in 
multiplicative relationship, followed by price and unit conversion. Equal groups and unit 
conversion items always involved quantities with whole number values, where price items 
involved some whole number of items at a cost represented as decimal (e.g., $0.87 or $2.79). 

Many authors have argued that multiplicative relationships are intrinsically more difficult for 
students to master than additive relationships (e.g., Vergnaud, 1983, 1988). Is this claim reflected 
in the NEAP results? Overall, the entries in Table 4 indicate an affirmative answer. 
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Table 4: Relative Difficulty of Grade 4 Additive and Multiplicative Items (1990-2013) 
Year All Mult. Add. Avg % Corr; A Avg % Corr; M %A – %M 

2013 46 14 9 46.8 43.6 3.2 
2011 49 20 14 58.2 48.8 9.4 
2009 31 6 8 57.4 52.8 4.6 
2007 54 14 12 61.3 46.0 15.3 
2005 32 5 11 53.3 58.2 -4.9 
2003 59 23 9 57.8 50.8 7.0 
1996 25 9 6 54.2 42.0 12.2 
1992 59 20 13 45.2 40.4 4.8 
1990 33 10 7 44.6 44.2 0.4 
Total 388 121 89    

 
On seven of nine assessments, multiplicative items were more difficult than additive items, and 
in three (1996, 2007, and 2011) significantly so. The difference was negligible in 1990 and had 
the opposite sign in 2005. 

But item difficulty across types of multiplicative relationships was the central focus of this 
analysis. Table 5 below reports percent correct for items presenting each type of discrete 
multiplicative relationship. The first value in right-most column lists the average percent correct 
for all items of that type. The values in parentheses are the average percent correct for a 
meaningful subset of those items, as explained below. The other columns list the number of 
items rated “easy,” “medium,” and “hard” and the percent correct for each item in those three 
categories. 

Table 5: Difficulty of Grade 4 Discrete Multiplicative Items by Type (1990-2013) 
Discrete 
sub-type 

N N 
Easy 

% N 
Med 

% N 
Hard 

% Avg % 

Equal 
groups 

23 4 75, 61, 80, 
70 

11 50, 53, 59, 53, 
56, 46, 57, 50, 
55, 47, 48 

8 38, 35, 23, 
21, 36, 39, 
37, 37 

49.0 
(56.4) 

Price 14 2 70, 62 4 58, 58, 53, 48 8 4, 35, 39, 31, 
17, 8, 9, 21 

39.3 
(53.2) 

Unit 
Conversion 

10 6 66, 75, 65, 
85, 78, 61 

2 53, 44 2 17; 39 58.3 
(62.9) 

Compare 7 1 72 2 47, 47 4 32, 34, 24, 
34 

43.0 
(36.3) 

Array 4 1 79 2 50, 48 1 35 53.0 
Money 3 1 60 1 58 1 20 46.0 
Equal shares 4   2 47, 51 2 23; 38 39.8 
Cartesian 
product 

3   1 48 2 24; 28 33.3 

Total 68 15  25  28  45.9 
 

Items in three discrete types were somewhat easier overall (Unit Conversion, Array, and 
Equal Groups, in descending order), with average correct at or slightly above 50%. Six of the 10 
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Unit Conversion items provided the conversion ratio explicitly in the item (e.g., 1 qt. = 2 cups). 
The two “hard” conversion items (39% and 17% correct) both presented 3:1 ratios, where the 
other eight items presented conversion ratios of 2:1, 5:1, 10:1, or 100:1. Arrays were either 
represented directly in diagram (n = 1) or described in words (n = 3). The “easy” item (79% 
correct) described a particularly familiar array—two rows of six cookies on a cookie sheet. 

As shown, Equal Groups and Price items were often difficult; eight items of both types were 
“hard.” But within both types, hard items often involved two or more steps, where a 
multiplicative relationship was involved in at least one step. For example, some two-step Price 
items asked for the change received for the purchase of a set of items at a given price when a 
specific bill was given for payment—requiring both multiplicative and additive reasoning. Some 
two-step Equal Groups items introduced more than one group (e.g., students in a class and buses 
with maximum capacity for students). Most multi-step items were more difficult than single step 
items of the same type. The average percent correct for the thirteen single-step Equal Groups 
items was 56.4% (as shown), where the corresponding average for the ten multi-step items was 
39.2%. Similarly, the six single-step Price items were considerably easier (average 53.2% 
correct) than the eight multi-step items (average 28.9% correct). 

By contrast, Compare, Equal Shares, and Cartesian Product items were more challenging, at 
43%, 39.8%, and 33.3% average correct, respectively. The majority of Compare and Cartesian 
Product items were “hard,” even when six of the seven Compare items involved a 2:1 ratio. Only 
one, presenting ten stars and five triangles in a 3 by 5 array and four possible ratios, was “easy” 
(72% correct). Without that item, average correct fell to 36.3%. Of the four Equal Shares items, 
none called for simply distributing some discrete quantity equally to a given number of 
recipients. One “hard” item (38% correct) asked students to distribute 24 wheels to bikes and 
wagons in two different ways; one “medium” item (47% correct) required interpreting the 
remainder after equal sharing. Cartesian Product items were difficult even though support was 
provided for solving two of the three (i.e., items provided the solution for smaller factors). 

Finally, Table 6 presents the performance on the N = 18 multiplicative items that presented 
length, area, or volume/capacity quantities and within each quantity, the type of multiplicative 
relationship involved. 

Table 6: Difficulty of Grade 4 Continuous Multiplicative Items by Type (1990-2013) 
Continuous 
Sub-type 

N N 
Easy 

% N Med % N 
Hard 

% Avg 
% 

Length 7   1  6  30.6 
compare 2      27, 33 30.0 

equal shares 4    47  27, 26, 23  30.8 
unit convert 1      31 31 

Area 6 1  1  4  36.5 
compute rect 4      23, 24, 24, 19 22.5 

compare 2  78  51   64.5 
Volume/capacity 5 2  1  2  47.4 

unit convert 3  67, 61    32 53.3 
compute stack 1    56   56 

compare 1      21 21 
Total 18 3  3  12  37.2 
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Overall, the results show that multiplicative items presenting continuous quantities were 
generally more difficult than those with discrete quantities. Six of seven length items were 
“hard,” as were four of six area items—even when the area items involved a single-step. 
However, the two items comparing areas— both presenting sectors of partitioned circles—were 
markedly easier (average 64.5% correct) than the corresponding discrete comparison items (n = 
7; average 43.0% correct). The three volume/capacity unit conversion items were somewhat 
more difficult (average 53.3% correct) than the discrete unit conversion items (n = 10; average 
58.3% correct). As was true for the discrete items, all three continuous items stated the 
conversion ratio in the item text. 

Discussion 
The analysis was revealing in two principal ways. First and generally, the careful 

examination of released NAEP items supported a finer-grained analysis of U.S. grade 4 students’ 
successes and challenges—as a proxy measure of national understanding—than the published 
volumes have thus far (Klosterman & Lester [2007] and prior volumes in that series). The 
released item set provided greater access to the items as presented to students, their difficulty, 
and the details of item performance. Second and more specific to this inquiry, the analysis 
provided a measure of empirical support for the concern that the additive introduction of 
multiplication may present challenges for the growth of students’ understanding beyond equal 
groups of discrete objects and repeated addition. However, that support was mixed and 
complicated by many factors outside the frame of the analysis. Since many factors other than 
quantity and relationship type likely contribute to item difficulty, the analysis shows the 
difficulty inherent in establishing what makes an item easy (or challenging) for students. 

Some of the results are consistent with (a) the curricular introduction of multiplication as the 
replication of equal groups of discrete quantities and repeated addition and (b) the concern that 
that an additive foundation likely makes extension to a wider set of situations problematic. 
Additive items were on average easier than multiplicative items. Second, items posing 
multiplicative relationships among discrete quantities were much more frequent and generally 
easier than item involving continuous quantities. Third, situations involving Equal Groups were 
the most frequent of type of discrete multiplicative relationship and were easier than other 
discrete item types that are less amenable to interpretation as equal groups—specifically, 
Comparison and Cartesian Product. But this was not always the case; Unit Conversion items 
were easier on average than both Equal Groups and Array items. Overall, the results are 
consistent with and do not remove the concern that the additive introduction to multiplication 
and multiplicative relationships may support initial access to multiplicative relationships, but at 
the cost of later conceptual challenges as application extends both quantitatively and numerically 
(e.g., to fractions, decimals, and negative numbers). 

There are numerous limitations to this analysis and more broadly to using NAEP released 
items to address questions about the effects of curricular approaches on student learning. Perhaps 
the most important is that the released item set stands in uncertain relationship to the larger 
corpus of items where NAEP has performance data. The conditions under which a NAEP item is 
released to the public are unknown. Also, where the type of multiplicative item and the type of 
related quantities may well influence the item difficulty, other factors do so as well, including the 
numerical values of the quantities (even within the set of whole numbers), the length and clarity 
of item prose, and the nature of support provided (e.g., stating conversion ratios or not). Third, 
multi-step problems present challenges for characterizing items as additive or multiplicative and 
for judging the sources of difficulty. Fourth, though the capacity to explain one’s reasoning may 
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be a better indicator of understanding than producing the right numerical answer, the number of 
released NAEP items requiring explanation (that is, both short and extended constructed-
response items) have been small in number, in this target content area and likely in most others. 
The smaller the item set, the more perilous any conclusion drawn from such data becomes. Last, 
the analysis has been completed by a single person and the coding scheme must be shown to be 
reliable. 

Despite these limitations, released NAEP items are an underused resource for mathematics 
education researchers who wish to address questions of learning at a national level. Where it is 
unlikely that any similar analysis of items selected for a given topic or response type (e.g. 
constructed-response) will resolve questions about student understanding, they may contribute to 
inquiries that draw on multiple sources of evidence. NAEP released item data, reflecting such a 
large and nationally-representative sample of students, is a unique source of evidence. Its 
analysis can provide either general support (as in this case), no support, or contradictory 
evidence for a given hypothesis. 
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A LONGITUDINAL STUDY: THE EFFECTS OF TIME AND EARLY INSTRUCTION 
ON STUDENTS’ INTEGER LEARNING 

 Mahtob Aqazade Laura Bofferding Lizhen Chen 
 Purdue University Purdue University Purdue University 
 maqazade@purdue.edu lbofferd@purdue.edu chen1905@purdue.edu 

Twenty-nine second graders received integer instruction (instruction-only) and three years later 
participated in our study again as fifth graders (instruction + time). In addition, we analyzed 
data from an additional 73 fifth graders to investigate the effect of time without having had the 
second-grade instruction (time-only). The findings indicate no significant difference between 
instruction-only and time-only groups, a significant improvement from the instruction-only to 
instruction + time group on integer addition and subtraction problems, and a significantly better 
performance for the instruction + time group on integer subtraction problems.  

Keywords: Number Concepts and Operations, Cognition, Elementary School Education 

The transition from a whole to negative number understanding requires conceptual change 
and sufficient time to process (Vosniadou, Vamvakoussi, & Skopeliti, 2008). Children as early 
as first grade can reason with negative numbers (e.g., Bofferding, 2014); however, they often do 
not learn negative number operations until seventh grade (National Governors Association 
Center for Best Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010). 
Therefore, upper elementary students may generate a conception of negative numbers based on 
their whole number understanding (e.g., Bofferding, 2014) without getting formal feedback. For 
example, students may always subtract a smaller number from a larger number (e.g., Murray 
1985). In fact, Aqazade (2017) found fifth graders’ preconceptions limited their ability to refine 
their conceptions of negative numbers and achieve higher scores compared to second graders. 
Through the conceptual change lens, we explored the role of time and early instruction on 
students’ performance on integer addition and subtraction problems.   

1. After being exposed to integer operations in second grade (instruction-only group, Year 1 
of the study), how does students’ performance on integer addition and subtraction 
problems differ three years later as fifth graders (instruction + time group, Year 4 of the 
study)?  

2. In Year 4, how do the fifth graders who had integer instruction in second grade 
(instruction + time group) perform on integer addition and subtraction problems 
compared to fifth graders who did not have the instruction (time-only group)?  

Framework Theory Approach to Conceptual Change 
The framework theory for conceptual change refers to enrichment or restructuring of 

children’s existing knowledge to accommodate new knowledge. Consistent with this, students 
initially interpret integer arithmetic through a whole number lens (Bofferding, 2014; Vosniadou, 
Vamvakoussi, & Skopeliti, 2008).  
Interpretation of the Minus Sign, Addition, and Subtraction  

The minus sign holds three different meanings: binary, symmetric, and unary (Vlassis, 2004). 
With the binary meaning or subtraction sign, students treat the minus sign as subtraction (e.g., 
solving -1 + 8 as 8 – 1 = 7; Bofferding, 2010). The symmetric meaning designates taking the 
opposite (Vlassis, 2004); with this interpretation, students may treat negative numbers as positive 
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and add the negative sign to their answer (e.g., solving -7 – -7 = -0; Bofferding 2010). The unary 
meaning indicates negative numbers, as seen when students start with the negative number and 
count towards negative or positive directions (Bofferding, 2010). With positive numbers, 
subtraction involves a decrease in magnitude (Vosniadou, Vamvakoussi, & Skopeliti, 2008), but 
with integers, subtraction can result in a decrease or increase (Bofferding, 2014). Students’ ideas 
of only subtracting the smaller number from a larger one, subtraction as moving downward, and 
addition as moving upward are challenged with integers (e.g., Bofferding, 2014; Murray, 1985).  

Methods 
Participants and Setting  

We have collected data for four years as part of a larger study. Twenty-nine students 
participated as second graders in Year 1 of the study (instruction-only group) and three years 
later as fifth graders in Year 4 of the study (instruction + time group). Seventy-three additional 
fifth graders were in Year 4 who did not have integer instruction in their second-grade year 
(time-only group). All students were recruited from two rural, elementary schools in the Midwest 
(about 30% were English Language Learners, and 80% qualified for reduced-price lunch).  
Design and Analysis 

In Year 1, second graders (instruction-only group) completed a pretest on integer addition 
and subtraction. Then over three sessions, groups of two to four students explored integer order 
and symbols and played a movement game on a number path. Next, students individually 
compared integers and received immediate feedback. After the sessions, students participated in 
a whole-class lesson on integer addition and subtraction. Then, they completed a posttest. After 
both tests, we interviewed 20% of the students about their strategies.  In Year 4, fifth graders 
(time-only and instruction + time groups) took an interviewed pretest involving integer addition 
and subtraction problems. We focus on the data from the Year 1 posttest and Year 4 pretest. 

For analysis, we used a repeated measure ANOVA to compare the instruction-only and 
instruction + time groups’ performance on the common test items (i.e., 1 – 4, -2 – -6, -5 – -5, -1 
+ 8, -9 + 2, and 7 + -3), which provided information about the role of time. Afterwards, we 
explored students’ most frequent answers and strategies on the items. We used a median test to 
compare students’ performance in the instruction-only group from Year 1 to students’ 
performance in the time-only group from Year 4 on the common items to investigate the role of 
time only versus early instruction only. Finally, we used a median test to compare time-only and 
instruction + time groups on all 29 integer problems from the Year 4 pretest.   

Findings  
Research Question One: Role of Time 

Students who participated in Year 1 as second graders performed significantly better on the 
addition and subtraction problems when solving the same problems three years later as fifth 
graders (addition, F(1, 27) = 5.32, p = .029 and subtraction, F(1, 27) = 12.385, p = .002).  

Instruction-only versus instruction + time, solving 1 – 4. A majority of students responded 
3, incorrectly commuting the problem; the average percentage of students answering 3 remained 
stable over time. Moreover, 11 (37%) students answered 3 in both years, suggesting time 
influenced little to change this conception of subtraction. A larger percentage of students 
answered -3 in Year 4 than Year 1, suggesting some students changed their thinking.  In fact, 6 
(21%) students correctly changed their answer from -5, 3, or -2 to -3.  Those who changed from -
5 to -3 indicated attention to the operation, those who changed from -2 to -3 indicated more 
accurate counting, and those who changed from 3 to -3 indicated advances in integer subtraction. 
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Table 1: Most Frequent Answers on Common Integer Subtraction Problems 

  
Groups  

1 – 4 -2 – -6 -5 – -5 

0 3 -3 4 -4 -8 0 -0 10 -10 

Instruction + Time 3% 55% 38% 34% 48% 14% 86% 10% 0% 3% 

Instruction-Only 3% 52% 24% 28% 17% 34% 59% 3% 10% 28% 

Time-Only  0% 70% 22% 21% 47% 23% 58% 25% 0% 14% 

Note. Grey cells indicate the most frequent response in each group for each problem.  

 
Instruction-only versus instruction + time, solving -2 – -6. For students in the instruction-

only group, -8 was their most common response. Students answering -8 often added the absolute 
values of the integers and made the answer negative, a symmetric meaning of the minus sign.  
Likewise, they could get -4 by solving 6 – 2 = 4 and making the answer negative. Another 
strategy to get -8 was to start at one number and move in the negative instead of positive 
direction, a unary meaning of the minus sign. Students could get the correct response using their 
whole number understanding and solving 6 – 2 = 4; however a correct strategy would be to start 
at -2 and move in a less negative direction. Among students who were in both instruction-only 
and instruction + time groups, 5 (17%) students changed their answer from -8 (Year 1) to -4 
(Year 4), and 4 (14%) changed their answer from 4 to -4. In addition, 7 (24%) students correctly 
changed their answers from -4, -8, and 8 to 4. Those who changed from -4 or -8 to 4 
demonstrated an understanding of the binary and unary minus signs and directed subtraction; 
those who changed from 8 to 4 realized the problem involved subtraction, not addition. 

Instruction-only versus instruction + time, solving -5 – -5. Students in the instruction-only 
group more often responded -10 compared to students in the instruction + time group. Students 
could answer -10 based on two solution strategies: using the unary meaning of the minus sign 
without correct directional movement or using the symmetric meaning with an incorrect use of 
operation.  Compared to 1 – 4 and -2 – -6, students performed higher on this problem. Among 
students in both instruction-only and instruction + time groups, 15 (52%) students continued to 
answer 0, and 10 (34%) changed their answers from -10, 10, or -0 to 0. Those who changed from 
10 to 0 noticed that the problem involved subtraction. Those who changed from -10 or -0 no 
longer relied on the symmetric meaning of the minus sign.  Even though few students responded 
-0 in both groups, 2 (7%) students in the instruction-only group changed their correct answer to -
0 three years later. This often occurred for students who initially ignored the negatives.   
Research Question Two: Role of Early Instruction 

Comparing the time-only versus instruction-only group’s scores on the common items with 
the median test indicated no significant difference between their performances. These findings 
suggest the effects of early instruction could play a similar role as the effects of time without 
early instruction. Students’ performance in the instruction + time group compared to the time-
only group on integer addition and subtraction problems revealed no significant difference on the 
integer addition problems and a significant difference favoring the instruction + time group on 
the subtraction problems (X2 = 4.254, p = .039) (see Table 1).  

Instruction + time versus time-only, solving 1 – 4.  Students in the time-only group 
answered 3 more frequently than students in the instruction + time group. Further, 7% of 
students in the time-only group provided negative answers close to -3 (i.e., -2, -1, -4). 
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Instruction + time versus time-only, solving -2 – -6. Interestingly, -4 was the most regular 
answer among both groups. The slightly more frequent responses of -8 among students in the 
time-only group compared to the instruction + time group is related to their lower percentage of 
correct answers. However, students in the time-only group answered with -0 in two instances, 
indicating a symmetric meaning of the minus sign. Actually, students in the time-only group 
responded with negative answers more often than the instruction + time group (73% versus 
55%). Students in this group also provided positive answers including 7, 6, and 2.  

Instruction + time versus time-only, solving -5 – -5.  Even though both groups did not have 
10 as their answers, the time-only group had positive answers such as 5 and 2. An answer of 5 
could result if considering one of the -5’s as worth as 0 and interpreting the other one as a 
positive five. Similar to -2 - -6, students in the time-only group had more negative numbers 
compared to students in the instruction + time group. For example, students in the time-only 
group more frequently answered -0, representing a symmetric treatment of the minus sign. 

Implications and Discussion 
We investigated the effects of time and early instruction on negative number operations on 

students’ integer addition and subtraction performance. Consistent with conceptual change 
theory, time played an important role (Vosniadou, Vamvakoussi, & Skopeliti, 2008). The 
instruction-only group shifted toward a unary conception of the minus sign and interpreting the 
subtraction operation as corresponding to a directional movement three years later in the 
instruction + time group. The significant difference between the instruction + time and time-only 
groups on subtraction problems suggests early integer instruction can support understanding. The 
time-only group provided more negative answers, which could correspond to overusing the 
symmetric meaning of the minus sign. Overall, an early exposure to negative numbers was 
beneficial for students’ integer learning, which could conceptually develop through time.  
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We explored 105 second and fifth graders’ performance on integer subtraction problems before 
and after analyzing different contrasting worked examples involving integers. The students, as 
part of a larger study, completed a pretest, were randomly assigned to intervention groups -- 
which differed in the problems they compared -- and participated in two small-group sessions, 
one whole-class lesson on integer subtraction, and a posttest.  The students made progress in 
solving integer problems from pretest to posttest. In this paper, we focus on students who 
provided only positive or zero answers on their pretest. The trends in their posttest answers show 
important differences among the intervention groups concerning their use of number order and 
interpretations of operations in integer arithmetic. 

Keywords: Number Concepts and Operations, Cognition, Elementary School Education 

Theoretical Framework 
Based on a framework theory view of conceptual change, children initially interpret 

mathematics numerical problems through a whole number lens, due to their experiences 
interacting with objects (Vosniadou, Vamvakoussi, & Skopeliti, 2008).  Learning about negative 
numbers can challenge their framework theory of numbers in several ways, including their 
interpretation of minus signs and the meaning they ascribe to operations. Older students may 
refer to rules about the use of signs when solving problems with negative numbers rather than 
articulating conceptual justifications for their solutions (Bishop, Lamb, Philipp, Whitacre, & 
Schappelle, in press), possibly because they are less willing to change their prior conceptions 
(Aqazade, Bofferding, & Farmer, 2017). However, some research has shown that young children 
are willing to play with and make sense of negative numbers (Aze, 1989).  We investigate how 
different problem contrasts might promote conceptual change with second and fifth graders. 
Interpretations of Minus Signs and Operations 

Using their framework theory for numbers, children’s initial interpretations of the minus sign 
correspond to the subtraction operation, the binary meaning (Vlassis, 2004).  With this 
interpretation, they often treat negatives as subtraction signs (e.g., solving 9 – -2 as 9 – 2 – 2 = 5; 
Bofferding, 2010) or ignore them completely. However, there are two additional meanings of the 
minus sign. The symmetric meaning of the minus sign corresponds to taking opposite of a 
number (Vlassis, 2004), as seen when students operate with integers as positive and make the 
answer negative or draw comparisons between positive and negative forms (e.g., solving -7 – - 7 
= -0; Bofferding, 2010).  The unary meaning of the minus sign designates a negative number 
(Vlassis, 2004), as seen when students start at a negative number and count in a correct or an 
incorrect direction (Bofferding, 2010).    

Students learn positive number subtraction as counting down, which corresponds to a 
decrease in numerical magnitude (Vosniadou et al., 2008). However, with negative numbers, 
students need to learn that subtracting a negative number corresponds to counting up 
(Bofferding, 2014) and that subtraction could result in a decrease or increase in magnitude from 
the initial number.  One way to help students distinguish the roles of the minus sign in operations 
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involving negative numbers is through analyzing contrasting cases with worked examples. 

Worked Examples and Contrasting Cases 
Worked examples can help reduce the cognitive load of managing many new concepts or 

steps at a time so that students can focus on understanding the problems and using them to solve 
related problems (e.g., Hilbert, Renkl, Kessler, & Reiss, 2008).  Likewise, contrasting cases can 
help students to notice important differences between problems to discern an underlying 
structure (Schwartz, Tsang, & Blair, 2016), learn new solution methods (e.g., Rittle-Johnson & 
Star, 2011), refine their prior understanding, and promote conceptual understanding (e.g., Namy 
& Gentner, 2002). With subtraction, helpful contrasts could include comparing positive minus 
positive problems with a) negative minus negative, b) negative minus positive, or c) positive 
minus negative problems. This research investigated the following questions: When learning 
integer subtraction, how do these contrasts and a short lesson benefit second and fifth grade 
students?  What contrasts best help them make sense of integer subtraction problems? 

Methods 
Participants and Design 

Participants included 95 second graders (from the larger study with 133 second graders) and 
10 fifth graders (from a larger group of 74 fifth graders) from two rural, elementary schools in 
the Midwest (Free and reduced lunch: 30% and English Language Learners: 79%).  This subset 
consistently answered with positive numbers or zero on the pretest (which is why the number of 
fifth graders in the subsample is so small).  After a pretest, students were randomly assigned to a 
control or one of three experimental groups, participated in two small-group sessions, engaged in 
a whole-class lesson on integer subtraction, and took a posttest. 
Data Sources and Procedure 

Pretest and posttest. We focused our analysis on four, single-digit integer addition and 17 
subtraction problems involving negative integers that were identical on both tests.  We 
interviewed at least 20% of the larger sample after each test to learn more about their reasoning. 

Small-group sessions. In two small-group, 20-minute sessions, groups of 2-3 students 
analyzed sets of contrasting integer addition problems (control group: Add) or subtraction 
problems (experimental groups: Negative Minus Negative, Negative Minus Positive, and 
Positive Minus Negative, named based on the problem type they initially saw contrasted with 5 – 
3 in their first session). See Table 1 for the groups’ contrasting examples seen each session.  

Table 1: Examples of problems control and experimental groups compared each session 
 Groups First Session Second Session 

2n
d 

Add (control) (n = 25) P + P vs. P + N  N + P vs. N + N 
Negative Minus Negative (n = 21) P – P vs. N – N   N – P vs. P – N  
Negative Minus Positive (n = 26) P – P vs. N – P  P – N vs. N – N  
Positive Minus Negative: (n = 23) P – P vs. P – N   N – N vs. N – P 

5t
h Add (control) (n = 4) P + P vs. P + N  N + P vs. N + N 
Negative Minus Positive: (n = 6) P – P vs. N – P  P – N vs. N – N  

Note: N = Negative number, P = Positive number 
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In their small-group sessions, students discussed the similarities and differences between the 
problems and pictures in contrasting, worked-examples (see Figure 1). Students solved related 
integer addition or subtraction problems at the end of each session. 

 
Correct: 5 – 3 = 2 

 
Correct: -5 – 3 = -8 

Figure 1. Comparison of worked examples and corresponding problems that students analyzed. 

Whole-class instruction. During the 30-minute lesson, students helped solve problems on a 
number path, where subtracting a negative number corresponded to moving in a less negative 
direction (or up) and subtracting a positive number corresponded to moving in a less positive 
direction (or down).  We ordered the problems to emphasize differences (e.g., 3 – 3 then 3 – 4). 
Analysis 

First, we coded students’ strategies based on the possible ways they could have obtained their 
answers. Then, we looked at their pattern of responses (e.g., Widjaja, Stacey, & Steinle, 2011) 
and only gave credit for correct answers if they followed a pattern of using knowledge of 
negatives.  For example, a student who solved 1 – 4 = 5, -5 – 9 = 14, and 9 – -2 = 11 was 
classified as adding the absolute values of two integers.  Therefore, we did not give credit for 9 – 
-2 = 11.  When possible, we used our interview data to check the identified pattern of responses. 

Results, Discussion, and Implications 
On the pretest, based on students’ overall strategies and verbal reports, the only problems 

students got correct happened without knowledge of negatives, so we treated all pretest scores as 
zero. On the posttest, based on the same analysis, students improved from the pretest.  Table 2 
shows students’ average number correct for the posttest subtraction items. 

Table 2: Overall subtraction average scores on the posttest across groups 

 2nd Add  
(n = 25) 

2nd NMN 
(n = 21) 

2nd NMP 
(n = 26) 

2nd PMN 
(n = 23) 

5th Add  
(n = 4) 

5th NMP 
(n = 6) 

Overall 
Subtraction 0.88 0.62 1.23 0.43 0.75 0.17 

Note. Add = Control group, NMN = Negative Minus Negative group, NMP = Negative 
Minus Positive group, PMN = Positive Minus Negative group, 

 
Overall, second graders in the Negative Minus Positive experimental group had the highest 

performance across the majority of items. The performance of the groups followed an interesting 
pattern based on their answers.  Second graders in the Positive Minus Negative group frequently 
reversed the order of the numbers–49% on average for the P – P problems and 35% on average 
for N – P problems–and subtracted the smaller absolute value from the larger, indicating a strong 
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framework theory conception.  The Add and Negative Minus Negative groups used this strategy 
frequently on two of the P – P problems  (solving 1 – 4 with 3 and 0 – 9 with 9) and one of the 
four N – P problems (solving -7 – 4 with 3); otherwise, the majority of second graders answered 
0, suggesting they ignored the negative sign without switching the order of the numbers.  The 
second graders in the Negative Minus Positive group primarily answered 0 for for 1 – 4 (27%) 
and 4 – 5 (38%) and answered 9 for 0 – 9 (62%); overall, their performance on these items was 
double that of their second grade peers in other groups.  Although they were most likely to 
answer 4 for -5 – 9 (27%), on -3 – 3, 46% answered 0, followed by 19% who correctly answered 
-6, and on -2 – 3, their top answers were evenly split amongst -5, 0, and 1 (each 19%).  This 
group’s initial comparisons better preserved their understanding of subtraction in terms of which 
direction to count when subtracting a positive number and helped them develop a better sense of 
the unary meaning of the minus sign.  The fifth graders in the Negative Minus Positive group 
were most likely to reverse the numbers for 1 – 4 and 4 – 5 (42% on average) but answered 0 for 
0 – 9 (50%).  On -5 – 9, they were equally likely to answer 4 or -4 (33% each), and 50% 
answered -2 for -7 - -9, suggesting they were more likely to use the symmetric meaning of the 
minus sign. Even with our conservative analysis, students did make important changes from 
pretest to posttest in just over an hour of engagement; however, it may be worthwhile to have 
students participate in additional sessions, so that all problem types can be better contrasted. 
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COMPARISONS WITH CLOSEST AND MOST: SECOND AND FIFTH GRADERS’ 
CONCEPTIONS OF INTEGER VALUE 
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Elementary students have difficulty learning integer values as the new knowledge conflicts with 
their whole number understanding. We administered a pretest and a posttest to 204 second and 
fifth graders and collected their answers to three types of integer comparison problems: which 
number is closest to 10, is most positive, and is most negative among three integers. Results 
showed that second and fifth graders had difficulty determining which of three negative numbers 
was most positive. They found it relatively easy to determine which of three positive numbers was 
most positive and which of three negative numbers was most negative. Students had some 
improvement in their integer value mental models, although their mental model shifts varied by 
the question phrasing. 

Keywords: Number Concepts and Operations, Cognition, Elementary School Education  

Traditional numerical comparison questions involving negative numbers largely test 
students’ knowledge of convention as opposed to their conceptions of the numbers. These 
questions typically ask students to identify which of two integers is greater, larger, or most (e.g., 
Bofferding, 2014; Whitacre et al., 2017). Determining the larger of two negatives requires that 
students know that this question prioritizes order and not magnitude (i.e., even though -4 has a 
greater magnitude than -2, -2 is considered larger because it is further to the right on a number 
line). However, comparison questions rarely ask specifically about order (i.e., which number is 
closest to another number).  In order to capture students’ understanding of integer comparisons 
without forcing them to rely on convention, we explored the following research questions. 
 

1. How do second and fifth graders’ integer comparison performance differ based on the 
language of the comparisons (question phrasing: closest to 10, most positive, and most 
negative) and the numbers involved (all positive, all negative, positive or zero and 
negative)?   

a. In terms of number of students to correctly compare the integers? 
b. In terms of their mental models for integer values? 

2. For second and fifth graders with initial value mental models on the pretest, how do their 
mental models change, depending on the question phrasings?   

Theoretical Framework 
Bofferding (2014) categorized students’ mental model models of integer order and values 

into initial, synthetic, and formal, along with two transitional levels. Students exhibiting initial 
integer mental models ignore negative signs by operating with negative numbers as if they are 
positive. Students exhibiting a transition I mental model can differentiate between negative and 
positive numbers but sometimes treat the negative numbers as zero or positives. Students 
exhibiting synthetic integer mental models perceive the negative numbers as numbers below 
zero; though, they consider negative numbers with larger absolute values as greater than negative 
numbers with smaller absolute values (e.g., -6 > -1). In between the synthetic and formal integer 
mental models are transition II mental models, when students sometimes interpret negative 
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numbers at the synthetic level but sometimes interpret them correctly. Students holding formal 
mental models know that positive and negative numbers are symmetric around zero and that 
negative numbers with bigger magnitudes have smaller values. 

Students need to shift from a categorical to a continuum-based understanding of integers. 
With the introduction of negative numbers, the language use of more and less associated with 
numbers becomes challenging. Students with a categorical understanding might think that more 
corresponds to a greater absolute value (e.g., -5 > 3) and less corresponds to a smaller absolute 
value. They need to develop an understanding of directed magnitude language on a continuum 
where more has two meanings: more positive or more negative (Bofferding, 2014).   

Methods 
Participants and Setting 

Participants came from three rural elementary schools in the midwestern United States where 
74% to 87% of the students in each school received free or reduced price meals and 25% to 38% 
of the students were English Language Learners.  Overall, 102 second graders and 102 fifth 
graders participated in this study to completion.  
Design and Materials 
      The study involved a pretest, four small group sessions, a whole-class lesson, and a posttest. 
On the pretest, we conducted a whole-class written test including comparisons with the three 
question phrasings, and students chose answers from three positive numbers, three negative 
numbers, and a mixed set of positive or zero and negative numbers. Then students, who were 
randomly assigned to small groups, analyzed pairs of worked examples about integer operations. 
All groups saw similar problems but in different orders, and all students heard the language of 
more positive and more negative as part of the sessions. Next, students received a 30-minute, 
whole-class lesson that emphasized language use in integer operations. Finally, we conducted the 
posttest, which contained the same comparison problems as in the pretest. 
Analysis 

First, we calculated the number of students at each grade level who correctly answered each 
comparison problem.  Next, based on each students’ pattern of responses, we determined 
students’ integer and value mental models for each question phrasing by using Bofferding’s 
(2014) mental model framework. For example, we classified students who determined which 
integer was closest to 10, most positive, or most negative by selecting the largest absolute value 
for each question as exhibiting initial mental models. We aimed to find patterns in the shifts of 
students’ mental models between pretest and posttest. 

Results 
Fifth and Second Graders’ Gains from Pretest to Posttest 

Both on the pretest and the posttest, second graders had difficulty determining which of three 
negative numbers was most positive; whereas, they had a much easier time determining which of 
three negative numbers was most negative. This is likely because they only had to consider the 
numbers’ absolute values. Interestingly, they did better than chance in identifying which of three 
positive numbers was most negative.  This required them to avoid focusing on the word “most” 
in the term. Their higher performance on identifying the most negative of positive numbers as 
opposed to the most positive of negative numbers may reflect their overall greater familiarity 
with positive numbers.   

Second graders experienced an overall improvement from the pretest to the posttest, with the 
greatest improvement occurring on mixed comparison problems for the most positive question 
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phrasing.  This result suggests that students were attuned to the word positive; perhaps that 
reminder helped them avoid focusing solely on the largest absolute value, which may have been 
more likely if they interpreted closer to ten as closer to a ten.  

Unsurprisingly, fifth graders had better overall performance than second graders on all 
integer comparisons. A similar, but slightly different, pattern was visible for fifth graders as 
second graders. Fifth graders did better on all positive comparisons than on all negative 
problems, even for the most negative question phrasing unlike second graders. They scored 
relatively low (71.0 on pretest and 82.6 on posttest) when choosing the most positive numbers 
from all-negative integers, as found with the second graders.   
Mental Models on Pretest and Posttest 

On the pretest, 61.8% of fifth graders, on average, exhibited formal integer value mental 
models while an average of 23.5% of fifth graders exhibited initial mental models.  On the other 
hand, at the pretest, a majority of second graders did not know about negative numbers yet, so 
49.3% of second graders exhibited initial integer value mental models while an average of 7.5% 
exhibited formal mental models.  

On the pretest closest to 10 problems, 90.7% of second graders on average chose numbers 
with the biggest absolute values when all numbers were positive. The likelihood that students 
responded this way decreased for the most positive problems and was lowest for the most 
negative problems.  These decreases indicate that those who exhibited initial mental models did 
not solely choose numbers with the biggest absolute values. Therefore, second graders tried to 
make sense of the compound meanings of most positive and most negative. 

Second graders seemed to be more sensitive to most than positive or negative when they 
decided the meaning of most positive and most negative. This is consistent with Bofferding and 
Farmer’s (2018) findings that students chose least of the cold (i.e., smallest negative) instead of 
least cold (i.e., warmest or biggest positive). For most positive, students would get similar 
answers if they focused on either most or positive.  This is not the case for most negative. This 
mismatch could be a reason why the choices between biggest and smallest absolute values 
became more varied even for these comparisons. A second grader F08, for example, thought of 
most negative as most and least negative as less.  
Mental Model Changes 

Overall, we categorized both fifth and second graders as exhibiting higher integer value 
mental models on the posttest than on the pretest. The number of students classified as exhibiting 
Random, Initial, and T1 mental models decreased on the posttest while those classified as 
exhibiting Magnitude, T2, and Formal mental models increased. When focusing on students who 
started with initial mental models, the improvement took on different patterns between fifth and 
second graders (see Table 1). 

On the posttest, fifth graders’ mental models mostly shifted to Formal (with some at the 
Synthetic and Transition II levels). By contrast, most second graders either remained at the initial 
level or shifted their mental models across T1, Synthetic, and Formal, a much broader range.  
Interestingly, second graders who started with initial mental models had the largest percent of 
students exhibiting formal mental models on the posttest for the most negative question phrasing; 
whereas, fifth graders had the most formal mental models for the closest to 10 question phrasing. 
The numbers show that students did not always have the same mental model classifications for 
each question phrasing.  Take second grader B04 as an example. This student “saw the negatives 
down and the rest that didn’t have negatives were up” and exhibited a formal mental model for 
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the closest to 10 phrasing.  For most positive, though, the student chose the largest absolute 
values, and for most negative, the student chose the smallest absolute values. 

Table 1: Students’ Mental Model Shifts in terms of Percent for Those with Initial Mental 
Models on the Pretest for each Question Phrasing  

Mental Model 
Changes 

Second Graders Fifth Graders 

Closest 
to 10 

(n=69) 

Most 
Positive 
(n=49) 

Most 
Negative 
(n=33) 

Closest 
to 10 

(n=22) 

Most 
Positive 
(n=26) 

Most 
Negative 
(n=29) 

Initial to Random 8.7% 4.1% 0% 0% 3.8% 0% 

Initial to Initial 53.6% 36.7% 51.5% 27.3% 11.5% 31.0% 

Initial to Transition I 8.7% 24.5% 15.2% 4.5% 3.8% 3.4% 

Initial to Synthetic 13.0% 22.4% 3.0% 4.5% 11.5% 3.4% 

Initial to Transition II 5.8% 2.0% 0% 4.5% 0% 24.1% 

Initial to Formal 10.1% 10.2% 30.3% 59.0% 50.0% 37.9% 

Conclusions  
Second graders’ higher performance on the mixed questions for most positive and most 

negative compared to closest to 10 suggests that students do not necessarily coordinate order and 
value when they learn about negative integers. The implication of these results is that early 
integer activities need to explicitly highlight both elements of order and value to help students 
attend to these concepts. Moreover, regardless of their different grade levels, most students found 
it difficult to determine which integer was most positive among three negatives and which was 
most negative among three positives. This result might suggest that students need additional 
language support to shift from categorical to a continuum-based understanding of integers. 
Considering that those who started with initial mental models had different areas of improved 
progress, elementary teachers might consider multiple instructional ways to address students’ 
various needs. 
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CONCEPTUAL UNDERSTANDING OF VARIABLES? 
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This study investigated the differences in conceptions of variable among the groups of students 
labeled as having mathematics difficulties (MD) and typical mathematics achievement (TMA). 
Analysis students’ responses on items involving the comparison of expressions involving 
generalized quantities provided data. The theoretical framework for this study was based upon 
the learning trajectory (LT) of the levels of sophistication of students’ conceptions of variable. 
Data analysis included descriptive and inferential statistics. Results revealed little evidence of 
differences between MD and LMA students’ conceptual understandings. That students labeled as 
MD and TMA can have similar levels of sophistication of conceptions of variables suggests that 
current measures of achievement provide an incomplete picture of students’ understandings of 
algebra, and also disproportionately disadvantage those labeled as low-achieving. 
 

Keywords: Algebra and Algebraic Thinking, Equity and Diversity, Instructional activities and 
practice 

Algebra is often identified as an exemplar of mathematical abilities. Moses and Cobb (2001) 
described algebra as necessary for all students in to understand and succeed in a world with ever-
increasing technological integration. Opportunities to be successful in algebra have been called 
equity and civil rights issues because of the limitations that low algebra achievement places upon 
individuals’ career opportunities (Kaput, 1998; Moses & Cobb, 2001). Kaput and Blanton (2000) 
describe students’ disappointing algebra understandings, public dislike of mathematics, and the 
inequity of academic tracking as problematic. These aspects can be linked to U.S. teaching 
practices and curricula that are focused on procedural skills instead of conceptual understanding. 
Kieran (2013) described the separation of procedural and conceptual understanding as a “false 
dichotomy” that has especially impacted the field of school algebra. She states that despite 
traditional instructional practices, even the symbolic aspects of algebra, have conceptual 
foundations that students need to develop. Since variable use is a major component of algebra 
and students’ understanding of algebra has been identified as problematic, it is reasonable to 
hypothesize that students’ understanding and use of variable may also be problematic. Students 
who see a variable as representing a single unknown value are more limited algebraic thinking, 
problem solving, equation solving, and making generalizations than those with a more 
sophisticated conception of variable. (Cai, Moyer, Wang, & Nie, 2011).  

While the work done in this area is substantial, there is a gap in the research around 
examining specifically how the uses and conceptions of variables differ between successful 
algebra students and those who have difficulties in algebra. Research has suggested that students 
who have difficulties in mathematics differ from their typically-achieving peers in both 
mathematics-specific and more general characteristics. These differences have been attributed to 
environmental and cognitive factors. Mathematics-specific characteristics of students who have 
been labeled as low-achieving in mathematics are reported to include difficultly both storing and 
recalling basic arithmetic facts, which impact students’ ability to achieve fluency in computation 
(Geary et al., 2012). They also experience delays in achieving accuracy and fluency in arithmetic 
operations and procedures and typically have a limited conceptual understanding of how and 
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why the procedures work leading to a reliance upon less advanced solution strategies than their 
typically-achieving peers. I describe these students as having mathematics difficulties (MD).  

There is not consensus about how to identify MDs from their typically-achieving peers 
(TMA) (Mazzocco, 2007). The “single-cutoff method”, where students with MD are identified 
by creating one low-achieving and one typically achieving group of students based on their score 
on a standardize assessment is most commonly used. But this method has several draw backs 
including only providing a snapshot of a student’s performance and typically focusing on 
procedural proficiency.  Lewis (2014) warned the limited focus of research on MD students has 
resulted in low procedural fluency as a de facto defining characteristic of students with MDs. 
This neglects the more complex and conceptually-based aspects of mathematics. The cut-off 
score of 25% is most commonly used to identify students as MDs (Geary et al., 2012).  

Statement of the Problem 
Students are labeled as low-achieving and/or as having a MD based on the results of a single 

standardized and typically primarily procedural assessment. Such an assessment only provides 
insight into a portion of the mathematics that we want our students to know and understand. This 
leaves a significant gap in our understanding of specific differences between conceptions and use 
of variables amongst students with MD and TMA students. The purpose of this study is to 
investigate the differences between the responses of low- and typically-achieving students in an 
Algebra 1 course on items designed to assess students’ ability to compare expressions involving 
variables. 

Research Question 
The general question under investigation is: Do the responses of students who are at or below 

the 25th percentile on the Iowa End of Course assessment (IEOC), and those of students who are 
above the 25th percentile differ on eight items designed to assess students’ ability to compare 
expressions involving generalized quantities on a conceptual progress-monitoring tool at the 
beginning of an algebra course? 

Theoretical Framework 
The theoretical framework guiding this study builds on the notion that different uses of 

variables suggest corresponding levels of sophistication of conceptions of variable. A student’s 
conception of variable is the student’s idea of what a variable is, how it acts, and what it can 
represent. A student’s use of variables refers to the actions that the student does in connection 
with this conception of variable. While we cannot know exactly what a student’s conception of 
variable is, we can make inferences about that conception based on how the student uses 
variables. Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens (2015) described a 
progression of these conceptions and uses of variable in their learning trajectory (LT) that 
characterized increasingly sophisticated levels in students’ thinking about variable and variable 
including: Pre-Variable, Letter as Representing Variable with Deterministic Value, Letter as 
Representing Variable with Fixed but Arbitrarily Chosen Value, Letter as Representing Variable 
as Varying Unknown, and Letter as Representing Variable as Mathematical Object.  

In addition to this perspective about the connections between students’ uses, misconceptions 
and conceptions of variables, the theoretical perspective taken with respect to students with MD 
is influential in the structure of my study. In this study, I view all learners as part of a normal 
distribution of mathematics achievement and growth as described by Geary et al. (2012). While 
groups of learners are not independent of each other, this does not preclude different, but 
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overlapping, sets of characteristics. The perspective that all students are part of this distribution 
does not require that all students have the same factors in their mathematical achievement and 
growth. Specifically, I take the perspective that these MDs that students experience are the result 
of cognitive differences in comparison with their TMA peers (Lewis, 2014; Mazzocco, 2007). 
These differences are not deficits in the sense that students with MLDs are deficient in the 
ability, or are unable, to learn the content with which they are experiencing difficulty. Rather, 
students with MLDs have different connections and conceptions than their TMA peers within the 
foundational aspects of the content which inhibit the typical connections from these foundational 
topics to next level of content. Thus, these few who exhibit abnormal connections can be thought 
of as the left tail of the normal distribution described by Gearyet al. (2012).  

Methodology 
Using data collected as part of the Algebra Screening and Progress Monitoring project 

(Foegen & Dougherty, 2010), I analyzed students’ responses to a subset of items on a conceptual 
algebra progress monitoring measure to identify and describe differences among the MD and 
TMA groups of students. The Project (Funding information) provided the context for my study. 
From the literature on students with MD (e.g., Geary et al., 2012), students were separated into 
two groups: TMA and MD. Students were assigned to one of these groups based on percentile 
rank of their Iowa End of Course (IEOC) assessment score. Students with scores at or below the 
25th percentile MD. Students with scores higher than the 25th percentile were considered TMA.  

Using the levels of sophistication of conceptions of variable from Blanton et al.’s (2015) LT, 
I coded student responses and multiple-choice options as consistent with of a specific TL level or 
misconception. In my study, these different descriptions of how students think of and use 
variables were used to classify students’ responses on items designed to assess students’ ability 
to compare expressions involving generalized quantities. These classifications were then 
compared across the MD and TMA groups using descriptive and inferential statistics and coded 
for the concepts of variable. It is important to note that letters as variables can have different 
roles in different situations. In all of the items that were considered for this study, the variables 
represented generalized quantities that were not dependent on other quantities. For example, one 
of the items asked students to compare the expressions “5 + t” and “t + 3”.  

Summary 
Both the similarities and the differences identified in this study between MD and TMA 

student responses to items designed to assess their ability to compare expressions involving 
variables support the claim that most students in an algebra 1 course do not have and are not 
developing a conception of variable that allows for the variable to represent more than one value 
at a time. The few differences identified suggest that items with more complex operational, 
procedural, or property-based contexts are less accessible to MD students. The similarities 
identified support the claim that procedurally focused assessments provide incomplete 
descriptions of students.  In both cases, MD students are disproportionately disadvantaged and 
these disadvantages impact not only their school experiences, but can have long-lasting impacts 
on career opportunities as well. These findings have implications for the classroom. 

Closing Statement 
In closing, this investigation revealed that the differences between MD and TMA students are 

limited and seem to be related to the level of complexity of the operations, procedures, and 
properties that are incorporated into an item. More than these differences, the similarities that 
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were illuminated by this study impact how we perceive what successful and struggling students 
may look like, and what they need. The overall low proportion of students who have a 
sophisticated conception of variable suggests that all students need access to better conceptual 
instruction and experiences in algebra. The context and content of this instruction need to be 
appropriate for all students, which may mean that MD students required additional support than 
their TMA peers in developing these sophisticated conceptions of variables. 

Despite the similarities that were identified in this study, students who are identified as MLD 
or MD may be disproportionally disadvantaged by traditional instructional practices and data-
based decision making based on procedurally focused assessments and instruction these 
disadvantages need to be further investigated. These are the students most at risk to be 
“innumerate” (Geary et al., 2012, p. 206) because of the long-lasting impact that being labeled as 
low-achieving can have on school mathematics opportunities and on future career options. These 
are the students who need our help. Through experiences with and exposure to variables that 
represent more than just one value from a younger age, these students can begin to develop a 
solid foundation upon which to build their future successes, both mathematically and as a 
contributing member of society. 

The identification of these limitations of the current ways in which we label students as 
provides an opportunity to reexamine how students are labeled and what we call a “successful 
student”. This examination must lead us to consider how can we change our current instructional 
practices to provide more equitable access to all students, regardless of how they perform on a 
standardized test.  
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The construction and interpretation of graphs is a key mathematical activity, particularly at the 
middle school level, when students’ experiences form the foundation for their reasoning about 
functions and relations. However, research demonstrates that students experience challenges in 
interpreting and understanding graphs. One promising avenue is an emphasis on graphs as 
representations of quantities varying in tandem. We present a case of two middle-school 
students, one who emphasized quantities and their relationships and one who did not. We found 
that attention to quantities fostered ratio concepts and supported appropriate slope conceptions.  

Keywords: Algebra and Algebraic Thinking, Cognition, Middle School Education 

Graphing is a key aspect of mathematical understanding and represents a “critical moment” 
in middle school mathematics for its opportunity to foster powerful learning (Leinhardt, 
Zaslavsky, & Stein, 1990). However, students experience a number of challenges in 
constructing, interpreting and making sense of graphs (e.g., Moore & Thompson, 2015). In 
addressing these challenges, researchers have offered several characterizations of students’ 
understanding of graphs. For instance, Lobato, Rhodenhamel, and Hohensee (2012) 
differentiated between understanding slope as a mathematical object (a relationship between 
quantities’ values) versus a physical object (a property of visual steepness), which is similar to 
Zaslavsky, Sela, and Leron’s (2002) two conceptions of slope, analytic and visual. Moore and 
Thompson (2015) distinguished between static and emergent shape thinking, in which the former 
involves conceiving of a graph as a shape qua shape, and the latter entails envisioning a graph as 
a trace of covariation. In their work, Moore and Thompson (2015) point to the need to support 
students’ abilities to make sense of graphs emergently. This is particularly true at the middle-
school level, which is when students are typically introduced to function graphs and develop 
graph-related conceptions that will influence their future mathematics experiences. One 
potentially promising way to support productive conceptions is to emphasize covariation, in 
which students conceive of graphs as a representation of quantities varying in tandem (Moore & 
Thompson, 2015). Thus, we investigate the following question: How does attending to covarying 
quantities affect middle-school students’ construction and interpretation of graphs? In order 
address this question, we present a case study of two students, one who regularly referenced 
quantities in graph construction and interpretation and one who did not, and discuss these 
students’ resulting conceptions and sense making.  

Theoretical Framework: Quantitative and Covariational Reasoning 
Thompson (1994) defines a quantity as an individual’s conception of the measurement of an 

attribute of an object. It is composed of a conception of an object, an attribute, an appropriate 
unit, and a process for assigning a value to the attribute. Speed, area, and length are all attributes 
that can be conceived as quantities. When students coordinate the variation in the values of 
quantities that change together, this is termed covariational reasoning (Thompson & Carlson, 
2017). Covariational reasoning entails tracking either quantity’s value with the explicit 
understanding that at every instance, the other quantity also has a corresponding value. 
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Researchers have characterized students’ reasoning about quantities that change in tandem with 
respect to their graphing activities (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). This body 
of work indicates that students and pre-service teachers benefit from opportunities to use a 
covariation perspective when making sense of graph features such as slope, intercept, and root 
(e.g., Ayalon, Watson, & Lerman, 2015). We propose that an approach emphasizing covarying 
quantities can also be effective in supporting middle-school students’ emerging conceptions of 
graphs. 

Methods 
We conducted a 10-day, 15-hour videotaped teaching experiment (Steffe & Thompson, 

2000) with two 7th-grade pre-algebra students, Wesley and Olivia. The first author was the 
teacher-researcher. We developed tasks to support a conception of linear growth as a 
phenomenon of a constant rate of change, and quadratic growth as a constantly-changing rate of 
change. The tasks emphasized these ideas within the contexts of speed and area. The area tasks 
presented “growing rectangles”, “growing stair steps”, and “growing triangles” via dynamic 
geometry software, in which the students could manipulate the figure by extending the length 
and observing the associated growth in area (Figure 1). 

                          
(a)   (b)    (c) 

Figure 1. (a) Growing rectangle, (b) stair step, and (c) triangle tasks. 

Data sources included video and transcripts of each teaching session and copies of the students’ 
work. Our analysis relied on the constant comparative method (Glaser & Strauss, 1967), and was 
guided by an attempt to account for the commonalities and differences in Wesley’s and Olivia’s 
graphical thinking. We developed explanatory accounts of these differences based on evidence 
from their written work, descriptions of their ideas, their drawings, and their gestures. We then 
compared and discussed these explanatory themes as a research team until we reached 
consensus. 

Results: Quantitative Reasoning Influences Students’ Ratio and Slope Conceptions 
Wesley regularly referenced two quantities (area and length) when constructing and 

discussing his graphs, while Olivia did not. As an example, the students graphed the relationship 
between area with respect to the length of a growing triangle with a length to height ratio of 5 cm 
to 2 cm (see Figure 1.c), as well as the area of a rectangle that would sweep out the same total 
amount of area after a length of 5 cm (Figure 2). Both students labeled the y-axis “area” and the 
x-axis “length”, although this is not shown in the cropped graphs in Figure 2.  

Oliva discussed her graph’s shape while Wesley discussed his graph’s constituent quantities. 
When describing her graph, Olivia said, “It starts kind of low and then it gradually gets more 
curved and then steeper.” Olivia described the visual features of the graph itself and did not 
reference the associated quantities of area and length in the growing triangle context. In contrast, 
when Wesley explained why the graph of the growing rectangle was straight, he said, “So every 
1 cm in length, it’s always going to be 1 cm in area.” For Wesley, the graph represented a trace 
of the associated growth between area and length. Olivia did also at times reference the 
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associated attributes area and length, but in a non-quantified manner, which we discuss below.  
 

                                              
  Figure 2. Wesley’s (left) and Olivia’s (right) graphs of the growing triangle (in red) and 

rectangle (in blue). 

We found two major implications of an explicit attention to both quantities: (a) the development 
of ratio and rate, and (b) a conception of slope as a ratio. We illustrate these implications through 
Olivia and Wesley’s approach to the “two growing rectangles” task, in which the rectangles grew 
in length while maintaining the same height (see Figure 1.a). The students observed one growing 
rectangle with an unspecified height, and then compared it to a second growing rectangle with a 
larger height (Figure 3).  

                                     
  Figure 3. Wesley’s (left) and Olivia’s (right) graphs of the growing rectangles. 

Olivia referenced the attributes length and area when explaining why her graphs were linear: “I 
sort of pictured it in my head…I knew it would line up because for every length that you’ve 
pulled it should be the same amount of area.” Olivia mentally coordinated the two attributes, but 
did not quantify them. In contrast, Wesley decided to think of the height as 1 meter: “If you drag 
it out 1 meter, so that’s the length is 1 meter and the height is 1 meter, and then to find the area 
you actually times the length by the height which is 1 times 1 is 1 square meter actually.” When 
explaining why the graph of the second rectangle was steeper than the first, Wesley said, “The 
height is bigger than 1 meter now, then for every length that you pull it 1 meter, it gets more area 
[than before].” Olivia, in contrast, explained, “The steeper it is, the longer height of the wall it 
is”, where “wall” meant the height of the rectangle.  

For Olivia, the slope of her graphs represented one attribute, area, rather than a ratio of area 
to length. This attention to one attribute also encouraged Olivia to rely on thematic associations 
(Moore & Thompson, 2015) when considering a graph’s slope. Namely, a feature of the graph, 
such as constant slope, represented a quality of the motion she observed when a rectangle grew, 
which she described as “consistent”. For instance, Olivia justified a constant slope for a growing 
rectangle graph by stating, “It went consistently as like a straight line”, and “The rectangle, it 
grew at a consistent rate.” The association between “consistent” growth and a constant slope also 
resulted in Olivia initially graphing the area versus length of a growing triangle as a straight line 
rather than a curve. Her justification was similar in this case: “Mine is going up consistently.” 
Wesley, in contrast, described slope as the ratio of two quantities: “[Slope] means the area 
covered in a certain length.”  
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Both students frequently created a standard unit for length so that they could compare 
amounts of area across uniform intervals of length. For Olivia, this process reduced her attention 
to one attribute, area. In contrast, Wesley attended to both quantities, and created unit ratios. This 
was evident in his decision to consider the area of the rectangles from Figure 2 in relation to 1 
meter of length. In another case, Wesley explained his linear graph of a growing rectangle by 
remarking, “The height is 1 cm. So, every time it’s pulled out 1 cm, the area gets greater by 1 cm 
squared.” Wesley could also conceive of this as a multiplicative comparison; for instance, for a 
4-cm high rectangle, he explained, “To get how much the area accumulates by, you do x [an 
unknown length] times 4.” When considering growing triangles, Wesley also compared amounts 
of area accumulated per a standard unit of length, and the unit remained explicit: “Every inch it 
goes it, like, it goes, it covers more area for that inch so it keeps getting steeper and steeper.” 

Discussion 
Explicit attention to both quantities and a coordinated change in quantities offered 

meaningful affordances for the creation of unit ratios, the understanding of slope as a ratio, and 
the ability to conceive of a graph as a representation of coordinated change. Given students’ 
difficulties in conceiving slope as a ratio-of-change (e.g., Lobato et al., 2012), the case of Wesley 
and Olivia suggests that an emphasis on quantitative reasoning can be a productive route towards 
meaningful sense-making with graphs. However, simply relying on the use of quantitatively-rich 
contexts is not sufficient; it does not guarantee that students will attend to both quantities or 
develop images of coordinated change. Teachers should therefore encourage students to attend to 
both quantities represented in graphs, to make that attention explicit in their language, and to ask 
questions that require students to coordinate variation in quantities. 
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FUTURE MIDDLE GRADES TEACHERS’ INCREMENTAL ALIGNMENT OF 
KNOWLEDGE WITHIN THE MULTIPLICATIVE CONCEPTUAL FIELD 

 Andrew Izsák Sybilla Beckmann 
 Tufts University University of Georgia 
 Andrew.Izsak@tufts.edu sybilla@uga.edu 

We used interviews to examine future middle grades teachers’ capacities to coordinate 
reasoning with quantities and with multiplication equations. Results include a mathematical 
analysis of multiplication as coordinated measurement and a (still emerging) psychological 
framework. In particular, we characterize future teachers’ expanding coordination as 
incremental refinement and alignment of diverse knowledge resources.  

Keywords: Teacher Knowledge, Teacher Education, Multiplication 

Despite decades of research on topics in the multiplicative conceptual field (MCF; Vergnaud, 
1983), multiplication and division with whole numbers and fractions, proportional relationships, 
and linear functions of the form y = mx continue to pose significant challenges for many students 
and teachers. In contrast to research that has emphasized teachers’ deficits with respect to topics 
in the MCF, we are investigating ways that a measurement approach to multiplication can help 
future teachers construct sound explanations for mathematics they will teach.  

Theoretical Frame 
Our framework combines mathematical and psychological perspectives. Figure 1 shows the 

quantitative definition of multiplication upon which we have converged. It applies to situations 
in which there is a quantity (the product amount) that is simultaneously measured with two 
different measurement units (a “base unit” and a “group”). The most important aspects of this 
definition are (a) writing the multiplicand and multiplier in a consistent order to highlight a 
common underlying structure for multiplication, division, and proportional relationships (e.g., 
Beckmann & Izsák, 2015) and (b) interpreting N, M, and P in Figure 1 as numbers that result 
from measuring quantities in terms of some designated unit (a base unit or a group).  
 

N • M = P 
How many base 
units make one 
group exactly?  

 How many groups 
make the product 
amount exactly?  

 How many base units 
make the product 
amount exactly?  

Figure 1. A quantitative definition for multiplication based in measurement. 

The definition in Figure 1 can be used to coordinate an important swathe of the MCF––for 
instance, by viewing division as multiplication with an unknown factor and proportional 
relationships as instances where values for two of N, M, and P co-vary while the value for the 
third remains fixed (Beckmann & Izsák, 2015). Furthermore, the definition in Figure 1 can be 
used equally well with both whole numbers and with fractions. Figures like that shown in Figure 
2a can support the measurement perspective on unit fractions if one asks how many of the long 
strip make the short strip exactly (1/3). We have found that future teachers have little problem 
answering such questions and can extend this measurement perspective from unit fractions to 
non-unit fractions, including improper fractions (Figure 2b). This appears to be a reliable 
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foothold for future teachers when extending the measurement definition of multiplication shown 
in Figure 1 from whole numbers to fractions. 

 

 
Figure 2. Interpreting fractions from a measurement perspective. (a) 1/3 of the long strip makes 

the short strip exactly. (b) 4/3 of the short strip (4 copies of 1/3) makes the long strip exactly. 

Our psychological perspective is informed by diSessa’s (2006) knowledge-in-pieces 
epistemology. Knowledge-in-pieces is a constructivist perspective in which learners come to 
know by using and refining knowledge as they construct interpretations of their interactions with 
the physical and social environment. The perspective characterizes the evolution from novice to 
expert knowledge as piecemeal construction, refinement, and reorganization of diverse fine-
grained knowledge resources that are connected to varying degrees and whose use is often 
sensitive to context. Examples of cognitive mechanisms include refining the contexts in which 
resources are applied, forming new connections among resources, and loosening connections 
among others. In the present study, we examined the ecology of resources that future middle 
grades teachers used as they coordinated the definition of multiplication shown in Figure 1 with 
diverse problem situations that are contained in Vergnaud’s (1983) MCF.  

Methods 
In Fall 2016, we recruited six future middle grades teachers who were enrolled in a 2-

semester sequence of mathematics content courses (Number and Operations followed by 
Algebra). The second author taught both courses; the first author conducted semi-structured 
interviews. The interviews were spaced a few weeks apart and were coordinated with whole-
class instruction, most often so that the interviews provided information about the future 
teachers’ reasoning before specific topics were treated in the course. We video recorded the 
interviews, collected all written work generated during the interviews, and transcribed the 
interviews verbatim. The present report is based on analysis of talk, gesture, and inscription as 
captured in the interview videos, transcripts, and written work. We wrote analytic notes to 
capture our interpretations of how future teachers were reasoning moment-to-moment. In some 
cases, we took future teachers’ statements as direct, reliable reports of their thinking. In other 
cases, we made inferences about aspects of future teachers’ reasoning that they would not likely 
be able to report directly. 

Results 
All of the future teachers demonstrated some alignment between reasoning with quantities 

and with arithmetic computations––for instance, all connected iterating groups of units with 
multiplication and connected partitioning quantities into equal-sized pieces with division by a 
whole number. At the same time, not all future teachers connected partitioning quantities into 
equal-sized pieces with multiplication by a unit fraction. More generally, to different degrees, the 
future teachers experienced challenges expanding the range of situations in which they 
successfully aligned reasoning with quantities and with arithmetic computations (from their point 
of view and ours). Consistent with the knowledge-in-pieces epistemological perspective, such 
expanding alignment appeared to involve refinement and reorganization of a complex ecology of 
knowledge resources.  
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We organized knowledge resources we identified into four groups having to do with (a) 
meanings for multiplication (e.g., repeated addition, “of”), (b) meanings for the equal sign (e.g., 
correspondence, balance), (c) meanings for numbers (e.g., counts, measures), and (d) 
computation (e.g., algorithms, factor-product combinations). We make three points, first, from a 
knowledge resources point of view, reasoning at any given moment is supported by a set of 
activated resources. In some cases, those resources can be well-connected and support one 
another. The discussion above about connections among partitioning, division by a whole 
number, and multiplication by a unit fraction is one example. Second, differences in sets of 
resources activated by an individual helps explain variation in how that individual reasoned both 
within and across tasks. An individual might interpret the equal sign at one point as indicating a 
correspondence and, a few moments later, as stating that the numbers of units on the left and 
right hand sides are the same (balance). Such variation in reasoning, which was not uncommon 
in the interviews, can both support and constrain incremental alignment. Third, coming to 
perceive a common underlying structure, like the meaning of multiplication shown in Figure 1, 
across situations can be characterized as a gradual expansion in which one aligns thinking about 
quantities in those situations and about multiplication equations. Such expansion can occur 
through the gradual accumulation of fine-grained adjustments to the organization of knowledge 
resources.  

We draw examples from Nina’s reasoning to illustrate gradually expanding coordination. 
During her first interview, she demonstrated facility modeling problem situations with whole-
number multiplication and connecting partitioning, division by a whole number, and multiplying 
by a unit fraction. At the same time, she reported that she had not thought before about a 
consistent interpretation of multiplication that worked both with whole numbers and with 
fractions. During the interview, Nina wrote equations to model word problems that described 4 
cans with 3 tennis balls in each, 2 bags with 5 soccer balls in each, 1/5 of 4 ounces of tomato 
paste, and 1/5 of 1/3 cup of oatmeal. For the whole-number examples, Nina drew appropriate 
pictures to generate and explain her equations, “4 x 3 = 12” and “2 x 5 = 10.” For the examples 
involving fractions, she again drew appropriate pictures of the situations but struggled at first to 
use those pictures to explain equations. She was able, however, to use her connection that “of 
means multiply” to calculate the correct answers of 4/5 and 1/15.  

Nina was able to expand her coordination of reasoning with quantities and arithmetic 
computation by asking “what times 5 makes 4” and “what 5 things of equal amount will add up 
to 1/3.” Thus, she reinterpreted situations presented with a fractional multiplier (e.g., 4 • 1/5 = ?) 
as one using a whole-number multiplier (e.g., ? • 5 = 4). The particular form in which Nina 
aligned her drawing and her computation appeared influenced by a further expectation she 
articulated that multiplication should make numbers larger. This incremental alignment appeared 
supported by her initial connection between partitioning and multiplying by a unit fraction.  
During her second interview, Nina continued to expand connections she made between reasoning 
with quantities and with arithmetic as she worked on the following problem:  

A full bottle contained 4/5 of a liter of juice. Then you drank 1/3 of the juice in the bottle. 
What fraction of liter [sic] of juice did you drink? 

Nina began by drawing a strip diagram that showed appropriate relationships between the bottle 
partitioned into 4 parts (each of which was also 1/5 liter) and partitioned into 3 parts (see Figure 
3a). She knew she needed further partitions to answer the question but had two competing ideas: 
“I don’t know if I should find a common denominator between 3 and 4, because there’s only 4 
pieces, or if I need to find it between 3 and 5, because I want to know how much of a liter.” 
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Faced with competing, reasonable ideas and no apparent way to prioritize one approach to 
partitioning over the other, Nina chose the second option.  

Nina continued her work by drawing a new strip and shading 5 of 15 mini-pieces (see Figure 
3b). She interpreted the shaded region: “So this is 1/3 of the juice. Also 5/15 a liter, I think.” 
When the first author asked if she had other ways of thinking about the task, Nina explained “1/3 
of 4/5” meant to multiply and computed “1/3 x 4/5 = 4/15.” She recognized that she had two 
different answers but did not understand how to reconcile them. After Nina spent approximately 
3 minutes trying to diagnose her inconsistent answers, the interviewer moved on to other tasks.  

Nina took a fresh pass at the Juice problem 25 minutes later at the end of the second 
interview and this time accomplished greater coordination between her reasoning with drawn 
quantities and with computations. She considered the equivalent fractions 4/5 and 12/15, saw 
that she should partition the bottle into 12 parts, and created a new drawing that coordinated the 
liter, the juice bottle, partitioning, and her calculated answer of 4/15. Nina’s final comment 
suggested that she perceived new alignment that had eluded her during her first attempt: “That 
makes me feel better.” Although Nina did not make any specific comment, she might have 
learned that partitions in drawings (4 parts and 3 parts in this case) can be a reliable guide for 
partitioning. Such an adjustment is a further example of refinement in her ecology of resources 
that supported alignment of reasoning with quantities and with arithmetic computation.  

 

       
 (a) (b) (c) (d) 

Figure 3. (a) Nina’s initial drawing for the bottle situation. (b) Nina interprets her drawing to 
show 5/15 as the solution. (c) Nina makes a new drawing at the end of the interview. (b) Nina 

partitions the bottle into 12 pieces.  

Conclusion 
Future teachers entered our courses with initial capacities to coordinate reasoning with 

quantities and with arithmetic; and, we examined the knowledge resources that they used and 
transformed to achieve alignment across a wider range of situations in the MCF.  
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A COVARIATIONAL UNDERSTANDING OF FUNCTION: PUTTING A HORSE 
BEFORE THE CART 

 Teo Paoletti Kevin C. Moore 
 Montclair State University University of Georgia 
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Supporting students developing understandings of function has been a notoriously elusive task. 
In this report, we present Thompson and Carlson’s (2017) description of a covariational 
meaning of function and provide an empirical example of a student who maintains meanings 
compatible with this description. We use this students’ activity to illustrate nuances in Thompson 
and Carlson’s description and to highlight how such meanings can be powerful.  

Keywords: Function, Cognition, Teaching Experiments 

Several researchers have examined teachers’ and students’ understandings of univalence and 
arbitrariness, key mathematical properties typical to a formal function definition. Univalence is 
the property that for each element in the domain there is a unique element in the range. 
Arbitrariness refers to a function needing not be defined by a known correspondence rule. 
Researchers have shown that students and teachers do not perceive a need for the univalence and 
arbitrariness properties of function (e.g., Breidenbach, Dubinsky, Hawks, & Nichols, 1992). 
Addressing the property of univalence, Even (1990) noted, “some serious questions are raised by 
the fact that, without prompting, none of the subjects could come up with a reasonable 
explanation for the need for the property of univalence” (p. 531). In an effort to re-conceptualize 
the notion of function in school mathematics, Thompson and Carlson (2017) presented a 
covariational meaning of function, which we elaborate on in the next section. We include an 
example of student activity to highlight nuances in Thompson and Carlson’s (2017) description 
of a covariational meaning of function and illustrate how such a meaning can be productive for a 
student. Our goal is to show how a student who has developed such a meaning has the horse (i.e. 
foundational understandings) needed to pull a cart (i.e. the formal definition of function). 

Theoretical Perspective: A Covariational Understanding of Function  
Drawing on their body of work and the growing body of literature highlighting the 

importance of students reasoning about quantities that change in tandem, Thompson and Carlson 
(2017) proposed a definition of function rooted in covariational reasoning. They described, “A 
function, covariationally, is a conception of two quantities varying simultaneously such that there 
is an invariant relationship between their values that has the property that…every value of one 
quantity determines exactly one value of the other” (p. 444). Rather than foregrounding 
univalance, Thompson and Carlson (2017) foregrounded an individual constructing an invariant 
relationship; once an individual has conceived of such a relationship, she can begin to investigate 
properties of that relationship. Hence univalence becomes a particular property of this invariant 
relationship. Thompson and Carlson (2017) avoid including dependent and independent 
variables in their definition. They explained, “What is independent and what is dependent will 
depend entirely on the person’s conception of the situation and which way they envision 
dependence, if they envision dependence at all” (p. 444). Thompson and Carlson highlighted, 
however, a conceived function entails some cognitive sense of dependency of one quantity to 
another, as an individual must think of one quantity before the other. Thompson and Carlson 
(2017) added, “it is through covariation that the dependency becomes crystalized in her thinking 
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as being invariant across quantities’ values” (p. 444). However, the extent to which students 
absolutely maintain a dependency of one quantity in relation to another when conceiving of an 
invariant relationship between two quantities remains an open question.  

Data Sources and Results 
To provide an example of a student who maintained meanings consistent with those 

described by Thompson and Carlson (2017), we draw from data collected during a semester-long 
teaching experiment (Steffe & Thompson, 2000) with an undergraduate student, Arya. 
Throughout the semester, Arya repeatedly conceived of and constructed relationships between 
covarying quantities in dynamic situations and represented these covariational relationships 
graphically. During these activities we intentionally gave little to no focus on univalence and 
arbitrariness. In what follows, we focus on Arya’s activity towards the end of the teaching 
experiment that is particular to Thompson and Carlson’s (2017) description of a covariational 
meaning of function and refer the reader to Paoletti (2015) for detail on her specific activities.  
Conceiving of an invariant relationship in the Car Problem 

Arya addressed an adaptation of the Car Problem designed by Saldanha and Thompson 
(1998). Consistent with Saldanha and Thompson’s use of the task, we asked Arya to represent 
the relationship between an individual’s (Homer’s) distances from two cities (Shelbyville and 
Springfield) as he travels back-and-forth on a road (Figure 1a). We adapted the task by asking 
about “function” after Arya constructed her graph. Because the relationship is such that neither 
represented distance is a function of the other distance, we conjectured Arya may spontaneously 
consider other quantities in the situation that were not directly represented in the graph.  

Arya’s activity suggests she conceived of “two quantities varying simultaneously such that 
there is an invariant relationship between their values” (Thompson & Carlson, 2017, p. 444). 
Arya consistently focused on the relationship between Homer’s distances from the two cities 
through constructing the relationship in the situation and then representing her conceived 
relationship graphically. To illustrate, she first described the directional covariation of Homer’s 
distance from each city (e.g., as Homer moves from the beginning of his trip, the distance from 
each city decreases), and then drew a segment from right to left corresponding to decreasing 
ordinate and abscissa magnitudes (indicated by (1) in Figure 1b). Arya pointed to the applet and 
described, “We start off... far from Springfield and pretty close to Shelbyville [pointing to Beg. 
on computer screen then traces along road]. Then... you’re getting closer to Shelbyville for a 
little ways and closer to Springfield as we’re moving along the road”. With respect to her graph, 
Arya marked horizontal and vertical dashed lines from each graphed point to the vertical and 
horizontal axes, respectively, to verify that she represented distances from Shelbyville and 
Springfield each decreasing (indicated by (2) and (3) in Figure 1b). Arya continued such actions 
to construct and justify the other two segments in her graph (Figure 1c).  

Consistent with claims by Piaget et al. (1977) and Thompson and Carlson (2017), Arya did 
conceive of one quantity first when constructing a relationship in the situation and graph; 
however, Arya’s actions did not imply she conceived an explicit dependent-independent 
relationship of either distance to the other. Arya first described how Homer’s distance from 
Springfield varied. Before drawing her second segment (seen in Figure 1c), Arya first described 
how Homer’s distance from Shelbyville varied . Finally, before drawing the third segment, Arya 
again first described how Homer’s distance from Springfield varied. Arya maintained a focus on 
two quantities simultaneously covarying whilst alternating which quantity she considered first in 
order to accurately construct and represent the relationship she conceived.  
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(a)     (b)    (c) 

Figure 1. (a) The Car Problem applet, (b) a recreation of Arya’s initial work, and (c) a 
recreation of Arya’s final graph. 

Addressing questions about “function” in the Car Problem 
We next asked Arya if she could “talk about anything in this situation in terms of things 

being functions?” Arya first determined that neither graphed quantity was a function of the other 
graphed quantity, stating, “If you take either like the distance from Springfield or the distance 
from Shelby[ville] as your input you’re going to have more than one output in some places.” A 
researcher then asked, “Is there anything else we could have asked you about that may or may 
not have represented a function?” Arya considered either distance from a city “and how it travels 
over total distance.” Specifically, she considered using either Homer’s distance from a city or 
total distance as the input quantity to make conclusions regarding the ‘function-ness’ of each 
possiblw input-output pair (e.g., she concluded that Homer’s distance from Springfield is a 
function of his total distance traveled, see Table 1). Notably, Arya referred only to the dynamic 
image of the situation as she considered if each distance from a city corresponded to exactly one 
total distance traveled and vice versa; Arya did not use a graph, equation, or table.  

Because Arya added an arrow to her completed graph (Figure 1c), we conjectured she may 
reason about the trace of her graph as being defined parametrically. A researcher asked, “What if 
your input was total distance traveled and your output was… like a pair of values. Where that 
pair is your distance from Springfield and your distance from Shelbyville... What do you think 
about that case?” Arya discussed two possible total distances: (1) Homer making one trip from 
Beg. to End and (2) Homer traveling back and forth along the road accumulating total distance. 
Arya stated that in either case the relationship represented a function if she considered total 
distance as the input but the inverse relationship only represented a function in the first case.  

We use Arya’s activity to highlight how a student who conceives of an invariant relationship 
between quantities consistent with Thompson and Carlson’s (2017) description can use this 
understanding to determine if there was a “relationship between their values that has the property 
that… every value of one quantity determines exactly one value of the other” (Thompson & 
Carlson, 2017 p. 444). In total, Arya’s image of the situation enabled her to consider 10 different 
possible functional relationships (see Table 1), regardless if the relationship was explicitly 
represented by a graph, equation, or table.  

Table 1: The relationships Arya considered as possibly representing functions 
Input Output Function? 
Distance from Springfield Distance from Shelbyville No 
Distance from Shelbyville Distance from Springfield No 
Total distance traveled Distance from Springfield Yes 
Distance from Springfield Total distance traveled No 
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Total distance traveled Distance from Shelbyville Yes 
Distance from Shelbyville Total distance traveled No 
Total distance traveled (one trip) (Distance from Shelbyville, Distance from Springfield) Yes 
Total distance traveled (accumulated) (Distance from Shelbyville, Distance from Springfield) Yes 
(D. from Shelbyville, D. from Springfield) Total distance traveled (one trip) Yes 
(D. from Shelbyville, D. from Springfield) Total distance traveled (accumulated) No 

Discussion  
Arya’s activity highlights how a student who understands “two quantities varying 

simultaneously such that there is an invariant relationship between their values” can leverage this 
understanding to determine if “every value of one quantity determines exactly one value of the 
other” (Thompson & Carlson, 2017 p. 444). Further, Arya’s activity highlights how a conceived 
relationship between covarying quantities can serve as the something that students are reasoning 
about when discussing ‘function’ in various representations (e.g., Thompson, 1994). 

Arya’s activity addressing the Car Problem allowed us to clarify Thompson and Carlson’s 
(2017) elaboration of Piaget et al.’s (1977) notion that an individual must conceive of one 
quantity varying first, but this does not imply necessary dependency. We note that the quantity 
Arya considered first switched throughout her activity, illustrating that a student can move 
flexibly between considering either of two quantities first as she conceives of and represents a 
relationship between these quantities. Returning to the opening analogy, we posit that supporting 
students in constructing invariant relationships between quantities has the potential to provide 
them with the horse to pull the cart that is the definition of function in school mathematics.  
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Because functions cut across many areas within mathematics, they are especially important for 
mathematical understanding.  Yet research shows that students struggle to develop the functional 
representation fluency needed for more sophisticated mathematics.  This pilot study examines 
how students use multiple representations of functions in a unit that incorporates functions to 
program the movement of a robot.  Preliminary results indicate that students conceptualize a 
bidirectional relationship between the algebraic and robotic representations of a function but 
that the relationships between the other representations remain unidirectional or disconnected.  
We hypothesize that students’ strong connection between the algebraic and robotic 
representations can be leveraged to facilitate increased understanding of the relationship 
between the other representations. 

Keywords: Algebra and Algebraic Thinking, High School Education, Middle School Education 

The concept of a function is essential to the study of mathematics.  While students might be 
most comfortable with one representation of a function, they need the competency to compare, 
relate, select, use, and flexibly convert between the multiple representations (National Council of 
Teachers of Mathematics, 2000).  The functional representation fluency expected by the NCTM 
Standards and needed for more sophisticated mathematics has been shown to be difficult for 
students (Knuth, 2000; Leinhardt, Zaslavsky, & Stein, 1990; Pérez, 2014; Van Dyke & Craine, 
1997; Van Dyke & White, 2004).  Students have trouble making the connections between 
different representations even when they contain the same information (Knuth, 2000).  In 
studying 12th grade students’ performance on function questions in the 2009 National 
Assessment of Educational Progress (NAEP) mathematics assessment, Pérez (2014) found that 
students had more difficulty with function items that involved identifying the appropriate graphs 
and equations in real-world contexts.  This pilot study looks at learner engagement with multiple 
representations of functions in the context offered by using functions to program robots. 

Background 
This study in progress is part of a larger National Science Foundation study on integrating 

computational thinking practices and dispositions in the mathematics curriculum.  Following an 
initial engagement with modeling and programming, several participating teachers have 
expanded on the project’s original conception to develop a unit on functions, programming, and 
robots.  The teachers created a unit where students would apply their knowledge of a velocity-
time function of the form  within a programming script to control the velocity of a 
small robot’s physical movement.  In the equation, the y-value represents the velocity at which 
the robot travels, the m-value represents the acceleration, the x-value is the time in seconds, and 
the b-value represents the initial velocity of the robot. 
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The robots were built using Arduino microcontrollers and students were exposed to 
programming through the Arduino language.  Within the programming script, students 
manipulated a linear equation by changing the slope and y-intercept (Figure 1, Line 33) to 
control their robot’s velocity.  The domain, incrementing from 0 to 5, was manipulated in the 
for-loop (Figure 1, Line 30). 
 

 

Data Collection 
The unit was implemented in 8th grade mathematics classes at a public middle school and 11th 

grade mathematics classes at a career-technical public high school.  One lead teacher taught all 
8th grade classes and another lead teacher taught all 11th grade classes.  The middle school unit 
lasted 7 days, while the high school unit lasted 10 days.  Each class was video and audio 
recorded during the unit.  There was also a research assistant present to observe, take field notes, 
and interact with the students and teachers during the sessions. 

Representations of Functions: Challenges and Opportunities for Students 
The three common representations of functions engaged in classroom settings are algebraic 

equations, tables, and graphs.  The relationships are represented in Figure 2 (see also Leinhardt, 
Zaslavsky, & Stein, 1990; Van Dyke & Craine, 1997).  The double arrows indicate bidirectional 
fluency between those representations for information and the ability to create those 
representations in either direction. 
 

 
 

In the context of the programming robots unit, where the robot’s velocity is controlled by a 
linear function, a fourth physical representation of the robot’s movement is conceptualized.  The 
relationships between the four representations are represented in Figure 3. 
 

 
 

Figure 2. Linear Equation and Domain Conveyed in the Arduino Code 

Figure 2. Ideal Configuration of Three Representation Fluency 

Figure 3. Ideal Configuration of Four Representation Fluency 
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During initial activities, students discovered how the slope and y-intercept in the linear 
equation affected the robot’s velocity and movement over a fixed interval of time.  This created 
an equation-to-robot relational connection.  The students were then confronted with a series of 
challenges to further develop these connections and their reasoning with functions.  For example, 
one challenge was to drive the robot forward past a target, stop, reverse, and then finally stop on 
the target.  To achieve these goals, students programmed the robot by modifying a linear 
equation (Figure 1, Line 33) and its domain (Figure 1, Line 30).  

One goal of the unit was for students to develop and reinforce fluency in the different 
functional representations.  The meaningfulness of tables and graphs as functional 
representations was enhanced by their role as tools for inferring the robot’s behaviors and the 
appropriateness of the equation for a given task.  For example, the tables and graphs offered 
salient representations for the behavior of the robot in moving forward, stopping, and then 
reversing back to its original position.  In this task, the robot’s behavior represented in tabular 
form would translate to an equal number of positive and negative velocities that sum to zero over 
the domain.  Understanding this representation can guide students’ selection of appropriate slope 
and y-intercept values in the equation to satisfy the required outcome. 

Expected Findings 
Preliminary data show that students conceptualized a bidirectional relationship between the 

equation and robot.  However, the relationship between the equation, table, and graph were 
unidirectional.  In other words, most students only completed the table and drew the graph after 
they determined an appropriate equation for the robot to complete the challenge.  In this 
scenario, tables and graphs served as documents for record of occurrence.  They were not used to 
make predictions.  This supports the idea that students did not yet recognize that the tables and 
graphs offered salient information to help them identify an appropriate equation for the task.  
This also suggests that, for many learners, there was not a connection between the robot’s 
movement representation and the tabular or graphical representations since those representations 
were considered last and created from the equation.  Thus, based on whole class observations, a 
general preliminary conception of the students’ understanding of the relationships between the 
four functional representations is expressed in Figure 4. 
 

 

Discussion 
Students’ strong understanding of the behavior of the robot in relation to the equation is an 

opportunity to leverage more fluency between all the representations.  This bidirectional 
equation-to-robot connection can be used to build fluency between the robot’s movement 
representation and the tabular and graphical representations.  When tables and graphs are readily 
displayed at the time the robot moves, then there is opportunity for the robot’s behavior to be 
related to these representations.  The representation of the robot’s movement constrains and 

Figure 4. Observed Configuration of Students’ Four Representation Fluency 
Level O 
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grounds the more abstract functional representations (Ainsworth, 2008).  The robot’s movement 
is a familiar action to the students that can be used to support their understanding and reconcile 
any misconceptions regarding the information displayed through algebraic, tabular, and graphical 
representations (Figure 5a à Figure 5b).  Then those developed connections with the robot could 
be used to mediate the bidirectional relationships between the equation, table and, graph. 

A possible trajectory in using a fourth representation – which is contextualized here with the 
robot’s movement – is displayed in Figure 5.  A focused look at this trajectory hypothesis will 
happen during future iterations of the design experiment.  Our goal is developing students’ 
proficiency with mathematics to operationalize functions in all their representations and in real 
world situations.  This is an important area for our nation’s students to show growth (Pérez, 
2014). 
 

             
(a)                                                (b)                                              (c) 

 

Presentation Overview 
The presentation will provide an overview and background of the pilot study.  This will be 

followed by a discussion of the opportunities for student growth in functional representation 
fluency.  The presentation will conclude with how the findings will inform future iterations of 
the design experiment. 
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The difficulty that students demonstrate when it comes to learning algebra in secondary school 
has been long documented and researched. The authors conducted a research synthesis of the 
literature that uses data from the High School Longitudinal Study of 2009 with a focus on 
algebra achievement. We’ve summarized the results of 13 dissertations across 2 outcome 
variables (9th and 11th grade algebra achievement). We employed optimal resource theory 
(ORT) as a research framework to inform best-practices for improving student outcomes. Our 
findings reveal that several malleable factors at the student-, teacher-, school-, and parent-level 
were found to be related to algebra achievement. 

Keywords: HSLS:09 Data, Algebra Achievement, High School, and Dissertation Review 

Given the importance of high school students’ performance in algebra and the role of algebra 
as a gatekeeper to higher level mathematics and the pursuit of a career in Science, Technology, 
Engineering, and Mathematics (STEM) fields, it is imperative we have a clear understanding of 
the factors that are related to high schoolers’ algebra achievement. The purpose of this paper is to 
summarize the results of dissertations using the nationally representative High School 
Longitudinal Study of 2009 (HSLS:09) to investigate the malleable student-, teacher-, school-, 
and parent-level characteristics that are associated with algebra achievement. 

Theoretical Framework 
This study employs optimal resource theory (ORT) introduced by Anderson (2015) as a 

research framework to inform best-practices for improving student outcomes. Positive student 
achievement is among the main interests of ORT. Five principles governing this growth advise 
to: (1) account for the multiplicity and complexity of factors that influence student development, 
(2) account for externally controlled factors where practicable, (3) examine manipulable factors 
that may be internally controlled, (4) focus on incremental progress or reasonable outcomes 
rather than on comprehensive change, and (5) focus on maximizing progress with available 
resources, despite external circumstances. Therefore, to advise schools on improving student 
achievement, ORT would target influential factors that are within school control (such as 
teaching practices, course offerings, etc.) while taking into account available resources and 
external factors beyond school-based control that also affect student achievement (such as race, 
gender, socioeconomic status, etc.). ORT was chosen for this study because the nature of 
HSLS:09 allowed the dissertations we reviewed to examine a multitude of factors associated 
with student achievement in algebra while controlling for various external circumstances. 
Furthermore, our research synthesizes the findings of these studies with a focus on malleable 
factors. Guided by ORT framework, this synthesis should help to inform teachers, schools, and 
parents’ decisions regarding how best to improve their students’ mathematics achievement. Our 
research question was: What are the student, teacher, school, and parent level factors that are 
related to high school students’ algebra achievement in the U.S.? 
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Method 
In this study, we conducted a synthesis of research literature that used data from the High 

School Longitudinal Study of 2009 (HSLS:09) and focused on mathematics achievement as the 
outcome variable. The HSLS:09 is an ongoing nationally representative study consisting of about 
24,000 9th-graders from 944 schools in fall 2009. The first follow-up was of 11th graders in 
spring 2012. The surveys were completed by students, parents, math and science teachers, 
administrators, and counselors. The students also took a cognitive mathematical assessment, 
which was designed to provide a measure of student achievement in algebraic reasoning at two 
points in time (9th and 11th grade). The test framework was designed to assess a cross-section of 
understandings representative of the major domains of algebra and the key processes of algebra. 
The test and item specifications describe six domains of algebraic content (the language of 
algebra; proportional relationships and change; linear equations, inequalities, and functions; 
nonlinear equations, inequalities, and functions; systems of equations; sequences and recursive 
relationships) and four algebraic processes (demonstrating algebraic skills; using representations 
of algebraic ideas; performing algebraic reasoning; solving algebraic problems) (Ingels, et al, 
2011, p. v). 
Data Sources 

We performed a search of the literature through June 2017 that used data from the HSLS:09 
and related to mathematics. We excluded all reports and executive summaries from our search, 
and focused on journals, dissertations, research briefs, conference proceedings, and books. Data 
collection occurred in 4 stages: (1) Identification: identify records through database searching 
using variations of the search terms HSLS:09 and math; (2) Screening: screen the records’ 
abstracts for HSLS:09 and Mathematics; (3) Eligibility: screen the methods section for algebra 
achievement as an outcome variable; and (4) Inclusion: determine the number of studies included 
in the qualitative synthesis. We searched the following databases: Google Scholar, ERIC, 
PsycINFO, Education Source, Academic Search Complete, Mental Measurements Yearbook 
with Tests in Print, JSTOR, Project MUSE, Sociological Abstract, and ProQuest Dissertation and 
Thesis A&I. We used RefWorks to eliminate duplicate records. The number of records remaining 
after duplicates were removed was 70. Out of the 70 records, we found 28 articles, one research 
brief, 35 dissertations, 5 conference proceedings, and one book. Preliminary results from a focus 
on the articles were presented at the 2018 National Council of Teachers of Mathematics (NCTM) 
Research conference. This study will focus on the dissertations. The methods and results section 
of each dissertation was reviewed to screen for the use of either 9th or 11th grade algebra 
achievement as the outcome or dependent variable. After this screening, we were left with 13 
dissertations to review. Data was extracted from each dissertation that met our inclusion criteria. 
The studies were categorized based on the two primary outcome variables; 9th grade algebra 
achievement (Amar, 2016; Briggs, 2014; Cope, 2013; He, 2014; Kim-Choi, 2015; Larrain, 2015; 
Onsongo, 2015; & Rochmes, 2014) and 11th grade algebra achievement (Alexander, 2015; 
Howard, 2015, John, 2017; Maldonado, 2016; & Saw, 2016). Across the 13 dissertations, we 
classified the level of the factors/predictors/independent variables (IV) as either parent, school, 
teacher, or student. The factors were then cross tabulated and classified within the four levels and 
two outcomes with the reported significance level. 

Results 
The results of the systematic review included both non-malleable and malleable variables at 

the student, teacher, parent, and school levels that were related to high school students’ algebra 
achievement. Since socio-economic status (SES) was defined as a composite of parent/guardian 
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education, occupation, and family income status, we classified SES as a parent level variable. 
The significant (p < .05) non-malleable factors found were related to SES, region/location of 
school, race/ethnicity, gender, prior achievement or previous coursework, disability status, first 
language, and nationality. Next, we will focus on the significant (p < .05) malleable IV variables, 
since these are variables that can be influenced directly. 
Parent Level 

Parent involvement (as reported by the parents) was found to be positively associated with 
11th grade algebra achievement (Howard, 2015). 
School Level 

Percentage of Advanced Placement (AP) enrollment was found to be positively associated 
with both 9th and 11th grade algebra achievement (Larrain, 2015; Saw, 2016). 
Teacher Level 

Class achievement (math teacher perception of the average level of achievement of students 
in their class) was found to be positively associated with both 9th and 11th grade algebra 
achievement (Cope, 2013; John, 2017). Also, math literacy (conceptual teaching emphasized by 
the teacher) was found to be positively associated with 11th grade algebra achievement 
(Maldonado, 2016). Cope (2013) found that heavy emphasis on teaching math concepts, 
effectively explaining math ideas, and performing computations with speed and accuracy were 
positively associated with 9th grade algebra achievement, while heavy emphasis on developing 
computational skills, the nature and history of math, and reasoning mathematical were negatively 
associated with 9th grade algebra achievement. In addition, teaching experience (the number of 
years taught) was positively associated with 9th grade algebra achievement (Cope, 2013). 
Student Level 

Math identity (students see themselves as a “math person” and believe others do too), math 
self-efficacy (students’ confidence in their ability to do math), and school engagement (arriving 
on time and bringing proper materials for class) were found to be positively associated with both 
9th and 11th grade algebra achievement (Alexander, 2015; Briggs, 2014: Cope, 2013; Howard, 
2015; John, 2017; Kim-Choi, 2015; Larrain, 2015; Onsongo, 2015). Math interest (math is the 
student’s favorite course and they enjoy it) was found to be positively associated with 9th grade 
algebra achievement, but negatively associated with 11th grade algebra achievement (Howard, 
2015; Kim-Choi, 2015). The number of hours spent per day on homework and math utility 
(perception of the usefulness of math) were found to be negatively associated with 9th grade 
algebra achievement (Kim-Choi, 2015; Larrain, 2015). However, student-teacher relationship 
(students’ perceptions of whether they were treated fairly and with respect) and educational 
aspiration (highest level of education students expects to attain) were positively associated with 
9th grade algebra achievement (Kim-Choi, 2015; Onsongo, 2015). Math effort (how often 
students pay attention in class, turn in assignments, or keep trying in class) and Peer network 
(peer academic orientation and peer communication) were found to be positively associated with 
11th grade algebra achievement (Alexander, 2015; John, 2017). 

Discussion 
Based on the ORT theoretical framework and summary of the 13 dissertations that used a 

nationally representative dataset, we found that one-third of the significant factors affecting 
algebra achievement were external (non-malleable) factors beyond school-based control (such as 
race/ethnicity, gender, socioeconomic status, etc.). The remaining factors (that are within school 
control) were represented at the parent-, school-, teacher-, and student-level, noting that most of 
these factors explored by researchers were at the student level (approximately 68%). In 
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accordance with ORT principle (1), the dissertations included several factors that may influence 
algebra achievement. Principle (2) recognizes that these factors likely operate differently 
depending on external circumstances, thus, race/ethnicity and socioeconomic status—factors out 
of the student or high school’s control—were included as controls. Principle (3) stipulates a 
focus on malleable factors, so parent involvement, advanced placement course enrollment, and 
teaching emphasis—something that schools, teachers, or parents could look to change—were 
included as the main factors of interest. Based on these findings, researchers may provide 
practical recommendations for schools by considering ORT principles (4) and (5) which respect 
that progress may be gradual and that schools have finite resources. 
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CONCEPTUAL ANALYSIS OF STUDENTS’ SOLVING EQUAL SHARING 
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In the present study, we conduct conceptual analysis based on schemes and operations to explain 
how students with different mathematical levels would solve equal sharing problems. We suggest 
two distinctive schemes (distributive sharing scheme and splitting scheme for composite units) as 
the key schemes each of which independently supports the students’ solving equal sharing 
problems. 

Keywords: Number Concepts and Operations, Rational Numbers 

Equal sharing problems provide students with an opportunity to conceive fraction as a 
complex entity of multiplication, division, and ratio (Empson, 1999; Empson, Junk, Dominguez, 
& Turner, 2006). As Kieren (1988) notes, to support students’ development of more advanced 
fraction knowledge, students are to reason with partitive quotient construct as well as part-whole 
construct. Abstraction of the partitive quotient notion of fraction could be established when 
students engage in equal sharing activities (Charles & Nason, 2000). The purpose of this study is 
to present our conceptual analysis of students’ schemes and operations to solve equal sharing 
problems. In particular, we suggest the two distinctive schemes – distributive sharing scheme 
and splitting scheme for composite units – as the schemes, each of which supports students 
solving equal sharing problems. 

Distributive Sharing Scheme with Partitioning 
Young students construct what it means to share fairly based on their prior experiences of 

dealing out collections to establish fair shares (Wilson, Edgington, Nguyen, Pescosolido, & 
Confrey, 2011). Thus, students can spontaneously develop, what we named, distributive sharing 
schemes (DS schemes) from their very early age. The situation of a DS scheme is to share a 
whole number, p units of quantity among a whole number, q persons and the goal is to equally 
share the quantity among the people. The activities of the scheme consist of distributing 
operations. The student with the DS scheme distributes a unit or multiple units of the to-be-
shared quantity to each of the sharing people in turn and the result is one person’s share 
accumulated by repeating the distributing activities. The scheme is closed when the quantity is 
exhausted by the distribution and each person has an equal share. Quantifying the result of the 
sharing activity (i.e., measuring the accumulated amount gaining from the distributing activities) 
is not part of the DS scheme. For instance, for sharing 20 cookies among five people, which is 
normatively called a partitive division problem, a student whose DS scheme activates for the 
situation distributes 20 cookies one by one to each person until all the cookies are allotted to the 
people. She might not realize that one person gets to have four cookies until reflecting on her 
activities and results upon a teacher’s request. One reason for implementing a DS scheme in 
partitive whole number division is spontaneity of its development from young students’ daily life 
experiences, and another reason would be their lack of operating with a three-levels-of-units 
structure. In this case, they are to construct a composite unit, 20, as a unit of five units each 
containing four units so that they can take one part (four cookies) from the equally partitioned 
five-part whole (20 cookies). As students’ multiplicative concepts deepen enough to construct 
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such a three-levels-of-units structure, they are unlikely to use a DS scheme for the partitive 
whole number division due to its inefficiency.  

However, when those students encounter a situation of equally sharing some number of 
same-sized objects among some number of people, where the result is a fractional quantity, 
because it requires more than their whole number knowledge, they may feel challenged in 
figuring out the quantity for one person’s share. When establishing a goal of sharing, say, three 
pizzas among five people, they might attempt to partition the three pizzas into five equal parts at 
one go. As they realize there is no easy or practical way of cutting the three pizzas into five 
pieces, the students may go back to use their DS scheme, which would let them attend to sharing 
subsets of the whole rather than partitioning the whole at once. On the other hand, as students 
start to learn fractions and thus diverse partitioning operations are ready at hand for their 
mathematical activities, they should be able to use them as assimilating operations of their DS 
schemes for solving equal sharing problems. For the problem situation stated above, sharing 
three pizzas among five people, they can give one-half pizza to each person by halving each of 
the three pizzas and then partition the remaining one-half pizza into five equal shares. Especially, 
when students understand sharing multiple units as “multiple instances of sharing a single unit” 
(Wilson et al., 2011, p. 233), we judge that the students engage in distributive partitioning 
operations (Steffe & Olive, 2010). As reported in previous literature (e.g., Charles & Nason, 
2000; Empson et al., 2006; Lamon, 1996; Hackenberg & Lee, 2016), the levels of sophistication 
in students’ use of partitioning strategies increase as their understandings of fraction become 
more mature. However, one common characteristic of the partitioning strategies derived from 
students’ use of DS schemes is to partition subsets (one or more items) of the whole at a time at 
their convenience, rather than the whole multiple items at once. In terms of three hierarchical 
multiplicative concepts based on the ways by which students generate and coordinate composite 
units (Hackenberg & Tillema, 2009; Steffe, 1992), we conjecture students with the second 
multiplicative concept (MC2) can construct distributive partitioning operation for sharing p items 
among q people, where q does not evenly divide p. However, a deficiency in the distributive 
partitioning operation by a DS scheme at the MC2 level is its inability to switch a referent unit in 
naming the resulting share. For example, even if an MC2 student succeeds to find one person’s 
share by partitioning each of three pizzas into five, taking one part from each pizza, and 
combining them, she might not know the sharing result is both of a pizza and of the whole 
three pizzas. To view the result in relation to the two referent units requires “being able to switch 
between three-levels-of-units structures, which is outside of MC2 students’ ways of operating.” 
(Hackenberg & Lee, 2016, p. 260) 

Splitting Scheme for Composite Units 
A splitting operation for composite units “simultaneously splits each unit in a composite unit 

containing the units into an equal but unknown number of subunits” (Steffe & Olive, 2010, p. 
320). The assimilating operations of the splitting scheme for composite units (SCU scheme) are 
the operations that produce the generalized number sequence whose operations “entail 
coordinating the basic units of two number sequences, such as the unit of three of a sequence of 
such units and a unit of four of a sequence of such units, prior to engaging in activity” (Steffe & 
Olive, 2010, p. 320). Such coordinating ability, considered as a functional accommodation of the 
splitting operation for composite units (Hackenberg, 2010), plays a critical role in transforming 
equal sharing problems into the situations for an SCU scheme. For example, for the sharing 
problem of four bars among 10 people, a student may want to split four units of a bar into 10 
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parts at once. Then the student would attempt to partition each of the four units into some 
number of parts to generate enough number of parts in total with a goal that the generated 
number of parts could be evenly divided by the number of people. To find an appropriate number 
that serves the goal prior to partitioning activities, the student should be able to coordinate two 
three-levels-of-units structures. In other words, she needs to implement the following steps 
simultaneously at the level of mental representation: 1) to distribute some number of parts, say, 
10 parts to each of the four bars and form a composite unit, 40 as a unit of four units each 
containing 10 units, 2) to view the composite unit, 40 as a unit of 10 units each of which contains 
four units. Such coordinating operation enables her to transform an equal sharing problem into a 
situation for her SCU scheme so that the student can take a fractional part of the same-sized 
multiple items, which turns into the situation of whole number partitive division. Thus, from the 
perspective of the student with SCU scheme, to solve an equal sharing problem is equivalent to 
taking a fractional part of the whole, of which the student is explicitly aware throughout the 
problem solving process. Moreover, given that construction of the SCU scheme is predicated on 
the construction of the third multiplicative concept (MC3), we hypothesize that the student 
potentially construct flexibility in viewing the sharing result in relation to two referent units (a 
bar and the whole four bars) without much difficulty. Behavioral distinction between the splitting 
operation in an SCU scheme from the distributive partitioning operation in a DS scheme is the 
way to take one person’s share. To make one person’s share with four bars each of which is 
partitioned into 10 parts, a student using distributive partitioning operation gathers one part from 
each of the four bars because each part is the result of sharing each bar. In contrast, a student 
whose SCU scheme activates for the problem takes a chunk of four parts (maybe the leftmost 
four parts) of 40 parts because four is  of 40.  

Our conceptual analysis of schemes and operations in solving equal sharing problems 
informs that distributive partitioning scheme (Steffe & Olive, 2010) develops as the most 
sophisticated form of DS scheme when splitting operations for composite units are available for 
the DS scheme as assimilating operations. Despite that, a student who can solve the above 
problem using her SCU scheme might not feel the necessity to activate her DS scheme with 
distributive partitioning operation. The SCU scheme with the coordinating ability of two three-
levels-of-units structures is enough to find one person’s share by splitting the to-be-shared 
quantity by the number of people at once. 

Conclusions and Implications 
In this paper, we suggest DS scheme and SCU scheme as the schemes, each of which have its 

own developmental path and independently supports students’ problem solving in equal sharing 
situations. We separated the two schemes for their distinctive characteristics in nature. DS 
scheme, itself, is a non-measuring scheme constructed from a very early age of young students, 
and its main activity (operation) is distribution which is directly linked to kinetic motion of 
sharing even though partitioning operations can be embedded in the assimilatory structure. SCU 
scheme is a quantitative scheme, and its main operations are various partitioning operations 
including a splitting operation for composite units. Thus, the activities implemented by the 
scheme entail quantification process of the sharing result. The results of our conceptual analysis 
are aligned with previous research findings that even lower grade students could successfully 
find one person’s share (using DS scheme from our perspective) but were challenged when they 
were to name the amount of share in terms of referent units due to the lack of other mathematical 
resources such as multiplicative reasoning and fractional knowledge (Empson et al., 2006; 
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Hackenberg & Lee, 2016; Lamon, 1996, Steffe & Olive, 2010). Our results also complement the 
study of Hackenberg & Lee (2016) by explaining why four out of the six MC2 students, in their 
clinical interview, showed distributive partitioning operations, but not distributive partitioning 
schemes, and only one of the MC3 students used the distributive partitioning operation. We 
conjecture that the four MC2 students might have implemented distributive partitioning 
operations as parts of their DS schemes. Five other MC3 students, ironically due to their matured 
multiplicative reasoning, might not have felt logical necessity to activate their DS schemes with 
distributive partitioning operations. In this study, we argue that the required partitioning schemes 
and operations for solving equal sharing problems (and naming one person’s share) are on a par 
with MC3, which is a highly advanced multiplicative concept at the elementary school level. 
Thus, mathematics teachers are advised to be sensitive to students’ level of multiplicative 
concepts and partitioning operations. Hasty introduction of various partitioning strategies to 
students at the level of 2nd multiplicative concept or lower might produce an unexpected result 
that they adopt the partitioning solutions only as efficient, algorithmic strategies for finding one 
person’s share, ignoring quantification process of the share in relation to relevant referent units.  
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Reasoning about fraction division is difficult for children and adults. We examined the relative 
effectiveness of three types of diagrams, number line, rectangular area, and circular area 
diagrams, for increasing children’s accuracy and conceptual understanding of fraction division 
as compared to no diagram at all. Children who used number line and circular area diagrams to 
solve fraction division problems had the highest rates of accuracy. Children rated problems 
presented with circular area diagrams as the least difficult. Children who completed fraction 
division problems with number lines were most likely to consistently reason with conceptually 
sound, quotitive division models. 

Keywords: Number Concepts and Operations, Problem Solving, Rational Numbers, Cognition 

Reasoning about fraction operations is a critical aspect of the development of children’s 
mathematics understanding (e.g., National Mathematics Advisory Panel, 2008, p. xviii). Despite 
its importance, fraction division is difficult for children (e.g., Mack, 2001; Siegler, Thompson, & 
Schneider, 2011) and teachers (e.g., Luo, Lo, & Leu, 2011). The Common Core State Standards 
for Mathematics (CCSSM) places an emphasis on using visual models (especially, the number 
line) to learn the effects of fraction operations and to represent them in a variety of situations, 
with visual models for fraction magnitudes introduced in first and second grade and visual 
models for fraction multiplication and division in fourth and fifth grade (CCSSM Writing Team, 
2013). In practice, empirical studies demonstrate that area models are particularly common 
during classroom instruction (e.g., Webel & DeLeeuw, 2016). However, there has been no 
systematic investigation of the relative benefits and limitations of area models and number lines. 

Across the fields of mathematics education, psychology, and mathematics, as well as among 
practitioners, there is considerable disagreement over which models best support students’ 
fraction reasoning. For example, U.S. preservice teachers appear to be most accurate when 
reasoning in area contexts (Luo et al., 2011). However, reasoning with number lines may prevent 
common misconceptions that stem from the whole number bias (e.g., Ni & Zhou, 2005). Looking 
back, there is a wealth of research on visual models and models for division, but little is known 
about how differences in visual models affect children’s fraction division understanding. Looking 
ahead, we hope our collaboration across Psychology and Mathematics Education fosters new 
perspectives, increased collaboration, and crosstalk between these disciplines. 

We propose that number lines are more effective at supporting children’s deep understanding 
of fraction operations than commonly-used area models. Our work is guided by a prominent 
psychological theory of numerical development, the integrated theory of whole number and 
fractions development (Siegler et al., 2011), which suggests the centrality of number lines as a 
tool for understanding the magnitude of all rational numbers. Number lines may better support 
children’s fraction operation understanding because they better support children’s fraction 
magnitude understanding (e.g., Hamdan & Gunderson, 2017; Siegler et al., 2011). Also, given 
that number lines support children’s understanding of both fraction and whole number 
magnitudes, they are theorized to facilitate transfer and integration across whole number and 
fraction concepts (e.g., Siegler at al., 2011). Additionally, a number line allows students to 
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represent more than one numerical magnitude on a single, common scale, which may better serve 
to highlight the multiplicative structure of fractions. Among area models, Wu (2011) notes the 
inflexible and limited nature of circular over rectangular models.  

We investigated which types of diagrams best support children’s accuracy, and elicit sound 
conceptual models of division, when solving fraction division problems. We hypothesized that 
any diagram would be beneficial in comparison to no diagram. However, we expected that 
children who completed problems with number line diagrams would have higher accuracy rates 
and show greater conceptual understanding than those who completed problems with circular 
area diagrams. We expected that rectangular area diagrams would elicit similar performance to 
number line diagrams, due to their linear nature. However, it is possible that children are more 
familiar with area models, and therefore more accurate on them. 

Method 
Participants 

Participants were 62 children in late Spring of 5th grade or Fall of 6th grade (M age = 11.6y, 
SD = 1.4y; 45.6% girls; 75.0% White) from one public school in Northeast Ohio. Ohio state 
standards for mathematics education are aligned with the CCSSM, with fraction division first 
introduced in 5th grade. At this school, 18.30% of children qualify for the free and reduced price 
lunch program. Data collection occurred in two phases. Phase 2 included an additional 70 
children. 
Tasks 

Children were randomly assigned to one of four between-subjects diagram conditions (see 
Figure 1) as they solved 18 fraction division problems: (a) circular area diagrams (n = 17), (b) 
rectangular area diagrams (n = 14), (c) number line diagrams (n = 16), and (d) no diagrams 
provided (n = 15). Problems varied by divisor and dividend type, including unit fractions, proper 
fractions, mixed numbers, and whole numbers (e.g., 1/3 ÷ 1/9 = ?, 2 1/4 ÷ 1/4 = ?, 2/5 ÷ 4 = ?). 
Each provided diagram represented six whole units (e.g., six circles). Whole units were 
partitioned into the denominator units of the smaller operand. Each problem was presented on a 
separate page in a random order. Children received no feedback. After solving each problem, 
children rated their confidence (0% to 100%) and perceived difficulty (not difficult at all [1] to 
very difficult [4]). 
Procedure 

Participants were tested individually in their school by the first author or an undergraduate 
researcher. We introduced the task by telling children that we were interested in the strategies 
they used to solve “new kinds of math problems”, and asking children to show their work for 
each problem. Then, the researcher demonstrated “how you can show your work” using a whole 
number division example (6 ÷ 2). The researcher spoke about making “a group of six” and 
showing or thinking about “how big six is”, making “a group of two” and showing or thinking 
about “how big two is”, and finding “how many times a group of two goes into a group of six”. In 
the diagram conditions, the researcher drew a diagram, matching that child’s randomly-assigned 
diagram condition, to demonstrate a quotitive relationship between six, two, and three. In the no 
diagram condition, the experimenter simply wrote the numerals ‘6’ and ‘2’. Instructions were 
scripted, and apart from instructions to “show” (diagram conditions) or “think about” (no 
diagram condition) the numbers, the script was identical in all conditions. We chose to model 
whole number division given previous research suggesting that children are more likely to 
successfully model fraction division immediately after modeling whole number division (Sidney 
& Alibali, 2017). We chose to model quotitive division given that children favor quotitive 
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models for fraction division (e.g., Fischbein, Deri, Nello, & Marino, 1985). 

Results & Discussion 
Accuracy 

We coded accuracy as whether or not the children wrote the correct answer to each problem 
somewhere on its page. For each child, we calculated the percentage of correctly answered 
problems out of the total number of problems attempted. All but six children attempted all 18 
problems; data from all children were included in the analyses. Children were more accurate 
with fraction divisors (43% accuracy) than whole number divisors (25%), t(56) = 3.30, p < .01. 
This may be unsurprising given the nature of the quotitive example we provided; division of a 
fraction by a whole number may be better understood through a partitive model of division. Note 
that we did not observe this striking difference in accuracy by divisor type in the no diagram 
condition, t(56) = 0.15, p = 0.88. This may be indirect evidence that, in contrast to the children in 
the diagram conditions, children given no diagrams were not thinking about the conceptual 
structure of fraction division (either partitive or quotitive); reasoning with a diagram may invite 
children to reason conceptually. Furthermore, children in the number line condition had the 
highest overall rate of accuracy (48%), followed by children in the circular condition (43%), no 
diagram condition (33%), and rectangular condition (31%). However, in an ANCOVA on 
children’s average accuracy, with diagram condition as the independent variable and problem 
order as a covariate, the overall effect of condition did not differ from zero, F(3, 57) = 0.90, p = 
.45. The pattern of accuracy suggests that there may be advantages to both number lines and 
circular area diagrams. 
Conceptual Models 

We examined children’s conceptual models in each condition by coding children’s written 
work on each problem based on a coding scheme (see Sidney & Alibali, 2017) aimed at 
categorizing children’s overt strategies for fraction division. Critically, children’s work on each 
problem was categorized as reflecting quotitive division, partitive division, or neither. In the 
number line condition, 12 out of 16 children demonstrated a quotitive or partitive divison model 
on at least 50% of problems. In contrast, children in either area diagram condition, circular 
(35%) or rectangular (43%), demonstrated quotitive or partitive division less often: 12 out of 16 
children vs. area diagrams: 12 out of 31 children, p = .01, Fisher’s exact probability test. In the 
no diagram condition, students’ work rarely reflected a conceptual model. Thus, number line 
diagrams were most likely to elicit sound conceptual models of fraction division. 
Difficulty 

Finally, we examined children’s difficulty ratings. Children in the circular condition rated 
problems as being less difficult (M = 1.52) than children in the rectangular (M = 2.01), number 
line (M = 1.92), and no diagram conditions (M = 1.90), t(57) = -2.73, p < .01. Looking across 
our analyses of accuracy and difficulty, children in the number line and circular conditions had 
similar levels of accuracy, and yet children in the circular condition reported less difficulty. If 
these findings are replicated in our full sample, it may be important for teachers and students to 
know that number lines may be challenging to reason with, but the benefits in conceptual 
understanding are “worth” the difficulty. 

Conclusion 
Overall, our findings suggest that diagrams support children’s thinking about the conceptual 

structure of division, and that number lines in particular may elicit sound conceptual models of 
division. Both circular area models and number line models were beneficial for problem solving 
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accuracy. Finally, because we reminded children of quotitive whole number division, our 
findings may provide evidence that children who reasoned with number lines were more likely to 
transfer across whole number and fraction division problems. In the full study, we hope to more 
closely examine this idea. 

 

 
Figure 1. Solved fraction division problems, by condition. An example of correct student work 
from each condition is shown: circular (a), rectangular (b), number line (c), and no diagram (d). 
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CONNECTIONS AMONG CURRICULUM, TASKS, AND LINGUISTICALLY 
DIVERSE SECONDARY STUDENTS' UNDERSTANDINGS OF RATES OF CHANGE 

 Lynda Wynn William Zahner 
 San Diego State University San Diego State University 
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We examine how two 9th grade integrated mathematics teachers from a linguistically diverse 
school introduced linear and exponential rates of change, and we describe how their students 
demonstrated learning on a written assessment and a set of clinical interviews. The teachers 
collaborated on some aspects of their lesson planning, but used different curriculum materials. 
We found evidence that students in these two classes learned different concepts. Our preliminary 
analysis, using Lobato et al.’s (2013) focusing framework, indicates that students’ performance 
can be traced back to the teachers’ use of particular curricularly-influenced tools in the 
instructional environment such as “ratio tables.” 

Keywords: Algebra, Rate of Change, Curriculum 

How does a teacher’s use of curriculum materials shape student learning in linguistically 
diverse classrooms? This paper grows from a five-year design-based research study investigating 
how secondary mathematics teachers can design learning environments in which English 
Learners (ELs) develop robust understandings of critical concepts. Our study is conducted in a 
linguistically diverse school and is focused on the content area of linear and exponential rates of 
change. The first phase of the design research included an analysis of student assessments and 
interview tasks. In this analysis, we noticed that the students in two different teachers’ classes 
answered both interview and assessment questions in consistent, but different ways. For 
example, students in one class used the general formulas for linear and exponential functions 
more frequently than students in the other class, yet they struggled more so than the students in 
the other class to use the formulas in a contextualized problem. The teachers had used different 
curriculum materials to teach the exponential rate of change unit. These observations lead to the 
following research question: What connections can be found among the curriculum, tasks, and 
student understandings of concepts related to exponential rates of change? More specifically, 
what were the different foci of the classroom activities that may have supported the students’ 
interpretations of the tasks involving exponential rates of change? Given the use of two different 
curricula, what different concepts were in evidence in the students’ learning? 

Theoretical Framework 
This study is rooted in a sociocultural approach to researching the mathematics learning of 

linguistically diverse students (Moschkovich, 2015), connecting students’ opportunity to learn to 
broader dimensions of the learning environment such as curriculum and assessment (Zahner, 
2015). Our analytical approach is informed by Lobato, Hohensee, and Rhodehamel's (2013) 
focusing framework for students’ mathematical noticing, based on the notion that “what students 
notice mathematically has consequences for their subsequent reasoning” (p. 809).  Lobato et al. 
described that what students notice is shaped by social interactions in the classroom, their 
interactions with mathematical tasks or curricular materials, and the nature of the mathematical 
activity in which they participate. The framework has four components. First, centers of focus 
are the mathematical features of a task that individual students notice that can be inferred 
through their written work, what they say, or through their gestures. The next three components, 
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focusing interactions, mathematical tasks, and the nature of mathematical activity, all contribute 
to the emergence of the centers of focus. To illustrate the use of this focusing framework, Lobato 
et al. discussed the mathematical activities of two classrooms both focused on learning about 
slope as a rate of change, but with different types of activities.  As they hypothesized, the 
students in each class developed different ways of reasoning about slope, influenced by the 
nature of the mathematical activities, tasks, and social interactions in their respective classes. 

Although we adopt a focus on the appropriation of mathematical discourse (Moschkovich, 
2015), we noticed a phenomenon similar to Lobato et al.’s (2013) in our study. Specifically, we 
noted that students in one teacher’s class tended to use the equation, both recursive and explicit, 
as a resource for reasoning about exponential functions. At the same time, students in the other 
class were fairly adept at using the ratio / difference table to identify and build exponential / 
linear functions. We hypothesized that both of these trends could be traced back to the 
instructional environment and the centers of focus that emerged in each class (Lobato et al., 
2013). 

Methods 
Setting 

Our study was conducted at City High School (a pseudonym), a linguistically diverse 
comprehensive high school in California. We observed two Integrated Mathematics 1 (IM1) 
classes with two different teachers. The IM1 students at City High are primarily in the ninth 
grade. In the 2016-2017 school year when we collected this data, about 30% of the 9th grade 
students at City High were classified as English Learners (ELs) and about 56% of the 9th graders 
were formerly classified as ELs. The classes we observed for our study had similar proportions 
of ELs and former ELs as the overall ninth grade population. 
Participants 

We worked with two IM1 teachers, whom we call Mr. S and Ms. G. We observed their 
classes as they taught both the linear and exponential rates of change units in the fall and spring, 
respectively, but we focus on the results of the spring classroom observations, student interviews, 
and student assessments that reflected the introduction of exponential rates of change and a 
comparison of linear and exponential rates. Mr. S, who had taught at City High for eight years, 
was in his third consecutive year of teaching IM1. He has a mathematics degree and speaks both 
English and Spanish. Ms. G had 12 years of experience teaching at City High School and was 
teaching IM1 for the second year. She has a chemistry degree and holds a credential in 
mathematics. She is a monolingual English speaker. The IM1 students in their classes also 
participated in our study. All students were asked to take a pre- and post-assessment. Forty-nine 
students completed the assessments and 20 students volunteered to participate in problem-based 
interviews. 
Data Sources 

The data for this report came from three sources: classroom observations, pre- and post-
assessments, and student interviews. The classroom observations coincided with the main 
instructional days during one unit on linear and exponential functions. These observations were 
video recorded, and the observer took structured field notes. We spent eight days observing in 
Mr. S’s class and 10 days in Ms. G’s class. The assessments consisted of four questions 
consisting of three problems from the IM1 textbook adopted at the school and one problem from 
map.mathshell.org. A total of 49 students completed both the pre- and the post-assessment. The 
student interviews were 45-minute long problem-based interviews using tasks from the IM1 
textbook. The interviews were conducted in English and Spanish depending on the students’ 
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language preference. A total of 20 students participated in the 17 interviews we conducted. Three 
interviews were conducted with pairs of students.  
Data Analysis 

After observations, each researcher wrote reflections about the observation noting interesting 
mathematical and linguistic moments in the class as well as highlighting notes most pertinent to 
our study and questions that arose that we may wish to investigate at a later time. A high-level 
overview of each teacher’s unit was created, consisting of the number of days in the unit, a basic 
outline of topics covered, and notable moments that highlighted the relationship between 
mathematics and language. Next, a detailed summary of each day of the unit was written, noting 
what mathematical content was covered, the types of contexts and activities used, unexpected or 
salient student contributions, and the ways the teachers supported language access and 
development. 

The student assessments were scored using a researcher-created rubric, and all student 
responses were recorded in a database for further analysis. Statistical analyses showed that there 
were no significant differences between Mr. S’s and Ms. G’s classes before or after instruction, 
but the pre-post gain for the classes was statistically significant (t(48)=5.7509, p<0.001, using a 
paired t-test). Overall, about 78% of the students earned a higher score on the post-assessment, 
with an average gain of 20.5%. We then analyzed the database for patterns in the data. While the 
overall class performances were not statistically different from each other, we found interesting 
patterns in the data revealing a difference in foci. 

Each of the student interviews were transcribed and coded. Each researcher created a 
summary of each interview by question and recorded overall impressions of the interview as well 
as any questions that arose for future interviews or analysis. We created content-analytic 
summary tables (Miles, Huberman, & Saldaña, 2014) for each question to summarize responses 
across all student interviews in order to find any patterns that emerged in the data. 

Results 
As we observed the teachers, we noticed differences in their presentations of the exponential 

rates of change units and we linked these to the different curriculum resources they were using. 
Table 1 below summarizes some of these differences. Note the use of multiple representations 
and multiple contexts in Ms. G’s presentation compared to the primary use of tables and bank 
accounts in Mr. S’s presentation of the material. 

Table 1: Comparison of Features of the Exponential Rates of Change Units 
Teacher Days  Curriculum Representations 

Emphasized  
Task Contexts Common Difference & 

Common Ratio 
Mr. S 10 CME Tables  Bank accounts Delta column in table (1st 

day) 
Ratio column in table (4th 
day) 

Ms. G 8 MVP Multiple 
representations 
(tables, graphs, 
equations) 

Allowance 
Filling/draining a pool 
Book shipments 
Repeatedly cutting paper 
into equal pieces 
Growing dot patterns 

Arithmetic & Geometric 
Sequences 
 
(Delta and ratio columns 
were not introduced until 
the 8th day.) 

 
Our analysis of the assessments led to several observations, and, in the interest of brevity, we 

will share two. First, of the students who could correctly identify an exponential function written 
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in recursive function notation (36.7%) and explain why it was exponential (18.4%), all of these 
students were in Ms. G’s class. We traced this difference in student answers back to the more 
frequent use of function notation and the focus on arithmetic and geometric sequences in Ms. G’s 
class. Ms. G’s emphasis on using phrases such as “multiply by three to get to the next term” 
instead of “multiply by three each time” was reflected in the student’s explanations. Second, the 
majority of the students who could correctly fill in the output and “ratio” columns of a table for a 
given exponential equation (68.4%) were in Mr. S’s class. As shown in the table above, this 
difference in student performance can be traced back to the earlier introduction of and continued 
emphasis on using a ratio column in a function table in Mr. S’s class. 

During the student interviews, the students were asked to describe, in their own words, what 
it means to be a linear function and what it means to be an exponential function. The students 
gave a variety of descriptions including graphical descriptions, recursive descriptions, and 
general equations in explicit or recursive forms. Of the students who gave the explicit forms of 
the equations (20%), all of these students were in Ms. G’s class. Of those who referenced delta 
and ratio columns (20%), all were in Mr. S’s class. Ms. G introduced the explicit forms on the 4th 
day of her unit and emphasized their use throughout the rest of the unit (7 days), whereas Mr. S 
emphasized the use of delta and ratio columns in tables throughout his unit (7 days). 
Additionally, on a question involving a comparison of banks offering simple interest versus 
compound interest, of the students who could correctly identify which offer would be the best in 
the long run and explain why, 83.3% were in Mr. S’s class. As shown in the table above, Mr. S 
focused on a similar context (bank accounts) during his unit, while Ms. G’s unit consisted of 
multiple contexts. 

Discussion 
Although we found differences in students’ understanding of concepts related to exponential 

rates of change, it is important to recall that there were no significant differences in the post-
assessment results of the two classes and that both classes had significant gains on the post-
assessment. However, it is clear that what happens in the classroom, what emerges as centers of 
focus, impacts student learning. Our results don’t clearly indicate that one approach is better than 
the other, only that the differing approaches yielded different profiles of student understandings. 
These results led us to consider the following question. What are the affordances of having an 
equation-centric view versus a table-centric view? An equation-centric view more easily 
suggests the existence of continuous covarying quantities, whereas the table-centric view points 
to the structure of the invariant ratio, which is a nice parallel to the collinear points conception 
(i.e., invariant slope). 
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We report on data from a 14-session paired-student constructivist teaching experiment 
investigating relationships between calculus students’ levels of units and their understandings of 
differential and integral calculus concepts. We describe our initial assessments of students’ units 
coordination (Norton, Boyce, Phillips, Anwyll, Ulrich, & Wilkins, 2015), students’ reasoning 
during subsequent video-recorded teaching experiment activities, and conjectures of connections 
between students’ levels of units and reasoning about graphs, including their covariational 
reasoning (Thompson & Carlson, 2017). 

Methods, Results, Discussion 
In Summer 2017 we conducted clinical interviews with students enrolled in Calculus I at a 

public university to assess their levels of units. Debbie was assessed as assimilating with two 
levels of units, and Trevor was assessed as assimilating with three levels of units. Our learning 
goals for students in a follow-up paired-student teaching experiment were for them to construct 
(a) more powerful ways of reasoning about functions, (b) connections between different contexts 
of the derivative, concavity of its graph, and second differences of average rates of change over 
intervals of uniform width, and (c) the accumulation function and fundamental theorem of 
calculus (Thompson & Silverman, 2008). Our goal was understanding affordances and 
constraints in students’ constructions. We noticed persistent differences in students’ reasoning 
about rates of change of linear functions, particularly through the ways the students reasoned 
with tables and graphs. Debbie reasoned more often with coordination of values; Trevor had a 
greater propensity for engaging in continuous covariational reasoning. Assimilating with three 
levels of units does not explain the plethora of differences noticed in their schemes, however, as 
Trevor’s lack of imagery for trigonometric functions constrained his understanding of the 
integral  . Future work may explore both how to support students’ construction of 
covariational reasoning before they get to calculus and to continue to support conceptual 
understandings of calculus for students who assimilate with two levels of units. 
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EVOLUTION OF DEVELOPMENTAL STUDENTS’ MATHEMATICS BACKGROUND 
KNOWLEDGE 

Eyob Demeke 
California State University 

Far too many students began their postsecondary mathematics education in remedial 
mathematics (Bailey, 2009, Schwartz, 2007). In the California State University (CSU) system, 
approximately a third of their incoming freshmen are considered unprepared for college level 
mathematics courses (CSU, 2012). For some students in the CSU, a year will elapse before they 
can enroll in a college level mathematics course. Across the CSU, unless exempted, every 
admitted student is required to take the Entry Level Mathematics (ELM) test, which aims to 
measure proficiency in basic skills need to succeed in a college level mathematics course. 50 on 
the ELM is a cutoff score that determines whether a student needs mathematics remediation or 
not.  

It is important to note that the ELM is not a diagnostic test; as such, it does not shed light on 
specific contents that students are struggling with. To that end, in this study, we used Second 
Year Algebra Readiness Test (SYART) to understand the mathematical background knowledge 
of 1100 students who received a score below 50 on their ELM test.  These students were enrolled 
in a two, four-week courses designed to prepare them for a college math course: beginning 
algebra and intermediate algebra. In both classes, students met their instructor five times a week, 
and every class, except exam days, they would spend approximately 30 minutes in cooperative 
learning that utilizes active learning strategies such as think-pair share, peer lesson, and wait 
time. A pre/posttest analysis of SYART showed that students’ overall score improved 
significantly. On average, beginning algebra students’ SYART score improved by approximately 
39.5%. Using a two-sample t-test, session one witnessed a statistically significant growth with a 
p-value of  

To summarize, students improved their performance in several topics of the test. However, 
the biggest growth were observed in the following topics: Exponents and square roots; Scientific 
notation, Linear equations and inequalities, Polynomial and quadratic equations.  However, 
several students were still below a critical level in some topics. Specifically, students continue to 
struggle in graphical representation of solution of equations and inequalities. Still, there is a 
strong evidence to conclude that the four-week intervention in math remediation has a 
considerable impact. 
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SEEING THE MATH IN PATTERNS: CHILDREN’S ATTENTION TO NUMERICAL 
INFORMATION IN A REPEATING PATTERN TASK 
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Introduction 
A growing body of research has established associations between children’s early patterning 

skills and their formal mathematics knowledge (e.g., Rittle-Johnson, Fyfe, Hofer, & Farran, 
2017). To better understand these associations, we sought to assess whether children “see the 
mathematics” in repeating patterns – that is, whether they spontaneously attend to mathematical 
information in patterns, such as the number of items in the part that repeats (e.g., the pattern is 
two circles followed by one square, then it repeats). Research in cognitive development suggests 
there is high variability in how often children attend to this type of precise quantitative 
information—referred to as children’s “spontaneous focusing on numerosity” or SFON—and 
that individual differences in SFON predict later mathematics performance (Hannula, Lepola, & 
Lehtinen, 2010). In this study, we assess children’s spontaneous attention to numerical 
information in a repeating pattern task and examine how this relates to their mathematics skills. 

Method and Results 
Participants were 36 children ranging from 5 to 13 years old. The same sample was studied 

in Fyfe, Evans, Matz, Hunt, and Alibali (2017), but for a different set of research questions. 
Children completed 24 pattern extension problems (e.g., l l n l l n l __) by predicting the 
next item in the sequence and explaining their selection. We categorized these explanations 
based on whether they focused explicitly on numerical information in the pattern (i.e., the 
quantity of specific elements in the unit of repeat, such as “the pattern goes two-one, then two-
one”) or focused solely on the feature information (i.e., the concrete characteristics of the 
elements in the unit of repeat including size and shape, such as “it goes circle circle square then a 
circle”). Children also solved 9 arithmetic problems (e.g., 2 + 4 + 5 + 2 = __, 4 + 7 – 7 = __). 

Children provided number explanations on close to 20% of pattern items, with 58% of 
children providing a number explanation at least once. The frequency of providing number 
explanations was not correlated with total pattern scores, r(34) = .08, p = .65; thus, attention to 
numerical information was not related to success on the pattern task. However, attention to 
numerical information was predictive of children’s calculation skills. The frequency of providing 
number explanations was a significant, positive predictor of children’s total score on the 
arithmetic problems, b = .28, p = .04, even after controlling for total pattern scores, nonverbal 
IQ, and verbal working memory capacity. In contrast, the frequency of providing feature 
explanations was not a predictor of children’s scores on the arithmetic problems, b = .06, p = .68. 
These results provide a window into how children “see the mathematics” in patterns.    
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Introduction/Theoretical Framing 
Students sometimes experience success in school mathematics if they learn to reason with 

three levels of units in activity, which means they “build” an ephemeral third level of units as 
part of their way of reasoning rather than assimilating situations with a units (of units (of units)) 
structure—this difference has implications for the development of multiplicative and algebraic 
reasoning in the middle grades (Ulrich, 2015). Some students pursue STEM majors in college 
assimilating with two levels of units, and research suggests connections between students’ ways 
of coordinating units and their ways of understanding rates of change in Calculus (Byerley, 
2016). What connections exist, if any, between students’ units coordination and their readiness 
for Calculus? One measure of student readiness for Calculus is The Precalculus Concept 
Assessment [PCA] (Carlson, Oehrtman, & Engelke, 2010). Past results suggest that a 50% score 
on the 25-item assessment differentiates student success in calculus: 77% of students scoring 
more than 12 passed their introductory calculus course, while 60% of students scoring less than 
13 received a grade of D or F, or withdrew from the course.  

Methods/Results 
We assessed the units coordination and calculus readiness of 32 students enrolled in first-

term Calculus at a university in United States. Each student completed the PCA and participated 
in a 15-minute clinical interview, conducted by the second author using the methods and 
descriptors described in Norton, Boyce, Phillips, Anwyll, Ulrich, & Wilkins (2015). Each student 
was assessed as either assimilating with three levels of units [S3] (14 students) or as assimilating 
with two or fewer levels of units [S2] (18 students). A Wilcoxon Signed-Ranks Test indicated 
that mean PCA scores for students in group S3 (M = 15.71) and students in group S2 (M = 9.78) 
were significantly different (Z = 4.94, p < 0.001). Additionally, 71% of students in group S3 
scored more than 12 on the PCA compared to 33% of students in group S2. These results suggest 
a connection between students’ units coordination and Calculus readiness. Implications for 
attending to students’ units coordination and teaching and learning Calculus are discussed. 
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M-capacity is an age-dependent construct (ranging from 2 to 5 among middle school 
students) describing the number of schemes or actions one can simultaneously hold in working 
memory at a time (Pascual-Leone, Johnson, & Agostino, 2010). We present a model that uses M-
capacity to explain and predict students’ performance on tasks across different mathematical 
domains (multiplicative reasoning, fractions, algebraic reasoning), integrating schemes and 
actions from units coordination research. Units coordination (Steffe, 1992) describes students’ 
engagement with various levels of units in mathematical tasks. Students can assimilate up to 
three levels of units at a time and account for additional levels of units through activity. Students 
are able to solve tasks with different levels of cognitive demand depending on their stage of units 
coordination and their M-capacity. 

In the model, circles, boxes, and triangles represent schemes for assimilating one, two, and 
three levels of units, respectively; arrows represent mental actions. A uni-directional arrow 
represents a mental action carried out in activity; a bi-directional arrow represents a reversible 
action interiorized as part of a scheme. Figures 1(a)-(c) illustrate theoretical capacities for 
students at each of three stages of units coordination to reason through a multiplicative task: 8x3.  

 

   
Figure 1: (a)-(c) Stage 1-3 unit coordination; (d) Stage 2 student solving a fractions task.  

Figure 1(d) is our model applied to a students’ work found in the literature (Hackenberg & 
Tillema, 2009). Sara was solving the task: “You decide to share that piece (one-fifteenth) of cake 
between two people. How much of the cake would one person get?” (page 7). The task involved 
six levels of units for the student to coordinate (circles). As a Stage 2 student, Sara could 
assimilate the units into three two-level schemes (boxes). Assuming a middle school student M-
capacity of 5, she could carry out mental actions for coordinating the first two schemes with the 
third, through activity (short arrows). However, limited to five schemes/actions, she would not 
be able to coordinate results from the third scheme (30) back to the whole (long arrow) without 
relying on figurative material, which fits Hackenberg and Tillema’s (2009) descriptions. 
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Review of Literature & Conceptual Framework 
Students struggle to solve quadratic functions in authentic contexts (Didis & Erbas, 2015), 

due in part to reading comprehension (Pape, 2004). This paper therefore outlines a preliminary 
genetic decomposition (Dubinsky & McDonald, 2001) of the mental constructions that support 
student’s conceptions of introductory-level authentic quadratic relationships including function, 
covariation, and reading comprehension. 

Methods & Results 
APOS Theory suggests students construct increasingly sophisticated mental structures 

(Action, Process, Object, and Schema) to understand mathematical concepts. The function strand 
is from Arnon et al. (2014), and the covariation strand is based on Carlson, Jacobs, Coe, Larsen, 
and Hsu (2002). For covariation, an Action conception constitutes students identifying how 
changes in one variable relate to changes in the other, and a Process conception involves students 
explaining the directionality of related values. An Object conception describes students 
recognizing that different coefficients cause the relationship between the x- and y-values to differ 
in measurable ways, and a Schema conception shows students can differentiate between 
quadratic relationships based on the relationships between the x- and y-values.   

Interpreting Pape’s (2004) work to coincide with the stages of APOS finds students have a 
Direct Translation Approach (DTA) approach to reading comprehension at the Action and 
Process levels, meaning they cannot translate the text, context, units, or mathematical 
relationships to a problem solution. Meaning-Based Approach (MBA) full-context reading 
comprehension occurs at the Object level when students can translate the text to mathematical 
symbols and justify their choices based on context. An MBA-justification approach occurs at the 
Schema level when students can comprehend at the MBA full-context level while justifying their 
choices mathematically. 
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Creating and interpreting graphs in algebra remains challenging for many students. Past 
research has identified important ideas and common misconceptions related to graphing 
(Leinhardt, Zaslavsky, & Stein, 1990). Roth and Bowen (2001) challenge this work by noting 
that experts in science sometimes demonstrate misconceptions in their interpretation of graphs 
common in science but not directly related to their research. Roth and Bowen suggest that 
competent interpretation of graphs requires knowing graphing practices that are associated with 
specific types of graphs and the social contexts in which they are situated. In this study, we 
identified a family of practices associated with the use of the change triangle (see Figure 1) in a 
function-based algebra class (Carlson, 2016). We recorded instances of an experienced function-
based algebra teacher using the change triangle while teaching, and then analyzed those instances 
to create descriptions of the ways the instructor attended to and reasoned about different 
elements of the change triangle.  

 

 
Figure 1. Change Triangle. Elements include a starting point, horizontal and vertical vectors, an 

ending point, and a dotted or solid line or line segment connecting the two points. 

The change triangle is superimposed on graphs to invoke and support covariational reasoning 
(Thompson & Carlson, 2017) while solving a variety of problems (e.g., finding the vertical 
intercept of a line given a constant rate of change and an ordered pair). Different elements and 
multiple copies of the change triangle are attended to and coordinated in different ways to 
support a variety of quantitative comparisons and achieve multiple purposes. By making these 
practices more explicit to students, we not only support students in creating and using change 
triangles to identify and reason about covariation, but also allow for discussions about the norms 
and strategies for creating and using diagrams to support mathematical thinking. 
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Given that analogical reasoning is a cognitive mechanism that humans use to understand new 
ideas (Gentner & Bowdle, 2008), instructional metaphors have their place in mathematics 
education and specifically base-ten number instruction (English, 2013; Pimm, 1981). Metaphors 
used while learning base-ten number require still more nuanced investigation (Nurnberger-Haag, 
2018). The term trade, for example, has been treated in practice and research as though it is the 
target mathematical idea (e.g., Fuson & Briars, 1990; Saxton & Cakir, 2006); however, this is an 
instructional metaphor that arose due to Dienes blocks (Nurnberger-Haag, 2018). Thus, this 
study asked: What instructional metaphors do elementary textbooks use for base-ten number? 

A preliminary analysis of base-ten number in the second through fourth-grade teachers’ 
editions of 12 U.S. textbook series were coded for metaphors expressed in words (verbal 
metaphors; Nurnberger-Haag, 2018; see poster for list of textbooks). Ten series expressed more 
than one metaphor. Metaphors such as grouping, composing/decomposing, and bundling reflect 
crucial early number concepts (CCSSI, 2010), yet these insufficiently represent base-ten number 
because these terms imply these processes occur within same unit levels, rather than building the 
crucial base-ten number concept of composite units (Nurnberger-Haag, 2018; Steffe & Cobb, 
1988). Nevertheless, these were the most common metaphors, occurring in 92% of the textbook 
series. Despite trade metaphors violating base-ten number concepts by failing to communicate 
the idea of units within units, modeling unintended operations, and opening what should be a 
closed problem system (Nurnberger-Haag, 2018), 75% used a trade metaphor. Four series used 
carry/borrow along with other metaphors. The packing/unpacking metaphors theoretically 
predicted to best represent base-ten number operations and concepts (Nurnberger-Haag, 2018) 
were found in the teacher, but not student pages, of a single series. This analysis combined with 
future research on how students learn with specific metaphors could inform revisions of 
textbooks for improved base-ten number understanding for all learners in elementary classrooms. 
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Fractions are difficult for many people. One source of difficulty is people’s tendency to 
overextend natural number reasoning to fractions. For example, when people are asked to choose 
the larger of two fractions, natural number components can interfere with reasoning about 
magnitudes, yielding a “natural number bias” (Ni & Zhou, 2005).  However, not all studies 
reveal the bias, and some studies have revealed a reverse bias (e.g., DeWolf & Vosniadou, 
2015). In this study, we investigated whether encouraging people to use benchmarks (reference 
numbers, e.g., ½) in fraction comparisons would help them to activate fraction magnitudes and 
overcome a potential bias. We also examined patterns of strategy use. 

Adults solved complex fraction comparison problems and reported their strategies on a trial-
by-trial basis. All fractions were smaller than 1, and none of the pairs had common numerators or 
denominators. Half of the pairs were congruent (i.e., the larger fraction had the larger 
components) and half were incongruent (i.e., the larger fraction had the smaller components). 
The congruent and incongruent sets were balanced in terms of the fractions’ magnitudes relative 
to common “benchmarks” (i.e., reference points, specifically, ¼, ½, or ¾). In “straddling” 
problems, one fraction was smaller and the other larger than one of these benchmarks. In “in-
between” problems, both fractions were in between two adjacent benchmarks. In a special 
subcategory of “in-between” problems, both fractions were either smaller than ¼ or larger than 
¾; in these problems, one fraction was close to 0 or 1, which may be especially salient 
benchmarks. Some participants also received a tip that benchmarks could be useful. 

Overall, we found a reverse “smaller components—larger fraction” bias. Participants varied 
in their strategy use across problem types, indicating that they used strategies adaptively. On 
problems in which one fraction was close to 0 or 1, they used generally incorrect, component-
based strategies much more often than on other problems. For the other two problem types, 
participants used component-based strategies less often, and used benchmark strategies 
somewhat more often. The tip about using benchmarks had little effect. 

Participants used strategies adaptively in ways that made good use of the affordances of 
different problems (Alibali & Sidney, 2015), including the fractions’ relative positions to 
benchmarks. Thus, patterns of strategy use may at least partially explain the occurrence and the 
direction of the natural number bias in fraction comparison. To better understand the natural 
number bias and why it varies across studies and across samples, it will be critical to understand 
the strategies people use in making specific fraction comparisons.  
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Numeric relational reasoning is often defined as the ability to recognize and analyze 
relationships between numbers or expressions (Baroody, Purpura, Eiland, Reid, & Paliwal, 2016; 
Jacobs, Franke, Carpenter, Levi, & Battey, 2007). Students using numeric relational reasoning 
can use known facts to derive new facts (e.g., using 5 + 5 to solve 6 + 5), solve complex 
equations by transforming expressions using composition and properties of operations (6 + 5 = 
☐ + 4), and recognize when calculations aren’t necessary (e.g., 5 + 8 = ☐ + 5). Due to the 
predictive relationship between numeric relational reasoning and mathematics achievement 
(Aunio & Niemvirta, 2010; Nunes et al., 2007), it is important to understand how numeric 
relational reasoning can be assessed so that instruction can be modified to improve students’ 
competence with this construct.  

The purpose of this literature synthesis was to (1) identify what instruments currently exist 
that assess K-2 students’ numeric relational reasoning competence, (2) determine different item 
types and formats for assessing this construct, and (3) determine the depth of reasoning needed 
by students for each item type.  

After an extensive search, seven assessments were found that include items to assess K-2 
students’ numeric relational reasoning skills. These assessments include differing levels of 
content representation for numeric relational reasoning and its main components. Three main 
item types were utilized on these assessments: items with concrete or visual representations, 
word problems, and items with abstract notation only. The depth of reasoning elicited by these 
items varied, in part because the item formats did not make the students’ reasoning visible. It is 
recommended that items focus not only on the correct answer but also evaluate students’ 
reasoning strategies to better capture whether students are reasoning relationally.  
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This paper reports on a project aimed at developing a system of professional support for the 
improvement of the Geometry for Teachers course that mathematics departments teach to 
preservice secondary teachers. We share data from interviews with 20 instructors to report on 
how they perceive their position of geometry instructors and the work they do in the course. To 
inspect this set of interviews, we use the framework of professional obligations to the discipline, 
to individual students, to the institution, and to the classroom community. We share how 
references to these professional obligations emerged in the interview data.  

Keywords: Geometry and Geometrical and Spatial Thinking, Post-Secondary Education, Teacher 
Education-Preservice  

Introduction 
This paper reports on a study of instruction at the college level, specifically focused on the 

geometry course that many universities offer and is taken by prospective secondary teachers 
(Geometry for Teachers, or GeT hereafter). We report how GeT instructors perceive their 
position and the work they do in the GeT course in relation to institutional stakeholders. The 
literature on instruction at the college level is emerging (Mesa, Wladis, & Watkins, 2014) and in 
order to frame our focus, we can profit from considering as background the literature on K-12.  

The study of mathematics instruction at the K-12 level has often considered the classroom as 
a container within which interactions among teacher, students, and content unfold. The influence 
of institutional context on instruction has not always been part of that consideration. Cohen et 
al.’s (2003) instructional triangle calls attention to the environments in which instruction is 
situated but most studies of instruction pay little attention to how those environments influence 
instruction. Some of that is justified on the received wisdom that instruction is “loosely coupled” 
with administration (Weick, 1976). Awareness in our field of the importance to look at the 
relationships between institutional and instructional issues has been brewing, particularly from 
research focused on systemic reform (e.g., Cobb, Jackson, Smith, Sorum, & Henrick, 2013) and 
on equity (e.g., Lubienski, 2002; Walker, 2007). The realization, particularly from the latter 
research, is that some of the phenomena that happen at the classroom level (e.g., little access to 
good mathematics) owes to issues that are structural (e.g., tracking, teacher placement, school 
climate). As the era of accountability starts to affect also higher education (Levine, 2017), there 
is reason to consider how environments affect instruction also at the college level. On this matter 
the K-12 literature can provides some theoretical resources. 

Chazan, Herbst, and Clark (2016) describe the position of the teacher as one that connects the 
institution and its stakeholders with the roles and relationships at play in instruction. Attempts to 
improve instruction have often relied on the agency of teachers. Chazan et al. (2016) contend 
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that such attention to agency needs to be complemented with attention to structural issues at play 
in educational institutions and in society at large if we are to understand how instruction can be 
improved. This paper argues that the GeT course is one that could benefit from instructional 
improvement and asks the question of how instructors of this course experience the influence of 
institutional issues that might support or hinder that improvement. 

We inscribe the paper within an improvement effort that tries to follow the approach 
described Bryk, Gómez, Grunow, and Le Mahieu (2015), which challenges the usual 
improvement paradigm of diffusion of innovation. Rather than conceiving a solution to a 
problem and seeking to implement it with fidelity and evaluate its results, the approach described 
by Bryk et al. (2015) starts from creating a networked improvement community (NIC). Using an 
organizational learning perspective, this approach engages the whole network in designing, 
monitoring, and continuously developing solutions that might improve the system, particularly 
by attending to variation in performance. This methodology for improvement starts from 
understanding the system that produces the outcomes that need to be improved. Our attention to 
how instructors perceive their institutional positions, at the hinge between the institution and 
classroom instruction, is key in understanding the system in question. 

The Need for Improving the Geometry Course for Teachers 
A geometry course (HSG, hereafter) has been part of the US high school curriculum for more 

than 100 years (Sinclair, 2008) and it has traditionally been key in inducting students into 
mathematical practices such as conjecturing and proving. The changes proposed by the Common 
Core (Common Core State Standards Initiative, 2010), and the corresponding state assessments 
have substantial impacts on the HSG curriculum (Wu, 2014). These changes have been 
accompanied by an increase in the use of students’ achievement for individual teachers’ 
accountability (Roth McDuffie et al., 2015). Likewise, the description of “highly qualified 
teachers” ushered in by the No Child Left Behind [NCLB] legislation (Bush, 2002) suggests the 
need for teachers to have substantial content preparation in the disciplines they will teach. This 
suggests an institutional pressure on those who prepare teachers, to align what they teach 
preservice teachers with what the latter will need to teach their own students. This pressure can 
be seen in the CAEP standards adopted by 33 states through partnership with NCATE which 
state that teacher education provider programs must “ensure that candidates demonstrate skills 
and commitment that afford all P-12 students access to rigorous college- and career-ready 
standards (e.g., […] Common Core State Standards).” The pressure can also be understood by 
examining the MET II documents that call secondary teacher preparation programs to offer 
courses specifically designed to focus on mathematics at the high school level from an advanced 
perspective, including “address[ing] the CCSS approach to Euclidean geometry based upon 
translations, rotations, reflections and dilations” (CBMS, 2012, p. 7). But, are GeT courses 
providing teacher candidates with the knowledge they need in order to teach HSG? Grover and 
Connor (2000) surveyed the content and instructional practices of geometry courses at 108 
randomly selected U.S. colleges and universities and found that GeT course content varies 
greatly: From a review of middle and high school topics to the development of elementary 
axioms or a study of non-Euclidean and projective geometries using alternative transformational 
and analytic approaches. A comparison of the textbooks used for GeT courses produced similar 
differences. Grover and Connor (2000) concluded that there is no typical curriculum for GeT. 
This variability in GeT courses prompts questioning their usefulness for teachers (Wu, 2011).  

It seems that institutions should have reason to be interested in improving the GeT course by 
better aligning what is taught to future teachers with the knowledge they need to teach HSG. 
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However, because Euclidean geometry is no longer an area of active mathematical research, the 
geometry content high school students study has few stewards in university mathematics 
departments (Steen, 1988; see also Atiyah, 2001). With the GeT course being a service course 
for fewer students than other service courses (such as calculus or linear algebra), it is hard for 
mathematics departments to create local communities to steward the GeT course. Improvement 
is needed but it may need more than local attention; it could use a network approach.  

We are interested in improving the GeT course using the approach described by Bryk et al. 
(2015), which requires us to start from understanding the system in need of improvement. The 
GeT course is one where environmental influences (e.g., instructors need to prepare PSTs to 
teach geometry) could connect with the outcomes of the course (viz., better mathematical 
knowledge for teaching geometry of preservice teachers). As some research has shown 
connections between MKT and the mathematical quality of instruction as well as K-12 student 
outcomes (Hill, Rowan, & Ball, 2005; Hill et al., 2008), increasing MKT would be desirable. 
Based on performance data, Clements (2003) suggested that students’ knowledge of geometry 
could use improvement. Increasing MKT in geometry might be one lever. Given that the need 
for improvement in HS geometry instruction points to the possibility to improve the GeT course, 
a question that can be asked is whether a process of continuous improvement based on principles 
of organizational learning can be used productively to improve geometry for teachers.  

Our project has started developing a networked improvement community by bringing 
individuals together. We began by locating institutions with large teacher preparation 
programs—as we are interested in the undergraduate geometry course serving future teachers, 
rather than geometry courses in general. Within those institutions, we looked at mathematics 
departments for geometry courses serving secondary mathematics pre-service teachers and 
identified instructors of those courses as the natural candidates to be members of this 
community. We are also incorporating other stakeholders, including high school geometry 
teachers and mathematics supervisors who influence certification policies at state levels. Our 
first step has been to  do a set of initial interviews of instructors of the GeT course. The 
interviews help us describe members of this group in terms of their professional position as 
instructors of college students.  

Theoretical Framework: Practical Rationality of GeT Instructors 
As we consider the effort involved in improving GeT, we are keen to note that like the case 

in K-12 instructional improvement, the improvement of curriculum and instruction for GeT is 
likely to need more than resources and networks: It needs know-how, anchored in an 
understanding of what instructional practice is like in its institutional context (Halverson, 2003). 
In a review of the research literature on collegiate mathematics, Speer, Smith, and Horvath 
(2010) reported that there exists "very little research [that] has focused directly on teaching 
practice—what teachers do and think daily, in class and out, as they perform their teaching 
work” (p. 99). Further, they argue that “the community’s efforts to support instructors as they 
learn to teach college mathematics is often not informed by data and research on what is 
involved in teaching college mathematics” and recommend conducting research in this area to 
guide the professional development efforts designed to improve collegiate mathematics (p. 111). 
Specifically, in considering what is involved in the improvement of GeT, it would be helpful to 
understand how GeT instructors negotiate the multiple demands of their role preparing HSG 
teachers. How do faculty relate to the dual expectation that GeT be a university mathematics 
class and prepare students to teach high school geometry?  
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In their account of the practical rationality of mathematics teaching, Herbst and Chazan 
(2012; see also Chazan, Herbst, & Clark, 2016) identify sources of justification that instructors 
might use to make their actions reasonable or sensible. Many actions in teaching mathematics go 
without saying, they don’t call for justification but rather are habitual or normative. But quite 
often instructors deviate from the norm—e.g., instead of correcting a mistaken response, an 
instructor might ask his or her class to consider whether the response makes sense. Herbst and 
Chazan (2012) propose that such departures from the norm might be perceived as justifiable by a 
professional if they help meet one or more of four professional obligations: An obligation to the 
discipline of mathematics, an obligation to students as individuals, an obligation to the class as a 
community, and an obligation to the institutions that make room for instruction. 

The obligations framework has important implications for the ways we think about 
supporting GeT instructors in improving their instructional practice. In particular, we can use this 
framework to unpack the tensions that they perceive as undergirding GeT instruction. For 
example, the institutional obligation (to the Teacher Education program and State certification 
agency calling for mathematics departments to offer GeT courses) might compel the GeT 
instructor to cover the content that his or her students would need to teach in schools, while the 
instructor’s obligation to the discipline of mathematics might compel them to bring in 
considerations that are more general (e.g., that Euclidean geometry is only one geometry, but 
different choices of postulates might give rise to different geometries) in order to better represent 
the discipline. Because time is limited, instructors can’t just avoid these tensions, they need to 
manage them. We see the many tensions that might exist among the professional obligations of 
undergraduate instructors as fertile places where to start an inquiry toward the systemic 
improvement of the GeT course. In this paper, we begin that work by sharing what we’ve learned 
from GeT instructors through a set of initial interviews. Our research questions are: (1) How 
does the framework of professional obligations help us understand the professional position of 
geometry instructors? and (2) How does such understanding help us move toward alignment 
between the GeT course and the HSG course?  

Methods 
We recruited 20 participants (8 men and 12 women) from 17 universities across the U.S., all 

of whom were identified as mathematics department faculty, hold doctoral degrees in 
mathematics or mathematics education, and have recently taught a geometry course aimed at 
serving pre-service teachers in large teacher preparation programs. We developed a semi-
structured interview protocol to learn about the instructor, their context, and their dispositions 
toward improving the GeT course. The protocol had three sections: 16 questions about the GeT 
course and the challenges that come with teaching it, 3 questions (with follow-ups) about the 
various forms of content covered in the course, and 3 questions about the background of the 
participant. In this paper we focus responses to the first section, and questions such as: “What 
experiences do you aim for your students to have in the geometry course for teachers?” and 
“What are the expectations that shape the geometry course for teachers that you teach?” 

We piloted the interview with two non-participants who are experienced instructors of the 
GeT course before administering it to the rest of the participants. We conducted the interviews 
using online video-conferencing software that allowed us to capture audio and video records of 
the interaction. The analysis of the interview data was a multi-step process. We began by taking 
field notes during the interview and then improving those notes with one or two reviews of the 
video after the fact. Using the professional obligations framework, we individually coded 
participants’ contributions across the first section’s interview questions, meeting together to 
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compare, discuss, and reconcile our understanding of each category as well as identify emerging 
themes. 

Results 
In this section, we use the professional obligations of mathematics teaching to organize initial 

gleanings from the interviews. We share the various ways that each of the professional 
obligations emerged in the data, illustrating each theme with examples from the data. Lastly, 
because part of what we aim to do is to understand how well the obligations framework helps us 
account for instructors’ perceptions of their position as instructors of the GeT course, we also 
share data that did not fall neatly within any of the four professional obligations framework. 
Instructors Dispositions toward the Disciplinary Obligation 

We had hypothesized that that GeT instructors would relate to their professional position by 
recognizing an obligation to the discipline of mathematics. Unsurprisingly, we observed a 
plethora of responses that illustrated various dispositions toward the disciplinary obligation. 
Three themes emerged from that analysis; a disposition to attend to (1) geometry as a body of 
confirmed and correct knowledge that GeT students need to know; (2) mathematics as a practice 
of inquiry, discovery, invention, or knowledge development that people need to engage in; (3) 
geometry as a set of models which are useful for solving problems. In Figure 1 we illustrate these 
themes with participants’ responses: 
 
Mathematics as ... Participant Response 

A body of 
confirmed and 
correct knowledge 

“I do think it’s important for mathematicians to teach this course… it’s a 
surprisingly mathematically sophisticated course. I think that it’s 
mathematically sophisticated enough that mathematicians should be 
teaching it” (MV). 

A practice of 
inquiry, discovery, 
invention, or 
knowledge 
development 

“High school teachers were definitely as good as I was in recognizing 
patterns or solving problems. But when they found an answer, they were 
happy to move on. They didn’t seem to me to need to have a rigorous 
argument about why this pattern worked or why things were the way 
they were...that’s something that I want to convey to my students” (RR).  

Providing models 
useful for solving 
problems 

“[Community members such as businesses] want their people to be 
problem solvers and have the ability to deal with an unfamiliar situation. 
... I think that that’s the main value of the class to the society as a 
whole” (SA). 

Figure 1. Examples of data coded as evidence of GeT instructors’ disciplinary obligation.  
Note: Two letters are used to refer to each of the different participants. 

Instructors Dispositions toward the Individual Obligation  
We hypothesized that GeT instructors would relate to their professional position through a 

recognition of their obligation to the individual student. While not as prevalent as the evidence 
for instructors’ disciplinary obligation, we observed many participant responses that we agreed 
would be categorized under the individual obligation. We share two themes that emerged from 
that analysis: the obligation to attend to the individual as: (1) a cognitive being (who can think, 
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process mentally, etc.); (2) an emotional being (who can feel anger, joy, fear, disgust, sadness, 
etc.). Figure 2 illustrates these themes with participants’ responses: 

Individual as Participant Response 

A cognitive 
being 

“[The mathematical experience is] a good thing for a person’s spirit…to be 
challenged and succeed” (IL). 

An emotional 
being 

“So I’ve definitely have gotten some good feedback about people who were 
scared about, or nervous about teaching geometry at the high school level 
and after they took the college geometry course at our university they felt 
like they were ready, or maybe even excited about teaching geometry” (RL). 

Figure 2. Examples of data coded as evidence of GeT instructors’ individual obligation. 

Instructors Dispositions toward the Institutional Obligation  
We hypothesized that GeT instructors would relate to their professional position through a 

recognition of their obligation to the institution. Three themes emerged from that analysis: the 
obligation to attend to the institution as: (1) a place that provides service to young members of 
society; (2) a place that has external accountability (teacher preparation programs and 
certification agencies); (3) an organization that has rules, policies, etc.  We illustrate these 
themes (see Figure 3) with participants’ responses to various interview questions: 

 

Institution as ... Participant Response 

A place that 
provides service to 
young members of 
society 

“[T]he content in the course and the student work in the course is related 
to how well they do on things like Praxis tests as well as how it relates to 
how they actually teach in the classroom two years later” (IF). 

A place that has 
external 
accountability 

“We redesigned it based on the MET II document, actually based on the 
MET and then revised again with the MET II, and also focusing on the 
um Common Core Stand—State Standards as to what geometry the 
teachers are going to have to teach. And so we have totally revamped the 
course so the focus is on those aspects of geometry” (IF). 

An organization 
that has rules, 
budgets, etc 

“The catalogue affects me - the description talks about axiomatics and 
finite geometries. While finite geometry is a nice playground, because 
they can build the models and see everything, I wouldn’t have to do that. 
That course description constrains me” (SL). 

Figure 3. Examples of data coded as evidence of GeT instructors’ institutional obligation. 

Instructors’ Dispositions toward the Interpersonal Obligation 
We hypothesized that GeT instructors would relate to their professional position through a 

recognition of their obligation to the interpersonal collective of the classroom. Unlike the 
previous three obligations, we found few of the instructors’ responses that could be filed under 
the interpersonal obligation. Thus, here we have just one theme that emerged from our analysis: 
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the obligation to attend to the group of students as a discourse community, that needs to partake 
of communicative exchanges (Figure 4). 

Group of students as ... Participant Response 

A discourse community, that 
needs to partake of 
communicative exchanges 

“So I want them to collaborate mathematically in and outside 
of class, I want them to get experience communicating 
mathematics both in person, we do a lot of presentations at 
the board, a lot” (MV). 

Figure 4. Examples of data coded as evidence of GeT instructors’ institutional obligation. 

Those Responses Falling Outside the Four Professional Obligations  
Prior to closing this section, we take a moment to review some of the instructor responses 

that felt important to describe how GeT instructors relate to their professional position but were 
not captured by the professional obligations. These exceptions are rare in the data, as we have 
only found two instances. These instances can be attributed to instructor’s personal resources, 
including knowledge, experience, beliefs, and identity. One of the responses came in the context 
of discussing whether or not GeT instructors held any responsibility for teaching students how to 
engage in work that was specific to the work of teaching, like creating questions for a geometry 
exam or understanding students’ difficulties with geometric proof. RR’s response serves as an 
example of how an individual’s knowledge or experiences can elevate the tensions that one 
experiences in teaching the GeT course: 

I was trained as a mathematician, I was not given any formal training on student 
teaching/learning - anything I know about student teaching/learning is something that I’ve 
read or picked up from [a mathematics education colleague] but there are other 
[mathematicians] who don’t have [mathematics education colleagues] who come at these 
courses - geometry, or upper level algebra/analysis course who don’t have any of that 
experience. (RR) 

Conclusion 
The professional obligations framework is useful to understand the professional position of 

GeT instructors, positions toward the GeT course, though the data speaks also about the 
importance to attend to personal resources. The interviews suggest that efforts to improve the 
course by developing a networked improvement community may need collective awareness of 
the variety of ways in which individuals relate to their positions as instructors. 
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DEVELOPING AND USING DEFINITIONS FOR PRISMS AND PYRAMIDS 
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Teaching geometry courses for preservice elementary teachers, we observed that difficulty with 
classifying shapes (and, in particular, composite 3-D shapes) persists even after work with 
simple shapes to support the writing of accurate and unambiguous definitions. We conducted a 
self-study of our teaching of 3-D concepts to uncover the concept images of pyramid and prism 
that emerge. We sought to understand the nature of those observed difficulties. We found that 
using both simple and composite shapes in classification activity exposed more nuanced and 
complex concept imagery than simple shapes alone. Opportunities to articulate assumptions 
create a space for all learners to make the language more precise and to create concept 
definitions that are more resilient.  

Keywords: Geometry and Geometrical and Spatial Thinking, Instructional Activities and 
Practices, Teacher Education-Preservice 

Background 
Human perceptions of the physical world are primarily made up of 3-D shapes. Many 

curricula around the world provide opportunities to identify and name three-dimensional solids 
in early grades (Sinclair, Cirillo, & de Villiers, 2017). However, only a few studies on learners’ 
definitions and conceptions of 3-D solids were discussed in the review conducted by Sinclair, 
Cirillo, and de Villiers (2017). Bozkurt and Koc (2012) reported that many of the first-year 
Turkish pre-service elementary teachers (PSETs) in their study found it difficult to define prism; 
60% of them either could not provide a definition for prism or could not go beyond stating the 
fact that it was a term for 3-D shape. Another study identified a variety of concept images that 
Turkish PSETs hold about the base of 3-D shapes. Many were limited and/or contradictory in 
nature (Horzum & Ertekin, 2017). Tanguay and Grenier (2010) found that preservice secondary 
teachers had difficulty defining and describing regular polyhedra, which hindered their later 
attempts to develop a proof for the existence of only five possible regular polyhedra.  

In our geometry courses for PSETs, we have observed the difficulty that our students have in 
classifying shapes, and, in particular, composite 3-D shapes. This difficulty persists even after 
significant work with simple pyramids and prisms to support the writing of accurate and 
unambiguous definitions. Initially, we speculated that this difficulty was related to our PSETs’ 
ability to write and apply formal definitions, but wondered if it was also related to unarticulated 
concept imagery. The challenge was to create opportunities to articulate problematic concept 
images and expose the hidden contradictions that make classification difficult. Our analyses have 
uncovered layers of complexity in PSETs’ conceptions of prism and pyramid.  

We will provide findings related to two research questions: 

1. What concept images of pyramid and prism emerged from in-class activities that focused 
on defining and classifying 3-D solids?  

2. What is the nature of PSETs’ difficulty in using established concept definitions and 
images to classify composite 3-D shapes as pyramids, prisms, or neither? 

 



Geometry and Measurement 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

248	

Theoretical Framework 
In our work to help PSETs understand prisms, pyramids, and related concepts, we strive to 

create opportunities for PSETs to experience cognitive disequilibrium (Piaget, 1985). This is the 
moment when there is an imbalance between prior knowledge (schema) and experiences that 
cannot (yet) be explained by it. The process of engaging students in the act of defining is one of 
iteration and revision; we move back and forth between examining concrete shapes built from 
wooden models or other commercially made building materials, and writing and revising 
emerging concept definitions. The activity described later in this paper, Prism, Pyramid or 
Neither? is one of our attempts to perturb the equilibrium of our students in the hopes that they 
are able to articulate deeply held concept imagery about these shapes and to demonstrate how 
resilient their conceptions have become. 

We used Tall and Vinner’s (1981) framework of concept definition and concept image to 
frame our PSETs’ experiences with classification activity. Tall and Vinner describe a concept 
image as “the total cognitive structure that is associated with the concept which includes all the 
mental pictures and associated properties and processes” (p. 152). These authors distinguish this 
from a concept definition or “a form of words used to specify that concept” (p. 152). For 
example, one of our students described a pyramid as having “a tippy or pointed top, a base 
opposite to the top, and triangles around the top point.” Individual concept definitions may be 
different from the “formal concept definition,” which is a definition accepted by the 
mathematical community.  

Data Collection and Analysis 
This study followed the Self-study of Teacher Education Practices as we undertook action 

research to systematically study our own practices and to make our knowledge and beliefs, along 
with the dilemmas, decisions, and reflections, explicit (Vanassche & Kelchtermans, 2015). Self-
study research makes it possible to share what we have learned from our practices so that it can 
be examined and transformed by other teacher educators (Bullough & Pinnegar 2001). We 
adopted an “inquiry as a stance” approach and acknowledged that self-study is an ongoing and 
complex process (Cochran-Smith, 2003).  

We collected data in a geometry course required for all PSETs in a Midwest university 
including lesson plans and observation notes of about 100 minutes of lessons, lesson stories 
written by assigned students spanning the first two lessons of the semester, as well as written 
work from 58 students from three different sections taught by the same instructor on classifying 
composite polyhedrons.  

We will present three stories, built from our data. First, we will use collected data to describe 
two episodes of classroom instruction related to classifying polyhedra and creating concept 
definitions for prisms and pyramids. Data collected at the classroom level were analyzed in order 
to examine existing and emergent concept imagery as the class worked to construct concept 
definitions for prism and pyramid. Once these definitions had been constructed, we used the 
quantitative results of the Prism, Pyramid or Neither? assignment to determine areas of both 
success and struggle for individuals involving classifying polyhedra using those classroom-
constructed concept definitions. In this activity, we showed PSETs composite polyhedra built by 
composing pyramids and prisms in different ways. We asked them to identify each as a prism, 
pyramid, or neither. We were able to interpret their written justifications and identify specific 
concept images that interfered with classification activity. 
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Findings and Discussion  
Emergent Images and Definitions  

In this section, we discuss two classroom episodes. These episodes are amalgams of data 
from three separate teachings of the same content. They are written to represent the depth and 
breadth of conversations that occurred, even if each varied in minor ways from the others. 

Episode 1. Working in small groups of 3 to 4, preservice elementary teachers were asked to 
come up with different ways to categorize a set of 15 wooden 3-D shapes that included both 
polyhedra (e.g., triangular prism, rectangular pyramid) and non-polyhedra (e.g., cylinder, sphere) 
as seen in Figure 1a. They were asked to record their thoughts on the question, “How are items in 
a category like one another and how are they different from other shapes?” A variety of 
categories was proposed and discussed during the follow-up whole-class discussion.  

Many issues emerged during this part of the lesson that gave rise to the need for more precise 
definitions. For example, students had different meanings for the word face. Some considered 
flatness as part of their definitions of face; thus, a hemisphere would have only one face. Others 
argued that a hemisphere had two faces—a flat one and a curved one. The word side was also 
problematic. Some used the word side to refer to the faces of a prism, while others used that 
word to refer to the edges of a prism.  

These discussions led to a classification scheme that separated polyhedra from non-
polyhedra, with polyhedra being 3-D shapes that had only straight edges and flat faces. The 
instructor then assigned students to learn more about polyhedra, prisms, and pyramids by visiting 
the interactive 3-D shapes by Annenberg Learner 
(https://www.learner.org/interactives/geometry/3d.html). 

Episode 2. To begin the second lesson, PSETs shared what they had learned from the 
website about the definitions as well as their current thoughts on the similarities and differences 
between pyramids and prisms. Initially, many students had a limited conception of base, similar 
to their Turkish counterparts (Horzum & Ertekin, 2017). The instructor helped students to 
transcend orientation-dependent conceptions of base by drawing attention to identical triangular 
and hexagonal prisms placed in different orientations (Figure 1b, 1c). 

 

 
a 

 
b 

 
c 

Figure 1. Classifying wooden models. 

Our definition for the base of a prism as a special type of paired, opposite, congruent, and 
parallel faces required more clarification. When exposed to the hexagonal prisms in Figure 1c, 
PSETs encountered multiple pairings that fit this description. Introducing the idea of congruent 
cross-sections encouraged the distinction between base and lateral faces (non-base face). 
Similar discussions explored the idea of apex in pyramids as a special kind of vertex where all 
the edges from the base connected. Finally, the PSETs arrived at the class definitions: prisms are 
polyhedra with two congruent, parallel bases and all lateral faces are rectangles; and pyramids 



Geometry and Measurement 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

250	

are polyhedra with a base, an apex opposite to the base, and all lateral faces triangles.  
To further solidify the concept definitions and images, the instructors passed out to each 

group two composite shapes that were made up of two prisms, two pyramids, or one of each and 
asked the students to name the two shapes that made up the composite shape, describe the way 
they were connected, and decide whether the composite shape was a prism, pyramid, or neither.  

This proved to be a challenging task for many students. For example, one group of students 
was not sure if the composite shape in Figure 2 was a pyramid. They could identify that this 
composite shape was made by connecting the base of a square pyramid with a lateral face from a 
hexagonal prism. They thought it could be named a pyramid because there were an apex and a 
base, but they admitted it didn’t quite look like a typical pyramid. The instructor reminded 
students to justify their decision using the definition of pyramid that the class had agreed upon. 
Finally, students examined the shape further and noticed that some of the lateral faces weren’t 
triangles, thus confirming that this composite shape was not a pyramid.  

 

 
Figure 2. Is this composite shape a pyramid? 

Classification Difficulty  
We were also able to document our PSETs’ difficulties in using established concept 

definitions and images to classify composite 3-D shapes. After the class activities described 
above, PSETs were asked to complete an online quiz. The online quiz had two components. The 
first component asked them to determine if each of 12 composite shapes was a prism, pyramid, 
or neither. The second part asked them to “write a careful justification to explain whether a 
composite shape shown is a prism, pyramid, or neither” for three composite shapes selected at 
random from a subset of 4 of the original 12 shapes.  

Because of space limitations, we included here results from only six items: two from the 
items with the highest percentage of correct responses and four from the items of lowest 
percentage to provide insights into PSETs’ overall performance. We use bold print to indicate 
correct responses. While the majority of PSETs were able to correctly identify that Figure 3a was 
a prism and 3b a pyramid, the other shapes were not so easily classified. The quantitative data 
alone are evidence of the difficulty our students faced in applying definitions to classify 3-D 
shapes. However, the justifications for these classifications (provided in the next section) 
illustrate strongly held concept images that might help explain the nature of these difficulties. 
Below, we describe several concept definitions and images strongly held by some PSETs when 
classifying composite shapes. We drew support from both the analysis of the quantitative data 
summarized above and the analysis of the written work.  

Difficulties associated with pyramid. Despite the class discussion tending to the 
classification of the composite shape in Figure 2, about a quarter of PSETs still classified the 
shape in Figure 3c as a pyramid because it had an apex, a base, and triangular lateral faces. For 



Geometry and Measurement 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

251	

example, Dakota (mistaking the hexagon for an octagon) wrote, “The composite shape is a 
pyramid because it has an octagonal prism with another octagon pyramid on top. The definition 
of a pyramid includes a polygonal base—an octagon, and lateral faces that are triangles that run 
into one vertex.” She and many PSETs still ignored the fact that some lateral faces on Figure 3c 
were not triangles; thus, it could not be a pyramid. 
 

 (a)  

 

(b) 

 
 

(c) 

 

Prism 94.83% 5.17% 6.90% 

Pyramid 0.00% 84.48% 25.86% 

Neither 5.17% 10.34% 67.26% 

 (d) 

 

(e) 

  

(f) 

 

Prism 32.76% 3.45% 41.38% 

Pyramid 1.72% 48.48% 6.90% 

Neither 65.52% 48.48% 51.72% 

Figure 3. Classification of composite shapes by PSETs (N = 58). 

Shape 3e was another difficult one to classify. It was made up of a hexagonal pyramid and a 
triangular prism connecting through their lateral triangular faces. Half of the PSETs judged it to 
be a pyramid and half of them judged it to be neither. Our analyses of the written justifications 
revealed that the class definition of pyramid as “polyhedra with a base, an apex opposite to the 
base, and all lateral faces are triangles” might not be explicit enough to help PSETs to correctly 
classify Figure 3e. For example, Ryann wrote, “Pyramid. Because it has one face that is a 
polygon and all the other lateral faces are triangles they also come to a point.” Ryann’s concept 
definition of pyramid was previously sufficient to classify all of the wood blocks in Figure 1a, 
but it was not sufficient to tackle the complexity of this composite figure.  

Some PSETs did recognize that there seemed to be odd faces disconnected from the apex that 
were not bases. This was a moment of disequilibrium (Piaget, 1985) that proved important. Some 
decided to modify their concept definition to accommodate the new type of face. Katelyn wrote, 
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The composite shape is a pyramid because even though it has an extension on one of the 
lateral faces, all lateral faces are triangles and both bases are polygons. It is a combination of 
a triangular pyramid and a hexagonal pyramid. It fits the definition of a pyramid, which is a 
polyhedron where the base is a polygon and all lateral faces are triangles. It breaks no rules 
and meets all the requirements to be considered a pyramid. 

Our analysis uncovered additional concept images and definitions of pyramid that were useful in 
helping the PSETs to make the correct classification. For example, some PSETs decided that 
Figure 3e was not a pyramid because “it had a side stick out.” Alex stated that for a shape to be 
classified as a prism or pyramid, “The shape would have to be able to lay on any one of its 
sides.” Jasmin said this is not a pyramid because it is “capable of rocking back and forth.” The 
concept image of a pyramid that could lay stable on each of its many faces was a strong one. 
Others had included in their concept definitions of pyramid the requirement of having only one 
base. As Anjou reasons, Figure 3e isn’t a pyramid because it has two bases: 

Our definition for pyramid is—a polyhedron where the lateral faces are triangles, has one 
base which is a polygon. Now. Although all the lateral faces meet at a common point, this 
shape has more than one base so it has more than one base so it can’t be a pyramid either.  
Difficulties associated with prism. About 51.72% of the students declared that Figure 3f 

was neither a prism nor a pyramid. Most justified eliminating pyramid as a choice due to the lack 
of an apex. However, the fixed orientation impacted PSET’s ability to see it as a prism. As 
Jessica says, “This shape is not a prism because all of the lateral faces are not rectangles, some 
are triangles and also this shape does not have two congruent bases.”  

Just like Jessica, many PSETs had the concept image of a base as a face on which the whole 
3-D shape sits. So if a student assumes the square as the base, the octagons become lateral faces 
and it is impossible to find another congruent square parallel to that square base. The idea that 
shapes retain their form as they are rotating in space (or, for 2-D, on a plane) is a critical 
conceptual understanding that students need to develop in making sense of both 2-D and 3-D 
shapes. Some were able to overlook the orientation and identified this shape as a prism, as Jamal 
wrote, “This composite shape is a prism because it has two congruent bases when I flip the 
shapes sideways (yellow shapes at the bottom) and the rest of the lateral faces are rectangles 
which fits in the definition of a prism.”  

What is it about the shown orientation that renders it unrecognizable? The answer is to return 
to concept imagery around the term base. When classifying simple polyhedra in class, students 
always oriented their prisms so that they were resting on one of the bases. By doing so, it became 
a habit to define base as a face on which the whole 3-D shape “sits.” The singular case is also 
described as “the bottom” (as in a basement) and the pair of bases as “the bottom and top” of a 
prism. Jessica explains: “This shape is not a prism because all of the lateral faces are not 
rectangles, some are triangles and also this shape does not have two congruent bases.” 

The case of overgeneralization. As seen in Figure 3a and 3b, the majority of the PSETs 
were able to recognize the composite shape in 3a as a 9-gonal prism made by connecting a 
hexagonal prism and a pentagonal prism at a congruent lateral face. Also, they recognized the 
shape in 3b as a pyramid made by connecting two triangular pyramids at a congruent lateral face. 
Unfortunately, that led some students to believe that the overall shape of a 3-D composite is a 
prism if it is made up of two prisms, and is a pyramid if it is made up of two pyramids, and is 
neither if it is made up of a prism and a pyramid. 

The statement is obviously false but the challenge is to recognize what parts of this statement 
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contain some truth. It is true that composing a prism and a pyramid will always result in a shape 
that is neither a prism nor a pyramid. Figure 3c is one example. In the composition process, the 
figure cannot retain the property of having two congruent parallel bases (thus, not a prism) nor 
can it cannot retain the property that all lateral faces are triangles (thus, not a pyramid).  

The first two parts of the generalization, however, are not always true. In Figure 3e we see a 
counterexample of a composite shape, made up of two pyramids, that is not a pyramid. The two 
shapes were connected via a lateral face such that their bases did not create a composed pyramid; 
their bases are not in the same plane as in Figure 3b. Another counterexample is shown in Figure 
3d, which was composed of the same two prisms in Figure 3a by matching the same lateral faces, 
but twisted so that their original bases would not lie on the same plane. 

The composite polyhedra were selected for this activity because they had the potential to 
bring a variety of concept imagery to the surface related to the terminology used to define prisms 
and pyramids. However, this last discussion indicates that this activity has the potential to 
generate even more false generalizations if we do not recognize the complexity of this topic. 

Conclusions and Implications 
We have chosen to closely examine our instruction related to prisms and pyramids partly 

because of the difficulties we observed PSETs having with classification activity related to both 
3-D and 2-D shapes. However, we were surprised at the depth to which we were able to take our 
analysis, indicating that composing, decomposing, and classifying 3-D shapes is far more 
complex than we previously thought. The power of self-study is to uncover assumptions, and we 
feel that the methodology was successful in that regard.  

From this experience, we find that it’s not enough to use simple ready-made solids such as 
wooden blocks when exploring 3-D concepts with PSETs. While they are sufficient to sort 
polyhedra from non-polyhedra, they lack the complexity necessary to lead to a deep discussion 
about related concepts (e.g., base, lateral face, edge, side, and apex) to make the properties of 
prisms and pyramids clear. Using simple polyhedra allows for ambiguity and assumption.  

Composite shapes and complex polyhedra (including platonic solids) have the power to cause 
disequilibrium (Piaget, 1985) and perturb the concept imagery that PSETs take for granted. The 
concept images that PSETs have of prisms and pyramids as well as related concepts are myriad 
and rich, but often go unarticulated. Opportunities to articulate assumptions create a space to 
make the language more precise and to create concept definitions that are more resilient.  

Supporting students in their examination and classification of polyhedrons has long-term 
implications at all levels. The act of composing and decomposing are central to the development 
of measurement concepts (Feikes, Schwingendorf, & Gregg, 2008). A robust understanding of 
prism and pyramid is important to the future study of measurement concepts such as volume and 
surface area. Many concept images are formed throughout the teaching episodes presented here. 
Specifically, using cross sections to make distinctions between bases and lateral faces on prisms 
has great promise when it comes time to develop formulas for volume.  

Furthermore, teaching the act of defining rather than a memorized definition (de Villiers, 
1998) creates a space to challenge and refine concept imagery that conflicts with more formal 
concept definitions. This, in turn, supports a more robust understanding of the concepts we are 
trying to define. Providing a myriad of activities that help students assimilate increasingly 
complex shapes into their schema for polyhedra, prisms, and pyramids challenges assumptions 
and opens up opportunities for nuance and precision in the way we are all able to collectively 
negotiate meaning and shared understanding. 

Both the theoretical frameworks by Piaget and Tall and Vinner have supported the design 
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and analyses of numerous mathematics education research projects in the last 40 years. In this 
study, we found them also to be helpful in illuminating our quest for understanding the nature of 
difficulties behind 3-D classification. One area for future research is to continue to explore the 
use of their constructs to understand the nature of student difficulty with other challenging topics 
related to 3-D solids, such as surface area and volume, for both PSETs and K-12 learners. 
Another study could focus more on the general conceptions of definition held by PSETs and the 
impact of curricular moves on those conceptions. Leikin and Zazkis (2010), looking across 
multiple research studies, argued that teachers’ concept images and their understanding of the 
notion of definition influence the ways in which teachers introduce mathematical content to their 
students. Working in conjunction with methods instruction, it would be important to extend the 
study into a field experience where PSETs were tasked with designing and/or implementing 
lessons on 3-D shapes with elementary students.  
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Definitions are fundamental to the work of geometry, but many students struggle with 
understanding terms, and fail to learn the role of definitions in mathematics. We explore how ten 
college-level students created and evaluated definitions for common geometric terms. Using the 
idea of concept image and definition, we hoped to learn about the links between how students 
think about geometric terms, how they define them, and how they evaluate definitions. We found 
that despite demonstrating strengths in their understanding, none of them evaluated definitions 
by constructing a biconditional argument. We suggest ways of addressing the issue. 

Keywords: Geometry and Geometrical and Spatial Thinking, Reasoning and Proof 

Definitions play an essential role in teaching and learning mathematics (Vinner, 2002; Zazkis 
& Leikin, 2008). They shape the relationship between a concept image and a concept definition 
and form an essential part of one’s knowledge structure that affects their thinking processes (Tall 
& Vinner, 1981). However, research has demonstrated that students experience difficulties in 
constructing and evaluating definitions (e.g., Zazkis & Leikin, 2008). The definitions that 
learners generate mirror their understanding of particular mathematical concepts (Zazkis & 
Leikin, 2008), and serve as a lens for examining their understanding of what a mathematical 
definition entails. Examples are illustrations of concepts and principles, and we view the act of 
defining and evaluating definitions similarly, which allows us to draw inferences about the 
participants’ knowledge of the concepts involved in the definitions. The purpose of this study is 
threefold: (1) to investigate the process of constructing and evaluating definitions for basic 
geometrical concepts, (2) to investigate concept images of college students for these concepts, 
and (3) to analyze the relationship between college students’ concept images with how they 
construct and evaluate definitions.  

Theoretical Framework 
Three tools framed our research; concept image, concept definition, and proof schemes. 

Hershkowitz (1990) described types of behaviors that explain the quality of the concept images 
an individual has. We used two in this study, limited and complete concept image. Individuals 
with a limited concept image make judgments based on a few prototypical examples plus some 
properties drawn from those examples. Whereas, individuals who can provide a wide variety of 
examples and all the important properties of these examples are considered to have a complete 
concept image. Images can either be static or dynamic. To have a dynamic image of rectangle, 
for example, would mean to have an image of all the possible variations in rectangle that still 
maintain the defining properties. Whereas having a static image includes only few examples of 
the figure and being unaware of how changes to one image might lead to another. We consider 
this type of image to be related to Harel and Sowder’s (1998) transformational reasoning.  

Only definitions by property are discussed because they were the only types of definitions the 
participants created. Zaskis and Leikin (2008) evaluated participants’ definitions using a 
framework, with three criteria: accessibility and correctness, richness, and generality. We 
adopted these criteria except accessibility. The correctness of a definition means that the 
definition includes a set of necessary and sufficient conditions. Richness addresses whether the 
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definitions include properties other than the well-known properties (i.e. sides and angles), and 
targets whether the definition shows signs of a robust understanding. Generality refers to whether 
the definition relates to general objects of the concepts being defined rather than specific ones, 
and is similar to de Villiers’s and colleagues (2009) meaning for economical definitions. 

Definitions are arbitrary, and it is valuable to have a diversity of equivalent definitions 
because one can chose which definition best suits their problem solving interests (Borsai, 1992; 
Sinclair, et al., 2012). Having a rigid understanding of definitions might imply that the individual 
sees definitions as given a priori and fails to see the role that humans play in creating them. By 
equivalent definitions, we mean logically equivalent where one must show that a biconditional 
relationship exists. However, we examined the types of reasons the participants gave using Harel 
and Sowder’s (1998) taxonomy of proof schemes, where a proof scheme is a way of thinking 
about how to ascertain or persuade for an individual or a community. 

Methodology 
In this section we describe the participants, data sources, and the analysis of the data. Ten 

college students participated in the study. Nine were secondary mathematics education or 
mathematics majors, one was an accounting major with a minor in mathematics. They were 
given between four and five geometry terms and asked the following questions in sequence. Can 
you draw an example of the term? They were continually asked for a new, different example 
until they described aspects of the image they were changing. We hoped by asking these 
questions we would get a sense of the images that students had for the terms, how diverse those 
images were, and whether or not their images were dynamic. Next, we asked them to define the 
term in as many ways as they could. This was followed by asking them if are there any 
properties they felt were important for someone to know about that were not included in their 
definition(s). With these questions we hoped to get a sense of the types of definitions they had 
for the terms in regards to the definitions correctness, richness, and generality. Finally, they were 
presented definitions and asked to decide if the definitions were valid or not and to explain their 
reasoning. The interviews were recorded with one camera capturing the participant’s work and 
another camera capturing the interaction. Any work that was performed was scanned, and thick 
descriptions were created that included, transcripts, work, drawings, gestures, and tone. 

To analyze the data, we independently watched each participant’s video, collecting all the 
images they created for each term and their names. Each definition the participant gave was 
coded for correctness, richness, and generality. This gave us a sense of their concept image. 
Finally, we coded the participants’ reasons for accepting or rejecting the alternative definitions 
using proof schemes. We met to discuss the summaries of our work and resolved disagreements 
collaboratively. After doing this for all of the participants’ videos, we met to discuss key themes. 
After elaborating our meaning for these themes we went back through and again watched one 
participant’s interview at a time to categorize their work by these themes.  

Results 
In this section, we describe the participants’ concept images and definitions as well as how 

they evaluated definitions in the sections that follow. 
Participants’ Concept Images 

All of the participants had a complete concept image for the majority of the terms. However, 
we noted four relevant features. First, all the participants were consistently able to create an 
example of each figure in the class with one exception explained below. Second, almost all 
demonstrated evidence of thinking hierarchically and transformational reasoning (Harel & 
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Sowder, 1998). For example, Sally drew the black parallelogram in Figure 1(a), marked the 
angle and said she could continually draw new, different examples by changing the angle, but 
keeping the sides the same length. When asked to draw an example of what she meant, she drew 
the red parallelogram. The subtle, but important, distinction between what Sally claimed to be 
doing and the image she drew is captured in Figure 1(b). Similarly, many participants had 
difficulties creating the images they described, and when they did create the images in their 
minds, the images did not behave the way they drew them. So, although they demonstrated 
transformational reasoning, their images could misrepresent their thinking.  
 

 
Figure 1. (a) Sally’s drawing to demonstrate how to dynamically change angle measure while 

maintaining side lengths in a parallelogram. (b) Researchers’ construction of Sally’s description. 

The exception described above came when the participants were asked to draw a generic 
term like quadrilateral. Almost all participants consistently drew a special case as their first 
image, and continued to draw special cases. As Sally put it, “when I’m asked to draw a triangle, I 
always just draw a right triangle.” Because the participants regularly reasoned empirically, their 
specialized images left them open to verifying false claims, and making false claims. For 
example, it was not uncommon for them to claim a median of a triangle is also perpendicular to 
the opposite side because the shapes they reasoned with were specialized.  
Participants’ Concept Definitions 

We asked the participants for several definitions, but only three participants were able to 
create multiple definitions. And in these cases, the definitions were not different. For example, 
James originally defined a rectangle as a quadrilateral with four right angles. When asked for 
another, different definition, he simply swapped quadrilateral for parallelogram. In total, 50 
definitions were created and only four were invalid. Another fifteen definitions failed to meet 
necessary conditions because the participants used terms like shape or figure instead of polygon 
or quadrilateral. We considered these omissions to be minor. While evaluating the following 
definition for triangle – a triangle has 3 sides and 3 angles – Cameron said, “It would help if 
there was some other information … like it’s a polygon … but that’s probably understood.” We 
felt that the participants were quite skilled at creating at least one definition. Eighteen of them 
not only meet necessary and sufficient conditions, but were also economical.  
Evaluating Researcher-Generated Definitions 

Given their rich concept images and ability to create definitions, we felt the participants 
would do well at evaluating definitions. They evaluated 38 definitions in total, seven incorrectly, 
and three correct justifications used invalid reasons. Thus, the participants were inaccurate when 
evaluating definitions over 25% of the time. Given their success in the other areas, we wondered 
what the cause was.  

The participants evaluated definitions three ways, using non-examples, examples, and 
arguments. To use non-examples, the participants tried to imagine a figure that was a non-
example of the term that fit the properties used in the researcher-generated definition. There were 
two different ways that they evaluated definitions using examples. For the first way, they 
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imagined examples and checked whether the term had the properties in the researcher-generated 
definition. James, for instance, was evaluating the definition, a parallelogram is a quadrilateral 
with diagonals that bisect each other, when he said, “Yeah, I think so. I’m just thinking by 
looking at these [pointing to the pictures of parallelograms he had drawn]. Yeah, they bisect each 
other”. For the second way, they imagined what figure(s) could be created if they drew an 
example with the properties in the researcher-generated definition and checked to see if those 
examples matched their concept image. For example, Eve drew several examples that fit the 
following definition: a parallelogram is a quadrilateral that has a pair of opposite sides that are 
parallel and equal in length. Then said, “Anything you could give would fit the description of a 
parallelogram.” Interestingly, none of the participants used both methods when evaluating the 
definitions. Had they done so, they would have, at least empirically, proved the biconditional 
nature of the definition. The participants’ arguments additionally only proved the conditions in 
the researcher-generated definition produced the conditions in their definition. Again, not 
proving the biconditional nature of the definition. We explore the potential reasons for this next. 

Discussion 
Students need to take a greater role in the process of creating and evaluating definitions 

(Borsai, 1992; Vinner, 2002). Kobiela and Lehrer (2015) showed that when 6th-grade students 
were given these opportunities they learned about the concepts and about the process of creating 
a definition. Evaluating definitions, valid and not, presents an opportunity for valuable and 
difficult mathematical work. By examining non-definitions, students get the opportunity to learn 
about how definitions are created. Examining alternative definitions provides students with an 
opportunity to work in an authentic mathematical environment, and see that some, but not all, 
properties meet necessary and sufficient conditions. Moreover, it provides students with an 
authentic opportunity to use proof; something the participants did spontaneously and regularly. 
Finally, students will have the opportunity to sharpen their own understanding of the terms as 
alternative definitions help students make connections between terms they see as distinct, and to 
see distinctions between terms that are similar.  
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EXPLORING TRIGONOMETRIC RELATIONSHIPS: IS IT A FUNCTION? 
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We examined conceptual understandings of preservice secondary mathematics teachers as they 
reasoned about chord length and arc length in a directed-length representation related to the 
sine function. We characterized the ways in which our participants understood the functional 
relationship between the geometric objects by describing various aspects of their concept 
images, and the progression of the images over time. Concept image components progressed 
from less useful to more useful, eventually aligning with components of a standard definition of 
function and key features of the sine function.  

Keywords: Reasoning and Proof, Geometry and Geometrical and Spatial Thinking, Teacher 
Education-Preservice 

Understanding trigonometric functions is important as that understanding is “a pre-requisite 
for understanding topics in Newtonian physics, architecture, surveying, and many branches of 
engineering” (Weber, 2005, p. 91). However, practices for teaching trigonometry have led to 
difficulties including “underdeveloped angle measure understandings” (Moore, 2014, p. 103) as 
well as poor connections to the unit circle (Moore, LaForest, & Kim, 2016). Even with a 
knowledge of right-triangle trigonometry, students may not be able to define function, a 
foundational concept in mathematics, nor know how to describe sine as a function (Weber, 
2005). Clement (2001) described common perceptions of function including: (a) a relation that 
passes the vertical line test; (b) a machine that gives an output for an input; and (c) a 
correspondence following a clear pattern, rather than arbitrarily matched values. Many believe 
functions should be: (a) given by a rule, (b) continuous, and (c) one-to-one (Clement, 2001).  

Weber (2005) and Moore (2014) concluded that using quantitative reasoning was a 
promising avenue for learners to make sense of and articulate properties of the sine function. 
However, in Weber’s study, students used measurements, rather than focusing on quantities. 
Hertel and Cullen (2011) found that preservice teachers (PSTs) were able to make sense of 
trigonometric relationships when using a directed-length representation of the basic functions. In 
a directed-length representation, a vector (i.e., with direction and length), related to a circle arc, 
represents a trigonometric function. We build on the work of Hertel and Cullen by considering 
PSTs’ sense making using directed lengths as objects or quantities about which to reason. 

This study focused on the first in a sequence of learning activities in which PSTs reasoned 
quantitatively about two dynamically changing objects in a circle, and whether those objects 
could be considered inputs and outputs of a function. Our work was guided by the research 
question: Which aspects of PSTs’ conceptual understanding are activated when exploring 
directed-length representations related to the sine function?  

Theoretical Perspectives 
The design of our instruction was informed by quantitative reasoning. Thompson (1990) 

defined a quantity as “a quality of something that one has conceived as admitting some 
measurement process. Part of conceiving a quality as a quantity is to explicitly or implicitly 
conceive of an appropriate unit” (p. 5). Quantities in our study were related in a single diagram, 
implying the presence of a common unit. In our analysis, we distinguished between PSTs’ 
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concept images and the concept definition (Moore, 1994; Tall & Vinner, 1981; Vinner & 
Hershkowitz, 1980). One’s concept image “refers to the set of all mental pictures that one 
associates with the concept, together with all the properties characterizing them” (Moore, 1994, 
p. 252). Concept definition “refers to a formal verbal definition that accurately explains the
concept in a non-circular way, as might be found in a mathematics textbook” (Moore, 1994, p.
252).

Methods 
The participants in this study were 23 PSTs, working in groups, who had completed at least 

60 hours toward a degree in mathematics with a focus on secondary education. The context of 
the study was a semester-long course focused on technology in mathematics education. In this 
report, we discuss data from the first week of a 6-week instructional sequence on trigonometry. 

The instructor displayed an arc and a chord, in Geogebra (see Figure 1). Both objects 
changed as point C rotated counterclockwise around the circle. The instructor gestured to the 
animated model and asked “Is this a function?” 

Figure 1: Covarying quantities as point C varies. 

Results 
All groups traversed a similar path in which the following aspects of their concept images 

were activated: (a) the vertical line test, (b) function matching, (c) independent and dependent 
variables, (d) univalence, and, finally (e) function matching revisited: the sine function. PSTs are 
identified by their group. For example, StudentA-1 is person number 1 in group A. Text in 
parentheses, describes gestures or tone; text in brackets offers contextual clarification. 
The Vertical Line Test 

PSTs in groups A and C initially attempted to use the vertical line test to determine whether 
the relationship constituted a function, indicating that this test was part of their concept image of 
“function.” However, in this situation, it was not reasonable to use the vertical line test, which 
would require interpreting the dynamically changing components of the circle as “graphs” on a 
coordinate plane. StudentC-3 claimed the chord isn’t a function because “the vertical line goes 
through the whole thing.” Eventually, StudentC-2 said the vertical line test cannot be used as a 
criterion for determining whether the quantities are related by a function “because we’re not 
dealing with a coordinate plane. You can only use vertical lines for a coordinate plane.” 
A Collection of Known Functions 

Students in groups B and C seemed to reason that if they could map the situation they were 
investigating to a known function, then they could conclude that the situation they were 
discussing must represent a function. For example, StudentB-1 described the behavior of the 
dynamic diagram components as a parabola, noting “…as the length of that’s increasing it gets 
bigger and then smaller and bigger again…”  

The next concept image components, discussed by all three groups, were independent aspects 
of the concept definition: the identification of independent and dependent variables and the 
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univalence requirement, that is, the requirement of one unique output for any input (Even, 1993). 
Independent and Dependent Variables: Quantifying Length and Angle 

To identify the independent and dependent variables, PSTs considered the length of the blue 
chord and length or angle of the red arc as quantities. StudentC-1 asked, “What is your output 
when you’re talking about the chord?” To which StudentC-2 stated “It could be the length of the 
chord. Because the length of the chord depends on the position.” StudentC-1 noted a connection 
between the position of point C and the length of the arc, “So given the length of the arc is the 
length of the chord?” and later clarified “Well, that place (pointing to animated diagram) is also 
in reference to the length of the arc and then it repeats as soon as you hit 360 (rotated his finger 
in a circle). StudentC-2 also made reference to an angle of 360˚, but it was not clear whether the 
PST was referring to the arc angle or the measure of the associated central angle.  
Univalence 

While clarifying independent and dependent variables, PSTs explored ramifications of 
repeated value situations. In so doing, PSTs focused on univalence and struggled to distinguish a 
function from a one-to-one function. StudentC-2 wanted to “restrict it to an interval” from 0 to 
π/2 to ensure the relationship was a function. StudentC-1 challenged the limitation, implying 
repeated outputs are allowed, by asking “Why isn’t it a function all the way to π?” StudentC-2 
responded “Because once we go all the way to π [past π/2] the chord starts shrinking again and 
we go back to the lengths that we’ve already had.” StudentC-1 pointed out that “it’s a different 
position on the circle” and StudentC-4 then explained “it would still be a function. It won’t be 
one-to-one, but it will be a function.”  

After deeming the relationship a function on [0,π], the group considered whether more than 
two of the same outputs was acceptable, as when point C was more than halfway around the 
circle. To avoid dealing with additional repeated outputs, StudentC-1 proposed the idea of 
directed length, “Oh yeah, you’re technically doing negatives. Like an opposite. You could 
interpret it [the blue chord’s repeated length] as the opposite ‘cause that length would be like 
flipped over.”  
Function Matching Revisited: The Sine Function  

StudentB-1 claimed the relationship between objects constituted a sine function. This 
conclusion followed mention of oscillation, unit circle, and key ordered pairs. StudentB-1 said 
each key input value (0, π/2, π, 3π/2, and 2π) and stated or nodded for the corresponding output 
values. Likewise, StudentC-1 followed up on his earlier conjecture that the chord could be signed 
(i.e., positive when the arc was between 0 and π and negative when the arc was between π and 
2π). StudentC-1 concluded “This is like (moved his finger counterclockwise around an 
imaginary circle)… Right?…Wait a second.… Hold up, this is like the sine function? You start at 
zero and the length gets longer up to π/2… and then it goes back down. This is like sine!”  

PSTs concluded that the relationship between the arc and chord could be conceived of as a 
function by considering quantities (i.e., the length of the arc and chord) and labeling them as 
independent and dependent variables. Their work sorting independent and dependent variables 
also resulted in articulating differences between the univalence requirement for functions and the 
criteria for one-to-one functions. However, most PSTs had not yet recognized that unless they 
only considered directed length, they were dealing with an absolute value. And no PST had 
realized that the function based on the full chord was actually twice the sine function. 

Discussion 
As PSTs explored quantitative relationships we noted two conclusions. First, PSTs engaged 

in reasoning and sense making. Like PSTs in Even’s study (1993), our PSTs had a preference for 
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the vertical line test. But our PSTs identified limitations of this test, the importance of dependent 
and independent variables, as well as differences between one-to-one and univalence. Second, as 
we tracked concept image components activated as PSTs determined whether or not a situation 
could be a function, we noted a path that lead them away from a less helpful aspect of a concept 
image (i.e., vertical line test) toward more effective components linked to a concept definition.  

Throughout this exploration, PSTs determined the relationship between the arc and the chord 
could be conceived of as a function by considering each as quantities and noting that length was 
the quality of the object (Thompson, 1990) that was relevant. We see this move toward precision 
as important in the PSTs’ development of more robust conceptual understanding of trigonometric 
functions and functions in general.  

Although we hoped that representing the angle as an arc of a circle would help PSTs 
negotiate a geometric definition of sine, it was clear PSTs still struggled with representations of 
angle (Akkoc, 2008), using radian and degree measure interchangeably. Likewise, they appear to 
have conflated central angle, arc angle, and arc length, without noting the need to consider the 
magnitude of the circle’s radius. 

After the PSTs reached consensus that the relationship between the arc and the chord was 
indeed a function, some PSTs conjectured it was the sine function. For those PSTs, the 
recognition of familiar aspects of their concept images of sine (e.g., embedded in circle, 
oscillating behavior, known ordered pairs), may have led to the conjecture. In that moment, those 
PSTs may have added to their concept image of sine as they encountered a function defined by a 
relationship between a circle’s arc and related chord. Having reorganized their concept image of 
the sine functions in this way, perhaps the PSTs were more ready to consider a directed-length 
definition of sine, build connections among this definition, the right triangle definition, and the 
unit circle definition, and use that connected understanding as a potent tool for making sense of 
all trigonometric functions. 
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Symmetry is a foundational geometric concept that receives minimal attention in early childhood 
mathematics. Differing informal play experiences involving symmetry exploration may 
contribute to gender differences in symmetry understanding. This study sought to explore 
whether boys’ and girls’ performance on symmetry tasks differs after a symmetry software 
intervention. A significant gender effect benefiting boys was found on post-test rotation tasks but 
not on reflection or translation tasks, controlling for pre-test scores. A gender effect was also not 
significant for identifying or explaining symmetric transformations at post-test. The findings 
have implications for learning opportunities and modes of assessment for all children. 

Keywords: Gender, Geometry and Spatial Thinking, Early Childhood Education, Technology 

Symmetry is present in everyday life and is a theme in children’s play and creative activities. 
Despite children’s natural interest in symmetry, learning standards addressing symmetry do not 
appear in the Common Core State Standards until grade four (NGACBP, 2010). A software 
program was developed to expand young children’s understanding of three symmetric 
transformations—reflection, translation, and rotation. The purpose of this study is to explore 
whether there were differences between boys’ and girls’ symmetry understanding following the 
symmetry software intervention. This study sought to answer the following questions: (1) Do 
boys and girls differ in their ability to accurately create symmetric transformations after the 
intervention when controlling for pre-intervention symmetry aptitude (measured by the 
Symmetry Graphical Assessment) and treatment status? (2) Are there differences between boys 
and girls in their identification and explanations of symmetric transformations, as measured by 
the Video Transformation Task, after the intervention when controlling for treatment status? 

Theoretical Perspectives 
This research is based on the theoretical perspectives of constructivism, socio-cultural theory, 

and, to a lesser extent, the idea of intellectual honesty. The software and study design were 
informed by constructivism—the theory of learning that posits that learners do not simply absorb 
information but instead actively construct knowledge from their experiences (e.g., Piaget, 1970). 
The software functions as a “phenomenaria” (Perkins, 1991), intentionally designed to allow 
children to manipulate and explore symmetric transformations. Vygotsky’s (1978) socio-cultural 
theory, especially the idea that social interaction is key to learning, was embedded into the study 
design with a research assistant (RA) facilitating exploration and prompting the child to 
verbalize observations. The software served as the “more knowledgeable other” (Vygotsky, 
1978) by providing definitions and examples and offering feedback and solution strategies. The 
introduction of the mathematically complex topic of symmetric transformations to young 
children was influenced by Bruner’s (1960) idea that “any subject can be taught effectively in 
some intellectually honest form to any child at any stage of development” (p. 33).  

Because geometry is often taught in a cursory manner in early childhood (Clements, 2004), 
children’s symmetry experiences often occur in informal contexts. Gender differences benefiting 
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boys in symmetry-related spatial tasks such as mental rotation have been documented (e.g., 
Maeda & Yoon, 2013), but gender differences may be attributable to socio-cultural or 
experiential factors (e.g., Fennema & Sherman, 1977). For example, symmetry is a recurring 
characteristic of children’s block building (Seo and Ginsburg, 2004), but boys engage in block 
play more frequently than girls (Kersh, Casey, & Young, 2008). Though certain play experiences 
may help children develop symmetry understanding, gender differences in engagement in these 
types of play may contribute to gender differences in symmetry understanding. 

Methods 
Materials: Symmetry Software 

A computer program was designed to teach reflection, translation, and rotation to young 
children. Cognitive principles for the design of mathematics software for young children guided 
software development (Ginsburg, Jamalian, and Creighan, 2013). Visual and audio feedback 
identify mistakes and provide solution strategies to the users.  
Research Design and Procedure 

The study was conducted using a pre- and post-test between-subjects randomized 
experimental design with two conditions: the treatment condition, which consisted of nine 
symmetry software sessions (three each for reflection, translation, and rotation), and the control 
condition, which consisted of nine sessions using a non-symmetry-focused mathematics 
software. Experimental group software activities included guided explorations (during which an 
RA prompted the child to verbalize observations), viewing instructional videos with real world 
examples, and completing tasks that involved placing shapes on the screen to create the specified 
symmetric transformation and receiving feedback from the software.  
Setting and Participants 

The study was conducted in an urban public elementary school in the Northeastern US. The 
participants included 86 children from the school’s first and second grade classrooms—43 were 
randomly assigned to the experimental group (24 girls and 19 boys) and 43 were assigned to the 
control group (21 girls and 22 boys).  Participants’ ages ranged from 5.8 to 7.8 years.  
Measures 

Symmetry Graphical Assessment. The Symmetry Graphical Assessment, a paper-and-
pencil instrument designed by the primary investigator (PI) to measure students’ ability to 
generate reflections, translations, and rotations, was administered at pre- and post-test. The 
instrument included explanations and examples for the symmetries to ensure that it assessed 
symmetry concept understanding rather than familiarity with relevant vocabulary. Two RAs 
were trained to implement the pre-/post-test scoring scheme. Inter-rater reliability, estimated 
using Cohen’s kappa, was equal to 0.878. 

Video Transformation Task. The Video Transformation Task was designed by the PI to 
measure participants’ ability to identify and explain reflection, translation, and rotation and was 
implemented at post-test. Participants watched six short videos of symmetric transformations and 
were asked to identify the symmetry and explain their reasoning. Identification of the symmetric 
transformation in each video was scored for accuracy (0 or 1). Explanations were coded for the 
presence of words or phrases indicating conceptual understanding of the symmetries. 
Explanations were assigned a score of 1 for indicating conceptual understanding or 0 for not 
indicating conceptual understanding of the symmetry. One RA coded students’ explanations for 
indicating conceptual understanding of the symmetric transformation. Inter-rater reliability 
between the coding by the RA and master coding by the PI, estimated using Cohen’s kappa, was 
equal to .90. 
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Results 
Post-Test Outcomes 

Treatment group girls achieved, on average, higher reflection task scores than boys in the 
same group; however, treatment group boys achieved higher average scores on translation and 
rotation tasks than girls in the same group. Similar gender patterns on post-test reflection, 
translation, and rotation tasks were observed in the control group (see Table 1). 

Table 1: Descriptive Statistics on the Post-Test Outcomes by Group 
Post-test outcome Treatment group Control group 

 Boys (N = 19) Girls (N = 24) Boys (N = 22) Girls (N = 21) 
 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Reflection 53.57 (16.99) 56.93 (18.68) 49.19 (19.40) 51.43 (16.82) 
Translation 60.28 (20.37) 55.49 (25.36) 47.10 (19.00) 45.02 (21.31) 
Rotation 58.70 (12.87) 51.60 (16.11) 61.53 (13.84) 53.11 (19.59) 

 
A MANCOVA model was estimated to test for the joint effect of treatment condition and 

gender on the three outcomes, controlling for pre-existing abilities in the outcomes as measured 
at pre-test. MANCOVA model assumptions for multivariate normality of the outcomes and 
homogeneity of variance covariance of the outcomes among groups were met. A statistically 
significant effect for treatment condition (Pillai=0.17, F=5.39, p=.002) and gender (Pillai=0.09, 
F=2.73, p=0.049) on the three outcomes was observed, controlling for pre-test score. On average, 
boys’ scores were 1.24% higher on reflection tasks, 5.38% higher on translation tasks, and 
10.19% higher on rotation tasks than girls. Separate ANCOVA models on each outcome showed 
a significant gender effect on rotation tasks [F(1, 82)=4.56, p=0.035], but not reflection [F(1, 
82)=2.64, p=0.108] or translation tasks [F(1, 82)=0.09, p=0.76]. 
Video Transformation Task Outcomes 

Descriptive statistics showed that girls in the treatment group achieved, on average, higher 
scores in the identification and explanation of symmetries than boys in the same group on the 
Video Transformation Task (see Table 5). For control group participants, boys achieved higher 
average scores on accurate symmetry identification than girls, but girls achieved higher average 
scores on explanations of symmetries than boys. 

A MANOVA model was estimated to test the joint effect of treatment condition and gender 
on accuracy and explanations in the video transformation task. MANOVA model assumptions 
for multivariate normality of the outcomes and homogeneity of the variance covariance matrix 
among groups were met. There was a statistically significant treatment effect on accuracy and 
explanations [Pillai=0.27, F(1, 81)=14.90, p<0.001,], but a gender effect was not significant 
[Pillai=0.04, F(1, 81)=1.56, p=.22]. Separate ANOVA models were estimated for accuracy and 
explanations. The results show a significant effect on accuracy scores for treatment [F(1, 
82)=17.86, p <0.001] but not for gender [F(1, 82)=0.03, p =.86.]. Similarly, the results show a 
significant treatment effect on explanation scores [F(1, 82)=27.71, p<0.001] but not a gender 
effect [F(1, 82)=1.88, p=.17]. 
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Table 2: Descriptive Statistics on the Video Transformation Task Outcomes by Group 
 Treatment group Control group 
 Boys (N = 19) Girls (N = 24) Boys (N = 21) Girls (N = 21) 
 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Accuracy 4.63 (1.26) 4.75 (1.54) 3.41 (1.74) 3.19 (1.44) 
Explanations 3.95 (0.97) 4.42 (1.21) 2.62 (1.32) 2.90 (1.51) 

Discussion and Scholarly Significance 
After a symmetry software intervention, a significant gender effect benefiting boys was 

found on post-test rotation tasks but not on reflection or translation tasks, controlling for pre-test 
scores. A gender effect was not significant for identifying or explaining symmetries. Boys’ more 
accurate performance on rotation tasks at post-test is in line with existing literature (Maeda & 
Yoon, 2013). However, even though boys have more play experiences that lend themselves to 
symmetry exploration than girls, boys and girls were similar in their identification and 
explanation of reflection, translation, and rotation and in their performance on reflection and 
translation tasks. Boys’ and girls’ similar performance on certain symmetry tasks indicates the 
importance of testing for aptitude in different types of symmetry content.  

The presence of a significant gender effect on post-test rotation items, and the absence of a 
significant gender effect on accuracy and explanations on the video transformation tasks, points 
to the importance of multiple means of assessment for young children. While some children may 
feel confident taking a paper-and-pencil task, others may feel less comfortable with the written 
format. Including verbal tasks in assessments for children provides an important opportunity to 
reveal understanding not observed in traditional written assessments. 

The absence of significant gender differences on almost every measure in the study indicate 
that teaching symmetry concepts to young children has the opportunity to benefit both girls and 
boys—building on their natural interest in symmetry and preparing them for success in higher 
level mathematics and career opportunities both in and out of mathematics. 
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MEASUREMENT AND CONSERVATION OF LENGTH: A TEACHING 
EXPERIMENT WITH TONY AND SAM 
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The way measurement is taught in elementary school differs from the Piagetian concept of 
operational measurement and conservation of length. The purpose of this study is to investigate 
how two first grade students conceptualize measurement and conservation of length. Results 
show that although both students began at the same Piagetian stage, one student progressed 
further and achieved operational measurement and conservation of length. Differences in each 
student’s thinking are analyzed and insights to future research are offered.  

Keywords: Elementary School Education, Measurement, Learning Trajectories, Standards 

The concept of measurement and the process of measuring are connected, but different. 
When students construct operational measurement, they internalize how to coordinate sub-
division and change of position (Piaget, Inhelder, & Szeminska, 1960/1981). Measuring however 
occurs when students compare objects to see which one is longer or taller; examples of 
measuring include directly comparing objects, relating object lengths with nonstandard items, or 
reporting standardized units from a ruler (VDOE, 2016). This examination mirrors Lamon’s 
(2007) findings that demonstrate that some students are not being taught the concept of 
measurement, but rather the process of measuring. This inhibits students from learning that some 
objects cannot be measured, which stunts their conceptual understanding of measurement and 
rational numbers. National standards, however, have kindergarteners measure by comparing 
objects before first-graders iterate a tool the length of an object (CCSSI, 2018; NCTM, 2000). 
This suggests a focus on sub-division and change of position which helps students develop 
measurement. The purpose of this paper is to investigate how two first-grade students 
conceptualize measurement and conservation of length. 

Conceptual Framework 
When a student coordinates sub-division and change of position, Piaget et al. (1960/1981) 

believe conservation of length is attained, resulting in operational measurement. Three stages 
precede operational measurement. In Stage 1, four to five-year olds compare objects with visual 
and perceptual estimates. Students five to six years old manually transfer objects side by side for 
comparisons in Stage II. More sophisticated students at this stage use their body (e.g., hand) to 
compare objects. Between Stage II and III, six to seven-year olds compare lengths intuitively 
with tools, but can only compare the tool to each object, not between both objects. Finally, in 
Stage III students seven and older develop conservation through operational measurement and 
can use tools to compare between objects. These stages suggest students in first grade may 
develop operational measurement and conservation of length. National standards (e.g., CCSSI, 
2018; NCTM, 2000) support this argument, but some state standards (e.g., VDOE, 2016) fail to 
address the development of conservation of length through operational measurement, implying 
students may learn measuring without learning measurement.  

Methods 
Sam and Tony (pseudonyms) were two first grade boys who attended a public elementary 
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school and had similar demographics. Three, fifteen-minute clinical interviews (Clement, 2000) 
using tasks from Piaget et al. (1960/1981) were conducted to determine how Sam and Tony each 
conceptualized measurement, conservation of length, and their zones of potential construction 
(ZPC; Norton & D’Ambrosio, 2008). From this data, individual constructivist teaching 
experiments (Steffe & Thompson, 2000) were designed consisting of six, fifteen-minute teaching 
episodes during which hypotheses were made and later tested. Tasks from Everyday 
Mathematics, Grade 1 (McGraw Hill, 2014) were chosen based on their ZPC and research 
hypotheses. Sam’s and Tony’s responses were compared against Piaget et al.’s (1960/1981) 
stages to build a second-order model of conceptualization of measurement and conservation of 
length. Each teaching episode was recorded, transcribed, and coded for observations according to 
Piaget et al.’s stages. Conceptual analysis was used to determine what mental structures Sam and 
Tony used while performing each task (Thompson, 2008), which afforded a refined second-order 
model of how Sam and Tony conceptualized measurement and conservation of length.  

Results 
Sam 

The preliminary second-order model proposed during Sam’s clinical interviews was 
consistent with Stage IIA for conservation (Piaget et al., 1960/1981). He could compare 
endpoints of objects visually or in activity with his fingers, but never realigned the moved 
objects to show length was conserved, and could not explain curves have length. He did 
manually move a tower he built next to another tower to compare their heights. He could not use 
a common measure to compare the lengths of objects. Sam also showed no desire to sub-divide a 
whole or change a tool’s position along the whole, counting the moves between endpoints.  

Sam began the first teaching episode using manual transfer to measure a table side with a 
string of Unifix cubes. He could not however measure his toys with tools that were shorter or 
longer than the toy because the tools were “too long” or “too short.” If the tools did not exactly 
align with the toy’s length, Sam rounded his measure up. For example, when a pencil was longer 
than his transformer, Sam reverted to visual transfer and guessed the length of the transformer 
was one pencil long. During another episode, Sam measured the perimeter of a table with a 
pencil, but repeatedly lost count and ignored when the pencil was longer or shorter than the 
table’s edge. Subsequent episodes were used to practice counting and the motor skills involved 
in change of position. Sam still struggled to count by ones while pointing to each count, and 
consistently lost his count on tasks. Because he regularly did not align his countable unit with the 
endpoint of the measured object and put his finger between units without noticing it took up 
space, episodes three and four focused on sub-division. After much practice, he accurately 
measured the height of a table and sofa with a marker, and did not lose count. Since Sam 
improved in counting, motor skills, and sub-division, episode five entailed comparative length 
tasks. Sam again reverted to visual transfer to relate the lengths of objects, and only used a 
paperclip to measure when prompted. Sam ended the teaching episodes being intuitively able to 
state that a pen moved to a different location would not change length.  

Sam’s re-assessment of Piaget et al.’s (1960/1981) tasks from the clinical interviews, showed 
his behaviors were slightly more sophisticated than Stage IIA. He inconsistently accounted for 
the lengths of curves between a straight and curvy pipe cleaner using visual transfer. He claimed 
the lengths were the same even though “one is bent and curled around so it’s shorter.” Similarly, 
he knew two parallel rows of toothpicks had the same length because he counted them, but when 
one row was zig-zagged he said the straight row was longer without counting. When assessing 
the lengths of two identical parallel pipe cleaners with one moved forward, Sam tried measuring 
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the lengths with a paperclip, but lost count and concluded one was longer. He then ignored this 
finding and noticed the moved pipe cleaner was “longer” on one side than the unmoved pipe 
cleaner. Finally, when comparing the heights of a tower he built to one prebuilt on a higher 
surface, he used manual transfer to compare the towers until satisfied their heights were equal. 
He knew the uneven surfaces made a difference in the tower heights, but when his tower was 
moved back to the lower surface, he added blocks to make the heights “equal.” 
Tony 

The preliminary second-order model proposed during Tony’s clinical interviews was 
consistent with Stage IIA for conservation (Piaget et al., 1960/1981).  He based measurements on 
visual estimates, focused on the endpoints of objects and used his fingers to compare lengths. He 
also used manual transfer to relate objects, but his explanations suggested he was beginning to 
see measurement as the intervals between two endpoints. 

During the first episode, Tony measured his shoe with his hand, reporting it as seven hands 
long, but recognized this was incorrect and used eight Unifix cubes instead. This suggested he 
was transitioning to Stage IIB. Tony consequently practiced iterating a tool to determine lengths 
and compared objects using paperclips. He struggled at first using a shorter or longer tool but 
improved. When asked to measure a paper strip, Tony resisted using a longer pencil as his unit, 
but then decided the paper strip was half a pencil. Tony needed support with fractions since he 
independently noticed tools either did not exhaust the whole or surpassed it. It was hypothesized 
that part-whole relationships (Norton & McCloskey, 2008; Steffe, 2010) were in his ZPC. 

Tony had no prior knowledge of fractions at this point in the year. Using Cuisenaire rods, he 
developed an understanding of halves, thirds, and fourths, as exemplified by his explanation: 
“1/3 is like if there’s one whole piece and there’s 3 pieces and these are the same, that’s 1/3.” In 
another task, he showed that four individual units made up the whole, demonstrating a part-
whole fraction scheme (Norton & McCloskey, 2008; Steffe, 2010). Tony was also able to 
partition a whole into units, and understood unit pieces needed to be equal in size. For example, 
Tony made two approximate “cuts” to a pencil, but then realized the pieces were not equal and 
adjusted his cuts. Tony verified each piece was identical to the others, indicating he was able to 
equipartition a whole to determine an iterable unit (Steffe, 2010), and knew he could iterate any 
one of them to recreate the whole (Norton & McCloskey, 2008). Tony further demonstrated his 
fraction scheme by drawing lines to segment a paper strip into thirds on one side and fourths on 
the other. This indicated partitioning, disembedding, and iterating, giving way to an 
equipartitioning fractional scheme in activity (Norton & McCloskey, 2008; Steffe, 2010). Tony 
applied this knowledge to iterate a tool, and then partition the tool in the last iteration to 
determine what fractional piece of the tool was left over. When measuring a pencil with 
paperclips, he estimated six, then determined it was five and one third paperclips. This suggested 
Tony had progressed to Stage IIB. Through explorations, Tony learned curves have length, 
making curved objects longer than straight ones. For example, he measured a straight path of 6.5 
paperclips and a curved path of 9.5, and knew, “9.5 is bigger than 6.5 so it [the curved path] is 
longer.” He also learned that once objects have a measurement, length is conserved.  

Tony’s re-assessment of Piaget et al.’s (1960/1981) tasks, showed he progressed beyond 
Stage IIA. He knew a curved pipe cleaner would be longer than a straight one due to the curves, 
and justified his answer with a paperclip. He understood the length of the pipe cleaner would not 
change despite its shape, and that two equivalent pipe cleaners would be the same length, no 
matter how they were arranged. Tony then counted the number of toothpicks to determine the 
two rows were equal and knew zig-zagging made no difference. He was initially confused when 



Geometry and Measurement 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

270	

one toothpick was broken in half, but then demonstrated that two halves completed a whole, 
making the rows the same. In the final task, he used a paperclip to measure the heights of two 
towers, and knew the difference in table heights affected that of the towers. Tony’s behaviors 
therefore supported operational conservation of length indicative of Stage III.  

Conclusions 
This study shows that although students may begin in the same developmental stage, each 

student needs different supports to cultivate more sophisticated ways of thinking. Both students, 
however, were able to progress in their conceptualization of measurement. Sam progressed from 
Stage IIA to transitioning between Stage IIA to IIB, whereas Tony progressed from Stage IIA to 
Stage III, reaching operational measurement and conservation of length (Piaget et al., 
1960/1981).  In the teaching experiment, Tony needed support to use fractions, a concept Sam 
never entertained. This is supported by Lamon’s (2007) findings that measurement is directly 
related to fraction concepts. However, it is unclear why Tony was able to make conceptual 
strides while Sam was unsuccessful. Addressing this is beyond the scope of this paper, so future 
research is needed to explore the factor that may have caused a difference in each student’s 
development of operational measurement and conservation of length. Overall, this study also 
shows that the way measurement is being taught in some schools hinders the development of 
operational measurement and conservation of length, at least in the case of Sam. 
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This study aims to engage students in dynamic tasks of extruding surfaces on a certain heights 
and reasoning about volume as a continuous quantity that depends on the size of the base and 
the height of extrusion, what we call as Dynamic Measurement for Volume (DYME-V). This 
paper describes two of our DYME-V tasks and presents data from a design experiment with one 
pair of fifth grade students showing DYME-V’s potential for developing students’ conceptual 
understanding of volume as a multiplicative relationship of base times height.  

Keywords: volume, capacity, technology, dynamic measurement 

The different ‘faces’ of Volume 
In school mathematics, volume measurement focuses on packing the space within a three-

dimensional object with a two-dimensional array of cubic units iterated in the third dimension 
(Curry & Outhred, 2005) and quantifying that packing in terms of the total number of cubic units 
used. In other words, students need to develop a mental picture of a unit structure, find the 
number of units required to cover the base of the 3-D shape and multiply that number by the 
number of layers (Curry, Mitchelmore, & Outhred, 2006). This approach of volume 
measurement is called volume as packing (Clements & Sarama, 2009, Curry & Outhred, 2005). 

The literature presents several difficulties that students experience while packing a 3-D space 
by unit cubes. Examples include students just counting the number of cubes that are visible to 
them ignoring the other cubes, or counting the number of squares on the cubic units shown on 
the visible two faces and double that count (Figure 1), ignoring in that way the three dimensions 
of the object (Ben-Haim, Lappan  &Houang, 1985). Similarly, Battista and Clements (1996) 
argued that students struggle in coordinating the separate views of arrays and integrate them to 
form a coherent mental model. This struggle is also present even when students are given a real 
3D objects and are asked to use real cubes to measure it. Curry and Outhred (2005) found that 
students have difficulty in packing a bigger cuboid by enumerating smaller cubes, because 
students cannot always determine the successive positions of the cubes while iterating. As a 
result, students leave gaps and overlaps in the empty space. 

 
             a     b 

Figure 1. Students count (a) the faces of the cubic units and (b) the visible cubic units 

The literature on volume measurement in math education distinguishes between Volume as 
packing) versus Volume as filling. Volume as filling is about filling a 3-dimensional space with 
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iterations of a fluid unit that takes up the space of the container (Clements & Sarama, 2009, 
Curry & Outhred, 2005), an approach that seems to be a more continuous approach towards 
measuring the volume of an object over volume as packing. According to Piaget (1960), in order 
for students to understand the multiplicative relationship of volume, they need to conceptualize it 
as a continuous quantity, therefore the volume as filling approach seems promising for 
developing a conceptual understanding of the volume formula.  

While exploring volume as filling, Curry and Outhred (2005) asked students to find the 
number of cups of rice that would fit into a jug after one cup was poured in the jug. They found 
that students treated the height of the rice in the cups as a unit length, which they iterated to fill 
the jug, ignoring the other dimensions of the jug. Similarly, while studying students’ conceptions 
of volume, Piaget and his colleagues (Piaget, 1968; Piaget, Inhelder & Szeminska, 1960) found 
that elementary school students thought that the volume had been reduced when the liquid was 
poured into a wider glass. This predominant use of a single dimension to make three-dimensional 
judgments was termed by Piaget as ‘centration hypothesis’ and it is found to occur even when 
adults perceive volume in boxes at the grocery store (Raghubir, 1999).  

Exploring volume dynamically 
The literature above comes in contrast with research stating that students already have a 

dynamic sense of volume that we may use to develop students’ conceptual understanding of this 
concept. While exploring similarity, Lehrer, Strom and Confrey (2002) discussed how students 
visualized volume “like pulling” the area through the height of the cylinder, in other words 
looking at three-dimensional objects as 2-D unfoldings (Lehrer, Strom & Confrey, 2002). The 
same study reported that students were able to find the volumes of cylinders by estimating the 
surface area of the base and then calculating the volume as the product of area and height. 

The idea of “pulling” an area through a height is conceptually different than filling a jar with 
cups of liquid. In exploring students’ thinking of dimensions in geometry, Panorkou & Pratt 
(2016) discussed the dual nature of capacity stating that “one can see the space as incorporating 
objects; in this sense, the space contains the objects. At the same time, the space can be thought 
of as generated by the objects” (p. 213). The generation component of volume is also described 
by Lehrer, Slovin, Dougherty and Zbiek (2014) who discussed how we can generate attributes 
through motion and gave the example of a volume being generated by sweeping an area through 
a length. To illustrate this generation, imagine extruding a two-dimensional rectangular surface 
of area ‘ab’ for a height or depth of ‘c’ to generate a space of ‘abc’ (Figure 2). 
 

 
Figure 2. Volume as a continuous structure 

The difference between this approach and the filling/packing approaches lies in the 
distinction between a matrix which is made up of a limited number of elements [a certain number 
of blocks/cups] and “one which is thought of as a continuous structure with an infinite number of 
elements” (Piaget et al. 1960, p. 350). We call this approach to measurement Dynamic 
Measurement for Volume (DYME-V), and it involves extruding surfaces on a certain height and 
reasoning about volume as a continuous quantity that depends on the size of the base and the 



Geometry and Measurement 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

273	

height of extrusion. DYME-V seems promising not only for developing a meaning of volume for 
rectangular cuboids but also for other 3-D objects, such as triangular prisms and cylinders. 

Consequently, our goal was to test the conjecture that it is possible for children to visualize 
volume as a dynamic continuous structure and as a product of the area of base and height 
through careful task design. More specifically we explored: a) What type of tasks and tools may 
be used for developing students’ DYME-V? b) What forms of DYME-V reasoning are made 
visible and can be seen to develop as a result of students’ systemic engagement in these tasks? 

We used a design-based research methodology to engineer particular forms of learning and 
study how those forms of learning develop with the particular context of volume measurement 
(Cobb et al., 2003). For our task design, we used the dynamic feature of extrusion and tracing of 
Geogebra to enable students to generate 3-D objects by extruding 2-D surfaces and reason about 
volume. This paper presents two tasks that we implemented with one pair of fifth grade students, 
Ashley and Maggie, and discuss the generalizations they made about volume during their 
interaction with the specific tasks. We met with Ashley and Maggie for 8 one-period sessions 
(45-50 min). The students represented various abilities according to their teacher and the prior 
knowledge they had on measuring volume was by water displacement from their science class.  

The Case of Ashley and Maggie 
In the first task, we asked students to extrude surfaces in different planes and reason about 

what they observe (Figure 3). As they dragged the surfaces, students reasoned that, ‘it spreads 
out and looks like it is layering itself.’ When we asked them if they could count the number of 
layers they stated, ‘there are millions of layers and together they make a 3D cube,’ claiming that 
the size of the shape ‘depends on how far you stretch them out.’ 

 
Figure 3. Extruding rectangular surfaces to create 3D shapes 

Building on the students’ notion of layers and stretching, the next task aimed to shift their 
attention to the value of base in order to make judgements about volume. We presented two 
surfaces of different area to students and asked them to stretch them for 1-inch each (Figure 4). 
 

        
Figure 4. Stretching a 5 x 6 inches2 and a 5 x 2 inches2 surfaces by 1-inch height. 

Researcher:  What is the size of each box? 
Ashley:  This one is 10 [right] and this one is 30 [left]. 
Researcher:  How much space will each one fit? How much space is the first one and how 

much is the second one? 
Maggie:  The same amount? 
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Ashley: I don’t think so. It cannot be, because if this one [yellow on the left] is bigger, 
then it has to have more space.  

Researcher:   How much more though? 
Ashley:  This one is 5 times 6 which is 30 and times 1 is 30. That’s for the yellow one. 

And that one is 5 times 2 which is 10 and 10 times 1 is 10. So 30 minus 10 is 
20.  

As we prompted the students to say more about why they multiplied, Maggie responded, 
‘because it just added on to another one. So like a second one, which means multiplying by 2’ 
[describing how two stretches of 1-inch are equal to one 2-inch stretch]. It appeared that they 
considered composites of 1-inch stretches and could realize volume as filling and continuous. In 
subsequent tasks, when we asked the students to state how they can find the space covered they 
responded, ‘by multiplying the height and area, well, area is typically the base.’  

Concluding remarks 
DYME-V is an exploratory study which examines how students reason about volume as a 

continuous quantity when they are exposed to technological tasks developed in Geogebra. Our 
results suggest that the approach of dynamic measurement has the potential to engage students in 
dynamic tasks that foster the development of volume as a continuous construct to ultimately 
reasoning about volume as base times height. Moving forward we plan to conduct more design 
experiments for exploring the progression of students’ DYME-V reasoning as they interact with 
the tasks, and examine patterns and difference between different pairs of students.  
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VERBAL PLANNING TO WRITTEN PROOF 

 Michael L. Winer Michael T. Battista    
 Eastern Washington University  The Ohio State University    
 mwiner@ewu.edu battista.23@osu.edu 

The importance of doing formal axiomatic proofs and students' difficulties with proof have been well 
documented in research. This paper focuses on formal proofs that use triangle congruence 
postulates, which students create in high school geometry. Examining student work with proofs in an 
clinical interview setting, we analyzed students' transition from planning their proofs to writing their 
formal proofs using a two-column format. We found that much of the reasoning students described in 
their planning did not match the reasoning they used in their written proofs. Using a lens of 
spatial/logical structuring, we illustrate this finding by providing an illustrative example in which a 
student’s planning does not match the deductions that she wrote in her formal proof.  

Keywords: Geometry and Geometrical and Spatial Thinking, Reasoning and Proof, Cognition 

It has been well documented in research that the majority of students struggle to construct 
valid proofs in high school geometry (Chazan, 1993; McCrone & Martin, 2004; Senk, 1985). 
This paper focuses on formal proofs that use triangle congruence postulates, which students 
create in high school geometry. It takes a psychological constructivist perspective (Battista, 
2001) to investigate how students transition from orally planning their proofs to writing their 
proofs formally using the two-column format. It illustrates how the reasoning students convey 
during the planning of their proofs many times does not match the reasoning conveyed in their 
written formal proofs, and how this mismatch provides researchers insights into students’ proof 
reasoning. 

Conceptual Framework 
The reasoning involved in constructing geometric proofs is quite complex and involves using 

four types of structuring: spatial, geometric, logical, and axiomatic (Battista, 2008). Spatial 
structuring is the cognitive operation of constructing a spatial organization or form for an object 
or set of objects (Battista, 2008). Battista (2008) defined geometric structuring as using formal 
geometric concepts and properties (e.g., congruence, parallelism, slope, length etc.) to describe a 
geometric shape’s spatial structure. For a geometric structuring of a shape to make sense to a 
person, it must evoke an appropriate interiorized spatial structuring of the shape as well as 
interiorized formal geometric concepts used to describe the shape (Battista, 2008).  Both spatial 
and geometric structuring are needed to begin constructing a geometric proof as students 
view/draw a diagram in terms of both its visual-spatial properties and the geometric 
conceptualizations that are given to describe it.  

However, to construct a geometric proof, not only does an individual need a linked spatial 
and geometric structuring, but he/she must also be able to integrate this linked spatial and 
geometric structuring to the third and fourth types of structuring—logical and axiomatic 
structuring. Logical structuring is the process of making a series of deductions assumed to be 
consistent with the rules of logic in an attempt to prove the desired conclusion from the given 
premises. In the two-column proof format, logical structuring is the set of conclusions that one 
deduces and writes in the left-hand column. One major error that can occur in a proof’s logical 
structure is when the argument has a logical gap in it. A logical gap occurs between two 
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deductions when students deduce a conclusion by applying an axiom or theorem whose premises 
have not been established by the given conditions or prior deduced conclusions in their proof. 
Axiomatic structuring is the process of situating and justifying deductions and logical structuring 
within a given axiomatic system. In the two-column proof format, axiomatic structuring can be 
thought of as the sequence of deductions in the left-hand column coupled with the required 
justifications in the right-hand column. A two-column proof exhibits a correct logical structure if 
the sequence of conclusions in the left-hand column is correct in that each conclusion can be 
justified with one axiom or previously proved theorem in the axiomatic system. A two-column 
proof exhibits a correct axiomatic structure if every conclusion exhibits a logically valid 
deduction (correct logical structuring) and each conclusion is correctly justified in the right-hand 
column by a relevant axiom or theorem.  

Method 
The data was collected by conducting a series of one-on-one semi-structured task-based 

interviews to seven high school geometry students who were asked to complete a series of proof 
problems. All participants were volunteers who were currently enrolled in a proof-based 
geometry course in which they had already completed a unit on triangle congruence proofs. 
Students were interviewed for five one-hour sessions in which they "thought aloud" as they 
worked on twelve proof problems. For each proof problem, students were first asked to verbally 
(orally) plan their proof and only after they had described their proof plan verbally were they 
asked to write out their formal proof. All interviews were video recorded, transcribed, and later 
analyzed using the constant comparative method and retrospective analysis. 

Sample Results and Discussion 
In this paper, we discuss how students transitioned from verbally planning their proofs to 

writing their proofs formally using the two-column format, along with difficulties they faced, 
and differences between their plans and written proofs. When evaluating a written proof with a 
gap, the proof itself typically provides little to no insight as to the reason(s) why the students 
might have skipped/missed deductions. In contrast, in this interview setting, many students 
demonstrated important proof reasoning in their verbal explanations that was not explicitly 
conveyed in their written deductions for proof. Therefore, the present study found that students’ 
verbal explanations many times provided critical insight into the reasons why some students 
missed or skipped deductions in their written proofs. Due to space limitations, we only present 
one example of student work to illustrate that what many students said during their verbal proof 
planning did not always match what they wrote later in their formal proofs and how this 
mismatch affected their proofs’ logical and axiomatic structuring.  
Rose's Verbal Plan for Problem M {See Figure 1 below for Problem M} 

Rose: So, DE is perpendicular to EG is down here [marks ∠𝐷𝐸𝐹 as a right angle]. And then the same thing with 
BF [marks ∠𝐵𝐹𝐺 as a right angle]. … 

IN: And how did you know they were right angles?  
Rose: I was marking for perpendicular. If it is perpendicular it has to be a right angle. So, F is the midpoint of 

EG, which means that since it is the midpoint these [points to 𝐸𝐹'''' and 𝐹𝐺''''] have to be the same length. [Rose marks 
𝐸𝐹'''' and 𝐹𝐺'''' congruent]. And then DF is parallel to BG. So [marks 𝐷𝐹'''' and 𝐵𝐺'''' parallel] I drew parallel signs. And 
[Triangles] DEF and BFG; so, proving that those two triangles [are congruent]. So, since this [points at 𝐸𝐺''''] is a 
straight line and these [outlines 𝐷𝐹'''' and 𝐵𝐺''''] are parallel they intersect at the same angle [make X gesture with her 
arms] which makes these [marks ∠𝐷𝐹𝐸 and ∠𝐵𝐺𝐹 congruent] Corresponding Angles. And I just proved that the 
triangles because Angle-Side-Angle [points to ∠BGF, 𝐹𝐺'''', and ∠𝐵𝐹𝐺].[Later in the episode, after Rose has 
completed her written proof for Problem M].  
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IN: These ones right here [points to ∠𝐵𝐹𝐺 and ∠𝐷𝐸𝐹] you said were 90-degree angles. Is that right?  
Rose: Yeah. I feel like it is a self-explanatory given that they are perpendicular they would have to be right 

angles.  
 

Rose’s Formal Written Proof for Problem M 

 
Figure 1 

 
Figure 2 

 
Rose had three errors in her formal proof’s logical structure due to missing deductions that 

were relevant and critical to the validity of her formal proof. First, Rose never explicitly wrote a 
deduction in her proof that stated that Angles E and BFG are right angles by the definition of 
perpendicular segments. From her oral description (in particular her statement about “self-
explanatory”), we infer that Rose did not write this deduction because she assumed that the 
argument was intuitively obvious, therefore there was no need to write it out. Although Rose had 
clearly demarcated these right angles (in red) on the diagram (see Figure 1), since she did not 
write it as a deduction there is no explicit evidence in her written proof on how this conclusion 
was justified within the axiomatic system. If Rose’s proof was evaluated solely from what she 
had written, one would have to make presumptions about whether Rose understood that these 
angles are right angles by definition of perpendicular segments, which might or might not be 
reflective of Rose’s reasoning. Since it is not clear from only reading Rose’s written proof that 
she understood this issue, the missing deduction would need to be classified as a gap in her 
written proof’s logical structure. However, when considering her oral explanations with her 
written proof, it is clear that Rose had the correct intuitive reasoning about the missing 
deduction, but failed to formalize it in her written proof.  

Second, Rose did not explicitly state a second deduction about the two right angles being 
congruent in either her verbal explanations or her written proof. This missing deduction was 
critical to the proof’s logical structure because it was used later to draw the last deduction that 
Triangles DEF and BFG congruent by the ASA Postulate. This is evidenced in her verbal 
planning when Rose explicitly pointed to Angle BGF, Segment FG, and Angle BFG on the 
diagram to represent the congruent parts from Triangle BFG when explaining why the two 
triangles, BFG and DEF, were congruent. From her gesture to Angle BFG, which she had 
demarcated as a right angle on the diagram (see Figure 1), it can be inferred that Rose used the 
notion that the two right angles were congruent to satisfy the premise for a second pair of 
congruent angles needed to apply the ASA Postulate. However, Rose had not explicitly 
established that these two angles are right angles nor that they are congruent in her written proof. 
From reading her written proof, it is not clear how Rose was applying the ASA Postulate when 
she only had one pair of congruent angles (see line 5 in Figure 1) explicitly established in her 
proof. As a result, this is a gap in her formal proof’s logical structure.  

The third error that Rose made in her written proof was that she needed to explicitly write a 
deduction that stated that Segments EF and FG are congruent by the definition of midpoint. This 
missing deduction was also critical to her proof’s logical structure because she used it as the 
corresponding congruent sides premise to apply the ASA Postulate in line 6 of her written proof 
(see Figure 1). This was exhibited when Rose pointed to Segment FG as her congruent side in 
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Triangle BFG as she was explaining why she could deduce the triangles congruent by the ASA 
Postulate. Importantly, Rose verbally stated that Segments FG and EF have the same length by 
definition of midpoint during her verbal planning of the proof, indicating that Rose had the 
conceptual understanding of the premises of this deduction, but she did not explicitly convey this 
understanding in her written proof. This illustrates again that students can have gaps in their 
written proofs even when they actually have correct reasoning about missing deductions.  So, it 
is not so much a gap in logical structuring but one of axiomatic structuring, misconceiving the 
level of detail needed for a written formal proof.  

Concluding Remarks and Implications 
Findings from all the clinical interviews suggest that most of the proofs that students wrote 

were not formally correct, but that many students wrote proofs that were not reflective of the 
sound proof reasoning evidenced in their oral plans. In many instances, students had developed 
sound intuitive ideas for proofs, but they did not write proofs that were rigorous enough to stand 
up to scrutiny due to gaps/omissions in their written proofs’ logical and/or axiomatic structures.  
Most of the time, teachers and researchers assess students’ proof reasoning only by evaluating 
their written proofs. The present study shows that in many instances there is more going on with 
students’ proof reasoning than what is reflected in their writing. A two-column proof provides 
only so much information about what the student was thinking when he or she drew a deduction, 
especially in flawed proofs. Many times, when students make errors or omissions in their written 
proofs, it is not clear or evident from simply reading their proof what student reasoning was 
behind these errors. For example, when students are missing deductions in their written proofs, 
the teacher or researcher usually cannot distinguish between students who did so intentionally 
because they thought the deductions were obvious from students who did it because of faulty 
reasoning.   

In contrast, as the present study illustrates, evaluating students’ proofs using both their verbal 
explanations and their written proofs can provide teachers and researchers with deeper insight 
into students’ reasoning. This insight not only helps teachers and researchers better understand 
students’ proof reasoning difficulties, but also helps them diagnose students' errors and 
misconceptions so they can develop more effective curriculum and instructional interventions to 
remedy the difficulties. Additionally, this paper illustrates that having students verbally plan their 
proofs before writing them reveals that some students have correct intuitive reasoning about 
some deductions absent from their written proofs. Due to the deeper insight gained into students’ 
reasoning, it is recommended here that when possible, teachers and researchers should evaluate 
students’ proofs using both their verbal explanations and their written proofs.  
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Over the last 30 years, professional organizations (e.g., NCTM, 1989; NCTM, 2000) and 
policy makers (CCSSI, 2010) have continued to make recommendations that high school 
geometry students should learn proof, but students have continued to struggle with it (McCrone 
& Martin, 2009; Senk 1985).  Furthermore, some geometry teachers have claimed that they do 
not have any instructional strategies to scaffold the learning of proof and that students must 
either “sink or swim” when learning it (Cai & Cirillo, 2014).   

In response to the continued struggles, the present study established baseline data on 
achievement on proof for students who learned geometry using a recently developed curriculum 
that emphasizes a semester of making conjectures through investigations followed by a five-part 
proof progression.  For a detailed description of the proof progression, see Nirode (2018).     

Out of 78 students in four classes at a single high school, 56 students enrolled in the study.  
Near the end of the third quarter, students took an 8-question test. Questions 1 and 2 asked 
students to put a proof in order given all the statements and reasons.  Questions 3 and 4 had 
students filling in blanks for a partially completed proof.  For questions 5 and 6, students wrote a 
proof after being provided with a diagram, the given, and what to prove.  For questions 7 and 8, 
students wrote a complete proof from a conditional statement.   

The researcher scored the tests.  The proof puzzles both had 8 statements and 8 reasons for 
students to put in order for a total of 16 points.  The next two questions both had 6 blanks in the 
proof for students to complete for a total of 6 points.  Then, the researcher scored questions 5–8 
using Senk’s (1985) four-point rubric.  Also, like Senk’s study, for questions 5–8, a proof with a 
score of 3 or 4 was classified as correct.   

Students did exceptionally well with both proof puzzles (M = 15.25, SD = 1.08 and M = 
15.39, SD = 1.89).  Next, students did well on filling in the blanks (M = 3.91, SD = 1.40 and M = 
4.34, SD = 1.40).  For the two proofs where students were provided with a diagram, the given, 
and what to prove, the means for both proofs were essentially correct scores (M = 3.25, SD = 
1.22 and M = 2.93, SD = 1.42).  Finally, students struggled when writing a proof from a given 
conditional statement (M = 1.29, SD = 1.29 and M = 1.29, SD = 1.29). 
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Studies of young children highlight relations between their cognitive development and 
experiences moving in space (Oudgenoeg-Paz et. al., 2015). Yet, current early mathematics 
instruction often ignores the resources children have to make sense of foundational properties of 
space. Recent programs highlight the accessibility of geometric concept for young children 
(Hawe et al., 2017), but less is known about how early experiences of space can also support 
their engagement in mathematical practices. Expanding attention to young children’s 
development of mathematical practice aligns with sociocultural views of mathematics as situated 
in the everyday activity and evolving practices of local communities (Lave et al.,1984). I present 
a design study conducted in a rural 1st grade classroom aimed at co-developing children’s 
concepts of 3D shape and defining practices to answer these research question: What resources 
from children’s everyday experiences with 3D shape and space help them define and 
conceptualize properties of 3D shape? How do children’s resources support the development of a 
new classroom practice of defining?  

Using grounded theory, I analyzed video and field notes from eight days of instruction. I first 
categorized ways students described, built, and interacted with 3D structures. Then, I traced how 
these different categories supported episodes of collective defining practices using Kobiela and 
Lehrer’s (2015) framework of aspects of defining. I found four themes in students’ engagement 
with 3D structures. These included judgements about a structure’s smoothness (i.e., sliding a 
hand around a structure; ability to roll; stability in relation to properties of closure; and height 
versus width. These four themes also proved consequential to the classroom’s development of a 
practice of defining. In particular, the teacher’s press on students to articulate what properties of 
structures they used to make judgement corresponding to these themes helped establish 
definitions for properties and classes of 3D shapes. For example, when comparing examples of 
right prisms, students noted each could roll around their rectangular faces but some rolled better. 
By exploring what impacted the structures ability to roll, students coordinated rolling to the 
number of sides on the bases. Students then generated a generalization that these bases needed to 
match and that they played an important structural role of holding all the rectangles or squares 
together. This final generalization was later positioned as a definition for prisms.   

 

References  
Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing Children's Spatial and Numerical 

Skills through a Dynamic Spatial Approach to Early Geometry Instruction: Effects of a 32-Week Intervention. 
Cognition and Instruction, 35(3), 236-264. 

Kobiela, M., & Lehrer, R. (2015). The codevelopment of mathematical concepts and the practice of defining. 
Journal for Research in Mathematics Education, 46(4), 423-454. 

Lave, J., Murtaugh, M., & de la Rocha, O. (1984). The dialectic of arithmetic in grocery shopping. In B. Rogoff & J. 
Lave (Eds.), Everyday cognition: Its development in social context. Cambridge, MA: Harvard University Press. 

Oudgenoeg-Paz, O., Leseman, P., & Volman, M. (2015). Exploration as a mediator of the relation between the 
attainment of motor milestones and the development of spatial cognition and spatial language. Developmental 
Psychology, 51(9), 1241. 



Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

Chapter 5 
Inservice Teacher Education/Professional Development 

Research Reports 

Opening Space for Change and Empowerment Through Philosophical and  
Structural Contemplation in Teacher Professional Development ...................................... 286 

David M. Bowers 

Supporting a Mathematicians’ Instructional Change in Undergraduate  
Mathematics Through Faculty Collaboration ..................................................................... 294 

Nicholas Fortune, Karen Keene 

Beginning Teacher Feedback in the Context of a Co-Taught Inclusion 
Math Course ......................................................................................................................... 302 

Corinne Glenwerks 

Framing Elementary School Teachers’ Considerations When Engaging with 
Their Own Student Written Work ....................................................................................... 310 

Naomi Allen Jessup 

Using Interpretive Frames to Inform Selections of Artifacts of Student Thinking ............ 318 
Raymond LaRochelle, Lisa Lamb, Susan Nickerson 

Professional Development and Knowledge Gains for High School Mathematics 
Teachers ................................................................................................................................ 326 

Kristi Martin 

Where’s the Math? A Study of Coach-Teacher Talk During Modeling and  
Co-Teaching .......................................................................................................................... 334 

Sarah Theule Lubienski, Evthokia Stephanie Saclarides 

Mathematics Education Stakeholders Professional Networks and Use of  
Research Evidence ................................................................................................................ 342 

P. Holt Wilson, Jared Webb, Lisa Ashe 

Preparing Secondary Mathematics and Science Teacher Leaders in Rural Districts ....... 350 
Jan A. Yow, Christine Lotter, Matt Irvin 



Inservice Teacher Education/Professional Development 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University.

282 

Brief Research Reports 

Situating Deficit Discourse in the Context of Social Interaction ......................................... 358 
Sunghwan Byun 

Exploring Teachers’ Decisions in Unit Design and Implementation .................................. 362 
Ayfer Eker, Dionne Cross Francis 

Changing Teaching Practice: Examining Professional Development Impact on 
Mathematics Discussion Leading Practice........................................................................... 366 

Nicole Garcia, Meghan Shaughnessy, Xueying Ji Prawat, Erin Pfaff, 
Jillian Mortimer, Nicole Cirino, Merrie Blunk, Darrius Robinson 

Teacher Noticing of Students’ Prior Knowledge ................................................................. 370 
Gloriana González, Lisa Skultety, Gabriela E. Vargas, Michelle Samet 

Using Coaching Cycles to Tranfer and Sustain Effective Instructional Practices ............. 374 
Kristin E. Harbour, Stefanie D. Livers 

Characterizing Rehearsals with In-Service Teachers ......................................................... 378 
Casey Hawthorne, John Gruver 

Studying Lesson Study: Cases of Secondary Geometry Teachers ...................................... 382 
Jenifer Hummer 

Implementing Mathematical Modeling for Emergent Bilnguals ........................................ 386 
Ji Yeong I, Ricardo Martinez, Betsy Araujo-Grando 

Teachers’ Insights on Early Math Education as a Way to Connect with 
Refugee Children .................................................................................................................. 390 

Elif Karsli-Calamak, Martha Allexsaht-Snider, Sinan Olkun 

One District's Systemic Approach to Detrack  High School Mathematics ......................... 394 
Brian R. Lawler 

Measuring Teacher Knowledge of Teaching for Algebra Readiness .................................. 398 
Hea-Jin Lee, Jaime Kautz, Ivo Herzog 

K-8 Teachers’ Stories of Mathematics-Related Transformation ........................................ 402 
Rebecca McGraw, Aubrey Neihaus 



Inservice Teacher Education/Professional Development 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University.

283 

Understanding the Ways Graduate Teaching Assistants Learn to Teach 
Through Discourse in Professional Development ................................................................ 406 

Hayley Milbourne, Susan D. Nickerson 

Designing Spaces to Support Teacher Learning About Teaching Statistics....................... 410 
Gemma F. Mojica, Hollylynne S. Lee, Jennifer N. Lovett 

Preparing Elementary Mathematics Specialists (As-Subjects) and 
Reconceptualizing Teacher Beliefs (As-Entanglement) ...................................................... 414 

Kayla D. Myers 

Noticing in Small Groups: Beyond Mathematical Thinking ............................................... 418 
Byungeun Pak, Brent Jackson 

Models and Modeling Perspective in México, The Michoacán Forest ................................ 422 
Verónica Vargas-Alejo, Aarón Reyes-Rodríguez, César Cristóbal-Escalante 

Teacher Views of Useful Features Of Mathematics Professional Development  
and How The Views Influenced Instruction ........................................................................ 426 

William S. Walker, III 

Supporting an Inquiry Stance with Double Demonstration Lessons .................................. 430 
Lucy A. Watson, Alyson E. Lischka, Angela T. Barlow 

Seeing Goals “Come to Life”: Teaching Experiments and Teachers’ Workgroup 
Conversations ....................................................................................................................... 434 

Anna Weltman 

Posters

Investigation Into the Role of Mathematics Coaches .......................................................... 438 
Brian Bowen 

Five Components to Consider When Characterizing Mathematics Teachers’ 
Access to Professional Development .................................................................................... 439 

Emily Bryant, P. Holt Wilson, Beverly Vance 

The Effects of a State-Implemented Co-Teaching Training on Students’ 
Mathematics Achievement Scores ........................................................................................ 440 

Kaitlin Bundock, Kristen R. Rolf 



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

284 

Coaching the 5 Practices Through Lesson Imaging ............................................................ 441 
Amanda Casto, Rukiye Ayan, Michelle Stephan, Luke Reinke 

Rural Inservice Math Teachers’ Perspectives from a Three-Year Summer  
Math Institute Professional Development Project ............................................................... 442 

Karen R. Cheng, Nick Kim, Shande King, Lynn Liao Hodge 

Developing Special Education Teacher Observation Instruments for  
Mathematics Instruction ...................................................................................................... 443 

Angela R. Crawford, Evelyn S. Johnson, Yuzhu Z. Zheng, Laura A. Moylan 

Supporting Shifts in Classroom Practice:  Lessons from a Collaborative  
Professional Development .................................................................................................... 444 

Enrique Galindo, Jinqing Liu, Pavneet Kaur Bharaj 

Teacher Perspectives on Feedback: A Comparison Between Implicit Theories ................ 445 
Kristin Hartland 

Components Of Whole-Class Discussions in Elementary Mathematics Classrooms ......... 446 
Amy Hewitt 

Exploring Conversation Themes in Professional Learning Groups ................................... 447 
Jennifer Holm, Ann Kajander 

Exploring Asian American Mathematics Teachers’ Perception and  
Implementation of Culturally Relevant Pedagogy .............................................................. 448 

Min Jung Kim 

Women in Mathematics Education: An Analysis of Gender in Professional  
Organizations Globally ......................................................................................................... 449 

Brianna Kurtz, Farshid Safi 

Rehearsals with In-Service Teachers: Recognizing and Responding to  
Teachers’ Confidence ........................................................................................................... 450 

Gemma Oliver, John Gruver 

Analyzing Adjunct Instructor’s Engagement with a Research-Based Precalculus 
Curriculum ........................................................................................................................... 451 

Zareen Gul Rahman 

Head Start Preschool Educators’ Conceptions of Mathematics Learning and  
Teaching ................................................................................................................................ 452 

Paul N. Reimer, Ralph T. Putnam 



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

285 

Online Communities of Practice to Support Inquiry-Oriented Instruction ....................... 453 
Rachel Rupnow 

Results of a Common Core Mathematics Training Program: Veteran Teachers’ 
Perspectives ........................................................................................................................... 454 

Evelyn Seeve 

New Teachers’ Visions of How Groupworthy Tasks Can Help to Create Equitable 
Mathematics Classrooms ...................................................................................................... 455 

Kathleen Jablon Stoehr, Amy Olson 

Unpacking a Geometric Learning Trajectory Through the Analysis of a  
Mathematical Task and Students’  Strategies ..................................................................... 456 

Jennifer M. Suh, Sara Birkhead 

Designing Online Professional Development Modules Through the Lens of  
Organizational Sensemaking ................................................................................................ 457 

F. Paul Wonsavage, Alison McCulloch, Joseph Reaper 

 
  



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

286 

OPENING SPACE FOR CHANGE AND EMPOWERMENT THROUGH 
PHILOSOPHICAL AND STRUCTURAL CONTEMPLATION IN TEACHER 

PROFESSIONAL DEVELOPMENT 
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In this theoretical article, I examine the norms of teacher professional development with an eye 
towards modifying them to allow for genuine systemic change. I first argue that current norms 
restrict professional development practice to “pseudo-activity” which necessarily operates 
within rather than against larger societal structures. I then propose philosophical and structural 
contemplation of mathematics as an example of a currently non-normed practice that has the 
potential to effect substantive change. 

Keywords: Equity and Diversity, Teacher Education-Inservice/Professional Development 

In our frenetic academic life, it is not easy to find the time and the will to contemplate. Partly 
because one of the necessary requisites for contemplation is the absence of a concern with 
the applicability of our thoughts, in these days in which time is money, some will ask: why 
lose money with all this philosophical/contemplative waste of time? The ethos of scientific 
research today makes plain that empty words are not enough; we must set to work, do it 
instead of just talking about it. What we need, some say, is engagement in action, quick 
solutions ready to be implemented, evaluated and, eventually, discarded, so that the entire 
process can start again. (Pais, 2012, p. 82) 
The threat today is not passivity but pseudo-activity, the urge to ‘be active’, to ‘participate’, 
to mask the Nothingness of what goes on. (Žižek, 2006, p. 334) 

 
The 40th annual North American Conference of Psychology in Mathematics Education 

invites us to consider the enduring challenges of the last 40 years as well as ways to enact change 
moving forward. With that in mind, my goal in this article is to lay out an argument that current 
teacher professional development norms preclude the opportunity for genuine systemic change, 
and to suggest a path forward that would allow for such change. Specifically, I argue for a 
widening of the norms of acceptable mathematics teacher professional development in the 
United States to allow for philosophical and structural contemplation. To that end, the purpose of 
this article is twofold: (1) to provide a critical analysis of the ways professional development 
opportunities systematically privilege forms of professional development that focus on “pseudo-
activity,” activity that has here-and-now implications for the classroom but preserves the 
hegemony of school mathematics, and (2) to illustrate a discouraged form of professional 
development and the power it could have to enable critique of the hegemony of school 
mathematics and open space for empowerment. I will first argue that current professional 
development practice focuses on activities that might have immediate or directly visible impacts 
on teaching practice, and that such practices preserve the hegemony of mathematics and narrow 
space for empowering the students and teachers who interact with mathematics (Pais, 2012). I 
will then outline how structural and philosophical consideration of mathematics could have 
powerful implications for teachers and students, since such consideration exposes the discipline 
to critical interaction while opening space for the empowerment of the people who interact with 
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it. In essence, the former argument is meant to establish that the norms of teacher professional 
practice are narrow in some way, while the latter is an existence proof of a potentially valuable 
practice that currently lies outside the realm of normed practice. 

Throughout this paper, I will use the phrase “structural and philosophical contemplation of 
mathematics” to refer to thinking about the epistemological and ontological assumptions on 
which the discipline is built as well as to considering the ways the discipline acts as a framing or 
scaffolding device that shapes how we think of other aspects of our world. The former 
contemplation I would call philosophical and the latter structural. The lines between these two 
types of contemplation are fuzzy, but since I use them in tandem as a single construct throughout 
this article, this fuzziness should not be problematic. 

Critical Analysis of Constraints on Teacher Professional Development 
I often experience it firsthand when I am asked to speak with teachers and administrators 
regarding mathematics achievement and persistence among African American students. 
Despite insisting on the complexity of these issues, some version of the following is 
inevitably asked: ‘What you have said is fine, but tell me, specifically, what I should do 
today when I go back to my school or classroom to work more successfully with African 
American students?’ In most cases, this is a sincere request. (Martin, 2009, p. 304) 
Professional development is commonly taken to refer to the learning opportunities that 

teachers engage in to improve their professional practice (Feiman-Nemser, 2001). Professional 
development thus includes, but is not limited to, mandated staff development offered by districts, 
reading professional journals, and attending professional conferences. 

In order to argue that the norms of acceptable mathematics teacher professional development 
should be widened, I first contend that the current norms of practice presently exclude certain 
types of professional practice. In brief, I contend that teachers have limited time to devote to 
professional development activities, and that professional structures restrict the sorts of 
professional development that might be considered acceptable. None of this should be taken as a 
critique of teachers; instead, it is a critique of larger forces that shape the decisions that teachers 
might reasonably make.  

Teachers work long hours during the schoolyear. The OECD’s large-scale international study 
found that teachers in the United States work an average of roughly 1,900 hours per year, more 
than 30 of the 32 other countries included in the dataset (OECD, 2017, p. 388). Assuming the 
majority of this workload occurs during the school year rather than over breaks, it is not out of 
the question that many teachers in the United States might average 50 or more hours per 
workweek during the school year, 25% more than the prototypical 40 hour workweek. This 
finding is echoed by the 2011-2012 Schools and Staffing Survey which reported that public 
school teachers in the United States average 52.2 hours of work per workweek (SASS, 2012) as 
well as by numerous smaller-scale non-scientific surveys (e.g. Banning-Lover, 2016). 

Given the long hours teachers work, they must use their time strategically. Teachers have 
many obligations, including but not limited to: (1) teaching, (2) planning and preparation of 
lessons, (3) review and marking of student work, (4) communication with parents and guardians, 
(5) supervision of students outside of teaching time, (6) teamwork with colleagues, (7) 
participation in mentoring or support groups, and (8) other managerial or extracurricular 
obligations such as serving as department head or running academic clubs (OECD, 2017, pp. 
390-391). Along with all of these obligations, teachers are expected to find time for professional 
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development. Given the limited time remaining for such activities, teachers are pressured to 
make the most efficient use of professional development time possible. 

What strategic choice of how to use limited professional development time might a teacher 
reasonably make? As is suggested by Martin’s (2009) quote at the beginning of this section, one 
enticing choice is to focus on activities with immediate or directly visible implications for the 
classroom. In many cases, this choice is made for teachers by districts, in the form of full- or 
half-day sessions which focus on the dissemination of teaching techniques or strategies coupled 
with “inspirational” lectures (Feiman-Nemser, 2001). Such mandatory professional development 
informs norms of teacher professional development, suggesting that it should center on activities 
with immediate or directly visible implications for the classroom. This norm is further reified by 
the professional structures that provide additional professional development opportunities for 
teachers. 

The National Council of Teachers of Mathematics (NCTM) is perhaps the largest 
professional institution devoted to mathematics education and teaching, boasting more than 
60,000 members and 230 affiliates (NCTM, 2017a). NCTM offers a variety of journals and 
meetings devoted to the professional development of practitioners as well as the practical 
dissemination of research (or implications thereof) to practitioners. Given the size and 
pervasiveness of this institution, looking at its journals and meeting schedules can offer some 
insight into the norms of mathematics teacher professional development practice in the United 
States. 

In reviewing the feature articles from the most recent (as of the time of this writing) issues of 
every NCTM journal dedicated to K-12 teachers (see table 1), I found that every feature article  

Table 1: NCTM practitioner journal feature articles reviewed by the author 
Journal Teaching Children 

Mathematics 
Mathematics Teaching 
in the Middle School 

The Mathematics 
Teacher 

Articles Bleiler-Baxter, Stephens, 
Baxter, & Barlow (2017) 

Bray & Blais (2017) 
Earnest, Radtke, & Scott 

(2017) 

Firmbender, Casa, & 
Colennese (2017) 

Lambert, Imm, & Williams 
(2017) 

Lomax, Alfonzo, Dietz, 
Kleyman, & Kaxemi 
(2017) 

McCormick, & Essex (2017) 

Perry, & Lewis (2017) 
Shumway, & Pace (2017) 

Turrou, Franke & Johnson 
(2017) 

Banes, López, Skubal, 
& Perfecto (2017) 

Groth, Jones, & Knaub 
(2017) 

Matsuura, Sword, & 
Finkelstein (2017) 

McNamara (2017) 

Oslund, & Barton 
(2017) 

Roy, Bush, Hodges, & 
Safi (2017) 

Beigie (2017) 
Borkovitz, & Haferd, 

(2017) 
Dougherty, Bush, & 

Karp  (2017) 
Gerver, Santucci, & 

Leventhal (2017) 
Goldenberg, & Carter 

(2017) 
Jaqua (2017) 
Lommatsch (2017) 
McCaffrey, & Matthews  

(2017) 
Samuels (2017) 
Taff (2017) 

 
focused on immediate or directly visible implications for classroom practice. This review 
covered 10 articles from Teaching Children Mathematics, 6 from Mathematics Teaching in the 
Middle School, and 10 from The Mathematics Teacher. All of these articles either: (1) described 
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an exemplar lesson or course (e.g. Earnest, Radtke, & Scott, 2017), (2) describe a pedagogical 
technique (Oslund & Barton, 2017), or (3) offer some guiding principles for a certain style of 
teaching (e.g. Roy, Bush, Hodges, & Safi, 2017). Provided the reader is teaching the relevant  
course, every article in here contains ideas that could be immediately implemented in class and 
that could be pointed out to observers as teacher practice responding to professional 
development. Cursory analysis of additional articles spanning the years 2013-2017 echoes this 
finding. 

Reviewing the proceedings of the annual meeting and exposition of NCTM (2017b) produces 
analogous results. Reviewing all 708 scheduled talks suggests that all, save for the administrative 
meetings, focus on topics with immediate or directly visible implications for the classroom 
which could be classified under the same three broad headings mentioned above.  

Taken together, I claim these results suggest that a strong, though sometimes implicit, 
message is being sent to teachers: professional development time should be spent on activities 
with immediate or directly visible implications for practice. One might propose to counter this 
claim by arguing that teachers simply prefer professional development activities of this sort, and 
school districts and NCTM are acting to meet their needs. The truth or falsity of this counter-
claim, however, is irrelevant to my claim. Regardless of whether or not the counter-claim is true, 
the current state of district mandated professional development and NCTM’s professional 
offerings nonetheless send a message about what type of professional development is acceptable, 
thus informing the norms of teacher professional practice. 

Focusing on professional development with immediate implications can be very valuable. 
However, maintaining such a focus to the point of excluding other sorts of professional 
development is potentially problematic, as it restricts the ways that teachers might think about 
solving problems (Putnam & Borko, 2000) and risks locking us into larger structures that are 
themselves destructive (Pais, 2012). In particular, I note that mathematics learning is itself a 
destructive force when not exposed to critique (Ernest, 2016), and that “here-and-now” 
professional development works within the discipline rather than subjecting it to critique. Thus, 
if there are valuable types of professional development currently excluded from the norms of 
professional development that might respond to this weakness, then we should make efforts to 
widen those norms. 

Structural and Philosophical Consideration of Mathematics as Productive Professional 
Development 

 If mathematics is objective, it makes no sense to be concerned with learners’ cultures and 
lived experiences. If mathematical achievement can be accurately and fairly measured with 
standardized tests of routinized items, it makes no sense to develop more “subjective” 
assessments of mathematical understanding. And if mathematics is inherently too difficult for 
many to master, it makes no sense to try to teach all students rigorous aspects of the 
discipline. (Ellis & Berry III, 2005) 
Often these processes operate at a level below consciousness; they remain unexamined or 
even unnoticed, in which case the task at hand is to render them visible and expose them to 
critique. (Greer & Mukhopadhyay, 2012) 
In order to argue that the norms of acceptable teacher professional development should be 

widened, I now contend that there exist potentially powerful forms of professional development 
that are currently excluded from the norms of acceptable professional development evidenced 
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previously. In particular, this existence proof focuses on the potential power of structural and 
philosophical consideration of mathematics as a means to disempower the discipline while 
opening space for the empowerment of the people who interact with it, such as students and 
teachers. Noting at the outset that such contemplation falls outside of the normed space of 
professional development with immediate or directly visible implications for practice, my 
argument is structured as follows: (1) mathematics plays a large and widespread role in our lives, 
(2) perception of mathematics as objective and value-free empowers the discipline in potentially 
destructive ways, (3) substantial evidence conflicts with this perception, and (4) adopting a view 
of mathematics as fallible and value-full better reflects this evidence and opens space to 
empower people while disempowering the discipline. 

Mathematics plays a powerful and pervasive role in our lives. Mathematics coursework is 
expected of us for a minimum of twelve or thirteen years of our lives, and many more years are 
required for many of jobs popularly labeled as the “best” jobs available to us (Ward, 2017). 
Mathematics underlies much of modern technology which has become so deeply integrated into 
our everyday lives. The tools of mathematics are utilized by statisticians whose work, in turn, 
informs policy at all levels of the government. Mathematics is everywhere, not just in the sense 
that anything can potentially be mathematized, but in the sense that mathematics has played 
some role in almost every facet of our lives. 

Perhaps even more so than science (Gould, 1981/1996), mathematics is often perceived as 
objective and value-free (Ernest, 1991). This hegemonic perception gives power to the discipline 
while taking power away from those who interact with it (Ernest, 2016; Greer & Mukhopadhyay, 
2012). For example, if one holds the belief that mathematics is objective and value-free, then one 
might take the persistent “racial gap” in academic achievement as evidence that people of color 
are intellectually inferior to whites (e.g. Herrnstein & Murray, 1994; Jensen, 1969), reinforcing 
hegemonic positioning and reifying white supremacy through appeal to the assumed nature of 
mathematics (Greer & Mukhopadhyay, 2012). 

Mathematics is neither objective nor value-free. Focusing first on the former, Ernest (1991) 
identified and refuted several assumptions required for an absolutist view of mathematics, the 
view that mathematics is certain and unchallengeable. Without recreating the entirety of Ernest’s 
argument, I will highlight several key take-aways in support of the opposing fallibilist view of 
mathematics: (1) The informal proofs that mathematicians publish are commonly flawed, (2) 
there now exist proofs that cannot be checked by humans for correctness, and (3) we cannot 
know that any but the most trivial of axiomatic mathematical systems are secure.  

I focus now on the latter, that mathematics is not value-free.  To that end, I make the 
following non-exhaustive list of some ways in which mathematics is value-full: 

• Aesthetics drives all aspects of mathematics, from what mathematical questions people 
ask to the ways they construct argument and proof for inspection by others (Burton, 
1999; Sinclair, 2009; Wells, 1990).  

• Mathematics and mathematical meaning-making vary from culture to culture, indicating 
that mathematics itself is a cultural product (D’Ambrosio, 1985; Lipka, Wong, Andrew-
Ihrke, & Yanez, 2012; Meaney, Trinick, & Fairhall, 2013; Thomas, 1996). 

• Mathematics is socially-mediated and mathematical proofs are discursively constructed 
(Burton, 1999; Lakatos, 1976). 

• The version of mathematics taught in schools and practiced by mathematicians is 
Eurocentric (Joseph, 1987). 
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• People of marginalized backgrounds have different experiences with mathematics than 
white males for reasons that cannot be explained by effort or ability (Martin, 2009; 
Stinson, 2013) 

Note that these arguments that mathematics is not value-free can be taken as further support of 
the fallible nature of mathematics, since these values will influence what sorts of mathematical 
questions are asked, what can be taken as evidence in favor of mathematical claims, and 
generally what counts as mathematics or mathematical knowledge (e.g. Thomas, 1996). 

Adopting a view of mathematics as fallible and value-full more accurately reflects this 
evidence and also serves to open space for the empowerment of people who interact directly or 
indirectly with the discipline. Recalling the earlier example of the “racial gap” in academic and 
mathematics achievement, this view of mathematics allows one to ask questions such as: (1) 
Whose brand of mathematics is being named “mathematics,” (2) what value judgements and 
assumptions underlie the metrics used to measure achievement in this brand of mathematics, and 
(3) how does the culture of the test-takers interact with the cultures and values of this brand of 
mathematics and the measures of achievement? Thus, rather than mathematics being empowered 
to marginalize people, people are empowered to critically interact with mathematics (Greer & 
Mukhopadhyay, 2012). 

Adopting such a view of mathematics requires opportunities for structural and philosophical 
contemplation of the discipline itself, with no concern for immediate or directly visible actions to 
be taken in the classroom. Opportunities for such critical analysis of and interaction with 
mathematics as a structure in our lives and society can be empowering (Greer & Mukhopadhyay, 
2012) and might even be necessary for the construction of a more just society (Pais, 2012), but 
are currently excluded from the norms of acceptable professional practice for teachers. 
Consequently, I conclude that the norms of teacher professional development need to be widened 
to allow for such contemplation. 

Conclusion 
In this article, I have argued for a widening of the norms of acceptable teacher professional 

development in the United States to allow for structural and philosophical contemplation of 
mathematics. I began by providing evidence that the norms of professional development for 
mathematics teachers currently exclude professional development activities that lack immediate 
or directly visible implications for practice. I then argued that such “pseudo-activity” reinforces 
the hegemony of mathematics in destructive ways, and illustrated how structural and 
philosophical contemplation of mathematics could enable productive critique of the discipline if 
(re)introduced into the realm of acceptable professional development practice. Taken together, I 
conclude that the norms of teacher professional practice should be widened to allow for such 
structural and philosophical contemplation. 

The machinery through which these norms could be widened is nontrivial, and I make no 
specific recommendations for how it should be accomplished; my goal here has been to invite 
conversation, not dictate prescription. It could be that some individual or group in a position of 
appropriate influence might push school districts, NCTM, or other professional institutions to 
make room for structural and philosophical contemplation. It could be that teacher-educators, as 
individuals or as a group, might take it upon themselves to adopt discourse patterns that validate 
such practice. It could be the culmination of a million small acts of agency, conspiring to change 
our professional world.  
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Given the immensity of the challenge, it would be tempting to take no action at all. In trying 
to do what is right, it seems rational to start with the set of things that are possible, and look 
within that for the things that are right; if the task of normalizing structural and philosophical 
contemplation is impossible, then it is discarded at the outset. However, when we are ourselves 
linked tightly into the structures that influence our lives, it can be hard to distinguish what is 
genuinely impossible and what is impossible only within the current system (Pais, 2012; Putnam 
& Borko, 2000). Thus, I suggest instead that we start with the set of things that are right, and find 
ways to make those things possible. 
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To reform instruction by moving towards student-centered approaches, research has shown that 
faculty benefit from support and collaboration (Henderson, Beach, & Finkelstein, 2011; Speer & 
Wagner, 2009). In this study, we examined the ways in which a mathematician’s instruction 
unfolded during his participation in a faculty collaboration geared towards reforming 
instruction and aligning it with inquiry oriented instruction (IOI) (Kuster, Johnson, Andrews-
Larson, & Keene, 2017). Results indicate the participant’s mathematics background and 
research interests influenced how he used student thinking in his instruction. Further, there 
existed a tension between IOI and anticipating student thinking. Lastly, results highlight the 
importance of active participation in faculty collaboration to support instructional change. 

Keywords: Post-Secondary Education, Teacher Education-Inservice/Professional Development 

Over the last decade there have been numerous calls for reform in undergraduate 
mathematics education (e.g., President’s Council of Advisors on Science and Technology 
[PCAST], 2012). These calls for reform draw on research that has shown the benefits of student-
centered instruction (e.g., Freeman et al., 2014). To address these calls, change is needed in the 
instruction of undergraduate mathematics. For example, A Common Vision gave a general call 
that instruction should move away from traditional lecture as the sole instructional method in 
undergraduate mathematics (Mathematics Association of America [MAA], 2015). 

Given these calls for instructional reform, faculty want to make changes to their instruction. 
However, research has shown that even when working with research-supported curricular 
materials, mathematics faculty are often unprepared to undertake the challenge of changing their 
instruction (Henderson et al., 2011; Wagner, Speer, & Rosa, 2007). Current research is providing 
mathematics faculty with support needed to change their instruction. 

There are also calls for departments and faculty members to collaborate specifically on the 
pedagogy (MAA, 2011). One research-based method of support is faculty collaborations geared 
towards collectively improving instruction (e.g., Nadelson, Shadle, & Hettinger, 2013). In 
particular, researchers are studying how mathematics faulty come to use research-based 
instructional strategies in their classrooms in the context of faculty collaboration. This study 
explored the experiences of a mathematician who participated in one such faculty collaboration 
that addresses the numerous calls for reform in undergraduate mathematics education and 
instruction. The study addressed the following overarching research question: 1) In what ways 
does one mathematician’s experiences in an online faculty collaboration on inquiry oriented 
differential equations relate to his instructional practice? And the following sub research 
questions: a) How does his instructional practice unfold over his first implementation of inquiry 
oriented differential equations and in what ways does it align with inquiry oriented instruction? 
b) How does his participation unfold in the online faculty collaboration? 

Literature Review 
In this section, we briefly describe the instruction that the faculty collaboration sought to 

support. Following this we briefly discuss relevant research on instructional change. 
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Inquiry Oriented Mathematics 
The faculty collaboration focused on inquiry oriented mathematics and instruction. 

Rasmussen and Kwon (2007) defined inquiry oriented (IO) environments as teaching where 
students are inquiring into the mathematics, while the teachers are inquiring into the students’ 
mathematical thinking. In this study, we focused on inquiry oriented differential equations 
(IODE) which has been shown effective for student understanding of differential equations 
(Kwon, Rasmussen, & Allen, 2005; Rasmussen, Kwon, Allen, Marrongelle, & Butch, 2006). 

Inquiry oriented instruction. In inquiry oriented mathematics, it is clear that the role the 
teacher plays is important for advancing the mathematical agenda. Kuster et al. (2017) recently 
defined four focal components of inquiry oriented instruction (IOI): generating student ways of 
reasoning, building on student contributions, developing a shared understanding, and connecting 
to standard mathematical language and notation. The focal components of instruction are guiding 
principles of IOI. It is important to note that the four focal components very rarely occur 
independently; oftentimes, these components overlap and occur in the complexities of an IO 
classroom. Further, there are local practices of IOI. The local practices of IOI (see Table 1) are 
an elaboration on the four focal components of IOI. While the focal components are guiding 
principles of IOI (i.e., ways of composing and discussing IOI), the local practices are specific 
actions that instructors do in an IO classroom. 

Table 1: Inquiry oriented instructional local practices (Kuster et al., 2017) 
Local 
Practice 

Description 

1 Teachers facilitate student engagement in meaningful tasks and mathematical 
activity related to an important mathematical point. 

2 Teachers elicit student reasoning and contributions. 
3 Teachers actively inquire into student thinking. 
4 Teachers are responsive to student contributions, using student contributions to 

inform the lesson. 
5 Students are engaged in one another’s thinking or reasoning. 
6 Teachers guide and manage the development of the mathematical agenda. 
7 Teachers introduce language and notation when appropriate and support 

formalizing of student ideas/contributions.  
 
Overview of Instructional Change 

Here we first describe barriers to instructional change and then what the research community 
knows about facilitating and sustaining instructional change.  

Barriers to instructional change. One barrier to instructional change is faculty’s knowledge 
for teaching with student-centered instructional strategies. Research has shown that some faculty 
lack the necessary skills to enact student-center instruction (Hayward, Kogan, & Laursen, 2015), 
sometimes because they lack specialized content knowledge relating to instruction and being 
prepared to respond to student questions productively (Wagner et al., 2007). Further, faculty 
have stated that student resistance, lack of student buy-in, and student attitudes of school are 
reasons why they do not use student-centered instruction (DeLong & Winter, 1998). The most 
often cited environmental reason by faculty to not use student-centered instruction is how much 
more time it takes than teacher-centered instruction (Henderson & Dancy, 2017). Likewise, 
faculty say they stray away from student-centered instruction because they have a certain amount 
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of material that needs to be covered over the course of one semester (Hayward et al., 2015).  
Facilitating and sustaining instructional change. Henderson et al. (2011) outlined four 

categories of instructional change strategies that are elaborated on in this section: disseminating 
curricula and pedagogy, developing reflective faculty, enacting policy, and developing a shared 
vision. Borrego and Henderson (2014) elaborated on these four categories of change by defining 
eight change strategies that fit within the framework. This study considered two of these change 
categories that we discuss here: scholarly teaching and faculty learning communities. Scholarly 
teaching is when “individual faculty reflect critically on their teaching in an effort to improve” 
and faculty learning communities are when a group of faculty come together and “support each 
other in improving teaching” (Borrego & Henderson, 2014, p. 227). These two strategies can 
work together to improve undergraduate mathematics instruction. 

Methods 
This study focused on one participant from an IODE online faculty collaboration (OFC). This 

qualitative instrumental case study (Stake, 1995) was bounded by the participant’s participation 
in the OFC and his classroom teaching. This work comes from the TIMES project, which 
supported university mathematics faculty in shifting their practice towards an IO practice. 
TIMES offered three supports: the IO materials (in this case IODE), a summer workshop, and 
the weekly OFC. Here we first highlight pertinent details on the OFC. 
Online Faculty Collaborations 

The IODE OFC met weekly during the semester they are teaching IODE, virtually via 
Google Hangouts to conduct lesson studies that were modified Japanese lesson studies (Demir, 
Czerniak, & Hart, 2013) led by a facilitator. The main goals of the OFC were to: 1) aid teachers 
in making sense of the instructional IODE materials, 2) thinking through the sequences of tasks, 
how students might approach the tasks, how to structure instruction around the tasks to support 
student learning, and 3) assist teachers in developing and enhancing their instructional practice.  
Participant 

The focus of this study is one participant from the IODE OFC, Dr. DM. The OFC consisted 
of the facilitator (Dr. KK), two graduate research assistants (GRA1 and GRA2), five faculty 
teaching the materials for the first time (Drs. DM, AB, PR, CD, ST). The sampling of Dr. DM 
was purposeful in nature (Yin, 2013) and there were several reasons for that choice. First, he was 
and is passionate about his participation in TIMES and to this day continues with IOI in his 
IODE classroom. Second, he became a facilitator for the project in future semesters following his 
participant experience. Furthermore, Dr. DM filmed every class of the semester, which was more 
than was expected of the other TIMES participants, affording a plethora of possible data sources 
and a semester-long look at instruction. 
Data Collection and Analysis 

Classroom data. Video data from Dr. DM’s classroom were collected. Classroom video was 
chosen to match the units covered in the OFC lesson studies. The OFC discussed Unit 6 and Unit 
9. In addition to those units, Unit 1-2 as an introductory unit and Unit 12 were analyzed. All 
units lasted a different amount of time. The IOI framework discussed above (Kuster et al., 2017) 
was designed to capture IOI in action. Consequently, we used the framework as an a priori 
analytical framework for coding Dr. DM’s classroom instructional practice to answer research 
question 1a. In particular, we used the local practices (LP) of IOI. The IOI framework also 
contained “evidences,” not shown above, of each LP; these evidences served as codes that were 
collapsed to each LP. LP1 was not coded for unique observable instances in the data. After the 
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first round of coding, we went back again and revisited analysis logs and made adjustments to 
the coding as necessary. In this step, we looked for emergent themes from the data.  

OFC data. Each OFC was screencast recorded. All weeks of the OFC were analyzed except 
week 6 because the data was corrupted and week 8 because Dr. DM was unable to attend that 
week (in total 9 OFCs were analyzed). Weeks 1 and 2 were introductory weeks. Lesson study 1 
took place over weeks 3-5 and lesson study 2 took place over weeks 6-10. Lastly, a debrief OFC 
occurred during week 11. All videos were transcribed. To analyze Dr. DM’s participation in the 
OFC we coded the transcripts with specific a priori codes and frameworks: the role of the 
speaker (production design from Krummheuer, 2007), the role of the listener (reception design 
from Krummheuer, 2011), and conversation categories (Keene, Fortune, & Hall, under review). 
These frameworks were adapted to fit the context of this study and are discussed in the results. In 
a broad sense, we considered Dr. DM’s active versus passive participation. 

Interview data. The interview data served as a third data source to relate Dr. DM’s 
experiences in the faculty collaboration to his instructional practice. Furthermore, this data 
offered Dr. DM’s personal perspective on being part of a faculty collaboration. Entrance and exit 
semi-structured interviews were conducted. All interviews were audio recorded and transcribed. 
Transcripts of both interviews were open coded (Yin, 2013). 

Results 
Instructional Practice 

Central to IOI is the facilitation of mathematics where students are actively inquiring into the 
mathematics while the teacher is actively inquiring into the students’ mathematical thinking 
(Rasmussen & Kwon, 2007). Dr. DM’s instruction focused predominantly on LP2, eliciting 
student ways of reasoning and contributions (see Table 2). Dr. DM less often actively inquired 
into why his students were making such contributions (LP3), less often used those contributions 
to push the agenda forward (LP4), and less often had students engage in one another’s thinking 
(LP5; although this happened frequently in Unit 1-2). Note that frequencies were scaled and 
rounded to represent the same amount of class time; each unit lasted a different number of days. 

Table 2: Frequencies of Dr. DM’s Local Practices of Inquiry Oriented Instruction 
Practice Unit 1-2 Unit 6 Unit 9 Unit 12 

2 58 52 66 26 
3 17 24 16 4 
4 17 16 15 8 
5 42 26 14 2 
6 14 16 6 4 
7 3 14 8 2 

 
Table 2 is very telling of Dr. DM’s instruction. He was very interested in generating student 

contributions. While some of the questions asked were ones from the IODE tasks themselves, he 
often would ask his own questions in his own way as a means to address something that he 
wanted to focus on or have his students think about. While students had opportunities to engage 
in others’ contributions as they were written on the board, they less often had opportunities to 
engage in others’ thinking, as Dr. DM did not tend to follow up with questions to have students 
elaborate on their thinking. Essentially, after students made contributions, Dr. DM would more 
often move on. We cannot know for sure if Dr. DM was so in tune with the students in his class 
and the mathematics itself, that he did actually know why his students were thinking along 
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certain lines. However, LP3 and LP4 are about making explicit to the rest of the class such 
thinking and thus Dr. DM’s LP frequencies were reflective of the fact that he didn’t often make 
public his inquiring into student thinking. 

Dr. DM’s instruction did not necessarily change from the beginning of the semester to the 
end of the semester. As discussed across the totality of Dr. DM’s instruction his most frequent 
LP was LP2, eliciting student ways of reasoning and contributions. However, when comparing 
the four units of analyzed instruction there were contrasts between the unit instructional portraits. 
Namely, the way Dr. DM’s instruction unfolded was tied to 1) how and when he used student 
thinking in his class, 2) the mathematical task itself, and 3) his mathematical beliefs, rooted in 
his mathematical research arena. 

First, in Unit 1-2, Dr. DM frequently (more often than any other unit when comparing across 
scaled time) engaged students in one another’s thinking. In particular, this unit was the unit 
where his students’ thinking was most at the forefront of the class and he oftentimes used that 
thinking to advance the mathematical agenda. When student thinking was made prevalent to the 
rest of the class, Dr. DM’s instructional portrait reflected that. 

Second, it was observed that Dr. DM’s instruction was influenced by the mathematical task. 
Specifically, if a unit was a more scaffolded unit with limited options for student exploration 
(e.g., Unit 12), the questions that Dr. DM would ask were limited in scope and thus he used less 
IOI LPs in those units. In this particular case, Unit 12 was a very algebraic unit where students, 
being led by the teacher, develop an understanding of how to find the eigenvalues of a system of 
differential equation and use that information to find the associated eigenvectors and in turn the 
solution to the system of differential equations. Consequently, the questions Dr. DM could ask 
and the probing he could do was significantly impacted and all IOI LPs occurred less often. 

Third, when the mathematics of the unit was associated with Dr. DM’s mathematical 
research interests he would focus on getting students to get to “the way [he] view[s] the 
mathematics” rather than having his students’ work or ideas at the center of the development of 
the mathematical agenda. Unit 9 dealt with the development of the phase plane which was a 
crucial tool in Dr. DM’s research. The instructional portrait of that unit had the highest amount 
of eliciting student ways of reasoning and contributions (LP2) and in comparison, a very low 
frequency of LP3-5 (the other practices associated with student thinking). Many of the questions 
that Dr. DM asked were of his own accord and not generated from the whole class discussion. 
Because he knew the mathematics so intimately, he was most interested in getting students to see 
the mathematics the way he does, rather than letting the mathematics emerge from the students. 
Participation in OFC 

Recall the goal of the OFC was to support cohorts of mathematicians as they came to learn 
about IOI and IODE. Table 3 highlights the participation frequencies based on role and 
conversation. For the purposes of space, we only discuss active and passive participation here 
rather than all the more specific roles adapted from Krummheuer (2007, 2011). Additionally, we 
adapted frameworks from our previous work (Keene et al., under review) but here only include 
four broad conversation categories rather than each individual conversation topic. 

Rather than growth throughout the semester, Dr. DM immediately jumped into the active role 
in the OFC and that active role was consistent throughout the semester. Similar to his classroom 
instruction there was not a change but rather how his role looked depended on the content of 
each OFC. For example, if the week focused on doing mathematics, he rarely authored topics 
because he simply was partaking in the conversation, however, he was very active in those 
weeks as he has a real passion for mathematics. Additionally, when the OFC focused on sharing 
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of his videos, he authored frequently those weeks and the conversation focused on pedagogy as 
he sought advice on, for example, how to speed up his class because he was running out of time 
at the end. Table 3 highlights Dr. DM’s most active role related to pedagogical issues. 

Table 3: Frequencies of Speaker / Listener Codes by Participation / Conversation Category 
Conversation 

Category 
Speaker Listener 

Active Passive Active Passive 
Pedagogical Issues 137 16 82 55 
Mathematical Issues 70 6 72 40 
Student Issues 63 2 20 23 
OFC Issues 97 24 91 156 

Discussion 
In this section, we provide an answer to the overall research question. 

Mathematics Background 
Dr. DM’s mathematics background played a role in how his instruction panned out 

throughout the semester and how he participated in the OFC. In both cases his mathematical 
content knowledge (rooted in his background and research interests) was placed on top of his 
interest in enhancing his pedagogical practice. By that we mean, in his teaching his view of 
mathematics sometimes was the view of mathematics that he was guiding his students towards. 
Likewise, in his participation in the OFC, his mathematical understanding was one of the driving 
factors for his interest in enhancing his pedagogical practice. Namely, he sought support on how 
he can get his students to that same level of awe and understanding. 

This conclusion supports previous work from Speer, Wagner, and colleagues (Speer & 
Wagner, 2009; Wagner et al., 2007). However, there are important distinctions that shed light on 
this topic and provides discussion for faculty collaborations going forward. Most importantly, 
that is the subtle notions of what a mathematician’s mathematical content knowledge is. In their 
work, Speer and Wagner noted that their participant had a strong understanding of the 
mathematical content but that did not help in terms of his analytic scaffolding (i.e., meaning 
facilitation of discussion). Similarly, Dr. DM also had a strong understanding of the 
mathematical content across all units. However, the difference lies in the fact that in some units 
he was able to provide analytic scaffolding, namely, he was able to use his students’ ideas in the 
class (LP3: actively inquiring into student thinking, LP4: being responsive to student 
contributions, LP5: engaging students’ in one another’s thinking, LP6: guide the mathematical 
agenda). Yet, he was more likely to do that when the mathematical content wasn’t his specific 
research interest. Consequently, we concur with Speer and Wagner and posit that one’s 
mathematics background is not sufficient to successfully use student thinking in one’s class, 
however, the level to which one understands that content makes a difference in their instruction. 
Tension Between Agenda and Inquiry  

This first relationship translates into a second one, as there is a tension between what a 
mathematician wants to do in his/her class and IOI. In the case of Dr. DM, his focus, for some of 
the content from the course, was to get his students to his view of the mathematics. This 
ultimately leads to a tension between one’s teaching agenda and inquiry. If in inquiry, student 
thoughts are central to the development of the mathematical agenda (Kuster et al., 2017), then 
imposing one’s own view of mathematics does not align with an inquiry perspective. The reason 
this causes a tension is because being passionate about your research inherently is not a bad 
thing, nor trying to get your students to see the beauty of mathematics. However, in so doing, 



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

300 

one privileges their understanding over that of their students.  
Anticipating Student Thinking 

A third relationship that relates Dr. DM’s instruction to his participation in the OFC 
considers how one anticipates student thinking and how student thinking is used in instruction. 
We know from extant literature that mathematicians often struggle to implement novel teaching 
(if it is new to them) and in particular struggle with how to respond to and deal with student 
contributions in a productive and successful way (Wagner et al., 2007). However, this was not an 
issue for Dr. DM as he was in an OFC supporting his instruction. He never noted that he was 
unsure what his students were going to do. Yet, he seldom actively inquired into his students 
thinking. This indicates he either knew what his students were thinking or simply did not probe 
into their thinking; we cannot know which one. 

We also know from extant literature on the possible successes of anticipating student 
thinking in professional development settings (e.g., Demir et al., 2013). In the OFC, participants 
spent 1-2 weeks for each lesson study doing the mathematics of the units of focus and then 
anticipating how their students may approach the tasks. This model was based off of the 
Japanese lesson study (Demir et al., 2013). Ultimately, we conjecture there is a tension between 
anticipating student thinking and inquiry oriented instruction. By that we mean that because a 
critical component of inquiry oriented instruction is inquiring into student thinking and engaging 
with unexpected contributions, if student contributions are overwhelmingly “anticipated,” 
mathematics faculty may struggle to engage with those unexpected contributions if they spend a 
large amount of time anticipating what their students will do. 
Active Participation in Faculty Collaborations  

The fourth relationship centers around active participation in the OFC positively impacting 
instruction. As discussed, Dr. DM was an active participant in the OFC. Additionally, his goals 
were clear in that he was there to enhance his pedagogical practice. Dr. DM’s passion for IODE 
and IOI bled into both his instruction and participation in the OFC. This OFC was an example of 
what Borrego and Henderson (2014) defined as a faculty learning community. “STEM 
undergraduate instruction will be changed by groups of instructors who support and sustain each 
other’s interest, learning, and reflection on their teaching” (Borrego & Henderson, 2014, p. 233). 
Dr. DM was supported by and supported his fellow colleagues in learning about and reflecting 
on inquiry oriented instruction. This indicates that for successful instructional change, faculty 
learning communities or faculty collaborations needs to be designed with ensuring active 
participation from all involved. 

Conclusion 
This area of research is ripe for future research directions. The instruction of undergraduate 

mathematics courses is a hot button item in undergraduate mathematics education research 
today. More importantly, the research community still needs to know more about how we can 
support endeavors to reform instruction, how can they be scaled up, and how do we measure 
success? In this qualitative instrumental case study, while not generalizable, we can conclude 
that the OFC supported Dr. DM’s desire to reform his instruction. This work has highlighted 
how those faculty collaborations can be improved moving forward and most importantly 
highlights that instructional change is possible if the time and effort are put into it. 
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As schools turn towards co-teaching models to implement inclusion practices (US Department of 
Education, 2010), teachers are increasingly being asked to operate with a co-teacher (Scruggs et 
al., 2007). However, most research on co-teaching remains at the survey level; it does not 
examine factors that may influence co-teaching relationships over time (Scruggs et al., 2007). 
This paper seeks to address that gap by examining the feedback a first and second year co-
teacher give one another as they teach a high school mathematics course. The question under 
consideration is: what kinds of feedback may beginning co-teachers offer one another and how 
may it influence their classroom practice over time? The results of this work contribute to the 
broader body of co-teaching research by offering insights into a specific case of teacher 
collaboration.  

Keywords: Teacher Education- Inservice/Professional Development; Equity and Diversity; 
Affect, Emotion, Beliefs, and Attitudes 

Inclusion, the practice of blending students with and without documented special needs in 
one classroom, has become increasingly supported in schools across United States by adopting a 
co-teaching model where one teacher has content knowledge and the other teacher, knowledge of 
special education practices (US Department of Education, 2010). When implemented well, co-
teaching has been shown to be an effective way to teach all students (Cook & Friend, 1995). 
However, research indicates that teachers often do not have adequate supports, such as common 
planning time, resources, and training, and that without these advantages, these co-teaching 
relationships are not nearly as successful (Bouck, 2010; Dieker & Murawski, 2003; Scruggs, 
Masteropieri, & McDuffie, 2007).  Because under-resourced, beginning co-teacher situations are 
common, they should be explored in greater depth to better understand how to support educators 
in this position.  

The current body of co-teaching research is primarily limited to teacher perception studies 
that provide snapshot insights into co-teacher relationships (Scruggs et al., 2007). A 2012 study 
by Rytivaara and Kershner is an exception; their case study of two social studies co-teachers 
suggests that co-teachers may shift towards more student-centered practices when they 
collaborate effectively. This is an exciting prospect because not all teachers have access to more 
traditional professional development (PD) programs to improve their practices; therefore, if co-
teachers can offer productive feedback towards one another, co-teaching might offer an 
alternative form of PD to foster productive changes in teacher pedagogy over time. Indeed, 
Rytivaara and Kershner (2012) emphasize the importance of “social and collaborative” (p. 1001) 
reflection as key to successful professional learning and note that in theory, co-teaching gives 
participant teachers the opportunity to engage in a “peer-learning relationship” (p. 1001).  

The purpose of this paper is to consider the role of feedback given by two co-teachers, 
myself and my co-teacher, “Peter,” in our “peer-learning relationship” (Rytivaara & Kershner, 
2012, p. 1001) and examine whether and how our classroom practice changed over time. The 
study was conducted using action-research methodology (e.g. Chazen, 2000; Lampert, 1990; 
Townsend, 2014). The feedback Peter and I exchanged as we worked together for the first time 
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to teach an Algebra II and Trigonometry course are analyzed to address the following research 
question: what feedback may beginning co-teachers offer one another and in what ways may it 
influence their classroom practice over time? 

Theoretical Framework 
This work was conducted based on the belief that learning is situated (Greeno, 1991; Lave & 

Wegner, 1991) and that teachers and students are “elements or aspects of an encompassing 
system of social practices” (Cobb & Bowers, 1999, p. 5). Therefore, this study’s intention is not 
to strive for generalization to other contexts, but instead to seek initial patterns from the data 
themselves and produce context-dependent insight into a specific case, as opposed to producing 
“high level theory” (Flyvbjerg, 2006, p. 223). As Flyvbjerg (2006) argues, it is essential to 
consider a breadth of cases before developing more general theory, and that the cases themselves 
are useful for producing a more “nuanced view of reality” (p. 223). This study will contribute to 
the literature by illustrating the case of two beginning co-teachers, Peter and myself, as we 
collaborate together for the first time.  

Research Methods 
Study Context and Participants 

I started teaching high school mathematics in an urban district in the Northeastern U.S. 
during the 2014-2015 school year. Prior to teaching, I spent two years working on a PD research 
project that sought to increase teachers’ ability to attend and respond to their students’ 
mathematical ideas. Based on this background, I hoped that Peter and I could work together 
towards developing a more responsive classroom environment for all of our students (Hammer & 
Shifter, 2001), where we would build our lessons on students’ ideas and craft an environment 
where students shared and discussed one another’s mathematical thinking.  

Peter had taught for one year in a resource room in another district before moving to the 
research site, which is a relatively high-performing urban high school with approximately 1,700 
students. He often reported that he loved math in high school, but found it difficult in college and 
changed his major to Spanish. Although he did not take many college-level mathematics courses, 
from our experience together it was clear that he was quite proficient in the topics we taught.  

Peter and I co-taught one course together, from January to June 2015, but he taught two other 
classes with two other teachers that semester as well. His planning time did not align with any of 
the teachers he was assigned to work with, so most planning occurred via email or after school. 
Hence, Peter and I had little common planning time and had received no co-teacher training 
before teaching together. This situation is representative of many other co-teachers across the 
U.S. (Bouck, 2010; Dieker & Murawski, 2003; Scruggs et al., 2007). 

As stated previously, Peter and I taught an Algebra II and Trigonometry course. The 
curriculum covered a review of polynomials, linear and quadratic functions and their 
transformations, and then introduced exponential and logarithmic functions, rational functions, 
limits, the unit circle, solving trigonometric equations, proving identities, and finally, graphing 
trig functions and trig function application problems.  
Study Design 

This study was designed as action research (Adelman, 1975; Lampert, 1990; Townsend, 
2014), as I occupied the dual role of teacher and researcher whose goal was to foster a more 
responsive environment with my co-teacher. While some researchers have argued that the 
primary purpose of action research is to change practice, rather than to produce research (Elliott, 
1991; Kemmis & McTaggart, 1982), I sought to design a study where the results could be similar 
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to other situations with broader research implications. Hence, I strove for it to be as authentic to 
a traditional co-teaching experience as possible, only intending to give feedback and argue for 
responsive teaching practices when the moment arose organically in conversation, rather than 
overtly pushing my agenda. Therefore, while I hoped that our practices would become more 
responsive to our students’ needs, I did not explicitly communicate that to Peter.  
Data Collection and Analysis 

The data were collected from late January to late June 2015. I recorded 26 of the approximate 
40 conversations we had we planned together. These conversations were of varying length (5 
minutes to 1.5 hours) and occurred almost entirely after school. I also made daily field notes that 
summarized the day’s class and my impressions from that day, and collected my 123 email 
correspondences and the assignments Peter and I developed for our students.  

The data were first coded line-by-line using grounded theory methods (Charmaz, 2014). For 
instance, in the transcript below (Figure 1), Peter and I discussed how to address low student test 
scores. The lines on the right indicate the presence of some of the codes given to each piece of 
transcript. Peter says “part of me is like, we spent two weeks on that, but it was very choppy 
because of all of the other stuff…” This was coded as “blaming students for poor performance,” 
as he says “we spent two weeks on that” and the second part, “But it was very choppy because of 
all of the other stuff,” was coded as “taking responsibility for student performance.” This entire 
segment was coded as “exploring why students did not do well on an assessment,” because Peter 
discussed how time, student motivation, and instruction may have influenced the test scores. 
Over 200 codes were developed after analyzing all transcripts.  
 

  
Figure 1. Example of the initial coding process using Nvivo software.  

Next, the 200 codes were sorted into 43 broader categories (Charmaz, 2014) to identify larger 
themes in the data. After this initial analysis was completed, I returned to the research question to 
examine the feedback more directly. All moments of feedback were classified based on their 
degree of specificity, as specificity is considered a hallmark of quality feedback (Gan & Hattie, 
2014; Hattie & Timperley, 2007). Three codes were developed based on this premise:  

Vague:  Feedback that is merely positive or negative and does not appear to add any advice 
or insight or explain our reasoning. For instance, “That packet is awesome” and “That looks 
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great!” are examples of vague feedback because we do not explain why the subject at hand is 
“awesome” or “great.”  

Moderately Specific: Feedback that provides some level of detail as to the strengths or 
weaknesses of the subject. For example, “I think it’s a little long but the questions are great!” In 
this quote, I validate Peter’s hard work (“the questions are great!”) but provide the feedback that 
I believe the assessment he developed is too long. However, I does not explain why I believe it is 
too long or provide suggestions to address the issue.  

Specific: Feedback that is detailed and explains the feedback-giver’s reasoning. This 
feedback should also include propositions for changes. Following Peter’s development of a quiz, 
I replied with the following:  

Overall, I really like the structure of the quiz and I think the questions are great, but I think 
that the graphs are really hard—I think that in order for us to determine what they understand 
and what they don’t, some of them should just have a phase shift, some should just have 
amplitude, some should just have a vertical shift, and some could have a combination to see 
what they’re capable of. I think it’s a little much to have all three shifts in most problems. 
In this example, I give the feedback that I think the quiz is “really hard,” but then grow more 

specific: I delve into why I believe this is the case and offers suggestions to remedy the situation.   

Results 
The purpose of this paper is to describe the types of feedback we gave one another and how it 

may have changed our classroom practice. Therefore, the results are organized by first giving an 
overview of the feedback we gave one another, and then examining the ways in which our class 
changed over time.  
Feedback Exchanged 

There were two instances of feedback in the 26 recorded conversations between Peter and me 
and both occurred near the end of the semester in June. In the first instance, I followed up on a 
discussion Peter had with one of our students, Jalen. I recorded the events that transpired the day 
Peter talked with Jalen in my field notes:  

Peter stopped by my class after school and helped Jalen, one of our students who passed first 
quarter and then started to slack. He worked on revisions from our Limits test, but had 
essentially forgotten what limits were so Peter was reteaching him. Early on, Peter asked 
Jalen what he planned to study after graduating. Jalen said he was interested in music and in 
the medical field, and so Peter told him that if he was interested in studying medicine he 
might need to take calculus. Because limits are a ‘calculus-y’ concept, understanding them is 
very important and kind of a preview to what he'd be learning in calculus. I thought it was a 
good approach for Peter to relate the content to Jalen's interests, but the tone kind of 
(unintentionally, I think) implied that if he didn't master limits, calculus would be really hard. 
I don’t think that Peter meant to give Jalen that message, but I'm afraid that Jalen left with a 
fear that he couldn't succeed in what he hoped to pursue. Also, Peter was trying to encourage 
Jalen, ‘See, you're getting it, this stuff is easy.’ But I don't think that Jalen was understanding 
the material to the degree that Peter thought he was, and Jalen seemed a little upset by his 
assertion-- he didn't want to protest, I don't think, [or] contradict what Peter was saying by 
pointing out that no, he didn't understand, but it was a little uncomfortable. I didn't really 
know how to help, either, but I probably should have said something (June 4th, 2015).  



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

306 

This quote contains an important reflection. I wrote, “I didn’t really know how to help.” Not 
knowing how to approach areas of disagreement with Peter was common in the field notes; there 
are a few instances where I wrote notes such as, “I don’t really know how to talk about that with 
him,” especially early and mid-semester. In this case however, I was so bothered that I decided 
to discuss it with Peter the next time we were both after school:  

Me: Yeah, I think that... I wasn't sure... like, the other day, when you were saying, um, like, 
‘You got it! You got it!’ to him, I was like, ‘I don't-- I dunno if he has it yet.’ 

Peter: No, but like, maybe he doesn't have it, but at least if he's taking a step in the right 
direction? Sometimes positive reinforcement. I think sometimes I might do that a little to 
much. Like a sine graph, I sometimes may go way overboard with praise, sometimes I 
may be like, ‘screw you.’  

Me: Yeah, I guess it's just making sure it's the right kind of praise too. I just remember some 
of my math professors, when they were trying to make us feel better about what we were 
learning, they would be like, ‘This is so easy! You shouldn't feel bad about this. This is 
so easy!’ And then I would be like, ‘No, it's not easy! Now I just feel dumb.’ And until I 
was that student. I was like, ‘Oh, I should make sure I don't call something ‘easy.” 
Sometimes I use the euphemism of ‘straightforward,’ which doesn't really… 

Peter: I definitely called limits easy, because it's like, we're looking at two things. They 
either come together or they go in different directions (June 6th, 2015).  

I tried to provide feedback on the type of praise that Peter offered, that it may have been 
premature to assert that Jalen understood the material. Peter countered, saying that he gave 
“positive reinforcement” to Jalen’s work. I then attempted to argue by connecting to my own 
personal experience, citing that when I was told by a well-intended professor that the content was 
“easy,” it made me feel worse. Peter disagreed, saying that the material was “easy.” In this 
example, Peter did not appear to accept my feedback to adjust the way he discussed content with 
students. He continued to argue that the content was “easy” and that he did provide appropriate 
praise. 

The second instance of feedback occurred later that same day. In class, Peter had tried to 
“cold-call” students to hold them accountable for paying attention. As the co-teachers reflected 
on how class went that day, the following discussion took place:  

Peter: I'm happy. I think today some people made sense of things. I feel like today was 
somewhat of a success. 

Me: Well it was funny how many people you called upon to ask for a definition and how 
many people still just like, weren't listening. 

Peter: Yeah, weren't even listening to the group. And like, it's sad but I think it's something 
that we have to keep doing. 

Me: Yeah, I think it's good to do that. You probably could have kept it up a bit longer too. 
Peter: Yeah. 

Me: But it's hard when there are so many people who are sitting and you can only call on 
them some of the time (June 6th, 2015).  
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This small piece of my feedback, that “you probably could have kept it up a bit longer too,” 
is the one piece of pedagogical feedback given over the course of the semester. However, I wrote 
in my field notes that “I think that if we were friends it might be easier for us to give each other 
feedback on curriculum materials, etc.” It appears that I felt uncomfortable giving Peter feedback 
because we were not friends. Yet, my feedback that Peter could have “kept it up a bit longer 
too,” along with my critique of his conversation with Jalen, both may indicate that by the end of 
the semester I felt that our relationship was strong enough to offer small pieces of pedagogically-
based feedback face-to-face with Peter.  

While there was little feedback given during face-to-face conversations, there were 19 
instances of feedback given via email between Peter and me, significantly more than the 2 
instances given in-person.  

Table 1: Number of specific, moderately specific, and vague pieces of feedback per month 
given via email.  

Month Specific Moderately Specific Vague 
January 0 1 4 
February 0 1 0 
March 2 0 0 
April 1 1 0 
May 3 2 1 
June 3 0 0 

 
As Table 1 shows, as the semester progressed, there was an increase in the frequency of 

specific feedback and a decrease in vague feedback. Again, this may indicate that as we grew 
more comfortable with one another, we felt that we could give more specific critiques. All 
feedback related to developing course materials and assessments. For example, after grading a 
test on the unit circle, I wrote in an email:  

The kids bombed the test. The highest grade was in the 40s… I like the idea of having a 
revisions/make-up day at some point before the end of the semester, but I was thinking that 
we give them advanced warning and give them a group test on Tuesday or Wednesday, then 
average the scores… I wonder whether it makes sense to just forget about the sum/difference 
formulas and focus on graphing and mastering what they do know... what do you think? 
(May 31st, 2015).  

Peter replied:  
I agree about tomorrow. I feel like the multiple representations are important. Perhaps we 
could use desmos or have them extend the graph to show the two graphs, or we could [ask] 
them [to] compare a sine graph shifted to the cosine graph ( y = sin(x + pi/2) vs. y = cos(x)) 
so they can see the similarity between the graphs (June 1st, 2015).   
This quote conversation is representative of the types of conversations Peter and I had. Here, 

I proposed omitting the sum and difference formulas moving forward, although it would be on 
the final, and instead continue work on graphing. Peter gave the feedback that he agreed with my 
suggestion, and then built on my comments by proposing multiple representations using 
technology. We often acknowledged one another’s ideas about content, discussing order of 
topics, material development, and assessing student understanding, and agreed or pushed back 
accordingly.  
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Changes in Classroom Practice 
When Peter and I began our class in January 2015, we often opened with a “Do Now” warm-

up problem for students to try, followed by direct instruction and then individual or group work. 
We often alternated between providing direct instruction and circulating the room to ensure that 
the students were on-task. A similar structure prevailed in the end of the semester. Hence, our 
overall classroom structure did not appear to change from the beginning to end of the course and 
we did not shift towards using the responsive teaching practices to the extent I had hoped for. 
This is perhaps representative of the lack of feedback and conversation around making our 
classroom more student-centered; there were only two pieces of feedback about student 
interactions and they occurred in June.  

Peter and I did change how we delivered material to students. Initially we developed large 
packets of problems and notes per unit, but as the semester progressed we transitioned to daily 
assignments based on our perception of our students’ understandings from the day before. Peter 
and I often alternated between making the next day’s assignment and would share our lesson 
through email to get feedback. This shift could perhaps reflect our focus on students’ 
understanding of content through the assignments and assessments we created, as opposed to the 
mathematical ideas students shared in class. This focus was especially prevalent in the feedback 
we gave one-another via email. While our daily structure remained the same, that our 
assignments became more attentive to students’ mathematical knowledge raises the possibility 
that given more time and experience, Peter and I may have learned to practice more responsive 
teaching methods as well, not just more responsive assignments. 

  Discussion and Implications 
The results show that we gave each other pedagogical feedback face-to-face only once, at the 

end of the semester, and otherwise gave no feedback in-person. However, we gave each other 
content-based feedback much more frequently over email, and this feedback increased in 
specificity as the semester progressed. This is an important indication of quality feedback (Hattie 
& Timperley, 2007; Shute, 2008).  The late increase in feedback may indicate that we grew more 
comfortable with one another as the semester progressed and suggest that for co-teachers to give 
one-another feedback, they need to know one-another first. This builds upon prior research, 
which has found that for a co-teaching relationship to be successful, it needs to be like a 
marriage: “requiring effort, flexibility, and compromise for success” (Scruggs et al., 2007, p. 14). 
Therefore, future research should examine structures that could be put in place to help teachers 
develop stronger relationships, therefore fostering an environment more conducive to giving and 
receiving feedback. 

Peter and my feedback was quite substantive as well at times, suggesting that even beginning 
co-teachers can give feedback to improve the content presented to a course. However, our lack of 
feedback towards other aspects of teaching highlights that we were not good sources of feedback 
for improving pedagogy, and could explain why there were no shifts in classroom practice over 
the semester while there were changes in how we created and delivered course material. This 
builds upon current feedback research, which primarily focuses on feedback given by teachers to 
students or from administrators to teachers (Khachatryan, 2015), by illustrating that even 
beginning teachers can offer suggestions for improvement.  

While more co-teaching relationships should be examined to see the greater variety of the 
ways in which co-teachers may provide feedback and shift their practices, schools might 
consider using all, not simply veteran, teachers when implementing feedback protocols. This is 
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because even beginning teachers may have important contributions to make to improving school 
experiences for students.  
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Professional development (PD) is widely used to aid teacher development and improve student 
learning outcomes.  In PD, skilled facilitators use research-based frameworks to support and 
provide a lens for teachers’ engagement with artifacts of practices (e.g., student written work).  
However, often what is unaccounted for in PD design is the use of teachers’ insider knowledge 
of their students.  This study explored considerations that arose when teachers engaged with 
written work from their classes outside PD.  Results identify the range and prevalence of 
considerations used in teachers’ conversations.  Also discussed are implications for professional 
developers and those who support teacher learning through the analysis of written work. 

Keywords: professional development, frames, student written work, elementary school teachers 

Professional development (PD) is widely used to support teacher development and improve 
learning outcomes.  In PD, the complex work of teaching is decomposed into manageable 
parts, and teacher learning is often supported through engagement with artifacts of practices 
(e.g., student written work) led by experienced facilitators (Kazemi & Franke, 2004).  In 
addition, the use of research-based frameworks (Carpenter, Fennema, Franke, Levi, & 
Empson, 2014) and protocols of instruction (Krebs, 2005; Little, 2003) provides a lens to 
support teachers’ engagement with classroom artifacts in PD with the intent that the same lens is 
used in their classrooms.  However, what is often unaccounted for in most PD is the potential 
role of teachers’ insider knowledge of their children and the influence of their engagement 
with artifacts of practice.  

Take for example the task of examining written work, which is a prevalent activity inside and 
outside PD.  In PD, teachers are asked to bring in samples of written work from their own class 
as they utilize research-based frameworks to understand their children’s thinking. Facilitators 
and collaborative groups play a role in co-constructing what to consider as teachers engage with 
their written work with the hope those considerations will remain the same once teachers leave 
the PD.  Outside of PD, teachers engage with written work individually in their classrooms and 
sometimes collaboratively with their peers (e.g., within grade level meetings). When teachers 
are in their classrooms, engaging with written work is typically constructed by the individual 
teacher’s insider knowledge of their children and is guided by the need to make decisions in the 
moment or in preparation for the next day.  Considerations are influenced by goals set for each 
child, the class as a whole, or curricular expectations.  When teachers work collaboratively 
with their peers, considerations for engaging in the written work are driven by school-level 
expectations, standards, accountability, and curriculum (Little, 2003).  In collaborative 
settings, the goal of analyzing the written work is often not closely linked to the teachers’ 
individual child but related to understanding classroom performance, more generally.  The 
different settings in which teachers examine written work—in PD contexts, teachers’ 
individual classrooms, or school-based teacher groups—position written work differently, 
and teachers draw upon different relationships in their analyses.  These differences highlight 
the use of teachers’ knowledge and beliefs but also the context of teaching should be considered 
when trying to understand teachers’ engagement (Webel & Platt, 2015). 
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Conceptual Framework 
In this study, I chose to think about teachers’ considerations as “frames” to look beyond what 

teachers say as they work with written work, and instead focus on the nature of the engagement.  
Framing or frame analysis was theorized by sociologist Erving Goffman to explain how 
individuals structure information for sense-making.  Goffman (1974) argued that we all actively 
classify, organize, and interpret our life experiences to make sense of them by filtering relevant 
information and discarding what is not needed depending on the situation.  Individuals, whether 
aware or unaware, construct frames on a day to day basis to make sense of the world around 
them.  I argue framing is a broad construct that includes knowledge, beliefs, dispositions, and 
experiences.  In the case of engaging with written work, the frames used by the PD facilitator, 
the individual teacher, or grade level teams could shape individual teachers’ engagement.  For 
example, in schools and PD settings, the framing of written work could include making sense of 
children’s mathematical thinking (Kazemi & Franke, 2004; Little, 2003), understanding 
misconceptions (Krebs, 2005), or checking for correct answers (Horn, 2007). 

Researchers in mathematics education have applied framing in PD to understand teachers’ 
noticing in video clubs (Sherin & Russ, 2014) and in schools to investigate teachers’ 
conversations when categorizing students (Horn, 2007) and in teacher learning through 
collaborative groups (Bannister, 2015; Louie, 2016).  Across these studies, framing served as an 
analytical approach to provide the meaning of teachers’ conversations.  For example, Bannister 
(2015) noted individual teachers expressed different conceptions of how to classify a “struggling 
student” based on the needs of their own students.  However, the framing of “struggling 
students” was co-constructed by the group’s collective interpretation which was not 
representative of every teacher’s interpretation. 

In PD settings, facilitators guide teachers through the use of research-based frameworks that 
frame ways to structure meaning of written work.  For example, Kazemi and Franke (2004) used 
a research-based children’s mathematical thinking framework (Carpenter et al., 2014) to promote 
elementary school teachers’ analysis of written work in professional development.  During the 
PD, teachers shared written work samples from their classrooms while the facilitator questioned 
teachers to attend to and make sense of strategies according to the children’s mathematical 
thinking framework.  Findings showed that, over time, teachers learned to frame how they 
attended to and made sense of children’s mathematical thinking in ways that were reflective of 
the framework used in the PD.  In essence, the design of the PD guided teachers’ framing of the 
written work as intended.  

The Kazemi and Franke (2004) study is representative of studies that have provided evidence 
that teachers can learn to use a children’s thinking frame as they engage with written work 
during PD, which is a controlled setting.  There is also some evidence that teachers who have 
adopted a children’s thinking frame in PD, continue to use this frame in their own classrooms 
(Sherin & van Es, 2009).  However, we do not know if there were other frames that arose as 
teachers engaged with written work because that was not the focus of these types of studies.  
Looking beyond the children’s thinking frame used in PD to examine written work can provide 
insight into other frames that were not addressed in PD.  Further, by looking at the frames that 
arise outside the context of PD when teachers engage with written work after having taught a 
lesson, we can better understand the issues that could emerge in a more naturalistic and applied 
setting.  

In this study, I chose to explore frames outside of a children’s thinking frame and outside of 
PD.  I draw heavily upon Sherin and Russ’s (2014) conception of interpretative frames, which 
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were defined as structures that described the way teachers’ attention grows out of and informs 
their reasoning.  Sherin and Russ (2014) used interpretative frames to understand the relationship 
between teachers’ reasoning about classroom events and the role of reasoning used in teachers’ 
noticing of short video excerpts.  Analysis of teachers’ conversations in video clubs identified 13 
interpretative frames that characterized the network of ideas teachers used to reason when 
analyzing video excerpts from their own classrooms during PD.  My study is similar to the work 
of Sherin and Russ (2014) because I investigated the frames used when engaging with children’s 
ideas, but there are some important differences.  Sherin and Russ (2014) worked with middle and 
high school teachers who were analyzing video of classroom events.  I chose to focus on 
elementary teachers’ individual engagement with their own written work after a classroom 
lesson. 

Research Focus and Questions 
The focus of this study was to explore considerations elementary school teachers used when 

examining their own students’ written work.  Specifically, I addressed the following questions: 
What considerations arose in elementary school teachers’ conversations when engaging with 
written work from their classrooms?  More specifically, what frames were utilized (outside the 
children’s thinking frame provided in the PD) when teachers engaged with written work from 
their classrooms? 

Methods 
Participants 

This study involved 42 grades 3–5 teachers who were a subset of teachers who participated 
in the Responsive Teaching in Elementary Mathematics (RTEM) study — a professional 
development design study focused on research-based knowledge of children’s fraction thinking 
and how teachers can use this knowledge to be responsive to children’s thinking in their 
classrooms.  The 42 participants were teachers whose classrooms were observed solving an equal 
sharing fraction problem (Empson & Levi, 2011), completed 1, 2, or 3 years of PD in the RTEM 
study, reflected a range in years of teaching experience and prior experiences with research on 
children’s thinking.  They were drawn from three school districts in the southern region of the 
United States, and these districts included not only a diversity of ethnicities and achievement 
levels but also purposeful variations in instructional supports and constraints, which could 
influence teachers’ engagement with written work.  
Professional Development 

The 3-year PD consisted of 8.5 total days each calendar year, including the summer and 
academic school year.  Teachers engaged in numerous activities focused on using research-based 
frameworks for children’s thinking of whole-number concepts and fractions to support 
responsiveness to children’s thinking.  Additionally, teachers participated in practices (e.g., 
questioning and noticing) that built on children’s mathematical thinking.  Equal sharing 
problems were a type of problem widely used in the PD to support building children’s 
foundational understanding of fractions and conceptual knowledge of working with fractions.  
An example of an equal sharing problem is: Six children want to share ten brownies so that 
everyone gets the same amount.  How much brownie can each child have? 
Data Sources and Analysis 

Data Sources.  Data included 42 audio-recorded, semi-structured teacher interviews that 
took place following an observation of each teacher’s classroom instruction.  Teachers were 
asked to pose an equal sharing problem during their instruction that they considered appropriate 
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for their class.  After the lesson, teachers were immediately interviewed.  I am focused on the 
portion of the interview in which teachers were asked to identify a student's written work that 
was interesting to them and then discusses what stood out about that child’s thinking.  Additional 
questions asked teachers to describe the details of the child’s strategy, their understandings, and 
next instructional steps. 

Data Analysis.  The analysis of teachers’ conversations occurred in multiple steps and was 
guided by the question: “What frames beyond children’s thinking do teachers typically draw 
upon when making sense of their own students’ written work?”  Again, the focus for looking 
beyond children’s thinking was to look for what teachers considered beyond what was addressed 
in the PD.  The first analysis stage focused on segmenting the interview transcripts into idea 
units when a single topic was discussed.  In the second stage, I determined the focus of each idea 
unit.  During the third stage, I used an iterative process looking across the idea units to generate 
five frames for conversations about the teachers’ own written work.  I was inspired by the 
approach of Sherin and Russ (2014) but did not begin with their 13 interpretative frames for 
teachers’ engagement with video.  Instead, I generated frames that emerged from the data.  
Finally, in stage four, I used the five frames identified in the third stage to code the entire data 
set.  In this final phase of analysis, I identified themes across frames to create categories and 
noted how many teachers used each of the five frames. 

Results 
The main result of the analysis of teachers’ conversations was the identification of five 

frames used in the teachers’ conversations.  These five frames fell within two broad categories: 
non-mathematical or mathematical performance comparisons.  Non-mathematical frames 
highlighted affective aspects or personal aspects of the child and their sense making. 
Mathematical performance comparison frames highlighted the child’s mathematical performance 
in comparison to the child’s performance in previous problems, the performance of others in the 
class on this problem or previous problems, or curricular or testing goals for that grade level.  
Table 1 describes each of the frames that emerged and includes the number of teachers who used 
for each frame. 
Non-Mathematical frames 

Confidence, behavior. This first category consisted of two frames in which teachers focused 
on some non-mathematical or personal aspects of the child in a discussion of the written work 
and sense-making.  Non-mathematical frames were used to highlight the progress the child has 
made despite certain issues or as a way of making excuses for what the child was unable to 
accomplish.  In the confidence frame, the teachers highlighted a child's mathematical confidence 
concerning their mathematical thinking.  For example, when asked to describe the details of the 
child’s strategy, Teacher 1 noted, “At first they did nothing.  I had to walk them through the 
problem.  They have the knowledge to solve the problem, but does not have the confidence to do 
it on their own without assistance.”  In this excerpt, Teacher 1 did not attend to the details of the 
child’s strategy but excused the child’s inability to solve the problem independently due to a lack 
of confidence when additional support was not provided. The confidence frame was used by 
24% of the teachers. 

Behavior was another non-mathematical frame in which teachers identified specific 
behaviors of a child and related that to their written work.  In these instances, teachers’ 
statements suggested that a child’s behavior had a causal relationship to what was represented in 
the written work.  For example, in response to the question, “What stood out to you in the child’s 
work?” Teacher 2 stated, “I could not understand why they chose to draw so many lines.  They 
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were on the right track, but struggles with attention and gets side-tracked easily and probably 
started to draw a lot of elaborate lines and arrows.”  A closer look at the child's strategy indicated 
the lines and arrows were used to purposefully denote passing out to the sharers.  Teacher 2 
attributed the details in the child’s representation to his difficulty focusing on the problem.  Only 
two teachers used the behavior frame, but this frame was included because it speaks to ways 
others have found that teachers categorize students (Horn, 2007). 
Mathematical Performance Comparison Frames 

Past performance, class performance, broader scope.  This second category included 
three frames that highlighted the mathematical performance of the individual child in comparison 
to that individual child, the class, or curricular goals.  Teachers discussed the child’s work in a 
descriptive or evaluative manner regarding its consistency with the teacher’s knowledge and 
experiences from previous involvement with that specific child, children in the classroom, 
research, curriculum, etc. In the past performance frame, teachers highlighted how the child’s 
performance on the problem compared with prior work from that child and often mentioned 
typical strategies used by the child or his or her progress over time.  For instance, in a description 
of a child who solved the problem using a valid strategy but had an incorrect answer, Teacher 3 
said, “They drew two rectangles and split each into 6 pieces, but no answer was written.  I was 
surprised because yesterday, they had an invalid strategy.  They might know more than I 
thought.”  These statements indicated the teacher originally expected the child to solve the 
problem using an invalid strategy based on their work on the previous day.  The teacher was 
surprised the child used a valid strategy and acknowledged a potential underestimation of the 
child’s understandings.  The past performance frame was widely used by 60% of the teachers. 

Related to the past performance frame was the class performance frame in which teachers 
highlighted how this child’s performance on the problem compared with the performance of the 
rest of the class on this problem or previous similar problems.  For example, when probed about 
a child’s understandings for a problem about 20 cookies being shared by 8 friends, Teacher 4 
stated “They understand that if there are 20 [items], you have 2 groups of 8 with a remainder of 
4.  They did the division in their head, while everyone else first passed out wholes individually.  
In some ways, they are more advanced than the others.”  This statement shows the teacher’s 
comparison of the child’s strategy and level of understanding to the majority of the class.  
Teachers also used the class performance frame as a way to consider how the child might offer 
support to others in the class or for others to help the child in their thinking and was also widely 
used by 67% of the teachers.  

The third frame in the mathematical performance comparison category, the broader scope 
frame, drew on teachers’ expectations from goals that were beyond the performance of the 
specific children in the teachers’ class.  In this frame, teachers highlighted how a child’s 
performance on this problem compared with the broader curricular or testing goals for the grade 
level.  Teacher 5 provided an example of the broader scope frame when asked to share next steps 
for the selected child: “I want [the class] to start notating their thinking more since on their [state 
standardized test] they have to write out everything.  They cannot draw to show their work.” 
Here, the teacher framed her analysis to focus on the use of notation for the child and the entire 
class based on their knowledge of testing expectations.  The broader scope frame was used by 
29% of the teachers. 
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Table 1: Frames Used to Discuss Teachers’ Own Student’s Written Work 

 
Written Work 

Frames Definition 

No. (%) of 
teachers using 

frame 
N = 42 

Non-
Mathematical 

Confidence Teacher highlights a child’s confidence related to his 
or her problem-solving performance 

10 (24%) 

Behavior Teacher highlights a child’s behavior related to his 
or her problem-solving performance 

2 (5%) 

Mathematical 
Performance 
Comparison  

Past 
Performance 

Teacher highlights how a child’s performance on 
this problem compares with prior work from this 
child 

25 (60%) 

Class 
Performance          

Teacher highlights how a child’s performance on 
this problem compares with the performance of the 
rest of the class 

28 (67%) 

Broader 
Scope 

Teacher highlights how a child’s performance on 
this problem compares with the broader curriculum 
goals or testing for the grade level 

12 (29%) 

 
Extended Example of Frames in Use 

When teachers talked about their written work, they often used multiple frames or the same 
frames multiple times throughout the conversation.  The following example shows the use of 
various frames in a conversation with Ms. Young and written work from Jordan (pseudonyms 
were used).  Ms. Young posed the following problem to the class: 10 friends want to share 19 
brownies equally. How much brownie will each friend get?  Jordan solved the problem by 
drawing 19 rectangles to represent the brownies.  She numbered the first ten brownies to give 
each friend one brownie.  Jordan then split the next five brownies into halves and gave 1/2 to 
each friend.  Finally, Jordan split the remaining four brownies into fifths and gave each person 
1/5 from every two brownies, totaling 2/5. Jordan combined 1, 1/2, and 2/5 incorrectly and wrote 
1 7/10 as her final answer.   
 

Interviewer: What stood out to you about Jordan’s work? 
Ms. Young: Jordan’s answer did not match her work.  It’s okay, but she is just not confident in 

her work.  That is why she added them altogether.  However, the rest of the class did what I 
expected them to do.  Most of the class broke up the brownies into tenths, like I expected.  
Jordan did not do what I expected her to do. 

 
Ms. Young was surprised that Jordan responded to the problem incorrectly despite having a 

valid strategy.  Ms. Young used the confidence frame as a rationale for Jordan’s mistake of 
adding the fraction pieces incorrectly.  According to Ms. Young, Jordan’s overall lack of 
confidence in her work was the reason for adding incorrectly.  Ms. Young compared Jordan’s 
difference in partitioning to the class, using the class performance frame.  Ms. Young expected 
most of the class including Jordan to solve the problem by partitioning based on the number of 
sharers (10) and Jordan did not partition as anticipated, which was a reason her work stood out. 

Later in the conversation, Ms. Young used the past performance frame to discuss Jordan’s 
understandings: 
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Interviewer: Based on Jordan’s work, what do you think she understands? 
Ms. Young: I think she can be flexible with her fractions.  It’s just interesting that she broke it 

up into halves first and then fifths. Usually, she does division and writes out the answer 
(without drawing a picture), so I don’t know why she ended up drawing a picture today. 

 
Ms. Young expected Jordan to solve the problem with a more advanced strategy than using a 

picture because according to Ms. Young, Jordan typically partitioned mentally and used 
symbols.  Additionally, Jordan typically solved the problem by partitioning based on the number 
of sharers, but for this problem used halves and fifths.  Jordan’s variation in partitioning 
demonstrated flexibility with fractions for Ms. Young.  In sum, Ms. Young’s interview reflected 
a use of multiple frames to position her thinking about written work produced by a single child. 

Discussion 
This study investigated considerations drawn upon by elementary school teachers who 

examined written work from their classrooms.  Findings suggest that teachers used their insider 
knowledge to think about the specific moment, past experiences, and their vision for the 
individual child and the class.  The broad category of frames, non-mathematical and 
mathematical performance comparisons highlights topics that are typically overlooked or not 
foregrounded in the design of PD.  

It is important to note that all teachers in this study used a children’s thinking frame in 
their engagement with written work, but also included additional frames.  The five frames 
identified suggest teachers often acknowledged an individual child’s learning while considering 
the learning of others in the classroom (Webel & Platt, 2015).  The use of multiple frames 
provided insight into how teachers coordinated what was shared in PD along with many other 
ideas of how to support student learning.  

Table 1 summarized each of the frames found in the teachers’ conversations and indicated 
some frames were used more by teachers than others.  Overwhelmingly, teachers used more 
frames in the mathematical performance comparison category.  This finding was not surprising 
given the task occurred during teachers’ math lessons and the design of the PD was focused on 
children’s mathematical thinking.  It was somewhat surprising that the past performance frame 
was used as frequently as the class performance frame given the task was centered on the 
discussion of an individual child’s work.  The past performance and class performance frames 
were used by 60% and 67% of the teachers, respectively. 

Conclusion 
A closer look into the use of frames highlighted ways a single piece of written work came in 

and out of focus in teachers’ discussion.  Sometimes teachers only attended to aspects within the 
child’s written work.  Other times, teachers demonstrated an ability to maintain focus on the 
individual child’s written work while comparing that work to others in the class or the class as a 
whole.  Additionally, teachers exhibited foresight by thinking beyond the work of the individual 
child or the entire class to consider other curricular expectations.  The different ways teachers 
attended to the child’s written work linked to certain frames but highlighted another important 
feature to consider.  These findings suggest the need for PD to afford opportunities for teachers 
to think about the complexity of honoring the individual child’s thinking while keeping in mind 
thinking of the entire class and the connection to broader curriculum goals. 

In PD, teachers are provided with a children’s thinking frame that shapes their  interaction 
with artifacts of practice (e.g., written work).  In this study, teachers used the children’s thinking 
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frame but also other frames when engaging with written work.  As the analysis of written work 
continues as a widespread practice in PD, those who design PD should consider how the use of 
frames–beyond those shared in PD–shapes teachers’ engagement. Teachers in this study 
grappled with considering goals related to individual child, the class, and curricular expectations.  
The identification of the five frames used in teachers’ conversations of written work can provide 
professional developers with ways to address contextual aspects of teaching.  Further research is 
needed to understand the interplay of multiple frames and the overall nature of teachers’ 
engagement with written work in the context of PD and in the classroom.  
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An important decision that professional development (PD) facilitators must make when 
preparing for activities with teachers is to select an appropriate tool for the intended learning 
goals of the PD (Sztajn, Borko, & Smith, 2017).  One important and prevalent tool is artifacts of 
student thinking (e.g. Jacobs & Philipp, 2004).  In this paper we add to the literature on artifact 
selection for professional development by discussing the affordances and constraints of different 
written artifacts of student thinking.  Through a professional noticing assessment, we examine 
the interpretive frames (Sherin & Russ, 2014) that were invoked by 72 secondary teachers 
regarding 6 students’ written strategies to proportional reasoning tasks.  We characterize 
different ways teachers might make sense of different artifacts of student thinking, and discuss 
for what purposes PD facilitators might select particular written solutions. 

Keywords: Written Artifacts of Student Thinking, Secondary Teachers, Interpretive Frames, 
Professional Development 

In their review of research about professional development (PD) of mathematics teachers, 
Sztajn, Borko, and Smith (2017) found two striking similarities across the programs illustrated in 
the research.  First, there was a similar vision for effective mathematics teaching across the 
programs, namely that teaching should include facilitation of interactions among students as they 
engage in rich mathematical tasks, that teachers should elicit and use students’ emerging ideas to 
reach a mathematical goal, and that an overarching goal should be advancing understanding for 
all students.  Second, the PDs were structured in similar ways; leaders actively engaged teachers 
in activities (as opposed to lecturing) about mathematics content and the teaching and learning of 
said content, and programs spanned many months and included many hours of work.  
Additionally, many PD programs focus on students’ mathematical ideas as a way to support 
teacher learning, through the use of video artifacts (e.g. Sherin & van Es, 2005) or written 
artifacts (e.g. Jacobs & Philipp, 2004; Kazemi & Franke, 2004).  Herein, we focus on written 
student work, given its prominent use in PD and its accessibility for teachers.  To support PD 
leaders, we investigate the affordances and constraints of different features of written student 
work and how they might influence what teachers notice.  

There are many ways teachers might interact with written student work.  For example, 
National School Reform Faculty (2014) has over 200 different protocols that teachers and PD 
leaders can use to engage with students’ written work, each supporting different discussions 
about a variety of pedagogical topics.  However, little is known about which strategies teachers 
might be interested in analyzing and discussing (for selection criteria for videos of student 
thinking, see Sherin, Linsenmeier, & van Es, 2009).  Hence, we investigated teachers’ 
perceptions of six different written solution strategies, with the aim of informing future PD 
leaders as they select particular strategies to engage their teachers. 

Conceptual Framework 
In order to understand teachers’ perceptions of the different artifacts, we draw upon the 

construct of interpretive frames (Sherin & Russ, 2014).  Sherin and Russ defined interpretive 
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frames as “structures that describe the ways in which a teacher’s selective attention both grows 
out of and informs a teacher’s knowledge-based reasoning, and vice-versa” (p. 3).  In particular, 
what teachers notice is both contextual and interdependent.  That is, what teachers notice 
depends on what they noticed previously, and is influenced by their beliefs, values, and/or 
knowledge. Teachers actively (yet tacitly) create particular frames through which they view their 
surroundings in order to make sense of their surroundings.   

In their chapter, Sherin and Russ (2014) identified 13 different types of interpretive frames 
that teachers’ created while making sense of videos of classroom lessons.  Consider the 
following examples.  In a video of a student loudly tapping their pen on a desk, a teacher viewing 
the event through an evaluative frame might claim the student is off task, and must be a bad 
student.  Alternatively, a teacher viewing the event through an affective frame might express an 
emotional reaction to the event, and talk about how pen tapping irritates him/her.  As another 
example, a teacher viewing the event through a principle frame might see the pen tapping as 
evidence the student is off-task, and describe this instance by citing a principle such as “students 
tend to act disruptively when they don’t have access to the task.”  Importantly, each frame 
supported a different way of noticing the event, and teachers’ perceptions of the event provide 
evidence of the creation of particular frames.  In this study we focus on investigating two types 
of frames teachers create: narrative frames and personal frames.  Narrative frames refer to when 
teachers simply describe what they notice, which may or may not include identifying causal 
relations.  Personal frames refer to when teachers experience a personal connection to what they 
notice, which may include emotional reactions to what they notice, or desires to interact with the 
student/strategy in some way.  We focus on these two frames because we believe they have 
much potential to influence the depth at which teachers engage with students’ ideas. 

Methods 
To understand how different pieces of written student work influence what teachers notice, 

72 practicing and prospective secondary teachers completed a survey. In the survey teachers 
responded to prompts about six different strategies for solving two proportional reasoning tasks.  
We then analyzed teachers’ responses by identifying when teachers created particular 
interpretive frames, and for which strategies teachers created these frames (Sherin & Russ, 
2014).  In the next four sections we describe the participants, survey, strategies, and our analysis. 
Participants 

The secondary teachers in this study come from two teacher populations in the southwestern 
United States.  First, 30 prospective secondary mathematics teachers were recruited from a large 
urban university. All intended to become secondary teachers, and none had begun the post-
baccalaureate credential program offered at that university, nor student teaching.  Second, 42 
experienced practicing teachers (grades 6 - 12) were recruited from the southwestern region of 
the United States.  All teachers had at least 4 years of experience teaching, and an average of 
13.1 years of teaching experience. 

We recognize that there are important differences among the two teacher groups that may 
influence what the teachers notice; however, parsing out these differences is beyond the scope of 
this paper.  Our purpose in this paper is to investigate and discuss some of the ways different 
artifacts of student thinking pique secondary teachers’ curiosity.  For that reason, in the rest of 
the paper the term “teacher” will refer to both prospective and practicing teachers. 
Survey 
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The survey consisted of three parts.  In part 1, teachers first solved a missing-value 
proportional reasoning task, and then considered three student’s written strategies for solving 
that task (see table 1).  Next, teachers responded to three professional noticing prompts about the  

Table 1: Tasks, Students, Strategies, and Descriptions 

Student Strategy Our Description of the Strategy 
Task: Each day, 6 mice eat 18 food pellets.  How many food pellets do 24 mice eat? 

A 

 

Student divides 18 pellets by 6 to find a unit 
rate of 3 pellets per mouse.  Student 
multiplies unit rate by 24 mice.  Student 
makes a mistake when multiplying 24x3. 

B 

 

Student uses the traditional cross-
multiplication strategy, setting up pellets on 
top and mice on bottom of the fraction.  
Student manipulates equation correctly.  

C 

 

Student divides 24 mice by 6 mice to find the 
number of groups of 6 mice in 24.  There are 
4 groups of 6 mice, so there should be 4 
groups of 18 pellets.  

 Task: Each day, 8 caterpillars eat 12 leaves. How many leaves do 20 caterpillars eat? 

D 

 

Student divides 12 leaves by 8 caterpillars 
(mistakenly writes 8 divided by 12), to find 
each caterpillar eats 1.5 leaves. The student 
divides in a non-standard way.  The student 
then multiplies 1.5 leaves x 20 caterpillars, 
using the distributive property to help with 
the multiplication.   

E 

 

Student multiplies both 8 caterpillars and 12 
leaves by 3, apparently scaling up the ratio to 
24 caterpillars and 36 leaves.  The student 
subtracts 4 from both quantities to obtain the 
20 caterpillars, and arrives at 32 leaves.  This 
last part exhibits additive reasoning, and is 
not correct.   

F 

 

Student multiplies 8 caterpillars by 3 to get 
24 caterpillars, then subtracts 4 to get 20 
caterpillars.  Student likely recognized that 4 
caterpillars is half of 8 caterpillars, because 
next the student finds half of 12 leaves (6 
leaves).  The student then multiplies 12 
leaves by 3, and subtracts a “half group of 
leaves” from 36 to get 30 leaves 

students’ mathematical thinking (Jacobs, Lamb, & Philipp, 2010).  Part 2 was similar to part 1, 
except with a different task and with different strategies (table 1).  In this paper, we discuss 
responses to the first two prompts: (a) Describe in detail what these students did in response to 
the task, and (b) What did you learn about these students’ mathematical understandings?  Hence, 
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we collected data on both what the teachers attended to and interpreted in the students’ strategies, 
and consequently the narrative frames teachers created with respect to the strategies.   
In the third part of the survey, teachers revisited all six of the strategies they had previously 
considered, and responded to four prompts.  In this paper, we discuss the analysis of the first two 
prompts: (a) Is there a student you would like to talk to further?  If yes, which student would you 
like to talk to further, and why?  (b) Would you be interested in discussing a particular solution 
with other teachers?  If yes, which solution would you discuss with other teachers, and why?  
Hence, we collected data on whether teachers wanted to interact with a specific student or 
strategy, and consequently the personal frames teachers created with respect to the strategies. 
Written Artifacts of Student Thinking 

The mathematical tasks and written artifacts can be seen in Table 1.  To differentiate among 
the strategies, we focus on 6 characteristics: (a) strategy type, (b) integer/non-integer ratios, (c) 
exhibits non-standard calculation strategies, (d) conceptually correct/incorrect, (e) 
correct/incorrect calculations, and (f) work includes all steps/work or is missing steps.  For 
strategy type, we identified what type of strategy the student used according to the literature on 
proportional reasoning (Carney et al., 2015; Lobato & Ellis, 2010).  Strategies A and D employ a 
unit rate strategy, in which the student finds how many pellets (or leaves) one mouse (or 
caterpillar) eats, and then multiplies this number by the new number of mice (or caterpillars).  
Strategy B employs a cross-multiplication strategy, which provides little evidence of the degree 
to which the student has a conceptual understanding of proportions (Cramer, Post, & Currier, 
1993).  Strategies C, E, and F employ different scaling strategies, where the student scales up the 
original ratio (strategy C), scales up and adds equal amounts (strategy E), or scales up and adds 
proportional amounts (strategy F). 

For integer ratios, we identify whether the student used a scalar or unit rate multiplicative 
relationship (Carney et al., 2015), and whether that relationship was an integer ratio or non-
integer ratio (Tourniaire & Pulos, 1985).  For strategies A and C, the scalar and functional 
multiplicative relationships are integer ratios, and for strategies D and F they are non-integer 
ratios. We did not include strategies B or E, because strategy B does not use either the scalar or 
unit rate multiplicative relationship when solving, and strategy E includes additive reasoning. 
For the other four categories, we simply looked for whether there was evidence the strategy 
exhibited that characteristic or not.  For example, strategy D exhibits non-standard calculations, 
while the others do not.  Table 2 summarizes the characteristics we identified for each strategy. 

Table 2: Characteristics of Strategies 

Student Strategy Type Integer 
Ratios? 

Correct 
Calc’s? 

Standard 
Calc’s? 

Correct 
Concept? 

All 
Steps? 

A Unit Rate Yes No Yes Yes Yes 
B Cross-Multiplication  Yes Yes  Yes 
C Scale Up Yes Yes Yes Yes Yes 
D Unit Rate No No No Yes Yes 
E Scale Up w/ Adding Equal Parts  Yes Yes No Yes 
F Scale Up w/ Adding Prop. Parts No Yes Yes Yes No 

Analysis 
Analysis was conducted by the first author.  In parts 1 and 2, teachers described the students’ 

strategies and understandings.  Hence, all teachers created narrative frames in some form as they 
noticed the student’s work and described what the student did.  Consequently, the first author 
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focused solely on whether the teacher’s description got the gist of the strategy, or the key 
underlying reasoning of the strategy.  Examples include descriptions similar to our own, or 
descriptions of the strategy we identified (e.g. “Student A found the unit rate and solved for 24 
mice”). Non-examples include identifying a strategy other than the one we identified, claiming 
the student was confused when evidence existed that the student was not, or admitting confusion 
about what the student did (e.g. “I have no idea what this student did”).  More than 20% of the 
data was double coded by another researcher, and interrater reliability was 87%.  

In part 3, teachers had a choice of talking or not talking to/about a student.  However, it 
turned out that 100% of the teachers chose to talk to/about at least one student.  The first author 
coded for which student a teacher selected, and what they wanted to talk about.  Responses fell 
into four categories: (a) learn more about the strategy, (b) help the student, (c) share the strategy 
with the class or with other teachers, or (d) discuss other mathematical topics.  More than 20% of 
the data was double coded by another researcher, and interrater reliability was 91%.  

Finally, the first author also looked for instances when teachers spontaneously expressed 
excitement toward a strategy (e.g. “Love it,” “This student is a genius,” “Student F is my 
favorite”), which we took as evidence that the teacher created a personal connection with the 
strategy (i.e. a personal frame).  Even though we did not actively seek to collect data on teachers’ 
emotions, 24% of the teachers spontaneously expressed excitement for at least one strategy at 
some point in the survey.  More than 20% of the data was double coded by another researcher, 
and interrater reliability was 93%. 

Results 
For narrative frames, we counted instances when the teacher’s response captured the gist of 

the strategy. Percentages of teachers that that captured the gist of the strategy can be seen in 
Table 3.  Almost every teacher captured the gist of strategy B, which was the cross-
multiplication strategy.  Comparing the correct unit rate strategies (i.e. A & D) with the correct 
scaling strategies (i.e. C & F), we see that the scaling strategies were more challenging for 
teachers to capture the gist of the strategy.  Additionally, within these four conceptually correct 
strategies, it appears the non-integer ratio strategies (i.e. D & F) were more challenging than the 
integer ratio strategies (A & C), respectively, but only marginally more challenging than their 
counterparts.  Strategy E, which included additive reasoning, was more challenging than the unit 
rate and cross multiplication strategies, but less challenging than the other two scalar strategies. 
For personal frames, we counted instances when a teacher wanted to talk to/about a particular 
student, and then categorized responses based on what they wanted to talk about.  We also 
looked for evidence that a teacher enjoyed a particular strategy.  Percentages can be seen in 
Table 3.  When considering the conceptually correct scalar and unit rate strategies (i.e. A, C, D,  

Table 3: Percentages of teachers capturing gist, wanting to talk to/about a student, and 
expressing emotion 

N = 72 A B C D E F 
% of teachers that captured gist of the strategy  89% 97% 63% 83% 69% 57% 
% of teachers who want to talk to/about a 
student 8% 15% 25% 33% 60% 75% 

% of teachers expressing excitement 0% 3% 3% 11% 4% 18% 
& F), scalar strategies elicited more teachers wanting to talk to/about the student than the unit  
rate strategies, and the strategies with non-integer ratios were more intriguing to the teachers 
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than the integer-ratio strategies.  Strategy F (which was the most challenging, included non-
integer ratios, used a scaling up strategy, and appeared to not show all steps) elicited the largest 
percentage of teachers wanting to talk to/about the student, as well the largest percentage of 
teachers expressing excitement.  Strategy E, which had the conceptual error, elicited the second 
highest percentage of teachers wanting to talk to/about the student.  Strategy D, which had the 
non-standard algorithms, elicited the second highest percentage of teachers expressing 
excitement. Looking at what excited the teachers for strategy D, ¾ of the teachers who expressed 
excitement specifically mentioned the non-standard algorithms.  

The percentages of which students teachers wanted to talk to/about and why can be seen in 
table 41.  Notice that almost half of the teachers wanted to learn more about strategy F, which 
supports the notion that strategy F was the most challenging and intriguing to teachers.  Strategy 
F also elicited the highest percentage of teachers who wanted to share the strategy, either with 
their class or with other teachers. 

Looking at strategy E, which had the conceptual error, we see that this strategy elicited the 
highest percentage of teachers (38%) wanting to help the student.  In contrast, less than 10% of 
the teachers wanted to help students A and D (respectively), who exhibited calculational errors in 
their work.  (The teachers who wanted to help students C and F assumed they were confused.)  

When considering the conceptually correct scalar and unit rate strategies (i.e. A, C, D, & F), 
we see two more pieces of evidence that scalar strategies and strategies with non-integer ratios 
are more interesting than their counter-parts.  First, more teachers wanted to learn about scalar 
strategies than unit-rate strategies, and more teachers wanted to learn more about the strategies 
with non-integer ratios than the strategies with integer ratios.  Second, more teachers wanted to 
share the scalar strategies with others than the unit rate strategies, and more teachers wanted to 
share the strategies with non-integer ratios than the strategies with integer ratios. When sharing 
strategies, teachers often either expressed excitement for the strategy, or valued the different 
ways of thinking exhibited in the work.  

Finally, teachers wanted to discuss a variety of other things with their peers.  This included 
learning about some new mathematics, anticipating other solutions, discussing the importance of 
multiple solutions, discussing pedagogical strategies for teaching proportional reasoning, and 
assessment strategies.  Notice that the cross multiplication strategy had a large number of 
teachers wanting to discuss other mathematical ideas.  All of these teachers wanted to discuss 
whether the cross-multiplication strategy exhibited a high level of understanding, or not.  This  

Table 4: Percentages of teachers wanting to talk to/about a student and why 
N = 72 A B C D E F 

Want to learn about strategy 3% 4% 14% 18% 22% 46% 
Want to help student 4% 1% 4% 6% 38% 8% 
Want to share strategy  4% 7% 4% 6% 18% 
Want to discuss other topics 1% 6% 1% 7% 1% 8% 
Total wanting to talk to/about student 8% 15% 25% 33% 60% 75% 

means that not only did these teachers recognize that this student might have used a memorized 
procedure, but they were also interested in discussing such implications with other teachers. 

                                                
1 In table 4, the columns do not sum to the totals because some teachers created multiple 
different personal connections for the same student.  Additionally, the totals do not sum to 
100% because some teachers chose to talk to/about multiple students. 
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Discussion 
To summarize, we found that some strategies elicited teachers’ desire for discussions more 

often than others, albeit for different reasons and in different ways.  In this section we discuss the 
strategies and the interpretive frames teachers created, and for what purposes PD leaders might 
select particular strategies. 

Strategy F was clearly the most exciting, interesting, and challenging for teachers. We 
conjecture that this strategy was difficult and interesting for four reasons.  First, the scalar 
strategy type appears to be less familiar to teachers than the unit rate or cross multiplication 
strategy. Second, the non-integer ratios afforded certain complexities that would not have been 
available in a task structure with integer ratios.  In particular, this student has to both iterate and 
partition the ratio, and then subtract a partitioned ratio from the larger ratio (Lobato & Ellis, 
2010).  In strategy C, the student need only multiply the 18 pellets by a whole number; there is 
no need to partition the original ratio.  Third, the missing step was a challenging step for many 
teachers to notice, but also an important part of the strategy. Finally, the computations are all 
quite simple at first glance.  We wonder if the simple computations created a slight misdirection 
in teachers’ expectations as they considered the student’s strategy.  Perhaps the excitement 
teachers expressed arose from prevailing in understanding a challenging strategy. 

Student E was also often chosen by teachers, but for different reasons than for student F.  
Many of those who wanted to talk to/about student E wanted to help student E fix the error, or 
develop a stronger understanding.  Contrasting this with the other two strategies that exhibited 
errors, strategy A and strategy D, we see that the conceptual error in strategy E was more 
interesting to teachers than the calculational errors in strategies A and D.  Hence, it appears 
conceptual errors intrigue teachers more than calculational errors.  

Strategies D and F elicited the most excitement from teachers.  For strategy D, ¾ of the 
teachers who exhibited excitement specifically cited the non-standard division and/or 
multiplication algorithms as exciting.  Strategy F appeared to be exciting in general.  Considering 
the two strategies, we highlight four similarities that may have supported such excitement.  In 
particular, strategy F and the non-standard algorithms of strategy D were correct, based on 
underlying concepts, complex, and unfamiliar to teachers.  We conjecture that other strategies 
with these qualities may also elicit excitement from teachers.  

Another idea that emerged from the data was that 6% of the teachers wanted to discuss the 
underlying mathematics of strategy B, and whether it counted as a deep conceptual 
understanding or not.  It appears that these teachers recognized that the student might have been 
following a memorized procedure, and wanted to discuss with other teachers what this might 
mean with respect to learning and teaching. We believe that conversations like the one these 
teachers wanted to have could be productive for teachers.  Perhaps other more traditional 
strategies, when surrounded by non-standard or conceptually-based strategies, could spark 
conversations among teachers about the underlying mathematics.  

In their study of video artifacts of student thinking, Sherin, et al. (2009) rated videos based 
on three particular characteristics, and looked for which types of videos supported conversations 
among teachers.  They concluded that there wasn’t a particular characteristic that was more 
important than others, but rather certain combinations of characteristics supported better 
discussions.  Our results seem to support this idea, that no single characteristic makes a solution 
interesting, but rather a combination of characteristics.   

Earlier we mentioned that we recognized there were important differences between the two 
teacher groups from which we collected our data.  In our analysis we noticed that there were 
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indeed differences among the teacher groups.  For example, the four teachers who wanted to 
discuss whether the cross multiplication strategy exhibited a deep conceptual understanding were 
all practicing teachers.  In contrast, the two teachers who wanted to show off the cross 
multiplication strategy (because they valued the strategy) to other teachers were prospective 
teachers.  However, due to the scope of this paper we did not aim to parse out these differences, 
and instead focused on investigating what interpretive frames our teachers invoked and how they 
were invoked across the different strategies.  In future work we will disaggregate our data and 
investigate differences in interpretive frames among the teacher groups. 

We end by emphasizing that different artifacts serve different purposes. Each strategy 
seemed to have its own unique set of challenges, and teachers wanted to respond to different 
ideas based on the different strategies.  In our work we only looked at 6 different strategies and 
the qualities associated with these strategies, and aggregated data from a diverse group of 
secondary teachers.  We wonder what other kinds of strategies researchers might consider, what 
other combinations of qualities might pique teachers’ interest, and how teachers’ interests differ 
across different populations of teachers. 
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This study examined the effects of the Local Systemic Change Through Teacher Enhancement 
Initiative (LSC) on 1,596 in-service high school mathematics teachers’ knowledge.  Because data 
are clustered by schools, a hierarchical linear model was calculated.  It was found that five of 
the characteristics of the professional development, time to reflect, support to implement, hours 
attended, assistance to implement from LSC, and participation in message boards, had 
statistically significant effects on increasing teacher knowledge, but time to work with other 
teachers, race, educational background, and years taught did not have a statistically significant 
effect. 

Keywords: High School Education, Teacher Knowledge 

Introduction 
There are many different ideas about what makes professional development effective, but 

there is some agreement on what key features are important (Borko, 2004; Darling-Hammond, 
Wei, Andree, Richardson, & Orphanos, 2009; Desimone, 2009; Garet, Porter, Desimone, 
Birman, & Yoon, 2001; Heck, Banilower, Weiss, & Rosenberg, 2008). Desimone (2009) argues 
for her Core Conceptual Framework with five key features of professional development that are 
content focus, active learning, coherence, duration, and collective participation, and that these 
key features lead to an increase in teacher knowledge. In the Eisenhower professional 
development programs, Garet et al. (2001) found that focus on content knowledge, active 
learning, and coherence were all statistically significant predictors of enhanced knowledge and 
skills when controlling for sponsor, traditional or reform, span, and contact hours.   

Between 1997 and 2006, the National Science Foundation funded 86 professional 
development projects, 48 of which were for math teachers, across the country through the Local 
Systemic Change Through Teacher Enhancement Initiative (LSC) (Heck et al., 2008). According 
to Heck et al. (2008), the main goals of the LSC projects were to include all teachers in targeted 
schools with a minimum of 130 hours of professional development and to implement LSC-
designed curriculum materials in the teachers' classrooms. The individual projects were designed 
to include key features of effective professional development, but the main focus was to increase 
teachers' content knowledge, pedagogical content knowledge, and the use of investigative 
pedagogical strategies (Heck et al., 2008). To assess these outcomes, teachers were expected to 
complete a questionnaire at the end of a year of participation in the LSC project (Heck et al., 
2008). 

Research Question 
What factors of an LSC professional development for high school math teachers predict 

perceived increase in knowledge by the teacher? 
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Method 
Data 

The data was collected from the National Science Foundation's Local Systemic Change 
through Teacher Enhancement Initiative (LSC). This project offered professional development 
for K-8 and 6-12 teachers in mathematics and science over the school years 1996-97 to 2005-06 
(Banilower, Heck, & Weiss, 2007; Heck et al., 2008). Each year of the project, principals and 
teachers were required to complete a Principal Questionnaire or Teacher Questionnaire, with a 
response rate of 80% expected for the teachers and 90% expected for the principals (Heck et al., 
2008). Several of the questions in the questionnaires changed in the initial two years, but the 
questions stabilized by the third year (Heck et al., 2008). For questions that were changed, data 
from later questionnaires were both recoded to the original scale and included in the new scale 
with missing values for the original questionnaires. The data set is available by request from 
Horizon Research. 
Participants 

The full data set included over 80,000 participants’ responses to the four teacher 
questionnaires, K-8 math, 6-12 math, K-8 science, and 6-12 science, but the data were filtered to 
focus just on the 9-12 math teachers which left 3,064 of the full data set. Removing any 
participants who were missing data for the variables of interest left 1,596 teachers in the sample 
data to be analyzed. 

The participants are all 9-12 mathematics teachers who took part in LSC professional 
development. The participants are split almost evenly between males (45%) and females (55%).  
The participants are primarily white (80%), with other races under 10% (black). For educational 
background, the majority had an undergraduate major in mathematics or mathematics education 
(60%) and certification to teach (60%). Additionally, a large percentage held a graduate degree 
in mathematics or mathematics education (38%). On average, the participants had 12.30 years of 
teaching experience.   

Table 1: Descriptive Statistics of Teacher Control Variables by Sample and Original Data 
 Sample Data  Original Data 
 M SD Min Max N  M SD Min Max N 
Male .43 .50 0 1 1,596  .45 .50 0 1 3,023 
Hispanic .03 .17 0 1 1,596  .03 .18 0 1 3,064 
Indian .01 .11 0 1 1,596  .01 .11 0 1 3,064 
Asian .02 .15 0 1 1,596  .03 .17 0 1 3,064 
Black .09 .29 0 1 1,596  .10 .31 0 1 3,064 
Pacific Islander .00 .04 0 1 1,596  .00 .03 0 1 3,064 
White .83 .37 0 1 1,596  .80 .40 0 1 3,064 
No Race Indicated .02 .14 0 1 1,596  .03 .17 0 1 3,064 
Undergraduate Major .61 .49 0 1 1,596  .60 .49 0 1 3,020 
Undergraduate Minor .10 .30 0 1 1,596  .10 .30 0 1 3,020 
Graduate Major or Minor .38 .49 0 1 1,596  .38 .49 0 1 3,020 
Teaching Certificate .63 .48 0 1 1,596  .60 .49 0 1 3,020 
None of the Above 
Education  

.07 .26 0 1 1,596  .08 .27 0 1 3,020 

Years Taught 11.86 7.67 1 21 1,596  12.30 7.79 1 21 3,038 
Note. 𝑁 = 3,064 for the original data and 𝑁 = 1,596 for the sample data. Years taught is on a 
scale of 1 to 21+ years, with the maximum coded as 21. For all other variables, 0 indicates "no" 
and 1 indicates "yes." 
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For the original data set, the data are nested within 19 professional development projects with 
a range of 1 to 400 participants in each project. There mean number of teachers per project is 
161.26 with a standard deviation of 117.94. For the sample data, the data are nested within 18 
professional development projects with a range of 3 to 223 participants in each project. There are 
a mean number of 88.67 teachers per project with a standard deviation of 61.74.   

Table 2: Descriptive Statistics by Project ID by Sample and Original Data 
 Sample Data  Original Data 
Project ID Count Percent  Count Percent 

04 56 3.51  98 3.20 
09 77 4.82  153 4.99 
10 93 5.83  188 6.14 
18 223 13.97  400 13.05 
19 13 .81  16 .52 
28 0 .00  1 .03 
31 51 3.20  124 4.05 
36 98 6.14  195 6.36 
39 129 8.08  249 8.13 
40 58 3.63  101 3.30 
42 153 9.59  224 7.31 
44 95 5.95  232 7.57 
48 68 4.26  123 4.37 
58 144 9.02  284 9.27 
71 183 11.47  369 12.04 
72 3 .19  8 .26 
73 4 .25  11 .36 
74 120 7.52  219 7.15 
78 28 1.75  58 1.89 

Note. 𝑁 = 3,064 for the original data and 𝑁 = 1,596 for the sample data. 
 
Measures 

The control teacher variables come primarily from the teacher questionnaire. The variables 
for gender and race are dummy variables created from participants choosing one of a list of 
choices, as seen in Table 1. Participants also chose from a list of educational backgrounds, but 
were allowed to choose all choices that applied to them, as seen in Table 1. For years taught, 
participants chose from a list with ranges of years taught (0-2, 3-5, 6-10, 11-15, 16-20, 21-25, 26 
or more). These were initially coded as dummy variables, but were operationalized as the mean 
of each range to turn them into more meaningful continuous variables.   

Most of the covariate measures also come directly from the teacher questionnaire. These 
include the amount of time to work with other teachers during the professional development, 
time to reflect during professional development, and support to implement what was learned in 
the professional development. All three of these variables came directly from the questionnaire, 
with a rank of 1 to 5, with 1 labeled as "Not at all" and 5 labeled as "To a great extent." The 
number of hours of professional development attended was listed in 11 categories on the 
questionnaire (0, 1-9, 10-19, 20-39, 40-59, 60-79, 80-99, 100-129, 130-159, 160-199, and 200 or 
greater). These were initially coded as dummy variables from 1 to 11, but were operationalized 
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as the mean of each range to change them into continuous variables with more meaning in the 
context of the research question.   

The final three professional development variables, assistance to implement the professional 
development from LSC, participation in the LSC message boards, and increase in knowledge 
from professional development, are each means of multiple questions from the questionnaire. All 
of the original questions for these measures are on the same scale as the number of times 
participants did each activity (0, 1-2, 3-4, 5-6, and 7 or more). Assistance to implement the 
professional development is the average of four sources of assistance, coaching by LSC staff 
based on observations, LSC teacher leaders, LSC district staff, or LSC mathematicians or 
mathematics educators, with 𝛼 = .7247 with all four measures included. Participation with 
message boards was the average of three sources of participation, reading messages, posting 
messages, and discussion groups, but the 𝛼 = .5107 with all three sources and 𝛼 = .6440 with 
just reading messages and posting messages. Thus, participation is only the average of the two 
sources that leave the highest 𝛼, reading and posting on message boards. Perceived increase in 
knowledge was initially the average of three sources of knowledge, mathematics content 
knowledge, understanding of how children think/learn about mathematics, and ability to 
implement high-quality mathematics instructional materials, with 𝛼 = .8887.  However, 𝛼 =
.8907 by removing mathematics content knowledge, so perceived increase in knowledge is just 
the average of the two measures of teaching knowledge. 

Table 3: Descriptive Statistics of Professional Development Variables by Sample and 
Original Data 

 Sample Data  Original Data 
 M SD Min Max N  M SD Min Max N 
Amount of time to 
work with other 
teachers  

2.84 1.23 1 5 1,596  2.81 1.22 1 5 1,962 

Level of time to 
reflect  

2.76 1.19 1 5 1,596  2.73 1.18 1 5 1,957 

Level of support 
to implement what 
was learned 

3.42 1.15 1 5 1,596  3.39 1.15 1 5 1,952 

Hours attended 93.78 67.04 5 200 1,596  62.07 69.32 0 200 2,843 
Level of assistance 
to implement from 
LSC  

1.43 1.62 0 7 1,596  1.40 1.60 0 7 1,908 

Amount of 
participation in 
message boards  

1.25 1.40 1 6 1,596  1.25 1.40 0 7 1,919 

Perceived increase 
in knowledge  

3.32 1.09 1 5 1,596  3.32 1.10 1 5 1,941 

Note. 𝑁 = 3,064 for the original data and 𝑁 = 1,596 for the sample data.  
 
Analysis 

Given that the original analysis was concerned with how the teachers were able to implement 
the LSC curriculum materials in their classrooms, the possible covariates and control variables 
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were limited by the data collected in the teacher questionnaire. The covariates used were amount 
of time to work with other teachers during professional development, level of time to reflect 
during professional development, level of support to implement what was learned in professional 
development, hours of professional development attended, level of assistance to implement 
professional development from LSC, and amount of participation in LSC message boards. 
Research has shown collective participation (Desimone, 2009; Franke, Carpenter, Levi, & 
Fennema, 2001; Garet et al., 2001) and duration (Banilower, Heck, & Weiss, 2007; Garet et al., 
2001; Heck et al., 2008) are both predictors of teachers' gains in knowledge from professional 
development. Other research has shown that aid to implement what is learned in professional 
development is related to teachers' long term use of what was learned in the professional 
development (Carpenter, Fennema, & Franke, 1996; Fennema et al., 1996; Franke et al., 2001). 
Participation in online forms of professional development has also been shown to be effective in 
helping teachers to gain knowledge (Boling & Martin, 2005; Dede, Breit, Ketelhut, McCloskey, 
& Whitehouse, 2005; Herrington, Herrington, Hoban, & Reid, 2009). The possible teacher 
control variables were gender, race, educational background, and number of years teaching. All 
were included, because it is likely that each will have an influence on how teachers view what 
they have learned from the professional development projects.   

Results 
The sample data are nested in 18 LSC professional development projects, so a hierarchical 

linear regression model was calculated. This model produced similar results to the multiple 
regression model, with the same professional development covariates being statistically 
significant predictors of perceived increase in knowledge from the professional development. In 
model 2, these variables include time to reflect on what was learned in the professional 
development, support to implement what was learned in the professional development, hours of 
professional development attended, assistance to implement what was learned in the professional 
development from LSC, and participation in LSC message boards; all were statistically 
significant at 𝑝 < .001. Unlike the multiple regression however, the only statistically significant 
teacher control variable was gender (𝑡(1595) = −6.00; 𝑝 < .001).   
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Table 4: Hierarchal Linear Model of Increase in Knowledge on Professional Development 
Variables and Teacher Control Variables  

Model 1 Model 2  
Perceived increase 
in knowledge 

Perceived increase 
in knowledge  

Time to work with other 
teachers 

.0147 .0101 

Time to reflect  .0958*** .1081*** 
Support to implement  .2067*** .1877*** 
Hours attended .0047*** .0045*** 
Assistance to implement 
from LSC 

.1112*** .1077*** 

Participation in message 
boards  

.0683*** .0791*** 

Male 
 

-.2719*** 
Hispanic 

 
.2645 

Indian 
 

-.1649 
Asian 

 
-.1416 

Black 
 

.0763 
Pacific Islander 

 
-.8439 

No Race Indicated 
 

-.0513 
Undergraduate Major 

 
.0191 

Undergraduate Minor 
 

.0754 
Graduate Major or Minor 

 
.0109 

Certification to Teach  
 

.1726 
Years Taught 

 
-.0074 

Constant 1.6898*** 1.8256*** 
N 1596 1596 
Note. t statistics in parentheses, ∗∗∗ 𝑝 < .001, ∗∗ 𝑝 < .01, ∗ 𝑝 < .05. 
Reference group is white for race and no education in mathematics or 
mathematics education. 
 

Discussion 
Both the multiple regression and the hierarchical linear model agree on the factors of the 

LSC professional development that related to the teachers' perceived increase in knowledge. The 
number of hours of professional development attended has the greatest standardized coefficient, 
so it has the greatest impact on the projected increase in knowledge. Specifically, for every one 
standard deviation increase in number of hours attended by a teacher, there is a projected .2889 
standard deviation increase in knowledge. This agrees with the research findings that say that the 
duration of a professional development is one of its key features (Desimone, 2009; Garet et al., 
2001; Heck et al., 2008). Another result that agrees with research is that the support and the 
assistance to implement the professional development is related to the increase in knowledge.  
Franke et al. (2001) found that the teachers felt the support of the professional development team 
was a critical factor in their ability to sustain what they learned in the professional development. 
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Finally, participation in the message board was also a statistically significant predictor of the 
teachers' increase in knowledge, which agrees with research that online professional 
development can help teachers increase their knowledge (Boling & Martin, 2005; Dede et al., 
2005; Herrington et al., 2009). 

One result that does not agree with research is about the time to work with other teachers. 
Research shows that collective participation is a key feature of professional development 
(Desimone, 2009) with a positive relationship to increased knowledge (Garet et al., 2001). 
However, the multiple regression found working with other teachers to have a negative 
relationship that was not a statistically significant predictor of increase in knowledge. 
Limitations  

These results are based on self-reported survey data from the participants about their views 
on the professional development project and what they learned from the professional 
development project. However, Desimone (2009) argues that surveys are a reliable data source 
for behavior-based constructs about frequencies of events, such as teachers' experiences in 
professional development and experiences implementing the professional development. This data 
is a mix of behavior-based questions and evaluative questions, so using a survey may not be the 
most reliable source of data collection.  Another limitation is that the teachers are rating their 
own perceived increase in knowledge, rather than using a pretest and posttest of knowledge to 
quantify how much teachers learned. This makes it difficult to know how much the teachers 
actually learned from attending the professional development.   
Next Steps 

This analysis focused on teacher knowledge, but not on how teacher knowledge affects 
teaching practices or student achievement. Research has shown that teacher knowledge has an 
impact on both practice in the classroom and on students' achievement (Ball, Thames, & Phelps, 
2008; Hill, Rowan, & Ball, 2005; Kennedy, 1999). Although data is not available about student 
achievement for the LSC projects, the teacher questionnaire included questions about teaching 
practice. Thus, a next step would be to analyze whether the change in knowledge predicts 
teaching practice, as was found in other research on professional development (Desimone, 2009; 
Garet et al., 2001; Heck et al., 2008).   
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This study explores how two instructional coaches enacted modeling and co-teaching cycles with 
five elementary teachers during mathematics instruction.  A content analysis of the coach-
teacher talk from 11 planning meetings and 23 lessons reveals that the coaches and teachers 
seldom engaged in mathematical conversations.  Instead, they primarily had low-depth 
discussions about curriculum, other instructional materials, and assessment.  Implications for 
school districts with instructional coaching models are discussed. 

Keywords: Teacher Education-Inservice/Professional Development 

Introduction 
Recent reforms promote an ambitious vision of high-quality math instruction for all students 

(Martin & Herrera 2007; NCTM, 2014; Common Core State Standards Initiative, 2011).  As this 
vision represents a significant shift from how many teachers learned and taught math (Hiebert, 
1999), enacting this type of instruction requires much support (Ball & Cohen, 1999).  To address 
this challenge, many schools are enlisting the help of instructional coaches, as their intensive, 
one-on-one support can embody many facets of effective professional development (Desimone 
& Pak, 2017).  Given the significant financial investment coaching requires (Knight, 2012) it is 
critical that we understand its enactment, including emergent challenges and supports that can 
make it successful.   

Literature and Research Questions 
To impact classroom teachers’ knowledge and instruction, both individual and group settings 

are important places of learning (Campbell & Griffin, 2017; Cobb & Jackson, 2015).  However, 
research on one-on-one activities has received relatively little attention (Cobb & Jackson, 2011; 
Gibbons & Cobb, 2017).   

In their conceptual analysis, Gibbons and Cobb (2017) identified two potentially productive 
coaching activities for individual teachers: modeling and co-teaching.  According to the authors, 
these activities are potentially productive as they meet the standards of high-quality professional 
development, and have demonstrated a positive impact on teachers. 

Despite the popularity of these two strategies, there is a surprising lack of research describing 
how modeling and co-teaching can be used effectively with experienced, practicing teachers.  
Most studies examining modeling and co-teaching have focused on pre-service teachers (Clarke 
et al., 2014; Scantlebury et al., 2008) or mentoring programs aimed to support novice in-service 
teachers (Feiman-Nemser, 2001).  While a few studies have explored modeling or co-teaching 
with practicing teachers, they have primarily focused on literacy coaches (Bean et al., 2010; 
Vanderburg & Stephens, 2010).  A small handful of math education studies with school-based 
coaches have touched on the practices of modeling and co-teaching, although that was not the 
main focus of their work (Campbell & Griffin, 2017; Ellington et al., 2017). 

To address this gap, this study looks in-depth at the modeling and co-teaching cycles enacted 
by two coaches and five teachers during math instruction.  Specifically, the following research 
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question is addressed: What is the nature of coach-teacher talk during modeling and co-teaching 
cycles?  

Framework 
Prior literature suggests that two elements are important for teacher learning during 

professional development: (1) high-depth interactions; and a (2) focus on mathematics content.     
High-Depth Interactions 

In her 2003 paper, Coburn called upon education researchers to rethink how they 
conceptualize scale when talking about education reform.  According to the author, scale has 
traditionally been operationalized in a quantitative sense, with the goal of increasing the number 
of schools and teachers involved in a reform.  Coburn (2003), however, argues that this is a 
superficial way to measure scale-up, and that careful attention must be given to the four 
dimensions of depth, sustainability, spread and shift.   

The dimension of depth is applicable to this study as it has been conceptualized as one way 
to demonstrate the opportunities teachers have to learn when engaged in social interactions 
(Coburn & Russell, 2008).  Specifically, Coburn and Russell (2008) distinguish between low- 
and high-depth interactions, with low-depth focusing on “surface structures and procedures, such 
as sharing materials, classroom organization, pacing, and how to use the curriculum” (p. 212) 
and high-depth addressing “underlying pedagogical principles of the approach, the nature of the 
mathematics, and how students learn” (p. 212).  Thus, it can be argued that teachers have limited 
opportunity to engage in meaningful learning if they are primarily exposed to low-depth 
interactions.  We apply Coburn’s (2003) concept of low- and high-depth interactions to 
understand teachers’ opportunities to engage in meaningful learning experiences during 
modeling and co-teaching cycles.    
Focus on Mathematics Content 

Current research on effective professional development reflects a consensus that there must 
be a content focus (Desimone, 2009; Desimone & Pak, 2017).  Furthermore, current literature on 
high-quality mathematics instruction states that teachers must possess a deep understanding of 
the math they teach (Martin, 2007; NCTM, 2014).  Thus, in addition to engaging in high-depth 
interactions, teachers must also be provided with opportunities to deepen their understanding of 
the math content they teach during professional development.  

Methods 
Participants and Context 

The participants included two elementary instructional coaches, Meg and Claire.  Meg was in 
her second year as a coach and had spent 21 years prior as a teacher, and Claire was in her third 
year as a coach and had previously been a teacher for 10 years.  During this study Meg modeled 
instruction for Teachers Michelle and Mackenzie (grades 3 and 4), while Claire co-taught with 
Teachers Cathy, Caroline and Cecilia (grades 5, 1, and 4).  All teachers were rather experienced 
(range of 9-23 years of teaching), and all teachers and coaches were white females. 
Data Collection 

Primary data collection methods included observations and resulting field notes (Bogdan & 
Biklen, 2011), as well as transcripts generated from audio recordings of 11 planning meetings 
and 23 modeled or co-taught lessons (see Table 1). 
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Table 1: Observation Data for All Coach-Teacher Pairs 
 Modeling      Co-Teaching 

Coach Meg    Claire 
Teacher Michelle Mackenzie Caroline Cecilia Cathy 

Grade Level 3rd 4th 1st 4th 5th 
Lessons Observed 7 6 4 3 3 
Planning Meetings 1 1 2 4 3 

 
Data Analysis 

All audio recordings were first transcribed using InqScribe software. The primary author then 
carefully read each lesson transcript and searched for places where the coach and teacher directly 
engaged with one another, typically through conversations and singular comments.   

To look at coach-teacher engagement across the planning meetings and lessons, it was 
helpful to have a set of common codes.  The authors primarily engaged in a process of open 
coding (Creswell, 2013) to develop two levels of emergent codes: (1) Level-1 Parent Codes; and 
(2) Level-2 Codes.  Table 2 presents the Level-1 and -2 codes and how they are clustered. 

Table 2: Level-1 and Level-2 Codes 
Level-1 
Codes 

Management Pedagogy Content Planning and 
Logistics 

Contextual 
Factors 

Other 

Level-2 
Codes 

1) Classroom 
Composition 
and Attendance 
2) Classroom 
Management 

1) Grouping 
2) Assessment 
3) General 
Pedagogy 
 

1) Curriculum, 
Activities, and 
Materials 
2) Mathematics 

1) Technology 
2) General 
Plans for 
Coaching Cycle 
3) Facilitator’s 
Role 
4) Time and 
Schedule 

1) Relationship 
Building 
2) External 
Requirements 

1) External 
Individuals 
2) Other 

 
During the coding process, all codes were mutually exclusive and assigned at either the 

sentence (planning meeting data) or exchange (lesson data) level. After coding, we noticed a lack 
of talk directly focused on math, but there were many instances in which math-related terms 
were at least mentioned.  To better capture all math-related talk (beyond the math-focused talk 
that was coded as Mathematics), we used a “Mathematics Indicator” to flag instances when the 
coaches and teachers used math words and phrases while discussing other topics, such as the 
curriculum, without attending to the mathematical meaning of those words and phrases.   

The primary author coded all data and engaged in a reliability process with two independent 
coders trained in mathematics education research.  During the reliability process, random subsets 
of data were independently coded by the both the primary author and an independent coder.  
Then, the two individuals met to reconcile differences.  After talking through all areas of 
disagreement, overall, the coders agreed on over 97% of all assigned codes.  

Last, to better understand the depth of the coach-teacher talk, the authors used Coburn and 
Russell’s (2008) definitions of low-, medium- and high- depth and mapped their Level-2 Codes 
onto these three categories.  Some of the Level-2 Codes closely mapped onto the definitions.  For 
example, the exchanges coded as Curriculum, Activities and Materials mapped onto the low-
depth category, as Coburn and Russell considered talk about “materials” and “how to use the 
curriculum” as low-depth.  Other Level-2 Codes, such as General Pedagogy, did not cleanly fit 
with a single depth level, and such codes were divided into sub-codes and placed in the 
appropriate category.  After the coding process, the authors tabulated frequencies and 
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percentages for all sets of codes to better understand the substance of the coach-teacher talk.  For 
the planning conversations, percentages were tabulated at the character-level using NVivo 
software, while for the lesson-level data, percentages were calculated at the exchange-level.      

Results 
We begin by illustrating what was typical regarding the coach-teacher talk, including the 

most prevalent topics with examples.  Given space constraints, we report data for the practices of 
modeling and co-teaching without details for each coach-teacher pair.  We then explore the 
prevalence and examples of the Mathematics code, as well as the Mathematics Indicator.  Last, 
we discuss the depth of all coach-teacher talk.   
Modeling 

Here, we describe typical coach-teacher talk for Coach Meg and Teachers Michelle and 
Mackenzie during their modeling cycles, which were focused on implementing Calendar Math.  
We were invited to observe one planning meeting for each pair, as well as 13 total modeled 
lessons.  Transcripts from the planning conversations and modeled lessons were coded with the 
set of 15 Level-2 codes noted above.  

Overall, the coach and teachers most frequently discussed: (1) Curriculum, Activities and 
Materials (25%); (2) Assessment (14%); and (3) Classroom Management (12%) (see Table 3).  
Each topic is discussed in more detail below. 

Table 3: Coach-Teacher Talk for Modeling and Co-Teaching Cycles 
 Modeling Co-Teaching 
 Planning 

Meetings 
Modeled  
Lessons 

Overall Planning 
Meetings 

Co-Taught 
Lessons 

Overall 

 n=2 n=13  n=9 n=10  
Content       
     Curriculum, Activities and Materials 26% 24% 25% 16% 23% 20% 
     Mathematics 4% 3% 4% 2% 3% 3% 
     Total 30% 26% 28% 18% 26% 22% 
Pedagogy       
     Grouping 0% 0% 0% 10% 11% 11% 
     Assessment 21% 7% 14% 18% 15% 17% 
     General Pedagogy 7% 1% 4% 18% 8% 13% 
     Total 28% 7% 18% 48% 34% 41% 
Management       
     Classroom Composition and Attendance 1% 13% 7% 0% 1% 1% 
     Classroom Management 2% 22% 12% 1% 2% 2% 
     Total 3% 35% 19% 1% 4% 3% 
Planning and Logistics       
     Facilitator’s Role 2% 4% 3% 2% 10% 6% 
     General Plans for Coaching Cycle 7% 0% 4% 2% 0% 1% 
     Technology 0% 0% 0% 0% 8% 4% 
     Time and Schedule 16% 6% 11% 10% 4% 7% 
     Total 25% 10% 18% 14% 21% 18% 
Contextual Factors       
     Relationship Building 4% 15% 10% 4% 10% 7% 
     External Requirements 1% 2% 2% 4% 0% 2% 
     Total 4% 17% 11% 8% 10% 9% 
Other 13% 4% 9% 12% 4% 8% 
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Curriculum, Activities and Materials (CAM). When engaged in talk about CAM, across 
both cycles, the coach and teachers primarily discussed the materials needed to enact Calendar 
Math.  This included conversations about the calendar, calendar pieces, number line, money, 
markers, wipes for the dry erase boards, popsicle sticks that would be used to elicit student 
participation, notebooks, making copies, and laminating materials.  Typical exchanges coded as 
CAM included statements such as “I understand you have notebooks,” “Do you have a sticky 
chart paper?” and “Do we have a dry erase marker?”  

Assessment. Assessment was the second most prevalent theme during both modeling cycles.  
While engaged in assessment talk, the coach and teachers primarily conversed about assessment 
logistics, such as selecting which pre-made assessment to give students, as well as when students 
would take assessments and how long it would take.  The following planning meeting excerpt is 
typical, illustrating how Coach Meg and Teacher Mackenzie decided when to give their pre-
assessments: 

Meg: ‘Cuz the addition and the multiplication can be done at any time. 
Mackenzie: These two can be?  
Meg: Well, I mean, yeah.  Unless you want to do a beginning baseline and an end baseline.  

It's completely up to you. 
Mackenzie: I mean, we switch for almost, they come in at 11:15 and we don't switch back 

until 12:35.  
Meg: That should be enough time to get ‘em all in. (11/15/16) 

Classroom Management. Classroom Management, the third most prevalent theme, most 
commonly surfaced during coach-teacher talk from the modeled lessons, rather than the planning 
meetings.  The coach and teachers either praised students (“Such hard workers, Meg!”), or 
discussed classroom incentives (“I can honestly say that once everybody got focused and 
centered in here, they earned it today.”) and challenging students (“I’m going to have to take her 
to the office if she won’t do what she needs to do.”). 

In summary, during both modeling cycles, the coach and teachers primarily discussed 
immediate concerns related to planning and implementing the lessons, including materials, 
assessment logistics, and issues related to classroom management.  We now examine the coach-
teacher talk during the co-teaching cycles.   
Co-Teaching 

We were invited to observe 2-4 planning meetings and 3-4 co-taught lessons for each of the 
three coach-teacher pairs.  Overall, the coach and teachers most frequently discussed: (1) 
Curriculum, Activities and Materials (20%); (2) Assessment (17%); and (3) General Pedagogy 
(13%).  Each topic is explored below. 

Curriculum, Activities and Materials. As CAM-related talk during the modeling cycles 
tended to focus on the materials, a different trend emerged in the co-teaching cycles as most of 
the CAM talk centered on the curriculum and activities.  In particular, the coach and teachers 
often talked about issues related to: timing as they sequenced activities (“Do we want to try and 
have them do the first two problems…?”); the difficulty of the curriculum (“This is a hard 
lesson.”); what students in groups should work on (“This would be good to do in a small group—  
this chart down here.”); and understanding and/or navigating the curriculum (“Everyday 
Mathematics I think can be a little confusing...When I go through and look at this, I always look 
at the game to see if it’s something that I can do whole group.”).      

Assessment. Similar to the modeling cycles, coach-teacher talk about assessment frequently 
surfaced during the co-teaching cycles.  However, unlike the modeling cycles where the coach 
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and teachers commonly discussed assessment logistics, during the co-teaching cycles it was 
more common for the coach and teachers to monitor student learning (“They did really well with 
expanded form the other day.”) or use data to inform their instructional plans (“Why don’t we 
use their independent work and kind of break them up into smaller groups?”).   

General Pedagogy. Last, unlike the modeling cycles where General Pedagogy rarely 
surfaced, during the co-teaching cycles, it emerged as one of the most frequently discussed 
topics.  In particular, when the coach and teachers engaged in pedagogical conversations, they 
typically planned and/or created original materials that went beyond the district-provided 
curriculum (“We could just have an empty spot where they could write the number sentence or 
they can actually write a story problem.”), discussed differentiation (“Ok, so the on-level group,  
we decided that it’s just going to be higher level factors.”), or engaged in more theoretical 
pedagogical talk (“So…you’re doing more like student-led work out here during your centers?”).   

Hence, in some ways, the coach-teacher talk during co-teaching was quite different than the 
modeling coach-teacher talk.  Specifically, modeling talk more often focused on materials, 
assessment logistics, and classroom management, while co-teaching talk more often focused on 
the curriculum and activities, monitoring student learning, utilizing data to inform their teaching, 
and engaging in pedagogical talk.  Despite these differences, however, much of their discussions 
were rather similar, especially in terms of their limited math focus and depth.           
Where’s the mathematics? 

The lack of math-focused conversation is striking across the modeling and co-teaching 
cycles.  Specifically, only 2-4% of all planning meeting exchanges, and 3% of all modeled and 
co-taught lesson talk was coded as “mathematics” (see Table 3 above).  In the rare instances in 
which the Mathematics code was used, it primarily captured procedurally-driven conversations 
about simple computation problems (“1 + 6 is not 5.  Right?  1 + 6 would be 7.”), definitions (“A 
multiple are all of the answers to a multiplication problem… The multiples of 4 are 4, 8, 12, 16 
because 4 x 1 is 4, 4 x 2 is 8, 4 x 3 is 12.”), and mathematical rules or procedures for textbook 
activities (“The box is not correct ‘cuz 2 x 1 is not 3.”).  Conceptually driven mathematical 
conversations were, by far, more rare.   

Mathematics Indicator. Although math-focused discussions were rare, the coaches and 
teachers often used math words and phrases while talking about other topics, such as assessment, 
without attending to the mathematical meaning of those words and phrases.  Such instances were 
tagged with a Mathematics Indicator to reflect that a math term or phrase was listed, however it 
was not coded as Mathematics because it did not reflect a conversation about the content.  For 
example, the exchange below received a primary code of Curriculum, Activities and Materials. 

Claire: So, Wednesday, are we going back to 2.2? 
Cathy: Yes, which is exponents. 
Claire: I really like that exponents lesson. (3rd planning meeting, 9/19/16) 
 
In addition to the CAM code, the underlined sentences were assigned a Mathematics 

Indicator, as the coach and teacher used the math word “exponents” while discussing the topic 
for the textbook chapter.  

The Mathematics Indicator most frequently surfaced as the coaches and teachers named math 
words and phrases while discussing the Curriculum, Activities and Materials (“Lessons 2 and 3 
are exponents.”); Assessment (“This is probably a group that I feel like has a pretty good handle 
on place value compared to last year.”); and General Pedagogy (“I don’t know how to respond to 
these whole big arrays in your head.”). 
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Depth 
As explained above, we used Coburn’s (2003) concept of depth to explore teachers’ 

opportunities to learn. During both the planning meetings and the modeled/co-taught lessons, the 
coaches and teachers engaged in primarily low- (63-92%) and medium- (7-33%) depth 
interactions, while high-depth interactions seldom occurred (1-6%) (see Table 5).  This suggests 
that the coach-teacher talk heavily emphasized surface-level structures and procedures, rather 
than focusing on topics such as how students learn mathematics, for example.  Still, more 
medium-depth interactions occurred during co-teaching (27%) than modeling (10%), and low-
depth interactions were more prevalent during modeling (87%) than co-teaching (70%).         

Table 5: Depth for All Modeling and Co-Teaching Cycles 
 Low Medium High 

Modeling Cycles    
Planning Meetings 82% 12% 6% 
Modeled Lessons 92% 7% 1% 
Overall 87% 10% 4% 

Co-Teaching Cycles    
Planning Meetings 63% 33% 5% 
Co-Taught Lessons 76% 20% 2% 
Overall 70% 27% 4% 

Discussion 
In this study of two coaches and five elementary teachers, we found that coach-teacher 

interactions during modeling more often focused on materials, assessment logistics, and 
classroom management, while interactions during co-teaching more often focused on the 
curriculum, monitoring student learning, utilizing data to inform teaching, and engaging in 
pedagogical talk.  These differences may be specific to the two particular coaches involved, or 
may be due to differences in the focus of the cycles (e.g., with modeled lessons centered around 
Calendar Math, which was materials-intensive and outside the regular curriculum).  However, 
some differences seem likely due to the fact that during modeling, the teachers generally assisted 
the coach (consistent with the greater focus on materials and classroom management), while 
during co-teaching, the teacher and coach implemented lessons together.  These differences in 
foci may have prompted the greater depth during the co-teaching discussions. 

Still, across the modeling and co-teaching cycles, conceptual discussions about mathematics 
content were extremely rare.  This is disappointing, considering decades of research 
recommending that effective professional development should have a content focus (Desimone, 
2009; Desimone & Pak, 2017).  The lack of mathematical depth of discussions may be due, in 
part, to the fact that both coaches were generalists who lacked specialized mathematics training 
and were expected to provide professional development in all content areas.   

Although our findings require replication before definitive conclusions can be drawn, the 
results suggest two potential guidelines for school districts.  First, professional development for 
instructional coaches should help coaches gain a deep understanding of math content and 
pedagogical content knowledge across the developmental spectrum, which will help facilitate 
deeper conversations about math teaching.  Second, more consideration should be given to 
implementing a content coaching model at elementary schools.  In this model, although coaches 
would likely be shared between schools, they would be content experts who are better able 
support teachers in their area of expertise.  
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In this paper, we present findings from an exploratory study of mathematics education 
stakeholders to understand their professional networks, and acquisition and use of research on 
mathematics teaching and learning. Evidence suggests that mathematics leaders are key to 
promoting organizational sensemaking and are more likely to acquire and use research on 
mathematics teaching and learning which has important implications for improvement efforts at 
scale.  

Keywords: Design Experiments, Policy Matters, Standards, Professional Development 

Introduction 
Historic approaches to bridging the research-practice divide have often focused on improving 

the quality of research dissemination efforts to move evidence from research to use in practice. 
These approaches privileged researchers’ perspectives, and though they achieved some success, 
the field lacks empirical understanding of what forms of research evidence are being drawn upon 
and used in practice (Finnigan, Daly, & Che, 2012). To improve the use of research in practice, 
scholars have identified a number of resources and characteristics of schools and districts, such 
as the influence of mid-level decision makers in organizations because they often “straddle 
policy and practice and are well poised to put research to work” (Tseng, 2012, p.5). Others 
challenge the dissemination model and argue for other ways to relate the work of researchers and  
practitioners, such as research-practice partnerships (RPPs). RPPs have recently gained traction 
as a promising approach for educational improvement (Coburn & Penuel, 2016). In RPPs, 
researchers and practitioners identify and commit to addressing a shared problem through long-
term, mutualistic collaborations that include research, development, or evaluation (Coburn, 
Penuel, & Geil, 2013).  

As part of an RPP with our state education agency focused on improving the process of 
implementing new mathematics standards, we conducted an exploratory study of the professional 
networks and research uses of mathematics teachers, mathematics leaders (e.g. school-based 
coaches and curriculum facilitators, district-based math leaders), and school-based administrators 
(e.g. principals, assistant principals). This paper reports results from a questionnaire that was 
developed to inform the design of professional learning opportunities for mathematics teachers 
and leaders that centralize research evidence on mathematics teaching and learning. In doing so, 
we aim and address the following research questions: (1) From whom and for what purposes do 
mathematics teachers, mathematics leaders, and administrators have significant conversations 
about mathematics teaching and learning?; (2) From what sources and to what extent do 
mathematics teachers, mathematics leaders, and administrators look for and use research on 
mathematics teaching and learning?; and (3) What do mathematics teachers, mathematics 
leaders, and administrators identify as primary barriers to using research in their role? 
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Background 
Our partnership began after our state adopted new mathematics standards. State agency 

leaders were interested in using an improvement science approach in build and refine a process 
of implementing state academic standards. During the first year of the partnership, we negotiated 
and specified research evidence and its use in practice among mathematics teachers and leaders 
as the focus of our work together and co-designed a variety of professional learning opportunities 
and materials for mathematics teachers and leaders that embody research on student learning, 
instructional practice, and teacher learning in professional development (Wilson, McCulloch, 
Webb, Stephan, Mawhinney, & Curtis, 2017).  

To inform the design of these efforts, we developed an exploratory questionnaire to 
understand the ways mathematics education stakeholders acquire and use evidence from 
mathematics education research in their practice. In what follows, we briefly summarize the 
literature on professional networks and research use, outline our theoretical perspective, and 
describe the development and administration of the exploratory questionnaire. We then highlight 
key findings and conclude with implications for others interested in promoting both 
organizational learning and the use of research in practice with attention to scale.  

Professional Networks and Research Use 
Scholars studying the ways research evidence informs practice and policy define research use 

as the act of drawing on and interacting with research evidence in the course of decision making 
(Coburn & Turner, 2011; Honig et al., 2017; Tseng, 2012). Investigations of practitioner and 
policy maker uses of research have identified several broad ways that evidence is used, for 
example, instrumental use which results in changes in practice (Nutley et al., 2007), conceptual 
use which results in changes in knowledge (Weiss et al., 1977), or imposed use in which 
practitioners are pressured to use research by agencies or policy makers (Weiss et al., 2005),  
among others. In addition, Honig and colleagues (2017) reported that though practitioners claim 
to use research in their work, it is often interpreted through existing schema to reinforce previous 
decisions or rejected ideas that conflict with prior understandings.  

Much of the scholarship on research use has focused on local or statewide data, such as 
student achievement scores or local measures. However, little attention has been paid to the ways 
mathematics education stakeholders use research evidence on mathematics teaching, students’ 
mathematical learning, and/or mathematics teacher learning to inform their decisions. For the 
purpose of this exploratory study, we wanted to focus on similarities and differences in the ways 
teachers and leaders acquire and use research evidence on students’ mathematical learning, 
mathematics teaching practices, and mathematics teacher learning given their direct relation to 
the work of teachers and coaches in the classroom. 

Studies on research use in practice often focus on singular roles (e.g. administrators, central 
office leaders), downplaying the social ecology and complex nature of research use processes 
within school and district initiatives. Relationships, organizational structures and contexts, and 
policy all complicate and influence the ways practitioners use research (Tseng, 2012). In 
addition, acquiring and using research evidence for improvement is a “multilevel phenomena” 
and occurs both within formal organizational structures and in informal social interactions (Daly 
et al., 2014). Scholars working in this area have called for more attention to developing an 
understanding of the ways research is used in practice within district systems between leaders 
and teachers (Honig & Venkateswaran, 2012) and how research supports implementation and 
improvement efforts (Daly & Finnigan, 2010). Some have found that small changes at different 
levels of the system can add up to larger organizational improvements (Coburn & Turner, 2012). 
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Research-practice partnerships are an increasingly popular approach to improve the use of 
research in practice (Coburn & Penuel, 2016). Proponents suggest partnerships support both 
sensemaking and use of research evidence in practice by creating opportunities for mutual 
engagement with research, translating research into tools that may serve as vehicles for learning 
and improvements to practice, and serving as models of the use of research (Fishman et al., 
2013). However, research has shown that intermediary organizations are insufficient absent 
leaders who continue to learn about research use while also teaching others (Honig, 2017). 
Moreover, research has highlighted the importance of “opinion leaders” positions in social 
networks (Palinkas et al., 2011) as conduits for both the acquisition and use of research in 
practice (Tseng, 2012). Thus, for this exploratory survey, we were interested not only in the 
types of mathematics education research used, but also in the reasons mathematics teachers, 
mathematics leaders, and administrators interact with one another and the ways these interactions 
may relate to the acquisition and use of research. 

Theoretical Perspectives 
Our partnership uses design-based implementation research (DBIR) (Fishman et al., 2013) to 

organize our development, implementation, and research efforts. DBIR focuses not only on 
developing and refining tools and environments for learning but also on creating structures and 
supports necessary to scale and sustain them (Fishman et al., 2013). Throughout implementation, 
partners seek to improve the design of implementation efforts, generate theories of learning and 
implementation, and create supporting infrastructures to develop capacity and sustainability. 
Specifically, we use Lave and Wenger’s (1991) ideas of participation, practice, and boundaries 
as a frame for designing for teacher and leader learning. We use organizational sensemaking 
(Weick, 1995) to broadly frame standards implementation as an organizational learning problem, 
and draw upon two sets of constructs related to the processes and kinds of resources that 
individuals or collectives within larger systems use when experiencing ambiguity or violated 
expectations during periods of systemic change. 

Our design process is guided by a set of design and implementation principles derived from 
our commitments to supporting mathematics teaching and learning, theories of learning and 
implementation, the research on teacher learning and professional development, and the diverse 
expertise of our partners (Wilson et al., 2017). In this paper, we attend to our principals of 
utilizing research on mathematics teaching, connecting teachers and leaders, and designing 
coordinated tools and resources to better understand mathematics teachers, leaders, and 
administrators professional networks and the ways they acquire and use research evidence on 
mathematics teaching and learning. 

Methods 
Questionnaire Design 

In the spring of 2017, we developed a questionnaire to inform ongoing efforts to co-design 
statewide initiatives related to standards implementation and the promotion of equitable learning 
opportunities for mathematics education stakeholders. We began by asking a set of demographic 
questions related to respondents’ school district, role, years of experience, and grade-band. We 
then focused on three constructs identified by the partnership as important to the design of 
learning opportunities for mathematics teachers and leaders: professional networks, use of 
research in practice, and instructional vision. In this paper, we focus our efforts on statewide 
responses from mathematics teachers, mathematics leaders (e.g. school- and district-based 
mathematics coaches, curriculum facilitators), and school administrators (e.g. principals, 
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assistant principals) related to professional networks and research use to inform our design.  
To answer our first research question focused on professional networks, we asked 

respondents two questions: with whom and how often respondents had “significant exchanges 
about mathematics teaching and learning in the past year”; and what the primary reason was for 
the majority of these exchanges. To answer our second research question focused on research 
use, we asked respondents questions about their acquisition and use of research specific to 
mathematics education (e.g. research on students’ mathematical thinking, mathematics teaching 
practices, mathematics teacher learning).  These questions asked respondents to indicate how 
often they looked for research on topics related to mathematics teaching, the social sources of the 
research they encountered, and how likely they were to use research. To answer our third 
research question focused on barriers in using research, we asked respondents to select two main 
barriers to using research from eight possible choices. 

Several of the questions were adapted from a validated and reliable survey developed by The 
National Center for Research in Policy and Practice (ncrpp.org). The survey’s purpose was to 
characterize how leaders perceive, acquire, and use research to inform their decision-making. To 
reduce fatigue effect bias, we selected a subset of the survey questions most directly related to 
our research questions and implementation efforts and modified portions of these questions to 
reflect our focus. In addition, there were a set of questions focused on respondent demographics 
and another set of questions to directly inform future co-design and implementation efforts. Prior 
to administering the survey, we field tested the items with members of the partnership. We 
modified and clarified individual items as needed to ensure each measured the constructs of 
interest.  
Data and Analysis 

The questionnaire was distributed through listservs at the state agency to mathematics 
teachers, administrators, and mathematics leaders. The agency estimated the total number of 
educators on the listservs to be approximately 20,000. The questionnaire was open for 17 days 
during late May and June, 2016. Potential respondents received one message to invite 
participation upon its opening and three follow-up reminders throughout the open period.  

Responses from those who completed 80% of the items and gave consent for research were 
considered complete and as data. Our quantitative analysis proceeded in two stages. First, we 
used descriptive statistics and graphical displays to explore responses to individual questions and 
then groups of questions. We then used responses to demographic items to organize a search for 
relationships among professional networks and research use. Because the questionnaire was 
developed with a primary goal of informing our design efforts, findings are descriptive. 
Findings 

In total, 1,605 teachers, 197 leaders, and 104 administrators (N=1,906) responses were 
collected, with a response rate estimated to be approximately 20%. While low, the responses 
represented 100% of the eight state education regions and 114 of the 115 school districts in the 
state with a mean and median of 17 and 11 responses per school district respectively. To better 
understand the representation of respondents across our state, a ratio of students per respondent 
was calculated by taking the ratio of the total number of students in a district per number of 
respondents in a district. These scores were then averaged across all districts in each of the eight 
regions across the state to obtain an average ratio per region. The mean and median of these 
region averages were 948 and 916 students per respondent respectively (std. dev.=167) – 
indicating a reasonably acceptable distribution of respondents per region across the state. In what 
follows, we share findings organized by our research questions. 
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From whom and for what purposes do mathematics teachers, mathematics leaders, and 
administrators have significant conversations about mathematics teaching and learning? 
 

Respondents were asked to self-report how often they had significant conversations about 
mathematics teaching and learning in the last year by choosing none, 1-5 times, 6-10 times, or 
greater than 10 times. Results were translated to a scale of 0-3 (0 [none] – 3 [>10]) and means 
for each role are shown in Table 1. Results indicate that all roles self-report that they regularly 
engage in conversations about mathematics teaching and learning with teachers in schools. 
Mathematics leaders self-report that they more regularly engage with teachers and administrators 
about mathematics teaching and learning than do teachers or administrators, suggesting that 
leaders span boundaries within and across schools within districts.  

Table 1: Mean scores for likelihood of having significant exchanges about mathematics 
 Teachers Math Leaders Administrators 

Teachers within schools 2.45 2.58 2.25 
Teachers across district 1.27 1.89 1.05 

Math Leaders 1.31 1.97 1.59 
Administrators 1.55 2.03 1.77 

Higher Ed Faculty 0.81 0.89 0.80 
 

Taken that mathematics leaders self-reported the regularity of their conversations with others, 
as well as teachers and administrators self-reports of their conversations with math leaders, Table 
2 highlights the predominant focus of math leaders’ conversations. Results indicate that math 
leaders have frequent conversations about mathematics teaching and learning across many 
domains of mathematics education. With teachers, these conversations focus on planning for 
instruction, instructional practices to support student learning that align with mathematics 
standards, and resources that can be used in instruction. With one another, these conversations 
focus on professional development and other activities to support teacher learning that focus on 
mathematics standards and instructional practices. With administrators, these conversations 
focus on curriculum, assessments, and instructional practices. Taken together, the frequency and 
focus of these exchanges may indicate that mathematics leaders are centrally connected to 
district-wide implementation efforts related to mathematics teaching and learning. 

Table 2: Percentage of respondents indicating the predominant focus of their exchanges. 
 Math Leaders conversations with...were focused on... 

Teachers in schools Planning (35%), Teaching Practices (17%), Resources (15%) 
Teachers across district Standards (22%), Planning/PD (17%), Teaching Practices (16%) 

Math Leaders Teaching (20%), Standards (17%), PD (15%) 
Administrators Curriculum (21%), Assessment (18%), Teaching Practices (16%),  

 
From what sources and to what extent do mathematics teachers, mathematics leaders, and 
administrators look for and use research on mathematics teaching and learning? 
 

Drawing from our design and implementation principle focused on utilizing tools based on 
research on mathematics teaching and learning, we sought to explore stakeholders’ frequency 
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and use of research in practice. Respondents were asked questions to indicate how frequently 
they (1) looked for research in the past year and (2) previously used research in their role on a set 
of mathematics teaching and learning related topics. Results were translated to a scale of 0-3 (0 
[never], 1 [rarely], 2 [sometimes], 3 [often]) and means across respondents for teachers (n=677), 
mathematics leaders (n=81), administrators (n=36) are shown in Table 3. For the survey, each 
respondent was given the set of questions related to professional networks and then randomly 
assigned questions related to either research use or instructional vision, thus the number of 
respondents for research use and instructional vision are roughly half of the total number of 
respondents. 

Table 3: Frequency of prior use of research and looking for research in the past year 
How frequently have stakeholders 

looked for & used research on 
math teaching and learning? 

Teachers Math Leaders Administrators 
Looked 

For 
Prior 
Use 

Looked 
For 

Prior 
Use 

Looked 
For 

Prior 
Use 

Students’ mathematical thinking 1.7 2.0 2.0 2.5 1.8 2.3 
Mathematics teaching practices 1.8 2.1 2.3 2.5 2.0 2.5 
Math professional development 1.4 1.8 2.1 2.2 1.6 2.2 
Resources for instruction 2.1 2.2 2.4 2.5 2.0 2.4 
Assessment practices 1.8 2.0 2.1 2.3 1.7 2.4 

 
Results indicate that all roles self-report that they look for and using research on mathematics 

teaching and learning. In addition, mathematics leaders self-report data suggest that they both 
look for and use research more often than teachers and administrators across each domain of 
research on mathematics teaching and learning. Moreover, data indicate that respondents are 
more likely to use research than they are to look for it, which suggests that they may acquire 
research from a variety of sources. Respondents were then asked to indicate how likely they were 
to acquire research from a list of social resources. Results were translated to a scale of 0-3 (0 
[never], 1 [rarely], 2 [sometimes], 3 [often]) and means for each role are shown in Table 4. 

Table 4: Mean scores likelihood of acquiring research from the following sources 
 Teachers Math Leaders Administrators 

Teachers within schools 2.1 1.7 2.3 
Teachers across district 1.5 1.7 1.7 

Math Leaders 1.4 1.9 2.0 
Administrators 1.3 1.2 2.1 

Higher Ed Faculty 0.6 1.2 0.4 
Professional Associations 1.1 1.9 1.4 

Research or Practice Journals 0.8 1.9 1.2 
 

Results indicate that all roles self-report that they rarely to sometimes acquire research from 
the list of sources. For teachers, they reported that they were most likely to acquire research from 
other teachers. For administrators, they reported that they were most likely to acquire research 
from other administrators or mathematics leaders. For mathematics leaders, they reported that 
they were most likely to acquire research from other math leaders, professional associations, or 
journals. In addition, if one assumes that higher education faculty have access to or are 
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producing research on mathematics teaching and learning, mathematics leaders reported that they 
were more likely to acquire research from faculty than teachers or administrators. 
 
What do mathematics teachers, mathematics leaders, and administrators identify as the primary 
barriers to using research in their role?  
 

Drawing from our design and implementation principles and our commitment to build 
capacity for sustainability at scale, we sought to explore what stakeholders’ identified as the 
primary barriers to using research in their role. Respondents were asked to choose two main 
barriers from a list of hypothesized barriers we gathered through our conversations with 
educators. Results were tabulated across respondents for each role as shown in Table 5.  

Table 5: Percentages of primary identified barriers to using research in practice 
 Teachers Leaders Administrators 

Time constraints 37% 32% 33% 
Lack of PD that shares research 21% 22% 20% 
Cost/Lack of access to journals 9% 17% 20% 
Lack of relevance or ease of use 19% 11% 10% 

Timeliness of research (e.g. out of date) 8% 8% 13% 
Not valued in my education community 3% 7% 2% 

Lack of high-quality evidence 5% 3% 3% 
 

Results indicate that the primary barrier to using research in practice across all roles was time 
constraints. Secondly, results indicate that teachers, leaders, and administrators all reported a 
lack of access to professional development focused on sharing research findings as a barrier.  

Implications and Discussion 
The purpose of this exploratory study was to inform our ongoing efforts to co-design 

professional learning opportunities for mathematics teachers and leaders. Results of our analysis 
suggest that mathematics leaders are key aspects of school and district communication 
infrastructures related to mathematics teaching and learning. An examination of responses about 
their use of research provides some evidence that this communication shares research findings 
with others, on occasion. Moreover, leaders are more likely to seek out, promote, and use 
research on mathematics teaching and learning.  

Results from this questionnaire will inform our upcoming efforts to co-design learning 
opportunities for leaders and teachers focused on mathematics teaching and learning that embody 
both research and attention to scale. For researchers and practitioners engaged in large scale 
improvement initiatives, results from our descriptive questionnaire mirror emerging findings 
about the influences of mid-level decision makers in decisions and the role of professional 
networks in introducing new ideas to schools and districts. We also note that self-reports of 
practice that are deemed favorable are regularly overestimated. While it is promising that leaders 
reported these practices, it is also noteworthy that teachers, leaders, and administrators were 
unlikely to have significant conversations about research on mathematics teaching and learning 
with higher education faculty. If we, as mathematics education researchers purport to both 
engage in and share these forms of research, it is important for us to consider these results.  

As we consider the conference theme, “Looking Back, Looking Ahead”, we see attention to 
mathematics leaders as one way to meet enduring challenges of shaping mathematics teaching. 
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Leveraging their professional networks and supporting them in learning to use research in 
practice may promote coherence and systemic change as they mitigate shifting policies, changes 
in curriculum, and expectations of industry. We see this work as supporting research-based 
mathematics teaching that leads to more equitable learning opportunities for students. 
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This study examines secondary mathematics and science teacher perceptions of teacher 
leadership during the first year of a professional development program focused on preparing 
teacher leaders in rural schools. It also begins to offer details as to what content-focused teacher 
leadership looks like and how teachers in rural schools enact teacher leadership. Data collection 
includes interview and survey analysis. Findings indicate four areas of growth for participants 
and project staff: participants began to expand their thinking and influence beyond the 
classroom, advocate more for students, develop a richer understanding of what content specific 
teacher leadership looks like, and gain a deeper understanding that teacher leadership in rural 
districts may be easier given the context of smaller settings but may also be more challenging in 
terms of teacher burnout. 

Keywords: High School Education, Middle School Education, Teacher Knowledge, Teacher 
Education – Inservice/ Professional 

Introduction 
Teacher leadership has been in the literature for over 40 years and more recently, calls have 

been made to focus on content-focused teacher leadership (Wenner & Campbell, 2016). In 2014, 
the National Research Council (NRC) held a day and a half convocation to discuss the current 
and possible ways to better develop and utilize STEM teacher leadership. One result of the 
convocation was a publication that summarized convocation outcomes such as what STEM 
teacher leaders can do to effect policy, current models for empowering teacher voices, 
professional development for STEM teacher leaders, and research in the field of STEM teacher 
leadership (NRC, 2014). One finding from the report was the impact professional development 
“can make toward creating a robust corps of STEM teacher leaders” (NRC, 2014, p. 44). Mohan, 
Galosy, Miller, & Bintz (2017) completed a study to review and synthesize existing research on 
science and mathematics teacher leadership development programs. In their initial review of 89 
research abstracts and 70 programs, their final study included 18 research articles and 15 
programs. The review of these articles and programs, in addition to discussions with science and 
mathematics teacher leadership development leaders, resulted in four “focal areas” or 
recommendations for science and mathematics teacher leadership programs: programs and the 
teacher leadership development landscape, purposes of teacher leadership development 
programs, attributes of teacher leadership development programs, and research on teacher 
leadership development programs. Two key recommendations within these focal areas were the 
need to ensure teachers from underserved and underrepresented areas have leadership 
development opportunities and the importance of sharing findings of science and mathematics 
leadership development programs (Mohan et al., 2017). 

Rural districts represent an underserved and underrepresented area where a focus on teacher 
leadership development is needed (Anderson, 2008). Rural areas also demonstrate a need for 
strong teacher professional development to address challenges such as fewer resources for 
instruction, lower teacher salaries, and less opportunities for professional development for 
teachers (Bush, 2005; Goodpaster, Adedokun, & Weaver, 2012; Showalter, Klein, Johnson, 
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Hartman, 2017). Specifically, professional development in mathematics and science is needed as 
already existing teacher shortages in STEM areas are even greater and student performance in 
and access to higher level mathematics and science coursework is low in rural communities 
(Irvin, Byun, Smiley, & Hutchins, 2017; Showalter, Klein, Johnson, Hartman, 2017). 

In response to this need for content-focused rural teacher leadership development, the Rural 
Secondary Science and Mathematics Teacher Leader Project (RSSMTL), in collaboration with 
10 schools in 15 districts, was developed to prepare secondary mathematics and science teachers 
in rural districts. This study analyzes data from the first year of the program to determine how 
science and mathematics teacher perceptions of teacher leadership change through a teacher 
leader professional development program and what it looks like to become a mathematics or 
science teacher leader in a rural school. 

RSSMTL focuses on Wenner & Campbell’s (2016) definition of teacher leadership as 
“teachers who maintain K-12 classroom-based teaching responsibilities, while also taking on 
leadership responsibilities outside of the classroom” (p. 7). Given that change takes long time 
support, we are in the midst of a five-year grant funded program to develop strong secondary 
mathematics and science teachers in rural areas. 

RSSMTL Conceptual Framework 
Based on research literature in rural content specific teacher development and leadership as 

well as the needs articulated by our school partners, the below conceptual framework guided the 
development of the RSSMTL. 

 
Figure 1. The Conceptual Framework for RSSMTL 

 
Project Components 

The RSSMTL conceptual framework four components are explained below and program 
elements that teachers complete to address each of the four components are described. Table 1 
also presents the program components and elements. 

Component 1: Reduce Isolation.  Teachers in rural schools struggle with isolation given the 
sometimes smaller size of their schools. A science teacher, for example, may be the only person 
teaching physics at her school. Component 1 and the affiliated project elements are designed to 
reduce teacher isolation (Baird, Prather, Finson, & Oliver, 2006). The participating teachers and 
project team are creating a community of practice where we are able to learn together as teacher 
leaders in rural districts. As part of the project, teachers work with our preservice teachers who 
typically would not be placed in their schools due to the longer commutes but is now more 
possible with funding to supplement travel costs. Teachers speak to the value of having content 
partners with whom they can now talk about their teaching – both in terms of their student 
teachers (intern-teacher relationships) as well as fellow teachers in the program. For example, 
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as the only science teacher teaching physics at her school, Brianna can now talk with her 
RSSMTL colleague who also is the only physics teacher at her rural school. As the RSSMTL 
participants increase their spheres of influence and connection as teacher leaders, they have been 
able to share those connections with teachers in their communities.  

Component 2: Improve Instruction. Teachers in rural districts often lack access to high 
quality professional development or to content-specific specialists to aid in continuous 
improvement of their instruction (Hickey & Harris, 2005; Howley & Howley, 2005). If rural 
teachers do receive professional development, it is often not well aligned to their specific needs 
(Jimerson, 2004). Therefore, this component and aligned program elements are designed to 
improve teacher participant instruction. Content and pedagogical instruction emphasizing 
inquiry based teaching practices (Anderson, 2007; Silver, Kilpatrick, & Schlesinger, 1990) 
coupled with both Project Based Learning (Krajcik, Czerniak, & Berger, 2002) as well as Place 
Based Learning (Sobel, 2004) are foundational to the program. We meet for a two-week Summer 
Instructional Leadership Academy (ILA) each summer and spend time learning about these three 
pedagogical approaches.  For example, in terms of curriculum enhancement, each teacher has 
developed a Project Based Learning unit. Teachers implement and record at least four lessons 
during the academic year focused on these curricular and instructional changes. They also take 
three online content specific graduate courses to enhance their content knowledge. These courses 
are offered online so that teachers do not have to leave their communities to participate in the 
course yet are able to virtually connect with the instructor and their RSSMTL colleagues 
throughout the course. Teachers complete projects that are integrated into their daily work of 
teaching so they can immediately apply their learnings with their students. Teachers have been 
able to, in turn, as teacher leaders share the content and pedagogical content knowledge they are 
learning with teachers in their districts. Hence, the initial void of content specific curriculum 
specialists in some of our smaller, more rural districts that was part of the initial impetus for this 
work, is beginning to be filled by RSSMTL participants.  

Component 3: Increase Retention. Teachers in rural districts tend to have higher rates of 
retention than in urban or suburban schools (Provasnik et al., 2007) though rural districts do 
report difficulties in recruiting and retaining high quality mathematics and science teachers 
(Friedrichsen, Chval, & Tuescher, 2007; Monk, 2007). Strong professional development, 
community involvement and local school support improves the retention of high quality teachers 
in rural districts (Goodpaster, Adedokun, & Weaver, 2012). Hence, Component 3 and the 
accompanying program elements are designed to increase retention among participants. As part 
of RSSMTL, teachers develop local community connections. As part of the Project Based and 
Placed Based Learning, teachers connect with resources in their areas to both bring into their 
classrooms as well as take their students into the community. For example, Tammy connected 
with a local restaurant to have her geometry students re-design one of their take-out boxes. As 
part of the project, the restaurant management came to the school to view student presentations 
on their designs and then selected the best designs to visit their local restaurant. In addition, 
teachers plan local STEM community nights at their schools to engage parents and the local 
community in the work of their students. For example, several teachers focused their STEM 
nights on the eclipse that occurred on August 21, 2017. Furthermore, university partnerships 
continue to develop as student teaching interns and their supervisors connect with the teachers as 
they work in their classrooms. Teachers also co-teach methods courses alongside project team 
members. For example, as part of the content-focused methods course, teachers come to campus 
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to share with student teachers as well as the methods courses travel to the teachers’ schools to 
view lessons taught to their students.  

Component 4. Create Instructional Leaders. Empowering teachers to develop their own 
instructional practices as well as supporting their ability to support the development of 
colleague’s instructional practices offers teacher ways to become instructional leaders. It also 
addresses the lack of content-specific specialists in smaller rural districts by equipping classroom 
teachers with these skills (Hickey & Harris, 2005). Therefore, Component 4 and its 
accompanying program elements address this need. Teachers in the RSSMTL program showcase 
and share knowledge through multiple avenues. First, they complete the National Board 
Certification process for their specific content area. This process allows them to systematically 
and deeply reflect on their practice while simultaneously encouraging them to improve and 
strengthen that practice (Lustick & Sykes, 2006). As National Board Certified teachers, 
participants are more effective teachers (Cowen & Goldhaber, 2016) and better prepared to take 
on leadership roles (Sato, Hyler, & Monte-Sano, 2014). In addition, teachers write articles for 
professional journals as well as present their Project-Based Learning units at state and national 
conferences. Finally, at the close of the RSSMTL program, teachers will plan and host a 
professional development conference for their colleagues that focuses on lessons they have 
learned as part of the RSSMTL program. They also complete Mentor Teacher and Coach 
Training to enhance their work with student teachers and induction teachers as well as 
strengthen their skills to work alongside their colleagues to improve collective practices (Lotter, 
Yow, & Peters, 2014; Yow & Lotter, 2016).  

Table 1. RSSMTL Program Components & Elements 
Component Focus Aspects Program Element 

1 Reduce Isolation 

Community of 
Practice 

Relationships developed among teachers with RSSMTL 
colleagues and project staff 

Intern-Mentor 
Relationships Teachers hosting student teacher interns 

2 Improve 
Instruction 

Content and 
Pedagogy 
Instruction 

Inquiry Based teaching practices coupled with Project Based 
and Place Based 
Online pedagogical and content graduate coursework 

Curriculum 
Enhancement Project Based Unit Development 

3 Increase 
Retention 

Local 
Community 
Connections 

Project Based and Place Based Learning Units that involve 
local community resources 
STEM Community Nights 

University 
Partnerships 

Teachers hosting student teaching interns 
Co-teach methods courses 

4 
Create 

Instructional 
Leaders 

Showcase and 
Share 

Knowledge 

National Board Certification 
Articles and Professional Presentations 
Professional Development Conference for Colleagues 

Mentor and 
Coach Training Complete Mentor Teacher and Coach Training 

Methods 
Participants 

Twenty teachers participate in the RSSMTL program. They were selected from a pool of 
applicants based on a principal reference, a written essay, transcript and licensure test review, 
and an interview. All 20 teachers have master’s degrees and include ten mathematics teachers 
(six middle school and four high school) and ten science teachers (four middle school and six 
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high school). Twelve are Caucasian and eight are African-American. Three are male and 
seventeen are female. 
Data Collection 

Data collection included a pre-and post-interview and a pre-and post-survey.  
Interview. Prior to beginning the program, teachers were interviewed using a semi-

structured interview protocol. The interviews lasted between 45 to 60 minutes and were audio 
recorded. The interview protocol asked about their beliefs about instruction and teacher 
leadership. In terms of instructional beliefs, teachers were asked questions such as how they 
thought students learned best, how they structured their lessons, and how they assessed student 
learning. In terms of teacher leadership beliefs teachers were asked, for example, how they 
defined teacher leadership and how they saw themselves or others as teacher leaders. A year 
later, the teachers were asked the same teacher leader questions with a sharper focus on being a 
mathematics or science teacher leader in a rural context.  

Survey. Teachers also completed a teacher leadership survey (Triska, 2007). This survey 
contained 13 Likert items with a 1 (Never) to 4 (Frequently) scale and 11 items with a 1 
(Disagree) to 4 (Agree) scale. Sample questions from the Never to Frequently section included 
how often they “Tried a strategy in your classroom that you had never tried before?” or “Voiced 
your personal thoughts about teaching or learning with other teachers?”  Sample questions from 
the Disagree to Agree section included “You modeled reflection leading to improvement of 
practices in your classroom, which may have impacted other teachers” and “You played an 
important role in building the professional community here at school.” A year later, teachers 
were administered this same survey though they were asked to do so both a written and verbal 
format. Teachers completed the survey by hand during the post-interview while also being asked 
to think aloud as they completed the survey to offer examples or additional context to their Likert 
scale responses.  
Analysis  

Data analysis included using SPSS to determine the descriptive statistics on the Triska (2007) 
teacher leadership survey. The teachers rated themselves highly on the pre-survey so there was 
no significant statistical change compared to the post-survey. Therefore, the main data analysis 
for this study was conducted through analysis of the teacher leadership survey think aloud 
alongside the pre- and post-interview responses. All interviews were audio recorded, transcribed, 
and inputted into Nvivo 11. Interviews were coded using a constant comparative method (Boglan 
& Biklen, 1989).  The first two authors along with two graduate research assistants initially 
coded all interviews separately and a list of common consensus codes was determined through 
group discussion. Then, all researchers recoded the interview transcripts using the revised codes, 
met again to discuss any variations in the coding, and decided upon themes that represented 
participant perceptions and enactment of teacher leadership.  

Results 
Results indicated four findings with regard to the teacher perceptions and growth as teacher 

leaders. First, teachers are developing as teacher leaders whose focus is expanding to beyond 
their classrooms. Second, teachers are continuing, and more deliberately, serving as advocates 
for their students. Third, a more collaborative and comprehensive understanding of what content 
specific teacher leadership looks like is developing. Fourth, teacher leadership roles in rural 
districts may be more natural to obtain given the context of a sometimes smaller familiar setting, 
but may also be more challenging as these roles lead to other tensions including feeling 
overworked and stressed.  



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

355 

Finding 1: Expanding Focus to Beyond the Classroom 
As we began the program, teacher conceptions about teacher leadership were more 

classroom-focused.  Now, they are beginning to think about teacher leadership as also including 
their influences beyond the classroom. Jenny, for example, initially spoke about a teacher leader 
as “being receptive to her students – taking their needs and helping them grow.” Now, teachers 
reflect on their current conceptions of teacher leadership as not only helping students grow, but 
also “being a role model to and sharing with my peers” as well as “presenting at conferences.” 
They are beginning to feel responsibility to serve their students, colleagues, and districts. 
Finding 2: Continuing to Advocate for Students  

Teachers have always been champions for their students. Through the program, however, 
their voice as advocates for students has grown stronger. Their understanding that such a voice is 
part of their role as a teacher leader has also grown – part of being a teacher leader is having a 
“student-centered mindset” (Hunzicker, 2013). Kyana reflected, “but same is not equal in every 
school. Our children, being rural, need more outside experiences.” She continued to speak 
specifically to advocating for the best teaching practices: “Math, we have to really make sure that 
we push for the best way for our kids to learn.” 
Finding 3: Understanding of Content Teacher Leadership 

The teachers and project team are gaining a better understanding of what content-specific 
teacher leadership means. In mathematics, the teachers speak to the need to remain current in 
their knowledge of best practices for teaching mathematics. They also speak to the need to be 
involved with vertical teaming where they collaborate with teachers across grade bands to better 
understand, for example, what their algebra students learned in their previous pre-algebra course 
and what content they need to have a strong understanding as they progress into geometry. 
Science teachers speak to the need to “write grants” as teacher leaders to acquire the materials 
they need to complete engaging and safe laboratory activities. Mike reflected, “It takes much 
more to prepare for science.” Particular foci and needs are specific to mathematics and science 
teacher leadership. 
Finding 4: Recognizing Rural Teacher Leadership May Be More Natural But Challenging 

Teacher leadership roles, both formal and informal, often times come more naturally to 
teachers in rural settings. For some teachers, they grew up in the community and are well 
respected so are often asked to take on leadership roles. For other teachers, their rural school is 
also a small school, so they are asked more often to serve. For example, Jessica noted “wearing 
lots of hats” as one of two mathematics teachers in her high school. For example, her school 
needed last-minute prom preparation help so she took her geometry class to the gym. She 
integrated their polygon lesson while arranging tables: “I turn our prom experience into a math 
experience.” Tawanda noted, “I think it’s easier to be [a teacher leader in a rural area] because 
you don’t have to deal with so many. You’re on a first name basis.  They know me at the district 
office. They know who we are. They know what we do.” However, with added roles come 
additional responsibility, time commitments and stress. Therefore, further reflection on how best 
to balance the natural yet challenging dichotomy of these roles needs exploring. 

Discussion 
In this initial year of the program, RSSMTL participant perceptions of teacher leadership as 

well as a developing picture of what it looks like to be a mathematics or science teachers leader 
in a rural school began to emerge. Through the program’s focus on four areas (reducing 
isolation, improving instruction, increasing retention, and creating instructional leaders), four 
findings surfaced. First, teachers began to expand their focus to beyond the classroom. They 
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began to think more deliberately and felt more empowered to take their expertise outside of their 
classroom walls to begin to impact and influence their colleagues and larger professional 
community (Beachum & Dentith, 2004). Second, though many had already served as advocates 
for their students, they learned of new ways and found an increased sense of agency to advocate 
for their students. In some cases, they learned of content-based extracurricular activities to offer 
to their students whose rural locale may have prevented their previous participation in such 
activities. They also began developing a new knowledge base about strong instructional practices 
and content expertise that enhanced their teaching and began to advocate for their subjects and 
these teaching practices (Hunzicker, 2013). Third, the collective knowledge of content-focused 
teacher leadership continues to evolve. Findings indicated that there are specific content area 
aspects that pertain to mathematics or science teacher leaders. For example, the concept of 
vertical teaming and planning within the mathematics community is a fertile ground for 
continued research in how best to prepare and position mathematics teacher leaders to serve in 
shepherding such efforts. Likewise, materials and supplies specific to successful lab and field 
experiences in the sciences lends itself to grant writing among science teacher leaders – and 
similar manipulative and resource materials in the mathematics classroom may also prove 
another content-specific area of mathematics teacher leadership. This finding adds to the 
complex nature of teacher leadership as it pertains to specific content areas (Wenner & 
Campbell, 2017). Finally, teacher leadership within rural schools can be more natural but at the 
same time challenging. The familiarity of being “known” in often smaller rural schools often 
makes it easier for teachers to assume teacher leader roles. With fewer administrators, there are 
often more opportunities for teachers to become teacher leaders. These same opportunities, 
however, sometimes lead to overburdening burnout (Little & Bartlett, 2002; Lieberman & 
Miller, 2004) so additional research into sustainable teacher leadership is warranted. 

The complexity of content-based teacher leadership continues to evolve so additional 
research on how mathematics and science teachers perceive and enact teacher leadership in rural 
contexts is needed.  The RSSMTL program adds to the limited literature around this field and as 
the program progresses and additional data is collected and analyzed, the authors hope to 
continue to add to this research literature so all students and teachers have access to high quality 
learning and leading. 
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The persistence of deficit discourse has been one of the enduring challenges in mathematics 
education. This paper aims to contribute to the discussion by situating deficit discourse in the 
context of social interaction. Drawing on conversation analysis and discursive psychology, I 
offer an analysis of a conversation that happened in an equity-oriented professional development 
session. The findings show that deficit discourse was mobilized to do a particular context-
specific action, and the action was achieved with multiple rhetorical devices. Thus, successfully 
countering deficit discourse involves micropolitics and rhetorical resources and skills. 

Keywords: Equity and Diversity; Professional Development; Discourse Analysis 

As Suh, Theakston-Musselman, Herbel-Eisenmann, and Steele (2013) noted, one of the 
enduring challenges in mathematics education is the persistent deficit discourse often targeted at 
marginalized students and families. Its ideological function is to blame the victims of social 
injustice and sustain the status quo (Valencia, 2010). Following Valencia, I define deficit 
discourse as spoken or written texts that legitimize the unjust social order based on the distorted 
deficit characteristics of the oppressed.  

This paper aims to contribute to the discussion with an effort to situate deficit discourse in 
talk-in-interaction among mathematics teachers (MT) and mathematics teacher educators (MTE). 
By doing so, I argue that deficit discourses are mobilized as discursive resources for a participant 
to pursue a context-specific action; hence, I suggest it is important not only to identify what 
deficit discourses are but also to examine the practices of performing deficit discourses in a 
particular context of social interaction. 

Linguistic Turn in Examining Deficit Discourse 
Deficit discourse is a delicate and complex issue. As Tiezzi and Cross (1997) warned, 

focusing solely on an individual MT’s belief as the root of deficit discourse may lead to MTE’s 
own deficit perspective toward the MT. Deficit discourse is a social phenomenon which requires 
a view from a systemic perspective as well as an examination of the individuals. To do so, Parks 
(2010) and Suh and colleagues (2013) took a linguistic turn in which they treated language as 
performance or constructive of the social world. Language, in their views, is the object of study 
for its own sake to understand the social world rather than a medium to see a person’s mind.  

Their analyses revealed the discourses that are pervasive in mathematics education such as 
“the metaphor of a narrow path” (Parks, 2010), “the individual maturation storyline,” and “the 
institutional tracking storyline” (Suh et al., 2013). These types of discursive resources, the 
authors argued, constrain MTs’ ways of conceptualizing students’ strength and assets and limit 
the MTs’ own agency to utilize the diverse set of strengths in their classrooms. These discursive 
patterns often lead to a deficit-oriented statement such as “My students don’t have ….” In the 
individual maturation storyline, for instance, brain development is an important part, and the 
students are positioned as individuals lacking maturation to successfully engage in a particular 
learning task. Although Parks (2010) and Suh and colleagues (2013) revealed discursive 
limitations that are often overlooked by researchers, a few questions still remain in the linguistic 
turn: Why is this deficit discourse deployed here and now? How is it accomplished? To answer 
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these questions, I examine how discursive resources are effectively mobilized in moment-to-
moment interactions by the participants. By drawing on conversation analysis and discursive 
psychology as analytic tools, I examine a non-representative piece of data from a broader 
research project focused on equity-oriented professional development (PD). 

Analytic Framework: Action Sequence and Rhetorical Redescription 
Briefly speaking, conversation analysis (CA) concerns how people perform conversations in 

ordinary settings (e.g., dinner time, phone calls). CA grew out of ethnomethodology and speech 
act theory and has contributed to multiple fields by revealing the hidden practices in our daily 
socialization (e.g., turn-taking, sequencing action, repairing). In this paper, I focus on how 
actions are sequenced in social interactions (Schegloff, 2007), in particular, a storytelling 
sequence (Jefferson, 1978). Following the ethnomethodology tradition, CA validates claims 
based on participants’ observable actions in talk-in-interaction, what the participants recognize, 
and how the participants treat those actions. 

To examine the rhetorical effectiveness of the talk-in-interaction, I also draw on discursive 
psychology (DP). Influenced by ethnomethodology, social constructionism, and post-
structuralism, DP approaches social psychology from a discursive perspective. I draw on Potter’s 
(1996) work on the rhetorical aspect of discourses situated in social interactions. Thus, I ask how 
rhetorical resources are mobilized for participants to construct a discourse and how the discourse 
builds a version of fact. 

Examining Deficit Discourse in the Context of Social Interaction 
The conversation below happened in the early stage of the second round of an action research 

cycle, which focuses on incorporating students’ active involvement and agency to guide 
teachers’ action research projects. Prior to the excerpt below, one MT, named Renee, addressed 
her concern about having her first graders explore the suspension practice in the school using 
mathematics, and a tension emerged between Renee and the MTEs. On one hand, Renee 
mentioned that her first graders were not mature enough to think beyond themselves at their 
stage of development. On the other hand, the MTEs tried to persuade her to remain open-minded 
about her students’ capacity and suggested her to pursue the idea of fairness instead of the 
institutional practice of suspension, and then the following conversation happened: 
Excerpt: The Corpus Callosum  

MTs: Carol, Danisha, Ramona, Renee, and Kathy; MTE: Susan (in pseudonyms)  
Conventions: pause in 1/10 sec, (.x); overlapping talk, [ ]; vowel elongation, : ; emphasis, _ ; 
unrecoverable speech, ( ); rise and fall in intonation, ↑ ¯; low volume, ° °; comment, (( )) 
01  Sus: okay so there’s suggestion of direction to go. 
02    Kathy, you [have] something to add?= 
03  Kat:          [Well]         
  

04  Kat: =I just had a thou:ght. you guys were at (auditorium)?  
05   (0.4)  
06  Kat: [you know wel]coming back,  
07  Dan: [YE↑:::S] 
08  Ren: (                ) I wasn’t th[ere::.]      Uh Heh Heh Heh heh 
09  Kat:                 [↑I ¯kno:w.] 
10  Kat: but there was this wonderful speake:r and he talked about  
11   the bra:::in.  
12   (.) 
13  Kat: [(          )]  [             ]  [and don’t   ] ↑QUOTE ME on this 
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14  Car: [he was good.]                 [he was good.] 
15  Ram:           [That’s right.] 
16  Kat: but the two parts of the brai::n, there is that thing in the middle? 
17   (0.3)  
18  Kat: anyone remembers what is that called?= ((puts two fists together)) 
19  Car: =the [(0.2)] corpus= 
20  Ram:    [the] 
21  Sus: =the corpus [callosum]   
22  Kat:         [corpus] calla- Yeah. (.) ↑that is not even developed  
23   about age ten, (sir/so). (0.5) so how do we expect our children to 
24   (0.2) know right and wrong and to  

25   [problem solve, do this multiplication,] and division 
26  Ram: [we would have to teach them and have to help them develop it.] 
27  Kat: when they don’t even (0.2) truly have the brain [capa]city.  
28  Car:                                     
[right] 

29   (0.2) 
30  Kat: so I am just wondering little six year olds.  
31   (0.6)  
32  Car: °they are not there.° 
33  Kat: right. I mean they give you what they in↑terpret it is::.  
34   (0.3)  
35  Ren: right it [um what I am thinking it is-] is (0.2) that= 
36  Kat:      [right and wrong but]  
37  Ram: =that’s true. ((nods slowly))  
 
The conversation above contains Kathy’s storytelling sequence (line 10-23) about the brain 

development in relation to children’s limited mental capacity, which Suh et al. (2013) named as 
“the individual maturation storyline.” To further the discussion, I ask the following questions: 
how is the individual maturation storyline situated in this particular action sequence? What are 
the discursive resources upon which Kathy draws? 

Based on where the storytelling is placed in the conversation, the storytelling is formulated as 
a dispreferred response (i.e., a refusal) to the suggestion of pursuing the concept of fairness. 
When a response to the suggestion was made relevant (line 1), Kathy opened a storytelling pre-
sequence (line 4). In line 23, the refusal was clearly articulated when Kathy stated, “so how do 
we expect our children to know… .” Kathy’s dispreferred response was also recognized by 
Renee, and after this excerpt, Renee further expands Kathy’s refusal by offering her own 
hypothetical account. Note that the deficit image of young children was invoked not for its own 
sake but rather as an account to justify Kathy’s refusal to the suggestion. In other words, the 
deficit discourse was mobilized by Kathy to do a context-specific action; that is, in this case, to 
refuse the MTE’s suggestion. 

A closer look at the sequence shows how pre-sequences were placed to elicit the solidarity 
among the teachers against the MTE’s suggestion. In line 4, Kathy asked, “you guys were at 
(auditorium)?” The question was targeted to “you guys”, the teachers; thus, it framed the story as 
‘our shared’ story. Moreover, it assigned higher epistemic status on the teachers as co-witnesses 
since none of the MTEs witnessed the scene. The move toward the solidarity among all MTs 
became more apparent when Renee responded with “I wasn’t there::.” (line 8). Kathy gave her 
sympathetic response, ”↑I ¯kno:w.” (line 9), and it was followed by Renee’s loud laughs 
indicating her affiliation to Kathy. 

The sequence contains multiple rhetorical resources such as vivid detailed descriptions that 
can be used to build up the facticity of an account. For instance, Kathy aided her description of 
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the brain with an embodied gesture when she put her two fists together to model the shape of the 
brain. Note that she also invoked the image of “little six year olds” (line 30) instead of other 
possible alternatives (e.g., first graders, children). This depicted the students as ‘underdeveloped’ 
children. Also, the sharp numerical comparison between the age of 10 (when children reach full 
development) and age of 6 (first graders) may have enhanced the rhetorical effect.  

While mobilizing the rhetorical resources, Kathy also effectively established her neutrality to 
the description. Kathy indicated that her story was told by “this wonderful speaker”, a third-party 
male person. When she said, “don’t ↑QUOTE ME on this” (line 13), she reaffirmed her footing 
as an ‘unbiased messenger.’ To avoid accountability, she also expressed uncertainty when she 
offered her own idea by saying, “So I am just wondering …” (line 30). 

The rhetorical account formulated by Kathy was, indeed, powerful. In contrast to Kathy’s 
deficit-oriented description, another teacher in the room, Ramona, initially interpreted the same 
event quite differently. She mentioned, “We would have to teach them and have to help them 
develop it.” (line 26). That is, the speaker advocated for the need of better support from the 
teachers to promote brain development. Later in line 37, however, Ramona conceded to Kathy’s 
argument by stating “That’s true.” and nodding slowly. 

The above analysis offers a way to see how a particular deficit discourse is situated in the 
context of social interaction. I illustrated how a deficit discourse was mobilized to do a refusal, 
and it involved the delicate handling of social relationships and managing multiple rhetorical 
devices. To effectively challenge and reframe deficit discourse, then, we need to understand 
deficit discourse within the context. The task will involve disentangling the micropolitics in 
social interactions, and rhetorical resources and skills will be needed to construct and reinforce 
the asset-based reality in which diverse strengths of students are valued. 
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This study investigates elementary mathematics teachers’ decisions in designing and 
implementing a fraction unit aligned with reform-oriented learning and teaching practices and 
the factors that influence their decisions. Four 4th grade teachers from different schools designed 
a fraction unit and implemented it in their classrooms. The data sources include video-
recordings of unit design sessions, classroom unit implementations and unit-debriefing sessions; 
pre and post semi-structured interviews including beliefs questions; and a Likert-scale survey on 
beliefs in addition to a fraction survey with items to determine teachers’ levels of mathematical 
knowledge for teaching (MKT). The findings suggest that one of the teacher’s relatively high 
level of MKT and her mathematical beliefs compatible with reform-oriented ideas might have 
affected her decisions and caused low fidelity in implementing the designed unit.  

Keywords: Teacher Education-Inservice/Professional, Curriculum, Mathematical Knowledge for 
Teaching, Teacher Beliefs.  

The agenda for reform efforts in K-6 mathematics education have aimed at increasing student 
math success by focusing on learning with understanding. In efforts to foster critical thinking and 
reasoning, problem solving and individual knowledge construction in classrooms, reform 
advocates have attempted to develop reform-oriented mathematics curricula to be used in 
schools. By acknowledging students as the constructers of math knowledge, their teachers were 
also expected to take on new roles, such as facilitators of learning as opposed to more traditional 
teacher roles that positioned them as knowledge holders and transmitters. Although reform 
advocates have set their goal and agenda clearly, their efforts have encountered pushback from 
teachers - they have struggled to implement the reform-oriented curricula. Researchers have 
explored this issue and asserted various reasons including teachers’ lack of understanding of the 
pedagogy proposed within the curricula (Manouchehri & Goodman, 1998), teachers’ beliefs and 
background in mathematics and in general (Remillard, 2005), and teachers’ ideas about the 
appropriateness of the curricula for their students (Stein, Grover & Henningsen, 1996). 
Additionally, teachers are expected to use a curriculum for which they are not a part of the 
development process and that causes unfamiliarity with the ideas proposed in the curriculum 
(e.g. Kirk & MacDonald, 2001). As such, it begs the question, would teachers implement 
curricula with greater fidelity of they were actively engaged in the development process? 

In this regard, I wanted to explore the role of agency in teachers’ decisions about designing 
and implementing curriculum and the factors affecting their decisions through the whole process. 
Since developing a year-long curriculum would be difficult within the length of the study, the 
teachers were involved in designing a fraction unit focused on developing fourth grade students’ 
understanding of a fraction concept. The research questions that guided the study are: 

 
What factors influence fourth grade elementary math teachers’ decisions in designing and 
implementing a fractions unit? 

a. What are the design decisions made in designing the unit? 
b. What are the implementation decisions made in instructing the unit? 
c. To what extent does the unit designed by teachers align with the unit implemented? 
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 i. In incidents of alignment, what factors contributed? 
 ii. In incidents of misalignment, what factors contributed? 

Conceptual Framework 
This study is designed as part of a larger professional development (PD) program that aimed 

to improve the quality of elementary teachers’ mathematics instruction by developing their 
mathematical knowledge for teaching (MKT) (Ball, Thames &Phelps, 2008). Ball, Thames, and 
Phelps (2008) refined Shulman’s (1986) earlier categories - content knowledge, curricular 
knowledge, and pedagogical content knowledge (PCK) - by encapsulating these knowledge 
under the umbrella of MKT and further subdividing content knowledge and PCK into 
components (for additional information on different types of knowledge required for teaching, 
see Ball, Thames & Phelps (2008) and Hill, Ball & Schilling (2008)). They suggest the 
components of teachers’ MKT - specifically common content knowledge (CCK), specialized 
content knowledge (SCK), knowledge of content and students (KCS) and knowledge of content 
and teaching (KCT) - affect their instructional practices. Thus, this study considers teachers’ 
MKT as a factor influencing their decisions in designing and implementing a fraction unit. 

In addition to MKT, teachers’ mathematical beliefs affect their practices (Ernest, 1989; 
Pajares, 1992). The relationship is sometimes positive; if a teacher holds reform-oriented beliefs 
about student learning, then she would use reform-oriented teaching methods in her classroom 
(e.g. Cross, 2009). On the other hand, there are other studies that provide evidence to cases 
where teachers’ mathematical practices do not necessarily reflect their beliefs, or their beliefs do 
not necessarily match with their practices (e.g. Beswick, 2012). Leatham (2006) provided an 
explanation to that inconsistency in his sensible systems framework. He claims that the conflict 
between beliefs and practices is not due to lack of a direct relationship, but it is due to the effect 
of other beliefs that happen to affect practices more than the desired ones. For example, when we 
realize there is an inconsistency between a teacher’s belief, which we believe to affect or bring 
about a certain type of instruction, and her practice, we should consider there may be other 
beliefs or factors that are possibly influential on the action. So, teachers’ beliefs was another 
factor possibly affecting teachers’ decisions in designing and implementing a fraction unit. 

Methods 
The study falls under the embedded mixed methods case study (Creswell & Clark, 2011) as 

the quantitative data were collected before qualitative data and were used to further explain some 
of the differences in teachers’ decisions about designing and implementing the unit. Thus, the 
data were analyzed using both quantitative and qualitative data analysis approaches. The 
participants were four 4th grade elementary teachers from four schools across two school districts 
in the Midwest. All of the participants had at least one year of teaching experience.  

The data was drawn from a larger project on teacher PD conducted by researchers from a 
neighboring university. Data sources included video recordings of unit design sessions where 
teachers collaboratively designed a fraction unit, classroom sessions where teachers implemented 
the unit, and unit debriefing sessions where teachers discussed video clip examples from each 
other’s classrooms; audio-recordings of teacher interviews; a belief survey; an itemized MKT 
survey; and unit reflection forms developed for each teacher by the researcher.  

The data analysis incorporated both quantitative and qualitative methods. First, the videos 
from the unit design sessions were analyzed to determine the details of the designed fraction unit. 
The final product - the unit to be implemented - included a sequence of tasks selected by teachers 
along with the corresponding pedagogical considerations (PC) to be employed during the 
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enactment of tasks. Second, the unit implementation videos were analyzed with a focus on 
teachers’ decisions about tasks, the sequence of tasks and the specific PCs used during 
instruction. In addition to that, the video recordings of the unit debriefing sessions in which 
teachers discussed their unit implementation by showing short video clips from their classroom 
were also used to frame the details of implemented unit for each teacher. Third, the level of 
alignment was determined by comparing i) the number of tasks, ii) the sequence of tasks and iii) 
the PCs from the designed unit and the implemented unit for each teacher. Finally, the results 
from beliefs and MKT surveys in addition to findings from the interviews and unit reflection 
forms were used to explain what factors affected teachers’ decisions and how.  

Results & Discussion 
The designed unit consisted of 12 tasks that focused on identifying the whole, partitioning, 

equivalence, comparing, and ordering the fractions. In addition to that, a total of 19 PCs were 
included under the relevant tasks. An example of a PC was “using manipulatives in introducing 
improper fractions” included under the task about exploring improper fractions. The findings 
revealed that although teachers had agency in designing the unit, the fidelity of their 
implementation varied (Table 1).   

Table 1. Alignment percentages of fidelity components across cases 
Teacher Number of tasks from 

designed unit 
Sequence of tasks according to 
designed unit 

Employed PCs for the tasks 
from designed unit 

Candy 42% 100% 35% 

Britney 58% 100% 56% 

Ralph 58% 71% 22% 

Tamara 33% 100% 37% 

 
In this paper, I will focus on Candy’s case because although she did not have the highest 

fidelity levels for all components, her case clearly shows the complexity underlying the unit 
implementation process. Candy used only 5 of the 12 tasks in the exact same sequence with the 
designed unit. Regarding PCs, she used only 35% of the relevant PCs for the tasks. The findings 
from the surveys and interviews revealed that she held reform-oriented mathematical beliefs- she 
believed mathematics is a human endeavor that is continuously changing. Regarding learning 
and teaching math, she believed “students are the constructers of knowledge” and math 
instruction should be centered around student thinking. Her score from the MKT survey revealed 
she had relatively high level of understanding about fractions (CCK, SCK), knew how to 
interpret student thinking (KCS) and how to respond to student productions meaningfully (KCT).  

Regarding the fidelity level for the number of tasks, Candy explained that her students 
needed help with partitioning, so she decided to spend more time on the relevant tasks. Even 
though this made her unable to move forward with the additional tasks in a timely manner, the 
way she implemented the tasks made her instruction more valuable in terms of providing her 
students opportunities to work on partitioning more extensively by discussing, questioning and 
actively producing – a feature of classrooms that align with reform-oriented practices. Also, 
realizing that her students would not be able to move forward in building strong conceptions of 
more advanced fraction concepts mastering partitioning and deciding to spend more time with 
relevant tasks indicate that Candy has strong grasp of the knowledge at the intersection of 
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content and students. In other words, Candy’s MKT levels appeared to influence her decisions 
about unit implementation. 

There is no evidence to suggest that Candy’s students’ understanding of fractions increased 
through the unit, but the interaction captured in her instructional video, her responses to 
interview questions and survey items and her reflection on her experience during unit debriefing 
session all indicate that she placed student thinking at the center and built her instruction around 
it. Even though her fidelity level for PCs appear to be low, among all the teachers, Candy was 
the one who incorporated the PCs related to questioning, listening student responses and 
encouraged whole group discussion more frequently. In her reflection she stated, “Having 
students explain and show is more helpful than paper-pencil.” This might indicate that Candy’s 
reform-oriented beliefs about students, learning and teaching mathematics influenced her 
decisions in implementing the unit. So, although it appears that Candy’s participation in 
designing the unit did not lead to considerably high levels of fidelity in her implementation, our 
observations would suggest that her teaching of the unit aligned closely with instruction 
suggested in reform documents.  

Teachers’ understanding of the content, teaching and students appear to have an impact on 
their implementation of the curricula. Curriculum developers should consider this while working 
with teachers and confirm that teachers have a substantial understanding of the overall goals and 
instructional practices of the curriculum and students’ learning trajectory within the curriculum 
in order to enable their adherence to main goals of the curricula. Further results and implications 
will be shared during presentation.  
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Decades of research has shown that most professional development fails to result in changes to 
teachers’ classroom practice. This project explores an innovative professional development 
focused squarely on mathematics teaching practice and seeks to understand the features of the 
professional development that effect classroom level change.  

Keywords: Teacher Education – In-service/Professional Development, Classroom Discourse, 
Elementary School Education  

Problem Statement 
Supporting teachers to improve their practice is a fundamental challenge for professional 

development. Decades of research have demonstrated that many common approaches to 
professional development do not adequately support improvements in teachers’ capabilities (e.g., 
Cohen & Hill, 2001). In response, there has been increased work to develop new forms of 
professional development. Careful studies are needed to understand features of professional 
development design that support the learning of practice and how key variations in the design 
impact teacher learning. Further, many studies of professional development do not examine 
changes in teaching practice and such studies are needed.  

This study is grounded in our project’s work over the last decade to address the challenge of 
supporting the learning of practice using an approach to professional development situated in a 
common “live” case of elementary mathematics instruction occurring as part of a summer 
program for fifth grade students. The class comprises primarily Black youth, along with a small 
number of Latinx and white children, mostly from low-income families. The teacher is 
experienced and comfortable with making her practice visible and open to others. The approach 
uses this classroom as a “common text” for working on practice, where participants are not only 
watching and discussing, but are engaged in developing and refining teaching practice. 
Participants’ engagement approximates a form of “legitimate peripheral participation,” (Lave & 
Wenger, 1991) through structured conversations about the lesson plans, close observation, 
analysis of student tasks, and examination of records of teaching and learning. In addition, 
participants receive professional development focused on leading mathematics discussions. 

The research explores the impact of participation in these structured ways on teachers’ 
practice, as well as on their knowledge and dispositions. Our contribution is to rigorously study 
the impact of our professional model in situ to determine whether and how the work transfers 
into classrooms. Specifically, our initial study seeks to answer the following questions: What do 
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teachers learn from structured participation in the class? Does their participation impact their 
own teaching practice, and if so, in what ways? Does the addition of professional development 
focused on a particular teaching practice impact teachers’ own practice, and if so, in what ways? 

Theoretical Framework 
Mathematics teaching is something that people do; it is not merely something to know. 

Teachers must use knowledge flexibly and fluently as they interact in specific contexts with 
students, with the aim of helping those students become proficient with mathematics. This 
interactive and dynamic view of instruction can be represented by the “instructional triangle” 
(Cohen, Raudenbush, & Ball, 2003), a conceptualization of teaching as interactions among 
teachers, students, and content, in an environment. This conceptualization has important 
implications for the design of professional development. It means that professional development 
must attend to the specialized ways that teachers must understand mathematics, how that 
knowledge of mathematics interacts with teaching practices that support the learning of their 
students, and how the context of teaching interacts with all of these factors.  

Our professional development is designed to support this type of professional learning and 
draws on recent work supporting teachers’ learning of mathematics content and teaching 
practices. The work of “video clubs” as a means to increase capabilities at noticing student 
thinking (van Es & Sherin, 2008) in conjunction with research on lesson study as a means for 
teachers to learn from teaching and to develop and share practitioner knowledge (Perry & Lewis, 
2009) informed the design of our peripheral participation model. Our project builds on these 
efforts and seeks to learn about impact on teacher practice.  

We grounded our professional development in a particular decomposition (Grossman et al., 
2009) of the teaching practice of leading a mathematics discussion. We define discussion as “a 
period of relatively sustained dialogue among the teacher and multiple members of the class” in 
which students respond to and use one another’s ideas to develop collective understanding 
(TeachingWorks, 2015). Our decomposition is informed by research on orchestrating productive 
discussions (Smith & Stein, 2011), the concept of talk moves (Chapin, O’Connor, & Anderson, 
2013), and research on decomposing practices to support learning (Boerst, Sleep, Ball, and Bass, 
2011). The table below shows our decomposition of leading discussions with practices organized 
into three areas of work: (1) framing, (2) orchestrating, and (3) recording/representing content.  

Table 1: Areas of Work and Practices for Leading Mathematics Discussions 
Areas of Work 

Framing Orchestrating Recording/representing 
content 

Launching 
Concluding 

Eliciting student thinking 
Probing student thinking 
Orienting students towards the thinking of others 
Making contributions 

Keeping accurate public 
records 

Using representations to 
convey key ideas  

Methods 
The study seeks to determine the extent to which peripheral participation in elementary 

mathematics teaching and focused professional development impact teachers’ actual practice and 
factors that support their enactment of practice, including their ability to notice the specific work 
of teaching, and children’s mathematical strengths. The broader study focuses on elementary 
teachers (n = 24), all of whom engaged in peripheral participation in elementary mathematics 
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teaching for five consecutive days (~25 hours) and half of whom (n = 12) participated in 
additional professional development across the five days (10 hours) focused on leading a 
mathematics discussion. We collected and are analyzing a set of pre- and post-measures 
including measures of teachers’ language in talking about students and teaching, and videos of 
classroom mathematics discussions which are being analyzed using a tool focused on the work 
teachers do when leading mathematics discussions (Selling, Shaughnessy, Willis, Garcia, 
O’Neill, & Ball, 2015).  

In order to increase the comparability of teachers’ skill with discussion leading practice, our 
team designed a “common” discussion plan based on work developed in a prior study (Garcia, 
Selling, & Wilkes, 2015; Selling, Shaughnessy, Willis, Garcia, O’Neill, & Ball, 2015). This 
enabled us to control for task selection and discussion structure. The accompanying technique 
checklist tool, which captured techniques related to practices named in our decomposition, was 
expanded to include advanced techniques that could be expected from experienced teachers.  

For this initial study, we focus in particular on the impact of the full professional learning 
experience (~35 hours) on teachers’ skill with leading mathematics discussions. To focus in on 
this impact, we selected four case study teachers who represented a range of skill with leading 
mathematics discussions in the pre-intervention data set. We then examined pre- and post-
intervention video of their common discussion lessons. Videos were double coded by members 
of the research team using the technique checklist tool. Discrepancies in coding were resolved by 
a consensus discussion and reference to code books developed by the research team.  

Analysis 
Analysis of pre- and post- common discussion lesson videos utilized the technique checklist 

tool to examine particular techniques used before and after the intervention. Techniques were 
coded as present, not present, and not applicable. In some cases where we would expect to see a 
technique used frequently, for example “asks questions that deepen student reasoning,” 
additional codes of once, more than once, and frequently replaced the code of present. We then 
compared participants at the technique level to determine whether their use of the technique 
increased, stayed consistent, or decreased from pre- to post-intervention. Table 1 below shows 
the positive areas of change for each of our case study teachers in each area of work of leading a 
mathematics discussion. For example, T12 improved in all 3 techniques from pre-post in the area 
of launching a discussion.  

Table 2: Number of Techniques in Each Area of Work Showing Positive Change 
 Launching 

(3) 
Concluding 

(3) 
Eliciting 

(3) 
Probing 

(5) 
Orienting 

(4) 
Making 

Connections 
(3) 

Making 
Contributions 

(5) 

Recording/ 
Representing 
Content (4) 

T12  3 0 1 3 3 2 1 2 

T14  0 2 0 1 0 2 1 0 

T18  0 2 0 0 1 0 0 0 

T22  1 0 2 1 1 3 2 1 

 
The initial analysis shows that the three out of four teachers increased their use of techniques 

in four areas of work: probing, orienting, making connections, and making contributions. 
Additionally, half of the case study teachers increased their use of techniques in the remaining 
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four areas of work.  
In addition to the presence of techniques, the team also coded for problematic areas, 

including unequally distributed participation, ineffective probes, and incorrect/inaccurate 
mathematical contributions. All case study teachers had fewer issues in their post-intervention 
discussion than their pre-intervention discussion. Notably, T12 improved in 7 of 8 issue areas.  

Discussion 
Initial results of the study show promise for the potential of the current professional 

development design to impact teaching practice. Peripheral participation paired with a focused 
discussion leading professional development increased teachers’ use of techniques core to the 
work of leading productive mathematics discussions. Next steps for this work are twofold. First, 
we will examine impacts of the professional development on other indicators including teachers’ 
mathematical knowledge for teaching and their skill with noticing and naming student strengths. 
Second, we will examine and compare the impact of peripheral participation with full 
participation on teachers’ discussion leading practice and associated factors.  
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We investigate teacher noticing of students’ prior knowledge in the context of a professional 
development intervention that integrated lesson study, animation discussions, and video clubs 
with in-service geometry teachers. We analyzed video club discussions throughout the program 
in relation to teachers’ noticing of students’ prior knowledge and found that the discussions in 
the middle of the two-year intervention had the highest level of noticing, coinciding the lesson 
revision process. The findings suggest that the lesson revision process spurred connections 
between teachers’ observations of students’ prior knowledge and pedagogical decisions.  

Keywords:  Teacher Education-Inservice/Professional Development, Geometry and Geometrical 
and Spatial Thinking 

This study investigates the effects of professional development on teacher noticing of 
students’ prior knowledge in geometry instruction. We consider how teachers attend to and 
interpret student thinking while discussing classroom videos. The intervention integrated three 
strategies, namely, animation discussions (Chazan & Herbst, 2012), video clubs (Sherin & Han, 
2004), and lesson study (Fernandez, 2002), with the objective of supporting teachers’ attention to 
student thinking. We consider the ways in which teachers can support students’ development of 
mathematical understandings in secondary schools by noticing their prior knowledge.  

Theoretical Underpinnings 
Professional Development to Promote Teacher Noticing 

Lesson study engages teachers in a cyclical process of conducting instructional material 
research, planning a research lesson, teaching and observing the implementation of the lesson, 
and reflecting upon student thinking observed during the implementation of the lesson 
(Fernandez, 2002). Teachers may engage in the process of revising and re-teaching the lesson to 
optimize student learning opportunities (Lewis & Hurd, 2011). Traditional live observations may 
be difficult in the U.S., which prompted us to replace live observations with video clubs. During 
video clubs, teachers discuss videos from their own classrooms. Sherin and colleagues 
demonstrated that initially teachers tend to focus on various aspects of instruction, but sustained 
video club meetings enable teachers to increase their attention to student thinking (Sherin & Han, 
2004). Van Es’s (2011) analysis of how and what teachers notice in video clubs demonstrated 
that the sophistication of teachers’ analyses of students’ thinking increased over time.  
Students’ Prior Knowledge 

Our conceptualization of students’ prior knowledge goes beyond the mathematical prior 
knowledge and includes students’ multiple mathematical knowledge bases (Roth McDuffie, et 
al., 2014). This understanding of students’ prior knowledge acknowledges that students draw 
upon their prior experiences, including their cultural and community knowledge, when 
approaching a math problem. Especially in problem-based math instruction, when students learn 
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a target concept through solving a complex mathematical task, students’ prior knowledge, both 
in relation to the mathematical task and the context it is situated within are of great importance.  

Research Question 
What students’ prior knowledge do teachers notice and how do teachers consider students’ 

prior knowledge in video clubs throughout a professional development intervention? 

Methods 
Five high school geometry teachers from high-needs schools participated in 20 three-hour 

sessions. All participants taught the lesson while members of the research team videotaped. In 
subsequent sessions, the teachers participated in video clubs where they discussed students’ 
problem-solving strategies. The research team selected the video clips following criteria 
established by Sherin, Linsenmeier, and van Es (2009). In year two, the teachers revised and 
taught the lessons and engaged in video clubs. 

We selected four sessions, 3, 4, 12, and 19, as representative video clubs at the start, middle, 
and end of the intervention. With an entire video club discussion as our unit of analysis, we 
independently coded the discussions using a rubric that considers teacher noticing of students’ 
prior knowledge based upon van Es’ (2011) framework (Table 1). The framework investigates 
what prior knowledge teachers notice and how they notice students’ prior knowledge.  

Table 1:Framework for Teacher Noticing of Students’ Prior Knowledge 
 Level 1 Level 2 Level 3 Level 4 

What 
students’ 
prior 
knowledge 
do teachers 
notice? 

No mention 
of students' 
prior 
knowledge. 

Mention students' 
mathematical prior 
knowledge in terms 
of what they have 
learned in class 
previously. 

Mention students' prior 
knowledge in relation to the 
task, including mathematical, 
contextual, and/or practices. 

Attend to 
relationship 
between 
students' prior 
knowledge and 
pedagogical 
issues. 

How do 
teachers 
notice 
students’ 
prior 
knowledge? 

No mention 
of students' 
prior 
knowledge. 

Describe students' 
mathematical prior 
knowledge. 

Describe students' 
mathematical, contextual, and 
out-of-school prior knowledge. 

Make 
connections 
between 
students' prior 
knowledge and 
principles of 
teaching and 
learning.   

Primarily evaluative 
comments about 
students’ prior 
knowledge, with 
some interpretive 
comments. 

Analyze and interpret 
noteworthy student actions in 
relation to their prior 
knowledge. 

On the basis of 
interpretation, 
propose 
alternative 
pedagogical 
solutions to 
use students' 
prior 
knowledge.    

Refer to specific 
events and 
interactions as 
evidence. 

Refer to specific events and 
interactions as evidence and 
elaborate on them in relation to 
students’ prior knowledge and 
how it shapes their 
mathematical understanding. 

All attributes 
of  
Level 3 
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Findings 
The majority (67%) of the selected video club discussions were coded as Level 3 in regard to 

what students’ prior knowledge teachers noticed (Table 2). Throughout the professional 
development intervention, the teachers consistently discussed students’ prior knowledge in 
relation to their work on the task, and frequently considered sources of students’ prior knowledge 
beyond mathematical content taught in school. However, in most discussions the teachers did not 
connect students’ prior knowledge to pedagogical decisions. Thus, in terms of how teachers 
noticed students’ prior knowledge during the video club discussions; we coded most of these 
video club discussions at Level 2 (56%). While it is possible that the teachers offered some 
interpretation of students’ prior knowledge, the focus of the discussion was mostly on evaluation. 

Table 2:Teachers’ Noticing of Students’ Prior Knowledge in Video Club Discussions 
 Level 2 Level 3 Level 4 

What Prior Knowledge Teachers Notice 11% 67% 22% 
How Teachers Notice Students’ Prior Knowledge 56% 33% 11% 

 
Figure 1 illustrates the relationship between what and how teachers noticed students’ prior 

knowledge for each video club over time. The majority of the video club discussions (5 out of 9) 
were coded at the same level for both what and how teachers notice students’ prior knowledge. 
In the later discussions, the levels differed more frequently, but what students’ prior knowledge 
teachers noticed was always rated at the same level or higher than the level of how teachers 
noticed students’ prior knowledge. Additionally, teachers’ discussions reached the highest levels 
of noticing during the middle of the professional development. At this point in year two, the 
teachers were in the process of revising the lesson for the second year.  
 

 
Figure 1.  Levels of Noticing Students’ Prior Knowledge Per Video Club 

Discussion 
The findings of our coding for what and how teachers notice students’ prior knowledge show 

the video club discussions achieved the highest levels in the middle of the intervention. This 
finding suggests that teachers’ motivation to revise the lesson and to re-teach it, as part of their 
engagement in lesson study, provoked them to examine pedagogical issues in combination with 
students’ prior knowledge. Specifically, the highest levels of the theoretical framework require 
teachers to go beyond describing, evaluating, and interpreting students’ prior knowledge by 
making connections with their instruction. It seems that the impending need to make changes to 
the lesson using their observations of students’ work in the video club provoked discussion of 
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pedagogical issues. This finding suggests that lesson study can be a motivation for increasing 
teacher noticing and supports the idea that video clubs can be valuable for lesson reflection.  

Although prior research findings suggest that teacher noticing increases over time (van Es & 
Sherin, 2008), our findings suggest that teacher noticing is not an activity that necessarily 
increases in sophistication over time. Instead, teacher noticing is purposeful, and highly 
motivated by activities that promote connections between observations of student learning and 
teaching. In our case, the need for revising the lesson with the goal of optimizing student 
learning opportunities provided the conditions for teachers’ highest levels of noticing. One 
implication for teacher education is that activities promoting connections between noticing 
student thinking and using student thinking in instruction can further teacher noticing.  

Conclusion 
Combining lesson study and video clubs can provoke teachers to achieve a higher level of 

noticing because they are motivated to study tasks for optimizing student learning opportunities. 
In particular, the process of revising the lesson prompts teachers to make connections between 
observations of student thinking and instructional improvement. Our findings support the 
importance of implementing the full lesson study cycle. Considering difficulties allocating 
resources for lesson study, it is important that the lesson revision step continues to be enacted to 
maximize teachers’ learning opportunities.  
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USING COACHING CYCLES TO TRANFER AND SUSTAIN EFFECTIVE 
INSTRUCTIONAL PRACTICES 
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We illustrate a coaching cycle approach situated within a larger professional development 
design that focused on infusing high quality mathematics tasks and differentiation within 
inclusive elementary mathematics classrooms. Our design supported teams of general education 
and special education teachers with integrating tasks and differentiation strategies into co-
taught mathematics lessons through reflective coaching sessions. This project yielded positive 
results in instructional practice and co-teaching collaborations. 

Keywords: teacher education-inservice/professional development, instructional activities and 
practices, elementary school education, equity and diversity 

Introduction 
Professional development is necessary for teacher growth. In order to be effective, 

professional development must directly tie to the teachers’ practice, focus on specific content, 
align with school improvement initiatives, strengthen teacher collaboration, and provide 
consistent follow-up (Wei, Darling-Hammond, Andree, Richardson, & Orphanos, 2009). Often, 
observations and coaching cycles are strategies used to provide the consistent follow-up and 
support the transfer of practices learned from professional development to teachers’ classrooms. 
Specific to mathematics teaching and learning, coaching has been linked to increased student 
achievement, improved teaching practices, changes in teachers’ beliefs, and sustained 
professional development concepts (e.g., Baldinger, 2014; Campbell & Malkus, 2011). 

Overview of Professional Development Project 
The overarching goals of the professional development project included increasing teachers’ 

content and pedagogical content knowledge, creating communities of learners, particularly 
between general education and special education teachers, focusing on reducing the achievement 
discrepancy noted between students with and without disabilities, and shifting instructional 
practices in inclusive mathematics classrooms. Specifically, three areas were targeted to create 
the conceptual framework for the overall project: (a) increasing the use of high-quality 
mathematics tasks (Stein, Smith, Henningsen, & Silver, 2001), (b) incorporating meaningful 
differentiation strategies to meet the needs of all learners (e.g., Tomlinson et al., 2003), and (c) 
integrating effective co-teaching models and practices (Friend & Cook, 2010). To meet the goals 
of the professional development project and provide support to the teams of general education 
and special education teachers, we designed a longitudinal professional development plan that 
used multiple formats of professional development delivery (Guskey, 2000). Our design included 
both synchronous (face-to-face) and asynchronous (independent) opportunities for learning, with 
on-site coaching sessions to help sustain and transfer the learning from the whole-group sessions 
to teachers’ actual classrooms. 
Setting and Participants 

The setting was one county district in a southern state located near a large research 
university. The school district identified a need for professional development in relation to co-
teaching in mathematics to increase co-teaching and differentiation. Participants were from eight 
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elementary schools and included 22 general education teachers and 13 special education teachers 
or paraprofessionals (n= 35 teachers). Co-teaching teams consisted of at least one general 
education teacher and one special education teacher or paraprofessional with varying numbers of 
teams per school (ranging from 1-6) for a total of 21 unique co-teaching teams. 

Coaching Cycles 
Theoretical Framework for Coaching  

The theoretical framework for the coaching cycle centers on the cognitive apprenticeship 
model for learning (Collins, Brown, & Newman, 1987). Cognitive apprenticeship is similar to 
the traditional or trade apprenticeship ideals of an expert and a novice socially interacting in 
order to guide the learning of a task in a specific domain (Collins et al., 1987; Dennen, 2004). 
Unlike traditional apprenticeship models, “cognitive apprenticeship refers to the fact that the 
focus of the learning-through-guided-experience is on cognitive and metacognitive, rather than 
on physical, skills, and processes” (Collins et al., 1987, p. 5). The expert-novice relationship 
translates into a teacher-learner relationship (Atkinson, 1997), where learning occurs through a 
sequenced use of three teaching methods:  modeling, coaching, and fading (Collins et al., 1987).  
Coaching Cycle Development and Design 

To ensure transfer and support the implementation of the lessons learned from our 
synchronous professional development sessions (e.g., Guskey, 2000), a coaching cycle was 
included in our larger professional development model to provide individualized support for each 
team of general and special education teachers (or paraprofessionals) in their inclusive 
mathematics classrooms. The participating teams of co-teachers were divided among the three 
lead facilitators (two elementary mathematics educators and one special education educator). 
Teams of co-teachers were asked to plan and deliver co- taught, high quality mathematics 
lessons that included differentiation when needed to meet the needs of all learners.  

Similar to the design of coaching sessions used by Baldinger (2014), where there was a pre-
session, observation, and post-session, we designed our coaching sessions to use a similar 
cyclical approach. Prior to implementing the coaching cycle, the facilitators developed a protocol 
to use during all coaching sessions to increase consistency in the expectations and coaching 
conversation among facilitators. The protocol established: (a) coaching sessions are to follow 
each synchronous professional development session, (b) the facilitator is to receive the co- 
teaching mathematics lesson plan at least 24 hours prior to the scheduled observation, (c) each 
lesson will be scored using the same instruments (discussed in more detail below), (d) a 30- 
minute coaching session/conversation will follow each lesson observation with discussions about 
the planning and delivery of the lesson (focused on co-teaching practices, differentiation 
strategies, and the quality of the mathematics task), and (e) the coach will record anecdotal notes 
about the lesson and coaching session. 	
Coaching Cycle Implementation 

The Co-Teaching Checklist (Murawski & Lochner 2011), the Mathematics Classroom 
Observation Protocol for Practices (MCOP2; Gleason, Livers, & Zelkowski, 2017), and a 
debriefing form (adapted from Villa, Thousand, & Nevin, 2013) focused on the three 
fundamental domains of our professional development model (i.e., high quality mathematics, 
differentiation, and co-teaching implementation) and were used for the data collection during the 
lesson observations and as a guide for the coaching conversations.  

The Co-Teaching Checklist (Murawski & Lochner 2011) allowed us to measure specific co-
teaching aspects, such as both teachers assist student with and without disabilities, the 
environment showcases a collaborative atmosphere, and the conversations and questions used 
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support inclusive practices. The MCOP2 (Gleason et al., 2017) allowed us to measure the extent 
instruction aligns with the Standards for Mathematical Practices and the shared responsibility 
and authority between teachers and students across 16 indicators. The debriefing form (adapted 
from Villa et al., 2013) allowed us to use the data collected from the Co-Teaching Checklist and 
the MCOP2 coaching conversation and discussions surrounding co-teaching, differentiation, and 
the mathematics. The teachers first identified things that went well in the lesson, things they 
would do differently, and their co-teaching approach. Following the teachers’ sharing, the 
facilitator then identified things that went well, as well as wonderings and suggestions. The 
coaching sessions ended with identifying next-steps and take-aways to focus on in future lessons. 

Project Outcomes 
A mixed methods design was used to determine the impact of coaching and professional 

development on teaching practices. Tentative, pre-post results from the MCOP2 (Gleason et al., 
2017) indicate a significant change in teacher facilitation and student engagement. Specifically, 
teachers increased their facilitation of high quality mathematics practices and meaningful 
learning experiences with students, and had more students engaged in opportunities to develop 
positive mathematics practices. These results indicated teachers were moving away from a 
teacher directed approach to a student-centered approach. Tentative results from the Co-
Teaching Checklist (Murawski & Lochner, 2011) indicated more teachers were engaged in co-
teaching and exhibiting effective co-teaching behaviors during the observations.  

Our qualitative data across the course of the project also revealed positive benefits of the 
coaching cycles. Data from a sub-sample of culminating teacher reflections (n=9) showed 
positive results and benefits regarding the coaching sessions. Coding the responses revealed 
various themes, much of which centered on teacher growth and changes in teaching practices.  
Additionally, many teachers appreciated the coaching sessions allowed for immediate feedback 
and reflection time (see Table 1 for all themes and frequency of occurrences). 

Table 1: Themes from Teacher Reflections about Coaching Sessions 
Themes Frequency 

Growth as a teacher 7 
Immediate feedback 4 
Change of teaching practice 3 
Most beneficial component of professional development 2 
Reflection time 2 
Energized 2 
Accountable for co-teaching 1 
Increase school communication 1 
Ideas/strategies for extending lesson 1 

Summary 
Coaching sessions tied to intentional professional development yielded positive and visible 

results. Classroom observations shifted to a more student-centered practice, and an increase in 
co-teaching collaborations and behaviors. Teachers found the coaching cycles to be the most 
beneficial aspect of the professional development. Both our quantitative and qualitative results 
support the benefit of a coaching component to support and sustain professional development as 
echoed in prior research (e.g., Baldinger, 2014; Campbell & Malkus, 2011).  
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To address the chasm between learning about effective teaching practices and being able to 
implement those practices competently, teacher preparation programs have begun to adopt 
rehearsals as a pedagogy. Teaching rehearsals are opportunities to develop an understanding of 
instructional practices in an authentic, but scaffolded environment. These have been shown to 
help novice teachers gain competency in complex teaching practices. In this study, we explore 
this pedagogy with in-service secondary teachers. Results indicate that in these rehearsals the 
teacher educators were less directive in their suggestions and the participating teachers were 
more assertive in making suggestions as compared to rehearsals with pre-service teachers. 

Keywords: Rehearsals, Pedagogies of enactment, Professional development 

Introduction 
The divide between theory and practice in teacher preparation has long been recognized 

(Shulman, 1998). To compound this issue, what teachers see and experience in schools often 
differs considerably from the current conception of good instruction (Shulman, 1998). This 
chasm creates a tension between reform methods and current practices. As a result, when 
teachers are faced with the realities of teaching, they tend to adopt teaching practices they have 
experienced as students or through classroom observations (Korthagen et al., 2001).  
Exploring solutions to this historic divide, Grossman and colleagues (2009) examined the 
pedagogy of professional education across a variety of professions. From their comparative study 
emerged the notion of an approximation of practice, a method of scaffolding preparation in 
which pre-professionals engage in smaller, more manageable components of practice. This 
structure embeds training in the actual work of the profession as well as makes the details of 
professional actions and reasoning more visible.  

Building on Grossman’s work, several researchers have developed practice-based models of 
professional preparation in which the instructional focus shifted from primarily developing 
students’ knowledge bases to gaining competencies in enacting particular instructional practices. 
These models centered around a particular approximation of practice, referred to as rehearsal, in 
which pre-service teachers (PSTs) engage in authentic, yet controlled instructional activities 
(IAs). During a rehearsal peers play the role of students, which provides a context where the 
teacher educators can introduce particular problems of practice and interrupt the flow of the 
lesson to offer in-the-moment suggestions about the details of instructional moves and decisions. 
Furthermore, this context allows rehearsals take place within a community organized around a 
common vision of instruction and shared values. 

Rehearsals were conceived as a support for pre-service teacher preparation programs and 
consequently have been used predominantly in this context. However, the issue of how to 
implement effective teaching practices in real classrooms continues to challenge even 
experienced teachers. As such, we felt in-service teachers might also benefit from engaging in 
rehearsals. In this study, we explore the nature of rehearsals with in-service teachers. 
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Literature Review 
The overwhelming majority of research on rehearsals has been embedded in the context of 

pre-service elementary programs (see Pfaff, 2017 for an exception). Early studies provided 
thorough characterizations of rehearsals as well as a theoretical rationale behind their use (e.g. 
Kazemi, Franke, & Lampert, 2009; Lampert & Grazini, 2009). Later, McDonald, Kazemi, and 
Kavanagh (2013) built on this structure, outlining an instructional cycle organized around 
pedagogies of enactment, in which rehearsals are preceded with various practice-based activities 
in preparation and then followed with the live enactment in front of students. As a more 
consistent conceptualization of rehearsals has emerged in the field, recent studies have provided 
detailed descriptions of how PSTs grappled with the nuances of a particular teaching practice 
(e.g. Ballinger, Selling, & Virmani, 2016; Elliot, Aaron, & Maluangnont, 2015; Pfaff, 2017) 

Another area of analysis has been with the rehearsals themselves and in particular the teacher 
educator’s (TE’s) leadership and organization. Reviewing a collection of over 90 rehearsals, 
Lampert et al. (2013) analyzed the various exchanges when a TE interrupted the flow of the 
lesson to document the substance of the interaction (i.e. what was being talked about) and the 
structure of the interaction (i.e. how it was being talked about). Similarly, Kazemi, Ghousseini, 
Cunard, and Turrou (2016) reflected on five years of working with PSTs to give insights into 
how teacher educators can structure rehearsals to make them productive for PSTs. 

We build on this last category of work that gives insight into how TEs can structure the 
rehearsal experience to make it productive for its participants by extending this work with in-
service teachers. In particular, we investigated the nature of the interruptions in the teaching 
during the rehearsal. Following Lampert et al. (2013), we investigated both the substance and 
structure of TE interruptions. We did so with the assumption that coding the substance and 
structure of these interruptions would reveal differences between rehearsals with PSTs and in-
service teachers, bringing into greater relief the choices TEs make when leading rehearsals. 

Methods 
The authors of this paper offered a 20-hour professional development (PD) session for 

experienced middle school teachers that lasted one week. The PD focused on how to teach 
figural pattern tasks to help students develop an understanding of variables as measuring 
quantities. The PD made use of rehearsals and an IA targeting this content area. The overall 
lesson was decomposed into four similar iterations of the same instructional structure. Each 
iteration served as the basis of a new rehearsal and differed by the representation and 
consequently the level of abstraction that students were asked to use to engage in the figural 
pattern generalization. Over the last two days of the PD (4 hours each day) the teachers 
participated in six rehearsals. We had fourteen middle school teachers volunteer and participate 
in the PD. Each of the fourteen was involved in planning at least one of the rehearsals, but only 
six teachers had the opportunity to serve as the acting teacher (AT) in a rehearsal.  

We began our analysis identifying each interruption during the 6 rehearsals. We counted an 
interruption as beginning when the flow of the lesson stopped. This happened when a TE, 
participating teacher, or the AT interjected a comment about the lesson. Generally, we counted 
interruptions lasting until the instruction resumed. However, there were times when several 
independent topics were discussed without the AT resuming teaching. We counted these discrete 
discussions as separate interruptions when the substance of the interaction changed notably. 

We then coded who initiated each interruption as well as the structure and the substance of 
the interruption. To develop our coding scheme for structure and substance codes, we starting 
with the codes used by Lampert et al. (2013), but then added new codes where the Lampert et al. 
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(2013) codes did not accurately capture the nature of the interaction. We developed new codes 
by first identifying interruptions where a new code was necessary. We then made descriptive 
notes about what was discussed during these exchanges as well as the nature of these 
interactions. Finally, we used grounded theory (Strauss & Corbin, 1998) to create categories that 
captured the characteristics of these interruptions. This work resulted in the addition of eight new 
structure codes and one new substance codes. Space restrictions do not allow us to describe each 
of the codes in our coding scheme, but we describe codes on an as-needed basis. Finally, the 
percentages of each code were determined relative to the total number of interruptions and then 
compared to the percentages reported by Lampert et al. (2013).   

Results 
Below are the percentages of the structure and substance codes that appeared in our study as 

well as the corresponding codes and values from Lampert et al. (2013) (see Table 1). In all, we 
had 71 interruptions over the 6 different rehearsals. Several of the interruptions aligned with 
more than one substance or structure code. In all there were 83 different structure (initiated) 
codes, 93 different structure (taken up) codes, and 101 different substance codes. 23 of these 
interruptions (32.4%) were initiated by participating teachers. 

Table 1: Coding of interruptions 
Structure Us 

(Initiated) 
Us 

(Taken Up) 
Lampert 

et al. Substance Us Lampert 
et al. 

Alternate Move 21.13 12.68  Student Thinking 33.80 13.95 

Discussion 19.72 28.17 17.29 Elicit and Respond 32.39 35.74 
Scaffold Enactment 15.49 15.49 21.09 Representation 23.94 23.64 

Share Thinking 16.90 12.68  Select and Sequence 21.13 0 
Interpreting the 
Situation 8.45 12.68  Content Goals 11.27 14.03 

Directive 8.45 12.68 60.85 Managing Time 9.86 4.34 
Rationale 7.04 12.68  Mathematics 4.23 11.94 
Contextualizing  
Student Thinking 7.04 5.63  Orienting Students 1.41 7.05 

Managing Rehearsal 5.63 5.63  Body/Voice 1.41 2.95 

Highlighting 4.23 2.82  Process Goals  1.41 6.67 

Negotiating Next Move 1.41 8.45  Student Engagement 0 21.55 
Evaluative Feedback 1.41 1.41 28.14 Attending to IA 1.41 17.29 

Discussion 
Overall, our rehearsals with in-service teachers were characterized by a more active 

involvement by the teachers. Teachers were willing to interrupt the flow of the lesson to initiate 
discussions about teaching. Most often this was done to give more context to teaching decisions, 
reflect on various aspects of teaching, or to offer advice.  

In comparing the relative frequency of our structure codes with those reported by Lampert et 
al. (2013) the differences are striking. The majority of Lampert et al.’s (2013) interruption were 
directive (when a TE tells the teacher what to do), 60.85%, while only 8.45% of our interruptions 
were initiated as directive. Similarly, there was much less evaluative feedback (when a TE makes 
a judgement about a move) in our rehearsals. While Lampert et al. reported that 28.14% of 
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exchanges were TEs giving evaluative feedback, only 1.41% of our exchanges were. Reflecting 
on these results, it appears that when working with teachers who possess significant experience, 
we wanted to create a less directive and evaluative environment to draw from their expertise and 
position them as more equal partners. While we as teacher educators brought particular expertise 
to the rehearsal, we acknowledged that the teachers themselves had much understanding to share. 
Consequently, we structured the rehearsals in a way that provided teachers opportunities to learn 
from our expertise, but also to share their understanding as a way to reorganize their previously 
developed skills towards a new orientation of instruction.  

There were also several notable differences in the substance of the interruptions. Two of 
these include our talk about student thinking and selecting and sequencing student ideas. The 
most frequently discussed topic in our rehearsals was student thinking (where participants 
discuss the details of students' ways of reasoning), with 33.80% of exchanges addressing this 
topic compared to only 13.95% of exchanges in Lampert et al.'s study. Another difference was 
the frequency of exchanges in which we talked about how to select and sequence student ideas. 
This code was in our top four, with about 21.13% of exchanges referencing this idea. This is 
significant because Lampert et al. (2013) did not feel the need to use this code to categorize their 
exchanges. These differences in substance may be in part attributable to the nature of our IA. In 
contrast to IAs reported in the literature, which tend to be shorter activities, our IA covered a 
multi-day unit. Such structure afforded teachers more opportunities to monitor student work and 
think about how to to leverage student thinking to reach conceptual goals (Smith & Stein, 2011). 

Conclusion 
This study provides an image of what rehearsals can look like with in-service teachers. As 

such, it helps to highlight decisions TEs need to make when leading a rehearsal. In particular, 
TEs will need to decide if the teachers they are working with need more directive feedback on 
and practice in implementing complex teaching practices or would benefit from reflective 
discussions about what to do next and why. TEs who wish to create a more reflective than 
directive environment could consider using some of the types of interruptions discussed here 
(e.g. suggesting alternative moves, interpreting the situation, or asking teachers to share their 
thinking). These decisions will likely depend on the experience level of the teachers with whom 
the TE is working and the goals the TE has in mind for the teachers. 
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When teachers anticipate student responses, they are likely to be prepared to respond to student 
thinking in the moment and facilitate rich mathematical discussions. In this study, three 
participants in lesson study, secondary geometry teachers, anticipated student responses and 
planned instructor responses for selected tasks. The researcher, then, observed the teachers 
enact the tasks and investigated how the anticipation of student responses influenced task 
enactment. The findings suggest that although participation in lesson study provides 
opportunities to anticipate student responses, this feature may not be sufficient in supporting 
teachers with enacting tasks in ways that facilitate open-ended discourse and maintain high 
levels of cognitive demand.  

Keywords: lesson study, geometry, secondary 

Some research suggests that when teachers attend to student thinking, they increase their 
content and pedagogical knowledge and implement student-centered instruction (Fennema, 
Carpenter, Franke, Levi, Jacobs & Empson, 1996). For instance, when teachers anticipate student 
responses, they can prepare to improvise instruction and facilitate higher levels of mathematical 
discourse and problem solving (Stein, Engle, Smith & Hughes, 2008). Participation in the lesson 
study process provides teachers with natural opportunities to focus on student thinking (Murata, 
Bofferding, Pothen, Taylor, & Wischnia, 2012). This study explored, in what ways do teachers 
anticipate student responses before teaching a lesson and respond to student thinking during a 
lesson?  

Theoretical Framework 
Lesson study has been found to improve teaching by increasing collaboration, improving 

content and pedagogical knowledge, and gaining insight to student thinking (Murata et al., 2012; 
Lewis, Perry & Hurd, 2009). The process of lesson study includes a small group of teachers 
using curriculum materials to plan a lesson, teach and observe the lesson, and reconvene to 
debrief and revise the lesson, and lesson study is often supported by knowledgeable others or 
experts in the field (e.g., school administrators or university professors).  

During the planning phase of lesson study, teachers study curriculum to plan or revise a 
research lesson (Lewis et al., 2009). During this time, teachers focus on student thinking by 
anticipating possible student responses and instructor responses for tasks in the lesson. This is an 
important aspect in lesson study because the process of anticipating student responses during 
lesson study has supported teachers’ in using generated student responses to encourage 
mathematical discussion and reasoning (Suh & Seshaiyer, 2014), and allowed teachers to think 
in advance about how to organize the sharing of student responses (Inoue, 2011).  

Next, during the enactment phase of lesson study, a member of the lesson study team teaches 
the research lesson, and the rest of the team observes the lesson. During the lesson enactment, 
observers pay close attention to student thinking and collect data (e.g., student responses). The 
person teaching the lesson uses the anticipated student responses to influence how they will 
respond to student thinking during the lesson and strategically choose how to share student 
responses during a whole-class discussion (Lewis et al., 2009, Murata et al., 2012).  
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Methods 
This study was carried out during the second year of a larger study Proof in Secondary 

Classrooms (PISC) (NSF; Award #1453493, PI: PI Michelle Cirillo) which focuses on 
developing an intervention for the introduction of proof in secondary classrooms. Three 
secondary teachers, Logan, Bruce, and Raven had experience teaching geometry for seven, six, 
and one year respectively. Logan and Bruce taught at the same private high school. Raven taught 
at a different private high school. For this sub-study, the teachers participated in lesson study as 
professional development for piloting 16 research-based lessons, focused on proof in geometry. 
Within the cycle of lesson study, teachers anticipated student and instructor responses for 
selected tasks in three different lessons. Then teachers enacted the lessons, and the researchers 
observed enactment.  

Data Sources 
Two representative tasks per lesson were selected as units of analysis (n = 17; 6 tasks for 3 

teachers, excluding one skipped by Logan). The selected tasks addressed critical concepts that 
students must know to successfully engage with Euclidean geometry proof (i.e., investigating 
geometric concepts, drawing conclusions, and deductive structure). The teachers’ anticipated 
student responses and planned instructor responses were audio-recorded and transcribed. The 
lesson enactments were video-recorded, and the selected task enactments were transcribed. The 
transcripts of the teachers’ anticipated student responses and the task enactment transcripts were 
analyzed using open coding to look for patterns and themes.  

               Findings 
Avoiding Misconceptions Before the Lesson  

When the teachers engaged with the tasks and anticipated student responses, they often put 
forth how students would respond correctly. When teachers were asked how they would respond 
to correct answers, they said they would facilitate a discussion about correct responses. 
However, when asked about possible students’ misconceptions, the teachers often indicated they 
would redirect students to a correct response. This report will focus on two tasks which 
exemplified the enactments of the tasks. For the first example (see Figure 1), students were 
asked to fold patty paper to explore angles formed by intersecting lines. Each teacher indicated 
that students would most likely form perpendicular lines and indicated they would facilitate a 
discussion about other possible responses as well as encourage students to explore other 
configurations to discover that vertical angles were congruent and adjacent angles were 
supplementary. In the second example (see Figure 2), the teachers indicated, they would expect 
the students to name vertical angle pairs or notice vertical angles congruency, and they would 
lead a discussion about those responses. 

Student Task 
• Fold the patty paper so that two intersecting lines are formed by the creases.
• Measure each of the angles with your protractor.
• Write a conjecture about what you notice.

Figure 1. Lesson 2, Task 1 

Avoiding Misconceptions During the Lesson 
When Logan and Bruce enacted the lessons, they increased the possibility that students 

would achieve anticipated correct responses by modifying tasks or asking closed or fill-in-the 
blank questions. For example, for Lesson 2, Task 1, Bruce first indicated he would want the 
students to avoid forming perpendicular lines. However, when Logan suggested leading an open-
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ended discussion about perpendicular lines as a special case, Bruce agreed with him. Yet when it 
came time to enact the task, Logan skipped the task due to time constraints, and Bruce modified 
the task by saying “Fold the paper, so you can make two intersecting lines. Try not to make them 
perpendicular.” Bruce’s modification of Lesson 2, Task 1 limited the intended opportunities for 
students to explore the concept of vertical angles formed by intersecting lines and lowered the 
cognitive demand of the task which influenced limited classroom discussion and opportunities 
for Bruce to respond to student thinking in the moment.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Lesson 7, Task 2 

The following transcript from Logan’s enactment of Lesson 7, Task 2 is representative of the 
closed and fill-in-the-blank questions that were observed.   

Logan: So, guys, what could we conclude from this? John, what do you think? 
John: Angle CWR and angle EWZ are corresponding angles 
Logan: Are they called corresponding angles? 
John: Uh, congruent.  
Logan: They're congruent angles, right? … angle CWR is congruent to angle EWZ. 

There were multiple possible responses for this task. However, instead of facilitating an open 
discussion, after one student responded correctly, Logan quickly moved to the next task. 
Considering Multiple Student Responses During the Lesson  

In contrast to Logan and Bruce, Raven was more likely to respond to student thinking as it 
occurred by considering multiple student responses and facilitating student discussion. In 
Raven’s enactment of Lesson 2, Task 1 she did not modify the task. As she predicted, most of the 
students folded the paper and formed perpendicular lines, so she facilitated an open-ended 
discussion about other possible ways to fold the lines as she had anticipated in her instructor 
responses. See the following transcript below for a sample of Raven’s enactment of the task.  

Raven: Just from observing them, what do you guys notice?  
Students: Four right angles from several students. [Quietly] 
Raven: Four right angles.  
Christine: And they each have vertical angles.  
Raven: There's vertical angles there. Ok…How many of you folded it, so you got for right 
angles, or it looks like four right angles. [About six visible students raise their hands] …Ok. 

Well, I want to talk about what Christine said for a second. Christine said there's two 
 pairs of vertical angles formed… Do you think that happens every time you have 
 intersecting lines? … 

Mark: They don't have to be all congruent.  
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Jessica: Yeah, they don't have to all four be congruent.  
Raven: Measure a pair of vertical angles on your paper and tell me if they're congruent… 

Discussion 
Previous literature (e.g., Fennema et al., 1996; Stein et al., 2008; Smith, 1996), has suggested 

that anticipating student responses might contribute to teachers’ providing more student-centered 
instruction by facilitating mathematical discussions because they are prepared to respond to 
student thinking in the moment. However, previous studies (e.g., Smith, 1996; Wood, Cobb, & 
Yackel, 1991) have indicated that reform teaching has been difficult to implement because 
teachers are uncomfortable with releasing control, and mathematics teachers believe they must 
teach by telling because they believe the teacher’s demonstrations are essential for student 
learning (Smith, 1996). While the teachers in this study indicated they would facilitate open-
ended discourse, they often retreated to traditional instruction. It is also possible that anticipating 
student responses is not sufficient for changing teachers’ instructional practices. Other features 
and conditions for teaching might influence teachers’ decisions such as time for implementing a 
lesson, the cognitive demand required of the task, and teachers content and pedagogical 
knowledge. The design of this study created opportunities to look closely at cases of task 
enactment and how anticipating student responses during lesson study might influence teachers’ 
attention to student thinking. Anticipating student responses is a key feature of lesson study, but 
future research might provide insight as to which features best support teachers.   
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In this study, a researcher collaborated with a middle school mathematics teacher through co-
planning, teaching and reflecting upon mathematical modeling lessons to support emergent 
bilinguals to make sense of mathematics. We investigate how this collaboration impacts the 
process of co-teaching and co-planning in terms of the interactions between the researcher and 
the teacher. Our analysis reveals how each role changed and maintained during the 
collaboration and what factors were discussed to develop and implement modeling-based 
lessons for emergent bilinguals.  

Keywords: Emergent bilinguals, mathematical modeling, modeling based lesson, co-teaching 

Purpose of the Study 
The purpose of this research was to develop and implement mathematical modeling 

curriculum that effectively connects to Emergent Bilinguals (EBs; a.k.a. English language 
learners) through a teacher-researcher collaboration. The project originated from the 
misconception, yet another myth, that it is not appropriate to provide rigorous mathematics or 
word problems to EBs due to their English proficiency (Reeves, 2006). If EBs receive only easy 
tasks by this misconception, they would not have an opportunity to engage in problem-solving 
that cultivate a deeper understanding in high-level mathematics. Moreover, researchers (e.g., 
Chval & Chavez, 2011) have recommended making connections between mathematics and EBs’ 
life experience to make sense of mathematics problems. In order to respond to these demands 
and recommendations, we designed this project between a teacher and a researcher in the co-
development and co-teaching of mathematics lessons based on modeling problems that 
incorporate EBs’ real-world contexts. The research question is: “How do teacher and researcher 
make decisions for developing and implementing a mathematics curriculum in a way of 
supporting EBs to make sense of mathematical modeling?”    

Perspectives 
Mathematical Modeling  

Principles to Actions (National Council of Teachers of Mathematics, 2014) states an 
excellent mathematics program requires all students to have access to a high-quality mathematics 
curriculum and high expectations. Thus, we chose to use mathematical modeling tasks because 
they require students to do cognitively demanding activities and involve a real-world context that 
is related to students’ cultural and life experiences. Mathematical modeling is also included in 
the standards of mathematical practice of the Common Core State Standards for Mathematics 
(NGA Center & CCSSO, 2010). Anhalt (2014) argued a well-designed mathematical modeling 
problem can engage EBs due to the real-world connection and the insufficiency of given 
information is necessary because a real-life problem does not provide all necessary information 
unlike a textbook word problem. This perception is echoed in how Dan Meyer created 3-act tasks 
that introduce a real-life story contacting conflict that does not include all necessary information 
and requires students to identify and search for the missing parameters. Meyer (2011) explained 
each step of the 3-act task: Act 1 is to identify the central conflict of a real-world story; Act 2 is 
to look for resources and develop new tools; and Act 3 is to resolve the conflict and set up an 
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extension. We claim that it is necessary to add one more step when working with EBs because 
they may need further information to make sense of the story in Act 1. Therefore, the four 
actions are: (1) Make sense of the real-life story, (2) Identify the problem in the story, (3) Build a 
strategy and gather information, and (4) Resolve the problem and look for extension.  
Design-based Research 

The collaboration of a teacher and a researcher plays a crucial role in this project because 
their expertise complement each another’s needs and build off the other’s strengths. Hence, we 
employ multi-tier design-based research (DBR; Brown, 1992; Cobb, Confrey, Lehrer, & 
Schauble, 2003) in order to build an effective relationship among a researcher, a teacher, and 
also students. In this multi-tiered teaching experiment, a teacher acts as a researcher and teacher, 
and a researcher acts as a teacher, a learner and as an investigator, as they co-develop, co-teach, 
and analyze the lessons together (Jung & Brady, 2016).  

Methods 
Context and Participants 

This project was conducted in one mathematics classroom in an urban middle school with 
76.4% students of free and reduced lunch and 28.4% EBs, including many refugee students. 
There are more than 100 languages spoken in this district. There were 11 EBs in grades 7 and 8, 
consisting of 6 female and 5 male students in the EB-specialized mathematics class. The teacher 
had both mathematics (grades 5-12) and ELL (K-12) endorsement. She had 3 years of teaching 
experience when this project began and English monolingual. All EBs stayed in the U.S. within 
two years and their mathematics and English proficiency levels varied, but all scored 0 (lowest 
level) on the initial English language proficiency assessment conducted by the school district. 
Among 11 students, there were 3 Spanish speakers, 3 Swahili speakers, 2 Arabic speakers, 2 
Burmese speakers, and 1 Karenni speaker.  
Data Collection and Analysis 

Applying the DBR collaborative research design, the researcher and the teacher met regularly 
for approximately one semester to co-develop modeling lessons and co-teach the lessons. All 
meetings were audiotaped, and the classroom teachings were videotaped. In every teaching 
session, the students were asked to write their work and reflect on their learning experience in a 
written form. The cycle for one lesson took two weeks: lesson planning in 1st week and teaching 
in 2nd week. After the 12 weeks, we interviewed five students about their experience and learning 
as well as an exit survey for the teacher. The data was analyzed qualitatively. Audio recordings 
and video recordings were transcribed when needed. The research team read all data multiple 
times and conduct open-coding (Strauss & Corbin, 1990) focusing on the research question. 
First, each coder identified the decision-making points in co-planning sessions and debriefings 
and examined who initiated each decision-making process because we believe the one who 
initiated a conversation with a new topic has a leading role. Based on the results of coding, 
codebook (Saldaña, 2013) was drafted, constructed by several generalizing and merging codes 
through several discussions. Then, a map of codes connecting them through phases such as 
planning, implementation, and debriefing was made to see how each decision-making impacts 
the following procedures of teaching. In addition, we investigated how the decision-making 
topics are repeated and addressed differently as time evolves. The multiple sources of data were 
triangulated.  

Results  
From the map with the topic of decision-making points during planning and debriefing 
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sessions as well as teaching sessions, we identified the topics that appeared often and repeated in 
many sessions although the mathematical concepts and the tasks implemented were different. 
The topics we found in all lessons were how to group students and how to have students share 
their solutions. The topics we found in four or five weeks were task/context selection, making 
guiding questions for each Act, including the names students are familiar with in the story 
problem, assessing students’ vocabulary understanding, using objects/manipulatives, timing for 
each Act, and integrating students’ life experiences in the problems.  

We found that most topics addressed in planning phases appeared in the following teaching 
phases but there was some variation. For example, assessing students’ understanding of the 
words embedded in the modeling problems were often discussed and planned how to help 
students learn those words. These plans were usually executed during teaching phases. In 
contrast, the plans about writing did not go as planned, especially during the beginning lessons. 
In the first lesson, the EBs took a long time to write their reflection so we had to postpone the 
closing of the lesson with completing the writing. Based on reflecting on this factor during 
debrief, the student’s reflection journal form was modified several times to make it more open-
ended and provide more guidance. Grouping students was another topic that was discussed in all 
lessons. Same language speaker groups were used in the first lesson and mixed-level groups 
were used in the second lesson based on observation of student-student interactions during the 
first lesson result. After these two weeks, students chose their groups until the last lesson because 
this group choice seemed to make the EBs work more comfortably. Similar to grouping students, 
having students share their solution was found in each lesson. However, like writing a reflection 
journal, implementing this plan was challenging due to time constraints because EBs needed an 
additional time to solve the problems. After having this challenge a few times, a decision was 
made to have student’s presentation in the beginning part of the lesson to share their process 
earlier opposed to waiting for EBs to find their solutions. We inferred the high frequency of 
some topics reveals its importance in terms of teaching mathematics for EBs.  

Discussion  
Our results demonstrate the teacher-researcher collaboration model allows both the 

researcher and the teacher to participate in and contribute to lesson planning. The repeated topic 
analysis showed what the researcher and the teacher consider important factors of developing 
effective lessons for EBs. We found the majority of repeated topics concentrated on Act 1: Make 
sense of the real-life story and Act 4: Resolve the problem and look for extension. Act 4 also 
includes students’ sharing of their solutions and Act 1 is one of the reasons why modeling is an 
effective way to teach EBs mathematics (Anhalt, 2014). This result is well aligned with what the 
teacher explained in the exit survey.  

ELs [EBs] need digestible bites, especially on new concepts. I think the most important steps 
were Act 1 and Act 4. Without background knowledge, students do not have a platform to 
build off of.  With ELs [EBs], I believe you can make no assumptions of what they already 
know. Act 4 ties all of the language and mathematical reasoning together to one final 
concept. In Act 4, students share out their reasoning and final answers as a group. They are 
also given an extension problem to go above and beyond the concept we had planned for the 
day. At the very end, students reflect on what they learned throughout the lesson through 
pictures or sentences in English or their native language. This ensures students are on the 
same page as they leave class that day. 
We found one crucial factor from the discussion around timing. Timing was the one 
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particularly discussed in the beginning lesson planning. The main topic about timing was how 
much we should invest for Act 1 because it seemed this step sometimes needed a large portion of 
the entire lesson period. The goal of Act 1 was to provide contextual clues (Cummins, 2000), 
connect with students’ life experience (Aguirre et al., 2013), and support students’ understanding 
of words embedded in the main problem before the problem is given. The researcher and the 
teacher discussed how many minutes they should plan for this step and decided to set sufficient 
time and agreed to extend the time if needed with the belief that it would take a longer time if the 
EBs do not fully understand the problem (Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013). 
Once EBs understand the problem, the rest of the procedures can be accelerated. We found the 
researcher-teacher collaboration model sheds light on the important factors to design a lesson for 
EBs and this can be an effective form of teacher professional development.   
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As classrooms become more diverse and include refugee children who bring a wide range of 
educational and life experiences, one enduring challenge is about how to meet the changing 
pedagogical and mathematics learning demands for all children. In this study, we draw on a 
RefugeeCrit framework and particularly focus on teachers’ perspectives on the interplay of 
culture, language, and early mathematics in the teaching and learning of Syrian refugee children 
in Turkey. In our 2-year exploratory project MIGRA-MATH we focus on mathematical patterns 
and bring together four implementation components, each of which require the consideration of 
the needs of teachers working with refugee students. In the initial phase of our project, one 
preliminary trend we see is the teachers’ ideas about what mathematical patterns as a content 
offer children’s algebraic thinking, and teachers’ previous multicultural teaching experience, 
along with their own personal histories as diverse students before, seem to shape the way they 
support refugee children in mathematics. 

Keywords: equity in mathematics education; teacher education; refugee children 

Introduction 
As classrooms become more diverse and include refugee children who bring a wide range of 

educational and life experiences, one enduring challenge is about how to meet the changing 
pedagogical and mathematics learning demands for all children. Barton (2017) has highlighted 
the ethical responsibilities inherent in this challenge for mathematics educators, arguing, “The 
extent to which we free mathematics and mathematics education from society and culture is the 
extent to which we are absolving ourselves from responsibility to others and to our world. It 
frees us from social and cultural responsibility. Ultimately, this makes us amoral (p.3).” There is 
a need for timely research examining mathematics education practices situated in particular 
societal and cultural contexts with refugee students around the world to inform our work as 
mathematics educators and researchers. In this paper, we introduce the MIGRA-MATH Teacher 
Professional Development Project (MIGRA-MATH: Supporting Teachers of Refugee and 
Immigrant Students with Respect to their Mathematics Education Professional Practices) which 
addresses the current needs of early childhood teachers teaching mathematics in Turkey. Turkey 
hosts the world’s largest community of displaced Syrians and currently has introduced several 
implementations to accommodate the educational needs of almost one and a half million school-
aged Syrian children (United Nations High Commissioner for Refugees [UNHCR], 2018). In this 
study, we particularly focus on teachers’ perspectives on the interplay of culture, language, and 
early mathematics in teaching and learning of Syrian refugee children in Turkey and the 
sociocultural role of mathematics education in refugee children’s schooling process.    

Purposes of the Study 
The overall goal of the MIGRA-MATH project is to support the teaching of mathematics, in 

particular about mathematical patterns as a content area, for early childhood teachers (K-3) 
working with refugee students. The MIGRA-MATH project emphasizes the idea of multiple 
representations of mathematical knowledge by highlighting the visual representations of 
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mathematical concepts, relations, and processes to make them more accessible to linguistically 
diverse children (Ainsworth, 2006; Lesh, Post, & Behr, 1987); the  integration of collaborative 
methods in mathematics learning (Featherstone et al, 2013);  and the promotion of school-
family-community partnership (Civil, 2002), with a goal eventually to develop a pedagogical 
model based on the curriculum materials that are developed with teachers. This 2-year 
exploratory project brings together four implementation components, each of which require the 
consideration of the needs of teachers working with refugee students: (1) Teacher Knowledge 
Sharing Rounds; (2) Model Teaching and Classroom Observations; (3) Multivocal Video-Cued 
Interviews; (4) Family Math Workshops.  

Theoretical Perspectives 
In this paper we draw on refugee critical race theory (RefugeeCrit) (Strekalova-Hudges & 

Turner-Nash, 2017). RefugeeCrit is a newly evolving theoretical framework, which builds on 
critical race theory (Ladson-Billings & Tate, 1995). It offers a perspective to understand the 
unique lived experiences of children and families with refugee backgrounds, which is missing in 
current critical theoretical examinations.  RefugeeCrit challenges the marginalized images of 
refugee children and families as suffering, needy and helpless, which ultimately serve as barriers 
to equitable education, and aims to produce counter-arguments about the problematic positioning 
of refugee children and families (Strekalova-Hudges, Erdemir & Turner-Nash, 2017). In our 
study with the teachers of Syrian refugee children in public schools in Turkey, the different 
tenets of RefugeeCrit supported us to interpret teachers’ discourses in terms of how they might 
recognize the refugee status of children as a mechanism of oppression with a recognition of  the 
intersectionality of children’s experiences; how teachers see potential in early mathematics to 
create educational praxis for refugee children; and how they recognize the possible challenges 
for multilingual refugee children to learn mathematics through the current educational practices 
in Turkish schools. 

Methods of Inquiry 
We work with a total of forty K-3 grade teachers from five different cities which have the 

highest number of Syrian refugee children in the country. Teachers are randomly assigned to the 
project on a voluntary basis by the Ministry of National Education. In this paper, we report data 
from the first year of the project, particularly from the Teacher Knowledge Sharing Rounds 
where teachers participated in three different interactive sessions about (1) Multiple 
representations of mathematical knowledge with a particular emphasis on patterns; (2) Raising 
cultural awareness about refugee children and families; and (3) The interplay between language 
and mathematics. Throughout the project, we utilize a quasi-experimental mixed-method 
research design (Tashakkori and Teddlie, 2003) with a teacher action research component 
(MacIntyre, 2000).  The knowledge sharing rounds phase of the research was also designed to 
incorporate teachers perspectives from the start in planning and designing the professional 
learning activities. We collected data during three Teacher Knowledge Sharing Rounds through 
semi-structured focus group interviews with teachers and we videotaped the three interactive 
sessions in each of these three Teacher Knowledge Sharing Rounds. The questions in the 
interviews particularly focused on how teachers view mathematics as a bridge to reach refugee 
children, and what their ideas about refugee children’s learning of mathematics in the 
classrooms. 
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Results 
Our preliminary analysis shows that teachers express struggles in teaching mathematics to 

refugee children resulting from both the structural barriers and their own professional readiness. 
However, teachers clearly position refugee children in their classrooms as capable learners of 
mathematics; and acknowledge the role that language plays in children’s mathematical 
understandings and in the mathematical patterns as a content area. The strategies they developed 
to support children in mathematics vary.  One trend we see is the teachers’ ideas about what 
mathematical patterns as a content offers children’s algebraic thinking and teachers’ previous 
multicultural teaching experiences along with their own personal histories as diverse students 
seem to shape the way they support children in mathematics. Here we share examples of 
teachers’ such notions generated in Teacher Knowledge Sharing Rounds: 

Table 1. Teachers’ Notions about Teaching Mathematics to Refugee Children 
 
 
 
Overall Notions 
About Working 
with Refugee 

Children 
 

One problem is the fear of to be left alone… We avoid differences because of the fear of being 
alienated from the rest of the society... The way we were taught to teach homogenizes the 
classrooms. We want all our children to learn mathematics very well, but the structure in the society 
does not allow for this. We want all students’ success, but in real life there are structural barriers 
to achieve this. 

Because learning is not independent from language, you can’t separate language from learning. 
However, a Kurdish child who does not speak Turkish and a Syrian child who does not speak 
Turkish are not the same. I am also Kurdish... A Kurdish child and I watch the same TV channels 
in Turkish language, but Syrian child doesn’t have access to such media… Kurdish children (in his 
classroom) at least have family members who are fluent in Turkish but the Syrian child’s family 
also can’t speak Turkish. 

I told the family that not being able to speak Turkish will not prevent your child from learning 
[math]. I did my best to prevent marginalization in my classroom. The idea of we are all human 
beings, diverse languages are resources…. I started by assigning responsibilities to the refugee 
children in my classroom. 

 
 
Mathematical 

Patterns: 
Content 

Children learn patterns quickly, I, for example, show them tiles and see that they can get it, or I 
take them out to play hopscotch, we have shapes on the ground, you know, I make them count and 
jump… This is how I teach patterns... but when it comes to number patterns, I am not sure if they 
see the relation in 1,4,7 

I do love math. I do and I also tell my colleagues to engage children in skip counting a lot because 
it will set the foundation for other mathematical learning. For example, when we play a game, we 
do this (she produces a pattern by clapping), then I add a sound… It starts with sound, continues 
with ornamentation [refers to patterns in them] and then it lends itself to numbers, that’s the 
direction it is supposed to go. We need to touch, we need to include real life materials. In this way 
you get amazing results. 

 
Content Related 

Language 

We do not know their language, for example I do have Syrian children in my classroom, we do not 
have a smooth communication and we are having difficulty in teaching mathematics. 

Math has a universal language. For example, I realize that when we do addition, Syrian children in 
my classroom show interest and attend. They do not need to know language.  

This is something I do not only observe with Syrian children but also with other students in my 
classroom. In a problem about patterns when a word like“in a row” appears, I see that children do 
not understand the meaning of “in a row”. Then, I try to make it concrete for them and I make them 
to get up and stand like “in a row.” 
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Conclusion 
Considering children influenced by the current global refugee crises, there is a growing 

research literature focused on their access to general educational services (Uyan-Semerci & 
Erdogan, 2018; Tarim, 2018) and psychological implications for them (Sirin & Aber, 2008).  
However, we have much to explore in order to understand how content areas like mathematics 
can offer to support children’s transitions to educational contexts in their host countries. Teacher 
professional development projects similar to one we share here help us to imagine new ways to 
support teachers and reveal their current exemplary practices in teaching mathematics to refugee 
students.   
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Systemic implementation of research-based instructional practices has persistently been a 
challenge in high school mathematics. The Escondido Union High School District is pursuing 
ambitious mathematics instructional reform with an aim to rehumanize the teaching and 
learning experiences for both students and teachers. I provide an overview of a four-year 
teacher curriculum that emerged during an ongoing ethnographic study of their work, and the 
many tensions provoked by the goal to rehumanize mathematics experiences. Specifically, I note 
the tensions of an effort to rehumanize the work of students and teachers, through a professional 
develop strategy undergirded by an effort to act teachers into new beliefs. 

Keywords: Teacher Education-Inservice/Professional Development, Teacher Beliefs, High 
School Education, Equity and Diversity 

Systemic implementation of research-based instructional practices has persistently been a 
challenge in high school mathematics (NCSM, 2014). There seem to be many barriers for the 
systemic and sustained shifts in high school mathematics organization and instruction. 
Understanding the navigation of these barriers in successful school systems will inform other 
schools and districts to make meaningful improvements to mathematics instruction. 

The Escondido Union High School District (EUHSD) is pursuing ambitious mathematics 
instructional reform with an aim to rehumanize the teaching and learning experiences for both 
students and teachers. Realizing experientially and empirically (Cobb & Jackson, 2011) that 
lasting mathematics instructional improvement at scale is a challenge extending beyond teacher 
learning, mathematics leadership in EUHSD has doggedly moved forward to attend to both 
teacher and institutional learning. In this brief presentation, I will describe current state of a 
five(plus)-year project to shift mathematics instruction by working to redefine teacher's 
normative identities. From these efforts, I provide an overview of a four-year teacher curriculum 
that emerged during the work, and the many tensions provoked by the goal to rehumanize 
mathematics experiences. Specifically, I note the tensions of an effort to rehumanize the work of 
students and teachers, through a professional develop strategy undergirded by an effort to act 
teachers into new beliefs. 

The findings I propose to share emerged from an ethnographic study of the district’s efforts 
since they were launched in 2013. During that time, I served as an advisor and coach to district 
leadership, facilitator for leadership team projects, and instructor for some of the professional 
development workshops organized for mathematics teachers. I visit the schools in the district, 
teachers, principals, and district administrators five times each year for roughly 15 days. Further, 
I am in contact weekly with the district mathematics specialist and lead mathematics coach. I 
document these interactions and visits in a journal; text and email conversations are logged, and I 
collect and store documents and artifacts of the team’s work.  

EUHSD is a predominantly Latin@ district (72%) consisting of 5 high schools. The vast 
majority of the school and district leadership is white, as are the teachers—just over 7% of the 
district’s teachers identify as Latin@. Student outcomes reflect the many challenges associated 
with urban schools. For example, in 2012 only 33.5% all 12th-grade graduates completed the 
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specific college-preparatory coursework with a grade of “C” or better necessary to qualify to 
apply to the in-state public universities. Mathematics instruction in EUHSD prior to 2014 
reflected unproductive beliefs about teaching, learning, assessment, and children (NCTM, 2014), 
including a focus on procedures and memorization, expectation for student to mimic teacher 
thinking, the notion that students possess different innate levels of ability in mathematics, 
unchangeable, and predicable by race or economic group. Such beliefs were held by many 
teachers, but even more strongly by many other members of the school community, including 
counselors, principals, students, and many parents. Similarly, unproductive beliefs could be 
found in structural elements of mathematics education in the district, including tracking students 
into more than six possible 9th grade mathematics classes, D-F rates in Algebra hovering around 
50%, and student demographics in honors and AP classes not matching those of the district.  

A determined effort to rehumanize the mathematics experiences for both students and 
teachers began in 2013, built on a theory of change to act district educators into new beliefs, to 
develop new normative identities (Cobb, Gresalfi, & Hodge, 2009). Since then, structural 
elements of mathematics instruction have shifted, including opening classrooms, detracking, and 
re-professionalizing teachers. The underlying design for system change was to draw upon a solid 
student curriculum to focus on developing new pedagogical strategies. Specific elements the 
design for change included: 

1. Structuring schools for adult learning, 
2. Curriculum as a lever for change,  
3. Teacher beliefs, 
4. Changing inequitable structures, and 
5. New vision and measures. 

Structures were utilized in conjunction with the teacher curriculum with an intention to act 
teachers into new beliefs. After initial teacher development efforts, an earnest four-year teacher 
curriculum was developed, grounded in work emerging from previous projects (Robinson et al., 
2002), to support teachers to shift classroom structures to center on student-student discourse 
about student-generated ideas. The principles underlying the four-year teacher curriculum 
included: 

1. Aligned to teacher implementation of new textbooks, sequentially; 
2. Built upon (predictable) problems of practice; 
3. Paired with expectations designed to act teachers into new beliefs; and 
4. Foundation: people learn by thinking & interacting, detracked classrooms. 

The foci in each year of the teacher curriculum include the list that follows. Table 1 provides 
a more complete summary of the four-year teacher curriculum that has emerged in the work at 
EUHSD. 

• Year 1: group work and student discourse as the classroom norm 
• Year 2: creating intellectual need through a launch, and Complex Instruction 
• Year 3: disrupting deficit orientations, and assessment versus grading 
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Table 1: Four-Year Teacher Curriculum developed at EUHSD 
 Problem of Practice Opportunities Structures What was Learned 

Y1 

I’m thinking about 
teaching differently 
(SMPs), and I need to 
learn to teach from 
this new textbook. 

Learn a new role for 
themselves in the 
classroom 

Students in groups, 
students present, no 
supplementing 

I have a very different 
role in this classroom; 
learning to listen to 
student’s 
mathematics; there is 
value to kids thinking 
and interacting; I need 
to manage student 
discourse 

Y2 

I need to figure out 
how to make my 
groups work better 

C.I. to address deficit 
orientation to 
children; explicit 
conversation about 
social inequalities 
replicated in the 
classroom; routines 
for supporting 
groupwork & 
discussion 

C.I. Multiple Ability 
Treatment, status 
treatments; skill 
builders; whiteboards 

I need to include all 
students in 
conversations; a way 
to reconcile their 
deeply held beliefs 
that all children are 
smart with why not 
expressed in the 
classroom 

Y3 

I now see learning 
and understanding 
differently. How do I 
grade? 

Shift from answer-
getting environment 
to focus on 
understanding 

Invitation to grade 
differently, reorganize 
pacing around big 
ideas, collect and 
provide feedback on 
student work 

Effort in Years 1 & 2 
pay off (faith); some 
sort of competency-
based grading & 
student ownership is 
important; and 
feedback important 

Y4 

This work is complex 
and interconnected. I 
understand equity 
issues differently. 

Divergent equity 
interests; leadership; 
re-imagining 
assessment 

Implement revised, 
district-wide unit 
exams (toward 
understanding instead 
of procedures) 

  

 
Alongside these efforts toward both institutional and teacher learning toward a pursuit of 

ambitious mathematics instruction come many tensions for those involved in the project. These 
can be classified into categories aligned with institutional and teacher learning, as well as deeply 
held societal beliefs that serve to maintain White Supremacy. Samples of these tensions include: 

• Acting teachers into new beliefs: Is this a coercive approach to change?  
• Deficit orientations and racism: Are we doing enough to change hearts and minds? 

Where is the lever for change?  
• Curriculum as a lever for change: Limitations of the chosen curriculum. Will we be able 

to move beyond this curriculum in ways that are more student centered?  
• Sustainability: How can we ensure the work lives on and continues to develop?  
• Measures: Will standardized testing corrupt our efforts to rehumanize school 

mathematics? What measures would reflect our values? And ‘whose’ values, if we are 
doing this work in a de-humanizing system? 
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Across all categories underlies a challenge about beliefs, and although EUHSD may develop 
high quality mathematics teaching, deficit-oriented beliefs will continue to generate inequitable 
outcomes (Jackson, Gibbons, & Sharpe, 2017) and dehumanizing experiences. 
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MEASURING TEACHER KNOWLEDGE OF TEACHING FOR ALGEBRA 
READINESS 
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This study is based on a year-long professional development program aimed at improving 
teachers’ knowledge for teaching algebra readiness.  Thirty-one 7th and 8th grade teachers 
participated in the study, and survey data and artifacts were analyzed.  Results suggest that (1) 
teachers’ knowledge about algebra readiness indicators mostly aligned with research-based 
indicators, but they focus too much on pre 7th grade math concepts; (2) teachers have some 
misunderstanding about the content progression; and (3) teachers view teaching algebra 
readiness requires understanding students’ level, standards, instructional approaches, use of 
resources, real world connections, and algebra content. 

Keywords: Teacher knowledge, Algebra readiness 

Objectives of the Study 
Algebra has become a core component of school mathematics, and students are required to 

take algebra courses to meet high school graduation requirements.  Consequently, helping middle 
school students prepare for Algebra has gained critical importance.  Questions naturally arise 
about how best to prepare students for entry into Algebra and how middle school teachers can be 
prepared to have students ready to learn Algebra.  The professional development (PD) program 
of this study is a year-long program aimed at deepening middle school teachers’ content and 
pedagogical content knowledge for algebra readiness.  The purpose of this paper is to explore the 
impact of the PD on teachers’ knowledge for teaching algebra readiness with three guiding 
questions: 1) What skills and knowledge do teachers perceive as algebra readiness indicators?; 2) 
To what extent does teachers’ understanding of pre-algebra and the algebra curriculum align 
with curriculum documents at the national/state level standards and frameworks?; and 3) What 
are teachers’ perceptions about the knowledge needed for teaching algebra readiness? 

Theoretical Framework 
According to research, a conceptualization of learning improves a teacher’s mathematical 

content knowledge and deepens their understanding of student learning, allowing them “to 
position their students' learning not only in relation to their current classes and the objectives for 
that cohort, but also in relation to prior and subsequent classes.” (Heritage, 2008, p.3)  The 
theoretical framework of the study is based on theories on teachers’ knowledge for teaching 
algebra and frameworks on teachers’ knowledge for algebra readiness.  

Researchers have defined and categorized teachers’ mathematical knowledge and endeavored 
to measure teachers’ knowledge for teaching mathematics.  Shulman has categorized teachers’ 
knowledge (1986) into three areas: subject matter knowledge, pedagogical content knowledge, 
and curricular knowledge.  Based on Shulman’s categories, researchers have conceptualized and 
measured “the mathematical knowledge used to carry out the work of teaching mathematics” 
(Hill et al., 2005, p. 373) and called it Mathematical Knowledge needed for Teaching (MKT).  
MKT categorizes practicing teachers’ knowledge (Blömeke & Delaney, 2012) into three areas: 
knowledge of content and students, knowledge of content and teaching, and knowledge of 
content and curriculum. 
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As school mathematics deals with numerous topics, some researchers differentiate teachers’ 
knowledge for teaching by math topics.  Floden and McCrory (2007) focused on school algebra 
in grades K-12 and proposed three areas of knowledge of algebra for teaching (KAT): school (K-
12) mathematics knowledge, advanced mathematics knowledge, and teaching mathematics 
knowledge (Huang, & Kulm, 2012).  Unlike other researchers’ broad knowledge categories, 
Even (1990) described teachers’ knowledge of algebra in seven dimensions: essential features, 
different representations, alternative ways of approaching, the strength of the concept, basic 
repertoire, knowledge and understanding of a concept, and knowledge about mathematics.  
Agreeing with existing teachers’ knowledge categories, Doerr (2004) added knowledge about 
student errors and misconceptions in algebra to Shulman’s pedagogical content knowledge. 

Such concepts, essential for success in an Algebra course, have been outlined by different 
entities across the nation.  The Southern Regional Education Board (Bottoms, 2003) outlines 
both dispositional skills and mathematics content (readiness indicators) suggested for students to 
be successful in Algebra.  While the state of Ohio, where this study was conducted, does not 
outline specific algebra readiness indicators, their standards, similar to those of Common Core 
State Standards for Mathematics (2010), have designated critical areas of focus for both 7th and 
8th grade mathematics.  These outlined concepts provide the foundation for teachers to determine 
mathematical content in which students should have strong foundational skills to successfully 
embark on an Algebra course.   

Methods 
This study was situated in the context of ongoing work of a year-long PD for 5 high-need 

school districts.  The PD involved an intensive summer institute, follow-up blended PD with 
structured modules, on-site support from building coaches, site visits by PD providers, and 
professional learning dissemination at professional meetings.  The PD activities covered 
investigating algebra readiness indicators and vertical progression of algebraic concepts, 
analyzing students’ learning.  Thirty-one 7th/8th grade teachers participated in the study.  Of the 
31 participants, 84 % were female and 97 % identified as white, non-Hispanic. The cohort was 
comprised mostly of experienced teachers, with 10 years the mean. 

The study involved surveys, self-reflections, and PD artifact data.  Due to the nature of the 
qualitative data, the analysis was based on categorizing to investigate emerging themes. The 
responses were first analyzed for common codes to create patterns, then the codes were finalized 
by comparison with existing studies.  Throughout the data analysis process, common codes and 
patterns were tallied and percentages of participants’ responses were calculated.  The initial 
analysis outcomes of the surveys and PD artifacts were compared with theories and indicators 
discussed in the Theoretical Framework section. 

Results 
Teachers’ Knowledge about Students 

Teachers provided over 90 areas that they use to define student readiness for algebra: 
knowledge of math content (66%), math skills (16%), disposition (10%), and scores of 
standardized tests (8%).  Math skills needed to be algebra ready were mathematical reasoning, 
critical thinking, and abstract thinking skills.  In addition to skills and knowledge, approximately 
10% of indicators were about students’ disposition: willingness to learn, struggle, and complete 
challenging tasks.  Some teachers rely on a student’s grade and standardized test scores to 
determine readiness. Most algebra readiness indicators (66%) were specific mathematics 
concepts; number sense, computations with whole numbers and integers, variables and 
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unknowns, one or two step equations, patters and rules, and (linear) graphs (Figure 2).  
Approximately 50% of math concepts were number sense and computational skills with whole 
numbers and integers; the other half was directly related to algebra standards.  

Overall, there was no big gap between national/state recommended algebra readiness 
indicators and indicators discussed by the teachers.  However, the indicators favored the younger 
grade level standards over 7th – 8th grade content.  For example, teachers emphasized operations 
with whole numbers and integers but not so much with rational numbers, dealing with 
parentheses accurately, distinguishing unknown variables from units, etc.  The lack of 7th and 8th 
grade algebra standards in the list was unexpected, because most teachers in the program were 
teaching 7th, 8th, and algebra classes.  However, teachers’ heavy focus on number sense and 
operations for algebra readiness may have to do with national/state recommendations, “The 
algebra readiness materials must also break these 16 standards into their component concepts and 
skills, with a primary focus on developing students’ mastery of arithmetic.” (Papa & Brown, 
2007, p. 17)   
Teachers’ Knowledge about Algebra Curriculum 

The teachers were asked to identify which concepts were indicators of Algebra readiness and 
to specify the grade level at which the content should be covered (pre-7th, 7th, or 8th grade).  
Some teachers teaching 8th grade or algebra course eliminated concepts around data and 
probability.  Their perspective was that while all the indicators should be learned before algebra, 
the data and probability content was not indicative of a successful algebra student.  Regarding 
grade level, teachers were in complete agreement for 11 of the 33 mathematical concepts.  With 
regard to the specific mathematical concepts, the content teachers unanimously assigned were 
fundamental number and algebraic understanding while the outliers and disagreement upon 
content focused on non-traditional algebraic content (probability, data, and geometry).  The data 
indicates that the teachers were not able to agree or accurately assign grade-level content to 
concepts that they are required, by the state, to teach at that level.  Another finding suggests that 
teachers may have a misunderstanding of the number system.  Teachers were in agreement about 
the need for fundamental skills associated with computation with fractions and irrational 
numbers, however, they assigned rational numbers to all grade levels.  These findings may 
suggest that teachers need additional support with the rational number system.  Disagreement 
over when a concept should be taught spanned over geometry, patterns, and number skills and 
concepts. 
Teachers’ Knowledge about Teaching Algebra.   

The 67 knowledge areas needed for teaching algebra generated by teachers were categorized 
into 7 areas: understanding students’ current level, their needs, and areas they struggle in (25%); 
general instructional approaches (21%); standards including content progression (19%), use of 
resources including manipulatives and technology (7%); and real world connections (6%).  Only 
10% of teacher comments specifically mentioned instructional approaches related to teaching 
algebra.  Instead of providing specific algebra concepts, teachers simply said “content” 
knowledge (10%).  As Doerr (2004) suggests, our teachers also believed that understanding 
students is a critical part of pedagogical knowledge.  Some of the knowledge areas, such as 
general teaching approaches and math content, were supported by Even (1990).  Unlike other 
studies, our teachers felt that using resources, making connections to real-world situations, and 
understanding content progression were important for teaching algebra readiness concepts.  
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Conclusion and Discussion 
The focus of this study was unique in two ways: First, we aimed to deepen the teachers’ 

understanding of teaching algebra readiness in a way that was different from what they 
experienced in their teacher preparation program or as part of professional development.  
Secondly, instead of focusing on particular algebraic concepts, we emphasized the nature of 
shifts in teachers’ understanding of the progression of algebraic concepts and perspectives of 
teaching for algebra readiness. 

Trends in data among teacher knowledge of students, algebra curriculum and teaching 
algebra, suggest that more efforts be made to support teachers in preparing students for algebra.  
When identifying indicators for student readiness to take Algebra, teachers largely pointed to 
mathematics content below their respective grade levels (number sense and skills).  When this 
specific content was to be covered was in agreement by groups and aligned to the respective state 
standards, however, discrepancy existed among groups as the content progressed to higher levels 
of understanding, with disagreement in fundamental algebraic concepts such as rational numbers 
and patterns.  Despite the lack of agreement on when the progression of content occurs, teachers 
failed to cite specific content knowledge as an additional teacher requirement in order to prepare 
students for Algebra.  Teachers did identify a need for further understating of standards, but 
overall, suggested there is a greater need for teachers to be better prepared to assess and instruct 
on a general level.   

Given the findings, focusing on building teacher knowledge of the algebra curriculum is not 
enough, as teachers identified disposition, mathematical thinking, general assessment strategies, 
and instructional approaches should also be addressed in a professional development program.  
This further supports the need for a well-rounded experience that builds teacher knowledge of: 
students, algebra curriculum, and teaching algebra. 
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K-8 TEACHERS’ STORIES OF MATHEMATICS-RELATED TRANSFORMATION 
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We describe our use of the frameworks of teacher transformation and narrative inquiry to 
investigate K-8 teachers’ self-reported transformations related to mathematics and teaching, and 
aspects of the transformations that are associated with participation in Intel Math professional 
development. This report is part of a larger, ongoing investigation, but we are able, in the space 
of this report, to highlight the transformative journeys of two participating teachers. 

Key words: Teacher Education-Inservice/Professional Development 

In this brief report, we share preliminary analyses of elementary mathematics teachers’ 
stories of transformational learning experiences related, in part, to participation in the Intel Math 
professional development (PD) program. We seek to address the following questions: 

1. What narrative structures do teachers employ to describe their professional journeys and 
professional transformations, especially as they relate to the teaching of mathematics? 
How do teachers situate professional development within their narratives? 

2. To what specific experiences do teachers attribute the transformation? How do they 
connect experiences to one another and across time?  

The PD program includes 80 hours of instruction designed to deepen and expand K-8 
teachers’ knowledge of mathematics and evidence-based classroom practices. The program 
includes extended opportunities to learn in a professional community with other teachers, 
experience as a learner with student-centered instruction, and explicit links to children’s 
thinking/learning – which are key components of effective professional development (e.g., 
Darling-Hammond, Hyler, & Gardner 2017). Participating teachers solve non-routine problems, 
connect multiple representations, and communicate and analyze their reasoning. Pedagogical 
techniques used by program instructors mirror practices that participating teachers can use in 
their classrooms. In addition to significantly increasing teachers’ content knowledge related to 
elementary mathematics, the program positively impacts classroom practice with respect to 
richness of mathematics, and student participation in mathematics (Garet, et al., 2016). Although 
these findings are promising, we know that shifts in practice take time, are often gradual and 
accompanied by shifts in beliefs, and can be uneven in their implementation (e.g., Loucks-
Horsley et al, 2010). At the same time, we have evidence that, for some teachers, the program is 
part of a transformative learning experience that significantly impacts practice (e.g., Broatch, 
2011). Thus, we seek to identify these teachers and examine their professional trajectories, and 
their views of how the program has played a role in their professional transformations. 

Theory and Methods 
Our conceptualization of transformative learning is based on the work of Mezirow (1991) 

who identified states of transformation beginning with a “disorienting dilemma” in which adult 
learners “discover a need to acquire new perspectives in order to gain a more complete 
understanding of changing events” (Mezirow, 1991, p.3). Learners engage in critical self-
examinations whereby they explore new ideas, roles, and relationships, acquire new knowledge, 
and experiment and build competence with new ideas (Mezirow, 1991). Building on the work of 
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Mezirow and others, King (2009) developed and validated a survey instrument to identify 
whether learners have undergone a perspective transformation linked to educational experiences, 
and which learning activities contributed to their transformation (King, 2009). We use an 
adapted version of the instrument to identify teachers who have experienced a perspective 
transformation linked to the PD program. We then invite teachers to be interviewed to further 
investigate their transformational experience(s). 

We use narrative inquiry methods in this research because it is “through narration, or 
storytelling, [that] individuals construct and present identities” (Temple, 2008, p. 3). Narrations 
are partial representations of experience (Riessman, 2008) that are jointly negotiated across 
speaker(s) and listener(s). “The plot of a narrative can be described as how narrators impose 
order on their experiences (Riessman, 1993) and . . . how analysts impose structure (Riessman, 
2008)” (Ahmed, 2012, p. 235). “A structural narrative approach centering on plot can allow for 
the complexity of decision making processes, actions, and experiences . . . to be understood and 
placed in context” (Ahmed, 2012, p. 235). Consistent with a narrative inquiry perspective, we 
resist the urge to dissect teachers’ stories into coded segments that would then be re-assembled to 
create meaning. Rather, our analysis of the audio-recorded stories involves careful (but not 
critical) examination of motives, meanings, and actions, and connections among these, as 
presented by the storyteller (teacher). To achieve this, we listen multiple times to the audio-
recorded stories of the teachers, listening for, and making notes about, the ways teachers frame 
and build their stories, the turning points (explicitly described or implied) in their narrations, and 
the meanings they assign to transformational experiences. Once these have been identified, we 
re-present the teacher’s experience in a narrative form based in written text. At this stage, we 
have interviewed eight teachers, with each interview lasting between approximately 30 minutes 
and one hour. From a narrative inquiry perspective, this is a very short time from which to 
develop a complete story of a teacher’s experience, and we recognize this limitation in our work. 
We intend to conduct follow-up interviews with teachers, first to hear how teachers contextualize 
and assign new meanings to their transformational experiences over time, and also to share the 
stories we create to ensure that these stories resonate with teachers own meanings and 
experiences. 

From the interviews we have conducted thus far, we have selected two to highlight in the 
space of this brief report. The first teacher, pseudonym Ginny, teaches second grade and has five 
years of teaching experience at the elementary level. The second teacher, pseudonym Fred, 
teaches third grade and has fourteen years of teaching experience at the elementary level. 

 
Ginny 

(all words are Ginny’s unless in brackets or italics) 
I’ve always liked math, I always remember math being following steps, I’ve always been good 
at listening, and following directions, . . , but the second it came to reasoning and more critical 
thinking, I just didn’t have a lot of experience, So I don’t think I had any confidence with it, 
I felt like this isn’t math anymore, It’s a different kind of thinking that I don’t know how to do. 
That is why I started to shy away from it. . . . I enjoy teaching elementary math but it never 
made sense, it never had a place in my life anymore. 

Below, Ginny reflects on her experience in the PD program 
I had on the shoes of the learner, 
I experienced it. 
You have to think, 

I’ve heard before you need to ask higher order thinking 
questions and depth of knowledge and things like that, 
I’ve heard about that, I’ve been taught about it before, 
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You have to think, 
You have to figure it out. 
Everyone has math to share! 

plenty of times, but its never really like resonated with me 
before until I experienced it, . . . it was just like, Ok, this 
is how we think now. . . . I just came out thinking 
differently and I really don’t know how that happened 

Below are words Ginny used to describe how she feels about math now 

 
I have [had] the experience I want my kids to have. . . .[T]his year I looked back at [one] 
homework [from last year] . . . and I was like I can’t even send that home, that makes no sense 
mathematically . . . that’s a cheat, that’s a shortcut . . . I’m just realizing that there was a lot of 
shortcuts I used last year and I was very test oriented . . . last year I’d have anchor charts with 
steps [for adding/subtracting on a number line] . . . this year its a lot more experimental and I 
have manipulatives out every day. . . . For the number line, instead of hops and walks, when 
they move ten on the number line we represent it with a ten rod so the kids are making 
connections between base ten blocks and counting on the number line because I understand 
that connection. I have a lot of new teachers on my team, and working with and explaining 
how I’m going to teach and how they are going to teach I realize I have a way deeper 
understanding than I did last year. 

Fred 
Fred hated math as a child. His memories of learning math include timed competitions in 

school and jealousy of the student who always won. “And he would walk up and get his two free 
books for winning that competition. And uh, I was always very frustrated by that.” Fred’s 
experiences as a student led him to think that math was a set of steps to be memorized. As a 
result, he still didn’t like math as a beginning teacher, but wanted to teach it as best he could. 

A few years later, Sarah Cruz (pseudonym) came to Fred’s school as a new teacher. Sarah 
had been a finalist for a local educational foundation’s math accolade. Fred figured that because 
of this distinction, she was probably pretty good at teaching math. “I actually went to her and I 
said, ‘Listen, math has been a frustration for me for a long time, I’d really like to learn how to do 
it better.’” Sarah gave him some pointers and he started there, doing exactly what she had told 
him to do. That year, his students had the best improvement in math that he had ever seen. “I was 
just really quite delighted by the results. Because I actually enjoyed teaching math that year.” 
That summer, Fred was invited to participate in the Intel Math program.  

Fred: I went into it with the same mindset I had as a child. I was really nervous going in 
because I thought that it would really be a challenge for me. And that the other teachers 
who were around me were going to see right through me and notice that I’m not very 
good at this. But it was a real eye-opener for me because the math that they were doing 
was more logically based than it was memorization based. And, I’m pretty strong with 
logic. So I found myself, you know, essentially out-performing those who were at the 
same table from me—with me—and they were looking to me to get a better 
understanding of what was going on. Because a lot of these teachers were people who 
were teaching math the same way that I had learned math when I was a kid. I was 
obviously very very excited about it because a lot of the concepts that were being taught 
during this time, during the Intel Math training, were exactly what Sarah Cruz had been 
telling me the year before. And, so I realized that Sarah had, you know, a really good 
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sense of what students needed in order to learn math. And, this Intel Math just really 
helped me take that to another level in my first year teaching third grade. And naturally, I 
had nice improvement with my math scores that year.  

Fred’s experiences learning from Sarah and participating in Intel Math helped him to 
reimagine math and math instruction as logically-based, instead of as a set of memorized facts. 

Fred: I think the biggest thing that I have gotten out Intel Math is that if I really take it to 
heart and understand that each individual student is at a different place, and continue to 
work with my small groups … I can really, intimately understand where each of those 
students is, in their math learning. And I have a greater understanding of why my 
students are succeeding where others, who are learning how to do tricks with math—is 
what I call it now, when they learn to do those tricks, they’re really not getting the fully 
number sense. 

Fred’s professional learning has been so transformative for his instructional practice, he uses 
the word “devastating” to describe a specific strategy he had previously taught. 

Fred: One of the most devastating things that I did as a teacher—and I’m going back about 5 
or 6 years now—was how I taught task analysis. Which was where the teacher says, 
‘These are the exact steps that you follow to solve this kind of math problem.’ I took that 
as ‘this is how you teach it.’ However, task analysis is meant to be a guide. We need to 
give students choices in how they solve problems. To teach step-by-step procedures does 
not allow students to create their own ways of solving problems. And to me, that was just 
devastating. I think that might work for reading, but it just doesn’t work for math because 
you’re asking students to follow steps rather than teaching them to use their minds to 
figure out their own best way of solving these problems. 

Conclusion 
By creating a set of stories of teacher transformation, of which Fred and Ginny are two 

examples, we center teachers’ voices, identities, and experiences, and the significance that they 
assign to different aspects of their professional journeys. At this stage in our research, we are 
intentionally experimenting with the forms we use to communicate these journeys. However, no 
matter the form, our goal is convey both the intellectual and affective domains of the stories, and 
ultimately consider how such stories can inform the work of teacher educators and others. 
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UNDERSTANDING THE WAYS GRADUATE TEACHING ASSISTANTS LEARN TO 
TEACH THROUGH DISCOURSE IN PROFESSIONAL DEVELOPMENT 

 Hayley Milbourne Susan D. Nickerson 
 San Diego State University San Diego State University 
 hayley.milbourne@gmail.com snickerson@sdsu.edu 

Across the United States, there is increased national interest in improving the way mathematics 
departments prepare their Graduate Teaching Assistants (GTAs). We focus on GTAs engaged in 
professional development for active learning. We report preliminary results on the ways in which 
the understandings of GTAs of various teaching practices changed over a term. With this 
analysis, we contribute to a better understanding of how to support GTAs with their teaching.   

Keywords: Graduate teaching assistants, professional development, teaching practices. 

Many mathematics departments in the United States are changing the way they structure the 
teaching of the Calculus sequence based on the recommendations that emerged as a result of the 
Mathematical Association of America (MAA) study of successful Calculus programs (Bressoud, 
Mesa, & Rasmussen, 2015). One of the recommendations was to improve the professional 
development (PD) offered to the Calculus graduate teaching assistants (GTAs). Much of what we 
know about these PD programs arises from research focused on the various structures of PD 
programs, on the outcomes of the programs, or on a small, in-depth case study (e.g., Kung & 
Speer, 2009). In a review of the research, Speer, Gutmann, and Murphy (2005) stated the need 
for studies with longitudinal designs so as to “inform the design of exemplary programs that 
have a lasting influence on instructional practices” (p. 79). 

We report on professional development at a large university in the southwestern United 
States whose mathematics faculty implemented several changes to the Calculus sequence, 
including to the structure of the PD program for the Calculus I and Calculus II GTAs. A large 
part of the PD involves formal meetings with mathematics education faculty and mathematics 
faculty course coordinators with a stated goal of supporting GTAs to teach with a more student-
centred approach. In particular, the PD has a focus on supporting effective teaching practices, 
defined as “…what teachers do and think daily, in class and out, as they perform their teaching 
work” (Speer, Smith, & Horvath, 2010, p. 99).  

The GTAs discussed teaching practices with each other, their course coordinators, and 
mathematics education faculty. We investigated the ways in which the discourse around various 
teaching practices evolved over time, so that we can better understand GTAs’ learning. We share 
selected results in answer to: How do the GTAs’ publicized understandings of various teaching 
practices change (through elaboration or transformation) over the course of a term? How do 
these publications highlight which teaching practices are most salient to their needs?  

Background 
There are a few studies done on the state of GTA professional development across the United 

States (e.g. Belnap & Allred, 2009; Bragdon, Ellis, & Gehrtz, 2017; Speer et al., 2010). In 
addition to these national level studies, there are also several case studies, with a focus on the 
structure of or the efficacy of the program (e.g., Griffith, O’Loughlin, Kearns, Braun, & 
Heacock, 2010; Marbach-Ad, Shields, Kent, Higgins, & Thompson, 2010). More recently, 
researchers are reporting on case studies that focus on changes to professional development and 
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investigating the results, or focusing on what informs changes to the program (Beisiegel, 2017; 
Pascoe & Stockero, 2017; Wakefield, Miller, & Lai, 2017). 

So, work is just beginning on the ways in which graduate teaching assistants develop their 
teaching practice. By examining their discourse, we better understand how the GTAs are 
appropriating, elaborating, or transforming various teaching practices in light of their own needs 
over time. Consequently, this work can inform our professional development work with GTAs. 

Theoretical Perspective 
The socio-cultural learning theory put forth by Vygotsky posits learning occurs through a 

reflexive relationship between the individual and the community in which the individual interacts 
(Vygotsky, 1987). We used a modified version of a framework known as the Vygotsky Space 
(Harré, 1983) to understand the ways in which the discussion evolved over time. With this 
framework, the understanding of a teaching practice can be tracked as it is appropriated and 
transformed by the GTAs throughout the term. See the modified Vygotsky space in Figure 1.  

 
Figure 1. Diagram of the modified Vygotsky Space. 

Within this diagram, there are two axes: Public-Private and Individual-Social. These two 
axes form four quadrants, which contextualize the four aspects of the Vygotsky space. For 
instance, appropriation is within the Public-Individual quadrant because it describes how a 
teaching practice comes to an individual from the public. Transformation and Elaboration is 
within the Individual-Private quadrant because it describes the way a person has possibly 
changed the meaning or motivation of a practice through making sense of it within their own 
context. In the third quadrant is publication, which describes how the person makes their own 
private understanding of a teaching practice known to the social group they are within where it 
can be then potentially be a resource for others. At this point, the teaching practice may go 
through several iterations of these three quadrants before it lands within the fourth quadrant, 
conventionalization, which represents that understanding of the teaching practice has become 
normalized within a community (Gallucci, DeVoogt Van Lare, Yoon, & Boatright, 2010). 

Setting 
At the university in this study, Calculus is taught in large lectures of approximately 160 

students. The Calculus I and Calculus II students meet in break-out sessions twice a week in a 
class of approximately 35 students. In one of these meetings, GTAs focus on answering 
homework questions and addressing particular content of the lectures. In the other breakout 
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session, the GTA leads group-based learning activities, typically an application of a topic from 
lecture. To get support for facilitating these active learning tasks, the GTAs participate in a three-
day teaching seminar before classes begin in the Fall. The GTAs continue to meet approximately 
eight times throughout the term with mathematics education faculty. The GTAs also participate 
in weekly meetings with their course coordinator in which they talk about the activity for the 
following week and any administrative issues (e.g., grading of homework and exams).  

Furthermore, the structure of the GTA program has been changed to include a Calculus I and 
II lead TA. The lead TA is a more experienced GTA who provides support in the form of 
professional development to his or her fellow GTAs, both before and throughout the term (Ellis, 
2015). At two or three points in the term, the lead TA visits the break-out activity day sections of 
his or her fellow GTAs to observe the class and meets with the GTAs afterward to debrief.  

Methods 
Sixteen GTAs agreed to be part of the study, including both the Calc I and Calc II lead TAs, 

seven new GTAs, and seven GTAs returning from the previous year. The first author either 
audio or video-recorded each PD meeting, course coordinator meeting, debrief between the lead 
TA and a fellow GTA, and break-out sections observed by the lead TAs. We transcribed each of 
the video and audio recordings and coded each utterance about teaching practices using 
descriptive coding (Bakhtin, Emerson, & Holquist, 1986; Miles & Huberman, 1994). There were 
137 sub-practices related to both traditional and active-learning teaching practices.  

These sub-practices were introduced with a particular justification or motivation for their use. 
In the second phase of analysis, we determined the reasoning expressed for the use of a particular 
teaching practice. We could then see the ways in which the discourse around that practice 
transformed throughout the semester. If the meaning was changed, the practice was labeled as 
transformed. If the meaning had not changed but the practice was discussed in a new context, it 
was considered elaborated. These publications and transformations of the teaching practices, as 
well as who stated them and when, were tracked throughout the term to provide an overall 
portrait of how the discourse and inferred understanding evolved. 

Results 
There were three main results that were found in answering the research question given 

earlier: 1) GTAs do appropriate the language of mathematics education but may have different  
understandings of those practices than the PD leaders; 2) there is evidence that the GTAs found 
the practices of cognitive demand and lecturing challenging within the new context of active 
learning; and 3) there is evidence that the GTAs found the practices of asking for justification, 
checking for understanding, and precision for communication important to discuss but seemed to 
agree on their meaning and use. In this presentation, we will focus on the first result because of 
the theoretical and methodological implications it presents. 

We took the criteria of conventionalization, the number of transformations, and what the 
transformations conveyed about the GTAs’ understanding of the teaching practice to provide 
evidence for their appropriation of the language from mathematics education. The GTAs were 
appropriating some of the language of mathematics education but sometimes their publications 
revealed different meanings or motivations. This was particularly evident in a sub-practice 
related to adding scaffolding in which what became conventionalized was a transformed version 
of the practice. For example, math educators might think of scaffolding as in making connections 
to background knowledge to help the students gain access to the problem, rather than doing more 
of the problem for the students. Three other sub-practices had a transformed version approaching 
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conventionalization. So, even though the GTAs were using the language of mathematics 
education, they could be using it in a different way than it was originally introduced or as 
understood by the mathematics education community.    

Conclusion 
The results from this study provide additional insight into the ways in which GTAs make 

sense of active learning teaching practices as they interact with each other and engage with 
professional development. With this information, the field can begin to understand how GTAs 
change their interpretations of teaching practice over time and ultimately improve the 
professional development offered to graduate students who are new to the practice of teaching. 
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DESIGNING SPACES TO SUPPORT TEACHER LEARNING ABOUT TEACHING 
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This study examined how participation in online professional development impacted 2,525 
participants’ perspectives about statistics and teaching statistics. The course design, participant 
engagement, impacts on perspectives, and influences on changes in perspective are described. 

Keywords: Statistics, Teacher Professional Development, Online Learning 

Introduction and Background 
While statistics has gained prominence in school curricula (Franklin et al., 2007), it is often 

taught within a mathematics curriculum by mathematics teachers with limited experiences in 
statistics who are often trained in programs that do not support becoming effective statistics 
teachers (Zieffler, Garfield, & Fry, 2018). Since statistical thinking is inherently different than 
mathematical thinking (e.g., delMas, 2004), teachers need opportunities to develop their own 
statistical thinking and teaching practices. In part, this involves providing learning opportunities 
that challenge perspectives about the nature of statistics and teaching statistics. In this paper, we 
discuss how design of online professional development (OPD) that is free, open access, and can 
impact many educators across geographic boundaries (Kim, 2015). 

Beliefs and perspectives about statistics include an educator’s ideas about the nature of 
statistics, about oneself as a learner of statistics, and about the classroom context and goals for 
students’ learning statistics (Pierce & Chick, 2011; Eichler, 2011). Certain beliefs likely result in 
different approaches to teaching. For instance, if an educator believes that statistics is a way of 
quantifying data, his or her teaching practices may favor statistical procedures without 
considering the context of the data, issues related to sampling, and making claims about 
uncertainty (Pierce & Chick, 2011). Furthermore, the focus of teachers’ intended curriculum in 
statistics can be considered on a continuum from traditionalists (focused on procedures absent of 
context), to those wanting students to engage in an investigative process that is tightly connected 
to contexts of real data (Eichler, 2011). Professional development should move educators along 
this continuum towards a focus on investigative processes, which requires impacting educators’ 
beliefs about the nature of statistics and statistical learning goals for students. 

Theoretical Framework 
We envision the Teaching Statistics Through Data Investigations [TSDI] course as an 

infinity space (Gee, 2005). In this space, educators with diverse backgrounds and skills come 
together to learn about strengthening their approaches to teaching statistics. An affinity space 
begins with content, or a generator. In the case of TSDI, the generator is an OPD course that 
emphasizes how teachers can use an investigation cycle to teach statistics and support students in 
exploring data to make evidence-based claims. Portals are ways individuals interact with content 
and engage with one another in an affinity space. Portals can also be generators. In our course, 
portals include the Moodle site that educators use to access the course materials and resources. 
Within this larger portal of designed resources, every unit includes opportunities for participants 
to engage in discussions. An affinity space also has an internal and external aspect; internal 
grammar characterizes the way a space is designed and organized, while external grammar 
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signifies how people choose to interact with either the content or one another within the space. 
According to Gee (2013), an advantage to an affinity space is that educators can access 

spaces and contribute in various ways with different people for different purposes. Further, 
educators can access these spaces to acquire resources and also share resources and approaches 
and strategies for teaching. Once accessed, there is flexibility in these spaces so that educators 
can interact with others by forming and re-forming groups. Gee suggests that the space is a form 
of emergent intelligence since various tools, different educators, and diverse skills are networked 
in ways that increases everyone’s knowledge. In this study, we examined the following research 
questions: How do educators engage in an OPD course focused on teaching statistics? How do 
educators’ interactions in OPD impact their perspectives about the nature of statistics and the 
teaching of statistics? What portals influence changes in educators’ perspectives? 

Design of the Course 
TSDI (http://go.ncsu.edu/tsdi) does not focus on any particular grade band or specific 

statistical content. Rather, the course was designed to encourage participants to view statistics as 
an investigative process that incorporates statistical habits of mind, and view learning from a 
developmental perspective. One of the most important generators of the course, the Students’ 
Approaches to Statistical Investigations [SASI] framework, was built on Franklin et al. (2007), 
illustrating the investigative cycle, students’ statistical reasoning in each phase at three levels of 
sophistication, and an indication of productive habits of mind. Multiple portals focusing on the 
SASI framework are integrated throughout the course. 

Important aspects of the internal grammar of the affinity space (i.e., the design) are based on 
design principles of effective OPD (Kleiman, Wolf, & Frye, 2015): (a) self-directed learning, (b) 
peer-supported learning, (c) job-connected learning, and (d) learning from multiple voices. TSDI 
was designed so that educators would have multiple opportunities to interact with the content and 
engage with others through numerous portals. Learning from multiple voices was enacted by 
providing ways to engage with videos of an Expert Panel discussion and classroom videos. Self-
directed and job-connected learning opportunities included Dive Into Data experiences, where 
participants used free technology tools (e.g., Gapminder, Tuva, CODAP). Extensions in each 
unit include extra resources (e.g., data sets, lesson plans, applets, etc.). Peer-supported learning 
included two discussion forums where participants interact with others focusing on: 1) specific 
pedagogical aspects of teaching statistics, and 2) participant initiated discussions about teaching. 

Methods 
Participants 

From Fall 2015 to Fall 2017, participants (n = 2,525) from 84 countries enrolled in six 
sections of the course. The majority resided in the US (79%), including all 50 states. The 
majority of participants were female (66%), held an advanced degree (75%), and identified 
themselves as classroom teachers (61%). Participants’ experience as educators varied, with a 
mean of 14 years (20% had 1-5 years, 19% had 6-10 years, 18% had 11-15 years, 16% had 16-20 
years, 21% had more than 20 years). 
Data Sources and Analysis 

Course activity was tracked through click logs, allowing us to examine trends in participants’ 
engagement in the designed materials in the portal. A Tableau dashboard was used to visualize 
participants’ engagement over time. Other data sources included: 1) discussion forum posts from 
two Unit 5 forums, 2) open-ended responses to end-of-courses surveys (administered at the end 
of Unit 5), and 3) a follow-up survey (administered approximately 6 months after course 
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completion). In previous work that examined only Fall 2015 classroom teachers, Lee, Lovett, 
and Mojica (2017) reported four themes to describe changes in participants’ beliefs/perspectives 
about statistics and teaching statistics. Thus, 721 Unit 5 posts from three sections of TSDI were 
coded for one of these themes. We also open coded, which led to new themes. Once we were 
saturated in data and no new themes emerged, we confirmed codes in the remaining sections of 
Unit 5 posts. End-of-course and follow-up surveys were analyzed using open coding. 

Findings 
Engagement in TSDI 

TSDI was offered six times from Fall 2015 - Fall 2017 in Moodle. Each course remained 
active for about 10-15 weeks, and participants were able to access and view materials after the 
course closed. Amongst all who registered, 1,737 (69%) participants accessed any material, 
which is higher than what Jordan (2015) found across 59 different MOOCs with a typical “show 
up” rate near 50%. Across all sections, 1,441 (54%) of those who registered engaged in the 
Orientation Unit. Of those that participated in the Orientation Unit, a majority (71%) engaged in 
Unit 1. However, only 47% participated in Unit 2. Engagement in Units 3 and 4 were very 
similar, 38% and 33%, respectively. Only 26% of those who started the course completed Unit 5. 
Of those who registered, 959 (38%) engaged in a discussion forum. Across all sections, there 
was a total of 2,164 discussion forum threads, and 6,381 total posts, with an average of 6.65 
responses per forum participant, with some participants posting 30-50 times. 
Impacts on Perspectives about the Nature of Statistics and Teaching Statistics 

Eight major themes emerged in relation to changes in participants’ beliefs and perspectives 
about statistics and teaching statistics based on an analysis of discussion forum data: statistical 
thinking involves different processes than mathematical thinking; engaging in statistics should 
involve exploring data; posing good statistical questions and selecting an interesting/relevant 
context in relation to students is crucial in engaging students in statistical thinking; engaging in 
statistics is more than computations and procedures and should include investigative cycles and 
habits of mind; engaging in statistics is enhanced by the use of dynamic technology; engaging in 
statistics requires real (and messy) data; statistical thinking develops along a continuum; and, 
teachers do not have to know all answers when engaging students in the investigative cycle. 

Findings from the follow-up survey support that engagement in the course impacted learning. 
Most participants (84%) indicated they acquired new knowledge and skills. Of those that 
indicated their knowledge/skills increased, 63% signified they had applied this in their practice. 
Only 45% reported newly acquired skills had an impact on student learning. Participants reported 
they used specific tasks, websites, technology tools, and other resources in their practice. 
Influences on Changes in Perspectives 

The SASI framework, expert videos, and videos of students engaged in statistics acted as 
portals that influenced changes in educators’ perspectives to include a more robust vision of 
statistical thinking and teaching strategies for engaging learners in investigations. Discussion 
forum and end-of-unit surveys showed how participants often discussed what they learned from 
different multimedia resources related to the SASI framework. Frequently mentioned portals 
were the SASI diagram, videos with experts (panel discussion and development of concept of 
mean), and animated videos of students’ work on a weighted die investigation. 
Analysis of discussion forum data and end-of-course surveys indicate that the following portals 
provided learning experiences that impacted educators’ perspectives about the nature of statistics 
and teaching statistics (in decreasing frequency): access to resources, technology tools, websites, 
and lesson plans; learning from videos of expert panel discussions; learning from videos of 
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students and teachers work in classrooms; introduction to the SASI framework; focus on 
improving questioning, exploration, engaging students, and active learning; engaging in 
discussions with colleagues; appreciation for flexibility and learning at own pace; and being 
grateful for opportunity and inspired to learn more. 

Discussion 
Preparing and supporting educators to be effective statistics teachers is a challenge in teacher 

education. We suggest that designing spaces where educators have opportunities to challenge 
perspectives about the nature of statistics and teaching statistics through OPD is one way to 
support learning. Designing specific portals for educators can lead to implementation of new 
ideas in practice. Engagement in OPD can be a powerful experience in supporting many 
teachers’ professional learning across geographic boundaries (Kim, 2015). The themes we 
identified and the self-reported changes in their practices suggest that the TSDI course, and 
perhaps other similar OPDs about teaching statistics, can be successful in shifting teachers’ 
perspectives about the nature of statistics and their use of real world investigations in their 
teaching that align with Pierce and Chick (2011) and Eichler (2011). 
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This project was designed to help Prospective Elementary Mathematics Specialists (PEMSs) 
negotiate their beliefs about mathematics teaching and learning amidst all of the other aspects of 
teaching, addressing the messiness of teacher beliefs while navigating their role as mathematics 
teacher and teacher leader. To do this, I take up poststructural theories of subjectivity to 
consider PEMSs as subjects whose beliefs about teaching and learning mathematics are always 
already entangled, impossible to think as separate or pre-existing. This reconceptualization gave 
PEMSs a space to address and navigate the tensions of beliefs and enactment. These tensions 
have been crafted into conversations, an accessible contribution to the literature. 

Keywords: teacher beliefs, teacher education – inservice/professional development 

Introduction and Significance 
For several decades now, teacher beliefs have been a focus in mathematics education 

research as well as the broader field of education. The basic rationale for this emphasis has been 
to understand how teacher beliefs about mathematics teaching and learning impact enacted 
instructional practices. In my thorough review of the extant literature, I found many studies that 
assert confirmation of an impact of teacher beliefs on practice; however, there is a growing body 
of empirical studies that complicates their influence (Fives & Buehl, 2012; Skott, 2015). In this 
dissertation study, rather than attempting to define teacher beliefs or dispute their impact, I 
reconceptualize teacher beliefs by writing a different story of beliefs as a doing, an entanglement, 
rather than a thing that can be reflected upon or distinguished. The purpose of this work is to 
produce new knowledge about teacher beliefs to help mathematics researchers address the 
documented difficulty in measuring the relationship between teacher beliefs and practice 
(Charalambous, 2015; Leatham, 2006; Schoenfeld, 2015). This project was designed to better 
help Prospective Elementary Mathematics Specialists (PEMSs) negotiate their beliefs about 
mathematics teaching and learning amidst all of the other aspects of teaching, addressing the 
messiness of beliefs (enacted) while navigating their role as mathematics teacher and teacher 
leader. To do this, I take up posthuman and poststructural theories of subjectivity and 
methodology to consider PEMSs as subjects (selves) whose beliefs about teaching and learning 
mathematics are always already entangled, impossible to think as separate or pre-existing 
(Derrida, 1967/1974). This reconceptualization gave PEMSs a space to address and navigate the 
tensions of teacher beliefs and their practice. These tensions have been crafted into conversations 
(Bridges-Rhoads, 2011; Davies, 2009; Shor & Freire, 1987), including creative analytical 
practices/processes (CAP) like narratives and poetry (Richardson, 1997), which is perhaps more 
accessible, contributing to the current conversation about teacher beliefs as well as extending it 
to address important issues of perspective and methodology (Koro-Ljungberg, 2015).  

Rigorous preparation programs like the one in this study are designed to broaden EMSs’ 
range of teaching practices, develop pedagogical competencies as described in the Principles to 
Actions: Ensuring Mathematics Success for All (NCTM, 2014), and prepare them to advocate for 
pedagogical shifts (AMTE, 2013). The preparation program is full of theory, teaching methods, 
and content knowledge intended to lead to enactment of such theory and methods in elementary 
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classrooms. Addressing these goals requires a degree of clarity and certainty about the 
experiences of PEMSs in their enactment, identifying and distinguishing shifts in pedagogy and 
beliefs. During my own preparation and in my own enactment, naming (and performing) my 
beliefs led me to deeply question the coherence of my EMS-identity. A poststructural perspective 
on the subject allows for movement rather than stability during a time of transition and 
enactment for PEMSs. Therefore, this study is significant because of the impact of EMSs’ 
(re)construction of teacher beliefs on themselves, their students, and others. More specifically, 
this study produces new knowledge for EMSs that might help them better navigate their role as 
teacher leaders, thinking about their beliefs about mathematics teaching and learning in a way 
that no longer limits their subject positions. Rather, EMSs can consider their instruction, 
pedagogy, and beliefs as intra-actions within the discourses that produce them. 

Data Collection, Analysis, and Preliminary Findings 
Three PEMSs engaged in this study, and data consisted of three classroom observations (two 

evaluative, one non-evaluative; nine total), two semi-structured individual interviews (six total), 
and three focus group interviews during a practicum course in a university K-5 Mathematics 
Endorsement program, as well as document analyses of observation protocols and professional 
portfolios both before and after completion by the university supervisor and PEMSs. Analysis 
consists of “thinking with theory” (Jackson & Mazzei, 2012). Such an analysis, which happens 
in writing (Richardson & St. Pierre, 2005), makes visible multiple ways of being and becoming 
subjects in mathematics education, enabling a story of teacher beliefs as entangled. 

For this study, I use writing as a method of analysis, which broadly speaking, uses writing as 
a way of knowing, thinking, organizing, and creating. It involves thinking and rethinking, 
reading and rereading of data and theoretical texts side-by-side, writing and rewriting as a 
cyclical process. Writing in this way is rigorous, and while it looks differently for every 
researcher, it often involves setting a systematic writing schedule in which we read theories 
again and again while reading and/or listening to transcripts, documents, and other data. In this 
process of writing and making meaning, stories and themes come about on the page. These 
preliminary findings are not fixed or final but rather coming about in the midst of different 
stories. In this process thus far, I have created poems, conversations between speaking subjects, 
and narratives, as well as other types of prose, collectively written from transcripts, field notes, 
hallway conversations, theorizations, journals (mine), reflections (theirs), emails, facial 
expressions, readings, documents, curriculum, student work—anything that, as MacLure (2013) 
says, “glows” in the research, sparking my wonder. This is the rigorous process of writing as a 
method of inquiry, where all of this is welcome to the page in the systematic daily writing that 
happens alongside readings of data and theory.  

I didn’t set out with any particular format in mind, but what emerged were conversations, 
often about tensions teachers were feeling in their beliefs and enactment. I started to explore 
what stories could be told when taking up this format of a conversation. This process of writing a 
conversation has illuminated, for me, when words are not enough to tell the whole story—when 
things feel missing, like how their bodies are exhausted, their classrooms are dark and confining, 
and ways that hands and eyes might say more than spoken words. I am writing in these silences, 
using my voice to add analysis, commentary, stage directions, environment, citations, and more 
questions. Below, I present a small excerpt, a preliminary finding, of a conversation about 
tensions with beliefs and expectations: 

Jill: I believe in the research. I believe in what I read and what we’ve experienced and what 
I’m seeing, but because our society in general is so test-driven, score-driven, 
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competition-driven, I just want the evidence to be there to support that I’m making the 
right decision. I just don’t want to mess this up and have all kinds of parents say that I 
ruined their children. They’re going to be fine on the test…  

Michael: Are they going to be fine on the test?  
Jill: Can any of us confidently say ‘oh, you just watch, at the end of the year my kids will be 

stronger, they will be better’? I’m not there yet. 
Maggie: We have to tread lightly, making an effort to stick with it. Just reading a book or, 

you know, seeing an article or something you feel inspired, but not equipped.  
Jill: But after going through this course, I do feel better equipped. One of my greatest 

concerns, though, is- what if I screw this up? What if I screw this up and I miss 
something and then they go on to fourth grade and they’re like, ‘whoever was in Jill’s 
class does not know how to add.’ I can’t do that. So knowing that even though I’m not 
following the teacher curriculum guide page by page, I’m still getting at the skills, I’m 
still getting at the concepts, I’m still equipping them to solve problems. That is probably 
the most rewarding thing I’ve experienced in years. CGI is powerful, you all know that. 
But painting that picture and showing that to people who haven’t seen it is hard.  

[There is heat behind two of Jill’s words– powerful and hard– that highlights the 
tensions she’s feeling. She describes CGI as powerful, with such enthusiasm, her 
voice drawn out and deep, that word met with emphatic nods and closed eyes. Yes, 
powerful. You can hear stipulation in her voice. By the time she reaches her last 
word– hard– her body reacts as if it’s just received a punch to the gut. The delivery of 
that word takes too long. Her shoulders slouch, her head hangs, her hands hit the 
table. Convincing people of that power, people with different expectations, is not just 
difficult; it’s exhausting.] 

Michael: Meeting everyone’s expectations feels impossible. 
 

These tensions are what is driving my reconceptualization of teacher beliefs as an 
entanglement that we negotiate again and again, impossible to disentangle. By paying attention 
to ways teacher beliefs are in-tension with these other aspects of teaching, I am not only 
extending the current conversation about teacher beliefs but also offering a different and 
responsive way for teachers (and teacher educators) to prepare for those tensions.  

A preliminary summary of my findings includes a collection of conversations aimed at these 
ways I am seeing beliefs-entangled: (a) beliefs as effecting others, like students and colleagues, 
as well as practice and feelings; (b) beliefs as (not) mattering, feeling defeated by scripted 
curriculum, like their beliefs don’t matter, while at other times it felt like their beliefs were all 
that mattered; (c) beliefs as exhausting on bodies and on attitudes, impacting things like 
perseverance and dedication to enactment; and (d) beliefs in tension with differing expectations. 
These reconceptualizations are not linear or separate but recursive and overlapping in my 
analysis and writing of conversations. They allow beliefs-entangled to move amidst the many 
tensions. In writing these results as conversations, I am producing texts that can be read by both 
researchers and teachers. My hope is that this accessibility can help prepare PEMSs and teachers 
to be responsive to these tensions, recognizing them in their beliefs-entanglement, and better 
negotiate and thus navigate their practice and enactment. 
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Initial Implications 
I am finding some important stories that will contribute to the mathematics education 

research community. First, when preparing PEMSs, complicating the stability of teacher beliefs 
is allowing them to navigate the tensions they feel and see in their classrooms, schools, students, 
colleagues, and past experiences. Thus, this also has implications for preparing pre-service 
elementary teachers, as I myself came upon this problem of teacher beliefs because of my beliefs 
being questioned that first year I entered the classroom. Perhaps if pre-service teachers are 
prepared for those tensions and engage in conversations about beliefs as not static or concrete but 
moving and subject to surrounding discourses, they will be able to better navigate those early 
years, persevere in those struggles, and become better teachers for it. Further, perhaps by 
reconceiving of teacher beliefs as move-able and adaptable, teachers can feel more autonomy 
over their beliefs and practice, and less teachers will be pushed out of the classroom by feelings 
of inflexibility and inadequacy. These initial implications for the mathematics education research 
community suggest another implication—a call for different and innovative methodologies in 
mathematics education research. Perhaps studies like this one, by opening up different 
conversations, can offer a responsive call to mathematics teacher education. 
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Small groups (SG) is a space where three aspects, such as mathematical thinking, status, and 
funds of knowledge, come into play. How teachers draw upon these three aspects in facilitating 
small group work is shaped by what teachers notice. Researchers have used the professional 
noticing framework (Jacobs, Lamb, & Philipp, 2010) to understand teachers’ noticing of 
students’ mathematical thinking. This paper proposes a teacher noticing framework based upon 
Louie (2017) and Jacobs and her colleagues (2010) to expand teacher noticing for facilitating 
SG. 

Keywords: Equity and Diversity, Teacher Education-Inservice/Professional Development, 
Teacher Education-Preservice 

Introduction 
How do equity-oriented teachers make instructional decisions when facilitating small groups 

(SG) in mathematics classrooms? Our attempt to answer this question was predicated upon our 
experiences as former teachers when we recognized that we often noticed more than students’ 
mathematical thinking when using SG. Through reviewing the literature on teacher noticing we 
learned that research-based descriptions of what teachers notice in SG contexts are limited and 
that current teacher noticing frameworks are not sufficient to understand teachers’ instructional 
decisions when working with SG. 

Recent research analyzes individual teachers’ cognitive processes that contribute to noticing 
students’ mathematical thinking along conceptual learning trajectories. SG, however, have both 
mathematical and social goals (Cohen & Lotan, 2014; Davidson, 1990). To achieve these goals, 
teachers may notice students’ mathematical thinking, funds of knowledge, and status 
simultaneously while working with SG. As such, we argue that more work is necessary to help 
researchers understand how teachers balance these aspects. This paper proposes a teacher 
noticing framework that can help researchers more fully understand how teachers make 
instructional decisions when facilitating SG. 

Theoretical Framework 
The Noticing in Small Groups framework (NSG framework, Figure 1) is an attempt to 

conceptualize teacher noticing in the context of SG. Louie’s (2017) concern about research on 
teacher noticing was that this research tended to emphasize individual teachers’ cognitive 
process of students’ mathematical thinking and ignore the contextual factors that may influence 
what teachers notice. Notwithstanding, we felt that focusing on teachers’ cognitive process per se 
is not necessarily problematic in particular relation to SG. We agree with Louie (2017) that “the 
cognitive focus of existing literature obscures cultural and ideological obstacles to noticing 
students’ mathematical thinking and strengths” (p. 56). When considering SG we concur with 
Louie (2017) that there is more to negotiate than students’ mathematical thinking. The NSG 
framework highlights three aspects of SG to illustrate what equity-oriented teachers more likely 
notice when facilitating SG. 

In the NSG framework, three aspects of SG are 1) mathematical thinking, 2) status, and 3) 
children’s funds of knowledge. Prior work on professional noticing suggests that teachers’ 
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noticing competency of students’ mathematical thinking holds promise for advancing students’ 
mathematical understanding (Jacobs et al., 2010) and therefore we have kept this aspect in the 
NSG framework. In SG, students are expected to work together, while “asking questions, 
discussing ideas, making mistakes, learning to listen to others’ ideas, offering constructive 
criticism, and summarizing discoveries in writing” (NCTM, 1998, p. 78). This quote brings into 
the imagination students working smoothly in SG with shared social and intellectual authority. In 
reality, however, students’ status, “hierarchies where some members are more active and 
influential than others” (Cohen & Lotan, 2014, p. 27) may shape whose ideas are taken or 
ignored in SG (Cohen & Lotan, 2014). Funds of knowledge are "the historically and culturally 
based knowledge, skills, and practices found in students’ homes and communities" (Turner & 
Drake, 2016, p. 32). Research has demonstrated that teachers’ consideration in planning and use 
of students’ funds of knowledge helps students to make sense of mathematical ideas (Turner & 
Drake, 2016). For these reasons we have added status and funds of knowledge to be included 
alongside mathematical thinking in the NSG framework. We think of these aspects to support 
one another, like in Figure 1, where each aspect of SG takes one side of each triangle. The 
triangle represents an interrelationship among these aspects because without one side the other 
two sides cannot stand. Thus, these aspects may be noticed simultaneously in order to support 
equitable teaching in the context of SG. 

 
Figure 1: Noticing in Small Groups framework 

The NSG framework draws upon professional noticing (Jacobs et al., 2010). Professional 
noticing of children’s mathematical thinking consists of a set of the three components: (1) 
attending to children’s strategies, (2) interpreting children’s understandings, and (3) deciding 
how to respond on the basis of children’s understandings. Turner, Drake, McDuffie, Aguirre, 
Bartell, and Foote (2012) adapted Jacobs and colleagues’ professional noticing to address both 
mathematical thinking and children’s funds of knowledge. The NSG framework builds on their 
adaptation in that it adds a third aspect, status, which influence the dynamics of SG (Cohen & 
Lotan, 2014).  

The circular arrows in Figure 1 represent how the teachers’ noticing process pertaining to 
intervention in small groups works in the NSG framework. These processes do not necessarily 
happen in any given order, such as, from attention, to interpretation, and to decisions about how 
to respond, nor begin with any specific component (i.e., attending may not always occur first). 



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

420 

For example, within the context of SG, a teacher may first interpret unequal participation as an 
issue of status; the teacher may then attend to the both status and funds of knowledge by eliciting 
from the low-status student an experience he/she has that will be beneficial to the group, which 
in turn assigns competence. If the unequal participation is first interpreted as related to 
mathematical thinking a different intervention is likely to occur. Alternatively, a teacher may 
first attend to a student’s use of funds of knowledge and decide to highlight his/her mathematical 
thinking to position the student as competent among the group members. The inclusion of status 
and children’s funds of knowledge into the NSG framework can invite teachers to be more 
responsive to students’ multiple ways of being mathematically smart. 

Illustrative Example 
In order to understand the limitations of using professional noticing framework (Jacobs et al., 

2010) and further understand the affordances of the NSG framework, we provide an illustrative 
example from existing research. While reading research regarding SG, we recognized that the in-
the-moment decision making process for teachers’ facilitation was absent. Although we 
recognized this absence among several research articles, the transcript from Wood (2013), 
below, highlights well what we recognized.  

Wood (2013) studied the participation of one group of fourth grade mathematics learners to 
understand how students’ mathematical identities can shift within and across lessons. She 
considered how the in-the-moment identities created or limited opportunities for mathematical 
learning. In this exchange the teacher asks a student, Jakeel, for his mathematical reasoning on 
the group’s task of finding the area of a right isosceles triangle drawn on grid paper: 

 
Teacher: What’s the area of J? [The teacher looks at Jakeel.] 
Jakeel: The sum is um [Jakeel points at figure K on his paper.] 
Teacher: What is it? Tell me what it is. 
Jakeel: Eight [The area of J is 8 squares.] 
Teacher: How is that 8? I can’t tell that’s 8. 
Jakeel: Because one, two, three, four five, six, seven, eight, nine, t–. [Jakeel points to the 

spaces in figure J as he counts. He points once at each space, including the small triangles 
in figure J, with the pink of his right hand. Because he counts each of the triangles as one, 
he arrives at a number bigger than 8.] Hold on. [Jakeel points at each space in K with his 
pinky. This motion suggests that he is silently counting.] 

Rebecca: Can I tell him? [Rebecca talks to the teacher. The teacher then leaves.]  
(Wood, 2013, p. 798). 
 
Prior to this interaction among the teacher, Jakeel, and Rebecca, Wood described the way in 

which the students in Jakeel’s group had relegated him to the role of a scribe which limited his 
opportunities for learning. Here, “Jakeel’s shift back to mathematical explainer seemed to be tied 
to the teacher’s positioning” (Wood, 2013, p. 798). We are left wondering, what did the teacher 
notice before posing the question to Jakeel? If the prior interactions between Jakeel and his 
group were noticed by the teacher, how were those events interpreted? Wood continues to 
explain that, “Jakeel’s reidentification as mathematically capable was not an isolated event. 
During the remainder of the lesson, the teacher returned to the group three times, each time 
positioning Jakeel as a mathematical explainer by asking him questions about the area of the 
figures” (p. 799). Wood’s interpretation suggests that the teacher was simultaneously noticing 
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status issues occurring in the group and recognizing the mathematical contributions of the group 
members.  

To be clear, Wood’s intent of her analysis was not to better understand the decision-making 
process involved in the teacher’s instructional moves; her purpose was to understand how 
students’ opportunities for learning are mediated by the way they are positioned by peers and 
teachers. Our brief analysis demonstrates that a framework to understand teachers’ facilitation of 
SG work that is not based solely on students’ mathematical thinking can provide new insights.  

Conclusion and Implications 
To create the NSG framework we have looked across prior research focused on teacher 

noticing of students’ mathematical thinking. Acknowledging that the teacher noticing framework 
is not enough to understand what teachers notice in the contexts of SG, we proposed the NSG 
framework as a way to better understand teachers’ instructional moves by attending to what 
researchers document is important in mathematics teaching and learning: 1) mathematical 
thinking, 2) status, and 3) children’s funds of knowledge. We propose this framework as a means 
to look ahead in order to initiate a discourse on the noticing practices of teachers when working 
with SG, including how the noticing practices during SG compare with the noticing practices 
during other modes of instruction.  

The NSG framework will allow researchers to better understand how teachers attend to, or 
not, issues of status and children’s funds of knowledge in order to explain the instructional move. 
Furthermore, the NSG framework may be useful for teacher educators to scaffold prospective 
and practicing teachers to facilitate SG while developing the dispositions to attend to and 
respond to small groups in productive ways. In this regard we see that the NSG framework may 
help develop visions of equitable mathematics teaching that go beyond content knowledge and 
pedagogical content knowledge, which will begin to address the concern of Louie (2017).  
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This study describes the processes of solving a Model-eliciting activity called the Avocado 
Cultivation. The goal is to examine the potential of the activity in supporting mathematical 
knowledge and rethinking the mathematical learning in this new age. The theoretical framework 
was the Models and Modeling perspective. Eight Mexican teachers took part in this qualitative 
research. They were teaching at high school. The findings indicate that MEA provides 
opportunities for teachers to modify, extend and refine ways of thinking, validate the estimation 
to predict situations, and confront traditional ideas. 

Keywords: Model eliciting activity, Teachers Knowledge, Linear and Exponential Models 

Introduction 
Creating a mathematical description or model to understand, explain, communicate, and 

predict a situation is not an easy task. Without basic knowledge and certain mathematical 
abilities and skills, people can make wrong decisions such as choosing the wrong credit card or a 
home loan, or even having difficulties to understand situations. What is the needed mathematical 
knowledge that education must provide to citizens in this new age?  

The concepts of function and variation are useful to understand a variety of situations and 
phenomena. But many students have difficulty understanding them (Ärlebäck, Doerr, and 
O’Neil, 2013; National Council of Mathematics Teachers [NCTM], 2011), using algebraic 
notation, and connecting with representations such as graphs or data tables. A concept may not 
be learned in isolation from other concepts, phenomena and related processes. How should 
activities be designed to support the integration of knowledge and abilities? What characteristics 
should they have? According to Models and Modeling perspective [MMP], Model-eliciting 
Activities [MEA] allow the construction and integration of mathematical knowledge and abilities 
(Doerr and Lesh, 2003). 

Some years ago, a group of researchers from México, began a project whose goals were 
modifying, extending and refining ways of thinking about teaching and learning process (Vargas, 
Cristóbal, Carmona, Reyes, & Alvarado, 2014). The interest was the development of knowledge 
and abilities about mathematical concepts as function and variation. The theoretical framework 
was Models and Modeling perspective (Lesh and Doerr, 2003). Researchers adapted and 
designed models-eliciting activities to Mexican contexts. They created workshops for teachers 
and students where they problematized the nature of mathematics learning.  

In this study we present one of the MEAs designed to develop mathematical knowledge 
about variation, function and equation. The activity was about the problem of deforestation. We 
describe the teacher’s processes of solving the MEA to know the potential of the activity. The 
research questions were the following. What happens when the math teachers solve the MEA? 
How do they engage in mathematical activity? How can we assess the potential of the activity 
using the six principles to design a MEA?  

Theoretical framework 
According to Models and Modeling Perspective learning mathematics is a process of 
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developing models that are continuously modified during the interaction between the student and 
a problematic situation (Lesh & Doerr, 2003; Lesh, Yoon & Zawojewski, 2007; Doerr, 2016). 
The process of construction of models is a social process. The communication in the classroom 
between the students and the teacher permits that the conceptual systems or models can be 
shared, manipulated, modified and reused, to describe, interpret, construct, manipulate, predict or 
control systems.  

The MMP proposes that students solve situations close to everyday life, including the so-
called Model-Eliciting Activities, which are designed by following principles as the Reality 
Principle, the Model Construction Principle, Model Documentation Principle, the Self-
Evaluation Principle, the Model Generalization Principle, the Simple Prototype Principle 
(Doerr, 2016). These activities require that students develop a mathematical interpretation, which 
require different ways of thinking about the situation.  

The process demands posing questions, formulate conjectures, quantify information, organize 
and analyze data, do calculations, establish relationships, apply procedures, create 
representations, develop criteria, and evaluate results. The students have to express, test and 
refine their ways of thinking about the situation. They create sharable, manipulatable, 
modifiable, and reusable conceptual tools. 

The product of learning is not the model but the process of its construction. “Learning 
mathematical content occurs through the process of developing an adequate and productive 
model that can be used and re-used in a range of contexts” (Doerr, 2016, p. 198). The models 
reside in the mind and in the representational media. The “meanings associated with a given 
conceptual system tend to be distributed across a variety of representational media” used to 
interpret the situation (Lesh and Doerr, 2003, p. 12).  

Methodology 
The research was qualitative. The data were collected from eight high school teachers 

(Teams M, N and P). They solved two MEAs during a workshop. The MEA discussed here is 
called: The Cultivation of Avocado (MEA1). The second MEA was called: Reforestation 
Proposal. The goal of MEA1 was to support the modification and extension of the teachers' 
conceptual system around the concepts of function, variation, equation, rate of change, and 
unknown; to put them in situations where they had to interpret, explain, justify, and evaluate the 
“goodness” of the models, as Models and Modeling perspective suggest. And finally, we 
designed the MEA to raise awareness of the problem of deforestation in Michoacán, México. 
The six principles of the MEAs construction were used to create the activity because we were 
interested in provoking that teachers a) created sharable, manipulative, modifiable, and reusable 
conceptual tools; b) expressed, tested and refined their ways of thinking about what learning 
mathematics and function, variation and equation concepts mean.  

The MEA was about the effect of growth of avocado crop in Michoacán forest. We used 
information taken from Michoacan state’s official documents (Comisión Forestal del Estado de 
Michoacán, 2014) and national newspapers, such as Greenpeace journal. Data about the 
historical deforestation since 1976 was also included. Solving the problem required to estimate 
numbers because the data came from several sources, so there were different quantities.  
The implementation of the MEA lasted four hours. The phases, following Lesh and Doerr (2003) 
recommendations, were: 1) Newspaper individual reading activity; 2) Resolution in small groups 
(M, N and P); 3) Group discussions of models; 4) Individual problem solving. The qualitative 
data sources included audio and video clips from the two sessions, letters with procedures to 
solve the activities, photographs of procedures performed on the blackboard, and teacher's notes.  
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Results and discussion 
In this section, the models created by the small groups/teams of teachers are described. It is 

explained how students were engaged in the model-eliciting activities and the potential of the 
activity was assessed to get the meanings using the six principles to design a MEA.  
Newspaper individual reading activity  

Since the teachers were from Michoacan, and were near the forest, they knew that problem 
(MEA1) was a real-life situation. So, the eight teachers made sense of it based on their personal 
knowledge and experiences (Reality Principle).  
Resolution in small groups 

There were two types of models: linear algebraic model, and exponential tabular and graphic 
model. Teams M and N developed a description, explanation, and prediction of the forest 
deforestation situation (Model Construction Principle). They created models in paper and pencil 
environment. A variety of representation systems (concrete, graphic, and symbolic) were used to 
describe and illustrate relationships, operations and patterns. The concepts of function, variation, 
equation, rate of change, and unknown were used. However, the team P decided that the problem 
could not be solved because the information was not accurate.  

The teachers of the team M created numerical and graphic representations.  
Teacher M3: What would I do here? Well… For example I would make a graph, in which it 
would…. Since when have you done this study? 

They predicted that in 40 years there would be 147,000 hectares of avocado, almost equivalent to 
the existing forest. The exponential model was based on several assumptions. 

The teachers of the team N created numerical and algebraic representation. The conclusion of 
the team N was: "the forest will disappear before the year 2189, but only if the deforestation does 
not increase year after year". They proposed the function . 

These responses revealed how they were thinking about the situation and how they used 
variables, linear and exponential functional relationships, graphical and algebraic 
representations, and equations (Model Documentation Principle). 
Group discussions of models  

The working group discussion highlighted the value of the models. The teachers modified, 
extended and refined their ways of thinking about the problem and the model. The eight teachers 
assessed the usefulness of alternative responses (Self-Evaluation Principle). They were able to 
judge for themselves when their responses were good enough.  

The teacher M1 explained that the linear model could be applied to a broader range of 
situations (Model Generalization Principle).  

Teacher N1: So, I checked the data that we have, and an exponential model cannot be done, 
can it? It is a lineal model, and it is not good in a long term, but it gives us a good idea.  

He mentioned that the process of estimating was a transferable and reusable way of thinking. 
The solution provided a useful prototype for interpreting a variety of other structurally similar 
situations (Simple Prototype Principle).  
Individual problem solving activity  

Six teachers described a linear model as procedure to solve the situation. One teacher wrote 
that it was not easy to elaborate a model from the data –he referred to build it with precision. The 
other teacher mentioned that the exponential model was the most adequate. All the teachers 

y = −800x +145344
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commented that undoubtedly, the forest would disappear, but it was difficult to know exactly 
when, due to the lack of precise data in the problem.  

Conclusions 
What happened when the math teachers solved the MEA? The teachers were confronted with 

traditional perceptions of solving routine problems in the classroom that needed a unique 
solution. The team P was an example, because they did not validate the process of estimation. 
However, the communication during the teamwork and the group discussion allowed modifying, 
extending, and refining mathematical knowledge (variation, function and equation), 
mathematical abilities, such as estimation, because the teachers had to choose and discriminate 
information. The six principles to design a MEA were fulfilled, we had enough information 
about the evolution of the teacher’s knowledge and the eight teachers learned about the 
importance of inciting students to create models to learn mathematical knowledge and abilities. 
Although it is important to note that this was due to group work. 

It was found that this MEA was interesting for all the teachers. They exhibited new ways of 
thinking about learning mathematics, and it emerged a strong interest in applying this kind of 
activities in the classroom to encourage mathematical learning (function, variation, equation, 
linear and exponential relations and estimation), to raise awareness of the problem of 
deforestation, and to develop abilities to interpret, explain, justify, and evaluate models.  

Acknowledgments  
Acknowledgments to the project: Learning function, equation and variation concepts and the 

development of skills and abilities to solve problems, financed by PRODEP (UDG-PTC-1377, 
511-6/17-8091, 2017). 

References  
Ärlebäck, J. B., Doerr, H., & O'Neil, A. (2013). A Modeling Perspective on Interpreting Rates of Change in 

Context. Mathematical Thinking and Learning, 15(4), 314-336. 
Comisión Forestal del Estado de Michoacán (2014). Inventario estatal forestal y de suelos Michoacán de Ocampo 

2014. Morelia: Gobierno del Estado de Michoacán. 
Doerr, H. M. (2016). Designing Sequences of Model Development Tasks. In C. R. Hirsch & A. R. McDuffie (Eds.), 

Annual Perspectives in Mathematics Education 2016: Mathematical modeling and modeling mathematics (pp. 
197-205). Reston, Va: National Council of Teachers of Mathematics. 

Greeno, J. G., Collins, A. M., & Resnick, L. B. (1996). Cognition and Learning. In D. C. Berliner & R. C. Calfee, 
(Eds.), Handbook of Educational Psychology. New York: Macmillan. 

Lesh, R. & Doerr, H. M. (2003). Foundations of a models and modelling perspective on mathematics teaching, 
learning, and problem solving. In R. Lesh, & H. Doerr (Eds.), Beyond constructivism. Models and Modeling 
perspectives on mathematics problem solving, learning and teaching (pp. 3-34). Mahwah, NJ: Lawrence 
Erlbaum. 

Lesh, R., Yoon, C., & Zawojewski, J. (2007). John Dewey revisited: Making mathematics practical versus making 
practice mathematical. In R. A. Lesh, E. Hamilton, & J. J. Kaput (Eds.), Foundations for the future in 
mathematics education (pp. 315-348). Mahwah, NJ: Lawrence Erlbaum Associates. 

National Council of Teachers of Mathematics. (2011). Developing essential understanding of expressions, equations 
and functions. Reston, VA: National Council of Teachers of Mathematics. 

Vargas, V., Cristóbal, C. Carmona, G. Reyes, J. & Alvarado, A. (2014). Campus Viviente Quintana Roo. In Ramos 
M. y Aguilera V. (Eds.), Experiencias en la formación y operación de Cuerpos Académicos, 22-30. México: 
Ecorfan.  

  



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

426 
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This study investigated what two high school teachers viewed as useful from a mathematics 
professional development (PD) program and how these views influenced their instructional 
practices. The teachers participated in PD that focused on using standards-based pedagogy and 
mathematical tasks with higher-level demands. The teachers commonly viewed mathematical 
tasks for use in the classroom and strategies for small group or whole class participation as 
useful features of the PD. Each of the PD features that teachers viewed as useful were enacted 
during instruction. These findings suggest that providers of PD for K-12 teachers of mathematics 
should learn teachers’ views about the usefulness associated with PD programs to improve 
outcomes. 

Keywords: professional development, academic standards, secondary mathematics 

Research has documented that standards-based instruction in mathematics can be challenging 
for teachers to enact (e.g. National Council of Teachers of Mathematics (NCTM), 2014). 
Changes in teacher practice can be linked to teachers’ perceptions about PD (Chapman, 2011; 
Martin & Gonzalez, 2017). This research investigated the question, what do teachers view as 
useful from a PD program designed to help teachers implement standards-based mathematics and 
how do these views influence their instructional practices? 

Theoretical Framework 
Stein, Remillard, and Smith (2007) describe the temporal phases of curriculum use. The 

written curriculum represents the design of materials, the intended curriculum represents teacher 
interpretations, and the enacted curriculum refers to what occurs during instruction. Learning 
opportunities are transformed among the phases due to teachers, students, and the context of 
teaching (Stein et al., 2007). The National Governors Association Center for Best Practices and 
the Council of Chief State School Officers (NGACBP and CCSSO) (2010) identified eight 
standards for mathematical practice that “describe varieties of expertise that mathematics 
educators at all levels should seek to develop in their students” (p. 6). The NCTM (2014) 
outlined eight mathematics teaching practices that “provide a framework for strengthening the 
teaching and learning of mathematics” (p. 9). The temporal phases of curriculum use and the 
sixteen mathematical practices were used as frameworks to classify curriculum use. 

Methodology 
This research is part of a larger study (Walker, 2016) that investigated factors that influenced 

mathematics instructional practice when participating in PD. A multiple-case study design 
(Merriam, 2009) was used to collect and analyze data on teachers’ views of useful features of 
PD. The PD program for this research was Teaching Algebra with Practice Standards (TAPS). 
Fifteen middle and high school mathematics teachers participated in TAPS. Four of the fifteen 
teachers, all from one high school, volunteered to participate in this research. This summary 
focuses on two teachers who taught algebra. 
Data Collection 
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Data sources used to describe the PD included field notes from the PD sessions and email 
interview responses from the PD providers. Data for instructional practices consisted of two 
observed and videotaped lessons for each teacher. The Wisconsin Longitudinal Study 
observation tool (Shafer, Wagner, & Davis, 1997), adapted to include the sixteen mathematical 
practices, was used for the observations.  

The teachers were interviewed five times using adapted protocols (Shafer, Davis, & Wagner, 
1997, 1998). The first interview took place in the summer after the PD to learn what each teacher 
found to be useful about the PD. The next two interviews took place during the first half of the 
school year. These interviews were before and after the first observed lesson to learn the 
teachers’ views about the intended lesson, the enacted lesson, and how the PD related to the 
lesson. The final two interviews took place during the second half of the school year, before and 
after the second observed lesson. Influence on instruction was determined by comparing 
classroom observation notes with the portions of the PD that teachers identified as useful. 
Data Analysis 

Classroom observation data were used to describe the alignment between each teacher’s 
enacted instruction and the sixteen practice standards. Lessons were classified as no evidence, 
sometimes, or yes. Reliability was checked with an independently classified lesson by 
calculating a Krippendorff’s (2004) alpha value of 0.8223. Each of the teacher interviews were 
analyzed using an inductive approach of comparative pattern analysis to create a category coding 
system (Merriam, 2009). The reliability of the coding system was checked with independent 
coding by calculating the percent of agreement, which was 90%.  

The PD Program 
TAPS was a three-year, grant-funded mathematics PD program with two goals: (a) enrich 

teachers' knowledge and skills for teaching algebra, and (b) improve students’ algebraic 
knowledge, skills, and disposition. Learning about the sixteen mathematics practice standards 
and finding ways to implement them in classrooms were the main teaching points for the PD. 
The PD also included the use of mathematical tasks with higher-level cogitative demand (Stein, 
Smith, Henningsen, & Silver, 2000). TAPS started with a ten-day institute in June 2015. Sample 
lessons and activities about patterns, relationships, and generalizations were used to help teachers 
learn about the mathematical practices. Three two-hour after school follow-up sessions took 
place during the school year. A total of eighty-six hours of PD were provided for the teachers. 

Teacher 1: Doug Collins 
Doug Collins was a male with thirteen years of teaching experience. This was his second 

year at the high school and he taught Algebra 1 and Geometry. During the interviews, Mr. 
Collins made five comments about the usefulness of receiving activities for his class. For 
example, when asked what was useful about the PD he stated, “For me I think it was really kind 
of learning, getting some of the different activities and things that you can do.” Mr. Collins also 
made four comments about strategies for students working together as useful. For example, Mr. 
Collins was asked what features of the PD he would use and he replied, “Partner work, group 
work, giving [the students] a certain task.” 
Doug Collins: Enacted Curriculum 

The first observed lesson was a task that Mr. Collins developed during the PD. Each student 
was given an algebraic expression on either a gold or a green piece of paper. Mr. Collins 
explained that a student with a gold sheet should find a student with a green sheet. They would 
set their algebraic expressions equal to each other and then find a value for the unknown that 
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would make the equation true. The students worked in pairs on this activity for thirty-five 
minutes. They checked answers with each other and explained methods used to find an answer. 

In the second observed lesson, Mr. Collins used a modified version of “Bridge Strength” 
(Lappan, 2005), which was presented during the PD. At the beginning of the lesson, he asked the 
students to find a partner and to gather materials for the lesson. They suspended paper bridges 
across two books, placed pennies on the bridges, and recorded the number of pennies required to 
collapse each bridge. When data collection was complete, the students made graphs and 
answered questions about the activity. 
Doug Collins: Summary 

The two observed lessons included features consistent with the practice standards like 
making sense of problems and persevering in solving them. These features were evident when 
the students worked in pairs to find solutions. Mr. Collins identified providing activities for his 
class and students working together in small groups as useful features of the PD. He used one 
mathematical task that he developed during the PD and another the PD providers presented. Both 
of the features that Mr. Collins identified as useful were observed as part of the enacted 
curriculum in his class. 

Teacher 2: Ruth Lawrence 
Ruth Lawrence was a female teacher with nine years of teaching experience, eight of them at 

the high school. At the time of this research, she was teaching Algebra 1 and Geometry. Ms. 
Lawrence made eleven comments about the PD providing activities for her class. For example, 
when she was asked what was useful about the PD she responded, “The tasks that you guys 
showed us were … they were just the best tasks that I have ever been exposed to.” There were 
four comments by Ms. Lawrence that strategies for students working in small groups was useful. 
When asked about using practice standards in her class Ms. Lawrence replied, “I feel like there 
was … one [standard] that referred to students discussing math together, like collaborative. I 
would definitely say that that would be done.” 
Ruth Lawrence: Enacted Curriculum 

The first lesson took place over two days. The lesson involved an “S-Pattern” task (Institute 
for Learning: Learning Research and Development Center, 2015) from the summer PD. Ms. 
Lawrence asked the students to get into pairs and answer questions about the patterns. The 
groups answered questions about representing the total number of squares algebraically until the 
end of the class. The next day, Ms. Lawrence asked different students to share the equations they 
created with the whole class. 

The second lesson also took place over two days. The task was the “Painted Cube” (Lappan, 
Fitzgerald, & Fey, 2006) from the summer PD. Ms. Lawrence asked the students to get into 
small groups and complete a worksheet about painted cubes with edge length two, three, four, 
five, six, and any length “n.” The students used snap-cubes to build models and worked in 
groups to complete the worksheet. The next day Ms. Lawrence invited students to share 
algebraic expressions for a cube with an edge length of “n” with the whole class. 
Ruth Lawrence: Summary 

The two observed lessons included features consistent with the practice standards like using 
and connecting mathematical representations. These practice standards were evident when the 
students worked in small groups to find algebraic expressions to represent visual patterns. The 
two useful features of the PD identified by Ms. Lawrence were providing mathematical tasks for 
the class and students working together in small groups or as a whole class. Each of the observed 
lessons included a task from the PD and students were observed participating in small group 
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work and whole class discussions. 

Discussion and Implications for PD 
The two teachers commonly identified mathematical tasks for use in the classroom and 

strategies for small group or whole class work as useful features from the PD. Each of the useful 
features were observed when the teachers enacted lessons aligned to the PD. For example, each 
teacher viewed mathematical tasks for their class as useful and both teachers used tasks from the 
PD during instruction. This finding is consistent with Martin and Gonzalez (2017) who found 
that teachers valued focusing on student mathematical thinking and reported increased wait time 
because of a PD intervention. 

Teachers play a critical role in the outcomes of PD. What teachers identify as useful reflects 
their practical knowledge and situated perspective (c.f. Chapman, 2011). PD that addresses 
features identified as useful and is consistent with teachers’ knowledge of classroom situations 
can result in instructional changes. PD providers should spend time learning about the practical 
knowledge of teachers and what teachers view as useful because these views influence how 
teachers will use the PD in their classrooms. 
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SUPPORTING AN INQUIRY STANCE WITH DOUBLE DEMONSTRATION LESSONS  
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Effective professional development (PD) activities positively influence participants’ classroom 
practices. However, ways in which teachers engage in PD activities vary widely. Farmer, 
Gerretson, and Lassak (2003) identified three levels of teacher appropriation for those involved 
in PD activities (practitioner, professional, and inquiry stances), with the inquiry stance 
indicative of teachers engaging in self-sustaining practices. We employed demonstration lessons 
in various forms as a way to explore classroom practices in an ongoing PD project. In the 
double demonstration lesson format, teachers took an active role in changing an observed lesson 
and then viewing impacts of those changes as a second lesson was taught. We offer evidence that 
this structure provided opportunities for teachers to engage in an inquiry stance on teaching and 
discuss implications for PD providers in structuring activities to foster an inquiry stance.  

Keywords: Teacher Education-Inservice/Professional development 

Professional development efforts should have the primary goal of supporting teachers in 
developing a vision for teaching that includes engaging students with challenging tasks and 
facilitating rich mathematical discourse (Loucks-Horsley, Stiles, Mundry, Love, & Hewson, 
2010; National Council of Teachers of Mathematics [NCTM], 2014). It should further encourage 
applying knowledge gained to analyze mathematics lessons, and interpreting and using students’ 
mathematical thinking to guide instruction (Sztajn, Borko, & Smith, 2017). Although a variety of 
PD models exist, demonstration lessons represent one form of PD that is situated within practice 
and, therefore, holds promise for meeting this goal (Loucks-Horsley et al., 2010). 

In this report, we present evidence of teacher stances from a variation on demonstration 
lessons, double demonstration lessons (DDLs), which we purposefully designed to engage 
teachers in an inquiry stance toward teaching. By engaging teachers who likely hold a 
practitioner or professional stance in the processes associated with DDLs, we offered them the 
opportunity to legitimately participate (Lave & Wenger, 1991) in the act of inquiry on teaching. 
This work is guided by the question: How might we design PD activities that support a teacher, 
who likely holds a practitioner or professional stance, in adopting an inquiry stance? 

Theoretical Framework 
To better understand the ways teachers appropriate knowledge gained from mathematics PD 

experiences, Farmer and colleagues (2003) offered a reflective three-level model, which included 
Practitioner, Professional, and Inquiry stances. They argued that although the levels consist of 
the same elements, how the pieces are viewed by the teachers creates the distinction among the 
levels. With a practitioner’s stance, the teacher focuses on specific ideas that can be taken from 
the PD and used with little modification in his or her classroom. In contrast, the teacher with a 
professional stance approaches the PD as an opportunity for professional learning. Finally, 
teachers who have adopted an inquiry stance see themselves learning from the process of 
teaching. Farmer and colleagues (2003) noted that teachers who adopt an inquiry stance exhibit 
“self-sustaining changes in their mathematics instructional practices” (p. 331).  

Introduced by Lave and Wenger (1991), situated learning theory espouses learning to be the 
result of “legitimate peripheral participation in communities of practice” (p. 31). Based on this 
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theory, the community of practice represents a group of experts that possesses the knowledge to 
be learned by the novice. Legitimate peripheral participation allows the novice learner to engage 
in the practices of the community, constructing the knowledge of the community over time.  

These two theories together form the conceptual framework that guides our work. We view 
teachers that have adopted an inquiry stance (Farmer et al., 2003) as the experts within a 
community of practice (Lave & Wenger, 1991), which is represented by our ongoing PD project. 
By designing PD activities that place novice practitioners (teachers who have adopted a 
practitioner or professional stance) alongside the experts in the community, the novice 
practitioners may engage in legitimate peripheral participation with the discussions of the 
community. The novice practitioners’ legitimate engagement aids movement towards developing 
an inquiry stance. We argue that DDLs provide this opportunity for engagement.  

Methodology and Context 
This study took place during the fourth and fifth years of a six-year externally funded PD 

project serving over 150 K-8 mathematics teachers. The overarching goals of the project were to 
increase the mathematical content knowledge of the teachers and to increase their use of 
research-based instructional practices. Demonstration lessons were employed in a variety of 
forms (Strayer et al., 2017) to help teachers better understand how to blend deep learning of 
content with research-based instructional practices. Double demonstration lessons emerged as a 
meaningful context for engaging teachers in an inquiry stance. To gain insight into how the 
structure of the DDL supported teachers in this way, we gathered and analyzed data on a subset 
of teachers along with other general data sources collected during DDLs.  

In a typical demonstration lesson, teachers were briefed on the lesson they were about to 
watch, watched a project faculty member teach a lesson to a class of students, and then 
participated in a debriefing of observations. We noticed in the early years of our project that 
teachers tended to view demonstration lessons with a practitioner’s stance. Thus, we developed 
what we refer to as DDLs with a goal of supporting teachers in developing an inquiry stance. 

Double demonstration lessons (Strayer et al., 2017) expand the typical demonstration lesson 
process to include revision of the lesson and an additional teaching and debriefing of the lesson. 
During the lesson briefing, teachers are made aware of the forthcoming opportunity to revise the 
demonstration lesson. Their observations of the demonstration lesson are supported through the 
use of an observation protocol. This combination of the protocol with the explicit goal of 
revising the lesson provides teachers with the opportunity to participate in processes associated 
with an inquiry stance, as they reflect on the initial lesson and collaboratively revise the lesson.  

In this report, we draw on data from one grades 3-5 DDL. The lesson involved students 
looking for and making use of structure in a linear systems problem (Riddell, 2016). During the 
DDLs, we collected multiple writing prompts from all teachers (e.g., entrance/exit tickets, 
observations guides, debrief documents) and interviewed four purposefully selected teachers 
before and after the lesson. In addition, we video-recorded the debrief and used this data to 
document teachers’ stances. We coded all data using Farmer and colleagues (2003) framework.  

Findings 
Written data documents revealed that teachers entered the PD with practitioner and 

professional stances toward the events of the day. For example, on entrance tickets teachers 
stated they hoped to learn “how to get students to persevere” (Tonya, Entrance Ticket) or “to 
gain insight on different teaching strategies” (Courtney, Entrance Ticket). The first evidence of a 
professional stance and the second a professional stance, both representative responses.   
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In contrast, we observed evidence of engaging in an inquiry stance in the debriefing 
discussions at the end of the day. The final group debriefing was prompted by the question, 
“What are the big ideas that you have in relation to today’s lessons?” Following the second 
lesson, teachers provided evidence of legitimately engaging in an inquiry stance, particularly as 
they addressed the role of scaffolding that was introduced as a revision to the lesson.  

Tonya: Does the scaffolding always help all students?  I think if the number had been higher 
they would have had to think about it longer, they just doubled. We didn’t think it made 
that big of a difference.  

Peter: What if we had given them this (see Figure 1). Now it leads them to think the pieces 
are different values. Since we have just two copies of the same thing, I don’t think they 
had to think about the value of each one.  

 

  
Figure 1. Scaffolding Question Revision 

Tina: We wanted students to see the value of the model of all the candies not individual 
candies. We talked about making it more than 3 tickets, but we didn’t want to take up too 
much time. The purpose was to see that this group (the two candies that total to 3 tickets 
in Figure 1), can be pulled into and assigned a value together, instead of separating them 
apart. So that you don’t have to know the individual prices. 

Tina and Peter continued to discuss the students in Lesson 1 and Lesson 2 and the differences 
in what the students noticed about the task in each fifth-grade class. During this discussion, the 
lead teacher exclaimed that the scaffolding question provided her exactly what she needed in the 
second lesson, because the scaffolding question gave her something to direct students’ attention 
so they were able to continue their thinking. Afterwards, the teachers shared more ideas. 

Kim: I do think if the previous class had the scaffolding problem, they would have gotten 
further. They were struggling to make the 10, by grouping them, they weren’t connecting 
them because they were still thinking about different values.    

Maggie: I really liked that everybody had an entry point. Every kid looked at that (the 
scaffolding question) and saw the structure, but it gave them something to hold onto that 
wasn’t beyond the limit. 

Mary: Structure, I don’t use that word. I say powers or groupings, but that’s a word I need to 
make sure I am bringing out in my class. I don’t think the students understood the word 
structure.   

Here, two of the PD instructors paused the discussion to elaborate on mathematical structure. 
As the PD team, we knew that the idea of structure was a complex concept, and we tried to 
attend to the difference between mathematical structure and organizational structure. We 
expressed that creating a structure (e.g., a table) to help notice patterns or numbers is different 
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than the structure underlying the featured problem. A teacher expressed her wondering relating 
to structure, followed by another teachers’ reflection about structure.        

Mona: The big idea was wondering if when the students first came I wonder if they 
understand what structure means, but not just a term, but what structure are they looking 
for, structure in what?  

Lindsay: It has taken a long time of teaching to pick up on structure myself and see how it 
relates to each component. Structure, as a whole, bridges across all content. It’s just 
making those connections because not being taught that way, it’s difficult for us as 
teachers. At the beginning (before Lesson 1), it’s interesting to see when we all 
personally solved that problem how many of us actually used the structure that we hoped 
the students would actually pick up on. I bet a majority of us were using algorithms or 
some equation or something to get us there as opposed to structure, because that’s not 
how most of us learned. Thinking about the use of structure is something I have to push 
myself to do.  

Throughout these exchanges, teachers were exploring student thinking and viewing the 
demonstration lessons as a place for inquiry about student learning, mathematics teaching, and 
their own understanding of the mathematics involved.  

Discussion 
Developing opportunities to engage in levels of practitioner, professional, and inquiry stances 

is the first step towards encouraging teachers to fully develop an inquiry stance on teaching and 
become learners of their own practice. By design, DDLs provide teachers with the opportunity to 
achieve three essential PD outcomes: taking ownership of the teaching through a problem-
solving vision; applying knowledge gained to analyze mathematics lessons; and interpreting and 
using students’ mathematical thinking to guide instruction. Furthermore, our results suggested 
that the DDL model allowed the teachers to take initial steps towards ownership of an inquiry 
stance, positioning them to make sustained changes in their instructional practices (Farmer et al., 
2003). If DDLs can support teachers’ development of an inquiry stance during PD activities, then 
teachers will be better prepared to analyze mathematics lessons and interpret and use students’ 
mathematical thinking to guide their instruction. Teachers will be empowered to implement 
mathematics instruction that supports the deep learning of mathematics for all students. 
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SEEING GOALS “COME TO LIFE”: TEACHING EXPERIMENTS AND TEACHERS’ 
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Shifts in student participation prompted by math teachers’ experiments with a new teaching 
strategy created opportunities for the teachers to learn about student perseverance. The practice, 
in which teachers asked students stuck on a math problem to share three things they know, 
achieved one desired goal and got students “unstuck,” but the teachers wondered whether the 
practice supported students to persevere in the sense of learning to draw on one another as 
resources. Through negotiation of a shared, new, and problematic experience in the classroom, 
the teachers problematized their prior conceptions of perseverance. 

Keywords: Teacher Education-Inservice/Professional Development, High School Education, 
Instructional Activities and Practices. 

Objectives 
This study examines four workgroup conversations of a team of high school math teachers 

studying how to improve student perseverance in math class. The teachers agreed do a teaching 
experiment in which they tried a teaching strategy that they hoped would help students struggle 
productively, together. In their workgroup conversations, they reflected on what they noticed 
while trying the strategy and the implications of their noticings for their joint goal. I analyze their 
workgroup conversations to better understand: 1) How do the teachers frame their learning goal, 
“perseverance,” across the meetings? and, 2) What do they notice about perseverance and its role 
in student learning of mathematics when they try their chosen teaching strategy? Preliminary 
analysis indicates that the shifts in student participation brought about by their use of this 
teaching strategy allowed problems of practice around perseverance to “come to life” for the 
teachers. Reflections on those problems of practice in workgroup conversations supported the 
teachers to negotiate teaching and learning mathematics.  

This study indicates that teams of teachers with limited expertise in ambitious mathematics 
teaching can problematize and discuss their classroom practice by experimenting with teaching 
strategies that they hypothesize will create richer learning environments for students. 

Background 
Teachers learn in professional workgroups by negotiating notions of teaching and learning 

with peers (Little, 2002). Teachers have more opportunities to learn from workgroup 
conversations when they reflect on problems of practice raised through analysis of records of 
practice (Horn, Garner, Kane, & Brasel, 2016). 

Different teaching experiences surface different problems of practice and, therefore, support 
different opportunities for teachers to learn. Horn and Kane (2015) found that teachers with more 
expertise in enacting ambitious mathematics teaching practices had richer workgroup 
conversations. Ambitious mathematics teaching puts teachers in complex problem-solving 
situations, in which students’ experiences and perspectives are constantly considered (Lampert, 
2010). Such situations should be conducive for teacher learning in the moment, as teachers 
grapple with problems, and in planning and reflection, as teachers consider the influence of their 
moves on students’ experiences of math and math class. 
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But what about teachers who do not have expertise in ambitious mathematics teaching? Horn 
and Kane argue that such teachers are caught in a paradox of not being able to learn because they 
struggle to do the teaching they aim to learn-- teaching that would put them in problematic 
situations and give them fodder to talk about students’ experiences of math and math class. This 
paper explores a possible way for leaders of professional development to support the workgroup 
conversations of such teacher: by engaging them in teaching experiments that introduce new, and 
potentially richer, forms of participation for their students. 

Such a use of teaching experiments has precedent in teacher education. Pre-service math 
teacher educators have suggested introducing novice math teachers to ambitious teaching in part 
because they hypothesize that novices who use them will find themselves in teaching situations 
requiring problem-solving (McDonald, Kazemi, & Kavanagh, 2013). Kazemi and Franke (2004) 
found that when elementary math teachers elicited more thinking from their students, 
opportunities to learn in their workgroup deepened. These studies suggest that changing 
opportunities for students to participate can open learning opportunities for teachers even when 
teachers are not experts in ambitious teaching. 

Methods 
This paper describes preliminary analysis in an on-going study. A department of four high 

school math teachers (Cindy, Leo, Soledad, and Jamie) in an urban California district met every 
two weeks as part of the TRU-Lesson Study (TRU-LS) professional development project. TRU-
LS engages departments of math teachers in Lesson Study, in which teachers iteratively research, 
plan, implement, and reflect on a lesson to learn more about a problem of practice, supported by 
the Teaching for Robust Understanding of Mathematics framework (Schoenfeld et al., in 
preparation). As part of TRU-LS, the four teachers engaged in bi-monthly cycles of inquiry 
leading up to their research lesson. The goal of these cycles was to iteratively build their 
research theme, a problem of practice, and theory of action, a hypothesis about what they could 
do in their research lesson to learn about their research theme. The teachers tried, collected data 
about, and reflected on an ambitious teaching strategy developed by the TRU-LS research team. 

This analysis focuses on their first four meetings of TRU-LS. I co-planned the meetings with 
the facilitator, Elizabeth, and attended and video recorded the meetings as a participant-observer.  

For my analysis, I isolated segments of video in which the teachers discussed what happened 
when they tried their chosen teaching strategy, up to twenty-five minutes of each hour-long 
meeting. I made activity logs of these segments, in which I identified episodes in which teachers 
shared records and problems of practice; negotiated uses of their chosen strategy; and/or revised 
their research theme and theory of action. I examined my logs for ways that teachers framed 
records of practice, problems of practice, and goals (Goffman, 1986) and patterns in their 
participation (Bannister, 2018). This analysis is preliminary.  

Analysis 
In their first department meeting, the teachers developed the research theme, “Building 

student perseverance/ capacity to struggle productively, together.” In order to gather information 
about their theme and see it, as Elizabeth said, “come to life,” the teachers agreed to try a 
strategy called Three Things: “If students are stuck on a problem, ask them to state three things 
they know about the problem and three things they are wondering about.”  

The teachers hypothesized that Three Things would help students who did not know how to 
get started on a problem realize how what they knew might be useful. The teachers also thought 
that Three Things might encourage students to explain their thinking. They hoped that it might 



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

436 

become a routine that students could eventually use to get unstuck without teacher intervention. 
In this discussion, they conceptualized “perseverance” as students’ capacity to continue working 
on a challenging problem after getting stuck. They acknowledged that collaboration and 
vocalizing thinking for peers are important for perseverance. What role talking with peers might 
play in supporting students to struggle productively was as of yet unarticulated, however. 

In the second and third sessions, the teachers revised Three Things and their goals for its use 
based on their experiences with students. In the fourth session, three of the four teachers 
described how Three Things encouraged more students to participate. Cindy reported that when 
she used Three Things in a whole-class discussion about a challenging problem, students who 
did not typically turn in written work were encouraged to talk. Jamie and Soledad described how 
Three Things helped students get unstuck on math problems. From this discussion, it seemed that 
Three Things helped the teachers support students to persevere in both the sense of getting 
students unstuck and encouraging them to share their thinking. 

Leo then challenged whether use of Three Things actually promoted collaborative productive 
struggle. He agreed that Three Things increased student participation, which was a positive step. 
But he argued that it shifted the burden to struggle away from students: 

“Um so I think that it (Three Things) increases student engagement. And that, sort of, 
decreases our opportunity to see persistence because they don’t run into that wall? You know 
what I mean? So in my mind persistence is you get stuck, and then you try something else, or 
you—there’s some strategy that you use. But we’re providing a way to—to avoid that 
resistance, to avoid the wall. So we don’t necessarily see the persistence.” 
Shifting the burden of coming up with a strategy to persevere from student to teacher, Leo 

argued, was contrary to their goal of supporting students to struggle productively, together. 
This comment led the teachers to revise their definition of “persistence,” which they used 

interchangeably with perseverance. They reflected on how persistence looks for students who 
experience math problems differently. Jamie summed up the distinctions they made:  

“Cause like, for some students, persistence means, I come to a grinding halt, I reassess, and I 
continue. For others it means, like, tinkering and continuing along? And for—and for others, 
they haven’t, because of where the cognitive demand is currently, they haven’t even come to 
that level of needing to persist.” 
Guided by the TRU framework, the teachers brainstormed experiences that might lead 

students to shut down. Elizabeth captured their thinking in this way: 

Cognitive Demand: “Why are we doing this? This is so hard. When do we get to the real 
math?” 

Equitable Access: Kids don’t feel like they have a toolbox 
Agency/Ownership/Identity: Fixed mindset—“I’m not good at math.” 
Building on this thinking, Soledad suggested that Three Things gave students “more access 

to content, less access to perseverance” by taking away the opportunity for students to build and 
draw on a toolbox. The other three teachers gave a thumbs-up as Elizabeth recorded this. Her 
comment and the discussion that followed teased apart two goals that they had for student 
perseverance. They wanted students to persevere so that more students had access to challenging 
mathematical content and practices. But they also wanted students to develop the tools to move 
through struggle together, without relying on a teacher. Three Things was not helping them 



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

437 

achieve this second goal for student perseverance. If perseverance means the capacity for 
students to struggle productively, together, having a teacher ask for three things did not help 
students develop that capacity. 

As a result, the teachers chose a new strategy, “Ask what your partner said.” When the 
teachers approached a group stuck on a challenging problem, they would ask one student to share 
what another member of a group thought or said about the problem. The teachers hypothesized 
that this strategy would encourage students to turn to one another as resources when they got 
stuck. This new strategy launched them into another cycle of inquiry, armed with deeper 
understanding of the goals for student perseverance in math class. 

Discussion 
Noticing shifts in participation as a result of teaching experiments can open opportunities for 

teachers to learn during workgroup conversations. The teachers’ lack of experience with teaching 
practices that put students’ experiences at the forefront was mitigated by a teaching strategy that 
supported the teachers to notice new forms of participation from their students. Further research 
into the interplay between teachers’ learning in workgroups and experience in the classroom is 
needed to better understand the learning opportunities in this kind of teaching experiment. 
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 Hill, Rowan, and Ball (2005) explored the effects of a specific type of teacher 
knowledge, mathematics knowledge for teaching. They found that “teachers' mathematics 
knowledge for teaching positively predicted student gains in mathematics achievement during 
the first and third grade” (p. 399). From the results of their work, the authors called for 
identifying teachers who have a diminished knowledge in this area and provide them focused 
professional development.  

To be effective, opportunities for teachers to grow in their understanding of mathematics 
knowledge for teaching must be persistent and long term (Garet et. al., 2001). One strategy for 
establishing long-term professional growth is the development of a specialized group of 
educators that situated in the school environment (Ansty & Clarke, 2010). Hull, Balka, and Miles 
(2009) describe an iteration of this specialized group as mathematics coaches, “an individual 
who is well versed in mathematics content and pedagogy and who works directly with classroom 
teachers to improve student learning of mathematics” (p. 3). Research suggests that mathematics 
coaches can have a positive impact on student achievement when there is “school-based 
professional interaction between coaches and teacher is of sufficient duration to permit 
emergence of coherent collective efforts marked by active learning and focused on content and 
pedagogy, as well as on student understanding.” (Campbell & Malkus, 2011, p.451). 

While mathematics coaches provide an opportunity to support effective mathematics 
instruction, it is less clear how mathematics coaches are currently being prepared and what their 
interactions are with practicing teachers (Campbell & Malkus, 2011). This study looked to gain a 
better understanding of the role of mathematics coaches by surveying superintendents and 
practicing mathematics coaches. Data gathered from superintendents focused on why school 
districts do or do not employ mathematics coaches, as well as the attributes they value in the 
position. Data from mathematics coaches focused on the ways in which they were prepared and 
utilized in their schools. Results suggest a positive perception of mathematics coaches form 
superintendents, but concerns related to financial limitations. Results from mathematics coaches 
suggest significant variation in both their preparation and utilization. 
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Implementing changes in policy, such as new mathematics content standards, is a persistent 
challenge of large scale educational improvements. To support implementation efforts, 
professional development (PD) has been shown to be a determining factor for educators to make 
sense of new standards (Hill & Cohen, 2001). While a consensus exists about features of 
effective PD (Darling-Hammond et al., 2009), in practice, opportunities that teachers have to 
learn and improve their practice varies, is shaped by local education leaders, and is often not 
aligned with these research-based recommendations.  

Following newly adopted state mathematics content standards, a research-practice 
partnership (Peneul et al., 2015) was formed between our state education agency and four 
universities in our state to co-design PD resources for standards implementation and research 
these efforts. To organize this work, we draw upon design-based implementation research 
(Fishman et al., 2013) to structure the development of materials and study the implementation. 
As part of our ongoing work, we developed a framework that identifies and describes key 
components of effective mathematics PD. The framework was created using a synthesis of 
literature identifying five key components of high quality mathematics PD: content, pedagogical 
model, teacher learning environment, attention to context, and structure. The framework includes 
both a description of each component and examples of activities and tools research-based 
mathematics PD programs draw upon with each component. Organizing the components in this 
way is not meant to be prescriptive, but rather to provide a link from observable characteristics 
of high quality mathematics PD to research evidence, offer examples, and serve as a boundary 
object (Wenger, 1998) for the partnership and the math leaders within. In doing so, we aim for 
the framework to serve as an implementation measure (Bryk et al., 2015) to gauge progress in 
improving implementation and opportunities teachers have to learn at scale and for district- and 
school-based mathematics leaders to use when adapting co-designed PD resources to their local 
contexts.  

In this poster session, we will share the development of the framework, the ways it can be 
used as an implementation measure, and the ways in which districts and schools can use the 
framework when adapting co-designed PD resources for use in local contexts. Our hope is that 
this framework will support efforts to provide more equitable access to high quality mathematics 
professional development to teachers across the state.  

References 
Bryk, A. S., Gomez, L. M., Grunow, A., & LeMahieu, P. G. (2015). Learning to Improve: How America’s Schools 

Can Get Better at Getting Better. Harvard Education Press. 8 Story Street First Floor, Cambridge, MA 02138.  
Darling-Hammond, L., Wei, R. C., Andree, A., Richardson, N., & Orphanos, S. (2009). Professional Learning in the 

Learning Profession: A Status Report on Teacher Development in the US and Abroad. Technical Report. 
National Staff Development Council.  

Fishman, B. J., Penuel, W. R., Allen, A. R., Cheng, B. H., & Sabelli, N. O. R. A. (2013). Design-based 
implementation research: An emerging model for transforming the relationship of research and practice. 
National society for the study of education, 112(2), 136-156.  

Penuel, W. R., Allen, A. R., Coburn, C. E., & Farrell, C. (2015). Conceptualizing research–practice partnerships as 
joint work at boundaries. Journal of Education for Students Placed at Risk (JESPAR), 20(1-2), 182-197. 



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

440 

THE EFFECTS OF A STATE-IMPLEMENTED CO-TEACHING TRAINING ON 
STUDENTS’ MATHEMATICS ACHIEVEMENT SCORES 

 Kaitlin Bundock  Kristen R. Rolf  
 Utah State University  Utah State University 
 Kaitlin.bundock@usu.edu  Kristen.rolf@usu.edu  

Co-teaching is an instructional model in which special and general education teachers 
collaboratively educate a class made up of students with and without disabilities. Co-teaching 
has become an increasingly popular special education service delivery model over the past 
fifteen years, yet few studies have evaluated the effects of co-teaching on student achievement 
(McDuffie, Mastropieri, & Scruggs, 2009; Murawski, 2006; Murawski & Swanson, 2001).  

The purpose of this study is to describe a state-sponsored co-teaching professional 
development project (the Co-Teaching Project), and analyze student mathematics achievement 
data from classrooms participating in the Co-Teaching Project. The Co-Teaching Project, in its 
sixth year of implementation, aims to create inclusive middle and high-school math classrooms 
by providing effective training and on-going coaching in co-teaching and other inclusive 
educational strategies. Co-teaching pairs, consisting of general and special education teachers 
who will be teaching together in the upcoming school year, receive training in the summer as 
well as on-going coaching throughout the school year. T-tests conducted on pilot pre- and post-
test data from nine classes indicate that students without disabilities made significant (p <.01) 
improvements in eight classes, with an average Cohen’s d effect size of 4.31 (range 0.67-11.45). 
Students with disabilities made significant (p < .01) improvements in seven classes, with an 
average Cohen’s d effect size of 2.62 (range 0.8-6.23). While these results are promising, more 
sophisticated analysis methods are needed to thoroughly analyze and disaggregate student 
achievement results in relationship to the Co-Teaching Project.  

In this follow-up study, we use Generalized Equation Estimating (GEE) to analyze and 
compare the mathematics achievement of approximately 1200 sixth- through ninth-grade 
students with and without disabilities in both co-taught (15 classes) and non-co-taught 
comparison classrooms (15 special education resource classes, 15 non-co-taught general 
education classes) to answer the following research questions: (1) Do students with (and without) 
disabilities achieve at higher rates in co-taught settings versus non-co-taught settings?; (2) Do 
students with disabilities achieve at comparable rates as students without disabilities in co-taught 
(and non-co-taught) settings?; (3) To what degree do student factors (other than disability/no-
disability) affect the growth rates of students in co-taught and non-co-taught settings?  These 
factors include: (a) Gender, Ethnicity, SES, language status, (b) Grade level, (c) Type of 
disability, (d) Prior Achievement level.  

The research in this poster was supported with funding from the Utah State Board of 
Education (Award # 201017). The findings, conclusions, and recommendations presented are 
those of the authors, and do not necessarily reflect the views of the funding agency.  
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Stein and Smith’s seminal book, 5 Practices for Orchestrating Productive Mathematics 
Discussions (2011), outlines practices that can support teachers attempting a student-centered 
approach to instruction. Although teachers may understand these practices, it is another thing to 
implement them, especially if there is little mentoring support. We present data from a study in 
which a coach led a team of teachers to implement the five practices for the first time. 

Participants and Data Collection/Analysis 
Four 7th-grade teachers, one ELA school coach, two university faculty, and two doctoral 

students met once per week for a 1.5- hour planning meeting during which one faculty member 
coached. Our main research questions were, how do teachers take up the five practices 
differently as they implement a reform textbook for the first time and what mentoring techniques 
support the change in their practices? Transcriptions of the meetings were analyzed using the 
Constant Comparison Method (Glaser & Strauss, 1967) to identify themes as well as code for the 
types of supports the coach was giving. 

Findings  
The university coach used lesson imaging (Stephan et al., 2016) during planning meetings. 

Lesson imaging is the process of imagining the flow of the lesson, what the teacher might say 
during a launch, what questions she might ask, and how students might engage in the activities. 
Data indicate that the coach pressed teachers to a) image how students might solve the tasks in 
ways that result in both correct and incorrect answers, b) unpack the mathematical goal of the 
lesson, c) consider what parts of the launch students should understand in order to participate 
effectively in the lesson, and d) use learning progressions to determine whether the activity could 
be eliminated. As the project progressed, teachers started asking these questions and the coach 
became more of a participant. Our poster elaborates the imaging process and the university 
coach’s role in pressing teachers to take the students’ perspective as they imagine the flow of 
lessons. This can contribute to the knowledge base on coaching that tends to focus on model or 
co-teaching, video watching, and providing feedback. 
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Professional development opportunities can greatly impact teachers’ pedagogical 
perspectives and content knowledge (Ball, 1990; Hill, 2007). Through a situated lens, teachers’ 
learning depends on the social and cultural contexts in which that learning occurs (Lave & 
Wenger, 1991). This study examines the effects of a Summer Math Institute that is part of a 
three-year professional development project known as Math Counts. Math Counts focuses on 
supporting elementary teachers’ learning in math pedagogy and content in the context of a rural 
Appalachian school district. In this analysis, we focus on the development of the participating 
teachers’ pedagogical perspectives and content knowledge, drawing from surveys, content 
assessments, and interview data. The study informs the ongoing project and contributes to efforts 
that seek to support the mathematics learning of elementary students and their teachers in 
historically underserved communities. We examine the teachers’ learning, key resources, and 
opportunities for learning during a Summer Institute in which we engaged teachers with math-
focused tasks and utilized a decentering approach. This approach shifted attention to the 
elementary students taught by the participating teachers and the modification of tasks and 
supports based on the teacher’s knowledge of students’ math learning challenges and assets. We 
investigated the following research questions in this study: 

1. What are teachers’ perspectives on content knowledge, pedagogy, and student/teacher 
relationships? 

2. How is the teachers’ content knowledge affected by the Summer Institute? 
3. What resources from the Summer Institute contributed to the teachers’ learning from their 

perspective?  

Findings indicate that teachers’ content knowledge increased in most cases and that many 
teachers viewed the discussions about their students and task adaptation as resources for their 
learning. The findings of the study have implications for designing professional development 
that is effective in supporting teacher voice, content understanding, and task implementation.  
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DEVELOPING SPECIAL EDUCATION TEACHER OBSERVATION INSTRUMENTS 
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This poster presents the development of teacher observation instruments focused on 
mathematics instruction for students with disabilities (SWDs). Looking back, there is an 
evidence base to support several instructional practices that develop the math abilities of SWD, 
but there remains the enduring challenge of translating the evidence base to practice. Looking 
forward, there is a need to integrate research conducted in different fields, specifically 
mathematics education and special education, to support special education teachers (SETs) in 
their content instruction for diverse learners. The aim of these observation instruments is to 
reliably evaluate SETs mathematics instruction and provide content-specific, actionable feedback 
that results in improved outcomes for SWDs (Hill & Grossman, 2013). 

The poster will describe the use of Evidence-Centered Design to create a coherent 
assessment system (Johnson, Crawford, Moylan & Zheng, 2018; Mislevy, Steinberg, & Almond, 
2003). It outlines the development process for several mathematics instruction rubrics: 
Developing Conceptual Understanding, Developing Understanding of Procedures, Practicing 
Procedures, and Word Problem Solving. Attention is placed on two phases of development 
intended to translate research-to-practice: a) creation of items that reflect the research base from 
special education and mathematics education, and b) development of performance-level 
descriptors derived from observation of actual practice. The poster will also present 
psychometric properties of one particular rubric, the Developing Understanding of Procedures 
rubric, studied through many-facet Rasch measurement (Eckes, 2011). We present findings from 
analysis in which 45 videos of mathematics instruction (15 teachers, 3 videos each) were scored 
with a partially-crossed, connected design by 12 raters. The poster will summarize reliability and 
fit statistics for four facets: teachers, lessons, raters and items. Finally, the poster will describe 
next steps in developing a validity argument for these observation instruments. 
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We share a model of professional development and lessons learned from a two-year 
professional development project involving 60 teachers in grades K – 6 and 8 schools, 
addressing five goals: (1) increase students’ understanding of and achievement in mathematics; 
(2) improve teachers’ knowledge of mathematics; (3) strengthen teachers pedagogical skills; (4) 
improve teachers knowledge of uses of technology to support learning; and (5) strengthen 
teachers’ dispositions to both reflect on their practice and collaborate to improve their teaching.  

Our work was guided by the Leading for Mathematical Proficiency Framework (Bay-
Williams & McGatha, 2014) to support teachers’ shifts in classroom practice to implement the 
Standards for Mathematical Practice (CCSSO, 2010). We followed a “responsive and emergent” 
professional development curriculum (Confrey & Lachance, 2000, p. 244), centered around 
teachers’ needs and research-based approaches to improve teaching skills. We formed a 
professional development team (PDT) including 2 mathematics educators, one mathematician, a 
math coach, and 2 mathematics education graduate students. A subgroup of seven lead teachers 
worked closely with the PDT to plan workshops, provide support to other teachers, and serve as 
a resource to other teachers so that project ideas are integrated into practice at their schools.  

In order to contribute to the research on the changing mathematical and pedagogical demands 
on the preparation of teachers, we examined the shifts in classroom practice after two years of 
professional development, as well as the teachers’ development of their mathematical knowledge 
needed for teaching. Data sources included an initial teacher inventory of classroom practices, 
lesson plans created by the teachers, and pre- and post-measures using the scales developed by 
the Learning Mathematics for Teaching (LMT) project (Hill, Ball & Schilling, 2004).  

We are beginning to see the benefits of this approach. As we will share in our analysis, many 
teachers are incorporating number talks, formative assessment, and a Math Workshop model 
(Fosnot, 2007) into their lessons and experiencing shifts in classroom practice that display 
teaching skills that provide opportunities for students to demonstrate the Mathematical Practices 
(CCSSO, 2010). 

References 
Bay-Williams, J. M. & McGatha, M. B. (2014). Mathematics coaching: Resources and tools for coaches and 

leaders K-12. Boston: Pearson.  
CCSSO (Council of Chief State School Officers). (2010). Common core state standards. Retrieved from 

http://www.corestandards.org/Math/  
Confrey, J., & Lachance, A. (2000). Chapter 10: Transformative teaching experiments through conjecture-driven 

research design. In Lesh & Kelly (Eds.), Handbook for design research in mathematics and science education 
(pp. 231-266). New York: Lawrence Erlbaum. 

Fosnot, C. T. (2007). Teaching and learning in a math workshop. In C. T. Fosnot, Investigating Fractions Decimals 
and Percents Grades 4 – 6 (27- 41). Portsmouth, NH. Firsthand. 

Hill, H. C., Ball, D. L., & Schilling, S. G. (2004). Developing measures of teachers' mathematics knowledge for 
teaching. Elementary School Journal, 105(1), 11-30.  



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

445 

TEACHER PERSPECTIVES ON FEEDBACK: A COMPARISON BETWEEN 
IMPLICIT THEORIES 

Kristin Hartland 
Middle Tennessee State University 

Kristin.hartland@mtsu.edu 

Keywords: Implicit Theories, Feedback, Mathematics Teacher Education 
 

Many studies have shown feedback to be one of the most influential factors on student 
achievement; however, there are conflicting results and inconsistent patterns (Hattie & 
Timperley, 2007).  This may be attributed to the variations of how feedback is given as well as 
the reasoning for why a teacher may provide feedback in a particular way (Shute, 2008).  For 
example, teachers may provide feedback according to their initial judgement of their students’ 
ability levels or based on whether the students demonstrate grit or perseverance (Dweck, 2006).   

Personal experiences, cultural contexts, attitudes, or implicit beliefs held by teachers about 
learning mathematics may also contribute to a teacher’s judgment when providing feedback 
(Brown, Lake, & Matters, 2011).  In fact, Boaler (2016) claimed that out of all contributing 
factors, teachers’ implicit beliefs may have the most influence on the information conveyed in 
the classroom.  Often teachers believe they have little influence on their students’ mathematical 
ability (Dweck, 2006; Dweck, Chiu, & Hong, 1995).  As a result, teachers may only provide 
feedback that leads students to one method of solving a problem or only the correct solution.  
Teachers’ underlying assumptions of students influence their decisions to provide feedback, even 
though it is unclear how or why (Dweck et al., 1995). 

In order to be successful, students must be given opportunities to engage with meaningful 
mathematics and be given feedback to help them move forward in their learning and 
understanding (Boaler, 2015).  Although implicit theories have been shown to be a mediator of 
students’ actions in the classroom (Good, Aronson, & Inzlicht, 2003), teachers’ implicit theories 
are often overlooked as a mediator of the feedback they provide. 

My study focuses on why elementary mathematics teachers provide feedback during 
mathematics instruction.  With very little existing research on why teachers provide different 
types of feedback (Rattan et al., 2012), this study will give insight into factors that may attribute 
to teachers’ initial judgements when providing feedback.  The results will serve to inform 
mathematics teacher educators who design professional development aimed at supporting 
teachers’ feedback practices.   
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Whole-class discussion has been identified as a core practice of mathematics teaching. These 
discussions are often embedded in a lesson structure that includes a launch phase in which 
teachers introduce a mathematical task, an exploration phase in which students work on the task 
and the teacher circulates, and a discussion phase. The discussion can take many forms, but often 
includes the teacher displaying one or more pieces of student work from the students’ 
engagement with the task and facilitating a conversation around the mathematical ideas in the 
strategies depicted in the student work (Stein, Engle, Smith, & Hughes, 2008). Despite the 
importance of discussions, implementing them remains a challenge. Much of the research on 
whole-class discussions has focused on the facilitation of discussions, while less attention has 
been given to other components of discussions.  

To address this gap, I characterized components of whole-class discussions in the context of 
fraction instruction. Specifically, I used grounded theory to analyze 29 videos of classroom 
lessons documenting all potential components of the discussions. I looked for a variety of 
components identified in the literature, but also noted components that were not frequently 
mentioned. The lessons were taught by grades 3–5 teachers who were at various points in their 
participation in three years of professional development focused on children’s fraction thinking 
and how teachers can build on that thinking during instruction. My study occurred within the 
context of a larger study, Responsive Teaching in Elementary Mathematics, and focused on the 
29 teachers who posed an equal sharing problem with a fractional answer and chose to include a 
whole-class discussion during the lesson in which they were observed.   

Analyses revealed an extensive list of whole-class discussion components, which were 
narrowed to identify four components that could be used to characterize the formats of 
discussions in elementary mathematics classrooms: (a) the start of the discussion; (b) how the 
strategy was displayed to the class, including the possible recreation of the strategy by the 
teacher; (c) the characteristics of student work shared; and (d) the end of the discussion. These 
components can enhance our understanding of the discuss phase of mathematics lessons and help 
support teachers in envisioning and implementing this challenging phase. 
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Previous research into professional learning groups (PLGs) in mathematics has mainly 
focused on the benefits of the professional development on the teachers (e.g., Brahier & 
Schäffner, 2004). Since previous research on PLGs has pointed to a need for the professional 
development to be participant-driven (e.g., Gojmerac & Cherubini, 2012), what types of 
discussions are used within these groups in mathematics is important for discussions in creating 
effective and sustainable PLGs. The research project this poster is a part of focused on the 
discussions of the professional learning group in order to explore where teachers focused their 
own professional development by examining their conversations during the 17 individual 
(mainly half day) PLG meetings. 

This research is a portion of a three-year narrative case study with grades 6-10 teachers who 
were board mandated to create a PLG to discuss the transitions from grade 8 to grade 9. The 
research data within the study included meeting tapes and transcripts, artefacts, and teacher 
interviews. The data was analyzed as part of the larger study; however, the focus of this portion 
was to determine themes related to the discussions of the teachers. In order to determine themes, 
the entire data set was explored to identify characteristics of the conversations. Conversations 
were only considered if there was an interaction between two or more participants using the 
framework of symbolic interaction (Blumer, 2004) as a basis to determine the portions that were 
important to the research. Next, these conversation characteristics were compiled in order to 
determine overarching themes. The themes were then combined as needed, and then the data set 
was again revisited to ensure that all of the themes were included in the final description. 

In the end, eight themes were determined to be representative of the entire group 
conversations: factors outside of teacher control, topics related to group structure, classroom 
strategies, student-related conversations, mathematics-specific conversations, learning 
trajectories, and program differences. Although a smaller topic of conversation, it was noteable 
that the teachers did spend time discussing things like scheduling problems and whether or not 
there would be funding to continue the group meetings (factors outside of teacher control). The 
entire, larger research study concluded that this PLG was successful in supporting the 
development of the teachers within the group (to varying degrees). With this being a successful 
form of professional development, exploring the teacher conversations was important in 
exploring what teachers felt was important for improving their mathematics teaching in order to 
expand the conversation of how to operationalize the strengths of this group to other groups. 
Since PLGs are entirely teacher-driven (e.g., Gojmerac & Cherubini, 2012), a focus on the 
conversations within a group are essential to expand the research in mathematics education 
around how to support teacher growth through this type of professional development. 
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This study explores Asian American mathematics teachers’ perception and implementation 
of culturally relevant pedagogy through a multiple case study approach. Rubel (2017) described 
the concept of meritocracy, color-blindness, and inability to relate to students as “tools of 
whiteness” (p. 68) in mathematics education. The model minority myth (MMM) is an example of 
how those tools are manifested in society. Specifically, in education, the MMM ignores the 
structural obstacles that stem from race and socioeconomic class inequalities and emphasizes that 
hard work and a good work ethic are sufficient to be successful (Chen & Buell, 2017). The ideas 
embedded in the MMM directly oppose the principles of culturally relevant pedagogy (CRP). 
Contrary to the values of the MMM, culturally relevant pedagogy considers students’ cultural 
and racial backgrounds as assets and as significant components of a curriculum (Ladson-Billings, 
1994). Asian American mathematics educators, especially those who teach in urban and diverse 
contexts, are in the middle of this tension between the MMM and CRP. 

Previous studies have argued that teachers’ narratives as learners and reflections help to 
construct their teaching practices and professional identity (Drake, Spillane, & Hufferd-Ackles, 
2001; Richardwon, 2003). Given this significance of personal histories and reflections, it is 
worthwhile to investigate Asian American teachers’ narratives and how they perceive and 
implement culturally relevant pedagogy.  

Interview data with three Asian American secondary mathematics teachers, along with an 
analysis of their lesson plans and sketches of themselves, led to a preliminary conclusion that 
teachers who have struggled with their personal identity construction as Asian Americans were 
more likely to foster students’ personal identity construction through mathematics lessons. For 
example, one participant, Sunny, who defined herself as someone who “became Asian 
American” and that her identity “is still changing,” planned a lesson that incorporated students’ 
identity construction. Her students graphed an avatar of themselves using a computer program 
and then had to describe why and how that avatar represented them. Whereas another participant, 
Ann, who simply described herself as a “Korean American” and did not have much opportunity 
to discover her racial identity, did not perceive CRP as an effective pedagogy and turned to 
direct instruction. Findings suggest that reflections by pre-service and in-service are critical to 
the mathematics teacher’s professional identity construction process, positive perceptions of 
CRP, and effective implementation of CRP strategies. 
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The underrepresentation of females in mathematics has been widely studied and analyzed. 
However, once women are retained in STEM fields including mathematics, further disparities are 
seen in their representation in leadership roles, especially in professional organizations (Welch, 
Parker, & Welch, 2013). Although efforts have been made to encourage the qualities necessary 
to hold leadership roles, this has been a more recent development (Dugan, J.P., Faith, K. Q., 
Howes, S. D., Lavelle, K. R., & Polanin, J.R., 2013). This begged the question as to if the 
disparities experienced by women in mathematical organizations in leadership roles was also 
experienced by women in mathematics education organizations. Historically, women have been 
more present in mathematics education when compared to mathematics (Safi, 2012). However, if 
this was reflected in leadership representation was unknown. Additionally, through these 
organizations, the representation of women’s research in proceedings was questioned.  

A theoretical framework of cultural feminism was used for the analysis in order to challenge 
not only the presence of women in leadership role but also to consider the general cultural 
attitudes toward women professionally as tied in to country or region of organization (Vasavada, 
2012). Historical rosters were gathered from professional organizations for mathematics 
educators from six continents. The specific countries in these were chosen not only for their 
organizational presence but also for availability doctoral programs in mathematics education 
(Safi, 2014). Recent conference proceedings for select organizations were analyzed to determine 
relative proportions of accepted female presenters. It was found that, although research by 
females does tend to be featured at organizational conferences, representation at leadership levels 
is disproportionate in favor of males nearly uniformly across the globe. Further implications 
include funding initiatives to promote women’s leadership is such organizations. 

References 
Dugan, J. P., Faith, K. Q., Howes, S. D., Lavelle, K. R., & Polanin, J. R. (2013). Developing the leadership capacity 

and leader efficacy of college women in science, technology, engineering, and math fields. Journal of 
Leadership Studies, 7(3), 6 – 23. doi: 10.1002/jls.21292  

Pasha-Zaidi, N. & Afari, E. (2016). Gender in STEM education: an exploratory study of student perceptions of math 
and science instructors in the United Arab Emirates. International Journal of Science & Mathematics 
Education, 14(7), 1215 – 1231. doi: 10.1007/s10763-015-9656-z  

Safi, F. (2014). A 100-year retrospective on research focus areas and doctoral programs in mathematics education. 
In Oesterle, S., Nicol, C., Liljedahl, P., & Allan, D. (Eds.) Proceedings of the Joint Meeting of PME 38 and 
PME-NA 36, Vol. 6.  

Safi, F. (2012) Analyzing the evolution of the field of mathematics education: A historical perspective. Proceedings 
of the 34th Annual Conference of the North American Chapter of the International Group for the Psychology of 
Mathematics Education – PME-NA. Kalamazoo, Michigan.  

Vasavada, T. (2012). A cultural feminist perspective on leadership in nonprofit organizations: A case of women 
leaders in India. Public Administration Quarterly, 36(4): 462 – 503.  

Welch, E., Parker, M., & Welch E. W. (2013). Professional networks, science ability, and gender determinants of 
three types of leadership in academic science and engineering. Leadership Quarterly, 24(2), 332 – 348  



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

450 

REHEARSALS WITH IN-SERVICE TEACHERS: RECOGNIZING AND 
RESPONDING TO TEACHERS’ CONFIDENCE  

 Gemma Oliver John Gruver 
 Michigan Technological University Michigan Technological University 
 gloliver@mtu.edu jgruver@mtu.edu 

Keywords: Teacher Education-Inservice/Professional, Middle School Education 

Mathematics teacher education can be challenging to deliver in a way that it makes an impact 
on teachers’ practice. Over a century ago, John Dewey emphasized teachers’ need for laboratory 
experience (Dewey, 1904/1965). Similarly, Lampert et al. (2013) argue that situating the 
knowledge teachers gain in teacher education courses in actual teaching practice can help ensure 
that the knowledge translates to practice. They have argued for the use of teaching rehearsals, 
where teachers practice teaching a lesson to peers in a low stakes environment where a 
mathematics teacher educator (MTE) provides in the moment feedback. Rehearsals can be an 
answer to Dewey’s century old call for laboratory experience. While this is a promising 
instructional technique, little is known about how in-service teachers engage in these rehearsals. 
This research focuses on conceptualizing in-service teachers’ engagement in rehearsals so MTEs 
can better support teachers in productively engaging in these rehearsals. 

In the summer of 2017 two MTEs engaged 14 middle school teachers in a week long 
professional development session using rehearsals. The professional development centered on 
how to teach a unit on algebraic generalization using figural patterns. During the week, there 
were six different rehearsals taught by six of the 14 participants. I chose three of the participating 
teachers who seemed to engage in different ways to focus my analysis on. 

During the rehearsals, the MTEs or the other participants would pause the teaching to give in 
the moment feedback or discuss particular teaching moves. I analyzed these pauses, attending to 
the acting teacher’s gaze and gestures as well as noting the purpose and topic of the pause. The 
following questions became salient in terms of characterizing the differences in the teachers’ 
participation: Where does the teacher look for suggestions? And How does she engage with the 
suggestions? Teacher A tended to look to peers for feedback and generally accepted that 
feedback. Teacher B tended to look to the MTEs for feedback. Teacher C looked to both sources 
for feedback, but also seemed to see herself as a competent contributor. 

This is significant because MTEs can use these results to better notice and support teachers’ 
engagement. In particular, MTEs could specifically attend to where the teacher is looking for 
suggestions and how she is engaging with those suggestions. If an MTE was working with a 
teacher like Teacher A, they could create opportunities for that teacher to engage more critically 
with suggestions from others. If someone like Teacher B is looking to the MTEs for a 
suggestion, the MTEs could turn the question to the rest of the group. Thinking about who the 
teacher is asking for suggestions and how she is engaging with those suggestions can be helpful 
as MTEs decides how to facilitate productive engagement. 
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Teachers play an important role in sustaining educational reform efforts by shaping how 
curriculum unfolds inside the classroom (Cohen & Ball, 1999). They need support to develop 
instructional capacity and influence their students’ learning (Cohen & Ball, 1999). Support is 
important for teachers despite their appointment type, for example, full-time versus part-time 
faculty (Gappa, Austin, & Trice, 2007). Research points to a growing trend in higher education 
towards hiring part-time adjunct faculty (Mason, 2009; Curtis, 2014; Snyder & Dillow, 2015). 
This trend warrants research on adjunct instructors’ experiences (Kezar & Sam, 2013). I provide 
an in-depth look at three adjunct instructors’ experiences as they implemented a research-based 
Precalculus curriculum. Findings from this study have implications for designing professional 
developing programs for adjunct instructors.  

To analyze adjunct instructors’ experiences as they implemented a research based 
mathematics curriculum, I employed a sociocultural framework focusing on “mediated action” 
(Wertsch, 1998). I analyzed 3 adjunct instructors’ engagement with the curriculum as they 
planned their instruction, enacted their lessons inside their classrooms, collaborated with their 
colleagues or reflected on their teaching experiences. Using the case study methodology (Yin, 
2009) I describe adjunct instructors’ engagement with the curriculum. Data was collected in the 
Fall 2016 and Spring 2017 semesters using semi-structured interviews, classroom observations 
and collaboration data from online meetings.  

As the instructors engaged with the curriculum while planning, enacting, collaborating and 
reflecting, each mode of engagement influenced instructors’ engagement through other forms. 
For example, planning was influenced by challenges faced while enacting the curriculum, by 
ideas discussed with other instructors and instructors’ own reflection. Challenges arose while 
instructors planned their instruction and enacted their lesson. Collaboration and reflection took 
the form of supports for the instructors. Findings from this study adds to the limited body of 
research that focuses on mathematics adjunct instructors’ experiences and can guide the 
development of professional development that is aligned with their needs.  
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Mathematics education leaders and national organizations have called for improved training 
and professional development for early childhood educators (Ginsburg, Lee, & Boyd, 2008; 
NAEYC & NCTM, 2010). To address these calls, our research group is designing and 
implementing a collaborative professional development (PD) model to support preschool 
mathematics teaching that builds on children's mathematical thinking and play. The PD involves 
25 Head Start educators in whole-group learning sessions, video-club discussion, collaborative 
activity design, and classroom coaching. 

Throughout the PD we are attending to teachers’ development of new ways of thinking, 
being, and acting in classroom interactions. In this poster, we focus on two research questions: 
(a) how do these Head Start teachers conceptualize children's mathematics learning and 
development? And (b) how do these teachers conceptualize their role in supporting children’s 
mathematical development? 

We interviewed teachers at the beginning of the school year to explore their perspectives. 
The teachers discussed and provided examples of their mathematics teaching practice and their 
views of their roles and children’s learning. We analyzed 11 transcribed interviews using an 
inductive coding approach. Teachers most often identified their roles in classroom activity as 
Instructor (64%) and Nurturer (55%). Four of the 11 teachers (36%) described their role as 
Facilitator; three (27%) made comments coded as Observer. Teachers made fewer comments 
overall related to children’s learning, with 45% describing learning as Engagement, 36% 
learning as Active. 

Teachers' emphasis of instructor and nurturer roles over facilitator and observer roles 
suggests assumptions about the locus of the generation of mathematical knowledge (Platas, 
2015). Whether teachers assume a facilitative role or are active participants with children, 
teachers’ self-positioning influences the structure of mathematical interactions in their 
classrooms (Graue et al., 2015) and can inform professional development efforts toward play-
based pedagogy. 
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At small colleges, only one professor may be equipped to teach certain courses, making 
content-based discussion with colleagues very difficult. Online support systems have emerged to 
fill this void. The online communities of interest here were created to support Inquiry-Oriented 
(IO) instruction, which requires different Mathematical Knowledge for Teaching (Ball, Thames, 
& Phelps, 2008) than other curriculum materials typically require (Johnson & Larsen, 2012). In 
addition, instructors are encouraged to use different instructional techniques than they may be 
used to. This shift in instruction can be taxing on instructors, with several challenges documented 
in the literature (e.g. Johnson & Larsen, 2012). This poster examines online groups of math 
faculty created to support one another while putting IO instructional materials into practice.  

The members in the two Online Working Groups (OWGs) studied were mostly college 
faculty members. Data collection consisted of observations of two meetings from each OWG and 
20-50 minute interviews of six OWG members. The field notes from OWG meetings and 
interviews were transcribed and coded using thematic analysis (Braun & Clarke, 2006). In order 
to analyze the OWGs, a community of practice (CoP) lens was used (Wenger, 1998). Wenger 
posited three dimensions of communities of practice: mutual engagement, a joint enterprise, and 
a shared repertoire. In order to concretize these dimensions, Wenger also provided fourteen 
indicators of a CoP; these indicators became the codes used for thematic analysis. Code 
prevalence was used to determine the extent to which each indicator of CoPs was present. This 
analysis addresses the research question: to what extent did these OWGs form a CoP?  

Based on this analysis, eight of the fourteen indicators of a CoP given by Wenger to 
characterize CoPs were clearly present in the OWGs: shared ways of engaging in doing things 
together; substantial overlap in participants’ descriptions of who belongs; knowing what others 
know, can do, and can contribute; mutually defining identities; specific tools, representations, 
and artifacts; jargon and shortcuts to communication; certain styles recognized as displaying 
membership; and shared discourse reflecting a certain perspective. The other indicators were 
present to a lesser extent. Thus, each OWG formed a CoP by the end of the semester.  
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Research shows implementation of the Common Core Mathematics Standards can be 
challenging (Bostic & Matney, 2013), especially for veteran teachers (Burks, et al, 2015). The 
NCTM underscores the importance of professional development in assisting mathematics 
teachers in this area (NCTM, 2013). Design of this teacher training program considered features 
of form, duration, active learning, and coherence (Birman, Desimone, Porter, & Garet, 2000) to 
address needs of experienced teachers struggling with implementing the CCSS-M. Research 
questions included: (1) In which ways, if any, will a one-year Common Core professional 
development training influence experienced elementary teachers’ mathematics instruction? (2) 
What are the teachers’ perspectives regarding influences of the training on their students’ math 
performance and communication? (3) Which features of the training do the teachers report most 
useful in improving their mathematics instruction? Which additional features are recommended? 

Training for teachers of grades 1-6 in one private girls’ school included one session exploring 
mathematics practice standards using video demonstration and simulated collaborative problem 
solving as well as Common Core grade specific content applications. One model lesson targeting 
content and practice standards was conducted for each grade level, and follow-up consultations 
and classroom observations were conducted throughout the year. Seven veteran teachers 
participated in video recorded interviews for this study. Results were analyzed qualitatively. 

Results and Implications 
Initial results indicate all teachers reported influences of the training on their mathematics 

instruction, such as implementing more collaborative tasks, using deeper questioning, 
emphasizing strategy instruction and justification of solutions, and using more precise math 
language. Reported changes for students included more willingness to take risks, use of varied 
strategies, and improvement in mathematics communication skills. Teachers highlighted features 
of the training that helped shape their instruction, and recommended more consistent coaching 
for planning instruction in particular content areas. Findings of this project indicate ways in 
which mathematics professional development may influence teaching practices and students’ 
learning. Features of this training project have import for researchers and practitioners designing 
mathematics teacher professional development. 
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Theoretical Framework 
All students need “access to high quality mathematics curriculum, effective teaching and 

learning, high expectations, and the support and resources needed to maximize their learning 
potential” (NCTM, 2014). Yet many of today’s mathematics classrooms continue to place 
students in specific learning groups based on perceived ability (Alpert & Bechar, 2008). This 
practice, known as ability grouping, is of great concern, as it is often girls and diverse students 
that are most likely to be placed in lower-ability groups (Cohen & Lotan, 2014).  

Featherstone et al. 2011 examined specific ways to eliminate ability grouping in the 
elementary mathematics classroom by creating student learning through “groupworthy tasks.” 
These are tasks that are complex in nature and offer multiple ways of thinking in order to be 
solved. Groupworthy mathematical tasks leverage the mathematics smartness of all students in 
mixed-ability groups, thereby providing opportunities for all students to gain deeper 
mathematical understandings. 

Methods and Analysis 
The participants in this study were sixteen newly credentialed elementary teachers who 

attended a weeklong professional development workshop focused on utilizing equitable 
mathematics teaching through groupworthy tasks. Data collected for this qualitative study 
included mathematics tasks, mathematics lesson plans, and individual reflections that centered 
on groupworthy tasks. An iterative analysis (Bogdan & Biklen, 2006) was used to demarcate the 
data sources that pertained to the teachers’ views of groupworthy mathematics tasks.  

Findings 
All sixteen of the teachers expressed a commitment to provide their students with equitable 

mathematics learning experiences. Themes included 1) a classroom community built by students 
working together, 2) students supporting each other’s ideas and strategies, 3) students trusting 
each other while struggling together to create mathematical understanding, 4) students taking 
risks while trying something different, 5) students being provided with multiple learning spaces 
and movement in the classroom, 6) teachers redefining what mathematics “smartness” looks like, 
and 7) teachers deconstructing the stereotypes of who can be a successful mathematics student. 
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This study examines teachers use of a learning trajectory to plan, implement, and debrief on 
student strategies to better understanding the developmental progression of geometric thinking 
during a Lesson Study. To guide the planning, we provided a lesson planning template called the 
Vertical Articulation to Unpack the Learning Trajectory (VAULT) that adapted from Confrey’s 
(2012) five elements to unpack a learning trajectory. The VAULT planning guide asked the team 
to reflect on the cognitive demand of the task to be sure there was worthwhile mathematics and 
to develop conjectures on students’ solution paths and barriers (See Figure 1). The Lesson Study 
team used the Shapes and Properties LT from TurnonCCMath.net to anticipate the student 
strategies, representations and misconceptions; develop questions to help probe student thinking, 
and look for sophistication of ideas to extend learning. 

  

Figure 1. Vertical Articulation to Unpack the Learning Trajectory (VAULT) Planning Guide 

When reflecting on student learning, the lesson study team analyzed student work and 
developed their own LT for comparing area, based on evidence from student strategies, which 
progressed from using shape relationships to order areas, to using fraction knowledge to be more 
precise in comparing areas, to using grid paper to assign area, and ending with using area 
formulas.  Using an LT supports teachers in understanding student work as a progression of 
strategies that reflect conceptual development and intermediate understandings of mathematics.  

References  
Confrey, J. (2012).  Articulating a learning science foundation for learning trajectories in the CCSS-M.  In Van 

Zoerst, L. R. Lo, J. J. & Kratky, J.L. (Eds.). Proceedings of the 34th annual meeting of the North American 
Chapter of the International Group for the Psychology Mathematics Education (pp. 2-20). Kalamazoo, MI. 
Western Michigan University.   



Inservice Teacher Education/Professional Development 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

457 

DESIGNING ONLINE PROFESSIONAL DEVELOPMENT MODULES THROUGH 
THE LENS OF ORGANIZATIONAL SENSEMAKING 

 F. Paul Wonsavage Alison McCulloch Joseph Reaper 
 UNC Greensboro UNC Charlotte     NC Dept. of Public Instruction 
 fpwonsav@uncg.edu allison.mcculloch@uncc.edu joseph.reaper@dpi.nc.gov 

Keywords: Policy Matters, Equity and Diversity, Standards, Teacher Education - 
Inservice/Professional Development 

Implementing changes in policy aimed at large scale educational improvements, such as new 
academic content standards, is a perennial challenge in education for both individual teachers 
and school districts. Most implementation efforts involve top-down approaches that expect 
implementing agents (i.e., teachers, mathematics teacher leaders at the school and district level) 
to change their practice to meet the goals of reform. However, researchers have consistently 
demonstrated this approach is problematic, highlighting that implementing agents typically 
notice superficial similarities to previous standards, attend to the familiar, have varied 
interpretations, and receive mixed messages about implementation vertically and horizontally 
throughout the system (Spillane, Reiser, & Reimer, 2002). Recognizing the challenges associated 
with standards implementation at scale, our research team partnered with our state education 
agency to develop online professional development (PD) modules to provide implementing 
agents with equitable access to opportunities to learn about standards and promote clear and 
coherent messages across the system.  

In this poster session, we provide an overview of organizational sensemaking (Weick, 1995) 
as our theoretical perspective and use Sandoval’s (2014) approach to conjecture mapping as a 
tool to guide our design of PD modules which were developed to be implemented across an 
organizational system (i.e., the state). We share the ways in which we drew on this perspective to 
develop module features that cued sensemaking processes, prompted intersubjective meaning 
making, and promoted action (Maitlis & Christianson, 2014; Weick, 1995).  In presenting our 
poster, we will discuss our design process, including our conjecture maps, and provide examples 
of the online PD modules that embody the organizational sensemaking processes.   
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In this case study, we examine the usage of language — how teachers used and regulated their 
language when teaching English language learners (ELLs) with learning disabilities (LD) how 
to solve mathematics multiplication problems. We focus on types of scaffolds used by teachers to 
identify how scaffolding helps ELLs with LD build better multiplicative reasoning. Using an 
exploratory case study, we find that more linguistic scaffolding and small group interactions are 
beneficial for ELLs with LD. In combination with kinesthetic scaffolding, they form an effective 
instructional method for improving multiplicative reasoning among ELLs with LD.   

Keywords: Classroom Discourse, Number Concepts and Operations, Mathematical Knowledge 
for Teaching, Elementary School Education 

Introduction 
According to the section on English language acquisition in Title III of the Elementary and 

Secondary Education Act (ESEA) reauthorized by the Every Student Succeeds Act (ESSA) in 
2015, schools are required to be accountable for the improvement of all children, including those 
with “disability, recently arrived ELLs, and long-term ELLs” (Non-Regulatory Guidance, 2016, 
p. 4). Students with limited English proficiency or what ESSA now refers to as English Learners 
(ELs) must also meet benchmark goals as a subgroup for passing achievement goals (pass/do not 
pass) and making adequate growth annually in mathematics. In order to meet district and school 
accountabilities requirements for dually classified ELLs (ELL and special education), it is 
necessary to provide appropriate support and interventions in a timely manner to promote their 
academic performance and address persistent achievement gaps in math (Zhou, 1997). 
Math Problem-Solving Skills and Literacy Skills 

Good literacy skills, which include reading, reading comprehension, and technical reading 
skills, play a significant role in students’ ability to solve math word problems efficiently, 
especially for students who have good calculation ability (Kyttälä & Björn, 2014). According to 
findings from previous studies, reading fluency predicts student performance in solving 
mathematical word problems (Vilenius-Tuohimaa et al., 2008; Kyttälä & Björn, 2014). In 
addition, Cummins et al. (1988) showed that children sometimes make mistakes on math word 
problems due to ambiguous language in the problem statements or miscomprehension of the 
verbal instructions, shaped by their level of English proficiency.  
Content in an Academic Setting 

ELL students experience a complex process with challenging academic content along with 
academic proficiency in language (Gerena & Keiler, 2012). Although ELLs may appear to be 
verbally fluent in English, they are still struggling with complex academic material that requires 
the production of specific academic discourse (Gerena & Keiler, 2012; Olsen, 2010) that differs 
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from social language use. 
Scholars in the field have researched and recommended the use of instructional scaffolds to 

convey meaning to students at varying levels of English proficiency, which include 
visual/graphic scaffolding, linguistic scaffolding, interactive scaffolding and kinesthetic 
scaffolding (Gibbons, 2014; Gottlieb, 2016). These scaffolds are important considerations in the 
planning of math instruction for dually classified ELLs (DC ELLs) (McGhee, 2011).  
Scaffolding 

In the teaching-learning framework, scaffolding is a central notion adapted from Gibbons 
(2002, 2014) which is supported by a constructivist theory of learning. Scaffolding is a support 
to “enable children to perform tasks independently that previously they could perform only with 
the assistance or guidance of the teacher” (Gibbons, 2002, p. vii). Scaffolding uses the theoretical 
framework that Halliday (1993) highlighted about registers of language through the classroom 
interaction of teachers and students working together to develop “new skills, concepts, and levels 
of understanding” (Gibbons, 2002, p. vii). Gibbons (2002, 2014) also suggested that scaffolding 
can be used for English language teaching to ELL students in mainstream classrooms, where 
they spend the majority of their school day. 

Scaffolds are strategies that support the delivery of target content with an explicit inclusion 
of a given scaffold appropriate for each ELLs’ level of English proficiency and, in this case, the 
added dimension of a learning disability. Gottlieb (2016) describes four types of instructional 
scaffolds that teachers can use and students can appropriate to create understanding around target 
content. These scaffolds include visual, linguistic, interactive and kinesthetic scaffolds (Gottlieb, 
2016). 

Visual scaffolding. Visual scaffolding helps ELL students by using drawings or photographs 
to connect English words to visual images and assists ELL students in learning the subject. This 
approach makes complex ideas feel more accessible to students and makes language more 
memorable, all while providing comprehensible input of the target content (McCloskey, 2005, 
p. 1). There are a variety of instructional supports that can build students’ visual experience in 
the classroom, including manipulatives, real objects, and multimedia material (Carrasquillo & 
Rodrigues, 2002; Gottlieb, 2012). 

Linguistic scaffolding. Linguistic scaffolding can be conceptualized according to the zone of 
proximal development (Vygotsky, 1978). Teachers must provide effective and responsive 
support for students’ language output performance, which requires teachers to use language that 
is comprehensible to students when providing them with new and more sophisticated knowledge, 
including using a slower rate of speech or simplified vocabulary with consistent reinforcement of 
a target set of words (Gibbons, 2003; Bradley and Reinking, 2011). 

Interactive scaffolding. As mentioned above, Heath (1982) described a “literacy event” as 
“any occasion in which a piece of writing is integral to the nature of participants’ interactions 
and their interpretive processes” (p. 438). Moreover, Goffman (1993) put forward the idea of 
“interactionism,” which relates “only to those aspects of ‘context’ that are directly observable 
and to such immediate links between individuals as their ‘roles,’ ‘obligations,’ ‘face-to-face 
encounters,’ and so on” (p. 439). An example of instructional support for both students and 
teachers is using active roles in pair work and small group work (Gibbons, 2008). 

Kinesthetic scaffolding. Asher (1969) first introduced a strategy called Total Physical 
Response Technique, which directly relates to kinesthetic scaffolding. This approach requires the 
students to listen to a foreign language command and obey it using a physical action immediately 
with no expectation of speech production (Asher, 1969). Brand et al. (2012) suggested that 
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students who use kinesthetic scaffolding can benefit from “sign language, translation into 
another language, gestures” during sessions (p. 139), while not being restricted from 
participating due to their lower levels of English proficiency. 

In this paper, we apply four different kinds of scaffolding to analyze the mathematics 
instructional discourse exchanges between a teacher and an ELL student with LD within the 
context of a small group constructivist-oriented learning environment. We intended to answer 
following research questions: 

1. What types of scaffolds do teachers and dually classified ELLs make in multiplicative 
reasoning during instruction and assessment activities? 

2. How do teachers regulate language usage and scaffolding to facilitate the multiplicative 
reasoning of ELLs with LD? 

Research Methodology 
This exploratory case study investigates the interplay between teacher and student in 

mathematics instruction from a constructivist perspective of learning (Vygotsky, 1962). 
Constructivism is a philosophy of learning that focuses on individuals actively participating in 
learning rather than passively receiving knowledge (Gunning, 2010). In this perspective, the 
learning process can only occur when the learners are actively engaged in integrating new 
knowledge with existing knowledge (Morrow & Tracey, 2012). Therefore, constructivist theory 
will be the research framework for our analysis of teacher-student discourse.  
Mode of Inquiry 

We use an exploratory case study to examine the scaffolds used by teachers and appropriated 
by dually classified ELs. In light of the research process, Yin (2014) defined a case study as “an 
empirical inquiry that investigates a contemporary phenomenon (the ‘case’) within its real-life 
context, especially when the boundaries between phenomenon and context may not be clearly 
evident” (p. 16). The researcher-teacher (a math educator/ university professor) worked with an 
ELL student with LD and another native English speaker with LD in each session. The teacher 
used the constructivist teaching experiment method (Cobb & Steffe, 1983; Steffe, Thompson & 
von Glasersfelf, 2000) with the team of students.  
Setting and Context of the Study 

This study was conducted within the larger context of a National Science Foundation (NSF) 
funded project (Xin et al., 2008). This study took place at a local elementary public school 
resource room in the Midwestern United States. The participant attended 26 weekly teaching 
sessions of 25-35 minutes in pairs with another non-ELL student with LD. Each day, the math 
teacher worked with the pair of students together. Each lesson was designed based on an 
assessment of the student’s level of understanding of the given math content from the previous 
session. The study was conducted over a period of eight months. Each session, the instructor 
provided a pedagogical approach to promote the ELL’s progress toward multiplicative reasoning 
(Tzur et al., 2010) and problem solving (Xin, 2012).  
Participants 

The participants were selected from a local elementary school in the Midwestern United 
States. This study worked with students during an after-school program. The participants for this 
study were a fifth-grade ELL student with learning disabilities (Eliza) and a fifth-grade native 
English speaker with learning disabilities (Leslie). According to Eliza’s IEP, she was included in 
a general education class setting for 50% of the time, and received 45 minutes of math 
instruction in the resource room each day from different math instructors. Eliza was placed in a 
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learning support classroom for reading, English language arts, and math. Eliza’s intellectual 
functioning was in a very low range (IQ (OTIS) full scale is 69 with a verbal score of 69). Eliza 
has been placed in the special education program each of the past four years. The fifth-grade 
native English student (Leslie) worked as a group partner with Eliza during each session.  
Data Sources 

The sources of data were teaching videos and field notes taken during instructional 
observations. The teaching videos recorded the teacher and focal students, and the field notes 
were taken by graduate students. We included the transcripts and corresponding field notes for 
five out of the seven recorded teaching sessions. The rationale for including only those sessions 
was due to availability of the data. 
Data Analysis 

We coded both the instructor’s discourse and the ELL student’s problem solving and 
reasoning. The approach was coding the discourse moves of the discourse between the teacher 
and the student. The coding method we used was coding in terms of four different scaffoldings: 
visual/graphic scaffolding, linguistic scaffolding, interactive scaffolding and kinesthetic 
scaffolding. The purpose of this coding method was to answer the first research question and try 
to find the most successful scaffold that the math teacher used for ELL students with LD, which 
is the main purpose of this study. 
Coding Scheme of Discourse Moves 

We used NVivo 11 to transcribe and code the verbal and nonverbal mathematical 
communication for both the teacher and the pair of students (one of them, Eliza, is our 
participant) (Xin et al., 2016), as well as their behavior (e.g., using finger counting, creating the 
mathematical model on scratch paper). We did not transcribe unrelated mathematical verbal or 
nonverbal communication or behavior as it was not central to our inquiry.  
Using the coding scheme, we coded each transcript by the type of scaffolding, including visual 
/graphic scaffold, interactive scaffold, linguistic scaffold or kinesthetic scaffold for both students 
and the teacher discourse (Table 1).  

Moreover, in order to analyze the linguistic scaffold, we adopted the concordance software 
AntConc 3.4.3w (Windows) 2014. AntConc is a useful tool for analyzing a detailed corpus in 
linguistic research (Lei, 2016). After obtaining the organized discourse coding transcripts from 
Nvivo, we imported them into AntConc to analyze the frequency of the teacher’s language in 
session transcripts by counting the four categories, such as “How many towers?” “How many 
cubes?” “How many more?” and “PGBM” (Please Go and Bring Me), which were the major 
activities involved in the constructivist-oriented learning of multiplicative reasoning (Xin, Tzur, 
and Si, 2008).  
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Table 1: Scaffolding Coding Scheme 
Scaffolds Teacher Students 
Visual/Graphic 
Scaffold 

“Please generate a model of 5 towers of 9   
on the grid ½ sheet.” 

“Can I use paper to double-
check?” 

Interactive 
Scaffold 

The teacher helps E with the arithmetic and 
shows her the error she made—now E has 
45. 

The teacher asks S to help E and 
he does. S counts towers for E 
until S shows 5 with his hand. 

Linguistic 
Scaffold 

T: How many cubes do you already know 
are in a tower? 
L: 6 
T: How many towers in all? 
E: 5 

L: How many cubes in each 
tower? 
E: 5 
L: How many towers? 
E: 6 

Kinesthetic 
Scaffold 

“Use my finger to keep track of it. And we 
can use our fingers if it is helpful. Here it is 
very helpful because you can keep track 
how many groups you have.” 

“I counted with my fingers.” 

 
In addition, we defined the interactive scaffolds by three characteristics: teacher-student 

interaction, student-student interaction and small group interaction (Table 2).  

Table 2: Interactive Scaffolds 
Teacher-student interaction Student-student interaction Small group interaction 
The teacher helps E with the 
arithmetic and shows her the 
error she made—now E has 45. 
 

The teacher asks S to help E 
and he does. S counts towers for 
E until S shows 5 with his hand. 
 

T: How many cubes in all?  
E: 28 
T: OK. What did you get on 
the calculator? (to L) 
L: 44 (with calculator) 

Findings 
In the first stage of analysis, we report the frequency results for the scaffolds used by the 

teacher and appropriated by the student (Eliza). The highest frequency of scaffolds used by the 
student and the teacher were kinesthetic scaffolds, while the second highest amount was 
interactive scaffolds (Figure 1). The teacher often used finger counting to help students do 
multiplication to solve the different types of problems, such as unit rate (UR) (e.g. “how many 
cubes in each tower”), composite units (CU) (e.g. “how many towers”) and 1’s (e.g. “how many 
cubes in all”) (Tzur et al., 2010). Students in these sessions often used finger counting to show a 
finger trick for multiplication with numbers. Below is an example exchange between Eliza (E) 
and teacher (T). 

Excerpt 1 (December 11, 2008) 
E: 7 plus 7 equals 14 for 2 towers. She counted 15, 16, 17… (Finger counting) 

(Counted up to 34. She tries to keep track with her fingers and wanted to be at seven 
fingers when she had her answer.) 

T: (prompt) Write down the number of cubes you got. 
E: I lost count. 
T: Try again. Do you want to use my fingers? 
E: Yes. (counts the towers, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 finger/tower… 10, 11, 12 … 
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T: (Explains the trick to E use fingers) 

 
Figure 1. Frequency of Scaffolds across students and the teacher 

As shown in this example, the teacher prompted to get Eliza’s method and Eliza tried to use 
both her fingers and the teacher’s fingers to solve the problem. We can find that in this situation, 
the teacher and the student had an effective interaction, and then the teacher could express the 
method that should be used for these types of problems. Therefore, Figure 2 shows the different 
types of interaction that the teacher and student used in sessions. It indicates that the teacher 
preferred to use small group interaction during the sessions, and students had more interaction 
during group work with both classmate and teacher. For example, the following excerpt is from a 
transcript between the teacher (T) and students Eliza (E) and Leslie (L). 

Excerpt 2 (February 17, 2009) 
T: Question number one 
L: How many cubes in each tower? 
E: 5 
L: How many towers? 
E: Six 
T: Six what? 
E: Six cubes. 
L: How many cubes... in each 
E: 5 
L: How many in all? 
T: How many what? 
L: How many towers in all? 
E: Six. 
T: I think the question you're looking for is how many cubes in all. Can you ask it? 
L: How many cubes in all? 
E: 30 

 
Figure 2. Frequency of scaffolding used by interaction types 

The example above shows that the ELL student Eliza answered the native English speaker 
using different types of questions (Unit Rate [UR, Xin, 2012] and Composite Unit [CU]) in an 
interactive way to help each other understand the three basic elements (i.e., UR, # of Units, and 
Product) in elementary multiplicative problem solving. Also, the teacher was involved in the 
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student-student interaction to ensure the accuracy of their linguistic usage and to check their 
understanding (such as “how many what?”).  

Using AntConc, we found that in the session transcripts the teacher used the phrase “how 
many” 111 times, while “how many towers” was used 18 times, and “how many cubes” was 
used 37 times. Another key word that the teacher frequently used was “PGBM” or “Please Go 
and Bring Me,” which is the main task of a turn-taking ‘platform’ game PGBM (Xin et al., 
2008). The authors created this game and used a simple language to name it and make it easier 
for ELLs with LD. The frequency of the language used by the teacher indicates that “PGBM” 
was used more and more often to engage the ELL in learning multiplicative reasoning and 
problem solving (e.g. “PGBM a tower of eleven,” “PGBM six cubes”). 

Conclusions and Implications 
In response to our research questions and in terms of the findings from our analysis, we draw 

the following conclusions: 

1. The types of scaffolds that the teacher made in multiplicative reasoning to scaffold 
instruction for an ELL with LD are interactive, linguistic, visual/graphic and kinesthetic 
scaffolds. Among these, the kinesthetic scaffold was the most frequently used by the 
teacher. The teacher used finger counting as a method to show the student how to solve 
composite units (CU) and unit rates (UR). The second highest scaffold frequency was 
interactive scaffolding. We redefined and divided interactive scaffolding into three 
characteristics: student-student interaction, teacher-student interaction and small group 
interaction. The results show that small group interaction is the most effective and useful 
interaction that was used among the students and the teacher. Students, particularly Eliza, in 
the small group demonstrated a greater willingness and capacity to think and answer 
multiplication problems. 

2. When the teacher taught multiplicative reasoning to the ELL with LD, he frequently used 
simple phrases such as “how many” and “PGBM.” The rationale of using the linguistic 
scaffolding is that the teacher repeatedly used and also let students repeatedly use the simple 
phrase “how many” to illustrate the process of thinking and solving multiplication problems. 
In addition, “PGBM” characterizes the “platform” game used, which also benefits English 
language learners to get directions promptly and attend to multiplicative reasoning. 

In general, we found that the four scaffolds in classroom discourse that the teacher frequently 
used with students can influence the multiplicative reasoning of the English language learner 
with learning disabilities and improve mathematical problem-solving achievement. We also 
found that kinesthetic scaffolding is the most direct method tied with helping the ELL with LD 
solving multiplicative problems. However, in order to better serve English language learners 
with LD, especially in the classroom environment, teachers should focus on better linguistic 
scaffolding usage within small group interactions. In our future research, we will analyze the 
level of intellectual work (Xin et al., 2016) done by the teacher and the students through 
determining how the four scaffolds promote students comprehend multiplicative reasoning at the 
abstract level, in particular, to meet the challenging math curriculum standards. 
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IDENTIFYING LATENT CLASSES OF MIDDLE GRADES TEACHERS BASED ON 
REASONING ABOUT FRACTION ARITHMETIC  

 İbrahim Burak Ölmez Andrew Izsák    
 University of Georgia Tufts University 
 i.burakolmez@hotmail.com Andrew.Izsak@tufts.edu                                                                    

The purpose of this study was to examine distinct latent classes of middle grades mathematics 
teachers with respect to reasoning about fractions. Survey response data came from a 
nationwide sample of 990 in-service middle grades mathematics teachers. The survey focused on 
four components of reasoning about fractions in terms of quantities: referent unit, partitioning 
and iterating, appropriateness, and reversibility. The mixture Rasch model analysis detected 
three latent classes, each with strengths and weaknesses. Chi-square tests indicated significant 
relationships between latent class membership and various teacher characteristics such as 
gender, mathematics credential, grade-level experience, and highest grade-level certification. 
The results extend recent advances in measuring mathematical knowledge of teachers. 

Keywords: Data Analysis and Statistics, Rational Numbers, Teacher Knowledge 

Fractions are core content in the upper elementary and middle grades mathematics 
curriculum and are highly interconnected to whole-number multiplication and division, and 
ratios and proportional relationships (e.g., Vergnaud, 1988). Additionally, fractions are necessary 
for algebraic reasoning and further study in mathematics (Hackenberg & Lee, 2015). Although 
most teachers can multiply or divide two fractions by computing correctly, many studies 
acknowledged the difficulties that teachers experience in reasoning about products or quotients 
of fractions when they are embedded in problem situations (e.g., Ball, Lubienski, & Mewborn, 
2001; Lee, 2017). Despite strong emphasis by recent curriculum standards such as the Common 
Core State Standards for Mathematics (CCSS-M; e.g., National Governors Association Center 
for Best Practices & Council of Chief State School Officers, 2010) on the necessity of 
developing reasoning about fraction arithmetic when solving problems embedded in situations, 
two main challenges exist in mathematics education. One main challenge is to foster teachers’ 
reasoning about fractions in terms of quantities. A second main challenge is to understand how to 
use psychometric models for measuring teachers’ fine-grained mathematical knowledge. Many 
recent applications of psychometric models to measure teachers’ mathematical knowledge have 
relied on traditional item response theory (IRT) models. These efforts include the Learning 
Mathematics for Teaching (LMT) project (e.g., Hill, 2007), the Diagnostic Mathematics 
Assessments for Middle School Teachers (DTAMS) project (Saderholm, Ronau, Brown, & 
Collins, 2010), and the Knowledge of Algebra for Teaching (KAT) project (Senk, 2010).  
Traditional IRT models rely on the assumption that all examinees in a given sample belong to a 
single population. Some recent studies (e.g., Izsák, Orrill, Cohen, & Brown, 2010; Izsák, 
Jacobson, de Araujo, & Orrill, 2012), however, have demonstrated the existence of distinct latent 
classes of middle grades teachers. The presence of distinct latent classes violates local 
independence, a key assumption of traditional IRT models. To address this issue, the present 
study employs the mixture Rasch model (Rost, 1990), a combination of a latent class model and 
a traditional IRT model. When applying the mixture Rasch model, one can examine model fit for 
different numbers of latent classes. Each class is characterized by a distinct pattern of item 
responses, and differences in response patterns are thought to indicate different underlying 
cognitive strategies (Bolt, Cohen, & Wollack, 2001). For each examinee, the mixture Rasch 
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model provides an estimate of ability (as does a unidimensional traditional IRT model) and a 
probability of class membership.  

The present study used responses from a sample of 990 in-service middle grades teachers 
across the U.S. to the Diagnosing Teachers’ Multiplicative Reasoning (DTMR) Fractions survey 
(Bradshaw, Izsák, Templin, & Jacobson, 2014). The survey measures teachers’ capacities to 
reason about multiplication and division of fractions in terms of quantities. The purpose of this 
study was to identify distinct latent classes of middle grades teachers on reasoning about 
fractions and investigate the relationships between class membership and teacher characteristics 
such as gender, mathematics credential, grade-level experience, highest grade-level certification, 
and years of teaching experience. The following research questions were addressed: 

1. Do distinct latent classes exist in the national sample of middle grades teachers?  
2. If so, what areas of strength and weakness on reasoning about fractions distinguish the 

distinct latent classes? 
3. Are there significant relationships between latent class membership and teacher 

characteristics including gender, mathematics credential, grade-level experience, highest 
grade-level certification, and years of teaching experience? 

Theoretical Framework 
The theoretical framework for this study considers middle grades teachers’ reasoning about 

quantities and focuses on using drawings (e.g., area models and number lines) to learn and teach 
fraction arithmetic. We consider fine-grained components of reasoning as the property of an 
individual by following the constructivist perspective, in which the individual dynamically stores 
each component in his/her mind. We think that reasoning, which goes beyond computational 
fluency, requires a teacher to make sense of quantities in fraction arithmetic problems using 
drawings. From this standpoint, a teacher’s capacity to reason about quantities with drawings can 
be increased by paying more consistent attention to distinct fine-grained components such as 
referent units, partitioning and iterating, appropriateness, and reversibility — the importance of 
which have been established in past research (e.g., Bradshaw et al., 2014; Izsák, Jacobson, & 
Bradshaw, in press) and explained later. Moreover, we take the stance that reasoning depends on 
context. That is, a teacher’s performance about the use of one component in one situation might 
be appropriate, but his/her performance in another situation might be problematic, depending on 
the wording of the situation, the arithmetic operations required, or the representations provided. 
Hence, it is important to examine teachers’ capacities to employ particular components across a 
range of problem situations.   

Methods 
Participants 

The data consisted of survey responses from a sample of 990 in-service middle grades 
teachers across the U.S. (Table 1).  
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Table 1: Demographic information 
Variables                                  %                          
Gender (N = 976)                                                   
     Female                           75.0                        
Mathematics credential (N = 974)                                                   
     Yes                    67.0   
Grade-level experience (N = 972)      
     K-5                    46.0   
     Grades 6-8                    29.0   
     Grades 9-12                           25.0                        
Highest grade-level certification (N = 
971) 

     

     K-6                      8.0   
     Grades 7-9                    57.0   
     Grades 10-12                    35.0   
Years of teaching experience (N = 966)      
     0-4 years                      17.1   
     5-14 years                    52.9   
     > 14 years                    30.0   

 
Instruments 

The DTMR Fractions survey consists of two parts. The first part has 27 items (19 multiple 
choice and 8 constructed response) that measure four distinct components of reasoning about 
fractions including referent unit, partitioning and iterating, appropriateness, and reversibility. 
Referent unit deals with reasoning about units when numbers are embedded in problem situations 
and consists of three sub-components. Norming refers to the formation of standard units for 
measurement and occurs either in case of selecting a standard unit from alternate choices or in 
case of making at least two choices for a measurement unit in a given situation (i.e., renorming). 
Referent unit for multiplication and referent unit for division concern the problem situations that 
can be modeled by the equation M • N = P where M and N refer to different units. The second 
component, partitioning and iterating, refers to dividing a quantity into equal-sized pieces and 
concatenating unit fractions. It consists of three sub-components. Partitioning in stages refers to 
making a repartition to obtain a desired partition. Partitioning using common denominators and 
partitioning using common numerators refer to using common denominators or numerators to 
obtain common partitions. The third component, appropriateness, concerns identifying situations 
that can be modeled by multiplication and division and includes three sub-components: 
identifying multiplication, identifying partitive division, and identifying quotitive division. The 
fourth component, reversibility, deals with returning to a starting point after making some 
process. We conjecture that proficiency in use of these four components of reasoning across 
different problem situations enables teachers to solve fraction arithmetic problems in terms of 
reasoning with quantities.   

Because the DTMR Fractions survey items are secure, we present one example item similar 
to an actual survey item (Figure 1). This item measures referent unit and partitioning and 
iterating. The correct choice is (b). A teacher who chose (a) or (c) would indicate confusion 
about the referent unit for 1/8. A teacher who chose (e) would indicate an incorrect partition (5 
groups of 6 pieces that create 30ths). A teacher who chose (b) would demonstrate both the 
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correct referent unit (the 1 meter) and the correct partition (5 groups of 8 pieces that create 
40ths). The rest of the multiple-choice items were also constructed so that the different choices 
provided information about the four components of reasoning. A correct choice provided 
evidence for the components of reasoning intended for that item; incorrect choices simply 
indicated lack of evidence for the components of reasoning intended for that item. Constructed 
response items were also scored using rubrics for evidence of intended components of reasoning.  

 
Figure 1: An item that measures referent unit and partitioning using common multiples of 

denominators. From Izsák et al. (2010). All rights reserved.  

The second part of the survey consists of a questionnaire to obtain information about various 
teacher characteristics including gender, mathematics credential, grade-level experience, highest 
grade-level certification, and years of teaching experience (see Table 1).    
Data Analysis 

We analyzed the data using the mixture Rasch model implemented in the computer program 
WINMIRA (von Davier, 2001). First, we estimated the mixture Rasch model with one, two, 
three, four, five, and six latent classes. Second, we compared three information indices to select 
the best fitting model: Akaike’s information criterion (AIC), Bayesian information criterion 
(BIC), and consistent AIC (CAIC). With each of these criterion, smaller values indicate better fit. 
We selected the model with the smallest BIC values as the best fitting model (Li, Cohen, Kim, & 
Cho, 2009). Next, we analyzed the reasoning characteristics of each latent class by examining 
raw response data. In addition, we evaluated the relationships between latent class membership 
and teacher characteristics using analysis of variance (ANOVA) and chi-square tests across the 
latent classes. 

Results 
Checking Dimensionality  

An exploratory factor analysis using maximum likelihood estimation as implemented in the 
SPSS 16.0 software (SPSS Inc., 2007) indicated eigenvalues of the first three factors as 5.1, 1.5, 
and 1.3, and the total variance explained by the first factor was 19%. Because the first eigenvalue 
was relatively large (Lord, 1980), a unidimensional model could be fit to the data.  
Model Selection  

Values for the three information indices are given in Table 2. Minimum values for BIC 
(30226.79) and CAIC (30312.79) indicated a three-class solution in the data.  
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Table 2: Model fit indices of the mixture Rasch model 
Model            AIC                       BIC                        CAIC  
One class        30526.03                  30663.16                      30691.16  
Two classes        30011.27                  30290.43                      30347.43  
Three classes        29805.59                  30226.79                      30312.79  
Four classes 
Five classes 
Six classes 

       29706.11 
       29672.67 
       29579.19 

                 30269.35 
                 30377.94 
                 30426.49 

                     30384.35 
                     30521.94 
                     30599.49 

 

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = Consistent 
Akaike information criterion; the smallest information criterion index is bold.  
 

Table 3 presents the descriptive statistics about raw scores for each of the three latent classes. 
Based on Table 3, Class-C is the least proficient latent class with the average score of 7.948 over 
the total score of 27, and 39% of the teachers (385 over 990 teachers) are members of this class. 
Moreover, Class-B is the middle proficient latent class with 19% of the teachers (184 over 990 
teachers) in this class. And, Class-A is the most proficient latent class with 42% of the teachers 
(421 teachers over 990 teachers) in this class. 

 Table 3: Descriptive statistics for the latent classes.  
            Class-A                Class-B                     Class-C  
Raw scores 
         M 
         SD 
         N (%) 

             
             15.399 
               4.165 
           421 (42.5) 

                  
                10.750 
                  4.265 
              184 (18.7) 

                      
                      7.948 
                      3.529 
                  385 (38.8) 

 

 
Analysis of Raw Response Data  

To get the clearest view of the reasoning characteristics associated with each latent class, we 
narrowed analysis to the raw response data of the 649 teachers who were assigned to a latent 
class with a probability of .9 or higher. Table 4 lists the characteristics of the latent classes based 
on the percentage of teachers in each class who answered the survey items correctly. 

Table 4: Characteristics of the latent classes (N = 649) 
Component Sub-component    Characteristic   Class-A                Class-B      Class-C 

RU 
 
 
 

RU 
 
 
 

RU 
 
 
 

RU 
 
 
 

Norming 
 
 
 

Norming 
 
 
 

Norming 
 
 
 

RU for 
Multiplication 

 
 

Choosing a 
standard unit from 
alternate choices 

 
Renorming in the 
presence of proper 

fractions 
 

Renorming in the 
presence of improper 

fractions 
 

Distinguishing part- 
of-a-part from part- 

of-a-whole 
 

         Strong 
  
         
      
         Strong 
   
         
  
         Weak 
  
         
  
         Partial  
         
  
 

    Partial        Weak 
  
        
  
    Strong        Weak 
 
        
    
    Weak         Weak 
  
        
  
    Partial        Weak 
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RU 
 
 
 

RU 
 
 

RU 
 
 

PI 
 
 

PI 
 
 

PI 
 
 

APP 
 
 

APP 
 
 

APP 
 
 

REV 

RU for 
Multiplication 

 
 

RU for Division 
 
 

RU for Division 
 
 

Partitioning in 
Stages 

 
Common 

Denominator 
 

Common Numerator 
 

Identifying 
Multiplication 

 
Identifying Partitive 

Division 
 

Identifying Quotitive 
Division 

 
Reversibility 

Reasoning when the 
whole is not present 

visually 
 

When quotient as a 
whole number 

 
When quotient as a 

fraction 
 

Partitioning in  
stages 

 
Using common 
denominators 

 
Using common 

numerators 
 

Identifying 
multiplication 

 
Identifying  

partitive division 
 

Identifying  
quotitive division 

 
Reversibility 

         Partial   
  
         
        
         Partial 
  
         
         Partial 
  
         
         Strong    
  
               
         Strong 
  
         
         Strong 
         
   
         Strong 
  
       
         Strong 
         
        
         Strong 
   
       
         Strong  

   Partial        Weak 
  
        
       
   Partial        Partial 
  
        
   Partial        Weak 
  
        
   Weak         Weak 
 
            
   Weak         Weak 
  
        
   Weak         Weak    
        
   
   Partial        Weak 
        
       
   Strong        Strong 
 
        
   Strong        Weak 
       
        
   Strong        Weak 
 

Note. RU=Referent Units; PI=Partitioning & Iterating; APP=Appropriateness; REV=Reversibility. 
 

Finally, an exploratory examination of the latent classes obtained from the mixture Rasch 
analysis and an examination of the raw response data of the 649 teachers revealed the reasoning 
characteristics of each latent class (Figure 2). Based on this analysis, Class-C teachers perform 
well only in identifying partitive division (Appropriateness) problems, but have trouble in the 
remaining three components of fraction arithmetic (i.e., referent units, partitioning and iterating, 
and reversibility). On the other hand, Class-B teachers are found to perform well in identifying 
multiplication and identifying quotitive division (Appropriateness) problems, in addition to 
problems that involve identifying partitive division (Appropriateness), and in using reversibility. 
However, similar to Class-C teachers, Class-B teachers struggle with items that measure referent 
units, and partitioning and iterating such as partitioning using common denominators and 
partitioning using common numerators. In addition to having the strengths of Class-B teachers, 
Class-A teachers perform well in partitioning using common denominators, partitioning using 
common numerators and partitioning in stages (Partitioning and iterating). On the other hand, 
Class-A teachers have partial difficulty in renorming and distinguishing part-of-a-part from 
part-of-a-whole (Referent units). In this component, Class-C and Class-B teachers experience 
much more difficulty than Class-A teachers.  
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Figure 2: Identifying latent classes based on mixture Rasch analysis (N = 649).  

 
The Relationships between Latent Class Membership and Teacher Characteristics  

We also examined the relationships between latent class membership and various teacher 
demographic and professional history characteristics. First, we found significant differences for 
total mean raw scores based on ANOVA (F (2, 987) = 363.557, p = .00). The effect size (η") of 
the main effect was .42, indicating that the latent classes explained 42% of the variance in the 
total mean raw scores. Post hoc analyses using Scheffé’s test showed significant differences of 
the three latent classes from each other (p = .00 for each comparison). This indicated teachers in 
Class-A scored significantly higher than those in Class-B, and teachers in Class-B scored 
significantly higher than those in Class-C. Second, a chi-square test for gender was significant 
(𝜒"(2) = 25.40, p < .001), but Crámer’s V statistic was .16, indicating a weak association 
between latent class membership and gender. Third, a chi-square test for mathematics credential 
was significant (𝜒"(2) = 15.27, p < .001), indicating a relationship between having a 
mathematics credential and latent class membership. Fourth, the relationship between latent class 
membership and grade-level experience was significant (𝜒"(4) = 25.07, p < .001). Fifth, the 
author(s) found a significant relationship between latent class membership and highest grade-
level certification (𝜒"(4) = 29.20, p < .001). Finally, we found a significant relationship between 
latent class membership and years of teaching experience (𝜒"(4) = 11.92, p = .018). These results 
indicate that teachers who achieved higher scores, those who had a mathematics credential, those 
who had a high-school credential, and those who had more teaching experience tended to be in 
Class-A as opposed to other latent classes. 

Discussion 
Results of the present study demonstrate how combining research in mathematics education 

with psychometric models can reveal patterns in middle grades teachers’ fine-grained reasoning 
about fractions. We used the mixture Rasch model to characterize differences in reasoning about 
fractions of middle grades teachers. Results for the first research question revealed three distinct 
latent classes. Results for the second research question indicated that teachers in the three latent 
classes were distinguished by their attention to norming and referent units for multiplication (i.e., 
referent unit), using common numerators (i.e., partitioning and iterating), identifying 
multiplication and division (i.e., appropriateness), and reversibility. These results extend those 
reported by Izsák et al. (2010, 2012). For instance, Izsák et al. (2010) found two latent classes in 

Class-3 

• Choosing a standard unit from alternate choices (RU)                           
• Partitioning using common denominators (PI) 

 
 

•  Identifying quotitive division (APP) 
•  Reversibility (REV) 

• Identifying partitive division 

• Partitioning in stages (PI)                           
• Partitioning using common numerators  (PI) 

•  Identifying multiplication (APP) 
 

Class-C 

Class-B 

Class-A 
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a convenience sample of 201 in-service middle grades teachers where teachers in one class were 
more proficient in referent unit than those in the second class. The present study used a more 
refined instrument and a much larger sample to refine the earlier results, found three latent 
classes instead of two, and identified differences across the latent classes based not only on 
referent unit but also on other components of reasoning including partitioning and iterating, 
appropriateness, and reversibility. For the third research question, we found significant 
relationships between latent class membership and the teacher characteristics such as 
mathematics credential, grade-level experience, highest grade-level certification, and years of 
teaching experience, as similar to the results of Hill (2007) and Izsák et al. (in press). Future 
studies should continue examining teachers’ mathematical knowledge using innovative measures 
and applications of diverse psychometric models, including the mixture Rasch model. 
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REFLECTED ABSTRACTION AS A MECHANISM FOR DEVELOPING  
PEDAGOGICAL CONTENT KNOWLEDGE 
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Tallman (2015) argued that pedagogical content knowledge is a form of content knowledge with 
particular characteristics that endow it with pedagogical utility, and he conjectured that an 
essential characteristic of a teacher’s content knowledge is her conscious awareness of the 
mental actions and conceptual operations that comprise her mathematical schemes. We report 
the results of a study that explored this conjecture by examining the pedagogical implications of 
engaging a pre-service secondary teacher in a mathematical intervention to support her 
construction of a powerful scheme for constant rate of change and to engender her conscious 
awareness of the mental processes that constitute this scheme. 

Keywords: Pedagogical content knowledge; Reflecting abstraction; Mathematical knowledge for 
teaching; Pre-service teacher education 

Researchers have long been concerned with conceptualizing the knowledge base that enables 
teachers to effectively support students’ conceptual mathematical learning. Shulman’s (1986, 
1987) notion of pedagogical content knowledge (PCK), which he defined as a “special amalgam 
of content and pedagogy,” represents a significant advance to this end (1987, p. 8). While 
researchers since Shulman have strived in various ways to elaborate the PCK construct, there is 
an aspect of Shulman’s initial conceptualization that is almost never abandoned: the notion that 
PCK is a combination of content knowledge and pedagogical knowledge (Depaepe, Verschaffel, 
& Kelchtermans, 2013). Although many researchers follow Shulman in defining PCK as an 
amalgam of knowledge of content and knowledge of pedagogy (e.g., Ball, Thames, & Phelps, 
2008; Fennema & Franke, 1992), the relationship between these distinct types of professional 
knowledge, as well as the specifics of their synthesis, remains elusive. 

To investigate the relationship between teachers’ content knowledge and their instructional 
actions, Tallman (2015, in submission) compared an experienced secondary mathematics 
teacher’s knowledge of sine and cosine functions with the knowledge he enacted in the context 
of teaching. Through this comparison, Tallman identified the influences that affected the nature 
and quality of the subject matter knowledge the teacher leveraged in his lesson planning and 
instruction. Tallman’s analysis revealed that the inconsistencies between the teacher’s personal 
and enacted mathematical knowledge resulted from him possessing weak connections and 
multiple schemes for particular concepts related to trigonometric functions, as well as from his 
unawareness of the mental actions and conceptual operations that comprised these often 
powerful but uncoordinated cognitive schemes. Tallman concluded from these results that PCK 
is a form of content knowledge with particular characteristics that endow it with pedagogical 
utility; he argued that the pedagogical character of PCK derives from the specific ways in which 
a teacher’s content knowledge informs her enactment of effective pedagogies. Additionally, 
Tallman conjectured that an essential characteristic of a teacher’s content knowledge is the 
extent to which she is consciously aware of the mental actions and conceptual operations that 
comprise her own mathematical schemes. 

In this paper, we report the results of a study that explored this conjecture by examining the 
pedagogical implications of engaging a pre-service secondary teacher in a mathematical 



Mathematical Knowledge for Teaching 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

477 

intervention to support her construction of a powerful scheme for constant rate of change and to 
engender her conscious awareness of the mental processes that characterize this scheme. We 
leveraged Piaget’s (2001) notion of reflected abstraction to stimulate such conscious awareness. 

Theoretical Background 
Piaget proposed abstraction as the mechanism of scheme construction and refinement and 

distinguished five varieties: empirical, pseudo-empirical, reflecting, reflected, and meta-
reflection (Piaget, 2001). We discuss only reflecting and reflected abstraction because of their 
unique role in the construction and refinement of mathematical schemes and because these two 
types of abstraction served as design principles and analytical constructs in the present study. 
Reflecting abstraction involves the subject’s reconstruction on a higher cognitive level of the 
coordination of actions from a lower level, and results in the development of logico-
mathematical knowledge, or schemes at the level of operative thought. Reflecting abstraction is 
thus an abstraction of actions and occurs in three phases: (1) the differentiation of a sequence of 
actions from the effect of employing them, (2) the projection of the differentiated action 
sequence from the level of activity to the level of representation, or the reflected level, and (3) 
the reorganization that occurs on the level of representation of the projected actions (Piaget, 
2001). A subject must differentiate (dissociate) actions from their effects before she can 
construct an internalized representation of them, what Piaget called projecting actions to the level 
of mental representation (i.e., the “reflected level”). Additionally, the subject must coordinate the 
actions that produced the effect before she can project and represent them on this higher 
cognitive level. Once a subject differentiates actions from their effect and coordinates them, she 
is prepared to project these coordinated actions to the reflected level where they are organized 
into cognitive structures, or schemes. 

Reflected abstraction involves operating on the internalized actions that result from prior 
reflecting abstractions, which results in a coherence of actions and operations accompanied by 
conscious awareness. It is the act of deliberately operating on the actions and operations that 
result from prior reflecting abstractions that engenders such awareness. To consciously operate 
on actions at the level of representation suggests that one has symbolized coordinated actions at 
this higher level. Reflected abstraction thus relies on what Piaget called the semiotic function, or 
the subject’s capacity to construct mental symbols to represent aspects of her experience. As a 
result of the conscious awareness of internalized actions that occurs as a byproduct of reflected 
abstraction, the subject’s ability to purposefully assimilate new experiences to the reflected level 
provides evidence that she has engaged in reflected abstraction. Additionally, performing 
operations on the symbols the subject constructs to represent coordinated actions at the level of 
representation results in increasingly organized cognitive structures. Reflected abstraction is 
therefore the means by which systems of organized actions at the level of representation become 
progressively coherent and refined. 

Conceptual Analysis of Rate of Change 
As we mentioned above, we engaged a pre-service secondary teacher in a mathematical 

intervention to support her construction of a particular scheme for rate of change. In this section, 
we briefly describe the meanings we designed the intervention to support. 

A mature rate of change scheme relies upon productive conceptualizations of ratio, rate, and 
continuous variation. A ratio is a multiplicative comparison of the measures of two constant 
(non-varying) quantities while a rate defines a proportional relationship between varying 
quantities’ measures (Thompson & Thompson, 1992). Constructing a rate therefore involves 



Mathematical Knowledge for Teaching 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

478 

images of smooth continuous variation (Thompson & Carlson, 2017), as well as the expectation 
that as two quantities covary, multiplicative comparisons of their measures remain invariant.  

A rate is a reflectively abstracted constant ratio (Thompson & Thompson, 1992, p. 7), which 
means that constructing a rate involves internalizing the coordinated actions involved in 
multiplicatively comparing particular values of covarying quantities. An individual has done so 
if on the basis of her conceptualization of a particular quantitative situation she anticipates that 
subsequent multiplicative comparisons of the covarying quantities’ measures will yield the same 
numerical value.  

Rate of change is a quantification of two covarying quantities and results from a 
multiplicative comparison of changes in covarying quantities’ measures. The rate of change is 
constant if changes in the quantities’ measures are proportional. Conceptualizing changes in 
quantities’ measures as quantities themselves involves a quantitative operation with attention to a 
point of reference (Joshua et al., 2015). Conceptualizing rate of change requires students to 
construct changes in quantities’ values as quantities themselves and then to abstract an invariant 
multiplicative relationship between changes in the quantities’ values. 

Methods 
This study’s experimental methods proceeded in four phases. First, we video recorded all 

nine lessons from a pre-service secondary teacher’s instruction of rate of change and slope in a 
7th grade class during her student teaching semester. We then asked the participant, Samantha, to 
use the data analysis software Studiocode (Studiocode Version 5.8.4, Sportstec, Ltd., 2015) to 
identify segments of her first two lessons that exemplify high quality instruction as well as 
segments that indicate room for improvement. She wrote brief justifications for each selection. 
Samantha performed this analysis of her teaching videos independently and met with the 
research team after she had finished to answer clarifying questions and to provide additional 
rationale for her written responses. We then conducted a teaching experiment (Steffe & 
Thompson, 2000) during the third phase of the study to construct a model of Samantha’s scheme 
for constant rate of change and to characterize the evolution of this scheme as she engaged in 
particular instructional experiences designed to promote reflecting and reflected abstractions. 
The teaching experiment consisted of eight teaching episodes that each lasted between 60 and 90 
minutes. During the fourth phase of the study, we asked Samantha to analyze five teaching 
videos (including the two she analyzed prior to participating in the teaching experiment) using 
the codes “High Quality Instruction” and “Room for Improvement” and to provide written 
rationale for her selections. We again interviewed Samantha to probe her justifications for her 
selections and to ask focused questions about the segments of her instruction she identified as 
exemplars of high- or low-quality teaching. Our focus in the fourth phase of the study was to 
determine whether the criteria by which Samantha evaluated the quality of her instruction had 
changed, and to identify the role played by her content knowledge in making such evaluations. 

Results 
Due to space limitations, we discuss only our analysis of the data relevant to Samantha’s first 

lesson on rate of change. 
Samantha’s Instruction of Rate of Change 

Samantha began her teaching of rate of change by asking students to describe what they think 
of when they hear the word “rate” and to provide examples of rates. She then defined a rate as “a 
ratio of two quantities with different units” and described a unit rate as “a rate with a 
denominator of one.” After defining these terms, Samantha asked students to interpret the 
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meaning of a car traveling at a constant speed of 65 miles per hour. She validated a student’s 
response, “You’re traveling 65 miles in an hour” and then restated for the rest of the class the 
student’s interpretation: “Every 65 miles that I travel, that’s an hour of time; or if I travel for an 
hour, I’ve gone 65 miles.” Samantha then asked students to “find the unit rate in miles per hour” 
if a car travels 155 miles in two hours. After students divided 155 by two, Samantha explained 
that the resulting 77.5 represents the number of miles the car travels each hour.  

Samantha’s definition of rate as a “ratio of two quantities with different units” supported 
students’ understanding of constant rate as the change in some quantity’s measure that 
corresponds to a one-unit increase in another quantity’s measure. Her discussion of the meaning 
of a vehicle traveling at a constant rate of 65 miles per hour is a case in point. She encouraged a 
meaning based on a coordination of additive changes, instead of a proportional correspondence 
between continuously varying changes in accumulated distance and accumulated time. 
Toward the end of the lesson, Samantha asked her students to compute the unit rate provided the 
values in Table 1. Her discussion of computing this unit rate supported a conception of rate as an 
additive comparison grounded in images of discrete variation. In response to the task, a student 
proposed dividing the weight of two books (6 lbs.) by the number of books—a reasonable 
strategy considering that just prior to this task the class had computed the unit rate of a car 
traveling 155 miles in two hours by dividing the car’s distance traveled (155 miles) by two 
hours. Another student recognized that the number of pounds per book was evident in the third 
column of the table (3 pounds corresponds to one book). Samantha noticed that the two students 
were focusing on comparing the values in the table, rather than determining the change in the 
number of pounds that corresponds to adding one additional book. She subsequently directed 
students’ attention to these changes. 

Table 1: Find the unit rate. 
Books 0 1 2 3 

Pounds 0 3 6 9 
 
Samantha’s Pre-Intervention Video Analysis 

After Samantha concluded her instruction of rate of change, but prior to the teaching 
experiment, we asked her to watch the videos of her first two lessons and to identify moments 
that exemplify high quality instruction as well as moments that suggest room for improvement. 
She categorized her opening discussion—in which she asked students to describe what they think 
of when they hear the word “rate”—as indicating room for improvement. In her written 
justification Samantha explained,  

I like that I ask students what they think of when they hear the word ‘rate.’ However, I think 
there is room for improvement because I tend to talk to one student (whoever answers the 
question) instead of addressing the whole class with the student’s answer. 

Samantha identified her explanation of the meaning of 65 miles per hour as representing high 
quality instruction and rationalized her selection as follows:  

I think this portion went really well because we really isolated what a unit rate is. I used 
speed limits because I knew it was something the students could understand. I liked that I 
asked the students what ‘65 miles per hour’ means. When a student explained it using the 
same words found in the question, I asked if another student would repeat what he said but 
say it in their own words. I thought this was an effective way to get more than just one 
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student involved and to check that others understood the concept. Additionally, I liked that I 
had students give several examples. This helped me to see that they knew what a unit rate 
was and it kept them engaged.  

We notice that Samantha prioritized students’ engagement and participation as important criteria 
for evaluating the quality of her teaching. This focus on students and their activity was reflected 
in five of the six written justifications she provided for her selections. Samantha’s appraisal of 
her teaching was based primarily on the extent to which she sustained students’ interest and 
elicited their contributions. None of her written responses reflected a critical evaluation of the 
meaning of rate of change her instruction supported.  
Teaching Experiment 

We leveraged Piaget’s notion of reflecting and reflected abstraction to design an instructional 
sequence that would enable Samantha to construct a scheme for rate of change that reflects the 
meaning we articulate in our conceptual analysis above. This instructional sequence unfolded 
over nine teaching episodes. On many occasions throughout the teaching experiment, Samantha 
repeatedly and convincingly demonstrated her understanding of constant rate of change as an 
invariant multiplicative relationship between changes in the measures of covarying quantities.  

To engender reflected abstractions—that is, to support Samantha’s awareness of the mental 
actions and conceptual operations that comprised her rate of change scheme—we provided 
Samantha with her written work to particular tasks in the instructional sequence and prompted 
her to compare the thinking required to correctly solve select pairs of tasks. We asked her to 
articulate her comparison in writing and then to respond to our clarifying questions about what 
she had written. Although the tasks in the instructional sequence varied substantially in terms of 
the information provided and the quantity Samantha was asked to compute or represent, all tasks 
in the sequence could be solved by leveraging a meaning for constant rate of change as a 
proportional correspondence between changes in covarying quantities’ measures. After having 
recognized that similar or identical thinking is required to solve all 12 pairs of tasks from the 
instructional sequence we asked her to consider, we prompted Samantha to summarize in writing 
the meaning for rate of change that might enable a student to reason productively about all tasks 
in the instructional sequence. We include her response in Figure 1. 
 

 
Figure 1. Samantha’s meaning for constant rate of change. 

At the conclusion of the teaching experiment, Samantha was able to demonstrate her 
conception of constant rate of change as a proportional relationship between changes in 
covarying quantities’ measures and to articulate the mental imagery, actions, and operations that 
comprised her meaning for constant rate of change. We were interested in assessing the 
implications of Samantha’s sophisticated rate of change scheme and her awareness of its 
contents for the criteria she leveraged to evaluate her teaching and to propose alternative 
instructional actions.  
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Samantha’s Post-Intervention Video Analysis 
Just as she had done in her pre-teaching experiment video analysis, Samantha identified the 

opening discussion of the first lesson as indicating room for improvement. In this discussion, 
Samantha invited students to describe what they think of when they hear the word “rate” and to 
suggest some examples of rates. Prior to the teaching experiment, Samantha critiqued this 
episode of her first lesson based on her lack of success in getting more students involved in the 
discussion. The following is Samantha’s justification for identifying this opening discussion as 
“room for improvement” after having participated in the teaching experiment: 

I think there is room for improvement here because I think there is a better way to introduce 
rates. I feel like asking students what they think of when they hear a word is a fine way to get 
them talking and engaged but it doesn’t direct the conversation to the mathematical meaning 
of a rate. Instead, this question sort of just starts a guessing game between myself and the 
students rather than engaging in mathematical discourse. … I could’ve started the 
conversation off by posing a question like, ‘Clara runs 7 miles per hour. How far will she run 
in 2 hours?’  

We were interested in why Samantha suggested posing the question, “Clara runs 7 miles per 
hour. How far will she run in 2 hours?” so we asked her write a transcript of a hypothetical 
alternative to the opening discussion from the first lesson and to explain why she prefers this 
alternative. After having asked students to determine how far Clara will run in two hours, 
Samantha’s transcript indicated her asking them to determine how far Clara will run in three 
hours, half an hour, and 4.3 hours. She then prompted students to generalize a (multiplicative) 
relationship between Clara’s distance traveled (in miles) and the number of hours Clara had 
spent running. The following is Samantha’s explanation for why she expected this alternate 
introduction to be more effective than how she actually began her first lesson:  

I think this interaction reflects an ideal unfolding of the conversation because we start with a 
basic example that is easy to understand (i.e. Suppose Clara runs 7 miles per hour. How far 
will she run in 2 hours?) This part gives students an easy starting point to use. Then I ask 
some follow up questions, like how far would she go in half an hour, another good 
benchmark. I move on to give an example that needs a little more explanation so that we can 
start thinking about how to break up the time (4.3 hours) and figure out what the respective 
number of miles is. It’s not as obvious as 4 hours and I could have even chose something like 
0.59 hours instead. … I think that opening with these examples fosters a conversation of how 
to find rate of change and what it means for those quantities to vary directly. The end of the 
conversation opens up many routes; we could talk about finding time and then add some 
initial values and dig into changes in quantities. 

Samantha’s alternate introduction to the first lesson reflects both her image of what it means to 
understand constant rate of change as well as her expected trajectory through which students 
must progress to construct this understanding. Rather than proposing instructional actions that 
simply elicit students’ participation, Samantha’s transcript and accompanying rationale 
demonstrate that her criteria for effective teaching had shifted to incorporate attention to the 
mathematical meanings her instruction supported. 

The transformation in the criteria by which Samantha evaluated the quality of her teaching 
was evident in her analysis of other episodes from the first lesson. Regarding her definition of 
rate as a “ratio of two quantities with different units,” Samantha commented: 
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I’m not really a huge fan of doing a ton of definitions so I don’t know why I did this. I don’t 
think I would use this definition (the book definition) for rate again. Although it connects 
rates to ratios, it doesn’t really give any meaning to rates. One could recite this definition 
without actually knowing how to do any problem that involves rates. 

Samantha’s appraisal of her discussion of what it means to say that a car travels at a constant 
speed of 65 miles per hour similarly reflected her attention to the understanding of rate she 
promoted: 

I think we are getting closer to what I would really like conversations about rate to look like. 
This is what I would call the first stage of understanding rates of change. The students seem 
to have an understanding that 65 miles per hour means that for every hour traveled, one goes 
65 miles. I think this a great place to start conversations about rates of change. Maybe some 
other contexts could get the conversation moving further so we could generalize the idea by 
talking about changes in quantities. 

Additionally, Samantha expressed contrition for asking students to determine the unit rate 
provided the values in Table 1. Specifically, she acknowledged that the context did not support 
students’ conception of rate of change as conveying a relationship between changes in 
quantities’ measures: 

I see what I am getting at here. I am trying to get at the idea of changes in pounds for changes 
in books and how that is a rate. Honestly, the examples I chose aren’t the best for trying to 
make students think hard about changes in quantities. The problems are almost trivial, clearly 
every book is three pounds. Once students see that, it’s hard to get them to talk about changes 
in quantities because the answer to the question has already been found and can be explained 
simply. 

Samantha critically evaluated the mathematical meanings her instruction supported in 14 of 
the17 justifications she provided for the segments of her lessons that exemplify high quality 
instruction or indicate room for improvement. In Samantha’s initial analysis of her teaching 
videos, none of her written responses suggested that she was attending to the understanding of 
rate of change her instruction promoted. This shift in the criteria by which Samantha evaluated 
her teaching quality did not escape her attention. When asked what she initially considered when 
evaluating her instruction, Samantha explained, “I think it was student engagement, using 
something the students care about or would be interested in, asking good questions, getting them 
to repeat back.” Samantha acknowledged the importance of attending to issues of classroom 
management and students’ participation, but then suggested that instruction viewed only through 
this lens does not enable one determine whether students are being provided with opportunities 
to construct productive ways of understanding. Having come to this conclusion, Samantha 
described the additional criterion that she considered after having engaged in the teaching 
experiment to assess the quality of her teaching:  

As we went over rate and what it means to be a rate together, I started thinking more about 
what am I doing to promote understanding. … Going back I think cared a lot more about 
classroom management versus when I went back and looked at these I acutely cared about, 
ok wait, is this promoting understanding. … I cared more about what they knew. 
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Discussion 
Our findings expose a common assumption that underlies much of the literature on 

mathematical knowledge for teaching as well as mathematics teacher preparation and 
professional development programs: Mathematical knowledge for teaching is comprised of a 
variety of distinct but related knowledge “types” that coalesce in the practice of teaching. 
Mathematics teacher education programs based on this assumption focus on supporting teachers 
in developing these categories of knowledge without seriously attending to how knowledge in 
one domain informs or derives from knowledge in another. The central findings of our study 
suggest that teachers’ image of effective teaching—and the pedagogies they enact to ensure that 
their practice conforms to this image—are influenced by having constructed powerful 
mathematical schemes and by having achieved an awareness of the mental actions and 
conceptual operations that comprise these schemes. The results of our study therefore support 
Tallman’s (2015, in submission) hypothesis that engaging pre-service teachers in mathematical 
experiences designed to engender reflecting and reflected abstractions has positive implications 
for their image of effective teaching and the pedagogical actions they enact (or envision 
enacting) to achieve their instructional goals. 
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Learning fractions has been one of the challenges that mathematics educators face for few 
decades. Theoretical and empirical revisions of our common practices of teaching fractions are 
needed. This study investigates how re-examining fractions from a measurement perspective 
influences pre-service teachers’ (PSTs) interpretations of fractions. Sixty-seven PSTs engaged in 
re-examining fractions from a measurement perspective during a 15-week semester. They also 
completed pre- and post-tests that assess their interpretations of fractions represented in discrete 
and continuous models. Findings show statistically significant increase in PSTs’ scores on the 
post-test, specifically on questions that used continuous models. This study shifts investigating 
fractions learning from an exclusive focus on the partitioning perspective to the measurement 
approach and highlights its affordances.  

Keywords: Teacher Knowledge, Number Concepts and Operations, Rational Numbers, 
Instructional activities and practices 

Introduction 
Supporting students’ meaningful learning of fractions has been a prominent challenge of 

mathematics educators. Teachers struggle to help students from early ages to conceptualize 
fractions and know how to operate on them. Research on teachers’ and students’ learning of 
fractions and operations on fractions has been based on two ontological perspectives: partitioning 
and measurement. The partitioning perspective views a fraction as a relation established between 
parts of a whole partitioned into equal parts. This ontological perspective is rooted in a belief that 
counting is the basis for arithmetic and has led to the commonly accepted part/whole conception 
of fractions. For instance, it is how the Common Core State Standards (National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 2010) suggests 
introducing factions in the elementary school grades. Nevertheless, research indicates that this 
perspective seriously limits the robustness of students’ understanding of fractions (Kerslake, 
1986). It tends to support the erroneous idea that a fraction is composed of two different 
quantities and impedes understanding of improper fractions. Little research has investigated the 
known alternative source for fraction knowledge, the measurement perspective. 

In response to this conceptual gap in the literature, we investigate how a measurement 
approach influences elementary pre-service teachers’ (PST) interpretations of fractions. In 
contrast to a part/whole conception a measurement conception views fractions as numbers or 
ordered pairs that represent relations between two measurable, continuous quantities (Davydov 
& Tsvetkovich, 1991; Gattegno, 2009/1960). The relation is a multiplicative comparison of the 
two quantities measured by the same unit. The comparison is based on one quantity being a 
particular multiplier of the other. In our work with PSTs, we aim to investigate how their 
knowledge of multiple of representational models of fractions is influenced by their re-
examination of fractions from a measurement perspective.  
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Theoretical Framework and Relevant Literature  
Research on fraction learning indicates that both American students and teachers lack 

conceptual knowledge of fractions and operations on fractions. This deficiency coexists with 
current curriculum standards and textbooks grounded in known ineffective ontological and 
epistemological perspectives about fractions (Ni & Zhou, 2005). These perspectives and their 
corresponding curricular practices are based on partitioning approaches such as the part/whole 
method (Lamon, 2012). However, though the part/whole subconstruct and its partitioning 
approach are conceptually deficient, what is not known is how other definitional perspectives 
facilitate robust conceptual understanding of fractions. Measurement as an ontological source for 
fraction knowledge has been the object of limited research efforts. Informed by theoretical work 
of Davydov and Tsvetkovich (1991), we conceptualize the ontology of fractions and 
epistemology of fraction knowledge based on the objective source of fractions in measurement.  

We view a fraction as a relation, 𝑎/𝑏, a multiplicative comparison between two quantities 
measured by the same unit: Suppose 𝐴 and 𝐵 are two objects that have a common extensive 
attribute such as length expressed as quantities with a common unit, 𝑢, where 𝐴 equals 𝑎 units of 
𝑢 and 𝐵 equals 𝑏 units of 𝑢. Then, in the expression, 𝑎/𝑏, 𝑏 is understood to measure 𝑎 and 𝑎/𝑏 
is the relation of 𝑎 measured by 𝑏. The quantities 𝑎 and 𝑏 have the same unit of measure. 

Measurement as a material source of both whole numbers and fractions has been 
theoretically and pedagogically investigated by Davydov and others who have adapted 
Davydov’s curriculum (Davydov & Tsvetkovich, 1991; Morris, 2000; Schmittau & Morris, 
2004). The contributions of Morris (2000), Schmittau and Morris (2004), Brousseau (Brousseau 
et al., 2008), Davydov (Davydov & Tsvetkovich, 1991) and others to understanding affordances 
of a measurement perspective for whole number and fraction knowledge raises questions about 
what are possible approaches from a measurement perspective that can support students, younger 
than fourth graders, to develop number sense about fractions. 

Methods 
Our empirical study engages pre-service elementary teachers in an intervention about re-

examining fractions from a measurement perspective to investigate changes in their knowledge 
of representational models of fractions. The intervention took place in an elementary 
mathematics methods course during a 15-week semester, fall 2017, and involved 67 PSTs. 
During the first week of the semester, the teachers completed a pre-test about fractions that 
involves expressing different fractions in discrete and continuous representations. In the last 
week of the semester, teachers completed the same assessment as a post-test. For approximately 
one hour every two weeks, the teachers used Cuisenaire rods to solve collaboratively fractions 
tasks. From a measurement perspective, the tasks intend to engage the PSTs in re-examining 
their number sense about magnitude, order, equivalence of fractions, and operations on fractions 
viewed as relations that express multiplicative comparisons between two measurable quantities 
measured by common unit. 

Data for this study come from pre- and post-tests that PSTs completed during the first and 
last weeks of the semester. We adopted a fraction test created by Norton and Wilkins (2010) that 
involves representing fractions less than one and greater than in discrete and continuous models. 
The discrete problems ask PSTs to represent fractions of collections of dots. The continuous 
problems ask PSTs to represent fractions using rectangular and circular models. Each test 
includes 10 questions that involve only two of the representational models of fractions. We 
followed Boyce and Moss’s (2017) method in grading PSTs’ responses on the tests. They would 
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receive either a one, 0.5, or a zero depending on the accuracy of their response. We used t-test to 
examine differences in responses between pre- and post-tests and among the different 
interpretations of fractions.  

Results 
Analyses of pre- and post-tests scores show an increase from before and after the intervention 

(see Table 1). On the pre-test, the PSTs scored an average of 2.96 out of 5 points on the five 
questions for each representational model. This indicates that PSTs have limited interpretations 
of fractions when expressed in different forms. The PSTs’ scores on the post-test show 
statistically significant increase compared to their scores on the pre-tests. The scored an average 
of 3.53 points out of five total points. Even though this increase is significant, the scores indicate 
that some PSTs still need additional support to develop robust understanding of fractions.  

Table 1: Pre- and Post-Test Scores 
 Pre-test Post-test 
Mean 2.96 3.53 
Median 3 4 
Standard deviation  1.24 1.22 
The t-value is 3.78762. The p-value is .000094. The result is significant at p < 0.001. 

When investigating PSTs’ responses for each representational model (see Table 1), we can 
see that PSTs scored higher in the pre-test on questions that used circular models than questions 
that used discrete models or bars. This performance was also noticeable in the post-test. 
However, the most gain in scores between the pre- and post-tests was on questions that used bars 
to represent fractions. Using a t-test, we found that PSTs scores on questions that used bars 
increased significantly (p < 0.001) between pre- and post-test. Similarly, PSTs’ scores on 
questions that used circular representations increased significantly (p < 0.05) between pre- and 
post-test. There was no statistically significant change in scores regarding questions that used 
discrete model to represent fractions. 

Table 2: PSTs’ Pre- and Post-Test Scores by Fractions Representational Models 
 Bars Circles Dots 
 Pre Post Pre Post Pre Post 

Mean 2.59 3.56 3.47 3.71 2.79 3.34 
Median 3 3.5 3 4 3 3.75 
Standard deviation 1.30 1.27 1.02 1.12 1.25 1.28 
Significance level (t-test) p < .001 p < .05 not significant 

These results show that re-examining fractions using a measurement perspective can 
influence how PSTs interpret fractions represented in a rectangular or circular form. The 
rectangular model be a two-dimensional version of the three-dimensional manipulatives used 
during the intervention and this could explain the strong change in PSTs’ scores on questions 
that used bars to represent fractions. The circular model, however, is mathematically different 
than the rectangular model. Circular models concern areas of circles and circular sectors where 
rectangular models concern the length of the bar or rectangle (only one dimension of the 
rectangle while holding the other dimension constant). Even though the intervention did not 
engage the circular models when re-examining fractions, PSTs were able to better interpret 
fractions when expressed using circles and circular sectors. This shows the potential that a 
measurement perspective can offer when introducing fractions.  



Mathematical Knowledge for Teaching 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

487 

Discussion 
In this study, we examined the influence of re-examining fractions from a measurement 

perspective on PSTs’ knowledge of fractions expressed through different representational 
models. Using Cuisenaire rods, we engaged 67 PSTs in mathematical tasks that allowed them to 
view fractions as multiplicative comparisons between two measurable, continuous quantities 
(length of different Cuisenaire rods). The PSTs completed a pre-test before the intervention and a 
post-test afterward. The pre- and post-tests included questions about interpreting fractions using 
rectangular, circular, and discrete forms. Findings show that, in general, PSTs scored 
significantly higher on the post-test. When examining the different representational models of 
fractions, PSTs scored significantly higher on the post-test for the questions that involve 
rectangular and circular representations of fractions. There was not significant change on PSTs’ 
scores on post-test for questions that involve the discrete model. These findings show that re-
examining fractions using a measurement perspective offers opportunities for PSTs to engage 
their multiplicative reasoning (Vergnaud, 1988) when conceptualizing fractions. 

Our findings for the analysis of PSTs’ scores on the pre-test, which are similar to the findings 
of  Boyce and Moss (2017), highlight how PSTs’ knowledge of fractions is limited, especially 
for fractions represented in continuous models. The significant changes in PSTs’ scores on the 
post-test indicate that the affordances of measurement perspective can help learners overcome 
some of the challenges of conceptualizing fractions in different forms.  

Our study is significant for practice. It supports teachers building deep understanding and 
flexible representational models of fractions, which, in turn, lead to improving students’ fractions 
learning. In addition, this study contributes to the literature of teaching and learning of fractions 
by shifting from an exclusive focus on the partitioning perspective to an attention to the 
measurement approach to highlight its affordances.  
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KNOWLEDGE RESOURCES FOR PROPORTIONAL REASONING IN DYNAMIC 
AND STATIC TASKS  

 Rachael Eriksen Brown Chandra Hawley Orrill Jinsook Frances Park 
 Pennsylvania State Abington UMass Dartmouth  UMass Dartmouth      
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In this study, we consider the knowledge resources invoked by middle school teachers as they 
solve two related proportional reasoning tasks. For one task, teachers were asked to think aloud 
about a situation in which an artist is asked to create a larger image. The other task was 
administered in a clinical interview setting and asked questions about the relationship in size 
between bears in a dynamic sketch in which one bear dilated. Analysis focused teachers’ 
reasoning. Findings focus on the knowledge resources that were invoked. Implications focus on 
why the knowledge resources matter and opportunities for additional research.  

Keywords: Teacher Knowledge, Technology, Number Concepts and Operations 

Purpose and Background 
In this study, we consider how teachers solved two mathematical tasks with similar underlying 
mathematics. One of the tasks relied on a dynamic sketch created in Geometers’ SketchPad, 
while the other was a traditional paper and pencil task. Our interest in conducting this research 
came from noticing that teachers engaged with the mathematics differently in the dynamic 
environment than in the paper-based environment. Our research questions for this study were: (a) 
What knowledge resources do teachers invoke when they solve the dynamic task correctly?; (b) 
What knowledge resources do teachers invoke when they solve the dynamic task incorrectly?; 
and (c) How are the knowledge resources used in the dynamic environment similar to or 
different from those used in a paper and pencil task with similar content? 
The tasks of interest in this study both required teachers to differentiate between situations that 
are and are not proportional. We built from a growing body of work (e.g., De Bock, Van Dooren, 
Janssens, & Verschaffel, 2002) investigating high school students' inappropriate use of 
proportionality. Across a number of studies, the researchers found that students overuse 
proportional approaches in situations that appear proportional but are not.  

We rely on knowledge in pieces (KiP; diSessa, 1988, 2006) as our conceptual framework, 
which posits that knowledge is organized as fine-grained knowledge resources and that these 
resources are interconnected in ways that make them available in a wide range of settings. From 
this perspective, learning is achieved through the development of new knowledge resources, the 
refinement of existing resources, and/or the development of connections between resources. 

Methods 
We used a convenience sample of 32 in-service middle grades mathematics teachers from 

four states in the U.S. Their teaching experiences ranged from one to 26 years. Of the 
participants, 24 identified as female and eight as male. Five participants identified as Black, one 
as Biracial, and the rest as White. Participants taught at a variety of schools including urban, 
suburban, and rural schools that were public, private, or charter.  

Participants completed two different types of interviews. The first was a think-aloud protocol 
that was mailed to them. The second interview was a one-hour clinical interview recorded using 
two video cameras to capture the participant's voice as well as any writing, pointing or use of 
Sketchpad during the interview.  
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Table 1:  Most frequently occurring knowledge resources found in this study 
Resource Type Code Description 

Proportional 
Reasoning 
Resources 

Constant ratio Recognizes the invariant multiplicative relationship between 
two quantities.  

Scaling 
up/down 

Uses multiplication to scale both quantities to get from one 
ratio in an equivalence class to another.  

Horizon 
knowledge 

Demonstrates knowledge that extends into mathematics 
beyond proportions.  

Rule Shares a verbal or written rule (e.g., Red = Blue - 2) stated in a 
way that conveys a generalizable relationship.  

Pedagogical 
Resources 

Anticipates or 
builds from 
others’ thinking 

Talks about what others would or might do in solving a 
problem or builds from the mathematical thinking of others. 

Representation 
Resources (not 
unique to 
proportional 
reasoning) 

Problem solving  
Uses static or dynamic representations to support reasoning 
about and solving the problem. This includes sense-making. 
This is also exploratory and happens during problem solving. 

Justifying or 
communicating  

Uses the representation to explicitly justify or explain a 
position already developed, rather than to solve a task.  

Conjecture 
testing Makes a conjecture and then tries it out with the representation. 

 
We developed a coding scheme (e.g. Charmaz, 2014) to identify the proportional knowledge 

resources being invoked by the participants. Two or more members of the team individually 
coded each utterance. Then the codes were discussed until 100% agreement was reached. Codes 
were applied based on mathematical reasoning used rather than correctness. The knowledge 
resources relied upon by the most teachers in the two tasks for this study are shown in Table 1. 
The resources fall into three categories: proportional reasoning, pedagogy, and representations. 
 

   
Figure 1. Screenshots of the bears task. 

The Bear task presented the participants with a pair of bears (Figure 1). The bear on the left 
remained static, while the one on the right dilated as the point on the number line was dragged. 
During the clinical interview, participants were asked to interact with Bears in SketchPad 
Explorer to answer a series of questions.  

The Santa Task was modified from De Bock et al.’s (2002) task to be more appropriate for 
teachers. The task asked teachers to consider that 56 cm high Santa was painted on a bakery door 
using 6 ml of paint. The painter was asked to create an enlarged version of the painting on 
another window. The new painting would be 168 cm high. The task asked how much paint was 
needed for the larger image. Three scaffolds were included to support appropriate reasoning. 
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Results 
By the end of the series of questions around the Santa task, 13 of the 32 (41%) teachers 

correctly recognized that the area situation was not proportional and reasoned accurately. For the 
Bear task, 26 of the 32 teachers (81%) correctly identified proportional relationships. 

Table 2. Number of participants using and frequency of use for each knowledge resource. 
	 Santa	Task	 Bear	Task	
	 #	of	teachers	 #	of	

occurrences	
#	of	teachers	 #	of	

occurrences	
Constant	Ratio	 1	 1	 17	 25	
Scaling	Up/Down	 21	 33	 22	 55	
Horizon	Knowledge	 5	 7	 20	 34	
Rule	 2	 2	 21	 58	
Anticipates/Builds	on	others’	thinking	 16	 26	 2	 2	
Problem	solving	with	representation	 3	 3	 24	 113	
Justify/communicate	with	representation	 6	 8	 29	 97	
Conjecture	test	with	representation	 2	 3	 15	 30	

 
The most common proportional reasoning knowledge resource used by participants in both tasks 
was Scaling Up/Down (see Table 2). Nearly two-thirds of the participants demonstrated evidence 
of this knowledge resource in both tasks. A typical Scaling comment in the Santa task was, “… if 
our figures are in fact proportional, this would have to be multiplied by three” (Ella, all names 
are pseudonyms). Here, Scaling was used to support an incorrect answer.  
The only non-representation focused knowledge resource commonly used in the Santa task was 
Anticipates or Builds on the Thinking of Others (hereafter referred to as Anticipates). We 
conjecture that this pedagogically-focused code was commonly used in this task because all of 
the scaffolds asked the teacher to interpret students’ thinking in some way. As shown in Table 2, 
this knowledge resource was used by 16 participants when solving the Santa task.  

In the Bears task, participants used more knowledge resources. This was likely tied to the 
difference in interview format as there was an interviewer to ask follow-up questions here, but 
not for Santa. Perhaps because of the nature of the task, the role representations played in 
teachers’ reasoning was more pronounced in the Bears Task with those three representation 
resource codes (in the gray rows of Table 2) being used commonly. The three representation 
resource codes in Table 2 were used by participants regardless of their reasoning (linear or area). 
For an utterance to be coded as one of these three codes, the participant had to use the sketch to 
explore a mathematical idea or explain their thinking to the interviewer by demonstrating the 
idea on the sketch. In addition, 21 participants were able to correctly generate a rule for the given 
dynamic situation. Constant Ratio was demonstrated by 17 of the participants while solving the 
Bear task. Horizon knowledge was evident for 20 participants while solving the Bear task. 

Discussion and Implications 
Scaling up and down was the only knowledge resource used consistently between the two 

tasks. This is notable because scaling can be accomplished through additive or repeated 
reasoning (e.g., Kaput & West, 1994) and suggests these teachers may have relied on additive 
reasoning rather than multiplicative reasoning in these tasks. In the Bears task, the same 
participants relied on two proportional reasoning knowledge resources: describing a rule for the 
relationship and reasoning with a constant ratio. In contrast to the common Scaling resource, 
reasoning with a constant ratio requires attention to the multiplicative relationships inherent in 
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the proportion. While the format of the interview was different, we suspect the difference in 
presentation drove some of the differences in approach. This was corroborated by the high 
number of teachers who relied on the dynamic sketch to make sense of and solve the Bear task.  

The use of particular knowledge resources matters because it highlighted the degree to which 
teachers reasoned about the situation rather than solving tasks. There is ample evidence that 
proportional reasoning is too often focused on solving a proportion (e.g., Lamon, 2007) rather 
than reasoning about the relationships between quantities. From the limited data presented here, 
we suggest that moving toward dynamic environments may support more reasoning about 
proportional situations. In our findings, we particularly note that over half the participants 
reasoned about one of the key structural aspects of a proportion, the constant ratio, in the 
dynamic environment. Similarly, the dynamic representation seemed to have opened avenues for 
teachers to draw on a broader body of knowledge as well as create meaningful generalizations 
about relationships in the Bear task. If our goal in engaging teachers in mathematical situations is 
to help them build connections between their knowledge resources, it appears that Bears was 
more effective in supporting that goal. We hypothesize the ability to generalize may be tied to 
the infinite instances inherent in the dynamic situation. This is an area for additional research. 
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This study examined forty high school algebra teachers’ content knowledge as well as their 
knowledge of students’ errors about quadratic functions through a teaching-scenario task. The 
teachers’ responses were analyzed quantitatively and qualitatively. Analysis results show that 
the teachers have sufficient content knowledge and they performed better on translating among 
different representations of quadratic functions than on solving a real-world problem by using 
quadratic functions. Most of the teachers identified students’ obstacles in translating from 
algebraic to graphic representations of quadratic functions and they tended to respond in a 
teacher-centered procedural way. The implications of this study for teacher education programs 
as well as professional developments are presented in accordance with the findings. 

Keywords: Algebra and Algebraic Thinking, Mathematical Knowledge for Teaching 

Algebra has long been regarded as a critical bridge to high school mathematics. National 
Council of Teachers of Mathematics [NCTM] (2000) highlighted the importance of algebra to all 
students. Among all the high school algebraic topics, quadratic functions are fundamental and 
essential (Even, 1990), given that it is a critical transition from straight lines to curves. To help 
students achieve both conceptual understanding and computational proficiency of the topic, 
teachers were suggested to have solid content knowledge (Harris & Sass, 2011; Hill, Rowan & 
Ball, 2005) as well as a variety of pedagogical content knowledge, which has been recognized 
directly relates to students’ mathematics achievement and this relationship starts from upper-
elementary grades (Campbell, et al., 2014). Among all the categories of teachers’ pedagogical 
content knowledge, we explored teachers’ knowledge of student errors because NCTM (2000) 
suggested that recognizing and responding to student errors appropriately is one of the main 
tasks of teachers in teaching mathematics. Additionally, researchers indicated that student errors 
provide teachers windows into student understanding that should be endeavored to help students 
develop conceptual basis of their errors (Ball, 1990; Borasi, 1994).  

As for content knowledge, we examined how high school teachers apply quadratic functions  
to solve a real world problem and how they transform among different representations of 
quadratic functions. The reasons why these two aspects were investigated are that generating 
equations to represent the relationships in typical word problems has long been recognized as 
one of the major areas of difficulty for high school algebra students (Clement, 1982; Kieran, 
1992) and that teachers should emphasize cultivating students’ algebraic thinking in a way that 
enables “the use of any of a variety of representations that handle quantitative situations in a 
relational way” (Kieran, 1996, p. 4, 5). In terms of teachers’ knowledge of students’ errors, we 
studied how they interpret and respond to students’ learning obstacles in translating from graphic 
to algebraic representations of quadratic functions. The specific research questions are: 

1. How do high school teachers use quadratic functions to solve real world problems? 
2. How do high school teachers transform among different representations of quadratic  

functions? 



Mathematical Knowledge for Teaching 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

493 

3. How do high school teachers interpret and respond to students’ errors about translating 
from graphic to algebraic representations of quadratic functions? 

Theoretical Framework 
Zaslavsky (1997) summarized a few common obstacles related to students’ understanding of  

quadratic functions. First, it is hard for students to imagine the parabola as extending forever. 
Second, students confused about the relation between quadratic functions and quadratic 
equations. They missed the fact that though 𝑥" + 2𝑥 − 3 = 0 is equivalent to	2𝑥" + 4𝑥 − 6 = 0, 
the function 𝐹(𝑥) = 𝑥" + 2𝑥 − 3 is not equivalent to 𝐹(𝑥) = 2𝑥" + 4𝑥 − 6. Third, they prefer 
going from equations to graphs rather than from graphs to equations. Also, they prefer the 
standard form to the vertex or the factored form of quadratic functions. Later on, Eraslan (2005) 
systematically explored two honors Algebra II students’ obstacles in learning quadratic 
functions. He found that the students struggled to translate quadratic functions from graphic to 
algebraic representation, tended to use the standard form over the vertex form, and failed to use 
quadratic model to solve problems given in real-world situations. In addition to high school 
students, preservice teachers also struggled to integrate algebraic and graphic representations of 
functions (Huang & Kulm, 2012). This relates to the current study, in that, we asked participants 
to respond to a students’ error in a teaching scenario where the student is challenged to represent 
a parabola by algebraic equations.  

Employing student errors as springboards to develop worthwhile mathematics inquiries, 
Borasi (1994) suggested that a consistent use of error analysis enables students to better 
understand the nature of mathematics, facilitates the learning of significant mathematical 
content, make students more proficient in doing mathematics and make them more confident in 
their ability to learn and use mathematics. In order to use students’ errors constructively, Seifried 
and Wuttke (2010) suggested that teachers need to be competent in three aspects, including 
knowledge of possible error types, available strategies of reaction, and a constructive view on 
errors. Nevertheless, few research examined students’ errors in learning mathematics, much less 
known is information about students’ errors on specific and fundamental mathematics concepts, 
especially variable, equation, and function (Li, 2006). 

Analyzing participants’ responses and explanations to students’ errors, we examined  
mathematical focus, pedagogical actions, form of address, degree of student error use and 
communication barriers (see Table 1). 

Table 1: Analytical Framework for Teachers’ Responses to Students’ Errors 
 Aspect  Categories 
Global 1 Mathematical/ instructional focus Conceptual vs. procedural 
 2 Pedagogical action(s) Re-explains, suggests cognitive 

conflict, probes student thinking, etc. 
Local 3 Form of address Show-tell vs. give-ask 
 4 Degree of student error use Active, intermediate, or rare 
 5 With/without communication barrier Over-generalization, a Plato-and-the-

slave-boy approach, or a return to the 
basics, specific 

 

Methods 
Twenty Chinese and twenty U.S. high school teachers, who are currently teaching or have  
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taught Algebra I topics before, joined the study and finished a questionnaire including two math 
problems and a teaching-scenario task. The first math problem was adopted from Chinese text 
ShuXue, the most frequently used text in China, to examine how the teachers abstract an 
algebraic expression of quadratic functions to solve a real world problem. The second math 
problem aiming to explore the participants’ knowledge of transformation among different 
representations of quadratic functions was adopted from Vaiyavutjamai’s study (2009). The 
teaching-scenario task, where a student was required to write an algebraic equation for a given 
parabola but she didn’t know where to start, was from Eraslan’s work (2005). 

To answer the research questions, this study applied grounded theory inquiry (Strauss &  
Corbin, 1994). As for teachers’ content knowledge, we checked the correctness and explanations 
of the teachers’ responses. In terms of responses to students’ errors, the authors individually 
analyzed and coded the participants’ responses according to the analytical framework while 
looking for new categories. We reached a satisfying agreement rate between 75% and 90%. 

Results 
Teachers’ Content Knowledge of Quadratic Functions 
We found that the teachers performed well on using quadratic functions to model real-life  
situations and further to solve problems. More than half of the teachers have chosen to apply the 
vertex form of quadratic functions, which is a wise choice because the vertex of the quadratic 
function is given and in this way the calculation process becomes easier. While most of the 
teachers used the vertex form, twenty-five percent of the teachers employed the standard form. 
Although both the standard and vertex forms of quadratic functions can be used to solve the 
problem, the teachers who applied vertex form showed deeper procedural knowledge than the 
teachers who employed the standard form because they were flexible in terms of choosing an 
appropriate form to represent functions and they did this based on the real-world situation. Six 
percent of the teachers showed conceptual knowledge of the problem in the way that they 
attempted the problem by using different methods as well as explained the solution by using 
different representations of the quadratic functions and analyzed the effects of parameters on the 
graphs of the functions (we plan to show examples in the presentation).  

Transforming from graphic to algebraic representations of quadratic functions, all the  
teachers solved the problem correctly. Similar to their performance on modeling a real-life 
situation, more than half of the teachers applied the vertex form that showed deep procedural 
knowledge. Three teachers demonstrated their conceptual knowledge by identifying the 
operations and transformations played on the parent function	𝑦 = 𝑥" to get the formula for the 
transformed parabola.  
Teachers’ Knowledge of Students’ Errors 

The teachers identified the student’s (Amy) learning obstacles in reading graphs, choosing  
appropriate form of quadratics, and applying the method of undetermined coefficients. Among 
the teachers who identified Amy’s knowledge deficiency, half of them recognized more than one 
piece of her learning obstacles. When the participants responded to Amy, they chose either to 
focus on conceptual knowledge that help Amy to solve this type of problems or to emphasize 
showing her the problem solving procedures. However, procedural explanation is a dominated 
method, which is not a surprise since most of the teachers solve problems procedurally 
themselves. With respect to procedural knowledge, most of the teachers demonstrated how to 
find three points from the given graph and plug the coordinates of the points into the standard 
form of the quadratic function to get three equations. Among the teachers who tried to build 
conceptual knowledge for Amy, some suggested to use the relationship between graphs and 
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algebraic expressions, function transformation knowledge while the others explained how it 
would be more helpful to use the vertex or the factored form over the standard form. 

Providing guidance to help Amy finish the problem, most of the teachers responded in a  
teacher-centered way. Since Amy did not make any mistake, the teachers barely used her errors 
but directly taught her how to solve the problem. More than sixty percent of the teachers guided 
Amy to finish the problem in a specific way, which means there is no communication barrier 
between the teacher and Amy and she is expected to finish the problem independently later on. 
Also, around thirty percent of the participants gave general instructions that provide a direction 
to solve this type of problems, for example, some of the teachers explained the rationale of the 
method of undetermined coefficients. However, this type of explanation will not help Amy solve 
the problem directly and probably causes more confusions for her. 

Discussion and Conclusions 
We found that the high school teachers have sufficient content knowledge about quadratic  

functions and they did better on translating among different representations of functions than on 
using quadratic functions to solve real world problems. Most of the teachers showed deep 
procedural and procedural knowledge and they responded to students’ errors in a procedural 
way. A few teachers demonstrated conceptual understanding of quadratic functions but not all of 
them explained to Amy conceptually. Except knowledge focus, teachers who showed conceptual 
knowledge and those who presented procedural knowledge are consistent in terms of the 
pedagogical strategies used to respond to Amy. This study provides implications to teacher 
educators and professional developers. The teachers’ emphasis on providing teacher-centered 
instruction points to the need for teacher educators to give preservice teachers opportunities to 
practice pedagogical strategies about responding to students’ errors. Professional developers 
should consider content intensive sessions to develop teachers’ content knowledge on problem 
solving, especially on abstracting a mathematical model from real world situations and using the 
mathematical model to solve problems. 
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ANALYZING THE DEVELOPMENT OF MKT IN CONTENT COURSES   

 Yvonne Lai Jeremy Strayer Alyson E. Lischka 
University of Nebraska – Lincoln Middle Tennessee St Univ Middle Tennessee St Univ 
 yvonnexlai@unl.edu Jeremy.Strayer@mtsu.edu  Alyson.Lischka@mtsu.edu 

To improve teaching and learning in content courses for secondary mathematics teachers, we 
take the approach of supporting faculty who teach these courses – often mathematics faculty – in 
developing their own mathematical knowledge for teaching (MKT) at the secondary level. We 
describe a framework that has informed the design of educative curricula for a set of these 
courses. This framework integrates theory for knowledge development, empirical work on 
dimensions of knowledge used in teaching, and findings on observable behaviors in teaching that 
reveal prospective secondary teachers’ knowledge development.  

Keywords: Mathematical Knowledge for Teaching, Teacher Education – Preservice   

Mathematics teacher preparation programs for all levels aim to provide opportunities for 
prospective mathematics teachers (prospective secondary teachers) to develop mathematical 
knowledge for teaching (MKT) (e.g., CBMS, 2012). Yet, mathematicians, who often teach 
content courses for secondary preparation programs (Murray & Star, 2013), who may have much 
to offer in the way of mathematical knowledge, often do not have experience teaching in K-12 
settings. They may not be positioned to notice nuances in the development of prospective 
secondary teachers’ MKT at the secondary level (Lai, 2016), especially on tasks that situate 
mathematics in pedagogical contexts. This problem exacerbates existing tensions between 
intended outcomes of secondary preparation programs and teachers’ perceptions that their 
mathematical preparation is irrelevant to their teaching (e.g., Goulding, Hatch, & Rodd, 2003).  

One approach to this problem is developing educative curricula (Davis & Krajcik, 2005). We 
take this approach, focusing on curriculum supports for mathematics faculty to learn MKT at the 
secondary level and ways to observe and analyze the development of prospective secondary 
teachers’ MKT, particularly in enactments of approximations of practice (Grossman et al., 2009).   
In this paper, we discuss a framework that has informed the design of educative curricula for 
mathematics faculty teaching content courses for secondary level prospective secondary 
teachers. This framework integrates theory for knowledge development, empirical work on 
dimensions of knowledge used in teaching, and findings on observable behaviors in teaching that 
reveal prospective secondary teachers’ knowledge development. Such a framework is potentially 
a critical resource for supporting mathematics faculty in teaching MKT. Our purposes in this 
paper are to describe this novel framework, and how it can support mathematics faculty in 
learning MKT and providing substantive feedback to prospective secondary teachers about their 
MKT, and serve as a resource to refine research on learning and teaching MKT.  

Conceptual Foundations 
To construct the framework, we integrated Rowland and colleagues’ Knowledge Quartet 

framework for observing MKT and Ader and Carlson’s (2018) framework for analyzing and 
observing teaching with Silverman and Thompson’s (2008) developmental framework for MKT. 
We take MKT to be “practice-based theory of knowledge for teaching” (Ball & Bass, 2003, p. 5) 
and follow Thompson, Carlson, and Silverman (2007) in taking MKT to include coherent and 
generative understandings of key ideas that make up the curriculum.  
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The empirical analysis of mathematics teaching at the elementary and secondary level 
underlying the Knowledge Quartet suggests four dimensions of observable MKT: Foundation 
(knowledge of mathematics and its nature), Transformation (presentation of ideas to learners), 
Connection (sequencing of material for instruction), and Contingency (the ability to respond to 
unanticipated events) (Rowland, Thwaites, & Jared, 2016).  

 Ader and Carlson’s (2018) framework for analyzing instructional interactions identifies 
levels of understanding and acting on student thinking in terms of teachers’ mental actions and 
observable behaviors. They characterized teachers’ executions of responses to student thinking in 
terms of Piaget’s (1977/2001) notions of decentering and reflective abstraction. 

The Knowledge Quartet and Ader and Carlson’s framework can be used to articulate 
Silverman and Thompson’s (2008) framework for use in educative curricula for teacher 
education, as we detail in the next section. Silverman and Thompson used Simon’s (2006) idea 
of key developmental understandings (KDUs) in combination with decentering and reflective 
abstraction to construct stages of MKT development. Although they described components of 
development, but they did not elaborate where these components might be observed in actual 
teaching practice or in approximations of practice, or how one instance of decentering or 
reflective abstraction may be more sophisticated than another.  

Framework for Observing and Analyzing the Development of MKT  
The framework we use is based on the work described above and then refined based on the 

analyses of 15 secondary prospective secondary teachers’ responses to an approximation of 
practice used in a mathematics content course, which has been used at three different institutions 
in different states in multiple years. The responses analyzed are representative. 

Table 1: Framework for Observing and Analyzing the Development of MKT  
Developmental 
componenta  

Knowledge 
dimensionb 

Mental 
actionsc  

Level (L), in terms of observable behaviorsd 

Personal KDU Foundation  Reflective 
abstraction on 
personal math. 
knowledge 

L1: Performs procedures within topic 
L2: Describes procedures accurately 
L3: Connects isolated features to underlying concepts 
L4: Connects structure of procedure to underlying concepts 

Decentering 
applied to 
Activities and 
Analyzing 
Potential for 
Student KDU 

Transformation  Reflective 
abstraction on 
student 
thinking 

Gives explanations, representations, and examples that: 
L1: Describe only procedures 
L2: Describe own way of thinking 
L3: Attempt to change students’ current thinking 
L4: Enhance students’ understanding 

Connection Poses questions that: 
L1: Focusing on procedures or echoing key phrases 
L2: May reveal student thinking, but then gives 
explanations while not asking students to provide reasoning 
L3: Attempts to move students’ reasoning 
L4: Supports advancing students’ reasoning 

Contingency Responses to student thinking: 
L1: Do not act in any visible way upon the thinking 
L2: Evaluate but do not use the thinking in teaching 
L3: Directly use the thinking 
L4: Frames questions or explanations in terms of students’ 
thinking, to make connections and deepen understanding  

Note: Levels here depend on the KDU. This is just one possible example of how levels may appear. Constructs 
for each column were refined through our analysis and based on: (a) Silverman and Thompson, 2008; (b) 
Rowland, Thwaites, & Jared, 2016; (c) Piaget, 1977/2001; and, (d) Ader and Carlson, 2018 
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Discussion: Uses of Framework in Teacher Education 
The framework presented in this paper is a resource for implementing and writing educative 

curricula in teacher preparation, as well as for future research in the learning and teaching of 
MKT. In terms of implementing curricula, we used the framework to inform guides for faculty to 
use when interpreting and responding to prospective secondary teachers’ work. Differentiating 
between the dimensions of MKT used can support faculty in noticing different kinds of 
knowledge in teachers and providing more explicit feedback. Foundation, Connection, and 
Transformation emphasize potential differences among a prospective secondary teacher’s display 
of personal knowledge, providing explanations to students, and posing questions that elicit 
student reasoning. Although faculty may not traditionally make these distinctions in providing 
feedback in a mathematics course, these distinctions are also ones that may be familiar to faculty 
and may well be informative educative for their own teaching practice (e.g., Pascoe & Stockero, 
2017).  

It is worth noting that our analysis indicated that the dimensions of knowledge were 
independent in the context of prospective secondary teachers’ enactments of approximations of 
practice, a context for which the dimensions had not been previously analyzed. This suggests that 
development of MKT may well proceed along these dimensions in different ways. One 
prospective secondary teacher in our dataset explained the connection between a definition and 
procedure as a rationale for a task they would assign to their students (Foundation, L4), but only 
posed questions that focused on echoing key phrases (Connection, L1), proposed only 
explanations of procedures to the students (Transformation, L1), and did not acknowledge any of 
the sample student thinking provided by approximation of practice (Contingency, L1). Another 
prospective secondary teacher began with using the provided sample student work to make a 
specific mathematical point about a definition (Contingency, L4) then did not provide any 
subsequent examples or explanations to connection of procedure and definition (Transformation, 
L1).  

In our own work writing approximations of practice for use in content courses and hearing 
initial feedback from mathematics faculty, articulating how observables may correspond to 
knowledge dimensions has prompted us to think more clearly about the opportunities presented 
by approximations of practice. For instance, in an early draft of an approximation of practice, we 
asked prospective secondary teachers to respond to student thinking, but we did not give a clear 
mathematical goal for the teaching situation. This left unspecified the Foundation knowledge we 
were aiming to elicit, which impacted the Transformation and Connection knowledge visible in 
prospective secondary teachers’ responses.  

Finally, the framework supports validating and refining the articulation of the development 
of MKT. We view this framework as a set of testable hypotheses grounded in known results. At 
the same time, we have drawn from work in emergent stages. We see great opportunity in using 
this framework, which unifies work from different groups, to push researchers’ understanding of 
the development of MKT. Future work made visible by this framework includes investigating 
how well these codes hold up to responses to approximations of practice across content courses; 
whether the interpretation of levels for the purpose of providing feedback to teachers improved 
teaching and learning outcomes; and the independence or dependence of levels and dimensions. 
As Morris and Hiebert (2009) argued, a professional knowledge base – such as that for teaching 
mathematics courses for prospective secondary teachers – can only advance with shared goals 
and artifacts that articulate those goals for the professional community in ways that can be 
observed. We propose a framework that articulates the goal of developing teachers’ MKT in 
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terms of actions observable in approximations of practice used in content courses. Our 
framework simultaneously leverages theory for the development of MKT, empirical analyses of 
teaching, and empirical analyses of approximations of practice used in content courses.  
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We aim to develop a theoretical foundation for the knowledge needed by mathematics teacher 
educators to support prospective teachers in developing the knowledge needed for teaching. We 
have approached this goal by exploring existing frameworks that not only generalize 
conceptualizations of teacher knowledge, but also position teacher knowledge as a subdomain of 
the knowledge needed for teaching teachers. We envision this generalization to teacher educator 
knowledge as a “fractalization” of teacher knowledge. Applying this concept, we propose our 
own fractalization model for the knowledge of mathematics teacher educators and discuss some 
resulting consequences. 

Keywords: Mathematical Knowledge for Teaching, Teacher Knowledge, Post-Secondary 
Education, Teacher Education-Preservice 

Mathematics teacher educators (MTEs) have long considered the knowledge needed for 
teaching mathematics to be distinct from the knowledge needed for doing mathematics. Much 
work has been done in explicating the domains of Mathematical Knowledge for Teaching (MKT, 
e.g. Ball, Thames, & Phelps, 2008), but researchers are only beginning to explore the knowledge 
needed by MTEs to help prospective teachers (PTs) develop the knowledge needed for teaching. 
We aim to develop a theoretical foundation for the mathematical knowledge for teaching 
teachers (MKTT) by analyzing, synthesizing, and extending existing literature on MTE 
knowledge. In this paper, we will discuss several proposed frameworks that conceptualize 
teacher educator knowledge as a generalization of teacher knowledge. That is, these frameworks 
not only position teacher knowledge as a subdomain of teacher educator knowledge but also 
echo the structure of teacher knowledge. Our analysis of these frameworks led us to use 
“fractalization” as a metaphor for this generalization, as the visualizations of many of these 
frameworks resemble part of a fractal. We propose a model of MTE knowledge that applies this 
fractal metaphor to the MKT framework (Ball et al., 2008), begin to conceptualize the 
subsequent domains of MKTT knowledge, and discuss some consequences of framing MKTT as 
fractalization of MKT. 

Frameworks of MTE Knowledge that Use Fractalization 
In synthesizing the extant frameworks for understanding teacher educator knowledge, we 

noticed that several frameworks generalized teacher knowledge in a way that we envisioned as 
following a “fractalization” model (Welder, Prasad, Superfine, & Olanoff, 2017). Below we will 
explore four examples of such frameworks and discuss how they follow this model of fractal 
generalization. 
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In his 1985 presidential address at the meeting of the American Educational Research 
Association, Lee Shulman identified three aspects of teacher knowledge: content knowledge, 
curricular knowledge, and pedagogical content knowledge, which he called the “missing 
paradigm” in the study of teaching (Shulman, 1986). Chauvot (2009) has expanded Shulman’s 
(1986) framework to develop a knowledge map for MTEs. In this model, she identifies the 
knowledge base for “Math Teacher Educator-Researchers” as being comprised of subject matter 
content knowledge, pedagogical content knowledge, and curricular knowledge. Her model 
fractalizes Shulman’s work by placing all three of his domains of knowledge for teaching within 
the subject matter content knowledge of MTEs. Her map also integrates Grossman’s (1990) 
knowledge of context to consider how the context in which MTEs work (i.e., university-based 
teacher preparation, school-based professional development, etc.) affects what they need to 
know. 

Similarly, Zaslavsky and Leikin (2004) have fractalized Jaworski’s (1992) model for the 
practice of teaching mathematics to better understand the practice of teaching teachers of 
mathematics. Jaworski’s model, known as the “teaching triad of mathematics teachers,” 
highlights the interactions among three important components of teaching: challenging content 
for students (mathematics), the management of students’ learning, and sensitivity to students. 
Zaslavsky and Leikin created analogous terms for aspects important to the teaching of teachers: 
challenging content for mathematics teachers, the management of mathematics teachers’ 
learning and sensitivity to mathematics teachers. In developing their “teaching triad of MTEs,” 
Zaslavsky and Leikin consider Jaworski’s “teaching triad for math teachers” to be contained 
within the component of challenging content for mathematics teachers. 

Perks and Prestage (2008) propose a “teacher-educator knowledge tetrahedron,” as an 
expansion of their “teacher knowledge tetrahedron.” Both frameworks highlight the interactions 
among four aspects of classroom practice: teacher knowledge, learner knowledge, professional 
traditions, and practical wisdom. However, in the teacher-educator knowledge tetrahedron, the 
learners in question are prospective or practicing teachers; thus, in this meta-framework, the 
teacher knowledge tetrahedron is entirely contained within the learner knowledge portion of the 
teacher-educator knowledge tetrahedron. 

Another example of fractalization can be noted in Ball’s (2012) proposal to expand a model 
she and her colleagues offered for the instructional dynamics that affect student learning (Cohen, 
Raudenbush, & Ball, 2003). This expanded framework models the instructional dynamics that 
affect the learning of teachers. Both models highlight the ways in which teachers and students 
interact with each other and how they interact with the content of interest. In the case of teacher 
education, the teachers are teacher educators, the students are teachers, and the content of 
interest now encompasses the entirety of the original model. 

Fractalization of the MKT Framework 
Applying the idea of fractalization, we propose a model of MKTT that extends the MKT 

framework developed by Ball and her colleagues (Ball et al., 2008) to a set of analogous domains 
of teacher educator knowledge (see Figure 1). We are considering all aspects of MKT as being 
comprised within the overall subject matter knowledge needed by MTEs. On the other hand, 
MTEs’ pedagogical content knowledge encompasses the mathematical knowledge needed for 
working with prospective and practicing teachers (i.e., adult learners, rather than K-12 students). 
We envision this knowledge to encompass the ways in which PTs interact with the mathematical 
content they will be teaching and effective methods for facilitating their relearning of 
mathematics in a way that will support their development of MKT (Castro Superfine, Welder, 
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Prasad, Olanoff, & Eubanks-Turner, in press). While we have a general idea of what this 
conception of MKTT requires of MTEs, characterizing the specific aspects of the subdomains of 
MKTT requires further exploration.  

 

 
Figure 1. Our “Fractalized” Model for Mathematical Knowledge for Teaching Teachers 

Discussion 

Conceptualizing MKTT as a fractalization of MKT provides a basis for a framework for the 
knowledge needed for teaching teachers. We believe further exploring fractalization models will 
allow researchers an entry point into theorizing about the unique aspects of MKTT that exist 
separately from MKT. It is important to note that one consequence of this conception is that 
MKT becomes a subset of MKTT. This implies that MTEs’ knowledge must include all aspects 
of MKT at the level of mathematics teaching for which they are preparing PTs. Given the varied 
academic and experiential backgrounds of MTEs (including research mathematicians and 
mathematics educators who have not had experience teaching in K-12 contexts), this requirement 
may be logistically impossible. On the other hand, if facilitating PTs’ development of MKT is 
considered a goal of teacher preparation, it could be argued that the MTEs teaching courses for 
PTs would need to possess such knowledge. 

Another aspect of MKTT that needs to be further explored within this fractalization model is 
the role that MTEs’ knowledge of research plays in their practice of teaching teachers. There is 
no clear analogue between a domain of MKT and MTEs’ knowledge of research, as most 
frameworks for teacher knowledge do not explicate knowledge of research. Yet, research is an 
important component of the work of many MTEs and is thus part of their knowledge base. Of the 
frameworks we have discussed, Chavot’s (2009) is the only one that makes explicit reference to 
knowledge of research, situating it uncomfortably in the middle of her framework for MKTT.  

In this report we have explored a subset of frameworks for MTE knowledge that utilize a 
fractalization model of teacher knowledge. However, different frameworks of teacher knowledge 
exist, and may also lend themselves to conceptualizations of MKTT, perhaps through a form of 
fractalization. Additionally, there are frameworks for teacher-educator knowledge that are not 
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conceptualized as fractalizations of teacher knowledge. Such frameworks may have different 
consequences for the development of a knowledge base for teacher educators, and there is further 
work to be done in exploring them. 
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EXAMINING TEACHER KNOWLEDGE RESOURCES FOR PROPORTIONAL 
REASONING VISUALLY  
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In this paper, we rely on Epistemic Network Analysis to examine the connections between 
knowledge resources to understand the coherence of teachers’ knowledge resources used in 
solving proportional reasoning tasks. Our findings show that teachers who scored lower on the 
LMT tended to use more knowledge resources and to coordinate knowledge resources in less 
systematic ways than those teachers who scored higher on the LMT. We also noted a shift from 
strategies suggest additive reasoning to strategies that focus on the multiplicative nature of 
proportions. Implications for teacher development and for further research are included.  

Keywords: Cognition, Teacher Knowledge, Mathematical Knowledge for Teaching  

Introduction 
Research suggests that, like students, teachers struggle with proportional reasoning (e.g., 

Harel & Behr, 1995). However, the research on teachers’ knowledge is still somewhat limited. 
We have ample evidence that teachers have trouble solving some kinds of tasks (e.g., Harel & 
Behr, 1995; Pitta-Pantazi & Christou, 2011) and some studies that provide in-depth descriptions 
of how one teacher or a small number of teachers approached particular tasks (e.g., Riley, 2010). 
We sought to better understand how teachers use their existing knowledge resources across a set 
of tasks so we could determine which tasks may need to be further developed. To better 
understand how teachers reason about a variety of proportional situations we asked:  

1. What proportional reasoning knowledge resources do these middle school teachers use to 
solve a diverse set of proportional tasks?  

2. Are there differences in the resources used by teachers who exhibit higher or lower levels 
of knowledge on a multiple-choice assessment? 

Theoretical Framework 
This research is grounded in the Knowledge in Pieces perspective (KiP; diSessa, 2006). KiP 

asserts that people develop understandings as fine-grained knowledge resources that can be 
refined and connected to other resources to create a more coherent set of understandings. Having 
well-connected knowledge resources allows access to more ideas in situ. Thus, expertise could 
be seen as developing more knowledge resources and more connections between and among 
those knowledge resources. This is consistent with research on expertise (Bédard & Chi, 1992).  

Methods 
Data were collected from 32 in-service middle school teachers (grades 6-8) from four states. 

The teachers reported having between one and 26 years of teaching experience. Twenty-four 
were female and eight were male. Five participants identified as Black, one as Biracial, and 26 as 
White. The participants taught in a variety of schools including urban, suburban, and rural 
schools as well as public, private, and charter schools.  

We collected three kinds of data from each participant. The first was the Learning for 
Mathematics Teaching (LMT, 2007) assessment for Proportional Reasoning. For each teacher, a 
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single score was calculated that reports the logit score for the teacher in standard deviations from 
the mean. Teachers’ scores ranged from -0.563 to 2.657 on the LMT. The second data source 
was a one-hour think aloud interview protocol that was mailed to each teacher along with a 
LiveScribe pen that captured their utterances and any inscriptions at the same time. The third 
data source was a video-recorded one-hour clinical interview with each teacher. The tasks for 
both interviews asked the teachers either to solve a proportional situation or to make sense of 
hypothetical students’ or colleagues’ mathematical thinking. 

Both the clinical interview and think-aloud protocol were transcribed verbatim. We coded 
each using a code set that was developed using grounded theory techniques that allowed us to 
build from the literature as well as from the trends emerging in the data (Charmaz, 2014). Each 
utterance was coded using a binary approach to determine whether each code was present in the 
data. In all, there were 18 codes specifically focused on proportional reasoning concepts for 
which each utterance was coded (Weiland, Orrill, Brown, Nagar, & Burke, 2016). Every 
interview was coded by at least two members of the research team.  

To understand the knowledge resources used, we relied on Epistemic Network Analysis 
(ENA; Shaffer, Collier, & Ruis, 2016) to understand in what ways the knowledge resources were 
connected. ENA is a computational modeling technique that focuses on the connections between 
elements. ENA was developed to model connections between elements (knowledge resources) 
and to show the strength and association among elements in a network (Shaffer et al, 2016).  
Using ENA, an equiload graph was generated to examine teachers’ responses based on the group 
means, where groups were defined by LMT performance. The equiload graph shows each 
knowledge resource as a node. The lines connecting the nodes indicate that two resources were 
used in the same task multiple times (a proxy for connectedness of resources, e.g., Chesler, et al., 
2013). These equiload graphs were developed using ENA Webkit software 
(http://www.epistemicnetwork.org/).  

Findings 
To understand the knowledge resources used by the teachers in this study, we organized 

teachers into groups based on LMT scores: (a) teachers scoring -1 to 0 (n=3; referred to as Group 
A), (b) teachers scoring between 0 and 1 (n=11; referred to as Group B), (c) teachers scoring 
from 1 to 2 (n= 9; referred to as Group C), and (d) teachers scoring between 1 and 2 (n=9; 
referred to as Group D). Figure 1 presents the mean equiload graphs for each of these groups. In 
the equiload graphs, it is clear that some co-occurrences of knowledge resources were much 
more frequent than others. For example, in Figure 1a, the co-occurrence of Scaling Up/Down 
and Unit Rate is much bolder than the other co-occurrences, indicating that it was a more 
common pairing than some of the others. For Figure 1a, the co-occurrence of Unit Rate and 
Scaling Up/Down occurred in a total of 14 tasks across the three participants in this group. Given 
that there are 35 tasks in all, this means that the co-occurrence of Scaling Up/Down and Unit 
Rate occurred in 12% of the tasks for this subgroup. Similarly, in Figure 4d, the heavier line 
between Scaling Up/Down and Covary indicates relatively more co-occurrences between these 
resources. In fact, across the 9 participants in Group D, there were 33 co-occurrences of this 
pairing (10%), with many of those pairings occurring not just within the same task, but also 
within the same utterance. 
Expertise as Knowing More and Having More Connections 

Consistent with the KiP perspective, the participants in this study exhibited a number of 
different connections between knowledge resources. Further, within each group we see several 
resources and different kinds of connections between those knowledge resources. If we use the 
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LMT scores as a measure of teachers’ knowledge, then the weakest teachers in this study would 
be those scoring between -1 and 0 on the LMT (Group A). Group A participants relied on the 
connection between Scaling Up/Down and Unit Rate, which are additive approaches. The 
reliance on this pairing was lessened in Group B (see Figure 1b), where Ratio as Measure was 
paired with Unit Rate and Scaling Up/Down was paired with Between Measure Space reasoning. 
We also note that Group B has fewer connected resources showing in the mean equiload graph, 
indicating that their knowledge resources are potentially better organized. 
 

 
(a)  (b) 

 
(c) 

 
(d) 

    
Figure 1. Mean equiloads for four teacher groups (A, B, C, and D) based on LMT scores. 

 
Overall, the members of Groups B, C, and D relied on Covary, a structural aspect of proportions, 
co-occurring with other resources. Similarly, these groups paired Ratio as Measure with Unit 
Rate, suggesting participants were not only invoking ‘how much per x’ reasoning, but also have 
solidified that reasoning within the context of the situation by identifying the abstractable 
quantity that results from the proportion.  

Teachers who performed the strongest on the LMT (Group D) and those who performed the 
weakest on the LMT (Group A) both had connections between Fractions and Ratios are Different 
and Comparing Quantities. Similarly, only Groups A and D had connections between Distortion 
and another code. This is important because it shows a connection between geometric ideas of 
similarity and dilation to numeric scaling (Group D) and to an understanding there is a fixed 
multiplicative relationship between the two quantities in a ratio (Group A).  

The knowledge resources exhibited by participants in this study changed between the groups 
of teachers based on their performance on the assessment. In the mean equiload graph for Group 
A, we see many more knowledge resources used together, but fewer clear patterns in the thick 
lines. In Group B, we see fewer resources than in Group A and more consistent connections – 
suggesting more consistency within the group in their patterns of use of knowledge resources. In 
Group C, additional knowledge resources emerge, but there are still several connections that are 
consistently prevalent. Then, in Group D, the participants performing the highest on the LMT, 
we see a clear growth from Group C to continue using several of the connections, but also 
bringing in additional connections. The relative sophistication between groups is also notable 
with Group A relying on unit rate and scaling, which are two ideas that can be used with additive 
or multiplicative reasoning. In Group B, we see more explicitly multiplicative ideas (e.g., 
Covariation and Between Measure Space Reasoning). In Group C, the participants brought in 
fluidity in symbolic manipulation as well as continuing to attend to clearly proportional ideas 
including Ratio as Measure and Covariance. Then, in Group D, geometric ideas were included in 
the participants’ discussions of Covariance and Scaling, suggesting that their knowledge is 
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organized in such a way that they have easy access to similar ideas from multiple strands of 
mathematics across a variety of proportional reasoning tasks.  

Implications and Conclusions 
In this paper, we set out to understand what knowledge resources teachers used to solve a set 

of proportional reasoning tasks and whether there were differences in the patterns of knowledge 
resources used between teachers exhibiting different levels of performance on an assessment of 
proportional reasoning. As shown in Figure 1, each group of teachers relied upon a number of 
reasonable knowledge resources to solve the tasks in both interviews. Figure 1 shows there are 
clear differences between the groups of teachers. 

This work is still in an exploratory phase. However, it can already contribute in meaningful 
ways to the discourse about supporting teacher understanding of proportional reasoning in 
mathematics education. From a professional development or teacher education perspective, it is 
clear that there are some knowledge resources that teachers have and can use in pairings with 
other knowledge resources. This provides guidance on ways to shape PD to be most effective. 
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IN-SERVICE TEACHERS’ ABILITIES TO MAKE SENSE OF FIXED NUMBER OF 
VARIABLE SIZED PARTS TASKS 

  
 Chandra Hawley Orrill John Millett 
 UMass Dartmouth UMass Dartmouth 
 corrill@umassd.edu jmillett@umassd.edu 

In this study, we interviewed 32 practicing middle grades teachers to determine whether they 
were able to invoke reasoning about a fixed number of variable-sized parts in a proportional 
situation. To this end, we presented them with a sample student response to an item that relied 
on such reasoning to determine whether teachers understood the approach and whether they 
thought it was appropriate. Findings suggest that teachers who did not invoke this reasoning 
were unable to make sense of the student’s reasoning, thus limiting their ability to make sense of 
students’ work.  

Keywords: Teacher Knowledge, Middle Grades Mathematics, Mathematical Knowledge for 
Teaching 

Introduction 
Ratios and proportional relationships are important topics in school mathematics (e.g., 

Lamon 2007). Reasoning with ratios and proportions serves as a foundation for more advanced 
topics (e.g., Lobato & Ellis, 2010). Additionally, it has been well document that these topics can 
be difficult for both teachers and students (e.g., Lamon, 2007).  

While there is a considerable body of research focused on students’ understandings of ratios 
and proportions, research on teachers is more limited. The literature on teachers highlights both 
how future teachers and in-service teachers solve proportional situations (e.g., Beckmann & 
Kulow, 2018; Harel & Behr, 1995; Riley, 2010) and the ways in which they make sense of 
students’ thinking in proportional situations (e.g., Jacobson, Lobato, & Orrill, 2017).  

This study contributes to both of these categories of research on teachers’ understanding of 
proportions. We consider one aspect of proportional reasoning (described below) to determine 
whether teachers can make sense of it and whether they believe a student’s work is useful. 

Theoretical Framework 
Variable Parts Perspective 

Beckmann and Izsák (2014; 2015) identified two distinct but complementary perspectives on 
how quantities vary together in proportional relationships. One perspective on proportional 
relationships is the multiple batches perspective. This approach relies on coordinating the two 
quantities in a ratio and iterating them. It relies on composed unit reasoning, which has been 
written about elsewhere (e.g., Lobato & Ellis, 2010).  

The second perspective on proportional relationships is the fixed number of variable parts 
perspective (“Variable Parts”). In this perspective a proportion is conceived of as a ratio made of 
a fixed number of equal sized parts in which the size of the part can vary. This is different than 
the multiple batches perspective where the number of groups vary and the size of the parts are 
fixed. For example, in a relationship of 2 parts of oil to 5 parts of vinegar in a salad dressing 
recipe, those parts can be conceived of as teaspoons, cups, half-gallons, or any other unit. The 
flavor of the batch of salad dressing will remain unchanged as those as the ratio of the units is 
held constant.  
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The existing body of variable parts research has mainly been conducted with preservice 
teachers enrolled in a course in which they are explicitly taught to reason using both perspectives 
(Beckmann & Izsák, 2014; Beckmann, Izsák, & Ölmez, 2015; Beckmann & Kulow, 2018; 
Ölmez, 2016). Most of the research has focused on mixture tasks. In this paper, we extend the 
existing research by considering the knowledge resources used by in-service teachers who have 
not received instruction in Variable Parts reasoning. Specifically, we considered what knowledge 
resources teachers used to make sense of a student’s variable parts solution to a mixture task. 
Knowledge in Pieces 

Our study relies on knowledge in pieces (KiP; diSessa, 1988). KiP posits that understandings 
are developed as fine-grained knowledge resources. Through perturbations, those knowledge 
resources can be refined or added to. They can also be connected in myriad ways. As a person 
develops deeper understandings of a domain, they would be expected to develop a more robust 
set of knowledge resources, but even more, they would be expected to have more connections 
between and among those resources. We argue that because teaching requires considerable 
engagement with novel ideas, teachers need a robustly connected set of knowledge resources to 
support the widest variety of students. 

Methods 
For this study, we asked 32 in-service teachers to complete a think-aloud protocol by mail. 

Each teacher was provided with a LiveScribe pen to use so their utterances and inscriptions were 
recorded and coordinated. The think-aloud protocol included a number of questions about seven 
contexts, one was the milkshakes context, which included the task used in this study (Figure 1). 

 

 
Figure 1. Milkshake Task used for this study 

Data were coded from transcripts. Each interview was analyzed by at least two team 
members who coded independently, then met to identify and solve any coding discrepancies. In 
cases where agreement was not readily possible, the utterance was brought to the full research 
team, a decision was made and documented in the definition for the code to ensure consistency 
across all coding. The codes were developed from both the literature and from emergent coding 
of the data (Charmaz, 2014). Each code identified a knowledge resource used to solve the task. 
The coding set included 18 knowledge resource codes related to proportional reasoning, 
including one identifying whether Variable Parts reasoning was present.  

We separated participants into a Variable Parts group and a group that did not use Variable 
Parts. We then returned to the original transcripts and, when necessary, recordings from the 
interviews. While analyzing the transcripts, we used memoing (Corbin & Strauss, 2014) as well 
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as the original coding to identify knowledge resources used to solve a task that suggested 
variable parts reasoning. 

Results 
In this section, we briefly describe findings from the Milkshake task shown in Figure 1. Our 

goal was to understand whether teachers made sense of a student’s solution that relied on 
Variable Parts reasoning and whether they believe that reasoning was useful. 
Variable Parts Group Approaches 

For this task, we found that 13 teachers (41%) used Variable Parts reasoning while 19 
teachers (59%) did not. Teachers who relied on Variable Parts reasoning made sense of the 
students’ reasoning by saying things like:  

This was very clever.  The student recognized that the ratio of milk to ice cream is 2 to 3, so, 
yeah.  It doesn’t matter.  As the student said, it does not matter what those parts are, as long 
as they are 2 to 3.  So that’s a wonderful… a wonderful approach.  Doesn’t… doesn’t have to 
be concerned that it’s three quarters of a cup.  It’s just 3/4ths… 2/4ths.  Excellent. (Charlotte, 
all names are pseudonyms) 

Similarly, these teachers were able to make sense of the student’s drawing saying things like, 
“So, they said each, instead of each part being a full cup they considered each part to be ¼ of a 
cup.  So instead of having 2 full cups to 3 full cups they have 2, ¼ cups to 3, ¼ cups.  I like it.” 
(Heather) Interestingly, though, some of the teachers who understood the Variable Parts 
perspective and valued it as an approach, were unsure how they might teach it. For example, 
Georgia noted, “I think this approach would always work, I really like this approach.  I’m not 
sure how to teach this type of understanding.  But if they had that type of abstract understanding 
this would be a very good approach or way to show the work.”  
Non-Variable Parts Group Approaches 

The 19 participants who did not rely on Variable Parts reasoning struggled to make sense of 
the student’s reasoning. For example, Tonya explained: 

I'm not sure of the approach the student used.  I see that the ratio is 2 parts milk to 3 parts ice 
cream.  I'm not understanding why they think they will need a 2/4th cup if I need 3/4ths of 
milk…I'm not sure of what the approach is.    

And, 12 of the 19 teachers who did not rely on Variable Parts were either confused by the 
drawing or created an alternate drawing to make sense of the task. Christine said: 

But I don’t understand how…I don’t understand her writing, how her written description 
correlates to her drawing…this is kind of baffling to me because I…I just don’t 
understand…I don’t understand her writing.  

Not making sense of the work resulted in nine participants determining that the student’s 
approach was not useful. They stated that this approach was for a particular type of student, 
predicted that the student would struggle with this this type of reasoning in the future, or in some 
cases the teachers doubted the students’ understanding of proportional relationships. For 
example, Bridgette uttered: 

If they were to do this in the test for me I would ask for a little more explanation as to how 
they got the denominator four.  Because from that picture I don’t know if I would easily 
conclude how they got the number four. 
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In short, teachers who did not invoke Variable Parts reasoning did not understand this approach 
and dismissed it as being limited or not useful for students.  

Scholarly Significance of the Study 
The most notable implications for this work surround the teachers’ abilities to make sense of 

student reasoning. As a community, teacher educators know that there is tremendous value in 
teachers listening to students (e.g., Darling-Hammond, 2006). However, these participants 
appeared unable to make sense of the student work unless they invoked the Variable Parts 
knowledge resource. We do not have adequate data to determine whether the teachers understood 
variable parts reasoning or whether this task simply did not invoke that reasoning for them. But, 
we do see compelling evidence that not accessing Variable Parts reasoning correlated to 
struggling to make sense of student thinking and working the task a way other than the student’s 
way. This suggests to us that having access to and being able to invoke variable parts reasoning 
may be an important aspect of a teacher’s robust understanding of proportional reasoning and, 
thus, should be given explicit attention in teacher preparation and professional development. 
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We propose expanding traditional conceptions of teachers' MKT to include decision making. We 
explore this idea using the decisions two teachers make while implementing an exponential task 
to create an equation from context using a table. This framing better allows us to understand the 
mathematical reasoning teachers know to be relevant for students to complete a mathematical 
process and the actual actions they choose to engender this reasoning. 

Keywords: Mathematical Knowledge for Teaching, Research Methods 

The field widely accepts that teachers’ mathematical knowledge for teaching (MKT) is 
strongly related to their effectiveness and has long-endeavored to describe and investigate this 
specialized way of knowing. However, more research is needed to advance understanding of 
how to conceptualize, develop, and assess MKT (National Resource Council, 2012). Current 
descriptions treat MKT as declarative knowledge and have not emphasized the thinking 
processes that contribute to teachers integrating and enacting the knowledge (Borko, Roberts, & 
Shavelson, 2008). Focusing on describing MKT in action may contribute to understanding how 
teachers develop and utilize this special way of knowing. Taking the view of decision making as 
the core work of teaching (Borko et al.), this brief report describes the affordances of using 
decision making to examine the nature of teachers’ action-based MKT for exponential functions. 

Theoretical Framing 
Because we view MKT as intertwined with the process of teaching (Rhoads & Weber, 2016), 

we seek to describe MKT in action. That is, we want to describe the body of mathematics 
knowledge teachers draw upon to make decisions when teaching and the active process of 
making decisions within a particular social context for a specific purpose targeted to influence 
the mathematics learning opportunities afforded to their students.  

We borrow from enactivism (Maturana & Varela, 1998) which indicates knowing is doing 
and doing is knowing. That is, knowing is enacting behaviors the individual deems effective for 
a particular purpose in a particular context. Knowledge is the body of effective behaviors and the 
underlying cognition that engender one to perceive the situation and categorize which behaviors 
are effective. Concerning teaching mathematics, we view knowing as making decisions the 
teacher deems effective in affording students’ opportunities to reason about mathematics. We 
term this knowing enacted MKT.  

Decisions have two components: a decision outcome (i.e., what was decided, the observable 
behavior) and a decision rationale (i.e., why the decision outcome was chosen). The work of 
teaching involves such an enormous quantity of decisions it is impossible to identify them 
individually. During instruction, though, a teacher’s actions are the overall results of their 
decision outcomes and the overall impact of those decisions is observable. Characterizing the 
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teacher’s actions, then, is a way of capturing the gestalt of the teacher’s decision outcomes. A 
teacher cannot explain the rationale for each decision given the sheer volume of decisions made 
during instruction and the time distance between instruction and providing explanations. Over 
time, an experienced teacher will have built up a body of coordinated behaviors he or she deems 
effective for particular contexts and purposes (Brown & Coles, 2011). An expert teacher will be 
able to engage in a deliberate analysis of their behavior to construct a plausible rationale (Brown 
& Coles, Herbst & Chazan, 2011) for the actions taken. These rationale can point to an 
underlying propensity for making certain decisions (Herbst & Chazan). We seek to describe our 
teachers’ decisions and their propensity for making decisions related to teaching exponential 
functions.  

Part of a larger study, this work targeted the following research question: What is the nature 
of a teacher’s exponential functions enacted MKT when viewed through the lens of decision-
making? Answering this question involves describing decisions the teacher makes and the 
underlying rationale for those decisions. 

Methods 
For the larger study, we collected data from seventeen high school teachers engaged in 

teaching units related to exponential functions. We report findings from two teachers. Ms. M 
taught an honors section of Algebra II that tracks into an IB program; Ms. L taught College 
Algebra. Both teachers had taught for over ten years, had obtained their master’s degrees, and 
had participated in teacher leadership programs. For each teacher, we video recorded three to 
five lessons. We conducted interviews prior to and following the teaching of each lesson as well 
as an overall introductory interview and a final reflecting interview over the set of lessons 
observed. 

We transcribed the observations and partitioned each lesson into smaller segments called 
episodes and sequences (Wells, 1996) based on transitions between classroom tasks. For each 
segment, we described the overarching mathematical purpose. We formed hypotheses about the 
decision outcomes that contributed to the development of the intended mathematical purpose. 
Using the identified decision outcomes and mathematical purposes, we coded relevant sections 
of the interview transcripts to provide insight into the teacher's rationale for their decisions.   

Preliminary Findings 
To illustrate how we use a teacher’s decisions to formulate a description of her KMT, we 

present examples of decisions made by Ms. M and Ms. L around the purpose of generating an 
exponential expression from a context. These cases exemplify how our framing allows for 
making explicit what teachers know for teaching exponential functions by identifying decisions 
around a mathematical learning purpose. Both teachers enacted tasks where students generated 
table of values to develop an exponential expression. We note the decision outcomes (actions) of 
the teacher to enact the purpose and their described rationale as taken from the interviews.  
The Case of Ms. M 

Modifying The Domino Skyscraper Task (http://threeacts.mrmeyer.com/dominoskyscraper/), 
Ms. M presented a situation where dominos were placed next to each other so that each 
successive domino is 1.5 times the height of the previous domino. Students worked in small 
groups to determine the number of dominos needed to equal the height of a given skyscraper. 
Ms. M intended students to create a table and then develop a formula for the nth domino.   
Ms. M encouraged students to generate and use tables of values to develop the explicit formula 
for the situation. Ms. M guided the students to explore how the output values of their tables 
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changed as they moved up (i.e., starting with the height of the skyscraper and decreasing in size) 
or moved down (i.e., starting with the initial height of the domino and increasing in size) so 
students would notice repeated multiplication by a constant ratio was relevant to the explicit 
formula. She further pushed students to consider skipping ahead (i.e., consider the change in 
height from one domino to another domino several stages away) to encourage moving away from 
generating the table values recursively and to facilitate the use of an exponent. “I was trying to 
get them to realize that … if I needed to skip steps, then I had to multiply by 1.5 multiple times, 
how do I write that? So I was trying to get them to realize that it was an exponential rather than a 
multiplication problem.” Ms. M asked students to check their generated equation by comparing 
the values in the table against outputs of their equation and to modify the equation if the outputs 
did not match. Through this checking, some, not all, students found that they needed to modify 
the exponents of their equations based on how they numbered their dominos.  
The Case of Ms. L 

Ms. L chose to engage her students in the Social Media Task which asked students to find the 
number of users in 2006, 2007, and 2008 given that the number of social media users in 2005 is 
3.2 million and the number of users is tripling every year. Students worked alone or in groups on 
this task. Then Ms. L facilitated a discussion of the student solutions and how to use those 
solutions to generate an expression to represent the context.     

During the whole-class discussion of the task, Ms. L solicited and organized student answers 
(Table 1). Although students consistently described their procedure for generating the number of 
users in a specific year in terms of multiplying the previous number of users by three (e.g., to get 
the number of users in 2007, take 9.6 million and multiply by 3), Ms. L pressed students to 
consider the number of times one must multiply 3.2 million by 3 and to represent that 
relationship in the form of an exponential expression (see the middle column in Table 1). The 
decision to focus on the middle column suggested that Ms. L wanted students to attend to the 
exponential expressions that highlight the multiplicative pattern inherent in the context. 

Table 1: Developing an Exponential Expression from a Context 
2005 3.2 million 3.2 × 3: 4 Numbers in the 

fourth column 
represent the 
order in which 
the expressions 
were created  

2006 9.6 million 3.2 × 3 1 
2007 28.8 million 3.2 × 3 × 3 = 3.2 × 3" 2 
2008 86.4 million 3.2 × 3; 3 
2052  3.2 × 3<=  5 

 
Ms. L then asked students towards formulating an equation to represent the situation, but quickly 
changed to have students find an expression for the number of users in year 2052. After 
recording the expression for year 2052, Ms. L asked students to (re-)consider writing an 
expression for the number of users in year 𝑥. Ms. L documented a student’s solution of 
3.2 × 3>?"::@ on the board.  

Discussion and Conclusions 
The second and third columns of Table 2 describe the choices teachers made to facilitate 

student learning to create an exponential expression that represents a context. The sequences of 
actions and the teachers' described rationale suggest Ms. M and Ms. L know a trajectory of 
mathematical reasoning for this process (first column of Table 2). Note the shared trajectory of 
thinking for T1-T4 with slightly varied enactment. Consider the points of diversion in rows T5 
and T6. Ms. L provided a separate, explicit opportunity for students to reason about the 
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necessary exponent value utilizing a specific input prior to writing the expression. Ms. M did not 
explicitly provide that opportunity except in cases where the students made an error in their 
initial attempts to generalize the expression. 

Table 2: Implied Reasoning Trajectory with Associated Decision Outcomes 
Trajectory of reasoning Ms. M decision outcomes Ms. L decision outcomes 
T1 See how the value at a point can be 

determined from  recursive 
multiplication 

Have students generate tables of 
data values by multiplying the 
previous domino’s height by 1.5 

Have students generate data 
values by multiplying the 
previous year’s data by 3 

T2 Notice the explicit expression will 
account for the multiplicative 
relationship 

Have students explore moving up 
and down the tables 

Write values as a repeated 
multiplication by 3 using the 
initial value 

T3 See how the values at any point can 
be generated from the initial value 

Have students explore skipping 
ahead 

T4 See how the data can be re-
represented to highlight the repeated 
multiplication as exponentiation 

Have students re-represent thinking 
from T3 

Rewrite the repeated 
multiplication expressions 
with exponents 

T5* Connect the exponent value in the 
expression to the input value 

--------- Formulate the expression 
for some value in the future  

T6* Generalize the expression for any 
input value 

Have students utilize T4 reasoning, 
attempt an expression, then modify 
expression by checking table values 

Have students utilize T1-T5 
reasoning to find an 
expression for year x 

 
The combination of the decision outcomes and the implied trajectory allow us to describe the 
mathematical reasoning the teachers know to be relevant for students to complete a mathematical 
process and the steps and moves chosen to facilitate this reasoning. Comparing the decisions 
between the two teachers enabled further explication of the relevant decisions. Such descriptions 
of teacher enacted MKT can push the field to understand how teachers develop and utilize this 
knowing in specific contexts for specified purposes.  
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Through the years, mathematical modeling has been shown to help develop mathematical 
competencies that support students’ skills in solving problems arising in everyday life, society, 
and the workplace. With the implementation of the Common Core State Standards of 
Mathematics (CCSSM) in the majority of the states in the U.S., mathematical modeling has 
come into the forefront of the learning and teaching of mathematics. As a result, teachers are 
expected to support their students’ classroom modeling experiences. Nonetheless, teachers have 
not experienced modeling thoroughly themselves in their training, because mathematics teacher 
education programs seldom integrate mathematical modeling in their curricula. Research studies 
begin to reveal how learners engage in mathematical modeling and how mathematics is 
supported through the exploration of modeling tasks, however, there is a gap in looking at how 
mathematical modeling can help support PSTs’ MKT. It is important to explore modeling in 
relation to MKT because many studies have linked teachers’ MKT to the effectiveness of 
mathematics instruction, and achievement gains in students. Therefore, this study aims to address 
a gap in the field by exploring the relationship between mathematical modeling and PSTs’ MKT 
algebra topics and answer the following research question—what is the nature of the relationship 
between MEAs and PSTs’ MKT algebra?  

To explore this question, the researchers used a multiple case study design in order to provide 
a detailed understanding of three cases and a comparison of these cases to illustrate the topic 
being examined. Out of the 30 participants in the study, three PSTs were selected using a 
maximum variation purposeful sampling method. Specifically, the PSTs were given a pre- 
assessment to measure their MKT using a Learning Mathematics for Teaching (LMT) algebra 
scale. Those selected had scores belonging to one of the following three categories: (a) less than 
25th percentile range, (b) between 25th and 50th percentile range, and (c) greater than 50th 
percentile. The participants were video and audio recorded as they explored three MEAs, 
artifacts pertaining to their explorations were collected, and interviews were conducted to gather 
extensive information about the PSTs’ mathematical modeling experiences and MKT algebra 
topics. We developed a conceptual framework using a thorough review of the literature. Seminal 
work in the MKT and the Models and Modeling Perspective fields were used to guide the 
research, and the data analysis of the study. The results of the study demonstrate that MEAs can 
be used to elicit PSTs’ MKT algebra through the implicit characteristics of planning, analyzing, 
writing, forming connections, and reflecting on the mathematical content and processes.  
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Across various disciplines in mathematics and other sciences, numerous efforts have 
documented the manner in which each field has developed throughout time, and the institutions 
that have led the way in this process (Kilpatrick, 1992). Beginning with the first doctorate 
granted in mathematics education in 1906, academic institutions have produced thousands of 
mathematics teacher educators who have played a vital role in shaping policy decisions which 
have impacted classroom instruction, research and the preparation of future mathematics 
educators. Previous efforts have looked at key doctoral institutions and their influences on 
producing doctorates in the field of mathematics education (Reys, Teuscher & Nevels, 2008). 
Efforts have also been made to look at the preparation of doctorates as future educators and 
researchers (Shih, Reys & Engledowl, 2016).  

This poster will illustrate a historical perspective of the evolution of mathematics education 
to demonstrate certain connections between research areas, academic institutions, and influential 
figures in the mathematics education community. An extensive data-driven approach has been 
used to compile information spanning over a century for this ongoing study. A longitudinal 
analysis of the data indicates influential figures, and institutions that have played a role in the 
development of various research trends. More specifically, study of the influential figures in the 
generations following specific mathematics educators shed a light on the development of 
research relating to conceptual knowledge, and content knowledge for teaching, which has been 
influential in curriculum development for K-12 mathematics, as well as in the preparation of pre-
service teachers. In order for mathematics education to continue developing in a robust fashion, 
it is important for both current and future mathematics teacher educators to be aware of the 
development of research areas throughout time and the role that institutions have played/ are 
currently playing in this process. In this manner, mathematics teacher educators and doctoral 
programs can not only maintain a historical perspective, but also utilize these research findings 
to impact the development of future mathematics teacher educators and the research areas that 
have yet to be fully explored for generations to come.  
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Teachers require more than an implicit understanding of the properties of arithmetic in order 
to take advantage of instructional opportunities and to engage students in productive discourse 
(Ball et al, 2001). Elementary teachers need to have the ability to recognize and use structure in 
order to recognize and promote this mathematical practice in their students. Ball et al observe 
that practicing teachers’ inability to recognize the contributions of arithmetic properties to related 
content interferes with their ability to support their students’ sense-making activities. In this 
study, we ask: what aspects of mathematical structure in arithmetic equations do EPTs attend to 
when asked to sort equations that have been designed to represent the different arithmetic 
properties and arithmetic operation definitions into categories? What can EPTs’ explanations for 
how they categorize such equations tell us about the learning progression for recognizing 
mathematical structure? 

Data were collected in two class sessions of two sections of a first content course for EPTs at 
a Western rural regional university.  39 to 47 EPTs participated. Students were asked to sort 20 
equations on individual strips of paper into categories based on what change they observed 
between one side of the equation to the other.  The following are representative examples: 

• (2 x 3 groups) x 4 items/group = 2 x (3 groups x 4 items/group) [Associative] 
• 8 groups x 4 items/group  = (4 groups x 4 items/group) + (4 groups x 4 items/group) [Distributive] 
• 3 x (10 groups x 4 items/group) = (10 groups x 4 items/group) x 3 [Commutative] 

The categories and rationales for categories were collected and analyzed on (1) the explanations 
that the EPTs gave for the categories that they formed and (2) the clustering of the sentences. 
The open-coding of the individual EPTs’ explanations yielded five types of explanation that 
correspond to three types of abstraction.  

The resultant codes for the EPTs’ explanations mapped closely to Piaget’s types of 
abstraction (Campbell, 2001) At the level of empirical abstraction were explanations 
representing the use of the same numbers or same operation in the members of the equations. 
Two levels of pseudo-empirical abstraction were observed: (1) explanations representing 
recognizing equations whose members evaluated to the same numerical amount, and (2) 
observation that different sets of numbers were in parentheses on one side of the equal sign than 
on the other. At the level of reflective abstraction was EPTs’ recognition that there were patterns 
of changes in number relationships from one member of an equation to the other--closest to 
corresponding to recognizing one or more structural properties. The findings of the study suggest 
a learning progression: (1) recognizing superficial features of equations such as the numbers and 
symbols used, (2) evaluation of equations, (3) recognizing the organization of arithmetic 
processes, (4) observing patterns of number relationships. 
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It is agreed that teaching mathematical modeling is challenging, especially for teachers new 
to the process (Anhalt & Cortez, 2015). In addition to relevant mathematics to solve a problem, 
teachers have to possess an instructional system to facilitate students’ mathematical thinking 
process (Blum, 2011). While ample studies have documented future teachers’ knowledge for 
teaching various mathematics concepts, little is known about knowledge for teaching 
mathematical modeling. This poster details findings of our research on secondary preservice 
teachers’ pedagogical content knowledge for teaching mathematical modeling. 

Ferrini-Mundy and colleagues (2005) conceptualized three types of pedagogies that draw 
explicitly on mathematical knowledge domain of teachers: Decompressing, Trimming, and 
Bridging. Teachers’ decompressing is the process of selecting or modifying tasks based on 
teachers’ own analysis of students’ mathematical understanding. Trimming involves 
transforming mathematical ideas from a more advanced form to one that preserves the essence, 
but that will be accessible to students based on their knowledge. Bridging encompasses the 
various kinds of connections that teachers do such as linking one area of school mathematics to 
another. Relying on this framework we examined preservice teachers’ knowledge of teaching 
mathematical modeling using case based interviews. 

Three secondary preservice teachers participated in the study. Selection of participants was 
deliberate, targeting variability among mathematical backgrounds and self-efficacy towards 
doing and teaching mathematical modeling. The participants were given three mathematical 
modeling tasks and each one was interviewed three times. In each interview, the participants 
worked on a modeling task and then commented on how they would implement the same task, 
challenges they anticipated regarding learners’ difficulties and their plans for addressing them. 

Analysis revealed that while the participants managed the demands of solving the modeling 
tasks, they experienced difficulty in the decompressing process to anticipate how school learners 
might perform on the same tasks. They viewed mathematical modeling as a tool for bridging 
mathematics to other subject areas. However, despite the fact that they were able to anticipate 
challenges that learners might encounter relative to defining variables or identifying parameters 
when working on tasks, the participants were unable to define ways to address challenges. For 
example, trimming was only meant to simplify the modeling problem into an application 
problem by adding some numerical variables. The study suggests that exposing preservice 
teachers to mathematical modeling scenarios might not be sufficient in helping them develop 
pedagogical approaches to facilitate classroom implementation. 
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In what ways are the tasks of teaching prospective teachers (PTs) different from the tasks of 
teaching K-12 students? In this poster, we present a portrait of a few aspects of mathematical 
knowledge for teaching teachers (MKTT) that highlight some of the distinctions between it and 
mathematical knowledge for teaching children (MKT; Ball, Thames, & Phelps, 2009). We 
conceptualize the process of designing and revising tasks for PTs as a distinct form of 
mathematical knowledge for teaching, one that is specific to mathematics teacher educators. In 
this poster we share insights and reflections on how our MKTT guided and was enriched by the 
design and revision of lessons on five mathematical concepts.  

Using a form of lesson study outlined by Berk and Hiebert (2009) and attending explicitly to 
the iterative process of task design outlined by Liljedahl et al. (2007), we developed five 
mathematical tasks for a mathematics content course for elementary PTs. The process of task 
design and revision highlighted the ways in which teaching PTs differs from teaching K-12 
students, as PTs need to relearn mathematics (Zazkis, 2011); that is, PTs must reflect on 
previously-held conceptions and unpack their knowledge of procedures and problem-solving 
strategies to reveal the underlying conceptual foundations.  

In the portraits of task design presented on this poster, the idea of uncovering and addressing 
PTs’ preconceptions was essential to the MTEs’ design and revision of each task. We contend 
that the centrality of this goal in the MTEs’ thinking during this process makes these portraits 
examples of MKTT in action. For example, a task that presents growing visual patterns to 
children may focus on developing students’ abilities to continue a visual pattern or on 
introducing functional thinking (Warren & Cooper, 2008); a task that presents growing visual 
patterns to PTs must do those things, as well as address any previous conceptions surrounding 
linear growth, algebraic generalization, or sequences that PTs may have. Thus, the purpose of 
designing tasks for PTs differs fundamentally from the purpose of designing tasks for students.  
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HOW DO UNDERGRADUATE STUDENTS MAKE SENSE OF POINTS ON GRAPHS 
IN CALCULUS CONTEXTS?  

 Erika David  Kyeong Hah Roh  Morgan Sellers 
 Arizona State University Arizona State University Arizona State University 
 ejdavid@asu.edu khroh@asu.edu mearly1@asu.edu 

The purpose of this study is to examine the characteristics of students’ thinking about graphs 
while evaluating statements from Calculus. We conducted clinical interviews in which 
undergraduate students evaluated mathematical statements using graphs to explain their 
reasoning. We report our classification of students’ thinking about aspects of graphs in terms of 
value-thinking and location-thinking, which emerged from our data. These two ways of thinking 
were rooted in students’ attention to different attributes of points on graphs we provided: either 
the input and output values represented by the points or the location of the points in space. Our 
findings indicate that students’ thinking about aspects of graphs accounts for key differences in 
their understandings of mathematical statements. 

Keywords: Geometry and Geometrical and Spatial Thinking, Post-Secondary Education, 
Cognition, Reasoning and Proof 

The purpose of this study is to characterize students’ thinking about aspects of graphs of real-
valued functions and to investigate its role in understanding and evaluating statements from 
Calculus, such as the Intermediate Value Theorem (IVT). Through analyzing students’ 
evaluations and interpretations of these statements using graphs, we seek to address the 
following research questions: What are characteristics of undergraduate students’ thinking 
about aspects of graphs related to statements from Calculus contexts? Specifically,  

(1) How do students interpret outputs of a function on a graph, points on a graph, and a 
graph as a whole? 

(2) How do various types of student thinking about graphs of real-valued functions affect 
students’ understanding and evaluation of the Intermediate Value Theorem and similar 
statements? 

Literature Review 
Undergraduate Calculus courses, from elementary through advanced Calculus, are comprised 

of many definitions and theorems about real-valued functions. Often, these statements are 
accompanied by visual representations in the form of graphs of relevant functions. For example, 
the Intermediate Value Theorem (IVT) is one such statement commonly associated with a visual 
representation (e.g., Briggs, Cochran, & Gillett, 2011; Finney, Thomas, Demana, & Waits, 1994; 
Larson, Hostetler, & Edwards, 1994; Stewart, 2012). Although research has called for the 
inclusion of such visual representations in mathematics instruction (e.g., Arcavi, 2003; Davis, 
1993; Dreyfus, 1991; Hanna & Sidoli, 2007), few empirical studies have been conducted to look 
at undergraduate students’ thinking about graphs of real-valued functions.  

While it is hoped that students focus on the details of a provided graph that highlight the 
intended concept, some students may construe other properties of the given graph rather than the 
intended ones. For example, Moore and Thompson (2015) found that some students treat graphs 
as an object itself, and infer details of a situation from the shape of a graph, rather than 
coordinating the numerical values represented by the points of the graph. If students’ 
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interpretations of graphs differ from what is intended, students’ interpretations of provided 
graphs might hinder their subsequent mathematical activities, such as rigorous proofs (Alcock & 
Simpson, 2004). Although several studies have looked at students’ understanding of graphs as a 
whole (Monk, 1992; Moore & Thompson, 2015; Moore, 2016), it is not widely known what 
meaning students have for various aspects of graphs, such as the input, output, and points on 
graphs.  

Theoretical Perspective 
This study, including the data collection, data analysis, and development of the theoretical 

framework, is grounded in a constructivist perspective. We adopt von Glasersfeld’s (1995) view 
that students’ knowledge consists of a set of action schemes that are increasingly viable given 
their experience. This perspective also implies that we, as researchers, do not have direct access 
to students’ knowledge and can only model their thinking about graphs based upon their 
observable behaviors.  

We adopt components of Arcavi’s (2003) definition of visualization for this study, which he 
states as “The ability, the process, and the product of creation, interpretation, use of and 
reflection upon pictures, images, diagrams, in our minds, on paper, or with technological tools” 
(p. 217). While Arcavi’s description of visualization is broad, in this paper, we focus on 
investigating how students interpret, use, and think about aspects of graphs of real-valued 
functions and relations.  

Methodology 
As part of a larger study, we conducted two-hour clinical interviews (Clement, 2000) with 

nine undergraduate students from a public southwestern university in the United States. We 
selected three undergraduates who had just completed one of the following three mathematical 
courses that may cover the IVT: Calculus I, Introduction to Proof, and Advanced Calculus. 
During the interview, the interviewer asked students to evaluate each of the four mathematical 
statements in Table 1 and to provide justification for their evaluations. The second statement, the 
Intermediate Value Theorem (IVT), was the only true statement we presented. The remaining 
three statements (1, 3, and 4), all of which are false, were created from the IVT by reordering the 
quantifiers (for all, there exists) and/or the variables (N, c).  

Table 1: Statements Presented to Students 

Statement 1 Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, for all real 
numbers c in (a, b), there exists a real number N between f(a) and f(b) such that f(c)=N. 

Statement 2 
(IVT) 

Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, for all real 
numbers N between f(a) and f(b), there exists a real number c in (a, b) such that f(c)=N. 

Statement 3 Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, there exists a 
real number N between f(a) and f(b) such that for all real numbers c in (a, b), f(c)=N. 

Statement 4 Suppose that f is a continuous function on [a, b] such that f(a)¹f(b). Then, there exists a 
real number c in (a, b) such that for all real numbers N between f(a) and f(b), f(c)=N. 

 
After students evaluated the four statements, the interviewer presented six graphs. The graphs 

were chosen to represent a spectrum of possible functions, relations, and relevant 
counterexamples and included: a polynomial with extrema beyond the endpoints of the displayed 
function, a vertical line segment, a continuous sinusoidal function, a monotone increasing 
function, a constant function, and a function that is discontinuous on [a, b]. The interviewer 
asked if the students could use any of these graphs to explain their evaluation of each statement, 
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which they could change at any time. Students were also asked to explain how they interpreted 
various aspects of each graph and to label relevant points and values on the graphs where 
appropriate.  

Our data analysis was consistent with Corbin and Strauss’ (2014) description of grounded 
theory, in which our categories of students’ thinking about the graphs emerged from the data 
analysis. We began preliminary analysis during and immediately following each interview to 
note relevant findings. After all the interviews were conducted, we employed open coding 
(Corbin & Strauss, 2014) to document students’ interpretations of aspects of the graphs they 
worked with. We refined these categories and re-coded the video interview data using axial 
coding (Corbin & Strauss, 2014). Through this process, we finalized two codes, value-thinking 
and location-thinking, to broadly characterize student thinking about the graphs. 

Results 
In our data, we found two distinct ways that students thought about graphs, specifically 

outputs, points, and the graph as a whole. We observed that some students primarily focused on 
the values represented by the coordinates of points on graphs while others primarily attended to 
the spatial location of these points. To describe these findings, we use the term value-thinking to 
refer to student thinking which focused on the values represented by the coordinates of a point. 
We use the term location-thinking to refer to thinking that primarily attends to the spatial 
location of the point. We detail characteristics of both categories of thinking in Table 2 by listing 
the meanings for aspects of the graph for each category and observable behaviors indicative of 
these meanings.  

Table 2: Comparison of Value-Thinking and Location-Thinking 

 

Value-Thinking Location-Thinking 
Interpretations Evidence Interpretations Evidence 

A
sp

ec
ts

 o
f a

 G
ra

ph
 

Output of 
Function 

The resulting value 
from inputting a 
value in the 
function 

▪ Labels output 
values on the 
output axis 
▪ Speaks about 
output values 

The resulting 
location in the 
Cartesian plane from 
inputting a value in 
the function 

▪ Labels outputs 
on the graph 
▪ Labels points as 
outputs 
▪ Speaks about 
points as a result 
of an input into 
the function (e.g., 
“an input is 
mapped to a 
point on the 
graph”) 

Point on 
Graph 

The coordinated 
values of the input 
and output 
represented 
together 

▪ Labels points 
as ordered pairs 
▪ Speaks about 
points as the 
result of 
coordinating 
input and 
output values 

A specified spatial 
location in the 
Cartesian plane 

Graph as 
a Whole 

A collection of 
coordinate pairs of 
values of the input 
and output 

A collection of 
spatial locations in 
the Cartesian plane 
associated with 
input values 

 
Value-Thinking  

By value-thinking, we mean thinking about graphs that focuses on the input and output 
values represented by the coordinates of points on the graph of a function. Figure 2 contains two 
labeled graphs from one of the students, Jay, whom we considered to be engaged in value-
thinking. One of the key characteristics of value-thinking is distinguishing between the outputs 
of a function and the points on a graph. Students who engaged in value-thinking labeled points as 
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ordered pairs (see Figure 2, left), and spoke about points as representing both input and output 
values simultaneously. When considering the output of a function, students who thought in this 
way tended to label relevant output values on the output axis of the graph of a function (see 
Figure 2, right), and specifically spoke about the values of the output only. Students engaged in 
value-thinking thus treated graphs as a collection of ordered pairs that relate corresponding input 
and output values. In terms of the four statements, these students interpreted N in the phrase “N 
between f(a) and f(b)” as referring to values between two values f(a) and f(b). They typically 
indicated the N values on the y-axis, as shown in Figure 1, right. 
 

                             
Figure 1. Jay’s graph labels, characteristic of value-thinking 

Location-Thinking 
By location-thinking, we mean thinking about graphs that relies on the spatial locations of 

points in a Cartesian plane. Students who engaged in location-thinking focused on the location of 
points, while the values of the coordinates for the points were either in the background of their 
reasoning or absent from it. In contrast with value-thinking, one of the key characteristics of 
location-thinking we observed was treating the output of the function as indistinguishable from 
the location of the point. Accordingly, students who engaged in location-thinking often labeled 
points on the graph as outputs, rather than ordered pairs, and spoke about points in terms of their 
location in the coordinate plane. While students who engaged in value-thinking labeled outputs 
on the output axis, students who engaged in location-thinking frequently placed the output label 
at the location of the point on the graph. Instead of speaking about output values, these students 
speak about points on the graph as the result of an input value. Students engaged in location-
thinking treated graphs as a collection of locations in space associated with inputs.  

Outputs as locations. Zack was one such student who labeled f(a), N, and f(b) not on the y-
axis, but on the graphs that he drew, as shown in Figure 3. As a result, Zack did not label points 
as ordered pairs. 

 

                         
Figure 3. Zack’s labels of points as outputs, a common characteristic of location-thinking 
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 Zack’s placement of an output label at a location on the graph, rather than on the y-axis, 
indicates that he considered these outputs to be locations on the graph, rather than values on the 
y-axis. Additionally, Zack called the endpoints of the graph in Figure 3, right “f(a)” and “f(b),” 
again indicating that he conceived of outputs as locations on the graph. Furthermore, when Zack 
referenced possible N’s between f(a) and f(b), he swept along the entire graph of the function, 
rather than along the y-axis. His gesture along the graph when describing N’s between f(a) and 
f(b) is also consistent with his conception of outputs as locations along the graph. We thus take 
Zack’s label on the graph, words, and gestures as evidence of his consideration of outputs of the 
function as locations, indicative of location-thinking. 

Points as locations. In addition to his graph labels of outputs at points in Figure 3, more 
striking evidence of Zack’s location-thinking was observed when he was working with a 
constant function and claimed that f(a) is not equal to f(b). When the interviewer presented Zack 
with the graph of a constant function, Zack confirmed that the function is continuous on the 
interval [a, b], pointed to the endpoints of the graph, and stated that f(a) is not equal to f(b). Zack 
read off the remainder of Statement 3, and again pointed to the endpoints of the graph when 
reading the phrase “N between f(a) and f(b).” Next, he pointed to a spot on the graph, which he 
explained was an example of N between f(a) and f(b), plotted a dot there, and labeled the dot on 
the graph as “N.” He also labeled the endpoints of the graph as f(a) and f(b), respectively, as 
shown in Figure 4.  

 

 
Figure 4. Zack’s labeling of f(a), f(b), and possible N’s when he claimed f(a)≠f(b). 

We take Zack’s claim that f(a) and f(b) are not equal for the constant function f as evidence 
that he attended to the different spatial locations of the endpoints, rather than the pairs of input 
and output values represented at each point. For Zack, the point N that he labeled on the graph 
was in between the locations of the endpoints, which he referred to as f(a) and f(b). We also note 
that Zack labeled points as f(a), f(b), and N, rather than as ordered pairs. In essence, for Zack, 
there was no difference between outputs of the function and points on the graph, as both referred 
to spatial locations on the graph. We thus conclude that Zack conceived of points as locations, an 
indication of location-thinking. 

N as a location between f(a) and f(b). Like Zack and other students who engaged in 
location-thinking, Nate also considered outputs as locations, rather than values, and points as 
locations, rather than ordered pairs. We highlight Nate’s meaning for the phrase “N between f(a) 
and f(b),” which was indicative of location-thinking. When working with one of the provided 
graphs, Nate first labeled the endpoints of the graph as f(a) and f(b), respectively. Then, Nate 
explained that for every c on this axis, he could find an N on the curve that c maps to. He also 
motioned from the x-axis vertically to the graph when describing that c’s mapped to N’s on the 
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graph. Similarly, when describing N’s, he swept along the entire graph of the function from what 
he marked as f(a) to f(b). Nate’s graph labels are shown in Figure 5 below. 
 

 
Figure 5. Examples of N’s Nate claimed were between f(a) and f(b) 

Nate labeled possible N’s on the graph that are, from our perspective, not between f(a) and 
f(b). Noticing Nate’s placement of N labels and his sweeping motion along the graph, we infer 
that Nate interpreted “N between f(a) and f(b)” to mean all the points on the graph between the 
points that he labeled f(a) and f(b).  

To further examine Nate’s meaning for this phrase, the interviewer extended the graph to the 
right and marked a point on this extension of the graph, at approximately (5, 1), whose output 
value, 1, is between the values of f(a) and f(b) (see Figure 6). The interviewer then asked Nate if 
this output was between f(a) and f(b). After thinking about the question briefly, Nate stated that 
the output was not between f(a) and f(b).  
 

 
Figure 6. A point at which Nate claimed the output was not between f(a) and f(b) 

The interviewer’s prompt allowed Nate to more carefully consider his meaning for “N 
between f(a) and f(b).” Nate explained that there are two possible interpretations of this phrase, 
which he described as a “number interval” and a “function interval.” By “number interval,” Nate 
referred to the set of all output values between 0 and 2.5. In contrast, Nate used “function 
interval” to refer to the set of all points on the graph between the endpoints which Nate labeled 
f(a) and f(b). While Nate said the point that the interviewer marked was not between f(a) and 
f(b), he acknowledged that this point was “in the number interval” between 2.5 and 0 (the values 
of f(a) and f(b)). Nate clarified that although the output value of this point was between 0 and 
2.5, the point was not between f(a) and f(b) because it was not “in the function interval.” As he 
described the “function interval,” Nate motioned along the entire graph between the points which 
he had labeled f(a) and f(b). Although Nate acknowledged the numerical interval of output 
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values, [0, 2.5], he considered his notion of the “function interval” as more relevant for 
interpreting the phrase “N between f(a) and f(b).” We thus take Nate’s interpretation of “N 
between f(a) and f(b)” in terms of the spatial location of the points, rather than the values of the 
outputs, as indicative of location-thinking.  
Value-Thinking, Location-Thinking, & Students’ Evaluations of Statements 
We found that students’ interpretations of aspects of graphs, whether in terms of value-thinking 
or location-thinking, were related to their evaluations of the four statements we presented. 
Among the five engaged in value-thinking, three students evaluated all four statements correctly. 
In contrast, no student engaged in location-thinking evaluated all four statements correctly. Table 
3 reports our classification of each student’s thinking (Value-Thinking or Location-Thinking), 
along with each student’s mathematical level (Calculus, Introduction to Proof, and Advanced 
Calculus), and final evaluations of the four statements (True, False, or Sometimes True). 

Table 3: Students’ Final Evaluations of Statements 
Students Observed 
Engaging in… 

Student 
Name 

Math 
Level 

Final Student Evaluations 
 S1(F)    S2(T)    S3(F)    S4(F) 

Value-Thinking 
 

Jay Advanced Calculus F T F F 

James  Advanced Calculus F T F F 
Nikki Introduction to Proof F T F F 
Ron Introduction to Proof T T F F 
Mike Introduction to Proof F F F F 

Location-Thinking 

Zack Calculus ST ST ST ST 
Nate Advanced Calculus T T F F 
Hannah Calculus T T T T 
Marie Calculus T T T T 

 Shaded cells indicate mathematically incorrect evaluations. 
 

Although all students who correctly evaluated the statements engaged in value-thinking, not 
all the students who engaged in value-thinking evaluated the statements correctly. Ron, a student 
who engaged in value-thinking, failed to attend to the restriction on the values of N, which led 
him to evaluate statement 1 as true. Mike, another student who engaged in value-thinking, 
evaluated all four statements as false due to unconventional meanings for the logical quantifiers 
(for all, there exists) involved in the statements. Thus, we view value-thinking as necessary, but 
not sufficient, for correctly evaluating the IVT and similar statements. In contrast, no student 
who engaged in location-thinking evaluated all four statements correctly. We take this as an 
indication that location-thinking does not support students in correctly evaluating the statements 
we presented. Even Nate, a student with a more advanced mathematical background, incorrectly 
evaluated Statement 1. His location-thinking was the main factor in his incorrect evaluation.  

Conclusion & Discussion 
Our findings in this study reveal critical distinctions in students’ interpretations of aspects of 

graphs, namely in terms of value-thinking and location-thinking. In our study, some students 
interpreted and labeled points as pairs of input and output values, while others interpreted points 
as locations in space and labeled them with output notation. Our results highlight and explain 
significant aspects of students’ interpretations of graphs not previously accounted for by current 
theories and studies on students’ thinking about graphs. Thus, the use of our constructs of value-
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thinking and location-thinking may progress the depth of analysis in the field of students’ 
understanding of graphs. 

These two distinct ways in which students interpreted points, and thus graphs, have 
significant implications for how students understand important mathematical ideas, such as the 
Intermediate Value Theorem (IVT), as we observed with our students. We acknowledge that, in 
this study, value-thinking supported students in correctly evaluating the IVT and similar 
statements. However, in other contexts, such as diagrams in geometric settings, location-thinking 
may be preferable. Additionally, other contexts, like graphs of parametric curves, may require 
both location and value-thinking for interpreting various aspects of the same image. Ideally, 
students should possess the ability to think in both ways, focusing on the values represented at a 
point and the point’s spatial location, along with the ability to discern when it is appropriate to 
use each way of thinking. To support students in recognizing these two ways of thinking, 
instructors and curriculum developers may consider providing students with opportunities to 
think both ways and bring to light this distinction. We hope that our findings increase 
practitioners’ awareness of the subtle yet significant details of students’ interpretations of aspects 
of graphs and may thus inform decisions in curriculum design and instruction. 
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This paper presents selected findings from an assessment of university students’ moment-by-
moment reading of mathematical proof. This method, adapted from an assessment of narrative 
reading validated by psychologists, yields novel insights into the strategies students use to 
construct meaning for the equations in a proof text. In particular, we present evidence that 
novice readers constructed meanings for the equations using mathematical practices familiar 
from non-proof oriented courses – substituting and solving for variables – while more 
experienced readers drew upon practices native to proof-oriented mathematics – inferring 
properties of quantities. We refer to these as computational and inferential orientations, 
respectively. We interpret this mismatch of practices in terms of Systemic Functional Linguistic’s 
notion of textual metafunction and briefly discuss its implications for proof-oriented instruction.  

Keywords: Reasoning and Proof, Post-Secondary Education, Cognition 

Researchers of language in mathematics education have long noted that there exists a 
mathematical register (e.g. Halliday, 1975; Pimm, 1987) constituting a subdomain of spoken 
English (in the English-speaking world). Halliday (1975) explains that the mathematical register 
constitutes much more than technical terms and the extensive use of symbols. He explains, “It is 
the meanings, including the styles of meaning and modes of argument, that constitute a register, 
rather than the words and structures as such” (Halliday, 1975, p. 65). Many have noted that 
students’ ability to participate in mathematics depends on developing competencies within the 
mathematical register (e.g. Schleppegrell, 2007; Morgan, 1998), but relatively few studies have 
investigated the nature of those competencies. This paper helps address this gap in the literature.  

This report presents findings stemming from a study of undergraduate students’ reading of 
mathematical proofs. We adapted a moment-by-moment think aloud protocol that has proven 
valuable for assessing narrative text reading competencies (Magliano & Millis, 2003; Magliano, 
Millis, Team, Levinstein, & Boonthum, 2011). Adapting this methodology to mathematical proof 
has yielded many insights into novice and experienced student reading behaviors. Hereafter, we 
highlight one difference between some novice and experienced readers’ sense-making about 
equations in proofs. We refer to their strategies as computational and inferential orientations.  

Studies of reading behavior 
Two mathematics education studies particularly investigated undergraduate students’ reading 

of mathematical text by comparing it to expert reading behaviors. Shepherd and van de Sande 
(2014) observed that mathematics faculty and graduate students read (i.e. articulated written text) 
equations in terms of their conceptual structure while undergraduates read them symbol-by-
symbol. Inglis and Alcock (2012) used eye-tracking technology to compare undergraduate and 
mathematician reading of mathematical proofs. They found that experts focused much more on 
the text surrounding equations, which encoded the logical links in the proof, while 
undergraduates focused much more on equations themselves. However, eye-tracking 
methodology did not provide any explanation for why this difference emerged.  
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As mentioned above, we adapted our methodology from an assessment for narrative reading 
comprehension developed by Magliano, Millis, and colleagues (Magliano & Millis, 2003; 
Magliano et al., 2011). That assessment (called RSAT) presents students with narrative text one 
line at a time and asks students to think aloud or to respond to particular content-related prompts. 
The validated assessment distinguishes novice and expert readers based on the types of 
connections they make (not the quality). Students who connect the text to prior information in 
the text or outside knowledge tend to be more competent readers than those who simply 
paraphrase or restate the given line. One group of psychologists (Fletcher, Lucas, & Baron, 
1999) adapted this method to reading high school proofs. They found that reading such text was 
more effortful than reading narrative and allowed new types of connections such as anticipating 
later lines of the text. The findings from moment-by-moment assessment techniques correlate 
with end-reading comprehension tests, but they reveal a different set of behaviors and insights 
into the reading process itself. We accordingly adapted the methodology to gain new insights 
that might not be yielded from existing assessments of proof end-reading comprehension (Mejia-
Ramos, Lew, de la Torre, & Weber, 2011) or proof validation (e.g., Alcock & Weber, 2005).  

Conceptualizing the linguistic functions of proof 
Most studies of language learning in mathematics education draw upon Halliday’s (1975; 

1984) theory of Systemic Functional Linguistics (SFL). This theory is particularly useful because 
it is rooted in language use, it focuses on speakers’ and hearers’ choices by which they make 
meaning in language, and it emphasizes the role of linguistic function to explain language use. 
As Schleppegrell (2004, p. 137) explains, “It is important for students to develop academic 
register options in different disciplines because particular grammatical choices are functional for 
construing the kinds of knowledge typical of a discipline.” SFL posits that three metafunctions 
are always operative in the construction or interpretation of a text: the ideational metafunction 
concerns what is being talked about, the interpersonal metafunction concerns who is involved in 
the discourse and how they are positioned, and the textual metafunction concerns what type of 
text is being constructed and what features are necessary or appropriate for such text.  

Consider the following excerpt from one of our proof tasks: 
 

 
Figure 1. Excerpt from the primitive Pythagorean triples proof (Rotman, 2013). 

Ideationally, the proof is about characterizing primitive Pythagorean triples. Many portions of 
the proof are dedicated to deducing numeric properties such as sharing common factors or being 
perfect squares. Interpersonally, mathematics text tends to hide any direct reference to human 
participants by expressing relations about mathematical objects. In this text, the subjects of most 
clauses are quantities to which properties are attributed. Textually, the symbols and equations 
mark the text as clearly mathematical. They conform to the genre of mathematical proof by 
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drawing (and justifying) inferences. The conflict between the claims in lines 3 and 4 further 
suggest to an expert reader the beginning of a proof by contradiction (or proof that 𝑑 = 1).  

A key function that distinguishes mathematical proof from other texts is the emphasis on 
both making and justifying claims. There is an implicit expectation for the reader to identify the 
implied warrant in line 5: “the sum and difference of multiples of 𝑑 are also multiples of 𝑑.” 
Students must parse the equation in multiple ways to construct the intended meaning. They must 
recognize that both sides of the equation represent the same quantity, which is the object of the 
clause “𝑑 is a factor of.” They must parse the left sides as the sum and difference of the two 
compound quantities discussed in line 4, which is supported by parenthetical grouping. Finally, a 
reader should determine that the property of being a multiple of d is being transferred from two 
quantities known to share the property to a pair of new quantities 2𝑏 and 2𝑐. Though equations 
are symmetric, this inference is directed (from left-hand quantities to right-hand quantities).  

While the various claims about the normative or intended construal of this text are cued in 
subtle ways in these three lines, an expert reader in many ways constructs its meaning using 
textual expectations and devices. Ultimately, the text is far from explicit regarding all that it 
intends to convey. This is not a particular defect of mathematical proof, but rather,  

Inferencing on the basis of background assumptions plays a central role in the interpretation 
of all texts. Highly complex and abstract background assumptions which are not spelled out 
are often necessary for the interpretation of written language, especially in school contexts. 
(Schelppegrelle, 2004, p. 11) 

With this background we may now better articulate the key question investigated in this report: 
what textual assumptions and functions do novice readers use to construct meaning for equations 
in mathematical proofs and how do these differ from those used by more experienced readers?  

Methodology 
One contribution of this study is the adaptation of the moment-by-moment think-aloud 

reading assessment protocol to advanced mathematical proof. Our study involved interviewing 
mathematics students ranging in experience from no proof-oriented courses to beginning 
graduate study. To accommodate such diverse experience, we sought out proofs that (a) had at 
least 10 lines of text, (b) required no knowledge of mathematical concepts with which novices 
were not familiar, and (c) were relatively outside the curriculum such that experts were less 
likely to have seen the exact proof being presented. We used four such proofs in our interviews, 
though due to space limitations we only report on the proof quoted from in Figure 1.  
Adapting moment-by-moment read aloud protocol to proof 

Similar to RSAT (Magliano & Millis, 2003), each proof was presented one line at a time. 
Unlike RSAT, the previous lines of our proofs remained visible. For three of the four proofs 
students first read relevant definitions and theorems. These remained available for their reference 
on sheets of paper that doubled as scratch paper. Students were instructed to read each line aloud 
and think aloud before the interviewer might provide more specific response prompts. We 
developed the response prompts by listing all the connections that we expect expert readers could 
make for each line. These included (a) relations to previous lines, (b) implicit warrants, (c) use of 
definitions, (d) elements of proof frames such as universal generalization, case structure, proof 
by contradiction, or induction, (e) opportunities to anticipate future lines, and (f) goal statement 
or achievement. We then decided for which lines we would provide targeted prompts such as 
“why is this line justified,” “what do you expect in the following lines,” or “why did the author 
introduce 𝑑.” The interviewers explained the meaning of terms or statements upon request, 
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though we tried to withhold judgment about the students’ interpretations. We note that this 
methodology does not elicit a naturalistic reading because inviting students to think aloud and 
respond to targeted prompts in many ways mimics the self-explanation training that Hodds, 
Alcock, and Inglis (2014) found to improve proof comprehension. Rather, we interpret our data 
as representing an optimal reading for each student at that time. Such readings still elicit the 
students’ capabilities as readers of mathematical proof.  
Participants and analysis 

Participants were recruited from a large public university in the Southwestern United States 
and a mid-sized public university in the Midwestern United States. Volunteers were solicited 
from courses ranging from differential equations, introduction to proof, real analysis, and 
topology (the latter two were dual-listed as undergraduate and graduate courses). To date, 17 
students completed interviews for which they were given minor monetary incentives. Three 
students recruited from differential equations had no collegiate proof coursework and three other 
participants were recruited from real analysis, which was their first completely proof-oriented 
course. We classify all six as novice readers. The nine other undergraduate students had 
completed at least one proof-oriented course and were classified as experienced readers. Finally, 
two mathematics graduate students participated who were considered expert readers.  

Coding began by forming narrative note files for each interview that described students’ 
reading behavior for each line of text. From these line-by-line notes, we formed categories of 
noteworthy behaviors and patterns in student reading behavior. The two authors independently 
coded two novice reader interviews in this way and met to discuss and compare the findings. By 
comparing the various categories of reading behaviors across the four proof tasks, we identified 
five meta-categories that organized the primary range of categories. We then independently 
coded the rest of the interviews, meeting regularly to discuss our interpretations and coding. 
These five meta-categories remained relatively stable, though nuanced to accommodate further 
cases. The meta-categories are computational versus inferential orientation, depth of encoding 
for proof claims, logic structure and language, meanings for relevant mathematical concepts, and 
sense-making activities. Due to space concerns this paper only presents findings about the first 
category, computational versus inferential orientation. 

Results 
The meta-category computational versus inferential orientation most directly addresses 

students’ reading behaviors relevant to the textual metafunction characterized by SFL. In 
particular, it concerns the mathematical practices that students called upon to make sense of the 
proof’s use of equations. We briefly introduce the two constructs with reference to line 2 in 
Figure 1. Every study participant could identify and justify the algebraic manipulations the line 
expressed. This type of reorganization of equations is very common in computational 
mathematics courses and thus familiar to all of these students. The proof goes on to use this 
equation in two other ways. First, because 𝑑 is defined as a factor of (𝑐 + 𝑏) and (𝑐 − 𝑏), this 
equation supports the inference that 𝑑 is a factor of 𝑎. The property “𝑑 is a factor” (more 
precisely 𝑑, is a factor) is transferred from the right side of the equation to the left. Then, once it 
is established that (𝑐 + 𝑏) and (𝑐 − 𝑏) share no common factors, the equation is used to infer 
that both of those quantities are perfect squares. In this case, the property “is a perfect square” is 
transferred from the left side of the equation to the two components on the right. This latter use 
of the equation as a vehicle for inferring properties about the quantities within is not native to 
early collegiate non-proof-oriented courses. As a result, we noticed much greater discrepancies 
in students’ abilities to construct these meanings for the equations.  
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We thus define two orientations as follows: 

• Computational orientation: Mathematics is about computing and solving for numbers, so 
proofs use equations for counting, evaluating, computing, and solving for quantities.  

• Inferential orientation: Mathematics is about relating mathematical properties, so proofs 
use equations for stipulating, inferring, and denying properties of quantities.  

We posit a few points about these constructs before presenting some instances of student data 
that exemplify how these orientations operated in our data. First, the two are not mutually 
exclusive since both are accurate reflections of mathematical practices. Both of these claims 
express resources that students may use to interpret linguistic choices in a proof, specifically 
ideational and textual choices. The main concern is when a proof was constructed according to 
one orientation and is interpreted according to another. All students recognized that line 2 could 
be justified in terms of computational practices. However, not all students recognized the uses of 
line 2 in terms of inferential practices. Also, such orientations are implicit and are merely 
enacted by students in reading. We now present two cases of novice reading behavior that 
exemplify reading inferential proof texts using a computational orientation.  
Nov5 – Explaining operations rather than inferring properties 

Nov5 was a chemistry major taking differential equations when he participated in the study. 
He had no collegiate proof-oriented coursework. He spent about 45 minutes reading the 
Pythagorean triples proof (17 lines). He expressed low confidence in his interpretations and 
confusion about what the interviewer meant by questions about “justifying” lines of the proof. 
His responses to such questions most often focused on explaining the author’s reasoning or on 
trying to explain why each step in the proof was chosen. He explained line 3 (that introduced 
subgoals for the proof) saying “I guess they are saying that the focus is going to be on this part of 
their equation.” When he read line 4 that introduced the quantity 𝑑, he explained: 

N5: Ok. I guess they are gonna put in a variable d that I guess is a factor of both, so it’s both 
divisible by 𝑑 [rising tone as if a question].  

I: What is the purpose of introducing 𝑑 here? 
N5: Uhh. Probably to somehow come out with the quotient for 𝑏 and 𝑐 being 2.  
I: When you say quotient, what were you pointing at?  
N5: Just the denominator here [reads 𝑏 and 𝑐 equations in theorem] just showing where that 2 

is coming from. [reads line 5]  
I: So why is this true?  
N5: Well I am pretty sure what they did was set the parentheses equation up to the 𝑐, − 𝑏, 

and then attempted to solve and then since you would have a square root to solve, you 
have to have the positive and the negative version of it. I feel like I am wrong, but. […] 
Yeah. Multiply it out here. [He multiplies (𝑐 + 𝑏)(𝑐 − 𝑏) on paper.] Well I guess that 
proves number two for sure. Let’s see what they. I think my idea is off. Ok, now I am not 
100% sure where that came from. 𝑑 is a common factor.  

I: So tell me something about what you are thinking here.  
N5: I am thinking maybe possibly that, that these here the 2𝑏 and 2𝑐 are derivatives. Because 

the derivative of 𝑐, would be 2𝑐 and the derivative of 𝑏, would be 2𝑏. I am just trying to 
think where they got the addition from.  

N5: [Later, he reads line 7, which says] “If 𝑑 is a factor of both 𝑏 and 𝑐, then 𝑑 is also a 
factor of 𝑎.” Ok yeah cause that would match their equation.  

I: Which equation are you looking at?  
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N5: Pythagorean theorem because if you mess with one side of the equation you also have to 
do it with the other side of the equation or else it’s not equal, so I guess, yeah. 

We notice that Nov5 drew on multiple resources to make meaning from the text. He did not 
explain the introduction of 𝑑 in terms of the goals in line 3, which he only interpreted as focusing 
the reader’s attention. Rather, he hoped to explain why the equations for 𝑏 and 𝑐 in the theorem 
both had a denominator of 2. He next cited the algebraic procedure of introducing positive and 
negative possibilities when taking the root of an equation to explain why the two equations in 
line 5 differed by addition and subtraction. When he could not recreate the inferred algebraic 
manipulations, he connected the right sides of the line 5 equations to the derivatives of terms in 
the line 2 equation. In each case, we notice that Nov5 drew upon computational practices 
(substituting, solving, and taking derivatives) to make meaning of the text.  

Finally, we note that Nov5 was able to make sense of the property inference in line 7, but he 
explained it in terms of operations performed on each side of the equation rather than in terms of 
the equality between the quantities. On one hand, we may celebrate his linguistic improvisation 
for conveying a meaning that he did not seem to have ready tools to express. On the other, his 
explanations give the sense that he understood “𝑑 is a factor of” as an operation to be performed 
rather than a static property of a number. We expect that an inferential orientation and the 
language to express its meanings are interdependent and co-emerge (Schleppegrell, 2004).  
Nov2 – “What is the goal of this equation?” 

Nov2 was an electrical engineering major recruited from differential equations who had not 
taken any proof-oriented courses. She also spent about 45 minutes reading the Pythagorean 
triples proof. The following represents her reading of the fourth and fifth lines: 

I: So what is the purpose of introducing d? 
N2: Umm, 𝑑 would, 𝑑 would show the correlation between the number 𝑏 and 𝑐, to see how 

they, to figure out what 𝑐 and 𝑏 is possibly.  
I: Ok. Anything else that comes to mind about this line?  
N2: I mean if you multiply everything out and add 𝑑 to the equation, you could solve for one 

of them, if you knew one of the numbers.  
I: Ok let’s see what comes up [shows line 5].  
N2: [Reads line 5]. Umm. [Long pause.] I’m just seeing how 𝑑 fits into everything, I guess?  
I: My question about this is why is this line justified? Why does this have to be true?  
N2: Well if you, obviously if you do the math you would figure out that. Sorry I am not good 

at putting this into words.  
I: So when you say “do the math” can you tell me more specifically what you are thinking 

about?  
N2: Well if. So are we trying to figure out what 𝑏 and 𝑐 is? What is the goal of this equation? 

What are we trying to figure out? Just figuring out what the missing variables are?  
N2 showed direct awareness that she was confused about the purpose of introducing 𝑑 and the 
equations in line 5. She inferred that the purposes were to substitute and solve for variables, 
consistent with the practices in non-proof-oriented courses. She used the parlance “do the math” 
to refer to algebraic operations, suggesting an identification between the two. When asked to 
explain, she posed four questions about the purpose and goal of the equations in line 5. These 
convey a clear sense that her current understanding did not help her construe the text coherently, 
but she did not know what other goals or practices to infer beyond solving for variables.  

By claiming that N2 interpreted using a computational orientation rather than an inferential 
orientation, we do not claim she did not draw inferences and try to justify them. For instance, 
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after the proof establishes that 𝑑 cannot be a factor of 𝑏 and 𝑐, line 10 asserts that “𝑑 is 1 or 2.” 
N2 responded saying: 

N2: I am guessing it’s 2 because, being a factor of 1 is being a factor of everything, right?  
I: Yeah, 1 is a factor of every number.  
N2: So since 𝑑 is not a factor of 𝑏 and 𝑐, it can’t be 1. So it would have to be 2.  

It is important to note that the proof’s references to the property “share no common factors” up 
to this point left the caveat “factors greater than 1” unstated. Some other study participants made 
the same observation that N2 did, but concluded that if 1 is a factor of every number then “share 
no common factors” must implicitly exclude 1. However, from N2’s current construal of the text 
that 𝑑 is not a factor of 𝑏 and 𝑐, her inference that 𝑑 = 2 is justified. As a result, we argue that 
N2 was clearly capable of drawing (deductive) inferences from the proof, but her inferences did 
not always match the intended inferences. This further nuances what we mean by students 
reading with a computational orientation. It describes the resources that students use to make 
meaning from the text, not their capabilities for engaging in particular mathematical reasoning.  

N2 was perturbed enough by the end of reading this proof that she sought to explain herself:  
I am really awful at proofs. […] I am more of a plug and chug person, so I am good at 
integrating and all that stuff. Word problems like this where I have to think about it and why 
it equals something, it is not my forte. […] For me I want to solve, I don’t really care about 
like why is it this, why is it that. I just wanna solve for it. I am just so used to solving, I have 
never even thought about why is this this and this. It is a little new to me. 

Our view of N2’s learning capabilities is higher than what she expressed here. We maintain that 
reading capabilities such as an inferential orientation can be learned through experience with 
proofs and her difficulty with reading can be overcome. However, her explanation corroborates 
our claim that her extensive experience with computational practices in mathematics led her to 
use them to make sense of the proof, even when different practices were intended.  
Inferential orientation readings of line 5 

The majority of study participants, specifically all of those with more proof experience, 
constructed meaning for line 5 in terms of attributing the property “𝑑 is a factor of” to two 
quantities. Furthermore, they interpreted the interviewers’ request for justification in a more 
normative manner rather than simply trying to explain why the author chose to add and subtract 
the quantities they did. We still observed a range of reading behaviors for justifying the 
inference. Some students imagined substituting some expression including 𝑑 in place of (𝑐 + 𝑏) 
and (𝑐 − 𝑏) and noted that 𝑑 could be factored out, verifying that the sum and difference should 
also have 𝑑 as a factor. We consider this as essentially constructing a mini-proof of the implicit 
warrant. This type of proof still drew upon algebraic meanings for factor, namely to substitute 
and “factor out.” Other students – primarily more experienced readers – searched for a general 
form of the particular inference to evaluate its validity. For instance, they might paraphrase the 
inference as “if 𝑑 is a factor of two numbers, then it is a factor of the sum or difference of those 
numbers.” This pattern may be called generalizing the inference. Finally, one of the graduate 
student readers justified line 5 by citing that any linear combination of multiples of 𝑑 would also 
be multiples of 𝑑. In this case, she recalled a warrant to justify the inference. Thus we recognize 
that within an inferential orientation students may exhibit a range of meaning-making behaviors. 

Discussion 
Using observations of students’ moment-by-moment reading behavior, we characterize two 

textual orientations that students drew upon to make meaning for the equations in a proof text: 
computational orientations and inferential orientations. We claim this contributes to the existing 
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literature in two ways. First, our findings could explain Inglis and Alcock’s (2012) eye-tracking 
finding that novice readers focused much more on the equations in a proof rather than the 
surrounding text. Their calculus student participants may have read the provided proofs using a 
computational orientation that led them to draw upon the wrong kinds of practices, while the 
expert readers focused on the inferences expressed by the surrounding text. Second, it begins the 
process of characterizing some of the reading capabilities that students need to develop to 
interact productively with advanced mathematical proof texts. Our findings highlight the ways in 
which students draw upon their knowledge of mathematical practices to read a text. We expect 
that their ability to understand new practices (such as proving properties of quantities in number 
theory), to read texts intending to express those practices, and to use language to convey those 
practices are interdependent and co-emergent in student learning. As noted above, interpreting 
inferential text in terms of computational mathematical practices was observed only among our 
least experienced study participants. This could be interpreted in one of two ways. Either basic 
proof-oriented instruction was successful in fostering an inferential orientation or those who did 
not construct an inferential orientation did not succeed in proof-oriented courses before we 
recruited participants. Further data gathering would be required to understand the interaction 
between these orientations and instruction. We expect that further study should reveal significant 
variation among the reading behaviors within the inferential orientation. These could be used to 
understand advanced mathematical reading competencies and how they develop.  
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In this paper I explore eleven undergraduate students’ comprehension of a proof taken from an 
undergraduate abstract algebra course. My interpretation of what it means to understand a 
proof is based on a proof comprehension model developed by Mejia-Ramos, et al. (2012). This 
study in particular examines the extent to which undergraduate students are able to summarize a 
proof using the proof’s higher-level ideas. Additionally, eleven doctoral students in mathematics 
were asked to provide a summary of the same proof that the undergraduate students received. 
Undergraduates’ holistic comprehension of the proof was then analyzed in light of summaries 
that the doctoral students provided. The main finding of the study is that undergraduates’ 
comprehension of the proof was overall inadequate—notably, they demonstrated limited skills in 
summarizing a proof via the proof’s key ideas. Moreover, undergraduates failed to recognize the 
scope of the method used in the proof. 

Key words: Proof, Proof Comprehension, Abstract Algebra. 

In advanced undergraduate mathematics courses, students are expected to spend a significant 
portion of their time reading proofs. Although proof comprehension is a fundamental aspect of 
undergraduate mathematics education, studies by Conradie and Frith (2000), Rowland (2002) 
and Weber (2012) suggest that mathematicians rarely measure their students’ comprehension of 
proofs. For example, Weber (2012) reports that mathematicians assess their students’ 
comprehension of proofs by asking students either to reproduce the proof or prove a similar or a 
trivial consequence of proofs they presented in class. However, Conradie and Frith (2000) 
suggests that asking students to reproduce a proof may not be a pedagogically useful way of 
assessing students’ understanding of a proof because students can and do correctly reproduce a 
proof by simply memorizing it word for word, with virtually no understanding at all. 

Despite its importance in undergraduate mathematics education, research on undergraduates’ 
comprehension of proofs is limited. In fact, much of the proof literature focuses on students’ 
aptitude to construct or validate proofs and less on their ability to comprehend proofs (Mejia- 
Ramos et al., 2012; Mejia-Ramos & Inglis, 2009). Mejia-Ramos and his colleagues (2009) 
systematically investigated a sample of 131 studies on proofs and they found that only three 
studies focused on proof comprehension. They hypothesize that the scarcity of the literature on 
proof comprehension is perhaps due to the lack of a model on what it means for an 
undergraduate student to understand a proof. In this study, I adopt an assessment model for proof 
comprehension that was developed by Mejia-Ramos, et al. (2012) to explore undergraduates’ 
comprehension of proofs. In particular, this study seeks to address the following research 
questions. 

To what extent do undergraduates comprehend a proof? More specifically, to what extent do 
undergraduates: 

• summarize a proof using its high-level ideas, 
• recognize and appreciate the scope of a method used in a proof? 
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Theory: Assessment Model for Proof Comprehension 
Mejia-Ramos, et al. (2012) proposed that one can assess undergraduates’ comprehension of a 

proof along seven facets. These seven facets are organized into two overarching categories: local 
and holistic. A local understanding of a proof is an understanding that a student can gain “either 
by studying a specific statement in the proof or how that statement relates to a small number of 
other statements within the proof” (p.5). Alternatively, undergraduates can develop a holistic 
comprehension of a proof by attending to the main ideas of the proof. Below, I will elaborate on 
what it means to understand a proof holistically. 

Assessing the Holistic Comprehension of a Proof 
According to the proof comprehension model, the holistic understanding of a proof consists 

of being able to: (1) summarize the proof using the proof’s main ideas, (2) identify the modular 
structure of the proof, (3) recognize and extend the method used in the proof, and (4) illustrate 
the method of the proof using a specific example or diagram. They developed these four facets of 
holistic comprehension of proofs based on: (a) mathematicians’ perspectives on how and why 
they read and present proofs and what it means for them to understand a proof; (b) the proof 
literature on the role of proof; and (c) the recommendations by mathematicians and mathematics 
educators on proof presentations that would presumably improve students’ proof comprehension. 
Below, I elaborate on (1) and (3). 

Summarizing a proof via its high-level ideas. Mejia-Ramos, et al. (2012) state that “one 
way that a proof can be understood is in terms of the overarching approach that is used within a 
proof” (p.11).” Being able to summarize a proof via its high-level ideas entails understanding the 
proof’s “top-level overview” or “big idea”. A good summary of a proof may include what 
Raman (2003) describes as a proof’s key ideas. Raman (2003) defines key ideas as “heuristic 
ideas which one can map to a formal proof with appropriate sense of rigor” (p. 323). Key ideas 
provide “a sense of understanding and conviction why a particular claim is true” (Raman, 2003, 

323). Mathematicians can evaluate their students’ understanding of this aspect of a proof in 
at least two ways. They can, for instance, directly ask students to provide a brief summary of the 
proof that includes the proof’s higher-level ideas. Alternatively, they can provide students with a 
few summaries of the proof and ask them to choose which summary best captures the main ideas 
of the proof (Mejia-Ramos et al., 2012). In this study, I asked undergraduates to provide a proof 
summary using the proof’s main ideas. 

Transferring the general ideas or methods to another context. Mejia-Ramos, et al. (2012) 
suggested that identifying the scope of a method or technique used in a proof is an important 
aspect of proof comprehension. Mathematicians can assess this aspect of proof comprehension 
by asking students to (a) identify methods or techniques without which the proof would have 
collapsed, or (b) prove new claims by applying methods similar to those used in the original 
proof. In this study, undergraduates were asked questions to elicit their understanding of the 
scope of a method used in a proof. 

Review of the Literature 
As noted earlier, educational research on proof comprehension in undergraduate mathematics 

has received little emphasis. Osterholm (2006) was among the first to look into student’s 
comprehension of mathematical texts. He conducted a quantitative study of reading 
comprehension of abstract algebra students (he compared texts with one including symbols and 
another one not). He concludes that “mathematics itself is not the most dominant aspect affecting 
the reading comprehension process, but the use of symbols in the text is a more relevant factor” 
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(p.325). His contention is based on the fact that the group of students who had almost no 
symbols and notations in their reading assignment outperformed, in a reading comprehension 
test, those whose reading assignments involved mathematical symbols and notations. Although 
Osterholm (2006) does point to difficulties student encounter while reading mathematical texts, 
it should be noted that his study only asked students to read mathematical texts and not proofs 
specifically. 

Research also suggests that undergraduates are not successful in gleaning understanding from 
the proof they see during lecture (Selden & Selden, 2012; Lew et al, 2015). For example, 
students interviewed in Lew et al.’s (2015) study fail to comprehend much of the content the 
instructor desired to convey, including the method used in the proof. Students interviewed in 
Selden and Selden’s (2012) study also failed to understand a proof holistically since they were 
fixated on verifying each line and put little emphasis in attending to the overarching methods 
used in the proof. One purpose of this study is to build on the growing body of research on proof 
comprehension. 

Methods 
Research Settings 

This study took place in a large public university in the northeastern United States. The 
content of the proof used in this study come from an introductory abstract algebra course. In the 
chosen research setting the standard textbook used is Abstract Algebra: An introduction by 
Hungerford (2012). The goal of the course (as stated in the syllabus) is to introduce students to 
the theory of algebraic structures such as rings, fields, and groups in that order. 
Participants 

Undergraduate student participants. Since the main purpose of this study is to explore 
undergraduates’ comprehension of proofs—in particular, proofs that appear in an introductory 
abstract algebra course—I personally approached undergraduates who had taken or were 
enrolled in an introductory abstract algebra course. Eleven undergraduates agreed to participate 
in this study and were assigned pseudonyms S1-S11. At the time of the study, six of the eleven 
undergraduate participants (S3, S5, S6, S7, S8, and S9) were enrolled in an introductory abstract 
algebra course. Seven participants—S1, S2, S3, S5, S6, S7, S8, and S9—were pursuing a major 
in secondary mathematics education and said they intended to be high school mathematics 
teacher. The remaining four students were mathematics majors. Furthermore, each participant 
had taken a minimum of three proof-based courses and all but three (S1, S3, and S6) said they 
received an A or B in their introduction to proof course. Participants’ responses on a background 
survey suggest that each participant spent at least two hours per week reading proofs outside of 
class. 

Doctoral students. Eleven doctoral students at the aforementioned research site agreed to 
participate in this study. I used doctoral students to analyze undergraduates’ summaries of a 
proof. At various times, I asked the doctoral students to provide, in writing, a summary of a 
proof using the proof’s key or main ideas. To avoid confusion, in the remainder of this paper I 
will refer to these doctoral student participants as experts. 

Materials and Research Procedures 
In this study undergraduates were asked to read a proof that shows that any finite integral 

domain is a field. This proof is given in appendix 1. I chose this proof because (a) it nicely draws 
connection between two important topics covered in abstract algebra: integral domains and 
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fields, and (b) it uses a proof technique that I speculated most participants probably have not 
seen. 

The principles I employed to write this pedagogical proof—a proof that is geared toward 
undergraduates for the purpose of pedagogy—is based on the Lai, Weber, & Mejia-Ramos 
(2012) study. Lai et al. (2012) report that mathematicians valued pedagogical proofs that (1) 
made assumptions and conclusions of the proof explicit, (2) centered on important equations to 
emphasize the main ideas, and (3) did not contain “true but irrelevant statements.” (p.94). Also, 
when writing the proof, I consulted mathematics professors and made appropriate modifications. 

Participants were asked to read the proof until they felt they understood it and were 
encouraged to write and/or highlight on the proof paper as well as to think out loud while 
reading. Once a participant finished reading the proof, she/he was asked to: 

• to provide a good summary of the proof including the proof’s main or higher-level ideas 
• to indicate assertion(s) in the proof that would fail if 𝑅 was infinite. 

Analysis 
Recall that eleven doctoral students in mathematics were asked to write a summary of the 

proof using what they think are the main ideas of the proof. Doctoral students were also asked to 
describe the key ideas of each proof. First, I carefully studied doctoral students’ summaries of 
the proof. I then developed a synthesized summary for the proof. This synthesized summary, 
which will hereafter be referred to as the expert’s summary, also incorporated all the key ideas 
that doctoral students described for each proof. That process resulted in the following summary 
of the proof. 

The proof shows that a finite integral domain R is a field by showing that any non-zero 
element of 𝑅 has a multiplicative inverse.    Let 𝑎 be any non-zero element of R.    The 
absence of zero divisor in R taken together with the fact that R is finite gives us that left 
multiplication by a defines a bijective map from the integral domain to itself (𝑓/: 𝑅 → 𝑅 
given by 𝑓/(𝑥) = 𝑎𝑥	is	a	bijective).				 Surjectivity of this map guarantees that 𝑎 has a 
multiplicative inverse. 

The key ideas identified in the expert’s summary of the proof are: 

• Overarching method: given an arbitrary non-zero element 𝑎 ∈ 𝑅, show that there exists 
𝑏 ∈ 𝑅 such that 𝑎𝑏 = 1?  

• Approach: define a left multiplication by a non-zero element 𝑎 ∈ 𝑅, 𝑓/: 𝑅 → 𝑅, 𝑥 ↦ 𝑎𝑥.   
Using kernel of 𝑓/  one can show that it is injective.    

• The finiteness of 𝑅 and the injectivity of 𝑓/  to show that 𝑓/  is a surjective map from 𝑅	to 
𝑅. 

The above expert’s summary of the proof was eventually verified by two experienced 
researchers in mathematics education as to whether or not it indeed incorporated all the key ideas 
of the proof that doctoral students discussed; modifications were then made to the expert’s 
summary, as needed. 

Finally, using a rubric, two researchers, both with a master’s degree in mathematics, 
independently conducted a comparative analysis of undergraduates’ summaries of the proof 
against expert’s summaries. When disagreement emerged, w engaged in discussion until a 
consensus was reached. 
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Results and Discussion Results on Undergraduates’ Summaries of the proof 
Recall that undergraduates’ summaries of the proof were analyzed in comparison to the 

expert’s using a rubric that is omitted here for a shortage of space. Nearly all participants, nine 
out of eleven, provided a summary of the proof that suggested a limited proof comprehension. In 
particular, their responses indicated that they either poorly or very poorly understood the proof. 
The results of students’ summaries of the proof is given in Table 1. Note, in table 1, that a 
majority, six undergraduates, provided a very poor summary of the proof, which implies that 
their summary failed to highlight the main ideas of the proof that was described in the expert’s 
summary. 

Table 1:  Undergraduate students’ summaries of the proof 

 
Evaluation Undergraduate students  
Very poor S3, S5, S6, S8, S9, S11 
Poor S1, S2 
Satisfactory S4, S7, S10 
Good None  

 
In order to give you a sense of a very poor summary, I will provide a detailed description of 

summaries given by S5, S8, and S9. When asked to provide a good summary of the proof 
including the proof’s main ideas, S5 offered the following summary: 

R is an integral domain and field. It is both surjective and injective to the kernel of the 
function that defines it. There is also 1? ∈ 𝑅	that allows it to have multiplicative inverse, thus 
units. I know a field’s non-zero elements all make units, a field. 
S5’s summary consists of incomplete sentences and phrases that are either 

mathematically incorrect or appear to have been copied from the proof word for word. For 
instance, S5 begins by supposing the thing that needs to be shown—that R is a field. Also, 
there is evidence of a misunderstanding about injectivity and surjectivity of a map. This is 
evident when he asserts that R, as opposed to 𝑓0, is both surjective and injective. Finally, 
S5's summary doesn’t mention how crucial assumptions in the proof such as the finiteness of R 
are used in the proof. Thus, S5's summary is deemed to be very poor, which means it was 
considered to be very different from the expert’s as it did not highlight main ideas of the proof. 
S8, likewise, provides a very poor summary: 

The proof basically gave a less textbook traditional explanation of a way to prove that all 
finite integral domains are fields. It used the understandings of kernals [sic], bijections, 
injection, surjections in order to prove facts about rings, where usually you learn the facts 
about rings before being introduced to functions 

Her summary above makes no mention of the proof’s high-level or key ideas and thus does not 
suggest a satisfactory comprehension of the proof. While she enumerates topics that are used in 
the proof, her summary does not illustrate how they were employed in the proof. S8's summary, 
for example, indicates that the concept of bijectivity is employed in the proof, but she does not 
explain how it is used. Along the same lines as S5, and S8, S9 also supplied a summary of the 
proof that did not suggest a satisfactory comprehension of the proof. For example, S9 provided 
the following summary: 
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Given a finite integral domain, you can prove that it is a field by showing it has a 
multiplicative inverse, no zero divisors, injective and surjective, kernels, and if there is a 
multiplicative inverse such that 𝑎𝑥 = 1? and 𝑎 ≠ 1? then 𝑅 is a field. 
S9’s summary above says very little beyond restating the claim. S9 essentially repeats 

phrases that appeared in the proof verbatim. He does not draw any connection between key ideas 
described in the expert's summary of the proof. Also, S9’s summary states that R is first shown 
not to have zero divisors, but this is neither necessary nor true; R is assumed to be an integral 
domain and therefore it does not have zero divisors. Overall, S9's summary fails to mention the 
proof’s key ideas and consequently shows limited comprehension of the proof. 

While the majority, six out of eleven students, provided what is considered to be a very poor 
summary of the proof, S1 and S2 supplied a poor summary of the proof. S2, for example, 
provided the following summary of the proof: 

The aim of the proof is to show that if 𝑅 is a finite integral domain, then 𝑅 is a field.   It then 
wants to show that 𝑅 has a multiplicative inverse, then that the kernel of 𝑓/: 𝑥 → 𝑎𝑥 to be 
trivial.   The prof then shows that 𝑥 = 0 since if 𝑎𝑥 = 0 then 𝑎	or	𝑥 is 0 but 𝑎 is not, thus 
ker 𝑓/ = {0} so 𝑓/  is injective.   Thus, |𝑅| = |𝑓/(𝑅)|, which shows it is surjective.   It then 
proves 𝑎 has a multiplicative inverse, so 𝑅 is a field. 

S2’s summary is incoherent and appears to duplicate some parts of the proof word for word. 
Moreover, her summary includes way too much unnecessary information; for example, she 
repeats the argument for the triviality of 𝑓0. While S2’s summary does mention some key ideas 
that are noted in the expert’s summary, it doesn’t make the logical connection between those 
ideas. In fact, S2 appears to have the logic of the proof backward, as she seems to think the 
existence of multiplicative inverse is what guarantees the triviality of the kernel of 𝑓0. 

While no one provided a good summary of the proof, three students—S4, S7, and S10— 
provided a satisfactory summary of the proof. S7, for instance, summarized the proof as follows: 

First it is important to show each nonzero element of R has a multiplicative inverse. Then we 
consider a nonzero element 𝑎 ∈ 𝑅 and the map of 𝑓/ .    We use the kernel of 𝑓/  to prove 𝑓/  is 
injective. Then from the fact that 𝑓/  is injective and therefore |𝑅| = |𝑓/(𝑅)|, 𝑓/  is also 
surjective. Finally, we show 𝑓/(𝑥) = 1?  hence 𝑎 has a multiplicative inverse and therefore 𝑅 
is a field. 

Evidently, S7’s summary above has significant resemblance to the expert's summary of the 
proof. In particular, S7 does mention some key ideas of the proof. However, she did not indicate 
the fact that the surjectivity of 𝑓0 depends on the finiteness of R, which was a crucial idea that 
was noted in the expert's proof. Furthermore, the last line of her summary is incorrect in the 
sense that 𝑓/ is not identically equal to the identity 1? . Also, based on what is stated at the 
very end of her summary, S7 does not seem to have understood how 𝑎 (the fixed nonzero 
element) has a multiplicative inverse. However, S7's summary overall does bear some 
resemblance to the expert’s summary and suggests a satisfactory understanding of the proof. On 
the whole, while nearly all students provided a poor or a very poor summary of proof, no one 
provided a good summary. Indeed, only S4, S7, and S10 managed to provide a satisfactory 
summary of the proof. 
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Results on Undergraduates’ Ability to Recognize or Appreciate the Scope of a Proof’s 
Method 

No undergraduate demonstrated why 𝑅 must be finite for the proof to be valid. When asked 
why the method of the proof would fail if R was assumed to be infinite, six out of eleven 
undergraduates offered no response or said “I don’t know…” The other five students pointed 
incorrectly to an assertion that would fail if R is infinite. Table 2 below illustrates the various 
responses they provided: 

Table 2 Reasons undergraduates provided for why R must be finite 

 
Reason why R must be finite Participants  
R would not be commutative (line two) S1 
There wouldn’t be exactly be the same number of S3 elements in each 
𝑓/would not be injective (line seven) S2, S8, S5 
No response/I don’t know/Not sure S4, S6, S7, S9, S10, S11  

 
Table 2 shows that participants failed to pinpoint a specific assertion in the proof that would 

fail—the argument in line eight—if R was infinite. That is to say, if R is infinite, 𝑓/(𝑅) ⊆ 𝑅 and 
|𝑅| = |𝑓/(𝑅)| taken together would not guarantee that 𝑓/(𝑅) = 𝑅, which would not make 
𝑓/	surjective.      

To summarize, Mejia-Ramos and colleagues (2012) maintain that being able to provide a 
good summary of a proof is a key indicator of comprehension. However, undergraduates in this 
study showed a limited comprehension of the proof. In particular, in their proof summary 
undergraduates failed to highlight the proof’s main idea. For a large number of participants, their 
proof summary was essentially a replica of a few sentences that appeared in the proof. 
Further research is needed to identify why undergraduates fail to summarize a proof using the 
proof’s main ideas. 

Appendix 1 
 
Claim: Let R be a finite integral domain. Then R is a field. 

Proof. 

1.    Let R be a finite integral domain whose multiplicative identity is 1? and whose additive 
identity is 0?. 

2.    Since R is a commutative ring, it suffices to show that every nonzero element in R has a  
multiplicative inverse. 

3. Let a be a fixed nonzero element of R (𝑎 ≠ 0?).				Consider the map 𝑓/:	𝑅 → 𝑅 defined 
by 𝑓/:	𝑥 → 𝑎𝑥.				We first show that the kernel of 𝑓/  is trivial. 

4.    Note that kernel of 𝑓/ = {𝑥 ∈ 𝑅: 𝑓/(𝑥) = 0?} = {𝑥 ∈ 𝑅:	𝑎𝑥 = 0?}. 
5.    Since R has no proper zero divisors, 𝑎𝑥 = 0? ⟹ 𝑎 = 0?	or	𝑥 = 0?.				But, 𝑎 ≠ 0?	thus 

𝑥 = 0?. 

6.    Therefore kernel of 𝑓/ = {0?} and so 𝑓/  is injective. 
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7.    Next, note that |𝑅| ≥ |𝑓/(𝑅)|.				Since 𝑓/  is injective, it follows that |𝑅| = |𝑓/(𝑅)|. 

8.    Because 𝑓/(𝑅) ⊆ 𝑅 and |𝑅| = |𝑓/(𝑅)|, we have that 𝑓/  is surjective. 
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STUDENT UNDERSTANDING OF THE GENERAL BINARY OPERATION CONCEPT 
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In this paper, we address the variety of ways in which students conceive of binary operations and 
the metaphors they might leverage when working with binary operations in group theory. We use 
open-ended surveys paired with interviews to qualitatively explore student’s conceptions of 
binary operation. Through this analysis, we identified three central metaphors (function, 
arithmetic, and structure), as well as a number of attributes related to binary operation that 
students perceive as critical. This work has implications for our treatment of binary operation in 
advanced mathematics, and the messages we send about operation in the K-12 setting. 

Keywords: Advanced Mathematical Thinking, Algebra and Algebraic Thinking, Post-Secondary 
Education 

Binary operations are threaded throughout the mathematics curriculum starting with a focus 
on arithmetic, and then expanding to operations such as matrix multiplication and function 
composition. Although binary operations are prolific throughout mathematics in K-12, it is not 
until advanced courses in undergraduate mathematics that binary operation is formally defined. 
In courses such as group theory, students are put in a position to generalize the binary operation 
concept to better understand the structures that underlie our mathematical systems. Despite this 
occurrence, and the prevalence of binary operation mathematics, little research attention has been 
given to the general binary operation. This is disconcerting for two reasons: (1) according a 
survey of expert instructors, binary operation is considered to be one of the most important topics 
in group theory (Melhuish & Fasteen, 2016); (2) binary operations are one of the core concepts 
that can be connected back to the K-12 curriculum (Melhuish & Fagan, in press).   

However, the survey of expert instructors also revealed a possible cause for the lack of 
treatment. They identified binary operation as a topic with low difficulty level (Melhuish & 
Fasteen, 2016). Yet, we found evidence to suggest that students’ conceptions of binary 
operations can significantly interfere with performance on group theory tasks (Melhuish & 
Fasteen, 2016). This evidence was the impetus to study student understanding of binary 
operation more directly.  In this paper, we address the variety of ways in which students conceive 
of binary operations and the metaphors they might leverage when working with binary 
operations across a number of task types. We present a qualitative study, guided by variation 
theory, in which we elaborate on the critical attributes of binary operations that students attend to 
while engaging with related tasks. 

   Literature Review 
Binary operation has uneven treatment throughout the literature. Before we unpack this 

literature, we define what we mean by binary operation. Informally, binary operations can be 
thought of as rules that combine two elements within a set and produce a single element of the 
same set. For instance, addition is a binary operation on the set of integers because addition can 
be thought of as a rule for combining two integers to produce a single integer. Formally, binary 
operations are often defined as follows: 

A binary operation * on a set S is a function mapping S×S into S. 
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This formal definition situates operation as a type of function. We therefore outline literature 
across three categories: (1) arithmetic and other specific operation literature, (2) function 
literature, and (3) literature pertaining to the general binary operation.   

As most literature on student mathematical thinking connects to operation in some way, we 
focus on a few key theoretical contributions (that go beyond the specifics of a particular 
arithmetic operation.)  One such example is the operation sense framework developed by Slavit 
(1998), which unpack a series of stages built around familiarity with standard arithmetic 
operations. In this framework, operations represent a standard process, such as the process of 
combining groups underlying the operation of addition. Slavit’s work documented a path of 
increasing sophistication that could support students’ in developing operation sense that moved 
beyond particular arithmetic process metaphors to an understanding of operation without a need 
for concrete referents. Such understanding can support students’ transition from arithmetic to 
algebra. Gray and Tall (1994) provided a different view on this abstractness focusing on 
operation as a procept.  That is, an operation can be conceived as a process and a concept. An 
expression such as “3+2” is both the object (the sum) and the process (adding the two numbers.) 
In light of this literature base, we identify (1) students may struggle to move beyond arithmetic 
operations on concrete referents and (2) students need to conceive of operations as processes and 
objects (which is non-trivial.) 

We next turn to the literature on function to identify ways in which function understanding 
may be relevant to binary operation. First, there is a large amount of existing literature 
documenting the complexities of function (Oehrtman, Carlson, & Thompson, 2008). Students 
have been shown to possess numerous conceptions throughout their K-16 education. Due to 
space limitations, we note two that provide insight beyond arithmetic literature. First, students 
may interpret functions as necessarily having a written rule (Vinner & Dreyfus, 1989). Such an 
interpretation limits students’ ability to leverage or make sense of non-symbolic representations. 
Additionally, function conceptions are tied to a wide range of metaphors (Zandieh, Ellis, and 
Rasmussen, 2017). One such metaphor is the ubiquitous input/output machine metaphor (Tall, 
McGowen, & DeMarois, 2000). In light of binary operations being a special case of function, we 
conjectured that similar representation and metaphor preferences might exist. 

Finally, we attend to the literature on the general, abstract, binary operation concept. While 
majority of research related to abstract algebra and linear algebra implicitly treat binary 
operations (e.g., Larsen’s (2009) work having students reinvent groups), few studies have 
explicitly focused on binary operation. These few studies are primarily theoretical breakdowns 
(with empirical instantiations) that are part of a larger attempt to map student conceptions. 
Brown, DeVries, Dubinsky, and Thomas (1997) and more recently Wasserman (2017) presented 
genetic decompositions of binary operations in which individuals may have an action (requiring 
concrete actions with individual inputs), process (seeing a binary operation as a general process 
on a domain), or object (seeing binary operation as something that can be acted on) conception 
of binary operations. Alternately, Novotná, Stehlíková, and Hoch (2006) use lens of structure 
sense to produce a framework of binary operation capturing shifts of attention where students 
can first recognize binary operation in familiar settings, then make sense of properties like 
closure, engage with unfamiliar operations, and compare differing representations. Other notable 
results include students have limited representational flexibility (Ehmke, Pesonen, & Haapasalo, 
2010), and have limited example spaces (Zaslavsky & Peled, 1996). While these contributions 
provide some insight into student conceptions around binary operation, many questions remain. 
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   As a whole, the body of research points to substantial reasons to identify binary operation 
as a potentially troubling topic with its nature as a function and operation. In the next section, we 
outline a theoretical lens that has aided us in further parsing students’ activity and conceptions 
around binary operaiton: variation theory (Marton & Booth, 1997).   

Theoretical Framework 
One way to conceptualize learning is the perception of new attributes of a phenomenon or 

experiencing a phenomenon in a new way. Such an approach leverages a variation theory 
(Marton & Booth, 1997) lens. For a given individual, their understanding of a concept reflects 
which attributes of the concept are foregrounded for them. Students become aware of attributes 
through experiences of concepts (and non-examples of concepts) where attributes may be 
foregrounded via contrast. If a student never experiences a non-example of a binary operation 
with one or three inputs, they may not perceive two inputs as a critical attribute of binary 
operation. Alternately, if all examples students encounter have certain commonalities such as 
associativity, students may perceive associativity as a critical attribute of binary operation. In this 
way, variation theory ties learning tightly with the role of experiences and particularly 
contrasting experiences where students may discern attributes of a particular object.  

From a variation theory stance, we then leverage several key ideas including: object of 
learning, critical attributes, and metaphors. Variation theory provides a complimentary tool to 
traditional cognitive or social investigations of learning via shifting from cognition to perception 
(Dahlin, 2001). This shift leads to questions about: What are the critical attributes of a given 
object of learning? What opportunities do students have to perceive (through variation) the 
critical attributes of an object? And ultimately, what critical attributes are in the lived object of 
learning for a student?  

Vikström (2008) has expanded the use of variation theory to also attend to metaphors as the 
means for which students structure and communicate their lived object of learning. As students 
become aware of critical attributes of a phenomenon, metaphors are the mechanism to integrate 
and connect with the abstract notion of a particular concept. When students engage in tasks, they 
then rely on metaphors to connect a given situation to their greater understanding of a concept. 

In accordance with this view on learning, the research questions guiding our study are: (1) 
What are the metaphors leveraged by students when communicating about binary operation?; (2) 
Which attributes are students attending to when engaged in binary operation related tasks? 

Methods 
Participants and Data Collection 

The participants in this study consisted of students enrolled in three introductory, 
undergraduate-level abstract algebra classes (n =9, n = 12, and n = 12 respectively). 
Additionally, we interviewed six students, four of which come from the surveyed class, two from 
another class (that received a shortened survey that is not reported here.)  Classes span two 
institutions and three unique instructors. Surveys were created to cover a variety of binary 
operations and non-binary examples. In particular, the questions were crafted in accordance with 
the following activity domains: 

1. Is or is not. Determining if a given instantiation is an example of a concept (e.g. Ehmke , 
Pesonen, and Happasalo, 2011) 

2. Same or different. Determining if two instantiations are mathematically the same (e.g. 
Novotna, Stehlikova, and Hoch, 2006) 
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3. Properties. Determining what properties an example may or may not have. (e.g. 
Dubinsky Dautermann, Leron, & Zazkis, 1994) 

4. Generating. Creating an example meeting some criteria (e.g. Zaslavsky & Peled, 1996). 
Table 1: Example Survey Prompts 

Category Is or Is not Same or Different Property Generating 
Prompt 
(shortened) 

(𝑎) = 𝑎,, on R Z3 and Z6 
(presented 
tabularly) 

Is ½(a+b) 
associative? 

Define a binary 
operation on {1,2,4}  

Purpose Critical attribute: 
closure; Missing: 
2 inputs 
 

Calls on attribute: 
element-wise 
defined 

Missing 
varying 
attribute: E-O-
E formatting 

Calls on varying 
attribute: non-
symbolic 
representation 

 

Each of the questions was open-ended and provided a prompt for the students to explain their 
reasoning. Across the classes, the surveys contained ten common questions, along with several 
variations designed to test the robustness of response types. For the scope of this report, we focus 
on the common questions. 

In addition to the surveys, six semi-structured interviews were conducted to gain deeper 
insight into the students’ mathematical thinking as they worked through the survey. The purpose 
of the interviews was twofold: (1) to validate our interpretations of written responses and (2) 
allow for a closer inspection of metaphors that are leveraged in verbal communication (and not 
always immediately apparent in written responses.)  
Analysis 

The analysis of the survey data was driven by methods of phenomenographic content 
analysis (Trigwall, 2006). Student responses were disconnected from the individual. The goal 
was to identify patterns in the different ways that students experience a given phenomenon. Each 
task was then analyzed for patterns in responses beginning with broad open codes. These were 
condensed to categories reflecting critical attributes of binary operation as experienced by 
students. We then independently coded all survey responses resolving all disagreements via 
discussion. After this analysis, we determined the degree to which a given student’s attention to 
attributes was consistent across tasks. In the results section, we share the dominant critical 
attributes from student responses, as well as reports on consistency.  

For the interview data, we analyzed transcripts to identify the metaphors they leveraged to 
communicate about binary operation. For each transcript, we identified each instance that a 
student communicated directly about binary operation noting varying patterns in language. We 
then returned to the literature to categorize metaphor clusters: arithmetic, function, and structure. 
We used these metaphors to code the transcripts to determine which of the three metaphors 
occurred in a given individual’s communication.  

Results 
We begin by discussing the three metaphors that underlined students’ communication. 

Metaphors 
Function Metaphor Cluster. We define the function metaphor cluster as being enacted 

whenever a student communicates about binary operation as if it were a function, that is, a 
mapping with inputs and outputs. Indicators include: reference to a domain and range, 
input/output language, mapping language, and referencing function specific properties such as 
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one-to-one. An example of a student using this metaphor is the following description of a binary 
operation, “[the binary operation] takes two inputs and returns an output based on the operation.” 
Notice this language evokes traditional function metaphor language where there is something 
(akin to a function machine) that takes inputs and produces outputs. Other examples of using the 
function metaphor include: “[The binary operation] does take two of the numbers and it will 
return a third,” and “The division binary operation is going to take me from the Reals to the 
Reals.” Such metaphors occurred across all of the interviews (see Table 2). 

Table 2: Interviewed Students’ Metaphors for Binary Operation 
Metaphor Function Arithmetic Structure 

Student 1 (Class B) x x x 
Student 2 (Class B) x x x 
Student 3 (Class C) x x x 
Student 4 (Class C) x x x 
Student 5 (Class D) x x x 
Student 6 (Class D) x x  

 

Arithmetic Metaphor Cluster. We define the arithmetic metaphor as being enacted 
whenever a student communicates about binary operation as if it was an arithmetic operation. In 
arithmetic contexts, we tend to leverage a combining metaphor. For example, when adding 2 and 
3, one metaphor would be combining collections of 2 items and 3 items to produce 5 times. This 
action is internal to the inputs rather than taking inputs and mapping to something new (as in a 
function metaphor.) Indicators of this metaphor include language around “answer” and 
“combining.” For example, a student described the action: “Two numbers, take them, combine 
them”. Another described comparing two operations on particular elements with: “They are not 
the same answer.” As in the case of function, these metaphors occurred in all interviews (see 
Table 2). 

Structure Metaphor Cluster. We define the structure metaphor cluster as being enacted 
whenever a student communicates about a binary operation as a mechanism for structuring a set. 
The structure may be noticed based on prior exposure to mathematics (such as a binary operation 
on a set forming a group) or the student may spontaneously create the structure (such as noticing 
a pattern or explicitly searching for a pattern within a set of outputs). Indicators include language 
about overall behavior, patterns, or structural properties. The structure metaphor tended to 
emerge in tasks in which students were asked to compare two binary operations to determine 
whether they were the same. For example, one student asked, “What pattern do we have going 
on there?” and another commented, “These two groups behave rather similarly.” This metaphor 
can be quite productive when considering structural properties of a given set. Structure 
metaphors were frequent, occurring in five of six interviews. 

These results reflect that the three metaphors are not a mutually exclusive categorization of a 
student’s thinking about binary operations. A student can enact any of three metaphors 
depending on the task they are engaged with, and in fact it was common of the students to enact 
all three at some point. Furthermore, the same metaphors can be supportive or unsupportive 
depending on the critical attributes the metaphor is structuring.   
Critical Attributes 

In this section, we unpack some of these critical attributes. Our focus is on the survey results, 
but we note that are interview subjects provided similar profiles in terms of critical attributes. We 
cover two definitional properties (closure, two input elements), one additional critical attribute 
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(binary operations are defined at the element level), and two non-critical representational 
attributes (symbolic rule and element-operator-element (E-O-E) formatting).   

Table 3: Survey Responses when Determining if an Instantiation is a Binary Operation 
 Attended to Closure Attended to Two Input Elements 
 Always Inconsistently Never Always Inconsistently Never 

Class A 5 (62.5%) 2 (25.0%) 1 (12.5%) 0 (0%) 0 (0%) 8 (100%) 
Class B 5 (41.7%) 5 (41.7%) 2 (16.7%) 1 (8.3%) 1 (8.3%) 10 (83.3%) 
Class C 4 (33.3%) 2 (16.7%) 6 (50.0%) 6 (50.0%) 3 (25.0%) 3 (25.0%) 
Total 14 (43.8%) 9 (28.1%) 9 (28.1%) 7 (21.9%) 4 (12.5%) 21 (65.6%) 

 

Closure. The first of the critical attributes is closure. It was common for students to attend to 
closure of a binary operation on a set when asked to determine if a given operation was binary or 
not (see table 3). For example, when asked if ∗ (𝑎) = 𝑎, defined on ℝ is a binary operation, one 
student responded, “yes, if 𝑎 is real, the square of 𝑎 is also real.”  

Two input elements. The second critical attribute is that a binary operation must be defined 
on two elements (or ordered pairs.) Some students perceived this critical attribute (as seen in 
Table 3). For example, when asked to determine if √𝑎 on ℤ is a binary operation, one student 
responded, “No, only 𝑎 is used, not both inputs.” However, it was far more common for students 
to ignore this critical attribute and only attend to closure (as in the prior example). 

Table 4: Survey Responses when Determining if two Given Operations were the same 
 Attended to Element-Wise Differences 
 Across Prompts     Element-Defined Prompt Only Never 

Class A 4 (50%) 3 (37.5%) 1 (12.5%) 
Class B 1 (8.3%) 8 (66.7%) 3 (25%) 
Class C 6 (50%) 4 (33.3%) 2 (16.7%) 
Total 11 (34.4%) 15 (46.9%) 6 (18.8%) 

 

Defined element-wise. A particular binary operation is determined by where any two 
elements are mapped. However, students inconsistently treated this as a critical attribute of 
binary operation. This became clear on tasks comparing two operations. For example, when 
provided Cayley tables representing addition modulo 3 and 6 and asked if they were the same 
binary operation, one student responded they were not because whenever they “plug in 1 and 2 
into both these operations [they] will get different results” reflecting attention to individual 
elements. In contrast, another student claimed that the binary operations were the same because 
the elements “behave the same.” Over half of the students either never attended to element-
definedness or only when provided a binary operation already defined that way (see Table 4).  

Table 5: Survey Responses when Asked to Create a Binary Operation on {1,2,4} 
 Non-symbolic Representation  Symbolic Representation  No Answer 

Class A 0 (0.0%) 6 (66.7%) 3 (33.3%) 
Class B 1 (8.3%) 4 (33.3%) 7 (58.3%) 
Class C 9 (75.0%) 3 (25.0%) 0 (0%) 

Total 10 (39.4%) 10 (39.4%) 13 (30.3%) 
 

Symbolic Format. Students across the dataset reflected a preference for symbolic 
representations. In fact, the most commonly skipped tasks across all prompts where those in 
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alternate representations. This preference was most notable in the final prompt asking students to 
generate a binary operation for set {1,2,4}. As seen in table 5, well over half of the students did 
not create a binary operation. Instead they often attempted to build a symbolic rule without any 
success. This desire for a symbolic rule is well documented in terms of functions, and it seems 
that students perceive a similar attribute as critical to binary operation.  

Table 6: Survey Responses when Treating Associativity of ½(a+b) binary operations 
 Focused on EOE Portion(s) of Operation 

(addition/multiplication)  
Focused on Entire 
Operation 

Class A 4 (44.4%) 5 (55.6%) 
Class B 5 (41.2%) 7 (58.3%) 
Class C 9 (75.0%) 3 (25.0%) 

Total 18 (54.5%)  15 (45.5%) 
 

E-O-E Format. The desire for a symbolic rule manifested further with students’ perceiving a 
particular format as critical. This preference was seen throughout the survey responses but was 
most prominent when addressing the prompt to determine if ½(a+b) was associative. As seen in 
table 6, when placed in a situation without this formatting, students often defaulted to focusing 
on addition and multiplication as separate binary operations rather than holistically. Through the 
follow-up interviews, students who responded this way indicated that they could not discern the 
operation “rule” or that the operation was the “plus” portion reflecting the perception that E-O-E 
symbolism was critical.   

Discussion and Conclusion 
In this paper, we have addressed a variety of ways in which students conceive of binary 

operations in terms of critical attributes and identified metaphors they might leverage when 
working on tasks with binary operations. In particular, we found three metaphors that were 
commonly enacted by students: the function metaphor, the arithmetic metaphor, and the structure 
metaphor. Such metaphors can serve to be productive when they are robust and developed. 
However, that requires students to also have perceived the critical attributes of binary operation 
that can be structured and communicated via the metaphors. When leveraging a function 
metaphor, students may naturally attend to function attributes (such as the need for inputs), and 
not perceive a binary operation specific attribute (needing exactly two inputs). Similarly, 
students with an arithmetic metaphor may generalize from arithmetic examples and perceive 
attributes like E-O-E formatting as critical for general binary operations. As variation theorists 
have noted, variations are perceived not just synchronically, but also “by remembering earlier 
related experiences (diachronic simultaneity)” (Vikström, 2009, p. 212).  As students structure 
their knowledge using metaphors, they are likely integrating attributes perceived from many 
prior experiences related to function and arithmetic in their earlier mathematics experiences.  

While the links to function and arithmetic are immediate, the structure metaphor’s link to 
prior experience is a less direct. Notably, the structure metaphor is a dominant metaphor for 
determining when mathematical structures are isomorphic. However, this is a new treatment at 
the undergraduate level. Yet many structural treatments exist throughout education such as 
finding patterns when adding even numbers, or connecting operations like multiplication and 
division. In fact, this played out robustly in our data. Many students identified multiplication and 
division as the same operation because of their similar behavior. A structural metaphor can 
support attending to important varying features (such as a structural property), but can also limit 
students’ attention to the critical attribute of binary operations being element-defined. 
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These results have several implications. First, binary operations are not a trivial despite 
instructors classifying it as such. Instructors may wish to increase attention to binary operation in 
classes with this focus (such as abstract algebra and linear algebra.) Second, students may not 
perceive many critical attributes such as the need for two elements, and may perceive non-
critical attributes as critical such as E-O-E formatting. From a variation standpoint, a potential 
solution is to expose students to examples, non-examples, and non-standard examples so that 
they have opportunities to contrast instantiations with varying critical and non-critical attributes. 
This type of activity can foreground these features so that students may perceive them. From a 
research standpoint, we may want to consider the degree to which these three metaphors, and 
attention to specific attributes may underlie student activity across the K-16 spectrum as they 
engage with common binary operations such as number arithmetic or function composition.  

References 
Brown, A., DeVries, D. J., Dubinsky, E., & Thomas, K. (1997). Learning binary operations, groups, and subgroups. 

The Journal of Mathematical Behavior, 16(3), 187-239.  
Dahlin, B. (2001). The primacy of cognition–or of perception? A phenomenological critique of the theoretical bases 

of science education. Science & Education, 10(5), 453-475. 
Dubinsky, E., Dautermann, J., Leron, U., & Zazkis, R. (1994). On learning fundamental concepts of group theory. 

Educational Studies in Mathematics, 27(3), 267-305.  
Ehmke, T., Pesonen, M., & Haapasalo, L. (2011). Assessment of university students’ understanding of abstract 

binary operations. Nordic Studies in Mathematics Education (NOMAD), 15(4), 25-40.  
Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A "proceptual" view of simple arithmetic. 

Journal for Research in Mathematics Education, 25(2), 116-140.  
Larsen, S. (2009). Reinventing the concepts of group and isomorphism: The case of Jessica and Sandra. The Journal 

of Mathematical Behavior, 28(2), 119-137.  
Marton, F., & Booth, S. A. (1997). Learning and awareness. Psychology Press. 
Melhuish, K. & Fagan, J. (Accepted / In Press). Connecting Group Theory Concept Assessment Results to Core 

Concepts at the Secondary Level. In N. Wasserman (Ed.), Connecting abstract algebra to secondary 
mathematics, for secondary mathematics teachers (Research in Mathematics Education Series). Netherlands: 
Springer. 

Melhuish, K, & Fasteen, J. (2016). Results from the Group Concept Inventory: Exploring the Role of Binary 
Operation in Introductory Group Theory Task Performance. In T. Fukawa-Connelly, N. Infante, M. Wawro, & 
S. Brown (Eds.), 19th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1098–
1103). Pittsburgh, PA. 

Novotná, J., Stehlíková, N., & Hoch, M. (2006). Structure sense for university algebra. Paper presented at the 
Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education. 

Oehrtman, M., Carlson, M., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in 
students’ function understanding. Making the Connection: Research and Teaching in Undergraduate 
Mathematics Education, 27, 42.  

Slavit, D. (1998). The role of operation sense in transitions from arithmetic to algebraic thought. Educational 
Studies in Mathematics, 37(3), 251-274.  

Tall, D., McGowen, M., & DeMarois, P. (2000). The function machine as a cognitive root for the function concept.  
Trigwell, K. (2006). Phenomenography: An approach to research into geography education. Journal of geography in 

higher education, 30(2), 367-372. 
Wasserman, N. H. (2017). Making Sense of Abstract Algebra: Exploring Secondary Teachers’ Understandings of 

Inverse Functions in Relation to Its Group Structure. Mathematical Thinking and Learning, 19(3), 181-201. 
Vikström, A. (2008). What is intended, what is realized, and what is learned? Teaching and learning biology in the 

primary school classroom. Journal of Science Teacher Education, 19(3), 211-233. 
Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in 

Mathematics Education, 356-366.  
Zandieh, M., Ellis, J., & Rasmussen, C. (2017). A characterization of a unified notion of mathematical function: the 

case of high school function and linear transformation. Educational Studies in Mathematics, 95(1), 21-38. 
Zaslavsky, O., & Peled, I. (1996). Inhibiting factors in generating examples by mathematics teachers and student 

teachers: The case of binary operation. Journal for Research in Mathematics Education, 67-78.  



Mathematical Processes 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

556 

REPRESENTATIONAL SAMENESS AND DERIVATIVE 

Alison Mirin 
Arizona State University 

amirin@asu.edu 

This study focuses on students’ understanding of multiple representations of functions. It 
examines student responses to a task in which calculus students are asked to evaluate the 
derivative at a point of the cubing function when represented piecewise. Results suggest that 
attending to the graph of the piecewise function does not improve students’ ability to 
differentiate it. Results also suggest that students tended to view a piecewise-defined function not 
as a singular function, but as a set of instructions for which function to use.  

Keywords: function, derivative, multiple representations 

Introduction and Literature Review 
Multiple representations of functions play an important role in mathematics and mathematics 

education. There is a body of literature addressing college students’ difficulties linking multiple 
representations of functions, and some studies suggest that post-secondary students struggle 
translating between different representations (Even, 1998; Gagatsis and Shiakalli, 2004; 
Chinnappan and Thomas, 2001). The literature on multiple representations tends to focus on 
translation between multiple types of representations (e.g., graphical, analytical, and verbal), 
rather than multiple representations of the same type. However, working with multiple 
representations of the same type is also a crucial part of mathematics. Although there is no body 
of literature specifically devoted to within-representation-type translation, some authors have 
highlighted the importance of this for specific types of representations. For example, Moore and 
Thompson (2015) make the point that math students should be able to move flexibly between 
different coordinate systems, being able to recognize when the same graph has two different 
visual representations.  

I argue in Mirin (2017) that students’ understandings of sameness of representation of 
function, by which I mean student assessments of which function representations represent the 
same function, are inextricably linked to their concept of function. We can see how one’s 
concept of sameness-of-representation-of-function and the function concept itself are interlinked 
when we consider how a student might view derivative. If a student views a derivative as 
operating on a function, then his concept of function is inextricably tied to his concept of 
derivative. For example, his criteria for determining whether two function representations share a 
derivative might be influenced by his criteria for determining whether those representations refer 
to the same function. This leads us to the following research question: What are students’ 
understandings of multiple analytic representations of a single function as it relates to derivative?  

We follow Thompson’s (1982) constructivist approach of being sensitive to student 
understanding by asking, “What is the problem that this student is solving, given that I have 
attempted to communicate to him the problem I have in mind?”(p.153). This is akin to Harel, 
Gold, and Simon’s (2009) description of the “interpreting” mental act; in analyzing students’ 
responses to a task, we, as researchers, pay careful attention to how students interpret a task. 
Thompson makes the point that, when referring to representations of something, we ought to be 
clear about to whom these are representations of whatever “something” is (Thompson & Sfard, 
1994). In the case of this study, there is a representation of the cubing function to us (as 
mathematicians), but to students, it may not be. So, we ought to be sensitive to the fact that a 
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student might agree with the assertion that two representations of the same function share a 
derivative, but these students might have non-standard understandings of what “same function” 
is. In fact, this is precisely the sort of reasoning a particular student used to determine that 
sharing a graph was not sufficient for sameness of functions; she concluded that two particular 
representations of functions share the same graph but do not share a derivative, leading her to 
conclude that, to be the same function, having the same ordered pairs on the graph is not 
sufficient (Mirin, 2017). 

Task Design and Methodology 
This study arose from an anecdote that Harel and Kaput (1991) share in which calculus 

students, when prompted to differentiate the function g defined piecewise by 𝑔(𝑥) = sin 𝑥 if 𝑥 ≠
0 and 𝑔(𝑥) = 1 if 𝑥 = 0, answered with 𝑔U(𝑥) = cos𝑥 if 𝑥 ≠ 0 and 𝑔U(𝑥) = 0 if 𝑥 = 0, 
appearing to use the constant rule. To these students, the only aspect of the representation as 
relevant for determining the value of 𝑔′(0) is the second line of the piecewise function 
definition. It seems reasonable to believe that, if the definition of g were modified to instead have 
𝑔(𝑥) = 0 if 𝑥 = 0 (resulting in a nonstandard representation of the sine function) students would 
answer identically. However, given the anecdotal nature of Harel and Kaput’s claim, there is no 
data available to substantiate how common such errors are or why they occur.  

This paper undertakes the task of studying this phenomenon more systematically. I designed 
the following task to address this issue: 

 

 
Figure 1. The Task on which This Study is Based (Quiz A) 

 
Henceforth, the task of evaluating  𝑓′(2) for 𝑓defined piecewise as above will be referred to as 
“The Task”. Notice that the function	𝑓 is simply the cubing function, but represented in a non-
standard way. Whether students see it that way is part of the investigation.  
Subjects and Methods 

Initially, The Task, exactly as pictured in Figure 1, was given to 240 introductory calculus 
students during the last week of the semester at Anonymous State University (ASU). Referred to 
as “Quiz A”, it was administered in an exam environment by course instructors as part of the 
course, where students were required to work silently and independently. I conducted follow-up 
interviews of eight individual students. I collected and coded their responses before performing 
the interviews, and, informed by the interviews, re-coded the responses to reflect students’ 
rationales as suggested by the interviews.  

The interviews each lasted 60-90 minutes. The interviews operated according to clinical 
interview methodology (a la Clement, 2000) and served as establishing students’ rationale for 
their responses to The Task. Additionally, students were given similar problems, as well as asked 
to graph the function f and asked to make sense of their answer to The Task with their graph of f.  
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Results, Quiz A vs. Quiz B 
Results of Quiz A suggest that Harel and Kaput (1991)’s anecdote is indeed indicative of a 

wider phenomenon, as only 18.3% of students gave the correct answer. Like in Harel and 
Kaput’s story, the majority (53.6%) of students claimed that the answer was “0”. Further, many 
students (41.2% of total) explicitly cited the constant rule. 

Now that we have established that there is a larger phenomenon, the next natural question to 
ask is, “why”? It is possible that some students erred due to inattention or carelessness, rather 
than a major misconception.  That is, they might have simply seen the “8” and applied the 
constant rule out of habit or simply not realized that 23 is 8 and that the given function is in fact 
continuous. This would explain why some students answered “undefined,” and it is also 
consistent with some of the graphs that students volunteered (graphs with removable 
discontinuities). Further, it might not have occurred to students to compare the graph of f with 
that of the cubing function - as discussed earlier, the piecewise-defined f is a representation of 
the cubing function to us, but perhaps not to students. 
 

 
Figure 2. Quiz B (Visually Condensed) 

Accordingly, informed by Quiz A results, Quiz B (Figure 2, above) was created to test this 
possibility that inattention accounts for student responses. Quiz B involves The Task (multiple 
choice form), except, prior to attempting The Task, students are prompted to calculate 23 and to 
graph 𝑦 = 𝑓(𝑥) aside a provided graph of 𝑦 = 𝑥Y.  Also included on Quiz B is a task asking 
students to state their definition of when a function g is the same function as a function f.  If 
inattention accounts for student responses, then the following hypotheses should hold: 

(1) Overall, students will perform significantly better on The Task in Quiz B than Quiz A, 
leaving open the possibility that inattention or carelessness could account for students’ 
tendency to do poorly on The Task in isolation. Students might, because of the 
prompting, be more likely to compare f to that of the cubing function. 

(2) Quiz B students who answered “12” would be more likely than Quiz A students who 
answered “12” to provide a justification involving the comparison of f with the cubing 
function. 

(3) Students who provided a mathematically normative definition of function sameness 
(Problem 4) would be more likely to answer “12” than students’ who did not.  

As discussed earlier, a student’s criteria for determining whether two function representations 
share a derivative might be influenced by his or her criteria for determining whether those 
representations refer to the same function. If a student believes that having the same set of 
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ordered pairs is sufficient for function h to be the same as function g, then it seems she is more 
likely (than a student who does not believe this) to conclude that because g and h are the same 
function, their respective derivatives are the same function. These hypotheses center on the idea 
that if students are positioned to compare the ordered pairs on 𝑦 = 𝑓(𝑥) to that of 𝑦 = 𝑥Y, they 
are more prone to answer The Task correctly.  

Table 1: Student Answers to Quiz A and Quiz B 
 0 8 12 Undefined Multiple answers Other Blank Total 
Quiz A 
%, 
n 

56.3%, 
135 

4.6%, 
11 

18.3%, 
44 

5.8%, 
14 

(8.3%, 20) 5.4%, 
13 

1.3%, 
3 

100%, 
240 0&12: (5.8%, 14) 

0&undef: (2.5%, 6) 
Quiz B 
%, 
n 

40.2%, 
41 

7.8%, 
8 

23.5 %, 
24 

9.8%, 
10 

(18.7%, 19) N/A 0%, 
0 

100%, 
102 e: (12.8%, 13) 

f: (5.9%, 6) 
 

The data reveal no evidence to support that inattention could account for student responses. 
Although there was a slight improvement in correctness rate from Quiz A to Quiz B (see Table 
1), this improvement was not statistically significant (𝜒,=1.21, p>.05), contrary to (1). In other 
words, prompting students to compare the graph of  𝑦 = 𝑓(𝑥) to that of	𝑦 = 𝑥Ydid not appear to 
cause improvement, suggesting that students did not err simply due to inattention to the 
function’s graph. Moreover, the Quiz B students who answered “12” were no more likely than 
the Quiz A students who answered “12” to draw an explicit comparison between f and the cubing 
function (4.2% of Quiz A students who answered 12 did, whereas only 2.9% of Quiz B students 
did so), contrary to (2). Also, the students who provided a mathematically normative definition 
of function sameness were no more likely to answer “12” than those who did not, contrary to (3). 
These results suggest that, contrary to my hypotheses, prompting students to compare f to the 
cubing function did not appear to encourage them to infer that f and the cubing function share a 
derivative at 2. This naturally led to the emergent question: if inattention to the graph of f does 
not account for students’ tendency to answer incorrectly, then why are students answering the 
way they are answering?  

Phenomena and Student Rationale 
To answer this question, we turn to the student graphs together with the student interviews. 

Normatively, two graphs (of functions) are the same if and only if they consist of the same 
ordered pairs. It seems reasonable to believe that some students might not have this criterion for 
sameness of graph; indeed, interviews suggested that some students viewed a graph of 𝑥Y with 
an extra “dot” placed at (2,8) as different from a graph of 𝑥Y without one. Some students referred 
to the point (2,8) as “separate”. Accordingly, a sub-category (category B) of “correct” was 
created: mathematically normative graphs that highlighted (2,8) in the sense that they had a dot 
on (2,8) that was more prominent than any other dots. The remaining “correct” graphs - those 
that were correct but indicated nothing special about (2,8) - were grouped together as category. 
The remaining graphs were classified as follows: those with a single dot at (2,8) (2.0%), those 
with just a graph of 𝑦 = 8 (6.9%), those with a removable discontinuity at x=2 (6.9%), blank 
(4.9%), those with graphs of both 𝑦 = 8 and 𝑦 = 𝑥Y (2.9%), and other (8.8%). Among the 
correct graphs (A and B), graph A students were more likely than graph B students to answer 
“12” on The Task (𝜒,=3.932, p<.05), suggesting some sort of difference (in the graph B 
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students’ minds) between f and the cubing function. How students understand their graphs in 
relation to The Task will be further elaborated below.  

Now we turn to the qualitative data: the student interviews, which shed light on why students 
answer the way they do.  Musgrave and Thompson’s (2014) construct of “function notation as 
idiom” was useful in accounting for student responses. A student views function notation 
idiomatically when he or she views “𝑓(𝑥)” in its entirety as a name for a function (Musgrave & 
Thompson, 2014). Such students might view “𝑓(𝑥)” as no more than another name for “y” 
(Thompson, 2013). It appeared that many students used this way of thinking when evaluating 
𝑓U(2), as students seemed to view “8” and “𝑥Y” as names of functions with “𝑓(𝑥)” referring to 
both of these functions. Another common theme, appearing both on the written quizzes and in 
the interviews, was the viewpoint that the “if 𝑥 ≠ 2” served as a restriction on the domain for 
students, rather than as a condition.  

Since there is not space to discuss every student in detail, we provide insight from the 
interviews that is consistent with various student responses. The following subsections should be 
viewed as descriptions and illustrations of student thinking that explain students’ answers, rather 
than rigorous evidence of such phenomena. Moreover, we discuss only the parts of the 
interviews that explain why students answered the way they did originally, rather than 
elaborating on the in-depth portions that were more exploratory. Each subsection begins with a 
direct, written quote from a student, which provides a concise summary of the way of thinking 
described in the subsection. We also discuss how, for the students, the point (2,8) was special 
and the way students made sense of their graphs. Additionally, we discuss how students’ ways of 
thinking are reflected in their responses to the interview prompt to find h’(5) for the function h 
defined by  ℎ(𝑥) = 𝑥Y	if x≠5, ℎ(𝑥) = 𝑥, + 100	if x=5. 
Students who answered “0” 

“When the graph is at the point x=2, the function is determined by the piecewise part ‘8’. So, 
𝑓(𝑥) itself equals 8. When 8 is derived, it becomes 0” [Pete, Quiz B student (emphasis added)]. 
The rationale summarized by Pete appears to exemplify a common way of thinking amongst 
students who answered “0”. For these students, the “𝑓U(2)” tells them that they are in the 
situation “𝑥 = 2,” which serves as an instruction to use the function “8”. Here, the “8” serves as 
a name of a function rather than a particular output, suggesting an idiomatic conception. Many of 
these students provided a category B graph of f (graph of 𝑦 = 𝑥Y but a special dot at (2,8)) and 
found no issue with the fact that they couldn’t “see” that 𝑓U(2) = 0 in their graph; when asked to 
explain graphically, they would provide a graph of 𝑦 = 8	and explained why its derivative at 2 is 
0.  

Interviewed students extended this way of thinking to evaluating h’(5) for the function h 
defined by ℎ(𝑥) = 𝑥Y	if x≠5, ℎ(𝑥) = 𝑥, + 100	if x=5. It was common for students to answer 
“10” by evaluating the derivative of 𝑥, + 100 as 2x and substituting x=5 to result in 10, with the 
rationale that “Um I used this part, the part that makes the parabola [𝑦 = 𝑥, + 100]. Because 
we’re interested in the time when x equals 5. And that’s kind of the rule here, when x equals 5 to 
use the parabola” [Jennifer, Quiz A student]. She elaborated: “The derivative of h when x equals 
5 is gonna be 2x um…..if x were to equal some number other than 5, you would use this 
(underlines x3) function up here, but because x is 5 we use this one.” Jennifer’s rationale 
exemplifies the way of thinking that led students to answer “𝑓U(2) = 0”: viewing the conditions 
on a piecewise-defined function as instructions for which function to use, and a piecewise-
defined function involving two different functions. 
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𝑓′(2)  →   𝑥 = 2   →  𝑦 = 8    →         →   𝑦U = 0 

Figure 3. Student rationale for answering “0” 

 
Many of these students (Pete included) provided a graph of f that was like 𝑦 = 𝑥Y but with a 

dot at (2,8) (category B graph). It seems that students viewed the dot at (2,8) as separate or 
independent from the rest of the graph. For example, one student recreated his graph during the 
interview, explaining his reasoning as follows: “At the point (2,8) I draw a circle to show there is 
an opening there, there’s a gap. I’m excluding that point from what it is we are talking about in 
this point in time.” He elaborated: “So the two...they’re existing on the same coordinate system 
but existing independent of each other” (emphasis added).  
Students who answered both “12” and “0” 

“If f(x) does not equal 2, the function is 𝑥Y. The derivative of 𝑥Y equals 3𝑥,, then substitute 2 
for x, 3(2)2=12. However, if x is allowed to be 2, then the derivative of 8=0” [Carlos, Quiz A 
student]. The case of Carlos illustrates how a student can reason idiomatically to get the answers 
0 and 12. In the interview he reiterated his reasoning: “If x isn’t 2 then the function is 𝑥Y. The 
derivative of 𝑥Y is 3𝑥,. Then substitute 2 for x here and you get 12. However, if x is allowed to 
be 2, then the derivative of 8 is 0”. For Carlos, the “if x=2” condition told him that he was in the 
case in which “the function” is the function “𝑓(𝑥) = 8,” and that the “if x≠2” condition told him 
he was in the case in which “the function” is x3. Carlos did not even make the connection that the 
“2” in “𝑓(2)” told him he was in the case where “𝑥 = 2”; for him, the “𝑓(𝑥)” was just a 
shorthand for “y”. When prompted to graph f, he provided a graph of (what he thought was) y=8 
as well as a graph of 𝑦 = 𝑥Y , indicating that he viewed himself as graphing two separate 
functions.  When asked how𝑓U(2) can be 12 while he had said prior that it was 0, he explained: 
“this is an entirely different function”, indicating that the conditions on the piecewise function 
were instructions about which function to use.  

 

Two cases: 𝑥 = 2, 𝑥 ≠ 2 

𝑥 = 2 → 𝑦 = 8→            → 𝑦U = 0 → 𝑓U(2) = 0 if 𝑥 = 2 

𝑥 ≠ 2→ 𝑦 = 𝑥Y→            → 𝑦U = 12→ 𝑓U(2) = 12 if 𝑥 ≠ 2 

Figure 4. Student Rationale for answering “0 if 𝒙 = 𝟐, 12 if 𝒙 ≠ 𝟐” 

Carlos’ way of thinking was confirmed when he was asked to calculate h’(5) when h is 
defined by by ℎ(𝑥) = 𝑥Y	if x≠5, ℎ(𝑥) = 𝑥, + 100	if x=5. He graphed 𝑦 = 𝑥Y	and 𝑦 = 𝑥, +
100	on the same axes (Fig.4). When prompted to find the value of h’(5), he differentiated 𝑥Y and 
plugged in 5 to get 75, and then he differentiated 𝑥, + 100	and plugged in 5 to get 10. When 
asked which was the value of h’(5), he exclaimed confidently, “both! 75 and 10!”.  
Students who answered both “0” and “undefined” 

“If just looking at 𝑓(𝑥) = 8, the derivative of a constant would make 𝑓U(2) = 0. If just 
looking at 𝑓(𝑥) = 𝑥Y, the derivative would be undefined because 𝑓(2)	is not on the graph of 𝑥Y. 
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There is a hole at x=2” [Eric, Quiz B]. Eric’s reasoning exemplifies how students could have 
come to select choice “f” in Quiz B. A different student, Sarah, explained her reasoning in detail 
in the interview. Sarah initially answered that “both” are undefined, but during the interview, she 
revealed that she interprets “0” to mean the same thing as “undefined” (which was a common 
trend in student responses). Like Carlos, she viewed two functions as being involved, which was 
again confirmed when she was asked about the piecewise-defined function “h”. She appeared to 
reason about two different functions, and calculated 𝑓U(2) by treating the first function as “𝑦 =
𝑥Y, 𝑥 ≠ 2", and the second function as “𝑦 = 8, 𝑥 = 2”. She interpreted the “𝑥 ≠ 2” as a 
restriction on the first function, and the “𝑥 = 2” a clarification that such a restriction did not exist 
on the second function. Thus, for the first function, 𝑓U(2)  is undefined, and for the second 
function, 𝑓U(2)  equals 12.  

 
Two cases, two functions 

𝑦 = 𝑥Y, 𝑥 ≠ 2→        → 𝑓U(2) undefined if 𝑥 ≠ 2.  

𝑦 = 8, 𝑥 = 2 → 𝑦 = 8 and x can be 2   →     → 𝑓U(2) = 0 if 𝑥 = 2. 

Figure 5. Student Rationale for answering “0 if 𝑥 = 2, undefined if 𝑥 ≠ 2” 

Conclusions and Discussion 
The results of Quiz A showed us that Harel and Kaput’s (1991) anecdote is indeed indicative 

of a larger phenomenon: many students appeared to differentiate a piecewise function formally 
by differentiating each expression as a separate function. By comparing the results of Quiz A to 
Quiz B, we confirmed that this phenomenon cannot be attributed merely to inattention. The 
interviews, together with the Quiz B results, suggest that a non-normative understanding of 
piecewise function notation, stemming from a view of function notation as idiom and the 
conditions on the domain as either instructions or as restrictions, accounts for many students’ 
responses. 

This study shows that students do not view the same function, represented in two different 
analytic ways, as sharing a derivative at a particular value. However, this last sentence was 
ambiguous; when we say “a function”, we are not being clear if students view these function 
representations as referring to the same function. Students might, for example, consider it 
possible for two distinct functions to share a graph, and we can ask: do students believe that 
same graph implies same derivative? The answer to this appears to be “no,” as many Quiz B 
students provided normative graphs of f yet did not evaluate 𝑓U(2) normatively.  Yet, we run into 
another ambiguity: what students view as “same graph” might not be consistent with the 
normative notion of “same graph,” as suggested by students’ insistence that the point (2,8) being 
highlighted. This means that, although it is tempting to conceptualize this study as one about 
students’ understanding of derivative, its results highlight how students think about function 
notation. To illustrate this point consider the way of thinking that accounted for students 
answering “0.” It arose from a misconception of function notation: no matter how strong of a 
meaning the student has of “derivative”, the student was still reasoning with the graph of “𝑦 =
8”, leading to an answer of “0”. 

As discussed earlier, it seemed reasonable to hypothesize that students who provided 
normative definitions of what it means for functions g and h to be the same (Problem 4, Quiz B) 
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would be more likely to correctly evaluate 𝑓U(2) ; this is because it seems these students would 
be more likely to assess piecewise-defined f and the cubing function as “the same,” positioning 
them to infer that f and the cubing function share a derivative. In light of the interviews and 
students’ ways of thinking, the counter-intuitive result – that this hypothesis did not hold – 
makes sense.  This is because, to students, f was not a function in the same way that the cubing 
function is; instead, f was two functions. Having a strong criteria for sameness of functions did 
not help students evaluate 𝑓U(2) because f was not in the category of “functions” to which 
sameness can apply!  
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Despite the overwhelming amount of research on students’ interpretations of rates of change in 
real-world physical science contexts, similar studies in real-world economic contexts are sparse. 
Contributing towards addressing this gap in knowledge, this study reports on how 12 pairs of 
business calculus students interpreted marginal change (marginal cost and marginal revenue) in 
different economic contexts and function representations while solving two optimization tasks. 
Analysis of task-based interviews conducted with the students revealed that a majority of the 
students interpreted marginal change as an amount (the difference) and not as a rate (the 
difference quotient). A few students interpreted marginal change as the derivative. Implications 
for instruction are discussed. 

Keywords: rates of change, marginal change, business calculus, optimization problems 

Much research has reported on students’ difficulties with interpreting rates of change 
(average rate of change and instantaneous rate of change) in real-world physical science contexts 
such as in fluid dynamics, kinematics, and thermodynamics (e.g., Carslon, Jacobs, Coe, Larsen, 
& Hsu, 2002; Prince, Vigeant, & Nottis, 2012). However, research on how students, especially at 
the undergraduate level, interpret rates of change (herein referred to as marginal change) in real-
world economic contexts is limited, which is the motivation for this study. According to Gordon 
(2008), more than 300,000 students take business calculus in the United States each year. 
Understanding marginal change in a business context is vital in fields such as marketing, 
managerial accounting, supply chain management, finance, and economics. This study reports on 
business calculus students’ interpretations of marginal change while reasoning about two 
optimization tasks (shown in the methods section), which are situated in two different economic 
contexts that have different function representations. Our study was guided by this research 
question: How do business calculus students interpret marginal change when solving 
optimization problems that have different function representations and are situated in different 
economic contexts? 

The term marginal change, as used in this study, refers to marginal cost or marginal revenue. 
Marginal cost is the cost per additional unit produced and marginal revenue is the revenue 
generated per additional unit sold. Mathematically, marginal change can be calculated as an 
average rate of change where the length of the interval of change is one unit. Marginal change 
can be approximated using the instantaneous rate of change.  

Related Literature 
Rates of Change in Context 

Several studies have reported on students’ tendency to conflate the rate of change of a 
quantity with either the amount of the quantity or the amount of change of the quantity when 
solving application problems that are situated in real-world physical science contexts (e.g., 
Lobato, Hohensee, Rhodehamel, & Diamond, 2012; Prince et al.,2012; Rasmussen & 
Marrongelle, 2006). A majority of the 373 engineering students in Prince et al.’s (2012) study 
had difficulty distinguishing between the rate of change and the amount of change of a quantity 
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in a thermodynamics context. Rasmussen and Marrongelle (2006) reported on students who 
failed to make “a conceptual distinction between rate of change in the amount of salt and amount 
of salt” (p. 408) in a differential equations course. In a remote-controlled airplane task where the 
amount of change had the same numerical value as the rate of change (as it is in the economic 
context of marginal change), Lobato et al. (2012) reported that  a majority of the 24 students who 
participated in their study confused the distance traveled by the airplane in the task with the 
speed of the airplane. The study reported in this paper extends the body of research on students’ 
reasoning about rates of change from the physical sciences to economic contexts by examining 
students’ interpretations of marginal change in two different profit maximization contexts. 
Rates of Change in Multiple Function Representations 

The importance of the concept of function in students’ learning of calculus cannot be 
overemphasized. Oehrtman, Carlson, and Thompson (2008) argued that “the concept of function 
is central to undergraduate mathematics, foundational to modern mathematics, and essential in 
related areas of the sciences” (p. 27). In his review of research literature on students’ 
understanding of functions, Thompson (1994c) argued that “tables, graphs and expressions might 
be multiple representations of functions” (p. 23) to instructors and researchers, but that they are 
not “multiple representations of anything to students” (p. 23). Thompson’s argument is well 
supported by evidence from research on students’ understanding of rates of change in multiple 
function representations (e.g., Klymchuk, Zverkova, & Sauerbier, 2010; Villegas et al., 2009). 
Much of the existing research on students’ understanding of rates of change in multiple 
representations is limited to graphical, algebraic, and textual representations of functions. This 
study extends the literature on students’ understanding of rates of change by reporting on 
students’ interpretations of rates of change in two functional situations, one that is based on a 
numerical table of values and another that is algebra-based.  

Theoretical Perspective 
The current study draws on the theory of quantitative reasoning (Thompson, 1993; 

Thompson, 1994b; Thompson, 2011). Quantitative reasoning is the analysis of a situation in 
terms of the quantities and relationships among the quantities involved in the situation 
(Thompson, 1993). Thompson (2011) described three tenets (a quantity, quantification, and a 
quantitative operation) that are central to the theory of quantitative reasoning. A quantity is a 
measurable attribute of an object. Thompson (1993) distinguished between a quantity and a 
numerical value: a quantity has a unit of measurement, and a numerical value does not. 
Examples of quantities in this study include marginal cost and marginal revenue. 

Quantification is the process of assigning numerical values to quantities (Thompson, 1994d). 
A quantitative operation is the process of forming a new quantity from other quantities 
(Thompson, 1994b). In economics, for example, comparing (by way of finding the difference) 
marginal revenue and marginal cost with the intent to find the excess of marginal revenue against 
marginal cost otherwise known as marginal profit is a quantitative operation known as a 
quantitative difference. We designed two mathematical tasks (shown in the next section) that 
provided students with opportunities to reason about quantities and relationships among 
quantities. The interview protocol used during data collection engaged pairs of students in 
reasoning about relationships among quantities. We believe that having pairs of students share 
ideas while solving the tasks helped to reveal students’ interpretations of the concept of marginal 
change in detail, something that could have been harder to achieve when interviewing individual 
students. The interviewing of pairs of students further shifted the students’ focus from the 
researcher to the tasks. 
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Methods  
Setting, Participants, and Data Collection 

The study participants were 24 undergraduate students at a research university in the United 
States who had recently completed a business calculus course. The students were chosen based 
on their willingness to participate in the study, their major (business or economics), and their 
prior exposure to the ideas of marginal cost and marginal revenue through the course textbook 
and course lectures. The cumulative grade point averages (GPAs) of the 24 students had a mean 
of 3.43 on a 4.0 scale, a standard deviation of 0.37, and a range of 1.56. All but two of the 
students had earned at least a B grade in their business calculus course. The students were 
recruited from five different sections of a business calculus course. 

We remark that the concept of marginal change was poorly presented in the course textbook 
and in course lectures. Specifically, in both the textbook and in course lectures, marginal change 
was defined as a rate (the difference quotient) and interpreted as an amount (the difference) 
(Mkhatshwa, 2016). As we will show in the results section, we argue that defining marginal 
change as a rate and interpreting it as an amount as was done in course lectures and in the 
textbook had an influence on students’ reasoning about the units of marginal change in Task 2 
(and likely in the other tasks we gave to the students) that appears in the following section. Part 
of the difficulty is that the numeric value of the difference is the same as the numeric value of the 
difference quotient since the denominator is one in the case of marginal change, a difficulty also 
noted by Lobato et al. (2012) in a kinematics context. In many cases the “per additional unit” 
may have been held implicitly by the students when giving units of marginal change in dollars 
instead of dollars per additional unit. We further remark that students’ opportunities to reason 
about marginal change in course lectures and via the course textbook were mainly limited to the 
use of algebraic tasks. 

Data for the study consisted of (1) transcriptions of audio-recordings of task-based interviews 
(Goldin, 2000) conducted with 12 pairs of students and (2) work written by the 12 pairs of 
students during each task-based interview session. Each interview lasted for about one hour and 
fifteen minutes. The interviews covered four economic tasks, and this study reports on two of the 
tasks (herein referred to as Task 1 and Task 2). Both tasks are situated in a profit maximization 
context. In addition, while both tasks are textually represented, Task 1 is also algebraic and Task 
2 is numeric (table-based). We describe the design of each of the two tasks:  

  

 
 

We designed Task 1 to examine students’ reasoning about optimization problems similar to 
those given in their textbook and in course lectures. We used this task to examine students’ 
interpretation of marginal change in a profit maximization context when given a task that has an 
algebraic representation. We also designed this task to examine students’ reasoning about 
relationships among four quantities: the number of units produced and sold, total cost, total 
revenue (which can be obtained by multiplying the demand equation given in the task by q, the 
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number of units that are sold), and profit (which can be obtained by finding the difference 
between total revenue and total cost). 

 

 
 

We designed Task 2 to examine students’ reasoning about relationships among four 
quantities: the number of computer chips produced and sold, marginal cost, marginal revenue, 
and profit. We used this task to examine students’ interpretations of marginal change (e.g., the 
cost of producing the 401st computer chip) in a profit maximization context when given a task 
that has a numeric (table-based) representation. We also used Task 2 to examine students’ 
reasoning about the units of marginal change, that is, as a rate (the difference quotient) or as an 
amount (the difference).  
Data Analysis 

Data analysis was done in two stages. In the first stage, we carefully read through each 
interview transcript and coded instances where pairs of students interpreted marginal change 
(marginal cost or marginal revenue) while they reasoned about each of the two tasks. Some of 
the codes that emerged from the data (through an inductive process) include interpreting 
marginal change as an amount i.e. the difference (e.g., saying the units of marginal cost in Task 2 
are dollars), interpreting marginal change as a rate i.e. the difference quotient (e.g., saying the 
units of marginal cost in Task 2 are dollars per unit), and interpreting marginal change as the 
derivative (e.g., saying the derivative of the total cost function in Task 1 is marginal cost).  

In the second stage of our analysis, we did a comparison across tasks to see how 
interpretations of marginal change given by pairs of students changed (or did not change) across 
the representations and contexts of the tasks they were given. For example, if a pair of students 
interpreted marginal change as the derivative in Task 1 (a task with an algebraic representation) 
and marginal change as an amount in Task 2 (a task with a numerical representation), we 
concluded that the students’ interpretations of marginal change varied with the representation 
and context of the task they were given. The comparison made in the second stage provided 
answers to our research question: - How do business calculus students interpret marginal change 
when solving optimization problems that have different function representations and are situated 
in different economic contexts? 

In light of the tenets of the theory of quantitative reasoning, and as we would show in the 
next section, some of the students mentally performed quantitative operations such as by 
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conceptualizing the quantity of marginal cost as the derivative of the total cost function given in 
Task 1. We state as a remark that a majority of the students in this study performed a quantitative 
operation by conceptualizing a measure of profit as the amount of excess revenue above cost 
when creating a formula for the quantity of profit. These students engaged in the process of 
quantification (assigning a numerical value for the quantity of profit) by evaluating the profit 
formula at a particular production and sales level to find the amount of profit at that level. In our 
previous work (Mkhatshwa & Doerr, 2018), we showed that some of the students in this study 
performed a quantitative operation by conceptualizing a measure of the quantity of marginal 
profit as the difference between marginal revenue and marginal cost while working on Task 2. 

Results 
Analysis of interview transcriptions and work written by students revealed three findings. 

Because of space limitations, this paper reports on two of the findings. First, nearly all the pairs 
of students interpreted marginal change as an amount (the difference) and not as a rate (the 
difference quotient). Second, three pairs of students interpreted marginal change as the 
derivative.  
Interpreting	Marginal	Change	as	an	Amount	

With the exception of  one pair of students (Yuri and Kyle), all the other pairs of students 
indicated that the units of the marginal cost (MC) and marginal revenue (MR) values given in 
Task 2 would be in dollars. When asked to justify why the units would be in dollars, a majority 
of these students indicated that “since we are in the United States,” the units must be in dollars. 
We interpreted the students’ claim that the units would be in dollars to mean that they interpreted 
marginal change as a change (the difference), and not as a rate of change (the difference 
quotient). A critical reader may argue that this may have been less of a conceptual issue and 
more of a language issue. For example, it is common for people to speak of marginal cost in 
units of dollars while holding the “per unit” implicitly. However, these students consistently 
referred to marginal cost in terms of units of a change in total cost (i.e. dollars) and never 
mentioned the “per additional unit” while reasoning about marginal cost in other tasks. While 
this may have been a language issue, we argue that because of the consistency at which the 
students referred to units of marginal cost as dollars and not as dollars per additional unit that the 
students were interpreting marginal cost as an amount (the difference) and not as a rate (the 
difference quotient). As noted earlier, part of the difficulty may have been that that the numeric 
value for the difference and the numeric value for the difference quotient are equal since the 
denominator in the difference quotient is one in the case of marginal change.  

Yuri, however, stated that the units of the MC and MR values in the table shown in Task 2 
would be in “dollars per unit” suggesting that he interpreted marginal change as a rate (the 
difference quotient). The following excerpt illustrates Yuri and Kyle’s reasoning about the MC 
and MR values in Task 2. 

Researcher:  What are the units of these numbers [pointing at the MR and MC values in 
    Task 2]? 

Kyle:   Dollars 
Researcher:  Yuri? 
Yuri:   Dollars per unit 
Kyle:   or cents 
Researcher:  Yuri, why did you say dollars per unit? 
Yuri:   Marginal revenue is additional, extra revenue per unit 
Researcher: Tell me more about that 
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Yuri:  [Silence] 
Yuri’s statement that “marginal revenue is additional, extra revenue per unit” in the above 

excerpt suggests that Yuri interpreted marginal change as a rate, the rate [R(q+1)-R(q)]/1, for a 
total revenue function R(q) where q is the number of units sold. Kyle’s initial response that the 
units of the marginal cost and marginal revenue values are “dollars” suggests that he was 
interpreting marginal cost and marginal revenue as total cost and total revenue respectively. This 
was confirmed later in the interview when Kyle stated that the company mentioned in Task 2 
breaks even (i.e., total cost equals total revenue) at a production and sales level of 402 computer 
chips in the table shown in the task when, in fact, marginal cost equals marginal revenue. 
However, when he added “or cents” after Yuri had said that the units of marginal cost and 
marginal revenue would be “dollars per unit,” Kyle was either agreeing with Yuri that the units 
were dollars per unit or cents per unit, or he was still interpreting marginal cost as total cost. 
Regardless of the units given by each of the 24 students for marginal cost and marginal revenue, 
the fact that these students assigned units to the marginal cost and marginal revenue values 
suggests that they interpreted marginal cost and marginal revenue as quantities and not as 
numerical values.  
Interpreting	Marginal	Change	as	the	Derivative 

In this study, interpreting marginal change as the derivative refers to an understanding of the 
quantity of marginal cost (or marginal revenue) as the result of differentiating a cost function (or 
a revenue function) and not as a quantity that has rate-related units such as dollars per unit. Three 
pairs of students interpreted marginal change as the derivative while reasoning about Task 1 and 
Task 2. Two of these pairs of students interpreted marginal change as the derivative only in an 
algebraic representation (Task 1) and the other pair of students interpreted marginal change as 
the derivative only in a tabular representation (Task 2). None of these three pairs of students 
consistently interpreted marginal change as the derivative in both tasks (Task 1 and Task 2) or 
even in the other two tasks reported in the larger study (Mkhatshwa, 2016). Alan and Sarah are 
representative of the two pairs of students who interpreted marginal change as the derivative 
while reasoning about how to solve the problem posed in Task 1. The following excerpt, which 
occurred early in the interview, illustrates how Sarah and Alan reasoned about what they needed 
to do in order to answer the question posed in Task 1. 

Sarah:  Take the derivative of the demand equation  
Researcher: What do you get when you take the derivative of the demand equation? 
Alan:  Is it the marginal? 
Sarah:  That would be the marginal cost 
Researcher: What is marginal cost? 
Sarah:  The derivative of the total cost [function], right? 
Alan:  Yah yah, you are right 
In the above excerpt, Alan wondered if taking the derivative of the demand equation would 

give them “the marginal” while Sarah stated that by taking the derivative of the demand equation 
what they will get “would be the marginal cost.” Alan’s wondering about the derivative of the 
demand equation being “the marginal” and Sarah’s assertion that marginal cost is “the derivative 
of the total cost” were taken by the researchers to be the students’ interpretations of the 
derivative of the demand equation by Alan (or the total cost function by Sarah) as marginal cost. 
Alan and Sarah, did not reason any further about the idea of marginal cost in solving the problem 
posed in Task 1. It would appear that these students associated the act of taking the derivative of 
an equation (e.g., the total cost function in the case of Sarah) with the term “marginal.” 
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Joy and Nancy are the only pair of students who interpreted marginal change as the 
derivative while reasoning about the units of the MC values and MR values in Task 2. The 
following excerpt, which occurred towards the end of Task 2, illustrates how Joy and Nancy 
reasoned about the units of the MC and MR values in Task 2. 

Researcher: What do you think are the units of these numbers [pointing at the MR and 
MC values in Task 2]? 

Nancy:  Oh, dollars. 
Joy:  Dollars. 
Researcher: How do you know it’s dollars? 
Joy:  Because revenue and cost is dealing with money 
Researcher: But that’s marginal cost and marginal revenue, is it the same thing? 
Nancy:  Yah 
Researcher: Joy? 
Joy:  I think, if you like take the, like if you take the derivative of the revenue it  

  gives you the marginal revenue… 
Joy’s statement that “if you take the derivative of the revenue, it gives you the marginal 

revenue” suggests that she was interpreting the marginal revenue as the derivative of the revenue 
function. There is, however, no evidence that Nancy also thought the same way even though she 
did not object to Joy’s statement about the derivative of the revenue function being the marginal 
revenue. Joy and Nancy went on to calculate differences between the marginal revenue values 
and marginal cost values at each production and sales level shown in the table that appears in 
Task 2. They referred to these differences as “profit,” suggesting that these students also 
interpreted marginal cost as total cost and marginal revenue as total revenue as profit is generally 
defined as the difference between total revenue and total cost, and this is how profit was defined 
in the textbook used by the students and during course lectures.		

Discussion and Conclusions 
Nearly all the pairs of students who participated in this study interpreted marginal change as 

an amount (the difference) and not as a rate of change per unit of one (the difference quotient). 
These students stated that the units of marginal cost and marginal revenue in Task 2 would be 
dollars instead of dollars per unit. Throughout their reasoning about marginal change in other 
tasks (including two other tasks not included in this paper), the students consistently referred to 
marginal change in units of dollars and not in units of dollars per unit. We argue that part of the 
difficulty in this may have been the fact that in the case of marginal change, the numeric value 
for the difference and that of the difference quotient are equal as the denominator in the 
difference quotient is one. Only one student interpreted marginal change as a rate of change per 
unit of one. This student stated that the units of marginal cost and marginal revenue in Task 2 
would be dollars per unit. As noted earlier, similar results were reported by Lobato et al. (2012) 
in a kinematics context. To some extent, the students’ interpretation of marginal change as both a 
difference and a difference quotient can be attributed to the opportunities in the textbook they 
had to learn about marginal change. Specifically, marginal change was defined as a rate per unit 
of one (the difference quotient) and interpreted as an amount (the difference) in the textbook 
used by the students (Mkhatshwa, 2016). Also, the presentation of marginal change in course 
lectures closely followed the presentation of marginal change in the textbook (Mkhatshwa, 
2016). 

A majority of the students’ interpretations of marginal change tended to change within and 
across the tasks they were given. For example, Sarah and Alan interpreted marginal change as 
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the derivative in Task 1 but then they switched to interpreting marginal change as an amount of 
change with units of dollars in Task 2. Given that the tasks had different function representations 
and were situated in different economic contexts, these results suggests that the students in our 
study had weak understandings of the idea of marginal change in different situations. 
Specifically, these results suggest that students’ interpretations of marginal change varied in 
different economic contexts and representations of economic situations. As noted in our previous 
work (Mkhatshwa, 2016), opportunities for students to interpret marginal change (e.g., marginal 
cost) in the textbook and in course lectures were limited. We argue that by providing more 
opportunities for students to interpret marginal change in different economic situations and 
function representations, business calculus instructors and business calculus textbook authors 
might be able to support students towards developing a robust understanding of marginal change.  
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This study explores the progression from student justification to generalization in the course of 
example-based reasoning. Data was collected through group interviews with high school 
students who were working collaboratively on a task of determining connections between 
perimeter and area of tile shaped patterns. The task called for making and justifying conjectures 
regarding patterns of specific number of tiles. Our findings show that the task elicited 
collaborative example-based reasoning that evoked spontaneous generalizations about patterns 
of any number of tiles. The findings point to the importance of collaboration in generalizing, as 
well as to the intuitive nature of generalizations.  

Keywords: Reasoning and Proof, High School Education, Middle School Education, Geometry 
and Geometrical and Spatial Thinking 

Background 
The study reported in this paper is part of a larger study on the roles of examples in learning 

to prove (Knuth, Zaslavsky, & Ellis, 2017). The main goals of this study were to examine ways 
in which the use of examples may facilitate students’ reasoning and proving. This approach 
reflects a shift from focusing on students’ overreliance on examples as a stumbling block to 
learning to prove (Healy & Hoyles, 2000; Harel & Sowder, 2007), to exploring productive ways 
of using examples for proving. By example-based reasoning we refer to justifications that use 
examples to convince one’s self or others regarding a certain assertion (Rissland, 1991; 
Zaslavsky & Shir, 2005). The data set of the study consists of transcriptions of videotaped task-
based interviews, mostly with individual students and some with groups of two to three students. 
In this paper we focus on the group interviews and examine the interplay between example-based 
reasoning and generalization in a collaborative setting.  

Conceptual Framing 
Generalization is considered to be an important form of algebraic reasoning and an 

instrumental component of mathematics education reform (Kaput, 1999; National Council of 
Teachers of Mathematics, 2000; Ellis, 2007; Ellis, 2011). Early theories and frameworks 
characterized generalization as an individual act (Ellis, 2011), focusing on theories related to the 
static nature of transfer in which knowledge remains unchanged during the transfer process 
(Ellis, 2007). However, researchers have more recently considered the dynamic nature of transfer 
through an actor-oriented perspective in which generalization may be influenced by instructional 
environments and social interactions (Jurrow, 2004; Ellis, 2007; Ellis, 2011). 

Jurrow (2004) and Ellis (2011) show that students can generalize through peer interaction. 
Jurrow (2004) describes linking, the process of creating and applying classification systems, as a 
way in which students use talk and interaction to generalize. Ellis (2011) identifies seven 
categories of generalizing-promoting actions within a collaborative setting, noting how student 
interactions support and shape the generalizing activities. Ellis (2007) also developed a 
taxonomy for categorizing generalizations in which a distinction is drawn between generalizing 
actions (relating, searching, and extending) and reflection generalizations (a student’s ability to 
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identify or use an existing generalization). Vinner (2011) emphasizes that most generalizations 
made by students are intuitive in that they are immediate, spontaneous, and rely on global 
impressions, rather than an analytical thought process. He points to this as one reason why 
generalizations often fail.    

Students construct new knowledge through generalizing activities (Ellis et al, 2017). The 
generalization schema sorts through similarities and differences, forming a generalization 
through the similar examples (Vinner, 2011). Examples have been identified as the preferred 
way in which students justify the truth of their conjectures (Stacey, 1989; Ellis, 2007; Vinner, 
2011). However, students may not scrutinize the similarities found in examples, leading to false 
generalizations (Stacey, 1989; Vinner 2011). Justification is an integral aspect of generalization 
(Kaput, 1999) helping students to establish conviction in their generalization, as well as to prove 
the generalization (Ellis, 2007); but students attempt to justify through the use of empirical 
examples rather than generic examples (Lannin, 2005). Empirical example-use is most often 
characterized by treatment that confirms or contradicts a given conjecture with no consideration 
of general structure, while generic example-use illuminates the general case through a particular 
case and may convey the main idea(s) of the relevant proof (Mason & Pimm, 1984; Stylianides, 
2008; Leron & Zaslavsky, 2013). Ellis et al (2017) developed the Criteria-Affordances-Purposes-
Strategies framework to characterize the ways in which students think with examples while 
investigating and proving conjectures. The CAPS framework identifies generalization as one of 
the affordances of example-use (Ellis et al, 2017).  

Although Ellis (2007) contends that the connection between generalization and justification 
is bidirectional, existing literature is thin with regards to how students progress from example-
based justification to develop a generalization. Our study contributes to this area of research.  

The Study 
In this part of the study we consider the questions: (i) How might students’ example-based 
justification of a particular mathematical conjecture promote generalizations?  (ii) What roles do 
peer interactions play in this process?  

Research Instrument 
The research instrument for this part of the study was “The Tile Task” - a task designed to 

elicit example-based reasoning in a geometric context. Participants were given the following 
information: “A design company offers Tile-Patterns in different sizes and shapes. Each tile is a 
square with a 1-unit length side. Tile-Patterns are constructed by combining some number of 
tiles so that each tile shares one full side with at least one other tile. No ‘holes’ are permitted, and 
no two tiles are allowed to share only part of a side.” The following examples of acceptable tile-
patterns were provided (Fig. 1):  

 
Figure 1. Acceptable tile patterns. 

 
The two parts of the Tile Task that were analyzed for this paper (Question 4 and Question 5) 

were the same except for the number of tiles used. Question 4 asked: “For a tile-pattern that uses 
8 tiles, what would be a shape of the pattern with the smallest perimeter? With the largest 
perimeter? How do you know?” Question 5 asked the same for a tile-pattern that uses 7 tiles. 
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While each of these questions could have been answered by using a previous part of the task in 
which students determined if the perimeter would increase, decrease, or remain the same by 
adding one tile, students were not directed to do so.  

Data Collection 
Students were randomly grouped for participation in four separate one-hour-long semi-

structured, task-based clinical interviews. There was one individual interview (‘Group 1’ – one 
female), two dyad interviews (‘Group 2’ – one male one female; ‘Group 3’ – two females), and 
one triad interview (‘Group 4’ – three males). All interviews were recorded and transcribed, and 
any written work was also collected. Participants used Livescribe pens that captured audio, as 
well as pen strokes that can be replayed in real time. 

Findings 
This part of the study revealed that when asked to justify their answer, students attempted to 

generalize their findings to all tile-patterns regardless of the number of tiles used, with varying 
degrees of success. Students referred back to the examples they had generated when doing so. 
Two such instances, described below, occurred after student had identified the shapes of the 
pattern that would result in the largest and the smallest perimeters for tile-patterns using 8 and 7 
tiles, respectively.  
Case 1 

S1, a 10th grade male, and S2, a 9th grade female, are working as a pair on the Tile Task. 
After reading Question 4, S1 immediately speaks in general terms about which tile-pattern would 
make the smallest and largest perimeters. As he speaks he sketches the tile-patterns as in Fig. 1.  
 

S1: Okay. Okay well I guess the largest, the smallest perimeter I guess would be the one that 
shows the least amount of sides, so...oh. Yeah so so if you have a really long one then 
that would be the most I think because you're showing as much of the tile as possible for 
each one and let me see. 

 

  
Figure 2. Tile pattern 

 
S2 agrees with this assessment; they count the sides to determine that the smallest perimeter is 12 
units and the largest is 16 units (this group incorrectly counted the largest perimeter as 16 while 
it really is 18 units). Once Question 4 is answered, they move onto Question 5.  
  

S2: I think the largest is still just a long one.  
S1: Yeah and this (Fig. 3) comes out to perimeter of twelve like this, so I don't know. I don’t- 
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Figure 3. Another tile pattern 

 
S2: I don't think there's anything you can do to make it smaller  
S1: Yeah okay so that's smallest and the long one is largest.  

 
Before leaving the Tile-Task, the interviewer asks S1 and S2 to talk about the shapes they used 
in Questions 4 and 5: 
 

S1: Well the shortest one, or sorry the one with the smallest perimeter is usually in general 
stout, stouter I don't know how to describe it. Its length, its, the ratio of its length to width 
was smaller, no larger. I'm not, you put its length over its width it would be closer to one 
than if you put this length over this width is what I'm saying. So essentially when the 
closer to a square this gets or the closer to a figure where the ratio of length to width is 
one, the smaller its perimeter is. I think. Does that sound? (refers to Figure 2) 

S2: Yeah 
S1: So I guess yeah, if we needed to do a formula you could say as 𝑙 over 𝑤 approaches 1, 

the perimeter gets smaller. Or the less the, the less, the more the ratio, or I guess you say 
the ratio of length over width is inversely proportional to the perimeter. Yeah yeah okay 
because as the length over width, the ratio itself gets closer to one which is the biggest it 
can be, the perimeter goes down so yeah.  

 
Figure 4. Formula 

In describing the shapes used to determine the smallest perimeter, S1 attempts to generalize 
the relationship between a tile-pattern’s length and width with regards to the tile-pattern’s 
perimeter. By doing so, S1 is moving beyond the particular cases concerning tile-patterns that 
use 7 and 8 tiles into the general structure for all cases, regardless of the number of tiles used. 
Although S1 explicitly refers to the smallest perimeter, his attempt to generalize also captures all 
cases for the largest perimeter.  
Case 2 

The students below are both female, S3 is in 7th grade and S4 is in 9th grade. Each student 
begins working independently, drawing Figures 5 and 6.  

 
Figure 5. One student’s work 
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Figure 6. Another student’s work 

 
S3: What do you? I said smallest is 12 and longest is 18. 
S4: Oh yeah. That's what I got too. But, yeah. I think that, I think that's, is that right? Let me, 

I'll just try something (Fig. 7). 

 
Figure 7. Student’s work 

 
 
S3: Yeah, lemme try a square (Fig. 8). 
        

 
Figure 8. Student’s work 

S4: Yeah. I think the largest amount is 18. 
S3: I'm good with that. 
S4: Alright. I think our original answer is justified, um, the largest is 18 units and the 

smallest is twelve units, right?  
 

The interviewer then asks S3 and S4 how they know that these are the largest and smallest 
perimeters. 

 
S4: Um, I just personally, I experimented and I found that in um most structures most of the 

tiles had to only um be exposing to, or, 'cause I kept trying to make it so that each tile 
was exposing three sides, but um, it didn't work out because you have to plonk the other 
tile somewhere. 

 
In trying to justify her results for Question 4, S4 talks about structural similarities found in the 
shapes of the various examples generated. The pair then moved onto Question 5, generating 
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several tile-patterns using 7 tiles. After S3 and S4 were in agreement that the smallest perimeter 
was 12 and the largest 16, the interviewer asked: “How do you know?” The response of S3 is 
below: 
 

S3: Um. So I tried a different shape than what I did before and it still came in as 12. I feel 
like if the, um, like if it's larger than I guess 6 maybe, it's going to be, 12 I feel like is the 
smallest it can go if there's only like 6 tiles, like 5 tiles, the smallest it can go is 12 for the 
perimeter and then the highest it can go is 2 plus there like, you do 7 plus 7, it's 14 and it's 
16, so like the perimeter would be 2 units more than what the number of tiles plus the 
number of tiles is. (refers to Fig. 9) 

 
Figure 9. Student tried a different shape 

 
The interviewer probes S3 further, asking if S3 is thinking about the largest perimeter in terms of 
any number of tiles; S3 replies: “yeah.” The following conversation between S3 and S4 ensued:  
 

S4: Then how would you split up the tiles when you're adding them together? 
 S3: What do you mean, like? 

S4: If, if we had 7 tiles, how would you add them together? How would you split them to add 
them together? 

 S3: To get a small perimeter or a large perimeter? 
S4: A large. 

 S3: I just did a line and... 
 S4: But, like applying your rule, how would you do it? 

S3: Um, I'm not really sure, but like it's the same thing as the 8 tiles. It came out to 18 for the 
largest and that's 2 plus 8 plus 8, which is 16, so it's 2 plus, that makes sense.  

  S4: So it's the number, the number of 
  S3: Tiles 
  S4: tiles times two 
  S3: Yeah. 
  S4: plus two? 
  S3: Yeah. 
  S4: Ok. 
 

Although S3 and S4 did not discuss the shape that would yield the largest perimeter, S3 
sought to generalize the numerical value of the largest perimeter, regardless of the number of 
tiles used. S4 then engaged S3 in a conversation clarifying how to use the “rule” to find the 
largest perimeter, which further developed the algebraic generalization.  

Discussion 
The Tile Task was designed with the goal of characterizing students’ use of examples in 

conjecturing and proving when engaged in a task of a geometric nature. As expected, students 



Mathematical Processes 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

578 

generated their own examples in an effort to answer various questions regarding the size of the 
perimeter. The spontaneous example-use served to highlight what came naturally to students 
(Aricha-Metzer & Zaslavsky, 2017) with a goal of building an intuition regarding proving or 
disproving a conjecture (Zaslavsky, 2017). In addition to this, and as suggested by Vinner 
(2011), students spontaneously began to investigate the similarities found in their examples in 
order to make general statements beyond the particular case being considered. Students in each 
of the four groups, at some point during the Tile Task, engaged in a form of generalization that 
went beyond the scope of the question asked.  This could reflect the intuitive nature of 
generalizations (Vinner, 2011).  

The findings also reveal that students encounter difficulty when shifting from pattern 
recognition to pattern generalization (Ellis et al, 2017). According to Ellis (2011), students are 
aided in this shift by sharing ideas with their peers. While individual students initiated the 
attempt to generalize, the shift from pattern recognition to pattern generalization occurred when 
students shared their initial ideas with their peers. In case 1, this is evident when both students 
began to discuss S1’s sketches in terms of exposed sides, which lead to an insight of how the 
length-to-width ratio can be used to determine the shape of a tile-pattern that results in the 
maximum or minimum perimeter. In case 2, S3 and S4 work individually (e.g. S3: “I tried… S4: 
“I just personally…”) and then share their results. Through this sharing, S3 reveals that she 
recognizes a pattern between the numbers of tiles used and the largest perimeter of the tile-
pattern. S4 propels the generalization forward by asking S3 how she would “split up the tiles” 
when adding them together. This discussion leads to a general algebraic formula that determines 
the size of the largest perimeter for a tile-pattern that uses a given number of tiles. Through a 
collaborative effort, each group volunteered a generalization related to Question 4 and Question 
5.  

It is also worth noting that while Question 4 and Question 5 discussed in the cases above 
could have been addressed by using information gained from Question 3, no group drew on this 
prior knowledge. Question 3 asked if the perimeter of a tile-pattern would increase, decrease, or 
remain the same following the addition of one tile. All three cases are possible depending on 
where the additional tile is placed: a) the perimeter decreases when one tile is added to a cavity, 
b) the perimeter increases when one tile is added to the end of another, and c) the perimeter 
remains the same when one tile is added to a corner. While only two of the four groups had 
concluded that the perimeter could decrease, all concluded that the other two cases were 
possible. However, none of the four groups used the information regarding the increased and 
constant perimeter when thinking about a shape that would yield the largest and smallest 
perimeters. The disjointed manner in which students advanced through the Tile Task warrants 
further exploration.  

Pedagogical Implications 
The results of this study have pedagogical implications with regards to example-based 

reasoning and student collaboration. This study shows how both can aid students with 
generalization. This study also points to the importance of engaging students in rich 
mathematical tasks. 
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VARIOUS MEANINGS A STUDENT USES FOR QUANTIFIED VARIABLES IN 
CALCULUS STATEMENTS: THE CASE OF ZACK  
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This study investigates one Calculus student’s meanings for quantifiers in Calculus statements 
involving multiple quantifiers. The student was asked in a two-hour long clinical interview to 
evaluate and interpret the Intermediate Value Theorem (IVT) and three other statements whose 
logical structure was similar to the IVT except for the order of both the quantifiers and their 
attached variables. Four different meanings for variables attached to universal and existential 
quantifiers emerged from his responses at various moments of the interview. In this paper we 
detail these four meanings with empirical evidence and discuss implications of our findings to 
research and teaching of quantified variables in Calculus statements.  

Keywords: Reasoning and Proof, Postsecondary Education, Cognition, Advanced Mathematical 
Thinking 

The purpose of this study is to investigate students’ mental processes associated with 
quantified variables. In particular, we focus on a Calculus student, Zack, and his quantifications 
for variables in the Intermediate Value Theorem (IVT) and similar statements as we answer the 
following research question: What are the meanings for quantified variables that a student uses 
when interpreting statements from Calculus contexts?  

Literature Review  
Quantifiers such as “for all” (") and “there exists” ($) may be used to state important 

definitions and theorems in Calculus. For example, the Intermediate Value Theorem (IVT), the 
Mean Value Theorem (MVT), and definitions of limits and continuous functions may be stated 
with multiple quantifiers (Bartle & Sherbert, 2000; Stewart, 2003). Several studies have reported 
various student tendencies to mistreat quantifiers when analyzing quantified statements involving 
either the universal or existential quantifier (Barkai, Tsamir, Tirosh, & Dreyfus, 2002; Epp, 
1999). For example, Barkai et al. (2002) reported that some participants of their study tended to 
suggest that a few examples are sufficient to prove that a statement involving a universal 
quantifier, in the form ‘For all x, P(x),’ where P(x) is a statement about x, is true. In the case of a 
statement involving an existential quantifier, in the form ‘there exists x such that P(x),’ students 
also rejected the notion that one example would suffice for proving such a statement (Tirosh & 
Vinner, 2004). One such explanation for why students tend to have these particular tendencies in 
their interpretations of quantified statements is that they may confound colloquial language with 
mathematical language (Epp, 1999). For example, colloquially we may state that “Every book on 
the bookshelf is French,” and we would assume that there is at least one French book on the 
specified bookshelf. However, in mathematics, we could consider the case where the statement is 
vacuously true. Colloquial language may explain some student difficulties with quantification, 
but there may be other reasons why these tendencies exist that have yet to be noted in the 
literature that may be explained by classifying students’ meanings for quantified variables.  
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Theoretical Perspective 
In this section, we define some terms that we will use to describe one student’s meanings for 

quantified variables. Quantifiers are phrases (e.g., “for all” and “there exists”) used to indicate 
the number of elements, x, in the domain of discourse satisfying a predicate, P(x). For example, 
consider the mathematical statement, “Every isosceles triangle x has congruent base angles.“ 
This statement is a quantified statement where the phrase “every” is a quantifier for the elements 
x within the domain of discourse, which is the set of isosceles triangles, satisfying the predicate, 
“x has congruent base angles.” We refer to x as a quantified variable. We use the term quantify to 
mean that an individual is mentally searching for (or anticipating searching for) a specific 
number of, or quantity of, values of the variable x in the domain of discourse that satisfy the 
predicate P(x). By quantification, we refer to an individual’s mental search processes (or 
anticipated search processes) for a specific number of elements that satisfy the predicate.  

Our definitions for the terms quantifying and student quantification align with constructivist 
views of meaning, as each individual constructs and reinforces his own quantifications through 
his own experiences (Thompson et al., 2014). We situate these definitions from a constructivist 
perspective partially because students may not share conventional meanings for quantifiers in 
mathematics (Sellers, Roh, & David, 2017; Dubinsky & Yiparaki, 2000; Epp, 1999). Student 
quantification can be regarded as a meaning for quantifiers as described by Thompson et al. 
(2014) because quantification is comprised of an individual’s mental actions or schemes that are 
easily triggered as a result of the person’s understanding (or assimilation to a scheme). In 
particular, our definition for student quantification emphasizes that a student quantifies in ways 
that he deems necessary based on his own interpretation of a given statement, which also aligns 
with a constructivist view of meaning. Thus, when we refer to a student’s meanings for a 
quantified variable, we refer to a student’s own constructed quantification for a specific variable 
in the given statement from the student’s perspective. 

Methodology 
We conducted a two-hour long clinical interview (Clement, 2000) with a Calculus student, 

whom we call Zack, in the spring of 2016. Zack had completed a first semester Calculus course 
and was currently enrolled in a second semester Calculus course at the time of the interview. We 
report Zack’s interview because of the various meanings for quantified variables that we found 
across different moments of his interview and our ability to triangulate his words, gestures, and 
markings on graphs. 
Tasks 

We asked Zack to interpret and evaluate several complex mathematical statements, shown in 
Table 1. We did not present Zack with the symbolic representations of the conclusion of each of 
the statements in Table 1, but we provide these representations in this paper to display the logical 
differences in the statements. Statement 2 is the IVT and the only true statement. The other three 
statements reorder the quantifiers and variables in the IVT, but maintain the hypothesis. 

Table 1: Statements Presented in Clinical Interviews 
Statements Symbolic Representations 

Statement 1 (S1): Suppose that f is a continuous function on the closed 
interval [a, b], where f(a)¹ f(b). Then, for all real numbers c in (a, b), 
there exists a real number N between f(a) and f(b), such that f(c)=N. 

"c($N f(c) = N) 
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Statement 2 (S2): Suppose that f is a continuous function on the closed 
interval [a, b] where f(a)¹ f(b). Then, for all real numbers N between 
f(a) and f(b), there exists a real number c in (a, b), such that f(c)=N. 

"N($c f(c) = N) 

Statement 3 (S3): Suppose that f is a continuous function on the closed 
interval [a, b], where f(a)¹ f(b). Then, there exists a real number N 
between f(a) and f(b), such that for all real numbers c in (a, b), f(c)=N. 

$N("c f(c) = N) 

Statement 4 (S4): Suppose that f is a continuous function on the closed 
interval [a, b] where f(a)¹ f(b). Then, there exists a real number c in 
(a, b), such that for all real numbers N between f(a) and f(b), f(c)=N. 

$c("N f(c) = N) 

 
We first presented each of the statements shown in Table 1 one at a time and asked Zack to 

explain in his own words the meaning of each statement and also asked him to determine if each 
statement was true or false. Zack was asked to justify his evaluations and we allowed Zack to 
draw his own graphs to explain his thinking about his evaluation of each statement. After Zack 
evaluated all four statements, we provided him with several graphs and asked him if he could use 
the graphs to support his evaluations of each of the four statements. We allowed (and often asked 
Zack to) highlight the variables in a given statement on the given graph after he referenced them. 
These markings as well as his gestures of sweeping or pointing on the graphs were used in the 
data analysis as an indicator of characteristics for his meanings for the quantified variables in 
that statement in a given moment. 
Data analysis 

Our analysis was conducted in the spirit of grounded theory (Strauss & Corbin, 1998). The 
use of grounded theory allowed new categories to emerge from our data that have not yet been 
described in the literature regarding students’ meanings for quantifiers. We noticed that Zack’s 
meanings for a particular quantified variable with the same statement changed at different 
moments in the interview. Thus, we also employed Thompson et al.’s (2014) construct of 
“meanings in the moment” to analyze Zack’s meanings for quantified variables. We marked a 
new moment when Zack was presented with a new interview prompt or task, when he changed 
his evaluation of a statement, or if he provided a different meaning for a quantified variable 
while working with the same statement. Every time we found a new meaning for quantified 
variables in a moment, we added this new meaning into our overall coding system. We also 
compared Zack’s meanings against other students’ meanings we interviewed. From this process, 
similarities and differences in student meanings for quantified variables were refined into four 
categories. Finally, using the four meanings for quantified variables, we re-analyzed all student 
interviews and refined our previous coding for each student moment as necessary to ensure that 
these categories were reliable for all moments, as well as with other students.  

Results 
We found Zack used four different meanings for quantified variables, which we call MQ1-

MQ3 and NQ. Evidence of these meanings came from moments across different moments of 
Zack’s interview. In the subsections that follow, we explain each of the four meanings for 
quantified variables and provide examples from different moments of the interview when Zack 
used each of the four meanings. 
MQ1: Checking the predicate holds for at least one element 

We found that in some moments, Zack described his imagined process of checking the 
predicate of the statement for at least one element of x. We classified his meaning as MQ1 
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whenever he appeared to strategically search for at least one value of x, within his domain of 
discourse, that satisfies the predicate.  

Although MQ1 is consistent with the mathematical convention for existentially-quantified 
variables, in the following moment, Zack used MQ1 for a variable attached to a universal 
quantifier in the given statement. Zack quantified the variable N in Statement 2 ("N($c f(c) = N)) 
as follows: “I have read the first part of the second sentence, ‘for all real numbers N between f(a) 
and f(b).’ So that made me think, or realize, that there exists a number N between my output 
variables f(a) and f(b) on this curve.” Although Statement 2 contained the phrase “for all N,” 
Zack’s interpretation indicates that he was looking for (at least) one N-value as he stated that, 
“there exists a number N.”  
MQ2: Checking the predicate holds for exactly one element 

In some other moments, Zack emphasized that he was looking for exactly one value 
satisfying the predicate. We use MQ2 to refer to Zack’s meaning when he appeared to mentally 
search (or suggested he imagined searching) through every element in the domain of discourse to 
ensure that exactly one value satisfies the predicate. MQ2 follows the mathematical convention 
for variables attached to “there exists a unique.” However, as we see in the moment below, Zack 
used MQ2 despite the absence of the word “unique” in the provided statements. 

We highlight one moment with Zack where he appeared to use MQ2 for the variable N in 
Statement 4 ($c("N f(c) = N)). Zack first stated that the graph in Figure 1 was “still a function 
because [Figure 1 is] still in a parabola shape.” He then labeled f(a) and f(b) on the graph, and 
then proceeded to chose a specific value of c, drew the vertical line shown on the graph, and 
wrote f(c)=N at two different points on the curve. Next, he concluded that Statement 4 was false 
for this graph and explained his reasoning in the following transcript.  

 
1 Zack: I don’t know if I would use this graph to prove this 

statement […] I’m getting two output variables from the c. 
So if it was […] a regular parabola, I would say […] If I 
choose c in between a and b, I am only gonna get one N. 
[…] But […] I get two outputs for a c. 

 

 
Figure 1. Zack’s markings on 
provided graph for S4. 

2 
3 
4 
5 

Zack’s explanation above suggests that he anticipated finding one value of N (Lines 3-5). 
Yet, he found two specific N-values that satisfied the predicate for his chosen c-value (Lines 2, 
5), which led him to complete his search process for exactly one N-value that satisfies the 
predicate. Zack evaluated Statement 4 as false because more than one element of N satisfied the 
predicate for the given graph. Zack ultimately determined that this statement was false for this 
graph because there was more than one N-value for his chosen c, and thus, we claim that Zack 
utilized MQ2 for N in Statement 4 in the moment above. 
MQ3: Checking the predicate holds for all elements  

In contrast to the moments in which Zack employed MQ1 or MQ2, we found some moments 
when he described his imagined process of checking the predicate f(c)=N for all values of either 
c or N. We classified this type of student quantification as MQ3. 

We classified Zack’s meaning for a quantified variable as MQ3 whenever we observed the 
following behaviors: (1) he chose a value or values from his own identified domain of discourse 
and determined whether or not his chosen value(s) satisfy the predicate and (2) he repeated (or 
imagined repeating) checking the predicate for all elements within his domain of discourse.  
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MQ3 is akin to the mathematical convention for universally-quantified variables. However, 
students may use MQ3 for existentially-quantified variables, as shown in the moment with Zack 
below. In this moment, we focus on Zack’s quantification for the variable c in Statement 4 
($c("N f(c) = N). Even though c is an existentially-quantified variable in the given statement, 
Zack’s quantification for c does not follow convention in this moment. 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Zack: If I were to input c, whatever number c may be, and that's 
just arbitrary. By choosing that number, I know that I am 
gonna get N […] So, in this case c equals -1 (marks c=-1 on x-
axis) […] 

Int: Is there any particular reason why you picked this c […]? 
Zack: No. I could have […] represented c as 2 (points to the 

number 2 on the x-axis) […] I would say c only represents one 
input-output relation at one time. […] I think what I am trying 
to say is I can choose […] any number between a and b for an  

 
Figure 2. Zack’s markings on 
provided graph for S4.  

10 
11 
12 

input variable, and that could be c. So yeah if I choose again if I choose c to be -1 then I know 
that my N would be this number right here (points to N on the curve). If I represent any other x 
number to be c, then that output would have to be unique to that input. 

The transcript above indicates that Zack’s domain of discourse was the interval (a, b) (Lines 
9-10) and he checked the predicate for a specific value of c in his domain of discourse (Lines 2-
3). Initially, he checked the predicate for just this value (Lines 2-3), but also referred to his 
choice of c as arbitrary (Line 2). Although Zack chose to check one specific value of c, he did 
not claim that this was the only value for c that could have been chosen. Instead, he accepted 
multiple values of c in his consideration of the predicate (Line 6). Furthermore, Zack also used 
words such as whatever number c (Line 1) and any number between a and b (Line 9), which 
indicate that Zack considered not only multiple values of c, but all the values of c within his 
chosen domain of discourse, (a, b). He also discussed his stipulations for checking the predicate 
for any value for c (Line 8). Since Zack explained the satisfaction of the predicate for any other 
values of c (Line 11), we conclude that his language suggests an imagined search through all 
values of c, and thus, we conclude that he quantified c with MQ3.  
NQ: No quantification 

Thus far, we have detailed several different ways that Zack quantified variables. In some 
other moments, Zack did not quantify a variable in the given statements (see Table 1). 
Regardless of the presence of the quantifier words in a statement, in these moments Zack focused 
on certain attributes of x other than the quantity and often attended to properties of a variable 
without attending to the number of elements in the domain of discourse. Indeed, Zack did not 
search for a specific number of elements of x that satisfied the predicate in these moments. We 
refer to this type of student quantification (no quantification) as NQ. We illustrate characteristics 
of NQ from a moment in which Zack first analyzed Statement 3 ($N("c f(c) = N), without being 
given any graphs. In this moment, we highlight Zack’s quantification for both variables c and N. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

Zack: If I draw this line…I am now going to write c in between these two [a and 
b] such that for a real number c in interval (a, b), if I put […] c into the 
function, […] then I get my number N. So, right here (marks N on the line). 
[…] I will get my output variable N. 

Int: […] In your own words how would you explain this? […] 
Zack: So I know that I can only work between my x values of a and b on a closed 

interval. […] I know that c lies in the interval between a and b. So I am just 
gonna put it right in the middle. If I put this c-value into the function, I get 
f(c), which is equal to my number N in between f(a) and f(b). 

Figure 3. Zack’s 
hand-drawn graph 
for S3.  

 
Zack stated that he knew that c has to be in the interval (a, b) and also stated that N was 

between f(a) and f(b) (Lines 2, 9). Thus, he recognized a domain of discourse for c and N, 
respectively. However, Zack does not refer a specific number of c-values or N-values that he is 
checking to ensure that f(c)=N. Rather, he stated that he was drawing his graph in such a way that 
his c would yield N (Lines 1-4). We take Zack’s words as indicative that he is interpreting the 
predicate and drawing his graph in such a way to ensure that he gets N-values that satisfy the 
predicate, f(c)=N. Thus, we conclude that Zack used NQ for both c and N in this moment. 

Conclusion 
Zack used four different meanings for quantified variables throughout his interview, which 

we refer to as MQ1-MQ3 and NQ. MQ1-MQ3 are akin to mathematical conventional uses of the 
existential, existential unique, and universal quantifier meanings, respectively. Zack also 
exhibited one other meaning for quantified variables, which we categorized as “No 
quantification” (NQ). NQ is not characteristic of any conventional mathematical meaning for 
quantified variables, and we conjecture that in moments where Zack used NQ, he lacked a 
mental search for a search for a number of elements of either variable c or N that satisfied the 
predicate. In these moments where he used NQ, he appeared to only interpret the meaning of the 
predicate instead of checking the validity of the predicate.  

The four categories of meaning are highlighted in Table 2. In this table, we provide 
descriptions of evidence that we considered in our classifications and the mental actions, which 
we theorize comprise each meaning for quantified variables. We utilize x as an arbitrary 
quantified variable and X as a generic domain of discourse in Table 2, as these meanings applied 
to either variable c or N. We categorized Zack’s meaning for a quantified variable based on 
crucial observable behaviors that distinguished his meaning from another meaning, even if he did 
not exhibit all observable behaviors listed. These crucial behaviors are italicized in Table 2. 

Table 2: Student Meanings for Quantified Variables 
Meaning Mental Actions Observable Evidence 

MQ1: Checking 
the predicate 
holds for at least 
one x in X  

1. Identify the domain of discourse, 
X. 
2. Choose (or imagine choosing) one 
value (x0) for x from X, then check if 
the predicate is satisfied by x0 (i.e. 
P(x0) is true). 
3. Repeat (or imagine repeating) this 
mental action until at least one value 
of x in X is found that satisfies the 
predicate. May complete without 
exhausting all values of x. 

• Marks off the domain of discourse, X.  
• Marks one value of x, x0, in X & explains 

or illustrates whether or not this value of 
x satisfies the predicate.  

• May mark more values of x & may 
explain or illustrate that at least one 
value of x in X satisfies the predicate.  

• Uses phrases such as there is, some, or 
at least one to refer to the values of x in 
X that satisfy the predicate. 
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MQ2: Checking 
the predicate 
holds for exactly 
one x in X 

1. Identify the domain of discourse, 
X. 
2. Choose (or imagine choosing) one 
value (x0) for x from X, then check to 
determine if the predicate P(x) is 
satisfied by this value of x. 
3. Repeat (or imagine repeating) step 2 
until all the elements of x in X are 
exhausted to ensure that exactly one 
value of x in X satisfies the predicate. 

• Marks off the domain of discourse, X.  
• Marks one value of x, x0, that satisfies 

predicate. 
• Claims that the value, x0, is the only 

value that satisfies the predicate. 
Explains or illustrates that other elements 
of x do not satisfy the predicate. 

• Uses phrases such as there is exactly one 
to refer to the values of x in X that 
satisfy the predicate. 

MQ3: Checking 
the predicate 
holds for all x in 
X 

1. Identify a domain of discourse, X. 
2. Choose one value (x0) for x from 
X, then check if the predicate is 
satisfied by x0 (i.e. P(x0) is true). 
3. Repeat (or imagine repeating) step 
2 until all the values of x in X are 
exhausted. 

• Marks off the domain of discourse, X.  
• Marks one value of x, x0, in X & explains 

or illustrates whether or not this value of 
x satisfies the predicate.  

• Explains or illustrates that the predicate 
holds for every x. One possible 
illustration may be sweeping along X. 

• Does not use the phrases there is, there 
exists, or for some, but may use words 
all, every, each, any or arbitrary to refer 
to values of x in X that satisfy the 
predicate. 

NQ: No 
quantification 

1. Identify the domain of discourse, 
X. 
2. Choose (or imagine choosing) one 
value (x0) for x from X & interpret 
predicate P(x) using the chosen x0. (i.e. 
P(x0) means…) 

• Marks off the domain of discourse, X.  
• May mark a value of x in X. 
• Interprets the given predicate P(x) in 

their own words, but does not explain 
how many values of x satisfy P(x). 

 
For all four categories, including MQ1-MQ3, Zack often used meanings for quantified 

variables in unconventional ways, i.e. he used these meanings regardless of the given quantifier 
in the given statement. For example, Zack quantified a variable with a meaning that is more akin 
to a mathematical meaning for a universally-quantified variable even though the variable is 
existentially quantified in the given statement and vice versa in different moments.  

Discussion 
All four meanings for quantified variables that emerged from our study are applicable to 

analyze students’ meanings for quantified variables in other mathematical contexts. Our 
discovered four meanings may explain findings in previous research, and they have potential to 
guide teaching in many content domains.  

The four categories of meaning that emerged in this study have explanatory power for 
previous research findings. Students’ reasoning from a given statement may not be perceived as 
erroneous if that reasoning is based on a different interpretation of the variable given in the 
statement. As previously mentioned, prior research has found that students may determine that a 
few examples are sufficient to prove a universally-quantified statement (Barkai et al., 2002). This 
behavior could be explained if the student interpreted the given universal statement with MQ1, 
checking the predicate for at least one value of x in X. If the student perceives that the statement 
is implying that there should be at least one x that satisfies the predicate, then this meaning 
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explains their acceptance of few examples to prove the statement true. As another example, other 
studies have noted that some students state that one example is insufficient for an existentially-
quantified statement (Tirosh & Vinner, 2004). This type of reasoning is not an erroneous 
argument if a student’s current meaning for x is MQ3, searching through all elements of x to 
ensure that all values of x satisfy a given predicate. Thus, if a part of a quantified statement leads 
a student to believe that a variable should be quantified in a way different than intended, then 
students’ arguments may also deviate from convention.  

These categories for student meanings for quantified variables may also be used by a variety 
of undergraduate mathematics teachers to aid them in characterizing their own students’ 
meanings. All undergraduate mathematics courses involve quantified statements, and as such, all 
undergraduate mathematics instructors should be attuned to students’ types of quantification. 
Beyond having a variety of meanings, different parts of a mathematical statement may cause 
students to quantify in unconventional ways. Students may even skip over quantifier words 
altogether and interpret pieces of these statements rather than quantifying variables. Thus, we 
view one of the primary uses of our findings as a tool for educators to identify students’ 
meanings and address their current meanings through questioning and activities that promote 
reflection of differences in types of quantified variables. Our findings suggest that quantification 
as a mental process for students is much more complicated than researchers and teachers may 
expect, and Calculus students in particular could benefit from learning opportunities that would 
help them confront their various meanings for quantified variables. We hope that teachers and 
curriculum writers will consider thoughtful questions and activities that will give students an 
opportunity to become aware of their meanings and address inconsistencies in their meanings for 
quantified variables.  
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In this report, we present an analysis of two prospective secondary mathematics teachers’ 
generalizing actions in quantitative contexts. Specifically, we draw from a teaching experiment 
to report how Lydia and Emma engaged in different generalizing processes for the same task. 
Based on these differences, we found Lydia’s generalizing actions (i.e., coordinating quantities) 
to be a more productive generalization than Emma’s (i.e., slopes of tangent lines). The former 
was extendable to a new case, instance, or situation, whereas the latter was constrained to a 
specific representational system.  

Keywords: Cognition; Algebra and Algebraic Thinking; Design Experiment 

Several researchers have illustrated that teachers’ covariational reasoning is critical to 
supporting their students in understanding major pre-calculus and calculus ideas (Ellis, 2007a; 
Confrey & Smith, 1995; Thompson, 1994; Thompson, 2011). Moreover, Ellis (2007a) reported 
that quantitative reasoning is an integral part of students constructing productive and global 
generalizations. In this paper, we characterized two pre-service teachers’ (PSTs’) generalizing 
actions during a teaching experiment focused on graphing and modeling covariational 
relationships. We give specific attention to how two PSTs’ generalizing actions differed when 
reasoning about the rate of change between the distance a rider has traveled (i.e., arc length) 
around a Ferris wheel and the rider’s vertical distance from the horizontal diameter of the Ferris 
wheel (i.e., height). More specifically, this paper reports (a) the generalizing actions of two 
PSTs, one which coordinated quantities, and one which focused primarily on steepness of 
tangent lines and (b) implications of those generalization actions on their later activities. 

Theoretical Framework 
We investigated PSTs’ generalizing actions about relationships between quantities in 

dynamic situations. We use quantity to refer to a conceptual entity an individual constructs as a 
measurable attribute of an object (Thompson, 2011). Relatedly, Ellis, Tillema, Lockwood, and 
Moore (2017) introduced a generalization framework (Table 1) involving three major forms of 
students’ generalizing—relating, forming, and extending—by building on Ellis’ (2007b) 
taxonomy of generalizations, in which students’ generalizing actions were viewed as different 
than students’ final statements of generalization. In this paper, we are using this framework to 
illustrate two PSTs’ generalizing actions by situating “generalization” within the perspective of 
the learner and with sensitivity to their reasoning about quantities. In other words, we do not take 
mathematical correctness as a necessary criterion of generalization, instead focusing on the 
process of how individuals identify their own patterns/similarities determined across cases.  

Ellis et al.’s (2017) framework has two major forms of generalizing—intra-contextual forms 
and inter-contextual forms—in which students’ generalizing actions occur within one context, 
task, or situation in the former and across situations, contexts, or tasks in the latter. Intra-
contextual forms of generalizing include students searching for and identifying similar elements, 
patterns, and relationships across cases, numbers, or figures in order to form a similarity or 
regularity and extend it to new cases, instances, situations, or scenarios. Inter-contextual forms of 
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generalizing include students forming similar relationships across contexts, problems, or 
situations and transfer. In this study, we illustrate several intra- and inter-contextual 
generalizations and their relationships to forms of abstraction presented in the work of two PSTs. 

Table1: Ellis et al. (2017) generalization framework 
Intra-contextual forms of generalizing Inter-contextual 

Forming Extending Relating 
Relating Objects 
• Operative 
• Figurative 
• Activity 

Search for Similarity or Regularity 
Identify a Regularity 
• Extracted 
• Projected 

Isolate Constancy 

Continuing 
Operating 

• Near 
• Projection 

Transforming 
• Constructing a 

Quantity 
• Recursive Embedding 

Removing Particulars 

Relating Situations 
• Connecting Back 
• Analogy Invention 

Relating Ideas or 
Strategies (Transfer) 

Methods 
The data we present and analyze is from a teaching experiment (Steffe & Thompson, 2000) 

conducted over the course of a spring semester at a large public university in the southeastern 
U.S. with two PSTs. Our goal in the teaching experiment was to investigate the PSTs’ ways of 
thinking and create models of their mathematics. Specifically, we explored how PSTs conceived 
of situations quantitatively and represented particular quantitative relationships under particular 
coordinate system constraints. In this paper, we focus on Lydia and Emma, who, at the time of 
the study, were two junior undergraduate students enrolled in both content and pedagogy 
courses. They had completed at least two additional courses beyond a traditional calculus 
sequence with at least a C as their final grade. 

Lydia and Emma participated in 12-videotaped sessions (interview and teaching sessions) 
and we digitized their written work. Each session was approximately 1-2 hours in length. The 
second author served as the teacher-researcher (TR), and at least two project members observed 
each teaching session. We analyzed PSTs observable and audible behaviors (e.g., talk, gestures, 
and task responses) in details by relying on the generative and axial methods (Corbin & Strauss, 
2008) combined with conceptual analysis techniques (Thompson, 2008). We drew on Ellis et 
al.’s (2017) analytic framework for categorizing students’ generalizing actions and reflection 
generalizations in order to identify forms of generalization and abstraction. 

Analysis and Findings  
In this section, we analyze Lydia and Emma’s activities during two tasks—Taking a Ride 

Task and Circle Task—from the teaching experiment to illustrate their generalizing actions and 
implications of those generalizing actions. For the Ferris wheel task (Figure 1a), we draw 
attention to how Lydia and Emma used the same verbal statement to describe their identified 
regularity, but these verbal statements signified different reasoning and generalizing actions. 
Then, for the Circle Task (Figure 1b), we show implications of those generalizing actions for 
Emma and how those generalizing actions influence Emma’s activity in a later session.  
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(a)     (b) 

Figure 1. (a) Ferris Wheel and (b) simplified version used during the Circle Task. 

Taking a Ride Task 
The Taking a Ride Task occurred during the first session of the teaching experiments. The 

PSTs watched an animation of a Ferris Wheel rider that was indicated by a green bucket (see 
Figure 1a) who travels at a constant speed counterclockwise starting from the 3 o’clock position 
(Desmos, 2014). Then, we asked them to describe how the height of the rider above the 
horizontal diameter of the Ferris wheel changes in relation to arc length it has traveled. Both 
Lydia and Emma described the height as increasing less and less for the first quarter of a 
rotation. However, their generalizing actions entailed marked differences, which we will 
illustrate below. 

Lydia’s generalizing actions. In the Taking a Ride Task, Lydia, first, identified a regularity 
in directional changes of height with respect to the arc length it traveled (i.e., height is increasing 
or decreasing as the arc length increases). In other words, we inferred from her activity she 
identified a predictable stable feature of the riders’ height from horizontal diameter in relation to 
arc length it traveled for each quarter turn. We note that, for the second quarter turn, she 
continued her generalizing actions with a minor accommodation. That is, she did not fully extend 
her identified regularity of directional changes of height in relation to arc length to the next case 
(i.e., second quarter turn); she conceived that the height began to decrease as the arc length 
continued to increase.  

The TR then asked Lydia if she could provide more information—in addition to her 
observation that the arc length increases and the height increases during that first quarter—about 
how the height and arc length change in relation to each other. Lydia used the spokes of the 
Ferris wheel (i.e., each of the black bars connecting the center of the wheel to its edge) to 
partition the Ferris wheel into equal arc lengths. This partitioning activity was to become an 
important tool for Lydia to establish a way operating with respect to identifying how height 
changes in relation to arc length. 
 

   
        (a)     (b)    (c) 

Figure 2. Lydia engaging the Ferris wheel task. 
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After Lydia used the spokes to create equal partitions in arc lengths (see the green dots in 
Figure 2a), she drew associated heights (see the green bars in Figure 2a). Then, with support 
from the TR’s questioning, Lydia constructed successive amounts of change in height 
corresponding to successive equal changes in arc length (see Figure 2b, circled in blue). That is, 
Lydia’s partitioning activity led her to construct a quantity, namely change in height. The TR 
next asked Lydia if she noticed anything to describe the relationship between height and arc 
length in the first quarter of trip. The following excerpt demonstrates her response.  

Lydia: Um, the distance from A to B and then B to – the distance from – Okay, so this is A, 
B, and C [labels as shown in Figure 2c], from B to C the distance is less than from A to 
B.  

TR: So what distance is less?  
Lydia: Um, from point B to C [motions along arc], um, that distance [indicates circled 

vertical distance from Figure 2c] from – is less than the – from A to B [unclear if 
pointing along arc or along vertical distance], I feel like.  

TR: Like when you're saying distance, what do you mean? Do you mean like –  
Lydia: Vertical distance. 
TR: Vertical distance, okay, gotcha.  
Lydia: Yes. And then also if we were to say at the top this is D [labels pi/2 on circle d], then 

from C to D [motions along arc then vertically down to the center] is less than B to C 
[unclear motion].  

We inferred from her activity that she was establishing a way of operating that involved the 
construction of a new quantity (i.e., change in height) and associated partitioning activity. With 
that quantity constructed, she was then able to search for regularity or pattern in that quantity’s 
variation (e.g., decreasing increases). After conceiving that change in height decreased along 
with those equal partitioning in arc length as shown in Figure 2, Lydia concluded that “as the arc 
length is increasing... [the] vertical distance from the center is increasing ... but the value that 
we’re increasing by is decreasing.” We interpreted this to indicate that Lydia had identified the 
regularity in how height changes in relation to arc length in the first quadrant. To say more, we 
inferred that she extracted this regularity because she identified a common feature of a change in 
one quantity (i.e., height is increasing less and less) across multiple cases relying on a change in 
another quantity (i.e., with respect to equal increase in arc length). We did not have evidence that 
she could generalize her regularity to any size of equal partitions (i.e., a projected regularity). 

Emma’s generalizing actions. In the Taking a Ride task, Emma began similarly to Lydia. 
She initially drew several consecutive vertical line segments (see red line segments in Figure 3) 
and discussed the directional variation of these segments with respect to traveling along the arc. 
Thus, Emma also identified a regularity in directional changes in the height of the rider (i.e., the 
height is increasing or decreasing). She specifically explained, “you're going to be increasing 
your heights or your distances from the center until you get to 3 pi over 2, and then, you're going 
to go back to decreasing your heights.” As such, she made a minor accommodation to her 
identified regularity in the directional change in height with respect to the arc length for the first 
quarter rotation in order to extend it to other quarter turns. 

Noticing that Emma used the phrase “slowly increasing” to describe the height of the rider 
above the horizontal diameter, the TR asked Emma to explain more. Emma drew a blue line 
segment from the 12 o’clock to the 3 o’clock position (see Figure 3) and responded, “there isn't 
like a linear trend that the lines [the vertical red segments in the Figure 3 representing the 
different heights of the rider along the ride] follow…. Like the lines [referring to the vertical red 
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segments in Figure 3] don't increase at the same rate.” We inferred that she used an analogy 
invention by creating a new situation (i.e., a linear trend by drawing a linear line) with the 
purpose of comparing and contrasting the two situations in order to show the increase in height 
was not linear. Although her associating the current situation with an analogous situation did not 
provide an explanation of why the height increased “slowly” over the given interval, she 
determined the increases in height were not constant or “linear”. 

 
Figure 3. Emma engaging the Ferris wheel task.  

Continuing, Emma explained, “The lines increase … more steeply, and then, they slowly 
increase less and less [makes a curved shape with her hand] as you reach that inflection point at 
the top [referring to the point at the 12 o’clock position].” For the second quarter, she said, “They 
[i.e., the heights] start decreasing at a slower rate and then begin to decrease at a faster rate as 
you reach pi.” It is important to note that, in contrast to Lydia, we did not have evidence that 
Emma coordinated the quantity of arc length beyond imagined movement in order to investigate 
how the increase or decrease in height changes. Although she imagined the movement at the 
beginning as height increasing steeply, her overall reaction to the first quarter in height was 
“increasing less and less”, which was akin to Lydia’s statement. The underlying generalizing 
activity of this statement, however, was quite different than that of Lydia’s, which we illustrate 
below.  

The TR returned Emma’s attention to the first quarter turn and asked her to discuss how she 
saw the height increasing at a steeper and then slower rate. She referenced “the concavity” of the 
Ferris wheel in the first quarter, saying, “Well, you can see that the concavity of the – of like, I 
guess the arc length, the line that follows the circle…”. An explanation for Emma’s actions is 
that they were influenced by a prior context or information (i.e., transfer) such as presented 
relationships between the concavity of a curve and classifications of rates of change (e.g., 
concave down means increasing or decreasing at a decreasing rate). 

As Emma continued, she transitioned to comparing the steepness of tangent lines that she 
drew along the Ferris wheel, starting at the 3 o’clock position and ending at the 9 o’clock 
position, as seen in Figure 4a. She said,  

…like, if these are the tangent lines showing the slopes and then you start to hit a slope that's 
more horizontal [moves to the top of the circle and draws tangent lines] as you reach your 
maximum point where you start decreasing … more steeply as you get back down, so like 
you – like these are horizontal [motioning to the top of the wheel]; these are vertical 
[motioning to the left side of the wheel]. So, you can see the steepness of your increasing or 
decreasing…. 
Here, Emma compared the steepness of tangent lines, concluding the tangent lines were 

becoming horizontal or less steep in the first quarter turn and they were getting vertical or steeper 
in the second quarter turn. She related these features to the height increasing at a decreasing or 
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increasing rate. Similar to her reference to concavity, an explanation of her actions is that they 
were influenced by prior knowledge (i.e., transfer) relating the slope of lines tangent to a 
function graph to classifications of rate. Thus, by means of the generalizing action of the 
transfer, Emma identified a regularity in the steepness of tangent lines as the rider rotated around 
the Ferris wheel. We inferred that Emma began to identify regularity by extracting a few cases 
(i.e., multiple tangent lines that were getting steeper/horizontal, see Figure 4a), and then she 
immediately described a predictable feature of the entire interval, which was a projected 
identification of a regularity.  

      
(a)                  (b) 

Figure 4. (a) Emma draws the tangent lines; (b) Emma identifies the amount of change in height. 

It is important to note that when we asked Emma to talk about height increasing slowly (or at 
a decreasing or increasing rate), she persistently described tangent lines or some other idea 
vaguely connected to the tangent lines (e.g., ambiguous values of derivative functions as the 
values of the slope of tangent lines). In fact, when the TR guided her in identifying amount of 
changes in height in relation to each equal arc length increments along the Ferris wheel as shown 
in Figure 4b, she neither spontaneously noted that changes in height were decreasing, nor did she 
relate the changes in height to her slope of tangent lines. She instead reverted back to discussing 
the steepness of tangent lines and associating those features with increasing or decreasing “rates” 
of height. We inferred that her image of tangent lines and their steepness has little to do with 
explicitly coordinating changes in height with systematic changes in arc length. 
The Circle Task 

In the Circle Task, which occurred during a later teaching experiment session, PSTs watched 
an animation of a point moving along the circle and without any physical context like an 
amusement park ride (see Figure 1b). The TR asked them to graph the relationship between the 
height of the point above the horizontal diameter of the circle (i.e., the red segment in Figure 1b) 
and the arc length (i.e., the blue arc in Figure 1b). In this section, we only provide Emma’s data, 
because she engaged in generalizing actions including both coordinating quantities (i.e., Lydia 
above) and the steepness of the tangent lines (i.e., Emma above) in order to show how the former 
generalization enabled her to accommodate to new situations; however, the latter generalization 
did not. In addition, due to space constraints and because her activity was consistent with that 
described above, we will not describe Emma’s generalizing actions in a great detail. Therefore, 
we will only provide implications of those two different generalizing actions as it relates to 
Emma considering a new situation. 

Emma graphed the relationship between quantities on a Cartesian coordinate system in which 
the vertical axis was labeled “blue” and the horizontal axis was labeled “red” (Figure 5a). She 
then described how the red segment changed in relation to the blue arc by coordinating 
quantities. She equally partitioned the arc length on the horizontal axes and determined the 
corresponding changes in the red segment and indicated those changes by orange line segments 
(Figure 5a). She explained, “… over the same arc lengths, my heights are, um, increasing but at a 
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decreasing rate, so like, the rate that they're increasing is less and less each time.” Verbally, this 
is nearly the same statement that she used in the Taking a Ride task in order to refer to how the 
height changes, but in this case it stemmed from her coordinating quantities and their changes. 

 
(a)      (b) 

Figure 5. Emma’s graphs in two differently-oriented Cartesian coordinate system. 

Next, we asked Emma to graph the same relationship in a differently-oriented coordinate 
system (i.e., the vertical axis labeled as red and horizontal axis labeled as blue). She graphed the 
relationship as shown in Figure 5b. Importantly, she identified and illustrated (Figure 5b) that the 
amount of change in red was decreasing with sensitivity to the alternative orientation of the 
coordinate axes. Because Emma had briefly mentioned comparing tangent lines at the onset of 
the problem, we raised this idea in order to determine if she connected it to her partitioning 
activity. Referring to the graph in Figure 5b, she explained, “it's increasing at a decreasing rate, 
so like, the slope follows this change.” She further explained that the slopes became more 
horizontal and she estimated the slope of the tangent lines in each increment by estimating the 
vertical change. In this case, her generalizing activity relative to the steepness of the tangent lines 
was compatible with her generalizing activity relative to coordinating quantities. 

Turning to Figure 5a, Emma conceived the slopes of the tangent lines to indicate something 
different than that from coordinating quantities. She claimed the red quantity “is increasing at a 
decreasing rate”, when considering the orange line segments (Figure 5a). She also claimed, 
“Slope is increasing at an increasing rate”, when considering slopes of the tangent lines (e.g., 
becoming steeper and estimated the slope of the tangent lines). The TR drew her attention to 
these differing claims, which did not perturb Emma. Rather, these conclusions existed 
independent of each other. She transformed her coordinating quantities to take into account a 
different coordinate orientation, but her image of slope and associated generalizations were 
specific to a particular orientation. We do not mean to imply a deficiency in Emma’s reasoning, 
but rather point out that due to its roots in “steepness”, her generalizations regarding tangent 
lines and “rate” did not take into account different orientations (e.g., dy/dx versus dx/dy).  

Discussion 
In summary, after both reasoning about directional change in height, Lydia and Emma used 

similar verbal statements to describe their identified regularity in the relationship between height 
and arc length. Lydia’s initial generalization was connected to coordinating the quantities of 
height, arc length, and their changes. Emma’s initial generalization, along with her scheme and 
mental actions, primarily involved associating the steepness of tangent lines along the circle with 
the “rate” of height. We did not have evidence that the quantity of arc length and its variations 
were central to Emma’s reasoning. Thus, we can claim that Emma and Lydia made similar 

Red
Blue

Blue

Red
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generalized statements, but the objects that were associated and what regularity they identified 
were different. 

Byerley and Thompson (2017) reported teachers holding different meanings for a slope, and 
illustrated that some of these meanings are useful in limited circumstances. For instance, they 
identified slope as an index of steepness as such a meaning, which correspond to Emma’s case. 
Specifically, in Emma’s case, her generalization slope as an index of steepness in association 
with “rate” did not enable her to conceive invariance among graphs in different coordinate 
orientations. With respect to Figure 5a, her meaning led her to conclude “increasing at an 
increasing rate.” With respect to Figure 5b, her meaning led her to conclude “increasing at a 
decreasing rate.” On the other hand, when coordinating quantities, Emma was able to conceive 
invariance in “rate” among the two graphs; both represented red increasing at a decreasing rate 
with respect to blue. Ellis (2007a) argued that generalizations rooted in coordinating quantities 
are more powerful, and we interpret Emma’s activity as such in that her generalization rooted in 
quantities was more flexible than that rooted in the perceptual steepness of a tangent line.  

Acknowledgments 
This material is based upon work supported by the National Science Foundation under Grant 

No. DRL-1350342 and DRL-1419973. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not necessarily 
reflect the views of the NSF. 

References 
Byerley, C., & Thompson, P. W. (2017). Secondary mathematics teachers’ meanings for measure, slope, and rate of 

change. The Journal of Mathematical Behavior, 48(Supplement C), 168–193. 
Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling 

dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378. 
Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. 

Journal for Research in Mathematics Education, 26(1), 66–86. 
Corbin, J. M., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing 

grounded theory (3rd ed.). Thousand Oaks, CA: Sage. 
Ellis, A. B. (2007a). The influence of reasoning with emergent quantities on students' generalizations. Cognition and 

Instruction, 25(4), 439–478. 
Ellis, A. B. (2007b). A taxonomy for categorizing generalizations: Generalizing actions and reflection 

generalizations. Journal of the Learning Sciences, 16(2), 221–262. 
Ellis, A., Tillema, E., Lockwood, E., & Moore, K. (2017). Generalization across domains: The relating-forming 

extending generalization framework. In E. Galindo & J. Newton (Eds.), Proceedings of the 39th annual meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 
677–684). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators.  

Desmos. (2014, 2016). Function carnival. Retrieved from https://www.desmos.com 
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential 

elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267–
307). Hillsdale, NJ: Erlbaum. 

Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. 
Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics. Albany, 
NY: SUNY Press. 

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundations of 
mathematics education. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sépulveda (Eds.), Plenary 
Paper presented at the Annual Meeting of the International Group for the Psychology of Mathematics 
Education (Vol. 1, pp. 31–49). Morélia, Mexico: PME. 

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Chamberlain & S. 
Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education, 
WISDOMe Monographs (Vol. 1, pp. 33–57). Laramie, WY: University of Wyoming Press. 



Mathematical Processes 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

596 

ON HOW PARTICIPATION IN A MODELING COMPETITION OCCASIONS 
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Though scholars have long called for applications and modeling to be explicitly added to 
classroom agenda (Niss, Blum, & Galbraith, 2007), opportunities for undergraduates to engage 
in modeling in the classroom remain scarce. We share the efforts of a national organization 
(SIMIODE) to provide extra-curricular opportunities for undergraduate STEM majors to engage 
in authentic, open-ended modeling tasks using differential equations through a modeling 
competition. In this preliminary report, we document changes in twenty-one undergraduates’ 
self-efficacy regarding their own modeling competencies, develop hypotheses about what aspects 
of the competition occasioned those changes, and how these changes may benefit students. 

Key words: self-efficacy, mathematical modelling, differential equations 

Educators have increasingly turned to mathematical modeling to resolve the relevance 
paradox of mathematics in the curriculum. The relevance paradox refers to the disparity between 
the objective relevance of mathematics for society and the subjective irrelevance of mathematics 
perceived by many students who study it (Niss & Hojgaard, 2011). Even at the post-secondary 
level, interest in mathematics is associated with seeing its practical relevance (Liebendörfer & 
Schukajlow, 2017). Since Mathematical modeling promotes interdisciplinary thinking (Bliss et 
al., 2016), fosters mathematical reasoning as a basis of decision making (OECD, 2017), and 
develops communication skills (Niss & Hojgaard, 2011), many instructors endeavor to engage 
students in mathematical modeling. Rising demand for instructional materials for the advanced 
mathematics of STEM majors has led organizations like the Systemic Initiative for Modeling 
Investigations & Opportunities with Differential Equations (SIMIODE) and the Community of 
Ordinary Differential Equations Educators (CODEE) to develop authentic modeling experiences 
that engage students in problems from (for example) mathematical biology or systems 
engineering. Because opportunities to engage in authentic modeling in STEM classrooms remain 
scarce, SIMIODE began hosting an extra-curricular mathematical modeling competition that 
would introduce students to authentic modeling problems in differential equations and build their 
self-confidence to carry out modeling. The present study investigated changes in student self-
efficacy from before to after participating in the event. In this paper, we report on preliminary 
results of the pilot run and develop hypotheses for a large-N nationwide competition that will be 
hosted in April 2018. 

Cognitive Perspective on Modeling and Empirical Background 
From multiple perspectives on modelling, we adopt the cognitive perspective which views 

modeling as an iterative process (Kaiser, 2017). In this view, modeling is studied as a suite of 
interrelated competencies that transform a real-world problem into a mathematical problem by 
building a cognitive correspondence between the two. The competencies include identifying 
relevant variables, simplifying relevant quantities and their relationships, estimating parameters, 
and expressing the quantities and relationships mathematically (Maaß, 2006). Other modeling 
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competencies include validating the appropriateness or reasonableness of the model and 
communicating results, findings, or consequences of using the model.  

In post-secondary classrooms, models are foundational to STEM disciplines, often 
augmenting or replacing “real world situations” as the object of study. For example, one studies 
the “heat equation” or the “particle in a box.” The former stands for a range of imaginary 
situations where heat energy transfers between an object and its environment while the latter is 
an imaginary physical system determined by second-order differential equation. The complexity 
of mathematical theory and procedures in advanced STEM courses, along with departmental 
pressures sometimes overwhelm instructors’ intentions to use modeling to motivate course 
content. Within differential equations, scholars have focused largely on student achievement of 
curricular aims. For example, Czocher (2017) found that consistent emphasis on mathematical 
modeling principles, even in lecture, could positively impact engineering students’ learning of 
differential equations. Others have shown that drawing on “experientially real” starting points to 
instruction can positively impact student learning of content (e.g., Rasmussen & Blumenfeld, 
2007). However, the complexity of mathematical theory and procedures in advanced 
mathematics courses, along with time constraints, departmental pressures, and beliefs about non-
lecture approaches, sometimes overwhelm instructors’ desires to use research-based innovations 
in their classrooms (Johnson, Keller, & Fukawa-Connelly, 2017). These facts point to the need to 
document the advantages of modeling at the post-secondary level. 

Affective factors such as interest, motivation, and self-efficacy are also important to 
developing modeling competencies. We take self-efficacy to be a problem-specific assessment of 
an individual’s confidence in their ability to successfully address a mathematics problem 
(Hackett & Betz, 1989, p. 262). Schukajlow et al. (2012) found that for ninth graders, student-
centered instruction using modeling tasks was the most beneficial for increasing student affect 
and Zbiek and Conner (2006) reported that a modeling approach deepened prospective secondary 
mathematics teachers’ motivation to learn new mathematics content. Since self-efficacy plays a 
role of all aspects of goal-setting, persistence, and effort (Bandura, 2006), we interpret the 
literature to mean that finding ways to increase STEM students’ self-efficacy in modeling may 
go hand-in-hand with increasing their modeling competencies and their willingness to engage in 
activities designed to improve their modeling competencies. Thus, there is a pressing need to 
gain a sense of whether and how engaging in mathematical modeling might impact 
undergraduate students’ self-efficacy about modeling competencies.  

Methods 
Twenty-six students participated in teams of 2 or 3 led by an instructor-coach in an intensive 

week-long modelling competition. Each team selected one of three challenging problems framed 
to be about changes in relevant quantities, necessitating the use of differential equations. The 
teams created a written overview of their models and argued for its merits. At the end of the 
week, teams gathered at the competition site where coaches offered critiques and additional 
factors to consider in their models. The teams amended their models and the competition 
culminated in a 10-minute peer-reviewed presentation of their solutions. The final models were 
subsequently ranked by the judges and winners were notified following the competition. 

We explored changes in student self-efficacy regarding modeling competencies (Maaβ 
2006), including: identifying important variables, estimating parameters, making simplifying 
assumptions, mathematization, validation, communication. We developed a self-efficacy scale 
(Bandura, 2006), implemented as a matched pair of online surveys. Survey items asked students 
to rate their confidence in carrying out the modeling competencies for a problem about modeling 
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the spread of solar panel adoption in the 21st century. They responded on a 100-point scale, with 
10-unit intervals from 0 (“Cannot do”); through intermediate degrees of assurance, 50 
(“Moderately certain can do”); to complete assurance, 100 (“Highly certain can do”).  The pre-
event survey items in Table 1 were changed to past tense for the post-event survey and the 
context for Item 1 was changed to modeling the spread of smart home appliances in the 21st 
century. The survey also collected demographic information about the students’ majors. Twenty-
one students completed both the pre- and post-event surveys. Nine students were mathematics 
majors, three were applied mathematics majors and the rest were a mix of computer science, 
statistics, and engineering majors. A set of six dependent sample 𝑡-tests was performed on the 
mean difference between pre- and post- scores at significance level of 𝛼 = 	 .05 for each item (a 
post-hoc Bonferroni correction was planned, but not needed). 

Results and Discussion 
Participants collectively showed gains in their self-efficacy in all 6 questions (Table 1). 

Students' self-efficacy for mathematizing  (𝑡 = 4.503,𝑑𝑓 = 20, 𝑝 = 0.000), identifying 
important variables (𝑡 = 2.832,𝑑𝑓 = 20, 𝑝 = 0.027), and ability to communicate the usefulness 
of their model (𝑡 = 2.104,𝑑𝑓 = 20, 𝑝 = 0.048) has increased where as their self-efficacy in 
simplifying (𝑡 = 1.330,𝑑𝑓 = 20, 𝑝 = 0.198), validating (𝑡 = 1.722,𝑑𝑓 = 20, 𝑝 = 0.101)and 
estimating parameters (𝑡 = 0.377, 𝑑𝑓 = 20, 𝑝 = 0.710) remain statistically unchanged.  

Table 1 Self-efficacy items (pre-event survey) and targeted modeling competency 

 
The competition reproduced some of the favorable factors leading to success in modeling 

observed by Carlson, Larsen, & Lesh (2003), such as externalizing and communicating 
reasoning, providing and receiving feedback from their peers and others, revising their initial 
models, and having extended time to fully engage with the problem. Though we cannot say what 
aspect(s) of the modeling competition may have contributed causally to any changes in self-
efficacy, we can hypothesize that these factors, taken together, contributed to the students’ 
increased self-efficacy in mathematical modelling. Participant self-selection led to two 
methodological complications: (1) participants with high self-efficacy may not show gains and 

Rate your level of confidence by recording a number from 0 to 100 using 
the scale given below: 
0       10       20       30       40       50        60        70        80        90        100 
Cannot                   Moderately                                   Highly certain 
do at all                                    can do                                             can do 

Competency Mean 
Difference 
(post – pre) 

1. Create a differential equation model for the spread of the use of electric 
powered vehicles in the United States during the twenty-first century. 

Mathematizing 19.524 

2. In (1) identify the important variables leading to a reasonably accurate 
prediction. 

Identify 
variables 

10.000 

3. In (1) make simplifying assumptions to reduce the number of important 
variables. 

Simplify 6.190 

4. In (1) consult appropriate resources to check whether your model was 
reasonable. 

Validating 7.143 

5. In (1) convince a solar power car manufacturer that your model would be 
useful for its purpose. 

Communicating 10.952 

6. Estimate the parameters 𝛼 and 𝛽 in the following differential equation 
which describes the time rate of formation of material A, ’(𝑡) 		=
𝛼	𝐴(𝑡)m  , given a set of data from observations for time, t, and amount of 
material A, at time t, i.e. A(t). 

Estimating 1.905 
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(2) the student sample was exceptional in their self-assessment of mathematical content 
knowledge (nearly all stated they usually get A’s in mathematics). Another limitation of this 
study is that the survey used an atomistic (Boesen et al., 2014) approach to assessing students’ 
self-efficacy by asking them about each modeling competency independently. Future research 
should develop parallel measures for holistic self-assessments. We anticipate that the larger 
sample will reveal stronger relationships among student beliefs about the relevancy of 
mathematics, their personal achievements during the competition, and self-efficacy regarding 
subsets of the modeling competencies which are emphasized in the competition. Middleton and 
Spanias (1999, p. 81) argued that it is better to develop students’ intrinsic motivation in 
mathematics, rather than providing extrinsic incentives for achievement. We hypothesize that the 
modeling competition, which addresses the relevance paradox through providing opportunities 
for students to engage in challenging and authentic discipline-specific problems, may be one 
avenue for doing so. 
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DIFFICULTIES OF LOGICAL NATURE IDENTIFIED IN STUDENTS IN A FIRST 
COURSE OF CALCULUS 
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This paper reports some results of an investigation about the difficulties of logical nature that 
students have in a first course of Calculus. The instrument used was designed with questions of 
the basic contents of Calculus and was applied to students who had already taken a first course 
of it. It was found that difficulties of a logical nature persist in most of the students such as 
modus ponens, affirmation of the consequent, handling of quantifiers, denial of statements, which 
complicate the comprehension of basic concepts of Calculus. 

Keywords: Advanced Mathematical Thinking, Reasoning and Proof. 

The study of Calculus in a mathematics career at the university is really a course on its 
foundations. This brings up two important elements: the language accompanied by mathematical 
symbology and logical reasoning. Regarding the latter, we emphasize the students' difficulties in 
distinguishing between necessity and sufficiency in a condition, as well as in the interpretation of 
the universal and existential quantifiers and, finally, in the denial of propositions. 

In relation to the above, we pose the following question: what are the difficulties of a logical 
nature in the courses of Calculus that students have during their first year in a major in 
mathematics? This report gives account of three common situations in the course of Calculus that 
illustrate the difficulties mentioned above. 

Theoretical Framework 
M. Artigue classifies the difficulties of access to Calculus in three categories: (1) those 

associated with the complexity of the basic objects of Calculus, (2) difficulties associated with 
the conceptualization and formalization of the concept of limit and (3) difficulties related to the 
necessary rupture between algebraic reasoning and calculus reasoning (Artigue, 1995). In the 
same sense, R. Moore identifies seven difficulties in the comprehension of a mathematical proof 
in students with little experience (Moore, 1994). We emphasize that logic impacts each of the 
seven difficulties. Dubinsky & Yiparaki (2000) and Epp (2003) showed that a significant number 
of students confuse the management (and order of placement) of universal and existential 
quantifiers in a mathematical proposition.  

On the other hand, when asked for a proof of a contradiction theorem, a large number of 
students do not identify either the reason for the beginning of the proof or when it has ended. 
According to U. Leron, proofs by contradiction are difficult for students to digest, they represent 
a psychological problem that involves mathematical thinking (Leron, 1985). 

Finally, investigations in logical reasoning account for the complex paradigm of negations 
(Evans & Handley, 1999). Also, it has been reported that the verbal and mathematical contexts 
can influence when making a logical inference (Stylianides, Stylianides, & Philippou, 2004); for 
axample, when we ask about the existence of the limit of a quotient sequences whose 
denominator tends to zero, prior knowledge of the prohibition of dividing by zero can act as a 
“distractor” to infer that, necessarily, the limit of the quotient does not exist.  
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Conceptual framework 
In this research we deal with the term difficulty as it is exposed in the researches and 

theoretical contributions on the difficulties of access to the Calculus of Artigue (1995) and in 
understanding a proof Moore (1994). For the difficulties in logical reasoning, we rely on Evans 
& Handley (1999), Evans, Handley, Neilens & Over (2007), and Inglis & Simpson (2008). 

We will understand by logical reasoning (conditional) the inferences that can be made from a 
rule in the form “P → Q” and a given premise (Evans et al, 2007; Inglis & Simpson, 2008). In 
this report we focus only on the valid inference modus ponens (MP) and on the invalid inference 
affirmation of the consequent (AC). 

Methodology 
The research instrument consisted of a questionnaire of 15 multiple-choice questions and 

interviews. The questionnaire was accessed during a 90-minute online session. The instrument 
was applied to 73 students from two of the most important educational institutions in Mexico. 
The students who participated in our research had just passed their first Calculus course. Each 
question was designed within the context of the Calculus and is supported by the research 
findings of Moore (1994), Artigue (1995) and in the investigations on logical reasoning Evans & 
Handley (1999), Evans et al (2007) and Inglis & Simpson (2008). 

Discussion and Results analysis 
We report the analysis and discussion of questions 3, 13 and 15, of our questionnaire. 

Question 3 presents a wrong process of solving an equation. It starts with the equation and, 
through a succession of implications, it ends with a result. The student was asked to decide if the 
procedure was correct or not. Of course, the student had the option of verifying that the result 
obtained was not a solution to the equation, so he could suspect that the process was wrong; 
nevertheless, approximately 50% of the participants concluded that the process was correct. In 
general, the other half argued that the supposed solution did not satisfy the equation, for 
example, one of them argued: “algebraically everything seems to me to be correct, but when 
substituting the value, we conclude that 4 = 1”. Another student said, “I do not remember the 
reason well, but, according to me, there is no solution within the real numbers (sic)”. In fact, few 
found the wrong step in the resolution process, which resulted from a non-reversible implication. 
This reveals a lack of understanding in the reasoning of the type MP and AC. The conditional 
“if-then” and “only if” are usually interpreted individually as the double conditional, “if and only 
if” (Epp, 2003). 

Question 13 refers to the following statement: 

If , such that , for all , then , of which the following statement is 
made: the statement is contradictory, since a particular case of the inequality , is , 
with  a positive number. However, the statement concludes that . 

Almost half answered that the statement is true, that is to say that the statement is 
contradictory. One of the justifications for this choice was obtained in an interview. 

Teacher: Regarding question 13, I'm interested in knowing what you thought when you 
answered the question for the first time. 
Student: It seemed logical to me to think about this example. If you set to epsilon with value 
equal to 3 you can take any  other than zero that is less than or equal to 3. 
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To expand this question, a complementary activity was carried out in the classroom, which 
consisted of completing the following statement: let , if for any  it is satisfied that 

, then __________. 
Some students tried to solve the inequality, which reveals a lack of familiarity with 

statements of the MP form. Others related the statement with the concept of upper bound; the 
majority related it with the definition of limit or continuity of a function, which is illustrated in 
Figure 1, ‘it has to comply with some continuity, but I do not know how to express it’. Others 
related it to the definition of integral that involves partitions of superior and inferior sums. This 
suggests the influence of their previous knowledge in his reasoning, as suggested by Stylianides 
et al (2004), although the statement to complete had nothing to do with functions, nor partitions. 
Only 13% of participants in this complementary activity were able to deduce . 
 

 
Figure 1. Student’s answer in the complementary activity. 

Both the online questionnaire and the complementary activity corroborate the difficulty that 
students have to understand the meaning and interpretation of the universal quantifier in a 
particular context of the Calculus, in a form of reasoning MP. 

Our last example (question 15) has the purpose of identifying the difficulties that students 
present to recognize the end of a proof by contradiction (Moore, 1994). This reasoning entail, 
three difficulties: to understand the process of a demonstration by contradiction (Leron, 1985), to 
deny the statement (Evans & Handley, 1999) and to identify the contradiction to finish the proof.  

The proposition to prove was: For all  there exists  such that . We 
provided the following answers to conclude the proof: (a) there exists  such that for all 

, , (b) the natural numbers are bounded superiorly, (c) there exists  and 
there exists  such that , (d) there exists  such that  for 
some . 

Note that answers (a) and (b) are equivalent and correct. The first is the result that is 
obtained, immediately, of denying the statement, and the second is its translation to the concept 
of bounded set. The purpose of putting these two correct answers was to find out if they manage 
to recognize the contradiction in different versions. 

Several students chose option (c); their arguments were: “because we wanted to proof that, 
for a given epsilon, there was such a number with such property” or “because we will have found 
then an  for the given epsilon that fulfills the thesis (sic)”. In other cases, we found these 
justifications: “because it is the opposite of what I want to demonstrate” or “it is the negation of 
the statement”, which allows us to conclude that these students conceive the contradiction 
obtained with the denial of the statement. 

Of those who answered correctly, most chose option (b), which is a translation of the 
contradiction. In contrast, we mention the case where some students chose item (a), but their 
arguments do not reflect an understanding of what a contradiction proof means: “the conclusions 
must be related to the initial proposition” and “the rest of the paragraphs do not make sense 
because they say different things from the proposition”.  
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Conclusions 
The difficulties of a logical nature were manifested in most of the participants in different 

aspects, for example, in the use of existential and universal quantifiers, in some forms of 
conditional reasoning and in the denial of propositions. All this prevents the understanding of 
basic concepts of Calculus, because it is not necessary to advance too much in these courses so 
that these difficulties arise. 

Although the participants were students in the second semesters of the major in mathematics, 
these difficulties of a logical nature persist in a significant number of them. 

Based on the results of the investigations related to the logical aspects and in our own study, 
we consider it convenient to look at the elaboration, design and application of didactic strategies 
that promote and favor a better performance in the logical reasoning of the students in the 
context of the Calculus, and so in these courses, special attention is paid to the type of logical 
difficulties reported. 
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En este artículo reportamos algunos resultados de una investigación acerca de las dificultades 
de naturaleza lógica que tienen los estudiantes en un primer curso de Cálculo. El instrumento 
empleado en la experimentación fue diseñado con preguntas en el contexto de los contenidos 
básicos de Cálculo, y se aplicó a estudiantes que ya habían acreditado un primer curso del 
mismo. Encontramos que en la mayoría de los estudiantes persisten dificultades de naturaleza 
lógica —tales como modus ponens, afirmación del consecuente, manejo de cuantificadores, y 
negación de enunciados— que impiden la comprensión de conceptos básicos del Cálculo. 

Keywords: Pensamiento matemático avanzado, Razonamiento y prueba. 

El estudio del Cálculo en una carrera de Matemáticas en la Universidad es realmente un 
curso sobre sus fundamentos. Con ello surgen dos elementos importantes: el lenguaje 
acompañado de la simbología matemática y el razonamiento lógico. Al respecto destacamos las 
dificultades de los estudiantes para distinguir entre los significados de las condiciones de 
necesidad y las condiciones de suficiencia en una proposición, así como en el manejo de los 
cuantificadores universal y existencial y en la negación de proposiciones. 

En relación con lo anterior, nos planteamos la siguiente pregunta: ¿cuáles son las dificultades 
de naturaleza lógica en los cursos de Cálculo que tienen los estudiantes durante su primer año en 
una carrera universitaria de matemáticas? En este reporte, damos cuenta de tres situaciones en el 
Cálculo que ilustran las dificultades antes mencionadas. 

Marco Teórico 
M. Artigue clasifica las dificultades de acceso al Cálculo en tres categorías: (1) aquellas 

asociadas a la complejidad de los objetos básicos del Cálculo, (2) dificultades asociadas con la 
conceptualización y la formalización del concepto de límite y (3) dificultades vinculadas con las 
rupturas necesarias entre el razonamiento algebraico y el razonamiento en cálculo (Artigue, 
1995).  En el mismo sentido, R. Moore identifica siete dificultades en la compresión de una 
prueba matemática en estudiantes con poca experiencia (Moore, 1994), destacamos que la lógica 
impacta en cada una de las siete dificultades. Dubinsky & Yiparaki (2000) y Epp (2003) 
muestran que un número considerable de estudiantes confunden el manejo (orden de colocación) 
de los cuantificadores universal y existencial en una proposición matemática.  

Por otra parte, al realizar en clase una prueba de un teorema por contradicción, algunos 
estudiantes no tienen claro el porqué del inicio de la prueba, ni cuándo ha finalizado. De acuerdo 
con U. Leron, las pruebas por contradicción resultan difícil de digerir para los estudiantes, 
representan un problema psicológico que involucra pensamiento matemático (Leron,1985).  

Finalmente, investigaciones en el razonamiento lógico dan cuenta del complejo paradigma de 
las negaciones (Evans & Handley, 1999). También, se ha reportado que los contextos verbal y 
matemático pueden influir a la hora de realizar una inferencia lógica (Stylianides, Stylianides & 
Philippou, 2004); por ejemplo, al preguntarnos por la existencia del límite de un cociente de 
sucesiones cuyo denominador tiende a cero, el conocimiento previo de la prohibición de dividir 
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entre cero puede fungir como un “distractor” para inferir que, necesariamente el límite del 
cociente no existe.    

Marco conceptual 
En esta investigación manejamos el término dificultad como se expone en las investigaciones 

y aportaciones teóricas sobre las dificultades de acceso al Cálculo de Artigue (1995) y en la 
comprensión de una prueba Moore (1994). Para las dificultades sobre el razonamiento lógico nos 
basamos en Evans & Handley (1999), Evans, Handley, Neilens & Over (2007), e Inglis & 
Simpson (2008). Entenderemos por razonamiento lógico (condicional) a las inferencias que se 
pueden realizar a partir de una regla en forma “ ” y una premisa dada (Evans et al, 2007; 
Inglis & Simpson, 2008). En este reporte nos enfocamos sólo en la inferencia válida modus 
ponens (MP) y en la inferencia inválida afirmación del consecuente (AC).  

Metodología 
El instrumento de investigación consistió en un cuestionario de 15 preguntas de opción 

múltiple y entrevistas. El acceso al cuestionario fue durante una sesión de 90 minutos en línea. El 
instrumento se aplicó a 73 estudiantes de dos de las instituciones educativas más importantes de 
México. Los estudiantes que participaron en nuestra investigación recién habían aprobado su 
primer curso de Cálculo. Cada pregunta fue diseñada dentro del contexto del Cálculo y están 
apoyadas en los hallazgos de las investigaciones de Moore (1994), Artigue (1995) y en las 
investigaciones sobre el razonamiento lógico Evans & Handley (1999), Evans et al (2007) e 
Inglis & Simpson (2008).  

Análisis y discusión de resultados 
Reportamos el análisis y la discusión de las preguntas 3, 13 y 15 de nuestro cuestionario.  
La pregunta 3 presenta un proceso erróneo de resolución de una ecuación. Se parte de ésta y, 

mediante una sucesión de implicaciones, se llega a un resultado. Se le pidió al estudiante que 
opinase si era o no correcto el procedimiento. Por supuesto, tenía la opción de verificar que el 
resultado obtenido no era solución de la ecuación, de manera que podía sospechar que el proceso 
era erróneo; no obstante, aproximadamente la mitad de los participantes concluyeron que el 
procedimiento era correcto. Los estudiantes restantes expresaron que la supuesta solución no 
satisfacía la ecuación, por ejemplo, algunos argumentaron: “algebraicamente todo me parece 
correcto, pero al sustituir el valor llegamos a que 4 = 1”. Otro expresó “no recuerdo bien el 
motivo, pero, según yo, no tiene solución dentro de los reales”. En realidad, pocos encontraron el 
paso erróneo en el proceso, mismo que resultaba de una implicación no reversible. Esto revela 
falta de comprensión en los razonamientos del tipo MP y AC. Los condicionales “si-entonces” y 
“sólo si” suelen interpretarse de manera individual como la doble condicional, “si y sólo si” 
(Epp, 2003). 

La pregunta 13 se refiere al siguiente enunciado: 

Si , es tal que , para toda , entonces . En este caso se le pide al 
estudiante que opine sobre la veracidad o falsedad de la afirmación: “el enunciado es 
contradictorio, pues un caso particular de la desigualdad , es , con  un número 
positivo. Sin embargo, el enunciado concluye que ”. 

Casi la mitad contestó que la afirmación es verdadera, es decir que el enunciado es 
contradictorio. Una de las justificaciones de esta elección la obtuvimos en entrevista: 
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Profesor: Con respecto a la pregunta 13, me interesa saber lo que pensaste al responder la 
pregunta por vez primera. 
Estudiante: Me sonó lógico pensar en este ejemplo. Si fijas a épsilon con valor igual a 3 
puedes tomar cualquier a diferente de cero que sea menor o igual a 3. 
Para profundizar en esta pregunta, se realizó una actividad complementaria en el salón de 

clases, la cual consistía en completar el siguiente enunciado:  
Sean , si para toda  se cumple , entonces _________.  
Algunos estudiantes intentaron resolver la desigualdad, esto revela una falta de familiaridad 

con enunciados de la forma MP. Otros relacionaron el enunciado con el concepto de cota 
superior; la mayoría, lo relacionó con la definición de límite o de continuidad de una función, lo 
que se ilustra en la Figura 1, “tiene que cumplir algo de continuidad, pero no sé expresarlo”. 
Otros tantos, lo relacionaron con la definición de integral que involucra particiones de sumas 
superiores e inferiores. Esto sugiere la influencia de su conocimiento previo en su razonamiento, 
Stylianides et al (2004), aunque el enunciado a completar nada tenía que ver con funciones, ni 
particiones. Sólo el 13% de participantes de esta actividad lograron deducir . 

 

 
Figura 1. Respuesta de estudiante en actividad complementaria. 

Este par de actividades corroboran la dificultad que tienen los estudiantes para comprender el 
significado e interpretación del cuantificador universal en un contexto particular del Cálculo, en 
una forma de razonamiento del tipo MP.  

Nuestro último ejemplo (pregunta15) tiene como propósito identificar las dificultades que los 
estudiantes presentan para reconocer el final de una prueba por contradicción (Moore, 1994). 
Este tipo de razonamiento conlleva tres dificultades: comprender el proceso de una demostración 
por contradicción (Leron, 1985), negar el enunciado (Evans & Handley, 1999), e identificar la 
contradicción con la que finaliza la prueba.  

La proposición por demostrar fue: Para toda , existe  tal que . 
Propusimos las siguientes respuestas para dar por concluida la prueba: (a) existe , tal que 
para toda , , (b) los números naturales están acotados superiormente, (c) 
existe  y existe  tal que , (d) existe  tal que  , para 
alguna . 

Notemos que las respuestas (a) y (b) son equivalentes y son las correctas. La primera es el 
resultado que se obtiene de manera inmediata de la negación del enunciado y la segunda es su 
traducción al concepto de conjunto acotado. La finalidad de poner estas dos respuestas correctas 
fue para averiguar si logran reconocer la contradicción en diferentes versiones. 

Varios estudiantes eligieron la opción (c); sus argumentos fueron del tipo: “porque se quería 
demostrar que, para una épsilon dada, existía dicho número con tal propiedad” o “porque se 
habrá hallado entonces un n para la épsilon dada que cumpla la tesis (sic)”. En otros casos 
encontramos justificaciones del tipo: “porque es lo contrario de lo que quiero demostrar” o “es la 
negación del enunciado”, lo que nos permite concluir que estos estudiantes conciben la 
contradicción obtenida con la negación del enunciado. 
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 De los que respondieron correctamente, la mayoría escogió la opción (b), que es una 
traducción de la contradicción. En contraste, mencionamos el caso donde algunos estudiantes 
eligieron el inciso (a), pero sus argumentos no reflejan una comprensión de lo que significa una 
prueba por contradicción: “las conclusiones deben estar relacionadas con las observaciones 
iniciales” y “los demás incisos no tienen sentido porque dicen cosas distintas a la proposición”.  

Conclusiones 
Las dificultades de naturaleza lógica se manifestaron en la mayoría de los participantes en 

diferentes aspectos, por ejemplo, en el uso de los cuantificadores existencial y universal, en 
algunas formas de razonamiento condicional y en la negación de proposiciones. Todo esto 
impide la comprensión de conceptos básicos del Cálculo, pues no es necesario avanzar 
demasiado en estos cursos para que estas dificultades surjan. No obstante que los participantes 
fueron estudiantes de segundo semestre de una carrera de matemáticas, estas dificultades de 
naturaleza lógica persisten en una cantidad significativa de ellos.  

Con base en los resultados de las investigaciones relacionadas con los aspectos lógicos y en 
nuestro propio estudio, consideramos conveniente mirar hacia la elaboración, diseño y aplicación 
de estrategias didácticas que promuevan y favorezcan un mejor desempeño en el razonamiento 
lógico de los estudiantes en el contexto del Cálculo, y así en estos cursos se preste especial 
atención en el tipo de dificultades lógicas reportadas.  
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This paper discusses a student coordinating and comparing amounts of change in two covarying 
quantities’ magnitudes (as opposed to numerical values). We describe not only his coherent 
system of mental actions involved in coordinating magnitudes, but also how this system affords 
his reasoning about graphical concavity and a quotient between magnitudes.  

Keywords: Cognition, Algebra and Algebraic Thinking, Design Experiments 

Quantity, Covariation, and Quotient 
Many researchers have attempted to understand how students and teachers coordinate and 

compare quantities (Carlson, Jacobs, Coe, & Hsu, 2002; Johnson, 2015). We adopt Thompson’s 
(1994) conceptualization of a quantity that entails reasoning about a quantity’s magnitude (i.e., 
amount-ness) while anticipating infinitely many associated value-unit pairs, and thus does not 
require physically carrying out a measurement process to obtain a quantity’s values. This 
distinction between a quantity’s magnitude and its value enables us to account for reasoning 
about a quantity’s variations that are not constrained to the availability of values; one can 
imagine a varying segment as entailing a magnitude (i.e., lengthiness) varying in flux.  

Imagining variations in a quantity’s magnitude positions a person to reason covariationally. 
Carlson et al. (2002) specified levels of mental actions involved in coordinating quantities 
covariationally, among which students’ coordination of amounts of change in one quantity with 
respect to changes in another (i.e., MA3) is central to our work. To illustrate, a student reasoning 
about covarying quantities B and K can envision the magnitude ||B|| (denoted in blue, Figure 1a) 
accumulating in equal accruals, construct the magnitude ||K|| (denoted in red, Figure 1a) 
accumulating in corresponding accruals, and conceive ||K|| increasing by decreasing amounts 
(denoted in light blue, Figure 1b) with respect to ||B||. One can also re-present these variations on 
two orthogonally-oriented bars and a Cartesian coordinate system (Figure 1c-d). 

 

        
                       (a)                            (b)                                         (c)                                        (d) 

Figure 1. ||K|| increases by decreasing amounts for equal increases in ||B||, which can be 
represented on (a-b) a circle, (c) two orthogonally-oriented bars, (d) and a coordinate system. 

Although coordinating amounts of change is fundamental to rate of change reasoning, 
Thompson and Carlson (2017) identified that students’ construction of rate of change was also 
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related to conceptualizations of ratio, quotient, and proportionality. A productive meaning of rate 
of change entails a quantitative meaning for quotient as a multiplicative comparison of two 
quantities’ magnitudes with the intention of determining their relative size (Byerley & 
Thompson, 2017). Relevant to the aforementioned example, a quantitative quotient meaning 
regarding amounts of change magnitudes involves making additive comparisons of two 
accumulated magnitudes to determine accruals in those magnitudes (e.g., conceiving ∆o|𝐵q|o and 
∆o|𝐾q|o) and multiplicatively comparing those magnitudes (e.g., conceiving ∆o|st|o	

∆o|ut|o	
 or  ∆o|ut|o	

∆o|st|o	
).  

Methods 
We conducted fourteen teaching experiment (Steffe & Thompson, 2000) sessions with a pre-

calculus student, Caleb, who, at the time of the study, was a sophomore majoring in music 
education. Our overall goal was to characterize his mental actions involved in reasoning with 
dynamic situations from a quantitative and covariational reasoning perspective. We used session 
videos, transcripts, and digitized copies of Caleb’s written work for both on-going and 
retrospective conceptual analyses (Thompson, 2008) to develop working models of his thinking.  

In the tenth teaching session, we designed and used the Changing Bars Task (Figure 2) to 
gain insights into Caleb’s magnitude reasoning. On the circle (left, Figure 2), the red segment 
represents a dynamic point’s height magnitude above the horizontal diameter and the blue 
segment represents the point’s counterclockwise arc magnitude traveled from the 3 o’clock 
position. A student can move the point along the circle between the 3:00 and 12:00 position. 
With respect to the orthogonally oriented bars (right, Figure 2), while a student dragging an end-
point of a red bar to manipulate its length, the blue bar varies accordingly. For an increasing red 
bar from zero to the radius length of the circle, the blue bar in pairs (1)-(2), (3)-(4), and (5)-(6) 
increases at a constant, increasing (i.e., the red bar increases at a decreasing rate with respect to 
the blue bar; the normative solutions to the task), and decreasing rate with respect to the red bar, 
respectively. The only difference between the corresponding pairs is the orientation of the bars. 
We asked Caleb to choose which, if any, of the orthogonal pairs accurately represents the 
relationship between the red and blue segments on the circle, and to graph the relationship.  

 

 
Figure 2. Changing Bars Task (numbering of the six pairs was edited for readers). 

Results 
Comparison Between Amounts of Change in Two Quantities’ Magnitudes 

Caleb first focused on the circle to identify the appropriate relationship between height and 
arc length. Drawing attention to the variation near the 12:00 position, he used a paper to cover a 
portion of the circle’s circumference and observed that the amount the height increased was 
“small” (see the red segment denoted in Figure 3a) but the arc traveled was “considerable” (see 
the green arc denoted in Figure 3a). In contrast, he observed that, near the 3:00 position, the 
change in magnitude of red and blue was “almost equal” (Figure 3b). We interpret that Caleb 
was not only comparing amounts of change in height and arc magnitude, but was also aware that 
the results of such comparisons were not constant as the dynamic point traveled. 
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Figure 3. Annotated recreation of Caleb’s using paper to compare amounts of change in arc 

length and height at around (a) the 12:00 position and (b) the 3:00 position; Caleb’s choice of 
two pairs of bars at (c) the beginning state and (d) the final state (the direction and length of each 

arrow indicates the direction and magnitude of change respectively). 
Turning his attention to the orthogonal pairs, he made use of this observation to select two 

pairs (the normative solutions) in which the blue bar changed by “almost equal” amount as the 
red near their minimal amounts (Figure 3c) and changed by noticeably larger amounts than the 
red near their maximum amounts (Figure 3d). Transitioning to a graphical representation, Caleb 
produced a graph (Figure 4a) and explained that the graph should start with having “a slope of 1” 
to re-present the amount the red segment changed being “almost equal” to the blue and should 
gradually level out to re-present the blue segment increasing by a larger amount than the red. He 
was able to mentally coordinate and re-present amounts of change magnitudes in blue and red on 
the horizontal and vertical axis respectively and to anticipate how joining these orthogonally-
oriented magnitudes would result in a graph with particular concavity. Together, we interpret 
Caleb’s ways of comparing and coordinating magnitudes of quantities to be coherent and stable 
across multiple representations (i.e., circle situation, orthogonal bar pairs, and graph).  

         
                                                                    (a)                                               (b) 

Figure 4. Caleb’s (a) initial graph and (b) graph with estimation of quotient values. 

Quotient as Relative Size of Two Quantities’ Magnitudes 
Observing that Caleb consistently attended to changes in two intervals only (one close to the 

3:00 position and one close to the 12:00 position), we prompted him to describe the relationship 
throughout the entire first quarter circle. He then drew in successive horizontal and vertical 
segments (denoted in yellow in Figure 4b) to represent equal changes in the blue and decreasing 
changes in the red, respectively. He also estimated a value for each increment and wrote three 
quotients (i.e., “.85/1,” “.5/1,” “.197/1”), concluding that the ratios of how much the red 
increases to how much the blue increases decreased. He explained that his choice of making the 
change in blue a size of 1 for each increment was only for convenience in that it allowed direct 
additive comparisons, saying “if you divide these out [scratching out the ‘1’s in the 
denominators as seen in Figure 4b] it would just be 0.85, 0.5, 0.197, you see them decreasing.” 
He further explained that he could have used contrasting sizes for those intervals. He illustrated 
by drawing in the segments denoted in blue in Figure 4b and wrote down an estimated number 
for each segment, claiming that, although he did not know the values for “.8/1.9” and “.75/.82”, 
he knew that the former is greater than the latter due to his previous conclusions. We interpret 
that Caleb was multiplicatively comparing amounts of change in two quantities’ magnitudes and 
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anticipating each quotient as representing a relative size of the magnitude of change in blue with 
respect to that in red. Although he made use of numerical values, his reasoning was not 
constrained by those values; rather, he used numbers to convey particular features of the 
relationship between the two magnitudes. Additionally, he could hold the covariational 
relationship in mind and anticipate variation of quotient values across any intervals.  

Discussion 
Contributing to Thompson et al.’s (2014) call for more detailed characterization of students’ 

magnitude thinking, our analysis suggests that a student’s mental actions involving magnitudes 
can be generative for productive mathematical meanings that include graphical concavity and 
quotient. In contrast to the teacher participants in Thompson et al.’s (2014) study who had poor 
understandings of magnitude, quotient, and rate of change, Caleb’s disposition of reasoning with 
magnitudes afforded his reasoning about quotient (and potentially rate of change) productively. 
Specifically, his ability to compare magnitudes multiplicatively supported his quotient 
understandings that entailed flexible partitions or intervals, which were critical for constructing 
rate of change meanings. Our findings also contribute to the covariation frameworks of Carlson 
et al. (2002) and Thompson and Carlson (2017). Carlson et al. (2002) suggested that 
coordination of uniform successive amounts of change in quantities is fundamental to 
understanding average and instantaneous rate of change (i.e., MA3, MA4, and MA5). In this 
study, we identify a student whose ability to coordinate quantities does not originate from 
constructing successive changes in quantities (including their magnitudes). Rather, his way of 
thinking aligns with Thompson and Carlson’s (2017) chunky continuous covariation that entails 
reasoning with covariations regarding intervals of any sizes. We call for future investigations to 
focus on the extent to which a student can reason with smooth variations across interval chunks, 
which may provide further insights into the constraints and affordances of students’ magnitude 
reasoning regarding rate of change and other more advanced concepts.   
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National data reveals that more than half of freshmen who declared STEM majors at the start of 
college left these fields before graduation. Our research suggests that students’ difficulties with 
algebra cause significant problems in many first-year math courses. This paper presents our 
analysis of student challenges with algebra in calculus and the nature of their errors.    

Keywords: Algebra, Calculus, Common Error 

Background 
Over the past several decades, much attention has been focused on the need for improved 

mathematics and science teaching and learning in the United States. The pressure for global 
competition and changing demands of the workforce have propelled the conversation regarding 
learning outcomes in science, technology, engineering, and mathematics (STEM) forward. Given 
that calculus courses are often the gatekeeper to disciplines in STEM, at least one calculus course 
is typically required for all STEM majors. Bressoud, Mesa, & Rasmussen (2015) suggest that the 
requirement of a calculus course is often an insurmountable obstacle or one that discourages 
students from pursuing STEM majors. In fact, research has shown more than half of students are 
deterred from a career in STEM due to challenges completing calculus (Crisp, Nora, & Taggart, 
2009; Mervis, 2010). Recent studies by Stewart (2017) and Stewart and Reeder (2017) suggest 
that college students’ weaknesses with algebra play a major role in their success in calculus. 
Stewart (2017) further suggests college instructors face the challenge of working with students 
everyday who can seemingly make sense of complex mathematical concepts but are unable to 
solve problems related to those concepts due to their difficulties with algebraic procedures.   

The goal of this research is to analyze students’ difficulties with algebra and how these 
difficulties impact their work in calculus problems. We assert that the unresolved high school 
algebra knowledge wrapped inside the calculus problems are major cause of failure for many 
students when taking calculus.  While resolving algebra deficiencies that students bring with 
them will be challenging, “it cannot be simply ignored and remain as an everyday accepted or 
out of our hands part of teaching university level mathematics courses” (Stewart, 2017, p. 15). 

     The following research questions guided this study: (a) What were the most common 
algebra errors in both the algebra and calculus problems? (b) To what extent where the algebraic 
errors made on the algebra and calculus problems aligned and (c) What were the students’ 
perceptions of their challenges with algebra and calculus related to these problems? 

Method 
This qualitative research study involved 275 university Calculus I students at the end of their 

16-week course. Students were asked to first solve the Calculus I problems (Stewart, 2014) and 
then the algebra problems, identify what caused them the most challenge, algebra or calculus, 
and provide a brief response about what challenged them while solving the problems (see Table 
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1). Collected data were de-identified and incomplete data sets were removed. The result was N = 
84 complete sets of data. The research team analyzed each problem to develop initial codes. The 
initial codes were used by researchers to code data independently for both calculus mistakes in 
the calculus problems and algebra mistakes in both the calculus and algebra problems. A second 
meeting of the research team established the codebook after assuring inter-coder reliability. 
Using our codebook (see Table 2), each set of problems were analyzed and coded independently 
by two researchers who then met to review the codes and establish 100% agreement.  

Table 1: The Calculus and Algebra Problems 

 

Table 2: Errors for Calculus and Algebra Contexts  

 

Results 
Our results are presented in three sections which correspond to our research questions on 

common errors, comparing calculus and algebra contexts, and student perceptions.  
Common Errors 

Analysis of the algebra and calculus problems revealed that the student errors were numerous 
and significant with algebra in both sets of problems and calculus related errors were frequent in 
the calculus problems as well. The most common algebra errors made in both sets of problems 
were errors working across the balance point in equations, cancelling, operations with radicals, 
appropriate application of the distributive property, and incomplete algebra (work that was not 
completed due to confusion). While the students’ work with the calculus problems were replete 
with algebra errors, they also made many calculus errors. The most common among these were 
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incorrectly taking the derivative implicitly, using the product rule improperly, failing to identify 
undefined points as critical, incorrectly taking the limit, and avoiding algebra. 
Comparing Calculus and Algebra Contexts 

Of the 84 students in the sample, 58 of the students made a total of 102 algebra errors on the 
calculus questions; the other 26 students made no algebra errors. Thus, 69% of the students in the 
sample made some type of algebra error on the calculus problems. However, of the 102 algebra 
mistakes made on calculus problems, only 26 times (25.5%) students made the equivalent 
mistake on the associated algebra problem. In fact, only 24 of the 58 students who made algebra 
errors on the calculus problems repeated their mistakes on the algebra problems. Yet, on the 
algebra problems, these 58 students made a total of 130 algebra errors on the algebra problems; 
that is, they made more algebra mistakes on the algebra problems than they had on the calculus 
problems from which the algebra problems were derived. Further, the patterns of the mistakes 
made differed (see Figure 1 below). 
 

 
Figure 1. The algebra errors of the 58 students who made algebra errors on calculus problems. 

These students did not tend to repeat the same type of algebra errors on both the calculus and 
algebra problems. Students were much more likely to make errors in with the balance point 
(error code 10) or cancelling (error code 13) on the algebraic problems than on calculus based 
problems. Students were much more likely to have sign errors (error code 16) on calculus 
problems. Errors while working with radicals (error code 17) were also more likely to appear on 
calculus problems than algebra problems. Yet, of the 28 students who made an error with 
radicals on the calculus problems, only 8 of these students repeated the error when presented 
with an algebra problem dealing with a radical; another nine students had a radical error on an 
algebra problem when they had not made the error in the calculus portion of the exam. 
 Student Perceptions 

Our final research question aimed to provide insight on the students’ perceptions about their 
abilities with algebra and calculus as presented in the problems they were asked to solve.  Of the 
84 participants who completed all the mathematical problems, 73 chose to provide a response to 
our short-answer item.  When asked to select which gave them more challenge, algebra, calculus, 
or both, 57% indicated algebra, 31% indicated calculus, while 12% indicated both. Their 
comments overwhelmingly expressed recognition that algebra causes them difficulties, 
frustration, anxiety, and in some cases, hopelessness about their abilities to succeed in 
mathematics.   
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Discussion and Implications 
We believed most students would solve algebra problems correctly when these problems 

were in isolation from calculus, but make predominantly algebraic mistakes in the context of 
calculus problems with algebra problems embedded. However, we found that students struggled 
with the isolated algebra problems as well as the calculus problems.   

While the problems presented students challenges with both calculus and algebra, the student 
responses overwhelmingly indicated they had frustration and concerns with their algebra 
abilities.  In the words of one student “I knew how to start the problem, but could not finish 
because of the difficulty of the algebra involved.” So, while these students may have the 
prerequisite knowledge of algebra, they may not have had the opportunity to develop the strong 
procedural fluency necessary for algebra to function as a versatile tool in calculus as expected or 
required. Their challenges with algebra create difficulties for us, and them, as we try to make 
sense of what calculus they are learning. The challenges and misconceptions students bring with 
them to their university mathematics courses are difficult to remedy, even if identified. As Smith 
et al. (1993, p. 152) suggest, the misconceptions developed by students are “… persistent and 
resistant to change are likely to have especially broad and strong experiential foundation.”   
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Centro de Investigación y Estudios Avanzados del I. P. N. 

mrigolemini@gmail.com 

La investigación se centra en fenómenos del convencimiento de hechos de las matemáticas (H) 
que surgen en el ámbito educativo. Se aportan evidencias empíricas de que la seguridad en H 
puede inhibir el aprendizaje de las matemáticas y la duda en H, impulsarlo. Las evidencias 
provienen de un caso de interacción entre una pareja de estudiantes de secundaria que 
intercambian argumentos en torno a la resolución de una tarea de comparación de razones.  

Keywords: Affect, Emotion; Cognition; Reasoning and Proof  

Antecedentes y Preguntas de Investigación  
La investigación se centra en fenómenos del convencimiento (seguridad, confianza, duda… 

los que aquí se denominan estados epistémicos de convencimiento o ee) de hechos de las 
matemáticas que surgen en el ámbito educativo. Expertos (e.g., Foster, 2016) han aportado 
evidencias de la influencia (positiva o negativa) de los ee en el aprendizaje de las matemáticas: 
un contenido matemático que no es asimilado con convencimiento, aunque sea comprendido, 
posteriormente no se usa (Fischbein, 1982); la sobre-confianza o seguridad en un argumento 
inhibe la posibilidad de considerar un argumento distinto (Fischbein, 1982; Inglis, Mejía-Ramos 
& Simpson, 2007). En continuidad con esos trabajos, en éste se plantea: ¿Los ee tienen 
influencia sobre el aprendizaje de las matemáticas? ¿Cómo inciden y qué tipo de repercusión 
ejercen? Aquí se muestra que los ee tienen un efecto como impulsores o como inhibidores del 
aprendizaje. El argumento se sustenta en el caso de una interacción entre un par de alumnos de 
secundaria que intercambian argumentos en torno a una tarea de comparación de razones. 

Marco Teórico Interpretativo 
Apoyados en conceptos provenientes de la neurobiología de Damasio, la autora del presente 

escrito y sus colaboradores consideran a los ee como parte del ámbito afectivo, específicamente 
como un cierto tipo de emociones (Rigo & Martínez, 2017). En tanto emociones, los ee se 
expresan corporal y cognitivamente; en la Tabla 1 aparecen criterios para identificarlos.  

Tabla 1. Criterios para la identificación del convencimiento de una persona 
Discurso 
verbal y 
corporal 

La persona:  
-Recurre a enfatizadores del lenguaje (modo indicativo de los verbos) (e.g., tengo; mitigadores: convendría);  
-Utiliza un tono de voz firme y enfático y posiblemente más alto de lo usual; 
-Acude a enfatizadores corporales, como gestos y movimientos del cuerpo que reafirman sus ideas. 

Determinación La persona manifiesta de manera espontánea y determinada su adhesión a la veracidad de un enunciado matemático. 
Busca convencer a otros, aún cuando están en su contra.  

Consistencia La persona muestra consistencia en sus distintas intervenciones.  
 

Sobre la teoría del aprendizaje significativo de Ausubel  
Para Ausubel, Novak y Hanesian (1978), una condición para el aprendizaje significativo consiste 
en que los nuevos contenidos de conocimiento sean potencialmente significativos para el 
aprendiz, es decir, que puedan ser vinculados de modo no arbitrario y sustancial (no al pie de la 
letra) con lo que el alumno ya sabe. Otra condición para el aprendizaje significativo consiste en 
que el material de aprendizaje sea lógicamente significativo, es decir, que se pueda conectar de 
manera sustancial y no arbitraria con cualquier estructura cognoscitiva apropiada. Ausubel 
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sugiere otras variables de tipo afectivo, motivacional y social, que también influyen en el 
aprendizaje significativo.  

Metodología y métodos de recuperación de datos empíricos  
En el estudio se aplicó en forma individual un cuestionario a alumnos pertenecientes a 

escuelas con estándares altos de calidad. En el cuestionario se planteó una tarea de corte realista 
basada en la comparación de razones. En la tarea se proponen tres ofertas para la compra de 
videojuegos: en una se ofrece pagar 2 y llevarse 3 (3x2); en otra, se ofrece el segundo videojuego 
a mitad de precio y en la otra se ofrece el 70% de descuento en el segundo videojuego. La 
pregunta es ¿cuál de las ofertas es la que más conviene? (tomada de Gómez et al., 2013).  Se 
formaron parejas de alumnos, cada uno integrada por estudiantes que en el cuestionario 
sostuvieron una postura distinta y explícita. En la interacción se solicitó a los participantes que 
intentara convencer a su compañero de que su resolución a la tarea era la adecuada; uno de los 
investigadores actuó como coordinador del diálogo. Cada interacción fue videograbada y luego 
transcrita. Aquí se presenta un microanálisis -cualitativo- del diálogo de una de las parejas. Los 
datos empíricos y las transcripciones provienen de Gómez (2017). 

Análisis interpretativo de los datos empíricos y algunos resultados 
El análisis se centra en el alumno V, quien expresó nítidamente sus ee, los cuales surgieron 

en la interacción con J y el investigador. En la Tabla 2 se exponen los fragmentos más 
significativos de sus participaciones. En la columna central de esa Tabla aparecen fragmentos de 
la transcripción de la interacción. En su lado derecho, están los argumentos a favor de la oferta 
70%, así como los ee que experimentaron los estudiantes en torno a dichos razonamientos. En el 
lado izquierdo, aparece la misma información pero relacionada con la oferta 3x2.  

Table 2: Interacción V-J, con análisis de los argumentos y estados epistémicos 
RESPUESTA: 3X2 
Argumentos y Estados 
epistémicos  

Participación 
 

RESPUESTA: 70% 
Argumentos y Estados 
epistémicos 

Argumentos 
A & EM 
Alta presunción:  
Ausencia de mitigadores 

Cuestionario Inicial (ci) de V  
$1000 por juego. 

Oferta Costo de dos juegos Costo de tres juegos 
1 1/2 1500 2500 

70% en 2° 1300 2300 
3x2  2000 

R: 3x2 es la mejor oferta porque te regalan uno. 

 

Argumentos: A, EM 
Certeza: 
 Habla sin mitigadores. 
Golpea pizarrón; tono de 
voz alto. Determinación: 
argumenta de dos formas. 
Interés: es sistemático e 
informativo. 
Es consistente en sus 
respuestas. 

1ª participación de V (1ªP) 
Oferta J1 J2 J3 Total Ícono 
3x2 1000 1000 ¡Gratis! 2000 J 
1 1/2 1000 500 1000 2500 L 
70% en 2° 1000 300 1000 2300  

“La oferta 3x2… y el tercero te sale gratis (golpea con el plumón en la zona del 
pizarrón donde dibujó los tres juegos y señaló al tercero con ‘gratis’) ¡gratis!... (y 
así sigue con el análisis de las otras ofertas, golpeando a veces enfáticamente el 
pizarrón para reafirmar su dicho) … está mejor éste (3x2) porque pagas menos 
por tres juegos” 

 

Argumento: EM 
Muy alta presunción: 
Habla sin mitigadores; 
golpea pizarrón; voz alta. 
Determinación: argumenta 
para sustentar su respuesta. 
Consistencia: refrenda su 
postura. 

2ª participación de V (2ªP) 
 

Oferta J1 J2 J3 J4 Total 
3x2 1000 1000 Gratis 1000 3000 
1 1/2 1000 500 1000 500 3000 
70% en 2° 1000 300 1000 300 2600 

 
“Ok… Pero nadie se va a esperar tanto tiempo, yo sé que van a escoger ésta” 
(golpea el pizarrón donde está marcada la oferta 3x2) 

Argumento: A 
Presunción baja:  
Mitigadores del lenguaje. 
Ausencia de enfatizadores 
corporales. Tono de voz 
bajo. Actúa siguiendo 
instrucciones del 
Investigador 
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 3ª participación de V (3ªP) (a solicitud del investigador) 
“Entonces en la primera por seis serían 4000 morlacos… Seis, aquí son cuatro 
(analiza la segunda oferta) … entonces son 4500… ¡sí! mmm… (analiza la 
tercera oferta) son 2600 por cuatro… ya, 3900… “ 

(si quiero llevarme seis juegos conviene más) la tercera” 

Estrategia: Building up 
(Bu) 
Presunción baja 
Ausencia de enfatizadores 
corporales y verbales.  

 Intervención de José 
“… supongamos que cada videojuego sale en 1000 pesos, entonces tenemos 3x2,, 
entonces sólo pagaría 2, o sea 2000. Pero si los divides entre tres, que es el 
número de juegos que te llevas, o sea, … no te van a dar nada gratis. Entonces 
serian 666 por cada uno de los videojuegos … 650 por juego es menor que 666 
por juego”  

 

Argumento: EM 
confianza media o ¿duda? 
Mitigadores del lenguaje; 
no hay enfatizadores 
corporales 
Determinación: 
Consistencia: refrenda su 
postura 

4ª participación de V (4ªP) 
Investigador: ¿Te conviene lo que hace tu compañero? 
V: Nnnn … 
Investigador: ¿No te convence la respuesta de José? 
V: ¡No! no dije que no. Sí (me convence la respuesta de José) pero, ¿y si nada 
más quieres tres?... O sea, qué tal si no tienes la posibilidad económica para 
comprarte eso (parece retomar el caso de 6j propuesto por el investigador). …  
(Si nada más quisieras tres juegos) te convendría ese” (señala la oferta 3x2). 

Confianza media  
Acepta respuesta con un 
monosílabo. Es muy 
lacónico y parco.  

Confianza (¿duda?) 5ª participación de V (5ªP) 
Lo dejamos en un empate 

Confianza 

 Cuestionario final de V (cf) 
Se infiere propuesta de precio: $1000 

Oferta No. de juegos Costo Costo por juego 
4x3 4 3000 750 

1 1/4 4 2500 625 
70% en 2° 4 2600 650 

Por obvias razones es mejor un %75 que un 70% solamente. 

Argumento 
Tipo relativo 
Certeza 
 Enfatizadores del 
lenguaje: “por obvias 
razones” 

 

V poseía conocimientos previos que le permitieron diseñar una estrategia de tipo aditivo A: 
para la comparación de parejas de magnitudes se fija primero una de ellas y luego se compara 
aditivamente la otra. Además, V tenía experiencias previas en las compras, las que dejó ver a 
través de argumentos extra-matemáticos (EM). En la interacción, V acudió a esa estrategia A (v. 
columna derecha Tabla 2: en ci, 1ªP y 2ªP) de la que derivó la respuesta 3x2, la cual reforzó con 
justificaciones EM (en 1ªP, 2ªP y 4ªP). Cuando V, a solicitud del investigador, obtuvo 
correctamente otra respuesta (70%) mediante A (en 2ªP) o a través de otra estrategia (Building 
up, 3ªP), él de todos modos regresó a su respuesta 3x2, apelando siempre a justificaciones EM. 
Lo mismo hizo ante el argumento de José (en 4ªP). Es hasta el cf que V adoptó una nueva forma 
de argumentar, con perspectiva relativa, y una nueva solución, omitiendo los argumentos EM.  

Durante la interacción, V no parece haber construido nuevos aprendizajes significativos que 
tuvieran repercusiones visibles (en el corto plazo); muestra de ello es que a lo largo de toda la 
interacción (con excepción de 5ªP) siempre regresó a su respuesta inicial y a sus argumentos EM. 
Es hasta el cf que V muestra haber conseguido nuevos aprendizajes, al resignificar la 
comparación de parejas de magnitudes a partir de una perspectiva relativa. 

Aquí surgen 2 preguntas. ¿Por qué V no parece haber logrado nuevos aprendizajes durante la 
interacción (sino sólo hasta el final)? ¿Por qué sí consigue un aprendizaje significativo en su cf? 

La tarea era lógicamente significativa para estudiantes del nivel de V; además, la tarea era 
potencialmente significativa para V. No fueron entonces factores cognoscitivos los que 
impidieron que, durante la interacción, V progresara en sus aprendizajes. Quedan entonces los 
factores afectivos; éstos pudieron haber influido en su desempeño, pero no hay evidencia de que 
fueran factores tan definitivos. Aquí se argumenta que es probable que haya sido la confianza 
que V experimentó durante la interacción, la que impidió de manera importante que él haya 
conseguido un aprendizaje significativo durante la mayor parte del intercambio; y que fue la 
confianza moderada o la duda, lo que, en buena medida, posibilitó al final ese aprendizaje.  

V dejó ver desde el inicio una sobreconfianza en A, en sus argumentos EM y en la respuesta 
3x2 que se derivó de A y de EM. Muestra de esa sobreconfianza son los indicadores que 
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aparecen en la primera columna de la Tabla 2, sobre todo 1ªP. Era natural que V tuviera esa 
confianza, ya que sus argumentos (A y EM) le eran muy familiares y A estaba basado en 
principios aritméticos básicos. Pero estos ee tuvieron sus efectos negativos en el aprendizaje de 
V. Si bien V aplicó correctamente estrategias distintas a A (e.g, Bu) o derivó otras soluciones 
(70%), no parece haberlo hecho, de entrada, con toda la convicción necesaria para considerar 
estos nuevos contenidos, ponderarlos y compararlos objetivamente con lo propuesto inicialmente 
por él; indicadores de la falta de esa convicción aparecen descritos en la columna derecha de la 
Tabla 2. Es posible que esa falta de convicción haya sido resultado de la sobreconfianza en A, 
EM y 3x2, la cual lo llevó a centrarse firmemente en esos contenidos y le impidió, de entrada, 
asumir compromisos de seguridad con otras opciones distintas (Fischbein, 1982; Inglis et al, 
2007); y es posible que esa escasa convicción en Bu y 70% impidió, a su vez, que esa nueva 
estrategia y solución tuvieran un uso posterior (Fischbein, 1982). No obstante, y a pesar de todo 
esto, sus actividades en 2ª y 3ªP fueron sensibilizando a V, aunque imperceptiblemente, en esas 
otras estrategias y resultados y fue así disminuyendo su sobre-confianza en su propuesta inicial, 
hasta llegar a un estado de confianza o incluso de duda en torno de esa resolución inicial (4ªP). 
Estos cambios en los ee -decremento en la confianza en respuesta 3x2 (v. columna izquierda 
Tabla 2) y apertura de credibilidad a otras estrategias y respuestas (v. columna derecha Tabla 2)- 
permitieron a V ser sensible a la propuesta matemática de J. Y esa confianza o duda, más 
cautelosa (4ª P), en su propuesta inicial, acompañada de una confianza en la estrategia relativa 
(5ªP), le permitieron a V hacer en el cf una comparación más objetiva entre todas las estrategias 
disponibles -lo que no pudo hacer durante la interacción- y optar por una estrategia matemática 
de tipo relativo hacia la que mostró certeza y en la que ya no necesitó de los argumentos EM. 

Consideraciones finales 
El análisis expuesto ofrece evidencias empíricas de que, al igual que las variables 

cognoscitivas,  los estados epistémicos (que aquí se conciben como pertenecientes al ámbito 
afectivo)  sí pueden contribuir (o por el contrario, pueden frenar) al surgimiento, precisión, 
integración y otros aspectos cualitativos de los nuevos aprendizajes; en particular, se deja ver 
empíricamente que la certeza ejerce un efecto inhibidor de la edificación o establecimiento de los 
nuevos contenidos, y que la duda actúa como impulsor del aprendizaje. 
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THE EFFECT OF THE EPISTEMIC STATES (CERTAINTY, DOUBT) ON LEARNING. 
MICRO ANALYSIS OF AN INTERACTION 

The research focuses on mathematical facts (H) convincing phenomena that arise in the 
educational field. Empirical evidence is provided that the certainty in H can inhibit the learning 
of mathematics and the doubt in H, boost it. The evidence comes from a case of interaction 
between a couple of high school students who exchange arguments around the resolution of a 
ratio task. 

Keywords: Affect, Emotion; Cognition; Reasoning and Proof  

Antecedents and Research Questions 
The research focuses on convincing phenomena (security, confidence, doubt ... those that are 

here called epistemic states of convincement or ee) of mathematical facts that arise in the 
educational field. Experts (e.g., Foster, 2016) have provided evidence of the influence (positive 
or negative) of the ee in the learning of mathematics: a mathematical content that is not 
assimilated with conviction, even if it is understood, later it is not used (Fischbein, 1982); the 
over-confidence or security in an argument inhibits the possibility of considering a different 
argument (Fischbein, 1982, Inglis, Mejía-Ramos & Simpson, 2007). In continuity with these 
works, in this one it is posed: Do ee have influence on the learning of mathematics? How do the 
ee affect learning and what kind of effect do they have? Here it is shown that ee have an effect as 
drivers or inhibitors of learning. The argument is based on the case of an interaction between a 
couple of high school students who exchange arguments around a ratio task. 

Theoretical Interpretive Framework 
Based on concepts from Damasio's neurobiology, the author of this paper and her collaborators 
consider the ee as part of the affective field, specifically as a certain type of emotions (Rigo & 
Martínez, 2017). As emotions, the ee express themselves bodily and cognitively; in Table 1 there 
are criteria to identify them. 

Table 1: Criteria for the identification of the person’s convincement  
Verbal and 
corporal 
speech 

The person:  
-Appeals to language emphasizers (indicative mode of the verbs) (e.g., I have, mitigators: would agree);  
-Uses a firm and emphatic tone of voice and possibly higher than usual; 
-Employs body emphasizers, as gestures and body movements that reaffirm their ideas. 

Determination The person manifests spontaneously and determined his adherence to the veracity of a mathematical statement. He 
seeks to convince others, even when they are against him. 

Consistency The person shows consistency in their different interventions. 

 
On Ausubel's Theory of Significative Learning 

For Ausubel, Novak and Hanesian (1978), a condition for significative learning is that the 
new knowledge contents are potentially significative for the learner, that is, they can be linked in 
a non-arbitrary and substantial way (not at the bottom of the letter) with what the student already 
knows. Another condition for significative learning is that the learning material is logically 
significative, that is, can be connected in a substantial and non-arbitrary way with any 
appropriate cognitive structure. Ausubel suggests other variables of affective, motivational and 
social type, which also influence significative learning. 

Methodology and methods of empirical data recovery 
In the study, a questionnaire was applied individually to students belonging to schools with 
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high quality standards. In the questionnaire a realistic task was proposed based on the 
comparison of mathematica ratios. The task proposes three offers for the purchase of video 
games: one offers to pay 2 and take 3 (3x2); in another, the second videogame is offered at half 
price and in the other, 70% discount is offered in the second videogame. The question is, which 
of the offers is the best one? (taken from Gómez et al., 2013). Pairs of students were formed, 
each composed of students who in the questionnaire held a different and explicit position. In the 
interaction the participants were asked to try to convince their partner that their resolution to the 
task was appropriate; One of the researchers acted as coordinator of the dialogue. Each 
interaction was videotaped and then transcribed. Here a microanalysis -qualitative- of the 
dialogue of one of the couples is presented. The empirical data and the transcriptions come from 
Gómez (2017). 

Interpretive analysis of the empirical data and some results 
The analysis focuses on student V, who clearly expressed his ee, which emerged in the 

interaction with J and the researcher. Table 2 shows the most significant fragments of their 
participation. In the central column of that Table appear fragments of the transcription of the 
interaction. On the right side, there are the arguments in favor of the 70% offer, as well as the ee 
that the students experienced regarding said reasoning. On the left side, the same information 
appears but related to the 3x2 offer. 

Table 2: V-J interaction, with analysis of the arguments and epistemic states 
ANSWER: 3X2 
Arguments and 
epistemic states 

Participations  
 

ANSWER: 70% 
Arguments and 
epistemic states 

Arguments 
A & EM 
High presumption: 
Absence of mitigators 

V’s Initial questionnaire (iq)  
$1000 per game. 

Offer Cost of two games Cost of three games 
1 1/2 1500 2500 

70% in 2° 1300 2300 
3x2  2000 

R: 3x2 is the best offer because they give you one. 

 

Arguments: A, EM 
Overconfidence: 
Speak without mitigators. Hit 
blackboard; high voice tone. 
Determination: argue in two 
ways. Interest: is systematic 
and informative; is consistent 
with his answers. 

V’s 1st participation (1P) 
Offer 1G 2G 3G Total Icon 
3x2 1000 1000 ¡free! 2000 J 
1 1/2 1000 500 1000 2500 L 

70% in 2nd 1000 300 1000 2300 
 

The 3x2 offer ... and the third you get for free (hit with the down in the area of the 
board where he drew the three games and pointed to the third with 'free') for free! 
... (and so continues with the analysis of the other offers, sometimes hitting the 
board emphatically to reaffirm his saying) ... this one is better (3x2) because you 
pay less for three games " 

 

Argument: EM 
Very high presumption: Speak 
without mitigators; hits 
blackboard; aloud. 
Determination: argues to 
support his answer. 
Consistency: endorses his 
position. 

V’s 2th participation (2P) 
Offer 1G 2G 3G 4G Total 
3x2 1000 1000 Gratis 1000 3000 
1 1/2 1000 500 1000 500 3000 
70% in 2° 1000 300 1000 300 2600 

 
“Ok ... But nobody is going to wait so long, I know they're going to choose this 
one" (hits the board where the 3x2 offer is marked) 

Argument: A 
Low confidence: 
Language mitigators. 
Absence of body 
emphasizers. Low 
voice tone Acts 
following the  
Researcher’s 
instructions 

 V’s 3th participation (3thP) (3P) (at the request of the researcher) 
"Then in the first six there would be 4000 ‘morlacos’ ... Six, here are four 
(analyze the second offer) ... then there are 4500 ... yes! mmm ... (he analyzes the 
third offer) they are 2600 by four ... already, 3900 ... " 

(if I want to take six more games suits) the third " 

Argument: Building 
up (Bu) 
Low confidence 
Absence of corporal 
and verbal 
emphasizers. 
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 J’s participation  
"... suppose that each video game comes out in 1000 pesos, then we have 3x2, 
then it would only pay 2, that is 2000. But if you divide them by three, that is the 
number of games that you take, that is, ... you are not going to give nothing for 
free Then there would be 666 for each of the games ... 650 per game is one 
amount less than 666 per game " 

 

Argument: EM 
Medium confidence (or doubt?) 
Language mitigators; there are 
no body emphasizers 
Determination;  
Consistency: endorses his 
position 

V’s 4th participation  (4P) 
Researcher: Does what your partner does suit you? 
V: Nnnn ... 
Researcher: Does not José's response convince you? 
V: No! I did not say no. Yes (José's answer convinces me), but what if you only 
want three? ... That is, what if you do not have the economic possibility to buy 
that (seems to take up the case of 6g proposed by the researcher). ... 
(If you only want three games) that would be better for you "(points to the 3x2 
offer). 

Average confidence 
Accept response with 
a monosyllable. He 
is very laconic and 
sparing.  

Confidence (or doubt?) V’s 5th participation  (5P) 
We leave it in a tie 

Confidence 

 V’s final questionnaire (fq) 
Price proposal inferred: $ 1000 

Offer Number of games Cost  Cost per game 
4x3 4 3000 750 

1 1/4 4 2500 625 
70% in 2° 4 2600 650 

For obvious reasons, 75% is better than 70% only. 

Argument 
Relative type  
Certainty 
Emphasizers on 
language: "for 
obvious reasons" 

 

V had previous knowledge that allowed him to design an additive type strategy (A): for the 
comparison of pairs of magnitudes, one of them is fixed first and then the other is additively 
compared. In addition, V had previous experiences in shopping, which he showed through extra-
mathematical arguments (EM). In the interaction, V resorted to strategy A (v. Right column 
Table 2: in iq, 1stP and 2thP) from which he derived the 3x2 response, which he reinforced with 
EM justifications (in 1stP, 2thP and 4thP). When V, at the request of the researcher, correctly 
obtained another answer (70%) through A (in 2thP) or through another strategy (Building up, 
3thP), he anyway returned to his 3x2 response, always appealing to EM justifications. He did the 
same with José's argument (in 4thP). It is until fq that V adopted a new way of arguing, with a 
relative perspective, and a new solution, omitting the EM arguments. 

During the interaction, V does not seem to have built significative new learning that would 
have visible repercussions (in the short term); proof of this is that throughout the entire 
interaction (with the exception of 5thP) he always returned to his initial response and his EM 
arguments. It is up to fq that V showed to have obtained new learnings, by re-signifying the 
comparison of pairs of magnitudes from a relative perspective. 

Here two questions arise. Why V does not seem to have achieved new learning during the 
interaction (but only until the end)? Why does he get significative learning in his fq? 

The task was logically significative for students at the V level; in addition, the task was 
potentially significative for V. It was not then cognitive factors that prevented, during the 
interaction, V from progressing in their learning. There are then affective factors; these may have 
influenced their performance, but there is no evidence that they were such definitive factors. 
Here it is argued that it is likely that was the confidence that V experienced during the 
interaction, which impeded significantly that he has achieved significant learning during most of 
the exchange; and that it was moderate confidence or doubt, which, to a great extent, made his 
learning possible in the end. 

V showed from the beginning an overconfidence in A, in his EM arguments and in the 3x2 
response that was derived from A and from EM. Sample of this overconfidence are the indicators 
that appear in the first column of Table 2, especially 1stP. It was natural for V to have that 
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confidence, since his arguments (A and EM) were very familiar to him and A was based on basic 
arithmetic principles. But these ee had their negative effects on the learning of V. While V 
correctly applied strategies other than A (e.g., Building up, in 3thP) or derived other solutions 
(70%, in 2ndP), it does not seem to have done it, right away, with all the conviction necessary to 
consider these new contents, weigh them and compare them objectively with what was initially 
proposed by him; indicators of the lack of that conviction are described in the right column of 
Table 2. It is possible that this lack of conviction was the result of the overconfidence in A, EM 
and 3x2, which led him to focus firmly on these contents and it prevented, at the outset, 
assuming security commitments with other different options (Fischbein, 1982, Inglis et al, 2007); 
and it is possible that that little conviction in Bu and 70% prevented, in turn, that this new 
strategy and solution had a later use (Fischbein, 1982). However, despite all this, his activities in 
2ndP and 3rd P were sensitizing V, although imperceptibly, in these other strategies and results 
and thus reducing their over-confidence in their initial proposal, until he reached a state of  
confidence, even doubt, about his initial resolution (in 4th P). These changes in ee - decrease in 
confidence in 3x2 response (see left column Table 2) and openness of credibility to other 
strategies and responses (see right column Table 2) - allowed V to be sensitive to J's 
mathematical proposal. And that more cautious confidence or doubt (4th P) in his initial 
proposal, accompanied by a confidence in the relative strategy (5th P), allowed V to make a 
more objective comparison between all the available strategies, in the fq - what he could not do 
during the interaction - and opt for a mathematical strategy of a relative type towards which he 
showed certainty and in which he no longer needed the EM arguments. 

Final Remarks  
The above analysis offers empirical evidence that, like cognitive variables, epistemic states 

(which are conceived here as belonging to the affective sphere) can contribute (or on the 
contrary, can stop) to emerge, precision, integration and others qualitative aspects of the new 
learnings; in particular, it is empirically shown that certainty exerts an inhibiting effect on the 
construction or establishment of new contents, and that doubt acts as a driver of learning. 
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THE PARALLELOGRAM PROBLEM: SUPPORTING COVARIATIONAL 
REASONING IN THE CONSTRUCTION OF FORMULAS 
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I studied preservice teachers’ uses of covariational reasoning with a dynamic situation to 
construct a formula to represent the covariational relationship between one of the interior 
angles of a dynamic parallelogram and its area. I propose a definition for reasoning 
covariationally with formulas, provide a first order model of what it means to do so, and then 
provide the results of the analysis of two students’ activities with this task, highlighting the 
bidirectional relationship between students’ images of a situation and their representation of it. 

Keywords: Algebra and Algebraic Thinking, Cognition, Design Experiments 

Students’ understandings of modeling problems, variables, and equations have long been 
identified as a source of difficulty in research on mathematics education (Stephens, Ellis, 
Blanton, & Brizuela, 2017). Students interpret symbols as static unknowns (Dubinsky, 1991) and 
fixed, given referents (Gravemeijer, Cobb, Bowers, & Whitenack, 2000). Thompson and Carlson 
(2017, p. 425) describe this reasoning as one with constants (i.e., person envisions a quantity as 
having a value that does not vary ever) versus parameters (i.e., person envisions the quantity as 
having a value that can change from setting to setting but does not vary within a setting) or 
variables (i.e., person envisions that the quantity’s value varies within a setting). I attempted to 
support preservice teachers’ construction of variables through interviews using area formula 
contexts by incorporating ideas of covariational reasoning—students conceiving of situations as 
composed of quantities that vary in tandem (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). I 
propose covariational reasoning with formulas to be simultaneously imagining two quantities 
represented via symbols as variables that represent covarying quantities in a situation. I report on 
the relationship between students’ perceptions of a dynamic situation and symbols in formulas. 

Background 
In this study, I adopt the radical constructivist perspective (von Glasersfeld, 1995) that 

individuals actively construct quantities—measurable attributes (Thompson & Carlson, 2017, p. 
425)— and that an individual’s image of a situation is projected from their mental organization 
of sensory data. My definition of image is rooted in Piaget’s (1967) descriptions of images as 
shaped by mental operations individuals perform. Thompson notes that “the image is shaped by 
the operations, the operations are constrained by the image, for the image contains vestiges of 
having operated, and hence results of operating must be consistent with the transformations of 
the image” (Thompson, 1996). Similarly, Thompson and Carlson (2017, p. 448) emphasized the 
idea that students’ constructions of symbolic expressions are constrained by the quantitative 
structures they construct about a situation. The formulas I intend for students construct stem 
from reasoning with dynamic area situations, a context other researchers are exploring as a 
productive way for K-8 students to construct formulas (e.g., Matthews & Ellis, in press).  

Methods 
In this study, four volunteer preservice teachers from a large public university in the 

southeastern U.S. partook in a videotaped sequence of 3-5 individual clinical (Clement, 2000) 
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and exploratory teaching interviews (Steffe & Thompson, 2000) lasting 1.5-2 hours each over 
the course of four weeks during the summer. The students had just completed their first or 
second semester in a four-semester secondary mathematics education program and had 
completed a Calculus sequence and passed at least two other upper level mathematics courses. 
The students had also completed a secondary mathematics topics course designed from the 
Pathways Curriculum (Carlson, O'Bryan, Oehrtman, Moore, & Tallman, 2015) and thus had 
opportunities to reason quantitatively and covariationally with dynamic situations. I only focus 
on two students’ second interview session, their first exploratory teaching session. I encouraged 
the students to think aloud (Goldin, 2000). The goal of my questioning was to build viable 
models of the students’ mathematics (Steffe & Thompson, 2000). I conducted open (generative) 
and axial (convergent) analyses (Strauss & Corbin, 1998) to inform these second order models.  

First Order Model of Parallelogram Problem 
I presented students with a manipulative (Figure 1a) and following prompt: “Describe the 

relationship between the area inside the shape (shape formed by two pairs of parallel lines) and 
one of the interior angles of the parallelogram (up to a straight angle).” In the following first 
order model, I will use  to indicate the physical segment from point A to B, ABunit to indicate 
the length of  measured in the unit specified, and AB as a measurement parameter for the 
situation (i.e., I anticipate measuring  but have no specific unit of measure in mind).  

Figure 1 offers a sequence of mental actions for a student’s construction of a formula that 
relies on conceiving of two quantities, area within ABCD and  (Figure 1b), and conceiving 
of them as variables within a formula through covariational reasoning. First, the student 
conceptualizes the area of a parallelogram as equivalent to the area of a corresponding rectangle 
through a translation (Figure 1c-e). Second, the student makes the following conclusion about 
covariational relationship between the angle measure and the rectangle: For equal changes in 
angle measure from  radians, the amount by which the area increases for each 
successive equal change in angle measure is less each time (Figure 1f-h). The student 
understands the height of the parallelogram as the height above the center of a circle measured in 
radii that they assimilate to this situation (Figure 1i) and assimilates it to the sine relationship 
(see Moore (2014) for details). Using sin(θ) to denote the height assumes the unit is the radius of 
the circle (i.e., ABradii) because sine outputs a result measured in radii. The radius, the length AB, 
can be measured with any other unit length, u, making the measurement for the height using that 
same unit ABu sin(θ), where ABu is the measurement of the radius using any unit. Thus, the final 
formula for the area of the parallelogram that relates the area to the angle measure is 
Area=AD�ABu sin(θ). This conception of a formula treats Area and θ as variables and ABu as a 
parameter based on the unit choice chosen for the situation for θ and AD.  
 

 
(a)               (b)               (c)               (d)               (e) 

 
(f)       (g)                (h)           (i) 

Figure 1. Sequence of mental actions to construct formula in Parallelogram Problem.  
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Results: Students’ Image Structuring of the Parallelogram Problem 
The following categories illustrate how different images informed students’ conceptions of 

the relationship between angle measure and area and a formula for the area of the shape.   
Unstructured Initial Images of Directional Covariational Relationships Between Quantities 

Three of the four students stated at some point that the area of the parallelogram remained 
constant as they changed the angle measure. In their justifications, they made note of properties 
of the manipulative such as the constant lengths of the sides of the parallel lines (Charlotte, 
Alexandria) or noting that as two of the interior angle measures decrease, the remaining two 
interior angles increase by the same amount (Charlotte). Alexandria’s image changed when she 
considered small angle measures; Charlotte was perturbed when she did so, saying, “It’s like to a 
certain point I believe [the area remains constant], and then it’s hard to believe it.”  
Comparison of Resulting Measurements from Formulas  

Charlotte constructed two formulas, one for a rectangle and one for a parallelogram at 
another angle. She wanted to compare the measures of the area for the shape as a rectangle by 
multiplying XC (Figure 2, left) to the measure of the area of the shape as a parallelogram with a 
given angle measure (Figure 2, middle). This comparison of static figures was problematic for 
her when she realized she did not know which values to use to compare to one another. 
 

     
Figure 2. Charlotte’s two instances (left, middle) of the situation from which she constructed 

two formulas and her construction of rectangles from parallelograms at “extreme” angles. 

Equating Known Formulas with Images  
Charlotte later noticed she could move her triangle on the left  (Figure 2, middle) to the right 

side and form a rectangular shape (as in Figure 1d-e) and concluded that to find the area of the 
parallelogram shape, she should also multiply CX (i.e., the side lengths) “because I think that 
that’s just a rectangle like looked at a different way” resulting in constant area for changing 
angles. This reasoning is problematic if the parallelogram is not precisely a rectangular shape. 
Using Knowledge of Relationships between Area Formulas for Rectangles and 
Parallelograms to Reason with a Dynamic Image 

With prompting, Charlotte carefully drew each rectangle in Figure 2(right) she was 
imagining forming separate from the corresponding instance of a parallelogram. She was explicit 
about constructing the y length to remain constant and the heights to decrease. When asked if it 
now looked like the rectangles were getting smaller, she said, “Yep. Now they do. It’s easier to 
see like through the rectangle than when it’s slanted. Especially since like I got something to 
compare. So like, here [pointing to the parallelogram], I can’t necessarily see that y is the same, 
but since I like made a conscious effort to draw these lines the same, I can tell that these are-the 
distances between both of them are getting smaller.” At this point, the quantitative structure 
Charlotte constructed was sufficient for her to reason using directional covariation. 

Alexandria similarly constructed an image of directional covariation, and she also thought 
the growth in area was proportional to the angle measure and spent a considerable amount of her 
activity on this problem trying to find the scale factor to construct a formula. Her image changed 
when she constructed the corresponding heights for each marked angle measure in her diagram 
(similar to Figure 1g), and highlighted the segments that represented the change in height for 
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each successive equal change in angle measure (similar to Figure 1h). She concluded, “The 
change in height increases” and abandoned her idea that relationship was proportional. She 
proceeded to construct a formula using reasoning the previous section outlined.   

Conclusions and Discussion 
Alexandria successfully illustrated the potential of reasoning covariationally with quantities 

constructed in dynamic situations to construct formulas that treat symbols as variables. However, 
both students’ operations were still constrained by their images of both the situation and their 
formulas in the moment, which perturbed students if their justifications for the relationships they 
conceived were rooted in (i) images of other quantities changing or remaining constant in the 
situation (i.e., other angle measures and side lengths) and gross visual comparisons of area at 
random angle measures (ii) images of formulas as solely representations of measurement 
processes for static figures. These images impacted their understandings of their formulas. 
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STUDENTS’ CONSTRUCTION OF MATHEMATICAL GENERALIZATION IN A 
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Generalizing is widely considered to be essential to the learning and doing mathematics. Using 
design experiment methodology this study investigates middle school students’ construction of 
mathematical generalization when learning geometric transformations in a technology-intensive 
instructional environment. The study reported different types of mathematical generalizations 
students constructed when engaged in instructional activities about geometric transformations.   

Keywords: Mathematical Generalization, Dynamic Geometry Software 

Making generalization is fundamental to mathematics and a crucial component of 
mathematical thinking. Developing learners’ capacities towards making and justifying 
generalizations about mathematical relationships has been a pivotal goal of mathematics 
education for decades (Davydov, 1990). Indeed, three of the eight Standards (i.e., reason 
abstractly and quantitatively, look for and express regularity in repeated reasoning, and look for 
and make use of structure) for Mathematics Practices in Common Core State Standards for 
Mathematics directly relate to generalizing activities. Despite this, literature continues to 
highlight challenges associated with developing K-16 learners’ abilities to generalizing 
mathematical ideas. To develop instructional activities that help students become more proficient 
at constructing mathematical generalization, it is important to understand the forms that the 
constructive process might take and the conditions that might affect the ways that individuals 
engage in the construction of mathematical generalizations. Meanwhile, researchers have 
provided evidence that mathematics-specific cognitive technologies influence both the technical 
and conceptual dimensions of a mathematical activity (Zbiek, Heid, Blome & Dick, 2007). The 
current study aimed to understand students’ construction of mathematical generalizations in a 
technology-intensive instructional environment and was guided by one questions: (1) what 
mathematical generalizations do students construct when learning geometric transformations in a 
technology-intensive instructional environment?  

Theoretical Framework 
When studying students’ construction of a mathematical generalization, we need to consider 

what comes before generalizing, what becomes generalized, and what generalizing yields. Pirie 
and Kieren (1994) perceived mathematical understanding as dynamic, leveled but nonlinear, 
recursive process. According this model, Primitive Knowing is the starting place for the growth 
of any new mathematical understanding. When Image Making, a learner engages in specific 
activities aimed at helping him to develop initial conceptions and ideas for the meaning of a 
mathematical object. By the stage of Image Having, a learner can carry out these specific 
activities with a general mental plan. At the layer of Property Noticing, a learner reflects on his 
mental image and recognizes attributes and features of it. When Formalizing, a learner abstracts 
a method or common quality from the previous image and has a class-like mental object that is 
not dependent on meaningful images. When Observing, a learner reflects on and coordinate such 
formalizing activity and express such coordination as theorems. Structuring occurs when a 
learner is aware of how a collection of theorems is inter-related and calls for justification of 
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statements through logical argument. Pirie and Kieren’s model provides a useful framework to 
trace the development of a mathematical generalization in the continuum of mathematical 
understanding.  

Methodology 
This study was frame by a design experiment methodology (Cobb et al., 2003). The goal of 

this design experiment was to explore how students construct mathematical generalizations when 
interacting with the teacher and dynamic geometry software in learning geometric 
transformations and what sorts of interventions become important in facilitating students 
generalizing practices. The participants were 7 middle school students who enrolled in a summer 
enrichment program for two weeks. Prior to this design experiment, a pre-assessment was 
designed to gather information about students’ understanding of geometric transformations. Van 
Hiele-like levels of learning geometric transformations (Soon, 1989) was used to guide the 
design of the pre-assessment. Data from the pre-assessment indicated all the participants were 
able to recognize geometric transformations and perform transformation motions. This data was 
used in designing activities for the planned experiment. The transformation unit in the design 
experiment focus on examining properties of geometric transformations, identifying defining 
parameters of geometric transformations, and exploring composition of transformations.  

Data processing and analysis consisted of three phases. In Phase I, each piece of video data 
was segmented based on transitions in mathematical activities. Generalizing episodes were then 
identified within those mathematical activities. In particular, an instructional activity was 
identified as a generalizing episode if the participants were engaged in at least one of the 
following four activities: (1) identifying a property of a mathematical object, (2) extending one’s 
reasoning beyond the range in which it originated, (3) searching for a procedure, and (4) deriving 
a generality from known properties. Each generalizing episode was then transcribed verbatim. 
The transcript included descriptions of the participants’ interactions with the teacher and 
technology. In Phase II, Pirie and Kieren’s (1994) model was used to trace the development of 
each generalizing episode. Critical moments of interactions among the participants, the teacher, 
and the technology were included in each event map. In Phase III, all of the observations, 
conjectures, and generalizations which the participants shared in each generalizing episode were 
identified and categorized based on their level of generality and connections to a broader 
mathematical structure.  

Results 
The participants in the study constructed a variety of mathematical generalizations when 

engaged in activities related to geometric transformations. Based on their levels of generality and 
attentiveness to broader mathematical structures, these generalizations were categorized into 
three types: property-based generalizations, construction-based generalizations, and theory-based 
generalizations.  Property-based generalizations are mathematical properties abstracted from 
empirical cases and extended beyond the cases in which the properties originated. Construction-
based generalizations are construction procedures that allow learners to produce desired 
configurations through using a series of primitive construction commands. Theory-based 
generalizations are mathematical statements learners deduce from definitions, properties, and 
theorems through chains of logical reasoning. In this study, 44 generalizations were shared in 14 
generalizing episodes. Among these generalizations, 24 were property-based generalizations, 8 
were construction-based generalizations, and 12 were theory-based generalizations. Table 1 
summarizes the frequencies of the different types of generalizations and the number of 
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generalizing episodes in which each type of generalization was observed. Note that the total 
number of generalizations reported in Table 1 only includes those that the participants shared 
during whole-class discussions. Analysis of participant artifacts revealed that some of the 
generalizations that the participants constructed were not shared during whole-class discussions. 
Therefore, the total number of generalizations reported in the table may not be representative of 
the total number of generalizations participants produced during the study. Further, the 
participants often produced more than one generalization within one generalizing episode.  

Table 1: Types of Mathematical Generalizations  
Type of Generalization Number of 

Generalizations 
Number of Generalizing 

Episodes 
Property-based generalization 24 10 
Construction-based generalization 8 7 
Theory-based generalization 12 4 
Total 56 14 

 
Although property-, construction-, and theory-based generalizations vary in their levels of 

generality and attentiveness to broader mathematical structures, they are closely linked. 
Property-based generalizations can be assembled to form a construction-based generalization 
form a geometric construction. Construction-based generalizations rely on properties of 
geometric objects, which might come from property-based or theory-based generalizations. A 
figure produced through a geometric construction is essentially a conceptual entity, although the 
figure might mobilize perceptual activities. In a dynamic geometry environment, a geometric 
construction can lead to the discovery of a new generalization or extension of the domain of 
validity of an existing generalization. Theory-based generalizations are generalizations that 
learners construct through reasoning about properties of mathematical objects. Explicit use of 
mathematical structures to deduce new knowledge characterizes theory-based generalizations. A 
theory-based generalization might build on a property-based generalization and it can also be 
used to form a geometric construction. Numerical and visual-graphical evidence plays an 
important role in the discovery of the properties and relationships of geometric objects.  

Analysis of event maps of the generalizing episodes revealed patterns of distribution of the 
different types of generalizations along the layers of mathematical understanding. Property-
based generalizations occurred frequently at the Property Noticing and Formalizing stages. 
Construction-based and theory-based generalizations were advanced at the Formalizing layer. 
The distribution of these types of generalizations suggested that the Formalizing stage included 
property-, construction-, and theory-based generalizations. Therefore, Property Noticing and 
Formalizing were the two main layers of understanding at which generalizations became 
observable. The fact that the Formalizing level included three types of generalizations revealed 
that mathematical ideas constructed at the same layer of understanding might have different 
natures and levels of generality. Although property-, construction-, and theory-based 
generalizations became observable only at the Property Noticing or Formalizing layers, Image 
Making and Image Having activities were crucial in the construction of generalizations, 
especially when the participants could not immediately develop a useable mental image for 
solving the problem at hand. Indeed, event maps of the exemplary generalizing episodes 
illuminated that Image Making and Image Having activities were prominent in many 
generalizing episodes.  
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Generalizing Episode 1 illustrates the findings from this study. In this generalizing episode, 
the teacher created an image of a 180  rotation and an image of a reflection to demonstrate the 
concept of orientation preserving and then asked students whether or not the image of the 
rotation could be produced by a reflection. The students made a conjecture that the composition 
of two reflections could produce the same image as the 180° rotation. After two attempts, the two 
images still did not match. The teacher then engaged the students in Image Reviewing and 
pointed out that the two images shared the same orientation. In response to the Image Reviewing 
activity, another student suggested translating the image of the composite reflection to the image 
of the 180° rotation. The student then made the two images match through continuously dragging 
and adjusting the two segments (Image Making). After the students made the two images match, 
the teacher asked what they noticed about the two reflection lines. The students observed that the 
two segments seemed to be perpendicular and verified their observation with measuring tool in 
GSP (Property Noticing). The teacher then asked the students how to find the two reflections if 
the angle of rotation is 75 . Students made a conjecture that the angle of the two reflection lines 
might be 37.5  since, in the previous case, 90  was one half of 180  ((Property Noticing).  In an 
attempt to find the two reflection lines, the students folded back to Image Having and asked the 
teacher to draw two segments whose angle was 37.5 . The teacher drew the two segments, 
adjusted their angle to 37.5 , and executed the two reflections. It turned out that the two images 
did not match. The students then folded back to Image Making and tried to move the two 
reflection lines to match the two images. The teacher pointed out that the two segments shared an 
endpoint which might cause the problem (Image Reviewing) and then demonstrated how to 
construct two reflection lines with a fixed angle measure (Primitive Knowing). After the teacher 
constructed the image of the composite reflection, the students noticed that the center of rotation 
was the point of intersection of the two reflection lines when the two final images matched 
(Property Noticing). The teacher then asked students to find the two reflections whose 
composition would produce the same image as that given by a 125  rotation with a minimum 
number of guesses and checks. In doing so, the teacher moved the students in the direction of 
formalizing a general procedure for finding two reflections. The students suggested drawing two 
segments passing through the center of rotation with a fixed angle of 62.5  (Formalizing). This 
indicates that the students were starting to formalize the procedure. The teacher then synthesized 
this formal procedure and asked students to draw a picture to capture this generalization.  
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Measures of Central Tendency (MOCT), which include mean, mode and median, are 
important mathematical/statistical concepts; hence, they are typically included in mathematics 
curriculum as early as middle grades (Amiruzzaman & Kosko, 2016). However, most research 
related to MOCT has generally focused on the teaching and learning of arithmetic mean, with a 
little study of median or mode (Amiruzzaman & Kosko, 2016; Amiruzzaman, Kosko, & 
Amiruzzaman, 2017). In the past, a few studies focused on students’ conceptions of median 
and/or mode have found that high school and college-level students tend to have more difficulty 
calculating median and mode than the arithmetic mean (Amiruzzaman & Kosko, 2016; 
Amiruzzaman, Kosko, & Amiruzzaman, 2017). This study focused on a small group of middle 
grades (i.e., sixth-grade) students, especially to perform more in depth analysis of students’ 
initial understanding and how their understanding has developed through actions of working with 
mathematical problems and manipulative. In this study, a classroom based teaching experiment 
was used to build our models of participants’ conceptions of median and mode. Total of six 
students (5 males and 1 female) participated in the study, and the study consisted of 14 teaching 
experiment episodes (approximately 45-50 minutes/episode) across 14 weeks in spring 2015. 
The initial tasks focusing on median and mode for the initial episode were prepared ahead of 
time; however, tasks for following episodes were prepared based on the analysis of the prior 
episode. This study presents data from episodes 6 to 8 to illustrate preliminary findings for 
learning trajectories of the participating students, Alice and Bob.  

In episode 6, both Alice and Bob described the median as the middle value of a data set, and 
generally were able to identify the median with data sets with an odd number of elements. 
However, when Alice and Bob were asked to find the median for data with an even number of 
elements, both of them that claimed there was no median. In episode 7, both Alice and Bob 
described that a dataset may have only one mode. However, in episode 8, it was observed that a 
number-line manipulative helped Alice and Bob to understand the concepts of median and mode 
better. The findings of this study indicate that middle grade students’ conceptions of median and 
mode may require a more visual manipulation of the data elements. Working with data and 
seeing how the data elements are distributed helps to understand the concepts of median and 
mode better. One of the implications of this study is that students’ conception of the median and 
mode are more complex than previously recognized. In regards to practice, these findings 
suggest that practitioners (i.e., mathematics teachers) should use manipulative, so that students 
could manipulate data and understand its distribution before they learn about the definitions of 
these concepts.  
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Concept image is the set of all mental pictures associated with the concept name and the 
properties associated with the concept, acquired through experiences with examples and 
nonexamples of the concept (Tall & Vinner, 1981). Given the importance of representations in 
developing understanding of mathematical concepts, this study documents the concept images of 
parabolas held by students in a college-level Algebra class, and identifies potential influences on 
students’ understandings. Students’ concept images of parabolas are of interest because 
parabolas are both mathematical objects and representations of symbolic algebra.  

Clinical interviews were conducted with two students from a college-level Algebra course at 
a large mid-Atlantic public university. The cognitive tasks during the interview aimed to activate 
different parts of students’ concept image of parabola. A representational fluency analytical 
framework was used to characterize the coherence of students’ concept images, as the level of 
coherence of an individual’s concept image impacts their ability to successfully navigate 
between the elements. In addition to clinical interviews, select sessions of the college Algebra 
course were observed and the assigned textbook was examined, providing insight to potential 
influences on students’ concept images. 

Findings suggest that participants’ concept images are not coherently connected, as 
demonstrated by their low levels of sophistication in representational fluency. Both participants 
relied on the algebraic definition of parabola, as a graph of a quadratic function, throughout the 
tasks. Participants were preoccupied with remembering rather than reasoning. Despite awareness 
of processes and procedures regarding parabolas and quadratic functions, participants were 
unsuccessful in transposing within and translating between representations. Participants acted 
inconsistently across the different tasks, suggesting that different elements of their concept 
images were activated. Participants showed a lack of understanding of the parabola’s vertex, 
possibly due to the over-emphasis on solving for only one coordinate of key points when 
graphing parabolas in both the course textbook and lecture. Although participants in this study 
completed advanced mathematics courses at the secondary level, their intellectual behaviors 
during the clinical interviews reflect those of secondary students who are learning about 
parabolas or quadratic functions for the first time, as seen in related research. Thus this research 
suggests that emphasis on symbolic manipulation and algorithms at the secondary and early 
college level may fail to facilitate students' visualization of concepts and create the relational 
connections between symbolic and graphical representations that are necessary for conceptual 
understanding.  
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Instrument development should adhere to the Standards (AERA et al., 2014). “Content-
oriented evidence of validation is at the heart of the [validation] process” (AERA et al., 2014, p. 
15) and is one of the five sources of validity evidence. The research question for this study is: 
What is the evidence related to test content for the three instruments called the PSM3, PSM4, 
and PSM5? The study’s purpose is to describe content validity evidence related to new problem-
solving measures currently under development. We have previously published validity evidence 
for problem-solving measures (PSM6, PSM7, and PSM8) that address middle grades math 
standards (see Bostic & Sondergeld, 2015; Bostic, Sondergeld, Folger, & Kruse, 2017).  

We chose a design-science based methodology to develop the PSM series. This methodology 
is useful for measure development, gathering data from the measure, drawing reasonable 
conclusions from the data, revising the measure, and repeating the cycle. Three forms of data 
were collected sequentially to explore test content validity evidence. Our data analysis approach 
used traditional methods (Sireci & Faulkner-Bond, 2014). Broadly speaking, all reviewers on the 
expert panel agreed the items were open, complex, and realistic. Mathematicians confirmed that 
each item could be solved in two or more ways. Students expressed that the items were complex, 
solvable, and realistic.  

Results indicated that items were both representative and relevant of the construct. 
Supplementing this conclusion with the knowledge that the definition is sufficiently bounded and 
test construction followed the Standards (AERA et al., 2014), leads to a conclusion that the 
PSMs have adequate test content validity evidence. This is the initial step in building a validity 
argument; next steps are to gather evidence related to response processes, relations to other 
variables, internal structure, and consequences from testing.  
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Rate of change is a challenging area of mathematics spanning multiple grades and courses, 
and is related to functional skills such as accurately reading maps and calculating interest 
(Herbert & Pierce, 2012). To date, no research has been conducted to determine effective ways 
to teach rate of change to students with disabilities. Across multiple grade and ability levels, 
instruction incorporating an integrated concrete-representational-abstract (CRA-I) approach 
increases math achievement (Strickland & Maccini, 2012). CRA-I is often paired with cognitive 
strategies instruction, such as problem-solving heuristics, as well as student verbalizations to 
help build conceptual understanding (Watt, Watkins, & Abbitt, 2016). Writing To Learn (WTL) 
may provide a platform for incorporating problem-solving heuristics and written explanations of 
student thinking into CRA-I interventions, with the goal of increasing students’ conceptual and 
procedural understanding of rate of change (Gersten et al., 2009).  

In this study, we used a single-subject multiple-probe design across participants to evaluate 
whether an intensive intervention consisting of CRA-I, a problem-solving heuristic, and writing 
to learn helped ninth-grade students with disabilities improve their understanding of rate of 
change. The participants included four ninth-grade students with disabilities below state 
proficiency levels in math. Results indicated that the multi-component intervention, implemented 
across seven weeks, may improve students’ with disabilities understanding of rate of change. All 
four students improved their scores on math assessments, and maintained improvements on post-
instruction assessments administered one to seven weeks following the completion of the 
intervention. Two of the four students also moderately improved their scores on writing 
assessments. The results of this study support the use of instructional strategies, such as CRA-I, 
heuristics, and writing, that build both conceptual and procedural knowledge. Additionally, the 
results of this study indicate the importance of incorporating writing activities in math to help 
students develop the ability to explain and justify their reasoning.  

The research questions explored include: (1) What is the effect of implementing an integrated 
concrete-representational-abstract (CRA-I) instructional sequence incorporating writing to learn 
and cognitive strategies on students with disabilities’ proficiency in solving rate of change 
problems, and (2) Do students with disabilities find the multi-component (CRA-I + writing to 
learn + cognitive strategies) intervention to be socially acceptable?  
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Researchers have used a variety of frameworks to evaluate students’ work that differ in focus 
but all yield a single score or level (e.g., Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009; 
Lee, 2016). By assessing students’ work holistically, none of the frameworks are able to 
differentiate, for example, between instances whether an empirical solution was produced due to 
the student’s content knowledge or to their understanding of proof (e.g., Knuth et al, 2009). For 
students who are still learning to construct proofs, attention to multiple characteristics of their 
work can serve to not only characterize students’ current understanding but also suggest possible 
areas for growth in their mathematical and proof understanding.  

The proposed framework (Table 1), based on Stylianides (2007) definition of proof, attends 
to multiple aspects of students’ work, including categories that assess whether students 
demonstrated an awareness of a proof component (e.g., attention to the justification requirement) 
and categories that assess students’ ability to correctly apply the given component (e.g., uses 
mathematically accurate justifications). The poster will include examples of 9th graders’ coded 
work, produced at the end of an introduction-to-proof design research study, selected to illustrate 
the framework and the distinctions between it reveals. As the field seeks to move the teaching 
and learning of proof in K-12 classrooms forward, it is important that we look for ways of 
identifying the skills and understanding students have developed, which can then be leveraged in 
future instruction. 

Table 1: Analytic Framework for Assessing Students’ Understanding of Proof Components 
Stylianides (2007) definition Framework Categories 
A connected sequence of 
assertions Assertions follow a logical flow Identifies and uses the correct 

hypothesis  
Uses set of accepted 
statements 

Attention to the justification 
requirement 

Uses mathematically accurate 
justifications 

Modes of argumentation Attention to the generality 
requirement Overall type of argument 

Modes of argument 
representation Forms of expression used Relationship between written text and 

other forms of expression, if applicable 
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Introduction 
Construction of general statements is essential mathematical activity (Mason, 2008). 

Advanced mathematical study should support students’ development of abilities to generalize 
and conjecture (CUPM, 2015). This is particularly important for undergraduate students who 
self-select to pursue careers in studying and teaching mathematics. Understanding how students 
construct such statements can help instructors plan to support students’ development of 
mathematical practices. This presentation shares findings of empirical research into the question: 
How do undergraduates in mathematics-intensive degrees, near the end of their degree programs, 
approach the construction of general statements? 

Method 
Six secondary mathematics education majors and four mathematics majors, each within three 

semesters of completing their mathematics program of study, were recruited from a large Mid-
Atlantic public university. Data were collected via individual task-based interviews. Tasks were 
populating tasks, defined as tasks that present a set of general properties that could be true for 
some, but not all, elements in a broad collection. The broad collection is the universe of the task. 
The task prompts are to identify a domain, i.e., a subset of the universe, describing cases that 
have the general properties. Using inductive, qualitative methods (Corbin & Strauss, 2008), 
responses were sorted by similarities in ways of using cases, descriptions of sets within the 
universe, and inductive or deductive reasoning. Essential characteristics of each category were 
identified and used to characterize the category as an approach. 

Findings and Implications 
Approaches fell into three broad categories: Generalizing, Specializing, and Direct. 

Generalizing approaches involve forming an initial domain case-by-case, then expanding that 
domain. Approaches differed in the method of expansion: either by inductively describing a set 
containing the cases, or by systematic testing of new cases to eliminate nonessential 
characteristics, thus expanding the domain. Specializing approaches involve generating sets to 
satisfy a subset of general properties, then reducing the initial sets to a subset satisfying all of the 
general properties. A Direct approach involve deducing logically necessary characteristics for a 
case to have the general properties. The use of specific cases and inductive reasoning by these 
students, though useful, has implications for those who go on to further study in areas of 
mathematics in which specific cases are difficult to construct and for those whose future careers 
involve shepherding the growth of deductive reasoning in others. 
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Angle measure is a pervasive topic in school mathematics and is often introduced in the 
elementary grades. Extant literature (e.g., Moore, 2013) and standards (e.g., CCSSM) have 
emphasized quantifications (Thompson, 2011) of angularity whereby multiplicative comparisons 
of circular arcs are used in service of measuring angles. Although circular quantifications of 
angularity are productive, mathematics educators cannot take for granted that all students can 
make the requisite multiplicative comparisons, much less generalize them as holding invariant 
across all circles. Therefore, examining other quantifications of angularity is paramount.  

I present two non-circular quantifications of angularity, which I abstracted from my 
conceptual analysis (von Glasersfeld, 1995) of two ninth-graders’ activities throughout a 
yearlong teaching experiment (Steffe & Thompson, 2000) focused on quantifying angularity. 
Rather than measuring angles by measuring arcs, Bertin and Kacie each developed 
quantifications of angularity entailing extensive quantitative operations (Steffe & Olive, 2010) 
enacted on the interiors of angles (e.g., angular iteration). Additionally, both students established 
re-presentable templates for familiar angles (e.g., right, straight, and full angles), and 
permanently assigned these templates dedicated degree measures (e.g., a right angle is a 90° 
angle). Bertin and Kacie could make and measure other angles by subdividing these familiar 
templates into equiangular parts and performing corresponding numerical computations on the 
dedicated measures. A distinguishing factor in Kacie’s and Bertin’s quantifications was how 
each student mentally subdivided angles into smaller equiangular parts. Bertin indicated the 
equipartitioning operation (i.e., the simultaneous insertion of same-sized parts intended to 
exhaust a whole). In contrast, Kacie indicated the equisegmenting operation (i.e., the sequential 
insertion of same-sized parts intended to exhaust a whole). Although both students constructed 
powerful quantifications of angularity, neither student developed a circular quantification of 
angularity during the teaching experiment; therefore, I hypothesize extensive quantifications of 
angularity necessarily precede circular quantifications of angularity. As such, students in 
elementary grades may be better supported if teachers begin instruction in angle measure with 
the intent of fostering extensive quantitative operations on angles (e.g., iterating and 
partitioning). At the very least, students who develop non-circular quantifications of angularity 
should be celebrated in mathematics classrooms.  
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Mathematical modeling (Lesh & Doerr, 2003) is a thinking process in which students need to 
apply a wide range of cognitive attributes – one component of intellectual resources related to 
knowing-how (Bailin, 2002). Students can develop cognitive attributes in mathematical activities 
and some of those cognitive attributes are used when students solve test problems. Common 
cognitive attributes used in mathematical modeling and solving test problems – analyze, select, 
compute, and represent in this research (adopted from the TIMSS 2011 assessment framework; 
Mullis, Martin, Ruddock, O'Sullivan, & Preuschoff, 2009) – allow us to connect mathematical 
modeling as classrooms practices and mathematics achievement.  Thus, the purpose of this 
research is to quantitatively and empirically investigate the relationships between students’ 
development of mathematics cognitive attributes and their achievement.   

We collect data of students from grades 4 to 8 (over 15,000 students at each grade) who took 
the Iowa Assessment from 2006 to 2012. We apply the generalized DINA (GDINA; de la Torre, 
2011) to students’ responses, which produces a database about sets of cognitive resources 
individual students are expected to attain.  In the secondary analysis, students’ national standard 
scores are matched to their mastery patterns.  Then, the linear regression analysis is employed to 
show which cognitive resource contribute to better mathematics achievement while effect sizes 
of each cognitive attribute are estimated.   

The findings show that the four cognitive attributes together are positively correlated to 
mathematics achievement.  In addition, students who master select or compute are likely to have 
higher achievement scores with large degrees of effects.  Master of analyze is also important 
only with a combination of mastery of select.  Longitudinally, select and analyze, which are used 
at the beginning stages of mathematical modeling, have maximum effects on achievement at 
grade 7.  The effect sizes of compute seems monotone increasing from grade 4 to 8 with a 
remarkable drop at grade 7.  The effect sizes of represent are generally small showing a gap 
between middle and elementary school levels.      

We suggest several implications based on the findings: students need to have opportunities to 
develop the four cognitive attributes based on the positive relationships between mathematical 
modeling and achievement.  However, teachers need to have instructional emphases on different 
stages of mathematical modeling depending on grade levels: representing a solution at 
elementary-school levels because of the effect size gap, analyzing a problem situation and 
selecting strategies at middle-school levels, and computation across grades 4 to 8.   
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Elementary students are not typically encouraged or given the opportunity to provide 
generalizable arguments in mathematics classes (Carpenter, Franke, & Levi, 2003). When they 
are given the opportunity, they generally limit their argument to giving an example. However, it 
has been documented that elementary students are capable of making conjectures and developing 
mathematical claims (Ball, 1993). Many researchers have recommended that all students in all 
grade levels should engage in mathematical proof and reasoning (e.g., Carpenter et al., 2003; 
NCTM, 2014). In this study, I explored whether students were able to provide justifications or 
state generalized patterns of a graceful label for different types of tree graphs.  

Ten Grade 4 and 5 students participated in seven semi-structured, task-based interviews 
(Goldin, 2000). The interviews each lasted between 35 and 45 minutes and took place at an after-
school program in the Midwest. During the interviews, students worked on the Graceful Tree 
Conjecture. They examined graceful labelings of star graphs, path graphs, and caterpillar graphs. 
All interviews were video recorded, transcribed, and analyzed. For analysis, I documented each 
instance where students found patterns or made a mathematical argument.  

I found that all of the students were able to describe patterns for gracefully labeling star 
graphs. Three students found and described patterns for path graphs, but all ten students were 
able to find a graceful label. For caterpillar graphs, three students described a pattern they found 
through trial-and-error, and three students used their pattern from path graphs to develop a 
pattern for caterpillar graphs.  

When students present an argument, they either appeal to authority, use an example, or give a 
generalized argument (Carpenter et al., 2003). I found because of the nature of the problem—
graph theory—the students had no prior experience and thus they were not able to appeal to 
authority. The most common way students tried to justify their pattern was through providing an 
example. When asked how they knew that a labeling was graceful, the students would explain 
their pattern using a one specific example. One student even went as far as explaining her 
labeling would work for a graph containing 20 nodes. Several times the students would attempt 
to give a generalizable argument, but they struggle with the knowledge of how to do that and did 
not have the appropriate language.  
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EXAMINING TEACHER CANDIDATES’ RESPONSES TO ERRORS DURING 
WHOLE-CLASS DISCUSSIONS THROUGH WRITTEN PERFORMANCE TASKS  

 Erin E. Baldinger Matthew P. Campbell Foster Graif 
 University of Minnesota West Virginia University University of Minnesota 
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Effectively leading whole-class mathematics discussions is made more difficult when students’ 
contributions are incomplete, imprecise, or not yet correct, and not easily correctable—what we 
call “errors.” Through purposefully designed opportunities to investigate, enact, and reflect on 
teaching, teacher candidates (TCs) can develop skill to productively respond to errors in whole-
class discussions. We investigate how TCs respond to errors when engaging in a written 
performance task that calls for TCs to play out discussions in response to a classroom scenario. 
We consider what the performance task reveals about TCs’ practice and perspectives, with 
implications regarding theory and practice. 

Keywords: Teacher Education-Preservice, Instructional Activities and Practices 

Whole-class mathematics discussions are critical spaces in which students can participate 
authentically in mathematics and develop a broad set of mathematical proficiencies and practices 
(Kilpatrick, Swafford, & Findell, 2001). Effectively leading discussions is complex work 
comprised of eliciting, responding to, and building upon student contributions toward 
mathematical goals (Boerst, Sleep, Ball, & Bass, 2011). Contributions that are incomplete, 
imprecise, or not yet correct present an additional challenge for teachers wanting to keep student 
reasoning central, make progress toward identified goals, and not convey erroneous ideas. We 
contend that, through purposefully designed opportunities for representing, decomposing, and 
approximating practice (Grossman et al., 2009), teacher candidates (TCs) can develop skill to 
productively respond to student errors in whole-class discussions. We share our use of written 
performance tasks in which TCs produce dialogues and rationales for their dialogues in response 
to a classroom scenario. Our analyses provide a window into TCs’ practice and perspectives and 
offer implications regarding theory and practice of mathematics teacher education.  

Literature Overview 
All mathematics teachers have the opportunity to respond to student errors as part of the 

work of teaching, and there is a robust literature base exploring the role of errors in the 
mathematics classroom. Understanding teacher responses to student errors requires first defining 
the term “error.” Nesher (1987) argues that making errors are the way in which students 
contribute to their own learning process. This perspective is echoed in later literature, which 
emphasizes viewing students as sense-makers and identifying opportunities to build on student 
thinking (e.g., Van Zoest et al., 2017). Following Brodie (2014), we define errors as incomplete, 
imprecise, or not yet correct contributions that are more complex than mistakes that are easily 
correctable. Errors occur “among learners within and across contexts” (Brodie, 2014, p. 223), 
and move beyond mistakes such as misspeaking or accidently doing an incorrect computation. 
Taking this view on the role of errors makes it imperative to understand the ways in which 
teachers respond to errors. One common approach is for teachers to make corrections (e.g., Tulis, 
2013), quickly highlighting the error and introducing correct ideas into the discussion. Another 
approach is to avoid errors (e.g., Bray, 2011; Santagata, 2005) and steer the conversation toward 
correct contributions. These actions potentially remove the opportunity for students to make 
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sense of errors. If students make sense of mathematics at least in part through their errors, then 
productive teacher responses ought to support that sense-making. Teachers must notice students’ 
mathematical reasoning (Jacobs, Lamb, & Philipp, 2010) and navigate the in-the-moment work 
of building understanding (Bray, 2011; Leatham, Peterson, Stockero, & Van Zoest, 2015).   

An added layer of complexity in responding to errors results from the context in which the 
error occurs. In whole-class discussions, the teacher must navigate the needs of the student who 
contributed the error along with the needs of the rest of the class, who may or may not share that 
student’s conception. Leading whole-class discussions requires responding to student reasoning 
and making student contributions central to the mathematical work of the class (Boerst et al., 
2011). In this context, teachers must find ways to navigate making student contributions central 
at the same time as a desire to have the conversation focus on correct responses. We extend the 
work on both errors and whole-class discussion in secondary mathematics by considering whole-
class discussions as the particular context for responding to errors. We examine the ways in 
which teachers may respond to errors through analyzing representations of their practice.  

Theoretical Framework 
We take the perspective that, to develop skilled practice, TCs must not only have 

opportunities to think about and reflect on teaching using representations of practice such as 
observation, written vignettes, and video, but also the opportunity to approximate the work 
(Grossman et al., 2009). This can occur when TCs meaningfully engage in interactive and 
contingent aspects of teaching in settings of reduced complexity and authenticity. Through 
opportunities to enact teaching practices in response to student contributions, TCs demonstrate 
and further develop adaptive skill that coordinates pedagogical approaches, the goals of a 
particular approach, and a vision of mathematics teaching (Ghousseini, Beasley, & Lord, 2015). 
These opportunities also provide a lens for teacher educators and researchers to assess TCs’ 
developing practice and their coordination of approaches and goals.  

This theoretical perspective frames our use of pedagogies such as coached rehearsals 
(Lampert et al., 2013), and as teacher educators and researchers we strive to find multiple 
approximations and strategies for assessing TCs’ practice. We use written performance tasks 
(e..g, Bray, 2011) as an additional way to put TCs in the position to make sense of and respond 
to student reasoning. In designing these tasks, we draw on research around scripting classroom 
interactions (Crespo, Oslund, & Parks, 2011; Zazkis, 2017). TCs are presented with a realistic 
classroom scenario involving whole-class discussion and student errors. TCs demonstrate, 
through written dialogue, how they might continue the discussion. These dialogues represent, in 
part, TCs’ imagined response to a particular student contribution. They also represent TCs’ sense 
of how students might contribute further, giving insight into TCs’ view of what is reasonable or 
desirable in a classroom episode. TCs also provided a rationale for why they continued the 
discussion the way they did. In this paper, we explore what these performance tasks say about 
TCs’ developing practice, building on preliminary work (Campbell, Baldinger, Selling, & Graif, 
2017). We ask: (1) what are the features of TCs’ dialogues written in response to a student error 
made during a whole-class discussion; (2) what are the features of TCs’ rationales for their 
dialogues written in response to a student error made during a whole-class discussion; and (3) in 
what ways do TCs’ dialogues relate to their rationales, and what do these relationships suggest 
about TCs’ coordination of approaches and goals in their responses to student errors in whole-
class discussions? 
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Methods 
We describe our analyses of one performance task we designed, with a scenario centered on 

the use of a card sorting activity (Baldinger, Selling, & Virmani, 2016) intended to elicit and 
refine the following definition of a polygon: “a 2-dimensional (plane) figure, where each side is a 
straight-line segment that intersects exactly one other side at each endpoint.” In the scenario, the 
whole-class discussion began after students had worked in small groups. The teacher asked for 
students to name cards that they easily knew were polygons. One student, Rosalia, offers Shape 
Q (see Figure 1) and, after a back-and-forth with the teacher, shares that it is a polygon because 
“it is a square” and that “all the sides are straight lines.” After the teacher asked for another 
example of a polygon, Jessie offers Shape J (see Figure 1), stating that it was square, like Shape 
Q. TCs dialogues began following Jessie’s contribution. After writing their dialogues, TCs wrote 
rationales describing why they continued the discussion as they did. 
 

 
 

Figure 1. Two cards presented in the scenario as examples of polygons 

We collected responses from 25 secondary mathematics TCs in methods courses at two large, 
public research institutions. Seventeen participants were engaged in a yearlong post-
baccalaureate licensure program at one institution. Eight participants from a second institution 
were enrolled in a shared methods course across multiple licensure programs. The methods 
courses in both programs incorporated practice-focused teacher education pedagogies, such as 
coached rehearsal. The full performance assessment (including two scenarios) was administered 
using Qualtrics in October 2016. TCs completed the assessment individually during the methods 
class. Response times for the full assessment ranged from 11:24 (minutes and seconds) to 42:37, 
with a median duration of 25:34.  

We used a priori and emergent codes to describe features of TCs’ response to student errors 
in the dialogues. Examples of codes included talk moves used by TCs, such as re-voicing 
(Chapin, O’Connor, & Anderson, 2013), asking funneling or leading questions, and a focus on 
comparing the two shapes. We used similar codes to describe the features of TCs’ rationales. 
Examples of codes for the rationales included the rationale mentioning wanting to resolve the 
error, or the rationale mentioning the need to recognize and/or value student contributions. Using 
these codes for the dialogues and the rationales, we developed a series of yes or no questions to 
ask of each dialogue and rationale. These questions fell into three main categories: attending to 
the error, attending to the mathematics, and attending to students. Two authors independently 
answered the questions for each dialogue and rationale. Inter-rater reliability was assessed and 
disagreements were resolved through discussion. 

Next, we engaged in a process of analytic memo writing and theme building (Miles, 
Huberman, & Saldaña, 2013) to identify the most salient features in the dialogues and in the 
rationales. As we looked at counts of dialogues or rationales with particular features, we kept in 
mind that the absence of evidence was not the same as evidence of absence. For example, though 
15 TCs explicitly mentioned that Jessie’s contribution contained an error, other evidence 
demonstrated that all participants understood Jessie’s error. To address the relationships between 
TCs’ rationale and dialogue, we utilized a matrix highlighting relationships among dialogue 
features and rationale features (Miles et al., 2013). We used the three categories of questions in 
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our analyses of the dialogues and the rationales to explore connections between the two. This 
allowed for a coordination of TCs’ approaches to responding to errors, as demonstrated through 
the dialogue, and TCs’ goals for responding to errors, as demonstrated through the rationale.  

Findings 
We report findings for each research question around the three analytic themes: (1) attending 

to the error, (2) attending to the mathematics of the task, and (3) attending to the students.  
Theme: Attending to the Error 

RQ1: Features of TCs’ dialogues. One striking feature of the dialogues was the way in 
which the error was resolved or corrected in a few lines. This occurred in nine of 25 dialogues. In 
five cases, the original student corrected their own error, as in the example below: 

Teacher: It does look like a square but what is different about Shape J and Shape Q?  
Student: There is a line from one corner of the square to the center.  
T: Correct, what do you think we can conclude by noticing the line from the corner?  
S: We can conclude that this is not a polygon, because they are not all connected. 
In the remaining four cases, another student corrects or resolves the error. Six additional 

dialogues included a last turn of talk in which the teacher posed a question that was potentially 
leading toward resolving or correcting the error through the next student response. These 15 
cases illustrate the common approach of resolving errors quickly, and often in a one-on-one 
exchange between teacher and student, or as the result of a pointed question from the teacher. 

In contrast, some TCs wrote dialogues in which the error was not resolved. One TC used a 
“tabling” move—explicitly pausing the conversation without resolving the error. Five dialogues 
ended with the teacher asking for a student to contribute a new card to the discussion, which 
signaled the discussion moving on without immediate resolution of the original error. One TC 
did not explicitly address Jessie’s contribution and centered the dialogue around a third shape: 

T: Does anyone have another example of a polygon?  
S: Shape M [a parallelogram].  
T: Why do you think shape M is a polygon?  
S: All the sides are straight. 
T: Before I get another example, I want us to take a look at what we have up here. How are 

these shapes up here different from one another? Do we all believe they are all polygons? 
This set of cases suggest a recognition of approaches, such as eliciting new ideas, that can 
continue a discussion while a student error is not necessarily resolved in the moment. 

RQ2: Features of TCs’ rationales. An explicit part of a majority of the rationales (15 of 25) 
was an acknowledgement that Jessie has made an error (or, in some TCs’ word, a “mistake”). 
This indicates that: (1) TCs recognized the mathematical issue at hand, and (2) TCs’ dialogues 
were constructed in a way where responding to an error was a key factor. Five of these 15 
rationales mentioned wanting Jessie to correct her own error, and six of the 15 mentioned 
wanting other students to recognize Jessie’s error. The different ways in which TCs characterize 
Jessie’s contribution (“misconception”, “holes in [her] logic”, a key consideration is missing) 
could impact the way in which TCs conceive of how to respond and, furthermore, what might be 
convincing to Jessie. These differences could result in different approaches to the dialogue.  

RQ3: Relationships between TCs’ dialogues and rationales. Of the 15 TCs who 
mentioned the error in their rationales, six resolved the error in their dialogues. An additional 
four dialogues approached resolution in their final talk turn. The remainder responded to the 
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error in other ways, such as moving on to discuss a new card. This indicates that for the TCs who 
focused on the error in their rationales, the typical response was to move toward resolving it, 
with a smaller number of TCs addressing the error through continued discussion.  

It is also interesting to note what is not included in the rationales, given the features of the 
dialogues. For example, no TCs mentioned that Jessie’s error needed to be or could be resolved 
quickly. While many of the TCs who acknowledged that Jessie’s contribution was an error also 
suggested it needed to be resolved at some point, no one suggested that this would necessarily 
happen in a few turns of talk. Yet, in many dialogues, the error was resolved or was soon-to-be 
resolved. We see this incongruity as potentially highlighting an implicit expectation that some 
conclusion be reached in the assigned five to eight lines of dialogue. It may also be that TCs do 
not wish to correct an error with their immediate response, but feel that what one TC referred to 
as, “a few well-placed questions,” could be a sufficient way to respond to and resolve an error.  

Another example is that no TCs mentioned any external factors, such as time, curriculum, or 
testing, as influencing their dialogues. While, as an approximation of practice these performance 
tasks are intended to reduce complexity, it is interesting to see how TCs’ dialogues could still 
have less-than-productive features that are commonly explained by appealing to these 
constraints. This represents another incongruity, in which TCs do not explicitly appeal to 
common classroom constraints, yet still put forward a dialogue in which student reasoning and 
mathematical meaning are not kept central. Overall, these tensions between TCs’ approaches and 
goals highlight the support TCs need around productively responding to errors. 
Theme: Attending to the Mathematics of the Task 

RQ1: Features of TCs’ dialogues. TCs attended to mathematics in their dialogues in several 
different ways. Almost all dialogues (23 of 25) included a teacher move drawing attention to the 
difference between Shapes J and Q. Of these 23, 17 dialogues had this as the first teacher move. 
This approach to the mathematics is necessarily dependent on the particular task being discussed, 
and some dialogues contained approaches that might be used in multiple contexts. For example, 
six dialogues used the word “definition”. This shows attending to the specific features of a 
polygon under consideration. Seven dialogues introduced an additional shape to the discussion 
(as shown in the dialogue above), with the shapes chosen reflecting attention to the features of 
the definition requiring exploration. The approaches of focusing on the definition and 
introducing a new example are teaching moves that can be used across contexts. The two TCs 
who did not explicitly address the differences between shapes J and Q introduced new shapes to 
the discussion, indicating that all 25 dialogues attended to key mathematical ideas. 

RQ2: Features of TCs’ rationales. Half (13 of 25) the TCs mentioned moving toward the 
mathematical goal—establishing and clarifying the definition of a polygon—in their rationales. 
In some cases, this was fairly general, with references to the “definition” or “objective.” In other 
cases, TCs highlighted specific mathematical features of the goal. For example, one TC 
explained that their dialogue was constructed in order to support Jessie to, “realize the other 
defining feature of a polygon, that sides can only meet one other side at the endpoints.”  

In addition to the 13 TCs who mentioned the goal, eight TCs wrote about a desire to have 
students consider the differences between Shapes J and Q, though they did not explicitly connect 
that idea to pursuing the goal of the activity. Five of those eight further specified the key 
difference that Shape J has an “extra segment” that intersects with two other segments at one 
endpoint and does not intersect with another segment at the other endpoint. Finally, one other TC 
generally mentioned students needing to consider “one more property of a polygon.”   
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Altogether, 22 of 25 TCs referenced something related to the mathematics of the activity. 
There was a strong emphasis on an aspect of the provided definition of polygons that does not 
come out in either student’s contribution—that each side is a line segment that intersects exactly 
one other side at each endpoint. We use these analyses as evidence that TCs attended to the 
mathematics of the scenario, which has implications for the dialogue they constructed.  

RQ3: Relationships between TCs’ dialogues and rationales. The prevalence of attention 
in TCs’ rationales to the mathematics of the scenario is closely connected to our finding that 
almost all the TCs focused the discussion in some way on the differences between Shapes J and 
Q. It is possible that focusing students’ attention on the differences between the shapes (with a 
pointed prompt, for example) is seen as the way to make progress toward the goal of the activity. 

We identified two interesting exceptions to this trend. The two TCs who did not draw any 
attention to the differences between Shapes J and Q in their dialogue either elicited a new card 
from students or offered a new shape that was not represented on another card. These cases 
illustrate how a discussion, in response to this scenario, can focus on key mathematical ideas 
without an explicit prompt about the differences. Given the role that introducing a new shape 
played in dialogues that did not result in a quick resolution of the error, we consider this 
approach productive, assuming the decisions made about the new shapes are purposeful. 

Another exception is represented in the second dialogue above, where the teacher starts by 
asking for a new card and ends with a question about the differences among the three cards. This 
TCs’ rationale was one of the few that made no explicit reference to the mathematics of the task. 
Instead, the rationale emphasized a goal that students maintain “skepticism” and be able to 
“speak up when something does not seem right to them.” This provides an interesting case of 
how a focus on providing space for students to reason, even without mentioning particular 
mathematical ideas, may give rise to productive approaches to responding to errors.  
Theme: Attending to the Students 

RQ1: Features of TCs’ dialogues. TCs brought students into their dialogues in multiple 
ways. Nine introduced a new student, sometimes using a new name. Three others reintroduced 
Rosalia. Some TCs used moves such as orienting students to one another (5), re-voicing (9), 
recording student thinking (2), and using positive language to describe student thinking (8). 
“Telling” in the discussion was also sometimes used as a way in which TCs attended to students, 
and nine dialogues included some form of telling. Many dialogues attended to students using 
more than one of these approaches, and 21 of 25 dialogues attended to students in at least one of 
these ways. Of the four remaining dialogues, all included some form of leading or funneling 
questions, and several were not written as a true dialogue (i.e., not in transcript form), which 
showed little explicit attention to including student voice. Among the 21 dialogues attending to 
students, all had a teacher talk turn between every student talk turn. These results highlight the 
variety of approaches TCs use in imagining responses in these hypothetical scenarios. 

RQ2: Features of TCs’ rationales. A key feature of the rationales was a desire to respond in 
a way that valued students’ opportunities to reason mathematically. Nine TCs made specific 
mention of approaches and goals such as: “exploring”, “discovery”, “comparing”, “critical 
thinking”, or “connecting” in reference to student thinking. Four other TCs discussed wanting to 
value or draw on Jessie’s or Rosalia’s reasoning. This signals a set of principles in which student 
reasoning should be supported and made central.  

Other TCs’ rationales focused on the specific moves they used in their dialogue. Two TCs 
highlighted “orienting” moves in their dialogue (e.g., having a student re-voice or reason about a 
peer’s contribution). In four other cases, TCs mentioned what we called “telling” moves (e.g., 
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restating and summarizing ideas, giving new examples), and recording ideas. While moves such 
as these do not necessarily explicitly draw upon student reasoning in the way that orienting 
moves do, they are powerful moves that support students’ sense making and reasoning. Other 
mention of moves in rationales raised questions for us. For example, some TCs mentioned the 
use of “guiding questions,” positioning this approach as productive. However, as we interpreted 
these cases, we inferred “guiding” to mean “leading” or “funneling” and not as something that 
was necessarily responsive to or supportive of student thinking. In total, 18 TCs mentioned 
valuing student reasoning or using specific teaching moves related to student thinking.  

RQ3: Relationships between TCs’ dialogues and rationales. We focus here on the four 
dialogues that were not coded as attending to students. What is striking in these cases is that all 
four of the related rationales mentioned attending to or valuing students in different ways. For 
example, one TC wrote that they wanted to “use Jessie’s mistake” to “help the class understand.” 
However, this TC did not produce a true dialogue. Rather, they listed questions and answers 
without any evidence of student voice. Another TC mentioned wanting students to do the 
mathematical work, saying “The kids need to come up with the other rules and they will end up 
sorting that out.” The associated dialogue in this case has six talk turns focused on the 
differences between Shapes J and Q, and then a note from the TC that they would “move on 
from here and see how everything else was sorted to see if we can add to our rule.” These 
findings point to a need to be cautious what taking what a TC says about their approaches and 
goals for teaching, even in the context of a specific scenario, and making claims about skilled 
teaching practice. 

Discussion and Conclusion 
Our use of a written performance task provided a lens for investigating TCs’ developing 

practice. We gained insight into their coordination of approaches and goals related to responding 
to student errors in whole-class discussion. In both the approaches (represented by the dialogues) 
and the goals (represented by the rationales), three themes emerged that characterized TCs’ 
perspectives on responding to errors: attending to the error, attending to the mathematics, and 
attending to students. At times, dialogues and rationales presented approaches and goals in 
alignment with one another. However, in several notable cases, we observed incongruities 
between TCs approaches and goals around responding to errors. 

Our results suggest several potential areas for growth around teacher learning. In cases where 
approaches and goals are mostly congruent, we observed TCs wrestling with the dilemmas 
highlighted in earlier literature around responding to student errors. In the cases where 
approaches and goals were not congruent, we saw misalignment in two directions. Some TCs 
wrote about productive goals for responding to errors in their rationales but their dialogues did 
not have features associated with productive responses. Other TCs wrote dialogues that included 
productive responses to student errors, but rationales that did not clearly articulate productive 
goals for their responses. This suggests that part of the work of teacher education is to provide 
TCs with productive approaches to responding to errors in concert with developing their 
understanding about why those approaches are productive. Approximations of practice support 
this work, providing opportunities for TCs to demonstrate and further develop adaptive skill in 
interactive and contingent moments of teaching.  

Next steps for this work include examining the ways in which TCs’ responses to the 
performance tasks change over the course of their participation in the methods course. This will 
allow us to explore how coordinating approaches and goals changes over time. Additionally, we 
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plan to explore how the responses to the written performance task relate to features of TCs’ 
rehearsals and enactments focused on leading whole-class mathematics discussions.  

References 
Baldinger, E. E., Selling, S. K., & Virmani, R. (2016). Supporting novice teachers to lead discussions that reach a 

mathematical point: Defining and clarifying mathematical ideas. Mathematics Teacher Educator, 5(1), 8–28. 
http://doi.org/10.5951/mathteaceduc.5.1.0008 

Boerst, T. A., Sleep, L., Ball, D. L., & Bass, H. (2011). Preparing teachers to lead mathematics discussions. 
Teachers College Record, 113(12), 2844–2877. 

Bray, W. S. (2011). A collective case study of the influence of teachers’ beliefs and knowledge on error-handling 
practices during class discussion of mathematics. Journal for Research in Mathematics Education, 42(1), 2–38. 
http://doi.org/10.5951/jresematheduc.42.1.0002 

Brodie, K. (2014). Learning about learner errors in professional learning communities. Educational Studies in 
Mathematics, 85(2), 221–239. http://doi.org/10.1007/s10649-013-9507-1 

Campbell, M. P., Baldinger, E. E., Selling, S. K., & Graif, F. (2017). Responding to students during whole-class 
discussions: Using written performance tasks to assess teacher candidate practice. In E. Galindo & J. Newton 
(Eds.), Proceedings of the 39th annual meeting of the North American Chapter of the International Group for 
the Psychology of Mathematics Education (pp. 977–980). Indianapolis, IN: Hoosier Association of Mathematics 
Teacher Educators. 

Chapin, S. H., O’Connor, C., & Anderson, N. C. (2013). Classroom discussions in math: A teacher’s guide for using 
talk moves to support the Common Core and more, Grades K-6 (3rd ed.). Sausalito, CA: Math Solutions 
Publications. 

Crespo, S., Oslund, J. A., & Parks, A. N. (2011). Imagining mathematics teaching practice: Prospective teachers 
generate representations of a class discussion. ZDM Mathematics Education, 43(1), 119–131. 
http://doi.org/10.1007/s11858-010-0296-z 

Ghousseini, H. N., Beasley, H., & Lord, S. (2015). Investigating the potential of guided practice with an enactment 
tool for supporting adaptive performance. Journal of the Learning Sciences, 24(3), 461–497. 
http://doi.org/10.1080/10508406.2015.1057339 

Grossman, P. L., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. W. (2009). Teaching practice: 
A cross-professional perspective. Teachers College Record, 111(9), 2055–2100. 

Jacobs, V. R., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. 
Journal for Research in Mathematics Education, 41(2), 169–202. http://doi.org/10.2307/20720130 

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Adding 
it up. Washington, DC: National Academy Press. 

Lampert, M., Franke, M. L., Kazemi, E., Ghousseini, H. N., Turrou, A. C., Beasley, H., … Crowe, K. (2013). 
Keeping it complex: Using rehearsals to support novice teacher learning of ambitious teaching. Journal of 
Teacher Education, 64(3), 226–243. http://doi.org/10.1177/0022487112473837 

Leatham, K. R., Peterson, B. E., Stockero, S. L., & Van Zoest, L. R. (2015). Conceptualizing mathematically 
significant pedagogical opportunities to build on student thinking. Journal for Research in Mathematics 
Education, 46(1), 88–124. http://doi.org/10.5951/jresematheduc.46.1.0088 

Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods sourcebook (3rd ed.). 
Thousand Oaks, CA: Sage Publications. 

Nesher, P. (1987). Towards an instructional theory: The role of student’s misconceptions. For the Learning of 
Mathematics, 7(3), 33–40. 

Santagata, R. (2005). Practices and beliefs in mistake-handling activities: A video study of Italian and US 
mathematics lessons. Teaching and Teacher Education, 21(5), 491–508. 
http://doi.org/10.1016/j.tate.2005.03.004 

Tulis, M. (2013). Error management behavior in classrooms: Teachers’ responses to student mistakes. Teaching and 
Teacher Education, 33, 56–68. http://doi.org/10.1016/j.tate.2013.02.003 

Van Zoest, L. R., Stockero, S. L., Leatham, K. R., Peterson, B. E., Atanga, N. A., & Ochieng, M. A. (2017). 
Attributes of instances of student mathematical thinking that are worth building on in whole-class discussion. 
Mathematical Thinking and Learning, 19(1), 33–54. http://doi.org/10.1080/10986065.2017.1259786 

Zazkis, R. (2017). Lesson Play tasks as a creative venture for teachers and teacher educators. ZDM Mathematics 
Education, 49(1), 95–105. http://doi.org/10.1007/s11858-016-0808-6 

  



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

655	

PROFESSIONAL NOTICING IN COMPLEX MATHEMATICAL CONTEXTS: 
EXAMINING PRESERVICE TEACHERS’ CHANGES IN PERFORMANCE 

 Molly H. Fisher Jonathan Thomas Cindy Jong 
 University of Kentucky University of Kentucky University of Kentucky 
 molly.fisher@uky.edu jonathan.thomas1@uky.edu cindy.jong@uky.edu 

 Edna O. Schack David Dueber 
 Morehead State University   University of Kentucky 
   e.schack@moreheadstate.edu  david.dueber@uky.edu  

This paper examines the implementation of an instructional module on Preservice Elementary 
Teachers’ (PSETs) professional noticing of children’s mathematical thinking as defined by 
Jacobs, Lamb, and Philipp (2010). The module focuses on professional noticing skills through 
the content focus of early algebraic reasoning and uses complex video vignettes from whole class 
instruction in authentic elementary mathematics classrooms. It was found that two of the three 
components of professional noticing (attending and interpreting) showed statistically significant 
increases in a treatment group that did not occur in a comparison group. The deciding 
component remains a challenge that warrants further research. 

Keywords: Teacher Education-Preservice, Teacher Knowledge, Professional Noticing, Algebra 
and Algebraic Reasoning, Instructional Activities and Practices 

Introduction 
Developing responsive mathematics teaching practices is a persistent challenge for teacher 

educators. Over the past decade, teacher noticing and variants of such noticing (i.e., professional 
noticing of children’s mathematical thinking, etc.) have risen in prominence as a construct of 
great interest among mathematics education researchers (Schack, Fisher, & Wilhelm, 2017; 
Sherin, Jacobs, & Philipp, 2011). Much has been learned about teachers’ development and 
performance of noticing practices. However, vexing questions remain regarding the fundamental 
nature of such noticing and the extent to which the practice should be considered a net (capturing 
as much of the activity as possible) or a filter (distilling the activity to key moments to act upon) 
(Thomas, 2017). These questions are exacerbated in complex environments featuring multiple 
actors, converging mathematical topics, and varied avenues for sound instructional decision-
making. While research suggests that productive experiences help teachers engage in more 
sophisticated forms of noticing, in more complex contexts, the impact of such experiences (and 
even the nature of noticing itself) becomes less clear (Castro-Superfine, Fisher, Bragelman, & 
Amador, 2017). For this study, we focus on the impact of a professional learning experience 
conducted with preservice elementary teachers (PSETs) aimed at developing their noticing 
capacities in a complex mathematical environment. Given our prior focus on noticing 
performance with respect to individual students’ counting/arithmetic strategies (Schack, Fisher, 
Thomas, Eisenhardt, Yoder, 2013), we elected to contextualize noticing within mathematical 
activities of multiple children and their early-algebraic reasoning. The research question guiding 
this inquiry was:  To what extent can teacher educators facilitate the development of PSETs’ 
professional noticing of children’s mathematical thinking in the context of algebraic thinking in 
whole class settings? 
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Theoretical Framework 
Teacher Noticing and Professional Noticing 

Variants of teacher noticing have been the focus of research for some time (Mason, 2002; 
Sherin et al., 2011; Schack et al., 2017).  While teacher noticing has been organized around two 
related components, “attending to particular events in an instructional setting” and “making 
sense of events in an instructional setting” (Sherin et al, p.5), Jacobs et al. (2010), posit a third 
related component, deciding, which refers to teachers’ responses ostensibly built upon 
interpretations of children’s activities. These interpretations are, themselves, “derived from 
events and behaviors to which teachers had attended” (Thomas, 2017, p. 508). The assemblage 
of attending, interpreting, and deciding as interrelated component skills has been referred to as 
professional noticing of children’s mathematical thinking, hereinafter as simply professional 
noticing (Jacobs et al., 2010). Further, professional noticing is typically considered a complex 
and challenging practice to develop (van Es, 2011), and, as with most complex practices, there 
are varying perspectives on how such practices may be implemented. In some instances, 
professional noticing may “be used as a filter to identify only the most impactful moments” 
while from other perspectives, noticing may be “focused on capturing and interpreting as much 
of the instructional landscape as possible” (Thomas, 2017, p. 508).  While the former perspective 
is represented by the Mathematically Significant Pedagogical Opportunities to Build on Student 
Thinking (MOST) analytic framework (Leatham, Peterson, Stockero, & Van Zoest, 2015), the 
latter is typified by the research of Wells (2017) and Schack et al. (2013). It is this latter 
perspective of more inclusive professional noticing that we use for this study.    

Returning to the notion of professional noticing as a complex practice, studies have 
demonstrated that preservice teachers at different levels of practice (i.e., elementary, middle 
level, secondary) can engage in productive professional noticing (Floro & Bostic, 2017; Krupa, 
Huey, Leisseg, Casey, & Monson, 2017). However, there is some emerging conjecture that 
professional noticing considerations and development may vary somewhat depending upon grade 
level (Krupa et al., 2017). Germane to this study, though, are inquiries of noticing performance 
within elementary grades. In a previous study, we found evidence that PSETs may advance their 
practice of professional noticing as measured via growth in the component skills of attending, 
interpreting, and deciding (Schack et al., 2013). Using a video-based instrument, we found 
statistically significant performance gains in each of the component skills (attending, 
interpreting, and deciding) with the largest gains occurring in the deciding component. Note, 
though, that this study was conducted in the context of a single child’s mathematical activity 
along a mathematical progression of counting and arithmetic reasoning (Steffe, von Glaserfeld, 
Richards, & Cobb, 1983; Thomas and Tabor, 2012). There has been some study of preservice 
teachers’ professional noticing performance that have grounded such noticing in complex 
pedagogical domains such as the enactment of specific mathematical practices (Floro & Bostic, 
2017). However, this study is unique in that we have adopted an inclusive professional noticing 
perspective to examine PSET performance within a complex mathematical domain – namely 
early algebraic reasoning.  
Early Algebraic Reasoning as a Complex Domain 

Mentioned earlier, our previous research focused on the professional noticing of an 
individual child’s mathematical thinking in the area of counting and arithmetic strategies. We 
relied upon a highly descriptive framework detailing children’s early arithmetic strategies and 
changing conceptions of unit (Steffe et al., 1983; Wright, Martland, & Stafford, 2006). While 
this context proved fruitful for the development of foundational noticing capacities (Schack et 
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al., 2013), we concluded that such contexts did not accurately represent the “blooming, buzzing 
confusion of sensory data” that occurs when multiple children are acting and interacting upon a 
convergence of mathematical topics (Sherin & Star, 2011, p. 69).   

Representative of such mathematical convergence, early-algebraic reasoning comprises and 
intertwines several mathematical domains including properties of operations, equality, 
patterning, symbolic representation, and functions (Kaput, Carraher, & Blanton, 2007; Russell, 
Schifter, & Bastable, 2011; Warren, 2005). As with other domains such as counting and 
arithmetic reasoning (Steffe, 1992; Thomas and Tabor, 2012), each of the converging domains of 
early-algebraic reasoning may be thought to have some manner of developmental progression. 
Further, these progressions have been defined via empirical study for some of these domains 
(Clements & Sarama, 2009). However, the convergence of these individual progressions and 
resultant conglomerate trajectory may be rightly considered a significantly complex area of 
mathematical content rife with possibilities and pitfalls regarding the myriad aspects to which 
one might attend, interpret, and respond instructionally. While there are many other domain 
convergences and conglomerate trajectories within the mathematics education landscape, early-
algebraic reasoning should be one of the first encountered by children and enacted by their 
teachers.  As such, this represents a rich mathematical context for the study of professional 
noticing.  

Methodology 
Participants 

Participants in the study included 296 preservice elementary teachers (PSETs) enrolled in an 
elementary mathematics methods course at one of five universities in the south central United 
States. Among the total participants, 171 completed the measures as part of an intervention group 
and the remaining 125 were in the comparison group. Participants with any missing scores on the 
professional noticing measure were removed, thus resulting in an intervention sample size of 147 
and comparison sample size of 121.  
Instructional Module 

PSETs in the intervention group experienced an instructional module focusing on 
professional noticing and early algebraic thinking. The in-class module was taught by three 
professors at two of the institutions in the study. The three-session module gradually introduces 
each of the three components of professional noticing. The first session of the module, which 
focuses on just the attending and interpreting components, begins with a discussion of a 
prerequisite reading on the early understanding of equality and a review of the three components 
of professional noticing. Then, the PSETs analyze two videos with class discussion, match 
equality tasks to the Common Core State Standards for Mathematics, use their professional 
noticing skills to analyze children’s written work, and complete a play-by-play storyboard from a 
video of whole class completing an algebraic task. The second session adds deciding and 
includes video analysis and discussions of authentic classroom experiences as well as analysis of 
children’s written work. The final session includes all three components but focuses more deeply 
on productive decision making through the video analyses and discussion.  All three sessions 
contain homework consisting of readings, mathematical tasks, or video analyses focused on 
algebraic thinking. 
Measurement and Scoring 

All PSETs in the comparison and intervention sites completed pre- and post-assessments to 
measure their professional noticing skills. All pre-assessments were administered near the 
beginning of the semester and the post-assessments were administered at the end of the 
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instructional module for the intervention sites and near the end of the semester for the 
comparison group. The professional noticing measure consisted of a 74 second video involving a 
group of second grade students grappling with the task “10 + 10 = ___ + 5” where they were 
discussing the missing number in the mathematical sentence. In the video, four children provided 
different answers and explanations for the task. The explanations for each child are provided in 
Table 1. 

Table 1. Transcripts of Individual Student Responses 
Student Answer Transcript of Student Explanation 

1 25 “I added 10 and….I added both 10’s and the 5.  Ten plus 10 is 20 and add 
a 5 equals 25.” 

2 20 <No explanation - blurts answer out of turn> 
3 4 “Cause if you add a 5…and then you count up by 5’s up to 4, it’d be 20.” 
4 15 “Because I counted 15, 16, 17, 18, 19, 20” (using his right hand to track 

the count). Teacher (in background) asks: “Why did you start with 15?” 
Student stated: “Because I thought to myself 5 plus 10 equals 15, but 
then I thought of adding 15 with the 5 and I counted up and it was 20.” 

 
PSETs are asked to view the video and describe what they would do next if they were the 

teacher (deciding), what mathematical thinking and actions they observed (attending), and what 
the children understood about mathematics that influenced their answers (interpreting). Decision 
trees were used to aid in the scoring process. All responses were scored on a scale from 0 to 3 
with a score of 3 representing the most advanced responses (See Table 2 for examples). All 
responses were scored using a double-blind process and any scores not in agreement between the 
two scorers were discussed and negotiated. In general, PSETs were assigned higher scores when 
they thoughtfully addressed the diversity in responses instead of focusing on one response or 
their own assumption of what the intended outcome should be in this situation. 

Table 2. Sample PSET Responses 
Component Score Sample Response 
Attending 0 The children were explaining how they got the answer to the 

problem. 
 2 Some of the kids added the first side of the problem, then added 5 

and thought that was the answer. Other students were able to 
understand that the equal sign meant both sides had to be the same, 
and they were able to move numbers around to make them equal.   

 3 The children were given the equation 10+10=___+5. The first child 
to respond was adding all the numbers together, he said the answer 
was 25. He was under the impression that the blank should be the 
sum of all the numbers. Another student said he thought the number 
should be 4 because it would take 4 5's to make 20 which is what 10 
and 10 made. The last student came to the conclusion that it should 
be 15. He explained that 15 and 5 added together made 20 which is 
what 10 and 10 made. 

Interpreting 0 I would make sure that the students understood what the equal sign 
meant. I would use manipulatives to show this. 
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 1 I was surprised to find such an interesting method for finding the 
answer. It was obvious that he understood the relation of counting 
by 10s and 5s. 

 3 Some students were getting the correct answer (15) but he did not 
know where he got it from, or he could not explain it. Another 
student was adding all the numbers together to get the blank number 
so he needed to break down the number sentence into smaller parts 
to better understand it. 

Deciding 0 I would have the children come up to the board and list a few 
different ways and ideas that work and don't work. 

 1 Next I might show a true expression that looks different on both 
sides. I might ask, "Are both of these sides equal to each other?" 
Then I would use student responses to guide the discussion. Some 
sample questions I may ask along the way would include: How did 
you get that answer? Are both sides the same? Are both sides 
different? How are both sides the same? How are both sides 
different? 

 2 I would continue to ask students for more strategies. I would write 
those strategies on the board. Then I would try some of the strategies 
on the board to show which ones were correct and which ones were 
incorrect. I would emphasize that there are multiple ways to solve 
this problem. I would explain that many of the students had the right 
answer, but got to it in different ways. I would encourage the 
students who solved it incorrectly towards the correct answer. It 
seems like they are thinking in the correct way, but that they had a 
few miscalculations. I would address those, so that the student still 
feels successful. 

 3 I would have other students see if they can explain the last students 
thinking since he is on the right track. This would get all the students 
involved without saying that the other students who shared their 
opinions were wrong. 

Results 
When comparing the mean scores for the three professional noticing components (See Table 

3), we found that the attending and interpreting scores increased from pre- to post-assessment in 
the intervention group, but slightly decreased, but not significantly, in the deciding component. 
The comparison participants decreased in all three components.  Not all intervention participants 
improved, however, and Table 4 outlines the number of participants in each group that increased, 
stayed the same, and decreased from pre- to post-assessment. 

Table 3: Mean Scores of Professional Noticing Components 
 Treatment Control 
 Pre Post Pre Post 
Attending 1.020 1.340 0.959 0.826 
Interpreting 0.769 1.218 0.876 0.661 
Deciding 1.361 1.340 1.554 1.446 

 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

660	

Table 4: Noticing Score Changes 
Component Change Treatment (%; N = 147) Control (%; N = 121) 
Attending Increase 38 23 
  Same 41 47 
  Decrease 20 30 
Interpreting Increase 46 18 
  Same 37 55 
  Decrease 16 26 
Deciding Increase 29 28 
  Same 39 32 
  Decrease 31 40 

 
In order to determine whether the increases from pre- to post-assessment in attending and 

interpreting and the decrease in deciding were statistically significant, Wilcoxon signed rank 
tests were conducted.  The test was significant for attending (Z = -3.219, p = .001) and 
interpreting (Z = -3.961, p < .001), but not for deciding (Z = -.384, p = .701). Noting that an 
effective intervention should raise scores to above the level of the control group (which scored 
higher on interpreting and deciding at pre-test than the treatment group did), Mann-Whitney U 
tests were conducted to determine whether the treatment group’s post-assessment scores were 
higher than the maximum (i.e., pre-) scores from the control group. The test was significant for 
attending (U = 6913, p = .001) and interpreting (U = 7172, p = .004). The test was also 
significant for deciding, but in the other direction; the control group received higher deciding 
scores than the treatment group (U = 7654, p = .039). 

Discussion and Conclusion 
Previous research by this team revealed that professional noticing was a teachable skill when 

taught in a one-on-one teacher to student setting (Schack et al., 2013). In a similar study using an 
intervention and control group, but within a one-to-one teacher to student setting, PSETs in the 
intervention group showed statistically significant growth in all three areas of professional 
noticing (Fisher, Thomas, Schack, Jong, & Tassell, 2017). However, in that same study, the 
comparison group did not show statistically significant increases in attending and interpreting, 
but they did show a statistically significant increase in the deciding component. This opens the 
discussion to the pedagogy taught in the mathematics methods course and how it could 
potentially impact the deciding component scores. 

To further advance the research, this video vignette of a whole-class discussion focused on 
an algebraic concept was used to determine if the professional noticing skills were still teachable 
when expanded to a more complex setting. It is interesting to note that attending and interpreting 
skills both still revealed a statistically significant increase in the intervention group, but both 
components decreased in the comparison group. These results indicate that attending and 
interpreting are both responsive to intervention in the varying settings (one-on-one vs. whole 
class) but deciding needs further research and discussion. 

Many questions still remain within the deciding aspect of professional noticing; However, we 
believe there is still much to learn from the results. Perhaps more research should be conducted 
on what constitutes effective deciding. While defined mathematical practices provide some 
organization for considering such decisions, there are myriad decisions a teacher might make in 
each moment and the productivity of such decisions likely varies greatly according to many 
different factors (e.g., instructional goals, students’ mathematical needs, availability of resources, 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

661	

etc.).  This variability is further compounded when considering potential decisions within 
complex mathematical domains such as the early-algebraic convergence.  

While we recognize that many limitations exist with this study, such as the short timeline for 
learning and assessing these skills (4-6 weeks for implementation sites) or the less-than-diverse 
sampling that can be very difficult to overcome in a study of elementary education majors, 
perhaps the most troublesome limitation is the quantification of qualitative responses. For 
example, scorers credited more highly PSET responses that formally addressed each of the 
student’s thinking in the video vignette, while realizing the difficulty of doing so in an authentic 
setting. 

However, many times, responding to each child may have diminished the robustness of the 
decision. There remains a delicate balance in how to best quantify two different, yet both 
important, aspects in this situation: teaching to all and productive decision-making.  We believe 
there should be a place for both, but these results suggest we may not have found the best way to 
measure their intersection as productive decision-making can be quite circumstantial and 
adequate measurements for those circumstances do not exist. 

In summary, we remain optimistic that teacher educators can facilitate the development of 
PSETs’ professional noticing skills within the context of algebraic thinking in whole class 
settings. We are most hopeful that this facilitation exists at least within the attending and 
interpreting components. More difficult to demonstrate, however, is the deciding component, 
thus we encourage the development of measurement tools that consider the complexities of 
classroom contexts when measuring productive decision-making. Tools that could potentially be 
used for both research purposes and teaching more productive decision-making for preservice 
and inservice teachers would be most desirable.  
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We investigated how pre-service teachers (PSTs) interpret their calculations in proportional 
tasks. A written questionnaire was administrated to 199 PSTs and an inductive content analysis 
approach used for data analysis. We found that one item that asked PSTs to interpret the 
meaning of their results had unusually low success; open coding on the responses revealed 
several common themes. We argue these common errors cannot be dismissed as simple unit or 
rounding mistakes; they are a reflection on how respondents think about quantities, story 
problems, and the nature of mathematics itself. We end with suggestions on how to address this 
problem. 

Keywords: Preservice Teacher Education, Teacher Knowledge, Proportional Reasoning, 
Problem Solving 

Introduction 
Proportional reasoning has been widely investigated as a key type of reasoning that both 

students and teachers in K-12 mathematics struggle with (Beckmann, 2015; Byerley, 2017; 
Langrall, 2000; Son, 2013; Tourniaire, 1985) and is also cited in the Common Core as one of the 
eleven mathematical domains that span mathematics from elementary to high school (National 
Governors Association Center for Best Practices, 2010). We surveyed 199 preservice elementary 
school teachers on 10 tasks that involve proportional reasoning, and the responses revealed that 
the PSTs struggled to interpret the meanings of their own calculations. This issue was most 
clearly illustrated in the task that required students to interpret their own calculations in order to 
give an answer. In this report we will share the major themes we found amongst PSTs that had 
difficulty answering this task. Our research questions include: (1) How do PSTs solve a 
proportional reasoning problem including a unit rate? (2) What kind of challenges in reasoning 
could cause a PST to struggle with answering a proportional reasoning question?  

Theoretical Perspective 
We approach our research questions and data analysis from a theoretical framework of 

quantitative reasoning (Smith & Thompson, 2007; P. W. Thompson, 1993, 2011). A quantity is a 
measurable attribute (such as length, elapsed time, volume, etc.) of an object (such as a car, a 
person, the Earth, etc.), and a “person constitutes a quantity by conceiving of a quality of an 
object in such a way that he or she understands the possibility of measuring it” (P. W. 
Thompson, 1993). This way of thinking in word or story problems stands in marked contrast to 
more procedural ways of reasoning such as key-word approaches (replacing “and” with “+” and 
“less than” with “-”, etc.) Quantities as defined by Thompson occur only in the mind of a thinker, 
who conceptualizes them by making sense of a quantitative situation. Quantitative reasoning, 
then, is “the analysis of a situation into a quantitative structure--a network of quantities and 
quantitative relationships” (P. W. Thompson, 1993). A person is reasoning quantitatively when 
he or she is reasoning about quantities, instead of numbers, undefined variables, or memorized 
procedures. In the task and responses we present below, the prompt deliberately did not ask for a 
numerical answer; instead, it asked a yes/no question that required respondents to engage in three 
steps: a) decide what calculations would be relevant and useful to answering the question, b) 
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carry out those calculations accurately, and c) interpret the meaning of their calculated results to 
answer the prompt. Our analysis focuses mainly, though not exclusively, on the written work that 
illustrates the third part of this process in our PST population. 

Methodology 
The proportional reasoning questionnaire was given to 199 elementary preservice teachers 

over 3 semesters at a large Southwestern university in the U.S. All participants were juniors who 
enrolled in an elementary mathematics content course covering patterns, functions, and 
modeling. They were on average 1.5 years away from being becoming full-time elementary 
school teachers including grades K through 8. 

The participants completed a written questionnaire including 10 problems about proportional 
reasoning and we focused one of the problems (see Figure 1). In the questionnaire, PSTs were 
explicitly asked to solve all problems using quantitative approach (e.g., using pictures) first 
rather than using a standard algorithm and to provide their work along with clear justification. 
The written questionnaire including the problem in Figure 1 was administrated to all PSTs in six 
sections of a mathematics concept course in the middle of spring 2015, fall 2015, and spring 
2016 and it was assigned as take-home homework right after teaching proportional reasoning. 

One author came up with a first draft coding strategy for the problems based on the format of 
the questions. The other author then coded over half the data and looked at how well the coding 
strategy worked, suggested modifications, and the two authors together agreed on the next draft 
to the coding strategy. All the data was then coded but several smaller coding strategy changes 
were also implemented and those sections were recoded. The other author then coded a random 
subset of responses to verify that the strategy was being implemented uniformly. There was 
100% agreement on the coding of 95% of the examples. 

Once the initial coding was done we decided that we would like to focus on a specific 
phenomenon: the cases where preservice teachers either incorrectly interpreted the results of 
their own calculations, or did not interpret their results at all. We therefore chose to focus on our 
data on the “Dr. Lee’s Car” item out of the ten problems. 

 

Figure 1. “Dr. Lee’s Car” Item 

Results & Discussion for “Dr. Lee’s Car” Item 
We decided that since the prompt asked for a decision of Dr. Lee’s driving ability, and not 

for a numerical answer, that a correct answer would say that Dr. Lee could not drive 561 miles 
on 21 gallons of gasoline. 152 preservice teachers made correct final statements such as “No”, 
“He cannot go 561 miles”, “He can go only 546 miles”, “He has miles left over”, or “He would 
need more than 21 gallons”; 9 of these teachers still had problems interpreting their own results 
despite their correct final answer. 36 preservice teachers answered “Yes” or “He can go 561 
miles”; only 4 were due solely to arithmetic errors and the other 32 teachers had problems 
interpreting their own results. 11 preservice teachers gave no final answer, but 5 of them 
completed all of the necessary calculations yet did not interpret them to answer the question. 
Overall, 46 out of 199 teachers, or 23.11% of the teachers, demonstrated some problem with 
interpreting the results of their own calculations. 

Dr. Lee drove 156 miles and used 6 gallons of gasoline. 
At this rate, can he drive 561 miles on a full tank of 21 gallons of gasoline? 

Solve this problem and justify your reasoning. 
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Table 1: Summary of all responses 
 Correct answer: 

“He can’t make it” 
Incorrect answer: 
“He can make it” 

No final 
answer 

TOTAL 

Total responses: 152 36 11 199 

Responses with 
interpretation errors: 9 32 5 46 

 
Amongst the 143 teachers that made relevant and accurate computations and correctly 

interpreted those results to answer the prompt, there were three solution techniques: to compute 
how many miles the car could go with 21 gallons, to compute the gas efficiency needed for both 
trips, or to compute the gallons needed to complete the second trip. Examples of each strategy 
are displayed below. 

 
Figure 2. 3 Correct Solution Methods 

 
Among the 46 teachers who had problems interpreting their own calculations, we found 

several themes. 
Whole Number Bias (8.5% of respondents) 

By far the most common problematic interpretations revolved around a strong bias towards 
either only calculating whole numbers, or rounding all values to whole numbers. 17 of the 45 
preservice teachers who struggled to interpret their own work did so at least in part because they 
chose not to reason with decimal numbers. We hypothesize that these teachers looked for 
similarities in the results of their calculations without attending to the measures that they 
represented. 

5 of the 199 teachers rounded both gas efficiency rates to 26 miles per gallon and concluded 
that Dr. Lee could make his trip. If a preservice teacher wanted to compare miles per gallon rates 
to evaluate whether Dr. Lee can make the trip or not, it is clearly relevant that 26.7 mpg is not 
the same as 26 mpg. Therefore, a teacher that rounded to 26 mph made a problematic interpretive 
decision when transferring work from calculator to paper, or when deciding to end their long 
division after finding the whole number part of their response. 

 

 
Figure 3. All calculations end in whole numbers 
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8 out of the 199 teachers found that the gas efficiency rates of both trips was approximately 

the same, and concluded that Dr. Lee could complete his trip; 4 teachers qualified their answers 
by saying that Dr. Lee could just barely make it. In doing so they neglected to keep track of the 
meaning and significance of their own calculations. The equality of both efficiency rates is 
irrelevant; rather, it matters whether the needed gas efficiency of the hypothetical trip is less than 
or equal to the known efficiency of the car.  

 

 
Figure 4. Yes, but only by a little bit [of what?]  

5 of the 199 teachers found that it would require approximately 21.5 gallons for Dr. Lee to 
complete his trip, and concluded that his trip was possible. What matters is whether the gas the 
trip requires is less than or equal to the gas that Dr. Lee has available to him in a full tank, not 
whether they are approximately equal. 

 

 
Figure 5. Yes, but only by a little bit [of what?]  

Mixed Up Quantities (7.5% of respondents) 
The next most common mistake is that preservice teachers did not keep track of the 

quantitative meaning of their results. These mistakes cannot simply be dismissed as writing 
down the wrong unit if we start with a presupposition that every calculation should have 
meaning to the person doing the calculating. We hypothesize that 16 out of the 45 preservice 
teachers who struggled to interpret their own work did so at least in part because they carried out 
operations on numbers without following them with operations on quantities. 

9 out of 199 teachers calculated values and then ascribed the wrong quantitative meaning to 
them. For example, they calculated the gallons needed to complete a trip of 561 miles (21.5 
gallons) but then wrote down 21.5 miles, calculated the gas efficiency of the shorter trip (26 
miles per gallon) but then wrote down 26 gallons, or calculated the relative size of the trips in 
both gallons and miles (561 miles is 3.5 times as large as 156 miles, and 21 gallons is 3.3 times 
as large as 6 gallons) and then concluded that the difference meant that “Dr. Lee will be pushing 
[the car] .2 miles!”.  
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Figure 6. Mixed Up Quantities  

6 out of the 199 teachers found values that would enable them to answer the question and 
interpreted the quantitative meaning of that value correctly, but then did not keep track of the 
meaning of a difference. 4 teachers correctly set up a proportion to find a value of 546, but then 
said that this means Dr. Lee can make the longer trip; 2 of those teachers interpreted the result of 
the calculation 561-546=15 to mean that Dr. Lee could drive an extra 15 miles. They did not 
keep track of the meaning of the difference as the miles that Dr. Lee could not drive on a full 
tank. 2 teachers calculated other differences (in the gas efficiencies of each trip, and gallons of 
gas used in each trip) and also concluded that Dr. Lee could make the trip. 

 

 
Figure 7. Directionless difference  

Values Are Answers, No Meaning (3.0% of respondents) 
5 of the 199 teachers reached the values they needed, of either the number of miles Dr. Lee 

could travel on 21 gallons, or the gas efficiency of both trips, but simply did not answer the 
question. While this may be an oversight, it may also illustrate a belief that mathematics is about 
finding numerical answers. 

 

 
Figure 8. No answer  

Chunky Gas (2.0% of respondents) 
4 out of 199 teachers reasoned only in chunks of 6 gallons. 3 of the teachers concluded that 

Dr. Lee could not make the trip, and 1 concluded that he could, but all only calculated the miles 
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that 6, 12, 18, and 24 gallons would enable Dr. Lee to drive. We commonly see such chunky 
thinking in more abstract contexts like linear equations, slope, and accumulation in calculus 
(Castillo-Garsow, 2013; P. W. Thompson, & Carlson, M. P., 2017), but we were surprised to 
find it in such a concrete example. 

 

 
Figure 9. Gas comes in 6 gallon chunks  

Equality is Everything (1.5% of respondents) 
3 of the 199 teachers used cross-multiplying and looked for the equality of both sides. This 

strategy is appropriate when checking whether two fractions are equal, but not an appropriate 
strategy for determining whether one unit rate or gas efficiency is greater than or equal to 
another. Moreover, the resulting numbers (3276 and 3366) do not have clear quantitative 
meanings, as can be seen from their incoherent units of “dollar-gallons”. 

 

 
Figure 10. Equality is Everything  

Conclusions & Further Thoughts 
One of the enduring problems of mathematics education research is how to improve 

mathematics education in a way that benefits students both inside and outside the classroom. The 
days when a human calculator was valued and useful are over; now as technology develops, a 
person’s ability to interpret the significance of mathematical outputs has been more emphasized 
than simple calculation. In the Common Core, the ability to interpret the meaning of one’s 
answer is central to at least five of the eight Mathematical Practices: make sense of problems, 
reason quantitatively, construct viable arguments, model with mathematics, and attend to 
precision (National Governors Association Center for Best Practices, 2010). It is deeply 
concerning that over three semesters at a large university’s Teacher’s College, almost a fourth of 
PSTS struggled to interpret the meaning of their own calculations on a sixth-grade level task. 
There are several implications for students in such a teacher’s classroom. Teachers that struggle 
to assign meaning to their calculations will certainly also struggle to impart that skill to students, 
but there are also further concerns. Such a teacher is also likely to avoid an area he/she feels 
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weak in, which can be reflected in the problems he/she chooses to assign to students or to do 
with students in class. Additionally, such choices can also convey beliefs to students about what 
mathematics entails or what kinds of problems should be present in a mathematics class. We also 
want to note that quantitative reasoning is not only applicable to real world or story problems; for 
example, students need to reason about the abstract quantities represented by the independent 
and dependent variables in order to make sense of functions. 

The only foreseeable solution to this problem lies in making teachers’ quantitative reasoning 
a core focus of both preservice teacher education and inservice professional development. Such a 
solution would be best implemented by refining the structure and content of current methods 
courses and professional development opportunities; a separate course might imply that 
quantitative reasoning is a special and separate topic only applicable to a narrow section of 
mathematics. The work that has been done on mathematical knowledge for teaching (MKT) 
shows how crucial it is to student achievement that teachers have a deep understanding of the 
meaning underlying the procedures they carry out (Hill, 2005; Silverman & Thompson, 2008). 
We have four specific recommendations for teachers of teachers from our experiences in 
analyzing this data set: (1) Discontinue the use of the cross-multiplying procedure (where the 
intermediate results have no clear quantitative meaning and incoherent units such as dollar-
gallons) in favor of finding unit rates, or finding the relative size of one pair of measurements 
and then applying it to the other. (2) Focus explicitly on reasoning with non-integer 
measurements of quantities. (3) Tasks necessitating proportional reasoning should be given 
interspersed with tasks that sound similar but do not involve proportional quantities, so that 
teachers need to genuinely assess whether proportional reasoning is appropriate for each task. 
Looking back, this was a missing piece in our own data collection. (4) Most significantly, tasks 
that require teachers to ascribe meaning to their own calculations should be the norm and not the 
exception. The overall arching problem identified in this data set is that teachers are adept at 
carrying out calculations without having coherent meanings for their own results. A teacher who 
cannot make sense of his or her own calculations has no chance of helping students to understand 
their own. 
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Despite the recognized importance of mathematical proof in secondary education, there is a 
limited but growing body of literature indicating how preservice secondary mathematics 
teachers (PSMTs) view proof and the teaching of proof. The purpose of this survey research was 
to investigate how PSMTs in Australia and the United States perceive of proof in the context of 
secondary mathematics teaching and learning. PSMTs were able to outline various 
mathematical and pedagogical aspects of proof, including: purposes, characteristics, reasons for 
teaching, and imposed constraints. In addition, PSMTs attended to differing, though 
overlapping, features of proof when asked to determine the extent to which proposed arguments 
constituted proofs or to decide which arguments they might present to students. 

Keywords: Reasoning and Proof, Teacher Education-Preservice, Mathematical Knowledge for 
Teaching, High School Education 

Introduction 
The importance of proof in the discipline of mathematics, and subsequently in the teaching 

and learning of mathematics, is recognized in the literature worldwide (e.g., Hanna & de Villiers, 
2008; Stylianou, Blanton, & Knuth, 2009), and is echoed in recent policy documents and 
national curriculum (e.g., ACARA, 2017; Common Core State Standards Initiative, 2010). This 
importance largely rests on the notion that engaging in proof helps students reason about 
mathematical ideas as they critique arguments or construct their own logically sound 
explanations or justifications. In fact, both the Australian and United States mathematical 
proficiencies and practices reference the importance of the reasoning abilities of students, with 
emphases placed on constructing, justifying, and communicating arguments. However, research 
has revealed that secondary mathematics teachers often hold a limited view on the purpose of 
proof instruction and its appropriateness for all students (Bergqvist, 2005; Knuth, 2002). 
Specifically, teachers often relegate proof to verifying formulas in high school geometry, 
neglecting the explanatory role proof can play in the learning of mathematics at all levels 
(Hanna, 2000; Knuth, 2002). Moreover, teachers often focus on the structure rather than 
substance of a proof and have difficulty evaluating proofs presented pictorially (Dickerson & 
Doerr, 2014; Tsamir, Tirosh, Dreyfus, Barkai, & Tabach, 2009).   

A recent study by Dickerson and Doerr (2014) suggested that teachers’ ability to accept and 
promote less formal modes of proof representation (e.g., visual & concrete models) develops 
over time, with more veteran teachers less likely to impose strict standards for mathematical 
language and format. While both experienced and veteran teachers in this study appreciated the 
explanatory role of proof (Hanna, 2000), espousing proof as a vehicle to build student 
understanding of specific mathematics content and generalized thinking strategies, they differed 
considerably in terms of the value they afforded to explicit logic, detail, and precise language in 
writing proofs (Dickerson & Doerr, 2014). Views of proof as a formalistic mechanism are 
magnified for prospective teachers (Boyle, Bleiler, Yee, & Ko, 2015; Varghese, 2009) whose 
most recent experiences with proof are often in the context of upper-level mathematics courses. 
For example, in a study by Varghese (2009), secondary level student teachers expressed 
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uneasiness with respect to teaching proof, with many indicating that proof should only be 
introduced to students planning to study advanced mathematics. Without a more complete 
understanding of the nature of proof and its role in learning mathematics, it is unlikely 
that beginning teachers will be equipped to enact proof instruction for all students as envisioned 
by mathematics education policies.   

Purpose of the Study  
The chief aim of our study was to investigate how preservice secondary mathematics 

teachers (PSMTs) in Australia and the United States perceive the importance and purpose of 
proof in the context of secondary mathematics teaching and learning. The overarching 
research question guiding this study was: What are preservice, secondary mathematics teachers' 
conceptions of proof and proof teaching in a secondary classroom context?  

Theoretical Perspective  
Our study is grounded in a situative perspective that takes into account what, when, and how 

mathematical knowledge is required in various practices such as teaching (Adler & Davis, 2006; 
Putnam & Borko, 2000). Specific to our study, Knuth (2002a, 2002b) demonstrated how 
teachers’ conceptions of proof in the discipline of mathematics were sometimes at odds with 
their views on the role of proof in mathematics teaching and learning. This perspective also 
underlies the various frameworks that have been developed to delineate mathematical knowledge 
that would support the work of teaching proof (e.g. Lesseig, 2016; Steele & Rogers, 2012). For 
instance, Lesseig’s (2016) Mathematical Knowledge for Teaching Proof (MKT for Proof) 
framework describes Common and Specialized Content Knowledge related to constructing and 
understanding proof, explicit knowledge of proof components, and the functions of proof that 
would support teachers’ classroom work with proof. This particular framework provided a lens 
through which to analyze our data and grounded our subsequent interpretations of PSMTs’ 
conceptions of proof and proof evaluations.  

Methods  
Participants and Contexts   

The purpose of this study was to investigate PSMTs’ conceptions of proof in the context of 
secondary mathematics teaching and learning. Data for this paper come from the results of a 
survey distributed to students enrolled in secondary mathematics teacher preparation programs 
across 6 different universities in the United States and Australia. Twenty-two PSMTs completed 
the survey, with exactly half of the participants from each country. The 11 PSMTs from 
Australia were all enrolled at the same university whereas the 11 PSMTs from the United States 
were split amongst five different universities. Half of the participants were in their first year of 
their preparation program, and the other half of the participants were in their second to third year 
of the program. All PSMTs had taken at least 3 college-level mathematics courses, with the 
majority of PSMTs (13) having taken 10 or more college-level mathematics courses. Exactly half 
had taken a course focusing on proof.     
Data Collection  

The survey was created in Qualtrics and was completed electronically. The three-part survey 
was qualitative in nature, with the majority of questions being open-ended.  

Part I. The first part of the survey focused on PSMTs’ conceptions of the nature and role of 
proof in mathematics and in teaching mathematics. This section included four open-ended 
questions: (1) What purpose(s) does proof serve in mathematics? (2) What makes an argument a 
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proof? (3) If proofs are to be taught to students, what are your reasons for teaching proof? and 
(4) What will be the constraints, if any, on teaching proofs?      

Part II. The second part of the survey focused on what secondary preservice teachers attend 
to when evaluating whether or not an argument is a proof. For five different statements, PSMTs 
evaluated between one and three student-generated arguments, decided whether or not each 
argument constituted a proof, and provided an explanation to support their decision. The five 
statements were drawn from the content areas of geometry, algebra, elementary number theory, 
and infinite geometric series. Student-generated arguments varied in clarity, generality, and 
approach. The survey purposefully included both symbolic and visual representations as well as 
deductive and empirical modes of argumentation.   

Part III. The third part of the survey focused on what PSMTs attend to when deciding what 
kinds of arguments are most helpful for a group of students working on mathematical ideas 
underlying each of the five statements from Part II.. PSMTs were prompted to provide an 
explanation to support their selection of argument(s) they would share with students.   
 
Analysis  

Part I Coding. Once all survey responses were collected, the first two authors separately 
read through the Part I responses provided by PSMTs from their respective countries. Initial 
codes were drawn from the literature. For example, the codes VERIFY, EXPLAIN, 
SYSTEMATIZE, DISCOVER, and COMMUNICATE, adapted from de Villiers (1990), 
provided an initial lens to analyze questions 1 and 3. In addition, codes for question 2 such as 
LOGIC, THEOREM, and GENERAL were determined a priori, as they captured essential proof 
understandings one would expect from those familiar with mathematics, including future 
teachers (Lesseig, 2016). After the first pass of coding, researchers met virtually to discuss other 
themes that arose throughout the analysis and refined codes to incorporate these additional 
themes as well as to remove themes that were not applicable to certain questions. On the second 
pass of Part I, the first two authors analyzed the data from both countries using the agreed-upon 
codes. Once completed, they met virtually to discuss similarities and differences in their 
analyses and came to consensus on codes for each PSMT response to each question. The inter-
rater reliability (IRR) was 85% for Part I and was calculated as the number of PSMT responses 
for which there was initial agreement on one or more codes (as more than one code could be 
used per response), divided by the total number of PSMT responses. A total of 60 responses were 
coded for Part I.  

Parts II and III Coding. The codes used for the open-ended responses in Parts II and III 
were discussed and decided upon after researchers had read through all PSMT responses from 
their respective country. The first two authors then separately coded responses from both 
countries. After separately coding all data, the researchers discussed responses that did not 
initially have full agreement and came to consensus. The IRR was calculated at 83% for Part II, 
and 86% for Part III. There was a total of 134 responses coded for Part II, and a total of 50 
responses coded for Part III.    

Results  
Findings for each of the three parts of the survey are presented below. For each of the survey 

parts, a table of researcher-generated codes has been provided to indicate the five most common 
responses offered by each cohort (see Tables 1-6). Overall, responses from both Australian and 
US cohorts appeared strikingly similar with little variation.  
Part I – Conceptions of Proof and Proof Teaching  
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What purpose(s) does proof serve in mathematics? Participants indicated that proof 
establishes an axiomatic system to formalize mathematical knowledge, provides verification that 
a mathematical statement is true (or false), and helps to explain why a statement is true or makes 
sense. In this way, the notion of proof acting as a ‘failsafe’ during the teaching and learning of 
mathematics underpinned many statements regarding the purpose of proof. This response from 
Grant (Aus) describes the role proof plays in verification and systemization, “(proof serves) to 
establish fact, it provides the means where fundamental truths can be established which then 
provide the foundations for further understanding to be built.”  

 Table 1: The purpose of proof in mathematics (PSMTs' conceptions)   
Code Code Description  PSMT 

(AUS)   
PSMT 
(USA)   

PSMT 
(Total)   

SYSTEM To establish an axiomatic system, referring to 
the formalization of mathematical knowledge   

4   5   9   

VERIFY To provide verification that a statement is true or false   5   2   7   
EXPLAIN To explain why a statement is true or makes sense   2   4   6   
BUILD-U To build or deepen understanding of the mathematical 

concepts underlying the proof   
1   2   3   

COMM To communicate mathematics   0   2   2   
  

       What makes an argument a proof? For the second survey question, participant responses 
aligned closely with the criteria identified as Essential Proof Understandings in Lesseig’s (2016) 
MKT for Proof framework. Those criteria stipulate that a theorem has no exceptions, a proof 
must be general, a proof is based on previously established truths, and the validity of a proof 
depends on its logic structure. The most frequently elicited responses were that a proof is based 
on accepted statements, follows a logical structure, and removes any doubt about the veracity 
(i.e. truth or falsehood) of the statement.   

Table 2: What makes an argument a proof? (PSMTs' conceptions)  
Code   Code Description  PSMT 

(AUS)   
PSMT 
(USA)   

PSMT 
(Total)   

THEOREM   It is based on accepted statements or theorems   2   7   9   
LOGIC   It follows a logical structure   3   3   6   
INFALLIBLE   It removes any doubt about the truth or 

falsehood of the statement   
2   3   5   

GENERAL   It proves the statement in general by covering 
all cases within the domain   

2   2   4   

VERIFY   It provides verification that a statement is true 
or false   

2   0   2   

  
        If proofs are to be taught to students, what are your reasons for teaching 
proof?  According to the proffered responses for survey question three, participants feel that 
proof should be taught to students to impart a variety of mathematical skills (e.g. logical 
reasoning), to build an understanding of the mathematical concepts underlying the proof, and to 
increase student agency. Walter’s (US) response illustrates ways in which PSMTs’ saw proof as 
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valuable in promoting reasoning and argumentation skills that were useful beyond 
mathematics as well as a vehicle for both building and assessing understanding:   

The ability to convey reasoning and to justify in writing is a vital skill in the real world. In 
any job, you have to persuade others (often through proving that your way is right). Proofs 
also press for deep understanding and makes students' thinking visible to the teacher.  

Table 3: Reasons for teaching proofs to students (PSMTs' conceptions)  
Code   Code Description  PSMT 

(AUS)   
PSMT 
(USA)   

PSMT 
(Total)   

T-SKILLS   To teach skills in logical reasoning, 
argumentation and problem solving   

5   5   10   

BUILD-U   To build or deepen understanding of the 
mathematical concepts underlying the proof   

3   3   6   

S-AGENCY   To increase or build student agency   2   4   6   
DISC   To discover or explore an idea or create new 

knowledge   
0   3   3   

ASSESS-U   To assess student understanding   0   2   2   
  

      What will be the constraints, if any, on teaching proofs? Most respondents tended to 
assert that proof is a difficult topic, skill, or body of knowledge to teach. PSMTs’ responses 
reflected their perceptions of the complexity of proof by way of questioning students’ prior 
knowledge or ability to deal with the abstract nature of proof. PSMTs identified additional 
resource constraints such as a lack of time, curricular emphasis, or adequate preparation for 
teaching proof.   

 Table 4: The constraints on teaching proofs (PSMTs' conceptions)  
Code   Code Description   PSMT 

(AUS)   
PSMT 
(USA)   

PSMT 
(Total)   

S-KNOW   Students may not have the requisite mathematical 
content knowledge or skills for proof   

3   4   7   

TIME   Takes too much time to teach properly   2   4   6   
CURRIC   There is not enough clear direction in standards or 

curriculum   
3   3   6   

ABSTRACT   Proof is too abstract for this age group   0   3   3   
T-KNOW   Teachers may not have the knowledge and skills 

necessary to teach proof   
1   2   3   

  
Part II - Proof Evaluation  

The purpose of Part II in the survey was to determine the extent to which PSMTs felt that 
proposed arguments constituted a proof, and ascertain the features of proof to which PSMTs 
attended. Participants attended to a variety of features in describing why they felt a proposed 
argument constituted a proof or identifying what they felt was missing in the argument. The most 
common rationales provided were in relation to whether (or not) the arguments proved the 
statement in general (i.e. they covered all cases within the domain), were based on accepted 
statements or theorems, and followed a logical structure, aligning with the top five characteristics 
of proof outlined in Part I of the survey. To a lesser degree, participants argued (in the 
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affirmative or the negative) that the proofs were error-free and were easy to follow or 
understand. Table 5 below displays the counts for these top five characteristics evident in 
responses from US and Australian participants. Counts for two additional characteristics 
frequently cited in Part III are included for comparison. 

Table 5: Characteristics PSMTs attend to when evaluating a proof.  
General 

 
Logic Theorem Correct Clear Representatio

n 
Accessible 

AUS  23 20 9 15 8 4 0 
US  26 17 16 9 10 6 0 
TOTAL 49 37 25 24 18 10 0 

25.1% 19% 12.8% 12.4% 9.2% 5.1% 0% 
*Percentages in Tables 5 and 6 are calculated based on total number of codes applied across responses. There were a total of 195 codes applied to 
the proof evaluation questions (Table 5) and 90 total codes in response to why an argument would be helpful (Table 6). Also, the last two 
columns have been included to facilitate comparison with the five most popular responses in Table 6.  
 
Part III - Identification of proof features  

Our intent in Part III of the survey was to identify features of proof that PSTs attend to when 
evaluating arguments or deciding which arguments to present in a classroom. In an identical 
manner to Part II, we assigned codes to responses regardless of whether PSTs referenced a 
particular feature in a positive or negative manner.  

When deciding which arguments they might present to a group of students, PSMTs not only 
valued arguments that were correct and general (characteristics mentioned in Part II), but also 
considered pedagogical features such as whether the proof was accessible to students and how 
different representations might support student learning. As shown in Table 6, the mode of 
representation and clarity of the argument were the two most commonly mentioned 
characteristics across all four questions (20% & 18.9% respectively), yet when compared with 
findings from Part II, logic and theorem were not commonly espoused features. Several PSMTs 
attended to how accessible the argument might be for different levels of students.  

Table 6: Helpful characteristics of proofs for students (PSMTs’ perceptions)  
Representation Clear Correct Accessible General Logic Theorem 

AUS  7 9 4 4 7 4 1 
US  11 8 5 5 0 0 1 
TOTAL 18 17 9 9 7 4 2 

20% 18.9% 10% 10% 7.8% 4.4% 2.2% 

Discussion and Conclusion   
Overall survey responses reveal that many PSMTs still hold rather formalistic views of proof. 

This is perhaps not surprising given participants’ current status in teacher education programs. 
Participants’ most recent experiences with proof have been in the context of taking pure 
mathematics courses wherein opportunities to consider proof from a teacher perspective are 
uncommon. However, we claim that to carry out the work of mathematics teaching wherein 
reasoning and proof remains central, PSMTs need to consider pedagogical aspects of proof. 
Specifically, our findings highlight the need to enhance PSMTs’ views of the role of proof and 
extend their understanding and acceptance of other forms of proof that may be more accessible 
to secondary students.  

PSMTs from both Australia and the US cited systematization and verification as the primary 
roles of proof. Proof was most commonly described as a mechanism for establishing truths in 
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mathematics and demonstrating that a result is true beyond a reasonable doubt. Previous 
researchers (e.g., Knuth, 2002; Varghese, 2009) have discussed how this dominant view has the 
potential to limit teachers’ perspectives on when and how proof should be utilized in secondary 
mathematics. However, in our case we see this not necessarily as a deficit, but as a common 
starting point. Indeed, a number of PSMTs also acknowledged the explanatory role of proof 
(Hanna, 2000) and recognized proving as a venue for students to both build and communicate 
understanding. Coupling verification with explanation, and explicitly discussing these 
complementary roles of proof in preservice teacher education (Bleiler-Baxter & Pair, 2017) has 
the potential to expand PSMTs' view of proof and their ability to integrate proof more 
consistently into their future teaching.   

In light of our theoretical perspective, we noted that while many of PSMTs’ responses were 
consistent across survey items, others appeared somewhat inconsistent. For example, when asked 
to identify necessary components of a proof, PSMTs stated in Part I that proofs should be based 
on established facts or theorems and follow a logical progression, and subsequently included 
statements about the logical structure or use of theorems in their rationales for the acceptance (or 
not) of the student-generated arguments as proof. On the contrary, despite the fact that only 20% 
of PSMTs explicitly mentioned that a proof must be general, generality was the characteristic 
attended to most often when PSMTs were asked to evaluate the student-generated arguments 
from Part II. Indeed, in their evaluations, PSMTs demonstrated a robust understanding of proof 
from a mathematics perspective, and made explicit statements that examples do not constitute 
proof. This understanding is particularly notable in light of prior research documenting students 
and preservice teachers’ acceptance of empirical arguments as proof (Harel & Sowder, 2007; 
Simon & Blume, 1996). In addition, the characteristics PSMTs attended to when evaluating 
arguments in Part II did not necessarily map directly onto characteristics PSMTs used when 
deciding which proofs they might present to students in Part III, wherein the use of multiple 
representations that might be accessible to a range of students was valued. Differences across 
survey sections highlight the importance of considering PSMTs’ actions across multiple settings. 
From a research perspective, these findings suggest that measures of PSMTs’ proof conceptions 
should be situated in tasks of teaching (Steele & Rogers, 2012).  

Finally, we note that merely knowing that a proof must be general was not necessarily 
sufficient, as PSMTs had different interpretations of what constituted generality. This finding 
was most evident in their assessment of two “non-traditional” arguments included in the survey, 
one a visual argument, the other a generic example proof (Karunakaran, Freeburn, Konuk, 
& Arbaugh, 2014; Mason & Pimm, 1984) for a claim about divisibility. Given their accessibility 
to students, visual arguments and generic example proofs have the potential to ‘bridge the gap’ 
from empirical toward more deductive modes of argumentation (Karunakaran et al., 2014). 
Thus, we contend that increasing PSMTs’ proficiency with constructing and assessing generic 
example proofs and visual arguments is an important step toward enhancing the role of proof in 
secondary mathematics classrooms. It is worth noting that the invitation to participate in this 
study, which resulted in a convenience sample from participants from multiple universities in the 
US and one university in Australia, is a limitation in this study. Although results from students 
across universities and countries were similar, the different requirements for the programs at the 
different universities could have affected PSMTs’ perspectives. A future direction could involve 
disaggregating the data by type of program in which the students were enrolled. 

There is widespread agreement that reasoning and proof should be an integral part of all 
students’ mathematical experiences across content areas and throughout the grades (Stylianou et 
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al., 2009). Meeting this goal requires that PSMTs develop a nuanced understanding of the 
various purposes and characteristics of proof and what might be an acceptable proof given a 
particular purpose. This includes the ability to distinguish among a range of valid and invalid 
arguments presented visually, verbally, or symbolically, as well as the ability to determine which 
of those arguments might be accessible to students. Moreover, PSMTs need opportunities and 
experiences within their teacher preparation programs that allow them to confront (and reconcile) 
their views of proof from mathematical and pedagogical perspectives.  
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Using memorized rules and algorithms without coherence and understanding is a perennial 
problem for teachers and students especially in the teaching and learning of fraction operations. 
I present data in which prospective middle school teachers explain a commonly used rule for 
fraction division—keep-change-flip. I argue that using both strip diagrams and a single, 
quantitative definition for multiplication support prospective teachers when explaining why the 
rule works. The results of the study provide impetus for both mathematics teachers and 
mathematics teacher educators to teach with coherence across multiple mathematical topics.  

Keywords: Teacher Education-Preservice, Rational Numbers, Middle School Education 

Curricular documents have highlighted the crucial role for representations in the learning and 
teaching of mathematics (National Council of Teachers of Mathematics [NCTM], 2000) and the 
development of well-prepared beginning teachers (Association of Mathematics Teacher 
Educators, 2017). Although there are many representations used in mathematics education, I 
focus on representations as models of problem situations, specifically strip diagrams. The 
importance of using representations in educational contexts is not new (Ball, Thames, & Phelps, 
2008; NCTM, 2000), and researchers’ work on teachers’ use of representations has helped to 
identify related issues. First, teachers’ conceptions of representations and their role in problem 
solving are relegated to the periphery of mathematical activity—representations are not “real” 
mathematics (Stylianou, 2010). Teachers prefer to prioritize abstract, procedural rules over 
productive representations (Eisenhart et al., 1993). Second, teachers’ content knowledge 
constrains their pedagogical purposes for using representations (Izsák, Tillema, & Tunç-Pekkan, 
2008), and teachers’ mathematical knowledge has been shown to be primarily procedural 
without a strong grasp of the mathematical underpinnings (Mewborn, 2003). Prospective middle 
school teachers, in particular, frequently use the keep-change-flip procedure (KCF; i.e., !

"
÷ $

%
=

!
"
∙ %
$
) to explain fraction division but have difficulty explaining why the procedure works (Li & 

Kulm, 2008). This procedural knowledge of mathematics could explain the reluctance of 
teachers to use representations when teaching (see Eisenhart et al., 1993). One viable avenue is 
to provide teachers with opportunities to learn with representations which influences both 
teachers’ knowledge and use of representations (Jacobson & Izsák, 2015). In this report, I 
present such an opportunity. I examine how prospective middle school teachers use strip 
diagrams to solve fraction division problems in a content course and how leveraging the diagram 
supports productive explanations for the keep-change-flip procedure.  

 Theoretical Framework  
Definition of Representations 

Researchers who have studied representation use in class (e.g., Izsák, 2003; Saxe, 2012) have 
generally agreed to distinguish what is being represented and what is “doing” the representing 
(cf. von Glasersfeld, 1987). In this study, I refer to representations as observable geometric 
inscriptions that can be referred or pointed to as the object of discussion (Goldin, 2002). It is this 
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indexical and communicative nature of representations allowing students to explain their 
thinking and for others to engage in another’s way of reasoning. When students create a display 
to represent their thinking, they also have a communicative aspect. In other words, they tailor 
their display with an audience in mind (Saxe, 2012) and thus students select salient features to 
highlight and point when creating and talking about representations. Additionally, I frame 
representations as culturally and historically rooted. A representation’s cultural and historical 
meaning grow out of how communities have interacted with an inscription over time (Blumer, 
1986). For example, a class can ascribe the meaning to the inscription “=” as “execute the 
arithmetic to the left” if they are continually asked to solve result-unknown problems over time.  

Strip diagrams. The Common Core authors recommended strip diagrams when reasoning 
about ratios and rates in 6th grade (National Governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010). A strip diagram is usually drawn as a rectangle 
that can be partitioned into different sized parts where each part may refer to a quantity. 
Although researchers have identified the strip diagram as a feature of mathematics instruction in 
high performing countries such as Japan and Singapore, research on strip diagrams themselves is 
sparse especially in the United States (Murata, 2008; Ng & Lee, 2009). 
Form-Function Relationships 

Saxe’s account (2012) of cultural forms and functions accounts for how historically-rooted 
artifacts change over historical time. Forms are socially-rooted systems of artifacts perceivable 
by members of the community such as the base-27 system of the Oksapmin peoples (Saxe, 2012) 
or a number line in a math class (Saxe, de Kirby, Le, Sitabkhan, & Kang, 2015). Functions are 
how the forms are used to achieve goals. To characterize cultural forms and their functions, the 
researcher must investigate the creation of a “common ground” or a taken-as-shared ways of 
talking and doing (Saxe et al., 2015). Saxe and colleagues identified three strands describing how 
individuals contribute to common ground. In this repor, I account for two of these strands: 

1. Microgenesis. This process shows how individuals contribute to a common ground, often 
using a form in public, by describing how forms serve certain functions. For example, if a 
student wants to show how 3/2 is equivalent to 6/4, a student may create a strip diagram 
partitioned into three parts and partition each part into two in order to show six sub-
partitions using a different color to show the relationship between the two partitions. The 
student is contributing to common ground by producing a particular form (strips with 
partitioned partitions) to describe fraction equivalency. 

2. Ontogenesis.  This process shows the continuity and discontinuity of forms to serve new 
functions. In some instances, if a new function is necessitated, some previously used 
forms may be employed (continuity) or new forms (discontinuity) may emerge to serve 
the new function and accomplish the goal.  

Data and Analysis 
Context of the Study 

I analyzed four days of instruction from the second course of a sequence of two mathematics 
content courses for prospective middle school teachers (PSMTs) enrolled in a teacher education 
program. The same teacher taught both courses. The program was geared towards certification to 
teach mathematics in Grades 4–8. The objective of the course was to strengthen the students’ 
mathematical understanding of middle school topics such as base-10, fractions, and ratios. The 
13 PSMTs enrolled in the course were predominantly white women. Two class norms were 
developed in class by the time of the classes selected for analysis. First, students were expected 
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to use a multiplicand-multiplier definition for multiplication, notated by equation N · M = P 
(Beckmann & Izsák, 2015). In this equation, N denotes the number of base units in one group 
(the multiplicand), M denotes the number of groups (the multiplier), and P denotes the total 
number of units in M groups. With this definition, the order of the factors matters e.g., 12 boxes 
with six donuts in each box (12 · 6) is different from six boxes with 12 donuts in each box (6 · 
12) even if they are numerically the same number of donuts in total. The class was also expected 
to use the Common Core definition of fraction (National Governors Association Center for Best 
Practices & Council of Chief State School Officers, 2010) where the fraction a/b referred to the 
quantity formed by a parts of size 1/b. Lastly, students were expected to explain their thinking 
with drawings rather than memorized algorithms or symbol manipulation. Specifically, students 
were expected to use strip diagrams and double number lines.  

The teacher usually began class by orienting the PSMTs to the mathematical topic of the day. 
She gave the class a problem to solve and the PSMTs worked at their table with two to five other 
PSMTs. As they worked, the teacher walked around class, supporting or pressing the PSMTs. 
The teacher would redirect the PSMT if they breached any of the two sociomathematical norms. 
PSMTs were given the option of using iPads. After a period of time, PSMTs presented the 
strategies in whole-class discussion. To present their strategies, they could recreate their 
strategies on the mounted whiteboards or project their iPad screen on one of four mounted 
screens. Some students used the iPad’s camera to project written work. The whole-class 
discussion focused on students’ strategies and connections between different strategies. 
Data Collection and Analytical Techniques 

The main data corpus for this study was video and audio-recorded lessons from class. One 
stationary camera was set at the back of the class and captured the whole class within one frame. 
The other camera was also stationary during whole-class discussion but followed the teacher 
during small group discussions. Two microphones mounted on the ceiling captured audio during 
whole-class discussion while four flat microphones captured audio at each table. In post-
production, all video and audio data were condensed into a single file. The two videos were 
synchronized and combined into a single frame. The file contained all the audio feeds such that I 
could select any audio and listen to one audio source.  

The primary analytical techniques were modified from Saxe et al., 2015 and focused on 
identifying forms and functions of the representations to characterize the microgenetic process. 
To identify forms, I located PSMTs’ inscriptions in the classroom data. I relied on both 
discursive and gestural indicators. As the PSMTs talked about their drawings, I noted when they 
physically gestured to an inscription or used pointing language such as “This is…” or “I drew…” 
Two grain sizes for forms emerged from this analysis. A micro form was a single geometric 
inscription as fine as a line or rectangle and a coarse form was a group of microforms used to 
address a larger goal such as an entire strip diagram with its annotations to solve a multiplication 
problem. To identify a function, I found pointing language referring to what a particular form 
represents e.g., “This is a cup” and annotations on the drawings. To address the ontogenetic 
strand, I searched for moments between problems wherein forms changed. I identified the 
difference between the question or problem that was asked before and after the change.  

Results 
Over the course of the lessons, the PSMTs used strip diagrams to explain their thinking. The 

coarse form changed when the problem type changed. In Table 1, I summarize and illustrate the 
coarse and micro forms used. As the lessons progressed, the function of a partition of a strip 
changed to accommodate multiple functions which allowed students to explain KCF.  
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Table 1: Coarse Forms and Functions of the Micro Forms 

 
Note: M, N, and P refer to quantities in the multiplication definition in Beckmann & Izsák (2015) 
 
Measurement Division Forms 

The first two lessons centered on solving measurement or how-many-groups division. The 
two coarse forms resembled the definition of a fraction where each strip stood for one of a base 
unit e.g., one cup and the partitions referred to a unit fraction of the base unit e.g., 1/n of a cup. 
The PSMTs indicated one of a group by highlighting a set number of parts (such as the different 
colors in Figure 1a). Using the set number of parts, they counted how many groups were in the 
total amount of base units. The second form resembles the first coarse form; however, the 
function of a partition changed to holding two referents, the base unit and the group. 

 
Figure 1. (a) Sophie’s Diagram for 3 ÷ 3/4 = ? (b) Jack’s Diagram for 1 ½ ÷ 1/3 = ? 

In the first lesson, students created a word problem for the measurement division problem 3 ÷ 
3/4 = ?. They solved the problem using strip diagrams and in some cases double number lines. 
All the strip diagrams produced resembled Sophie’s diagram in Figure 1a. Sophie created the 
word problem “You have three cups of flour. Each batch requires three-fourths cup of flour. 
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How many batches can you make?” During whole-class discussion, she explained, “I first drew 
three full cups each of those is a cup.” Based on the annotations at the bottom of her strip and her 
equation, Sophie created a whole strip as a cup. Because the class was annotating equations with 
one definition of multiplication and Sophie’s placement of cups as the multiplicand in her 
equation, I inferred she assigned cups as her base unit. She explained, “each of those is made of 
four parts, each of size one-fourth of a cup and then I colored three of them which is three 
fourths of a cup each makes a batch” thus a set of three partitions was one group or batch in her 
context. In the next lesson, PSMTs were also asked to create a measurement division problem for 
1½ ÷ 1/3 = ? and solve the problem. Jack wrote the problem “You have 1½ liters of apple juice. 
You want to pour this apple juice into glasses, which can hold 1/3 liters each. How many glasses 
can you fill with your apple juice?” Similar to Sophie’s strategy, he created a whole strip 
indicating one cup of apple juice or one of a base unit. He shaded one and a half strip indicating 
the total amount he needed to count (see yellow partitions in Figure 1b). During whole-class 
discussion, Jack explained he anticipated the size of the partitions he wanted “[because] halves 
and thirds don’t mix perfectly…so I needed to put them in same sizes so the easiest one was 
sixths ‘coz that’s our common denominator–least common denominators.” Thus, he chose 
partitions that were 1/6 of the strip. He counted sets of two partitions showing one of a group or 
2/6 of a liter. Finally, he commented on the left-over partition and described it simultaneously as 
one sixth of a liter and half of a glass. This signaled describing a partition with respect to both 
the group and base unit as a new function for a partition. The ontogenesis of this new function 
for the partition could perhaps be explained by the number choice of the problem in the first 
problem where the total number of partitions is divisible by the numerator of the divisor. 
Partitive Division Form 

The next two lessons centered on solving partitive or how-many-in-1-group division 
problems. The PSMTs initially worked on partitive division problems where the dividend was a 
whole number and the divisor was a fraction between zero and one. One coarse form emerged 
from solving these problems. They created whole strips referring to one of a group e.g., one 
serving and the partitions were a unit fraction of the group. They also referred to the partition as 
some amount of base units. Describing the partition with respect to both groups and base units is 
perhaps a function rooted in the function emerging towards the end of the measurement division 
lessons. Finally, students also distinguished some partitions. Jack called these partitions that 
“aren’t really there” as “phantom” partitions. The phantom partitions were drawn to complete 
one of a group because the sizes of the group that given in the problems were less than one. 

   
Figure 2. (a) Elizabeth’s Diagram for 120 ÷ 2/3 = ? (b) Catherine’s Diagram for 6 ÷ 3/4 = ? 

First, the class worked on the problem “2/3 of a serving of noodles contains 120 mg of 
sodium. How much sodium is in one bowl of noodles?” Afterwards, they worked on the problem 
“Running at a steady pace, Anna ran 6 miles in 3/4 of an hour. At that pace, how far will Anna 
run in one hour?” Elizabeth and Catherine’s strip diagrams in Figure 2 are both exemplars of the 
coarse form PSMTs used when solving partitive division problems. In both diagrams, each 
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whole strip denoted one of a group and assigned a subset of the partitions in a strip to denote the 
total amount of base units in M groups. In Elizabeth’s first strip diagram, the set of blue 
partitions referred to 120mg of sodium and 2/3 serving. Catherine similarly drew her second strip 
with the total amount of miles in 3/4 hours. They then considered just one of these partitions and 
described the partition in both the quantity of the group and base unit similar to Jack’s partition 
in the measurement division lesson. Elizabeth and Catherine also assigned equal amounts of the 
base unit in each partition. For Elizabeth, she annotated this in the middle of her drawing (Figure 
2a) by labelling one of her partitions as both one-third of a serving and 60mg of sodium. 
Catherine showed this function for a partition in her third strip (Figure 2b) where she annotated 
one of her partitions as one-fourth of an hour and two miles. They both iterated this partition to 
complete the whole strip and counted the amount of base units in the whole strip. Although the 
functions for the whole strip and the partition shifted i.e., measurement division problems 
showed one of a base unit while partitive division problems showed one of a group, the function 
of the partition as both an amount of a group and base unit was present in both problem types.  
Explaining Keep-Change-Flip 

 
Figure 3: Elizabeth’s Strip Diagram for 1/3 ÷ 2/5 = 1/3 · 5/2 

PSMTs explained KCF with strip diagrams and the definition of multiplication when 
explaining partitive division problems when prompted by the instructor. The instructor asked the 
PSMTs to find ways to explain 1/3 ÷ 2/5 = 1/3 · 5/2. The PSMTs leveraged the function of a 
partition to describe both the base unit and the group. To explain the rule, PSMTs used a third 
function for a partition—describing the partition with respect to the size of the group of the total 
amount of base units. Consider Elizabeth’s explanation for 1/3 ÷ 2/5 = 1/3 · 5/2. 

Elizabeth drew the strip diagram in Figure 3 to show her thinking for 1/3 ÷ 2/5 = ? and 
explained her thinking in whole-class discussion. She created a partitive division word problem 
“A third of a pound of chicken is enough for 2/5 of a bowl of chicken soup. How many pounds 
of chicken is in 1 whole bowl of chicken soup?” Elizabeth’s drew a strip diagram with the coarse 
partitive division form. First, she drew the strip on the left functioning as one of a group or one 
bowl of soup. She partitioned the strip into five parts and annotated her parts as 1/5 of the bowl 
and “colored in two of the fifths and called that 1/3 of a pound.” The set of partitions referred to 
the size of the group, i.e., 2/5 of the bowl, but also the corresponding quantity in base units i.e., 
1/3 pound of chicken. Using the function of the partition, she described one partition in two 
ways, as 1/5 of the bowl and 1/6 of a pound as seen in the middle of Figure 3. She iterated this 
part to build the whole bowl of soup and kept track of both quantities simultaneously to get 5/6 
pounds of chicken in the whole bowl similar to the previous partitive division coarse forms.  

To explain the equivalence 1/3 ÷ 2/5 = 1/3 · 5/2, Elizabeth described the situation 
considering two groups—the original group of one bowl and a new group of 2/5 of a bowl. 
Considering this new group, she explained the partition is also one-half of two-fifths of the bowl. 
This activity indicated a new function for a partition in addition to denoting a unit fractional 
amount of a group and base unit. She used the partition as a unit fractional amount of the size of 
the group of the total amount of base units in addition to one-fifth of the bowl and one-sixth of 
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the pound. In other words, one partition refers to 1/6 pound of chicken, 1/5 of the bowl, and one-
half of two-fifths of a bowl. She counted the five partitions in the whole strip and used the new 
function to get one bowl as five halves of two-fifths of the bowl.  

Using the new group, Elizabeth created the expression 1/3 · 5/2 following the definition of 
multiplication used in class. In the annotation, she explained there is one third pound of chicken 
in one of the new group, two-fifths bowl (amount in one group, N) and there are five-halves of 
the new group in the whole bowl of soup (number of groups, M). In summary, Elizabeth’s group 
changed from one bowl to two-fifths of a bowl when asked to explain KCF. Because of her new 
group, she added a new function to one partition. By using the class definition of multiplication, 
she annotated her thinking when she considered the new group to obtain the expression 1/3 · 5/2. 

Two reasons could explain the ontogenesis of the new function when solving partitive 
division problems. First, the instructor’s prompt of asking students to explain how to see 1/3 · 
5/2 in their drawing seemed to initiate the creation of the function. If the PSMTs were to simply 
solve the partitive division problem, the third function for the partition may not have emerged. 
Second, the nature of partitive division problems may afford a flexible choice of groups. 
Elizabeth retained 1/3 in base units and flexibly chose her group as either the whole group or 2/5 
of her group. In the problem Jack was solving, 1 1/2 and 1/3 both referred to base units and could 
potentially restrict a group to solely 1/3 of a base unit.  

Discussion and Conclusion 
The results of this study provide a characterization of how functions of inscriptions evolve 

over time. In this case, an evolving function for a partition in a strip allowed students to explain 
KCF. PSMTs’ explanations of the algorithm were rooted in two practices—using strip diagrams 
and a definition of multiplication. Strip diagrams were not templates with predetermined rules 
and meanings. In fact, most of the forms were rooted in the activity of the class and previous 
uses of the strip diagram. Initially, PSMTs used the strip diagram to solve measurement division 
problems. By changing the number choices within the problem, a new function of the partition of 
a strip diagram emerged which proved to be useful in subsequent solutions. The strip diagrams 
remained relatively similar when solving partitive division problems. When prompted to explain 
KCF, the students used the partition in a new way not previously used in solving problems.  

The results I report here provide future steps for both researchers and teachers. When 
analyzing inscriptions, researchers must attend and be explicit about the grain size of the 
inscription. By capturing two grain sizes, I was able to determine new uses for smaller 
inscriptions embedded in larger ones. Additionally, an analysis of inscription use in classrooms 
provides researchers with continuities and discontinuities between points in time in order to 
characterize teaching opportunities for new forms and functions to emerge. For teachers and 
teacher educators working with strip diagrams, activities wherein opportunities are provided to 
assign new functions to diagrams and its elements can equip students with ways of reasoning to 
be used in future tasks. Additionally, this report provides a case for using representations and 
how keeping coherent activity across multiple lessons provides students and prospective teachers 
with a powerful opportunity to learn mathematics.  
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QUANTITATIVE (AND NON-QUANTITATIVE) METHODS USED BY FUTURE 
TEACHERS FOR SOLVING PROBABILITY-BASED PROPORTION PROBLEMS  
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We have extended two perspectives of proportional reasoning to solve problems based in 
probability. Four future middle grade teachers were enrolled in a mathematics content course 
that emphasized reasoning about multiplication with quantities. The course expected future 
teachers to generate and explain methods for solving proportions. Probability had not yet been 
discussed in the course, which gave insight into how reasoning fostered in the course was 
invoked in novel tasks. All four future teachers could reason about multiplication with quantities 
to solve probability problems and could use quantitative methods that accurately reflected how 
empirical probabilities approach theoretical probabilities as the number of trials increase. 

Keywords: Mathematical Knowledge for Teaching, Middle School Education, Probability, 
Teacher Education-Preservice 

Proportional relationships and ratios form an essential domain in elementary and secondary 
education (e.g., Kilpatrick, Swafford, & Findell, 2001; National Council of Teachers of 
Mathematics [NCTM], 2000) but are challenging concepts for students to learn (e.g., Lamon, 
2007). Siegler et al. (2010) stressed the importance of teachers helping students conceptually 
understand proportion problems before utilizing rote cross-multiplication procedures. Similarly, 
the Common Core State Standards for Mathematics stated students should be able to “understand 
ratio concepts and use ratio reasoning to solve problems… by reasoning about tables of 
equivalent ratios, tape [strip] diagrams, double number line diagrams, or equations” (National 
Governors Association Center for Best Practices & Council of Chief State School Officers, 2010, 
p. 42). Yet, studies have shown teachers have difficulties similar to their students when 
reasoning about proportional relationships (e.g., Orrill & Brown, 2012). Thus, it is important to 
understand how to better prepare teachers to reason about ratios and proportional relationships. 

Additionally, standards documents (e.g., Conference Board of the Mathematical Sciences 
[CBMS], 2012; NCTM, 2000) emphasize the need for students to see mathematics as a coherent 
whole by developing connections across topics. To this end, ratios and proportional relationships 
can be situated within the multiplicative conceptual field (Vergnaud, 1994), which also includes 
multiplication, division, and fractions. Our project group has been investigating how future 
teachers (FTs) enrolled in content courses on multiplication develop a coherent perspective of 
the multiplicative conceptual field and construct viable arguments to solve tasks, especially using 
the multiple batches and variable parts perspectives on proportional relationships (Beckmann & 
Izsák, 2015). These two perspectives are explained in the theoretical framework section below.  

In this study, we investigated how future middle grade teachers engaged in these two 
perspectives when generating and explaining methods to solve probability-based proportion 
problems. Due to the tendency for both students and teachers to solve missing-value proportion 
problems using the cross-multiplication procedure (Orrill & Brown, 2012), it is important to see 
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if FTs can also reason quantitatively in these situations. Two potential ways FTs can reason 
quantitatively are through the use of the multiple batches and variable parts perspectives.  

We focused on probability-based tasks for two reasons. The first is that we wanted to 
concentrate on a topic tied to the multiplicative conceptual field that had not yet been covered in 
the FTs’ content courses on multiplication. By choosing a topic not covered in class, we could 
see if and how FTs utilized quantitative reasoning from instruction (i.e., the multiple batches and 
variable parts perspectives) in novel situations. Probability fit this criterion.  

The second is that the variable parts perspective is rarely the focus of instruction (Beckmann 
& Izsák, 2015) but gives a more accurate representation of what transpires in probability tasks 
over a series of trials compared to the multiple batches perspective. For instance, if a spinner has 
five equal sectors and three of those sectors are red, the probability of the spinner landing on red 
is three-fifths. Yet, this does not mean as more spins are completed, three of each five 
consecutive spins will be red (a multiple batches approach). A more accurate representation is 
one based in the variable parts perspective: there are five equal-sized sectors and as the number 
of spins increases, each sector gets multiplicatively closer to containing the same fractional 
amount of the total spins (one-fifth). We mention “multiplicatively closer” because as more spins 
are completed, the additive difference between the number of spins in any two sectors may be 
growing. Therefore, as the number of spins grows, the number of spins landing on red will 
approach three-fifths of the total spins. On the other hand, as the number of spins increase, the 
fractional amount of the total spins in each of the sectors (the empirical probability) should be 
approaching the same number, namely the theoretical probability of landing in any sector.  

Thus, there is merit in analyzing FTs’ methods when solving probability-based proportion 
tasks. If FTs can access and utilize methods from the multiple batches or variable parts 
perspectives, it shows FTs can reason quantitatively in tasks that are typically solved using 
procedures. Further, if FTs can reason using the variable parts perspective, it shows the potential 
of introducing variable parts-based methods in FTs’ mathematics content courses. To investigate 
this idea, we utilized the following research question: What methods do future middle grade 
teachers use when solving missing value proportion problems related to probability? 

Theoretical Perspectives 
In our courses with FTs, we use a quantitative definition of multiplication as a way to 

provide coherence among topics within the multiplicative conceptual field (Beckmann & Izsák, 
2015). The definition of multiplication gives a foothold for FTs to reason about quantities in 
multiplicative situations and leads to four methods, two in each of the two perspectives (multiple 
batches and variable parts) on proportional relationships (Beckmann, Izsák, & Ölmez, 2015).  
Quantitative Definition of Multiplication 

Multiplication can be viewed quantitatively by considering equal-sized groups and units 
within those groups. We use this idea to produce the definition of multiplication in Figure 1. By 
consistently ordering the factors as multiplicand (N) times multiplier (M), the definition provides 
an organizational structure for tasks related to multiplication and allows for differentiation 
between multiplication, measurement (quotitive) division, and partitive division. An example is 
also given in Figure 1 to show how the definition of multiplication allows for this differentiation. 
Based on the choice of group from the situation, the definition of multiplication gives rise to four 
methods on proportional relationships found in the variable parts and multiple batches 
perspectives. We will now elaborate on these two perspectives and the four methods. 
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Multiplication N • M = ? If a baker can place 5 cookies on a plate and has 4 plates, how 
many cookies can the baker put on all of the plates? 5 • 4 = ? 

How-Many-
Groups Division N • ? = P If a baker can place 5 cookies on a plate, how many plates will 

the baker need to hold 20 cookies? 5 • ? = 20 

How-Many-in-1-
Group Division ? • M = P 

If a baker has 4 plates to put cookies on and has 20 cookies 
total, how many cookies will the baker need to put on each 
plate? 

? • 4 = 20 

Figure 1. A Quantitative Definition of Multiplication with an Example 

Four Methods within the Two Perspectives on Proportional Relationships 
In this section, we provide an overview of the two perspectives on proportional relationships 

and the four methods that arise from within these two perspectives. Due to page constraints, this 
overview is cursory. For a more thorough discussion of the two perspectives, see Beckmann and 
Izsák (2015). Similarly, for more information on the four methods, see Beckmann, Izsák, and 
Ölmez (2015). 

The two perspectives on proportional relationships are known as multiple batches and 
variable parts. In the multiple batches perspective, two quantities measured by fixed units can be 
joined to form a “batch”. A new pair of quantities, measured by the same units as above, is 
considered proportional to the original batch if the new pair of quantities is a multiple of the 
original batch. This corresponds to how-many-groups division in the definition of multiplication: 
the choice of a batch fixes the number of base units in the group (the multiplicand) and the 
number of groups (the multiplier) varies. In contrast, the variable parts perspective looks at 
proportionality by fixing the number of groups and varying the number of base units in the 
groups. This corresponds to how-many-in-1-group division in the meaning of multiplication. 
Beckmann and Izsák (2015) explained the variable parts perspective in the following way: 

…two quantities are said to be in the ratio A to B if for some-sized part there are A parts of 
the first quantity and B parts of the second quantity. In contrast to the first perspective 
[multiple batches], where A and B denote values based on a chosen measurement unit, here 
A and B specify fixed numbers of parts that can vary in size. (p. 21) 

The difference between the two perspectives becomes more distinct when the four methods 
within these perspectives are shown. The multiply unit-rate batch and multiply one batch 
methods are situated within the multiple batches perspective and the multiply one part and 
multiply whole amount methods are situated within the variable parts perspective. Each of the 
four methods differs from the others by the choice of group. To clarify how these group choices 
affect the corresponding quantitative reasoning, we will consider the following example: A 
spinner has five equal sectors with three of those sectors being red. If you spin the spinner 20 
times, how many spins should land on red? To explain how to solve this example, Figure 2 gives 
a math drawing and the corresponding definition of multiplication for each method. The group 
can be seen in blue and the number of base units in the group can be seen in red in each drawing.  
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Multiple Batches Perspective 

Multiply Unit-Rate Batch 

 

Multiply One Batch 
 

 
Variable Parts Perspective 

Multiply One Part 

 

Multiply Whole Amount 

 
Figure 2. The Four Methods within the Two Perspectives 

Data Sources 
Data for this report come from a larger study at a public research university aimed at 

understanding how FTs in middle grade (4-8) and secondary (6-12) math education programs 
develop understanding of the multiplicative conceptual field. Participants in the larger study took 
part in six clinical interviews investigating ideas around the multiplicative conceptual field. Two 
cameras recorded each interview with one focused on a holistic view of the participant and 
interviewer and one focused on the participant’s written work. The data for this report come from 
the sixth interview with four FTs in the middle grade program who were enrolled in the second 
content course focused on multiplication taught by the second author. The interview took place 
near the end of the Spring 2017 semester and focused on probability to see if the FTs could 
utilize multiplicative reasoning fostered in their content courses with yet-to-be covered topics. 
Each interview lasted approximately 75 minutes and the tasks used are found in Table 1.  

Table 1: Tasks in Interview Involving Missing Value Proportion Problems 
Task Participant(s) 

Given Task Wording of Task 

1 All 
If you were to spin the same spinner [on computer screen with 5 different colored sectors 
including red] 10,000 times or 100,000 times or 24 hundred thousand times, do you have 
any expectation about how many times it would land on red?  Explain why or why not.   

2 
Nina 

Sophie 
Jack 

If you were to spin the same spinner [on computer screen with 5 equal sectors, 3 purple, 
2 blue] 10,000 times, 100,000 times or 240,000 times, do you have any expectations 
about how many times it would land on purple?   

3 All Suppose you want the spinner [5 equal sectors, 3 purple, 2 blue] to land on purple a total 
of 1500 times, about how many times should you expect to have to spin the spinner?   

4 All 
Please reconsider the spinner in Task 1.  If you were to spin the spinner a bunch of times, 
say X times, or some specific large number of times, do you have any expectation about 
how many times it would land on red? 
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5 Sophie 
Molly 

Please reconsider the spinner in Task 2.  If you were to spin the spinner a bunch of times, 
say X times, or some specific large number of times, do you have any expectation about 
how many times it would land on red? 

6a Nina 
If I wanted to get A spins to be yellow, what total number of spins would you tell me I 
should use? [Task is referencing a spinner with 10 equal sectors, 7 of which are purple, 3 
are yellow] 

6b Sophie 
Suppose I wanted to spin the spinner [referencing a spinner with 10 equal sectors, 7 of 
which are purple, 3 of which are yellow] enough times so that I got 2100 purples, could 
you give me a recommendation for how many total spins I should make? 

Methods 
Each interview was transcribed fully and augmented with relevant written work and hand 

gestures. All authors watched each interview alone and then as a group. The authors then 
identified all segments related to missing value proportion problems and coded these segments 
separately. Each author wrote notes and cognitive memos on (a) methods used, (b) concepts 
discussed related to the multiplicative conceptual field, (c) representations utilized, and (d) 
quotes that provided insights into methods/reasoning. At least two of the authors then met and 
discussed all authors’ notes, referencing transcripts and videos as needed. Any discrepant 
interpretations were discussed until resolved. The first and second authors attended all meetings. 
These meetings led to the creation of the cumulative list of methods used by the participants seen 
in Table 2. The examples listed in the table do not exhaust all such instances of each method. 

Table 2: Methods Used by the Participants During the Interview 
Name of Method 

Description Example in Data 

Multiply One Part 
Variable Parts Perspective 
See Figure 2 

“…we would take 1500 and divide that by 3, so that we know what each of the 
one-fifth parts are, because there are 3 one-fifth parts in this.  And that will give us 
500.  So one-fifth of the total spins are 500 spins and… so then we’ll multiply the 
500 by 5 to get a whole, and that would be 2,500 spins.” 

 
                            
  
                                          –Molly, Task 3 

Multiply Whole Amount 
Variable Parts Perspective 
See Figure 2 

“So if you have X spins, so if you’re calling like X spins one round [annotates ‘X’ 
with ‘x spins in 1 round’]… then this would be one-fifth of that round [annotates 
‘1/5’ with ‘1/5 round’].  So the question mark would be X… or not X.  Question 
mark spins in one-fifth of a round [annotates ‘?’ with ‘? Spins in 1/5 round’].” 

 
    

                      
 
                                     –Molly, Task 4 

Multiply One Batch 
Multiple Batches Perspective 
See Figure 2 

“Well, if you know that every 10 times you do it, it'll land on purple 7, that's like 
the same thing I was doing before where 10 times gives you 7 purple, how many 
spins gives you 2100 purple?  That's multiplying by 300, so you'd have to do the 
same thing over here [to the 10 spins].” 
 

  
  

                               –Sophie, Task 6b 
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Multiply Unit-Rate Batch 
Multiple Batches Perspective 
See Figure 2 

“If the spinner’s going to land on a random spot for every spin, I think that for 1 
spin, the chance is going to be three-fifths purple. And so, 10,000 spins, each one 
is also going to be three-fifths chance purple.”  
 

                                    
                                         –Nina, Task 2 

Algebraic Manipulation 
Writes a multiplication or 
division equation involving 
an unknown and uses 
numeric operations to solve 
for the unknown with no 
justification as to what the 
operations mean. 

Interviewer poses Task 6b, Sophie writes with no verbal justification: 
 
                       
                            

 
 
                           
                                          –Sophie, Task 6b 

Guess and Check 
The participant guesses at a 
potential solution and uses 
numbers and operations in 
the context of the problem to 
check if the potential solution 
is correct. 

“And we want 1500 purple spins [writes ‘1500’].  We’re going to need, what, 3? 
We’re going to need a minimum of 500 spins [writes ‘500’]…  other way around 
[crosses out ‘500’, writes ‘4,500’].  We’d need 45,000 [sic 4,500] spins.  [writes 
‘900 •3 = 2700’] Nope, that's not it [crosses out multiplication just written]…” 
  
                                              
 
 

 
                                            –Jack, Task 3 

“For Every” Language 
Connected with Fractions 
Uses language such as “X 
for every Y” and states this is 
equivalent to either (a) “X/Y 
of the total”, (b) writing the 
equation “(Total)•(X/Y)”, 
and/or (c) writing the 
equation ”(X/Y)•(Total)” 

“That if you spin it 10,000 times, 1 in every 5 times… or the red has the chance of 
being landed on 1 in every 5 times. So every 5 spins it has the chance of being 
landed on once, so that's the same as 10,000 times one-fifth.” 
 
  
  
 

                         
                                  –Sophie, Task 1 

Results 
The results we present focus on the methods used by each FT when solving probability-based 

missing value proportion problems. Of note, all four FTs were able to engage in sound reasoning 
regarding the spins and spinners to solve the tasks. Additionally, all four FTs used at least one of 
the four methods from the two perspectives on proportional relationships during the interview, 
indicating they could reason about multiplication with quantities to solve probability problems. 
Lastly, though not always the initial method, all four FTs were able to use methods grounded in 
the variable parts perspective, showing this approach to proportional relationships is viable even 
in novel situations. 
Sophie 

Sophie’s (all names are pseudonyms) initial method to solve four of her six interview tasks 
was not grounded in either of the two perspectives. Rather, Sophie used “for every” language 
connected with fractions to solve the first two tasks and algebraic manipulation for two other 
tasks (Tasks 3, 6b). When prompted for other methods to explain these tasks, Sophie justified her 
solutions from the multiple batches perspective, successfully explaining the multiply one batch 
method using both strip diagrams and ratio tables. Table 2 shows her typical reasoning for the 
multiply one batch method. For Sophie, using methods from the variable parts perspective only 
occurred when the questioning from the interviewer cued such reasoning. For instance, Sophie 
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explained her equation, X•1/5 = Red, through the multiply whole amount method when asked to 
use the definition of multiplication in Task 4 and explained the multiply one part method only 
after being specifically asked to do so in Task 6b. 
Jack 

With the first two tasks, Jack justified his multiplication equations using “for every” 
language connected with fractions. He consistently discussed the spins landing on red as “1 out 
of every 5 times”, an indicator of thinking about the spins from a multiple batches perspective. 
He approached Task 3 using guess and check (as seen in Table 2) but when that faltered, his 
language shifted from discussing the purple sectors as “3 out of every 5 times” to “3 parts of 5 
that we need” and began reasoning using the multiply one part method. Using this method, Jack 
found the correct solution and provided justification with ease. Jack later revisited Task 3 and 
articulately explained the multiply one part and multiply whole amount methods using the 
definition of multiplication, drawings of spinners, and strip diagrams placed on a Cartesian 
coordinate system (a representation from the content course). Jack discussed his multiplication 
equation in Task 4 using “for every” language connected with fractions (again, discussing spins 
landing on red as “1 out of every 5 spins”) but when asked about the definition of multiplication, 
he discussed his equation using the multiply whole amount method. Jack used multiple batches 
language throughout almost the entire interview and tended to justify his multiplication equations 
using such language. Yet, when these methods did not provide sufficient justification, Jack was 
able to discuss the two variable parts methods quite easily and with multiple representations. 
Nina 

Nina’s use of the two perspectives was quite similar to Jack’s. Nina completed the first two 
tasks using the multiply unit-rate batch method (see Table 2 for her typical explanation) and 
attempted Task 3 with the multiply one batch method. Though Nina found the solution, she was 
unable to justify it using her multiple batches method. After struggling for several minutes, her 
language shifted from discussing the purple sectors as “3 times for every 5 times” to “3 of my 
parts”, which seemed to indicate a shift in thinking from a multiple batches perspective to a 
variable parts perspective. This shift allowed her to justify her answer using the multiply one part 
method. For the remainder of the interview, Nina did not use multiple batches methods again, nor 
did she use language that would indicate she was approaching the remaining tasks from the 
multiple batches perspective. Nina explained the multiply one part method in Task 4 when asked 
to use the definition of multiplication and though she used algebraic manipulation to initially 
solve Task 6a, she discussed the multiply whole amount method when asked for other methods.  
Molly 

Molly was the only FT to strictly use methods within the variable parts perspective 
throughout the interview. Molly regularly used how-many-in-one-group division to reason 
through the multiply one part method and was also facile in discussing the multiply whole 
amount method. A typical explanation of Molly’s multiply one part method is in Table 2. When 
asked for differences between the two variable parts methods, Molly communicated these 
differences using equations, drawings of spinners, and strip diagrams. Molly needed no 
prompting to utilize the two methods within the variable parts perspective and used these 
methods to reason successfully throughout all interview tasks.  

Conclusions and Implications 
The results we present demonstrate that FTs taking a content course on multiplication can 

reason through missing value proportion problems using several methods that show conceptual 
understanding by reasoning with quantities. Thus, an increased focus on reasoning with 
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quantities through a structured definition of multiplication could give FTs conceptual ways to 
approach problems that are frequently solved through rote procedure. Additionally, this study 
shows that FTs can use ideas from their content courses on multiplication to reason through 
novel tasks in the multiplicative conceptual field. This is promising because it indicates the FTs 
are beginning to see cohesiveness across topics within the multiplicative conceptual field and 
across mathematical ideas, which is a goal of recent standards documents (e.g., CBMS, 2012; 
NCTM, 2000). Though not typically the initial idea for the FTs, all four FTs could reason from 
the variable parts perspective and this perspective seemed to be advantageous at times compared 
to FTs’ other methods. This result shows there is merit to giving FTs exposure to the variable 
parts perspective, a perspective that is typically overlooked (Beckmann & Izsák, 2015).  

Future research in probability should explore the variable parts perspective. For example, a 
study could investigate if FTs can use the variable parts perspective to discuss the law of large 
numbers informally. Other studies could consider how FTs apply ideas from the multiplicative 
conceptual field to other mathematical areas, such as linear relationships and trigonometry. More 
specifically, investigating the accessibility and utilization of the variable parts perspective by 
FTs in these mathematical areas seems worthwhile. By investigating these topics, the field can 
gain a better understanding of FTs’ abilities to reason quantitatively and the resources needed to 
support FTs in building connections between areas in the multiplicative conceptual field.  
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The purpose of this paper is to describe secondary mathematics student teachers’ types of 
noticing while teaching. We discuss the importance of focusing on the interrelatedness of the 
noticing skills rather than reporting on individual skills separately. We apply the types of 
noticing to videos of student teachers to identify their ability to elicit and interpret student 
mathematical thinking in-the-moment while teaching. Results suggest that our student teachers 
did elicit and attend to student mathematical thinking while teaching, but how they interpreted 
the elicited student thinking varied. We hypothesize three reasons for why student teachers may 
have interpreted student mathematical thinking at a general level.  

Keywords: Teacher Education–Preservice, Teacher Knowledge, Mathematical Knowledge for 
Teaching 

Teaching is a complex activity that requires teachers to make purposeful in-the-moment 
decisions to attend to some activities while disregarding others. Sherin and Star (2011) noted that 
teachers are “bombarded with a blooming, buzzing confusion of sensory data” (p. 69) that he/she 
must sift through to make in-the-moment decisions to support student learning. For preservice 
teachers (PTs), the cacophony of sensory data can be more difficult to sift through than 
experienced teachers resulting in PTs becoming overwhelmed, focusing on small tasks (e.g., one 
group of students, one solution strategy, one students’ voice) and neglecting or missing other 
important aspects of teaching (e.g., multiple ways of student thinking, actions of all students in 
the class).  

Researchers have used noticing to focus teachers’ attention on important aspects of teaching; 
however, because teachers tend to notice a variety of information in a classroom (e.g., teacher 
actions, student actions, classroom management, posters on the wall) guidance on what to notice, 
especially for PTs, is necessary (Jacobs, Lamb, Philipp, & Schappleel, 2011; Sherin & van Es, 
2005; Star & Strickland, 2008; Star, Lynch, & Perova, 2011; Stockero, 2014). Jacobs, Lamb, and 
Philipp (2010) extended the construct of teacher noticing to —professional noticing of children’s 
mathematical thinking, which is conceptualized “as a set of three interrelated skills: attending to 
children’s strategies, interpreting children’s understanding, and deciding how to respond on the 
bases of children’s understanding” (Jacobs et al., 2010, p. 172, emphasis added).  

Mathematics education researchers have used Jacobs et al.’s (2010) framework to learn what 
teachers attend to and how teachers interpret and respond to children’s mathematical thinking 
(e.g., Schack, Fisher, & Wilhelm, 2017). As a field, we have learned more about professional 
noticing, specifically researchers often focus on one of the three interrelated skills (attending, 
interpreting, or responding) in a reflective setting, thus artificially compartmentalizing these 
interrelated skills. We argue in this paper that investigating the interrelatedness of the noticing 
skills is critical to understanding how teachers apply these skills when teaching. We also share 
how we, as researchers, utilized professional noticing to determine how our secondary 
mathematics student teachers elicited and acted on student mathematical thinking (SMT) in-the-
moment while teaching.  
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In this paper, we report on the following research question: To what extent do secondary 
student teachers elicit SMT and interpret that thinking in-the-moment while student teaching? 

Theoretical Framework 
To analyze and interpret our data we frame our view of eliciting and acting on SMT through 

Piaget’s (1955) construct of decentering and Teuscher, Leatham, and Peterson’s (2017) types of 
noticing. 

The construct of decentering provides a powerful lens for examining student-teacher 
interactions because it focuses on the teacher’s interpretations of students’ verbal and written 
explanations to make in-the-moment decisions while teaching. We seek to draw inferences about 
how student teachers’ understanding of SMT relates to their actions in-the-moment of teaching. 
According to Piaget (1955) decentering characterizes how the actions of an observer (i.e., student 
teacher) attempting to understand how an individual’s (i.e., student’s) perspective differs from 
his/her own. Steffe and Thompson (2000) and Thompson (2000) distinguished two ways in 
which individuals interact with others, which are described by the type of model that an 
individual creates of other’s thinking. Thompson (2000) described individuals as participating 
unreflectively or reflectively. Individuals who participate unreflectively were describe as 
creating first-order models. “The models an individual constructs to organize, comprehend and 
control his or her experiences, i.e., their own mathematical knowledge” (Steffe & Olive, 2010, p. 
16 emphasis added). Whereas, individuals who participate reflectively were described as 
creating second-order models, attempting to elicit and interpret SMT, and assist students in 
furthering their thinking based on the students’ perspectives, not their own (i.e., decentering). 

Teuscher et al. (2017) extended Jacobs et al. (2010) professional noticing framework 
describing types of noticing. These types of noticing were based on student teachers’ written 
journal entries completed during student teaching. Attending to SMT was divided into two 
categories: general observation or student mathematical thinking. Interpreting SMT was also 
divided into two categories: general interpretation or root interpretation. Four types of noticing 
specifically connect the two skills of attending to and interpreting SMT. They were: (1) general 
observation, no interpretation; (2) general observation, general interpretation; (3) student 
mathematical thinking, general interpretation; and (4) student mathematical thinking, root 
interpretation (see Teuscher et al., 2017 for specific definitions). We seek to apply these four 
types of noticing to videos of student teachers by identifying their ability to elicit and interpret 
SMT in-the-moment while teaching (e.g., decentering). Specifically, we are interested in 
identifying what SMT student teachers attend to while teaching and in what ways they 
interpreted the SMT that was available to them.  

Methods 
Pairs of student teachers where assigned a 16-week placement at a junior high or high school. 

The university supervisor, first author, observed the student teachers once a week and provided 
feedback during their student teaching experience. Data were collected on four pairs of student 
teachers (eight student teachers) during two different semesters. The researchers purposefully 
selected four pairs of student teachers to allow for variability in the data set. All eight student 
teachers’ lessons observed by the university supervisor were videotaped. The researchers 
analyzed three lesson videos (beginning, middle, and end of student teaching) for each student 
teacher, 24 total, and coded each using the Practice of Probing Student Thinking Framework 
(Teuscher, Switzer, & Morwood, 2016) to identify instances where student teachers appeared to 
elicit and act on SMT. We chose probing student thinking because it allowed the researchers to 
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identify instances of SMT and possible interpretations of the student thinking by the student 
teachers.   

To identify a subset of instances of probing student thinking to analyze, we compared the 
researchers’ instances to the student teachers’ instances of probing student thinking and found 27 
overlapping instances, which indicated that student teachers seemed aware of SMT. Using the 
researchers’ instances from the overlapping instances, we conducted our analysis to determine 
how the student teachers were eliciting and acting on SMT in-the-moment while teaching. Our 
unit of analysis was an individual video instance of probing student thinking, defined as a 
complete interaction between a teacher and student(s). The researchers used the types of noticing 
framework (Teuscher et al., 2017) to identify the elicited SMT in the video instances and 
inferred the student teachers’ interpretations of the SMT based on their response to the SMT in 
the video.  

In the following section, we provide illustrative examples from our data set to describe these 
different types of noticing. Video instance 1 is the transcript for one probing student thinking 
instance that occurred near the end of a high school mathematics class. The high school students 
spent the class period learning about graphing quadratic inequalities and using the graphs to find 
the solutions to the quadratic inequalities. 

 
Student Teacher: So, what did we notice the difference between these two answers [one 

answer was x<5 or x>11 and the other answer was -5<x<1]? The one from our previous 
problem and this one? What’s the difference? Student 1? 

Student 1: Um, it’s not like infinity on it so it doesn’t go on forever, it stops. 
Student Teacher: Yeah, and what did we notice about the equations at the top of number nine 

and ten? How are they different in terms of the signs? Yeah, Student 2? 
Student 2: One [function] is showing like one is less than zero and one [function] is greater 

than zero so that changes when it’s outside or inside.  
Student Teacher: And when do we know if it’s going outside or inside? 
Student 3: If it’s greater or less than zero. Wait, what? 
Student Teacher: Okay, say, what happens when it’s greater than zero? 
Student 3: Then the arrows on the outside go inside. 
Student Teacher: Um, is it, let’s see, I think in this case we also had our, both our parabolas, 

which way are they opening? 
Students: Up. 
Student Teacher: Yeah, so we want to make sure and graph and make sure they were opening 

up, because if it was opening down we might have a different answer.        
 
We identified video instance 1 as a General Observation and General Interpretation. The 

general observation is because we could not infer the SMT. We have some idea that students are 
discussing whether a quadratic function is greater than zero or lesson than zero, but we were 
unable to determine what students meant when they said, “that changes when it’s outside or 
inside” (Student 2) or “then the arrows on the outside go inside” (Student 3). The general 
interpretation was based on the student teacher’s response to Students 2 and 3 because she 
seemed to carry the discussion on without seeking clarification of what students meant by “that 
changes when it’s outside or inside” (Student 2) or “then the arrows on the outside go inside” 
(Student 3). 
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Video instance 2 is the transcript for another probing student thinking instance that occurred 
at the beginning of a middle school mathematics class. Students were learning about unit rates, 
constant growth rates, and linear equations. Students were shown a graph of a linear function 
(number of hands as a function of number of people) and asked to answer the following three 
questions: (1) What is the unit rate and what does it represent? (2) If there are 6 hands, how 
many people are present? (3) How many hands are there if there are 52 people? The transcript is 
from the class discussion about the first question.  

 
Student 1: I was looking at this one right here [points to the point] this dot right here (1, 2), 

and since it is the lowest one that is not (0, 0) that is the unit rate because all you need to 
do is multiply it by two and it will keep going on forever. 

Student Teacher: Multiple what by two? 
Student 1: Multiply people and hands by two. 
Student Teacher: People and hands? I am not sure I understand what you mean. 
Student 1: One person times two is two people, well (pause). You add one person here then 

you add two hands. Whenever you go up one dot it goes add one person then it goes add 
two hands. 

Student Teacher: Ok, so you are saying… 
Student 2: There is a constant growth pattern. 
Student Teacher: [revoicing] There is a constant growth pattern that you add one here 

(pointing to the person axis) and you add two here (pointing to the hands axis). 
Student 1: Yes 
Student Teacher: And then continue on? 
Student 1: Yes 
Student Teacher: Okay. Okay. Awesome, so your unit rate is what? 
Student 1: One to two. 
Student Teacher: [revoicing and writes on the board: 1 to 2], One to two, and what are your 

units? 
Student 1: Units? 
Student Teacher: What does this 1 represent [pointing to the 1 on the board] 
Student 1: People. People. People to hands 
 
We identified video instance 2 as Student Mathematical Thinking and Root Interpretation. 

The SMT was “I was looking at this one right here [points to the point] this dot right here (1, 2), 
and since it is the lowest one that is not (0, 0) that is the unit rate because all you need to do is 
multiply it by two and it will keep going on forever” (Student 1). In other words, the student is 
saying that you can use the point on the line closest to (0, 0) to determine the unit rate, which is 
the point (2, 1) to which he points. We inferred that the student teacher made a root interpretation 
– a more in-depth analysis of what the students might have meant by their utterance, or what that 
thinking means with respect to student understanding – because the teacher was unsure what 
Student 1 referred to when he states, “multiple it by 2.” Therefore, the student teacher asks 
clarifying questions to which the student responds with “One person times two is two people, 
well (pause). You add one person here then you add two hands. Whenever you go up one dot it 
goes add one person then it goes add two hands” (Student 1). The student teacher seemed aware 
of the difficulty that middle school students have when beginning to work with multiplicative 
relationships. Following up on the statement, “you multiply it by 2” (Student 1), allowed Student 
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1’s thinking to be made public. In responding, Student 1 begins to think about the multiplicative 
relationship between the number of hands and people. As he is explaining his thinking he 
realizes he is not correct and reverts to an additive relationship for which he is familiar. 

Results 
Table 1 displays the percentage of video instances based on the types of noticing. We found 

that merging the separate noticing skills captured the interrelatedness of attending and 
interpreting that reveals important and distinguishing aspects of how the student teachers acted 
on SMT. Of the 27 video instances the researchers coded 23 (85.2%) provide evidence of the 
student teachers eliciting SMT and 4 video instances (14.8%) provided evidence of the student 
teachers making a general observation of the SMT. However, of the 23 video instances that 
include evidence of SMT, 14 video instances (51.9%) include evidence of a root interpretation 
and 9 video instances (33.3%) include evidence of a general interpretation. Therefore, the results 
indicate that the student teachers were highly successful in eliciting SMT, but often did not 
generate a root interpretation of the elicited SMT. 

Table 1: Student Teachers’ Video Instances by Types of Noticing 
Attending Interpreting Instance Count Percent 

Student Mathematical 
Thinking 

Root Interpretation 14 51.9% 
General Interpretation 9 33.3% 

General Observation General Interpretation 4 14.8% 
Total  27 100.0% 

 
For the remainder of this report, we focus our analysis on the nine video instances where the 

student teachers elicited SMT but made a general interpretation. In these instances, there was no 
evidence that the student teachers generated a root interpretation of the elicited SMT. We were 
interested in identifying potential factors that may have led to the student teachers not generating 
a root interpretation. We share two transcripts that are representative of the SMT with general 
interpretation type. 

Video instance 3 occurs at the beginning of a high school lesson. Students were working on a 
task to determine if different situations were fair or unfair to assist them in generating a 
mathematical definition of fair. The following transcript provides the conversation between the 
student teacher and a student. 

 
Student: I think it is fair, but I am trying to think how it might not be fair? 
Student Teacher: What is your definition of fair? 
Student: It would be more fair if everyone got a prize or something, but this isn't the type of 

thing where everyone could get, I don’t know, I’m thinking realistic. 
Student Teacher: So, are you reconsidering the definition then of fair? 
Student: Kind of, literally fair is everyone gets it. 
Student Teacher: Gotcha, so like equality. Like everyone would get one? 
Student: But this scenario is confusing me; it wouldn't be fair if they said that the tallest 

person gets the prize if they are short. 
Student Teacher: Gotcha, so then that would be bias against the short people, right? 
Student: Yeah, so this is, I don’t know, this is like everyone has the same opportunity. 
Student Teacher: (revoicing) Okay, so everyone has the same opportunity. So, does this one 

fit that definition of fair, this scenario? 
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Student: Yeah, everyone got a ticket and everyone had the, like, gets the opportunity to be 
picked, it’s just not everyone gets picked. 

Student Teacher: Right so we all have, so you and I might be in the drawing and we might 
not both get picked, but we have equal chances? 

Student: Yeah 
Student Teacher: Which is what you were saying? As long as you explain I am ok with 

whatever you come up with. 
 

Our analysis of video instance 3 found that the student teacher attended to SMT multiple 
times. The student teacher asked the student if she was reconsidering her definition of fair. The 
student suggested that “fair means everyone gets a prize,” which is a common definition of fair 
but not the mathematical definition. Then the student seems confused because she thinks “fair 
means everyone has the same opportunity.” While the student teacher seemed to identify that the 
student had two definitions of fair, how the student teacher acted on this SMT was revealing. The 
student teacher indicates to the student that it does not matter which way she thinks about it as 
long as she can explain her thinking. In other words, both of the student’s definitions were 
acceptable. Throughout the lesson multiple students continued to bring up and discuss these two 
definitions of fair and the student teacher never distinguished the difference between the 
definitions. In concluding the lesson, the student teacher stated, “as long as we can explain why 
whatever method we use was fair then it should be fair, right?” We inferred that the student 
teacher’s mathematical meaning for fair (Byerley &Thompson, 2017) may have resulted in her 
interpreting the SMT at a general level. 

Video instance 4 occurs in a high school lesson where students were learning about 
probability. The students were given the following problem to work on in groups.  

 
Two students, Lee and Rory, find a box containing 100 baseball cards. To determine who 
should get the cards, they decide to play a game with the following rules:  
• One of the students repeatedly flips a coin. 
• When the coin lands heads up, Lee gets a point.  
• When the coin lands tails up, Rory gets a point.  
• The first student to reach 20 points wins the game and gets the baseball cards.  

As Lee and Rory are playing the game they are interrupted and are unable to continue. How 
should the 100 baseball cards be divided between the students given that the game was 
interrupted at the described moment? When they are interrupted Lee has 19 points and 
Rory has 17 points. 

A student (Bill) shares with the class that Rory should get 17/36 of the cards and Lee should get 
19/36 of the cards. Other students in the class respond with “what?” and “where did the 36 come 
from?” The following transcript captures the ensuing conversation between the student teacher 
and the students in the class.   

Student Teacher: Okay, [student 1] has a question about where the 36 came from? 
Bill: You take the 19+17 to get the 36. 
Student Teacher: So how many cards do you give each person than? 
Bill: Um, still trying to figure that out. 
Student Teacher: (Writes on the board) and how many cards do they each have? 
Student 2: The first one is 52 
Student Teacher: (revoices) 52 for Rory 
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Student 3: 52 for the other one 47 for that one 
Student Teacher: (writes on the board x=52) 
Student 4: 52.7 and 47.2 
Student Teacher: (revoices) 52.7 and 47.2 and writes them on the board. 
Student 3: That should actually be 0.8. 
Student Teacher: Which one? 
Student 3: That one (points to the Rory column) 
Student Teacher: (Erases the 52.7 and writes 52.8), Kay, student, what do you think we 

should do with the 0.8 and 0.2 of a card? 
 

Our analysis of video instance 4 found that the student teacher attended to SMT multiple 
times. The student teacher asked the Bill to explain where the 36 came from in response to 
another student’s question. Students provide the number of cards that they calculated Rory and 
Lee should receive. The student teacher seems to identify that Bill has based the number of cards 
that Rory and Lee should receive on their respective theoretical probabilities of winning. The 
student teacher accepts Bill’s strategy and immediately moves to asking the class what they think 
they “should do with the 0.2 and 0.8 of a card,” assuming the rest of the students, those who 
initially did not understand Bill’s reasoning, now understood his thinking. We inferred that the 
student teacher’s not decentering (Piaget, 1955; Teuscher, Moore, & Carlson, 2016) may have 
resulted in her interpreting the other students’ mathematical thinking at a general level. 

Table 2 displays the three categories for the nine video instances where student teachers 
elicited SMT but made a general interpretation of the elicited SMT. The majority (66.7%) of 
video instances fell in the category of not decentering. As in video instance 4, the student teacher 
only seemed concerned with making sure that everyone had the correct answer, rather than 
helping students understand how Bill (the student) had come up with the answer and why that 
made sense. In two video instances (22.2%) we determined that the general interpretation was 
appropriate. This was because the student teacher was launching an activity where students later 
explored the ideas that they had shared. The goal during a launch of a task is to make student 
thinking public so it can be discussed; therefore, we felt that at that point in the lesson the 
general interpretation was appropriate. The last category was the influence of the student 
teacher’s mathematical meaning as described in video instance 3.  

Table 2: Possible Reasons Secondary Student Teachers’ May Not Generate a Root 
Interpretation 

Inferences for why student teachers make a general 
interpretation 

Count Percent 

Not Decentering 6 66.7% 
Appropriate 2 22.2% 
Mathematical Meaning 1 11.1% 

 
Implications 

The purpose of this paper was to describe secondary mathematics student teachers’ types of 
noticing while teaching. We demonstrated the importance of the interrelatedness of the attending 
and interpreting noticing skills because the types of noticing revealed important and 
distinguishing aspects of how the student teachers were acting on SMT. We found that our 
student teachers were highly effective with eliciting SMT in-the-moment of teaching. However, 
we found that our student teachers were less successful in interpreting the elicited SMT in-the-
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moment of teaching with a root interpretation. While there were two video instances where it 
was appropriate for the student teachers to interpret at the general level, most video instances 
were student teachers interpreting at the general level that were because the student teachers 
were not decentering.  

While our analysis is a small subset of video instances from eight student teachers, we 
believe that future research can focus on identifying differences among student teachers to 
identify what practices PTs need to focus on during their course work that will prepare them to 
attend to and interpret SMT in such a way that will build on all students mathematical thinking 
and improve student learning in their classrooms. We recommend that teacher educators need to 
assist PTs in learning how to interpret SMT from the perspective of the students (e.g., 
decentering). While we would agree that this is a challenging skill for PTs to develop, we had 
student teachers who identify a root interpretation of the SMT in-the-moment while teaching, 
which allowed the student teacher to orchestrate a productive discussion in their mathematics 
classroom with all students. 
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We investigate definitions and approaches that preservice secondary mathematics teachers 
develop about teaching mathematics for social justice while participating in an equity-based, 
anti-racist professional development program. We analyzed transcripts from seminar sessions of 
the program where participants discussed different forms of teaching mathematics for social 
justice. Participants described their possible teaching with what is seen in the literature while 
moving beyond in formulating other possible representations of teaching mathematics for social 
justice. These findings suggest that it may be necessary to further theorize our understanding of 
teaching mathematics for social justice so that representations include everyday practices 
beyond representations in curriculum. 

Keywords: Teacher Education, Equity and Diversity, Teacher Knowledge, Social Justice 
Mathematics 

Mathematics education continues to attempt to address injustices in multiple ways as we look 
for possible solutions through teaching mathematics for social justice.  Some would argue 
providing all students with access to rigorous mathematics is an act of social justice (Moses et 
al., 1989; Gregson, 2013). Critical scholars suggest we change the curriculum, using 
mathematics as a tool to analyze injustices in society and to propose math-based solutions 
(Frankenstein, 1983, Gutstein 2005).  This approach has become the dominant definition of 
teaching mathematics for social justice (TMSJ).  It allows students to develop other life skills 
(e.g., questioning authority) that mastering “dominant mathematics” (Gutiérrez, 2002; Valero, 
2004) does not guarantee (Bartell, 2013; Felton-Koestler, 2015; Gregson, 2013; Gutstein, 
2006).  However, carrying out this version requires knowledges, skills, and life experiences that 
many teachers lack. This paper investigates how pre-service secondary mathematics teachers 
(PMST) are developing their definitions and approaches to what TMSJ as they become educators 
in the field.  Our current understanding and implementation of teaching mathematics for social 
justice have plateaued due to neoliberal educational values (e.g., individualized learning, 
privatization through charter schools, increase focus on profitizing through universal curricula 
models), that drive mathematics education. It is safe to say that there is a need to deeper theorize 
social justice in mathematics education. This paper seeks to understand the range of views of 
TMSJ that pre-service secondary mathematics teachers embrace after being exposed to a variety 
of anti-racist and social justice-oriented media and individuals. 

Current Understanding of Teaching Mathematics for Social Justice 
Mathematics education has a persistent history where students who are Latinx, Indigenous 

and Black have not had access to a rigorous mathematics curriculum thereby limiting the doors 
and economic possibilities that they can pursue in society.  Some would argue that merely 
providing minoritized students access to dominant mathematics and science, technology, 
engineering and mathematics (STEM) pipeline is a form of social justice (Brantlinger, 2013; 
Felton-Koestler, 2015).  The Algebra Project is one prominent example of transforming algebra 
curricula to create an entry point for African American students (Moses et al., 1989). Through 
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grassroots organizing, teachers, students, and parents established a pedagogy of mathematics that 
supported students to participate in economic and technological changes (Moses et al., 1989). 
Other researchers agree and have defined social justice as “empowerment, both for teachers and 
for their immigrant students” to succeed in dominant mathematics (Planas & Civil, 2009) and 
highlight the importance of students being able to navigate mathematics as a gatekeeper in the 
real-world (Gregson, 2013). 

Definitions of social justice or critical mathematics vary depending on the populations that 
adopt them, the worldviews espoused, and situations at hand (Gates & Jorgenson, 2009; Stinson 
& Wager, 2012). For the most part, what gets counted as social justice mathematics teaching 
involves changing the curriculum (Bartell, 2013; Brantlinger 2007; Gregson, 2013; Gutstein, 
2006) to take up examples of real-life situations (Felton, 2010) or to use mathematics to read the 
world and possibly write the world (Gutstein, 2006; Frankenstein, 1990; 1995). For example, 
Gutstein (2006) had his students survey the community on experiences with the police to 
calculate the likelihood that a police officer will pull over a brown or Black person, versus a 
white person, when driving a car in a given neighborhood, while Frankenstein (1990, 1995) had 
her low-income college students use mathematics to examine discrimination in costs of electrical 
power, home mortgage distribution, and the tax system to highlight how mathematics is 
sometimes used to obscure economic, political, and social issues. In fact, the inclusion of 
ethnomathematics lessons can be seen as a form of social justice curriculum (Borba, 1990; 
Powell & Frankenstein, 1997) because ethnomathematical knowledge decenters a Western and 
colonial view of mathematics (Gutiérrez, 2017). 
Critical Perspectives to Teaching Mathematics for Social Justice 

While creating access to dominant mathematics is essential for Black, Latinx, Indigenous and 
other minoritized students, as well as interrogating injustices that these communities may 
experience, some would also argue for critical representations of mathematics.  Such 
representations move beyond using social justice mathematics as curriculum and disrupt 
dominant social narratives and representations of mathematics (Gutiérrez, 2017; Skovsmose, 
1994).  Teachers and students who participate in these types of critical representations of 
mathematics are participating in “tactics of resistance” (Gregson, 2013) of social and 
institutional inequities replicated in the classroom. Providing teachers with opportunities to 
envision “tactics of resistance” are limited within our current literature of TMSJ except for few.  
That is, students need to learn mathematics to participate in the neoliberal capitalist agenda in 
society while being able to critique it and “play the game/ change the game” (Gutiérrez, 2008).   
Teacher Practices of Social Justice Mathematics 

 Beyond offering a sociopolitical context of mathematics units and lessons, it is difficult to 
see what other forms of social justice teachers can implement in their classrooms. Although there 
is a strong emphasis on changing the curriculum (e.g., adopting sociopolitical contexts for 
learning mathematics in particular activities or units), in fact, there is a range of practices that 
contribute to social justice mathematics teaching. One such form is pedagogy of questioning—a 
“classroom environment… co-created by students and teachers [where] students have 
opportunities to pose their own real, meaningful questions” (Gutstein, 2008, p. 55).  Pedagogy of 
questioning is not necessarily curricular driven but allows students to see the importance of 
asking questions and challenge the notion that teacher knows all. Another practice is developing 
relationships with students (Planas & Civil, 2009 Gutstein, 2008) in non-stereotypical ways 
(Bartell, 2013) by being aware of students’ realities to empower their success and participation in 
mathematics classrooms. Empowering students includes being able to recognize the need to 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

705	

address race and gender issues as institutional issues (Frankenstein, 1990; 1995).  Understanding 
students in non-stereotypical ways are important because it pushes teachers to anticipate the 
types of responses that students can have in a lesson (Bartell, 2013) and support the emotions 
that can arise (Boylen, 2009).   

While developing relationships with students and implementing pedagody of questioning are 
valid representations of everyday tactitcs that teachers can do on a daily basis, one has to 
question if they are realistic in the current mathematics classroom? Research studies that address 
perceptions held by teachers implementing TMSJ highlight how many can get discouraged by 
the difficulty of implementing such lessons (Bartell, 2013) or feel it is difficult to implement 
while trying to keep the rigor of higher-level mathematics (Brantlinger, 2013). The increasing 
demand of high stakes testing presents time constraints for implementing social justice 
mathematics lessons, resulting in “end of the year activities”—making it seem like it is just an 
add-on, or afterthought, to more crucial traditional mathematics curriculum. There are limited 
representations of what other practices could look like. The exception to this are representations 
of the pedagogy of questioning (Gutstein, 2008), creating relationships with students, and 
challenging one’s beliefs and identities (Bartell, 2013; Boylen, 2009; Gregson, 2013 Gutstein, 
2008;).  These constraints limit pre-service teachers being able to become a teacher that teaches 
mathematics for social justice if they feel like it requires entirely or mainly changing the 
curriculum, something for which they may feel they have no power to do in an era of high stakes 
education.  Furthermore, we need to ask how  

Methods 
Data 

The data in this paper comes from an equity-based professional development program in a 
Midwestern University where two cohorts of undergraduate pre-service mathematics scholars 
(juniors and seniors) interacted. Scholars received professional development including bi-weekly 
seminars, mentoring sessions, a partnership with a Chicago teacher, an after-school mathematics 
club, and critical professional development. In seminars, scholars discussed readings/videos 
about issues of racism and racialization, white supremacy, gender, social justice, and 
mathematics; learned about mathematics in nontraditional ways; engaged with guest speakers, 
and interacted with alumni.   

Scholars consisted of two cohorts of junior and senior scholars. Junior scholars were in the 
first year of the program while seniors were in their second year. Juniors consisted of six 
scholars, of which, three self-identify as white women, one as cis-gender Latinx man, one as 
Asian women and one white man. Seniors consisted of seven scholars, one self-identifies as an 
Asian woman, and six as white women. Two self-identify as queer. Most of the scholars 
originated from the suburbs of a major Midwestern City and one originated from a rural town in 
a Midwestern state. All scholars received a scholarship in exchange for committing to teach in a 
school in a community of cumulative disinvestment for four years following graduation.  

We focus upon two different 3-hour seminar sessions: “Teaching Mathematics for Social 
Justice (part 1 and 2).” Table 1 shows the topics and participants.  Before coming to the seminar, 
scholars wrote a letter to Gutstein, reflecting on his teaching and their stances on TMSJ, 
especially what was appealing or concerning for them.  

Table 1 
Seminar Activity Topics 

 Activity Participants Materials Covered 
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Day 1    
 Book Discussion Part 1 Juniors Reading and Writing the World with Mathematics 
 Study of SJM Materials Seniors Social Justice Math Unites created by Brian Lake 

 
Conversation with 

Scholars All Social Justice Math Unites created by Brian Lake 
Day 2    

 Book Discussion Part 2 Juniors Reading and Writing the World with Mathematics 

 Study of SJM Materials 
Seniors 

Guide for Integrating Issues of Social and 
Economic Justice into Mathematics Classrooms 

and Curriculum 
 Questions and Stances All Notes and Summaries from split sessions 
    

Analysis of Session Audio and Materials 
We placed audio recorders in multiple parts of the rooms where discussions took place. We 

then transcribed verbatim, focusing on the relevant conversations about social justice 
mathematics. We transcribed a total of 140 minutes for each of the two sessions, using codes that 
arose in the literature. Some of these codes include references to Social Justice Mathematics, 
(e.g., reading the world, writing the world, challenges, curriculum) and Classroom Norms (e.g., 
group work, critical thinking). Other categories such as Ethical Teacher Practices (e.g., political 
clarity, stance, windows/ mirrors) came from existing categories of codes that we have as a 
project or literature our research team has produced.  During the first round of coding, we 
captured themes that confirmed existing trends in the literature of social justice mathematics as 
well as highlighted themes not captured in the literature.   For example, we created the code 
ETP-spectrum to highlight when the scholars brought up ideas of having multiple possible 
stances on a sociopolitical topic represented in their classroom—a representation of teaching 
mathematics for social justice that Brian Lake brought up in his conversation with the scholars. 
During the second layer of coding, we looked for other things the scholars considered as 
representations of everyday social justice practices. It is important to note that the researchers 
never directly asked for the scholars to list their explicit definition of what they consider teaching 
mathematics for social justice, as we worried that they would simply tell us what they believed 
we wanted to hear. Instead, we looked for examples of the scholars talking about the readings or 
their everyday practices that reference their stances of being social justice educators who can 
continuously push back on dominant narratives of what happens in the classroom. We then 
clustered the codes into different themes that showed a representation of current definitions of 
teaching mathematics for social justice as well as representation of everyday practices that 
teachers can enact their social justice teaching stances (Emerson, Fretz, Shaw, 2011). These 
themes include redefining mathematics, delegating authority, and examples of teaching students 
to be critical participants in society. Though our scholars held definitions and stances like some 
found in other studies, we focus the reporting of our findings on concepts not typically or 
explicitly addressed in empirical studies of teachers enacting TMSJ. 

Findings 
TMSJ as Redefining Mathematics 

One way that the scholars look at TMSJ was the way they interpreted the role of mathematics 
and the practices that surround mathematics. Scholars brought up multiple ways of being able to 
redefine mathematics. One example is making mathematics applicable across school subjects.   

Catherine:I think it would be more beneficial if we actually gave them examples of how to 
apply it. Connect it to these types of problems that are actually happening in the 
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world…. Like [Mathematics] wouldn’t have to be a separate thing. Schools would be 
better off…if we are on the same page with stuff, connect the ideas, and use what other 
teachers are teaching. 
Catherine states that some schools and teachers treat mathematics as its own “separate thing” 

within the curriculum.  For her, having mathematics disconnected from other subjects does not 
allow students to see how mathematics relates to other subjects and can be applied in solving 
problems in the world.  TMSJ as teaching math in a holistic approach would not only benefit 
students but the whole school to by applying all subjects to solve problems in the world. This 
way of redefining mathematics would not only benefit how students learn in the classroom but 
also support collaboration with teachers across content areas.  

For the scholars, TMSJ means redefining mathematics so that students can develop different 
perspectives of what is the role of mathematics in increasing opportunities for students to create 
and understand mathematics around them. The scholars are beginning to formulate that the role 
of mathematics is not only providing instrumental access to mathematics as a curriculum, but it 
is also teaching mathematics in a holistic approach as well as teaching students to provide a 
spectrum of solutions.  By opening different ways of knowing mathematics and who gets to be 
knowers, Black, Indigenous and Latinx students can not only see themselves as having 
something to say but are also encouraged to develop new mathematics, a way in which students 
can also be authors of the world.  
TMSJ as Delegating Authority 

In this section our scholars talk about TMSJ as finding different ways to delegate authority in 
the classroom.  Whether it was making decisions about curriculum or facilitating discussions, 
delegating authority is a way to empower students in the classroom. During the conversation of 
scholars one scholar brings up  

Wendy: I am considering redefining the structure of the roles of students in the 
classroom…how [do we] get student-led discussions, more student-led than teacher 
driven. And then have them ask the questions first.  What kinds of questions are we looking 
at when we are examining the social justice topic?  
For Wendy, redefining the structure of the roles of students in the classroom is a social 

justice practice in that a teacher is giving up knowing the direction of a conversation and letting 
students decide where it should go. In this sense, she sees students being authors of the 
classroom (Povey & Burton, 1999).  Wendy recognizes that there are daily things a teacher can 
do to empower her students in the classroom that could lead to questioning other power 
structures and dynamics in their lives. By disrupting power structures that exist in classrooms, 
scholars see the connection between social justice teaching and helping students develop the 
skills to interact as critical participants of society.  
TMSJ is capacity as critical participants in society   

The scholars are not just thinking about how students can be successful in their classroom, 
but also what skills they can learn and carry with them that can impact students as critical 
participants of society. These skills include supporting perseverance; teaching students to 
struggle; developing opinions and being able to express them; being able to efficiently 
communicate given constraints of a task; and taking responsibility of their peers as a community. 

Tied to students being critical thinkers, Catherine defines TMSJ as allowing students to be 
confident and able to communicate their opinions.  she shares one of her goals is to help students 
develop confidence by showing students the importance of sharing their opinions.    
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Catherine: Expression of your beliefs or kind of like you. The way you communicate your 
feelings... you have to be able to develop an opinion, but also express it in a way that is 
true to yourself but respectful for other people involved with it as well.  [Students] have 
opinions and I feel like being able to express them is pretty important component of 
social justice and I feel like should be incorporated in the classroom as well.   

Catherine recognizes that her students do have an opinion and being able to express it is 
important for her students to learn. Whether it is a student who is passionate about approaching a 
problem a certain way or an opinion in a current topic that impacts the students, Catherine 
acknowledges that students’ opinions are not only connected to their beliefs but also to their 
emotions about these topics. She goes beyond to express how it is not enough for students to 
develop their opinions but to also “be true to yourself [and] also respectful for other people 
involved” in the conversation.  Catherine wants students to develop skills that reflect the dignity 
that they would like to see beyond mathematics content.  Traditional mathematics lessons tend to 
focus on the individual and do not necessarily focus on the well-being of others. Thus, 
developing an opinion that is both true to yourself as a student but also takes into consideration 
those around you in the conversation is a form social justice that goes beyond what can be used 
in mathematics classrooms and toward rehumanizing mathematics (Gutiérrez, 2018). 
Pedagogical Moves for Implementing TMSJ Definitions 

While some may feel like it is not an accomplishment to get pre-service teachers to talk 
theoretically about their definitions of social justice, we have evidence that our scholars enacted 
their definitions as student teachers.  Some of the scholars even developed their own social 
justice lessons that incorporated exponential growth with issues of housing regulations. We do 
not analyze those social justice lessons here, as they tend to replicate the existing literature on 
TMSJ. Instead, we transition to examples of how these scholars are implementing pedagogical 
moves that would accompany their stances above. 

Delegating Authority.  As Wendy and Erica shared their working definitions of TMSJ as 
delegating authority and showing students their capacity to be critical participants of society, 
other scholars jumped into the conversation to share examples of everyday things they do in their 
student teaching classrooms.  

Catherine: One thing I do is I will randomly, not randomly but basically choose a student 
each day and I call them my teacher assistant. It starts out with having them either pass 
papers out or they will help me write out the example problem on the board, or they will 
help me, like, having them keep the class in check. They get really into it and then it gets to 
a point where, now, one of my students he like loves to explain. I am trying to look over a 
students work he will be like " oh I will help that student, you can go and help other 
students". If you let students help with classroom management, having one student make 
sure that no one is purposefully hurt, they can help with what others may not know and 
that student feels special and you can put them in a situation where they feel 
comfortable to share with the class and build their confidence. 

Catherine shares that she delegates authority in her classroom to increase students’ confidence by 
allowing their peers see them as an expert in class. While having students help with some task 
that can help her get through her daily agenda, she is also trying to communicate to the chosen 
student that she trusts them.  Setting up a buy-in for the student then allows them to transition 
into building their confidence to be able to help other students, i.e., build their mathematical 
identities. In choosing teacher assistants, Catherine shows students that they can help her with 
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daily tasks and also be bearers of knowledge from which other students can learn. The end goal 
not only helps Catherine with the daily managing in her classroom but also allows her to create 
impactful student leaders with positive mathematical identities. 

Limitations 
A limitation of our current understanding of teaching mathematics for social justice comes 

from theory and practice that relies on democracy (for example, Freire, 1970) which helps see 
mathematics as a social tool for critical consciousness (Frankenstein, 1989, Gutstein, 2005). 
While the current literature in social justice mathematics addresses some of the curricular 
dilemmas of being a social justice educator, the scholar’s perceptions of TMSJ lets us with 
questions as to how to “play the game/ change the game” on a daily basis. Teacher educators and 
researchers need to consider our current definitions and understand how our current 
understanding of teaching mathematics for social justice has plateaued.  Researchers need to look 
elsewhere to fields like Critical Ethnic and Gender studies to see how to examine how our 
current understanding of TMSJ may be reaffirming notions of anti-blackness (Martin, 2018), or 
not addressing modern-day civil rights of teachers and students. For example, in creating 
opportunities for students of color to participate in STEM fields, how might we also be asking 
students to simply participate in racial capitalism (Melamed, 2015), where they only count for 
diversity measures but not to re-imagine the field of mathematics, to show that it is not just that 
people need mathematics, but mathematics needs people (Gutiérrez, 2012). 

Conclusion 
The field of critical mathematics educators has reached the point of asking ourselves how can 

we better understand and theorize what it means to teach mathematics for social justice? How do 
we expand our current understanding of social justice beyond instrumental access and critical 
consciousness (Larnell, Bullock, Jett, 2016) of sociopolitical issues and a better understanding of 
teachers’ roles in challenging systems of oppression? If we are to recognize teaching 
mathematics as a sliding signifier or a walking road (Cochran-Smith, 2004), how can we expand 
our current understanding of teaching mathematics for social justice as teachers embody their 
politial conocimiento (Gutiérrez, 2012)? If we were to ask scholars in Critical Ethnic and Gender 
studies, would they agree with our current understanding and implementation of Teaching 
mathematics for social justice?  

If the goal of teaching mathematics is to change and dismantle what we see within the 
relationships that we have within society teacher educators, need to provide more representations 
of how community members are addressing all these topics so that they can develop Political 
Conocimiento( that will inform their critical stance on mathematics education.  Furthermore, we 
need examples of studies that look at how preservice teachers who are exposed to political 
knowledge how they implement it in their first year and beyond.  If we believe that the 
development of critical mathematics, include aspirations and hopes that are continuously 
recontextualized and reformulated and, uncertainties appear (Skovsmose, 2009), we cannot 
expect that teachers will be successful at teaching mathematics for social justice unless we place 
value on more than just curriculum.  
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TAKING PROOF INTO SECONDARY CLASSROOMS – SUPPORTING FUTURE 
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For reasoning and proof to become a reality in mathematics classrooms, it is important to 
prepare teachers who have knowledge and skills to integrate reasoning and proving in their 
teaching. Aiming to enhance prospective secondary teachers’ (PSTs) content and pedagogical 
knowledge related to proof, we designed and studied a capstone course Mathematical Reasoning 
and Proving for Secondary Teachers. This paper describes the structure of the course and 
illustrates how PSTs’ interacted with its different components. The PSTs first strengthened their 
content knowledge, then developed and taught in local schools a lesson incorporating proof 
components. Initial data analyses show gains in PSTs’ knowledge for teaching proof and 
dispositions towards proving, following their participation in the course.   

Keywords: Reasoning and Proof, Teacher Education-Preservice, Design-Based Research 

Mathematics education researchers (e.g., Hanna & deVillers, 2012) and policy documents 
(e.g., NGA & CCSSO, 2010) emphasize the importance of teaching mathematics in ways that 
promote sense making, reasoning and proving across grade levels and mathematical topics. Yet, 
the reality of many mathematics classrooms rarely reflect this vision; even teachers who 
recognize the importance of reasoning and proof, in principle, often struggle to enact them, and 
tend to choose skills-oriented activities over proof-oriented ones for their own classrooms 
(Kotelawala, 2016). Preparing teachers who are capable of implementing such teaching practices 
and cultivating positive attitudes towards reasoning and proving is a critical objective of teacher 
preparation programs (AMTE, 2017). We used a design-based-research (DBR) approach to 
develop and study a novel capstone course Mathematical Reasoning and Proving for Secondary 
Teachers. Our goal was to explore how PSTs’ knowledge and dispositions towards the teaching 
and learning of proof develop as a result of participating in the course, and to identify design 
principles that afford PSTs’ learning.  

Theoretical Framework and the Course Design 
Researchers have conjectured that engaging students in reasoning and proving, that is, 

exploring, generalizing, conjecturing and justifying, might require a special type of teacher 
knowledge: Mathematical Knowledge for Teaching of Proof (MKT-P) (e.g., Lesseig, 2016). 
Building on their work, we theorize that MKT-P consists of four interrelated types of knowledge 
(Buchbinder & Cook, 2018). Teachers must have robust Subject Matter Knowledge (SMK) of 
(a) mathematical concepts and principles (Ball, Thames & Phelps, 2008), and (b) knowledge of 
the logical aspects of proof, such as proof techniques, valid and invalid arguments, the functions 
of proof and the role of examples and counterexamples in proving (Hanna & deVillers, 2012). 
Teachers also need strong Pedagogical Content Knowledge (PCK) specific to proving, such as 
(c) knowledge of students’ proof-related conceptions and misconceptions, and (d) knowledge of 
pedagogical strategies for supporting students’ proof activities (Buchbinder & Cook, 2018). 
Thus, we created opportunities for PSTs to develop these four types of knowledge. 

The course comprises four three-week long modules, each module addressing one proof 
theme: quantified statements, conditional statements, direct proof, and indirect reasoning. These 
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themes were identified in the literature as challenging for students and PSTs (e.g., Weber, 2010). 
Our first goal was to help PSTs to enhance their knowledge of the four themes of the course.  
Figure 1 shows the structure of the course (top) and a structure of one course module (bottom).  

  

 
Strengthen 

PSTs’ SMK-P 

 LessonSketch: 
examine students’ 

conceptions 

 Plan a lesson, 
In-class peer 

planning 

 Teach a 
lesson, video-

record it 

 Reflect on the video, 
write a report, 

receive feedback 
Figure 1. Design of the course Mathematical Reasoning and Proving for Secondary Teachers.  

We designed opportunities for PSTs to enhance their proof related pedagogical knowledge, 
by interpreting sample student work, identifying students’ conceptions of proof, and envisioning 
responding to students’ thinking in the virtual learning platform LessonSketch (Herbst & Chazan, 
2015). We also engaged PSTs in planning and implementing, in local schools, lessons that 
combine the proof themes with mathematical content. As PSTs enacted their lesson, they 
recorded it with 360° video cameras, which captured simultaneously the PSTs’ teaching and the 
students’ engagement with proof-oriented lessons. PSTs then watched and analyzed their lesson, 
wrote a reflection report and received feedback from the course instructor.  

Methods 
Participants in the first iteration of the course were 15 PSTs in their senior year (4 middle-

school, and 11 high-school track; 6 males and 9 females). The PSTs had completed the majority 
of their extensive mathematical coursework, and two educational methods courses. 
Multiple measures were used to assess PSTs’ learning, such as pre- and post- dispositions 
towards proof surveys, and an MKT-P instrument with sets of questions on the four types of 
MKT-P. We also collected PSTs’ responses to home- and in-class assignments, video-recordings 
of in-class sessions, and PSTs’ teaching portfolios containing four lesson plans, videos of the 
lessons taught, reflection reports and sample students’ work. Below, we present initial results of 
our ongoing analysis of these data, focusing on the Conditional Statements (CS) module. The CS 
module comprised five activities as shown in Figure 1. 

Results 
The data analysis was guided by two main questions: (1) How did PSTs interact with the CS 

module?, and (2) What mathematical / pedagogical ideas addressed in the CS module got 
implemented in PSTs’ lessons? In this section we present findings that respond to these questions 
and also describe evidence of the PSTs’ learning. 
PSTs’ Interaction with the Conditional Statements Module 

In the first activity, PSTs broke up into three groups and each group received one conditional 
statement, such as “A graph of an odd function, defined at zero, passes through the origin.” The 
task was to identify its hypothesis 𝑃 and conclusion 𝑄, and use the 𝑃 and 𝑄 to write statements 
in 11 logical forms such as: 𝑃	𝑖𝑓	𝑄, 𝑃	𝑜𝑛𝑙𝑦	𝑖𝑓	𝑄, and 𝐼𝑓	~𝑃	𝑡ℎ𝑒𝑛	~𝑄. The PSTs were asked to 
differentiate between true and false statements, and to identify which statements are equivalent to 
𝑃 ⇒ 𝑄. The most challenging form for PSTs to interpret was 𝑃 only if 𝑄. Some PSTs realized 
that it is equivalent to a contrapositive, ~𝑄 ⟹ ~𝑃, and thus equivalent to the original statement. 
Other PSTs rejected this idea by arguing that 𝑃 can be true “not only when 𝑄 is true.” After a 

Pre: MKT & 
Dispositions 

survey 

 Module 1: 
quantified 
statements 

 Module 2: 
conditional 
statements 

 Module 3: 
direct proof 

 Module 4: 
indirect 

reasoning 

 Portfolio 
presentations 

 

 Post: MKT & 
Dispositions 

survey 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

713	

class discussion, all discrepancies appeared to be resolved.  
The second activity utilized LessonSketch.org, a web-based platform for teacher education in 

which PSTs can analyze representations of classroom interactions depicted as cartoon sketches 
(Herbst & Chazan, 2015). The experience Who is right? first asked PSTs to decide whether the 
(false) statement: “If 𝑛 is a natural number, then 𝑛: + 𝑛 + 17 is prime,” is true, false, sometimes 
true, or cannot be determined. Next, the PSTs viewed arguments of five pairs of students about 
the truth-value of this statement and were asked to evaluate the correctness of these arguments, 
identify instances of expertise and gaps in student reasoning and pose questions to advance or 
challenge that reasoning. The PSTs correctly identified invalid reasoning and proposed ways to 
acknowledge students’ effort, while pointing them towards more valid modes of argumentation.  

In the final activity, the PSTs analyzed current middle school and high school textbooks to 
identify where conditional statements appear in the secondary curriculum. PSTs also addressed 
students’ difficulties with conditional statements and discussed ways to support student thinking.    
PSTs’ Implementation of a Lesson on Conditional Statements 

After spending time developing lessons that involved conditional statements, PSTs 
implemented their lessons in the classrooms participating in the study. PSTs came up with many 
creative ways to integrate conditional statements in their lessons while appropriately adjusting 
them to the students’ level. All PSTs used real-world examples, e.g., “If I do my homework, I 
will get good grades” to introduce the general structure of a conditional statement, and to identify 
their hypothesis (𝑃) and the conclusion (𝑄). For example, Sam showed product advertisements, 
and asked students to turn them into conditional statements and analyze their structure. 

The most utilized types of tasks implemented by the PSTs were True or False, and Always-
Sometimes-Never, where students had to identify the hypothesis and the conclusion, determine 
whether the statement is true or false, and provide justifications or counterexamples. Bill had his 
students match hypotheses (e.g., a triangle is not equilateral) with conclusions (e.g., a triangle is 
isosceles), written on index cards, to produce true conditional statements. Then the students 
switched the order of the cards to examine how the statement and its converse compare. Overall, 
except for four PSTs who only minimally addressed conditional statements, the majority of PSTs 
successfully and creatively integrated conditional statements in their lessons.    
Evidence of PSTs’ Learning 

To trace changes in PSTs’ knowledge and dispositions following the course, we administered 
Dispositions Towards Proof pre- and post- surveys and a 12 items MKT-P instrument (3 question 
in each of the four areas of MKT-P). The analysis revealed that PSTs had relatively high initial 
scores on three out of four types of MKT-P. Hence instead of examining the point increase, we 
calculated the percentage of possible growth. E.g., although the increase in the Knowledge of 
Logical Aspects of Proof was only 1.15 points, it constitutes 48% of possible 2.4 points needed 
to obtain the maximum score. The highest gain of 66% occurred in the Knowledge of 
Pedagogical Practices for supporting students’ learning of proof. The items measuring PSTs 
performance in these areas called for analyzing, interpreting and responding to students’ 
conceptions of proof, similar to activities described above in the CS module.  

The Dispositions Survey had five categories of questions: (1) notions of a proof, (2) purpose 
of proof, (3) confidence and comfort with proving, (4) suitability of proof in the secondary 
curriculum, and (5) confidence in and knowledge about teaching proof. In general, the pre- and 
post-test results did not show much change in categories 1, 2 and 4; a few noteworthy results 
occurred in categories 3 and 5. The PSTs’ confidence in their ability to prove results from the 
school curriculum increased from 65% to 92%; the percent of PSTs recording confidence of 
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teaching proof to students, increased from 50% to 84%. The fact that PSTs’ overall growth of 
dispositions was relatively modest may be attributed to an initial, perhaps false, feeling of 
confidence due to the PSTs’ prior mathematical coursework.  

Discussion and Implications 
We reported on the first iteration of a 3-year DBR project aimed to enhance PSTs’ 

knowledge and dispositions for teaching proof at the secondary level. We described the overall 
structure of the capstone course and the theoretical underpinnings of its design. We described 
how PSTs interacted with the CS module through practice-based activities of analyzing students’ 
conceptions of proof; planning and sharing lessons; classroom implementation and reflecting on 
it, aided by video technology. These descriptions serve as a backdrop for understanding the gains 
in PSTs’ content and pedagogical knowledge of proof (MKT-P). The areas in which this growth 
was most evident are: the logical aspects of proof and pedagogical knowledge specific to 
proving. Although the small sample size does not allow testing statistical significance of these 
outcomes, we find them encouraging, since the supporting evidence goes beyond self-report.   

Our data analysis is still ongoing, as we examine video of on-campus sessions and of the 
PSTs’ teaching to create more fine-grained description of how PSTs’ content and pedagogical 
knowledge evolved throughout the course, and to match this growth to the design principles of 
the course. The results of this analysis will inform future iterations of our project, and, 
potentially advance the field’s understanding of how to support PSTs’ development of MKT-P.  
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PORTRAITURE OF ELEMENTARY PRESERVICE TEACHERS DURING A STEM 
CAMP EXPERIENCE 

 Megan Burton L. Octavia Tripp Victoria Cardullo 
 Auburn University Auburn University Auburn University 
 Megan.burton@auburn.edu Tripplo@auburn.edu vmc0004@auburn.edu 

Twenty-four preservice teachers planned, co-taught, observed peers, observed the elementary 
students, and participated in debriefing during a summer science, technology, engineering, and 
mathematics field experience. Data from lesson plans, reflections, observations of students 
observational noticings, and peers created a holistic view of their perspectives on teaching and 
learning mathematics in a diverse, authentic setting, without the challenges that often occur in 
traditional field-based experiences. Using the portraiture method of inquiry, the complex 
dynamics of this experience are captured from multiple lenses. 

Keywords: Teacher Education-Preservice, Teacher Beliefs, Elementary School Education, 
Instructional activities and practices 

Facilitating elementary preservice teachers (PSTs) cohesive understanding of teaching and 
learning mathematics in meaningful ways can be challenging. Experiences in mathematics field 
placement practice, experiences as an elementary student, and experiences in mathematics 
methods courses are often disconnected. One consistent complaint heard over the years is that 
what PSTs see in the field is often in opposition to what they are learning in their coursework 
(Beck & Kosnik, 2002). In addition, twelve years of classroom experiences have shaped not only 
their own identities, but also their beliefs about teaching and learning (Shoffher, 2008). 

In this study, six PSTs observe, plan, and teach in a three-week summer Science, 
Technology, Engineering, Mathematics (STEM) camp. Using the narrative portraiture inquiry 
(Lawrence- Lightfoot, 2005) the PSTs observations, reflections, planning and teaching are 
analyzed to paint a portrait of the experience. These PSTs were a teaching team for 27 fourth 
grade students. “Teaching is not merely a cognitive or technical procedure, but a complex 
personal, social, and often elusive set of embedded processes and practices that concern the 
whole person” (Olsen, 2008, p 5). Examining the experience of PSTs from multiple perspectives 
supports deeper understanding of perspectives about teaching and learning mathematics. 

Theoretical Framework 
Research suggests that education courses linked to authentic field experiences maximize 

effectiveness (Weld & French, 2001). If PSTs have not experienced teaching concepts such as 
inquiry or project based learning, it is difficult to recreate these in mathematics classrooms or 
visualize what they would look like in practice (Beck & Kosnik, 2002). Teacher educators face a 
conundrum of how to provide opportunities for PSTs to enact and experience effective 
mathematics education under the guidance of mentors who also support these educational 
practices, when these classrooms are so rare in current K-12 settings. Finding classrooms that 
promote best practice, rather than ones that emulate the systemic issues of inequity and 
oppression that often are found in schools is a challenge. 

This study is grounded in the belief that PSTs need early inquiry based field experiences with 
positive diverse populations, where they focus on students as mathematics learners, take teaching 
risks, and reflect upon the practice of teaching to meet the needs of all learners (Aguirre et al., 
2013). However, it is difficult to provide these authentic placements any time in the year, but 
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especially when coursework is in the summer. Often summer placements are in local schools that 
focus on remediation and drill of basic computational facts. This study centers on an alternative 
summer placement, which provided elementary PSTs an opportunity to reflect upon innovative 
mathematics teaching approaches in a positive and supportive environment. It was strategically 
positioned to provide PSTs experiences working with diverse populations> Instruction focused 
on building new knowledge and skills from the strengths and cultural competencies that each 
elementary student brought to the experience. 
Methods, Techniques or Modes of Inquiry 

Narrative portraiture (Lawrence-Lightfoot, 2005) was used to examine the perspectives and 
experiences of PSTs from this mathematics field placement. “Portraiture is an ethnographically 
oriented method of inquiry that seeks to capture and explain the ever-changing complexities of 
life and experience. Portraiture emerged from the desire to tell a story in such vivid detail that the 
event could be pictured as though it were a painting” (Lawrence-Lightfoot & Davis, 1997, p.4). 
In this study, a detailed, vivid portrait was created from various perspectives and then these 
portraits were further analyzed to develop deeper understanding of the moments. This study 
examined the perspectives of mathematics teaching and learning among PSTs in field placement, 
but the lens of each perspective was different, which created more insight and vivid portraits into 
the complex view of teaching and learning mathematics that preservice teachers held. 
Study Context 

The 23 females and one male PSTs were in their first teaching field placement in the program 
and came from affluent homes with many positions of privilege. Previous coursework examined 
lesson planning, assessment, professionalism, individual reading instruction, and culturally 
responsive teaching. For the semester being studied, PSTs were enrolled in mathematics, science, 
and reading methods coursework that were tied to the field component. The instructors of the 
methods courses were also the lead faculty in the summer field experience, which was a three-
week Science, Technology, Engineering, and Mathematics (STEM) focused program for 97 
rising third through fifth grade students. Week one focused on structures, week two focused on 
robotics, and week three focused on forces in motion as the unifying theme. Students explored 
computation through purchasing supplies in the store, which included sales. They graphed and 
measured experiments and explored geometric properties of shapes. Before camp began, PSTs 
attended mathematics methods classes to explore pedagogical concepts such as learning 
trajectories, assessment, technology, questioning, and project based learning within the field of 
mathematics. In addition, PSTs attended a 3-day workshop co-taught by the three methods 
faculty members. Each workshop day participants and faculty modeled and explored the content 
for one of the three weeks of the STEM summer experience. For example, the first day of the 
workshop addressed various elements they would teach, content, and projects related to 
structures. 

This experience provided educational opportunities to elementary students from diverse 
backgrounds and school systems in this rural region in the southeastern United States. Sixty 
percent of the students were recommended for the summer experience based on financial need. A 
total of six systems were represented. Students from high needs schools attended alongside 
students from schools where resources were plentiful. Each class truly made up the diversity that 
public education strives to meet. The population of the camp was approximately 60% African 
American, 20% Asian, 15% Caucasian, and 5% other nationality representations. PSTs were able 
to examine their own beliefs and their practice culturally responsive teaching. PSTs were 
assigned a specific class for the entire summer experience. There were two third grade 
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classrooms, one fourth grade classroom, and one fifth grade classroom. Six PSTs worked 
together in a classroom, but only two lead teachers per day. For the purpose of this study, the 
purposeful selection of a fourth-grade classroom unit was examined. Therefore, the data from the 
preplanning through post planning debriefing sessions for the six PSTs were the focus of this 
portraiture. 

PSTs had five roles during the summer experience: 1) planner, 2) teacher, 3) student 
observer, 4) teacher observer 5) reflective, member of professional collaborative debriefing 
sessions. PSTs were able to plan one day and teach the next day with a teaching partner. The 
partner changed with each planning and teaching cycle to encourage growth and learning to work 
with various personalities. PSTs not teaching and planning were in the classroom observing 
students or observing their peer teachers. Observation instruments were used to focus on their 
noticings of student thinking, characteristics, and behaviors. Each day after the summer camp 
grade level teams would meet and debrief about the different perspectives from the day. These 
sessions focused on observational noticing related to teaching, students, and strategies used to 
make connections that informed the next day’s teaching practices. 

Data Sources and Evidence 
PSTs reflections, lesson plans, observations of peers, field notes, and observations of 

elementary students were used as data sources. In order to examine data individually and for 
patterns about thinking of mathematics teaching and learning, there were several rounds of 
analysis. For each day, each data source was coded separately, as a unit, and then collectively. 
For example, all data (i.e. lesson plans, student observations, teacher observations, debriefing 
notes, and reflections) related to week one day two were examined together to note both 
consistencies and inconsistencies. These data sets were not only from different people, but also 
with different foci, but all were used to create a picture of the classroom on that day. Next data 
from each PSTs was analyzed as a unit to identify changes in the individual preservice teacher, as 
well as examining the perspective of each teacher in the various roles. Finally, the data from each 
role was analyzed as a unit (e.g. student observer) 15 days of student observations; 15 days of 
teacher observation) was examined to look for changes, patterns, and other information that 
helped to create a vivid image of this perspective in the classroom. 

After thoroughly analyzing the data from the various perspectives, three sets of portraits were 
created by a team of researchers: a portrait of each individual, a portrait of each role they played 
in the mathematics classroom, and a portrait of how they saw mathematics teaching and learning. 
Researchers then analyzed the portraits for analytic themes across portraits. The themes from this  
analysis helped to construct a holistic visual of preservice teachers during the STEM camp 
experience. The portraits from the PST perspectives provide insight into their views of 
mathematics teaching, learning equity, and students. 

Results 
Findings from this study indicated that PSTs primarily noticed elements about the classroom 

environment and behavior, rather than focusing on the cognitive elements in the classroom. 
However, PSTs plans, observations and reflections were richer in focused content development 
as the days progressed. In addition, overall the data from each role was more focused on the 
perspective assigned. For example, the student observers during week 3 were more focused on 
students as mathematics learners, than week one which mainly focused on the teachers, despite 
the questions on the protocol. The portraits illustrated that each experience in the classroom 
provided additional insight and focus for the following experience. In addition, as PSTs gained 
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confidence through these experiences, they were able to focus more on the mathematics and the 
students, rather than devoting a majority of the focus to the behavior. In addition, as time 
progressed, PSTs focused on strengths of individual students, rather than deficits and 
generalizations. It wasn’t until week 2 and 3 until PSTs observing teachers and students began to 
notice when students could do more than they were given and that they needed more cognitive 
challenge. The debriefs were one space where this was highlighted by peers and discussions 
pivoted towards learning, which then impacted future experiences. 
Scientific or scholarly significance 

Examining PSTs perspectives about field experiences in diverse settings, provides insight 
into the connections and misconceptions they make when linking coursework, beliefs and field 
experiences. It provides insights into issues PSTs face and elements that are effective in 
deepening understanding of effective mathematics instruction. Preparing PSTs to focus on 
student mathematical thinking and reasoning is important in order to promote student learning 
(Aguirre et al., 2013). The six PSTs all looked for the positives in their students, and some 
recognized the role of teachers and students in the classroom dynamics, while others only 
focused on one of these two elements. However, the differences that each preservice teacher 
gained from the various perspectives provides promise into the importance of providing holistic 
mathematical experiences for PSTs. Studies indicate preservice teachers have the ability to 
develop this type of professional noticing in a teacher education program, if structures are in 
place (Amador et al., 2016; Fisher et al., 2014). 

This study enhances research on professional noticing and teacher perspectives about 
mathematical teaching and learning. It provides well narratives about the mathematical teacher 
education identity development of PSTs in their field placements. It adds details about the 
nuances in the complex task of teaching and learning in elementary mathematics education. 
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CRITICAL MATHEMATICS TEACHER NOTICING: USING ONLINE 
TECHNOLOGY TO EXPLORE HOW PRE-SERVICE TEACHERS OF COLOR 

CONFRONT THEIR PEERS’ RACIAL POSITIONINGS OF CHILDREN 
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Mathematics teacher noticing is a construct used heavily in research around mathematics 
teaching and mathematics teacher education. However, just as a focus on noticing draws 
attention to what a teacher “sees”, a focus on what a teacher does NOT “see” is equally 
important. In this study, we utilize an online video commenting tool to analyze what elementary 
pre-service teachers of color notice about the language and positioning of case study students 
through four-weeks of problem solving interviews. This tool served as a space for teachers of 
color to confront the racist ideologies present in how their peers positioned students.  

Keywords: Elementary School Education, Equity and Diversity, Teacher Education-Preservice, 
Technology 

Mathematics teacher noticing has quickly become a critical aspect of mathematics teaching 
and teacher preparation (Schack, Fisher, & Wilhelm, 2017), centering around the idea that 
effective mathematics teaching extends beyond just content knowledge, pedagogical content 
knowledge, or even beliefs. The physical act of “noticing” or paying attention to and being 
reactive to the minutiae of classroom moments is key to developing any teacher’s ability to 
empower children mathematically. Research connecting equity with teacher noticing, however, 
is still largely centered around how white teachers can use noticing when working with students 
of color, and does not recognize the way race impacts what teacher notice. In the United States, 
even as the teaching force grows more diverse, most students of color continue to work only with 
white teachers (Ingersoll, Merrill, & Stuckey, 2014), a troubling trend due to the racial and 
cultural blind spots of white teachers. Moreover, teachers of color who often have experiences 
that can reveal these blind spots are often silenced, particularly in pre-service education (Philip, 
Rocha, & Olivares-Pasillas, 2017). 

The construct of mathematics teacher noticing is powerful, as it has given a name to a 
practice that all teachers engage in. So how can mathematics teacher noticing be used to delve 
into a mathematics teacher education that cultivates the racial and cultural knowledge necessary 
to empower all students? We explore this work through the following research questions: (1) 
When using a technology-based video commenting platform to explore children’s mathematical 
thinking, what do pre-service teachers of color notice in contrast to white teachers? (2) What 
does mathematics teacher noticing look like when connected to racial awareness? 

Theoretical Framework 
Mathematics teachers often hold “expert blind spots”, in which they find it difficult to “see” 

how their students struggle mathematically (Nathan & Petrosino, 2003). These blind spots are 
gaping holes in a teacher’s vision, in which a teacher who may not have experience being 
positioned as mathematically inadequate cannot understand the dilemma of their struggling 
students. We use this construct of blind spots to refer to how teachers who come from dominant 
backgrounds often view their classrooms and students through their dominant culture lenses, 
unaware of the extent of their blind spots (Louie, 2018).  
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The world that is familiar to mathematics teachers, is, of course, structured by racial 
ideologies in ways that operate invisibly. White supremacy creates a “racial grammar” that 
allows for the seemingly natural reproduction of the racial order (Bonilla-Silva, 2012). This 
racial grammar facilitates the construction of white stories as “universal” and creates strong 
perceptions about how things “are” and how people of non-white backgrounds are supposed to 
be (Bonilla-Silva, 2012). In mathematics education, combating this racial grammar involves 
taking a rehumanizing stance that recognizes and positions each and every student as not only 
human, but someone who holds substantial mathematical knowledge connected to their cultural 
and racial identities (Gutiérrez, 2018). A rehumanizing stance of mathematics teacher education 
also values the knowledge of teachers of color, listening to the stories they tell in order to help 
white teachers “see” blind spots that continue to oppress and dehumanize our children of color. 
Teachers of color must have space to think about, discuss, and interrogate the role of race within 
their classroom spaces and be empowered to share these noticings. We refer to this calling out of 
racial grammars and other oppressive mechanisms that operate within our field as critical 
mathematics teacher noticing.  

Teacher video clubs could serve as a mechanism for engaging teachers in critical dialogue 
with each other surrounding their practice (Van Es & Sherin, 2008). However, while video clubs 
facilitate teacher dialogue around particular aspects of classroom practice, video club are also 
sociopolitical spaces where teachers from dominant groups hold more power and “voice”. One 
way to hinder this silencing is through technology that creates safer communicative spaces. For 
instance, technology that utilizes asynchronous watching and commenting allows teachers to 
take their time to watch a video and comment accordingly, to reflect not only on what they notice 
immediately, but on what they notice after repeated watching and reflection (Chao & Murray, 
2013). Bringing the conversation online, then, opens up spaces for teachers to critique the deficit 
perspectives of fellow teachers safely, without the silencing effect of a video club.  

Methodology  
The data for this study came from an elementary teacher graduate degree and licensure 

program at a large, state university in the Midwestern United States. We focused on a diverse 
master’s degree cohort, where six of the 28 teachers identified as persons of color. Our analysis 
focused on an Elementary Mathematics Teaching Methods course instructed by the first author, 
in which each pre-service teacher worked one-on-one with a child in their student teaching 
internship. The teachers completed four interviews with a case study child: a “getting to know 
you interview” to begin the project, then three subsequent problem-solving interviews each week 
(Foote et al., 2015). 

We utilized GoReact, an online video commenting tool to facilitate teacher noticing during 
the problem-solving interviews. Teachers individually filmed their interviews with case study 
students and immediately uploaded the video for their peers and instructor to watch and 
comment on. Then, in the three subsequent class meetings, the teachers met in person to watch 
the videos again, read each other’s comments, and engage in discussion about what they noticed. 
At the end of the four interviews, the teachers produced a report on what they learned from the 
student through the interviews and the conversations. We utilized all of this data in our analysis: 
the online video, the comments, and the written reports.  

Findings  
Our analysis focused on instances where pre-service teachers called out dismissive or deficit 

language they noticed their peers using, particularly if this invoked racial grammars. We found 
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that pre-service teachers of color’s comments regularly emphasized the skills and reasoning 
displayed by students of color and challenged conclusions of white pre-service teachers. We 
believe these instances reveal what we refer to as critical mathematics teacher noticing, which 
requires an awareness of the structures and functioning of racial grammars as well as the ability 
to interrupt them.  

Ms. Simmons, a biracial, Black pre-service teacher, was paired in online discussions with 
Ms. Harris, a white pre-service teacher. Ms. Harris chose Amir, a Black Somali-American 
second-grader, as her case-study student. Ms. Harris described Amir as struggling in 
mathematics and posited that “it might be because he isn’t paying attention and isn’t focused, 
and sometimes it might be due to a language barrier.” In Ms. Harris’s first video, she posed a 
problem where a boy had 13 cookies and ate six, then asked how many were left. Amir wrote the 
equation 13-6. Ms. Harris then asked why he subtracted, to which Amir replied that the problem 
said he ate and that meant he should take away. Ms. Harris commented about this interaction, “I 
had a very hard time getting him to explain his answers no matter how long I waited, how I 
rephrased the question, or what questions I asked. This was the most explaining I got him to do 
during the whole interview.”  

Ms. Simmons’ responded by challenging Ms. Harris’ conclusion:  
I don’t know what all you asked him, but I see that he understands that “you ate” means 
“take away” so he chose subtraction. Maybe you could have asked him if “you ate” means 
you get more cookies or cookies are taken away, then you could ask if take away means you 
add or subtract. Maybe that would’ve provided more of an explanation than just asking why 
he chose subtraction. Sometimes students don’t realize all of their steps until you point them 
out for them. 

Ms. Simmons noticed Ms. Harris’ deficit perspective, implying that there was more to Amir than 
what Ms. Harris saw. While Ms. Harris only noticed Amir’s lack of focus or skills and refusal to 
explain his thinking, Ms. Simmons noticed the bigger problem of how her classmate spoke to 
and about Amir. Ms. Simmons also expressed a belief that students are capable of more than they 
can put into words and that teachers play a role in developing students’ mathematical confidence. 

Conclusion & Discussion 
The mathematics teacher noticing work has largely focused on noticing mathematical 

discourse or action without specifically connecting to race or culture (Jong, 2017). Our work 
shows how, using critical mathematics teacher noticing, we can unpack the racial blind spots pre-
service teachers hold when “noticing” the mathematical thinking of their children. We posit that 
the online video technology space created an immediacy for teachers to interact in dynamic ways 
familiar to them, and therefore, grow comfortable in couching their critique in their own social 
identities (i.e., as a teacher of color who has to deal with continual racial microagressions from 
members of their cohort). 

By putting the focus specifically on racial and cultural norms within mathematics education, 
we draw attention to the racial “blind spots” within mathematics teacher education overall. We 
introduce a new term to describe this unveiling of these blind spots in mathematics teachers, in 
which racial grammars that have been invisibilized are brought to light: critical mathematics 
teacher noticing. 

However, this study does have limits. First, we only analyzed data from one particular cohort 
when they took an elementary mathematics methods course; not measuring their prior 
interactions with each other. Second, the first author of this paper was also the instructor of this 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

722	

course, introducing bias into our interpretation of the data. And third, this is a snapshot of these 
teachers before they actually begin their practice. Data suggest that some of these teachers will 
take on racist or “othering” pedagogical stances in their first years of teaching (Chao, Hale, & 
Cross, 2017). 

Technology can be used as a democratizing tool, an agent of change that allows various 
views and individual interpretations of the same media. The current research examining how we 
prepare mathematics teachers of color is emerging, exposing how heavily our existing structures 
are set up to only help white teachers without threatening their fragility (Picower, 2009). Just as 
we encourage our mathematics teachers to engage in classroom discussion that moves beyond 
the easiest and most accessible mathematical strategy, we must push our teachers to engage in 
conversations on equity that move beyond “safe” topics of diversity and social justice to 
recognize and confront white supremacy. As a field, we ask teachers to orchestrate open-ended, 
uncomfortable mathematical conversations in the classroom. Therefore, as mathematics 
educators, we must also engage in uncomfortable conversations about the blind spots our 
teachers and ourselves hold, especially as pertaining to perpetuating white supremacy.  
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Pre-service teacher perspectives provide important insight for teacher education and can also 
serve as indicators for areas of support needed in teacher preparation, especially in regards to 
providing training for addressing challenges in the classroom. This study examines the 
perspectives from pre-service mathematics teachers in an introductory mathematics education 
course, particularly on how challenges may be presented and addressed in the classroom based 
off of socially constructed implicit biases against the subject of mathematics. Participants were 
asked to reflect on how implicit bias may impact mathematics through two factors: 1) teacher 
and student challenges in the classroom and 2) addressing the concept of innumeracy. The 
perspectives and beliefs that these participants hold in their pre-service practice may be used to 
better support their clinical experiences and transition to the workforce.  

Keywords: Affect, Emotion, Beliefs, and Attitudes, Teacher Beliefs, Teacher Education-
Preservice 

Introduction 
The pre-existing perceptions and dispositions of pre-service teachers towards mathematics 

teaching and learning are a strong indicator of the performance and learning environment that 
will be established in each of these future teachers’ classrooms (Franke, Kazemi, & Battey, 
2007). Many factors can contribute to each pre-service teacher’s development of individual 
perceptions and dispositions towards mathematics education, ranging from their individual 
backgrounds, experiences in learning mathematics, and societal influences and stereotypes on the 
subject area (Thompson, 1984). By examining reflections from mathematics pre-service 
teachers, teacher educators can establish a better understanding of how to provide professional 
development and teacher preparation that best supports various forms of content knowledge 
(curriculum-based, pedagogical, situational) needed for effective teaching (Southwell & 
penglase, 2005; Hill, Ball, & Schilling, 2008; Aslan-Tutak & Adams, 2015).  

This study focuses on the impacts that existing social influences, which will be referred to as 
“implicit bias,” have on pre-service mathematics teachers’ perceptions of math teaching and 
learning. The reflections from these pre-service teachers also stem from their individual 
perceptions of the challenges posed by existing implicit biases towards mathematics learning. 
Presenting pre-service teachers with opportunities for deep self-reflection specifically on 
potential challenges in teaching mathematics is highly important for developing teacher 
accountability and better understanding of creating authentic learning opportunities in their 
future students (Graeber, 1999). This paper will highlight findings from this study regarding pre-
service teacher perceptions on potential the implicit biases that they may encounter in their future 
classrooms, focusing on two main areas: 1) perceived challenges in teaching and learning 
mathematics, and 2) overcoming challenges presented by innumeracy.  

Implicit Bias and Challenges Presented 
This study is based on a framework that views perceptions and dispositions that students and 

pre-service teachers may have regarding mathematics teaching and learning are influenced and 
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greatly impacted by social constructs and stereotypes (Thompson, 1984; McClain & Cobb, 
2001). These pre-established societal norms about mathematics teaching and learning create 
challenges for teachers of all levels of expertise. For example, norms in secondary education 
exist regarding summer homework and readings as commonplace for English and Language Arts 
courses, whereas not until more recently have students and families engaged in more enrichment 
programs beyond the classroom for subjects such as mathematics. Additional challenges also 
arise from the perpetuation of negative stereotypes depicting mathematics education. For 
example, students (especially girls) who take a liking towards the subject area may feel outcast in 
their learning environments, where enjoying mathematics as regarded as “weird” by societal 
norms (Boaler & Greeno, 2000). Oftentimes, the statement of “I’m not a math person” may even 
be presented as a societal norm and something highly acceptable and perhaps even touted in 
commonplace (Franke et al, 2007). Through addressing these challenges outright in the 
classroom, teachers can set positive classroom norms for generating authentic learning 
opportunities that can answer the questions of “why” for learning mathematics.  

Methodology 
With the assumption that implicit bias in the mathematics classroom has a direct impact on 

teaching and learning, this study focuses on the perceptions that beginning pre-service 
mathematics teachers may presume prior to receiving extended mathematics education 
coursework and entering the teaching workforce. While this paper outlines the participants and 
findings of a single class, further data was collected from later cohorts as well, which would be 
presented in the brief research report session. 
Participants and Context 

This study took place in an isolated introductory mathematics education class at a public 
four-year university, with 11 total students. Ten of the students were mathematics majors, and 
one majored in statistics. All of these students were taking the introductory mathematics 
education course as a part of a minor program for secondary mathematics education. Each of 
these students had already had varying forms of clinical experiences in this teacher education 
minor program. It is important to note that while these students have had concurrent introductory 
education courses, the class in which this study was conducted was the first of their experiences 
with a mathematics education focus. Therefore, the responses in which these participants 
provided their responses regarding perceptions of implicit bias are a candid reflection of the 
varying levels of pedagogical content knowledge. 
Data Collection and Analysis 

In this study, students were asked to respond to four questions that were a part of a routine 
in-class survey given online through Google Forms. Identifying information (such as name, age, 
sex, year of study, etc.) were not recorded for this study, as this study solely examined the direct 
response and written perspectives of these pre-service teachers without specific association with 
each individual student. The intent of the survey was to generate a sampling of student responses 
for developing in-class discussion regarding the two factors contributing to potential implicit bias 
in the math classroom. Participants were allowed to provide as much or as little elaboration in 
their responses to the questions as they saw appropriate. 

Two main factors regarding pre-service teachers’ perceptions about implicit biases 
mathematics teaching and learning were explored in the data drawn from the survey: 1) 
challenges in teaching and learning mathematics (from both teacher and student perspectives) 
and 2) addressing the concept of innumeracy. For each of these factors, students were asked for 
a) their definition and understanding of each factor and b) their hypotheses and suggestions for 
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how to approach or address each of the contributing factors.  
For the first survey question, involving the participants’ perceptions of challenges in teaching 

mathematics, keywords from participant responses were categorized as deriving from either a) 
limitations in a teacher’s mathematics content knowledge or b) limitations in a teacher’s 
pedagogical content knowledge. These two areas of content knowledge were chosen as the most 
influential indicators for effective teaching. An assumption was made that the participants may 
focus heavily on providing responses relating more to pedagogical content knowledge concerns 
due to their own identities as future mathematics educators. The second question explored 
participants’ perspectives towards challenges faced by students in learning mathematics, and 
keywords from responses were categorized into two domains of either internal or external 
constructs. Internal constructs were defined as factors related to students’ individual identity, 
cognition, and disposition that contribute to potential challenges in learning of mathematics. 
External constructs were defined as factors that were not controlled by the individual students, 
such as transferring of blame to a teacher or class, lack of proper curriculum or teaching, etc. The 
third question examined participants’ perspectives towards the notion that there is a greater 
societal acceptance and normalization towards innumeracy (in contrast to illiteracy, which is 
widely disfavored by society). Participants were asked to hypothesize why this potential societal 
acceptance may be prevalent, and keywords from their responses were categorized into two 
domains: normalization of innumeracy a) developed from individual beliefs and assumptions or 
b) development from prior experiences or action. Factors that were classified as personal beliefs 
and assumptions were those such as individual perceptions on the challenge of mathematics that 
contributed to the formation in normalization of innumeracy. The final question asked 
participants to propose solutions for addressing numeracy in their own classrooms as future 
educators. Participant responses were categorized into two domains here as well as reflections on 
addressing innumeracy through a) action through change in beliefs or b) action through change 
in practice. In these domains, action through change in beliefs categorized suggestions from the 
participant responses such as generating conceptual connections for students or establishing 
positive environments for learning. In comparison, responses that indicated approaches for action 
through change in practice described keywords such as modeling, problem-based or inquiry-
based learning, or implementing varied questioning in the classroom. 

Findings 
As predicted, participant responses greatly focused more on limitations of the pedagogical 

content knowledge (PCK) domain as the contributing factor to their hypotheses as to why 
teachers may struggle in teaching mathematics. Eight out of the eleven students noted PCK as 
the main contributing factor that they felt determined challenges in teaching mathematics. 
Responses regarding perspectives on the normalization of innumeracy likewise had a majority in 
favor for one of the domains than the other. Eight out of the eleven participants indicated that 
they perceived that the normalization of innumeracy is caused by the prior experiences or action 
domain. The final set of pre-service teacher perceptions showed the greatest mixture of 
responses. While the majority of participant responses had a distinct position or preference for 
one domain over the other in each survey question, there were a select few participants who did 
indicate keywords highlighted from their reflections for both domains.  

Discussion 
In addressing the first research area of pre-service teachers’ perceptions of perceived 

challenges in teaching and learning mathematics, participant responses were highly reflective of 
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their identities as beginning teachers. With the first question regarding challenges for teaching 
mathematics, the majority (eight out of eleven) participants chose to highlight pedagogical 
content knowledge (PCK) as the main contributing factor. As the participants mainly comprised 
of undergraduate students who were majoring in mathematics, an assumption exists that each of 
them already have a strong content background in mathematics. Therefore, this perhaps explains 
the lower attention and priority given to highlighting content knowledge deficits as contributing 
factors for creating challenges for mathematics teaching.  

Although the participants were able to provide substantial responses for all four questions, 
there were some unclear examples of responses for these last two questions on the factor 
contributing to implicit bias of normalization of innumeracy. This suggests that perhaps these 
students did not have substantial understanding of the concept of innumeracy to adequately 
answer the question. They also demonstrated significantly more elaboration in their responses 
regarding questions that presented an actionable problem. Participants also demonstrated 
optimistic responses overall, particularly for the questions asking them to provide suggestions for 
how they might approach addressing the two factors contributing to implicit bias against 
mathematics teaching and learning. This further emphasizes the importance of providing 
opportunities for teachers (both pre-service and veteran) to engage in reflexive pedagogy where 
they can reflect and continue to improve on teaching. 

Implications for Future Research 
Future research should investigate best practices in which teachers (both pre-service teachers 

and veterans) can address implicit bias in their classrooms through actions such as implementing 
micro-affirmations for generating positive dispositions towards math as well as inclusive and 
reflective pedagogical methods that encourage productive mathematics learning. It is likewise 
important for both teachers and teacher educators to collaborate in addressing potential implicit 
biases that may exist in schools and school systems. Further examination of resources and other 
ways to support mathematics teachers in addressing these issues is also another area to explore 
for math teacher education research. 
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In this brief research report, we examine shifts in the attitudes of pre-service teachers related to 
Indigenizing the mathematics curriculum through the lens of positioning theory. Written 
responses were examined and examples of obscuring agency, reframing of mathematics, 
retemporalizing and repersonalizing and more openness to rethinking attitudes emerged. By 
analyzing attitudes of pre-service teachers we can begin to have productive conversations. 

Keywords: Indigenous Ways of Knowing, Pre-service Teacher Education, Positioning Theory. 

Introduction 
In recent years there has been a call to include Indigenous knowledge at all levels of 

schooling (BC Ministry of Education, 2015), which has proven challenging for both veteran 
teachers and new teachers alike. Mathematics, a discipline often associated with objectivity and 
abstraction, does not appear to align easily with an Indigenous approach to learning. Therefore, it 
is not surprising that pre-service and practicing teachers have expressed anxiety in response to 
British Columbia’s revised curriculum, which states that mathematics teachers are to 
‘[i]ncorporate First Peoples’ worldviews and perspectives to make connections to mathematical 
concepts’ (BC Ministry of Education, 2015). Consequently, there is a need in pre-service 
mathematics education to reconcile Western mathematics with Indigenous ways of knowing.  

As non-Indigenous researchers, we consider teaching and learning Indigenous approaches 
that support holistic, personal and connected activities to be sound pedagogical practice. 
According to Munroe et al. (2013), 21st century learning approaches are not new ideas, but are 
“rooted in old ideas embedded in Indigenous knowledges” (p. 319). When the learning of 
mathematics includes hands-on experiences, for example, this can provide opportunities of 
agency, and personal relevance. In creating and in doing, mathematics becomes a discipline of 
practice, rather than memorizing propositional facts. The First Peoples’ Principles of Learning 
(FPPL), created by the First Nations Education Steering Committee (FNESC) in British 
Columbia endeavour to reflect a respectful and holistic approach to First Peoples’ values around 
teaching and learning. Learning is “focused on connectedness, on reciprocal relationships, and a 
sense of place” (FNESC, 2008). It involves generational roles and responsibilities, patience and 
time, an exploration of identity and recognizing the consequences of one’s actions.  

This research explores how a non-Indigenous instructor and teacher assistant, with a 
commitment to honour Indigenous values, sought to develop a respectful and culturally aware, 
pre-service mathematics teacher education course. This research is focused on transforming 
attitudes around what mathematics is and can be, while moving away from dominant ideologies 
and colonial practices, to more relational and respectful ways of knowing.  

Theoretical Framework 
We have chosen positioning theory as a way to understand the views and commitments of 

pre-service teachers in relation to both mathematics and to an Indigenous framing of 
mathematics. van Langenhove and Harré (1999) describe positioning as a stance expressed 
through words or actions that affects one’s relation to someone else. There is an underlying 
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moral component to the relations created during this positioning. There are three particular 
constructs of positioning theory: communication acts, positions and storylines. Communication 
acts are about the words used in an utterance, positioning is about how an interlocutor locates 
themselves in relation to someone else, and storyline is the underlying common narrative 
suggested, though not necessarily made explicit in the utterance. Each of these constructs 
interweave and connect with each other.  

 Within the teaching outlined in this study, we observed a transformation in how pre-
service teachers viewed their role as teachers. Their previous experiences with mathematics 
learning were framed in terms of acquiring a skill set, causing them to refer to mathematics as 
distant and objective. However, when mathematics is more people oriented and is framed in 
terms of discussion, it aligns more closely with Indigenous ways of knowing. Using techniques 
of discourse analysis, such as voice, agency and deixis (Wagner, 2007), as well as looking at 
nominalization (Gerofsky, 2004) to inform positioning theory, we assess how pre-service 
teachers position themselves in relation to mathematics and Indigenous ways of knowing.  

The goals for this research were to evaluate by the end of the course: 1) Changes in students' 
perceptions of the nature of mathematics; 2) Changes in students' perspectives and 
understandings of Indigenous ways of knowing and learning as they relate to mathematics. 

 Methods 
Data from this study was collected from undergraduate students enrolled in a secondary 

mathematics methods course at a Western Canadian University in the summer of 2017. Having 
received some Indigenous education in previous courses, students were somewhat familiar with 
FPPL but had no experience connecting FPPL to mathematics. In order to ascertain student 
perceptions regarding the nature of mathematics and changes in perspectives of Indigenous ways 
of knowing, students were asked to respond in writing to the following questions at the 
beginning and at the end of the course: (1) What is mathematics? What does it mean to do 
mathematics? (2) In what ways are Indigenous ways of knowing and mathematics connected? In 
terms of knowing, learning and/or practicing, can you think of ways mathematics may relate to 
an Indigenous world view? The research team then examined all student responses to identify 
changes in discourse. Using a positioning theory lens, we highlight changes in student wording 
as a method to identify shifts in student response as well as themes that emerge.  

Throughout the course, an environment was created where thinking was brought into the 
open to be scrutinized and re-evaluated, and notions of time, person and context were introduced 
into mathematical practice, rather than valuing content only. In practice, most students, are much 
more receptive to relational ways of engaging with mathematics because they are ‘part’ of the 
subject material, which aligns with Cajete (2012), who suggests ‘we’, as mathematics educators 
and teachers, stay away from objectification and decontextualization.  

Data and Analysis 
 In this section we present a comparison of some of the student reflections from the 

beginning of the course, to those at the end. Due to the brevity of the data segments, we have 
combined the data and the analysis together and have categorized the data under some of the 
themes that emerged from our discourse analysis. All student comments are presented verbatim.  
Obscuring Agency 

One of the things that was noticeable was a complete lack of agency in terms of how most 
students described mathematics, which was indicated by the lack of an 'I' or a 'we' in their 
statements. However, by the end of the course, students were including not only themselves in 
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their articulations, but others as well. In the presentation of data below (B) and (E) will represent 
'beginning of course' and 'end of course' respectively. 
  

Johanna:		 (B)	When individuals are able to approach math problems… 
 (E) Mathematics is embedded in our world. It surrounds us and allows us to solve 

problems. 
Mike:  (B) Math is recognition of how patterns into an abstraction of the universe. Doing 

math means to discover truths. 
(E) Math is a process for making sense of the patterns in the universe. To do this 

means to categorically recreate what we think and be able to reconstruct it for 
somebody else. 

When a person obscures agency, they position themselves away from, or at a distance from 
that which they are describing (Wagner, 2007). This was also evident from the use of a common 
framing at the beginning of the course, that mathematics was all around them. While seemingly 
inclusive and holistic, this still obscures agency by not referring to a person when describing 
mathematics. Most students were both much more specific and present in their description of 
mathematics at the end of the course. 
Reframing of Mathematics 

Another significant change that occurred, related to how students described mathematics. 
The initial view that mathematics was about calculating and finding patterns had shifted to one 
that saw doing mathematics as involving collaborating and negotiating.  
 

Charlotte: (B) Mathematics is a way of understanding and interpreting situations. It often 
involves problem solving and logical reasoning.  

(E) From this course my understanding of how one does mathematics has 
radically changed from a more traditional, algorithmic approach to a more 
interactive problem based perspective where knowledge is gained through 
exploration, play and discussion.  

Mathematics was repositioned as something that exists in activity with both people and things. 
This shift from understanding or interpreting something, towards ways of engaging with 
mathematical objects or ideas, also supports an Indigenous way of thinking that Lunney Borden 
(2011) calls verbification.  
Retemporalizing and Repersonalizing 

Jenna:  (E)	Math is collaborative, and every person could approach the same problem 
differently. We can trust that in group work, we can be inspired by other 
people and inspire them at the same time. Our thoughts could be broadened 
and completed by other people’s thoughts. The discussion and collaboration 
may not be the most efficient way but ‘learning requires time and patience’. 

From this statement, it seems that group work was not simply about collaborating to find an 
answer, but instead spoke of inspiration, broadening perspective, and truly supporting each other 
in a willingness to engage with a mathematical problem and take risks while doing so. 	
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Indigenizing the Curriculum  
Although we recognize that many of the comments shared below are overgeneralized, we 

found that the positionality students were expressing had shifted to an openness and willingness 
to rethink their attitude and ways of doing mathematics. 
 

Angel: (B) Indigenous ways of learning involves patience and time which is pertinent to 
mathematics education as mathematical problems are rarely solved 
immediately. Learning math requires dedication, practice, patience.  

 (E) I believe that mathematics is inherently a social endeavor, and so the process 
of learning and doing mathematics aligns well with Indigenous ways of 
knowing. I think that mathematics is a universal language that connects all of 
humanity. 

John: (E) Learning is holistic in terms of there is a context, there is social and relational 
piece in it, and it is reciprocal. This is directly connected to the Indigenous 
belief of learning is to benefit community and the society. 

 
These comments reflect the general attitude of many of the pre-service teachers at the end of 

the course and demonstrate a shift from a cultural dominant view of mathematics as a field 
available for study, to a more approachable discipline that engages people in supporting one 
another and negotiating meaning. Students have positioned themselves in a more inclusive and 
open space for interpretation and understanding of what it means to do mathematics.  

Conclusion 
This research involves attempting to change pre-service teachers’ attitudes through an 

approach towards Indigenizing the mathematics curriculum by focusing on methods of learning 
mathematics and does not claim to successfully Indigenize the curriculum. Positioning theory 
has been used as a marker of a relationship which is relevant and informative for this course that 
was modeled on the relationship between people, mathematics and people, and between 
Indigenous ways of knowing and the pre-service teachers in this course. This research is meant 
to be generative of conversation, discussion and future research.  
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We examine connections between teacher education coursework and teaching actions. In 
particular, we looked at one unit of instruction addressing collective argumentation in a 
pedagogy course and how two student teachers supported collective argumentation in their 
placements during the following semester. The student teachers’ support for collective 
argumentation aligned with their interpretations of the unit on argumentation, reflecting their 
slightly different emphases of the role of the teacher in facilitating student participation and 
focusing on the goal of the argument. Our results suggest prospective teachers’ interpretations 
of coursework can be reflected in their practice, even in student teaching. 

Keywords: Classroom Discourse, Teacher Education-Preservice 

Connections between teacher education coursework and teacher actions, even in student 
teaching, are difficult to find, and even more difficult to document. In attempting to trace teacher 
learning across multiple semesters, the project described in this paper begins to document how 
some aspects of teacher education coursework may be visible in student teachers’ practice. 
Rather than focusing on the specific contents of the coursework, we rely on our participants’ 
interpretations of their coursework, as inferred from various sources, and look to see how their 
practices reflect these interpretations. Our focus is how teachers learn to support collective 
argumentation in secondary mathematics classes; this paper addresses the question: How do 
prospective teachers’ interpretations of a unit on collective argumentation (during a pedagogy 
class) align with their support for collective argumentation during student teaching?  

Related Literature & Framework 
Argumentation and proof is an integral part of mathematics. Researchers have investigated 

many aspects of argumentation, including student learning through argumentation (e.g., 
Krummheuer, 1995), and relationships between classroom argumentation and proof (e.g., 
Knipping, 2008). We view argumentation as attempting to convince someone of the validity of a 
claim and collective argumentation as people working together to determine the validity of a 
claim (Conner, Singletary, Smith, Francisco, & Wagner, 2014). We follow Krummheuer (1995) 
in using Toulmin’s (1958/2003) model of an argument, adopting the vocabulary of claim, data, 
warrant, qualifier, and rebuttal to describe distinct parts of an argument. We attend to who 
contributes these parts of arguments; distinguishing between teacher, student, and joint 
contributions provides insight into teacher facilitation of argumentation (Conner et al., 2014).  

We view learning as situated (as discussed by Lave and Wenger, 1991). That is, we follow 
Peressini, Borko, Romagnano, Knuth & Willis (2004) in asserting that people learn within 
multiple communities, and we investigate how prospective teachers may recontextualize (as used 
by Ensor, 2001) their on-campus learning in their student teaching practice. For instance, 
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prospective teachers may experience collective argumentation as they learn mathematics content, 
and they may learn about collective argumentation in their pedagogy courses. These experiences 
must be recontextualized into their own practice in student teaching.  

To guide our analysis of teachers’ support for collective argumentation, we use the Teacher 
Support for Collective Argumentation (TSCA) framework (Conner et al., 2014). This framework 
provides three ways teachers may support collective argumentation: directly contributing 
argument components, asking questions that prompt components, and responding to components 
of arguments using other supportive actions. Each type of support has five categories, and within 
the categories of questions and other supportive actions, there are multiple kinds.  

Methods 
We report on part of a larger project following a cohort of prospective secondary teachers 

through their mathematics education program, into student teaching, and beyond. We purposely 
selected two participants as they participated in a unit on argumentation during their course 
work, a practicum experience, and their student teaching experience. Cathy and William 
(pseudonyms) were white, cisgender and in their early 20s.  

Data analysis was conducted using Transana (Woods & Fassnacht, 2010). We identified 
episodes of argumentation (EOA) in the student teaching data. We constructed expanded 
Toulmin diagrams (Conner et al., 2014) for each EOA and coded teacher support based on the 
TSCA framework. The Toulmin diagrams provided information on the characteristics of the 
arguments while the TSCA framework provided analysis of the teachers’ support of the 
arguments. We captured these thick descriptions of the participants’ argumentation in memos.  

The second phase of data analysis focused on the argumentation unit during the third 
semester pedagogy course. During the unit, participants discussed collective argumentation and 
Toulmin (1958/2003) diagrams and constructed diagrams for classroom arguments. For each 
participant, we coded his or her reflections and discussions during the unit to describe their 
interpretations of argumentation. We expanded each participant’s memo to examine how 
interpretations of argumentation aligned with argumentation practices during student teaching. 

Results 
Cathy’s Interpretation of Argumentation 

Cathy saw the role of the teacher as a facilitator who asks questions, clarifies ideas, and 
restates contributions. She wanted students to be the main contributors to the arguments. She also 
wanted to make sure students pushed each other’s thinking. When discussing a class reading 
(Choppin, 2007), Cathy said, “Your job is not to go in and argue for the student, …you have to 
let them work through it and possibly have other students point out and ask, like okay why did 
you do this?” (In-class discussion). She believed all students were capable of contributing to the 
conversation as long as they were comfortable within the group. Cathy wrote the following in her 
reflection after orchestrating a discussion in her practicum, “I wanted each of the students in my 
group to feel like they contributed to the discussion…If one student hadn’t shared in a while, I 
made sure to call on that particular student.” Cathy believed her role as a teacher included having 
students be the ones constructing and communicating the arguments. 

In her written reflection, she described an effective argument as one that involved multiple 
students, and she labeled as ineffective an argument involving only one student. Cathy saw 
effective arguments as those promoting students to share their thinking. “Why would you engage 
students in arguments?...So they could just like—whatever math they're doing in different ways 
and see there is more than one way to think about it” (In-class discussion). Overall, for Cathy, 
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student participation in the construction of arguments was a way to provide students an 
opportunity to learn strategies and ways of reasoning mathematically.   
Cathy’s Support for Argumentation 

In Cathy’s classroom, students directly contributed 68 claims and data/claims (out of 75) and 
41 explicit warrants (out of 47). This shows Cathy was committed to having the students be the 
ones constructing the arguments in the classroom. Analysis of her supportive moves reinforces 
this result, as she revoiced the students’ contributions 64 times and expanded on their 
contributions minimally (7 times in two days). Specific discursive actions were taken by Cathy 
to promote student participation. For example, Cathy made statements like the following: 
“Somebody raise your hand and tell me how it’s not fair. I see [St 1] and [St 2]’s hands. I need a 
few more, guys” and “Do y’all notice anything? I’ll wait until I see a few more hands.” Her 
desire to have students participate was also evident from her lack of contributions of argument 
components (claim, warrant, data). During the two days, Cathy made 16 direct contributions to 
arguments out of the 149 explicit argument components. The remaining 133 contributions were 
made by students (128 contributions) or co-constructed by students and Cathy (5 contributions).  

Cathy wanted many students to participate in the construction of arguments. She thought it 
was important for the teacher to facilitate the students’ work in argumentation, and in her student 
teaching, we found she asked questions that pushed students to provide their reasoning and she 
often restated student contributions to be sure they were understood by the class. 
William’s Interpretation of Argumentation.  

William believed that in order to facilitate argumentation effectively, the teacher should have 
a clear idea about the goals of argumentation. During the argumentation unit, William said: 

I feel like a huge part of the argument is knowing where you’re going with it, too. … Cause I 
mean it is easy to facilitate an argument and not know exactly where to go and let it, so that’s 
when you kind of can let it spiral out of control. (In-class discussion)  

William viewed argumentation as a debate, and he thought it was beneficial to let students argue 
with each other because “Students listen to each other more than they’ll listen to us” (Interview). 
William wanted his students to participate in collective argumentation. However, he found that 
having students participate and reaching his goal to cover content was a difficult balancing act.  
In William’s written reflection, he wrote about an argument he witnessed during his field 
experience between two students. He found the argument to be effective “because it required 
both students to approach the problem in a different way then they initially did.” He expanded 
that the argument he witnessed was effective because “mathematical concepts are being grappled 
with” (Reflection). For William, an effective argument not only involves multiple approaches to 
a problem but also provide opportunities for students to deal with mathematical concepts behind 
them. In contrast, William viewed an ineffective argument as one that only dealt with simple 
errors about a procedure or computation.  
William’s Support for Argumentation 

Our analysis suggested that William primarily supported the argumentation in his classroom 
by asking questions that requested a factual answer (63 out of 137) and requested a method (31 
out of 137), which aligned with his goal-directed orientation (focusing on content). There were 
only a few instances in which William requested an evaluation, idea, or elaboration. In terms of 
contributions to the arguments, William and students contributed about the same number of 
components (99 and 98) and contributed a few components jointly (15). This was consistent with 
William’s desire for students to participate in arguments. However, there was a difference in who 
contributed claims and warrants. Students primarily contributed the claims (64) in the arguments 
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with some claims jointly contributed with William (7). In contrast, students contributed some 
warrants (29) in the arguments but most of the warrants were either provided by William (46) or 
were implicit (40). The contributions of students and William in the EOA align with William’s 
interpretation of the teacher’s role as facilitator in reaching the goal of the argument.  

Conclusion & Implications 
Cathy and William developed consistent interpretations of argumentation with respect to 

helping students be comfortable in participating in argumentation. Their interpretations of the 
teacher’s role in argumentation involved similar elements, with Cathy focused on the teacher as 
facilitator to generate student participation and William focused on the teacher as steering 
students toward the final claim. Our observations of their classrooms revealed consistencies in 
their interpretations of the teacher’s role in argumentation and how they supported argumentation 
in their classrooms. For instance, Cathy prioritized participation and communication for students 
both in her student teaching and in her interpretations of the unit. Likewise, William prioritized 
the goal of the argumentation in his interpretations, and this priority was evident in his focused 
questions and contributions of components. As prospective teachers recontextualize their 
learning in their student teaching placements, their interpretations of this learning may take 
different forms. Our results suggest prospective teachers’ interpretations of coursework can be 
reflected in their practice, even in student teaching. However, understanding their interpretations 
and working toward productive interpretations of coursework is even more important as 
seemingly subtle differences may appear much larger in practice. 
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This qualitative study sought to explore preservice elementary teachers’ (PSETs) beliefs about 
the role definition plays in the learning of mathematics, as well as how an emphasis on the act of 
defining promotes the development of mathematical empathy. PSETs completed activities using 
geometry software, and collaboratively created definitions of special quadrilaterals. An assigned 
reading and written reflection of their experience followed. Data from these reflections were 
analyzed for themes and emergent categories. The coding instrument that resulted from iterative 
discussions by the researchers examined beliefs about the fluidity of definition and mathematical 
empathy (Araki, 2015). Findings suggest that including PSETs in the act of defining allowed for 
greater autonomy in authoring definitions, mathematical empathy, and the view that definitions 
are fluid in nature and dependent upon the audience. 

Keywords: Geometry and Geometrical and Spatial Thinking; Instructional Activities and 
Practices; Teacher Education-Preservice 

Introduction & Theoretical Frameworks 
Though definitions are considered fundamental in mathematics, there is little agreement on 

what we believe to be a good definition (Wilson, 1990). There is disagreement in our field 
regarding whether a definition should be as minimal as possible; with some scholars insisting on 
a full reduction of extraneous properties and others honoring the role of context, allowing for 
more redundancy (Zaslavsky & Shir, 2005). Which properties and how many to include in a 
definition is somewhat arbitrary, and the value of a definition depends on the perspective of its 
author. That many different definitions can be written for the same concept is difficult for PSETs 
to understand (Linchevski, Vinner & Karsenty, 1992).  

Few studies investigate student’s conceptions of a mathematical definition (e.g., Zaslavsky & 
Shir, 2005). Using written responses and recordings of small group discussions, Zaslavsky and 
Shir (2005) investigated four students’ conceptions of definitions for square and isosceles 
triangle, and how these conceptions were reflected in and developed through activities that elicit 
consideration of alternative ways to define a mathematical concept. They found that asking 
students to consider a variety of definitions is a powerful learning environment wherein personal 
concept definitions could be gradually refined along with conceptions of definition in general.  

In this study, we are seeking to answer two research questions. 1) What are PSETs’ beliefs 
about definitions and the act of defining; and 2) How does an emphasis on the act of defining 
mathematical terms promote the development of mathematical empathy? 
Theoretical Framework 1: Fluidity of Definition 

De Villiers (1998) studied what happens when we allow students to realize that different 
definitions of the same concept are possible with advantages and disadvantages for each. In 
addition to mathematical characteristics, we also wanted our PSETs to recognize that the choice 
of which definition to use in mathematics classrooms is also based on the pedagogical context. 
Keiser (2000) honored instructional context in her work with defining angle. We ask our PSETs 
to read Keiser (2000) to provide this exposure to student thinking and to support the 
development of concept imagery related to the act of defining. 
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From reading of the literature as well as our initial reading of the data, we have designed a 
Fluidity of Definition framework to capture four main themes that we wish to examine: 
multiplicity, authorship, authority, and audience. Multiplicity is the belief that definitions are not 
rigid and that many alternative definitions exist for a concept. Authorship indicates an ownership 
over a definition. Drawing on Tall & Vinner (1981), we view a definition as personal as it is 
based on concept imagery that we hold as individuals. Authority indicates the power to decide 
which language, style, and properties to include in a definition. Audience honors the pedagogical 
context and is the belief that a definition is influenced by who we intend to read and use it.  
Theoretical Framework 2: Mathematical Empathy 

When we take a view of mathematics as a humanistic discipline that is socially constructed 
and personal values influence our evaluation of results, then it is important for instruction to be 
participatory and for students to feel that they have agency and voice in the classroom. In order 
to develop a classroom culture where this is possible, we posit that teachers need to be aware of 
and able to comprehend the mathematical thinking of their students.  

Araki (2015) refers to this skill as mathematical empathy defined as “the ability to 
comprehend another person's ideas and the true meaning or purpose behind them, seeking to 
utilize the other person’s frame of reference” (p. 118). To elevate student thinking within 
instruction, mathematical empathy is required. Mathematical empathy is what allows us to play 
the believing game (Harkness, 2009) and find the truth in the mathematics that students share. 

Methods 
This study examines PSETs’ beliefs about the role definition plays in the learning of 

mathematics, as well as how an emphasis on the act of defining promotes the development of 
mathematical empathy. We enacted this study in two sections of a course on Geometry for 
Teachers (PK -3) with 71 PSETs. The study was enacted similarly for both sections.  

Prior to data collection, PSETs were exposed to dynamic figures constructed using 
interactive geometry software, and asked to collaboratively create a series of definitions for 
special quadrilaterals. Following these lessons, they were asked to reflect upon their experience. 
In order to help them frame their comments as both learners and future teachers of mathematics, 
we first asked them to individually read The Role of Definition (Keiser, 2000). The article was 
chosen as a catalyst for reflection on this experience because Keiser suggested that formal 
definitions can curtail thinking in middle grades classrooms and argued for more fluid definitions 
based on concept imagery (Tall & Vinner, 1981) that was relevant in classroom learning.  

Following the reading, we prompted, “After reading the article The Role of Definition, what 
new thoughts do you have about the conversations we had in class about defining 
quadrilaterals? How about using definitions with children?” Once they had responded to the 
prompt on an electronic discussion board, they were given access to their classmates’ reflections 
and were asked to participate in an online discussion of what had been shared. The qualitative 
data in this study comes from the initial posted reflections (n=71). We chose to focus on after-
the-fact reflections because we were interested in our PSETs perceptions of the defining activity 
both as learners and as future educators.  

To begin analysis, we read the 71 initial discussion posts and wrote memos about emerging 
themes from the data. Through discussions by the research team, using grounded theory (Strauss 
& Corbin, 1990) and top-down methods of Miles and Huberman (1994), we iteratively 
developed, applied and refined a coding instrument. The coding instrument that emerged was 
based on theory from research on fluidity of definition (de Villiers, 1998) and mathematical 
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empathy (Araki, 2015). Once a set of initial codes was established, 14 discussion posts were 
randomly selected from the entire set and coded with this instrument by all three researchers.  

Following this second phase of analysis, researchers met to discuss, compare, and come to a 
consensus for each discussion post. When there was low initial agreement about coding 
particular categories, discussions resulted in the refinement of code descriptions. In the Results 
section, we provide definitions and illustrations of what emerged from these discussions. 

Results 
More results and reflections will be shared during our presentation provided in a longer 

format to illustrate the different components of the frameworks and give a fuller sense of PSETs’ 
beliefs and intentions. Here, we will present an overview of available findings, including 
subcategories within the two identified frameworks: Fluidity of Definition and Mathematical 
Empathy. These categories are not to be interpreted as mutually exclusive codes, but as different 
lenses through which to interpret a reflection. 
Fluidity of Definition 

Multiplicity. Multiplicity is the belief that definitions are not rigid and that many alternative 
definitions exist for a given concept. Some students reflected on their experience and found 
value in multiplicity, though this value took different forms. In her reflection, Rebecca expressed 
a belief that each child has a unique personal concept definition, and that in a classroom context, 
there is value in negotiating with others about those definitions. Trevor, however, believed that 
the personal concept definition is something that can be refined over time and experience; that 
even within one individual, definitions are multiple, fluid and changing. A third notion of 
multiplicity was described by Funda when she expressed frustration with textbooks that portray a 
single definition as straightforward and rigid. She sees this as restricting instruction 
unnecessarily and describes a freedom in expanding on the definitions in a local community. 

Authorship. Authorship indicates an ownership over a definition. Funda’s reflection also 
indicated a desire for authorship, but also a feeling of helplessness when using a textbook. Josie 
also saw purpose and value in being able to author definitions based on our classroom activity.  

Autonomy. Autonomy indicates the power to decide which language, style, and properties 
are useful to include in a definition. When Sheena says “All of the definitions we decided were 
what made sense to us (and they were correct which is a big part of it as well)…we got to play 
around with our own wording and what we felt it was important to know about each different 
quadrilateral, which makes it much more personal to us and easier to understand.” 

Audience. Audience honors the pedagogical context and is the belief that a definition is 
influenced by who we intend to read and use it. In reflections on both the classroom activity and 
the assigned reading, it was clear that there was an impact on our PSETs’ conception of audience 
as important in the act of defining. Here, definitions are not just mathematical tools to be 
internalized, but teaching tools that help convey meaning to others. 
Mathematical Empathy 

In efforts to code our data for evidence that our PSETs exhibited mathematical empathy, it 
became clear to us that there were (at least) two stages of empathetic work: awareness and 
comprehension. 

Empathetic Awareness. Empathetic awareness lives in a general space where the speaker 
understands that there is multiplicity in mathematical perspectives. (Not to be confused with 
multiplicity in concept definitions.) Awareness can emerge as a belief that others see things 
differently or that students have different mathematical backgrounds, experiences, or 
understandings that are worthy of attention and understanding. However, not all statements that 
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show awareness value multiplicity. Sometimes multiplicity indicates deviation from “standard” 
or inferior. When different means deviant, then awareness can be akin to feelings of what we 
have come to call mathematical sympathy, or the expression of feelings of pity or sorrow that we 
have understood another’s ideas, but find them inferior or undesirable. As one student wrote, “I 
believe that if the students were just given a definition they would not have been able to explore 
what they thought it was and learn how their ideas were similar or different to the definition.” 

Empathetic Comprehension. Without a specific statement of understanding from another’s 
perspective, awareness is not evidence of comprehension. In order for us to experience 
mathematical empathy, we must be able to comprehend from another perspective. This is akin to 
what Hufferd-Ackles, Fuson, and Sherin (2004) refer to as revoicing an idea shared by another. 
For example, Henry expressed mathematical empathy for a student, Dave, from the article, and 
went so far as to say that our discussion was lacking because this perspective was not available.  

Conclusion 
Coming to a consensus about how to define a special quadrilateral exposed PSETs to more 

than just the properties of quadrilaterals, but also the act of defining. Experiencing, albeit in a 
vicarious way, the difficulties faced by sixth-grade students in defining angle created space for 
mathematical empathy, including both awareness and comprehension. As Henry stated above, 
the story of Dave’s confusion resonated with our students and provided an opportunity to see 
from someone else’s perspective. When combined with their own fraught experience negotiating 
the properties of kites and trapezoids, the article about angle (Keiser, 2000) enabled PSETs to 
see far greater subjectivity in the discipline of mathematics and to consider, perhaps for the first 
time, that they, too, were both able and deserving of becoming authors of mathematical ideas. 
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Standards-based documents suggest that mistakes should be viewed as more than dead ends and 
should be used as catalysts for discussion and learning. However, prospective teachers rarely 
experience the utility of mistakes, which influences their beliefs concerning mathematical 
mistakes and ultimately how they teach and treat mistakes in their future classrooms. The 
influence that beliefs have on teaching is well known, but the beliefs concerning mathematical 
mistakes are not. Research suggests that new experiences can change beliefs given time and 
reflection. This study explored the beliefs of two prospective teachers concerning mathematical 
mistakes and how those beliefs changed during their enrollment in a content course for teachers 
designed to align with NCTM recommendations. 

Keywords: Preservice Teacher Education, Teacher Beliefs 

Mathematics reform documents (e.g., Common Core State Standards Initiative [CCSSI], 
2010; National Council of Teachers of Mathematics [NCTM], 2014) encourage teachers to teach 
in ways that focus on student learning and leverage students’ experiences with mathematics 
content. Teaching in the spirit of these documents involves engaging students in meaningful 
tasks as well as encouraging student interaction and discussion centered on the students’ work 
(NCTM, 2014). Many of these discussions focus on students’ mistakes and provide opportunities 
for students to reflect on those mistakes (NCTM, 2014). However, the way reform documents 
describe teaching is in stark contrast to traditional ways of teaching that remain pervasive in 
today’s mathematics classrooms (Philipp, 2007).  

In mathematics, teachers’ beliefs play a significant role in teaching and learning (Pajares, 
1992; Philip, 2007). Their beliefs influence not only how they teach mathematics but what 
mathematics is, what it means to do mathematics, and how they envision the roles of the teacher 
and the students in a mathematics classroom (Cooney, Shealy, & Arvold, 1998; Thompson, 
1992). This includes how prospective teachers (PTs) will treat mathematical mistakes in their 
future classrooms. If mathematical mistakes are to play the role that research and reform 
documents advocate, then teachers’ beliefs concerning mistakes need to align with that role, or 
mathematics education’s progress will remain compromised (NCTM, 2014). 

When prospective teachers (PTs) enter their teacher preparation programs, their beliefs and 
belief structures are already well established (Cooney et al., 1998; Pajares, 1992). Their 
experiences include the PTs’ years of being a student in primary and secondary mathematics 
classrooms (Philip, 2007; Thompson, 1992). Understanding the beliefs of PTs is the first step in 
ensuring alignment of PTs’ beliefs concerning mistakes with mathematics education research 
and teaching documents (e.g., CCSSI, 2010; NCTM, 2014). Additionally, accounting for the 
context in which those beliefs are investigated is necessary. Therefore, the purpose of this study 
was to investigate PTs’ beliefs concerning mathematical mistakes while considering the error 
climate of the classroom. This leads to the primary research question of the study: What beliefs 
do PTs’ hold about mathematical mistakes, and how do those beliefs change, if at all, given the 
classroom error climate? 
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Theoretical Framework 
Two theoretical constructs guided the study. The first of these was the error climate of the 

classroom (Steuer, Rosentritt-Brunn, & Dresel, 2013). Steuer et al. (2013) assumed that although 
learning from errors depended on individual characteristics of learners the classroom context was 
a precursor to those. Thus, classroom climate facilitates learning from errors and the potential to 
transcend individual attributes.  

The second construct was Leatham’s (2006) theoretical framework for viewing beliefs as a 
sensible system. The sensible system framework assumes that an individual, whether that person 
is able to articulate a belief, organizes beliefs into “organized systems that make sense to them” 
(p. 93). Leatham’s (2006) framework consists of three dimensions that assist in visualizing an 
individual’s belief. The first of which is the psychological strength of a belief. This is a 
description of the relative importance that a belief is to an individual that can vary from central 
to peripheral. The second dimension is the “quasi-logical relationship” (Leatham, 2006, p. 94) 
that exists between beliefs. The final dimension of the sensible system framework is the extent to 
which beliefs are clustered in isolation from other beliefs. This clustering of beliefs allowed for 
the contextualization of beliefs and explained why a belief in one context may not be as central 
in another. This framework provided guided the data collection and data analysis. Together, the 
error climate and beliefs as a sensible system framework provided a lens to examine what PTs’ 
beliefs were concerning mathematical mistakes. 

Methodology 
In this study, I utilized an exploratory, multiple case design to investigate PTs’ beliefs 

concerning mathematical mistakes and how those beliefs change, if at all. With a variety of 
criteria available from which to select the two cases (e.g., ACT score, mathematical content 
knowledge), I selected participants that displayed characteristics of different implicit theories 
(see Dweck & Leggett, 1988), but in the middle of the implicit theory continuum for data 
collection purposes. The decision to select participants based on implicit theory was made 
because of the role that implicit theory plays in persisting when making mathematical mistakes 
and that implicit theory transcends levels of mathematical ability (NCTM, 2014).  

As beliefs are not able to be articulated directly and must be inferred by the researcher 
(Leatham, 2006; Pajares, 1992), a variety of opportunities were given to the participants to 
describe their beliefs concerning mathematical mistakes over the fall semester as they were 
enrolled in a mathematics content course designed for PTs that intend to teach at the elementary 
school level. The course was designed to ensure that PTs were routinely exposed to 
mathematical mistakes in group tasks, homework, and tests. Additionally, the participants were 
given numerous opportunities to reflect on the mistakes presented in class as well as their own 
mistakes during data collection. Data sources included error climate surveys, interview protocols, 
classroom observations followed by interviews, reflective journals, exit tickets, and in-class 
reflections. I analyzed the data chronologically using open coding. Codes were created based on 
distinct concepts and categories that originated in the data. 

Results 
Results from the error climate surveys, which were an indication of the participants’ 

perceived error climate, differed noticeably for both participants from the beginning of the study 
to the end. The most notable differences for Cindy, a pseudonym, were her view of how mistakes 
are perceived by others in the class and how mistakes are used in a mathematics classroom. 
Although her view of her past mathematics classrooms indicated that a student can learn from 
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mistakes, there was a shift in the emphasis of learning from mistakes by the end of the study. 
Additionally, evidence suggested that Cindy perceived that mistakes were more welcomed by 
both the teacher and students. In contrast, the most notable shift in Harley’s perceived error 
climate was how she interpreted the teacher’s reactions to mistakes. Evidence from the beginning 
of the study suggested that Harley believed that mistakes were not important for the teacher and 
that learning from mistakes was solely the responsibility of the learner, not the teacher or the 
class as a whole. By the end of the study, Harley perceived mistakes as something everyone 
could learn from and saw mathematical mistakes as both a personal learning and pedagogical 
tool that should be used often. 

As the two participants’ other qualitative data were analyzed, beliefs concerning 
mathematical mistakes emerged that were considered as central to each of them. These central 
beliefs transcended context and were influential in how the PTs made sense of specific mistakes 
as well as the repeated presence of mathematical mistakes in their classroom. A brief description 
of each participant’s central beliefs concerning mathematical mistakes is presented below. 
Cindy 

From the onset of the study, Cindy believed in the value of mathematical mistakes. 
Throughout the course of the study, Cindy expressed how she learns from mistakes. She wrote: 

I don't like to make them at all. But even though I don't like to make them, mistakes are a 
part of life. You learn from mistakes, how to fix them, or make them better. You can be told 
how to do it, and sometimes pick up on it, but when I make a mistake, I learn why I made the 
mistake and how to fix it. Then, try again to figure it out. Mistakes will happen, but you need 
to be able to accept the mistake and learn from it. (Cindy, Journal entry, Dec. 4, 2017) 
The value of mistakes for Cindy surfaced in many instances including when she could not 

reconcile what she learned from a mistake, stating “you can always learn something.” This 
persisted throughout the study, but what she learned from a mistake shifted from learning how to 
fix the mistake to being able to go to “a deeper level” of knowledge as the study ended.  

Cindy also believed that mathematical mistakes had the most service if “the majority of the 
class made that mistake.” Void of the type of mistake (e.g., “minor” or “major”) or when the 
mistake was made (e.g., class discussion, homework, or test), the number of people making the 
mistake was extremely important to her. This was by far the stickiest (Thompson, 1992) belief 
Cindy held throughout the study.  

Finally, Cindy believed mathematical mistakes should be used as moments for learning for 
both students and for her as a prospective teacher. Mistakes that were presented during in-class 
activities, homework, and tests were done so in an effort for her to be able to anticipate what her 
future students might do, and more specifically what the majority of them might do. 
Additionally, and from Cindy’s perspective, the mathematical mistakes that were highlighted and 
discussed in class helped her achieve a deeper of learning and to “know more than her [future] 
students.” 
Harley 

Harley believed mathematical mistakes were instances where someone either made a mental 
mistake (e.g., adding incorrectly) or was an indication of a lack in understanding. At the 
beginning of the study, Harley believed that mistakes needed to be fixed either by someone 
pointing out the mental mistake or fixed by someone that did not have the same lack of 
understanding. Similar to Cindy, learning from this mistake was the responsibility of the person 
that made it, especially after being shown how to correct it.  
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Similar to Cindy, Harley also believed that mistakes had the most utility when a majority of 
the class was making the mistake, regardless of what the mistake was. This belief was pervasive 
for Harley and is best captured in her final interview when asked about when a mistake is useful 
and best used for class discussion: 

It depends on like how much time you have in that class and what mistakes are going to be 
more important, not more valuable, but more...cause they're all valuable to learning but just 
need to be said more than others. Like I said, if I'm the only one getting it wrong, that's just 
one person, but when the whole class is messing up, they're all going to fail if they don't get 
this. That one needs to be brought up, [and] then she can come back to me if there's time in 
the class. I think it's like that. (Harley, Final interview, Nov. 30, 2017) 
Harley believed that mathematical mistakes were extremely valuable, and this belief 

strengthened as the study progressed. For Harley, mathematical mistakes could be used to ensure 
that you “really understand something,” and to elicit different ways of thinking about the same 
problem, which is aligned with NCTM’s view of the role that mistakes should play.  

Discussion 
Central beliefs were persistent and mediated how other beliefs are clustered, interpreted, and 

in some cases influenced in different contexts. Furthermore, these central beliefs were used when 
PTs make sense of situations that are in contention with their current beliefs, which emphasized 
the importance of understanding what those beliefs are. For teacher educators, understanding 
PTs’ central beliefs concerning mathematical mistakes is crucial if there is going to be an effort 
to change them. Additionally, understanding central beliefs can inform teacher educator high-
leverage practices to further support alignment of PTs’ beliefs with literature on how mistakes 
should be used in the mathematics classroom and ultimately the PTs’ classrooms. Findings 
suggest PTs notice how mathematical mistakes are used in their teacher preparation classes, 
especially if they are used differently compared to previous mathematics classrooms. Leveraging 
that environment and making the purpose of using mathematical mistakes explicit is a first step 
in aligning PTs’ beliefs with literature recommendations. 
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We examine the potential of co-planning during the internship experience to assist interns in 
making the transition from being a mathematics education student to becoming a mathematics 
teacher. We describe six strategies to facilitate co-planning between mentor teachers and 
interns. We report data from interns and mentors about their comfort level with particular 
strategies, their use of the strategies, and the benefits and challenges of co-planning in the 
internship setting.   

Keywords: Teacher Education-Preservice, Instructional Activities and Practices, High School 
Education, Middle School Education 

Crucial to both a successful mentor/intern relationship and to the development of the intern 
as a teacher is the co-planning process.  We have found that mentor teachers often struggle with 
how to scaffold interns’ involvement in the lesson-planning process.  Within our program, and in 
conjunction with universities across the country, we have been working to develop and study 
strategies to help mentors and interns plan together more effectively. 

Theoretical Framework 
Our work with co-teaching and co-planning during pre-service teachers’ internship 

experiences is grounded in Lave’s (1991) apprenticeship model of learning.  Lave defines 
learning as “first and principally the identity-making life projects of participants in communities 
of practice” (p. 157).  The work of interns is not simply to build a more refined and abstract 
knowledge of teaching but to work towards becoming “a respected, practicing participant” (p. 
157) in the classroom.  In such an endeavor the working relationship between intern and mentor 
teacher is a major determining factor in the intern’s ability to participate productively and 
collaboratively in the practice of classroom teaching. The mentor teacher serves as both 
collaborator and mentor for the intern.  We envision this mentorship as what Feiman-Nemser and 
Beasley (1997) termed “mentoring as assisted performance.” The mentor’s role is not just that of 
a supportive presence or critic of a performance, but as a real-time coach helping interns navigate 
the world of the classroom.  Our strategies for engaging in co-planning provide guidance on 
ways in which mentors can interact to scaffold interns as they learn to plan and ways in which 
mentors and interns can collaborate on planning. 

Project Background 
This project began with a realization of how powerful the co-teaching strategies (Friend, 

Reising, & Cook, 1993; Bacharach, Heck, & Dahlberg, 2010) were for our interns and mentors.  
The co-teaching strategies provided strategies for how mentors and interns could share classroom 
responsibility and language for them to talk about their shared work.  Despite the usefulness of 
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the co-teaching strategies, we found that many intern-mentor pairs were not taking full advantage 
of co-teaching because they not effectively co-planning.  Much of the literature on co-planning 
envisions co-planning as two teachers sitting together in the same place, at the same time, going 
from a general topic to a full lesson plan.  Schwille (2008) provides one teacher’s description: 
“We’d be sitting at our table and we’d have our plan books. We’d have all of the books and 
materials and stuff around us. We’d just be sitting at this table talking, basically.” (p. 153).  Just 
as the co-teaching strategies expanded the vision of co-teaching beyond the Team Teaching 
model, we sought to envision other ways that teachers could engage in co-planning.  

Development of the Co-Planning Strategies 
The first stage of our work was the development of a set of potential co-planning strategies.  

Because the success of the co-teaching strategies, we used these as inspiration for developing six 
co-planning strategies. We defined each approach, described how a planning session might go, 
and identified potential benefits and concerns for each approach.  In 2015, we piloted our 
training with interns, mentors, and university supervisors at two universities.  Based on feedback 
from participants, we refined the descriptions of the strategies and the training.  In 2016 we used 
feedback from eight secondary mathematics intern/mentor pairs and 83 pairs across other grade 
levels and subjects to further refine our descriptions and training.   

Co-Planning Strategies 
These co-planning strategies are not progressive or hierarchical.  However, in working with 

our interns, we have found that some co-planning strategies are more productively used early in 
the internship while others might be more appropriate later.  We present them (see Table 1) in an 
order in which they might first be encountered in an internship setting.  

Table 1: Co-Planning Strategies (adapted from Cayton, et al., 2017) 
Strategy Definition 
One Plans, 
One Assists 

Each co-teacher brings a portion of the lesson, although one clearly has the 
main responsibility. The team works jointly on final planning. 

Partner 
Planning 

Co-teachers take responsibility for about half of the components of the 
lesson plan.  Then they complete the plan collaboratively.  

One Reflects, 
One Plans 

Mentor thinks aloud about the main parts of the lesson and the intern writes 
the plan. 

One Plans, 
One Reacts 

One co-teacher plans and the other makes suggestions for improvement. 

Parallel 
Planning 

Each member of the co-teaching team develops a lesson plan, and the two 
bring them together for discussion and integration. 

Team 
Planning 

Both teachers actively plan at the same time and in the same space with no 
clear distinction of who takes leadership. 

The Current Study 
In this study, we address three research questions: Which co-planning strategies are mentor 

teachers and interns using and are most comfortable using?  What do mentor teachers and interns 
perceive as the benefits and challenges of co-planning?  How valuable do mentor teachers and 
interns perceive co-planning and co-teaching to be?  

Data for this study is from 11 secondary mathematics intern/mentor pairs and include pre- 
and post- surveys from both interns and mentors and weekly journals from interns. The interns in 
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this study began learning about and practicing co-planning strategies during their mathematics 
methods course in their junior year.  Interns and mentors participated in two 2-hour co-
planning/co-teaching workshops and one math-specific 1-hour co-planning workshop.   

Findings 
Interns’ usage of strategies and comfort level with strategies is summarized in Table 2. 

Table 2: Usage of Co-Planning Strategies & Intern Comfort Level 
Usage of Co-Planning 

Strategies 
Interns’ “Most Comfortable” 

Strategies 
Mentors’ “Most 

Comfortable” Strategies 
One Plans, One Assists(128) One Plans, One Assists (6 of 11) One Plans, One Assists (4 of 9) 
One Plans, One Reacts (82) One Plans, One Reacts (6 of 11) One Plans, One Reacts (2 of 9) 
One Reflects, One Plans (51) Team Planning (3 of 11) Team Planning (4 of 9) 
Partner Planning (41) One Reflects, One Plans (1 of 11) One Reflects, One Plans (0 of 9) 
Team Planning (26) Partner Planning (0 of 11) Partner Planning (4 of 9) 
Parallel Planning (5) Parallel Planning (0 of 11) Parallel Planning (2 of 9) 

In their journals interns reported strategies used during each class period.  The most used co-
planning strategies were One Plans, One Assists (128) and One Plans, One Reacts (82). Three 
strategies: One Reflects, One Plans (51), Partner Planning (41), and Team Planning (26) were 
used moderately, while Parallel Planning (5) was rarely utilized.  All co-planning strategies 
were used at least once, but only one intern used all six strategies.   

The strategies interns reported as most comfortable were One Plans, One Assists and One 
Plans, One Reacts.  No interns reported comfort with Partner Planning or Parallel Planning.  
Mentor teachers mentioned a broader set of strategies as comfortable with no single strategy 
mentioned by more than half of the mentor teachers.  There was often a difference between what 
the interns reported and what the mentors reported as most comfortable.   

We found that mentor teachers expressed more benefits than challenges on both the pre- and 
post-survey. There were four themes in the reported benefits: benefits for interns, benefits for 
mentors, benefits for high school students, and benefits for both teachers.  (See Table 3).  

Table 3: Benefits of Co-Planning  
Benefits  Mentor Pre Mentor Post Intern Pre Intern Post 
For interns 6 3 8 10 
For mentors 3 6 0 0 
For lesson plan/students 3 3 2 1 
For both teachers 2 5 3 0 

 
Of the challenges raised by the mentors, only time for planning and allowing interns 

independence, were mentioned both pre and post by the same mentor.  In the pre-survey, the 11 
mentors identified 14 benefits and only 5 challenges.  In the post-survey the nine mentors who 
completed the survey identified 17 benefits and 5 challenges.  Interns expressed more benefits 
than challenges on both the pre- and post-survey. There were two main themes: benefits for 
interns and benefits for high school students.  Compared to the mentors, interns reported more of 
a balance between benefits and challenges. In both the pre- and post-surveys, interns identified 
benefits focused primarily on themselves.  In the post-survey the number of interns noting 
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benefits for themselves increased slightly, while the number mentioning benefits for quality of 
lesson plans/student instruction decreased slightly.  

On the post-survey interns and mentors were asked to rank “How valuable was co-
teaching/co-planning in your clinical experience?” on a scale of 1 to 5.  Ten interns responded; 
seven rated it as valuable or extremely valuable.  Three were neutral.  Nine mentors responded; 
eight rated it as valuable or extremely valuable with the ninth neutral.  The high value ranking 
from the interns and mentors was supported by quotes from the data: 

• Intern: “I really enjoyed co-planning. I would think of ideas and talk it over.” 
• CT: “I think that it is the best way to grow an intern and to grow as a clinical teacher.  

Co-Planning has to be some of my favorite times with my intern, because I learn as much 
as they do…” 

Discussion and Implications 
Participants in this study used a variety of the co-planning strategies.  They felt that co-

planning was beneficial for helping interns improve their planning skills and that use of the co-
planning strategies helped to avoid frustration and wasted time. The strategies helped to facilitate 
good communication between mentors and interns.  Interns reported feeling empowered to 
contribute to the planning process, even before they were ready to plan complete lessons.   

The literature and our pre-survey results indicate concerns about the challenge of finding 
time for co-planning, however, one result from our study is that the co-planning strategies may 
help with time concerns.  Many of the strategies involve a combination of face-to-face planning 
and individual work time so mentors and interns need less common planning time.  In addition, 
the use of the co-planning strategies resulted in less time wasted by interns creating plans that did 
not meet mentors’ expectations.    

Although we use the co-planning strategies in co-teaching settings, they are useful in a wide 
variety of settings.  Interns in more traditional internship models still need help learning to plan 
and must still share the planning with their mentor teacher.  We have seen these strategies used 
by two or more licensed teachers and by pairs of interns.  We have used these strategies 
ourselves as we plan our university courses or plan presentations together.  While these co-
planning strategies grew out of our experiences with co-teaching, they appear to be much more 
broadly applicable. 
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This study used a standardized, practice-based assessment of 13 preservice secondary math 
teachers to determine how they responded to a common student algebraic error. Data included a 
video-recorded interview with a researcher who played the role of a ninth-grade algebra student 
demonstrating a common student error about squaring a binomial. Data were analyzed using 
mathematical task analysis guide and features of a math-talk community. Findings indicate 
participants were able to elicit student thinking but were not able to respond in meaningful ways 
that supported conceptual understanding. Symbolic manipulation, rather than connecting 
representations, was the primary method for addressing misconceptions.   

Keywords: Algebra and Algebraic Thinking, Instructional Activities and Practices, Teacher 
Education-Preservice 

Practice-based teacher education requires teacher educators to identify high-leverage 
practices (Ball & Bass, 2000; Sleep & Boerst, 2012) and deliberately design and embed in 
teacher education programs opportunities to develop skill with those practices. With an increased 
emphasis on teaching practice (Hiebert & Morris, 2012) comes a need to assess the developing 
practice of preservice teachers. This paper shares an example of a practice-based assessment for 
preservice secondary teachers (PSTs) focused on eliciting and responding to student thinking. 
Research questions address (1) what mathematical and pedagogical approaches were used, (2) 
the level of cognitive demand, and (3) quality of mathematical discussion established when PSTs 
responded to a common algebraic error. 

Background 
Though authentic field experiences are critical components of teacher preparation, they are 

problematic in several ways that indicate ‘practice-based’ should not be conflated with more 
time in the field. In K-12 classrooms, PSTs are limited to the context of a specific lesson and set 
of students. Classroom demands and established norms may limit PSTs opportunities to enact 
some practices (Campbell & Elliott, 2015). The complexity of managing a class of learners 
makes it difficult for a novice to isolate and target a particular practice. Competing goals of the 
university and K-12 school complicate which practices PSTs are encouraged to learn to enact 
and adopt in classrooms (Feiman-Nemser, 2001). Supporting field experiences with structured 
and repeated opportunities for novices to practice the work of teaching is critical to a robust 
practice-based teacher education program (Ball & Bass, 2000).  

Using high-leverage practices to frame secondary math teacher education supports a practice-
based approach and can make the complexity of teaching accessible to novices. Teacher 
preparation programs have designed experiences where prospective teachers can try out and 
develop proficiency with enacting high-leverage practices (Forzani, 2014). Coached rehearsals 
(Lampert et al., 2013), instructional routines (Lampert & Graziani, 2009), and collaborative 
teaching cycles (Hallman-Thrasher, 2017) have been shown to support preservice teachers at 
developing skilled practice (Grossman & McDonald, 2008). Analysis of video (e.g., van Es & 
Sherin, 2010) and creating and analyzing representations of practice (e.g., Crespo, Oslund, & 
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Parks, 2011) have improved preservice teachers’ attention to student mathematical thinking. 
Only recently have researchers extended this work to the secondary level (e.g., Campbell & 
Elliott, 2015; Ghousseini & Herbst, 2016). 

The standardized student interview used in this study is example of an approximation of 
practice (Grossman, Hammerness, & McDonald, 2009) in that it engages novices in work that is 
proximal to that of a practicing teacher: eliciting student thinking, recognizing a student’s 
misconception, and responding to the misconception in ways that foster conceptual 
understanding. Based on ‘standardized patients’ used in medical training (Barrows, 1993), in the 
interview a researcher plays the part of student who holds a particular misconception and a 
preservice teacher plays the role of a teacher tasked with diagnosing the misconception. The 
researcher’s responses, language, and actions are guided by a protocol to ensure a standard 
experience across PSTs. Standardized students in simulations of teaching practice have been 
used with preservice elementary teachers to elicit student thinking around a correct, non-standard 
algorithm, interpret that student’s thinking, and describe that thinking to an observer (Boerst, 
Sleep, Shaughnessy, & Ball, 2012). This study goes a step further by assessing preservice 
secondary teachers’ abilities to both elicit and respond to student thinking and to do so in the 
context of a common student error. 

Methods 
Participants were 13 preservice (grade 7-12) mathematics teachers (PSTs) enrolled in a large 

university’s undergraduate secondary mathematics teacher education program and completing 
their only mathematics methods course. PSTs were given a copy of the problem “  = 

” along with paper, pens, graph paper, algebra tiles, and a graphing calculator. PSTs were 
instructed to use any of the tools available to facilitate a discussion to help the student identify 
the error, revise the work, and understand why the original answer was incorrect. The interview 
was video recorded and all written work made during the interview was collected.  

Each video was coded to determine what pedagogical moves the PST made in responding to 
the standardized student (e.g., proposed similar problem, suggested a counterexample, asked 
student to explain or justify work) and what mathematical approaches were taken: numeric 
(comparing with squaring a constant or plugging in numbers to find a counterexample), algebraic 
(using properties of algebra to simplify expressions), geometric (using an area model or algebra 
tiles), or graphic (comparing graphs of y = x2 + 9 and y = (x + 3)2 or using knowledge of 
transformations on functions). Each video was assigned a level for cognitive demand from the 
mathematics task analysis guide (Stein, Smith, Henningsen, & Silver, 2000) and a level (0, 0.5, 
1, 1.5) for each component of the revised math-talk framework: questioning, explaining 
mathematical thinking, source of ideas, and responsibility for learning (see, Hallman-Thrasher, 
2011; Hufferd-Ackles, Fuson, & Sherin, 2004). 

Results 
Results of the study address the level of cognitive demand and quality of mathematical 

discussion established and the mathematical and pedagogical approaches used when PSTs 
responded to a common algebraic error that indicated an underlying misconception. Of the 13 
PSTs, 5 elevated the cognitive demand to procedures with connections, 6 maintained it at 
procedures without connections, and 2 lowered it to memorization. The quality of the PSTs 
discussion as assessed by the revised math-talk framework was clumped into four categories. 
Three PSTs who rated the lowest level in all components of math-talk were tellers, consistently 
lowering the cognitive demand by telling the student how to correct the work or correcting the 
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work for the student. Five PSTs were delayed tellers who elicited thinking before telling the 
student a strategy; they rated a level 1 in questioning and explaining, but level 0 in source of 
ideas and responsibility for learning. Three PSTs were non-tellers; they posed many questions 
and did not draw conclusions for the student, but their questioning failed to address the key 
mathematical concepts. They rated a level 0.5 or 1 in all math-talk components. Two PSTs were 
connecters who raised the cognitive demand by asking the student to justify work, pressing for 
complete explanations, and connecting to other representations or the underlying concept of 
distributing twice, and requiring the student draw conclusions or judge validity of ideas. These 
PSTs rated high (level 1 or 1.5) in all components of math-talk.  

In terms of mathematical approaches, all 13 PSTs initially performed algebraic manipulation 
or guided the standardized student to do so. Many focused on interpreting symbols by asking the 
student, “What does squaring mean?” or, “What do parentheses mean?” Only 3 PSTs eventually 
used or helped the student use a different strategy or connect to a different representation (1 
geometric and 2 comparing graphs). Five PSTs explicitly asked about the pneumonic device 
‘FOIL’ and when the standardized student claimed not to know this term, 4 went on to describe 
how to use it to multiply two binomials. Seven others asked the standardized student how to 
solve a different problem and drew comparisons between squaring a binomial and multiplying 
two distinct binomials. Two PSTs helped the student identify the error by asking the student to 
notice what happened to the equation (x + 3)2 = x2 + 9 when a number was substituted for x.  

The initial pedagogical move for 10 PSTs was to pose a question, whereas 2 PSTs 
immediately pointed out the student’s error and 1 explained a correct procedure. Of those who 
began the interaction with questioning, 2 prompted the student towards a particular approach, 
“How do you expand this to look like multiplication?”, and 8 elicited student thinking with some 
form of “How did you get the answer?” PSTs’ follow-ups to their initial question varied from 
revoicing to clarify student explanation, pressing for justification by asking “How do you know 
that’s the answer?”, and pressing the student to further explain concepts and terms. Three PSTs 
who initially elicited thinking, then suggested strategies that were unrelated to the student’s way 
of thinking. Similarly, 1 participant who initially prompted a strategy, then elicited student 
thinking about that strategy, and leveraged it to connect to a graphical representation.  

Findings showed that there was room for improvement in PSTs’ ability to maintain high 
cognitive demand and connect across representations in response to a student’s incorrect 
solution. Even when PSTs raised the cognitive demand, they did not keep the responsibility for 
generating ideas and judging validity of approaches on the student. The PSTs persisted in 
suggesting new ideas for the student to execute and evaluating the correctness of the student’s 
work. This indicates that posing questions and eliciting explanations may be more accessible to 
novices than shifting mathematical authority from teacher to student or supporting students in 
generating new ideas. Further, though most PSTs knew to start their interaction with questioning, 
not all questioning was mathematically productive. Eliciting student thinking was not 
consistently associated with high cognitive demand or high math-talk ratings, and prompting a 
strategy was not consistently associated with low cognitive demand and low math-talk ratings; 
how PSTs followed their initial inquiry mattered.  

Conclusion 
Though PSTs were frequently adept at asking questions, leveraging student thinking to 

respond in ways that build conceptual understanding was challenging. Most PSTs did not 
distinguish between the standardized student making an error and having no meaning for the 
mathematical objects. PSTs need guidance on how to interpret and what to do with student 
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thinking once they have elicited it and they need opportunities to practice that skill. These 
findings may point to the need to decompose the high-leverage practice of eliciting and 
responding to student thinking into practices of a smaller grain-size. One such smaller practice 
could be the use of questioning as a formative assessment of conceptual understanding or as 
means of shifting authority to the student. With smaller practices identified teacher educators can 
develop specialized experiences that support preservice teachers in learning these practices. 
Findings can inform the creation of an instructional activity (Lampert et al., 2010) for responding 
to an incorrect student solution in ways that allow a teacher to diagnose a misconception and 
leverage student thinking to respond in ways that build conceptual understanding.   
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In this qualitative study, we used discussion forums and lesson plans from an online course on 
teaching mathematics and statistics with technology in order to examine participants’ statistics 
education perspectives. Participants’ perspectives included the nature of statistics, features of a 
good statistical task, learning statistics, teaching statistics, and role of technology. Some 
expressed perspectives were also reflected in participants’ lesson plans, but others were missing. 

Keywords: Teacher Beliefs, Data Analysis and Statistics, Technology 

Background 
Although we know the importance of developing statistically literate students in a data-

driven world (Kwasny, 2015), and guidelines have been endorsed by the American Statistical 
Association for K-12 students’ learning (Franklin et al., 2007) and mathematics teacher 
preparation in statistics (Franklin et al., 2015), many preservice mathematics teachers are not 
well-prepared to teach statistics (Lovett & Lee, 2017). The purpose of this study is to examine 
how online materials specifically designed to provide rich experiences in teaching and learning 
statistics may impact the statistics education perspectives of preservice and inservice teachers. 

Teachers of statistics enter a classroom with already-developed perspectives of statistics 
education based on their previous experiences as learners of statistics, in and out of school, or 
based on their belief that statistics and mathematics are the same (Gal, Ginsburg, & Schau, 
1997). There is a large body of evidence that using technology to teach and learn statistics allows 
teachers to create data visualizations to aid in analysis, link multiple representations, and 
augment graphs with statistical measures (e.g., Lee et al., 2014). We hypothesized that 
participants’ use of such technology would impact their statistics education perspectives. Teacher 
preparation is increasingly being offered online, with some evidence that it is effective with a 
supportive learning environment, higher levels of motivation of learners, contexts that encourage 
instructor and peer interaction, and opportunities to practice material (Noesgaard & Ørngreen, 
2015). Lee, Lovett and Mojica (2017) found that experiences in an online professional 
development course impacted participants’ perspectives about statistics teaching related to: 1) 
statistics being more than computations and procedures, 2) using dynamic technology, 3) using 
real, messy data, and 4) increasing students’ levels of statistical understanding. The current study 
examines the question: When teachers engage in online modules, what perspectives about 
teaching and learning statistics do they express, and later enact in planning to teach statistics?  

Methods 
The context for this study was a mostly asynchronous required online class on teaching 

mathematics with technology at a large southeastern university. The course focused on teaching 
statistics and geometry, with weekly modules that contained articles, videos, quizzes, data 
investigations using technology, and forum discussions. The instructor also held synchronous 
class sessions approximately every other week. There were six week-long statistics modules, 
covering content on the nature of statistics, statistical habits of mind, levels of understanding, 
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measures of center and variability, and inference. Participants include eight preservice (PST, 4 
undergraduate, 4 graduate) and three inservice teachers (IST, graduate-level).  

Data sources included posts from four discussion forums in the first two modules (of 6) on 
teaching statistics with technology and statistics, and nine lesson plans (some worked in pairs) on 
teaching a topic in statistics participants submitted after all six modules. Based on an initial 
reading of all (approximately 100) posts, a set of data-driven codes, which were also informed by 
literature, were used to code the posts. A checklist derived from these codes was then applied to 
lesson plans. For example, since participants discussed concerns that their own students would 
need time to learn technology tools; that idea became something that was coded for in lesson 
plans. Once lesson plans were coded, frequencies were calculated, and trends identified. 

Findings 
Analysis of discussion forums and lesson plans resulted in five salient areas of participants’ 

perspectives: the nature of statistics, features of a good statistical task, learning statistics, the 
practice of teaching statistics, and role of technology in statistics education. 
Perspectives on the Nature of Statistics 

When asked to reflect on what they had learned after Week 1, over half the participants (n=6) 
explicitly commented on the differences between mathematics and statistics, pointing out 
differences such as uncertainty in answers, the level of focus on computations and procedures, 
the role of context and data, the role of measurement, issues of sampling, and the role of 
interpretation. For example, a response to the prompt included: 

…statistical thinking is very different from “standard” math thinking. “Standard” math 
involves a lot of procedural thinking and there is always some form of right answer. In 
statistics, procedure is important, but context, interpretation, and analysis is heavily involved 
in the process. (PST, undergraduate student) 

Three participants also expressed the belief that because of these differences, statistics is, by its 
nature, more engaging for students than typical mathematics.  
Features of a Good Statistical Task 

When asked to reflect on a task they participated in, and to analyze some example tasks, their 
responses included descriptions of what they believe constitutes a good statistical task. The 
majority of participants (n=8) expressed that a good statistical task is interactive or “hands-on”. 
For many participants, this meant students should be exploring data, looking for relationships, 
and creating (with technology) their own data displays. This perspective was enacted in their 
lesson plans, as all (n=9) planned tasks seemed to be hands-on and interactive. 

Many participants (n=8) explicitly mentioned issues regarding data when assessing quality of 
a statistical task, with the most common sentiments being that data should be interesting to 
students (n=8), real (n=4), and relatively large (n=2). These perspectives were also evident in 
lesson plans, where all (n=9) tasks used real data, most (n=7) used data likely to be interesting to 
students, and most (n=5) used large data sets, often with hundreds of cases and over 10 variables.  

When describing a good statistical task, most participants (n=9) referred to at least one phase 
of the statistical cycle (pose->collect->analyze->interpret), and five participants mentioned that a 
task should include all four parts. It is interesting to note that, while most lesson plans had tasks 
with students analyzing (n=9) and interpreting (n=8) data, only one task had students posing their 
own questions to investigate, and only two tasks had students collecting their own data. 

Other features mentioned by multiple participants include having students share their 
findings with the class (n=2), including questions that require students to justify answers (n=2), 
and including a clear learning objective for students (n=2). These features showed up in  lesson 
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plans 7 times, 8 times, and 1 time, respectively. With each task feature, at least one participant 
who had expressed that perspective did not create a task that reflected that perspective. 
Perspectives on Learning Statistics 

Though not specifically asked about it, some participants gave their perspectives on how 
students learn statistics. Some participants (n=3) expressed the need for students to have time to 
get acquainted with data before beginning analysis. After watching a video, one PST reflected: 

[In this video], connecting students with the data before they start analyzing was emphasized. 
This means allowing students to know what was going on when and where the data was 
taken.[…] I did not use this method while I was learning statistics in high school, but I do 
plan on using it when teaching statistics. 

Five lesson plans allotted time or specifically included questions in the task intended to help 
students become familiar with data before analysis began. Other participants (n=3) reflected on 
how technology can become a tool that can affect how a student interacts with a statistical task, 
or on the diversity of students’ expected statistical skill levels. 
Perspectives on the Practice of Teaching Statistics 

Across all four discussion forums, participants expressed their perspective about the practice 
of teaching statistics. Three participants expressed the necessity for teachers to ask good 
questions during a lesson, as one IST expressed her concerns about her ability to do so: 

I am also concerned about being able to effectively direct my students with the right 
questions so that the task is successful. […] If I am not able to direct the task effectively we 
would not reach our outcome goals or be able to help the students develop along the 
statistical thinking chart. 

Six participants stated a need for teachers to ensure their students were engaged. These 
participants were confident they could do so, having seen some examples in the modules. Seven 
lesson plans (including all six created by participants valuing engagement) included a launch 
phase or activities intended to get students engaged in the content of the lesson. Other 
perspectives included the benefit of grouping students (n=3), though all nine lesson plans 
included grouping students. Three participants indicated the importance of statistics in K-12, and 
two participants believed statistics lessons were an opportunity for cross-curricular content. 
Perspectives on the Role of Technology 

Perspectives on the role of technology tools generally fell into two categories: how tools can 
impact statistical learning, and methods for implementing tools. Six participants mentioned that 
quickly producing accurate graphical displays and calculations makes data easier to analyze and 
interpret. In addition, most (n=7) participants mentioned that being able to simultaneously see 
multiple linked representations would allow students to better analyze and interpret data, as well 
as help keep the context of data foregrounded. Two participants expressed that whether or not a 
tool was easy to use would have an impact on how much a student would learn while using it. 

Three participants expressed concerns that statistical technology tools would be difficult for 
students to use. Similarly, four participants believed that students would need adequate time with 
the technology in order to learn how it effectively. This was also reflected in the plans, where 
most (n=6) lessons either included time for students to interact with the technology before the 
task started, or indicated students would be familiar with the tool due to their work in prior tasks. 
Over half (n=6) of participants stressed the importance of sufficient guidance from the teacher in 
order for technology to be effective learning tools. However, only two lesson plans allotted any 
time for such guidance to be given, anticipated any student struggles with technology, or gave 
any suggestions on how to address those struggles. Finally, some participants believed that 
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whether a piece of technology was an effective statistical learning tool depended on factors such 
as students’ age or statistical skill level, and the learning objective to be taught in the curriculum. 

Discussion  
Our study found the online learning environment to be effective in impacting some of the 

participants’ perspectives on statistics education, adding to the body of literature that says that 
online learning is effective (Noesgaard & Ørngreen, 2015). “Effectiveness” can be measured in 
different ways, but for our purposes, we were solely interested in evidence of perspectives that 
could influence the design of lesson plans. The perspectives we observed built on those seen in 
previous online contexts (e.g., Lovett & Lee, 2017) but also included other perspectives such as 
ideas about curricular considerations and features of a good statistical task. 

In general, participants were not specifically asked about their perspectives on specific 
topics, but were rather responding to open-ended discussion prompts or to other participants. For 
this reason, one cannot infer that because a participant did not express a particular perspective in 
discussion forums, that the participant does not hold that perspective. A prime example of this is 
the issue of grouping students—only two participants expressed the opinion that students should 
be grouped, and yet, every lesson plan included grouping students. One interesting finding is that 
for perspectives expressed by participants, there was often a lack of evidence of that perspective 
in their lesson plans. There are three clear examples of this: students posing their own statistical 
questions to investigate, students collecting their own data, and students needing guidance on 
how to use technology. It is unknown why these discrepancies existed. Perhaps they were due to 
the perceived constraints of the classroom (e.g. time), or perhaps participants had trouble fully 
assuming the role of a teacher, particularly for those with no prior teaching experience.  
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This study investigated future secondary teachers’ opportunities to learn how to teach reasoning 
and proof reported by instructors of required courses in three secondary mathematics teacher 
education programs. We examined not only what future teachers learned but also how they 
learned to teach reasoning and proof. We found limited opportunities and noticed variations in 
the amount and types of the opportunities provided by each university. We noticed that important 
issues such as modifying or enacting reasoning and proof tasks and using manipulative and 
technology were not discussed in two of the universities. We also found that instructors reported 
limited types of instructional activities they had used to engage future teachers in learning to 
teach reasoning and proof. Implications of the research were discussed at the end of this paper.  

Key words: Reasoning and Proof, Teacher Education-Preservice  

Reasoning and proof (R&P) play an important role in school mathematics curriculum. The 
field of mathematics education recommends that R&P should be integrated into students’ 
mathematical experiences across all grades and across a breadth of content areas (Common Core 
State Standards Initiative, 2010; NCTM, 2000). However, many secondary students have 
difficulty in writing valid proofs (e.g., Knuth, Choppin, & Bieda, 2009). Studies also show that 
teachers’ conceptions, knowledge, and prior learning experiences of R&P can have significant 
impact on their teaching of R&P and thus affect their students’ understanding and achievement 
in learning R&P (Oehrtman & Lawson, 2008). However, substantial amount of literature focused 
on how R&P was taught and learned in secondary classrooms (e.g., Ball, Hoyles, Jahnke, & 
Movshovitz-Hadar, 2002). There was a lack of investigation particularly on preservice secondary 
teachers’ (PSTs) opportunities to learn how to teach R&P in their college mathematics or 
mathematics education courses, which is the main focus of our on-going study.  

Theoretical Perspectives 
Teachers’ teaching practices of proofs have been studied within various curriculum contexts 

and educational settings (e.g., Herbst, 2002). The majority of the research has focused on factors 
and strategies that might aid teachers’ in effectively teaching R&P. For example, Oehrtman and 
Lawson (2008) suggested effective proof teaching approaches, such as asking students to reflect 
on their procedures and reasoning patterns, identifying successful procedures and reasoning 
patterns, and challenging students to further reflect on their reasoning in new context. A 
noticeable theme of suggestions of effective teaching of R&P focuses on the teaching philosophy 
that emphasizes the nature of proofs rather than their external form or routine, and how the 
nature of proofs interacts with the instructional contexts as an organic whole. For example, 
Herbst (2006) suggested that, “customary, sometimes ritualistic, practices of proving in high 
school geometry classrooms stand in the way of engaging students in more authentic 
mathematical activity,” and, “it seems important thus to develop customs of doing mathematical 
work that make students accountable for tasks that require reasoning deductively even if the 
product is not yet fully written as a mathematical proof” (p. 344). These suggestions guided us in 
the analysis of some of the initial categories of the data. We will elaborate them in our findings.  
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Methods  
As a part of the larger NSF funded study, we examined required mathematics and 

mathematics education courses at three contextually different universities A (Master’s degree-
granting institution), B (Ph. D – granting institution with a five-year undergraduate program), 
and C (Ph. D – granting institution with a four-year undergraduate program). We analyzed 15 
instructors’ responses to the interview question “What opportunities are there to talk about 
activities or strategies for teaching secondary students to engage in reasoning or proof?” 
Interview data were analyzed using the inductive and deductive analysis methods alternately 
(Patton, 2002). The initial categories of data consisted of categories suggested by literature. The 
breath and depths of these initial categories kept evolving as the data analysis was going until we 
resolved all discrepancies and reached a set of categories that can capture all relevant ideas from 
data. After coding was done, we counted the number of instructors who mentioned a particular 
category of knowledge or activities at each university and reported the counts in Table 1.  

Findings 
As recommended by Principles and Standards for School Mathematics (NCTM, 2000), we 

considered not only what teachers learn but also how they learn to teach R&P. We report these 
two aspects in the following two sections.  
Knowledge that may affect PSTs’ future teaching of R&P  

Table 1 presents opportunities for PSTs to learn to teach R&P reported by instructors as the 
efforts they had made to support PSTs’ learning of teaching R&P. We found that these 
opportunities were all from mathematics education courses. All three universities reported 
providing PSTs opportunities to learn the importance of R&P in secondary schools, the 
difference between conceptions of proof in secondary school setting and college setting, and how 
to ask questions to support secondary students’ R&P. For instance, Instructor of Secondary Math 
Methods 1 at University C mentioned that:  

We just talk about what can count as proofs, and I try to really encourage them to have a 
broader definition of proofs, what does it mean to prove something? Why do we have to 
write it in two columns? What happens if kids just write out a really good argument in a 
paragraph and they don't have all the steps in the right order, but they are able to justify it.  

Instructor of Middle School Math Method at University C reported having a discussion with 
PSTs about asking questions: 

The idea of being able to justify anything you're saying or asking students to explain more, 
when I show them any kinds of videos of teaching we're focusing on the questioning. What 
question is she asking to draw out their understanding of what is happening? How to ask 
questions that get students to not just give you the answer but to explain their reasoning. 

For each of the other three categories, including modifying or enacting R&P tasks, using 
manipulative and technology, and multiple ways to present a deduced result, we only found one 
instance mentioned by one university. For example, Instructor of Secondary Mathematics 
Methods 3 at University B mentioned discussing with his student’s about “thinking about ways 
in which teachers can mobilize different tools from physical manipulatives to representations that 
they use” to promote students’ understanding of R&P. In summary, we found that University A 
and C seemed to heavily focus on questioning and conceptions of R&P in school setting. In 
addition, University B also addressed important issues such as adapting proof tasks and adopting 
tools and technology in teaching R&P.  
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Table 1: Opportunities for PSTs to Learn to Teach R&P at Three Universities 
Categories A B C Total 

Knowledge that may affect PSTs’ future teaching of R&P 5 5 5 15 
Importance of R&P in secondary school 1 1 1 3 
Conception of proof in school setting 2 1 1 4 
How to ask questions to support secondary students’ learning of R&P 1 1 3 5 
Modify or enact R&P tasks 0 1 0 1 
Use manipulative and technology to teach R&P 0 1 0 1 
Use multiple ways to present a deduced result 1 0 0 1 

Activities used to engage PSTs in learning to teach R&P  2 5 1 8 
Evaluate secondary students’ proof writing  1 1 0 2 
Examine secondary textbooks 1 1 0 2 
Watch video of teaching practices in secondary classrooms 0 0 1 1 
Study research based materials 0 1 0 1 
Modify existing proof tasks 0 1 0 1 
Field experience with secondary students 0 1 0 1 

 
Activities mathematics educators used to engage PSTs in learning to teach R&P 

As seen in Table 1, we found interesting variations across the activities mathematics 
educators used to engage PSTs in learning to teach R&P. Instructors at University B used a 
variety of ways to engage PSTs. In contrast, instructors at University A only reported a couple of 
activities. Evaluating secondary students’ proof writing and examining secondary textbooks were 
two types of activities reported by both Universities A and B. For example, Instructor of 
Secondary Math Methods at University A mentioned that “It may come up with looking at work 
students have actually produced and trying to make judgments about whether the argument that 
students have made in answering a problem is clear, concise, and accurate.” Instructor of 
Secondary Math Methods 3 at University B discussed using research based materials in his 
teaching method course:  

We have been using the cases of R&P in secondary mathematics materials that are being 
developed under an NSF grant. There are case-based materials designed to increase teachers' 
knowledge of what is meant by R&P and how to teach R&P tasks. 
The same instructor reported providing PSTs opportunities to “modify tasks from their 

curriculum that may not be strong in R&P to enhance the R&P potential.” The only instructional 
activity reported by instructors at University A was to have PSTs watch and analyze videos of 
teaching R&P in secondary classrooms. 
 

Discussion and Conclusions 
Overall, we found limited opportunities for PSTs to learn how to teach R&P across the three 

teacher education programs. We also noticed variations in the amount and types of the 
opportunities provided by each university. University B reported the highest amount of instances 
with the widest range compared to the other two universities. University B reported an emphasis 
on discussing how to modify or enact proof tasks, which is an important component in preparing 
PSTs in teaching R&P due to the important role tasks play in teaching mathematics (Lin, Yang, 
Lee, Tabach, & Stylianides, 2012). Another reason why PSTs need opportunities to learn 
modifying or enacting a proof task was pointed out by Instructor of Secondary Math Methods 3 
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at University B. He said “since we know that there are not a wealth of really strong R&P tasks in 
even the better textbooks that we have in middle and high schools right now.” University B also 
reported stressing PST’ reflection on using tools and technology in teaching R&P. This aspect 
was not mentioned in the instructors’ reports in Universities A and C. Nowadays, as technology 
is getting used more and more widely in K-12 classrooms to support student explorative 
learning, there is a need to have a discussion on how technology could possibly support or hinder 
secondary students’ learning of R&P. In fact, many studies have reported both the positive and 
negative impact of the use of technology in secondary classrooms on student learning and 
understanding of mathematical proofs (Sinclair et al., 2016). The lack of reported instances in 
Universities A and C regarding the use of technology raises a question on if PSTs were well 
prepared to incorporate technology properly in their future teaching of R&P.  

Though we aimed to report how teachers were prepared in teaching R&P, our research is not 
meant to be evaluative but informative. We expect that our findings will support other teacher 
education programs as they are reflecting on their teacher training programs in terms of 
promoting their future teachers’ ability to teach R&P. Some of the instructional activities used by 
mathematics educators such as having PSTs read research based materials on R&P could be 
incorporated into all teaching method courses and benefit other teacher education programs.  

We admit that due to the lack of classroom observation data, we were unable to capture real 
moments when PSTs were learning to teach R&P. However, instructors’ self-reported data are 
mostly likely to reflect instructors’ focuses of the course and thus may have considerable level of 
impact on PSTs’ learning. In this paper, we focused on PSTs’ opportunities to learn how to teach 
R&P as teachers. We see the possibility that opportunities for PSTs to engage in R&P as learners 
could also affect their future teaching practices. We will report those findings in another paper.  
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This research report explores the mathematical conceptions that teacher education candidates 
(TECs) bring into a teaching program, specifically the (mis)understandings about area and 
perimeter of rectangles. A thematic analysis was performed on the incorrect solutions in order to 
gain an understanding of where teacher education candidates were making mistakes. This report 
discusses the themes that were discovered and how some of the information provided was 
mathematically correct but missed the bigger connections within the questions. The information 
provided supports the need to consider what misconceptions are being brought to teacher 
education programs and how to address them within the program. 

Keywords: teacher education, mathematics knowledge for teaching, measurement, 
misconceptions 

Studies have linked mathematics knowledge for teaching to increased student achievement 
(e.g., Baumert et al., 2010). In Ontario, the teacher education program is a two-year degree after 
a bachelor’s degree in another area. Since it is an after degree program, there is no way to 
guarantee if any mathematics courses or earlier teacher preparation courses have been taken. As 
such, there is a strong emphasis on ensuring that the knowledge developed during the program 
supports teacher development in mathematics knowledge for teaching. This study looks at the 
content strand of measurement, particularly area and perimeter of rectangles, in order to draw 
some conclusions about the understandings that are brought to a teacher education program. 

Literature 
Developing a deep understanding of mathematics not only influences teachers’ own 

mathematical conceptions, but also may support better classroom teaching (Stipek, Givvin, 
Salmon, & MacGyvers, 2001). Teachers’ mathematical conceptions, ideologies and development 
subsequently influence their students’ mathematical development (e.g., Schommer-Atkins, 
Duell, & Hutter, 2005) and thus are of critical importance.  

Teachers need knowledge of mathematics that is specialised for teaching (e.g., Silverman & 
Thompson, 2008). Knowledge of mathematical content for teaching goes beyond simply being 
able to solve mathematical problems. Teachers need to deeply understand concepts, see 
connections among mathematical ideas, have knowledge of the potential connections to 
mathematical pedagogy, and be able to break down all the concepts with students in order to 
support student learning (Ma, 1999).  

As a framework for the study, the work of Ball and Bass (2000) was used to guide the 
exploration of the samples. Ball and Bass discuss how constructing knowledge in mathematics 
mirrors what mathematicians do and focus on students providing mathematical reasoning for 
their knowledge claims. This was used as a starting point of looking at the reasoning of the TECs 
in supporting their discussions around area and perimeter. 

This study looks specifically at area and perimeter of rectangles. In order to put this into 
context, I look at where in their school the TECs had potentially encountered this information. In 
Ontario, students by the end of the end of grade 4 will have “determin[ed] area and perimeter 
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relationships for rectangles” (Ontario Ministry of Education, 2005, p. 64). Perimeter is first 
introduced in grade 2, and concepts related to area are first introduced in grade 1 within the 
Ontario curriculum. According to the Common Core in the US (2010), area and perimeter are 
first mentioned in grade 3, and specifically look at “exhibiting rectangles with the same 
perimeter and different areas or with the same area and different perimeters” (Measurement). 

Mode of Inquiry 
The research reported in this summary is a small portion of a larger study involving teacher 

education candidates and their knowledge and beliefs related to teaching and learning 
mathematics. The data set in this study comes from a modified version of the Perceptions of 
mathematics survey (see Kajander, 2010). Specifically the data comes from two questions on the 
survey: (1) For the rectangle below, calculate the perimeter and the area; (2) Is it true that as 
the perimeter of a rectangle increases, so does the area? Explain. The participants in the 
research study were TECs from two different years of a teacher education program in Canada. 
The survey was given on the first day of a teacher education course related to teaching 
mathematics (also known as a “math methods” course). The two years were combined since 
there was no control over who entered into the program or their past experiences. The purpose of 
the study within the larger program of research was simply to explore the mathematics 
knowledge for teaching that participants bring to a teacher education program related to an 
understanding of area and perimeter of rectangles. A total of 147 TECs were included in the total 
data set for analysis in this research report. 

Initially quantitative analysis was performed on both of the questions in order to determine 
the success rate for the participants with the content of the two questions. Following this, a 
thematic analysis (Braun & Clarke, 2006) was conducted on the 125 incorrect responses to the 
second question in the data set in order to determine the specific misconceptions of the TECs. 
Using the process outlined by Braun and Clarke (2006), the data was initially read for initial 
codes, and then themes were created based on the codes. The themes were then reviewed to 
ensure all data points were included and then named for the current research report. This research 
study used an “inductive approach” where the themes were tied to the data as a unit instead of 
existing literature (Braun & Clarke, 2006, p. 83).  

Results 
Quantitative Analysis 

The initial results come from a quantitative analysis on the two questions in the data set. As 
can be seen in Table 1, the majority of the TECs in the study were able to correctly identify the 
area and perimeter of the 3cm by 5cm rectangle given in question 1. Interestingly, the most 
common incorrect answer for calculating the perimeter was 225cm (3×3×5×5). 

Table 1: Results for question 1 
Both area and 

perimeter correct 
Area only correct Perimeter only 

correct 
Both area and 

perimeter incorrect 
88.4% (130) 4.8% (7) 4.8% (7) 2% (3) 

Note. Percentages are listed based on the percentage of total participants (N=147). The number in brackets is the total number of 
participants who were identified in each category. 
 
The results for the second question were slanted in the opposite direction, as can be seen in Table 
2. Less than 10% of the entire data set were able to correctly answer question 2, by indicating 
that just because the perimeter increased, it does not mean that the area does as well. Of that 10% 
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though, 2 of the participants did identify that it was not a true statement; however, were unable to 
explain why it was not. For the remaining portion of the research report, we look at only the 
TECs who gave an incorrect response to the question (n=125). 

Table 2: Results for question 2 
Correct with 
explanation 

Correct with no 
explanation 

Incorrect 
response 

Unsure No response/ 
irrelevant 

8.1% (12) 1.3% (2) 85% (125) 1.3% (2) 4% (6) 
Note. Percentages are listed based on the percentage of total participants (N=147). The number in brackets is the total number of 
participants who were identified in each category. 
 
Thematic Analysis 

In examining the quantitative data, it would be easy to conclude that the participants have 
limited knowledge of the question that was asked. What became clear in examining the 
responses for themes was the participants had strong misconceptions about the question; 
however, some of their responses were definitely mathematically accurate just missed the bigger 
concept of the question. 

A total of 125 data points were used in order to conduct the thematic analysis. From this 
starting point, a total of 32 codes were created in order to describe each of the data points; 
however, some of the participants’ responses included more than one code. Table 3 lists the 
themes that were created in order to describe all of the codes with a sample participant response 
to help define one instance of the category. For space, only a few of these themes will be 
described in more detail in this paper to add to the description. 

Table 3: Themes from the thematic analysis of the data set 
Theme Sample participant response 

Statement of fact “Yes, the area increases as the perimeter of the rectangle 
does.” Or “Larger perimeter = more area” 

Relationship to multiplication / 
formula 

“True because the area is calculated based on the length and 
the width.” 

Focus on definition of area or 
perimeter 

“Yes this would be true because the area of a rectangle is 
what is inside the perimeter so therefore if the perimeter 
were to increase the area would as well." 

Focus on increasing side lengths “If the side lengths (perimeter) increase so would the values 
to find the area.” 

Real-life example “Yes because the space increases. If a wall in a room 
increases then the space inside will as well.” 

Using examples to prove the 
incorrect conjecture 

6+4+6+4=20                  7+4+7+4=22 
6×4=24                           7×4=28 

Using algebra “Since perimeter is a linear function, while area is an 
essentially geometric (curved) function, no matter the 
values of l and w, area will tend to increase faster up to ∞.” 

Concepts that are not related to 
area/perimeter of rectangles 

“This assumption isn’t valid if the shape isn’t symmetrical.” 

No response/don’t know “I don’t know why.” 
 

Focus on definition of area or perimeter. In some cases, the participants looked at the 
definition of area or perimeter (or both) and used these to justify the conclusion that when 
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perimeter increases that so would the area. Generally these responses did not really prove 
anything except that the participants knew what area and perimeter meant. 

Focus on increasing side lengths. Participants whose solutions fell into this theme were 
focused only on the impacting that increasing either a single or both sides lengths would impact 
the perimeter and the area. It was notable that the statements made by these participants were 
mathematically correct (i.e., increasing a single side length would always increase both the area 
and perimeter). This, however, did not correctly answer the question since there are times when 
the perimeter would increase and the area would not by other manipulations. 

Using examples to prove the incorrect conjecture. Examples were used by many of the 
participants in order to “prove” that when perimeter increases, so does the area. In some cases 
only a single example was included to compare to the rectangle in the previous question. The 
data showed up to four examples being used in order to “prove” the conclusion drawn. In one 
case, the participant included examples that actually proved that this was not a correct statement; 
however, the participant was unable to make the determination that increasing the perimeter does 
not always increase the area.  

Conclusion and Discussion 
What was interesting in the thematic analysis of the solutions was that there were elements 

that were mathematically correct; however, missed the bigger picture of the question. The use of 
examples to “prove” the statement or looking at only “increasing” side lengths showed that the 
TECs had applied their knowledge of area, perimeter, and multiplication correctly to the 
question. Some of the statements were flawed, such as indicating a direct relationship between 
area and perimeter of rectangles: “Perimeter and area are positively correlated –as one goes up, 
so does the other.” As Van de Walle et al. (2014) notes, area and perimeter are a source of 
difficulty for elementary students, and this study points to these ideas persisting into a teacher 
education program. The solutions of the participants in this study provided interesting examples 
to discuss where the misconceptions came from and to encourage a stronger understanding of 
area and perimeter in rectangles during experiences within the methods course.  
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Pedagogies for engaging PTs in ambitious teaching often involve rehearsals integrated into 
iterative cycles and this can be difficult to imbed within large teacher preparation programs. 
Innovative technologies utilizing immersive classroom simulation activities (ICSA) allow PTs to 
rehearse instructional activities with student avatars. This study found that ICSAs provide 
opportunities to engage aspects of ambitious teaching such eliciting and responding to student 
thinking and afford PTs with unique opportunities to position students as competent. The 
affordances and constraints are discussed 

Keywords: Teacher Education, Pre-service, Instructional activities and practices, Elementary 
School Education  

Introduction and Purpose 
As we reflect over the past forty years in mathematics education one focus of research and 

practice has been ambitious teaching that prioritizes the learning of all students regardless of 
ethnicity, race, class, or gender (Grossman, Hammerness, & McDonald, 2009). More recent 
research has focused on tools and structures within teacher education to successfully engage 
preservice teachers (PTs) in the intricacies of ambitious teaching (Thompson, Windschitl, & 
Braaten, 2013; Kazemi, Franke, & Lampert, 2009). Within this work pedagogies of teacher 
education have been examined (Lampert & Graziani, 2009; Ghousseni & Herbst, 2016) and 
structures such as Cycles of Enactment and Investigation (Lampert et al., 2013) have been 
designed to engage PTs in opportunities to deliberately practice specific teaching episodes and 
enact those episodes in classroom settings. As we look forward to the next forty years in 
mathematics education, it is vital we actualize this reconceptualization of teacher education at 
scale and utilize innovative technologies to support our work. The human resources needed to 
employ an iterative, practice-based process within teacher preparation are often unavailable at 
institutions with large programs. One innovative technology is virtual simulation software, such 
as that available from Mursion® (developed as TLE TeachLivE™), that provides immersive, 
interactive learning through practice-based teacher development (Dieker, et al., 2014). During 
the immersive classroom simulation activity (ICSA), pre-service teachers can engage with a 
classroom of five student avatars on a large computer screen. A simulation specialist operates the 
avatars and uses a simulation scenario to guide the interactions. This exploratory study extends 
research on cycles of enactment to examine 1) What opportunities are afforded with embedded 
prompts in rehearsals of ambitious teaching within an ICSA? and 2) How do PTs respond to 
embedded prompts within an ISCA?  

Perspectives  
Work by Grossman et al. (2009) defines three essential pedagogies of teacher preparation 

that enable novice teachers to learn through engagement in the teaching process. These 
pedagogies are the representation of practice, decompositions of practice, and approximation of 
practice, and all are needed to develop ambitious teaching. Lampert at al. (2013) has integrated 
these pedagogies of practice into an iterative cycle that utilizes rehearsal and classroom-teaching 
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episodes, titled Cycles of Enactment and Investigation (CEI). The work presented here utilizes 
this framework and seeks to explore the affordances and constraints of situating approximations 
of practice within immersive classroom simulation activities (ICSA). Within the ICSA a scenario 
is created to target key aspects of instruction, scripting certain student responses to provide a vast 
array of opportunities with the lesson. Essentially the ICSA parallels a rehearsal within the CEI, 
yet does not allow the same coaching. 

Methods 
Larger Context  

This report shares preliminary findings from a study situated within a longitudinal, 
comparative study designed to compare the effectiveness of ICSA and peer rehearsals in the 
development of PTs’ ambitious teaching. PTs engage in a CEI with two number talks as the 
instructional activity (2 ICSA/peer rehearsals and 1 classroom enactment). The number talks are 
two-digit multiplication number strings. A scenario was created for the ICSA and a trained 
simulation specialists uses to the scenario to “act” the part of five student avatars. The PTs 
facilitate the number talk with the group of five student avatars (referred to as students for the 
remainder of the report) or with 3 peers and the teacher educator. 
Participants, Data, and Data Analysis  

Within this study three participants were randomly selected as case studies from the larger 
context. Participants were enrolled in an elementary mathematics methods course focused on 
grades 3-6 and had previously completed an elementary mathematics course focused on grades 
K-2. The data used in this study are three video-recorded ICSA sessions, one per participant. The 
sessions ranged from 8 minutes to 11 minutes. During the ICSA the participant lead a number 
talk with the problem “12x24.” This problem came third in a number string.  

The use of GoReact©, a video analysis tool, allowed for detailed coding of each teacher and 
student interaction within the video-recorded ICSA. GoReact is a secure online video analysis 
tool that connects comments or codes directly to the segment of video for which they address. 
Each video was examined multiple times and each teacher and student interaction was coded 
using a set of a priori codes adapted from Lampert et al. (2013) that defined elements of 
ambitious instruction. In addition to the a priori codes unique interactions were noted in 
comments and these were interpreted to develop additional codes pertaining to positioning of 
students as competent. The goal of analyzing the videos was to identify aspects of ambitious 
teaching that arose within the ISCA (exemplars and missed opportunities) and illustrate unique 
features of the ISCA. 

Results 
Analysis of the three cases resulted in exemplars of each of the elements of ambitious 

teaching that were strategically coded, as well as examples of missed opportunities. In the 
following sections the exemplars and missed opportunities are discussed in the context of the 
ICSA to illustrate the affordances and constraints of the ICSA.  
Eliciting and Responding to Student Thinking 

One of the main reasons a number talk was selected as the instructional activity is the inherit 
requirement to elicit students’ mental strategies for solving a problem. Across the three cases the 
students volunteered responses, and this was a function of the classroom norms designed in the 
scenario. Each PT elicited strategies from three of the five students and at least one student was 
probed for further explanation. PTs responded to students’ decomposition strategies (i.e., (20 x 
12) + (4 x 12)) by probing for additional clarification about the factors. However, these follow-
up questions elicited different student responses based on the open-ended or literal nature of the 
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question. For example, one PT asked “Where did this 20 come from” for which Carlos answered 
“the 24” while another PT asks Carlos “Why did you break into 12 x 20 and 12 x 4?” This more 
open-ended question elicited a more lengthy explanation of wanting to multiply by groups of 10 
to make the multiplication easier to do.  

In addition to differentiating responses based on question type, the ICSA was designed for 
one of the student to explain that they “multiplied 12 by 2 and then added a zero to get 240” 
when multiplying 12 x 20. The PTs did not attend to this particular student response and did not 
ask for further explanation to deconstruct the mathematics 
Representation of Mathematical Ideas 

Overall, student strategies were recorded accurately on the board except for one instance. As 
the PTs represented the students’ strategies on the board, each PT recorded the decomposition 
strategies by placing the parts of the decomposed factor second in the set of equations they listed 
(ie., 12 x 20 = 240 and 12 x 4 = 48). This was due to the way the strategies were verbally shared 
by the students that were scripted in the scenario. This could be modified to allow for more 
complexity in how relationship of the factors is recorded.  

There were two instances where the PT revoices the student’s strategy to ensure that she has 
recorded the students’ thinking. In one of these cases the PT was inaccurate in her representation 
of 12 x 25 = 300 -12 =288. The scenario script could address this misconception by triggering a 
student to ask a question about the equality of a statement, such as “Does 12 x 25 = 300 -12?” 
This would result in the PT having to grapple with this.  
Orienting Students to One Another  

Throughout the number talks, PTs did not utilize strategies, such as turn and talk, for that 
would allow students to orient to one another. This may have been due to the fact that certain 
students, Carlos and Mina, were quick to volunteer and scenarios can be modified to include 
longer time before raising hands. Furthermore, PTs focused on moving to the next strategy and 
not using moves that would ensure students were listening to one another. There was one 
response from a PT that directed, “Carlos please explain to your classmates how you broke apart 
the 24.” In doing so, Carlos turned and spoke to his classmates instead of directly to the teacher.    
Building on Reasoning 

The scenario was designed to have two students share strategies to solve 12x24 by using the 
distributive property and either decomposing 12 or 24. This design element was intended to elicit 
questions from the PTs to address the similarities, differences, and application of the property. 
Interestingly, only one PT directed attention to these two strategies and asked, “How are these 
ways different from each other?” When Emily responds quickly that different numbers were 
broken down, they PT praises Emily and solicits another strategy. This missed opportunity to 
make the connection to the distributive property shows an area for attention.  
Students as Competent   

The students expressed frustration with the problem when it was initially posed and Will 
shared that he did not arrive at an answer to the problem. From these student responses arose the 
need to code the interactions for instances of how the PTs positioned the students as competent 
or not. This coding revealed that PTs send mixed messages to students about mathematics and 
ability. At the beginning students cry out “This is crazy, we can’t do this in our heads” and 
““How come these keep getting harder? I wish they used smaller numbers.” One PT responded,  
“You can do it. You are smart.” While she was trying to encourage students, the message she is 
sending them is that if you cannot do it then you are not smart. Another PT prefaces the problem 
with claims that it will be hard stating “This on is going to be harder…if you can’t figure it out it 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

766	

is ok because I had a hard time figuring it out and I had paper.” This response assumes students 
will struggle and devalues the use of mental strategies.  

When Will shares that he was not able to solve the problem, all three PTs attempt to engage 
Will to understand his confusion; however, they prematurely abandon their efforts. One PT tries 
to decipher Will’s starting point when he shares, “The first thing that clicked for me was that 
both have twos and I thought I could do something with the two that might make it easier. But 
then I just got confused.” In response this PT praises Will stating, “That’s good that you were 
able to start thinking and you didn’t give up when you saw the problem,” and then immediately 
calls on another student. Will’s interactions force PTs to grapple with how to address students’ 
needs and guide them to an understanding of the problem.  

Lastly, Carlos and Mina are called on first in two of the cases due to volunteering. They are 
also called upon for further explanation in all cases. This emerging trend highlights the 
positioning of certain students as competent and valued while others are expected to be passive 
participants in the class.  

Conclusion 
Analysis of recorded ICSAs indicated that certain elements of ambitious teaching were 

evident and afforded due to the strategic development of the scenario used within the ICSA. PTs 
were engaged with eliciting and responding to student thinking, representing ideas, and building 
on reasoning, yet they were not engaged in orienting students to one another. The missed 
opportunities highlight the need for additional scaffolds built into the scenario and specific 
feedback from teacher educators to build PTs engagement in these teaching practices. Also, the 
ICSA provided a unique opportunity for PTs to navigate student misconceptions and frustrations 
with mathematics. The authentic expressions from the students are unique to this technology and 
not present in peer rehearsals. This affordance within the ICSA and the standardization of the 
scenario make this innovative tool a plausible solution to utilizing CEI at scale. Although 
conducting numerous peer rehearsals may not be feasible for a teacher educator, rehearsals 
within an ICSA will allow for strategic scenarios to be replicated without additional work. The 
larger research project will provide valuable insights into the comparison of ICSA and peer 
rehearsals and inform the ongoing reconceptualization of practice.  
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We investigated how elementary pre-service teachers (PSTs) perceive using representations in 
teaching mathematics and what representations they suggest to guide students’ use of 
representations in teaching fractions. A written questionnaire was administrated to 151 PSTs 
and an inductive content analysis approach was used to analyze the data. Findings suggested 
that fraction-related topics were the PSTs’ main choice for using representations, but PSTs 
tended to use models procedurally and predominantly depended on circular area models in 
guiding students who use representations incorrectly. Implications for designing mathematics 
methods courses in terms of effective use of representations are discussed. 

Keywords: Representations, Fraction Models, Manipulatives, Preservice teachers, and Teacher 
Preparation 

Introduction  
The ability to execute a wide range of instructional practices that are deeply rooted in 

profound mathematical knowledge for teaching is integral to effective mathematics teaching 
(Hill, Ball, & Schilling, 2008). In this study, we examine PSTs’ ability to analyze students’ 
work, to choose and use appropriate mathematical representations in explanations, and to 
evaluate the instructional advantages and disadvantages of representations. In the hope that this 
study has implications for teacher preparation, which in turn will have impact on PSTs’ future 
practices, we investigated the following research questions: 

(1)  How do pre-service teachers perceive using representations (e.g., manipulatives or 
models) in teaching mathematics? 
(2)  What fractional representations (e.g., manipulatives or models) do pre-service teachers 
suggest to guide students’ incorrect use of representations in learning fractions? 

Theoretical Perspectives 
Knowledge of Representation 

As noted, use of various representations is commonly considered necessary in mathematics 
instruction because of the abstract nature of mathematics and mathematical discourse. 
Accordingly, teachers’ and students’ competence in using representations has long been 
emphasized in mathematics education. Educators refer to this competence using varied terms 
such as representational flexibility, representational fluency, representational thinking, and 
representational competence (Greer, 2009).  

While using representations is recognized as important to supporting students’ sense-making 
process, the literature also documents that limited uses or misuses of representations, often due to 
teachers’ limited content knowledge, can negatively affect teaching and learning (Izsák, 2008; 
Lee, Brown, & Orrill, 2011). However, while adequacy of teachers’ content knowledge is a 
necessary condition for effective use of representation, that alone is not sufficient. Teachers need 
to be fluent in using not only their own solution representations but also pedagogical 
representations (Cai, 2005).  

 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

768	

Fraction Models 
Given the importance of representations in teaching and learning mathematics we further 

examine three major types of pedagogical representations in fractions: area, length, and set 
models. The area models (e.g., circular pie pieces, rectangular regions, geoboard, drawings on 
grids or dot paper, pattern blocks, etc.) subdivide a whole area into equal parts. The area model 
elucidates the part-whole concept of fractions and the meaning of the relative size of a part to the 
whole (van de Walle, Karp, & Bay-Williams, 2013).  

Another major fraction model is the length model (e.g., fraction strips, Cuisenaire rods, 
number lines, etc.), in which measurements of lengths are compared rather than measurements of 
areas. Linear models allow students to integrate their knowledge of fractions and whole numbers 
in a continuous model (Siegler, Thompson, & Schneider, 2011). Some research has suggested 
that with the linear model it is difficult for students to develop an accurate visualization of the 
value of a given fraction (Behr & Post, 1992). However, another strand in the literature 
emphasizes the utility of linear models in that they help students understand fractions that are 
greater than one more easily due to their continuity, in contrast to the discrete wholes used in the 
area models (Lee, 2017; Siegler et al., 2011). Set models (e.g., two-color counters, objects, tallies 
etc.) utilize discrete collections within sets of countable objects. Literature offers mixed results 
and suggestions regarding the effectiveness of the set model. While many researchers recognize 
the importance of set models due to the applicability of students’ prior knowledge of whole 
number strategies and the connections with many real-world uses of fractions (Behr & Post, 
1992), others recommend introducing set models later than other models because it may require 
some understanding of ratio or the concept of fraction multiplication (van de Walle et al., 2013). 

While the forms of models differ, the methods of representing a whole and its parts can be 
varied. Watanabe (2002) explains two distinct methods for representing fractions, depending on 
how the relationships between the whole and fractional parts are shown: (1) the part-whole 
method in which the fractional part is embedded in the whole and (2) the comparison method in 
which the whole and part are constructed separately. Watanabe (2002) asserts that children may 
benefit from more explicit treatment of the different ways that fractions can be represented. 

Methods 
One hundred fifty one elementary PSTs at a large Southwestern university in the U.S. 

participated in this study. All were enrolled in an elementary mathematics content course. They 
had taken a course that dealt with number and operations, in which they learned about fractions 
and fraction operations along with manipulatives or pictorial representations such as set, length, 
and area models. The participating PSTs completed a written questionnaire. For this study, we 
focused on one open-ended question and two tasks (see Figure 1). The first and third questions 
below were created by the authors and the second question comes from prior research conducted 
by other researchers and the first author (Cross, Lee, Zeybek, & Adefope, 2015). 

The written questionnaire was administered to all PSTs for one hour. To analyze the data, we 
used an inductive content analysis approach that included both qualitative and quantitative 
analyses (Grbich, 2007). First, to analyze the open-ended question, we read all PSTs’ responses 
and identified common themes among them. Then we developed a coding scheme and used it to 
analyze the responses. When there were discrepancies between the two researchers’ codes, we 
discussed them until we reached 100% agreement on the coding. Finally, to find patterns, we 
calculated the frequency of codes in the PSTs’ responses.  

To analyze the PSTs’ responses to students’ fractional models, we first identified the 
correctness of the responses and categorized the models that PSTs provided in terms of two 
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aspects: (1) the types of models such as length model, area model, set model, and a drawing 
based on algorithm to find the common denominator; and (2) whether the same sized whole was 
used for both fractions. Then we developed a coding scheme for fractional models and used it to 
code all data. Finally we interpreted the data quantitatively and qualitatively. 
 

1. (1) What topics would be the most effective for elementary kids to learn mathematics with manipulatives 
or models? Describe the topics and explain how to teach the topics using manipulatives or models. 
(2) What do you think is the most important in teaching a math lesson to elementary kids using 
manipulatives or models? 

2. Task 1: Susan is given the following question: Which is larger 2/4 or 3/6? How do you know? 
 
Susan created the following models with the multi-link cubes to represent the 
fractions and help her with comparing the fractions. 
 
(1) Do you think Susan’s models will help her to compare the fractions? 
(2) If you don’t think Susan’s models will help her, please create a model that you 
think would be useful   for comparing 2/4 and 3/6. 
 

3.  Task 2: You asked a 3rd grade student, Lisa to make a drawing to compare ¾ and 5/6. She draws the 
following picture and claims that “3/4 and 5/6 are the same amount.” 

 
(1) Do you think Lisa’s models are correct? 
(2) If so, explain. If not, create a model that you think would be useful for 
comparing ¾ and 5/6 and explain why your model would be helpful. 

Figure 1. Problems used for this study 

Findings  
PSTs’ Perception of Using Manipulatives or Models in Teaching Mathematics 

In the first part of the questionnaire, when PSTs were asked to suggest topics in which 
manipulatives or models can be used effectively, the most popular responses were topics 
involving the part-whole fraction concept, equivalent fractions, and fraction comparisons (35%), 
followed by whole number operations (25%), geometry (8%) and place value (7%). If we 
consider fraction operations (e.g., fraction addition, subtraction, multiplication, division) and 
other fractional numbers (e.g., decimals and percents), the topics related to fractions account for 
40% of the responses. However, with regard to the topic of fractions, most PSTs pointed out the 
basic part-whole concept of fractions and very few (3 out of 108 responses) mentioned that 
manipulatives could be used to compare fractions, which is related to the focus of our study.  

In addition, when the PSTs were asked what they considered to be most important in 
teaching mathematics with manipulatives or models, 25% of their responses indicated 
understanding and reasoning. The second most frequently mentioned aspect (16%) was 
providing students with hands-on experience or opportunities to use visuals as effective tools for 
solving difficult problems when they are unsure how to proceed. Almost as many responses 
(15%) indicated the importance of controlled and focused management by helping students 
understand how to use the manipulatives and models accurately, demonstrating their use, and 
establishing consistent rules for using them purposefully rather than as toys.   
Identifying Correctness of Using Manipulatives for Comparing Two Fractions 

Approximately two thirds of the PSTs recognized the incorrect use of models in both tasks 
(66% and 63% respectively), but not all of them identified valid reasons. When asked to propose 
models to guide students, the majority of PSTs illustrated both the invariance of the whole and 
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equal partitioning. However, 20% of responses to Task 1 and 12% to Task 2 failed to show the 
invariance of the whole and/or equal partitioning in their representations. It is worthwhile to note 
that the most common models were area (especially circular wedges) and length/linear models 
(especially rectangular strips rather than a number line). Also, it was noted that even though the 
methods of representation used in the two tasks differ (i.e., Task 1’s comparison method vs. Task 
2’s part-whole method), the PSTs tended to guide students using the methods familiar to 
themselves such as a part-whole method.  

Implications 
Considering that the PSTs’ work in this study reflects their perceptions prior to taking a 

methods course, the results provide some insights into how to design a methods course. First, 
mathematics educators need to explicitly cover the comparison method as well as the part-whole 
method. Many PSTs in this study demonstrated unfamiliarity with the comparison method. 
Second, mathematics educators need to address number line models in more depth when 
considered that the PSTs in our study made very limited use of number line models. Third, 
mathematics educators need to help PSTs implement effective pedagogical representations as 
distinguished from solution representations. Finally, mathematics educators need to engage PSTs 
in drawing models by focusing on the principles of invariant wholes and equal partitioning in 
comparing fractions when considering that many PSTs appeared unaware of the importance of 
the principles.  
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Research has established the challenges that novice math teachers face as they move from 
teacher preparation programs into their first year of teaching (Drake, 2006; Gainsburg, 2012; 
Millsaps, 2000; Thompson, 1992). Specifically, math teachers are found to have problems with 
implementing instructional practices that promote conceptual understanding. This research 
places direct emphasis on understanding in detail the connections between teachers’ 
mathematical life stories and specific instructional sense making. More specifically, how do 
preservice teachers inform the development and implementation of their instructional practice 
over the course of their credential year and into the first two years of practice? What are the 
factors that influence this informing and what combinations of factors attribute to their 
development and implementation of instructional practice? 

Keywords: Teacher Education-Preservice, Teacher Beliefs, Instructional Practice 

Introduction 
Prospective teachers come to formal teacher preparation programs with ideas and ways of 

thinking that influence what they learn from courses and experiences (Ball, 1988; Silva & 
Roddick, 2001). During teacher preparatory programs, preservice teachers face the challenge of 
balancing their prior mathematical experiences, what they believe mathematics learning 
environments should be, with what they are taught about teaching mathematics (Gainsburg, 
2012; Lampert, 1988; Thompson, 1984). Scholars have been analyzing the connection between 
teacher belief and practice for years (Thompson, 1992) and researchers continue to find that 
teacher’s beliefs are reflective of the nature of the instruction the teacher provides to students. 
While prior research centered on the topic of preservice mathematics teachers’ belief structures 
(Ball, 1988; Cooney, Shealy, & Arvold, 1998; Harkness, D’ambrosio & Morrone, 2007; Drake, 
2006; Millsaps, 2000), little of this research places direct emphasis on understanding in detail the 
connections between teachers’ mathematics life stories and specific instructional sense making. 
Furthermore, while the need to study the mental processes of teachers has increased over the past 
decade, research in this area has largely concentrated on what teacher candidates understand 
about mathematics as they enter teacher preparatory programs (Ball, 1990; Thompson, 1984, 
1992). This research aims to understand why new teachers do or don’t use the practices 
emphasized during their credential programs by examining their instructional practices in light of 
their prior mathematical experiences. The following questions are guiding this research: How do 
preservice teachers inform the development and implementation of their instructional practice 
over the course of their credential year and into the first two years of practice? What are the 
factors that influence this informing and what combinations of factors attribute to their 
development and implementation of instructional practice? 

Theoretical Framework 
Ricoeur’s (1992) concept of narrative identity, which is based on one’s understandings of 
oneself across time that are accomplished by organizing and clarifying one’s experience 
through narrative and Sfard and Prusak’s (2005) definition of identity: collections of stories 
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individuals hear and tell about themselves, frame this study. Autobiographies, whether 
written or verbal, provide individuals the opportunity to see influences and experiences that have 
affected their view at different points in time. Narratives provide individuals space to express to 
not only themselves, but others, who they are now, how they came to be, and where they think 
their lives may be going in the future. Rather than looking for conflicts between belief and 
practice, this work focuses on uncovering the interplay between community, belief/identity and 
practice. This research will focus on the key factors provided in Table 1, which have been 
associated with belief, mathematical identity and instructional practice in some manner. The 
aspects of what builds the foundational knowledge of instructional practice for preservice and in-
service educators are rooted in their K-16 mathematics apprenticeship of observation and their 
mathematical identity. During the first year of a teacher preparatory program additional factors 
are added on: cohort mentor teacher(s), cohort member(s), program coursework, program 
instructors, edTPA and student teaching. All of these factors inform preservice teachers’ 
instructional practice in varying ways. Results presented in this paper focus solely on the various 
relationships, connections and changes related to instructional practice upon entrance into 
teacher preparation through the preservice year.  

 
Table 1: Factors guiding data coding that influence instructional practice for preservice and in-
service educators over time.  

 

Research Design 
This small-scale study is taking place at a university in Northern California and began fall 

of 2016, with data collection anticipated to conclude spring of 2020. Currently, I have data 
from eight participants, three males and five females. Five of the participants have completed 
the first year of a two-year master’s in education credential program and are teaching full 
time as the teacher of record in secondary mathematics classrooms. The remaining three 
participants are in the middle of the first year of the same master’s in education credential 
program and are completing coursework and student teaching. My intent is to follow 
participants for three years, beginning with the teacher preparatory program and through their 
second year of teaching. I collected and analyzed four main categories of data for this study: 
a screener survey, observations of participants during methods class, coursework and 
interviews. 
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Data Analysis 
Data were analyzed in a number of ways. First, each individual interview was transcribed 

and then coded according to constructs identified in the literature and natural emerging 
themes. These codes were then applied across the multiple data sources and finally a 
comparison across multiple participants was completed. The following excerpts are from one 
participant’s data that was collected during year one of the teacher preparatory program. 

Ophelia is currently teaching eighth grade math and she is on track to earning her Master of 
Art in education spring 2018. The different data sources include preliminary thematic 
analysis that begin to illuminate the connection between the factors of influence on Ophelia’s 
instructional practice. 

At the start of the program, Ophelia was asked to write a mathematics autobiography, 
which was shortly followed by a second paper on the topic of how Ophelia thought students 
learn math and how she defines math. In these papers, Ophelia shares her own personal 
struggles with learning mathematics and how these experiences have shaped her 
mathematical identity. 

The only aspect I didn’t like about learning math was when the only way to solve a problem 
was by using an equation and the teacher wouldn’t provide any explanation beyond just 
plugging the numbers into an equation. I would feel frustrated in not understanding why that 
worked or where the equation came from. Luckily, not all my teachers were like that, many 
would find a way to give us an explanation as to why we could use a certain equation. 
Ophelia’s apprenticeship of observation consisted of educators that created learning 

environments where students were able to approach problems in a variety of ways, as well as 
very didactic and teacher centered environments. The frustration expressed in the previous 
excerpt, is tied to Ophelia’s mathematical understanding and how she viewed and situated 
herself as a mathematics learner different types of learning environments. In a later 
assignment, Ophelia re-emphasizes the struggles she faced learning mathematics during her 
adolescence. Learning environments where knowledge production was rooted in procedural 
understanding and memorization over those that focused on developing conceptual 
understanding did not provide her the opportunities she needed to achieve the mathematical 
understanding and confidence she desired. 

I was a student that used memorizing as my primary tool until I discovered I couldn’t do that 
anymore for certain topics. I then had to find new ways to learn and deepen my 
understanding. I do believe new knowledge is constructed based on past knowledge that we 
have acquired. 
During the interview Ophelia shared a variety of mathematical experiences, starting when 

she was a little girl practicing flash cards with her sister, up through college where she 
completed coursework and earned a Bachelor of Science in mathematics. When asked to 
share a positive experience about mathematics Ophelia shared stories centered around one 
specific teacher. When probed further about why this was such an important memory she 
elaborated: 

I think it was the topic and the teacher. He made it really exciting to learn. We would do a lot 
of neat projects, that we would do learning on our own and then bring it back to the class to 
share. And I think that was the first time I started struggling with math specifically, but I 
also, I was ok with the struggle – my teacher made that, something you didn’t necessarily 
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have to get the answer as long as you started working on the process that is what he was 
looking for and so I think that gave me a really good foundation and I realized it was ok to be 
wrong and struggle with math. 
Ophelia then dives even deeper and provides additional evidence of the connection between 

mathematical identity, apprenticeship of observation and instructional practice. The 
following is from one of her weekly reflections: 

I am working on taking different approaches with them [students] and finding ways to 
improve. I noticed how if a student gave an incorrect answer, I wouldn’t respond as well as I 
would have liked. I am still trying to find the balance of how to do it. I have tried supporting 
the student to try the problem again and I have said how the student’s answer was an 
interesting answer and opened the question back up to the class to see if anyone got anything 
different. Each week I find a way to push myself more. I think I will see if my [mentor] 
teacher would be up for changing the warm-up format to not be as traditional and rather elicit 
students’ prior knowledge. 
As Ophelia discusses and reflects upon the struggles her and her students faced, she draws 

upon her apprenticeship of observation when indicating the type of instruction, she wants to 
enact in her classroom. Her mathematical identity is tightly linked to this apprenticeship, as 
she was exposed to learning environments where mathematical mistakes were not only 
valued but encouraged and utilized. Ophelia recognizes the danger of teaching students just 
procedural understanding and fact memorization. Her instructional practice is heavily 
influenced by her prior experiences. While Ophelia is trying to apply various ideas learned 
during her methods coursework, at this stage of the program Ophelia’s mathematical identity, 
and apprenticeship of observation have greater influence on her instructional practice. 

Conclusion 
Preservice teachers need to reflect upon their past math experiences while active in the 

teacher preparatory program in order to make connections between how their experiences 
have shaped their conceptions of math and teaching. This research on the role of prior beliefs 
and experiences with mathematics and teaching might produce indicators for which 
candidates align with the underlying principles and educational philosophies of the program 
they are applying for. Knowing more about the mathematical history of credential candidates 
could inform teacher educators about the potential hurdles their preservice teachers might 
face when learning how to become effective teachers that are grounded in practices that 
foster high levels of conceptual understandings and promote equitable access to mathematical 
knowledge for their students. 
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Pre-service mathematics teachers collaborated with a Master Teacher in the authentic 
implementation of lesson plans in high school classrooms. The pre-service teachers made small 
strides in their own ability to design activities. There were indications that the pre-service 
teachers experienced growth in recognizing the value of collaboration and revision. There were 
limits to their ability to enact lesson learned about cognitive demand in their own activity design. 

Keywords: Teacher Education - Preservice, Instructional Activities and Practices, Teacher 
Beliefs, Teacher Knowledge 

Introduction 
Much of the work of preservice teacher candidates is learning how to design rich activities 

that will engage students in inquiry-based mathematics and be accessible to all students. An extra 
layer in this challenge is that typically lesson plans and tasks designed in pre-service contexts, 
prior to student teaching, are never taught in classrooms meaning there is no feedback loop for 
the design beyond feedback from an instructor or peers. Our approach to this challenge was to 
design the CRAFTeD cycle (Meagher, Edwards & Ozgun-Koca, 2011b), inspired, in part, by 
Lesson Study research, to give teacher candidates the opportunity to see tasks that they designed 
implemented in classrooms and, therefore, promote growth in their individual task design. 

The cycle emerged from our previous work (Meagher, Ozgun-Koca & Edwards, 2011a) 
where the decisive influence of the field placement in terms of the mentorship/exemplars 
students experienced became apparent. 

The CRAFTeD cycle: (i) A class of preservice high school teachers design an activity; (ii) an 
experienced inservice teacher reviews the activity and gives feedback; (iii) the inservice teachers 
teach the revised activity, observed by the preservice teachers; (iv) the preservice and inservice 
teachers meet together to reflect on and redesign the activity. 

We report the results of a small-scale intervention study designed to measure growth in 
teacher candidates’ ability to design tasks for mathematics classrooms that require “higher level 
demands” (Stein & Smith, 1998) with the intervention of CRAFTeD cycles as well as to examine 
the influence of the CRAFTeD cycle on their growth as preservice teacher candidates. 

Literature review and relationship to research 
Pre-service teachers early in their program develop lesson plans - typically in isolation - that 

are never taught in a classroom, creating a disconnect between planning, implementation, and 
assessment of student learning (Allsopp et al. 2006; Meagher, Ozgun-Koca & Edwards, 2011a). 
While university methods instructors laud the merits of student-led inquiry, exploration, and 
discovery-based teaching methods, secondary mathematics teachers in too many schools favor 
instruction directly focused on student preparation for high-stakes, multiple choice state tests 
(Seeley, 2006). Developing communities of practice (Wenger, 1999) and lesson study groups 
(Fernandez, 2002) can help candidates and practicing teachers adopt a more research-based focus 
in their lesson planning and develop a shared repertoire of communal resources which transcend 
individual contributions. Providing candidates with opportunities to experience their lessons 
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taught by Master Teachers in authentic classroom settings increases motivation for lesson 
writing. Preservice teachers demonstrate a trajectory of learning about lesson plans in a cycle of 
designing a lesson to be taught by a Master Teacher and reflecting critically on the 
implementation of that lesson (Meagher, Edwards & Ozgun-Koca, 2011b). 

Methods and Methodologies 
Methods and Methodologies 

Participants in the study were students in the second semester of a two-semester sequence of 
methods classes both involving field experiences and both prior to student teaching. 

Early in the semester teacher candidates designed a lesson length activity on composition of 
functions. Teacher candidates then participated in a CRAFTeD cycle on a different topic. At the 
end of the semester teacher candidates revised the original lessons on composition of functions.  

For quantitative analysis both versions of the activities were scored by all members of the 
research team using a rubric based on Stein & Smith (1998) with a “definitive” score agreed on. 
For qualitative analysis the constant comparative method (Glaser & Strauss, 1967) was used to 
establish trends in the data. 

Results 
Quantitative Data: 

Each component of the task was given a score: Memorization: 1pt; Procedures without 
Connections: 2 pts; Procedures with Connections (3 pts); Doing Mathematics (4 pts) (Stein & 
Smith, 1998). The scores were averaged for the entire task to get an overall score for each task.  

Table 1: Researcher mean scores from Version 1 and Version 2 of the tasks 

 
 
There was, on average, a slight improvement over the course of the semester (the class 

average increased from 2.40 to 2.47) toward “higher order demands” (Stein and Smith, 1998). In 
four of the eleven activities, the cognitive demand was reduced. This reflects a decision that 
some components were so open-ended as to be difficult for the students to engage with and, in 
revision, the cognitive demand was lowered. 

Table 2: Researcher Scores vs Student Scores for Version 1 of the tasks 

 
 
The numbers in the table above represent a comparison between the researchers’ assessment 

of the average component score for the original activities and the students’ own assessment of 
the average component score. As can be seen, the researchers assessed the components of the 
activities to have, on average, a slightly lower cognitive demand than in the students’ 
assessment. This is, perhaps, to be expected with researchers who are experienced in working 
with pre-service teachers likely to have a more rigorous standard for cognitive demand. It is 
notable, however, that there is not a great deal of difference with the pre-service teachers 
exhibiting a good understanding of the levels of cognitive demand. This can, in large part, be 
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ascribed to the fact that the students had to use Stein and Smith’s (1998) cognitive demand 
framework as part of the assignment when the developed the original activities. 
Qualitative Data: 

CRAFTeD Cycle. At the end of the CRAFTeD cycle the teacher candidates wrote a 
reflective essay on the process. The following significant trends emerged in the data: 
(i) a recognition of the need to give high school students an opportunity to struggle with 
mathematics and to discuss mathematics 

Seeing a lesson that they had designed actually implemented in a class was an eye-opening 
and rich experience for the students. The Master Teacher with whom they collaborated stressed 
that student struggle is important but it was a surprise to the preservice candidates to see it in 
action in terms of the amount of time the Master Teacher allowed students to work on a task with 
which they were having difficulty and how he then handled the discussion. The preservice 
candidates observed the Master Teacher allow the students to struggle enough to make the 
subsequent discussion of the task as rich as possible. “He checked students answer and asked 
where they struggled with, then I heard the best conversation I have ever heard in the high school 
classroom.” (TC 9). Another teacher candidate noted that the students, at the end of the warm up 
activity, “seemed to be having a difficult time connecting their observations with a kind of “main 
idea” but that “Once the students had a chance to discuss this out loud with [Master Teacher’s] 
guidance the students developed a much clearer understanding. She remarked that “the class 
discussion is where students made the most progress.” (TC 7). 
(ii) an expectation that the work should be challenging and appropriate for high school 
students 

Related to the teacher candidates’ recognition of the importance of giving students an 
opportunity to struggle was their discomfort with that notion and the consequent initial design of 
tasks that were not challenging to the students either in their level or construction. The students 
were taken aback by the Master Teacher’s rejection of their initial offerings. “A concern that [the 
Master Teacher] had early on in our lesson development was that our lesson was not at the high 
school level.” (TC 3) and “[the Master Teacher] felt as though our [first idea] was too juvenile 
for his students” (TC 4). However, this feedback forced to both consider the level but also to 
consider the mind set of their approach. One teacher candidate remarked “After the presentation 
of our first ideas of the lessons, [the Master Teacher] made it clear to us that, when we first 
began this process, we were stuck in the ideas that we were taught and were not doing a great job 
of looking at the content as a teacher rather than a student.” (TC 7). 

Revision of tasks on composite functions. At the end of the semester the teacher candidates 
were given the task of revising their activities on composite functions and to write an essay to 
explain the changes they made. The following significant trends emerged in the data: 
(i) appreciating continuous reflection and improvement  

One of the affordances of the CRAFTeD cycle is that there is authentic feedback on the 
lessons that teacher candidates write. The teacher candidates are often surprised to see the 
different ways students interpret questions, how students may not look at a graph and see what is 
obvious to the teacher candidates, how the timing can be so different than what they imagined 
when it meets reality. This effect is heightened because of the huge amount of collaborative 
effort that goes into making the lessons. One result of the study is that, despite the challenge and 
effort the teacher candidates came to value the multiple iterations of revisions from first 
presenting their ideas to the Master Teacher, to negotiating within the teams about priorities for 
the revisions, to seeing how what they feel is a very solid lesson has many flaws when given to 
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real students. “I learned how to listen to the reactions and feedback of students to eventually 
improve the lesson in any way possible. Through this project, I strengthened my ability of 
discussion with my fellow classmates by learning to work together to make our lesson unified 
and seamless. During this project, there were many hiccups and setbacks, but after each one my 
group came together and reflected on how we could make the lesson better.” (TC 8). 
(ii) a focus in changes on fixing instructions and small details rather than elevating the 
cognitive demand of the task. 

One of the affordances of teacher candidates seeing a lesson they designed themselves 
actually taught is the heightened attention paid to how the students interact with the task. One 
result of this was that the teacher candidates were very concerned when the students had 
difficulty in following instructions written on the worksheet. “When students got a hold of our 
lessons that we had created, they often expressed that there was a lot of writing or confusing 
instructions. There is no reason to confuse students with wording when the goal is 
mathematical.” (TC 8) and “I want students to focus on the mathematical content, and to not get 
caught up in instructions.” This is a valid concern but had the effect in the revisions of the 
lessons that a large number of the changes and justifications for changes were simply to do with 
wording of instructions, precision of notation etc. with a dearth of attention paid to the overall 
cognitive demand of the task. 

Conclusion 
This small-scale intervention study was designed to provide pre-service mathematics teachers 

with experiences in designing activities with high levels of cognitive demand and to experience 
some of those activities being authentically implemented in high school classrooms. The pre/post 
structure of one pair of activities showed the teacher candidates teachers making small strides in 
their activity design. There were notable limitations in their ability to craft effective open-ended 
questions, focus activities on key mathematical ideas and maintain cognitive demand although 
Stein and Smith’s (1998) proved to be a useful tool in developing their thinking about cognitive 
demand. The teacher candidates made larger strides in their openness to the importance of 
student struggle and student collaboration in mathematical work. The teacher candidates also 
exhibited growth in valuing collaboration and cycles of revision in lesson planning. 
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This paper is a reflection on a co-teaching experience during the first mathematics methods 
course of a teacher preparation program, where a community of teachers (teacher educators and 
pre-service teachers) could reflect on tensions (with teacher beliefs, with practice, and with 
mathematics). Cognitively Guided Instruction (CGI) was a central tenet to the course material 
and required learnings, opening up opportunities to (re)negotiate those tensions with beliefs, 
practice, and mathematics. We employ poststructural theories, attending to the documents that 
participants produced as well as the thinking and reading happening simultaneously, using 
writing as a method of inquiry. 

Keywords: teacher education – preservice, teacher beliefs, elementary school education 

This paper is a reflection, of sorts, on a co-teaching experience during the first mathematics 
methods course of a teacher preparation program. This course brought together a safe space and 
community for teachers—teacher educators and pre-service teachers—to reflect on tensions—
tensions with teacher beliefs, with practice, and with mathematics. Cognitively Guided 
Instruction (CGI; Carpenter, Fennema, Franke, Levi, & Empson, 2014) was a central tenet to the 
course material and required learnings, and that consistent focus opened up opportunities to 
(re)negotiate those tensions with beliefs, practice, and mathematics. As our pre-service teachers 
were navigating the often-overwhelming requirements of the preparation program, they were 
confronted by their beliefs about what mathematics is, who can do mathematics, as well as how 
mathematics ought to be taught and learned; meanwhile, we (as teacher educators, doctoral 
students, and novice scholars) were navigating the always difficult world of academia, 
dissertation-writing, and reading in theory. Kayla, for instance, is writing her dissertation on 
mathematics teacher beliefs reconceptualized as an entanglement that is not stable; and yet, she 
recognizes her beliefs about teaching and learning mathematics, names them, feels them, teaches 
them. Susan wonders how post- theories might help us navigate those tensions, or perhaps 
present more tensions, by providing us the space to explore them, question them, trouble them. 

In the current educational context that privileges conformity and compliance by teachers 
(McDermott, 2013), pre-service teachers need strategies to help them exercise professional 
autonomy. Teachers often experience a disconnect between the identities cultivated in their 
university classrooms and those currently privileged in schools, which leaves them feeling like 
they do not have the freedom to act, feel, and think in the ways they desire (Labaree, 2010). 
Furthermore, teacher educators are also engaged in negotiating and renegotiating tensions 
between theory and practice. Consequently, forming a teaching identity becomes a complex task 
that involves negotiating often contradictory ideas about teachers and teaching (Britzman, 2003). 
Teacher education, however, often focuses on helping teachers develop a stable identity rather 
than negotiating the shifting identities with which teachers must contend. This study aims to 
reconceptualize teacher beliefs as teacher educators (re)negotiate tensions and entanglements 
with/in teaching frameworks, and to write stories of those tensions. We take up posthuman and 
poststructural theories of subjectivity and methodology to consider pre-service teachers and 
teacher educators as subjects (selves) whose beliefs about teaching and learning mathematics 
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are always-already entangled, impossible to think as pre-existing or separate (Derrida, 
1967/1974).   

This study is informed by poststructural theories (e.g., Foucault, 1981/2000), the purpose of 
which is to describe the linkages of language, power, and identity that impact how individuals 
interact with and produce the social world (Davies, 2003). In adopting this perspective, we attend 
to the documents that participants produced (e.g., reflective writings about readings, assignments 
about mathematics teacher beliefs, etc.) both inside and outside of class. The goal was not to 
collect or understand any individual participant’s thinking but to explore what it is possible to 
learn as teacher educators in our (re)negotiating of tensions as we connect theory with practice as 
well as what possibilities exist and can exist for pre-service teachers to act, think, and feel as 
mathematics teachers.  

Imagining reflection as in-constellation (Myers, Bridges-Rhoads, & Cannon, 2017) has given 
us the space before to question the taken for granted practice of reflection and think about it as a 
relation, as reimagining, as meddling in the middle (McWilliam, 2008), all to de-stabilize the 
too-familiar practices we ask of pre-service teachers. In co-teaching this class and in writing this 
paper, we again trouble the stability and familiarity of reflection alongside teacher beliefs in 
mathematics teaching and learning. 

Methodology 
The participants in this study include 20 pre-service teachers enrolled in the first of two math 

methods courses during their early childhood and elementary education teacher preparation 
program during an undergraduate Bachelor of Science in Education degree at a large, urban 
university in the southeastern United States. This teacher preparation program is four semesters 
in duration, where pre-service teachers are enrolled in coursework as well as part-time field 
placements during the first three semesters, and full-time field placement (student teaching) 
occurs during the fourth and final semester. This first course, which takes place during their 
second semester of the program, was intended to focus on the primary grades and designed to 
introduce CGI as an instructional framework.  

The following documents were produced and shared over the course of the semester: reading 
journals (completed weekly and outside of class), beliefs statements (written in class at the end 
of the semester), and course evaluations. Documents were then analyzed using a collaborative 
process of writing as a method of inquiry (Kvale & Brinkmann, 2009; Richardson & St. Pierre, 
2005) that involved the two of us sitting together and separately to read theoretical texts and 
study documents while writing and talking about how they interact. In this way, we write stories 
about our constant (re)negotiation of teacher beliefs and instructional practices as well as 
theoretical paradigms and neoliberal pressures in order to illustrate how various truths about 
teachers and teacher educators are continuously produced as language is organized into ways of 
thinking, speaking, and acting. Broadly speaking, our process of writing as a method of inquiry 
uses writing as a way of knowing, thinking, and creating; thinking and rethinking, reading and 
rereading of data alongside theoretical texts, writing and rewriting as a generative and cyclical 
process where stories and themes are welcome to come about on the page (Jackson & Mazzei, 
2012; Koro-Ljungberg, 2015; Richardson, 1997).  

Here we present some of these stories of pre-service teachers negotiating their beliefs while 
we as teacher educators are negotiating our own. These “findings” are preliminary, not fixed or 
final but rather coming about in the midst of different stories and writing and thinking. We draw 
on class conversations, course assignments, reading journals, course evaluations, and our 
anecdotal notes, to begin to tell this story of tensions in beliefs, teaching, and mathematics. 
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The Story (Begins…) 
Due to the way I was taught mathematics during schooling, I have never had a positive 
relationship with the subject. Before, I imagined math as a left-brain concept, but now, I can 
view it as a creative process. Math is not something to be dreaded, but teachers can and 
should use math to create a space where experimenting, trying, failing, and succeeding are 
always implied and welcome. Math is not a teacher standing in front of a chalk board, 
barking out orders for equation solutions, but rather, communication between students, 
collaboration in the classroom, and a space where creativity to solving the proposed problem 
is encouraged and celebrated. Over the past 15 weeks, I have had the opportunity to learn 
what true mathematics looks like in the elementary classroom. By learning about it in the 
university classroom and implementing it in the field, my entire perspective on methods of 
teaching mathematics and learning math has completely changed. In August, my belief was 
that math was taught to you. It was an art of rote memorization, and one that, quite frankly, I 
was no good at. However, as we learned about CGI, my perspective on the teaching and 
learning process regarding math completely changed. 
Beliefs were claimed to have changed in this course experience, for one reason or another, 

but this requires a conceptualization of beliefs as measurable or distinguishable. As the course 
instructors, we hope that these pre-service teachers will learn something from us, and many of 
them come to this course with negative and harmful past experiences in mathematics, so this new 
learning and outlook is subjectively good… but what happens when these pre-service teachers 
are confronted by all of the other aspects of teaching? What happens when it is time to enact 
those beliefs amidst the mandates and curricula and relationships and mathematics (and, and, 
and…)? 

This type of environment can be difficult to create and even more difficult to maintain. 
However, I think that this system on learning is so much more beneficial to students overall 
than rote memorization. By refusing to “take the easy route” and just give out solutions, 
teachers should strive year round to make the classroom climate one that promotes the 
success of students and their learning processes, even if that can sometimes be difficult. But, 
as much as I’d love to have an environment where everything is student centered, key terms 
are avoided, and I allow them to find strategies rather than teach them; we must think about 
testing. As much as I hate it, standardized tests play a huge role in our students’ academic 
success. And teachers are assessed based on how well our students do. I want my students to 
be successful and on a timed test, they do not have an ample amount of time to come up with 
strategies and take a deep look into every question. Therefore, I would teach tricks. However, 
I would only introduce tricks if the students already mastered the concept.  
The connection to practice is overwhelming. Overwhelming for us as former teachers 

(re)negotiating those beliefs while trying to prepare these pre-service teachers for their future 
classrooms (and everything that comes with them), and overwhelming for them as students in the 
field, getting a small dose of reality but also engaging in conversations about those negotiations, 
navigating the tensions and finding ways to enact with pride and confidence and responsibility. 
Their reading journals brought concerns to the group; questions about application and reality, 
ways to make teaching work for themselves and their future students. 
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Initial Implications 
As we have begun to think with this data and witness the tensions in both our becoming 

researchers in mathematics education and in the students’ evolving views of themselves as future 
educators in elementary mathematics classrooms, important questions are beginning to surface. 
What does/should mathematics look like? Who can do mathematics and how do we make a 
mathematics that is accessible to more students? (Martin, 2015; Stinson, 2013). In what ways do 
these new beliefs and plans for instruction change the way we think about mathematics? 

I wholeheartedly believe that the stigma of “math is hard,” “some people just aren’t good at 
math,” and “there’s only one way to solve the question” are just excuses that teachers give 
because that’s how they were taught. But if we switched those stigmas into norms- that math 
is easy, everyone is good at math, there are infinite ways to solve the question- then we are 
believing in math for what it truly can be- and believing in the students to succeed as well. 
There is opportunity and possibility in rethinking ourselves and mathematics. It changes how 

we do mathematics teaching. It is our hope that in further delving into and around this data, 
questions and moments will arise that will push us to think differently. It is in difference, not in 
repetition that we can make spaces for more students and pre-service teachers to find success in 
mathematics, and to see themselves as mathematicians.  
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CONSTRUCTING A FRAMEWORK ACKNOWLEDGING THE SOCIOCULTURAL, 
CRITICAL, SPATIAL, AND QUANTITATIVE WAYS OF KNOWING THE WORLD 
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In this paper we discuss an epistemological framework rooted in a dialectic ontology of social, 
historical, and spatial dimensions. The framework is designed to make explicit the intersecting 
sociocultural, critical, quantitative, and spatial ways of knowing the world, which are inherent in 
mathematics education and quantitative learning environments more broadly. The intersection of 
these ways of knowing the world are discussed and then considered in relation to teacher 
education. We posit this framework could be powerful for both designing learning experiences 
for pre-service mathematics teachers and for making explicit to pre-service teachers a lens for 
making sense of their own future classroom environments to enact a more just and 
comprehensive mathematics curriculum.   

Keywords: Teacher Education-Preservice, Teacher Knowledge 

Introduction 
The social and historical dimensions of reality have long been considered important when 

considering the teaching and learning of mathematics (Lerman, 2000), and more recently 
political dimensions have become highlighted (Gutiérrez, 2013), however a dimension that has 
been somewhat neglected is that of spatial justice. For the purpose of our research we define 
spatial justice as the critical examination of how geography and access impact opportunity.  A 
recent push in that direction has been spearheaded by Dr. Laurie Rubel and her team in their 
work on conceptualizing Teaching Mathematics for Spatial Justice (Rubel, Hall-Wieckert, & 
Lim, 2017, 2016; Rubel, Lim, Hall-Wieckert, & Sullivan, 2016). In their work, they developed 
and implemented lessons involving spatial justice themes that intersected with critical pedagogy.  
Their work was situated in a mathematics courses for social justice in high school and 
undergraduate classes serving predominantly underserved students in New York City (Rubel, 
Lim, et al., 2016). This work shows the potential that considering spatial justice in relation to 
mathematics education can provide some tools and design heuristics to implement such learning 
opportunities in mathematics classrooms. In our work, we are drawing from the seminal work 
done by Rubel and company (Rubel et al., 2017; Rubel, Hall-Wieckert, et al., 2016; Rubel, Lim, 
et al., 2016) but are incorporating the notion of spatial justice in two fundamentally different 
ways. One way is by developing an epistemological framework that explicitly acknowledges 
sociocultural, critical, quantitative, and spatial ways of knowing the world drawing from the 
triple dialectic ontological perspective that Soja (2010) discusses. The second way is by 
investigating how such an epistemological framework could be used in constructing curriculum 
for pre-service mathematics teachers and also made explicit to pre-service teachers for making 
sense of their own future classroom environments. In this paper, we outline our epistemological 
framework, beginning with its ontological foundations, and then briefly discussing possible uses 
for it in teacher education settings.       
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Ontology 
At the ontological level, in other words the characteristics of humans’ reality, we are aligning 

our framework to include the commonly considered social and historic dimensions as well as the 
spatial (Soja, 2010). From this perspective spatial reality is not just viewed as a physical 
container for human social and historical realities, but instead as something that forms a triple 
dialectic ontological relationship with both the social and historical dimensions of reality (Soja, 
2010). For example, geography or peoples’ ways of knowing and interacting with their physical 
surroundings are shaped by their social interaction. We can also see this through the formation of 
political boundaries of nation states, which leads to the shaping of our spatial understanding of 
sociocultural interactions and the history of place.  At the same time, spatial elements shape 
social structures. For example, rivers or mountains have often formed natural boundaries that 
then became social or political boundaries. This also goes beyond natural phenomenon. For 
example, scientists recently announced the beginning of a new geological era the Anthropocene 
dominated by humans reshaping of the earth (Crutzen & Stoermer, 2000). The structures that 
humans build both physically in terms of buildings, roads, and dams, as well as socially, such as 
voting boundaries, school districts, environmental laws, or norms over our interactions with the 
natural world have a profound effect on the spatial.  

The spatial dimension also forms a dialectic relationship with the historical dimension. 
Natural forces work over time changing the earth, this is something that scientists have 
recognized over decades, but the same holds for our believed or imagined spaces and our 
understanding of the nature of the earth. For example, this can be seen in terms of a shift from 
the dominant view of the earth as flat to that of it as round and also in the methods we use to 
display the earth in term of cartography, and our understanding of how we can occupy space and 
what spaces we can occupy. We will not elaborate on the social historical dialectic, which is very 
well described elsewhere in mathematics education. Instead, we now shift to discussing our 
epistemological framework which builds off this ontological perspective. 

Ways of Knowing in Quantitative Learning Environments 
Our framework is based on the notion that there are many different ways of knowing or 

coming to know the world in which we exist. Some ways of knowing are privileged in society 
and by institutions whereas others are often marginalized, silenced or discredited. In the case of 
the ways of knowing, quantitative understanding is often privileged in dominant discourse. 
However, localized ways of knowing or certain cultural perspectives on the world are at times 
disadvantaged or marginalized particularly in the context of the mathematics classroom which is 
commonly seen as neutral (d’Ambrosio, 1985; Frankenstein, 1994; Gutiérrez, 2013).  The 
framework we present here is by no means exhaustive of the ways of knowing the world. Instead 
what we are attempting to do is make explicit four important ways of knowing in quantitative 
learning environments which have been considered and investigated in various combinations by 
scholars in the past (d’Ambrosio, 1985; Frankenstein, 2009; Gutstein, 2006; Lerman, 2000; 
Rubel, Hall-Wieckert, et al., 2016; Skovsmose, 1994). Our work differs from past work in that 
we seek to consider and foreground all four aspects interwoven and inseparable in guiding the 
creation of quantitative learning experiences for pre-service students. Furthermore, we have also 
designed the framework to be made explicit to pre-service teachers such that the framework itself 
becomes part of the attunement process in making sense of quantitative problems and the world 
more broadly, with the hope that they will be able to transfer such ways of knowing or at least be 
open to different ways of knowing in other contexts. The main practices we are drawing from 
these ways of knowing are summarized in Table 1.       
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Table 1: Way of Knowing Framework 
Ways of 
Knowing Quantitative Socio-cultural Critical Spatial 

Key 
 Practices 

● Measurement 
● Collecting data 
● Modeling the 

world through 
quantification 

● Shaping the 
world through 
quantification 

● Problem 
solving 
through 
quantification 
and abstraction 

● Using funds of 
knowledge of 
communities to 
make sense of 
the world 

● Considering 
the ways 
different 
communities of 
practice come 
to know the 
world 

● Reading and 
writing the 
world 

● Making sense 
of social 
structures 

● Transforming 
social 
structures 

● Problematizing 
structural 
causes of 
(in)justice 

 

● Considering 
how space and 
social 
structures 
shape and are 
shaped by one 
another 

● Understanding 
that 
spatial/social 
structures are 
historical  

 

Implications and Future Work in Teacher Education 
Rubel, Hall, and Lim (2017) discuss their Teaching Mathematics for the Spatial Justice 

(TMSpJ) design heuristic, applying it to two systems the lottery and alternative financial 
institutions. Looking back and extending the work of Rubel, Hall and Lim, we, because of our 
focus on working with pre-service teachers, shift from external foci such as the lottery, to 
looking ahead and grounding this work in spaces that remain central to the day-to-day notions of 
teaching.  The main structure we are working to explore is that of the rural education system, and 
what are the opportunities students have based upon location and available resources.  Teaching 
is a precarious profession, individuals want the best outcomes for their students but how many of 
the student outcomes are influenced by socio-cultural or historical decisions that challenge 
overall success?  Soja (2010) talks about the “multiscalar view of a city”, we believe that this 
idea is not limited to only cities (p. 32).  In our study we want to challenge the notion that 
multiscalarity does not only occur in cities but extending this work to include issues that are 
found in rural settings.   Although the number of influences in a city is exponential, we believe 
that pre-service teachers must see and validate the multitude of ways of knowing that change the 
opportunities for students living in areas that are rural.    

Another system that is important for pre-service teachers to reflect on includes the structures 
related to public access and the availability of resources such as food, water, shelter, 
transportation etc. that ultimately become influences on opportunities for success.   Children 
living in rural areas face similar challenges to those living in cities, but the ways of knowing do 
not look the same, therefore using critical pedagogies and quantitative measures a more complete 
understanding of equity and justice come to light.    

Education and access to opportunities often determine trajectories established for students, 
especially in mathematics.  In using the proposed framework to work with pre-service teachers, 
individuals will gain insight into multiple ways of knowing that will help them to better 
understand and support their future students.  The lens in which they see and understand the 
world becomes inclusive, allowing their ways of knowing to look at the social, critical, and 
spatial challenges.  When considering how the uneven development of geography impacts the 
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opportunities of students in rural communities, it is essential to equip pre-service teachers to 
critically examine and validate those practices that fail to provide equal opportunity.   
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HALF THE BASE OR HALF THE HEIGHT? PSTS’ EVALUATION OF A TRIANGLE 
AREA STRATEGY  
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The purpose of this study was to explore how elementary pre-service teachers responded to a 
novel strategy for justifying the triangle area formula. We conducted interviews with 24 pre-
service teachers. Findings highlighted concerns when assessing the mathematical content of the 
strategy, as well as differences in pedagogical responses depending on content knowledge. In 
many cases, pre-service teachers leveraged their understanding towards productive responses, 
while also grappling with generalization. Recommendations for supporting pre-service teachers 
in navigating the intersection between content and pedagogical knowledge are discussed.  

Keywords: Mathematical Knowledge for Teaching, Measurement, Teacher Education-Preservice 

Eliciting, interpreting, and responding to student thinking are essential tasks for mathematics 
educators, and a key component of effective mathematics instruction (NCTM, 2014). In the 
classroom, this practice includes seeking clues of understanding in what students say, write, or 
draw, and connecting to students’ unexpected strategies. Given the importance of this skill, it is 
important to encourage development of this ability early in teacher education programs. 

Successful application of this practice requires different types of knowledge, including 
knowledge about student thinking and how to connect to and build upon novel approaches. One 
area where this knowledge may be of concern is area measurement. Studies have shown that 
students often demonstrate procedural understanding of area, using the formula length x width 
incorrectly and without understanding (Zacharos 2006). While pre-service teachers (PSTs) have 
sometimes exhibited similar misunderstandings (Murphy 2012), they have also shown valuable 
knowledge, including understanding area as two-dimensional space and concrete measure 
(Baturo and Nason 1996). While perhaps not an ideal conceptual understanding of area, this 
knowledge represents a key starting point in mathematics education courses.  

For students, utilizing formulas without understanding their development is likely to lead to 
incorrect usage and ineffective learning. For PSTs, lacking understanding of area may also lead 
to difficulties when interpreting and responding to student work. Exploring how PSTs leverage 
existing knowledge towards their instructional responses may help teacher educators understand 
how to encourage development of effective teaching practices early on. The purpose of this study 
was to explore how PSTs responded to a novel strategy for explaining triangle area, within the 
context of their existing content knowledge. The research questions for the study were: (1) How 
do elementary pre-service teachers evaluate a novel strategy for justifying the triangle area 
formula? (2) What instructional strategies do PSTs use when responding to the novel strategy? 

Related Literature 
Area measurement is a vital part of elementary school mathematics, offering connections 

between mathematics and the physical world, marking a shift into two-dimensional mathematics, 
and providing opportunities to estimate, manipulate, and visualize. However, studies have shown 
that students often demonstrate a more procedural understanding of area. They may use the 
formula length x width incorrectly (Zacharos 2006), or misunderstand the role of unit squares 
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(Kamii & Kysh, 2006). While PSTs have exhibited similar struggles (e.g. Murphy, 2012), they 
have also exhibited valuable knowledge about area (Baturo & Nason, 1996).   

One approach for understanding how PSTs may interpret and respond to student thinking is 
to analyze their responses to hypothetical student work. Examining student work allows PSTs 
time for reflection and offers a low-risk setting for exploring response strategies. Responding to 
student work is a central component of teaching, and practicing this skill offers opportunities to 
develop effective instructional practices. Analyzing student work has helped in understanding 
how PSTs respond to student-invented strategies in past research (e.g. Son 2016), providing 
insight into how they develop responses and what may be done to support this development. 

This work is further grounded in the theory of mathematical knowledge for teaching, where 
knowledge required for effective mathematics instruction is composed of multiple components, 
among them common and specialized content knowledge, knowledge of content and students, 
and knowledge of content and teaching (Ball et al., 2008).  We were interested in exploring our 
PSTs’ existing common and specialized content knowledge, and specifically how this knowledge 
informed their knowledge of students, knowledge of teaching, and instructional practices. 

Methodology 
Twenty-four elementary PSTs enrolled in a geometry/measurement course volunteered to 

participate. The participants were all female, with a range of mathematical backgrounds.  
Data Sources and Collection 

Data sources included both a pre-assessment and interview.  The pre-assessment consisted of 
questions assessing both common and specialized content knowledge, as well as knowledge of 
content and students. Assessment tasks were adopted from prior studies (e.g. Zacharos, 2006).  

The first author then conducted semi-structured interviews with all participants.  In this 
study, we report on responses to one interview task, where participants were asked to study and 
respond to the diagram in Figure 1. Participants were told that the figure represented a student’s 
attempt to explain the area formula ½ bh via cutting and rearranging pieces of the figure. They 
were then asked to evaluate the strategy for mathematical accuracy, to describe their assessment 
of the knowledge exhibited by the student, and to offer possible instructional responses.   

Pre-assessment data was collected immediately prior to the course measurement unit, with 
interviews were conducted in the following four weeks.  While participants had been exposed to 
similar material prior to the interviews (both in their own education and in the course), none of 
the participants were previously familiar with the justification of the triangle area formula that 
comprised the primary data source for the present work.   
 

 
Figure 1. Interview question diagram. Novel strategy to verify area formula for a triangle.  

Data Analysis 
Interviews and reflective memos were qualitatively analyzed for content and instructional 

responses.  The two authors coded interviews independently for content knowledge (see Table 1) 
as well as instructional response strategies (see Table 2). After initial coding, the authors met to 
discuss themes, resolve discrepancies between codes, and identify key findings.   
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Findings 
PSTs’ Content Concerns 

The majority of PSTs (22 out of 24) grappled with evaluating the mathematical accuracy of 
the diagram, noting concerns regarding the fit of the pieces, connections to the triangle area 
formula, and generalizability to other triangles. Frequent responses are provided in Table 1.  

Table 1: PSTs’ Most Frequent Content-Related Responses 
Description Example 
Doubt about the “fit” of 
pieces C and D when forming 
a rectangle (6 out of 24) 

“You can’t even know that this is correct because you don’t have 
side lengths… just simply saying that this goes there and that 
goes there is not really valid” (Participant 14) 

Difficulty connecting area 
formula for a triangle with 
area formula for a rectangle 
(10 out of 24) 

“If you have one half base times height, that is not equal to base 
times height… You can’t have the same amount of area be base 
times height and half of base times height at the same time” 
(Participant 20) 

Confusion linking bisected 
height in Figure 1 with the 
formula indicating a bisected 
base, 1/2bh (6 out of 24) 

“I can see where the one half the height comes from, but I don’t 
know…I get kind of confused when it comes to the base because 
you don’t want to split the base in half because it didn’t get 
divided and it’s just not how I see it” (Participant 01) 

 
Many PSTs’ concerns were mathematically valid, engaging with pieces of specialized 

content knowledge and indicating critical thinking about the steps necessary to justify a formula. 
They sought clarity in the “fit” of the diagram, and understanding of how to connect diagram to 
formula. Most PSTs recognized that the strategy may not be generalizable, but struggled to fill in 
the details themselves.  As a result, half rejected the strategy (12 out of 24) or stated the diagram 
was valid without verifying details (7 out of 24). Accepting without understanding or rejecting 
the method could lead to issues in a real teaching situation, leading either to the acceptance of 
incorrect strategies or the halting a productive discussion.  Given that the sequence in Figure 1 is 
a viable strategy, our PSTs’ responses indicated that struggles with understanding of the content 
may lead to struggles in responding to student thinking in future instructional moments. 
 
PSTs’ Instructional Responses 

Our PSTs provided a variety of instructional responses, with some leveraging their content 
knowledge to inform their pedagogy. Frequent responses are described in Table 2.  

Table 2: PSTs’ Most Frequent Instructional Responses 
Description Example 

Focuses on an alternate 
method for justifying area of a 
triangle (6 out of 24) 

“[If] you made an exact copy [of the triangle] and flipped it on 
its axis… it would sort of look like a parallelogram. Then… you 
can do length times width or base times height and you are 
multiplying by point five to get half of it” (Participant 19) 

Looks for additional examples 
or explanations (12 out of 24) 

“This is very interesting! Can you show me?  How do you know 
its correct?” (Participant 02).   

Guides the student away from 
the strategy (9 out of 24)  

“I would go over the formula again. I would bring up not to use 
this because it won’t work every time” (Participant 12).   
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Twelve participants provided student-centered responses, asking the student to look for more 
examples or provide further explanation. Three PSTs went further and suggested the entire class 
investigate the strategy, so that other students could engage as well. These PSTs indicated a 
desire to elicit student thinking, bring about mathematical discussion, and provide room for the 
entire class to engage in new ideas. Although content knowledge may be concern for follow-up, 
these responses represented a good starting point for addressing unfamiliar strategies.  

At the same time, other responses provided by PSTs were more teacher-centered. Nineteen 
PSTs provided procedural recommendations, such as giving area practice problems or asking the 
student to focus on use of the formula.  Such responses indicated a higher value on procedural 
fluency, and frequently stemmed from prior difficulty with understanding the strategy. While 
testing empirical examples is a useful strategy for exploring generalization, it was unclear if the 
PSTs would have been able to follow up on those examples for this purpose.  

Discussion and Conclusions 
Our PSTs showed that it may be challenging, but certainly possible, for them to practice 

effective instructional practices. While struggles with content hindered some instructional 
responses, half of our PSTs placed the student at the center of discussion, a positive point from 
which to develop knowledge about teaching. They indicated a desire to learn from their students, 
and sought to merge the student’s understanding with their own. For these PSTs, it would be 
helpful to discuss techniques for follow-ups to probing questions, with a focus on the specialized 
knowledge required to assess novel strategies.  This knowledge should be explored not only to 
learn content, but also to see how these ideas may arise in day-to-day teaching practices.   

Participants who struggled with their own justifications were less willing to explore new or 
unfamiliar ideas. As noted previously, eliciting and interpreting student thought is an important 
component of effective teaching, but may be especially difficult for those PSTs who continue to 
struggle with their own justifications. For these PSTs, it may be wise to focus on developing the 
ability to ask probing questions, eliciting students’ understanding and giving themselves time for 
processing. Modeling how to address such challenges with probing questions, continuing 
dialogue, and scaffolding may help develop these key questioning skills. By integrating content 
knowledge with hands-on experience responding to student work, PSTs can begin realize for 
themselves where they may be missing understanding, and how this may impact their teaching 
practices in the future.  
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We report on a study of novice teachers’ eliciting performances in a scenario in which a student 
has made a mistake and, if sufficiently probed, is able to recognize the mistake and revise their 
work. Our findings reveal the skills and capabilities of one group of preservice teachers at the 
start of a teacher education program.  

Keywords: Teacher Education-Preservice; Instructional Activities and Practices  

In mathematics teaching, a regular problem of practice is that a student does something 
“unexpected” when solving a mathematics problem such as using an invented approach or 
making a “mistake” when carrying out a known process. Interactions around “unexpected” 
student responses can be powerful sites of learning for both teachers and students (Hiebert et al, 
1997). For example, when an answer is incorrect, the joint sense-making required to interpret 
student thinking goes beyond the identification and correction of mistakes or errors into the 
conceptual analysis of why the mistake or error was made (Borasi, 1994; Kazemi & Stipek, 
2001). The information that teachers can uncover through elicitation can then guide their 
pedagogical response. While the importance of interacting with students around mistakes is well-
documented, far less is known about the ways in which preservice teachers (PSTs) elicit student 
thinking when a student has made a mistake in their arithmetic process. In this study, we set out 
to explore the eliciting skills and capabilities of PSTs in a context in which a student has made a 
mistake in their arithmetic process and will recognize the mistake if asked specific questions 
about their reasoning. We use the term mistake to mean isolated and unrepresentative mis-
executions of an algorithm (i.e. “careless mistakes”) (Radatz, 1980). We studied the skills of 
PSTs at the beginning of a teacher education program in order to find out about the skills that 
they bring to teacher education. 

The Practice of Eliciting Student Thinking 
In teaching, “teachers pose questions or tasks that provoke or allow students to share their 

thinking about specific academic content in order to evaluate student understanding, guide 
instructional decisions, and surface ideas that will benefit other students” (TeachingWorks, 
2011). Our decomposition of the work of eliciting student thinking includes bringing out the 
student’s process and probing key aspects of what the student says and does to uncover the 
student’s understanding (Shaughnessy & Boerst, 2018b). We use “skill with eliciting student 
thinking” to refer to the degree to which PSTs are able to engage in these areas of work.  

Using a Teaching Simulation to Assess Skills with Eliciting Student Thinking 
Since 2011, we have been using teaching simulations to study PSTs’ skill with eliciting 

student thinking (Shaughnessy & Boerst, 2018a Shaughnessy, Boerst, & Farmer, 2018). In these 
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simulations, a PST interacts with a “standardized student” (a teacher educator taking on the role 
of a student using a well-defined set of rules for responding) around a specific piece of written 
work. We design teaching simulations to have a consistent three-part format (Shaughnessy & 
Boerst, 2018b). First, PSTs are provided with student work on a problem and given 10 minutes 
to prepare for an interaction. Second, PSTs have five minutes to interact with the standardized 
student, eliciting and probing the “student’s” thinking to understand the steps they took, why 
they performed particular steps, and their understanding of the key mathematical ideas involved. 
Third, PSTs are interviewed about their interpretations of the student’s thinking.  

We designed this simulation to be one in which a student makes a mistake that is evident in 
their original written work. This student uses an alternative algorithm for solving multi-digit 
subtraction problems (see Figure 1). The process involves writing the value of the minuend and 
subtrahend in expanded form and making any necessary trades. When used correctly, the user 
would then subtract the numbers place-by-place in expanded form. This student correctly applies 
the expanding and trading process, but mistakenly adds values by place instead of subtracting. 
This student has conceptual understanding of expanded form, the meanings of addition and 
subtraction, and when, how, and why to make trades. In this particular instance, however, the 
student accidentally loses sight of the fact that they are solving a subtraction problem due to the 
addition symbols in expanded form. During the interaction, the student will realize their mistake 
when pressed to: make and evaluate an estimate for the original problem, represent their process 
with a picture, talk about the meaning of the operation, explain why trades were made, solve 
another multi-digit subtraction problem, or re-solve the original problem. The teacher educators 
carrying out the “student” role were trained to only reveal the mistake or revise the process if 
pressed by the PST on one or more of these specific points. 

 
Figure 1. Student work. The student makes a mistake.  

Methods 
Thirty PSTs enrolled in a university-based teacher education program in the United States 

participated during the first week of the teacher education program. The teaching simulations 
were video-recorded. In this paper, we focus on three core components that we assessed: (a) 
eliciting the student’s original process, (b) probing the student’s understanding of key 
mathematical ideas, (c) eliciting and probing the student’s mistake, including the reason for the 
mistake and the revised process and solution. For each of these components, we identified 
specific “moves” and tracked their presence or absence in each performance. We used the 
software package Studiocode© to parse the video into talk turns. Then, we identified “instances,” 
which contain a question posed by a PST and the student’s response to that question. Two 
independent coders applied all of the relevant codes to each instance. Disagreements were 
resolved through discussion and by referencing a code book.  

Findings 
Eliciting the Student’s Original Process 

The student’s process had five steps: expanding both the minuend and subtrahend, comparing 
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the numbers in each place, trading, adding (rather than subtracting) numbers by place, and 
adding the partial sums to arrive at the answer. The highest rates of eliciting occurred around the 
expansion (70%), the comparison of the numbers in each place (90%), and the trading steps 
(80%). In fact, 65% of PSTs elicited all three of these steps and 90% of the PSTs elicited two or 
more. However, only 53% of the PSTs elicited the step where the student made the mistake. The 
smallest percentage of eliciting occurred around the adding of the partial sums (10%). Because 
this step took place after the mistake, it may not have seemed important to PSTs who had elicited 
the mistake. Given that these PSTs elicited some, but not all, of the student’s steps, we concluded 
that they brought skills relevant to eliciting a student’s process that may be leveraged in the 
teacher education program to work towards more thorough elicitation. 
Probing the Student’s Understanding of the Original Process 

We coded whether PSTs probed the student’s understanding of six mathematical ideas 
underlying the process. The highest percentages of probing occurred around the operation in the 
problem (27%), why the student expanded (37%), and why the student traded (27%). The lowest 
percentages of probing occurred around the equivalence of expanded form and the “original” 
number (7%), the reasonableness of the answer (7%) and what trading means (0%). This 
suggests that limited probing of mathematical ideas occurred. However, when we looked across 
the set of ideas, we found that 67% of PSTs probed the student’s understanding of one or more 
idea. Thus, we concluded that this 67% of PSTs brought skills relevant to probing the student’s 
understanding in this scenario, but note that their probing was not focused on particular ideas.  
Eliciting and Probing the Student’s Mistake and Revised Process 

We coded the extent to which the PSTs elicited and probed the student’s mistake of adding 
numbers by place instead of subtracting. We found three patterns in PST’ performances: eliciting 
that the student had made a mistake (47% of PSTs), pointing out the mistake and getting the 
student to agree without first eliciting the mistake from the student (20% of PSTs), and only 
asking questions that were not focused on the mistake (33% of PSTs). In other words, 67% of the 
PSTs uncovered the mistake either by eliciting it or asking the student to confirm that they made 
a mistake; 33% percent did not learn about the mistake.  

We further examined the performances of the 47% of PSTs who elicited the mistake from the 
student. These 14 PSTs elicited the mistake in different ways. Eleven of the 14 asked about the 
operation involved in the problem and then pressed on how that operation (subtraction) related to 
what that the student had done (addition). Another two PSTs posed another problem for the 
student to solve or asked the student to redo the original problem. A third approach, used by one 
PST, was to ask why the student had made the trades (to get enough to subtract).  

To explore what PSTs did after learning the student had made a mistake, we considered the 
20 cases in which PSTs uncovered the student’s mistake either by eliciting or pointing out the 
mistake. Three of the 20 PSTs asked questions to learn about how and/or why the mistake was 
made. For example, in response to the student’s comment, “I think I made a mistake,” one PSTs 
asked, “How did you make a mistake?” Five of the 20 PSTs made statements based on their own 
inferences about how and/or why the student made the mistake and got the student to agree. The 
other 12 PSTs did not ask follow-up questions about how or why the mistake was made. For 
example, one PST elicited the mistake, then immediately shifted focus to the revised process. Of 
the 20 PSTs, 15 elicited some or all of the revised process from the student. Sometimes this 
included asking about all of the steps in the process again, but other times it focused on redoing 
the step where the student had made the mistake. In 10 of the 20 cases, the student revised their 
final answer. These findings suggest that this group of PSTs bring skills relevant for eliciting a 
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student’s mistake but may need to learn reasons and strategies for probing how and why a 
mistake was made. 

Discussion 
Understanding the skills with teaching practices that novices bring to teacher education is 

key to designing experiences that are responsive to the needs of PSTs (Shaughnessy & Boerst, 
2018a). This study examined the ways in which PSTs at the beginning of a teacher preparation 
program elicited the thinking of a student who made a mistake when using an alternative 
algorithm to solve a subtraction problem. Learning about the reason for a mistake is important 
for teachers to accurately assess and respond to student thinking. For example, a student who 
was genuinely unsure of the meaning of expanded form would need different instruction than a 
student who has made a mistake when carrying out a well-understood process. However, at the 
start of their teacher education program, these PSTs focused more on eliciting the revised 
method and/or solution than asking about why the mistake was made. The data suggest several 
directions for continuing research. First, the PSTs in this study were in their first week of a 
teacher education program. In what ways do their skills with eliciting student thinking develop 
over time? Second, what course activities might effectively cultivate an inclination to probe how 
and why students make mistakes? Third, the assessment itself involved a mistake where the 
student was using a “non-standard” approach to solve the problem. Anecdotally, we have reason 
to think that some PSTs were discounting the student’s reasoning because they believed that the 
student should be using a different method to solve the subtraction problem. A future study could 
compare skills in eliciting around a mistake with a “standard” and an “alternative” algorithm.  
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In this report, I describe how using representations facilitated a shift in reasoning about 
proportional relationships in a content course for prospective middle school teachers. The 
prospective teachers initially approached proportional relationships and created representations 
from a multiple batches perspective. After some support, the teachers reasoned with a variable 
parts perspective and modified their representations accordingly. 
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Researchers have stressed the importance of representations in mathematical thinking 
(Cuoco, 2001; Janvier, 1987). Additionally, representations are a critical feature of effective 
mathematics teaching. In Principles to Action, (National Council of Teachers of Mathematics, 
2014), the authors explicitly identified teaching with representations as principle for high quality 
mathematics teaching practice. Using and connecting mathematical representations “[engage] 
students in making connections among mathematical representations to deepen understanding of 
mathematics concepts and procedures and as tools for problem solving” (p. 10). However, 
teachers’ conceptions of representations are sometimes framed as not “real” mathematics 
(Stylianou, 2010) and prefer to prioritize abstract, procedural rules (Eisenhart et al., 1993). One 
viable avenue is to provide prospective teachers with opportunities to learn with representations 
which influences both teachers’ knowledge and use of representations (Jacobson & Izsák, 2015). 
In this report, I characterize such an opportunity for prospective middle school teachers to reason 
about proportions using representations. Specifically, I describe two ways prospective teachers 
reasoned about proportions and how they were supported in transitioning from one to the other. 

 Theoretical Framework  
Definition of Representations 

In this study, I frame representations as culturally and historically rooted artifacts whose 
meanings grow out of how communities have interacted with an inscription over time. Saxe’s 
account (2012) of cultural forms and functions describe how historically rooted artifacts change 
over historical time. Forms are socially rooted artifacts perceivable by the community such as the 
base-27 system of the Oksapmin peoples (Saxe, 2012) or a number line (Saxe, de Kirby, Le, 
Sitabkhan, & Kang, 2015). Functions are how forms are used by the community. Over time, the 
community may preserve historical forms but may also change them in order to serve new 
functions. For example, as students use a number line form in earlier grades, the form shifts to 
accommodate rational numbers while preserving whole numbers. In this report, I focus on strip 
diagrams as representations although others were found in the data (e.g., equations). 
Definition of Multiplication and Proportional Relationships 

The class analyzed in this study used a multiplier-multiplicand definition for multiplication 
notated by equation N · M = P (Beckmann & Izsák, 2015). In this equation, the value N denotes 
the number of bases units in one group (the multiplicand), the value M denotes the number of 
groups (the multiplier), and the value of P denotes the number of units in M groups. 
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Additionally, a proportional relationship is the collection of the set of values x and y satisfying 
the equations of the form N · x = y or x · M = y. Using this definition of multiplication, Beckmann 
and Izsák called the first relationship a multiple batches perspective wherein the amount in one 
group is preserved i.e., for a certain amount of the first quantity, there are a corresponding 
amount of the second quantity. They name the second relationship a variable parts perspective 
wherein the number of groups is preserved i.e., for a certain number of groups of equal size of 
the first quantity, there are a corresponding number of groups of the same size of the second 
quantity. They also claim the variable parts perspective has mostly been overlooked in the 
literature but can be used to think about secondary topics such as geometric similarity and slopes 
of lines. The results of this report show the accessibility of the variable parts perspective and 
describe features of students’ representations help them reason with this perspective. 

Data and Analysis 
I analyzed four lessons from a mathematics content course for prospective middle school 

teachers (PSMTs). The lessons were on proportional reasoning based on the ideas in Beckmann 
and Izsák (2015). The 13 PSMTs in the course were predominantly white women. In class, 
PSMTs were expected to use the multiplier-multiplicand definition of multiplication and explain 
their thinking with drawings rather than memorized algorithms or symbol pushing. I also acted 
as a participant-observer and sat at one of the tables asking questions to support, extend, and 
connect PSMTs ideas. I analyzed two introductory lessons on proportional relationships and two 
lessons marking the transition from using multiple batches to variable parts. I analyzed video 
recordings of class. One stationary camera captured the whole class and another camera followed 
the teacher during small group work. Each table had an iPad where PSMTs can write notes and 
present their drawings. The primary analytical techniques were modified from Saxe et al., 2015 
and focused on identifying forms and functions of the representations. To identify a form, I 
characterized the geometric inscription or object the PSMT used to explain their reasoning such 
as a bead, strip, or partition of a strip. I identified functions by using the PSMTs verbal 
explanations and annotations to explain what each form represented.  

Results 
Initially, the PSMTs’ ways of reasoning using a multiple batches perspective where a ratio 

represented a composite unit. With support, the PSMTs reasoned using a variable parts 
perspective by assigning different values to the partition of a strip and collapsing batches of 
strips into one. I present two students’ shifts in reasoning modelling other PSMTs in the course. 

 

 
Figure 1. An Exemplar of a PSMT’s Initial Arrangement 

In the first lesson, the PSMTs were given a set of black and white beads and the hot cocoa 
problem. They were asked to determine if a hot cocoa mixture with two drops of chocolate and 
three drops of milk had the same flavor as a mixture with eight drops of chocolate and 12 drops 
of milk (see Noelting, 1980). PSMTs initially described rearranging the set of eight black beads 
and 12 white beads in four groups with two black beads and three white beads to show the new 
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mixture had the same flavor (see Figure 1). This indicated a multiple batches way of reasoning 
i.e., (3 + 2) · x = y where x is the number of batches and y is the total ounces of hot cocoa. 

 

         
Figure 2. (a) Double Number Line and (b) Strip Diagram for the Hot Cocoa Problem 

The following day, PSMTs were asked to make double number lines (DNLs) and strip 
diagrams (SDs) of the hot cocoa problem that captures multiple mixtures. The PSMTs found 
creating and explaining DNLs to be generally unproblematic. Most PSMTs created DNLs with 
increments of two ounces of chocolate and three ounces of milk similar to Figure 2a to show 
multiple mixtures of the hot cocoa. When making SDs, they created drawings resembling the 
DNL where strips represented a batch of two ounces of chocolate and three ounces of milk 
(Figure 2b). In other words, although the form of representation changed, its function remained 
similar in that it explicitly showed batches. At the table where I was seated, the PSMTs 
expressed difficulty in creating SDs that capture multiple mixtures. I pressed them to think of 
larger quantities of hot cocoa and how they would draw it. Molly then created the drawing in 
Figure 3a. During whole class discussion, she explained she initially drew one cup (the first row) 
of hot cocoa with five equal sized parts, two parts chocolate (blue parts) and three parts milk 
(pink parts). She explained that 1,000 cups of hot cocoa would also have two parts chocolate and 
three parts milk and stacked multiple strips to show 1,000 cups. She divided 1,000 cups into five 
parts to get 200 cups in one part. Describing the difference between one cup and 1,000 cups, she 
gestured towards the first column in her drawing, “so instead of having one-fifth in that one tiny 
box, [this column] is worth 200 cups.” This indicated Molly was beginning to consider partitions 
of the strip diagram as a part with a variable amount in it i.e., either 1/5 of a cup or 200 cups. 

 

 
Figure 3. (a) Molly’s Hot Cocoa Strip Diagram (b) Christina’s Punch Strip Diagram 

In the lessons transitioning from using multiple batches to variable parts, the class worked on 
the problem, “If you mix juice and bubbly water in a three to five ratio to make punch, how 
many liters of juice and how many liters of water would you need to make 24 liters of punch?” 
Once again, some PSMTs initially created SDs showing multiple batches. Christina’s transition 
in reasoning during small-group discussion was similar to Molly’s. Using her drawing (Figure 
3b), she initially showed three batches by iterating a horizontal strip representing a batch 
containing three liters of juice and five liters of water. She iterated the strip three times to get 24 
liters of punch. However, she was still confused about drawing a SD highlighting three and five 
parts instead of two parts with three liters and five liters. After talking with Molly, Christina 
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explained she would change her drawing by collapsing multiple partitions into one partition, “I 
guess it would be different…I was trying to show the variable parts. It doesn’t matter if [the 
drawing] keeps on going down, the ratio is going to be the same, so it might be clearer if this was 
just one big part [gestures to the first column] and not split into three because it looks like 
batches.” Similar to Molly, Christina was flexible with the amount in a partition i.e., one 
partition could be one or three liters. She noted that a ratio could refer to the number of parts of 
same amounts i.e., x · (3 + 5) = y where x is the amount in a part and y is the total liters of punch.  

Discussion 
When initially approaching proportion problems, PSMTs used a multiple batches perspective 

way of reasoning. This could indicate PSMTs experience in their own education may have 
primarily supported a multiple batches perspective and can be leveraged to develop variable 
parts perspective. When prompted to think about the situation in different ways i.e., using larger 
numbers or focusing on the ratio as a number of parts, the PSMTs were able to successfully 
consider a variable parts perspective. Additionally, the partitions in strip diagrams shifted 
functions supporting a variable parts perspective when they “collapsed” the iterated strips and 
generalized that a partition could be any amount. This study demonstrates the viability of PSMTs 
capacity to reason with variable parts, an unnoticed perspective in the literature. Additionally, the 
results suggest teachers and teacher educators to support their students to reason flexibly with the 
mathematical functions of representations such as the strip diagram. 
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A preservice teachers’ (PSTs’) ability to notice students’ mathematical thinking can play an 
important role in their ability to respond to students’ ideas and orchestrate productive discourse. 
Consequently, the topic of teacher noticing has been of interest recently, but little is known about 
why PSTs notice what they do. This report describes the initial analysis of a project investigating 
how Mathematical Knowledge for Teaching (MKT) and beliefs about the role of students’ 
thinking in the math classroom influence elementary PSTs’ noticing within the context of 
fractions. Regression analysis indicates that neither MKT or beliefs had a statistically significant 
impact on PSTs’ noticing. Being in a course section that “practiced” noticing through several 
activities throughout the semester was the only statically significant predictor of noticing scores 
at the end of the semester. 

Keywords:  Teacher Education-Preservice, Teacher Beliefs, Mathematical Knowledge for 
Teaching 

What teachers see or fail to see in a classroom is tightly linked to the decisions that teachers 
make, which makes teacher noticing critical to all aspects of teaching. Using students’ thinking 
in instruction is essential for high quality instruction, but this can only be done if the teacher first 
notices students’ mathematical thinking, which can be challenging, especially for novice 
teachers. Little is known about why teachers notice what they do, therefore leaving many 
unknowns about how to best improve teachers’ ability to notice students’ thinking and 
consequent capacity to make instructional decisions based on students’ thinking. This study 
investigates how elementary PSTs’ beliefs and Mathematical Knowledge for Teaching (MKT) 
are related to their ability to notice students’ mathematical thinking.  

Theoretical Framework 
According to Jacobs, Lamb, and Philipp (2010), noticing of students’ mathematical thinking 

includes: (a) attending to children’s strategies while working on mathematics, (b) interpreting 
and making sense of children’s mathematical understandings, and (c) deciding how to respond 
because of these interpretations. Noticing as a skill can be taught, improved, and refined (Schack 
et al., 2013; Schoenfeld, 2011), and it should be cultivated with PSTs. By practicing noticing 
with PSTs and scaffolding the complexities of noticing students’ mathematical thinking, PSTs 
are better prepared to notice students’ mathematical thinking and enact high quality math 
instruction in their future classrooms 

Research on PSTs’ noticing of student’s mathematical thinking while watching videos has 
overwhelmingly focused on the what of noticing. Studies have investigated what classroom 
features PSTs tend to notice and in what ways their noticing of these features may change over 
time (Sherin & van Es, 2005; Star & Strickland, 2008). While these studies have yielded a 
deeper understanding of PSTs’ noticing, there are still important questions left unanswered. 
Several authors have alluded to knowledge and beliefs impacting PSTs’ noticing (Schoenfeld, 
2011; Star & Strickland, 2008). However, there are not many studies that investigate the impact 
of beliefs or knowledge on noticing, and even fewer studies investigating these factors together. 
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Consequently, the relative contribution of each of these factors is unknown. Studies that have 
investigated beliefs and noticing have measured beliefs about mathematics in general, including 
PSTs’ math attitudes (Fisher et al., 2014). It may be more appropriate to specifically investigate 
beliefs about the importance of using student thinking in instruction, as these beliefs may be 
more tightly connected to a teachers’ noticing. Additionally, past studies that have investigated 
MKT in relation to noticing, cite a theoretical connection, but have been unable to find a 
statistically significant connection (Thomas, Jong, Fisher, & Schack, 2017). The lack of expected 
findings may indicate that the instruments were not well aligned.   

This study is designed to build and improve on prior studies by combining attention to PSTs’ 
knowledge, beliefs about the importance of using student thinking in classroom instruction, and 
their noticing. This study examines whether changes in PSTs’ knowledge and beliefs correspond 
with changes in their noticing of students’ mathematics thinking.  

Methods 
Participants 

The study was conducted in the Fall of 2017 with 97 elementary PSTs during their first of 
two math methods courses.  The PSTs were divided amongst four sections of the same course. 
Course instructors met on a weekly basis to collaboratively plan the activities and assignments 
each week. Three of the sections served as a comparison section to the focal section. The focal 
section participated in an additional two noticing activities and a video observation assignment.  
Data Sources 

Noticing of students’ thinking about fractions. The PSTs’ noticing of students’ thinking is 
measured by a noticing activity where they watch a short video and then respond to four prompts 
via an online survey. The intention of the video is to simulate what a teacher would experience 
while listening to students collaboratively working on a task. The video showed two second 
graders working on a fraction subtraction problem using pattern blocks, while one of the students 
explained her reasoning at a conceptual level by detailing her thought process for her partner 
while using pattern blocks to visually represent her thinking. This clip was chosen since videos 
that demonstrate students’ reasoning at a conceptual level result in more substantive 
considerations of students’ mathematical thinking (Sherin, Linsenmeier, & van Es, 2009).  

Following the work of Jacobs et al. (2010) and Fisher et al. (2014), the journaling prompts 
consist of three categories that correspond with the three components of noticing of students’ 
mathematical thinking:  attending, understanding, and responding. The prompts are: (1) Describe 
what the student did in response to the problem presented. (2) Describe what you learned about 
the student’s understanding of mathematics from their response. (3) If the student were in your 
classroom, what question(s) might you pose next? What would you hope to accomplish by asking 
these questions?  

Mathematical Knowledge for Teaching. This study uses a subset of the Learning 
Mathematics for Teaching (LMT) instrument to measure PSTs’ MKT (Hill, Schilling & Ball, 
2004). Items in the LMT address common and specialized content knowledge, asking teachers to 
solve mathematical problems, evaluate student solutions, and represent content to students. Since 
the study focuses on fractions, I created an instrument of 23 items by selecting questions that 
specifically require the use of fractions from both forms of the LMT rational number modules. 

Beliefs Likert Scale. The survey given to PSTs’ at the start and end of the semester to 
measure their beliefs about the role of students’ thinking in math teaching combined 16 items 
from Beswick (2005) and 18 items from the Mathematics Beliefs Scale (Fennema, Carpenter, & 
Loef, 1990). Through factors analysis, the 34-item scale was pared down to 18 items (a = .83) 
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that consist of five factors:  what teachers should tell students, the role of student thinking in 
math teaching, the role of productive struggle, the importance of understanding students’ errors, 
and the role of student justification in the math classroom. The mean of the items within each 
factor was used as each PSTs’ score for that factor.  
Analysis 

PSTs’ noticing was analyzed according to the three components of noticing. All coding was 
binary, with a 1 indicating that the response connected to the mathematical thinking of the 
student in the video and a 0 indicating that the PST did not connect their answer to the student’s 
thinking. The responding score considered both the question posed by the PSTs and their 
reasoning for asking that question. The score from the three components were summed to create 
an overall noticing score.  

The measures were administered at the beginning and end of the semester. Using SPSS, I 
performed linear regression analysis to determine how the change in predictors (LMT, beliefs, 
and section) related to PSTs’ noticing score at the end of the semester. Given the results of the 
regression analysis, an independent samples T-Test was conducted to investigate how the focal 
and comparison sections differed. 

Results 
The linear regression model contains the following predictors:  the change in LMT scores, 

the change in each of the five factors, noticing score at the start of the semester, and if the PST 
was in the focal section or not. Of all predictors, the only statistically significant factor is if the 
PST was in the focal section or not (p = .011). In order to amplify if there was any predictive 
power of the predictor variable to the final noticing score the regression was run six times with 
the following three predictors:  if the PST was in the focal section or not, noticing score at the 
start of the semester (as a control), and the predictor of interest. The results of these regressions 
are in Table 1, demonstrating that none of the factors are statistically significant. In each 
individual model run in Table 1, the focal section predictor continues to be significant (with a p < 
.005), while the noticing score from the start of the semester is never significant.  

Table 1:  Regression Models Run with Focal Section as Control 
Model Variable Std. Beta t Sig. 

1 Change in LMT Score .05 .503 .616 
2 Change in Mean: What Teachers Should Tell Students .109 1.052 .296 

3 Change in Mean: Role of Student Thinking in Math 
Teaching -.047 -.474 .637 

4 Change in Mean: Role of Productive Struggle .112 1.105 .272 

5 Change in Mean: Importance of Understanding 
Students’ Errors .016 .158 .875 

6 Change in Mean: Role of Student Justification in Math 
Classrooms .002 .015 .988 

 
An independent samples T-Test was run with all predictors to investigate how the two groups 

compared. Table 2 shows the only significant result when equal variances are assumed between 
the two groups is for the noticing score at the end of the semester and the change in noticing 
score over the semester. In regard to the PSTs’ MKT and beliefs, the two groups are statistically 
similar.  

 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

802	

Table 2:  T-Test Results with Focal and Comparison Sections  

Predictor Focal 
Mean 

Comp. 
Mean 

Focal 
Std. Dev. 

Comp. 
Std. Dev. 

Focal Std. 
Error 
Mean 

Comp. 
Std. Error 

Mean 
Change in Noticing** 1.26 .4 .964 1.175 .201 .138 

Post Noticing***  1.91 1.15 .848 .892 .177 .104 
Note:  ** p < .01, ***p < .001 

Discussion 
The results from the regression analysis demonstrate that the only statistically significant 

predictor of the PSTs’ noticing score at the end of the semester was if they were in the focal 
section or not. The predictors for knowledge and beliefs did not yield statically significant 
results. This does not mean that knowledge and beliefs had no impact on noticing, but the 
statistical analyses did not indicate a strong enough impact to yield statically significant results.  
The focal and comparison sections differed in two ways:  the PSTs in the focal section 
participated in a noticing activity three additional times throughout the semester. They watched 
and discussed two additional video clips (different from the clip shown at the start and end of the 
semester) and conducted a video observation. All of these activities contained the same question 
prompts as those used to measure PSTs’ noticing at the start and end of the semester. The results 
indicate that activities within the methods course that used real classroom video to “practice” 
noticing students’ mathematical thinking impacted PSTs’ noticing in a significant way.   
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Ten elementary and middle school prospective teachers (PTs) participated in clinical interviews 
where they modeled integer addition and subtraction number sentences with two-colored chips. 
The PTs constructed various models using the two-colored chips that both matched and did not 
match the number sentences presented to them. Although the prospective teachers sometimes 
created models that did not match the integer addition and subtraction number sentences, some 
recognized these inconsistencies. The results highlight spaces of PTs’ accomplishments and 
struggles with using two-colored chips for certain integer number sentences. Implications of this 
study support facilitating PTs’ construction of models and leveraging their thinking and uses of 
models in instruction.  

Keywords: Teacher Education-Preservice, Number Concepts and Operations, Cognition 

Understanding the ways that prospective teachers (PTs) reason is important so that we can 
leverage discourse and instructional experiences in teacher education. PTs use various 
manipulatives, such as the two-colored chips, as they engage in activities around the teaching 
and learning of integers. Yet, we know little about the ways PTs construct models for integer 
operations with two-colored chips. This research report highlights the results of an investigation 
that sought to make sense of the following research question:  

In what ways to elementary and middle school PTs use two-color chips to model integer 
addition and subtraction?  

Conceptual Framework 
The minus symbol has multiple meanings (i.e. unary, binary, opposite) that are often 

confounded (Bofferding, 2014; Vlassis, 2004, 2008).  In fact, students often operate with the 
negative integers by simply omitting or “ignoring” the minus symbol and adding it later (e.g., 
Ayres, 2000; Bell, O’Brien, Shiu, 1980).  Confounding the meaning of the symbol or omitting it 
all together will interfere with the ways that integer addition and subtraction is modeled with the 
chips.  

Subtraction can be interpreted in two different ways, with take-away or distance (Selter, 
Prediger, Nührenbörger & Hußmann, 2012). The take-away interpretation of subtraction aligns 
best with chip models, as discrete objects are used and may be removed; and distance 
interpretations align with other models, such as number lines. The use of a subtraction model 
does not automatically insure success; knowing how the model is connected to the mathematics 
is what is needed to develop conceptual understanding (e.g., Kamii, Lewis, & Kirkland, 2001).   

In this study, we focus on a subset of models (Van Den Heuvel-Panhuizen, 2003), 
manipulatives, and specifically the use of a two-colored chips. The use of two-colored chips is 
often referenced as the chip model, but these manipulatives can be used in differing ways (e.g., 
Murray, in press). Thus, there are many chip models, and we explore the various different 
models that PTs may construct in this study.  

Using two-colored chips to model integer addition and subtraction has both affordances and 
constraints, or places where the model breaks down (Murray, in press). No model is vigourous 
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enough to support all problem types (Vig, Murray, & Star, 2014). Integer number sentences like  
3 – 5 = ▢, for example, presents a constraint in using two-colored chips. If one starts with 3 
chips of one color, representing the positive 3, and tries to remove five chips of the same color, 
this does not work. Consequently, the model needs to be adapted—such as adding in “zero pairs” 
to the model (i.e., representing 1 + -1 with two different colored chips).  

Consistency refers to how things like contextual situations match number sentences 
(Wessman-Enzinger, in press). Similarly, consistency can also refer to how a model matches a 
number sentence. The use of discrete objects for 2 + 3 may not necessarily match 2 – -3. 
Attention to PTs’ consistency as they use two-colored chips to model integer addition and 
subtraction will highlight potential affordances and hindrances of models (Vig et al., 2014).  

Methods 
Ten elementary and middle school PTs volunteered to participate in structured, task-based 

interviews (Goldin, 2000). The PTs participated in the study as freshmen, during their first 
mathematics content course for teaching elementary and middle school mathematics, prior to 
using two-colored chips in their university coursework.  

The PTs worked in pairs within the interviews to better elicit natural discourse about tasks. 
Although in pairs, each PT received the number sentence on a single sheet of paper, with colored 
markers, and two-colored chips (i.e., two-sided red and yellow chips). The following number 
sentences were given to the PTs: -5 + 9 = ▢, 1 – 5 = ▢, 7 + -2 = ▢, -5 – 4 = ▢, 2 – -3 = ▢, -8 – 
-3 = ▢, -5 – -7 = ▢.  The PTs solved each integer addition or subtraction number sentence any 
way they wanted, modeled the number sentence with a number line, and then modeled the 
number sentence with two-colored chips. This research brief focuses on the ways PTs used the 
two-colored chip models for integer addition and subtraction.  

Results  
The results are described in two parts: (a) ways that PTs used two-colored chip models that 

are consistent with the number sentences and (b) ways that PTs used two-colored chip models 
that are inconsistent with the number sentences.  
Consistent Uses of Two-Colored Chips  

Zero pairs. Half of the PTs consistently used zero pairs with the two-colored chips for the 
number sentences -5 + 9 = ▢ and 7 + -2 = ▢ in this study. Brooke and Sayoni, a pair of PTs, 
matched up two sets of chips. Brooke used 9 red chips and 5 yellow chips for -5 + 9 = ▢; Sayoni 
used 9 yellow chips and 5 red chips for -5 + 9 = ▢.  Although they represented the -5 flexibly 
with either red or yellow chips, they paired the chips up similarly. Brooke stated, “I know these 
cancel out,” pointing to the pairs of chips. And, Sayoni highlighted the solution, “I have these 4 
left” after the canceled pairs.   

Comparing two sets. PTs compared two sets of chips with  -5 – -7 = ▢ only twice. Kaye 
compared two sets of chips for  -5 – -7 = ▢.  She constructed two rows, placing five red chips to 
represent -5 in one row and seven red chips to represents -7 in another row. Kaye reflected:  

I do not know how to show this in a way that universally makes sense … Since you are 
subtracting, this equal zero somehow (pulls away five pairs of red/red chips)...They are not 
negative, they are positive (points at the remaining two red chips), that’s the part that I am 
stuck on.  
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As Kaye compared the two sets, she confounded zero pairs (1 + -1 = 0)  with her reflection 
on how -1 – -1 = 0, which presented a challenge in determining how the solution she knew ( -5 – 
-7 =  2) matched the remaining two red chips in her model. Although she confounded zero pairs, 
her comparison aligned to the number sentence.  

Taking away from one set. The only consistent use of chip model with a take-away 
interpreation of subtraction included taking chips away from one set of chips for the number 
sentence -8 – -3 = ▢. Rochelle started with eight red chips and took away three red chips:  

You have the 8 negative chips. You are subtracting the negative three, so you are taking 
away three of the negatives (pulls away 3 red chips). And that leaves you with negative five.  

Inconsistent Uses of Two-Colored Chips  
Zero pairs. Each of the PTs used zero pairs, combining two different colored chips to 

represent additive inverses (i.e., 1 + -1 = 0). However, in doing so the PTs often changed the 
number sentences (e.g., changing 1 – 5 = ▢  to 1 + -5 = ▢). Crystal, for example, modeled 1 – 5 
= ▢ with one yellow chip representing +1 and five red chips representing -5. She combined the 
chips, paired a red and yellow chip together, pulled the pair off to the side, and pointed to the 
four remaining red chips as the solution. Crystal, although she constructed this model for 1 – 5 = 
▢, recognized that this model did not fit the original addition number sentence well: “one minus 
five is hard to do with the chip model because you are taking away from a smaller number.” 

Joining. Joining two sets of chips was a common strategy when PTs solved the number 
sentences -5 – 4 = ▢ and 2 – -3 = ▢. However, the PTs often changed these number sentences 
before modelling the chips with joining. In particular, the PTs changed -5 – 4 = ▢ to -5 + -4 = ▢ 
and 2 – -3 = ▢ to 2 + 3 = ▢. Kacee, for instance, modeled 2 – -3 = ▢ by using 2 red chips and 3 
red chips. She joined these two chips, illustrating a solution of 5. Kacee, without prompting, 
shared: “If I did not already know it was five, I think it would be a lot harder to figure out what I 
am supposed to do with them [reference to the chips].” Although she recognized that that she did 
not think this was the best model to use with the chips, she did not provide an alternative model.  

Taking away from one set. Starting with a set of chips of a singular color, the PTs modeled 
integer number sentences by taking away chips. For 1 – 5 = ▢, Jakob started with five red chips 
and took away one red chip—illustrating 5 – 1 = ▢ rather than 1 – 5  = ▢. Jakob referenced this 
take-away strategy while recognizing that his model did not incorporate subtraction. Even so, he 
did not offer an alternative model.  

Flipping chips. PTs occasionally flipped chips as they used them. At times, this method 
occured as the PTs employed another strategy, and other times it stood alone. Kaye, flipped chips 
as a stand alone method for 2 – -3 = ▢: “If you were to add these, it would be negative. But since 
you are subtracting it, they’re all like (and flips chips over to yellow).” Kaye started with 2 
yellow chips and 3 red chips. She flipped the red chips to yellow. In some ways this matches 2 – 
-3 = ▢ in the sense that, her model matched the relationship between subtraction and adding the 
opposite (e.g., 2 – -3 = 2 + 3).  

Concluding Remarks 
Although the PTs’ focus on procedures interfered with their ability to use models 

consistently (e.g., changing 2 – -3 =  ▢ to 2 + 3 = ▢), the PTs often expressed unprompted 
recognition that their model did not match the number sentences. These types of observations 
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have potential to be spaces where mathematics teacher educators can build on PTs’ thinking, 
facilitating discussion about models and issues of consistency.  

It is important for PTs to be consistent with number sentences and models; they need to 
connect the mathematics with the model (Kamii et al., 2001). Even so, when PTs provide an 
inconsistent model, mathematics teacher educators can leverage this as a way to encourage 
discussion. Given the challenges for children transitioning to models from whole number to 
integers, it seems likely these may be spaces that PTs will need to have discussions in their own 
classrooms in the future.   
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Letter-writing activities, in which pre-service teachers exchange written correspondence with K-
12 students, have a rich history in mathematics education.  The purpose of this research was to 
explore the affordances of letter-writing exchanges in the development of preservice K-8 
teachers’ understanding of mathematics and mathematical feedback processes.  Analyzing 
formative feedback regarding a mathematical task at the level of the task, the processes used to 
analyze the task, and the self-regulatory mechanisms involved in these processes yielded 
interesting results.  Among these were that exposure to different ways of thinking about a task 
were sufficient to elicit new thinking in participants, that a metacognitive awareness of the 
feedback cycle could prompt change in the manner that feedback was perceived, and that 
improving mathematical understanding is an incremental process that is not easily measured. 

Keywords: Algebra and Algebraic Thinking, Instructional Activities and Practices, Mathematical 
Knowledge for Teaching, Teacher Education-Preservice,  

Introduction and Purpose 
Letter-writing activities, in which pre-service teachers (PSTs) exchange correspondence with 

K-12 students, have a rich and diverse history in mathematics education.  In their earliest 
iterations, these projects served as diagnostic tools and pedagogical aids, providing PSTs the 
opportunity to examine K-12 students’ mathematical thinking and evaluate their skills and 
attitudes towards the subject (Fennell, 1991; Phillips & Crespo, 1996).  Later letter writing-
projects shifted the focus to examine PSTs’ learning, and provided a firm theoretical framing for 
these activities within the realm of the knowledge and beliefs needed for teaching mathematics 
(Crespo, 1998, 2003).  More recent projects further developed this framework by considering the 
type of problems and cognitive demand of the tasks PSTs explored with the students (Crespo, 
2003; Norton & Kastberg, 2012) and the nature of the feedback processes involved in these 
exchanges (Kastberg, Lischka, & Hillman, 2016).  It is from this fertile heritage that we 
implemented a letter-writing project in which PSTs from four U.S. universities exchanged 
correspondence with one another around a shared, high-cognitive-demand task in order to 
evaluate the development of their mathematical understanding of the task and their ability to 
provide productive feedback. 

The purpose of this research was to explore the affordances of this letter-writing exchange in 
the development of the PSTs’ understanding of mathematics and mathematical feedback 
processes.  Project participants across the four universities engaged in a shared mathematical task 
focused on algebraic reasoning and exchanged solutions with a partner from another university 
in the form of written letters.  Upon receiving feedback from their partners, participants revised 
their written solutions, composed new letters, and engaged in a second feedback cycle.  The 
artifacts of these exchanges, including participants’ written descriptions of their formative 
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thinking, feedback, responses to feedback, reflections on the feedback cycle, and summative 
analysis of the initial task supported the researchers in examining the relationships between 
participants’ understanding of the mathematical task and the feedback cycle. 

Research Perspective 
Earlier letter-writing research provided four types of practical and theoretical perspective for 

our project.  First, the research suggested a variety of pedagogical benefits for PSTs that justified 
the substantial time they committed to participate in the project.  These benefits included practice 
with the assessment of mathematical thinking (Fennell, 1991), engagement in the feedback cycle 
(Kastberg, Lischka, & Hillman, 2016), and enjoyment of the activity as it offered them 
opportunities to test out their mathematical ideas, exposed them to new perspectives and ways of 
thinking regarding mathematics, and challenged their notions of the nature of productive 
mathematical exchanges (Crespo, 2003).  Second, the research base highlighted shifts in PSTs’ 
metacognitive thinking that could occur with appropriate implementation of the project.  These 
shifts included a transition from directed, unproductive questions and commentary to responses 
that would examine and challenge their partners’ unique ways of thinking based upon analysis of 
the work presented for the task (Crespo, 2003; Norton & Kastberg, 2012).  Third, prior studies 
elaborated on the potential pitfalls of projects of this type and informed the design of our 
project.  As forewarned in the literature, we encountered instances of participants blaming their 
peer’s lack of effort for their own inability to engage in the feedback process, redirecting the 
peer’s thinking to align with their own rather than building on the ideas presented in the writing, 
and a failure to offer actionable feedback regarding incorrect thinking for the task (Kastberg, 
Lischka, & Hillman, 2016; Norton & Kastberg, 2012). From these precedents, we were able to 
address these concerns both implicitly, in the form of prompts offered for our participants’ 
written reflections regarding the feedback process, and explicitly via classroom instruction.  
These interventions helped to mitigate the negative impact of these factors to some 
degree.  Finally, and most significantly, past research directed our attention to the importance of 
the nature of the formative feedback offered in letter-writing exchanges (Kastberg, Lischka, & 
Hillman, 2016) and the participant’s reflections on these processes (Norton & Kastberg, 2012). 

This focus on formative feedback and reflection established the theoretical framing for the 
current study.  Hattie and Timperley’s (2007) model of feedback as a means of reducing 
“discrepancies between current understandings and performance and a goal” (p. 86) comprised 
the central definition for evaluation of our participants’ work, and the four levels of focus for 
feedback established in this model guided the initial thematic analysis of our participants’ 
feedback and reflections.  These levels include feedback focused on the project’s mathematical 
task, the processes used to understand and record one’s thinking about the task, the self-
regulatory processes needed to engage with the task successfully, and evaluations of the 
individual completing the task.  We worked under the assumption that feedback along the first 
three of these levels would offer opportunities for increased mathematical understanding of the 
task by shifting participant’s attention to the productive aspects of their work (Kluger & DeNisi, 
1996) while the final level would provide affective and emotional reinforcement for engaging 
with the task. 

Methodology 
The research was conducted across four universities with a mathematics teacher educator 

(MTE) at each institution supervising the process; the 187 participants in the study were K-8 
preservice teachers in mathematics education courses.  There were two classes of juniors from 
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University A (n = 56), a class of juniors and seniors from University B (n=16), three classes, 
primarily constituted of freshman, from University C (n = 81), and one class juniors and seniors 
at University D (n=34).  All participants were given the same task: discover and explicitly 
describe patterns across the stages of a growing tile pattern (Foreman & Bennett, 1996). 

Participants from different universities were paired with one another.  For example, 
participant 1 from University A was paired with participant 2 from University B, with these 
participants completing the first draft of the task at the same time in the form of a letter to 
another unknown participant.  These letters were collected by each MTE and shared with the 
other MTEs in a google drive folder so all four had access to participant responses.  The MTEs 
then provided participant 1’s letter to participant 2 and participant 2’s letter to participant 1.  The 
participants read each other’s solution and provided feedback to help shape the mathematical 
precision and accuracy of the presented solution.  Participants were provided with a rubric to 
focus their feedback on specific components of the solution.  This feedback was shared with the 
original participant, following a similar exchange process facilitated by the MTEs to maintain 
anonymity among the participants, who had time to implement feedback and make revisions to 
their original solution.  Feedback from the peer was elicited a second time, and participants had 
another chance to make changes in light of the feedback before submitting a final analysis of the 
task to their respective MTE.  Throughout the exchanges, and again after the final task analysis, 
participants were asked to reflect on the processes of giving and receiving feedback in relation to 
the task.  Critical cases were selected from each participating university, and thematically coded 
via the framework introduced earlier. 

Results 
These findings include preliminary results from student work at University B.  The majority 

of participants at University B had rather thorough and mathematically appropriate initial drafts, 
and their work improved nominally throughout the process.  A few participants produced initial 
drafts that needed much improvement, but after analyzing their first and final work along with 
the feedback, either there was limited improvement or no improvement could be linked directly 
to the feedback provided. While such results seem to indicate that the peer feedback process had 
limited impact, a closer look at the data sheds light on more nuanced ways the exchange 
contributed to participants’ understanding.  The exchanges of three participants are described 
below to highlight some of the impact of the letter writing activities.  

Participant A’s initial work was strong and the feedback she received was focused on 
aspects of both the task and the process used to solve it.  Additionally, the correspondence 
introduced a new way of thinking about the pattern that considered the change in the number of 
tiles between each stage.  Participant A reflected on this approach and made a connection to the 
first derivative of the explicit formula they had originally developed, even though this way of 
thinking was not provided in the exchange.  This case demonstrated that exposure to different 
ways of thinking can promote a deepened reflection regarding the mathematics of the task.  

Participant B’s initial work involved a recursive pattern, which proved to be an ineffective 
approach to analyzing the task.  However, the feedback she received was superficial and process 
based, without providing any concrete suggestions for improvement or description of the 
problem.  Participant B, who had been seeking task-based feedback, realized before writing her 
second draft that the recursive nature of her approach was unproductive and chose a completely 
different path for the second draft.  Although Participant B’s reflection indicated that the 
feedback received in this peer exchanges was ineffectual in improving her mathematical 
understanding, she noted that the iterative nature of the feedback processes prompted her to think 
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about the nature of feedback itself.  More specifically, her reflections on the process indicated 
that she had identified characteristics of helpful feedback that would benefit her in the future.  

Participant C’s initial work consisted of a systematic and quantitative approach, but the 
relationships observed were not made in terms of the stage number of the pattern.  Consequently, 
the participant was unable to write an explicit formula.  The feedback she received targeted all 
three levels of the framework: task, process, and self-regulation, and was highly detailed.  This 
prompted Participant C to see new features of the pattern that were better aligned with an explicit 
representation, however she was still unable to write a formula which captured these 
relationships.  Nonetheless, she noted how the feedback was helpful in allowing her to describe 
this new way of thinking.  Additionally, she commented on her need to state her thinking in a 
different way, perhaps one that would be “simpler for students to follow.”  Although the 
feedback process appeared to help this participant in understanding the nature of the task, only 
incremental gains were seen in her final task analysis.  This incremental growth was not easily 
measured and could be entirely masked by examining her mathematical results in isolation. 

Discussion 
One benefit of peer feedback exchanged between participants from different universities is 

the honest nature of the feedback from an anonymous peer with similar professional goals.  
Without the pressure of direct relationships, participants who understood the need for it were 
better able to provide critical feedback.  Additionally, participants from another university would 
often provide different perspectives on the task that spurred new ways of thinking.  Our initial 
results identified two areas in which participants benefit from this intervention: 1) deepening 
their mathematical knowledge by looking at strategies they may not have initially considered, 
and 2) self-reported improvement in their self-efficacy regarding the task, their motivation to 
engage with the task, and their confidence in their results.  Additionally, many participants 
commented on the need for increased precision when explaining their thinking or giving 
feedback, as both could be interpreted in unintended ways.  Future analysis will seek to 
generalize the results noted here across the full sample and to identify other critical cases of the 
affordances of letter-writing exchanges for the development of preservice K-8 mathematics 
teachers’ understanding of mathematics and mathematical feedback processes. 
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We present a Scholarship of Teaching and Learning (SoTL) research project study aimed at 
helping pre-service teachers to grasp the importance of their emergent bilingual students’ 
bilingualism and cultural backgrounds as resources to serve them in apprehending mathematics 
instruction and explaining their mathematics to others. 

Keywords: Teacher Education-Preservice, Teacher Knowledge, Equity and Diversity, 
Instructional Activities and Practices 

Suppose that a teacher asked his elementary-aged students the simple question, “What is ten 
plus four?” How should the teacher evaluate the response of a student who claimed that “10 + 4 
= 2”? There seems to be an error, and we might expect teachers to make the same assessment of 
the students’ work at face value; the student was incorrect and needs remediation. But might she 
be correct? It is more difficult to see evidence of correctness. How might our evaluation change 
if, when asked about this solution, the student had explained that she had found this solution by 
looking at the clock? Withholding judgment and listening to the student leads us to perceive 
advanced mathematical reasoning (employing modular arithmetic) at play, where superficial 
assessment would fail to capture the understandings as well as resources that she had drawn upon 
to solve it.  
 

 
 

Figure 1.  Ten plus four is two (mod 12) 

This instance serves as an analogy for mathematics education research that has focused on 
issues of cultural and linguistic complexity: mathematics teachers and researchers may have been 
more prone to see inaccuracies than accuracies, and deficits than affordances, when considering 
students in the context of linguistic and cultural diversity. The research has sufficiently described 
educational achievement gaps with respect to language minority students (see Gutiérrez, 2008; 
and Moschkovich, 2002, for discussions), but only more recently has been moving away from 
investigating issues of equity in education through deficit lenses toward seeing students through 
affordance lenses, which movement may be made more difficult because of habitually negative 
evaluative mindsets in mathematics teaching. This paper reports brief findings from a 
Scholarship of Teaching and Learning (SoTL; Bishop-Clark & Dietz-Uhler, 2012) research 
project aimed at understanding how PSTs can be helped to perceive emergent bilingual students’ 
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learning of mathematics on the line between deficit and affordance perspectives, and in enabling 
them to see “difference not deficit” (Lewis, 2014) in emergent bilingual students. 

Diversity Growth in US Classrooms and Theoretical Framework 
Teachers in US schools are seeing an enrichment in racial and ethnic diversity in their 

classrooms (Musu-Gillette et al., 2016) and students’ first languages are increasingly found to be 
other than English. For instance, in the last decade the percentage of students participating in 
English Language Learner (ELL) programs has steadily increased from 9.1 to 9.4 percent of all 
students (NCES, 2016) – a total of about 4.6 million students in the US. (The terms ELLs, 
English Learners (ELs), and, more recently, emergent bilinguals (EBs) have variously been used 
with respect to students whose first and often stronger languages are other than English. 
Although varying in connotations, they are used here synonymously.) In this paper we study an 
effort to help PSTs to be “well-prepared beginning teachers of mathematics”, as the recent 
AMTE Standards for Preparing Teachers of Mathematics (2017) define them, by improving their 
ability to “recognize the difference between access to and advancement in mathematics learning 
and work to provide access and advancement for every student” (p. 21), especially in culturally 
and linguistically diverse environments. This study contributes to the recent work by others who 
have attended to the need of preparing PSTs for teaching diverse students (see for example, 
Gallivan, 2017; White et al., 2016; and Meskill, 2005), and also to the complexity of accounting 
for EBs in measures of educator effectiveness (Jones et al., 2013; Turkan et al., 2014).  

The present study used Wilson’s (2016) model of pedagogical content knowledge for 
teaching mathematics to ELLs (PCK-MELL) as a theoretical framework for the type of 
knowledge that we aimed to develop in our PSTs. This model posits knowledge for teaching 
mathematics to EBs as a subset of pedagogical content knowledge related to knowledge of 
students and knowledge of teaching within Ball, Thames, and Phelps’s (2008) mathematical 
knowledge for teaching (MKT) model. We chose this framework, which was used in studies 
concerned with mathematics teachers’ knowledge in relation to issues of linguistic diversity 
(Sorto et al., 2018), because it addresses not only the obstacles that emergent bilinguals can face 
in the classroom, but also the resources that such students draw upon as a result of their emerging 
bilingualism and non-dominant cultural backgrounds. 

Method and Participants 
The research method used for this SoTL study was an instructional intervention which we 

call the Teaching Emergent Bilinguals (TEB) Project that was based on the PCK-MELL 
framework. The intervention employed challenge-based instruction (CBI; Crown et al., 2012) by 
positioning PSTs as test-writers tasked with developing multiple-choice teacher licensure exam 
questions that could be used to ascertain whether aspiring teachers possessed a sufficient 
understanding of resources that emergent bilinguals bring to the learning of mathematics. A 
research question that guides this analysis is the following: within the constraints of the multiple-
choice test-writing task, what resources do PSTs identify that EBs draw upon in specific 
mathematics classroom work and how do they operationalize these resources? The 52 
participants in this study came from a large Hispanic Serving Institution (HSI) in the 
southwestern United States and greater than 90% of participants in this study were Latino/as, 
mostly female (>90%), all of whom were enrolled in mathematics courses as part of degree plans 
leading to teacher certification. PSTs in this study worked in groups of 2 or 3 students (25 groups 
in all), across two different class sections, and submitted their items and accompanying 
explanation documents via email to the course instructor. 
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Findings 
As indicated above, the TEB project required PSTs to reason about the experiences of 

emergent bilingual students in the classroom, what linguistic and cultural (or other) resources 
they draw upon in English-taught mathematics classrooms, and to operationalize these resources 
in the form of multiple-choice teacher licensure exam items. Analysis of their items involved 
carefully reading their items, as well as supplemental explanations they had provided, and then 
forming categories of resources identified by students across all of their items and explanations. 
In this brief report, we present summary findings and also one example test item, selected 
because it exemplifies both one of the resources identified by PSTs as well as the way in which 
many students in this sample applied their own past experience to the task. Resources identified 
in PSTs’ test items included the following: 

• Bilingualism –general communicative ability in both languages with full or partially 
fluency 

• Specific Spanish-English cognates: words with similar appearances and meanings in both 
languages 

• Prior mathematical knowledge: familiarity with the mathematical topic or object 
• Bilingual teachers 
• Parents, friends, relatives that understand English 
• Pictures and other visual displays as substitutes for words 

An example item is the following. 
 

 
Figure 2. An item indicating PSTs’ observation of bilingualism as a resource to EBs 

In this item the darker inserted box should represent the problem upon which the emergent 
bilingual students are working and the table should represent their written mathematical work.  
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Discussion 
Figure 2 shows how one group of PSTs operationalized bilingualism as a resource for EBs. 

However, participants frequently experienced a considerable challenge in the task of identifying 
resources that emergent bilinguals use in the classroom, often asking us, “What are we supposed 
to do for the Resources part? We just can’t think anything.” On one hand, writing test items 
about teaching mathematics and not merely about mathematics was a challenging task for them. 
But when asked about obstacles that EBs might face, we observed that they could more readily 
generate lists of things that might cause difficulty for EBs than of EBs’ resources. One 
explanation may be that, similar to the analogy that begins this paper, PSTs may be more prone 
to envision disability rather than capability when thinking about EB students. This paper has 
presented brief findings suggesting that the TEB intervention may promote PSTs’ perceptions of 
the affordances of the bilingualism of their EB students in their future mathematics classrooms. 
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PROMOTING KNOWLEDGE INTEGRATION IN TEACHER PREPARATION 

 Matthew S. Winsor David D. Barker J. Vince Kirwan 
 Illinois State University Illinois State University Kennesaw State University 
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In this study, we investigated the opportunities secondary pre-service teachers (PSTs) had to 
integrate their knowledge of mathematics, learners, and pedagogy in a methods and content 
course taught in tandem. In particular, we describe and report on the instructional moves 
associated with this potential knowledge integration. Implications for pre-service teacher 
education and directions for further research will be provided.   

Keywords: Teacher Knowledge, Teacher Education-Preservice 

Secondary mathematics teachers must develop a thorough and connected understanding of 
mathematics (M), pedagogy (P), and learners (L) in order to plan effective lessons, implement 
mathematical tasks, and interpret student thinking. Unfortunately, pre-service secondary 
mathematics teachers (PSTs) may not have the opportunity to connect their knowledge of 
mathematics, pedagogy, and learners. The traditional structure of teacher preparation programs 
often delivers pedagogy and content in different departments on campus, leaving it up to PSTs to 
integrate their fragmented knowledge (Ball, 2000). 

To address the challenge of promoting connections between PSTs’ knowledge of content, 
pedagogy, and learners, we investigated the opportunities for knowledge integration in a methods 
and a content course for secondary pre-service teachers (PSTs) taught in tandem. This paper will 
describe some preliminary findings for the following research questions: What instructional 
moves appeared to promote knowledge integration in a methods and content course for 
secondary PSTs? 

Theoretical Foundation 
For this study, we define knowledge integration as the coordinated use of multiple 

knowledge types in order to reflect on, or make, instructional decisions. Bishop and Whitefield 
(1972) proposed that teacher decisions are made using a framework or schema. The main 
operation of a schema is to store knowledge through a network of connected pieces of 
knowledge called “elements” (Marshall, 1995, p. 43). The more connections that exist within a 
schema, the more useful the schema will be. Hence, the process of knowledge integration leads 
to the development of a more robust schema, resulting in the potential for more informed 
instructional decisions. The knowledge types used in this study are defined as follows:  

Knowledge of Mathematics (M): knowledge regarding the mathematical concept(s) related to 
the content under investigation.  Includes the connections and relationships among ideas, the 
way(s) and mean(s) of justifying and proving these ideas, and conversations focused on 
mathematics and reasoning about the mathematical topic. 
Knowledge of Pedagogy (P): knowledge regarding the tasks, curriculum, instructional 
goal(s), or questions used to further the lesson. Includes comments centered on the lesson 
implementation or decision-making regarding the flow of the lesson. 
Knowledge of Learners (L): knowledge regarding student thinking.  Includes observed as 
well as anticipated student thinking, conversations about student characteristics, habits, or 
misunderstandings. 

Our definitions of knowledge of mathematics, learners, and pedagogy are related to other models 
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of teacher knowledge, such as mathematical knowledge for teaching (MKT) (Hill, Ball, & 
Shilling, 2008) or pedagogical content knowledge (Shulman, 1987). However, the definitions in 
this study are broader in scope, as we are focused more on the interactions among these 
knowledge sets (i.e. knowledge integration). Our study seeks to uncover instructional actions that 
promote knowledge integration among PSTs. 

Methods 
To answer our research question, field notes were collected for every session of a senior-

level secondary methods and capstone content course at a teacher preparation program in the 
Midwest. The content and methods courses were taught in tandem, with the same set of students. 
The field notes were initially read to identify individual episodes—sections of the transcript 
centered on a single idea. Following the identification of episodes, the above definitions were 
then applied to code all episodes. If multiple forms of knowledge were used during a single 
episode, we defined this to be an example of potential knowledge integration.  For instance, if an 
episode contained both M and L statements, we identified this as an opportunity for PSTs to 
integrate their knowledge of M and L. We note that evidence of multiple knowledge types does 
not ensure knowledge integration, only that the potential of knowledge integration was present. 
Our next step in analysis was to investigate the instructional moves that appeared to promote this 
potential knowledge integration. We applied open coding to develop categories for these 
different instructional moves. Discrepancies in coding were discussed by the research team, and 
definitions and categories adjusted, until all disagreements were resolved.  

Findings 
From the field notes, we identified 405 different episodes in the content course and 273 

episodes in the methods course. Table 1 displays the number of episodes that contained evidence 
of the different knowledge combinations. For instance, the 26 in the last column for the content 
course indicates there were 26 episodes in the content course where the knowledge of 
mathematics, learners, and pedagogy were exhibited. 

Table 1: Combinations of Knowledge Used in Episodes From Both Courses 
Course M L P M-L M-P L-P M-L-P 
Content 265 4 18 41 32 19 26 
Methods 4 10 92 1 17 135 14 

 
Table 2 provides the definitions for several of the categories of instructional moves identified 

through our open coding process. This list includes the most common instructional strategies 
used in episodes with the potential for knowledge integration. 

Table 2: Definitions of Categories 
Reflecting on Instruction: The teacher educator reflects, has the PSTs reflect, or PSTs 
organically reflect on the instruction in a course.  The conversation is focused on the 
pedagogical moves, or their justification, associated with this observed teaching experience. 
Reflecting on a Shared Learning Experience: PSTs reflect on how a set of tasks or activities 
affected them from the perspective of the learner.  The teacher educator or the PSTs can 
initiate this reflection. 
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Development of a Pedagogical Product: The teacher educator asks the PSTs to develop or 
modify a pedagogical product. (e.g., excerpt of lesson plan, assessment, task, lesson objective, 
classroom norms or rules), or PSTs discuss the process of developing a pedagogical product. 
Evaluation/Critique of Pedagogical Products: The teacher educator has PSTs 
evaluate/critique a provided pedagogical product (e.g., excerpt of lesson plan, assessment, 
task, etc.). PSTs do not create the pedagogical product being evaluated. 
Focus on High School Student Thinking: The teacher educator considers, has the PSTs to 
consider, or PSTs organically consider how a high school student would think about a 
particular mathematics topic. 
Discussion of a Daily Topic: The teacher educator has the PSTs discuss a reading or daily 
topic in a course. 

 
Table 3 provides the distribution of instructional moves for each knowledge combination in 

both the content and methods course. For example, the 14 in the first row indicates there were 14 
episodes in the content course where reflecting on instruction resulted in the coordinated use of 
mathematics and pedagogy. 

Table 3: Distribution of Instructional Moves 
 Content Methods 
Category ML MP 

 
LP  MLP  ML  MP  LP  MLP 

Reflecting on Instruction 0 14 3 6 0 1 45 2 
Reflecting on a Shared Learning 
Experience 

10 0 0 2 0 1 4 4 

Development of a Pedagogical Product 0 2 2 9 0 7 11 4 
Evaluation/Critique of Pedagogical 
Products 

0 0 1 1 0 2 7 3 

Focus on High School Student Thinking 12 1 2 6 0 0 0 2 
Discussion of a Daily Topic 2 0 5 0 1 0 55 0 

 
We note that the instructional moves identified above may not be the only moves that 

promote integration, these were the instructional moves used by these particular instructors that 
promoted potential integration.  

The development of a pedagogical product appeared to stimulate the widest variety of 
knowledge integration, independent of the course.  Moreover, episodes within this category 
possessed the largest frequency of knowledge integration involving all three knowledge types. 
When a teacher develops a pedagogical product, there is a need to draw upon mathematics, and 
to consider the effect on learners, when making these important decisions. It is interesting to note 
that we had three categories related to pedagogical products—development, enactment, and 
evaluation/critique. Of these three categories the development of a pedagogical product resulted 
in the most knowledge integration, enactment of a pedagogical product resulted in the least.    

Before conducting this research, one of the main tools employed in the methods course was 
to provide PSTs with readings to be discussed during the next class. These discussions focused 
on how PSTs believed the ideas in the articles related to their teaching and future students. We 
identified 55 episodes in the methods course where potential LP integration took place as a result 
of discussing a daily topic. Unfortunately, episodes that include integration with M were not 
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present, with the exception of a single ML episode. This finding has led to the realization that we 
need to provide opportunities for our PSTs to apply these pedagogical ideas to specific 
mathematical contexts, which could be done using instructional moves such as development of a 
pedagogical product. This finding aligns with Steele and Hillen’s (2012) design principles for a 
content-focused methods course. 

Reflecting on instruction promoted knowledge integration in both the content and methods 
course. In the content course the main type of potential integration was MP and in the methods 
course it was LP.  Taking the time to reflect on and process experiences obtained while 
observing others teach (the instructor in the content course and clinical teachers in the methods 
course) appeared to help PSTs integrate their knowledge.   

Discussion and Implications 
Examining one’s own practice is exciting and terrifying at the same time. We often believe 

that the activities and tools used in teaching methods and content courses are tried and true and 
lead to expert teachers leaving our universities to share mathematics with the youth of the world. 
Analyzing our teacher preparation practice through the lens of knowledge integration has led to 
some surprising results that will have an impact on our program in years to come. So far, the data 
in our study point to a mixed review of effectiveness in promoting knowledge integration. On the 
one hand, having students create pedagogical objects (e.g., lesson plans, tasks, effective 
questions, etc.) seems to be quite effective at promoting knowledge integration.  On the other 
hand, having students read and respond to articles, without additional activities to apply the 
concepts, seems to do little to promote knowledge integration in PSTs. As we continue to 
analyze the data we will continue to refine our list of effective teaching actions that secondary 
mathematics teacher educators can use to promote knowledge integration. Our next step will be 
to further incorporate these strategies into our program, and hopefully programs at other 
universities, to continue to push towards our goal of promoting knowledge integration.   
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QUADRATIC FUNCTION IN SOLVING AND PLANNING TO TEACH 
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This research was conducted in response to an enduring challenge of supporting preservice 
teachers (PT) to learn about teaching mathematics from a conceptually oriented approach. We 
situate this work as an inquiry into how PTs use representations in learning and planning to 
teach. In prior work, numerical, graphical, tabular and verbal representations strengthened 
students’ sense-making through creating and flexibly moving among representations (Doorman 
et al., 2012; Lobato, et al., 2012). Less is known about how such understandings influence 
teachers’ plans for instruction. The research questions guiding our inquiry are: How do PT use 
and connect representations to reason about rate of change of quadratic functions?; and What 
trace is observed from PT representational activity to their planning for teaching? Participants 
were five high school PT in the final semester of their program. We conducted a 60-min. audio-
recorded task-based interview with each PT. We curated four quadratic function tasks set in a 
rate of change context (e.g., see Figure 1). We asked PT to pick one task to solve, and to solve it 
in more than one way. We prompted PT to think aloud and clarify meanings (e.g. “Did the graph 
help you to answer the question?”). Both researchers debriefed after each interview on what we 
noticed and wondered. We share initial results from analyses of each interview. 

 

 
Figure 1. Rate of change of quadratic function tasks (from Ellis (2011); Lobato et al. (2012)).  

Initial analysis revealed PT were explicit about the nature of the growth in the dependent 
quantity (e.g., length or speed), and independent quantity (e.g, area or time) and were able to 
identify constant rate of rate of change in tables, but less explicit in graphical representations. 
We observed little evidence of PT using representations to connect to meanings of quadratic 
function as modeling constant rate of rate of change in linked quantities (as advocated by Ellis, 
2011). We also found a strong trace from PT use of representations for their own problem 
solving to their planning for instruction. For example, Claire said “So if my students are like me, 
I'm a definitely need to see colors … ‘cause it was hard to see the groups of three with just all 
this gray”. Next steps will focus on elaborating an empirically based theoretical framework to 
understand observed trace from PT own problem solving to their plans for instruction. 
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Research on the preparation of mathematics teachers has provided insight into issues such as 
specialized content knowledge for teaching (Hill, Schilling, & Ball, 2004), understanding of 
ways in which students learn (Ball & Forzani, 2011) and social aspects of classroom culture 
(Gutiérrez, 2013). AMTE has integrated this research into their publication The Standards for 
Preparing Mathematics Teachers (AMTE, 2017). The publication of this document serves as an 
impetus for teacher educators to reflect on the ways in which their own teacher preparation 
programs can grow to better serve their students.  

Previous research has examined the effectiveness of teacher preparation programs through 
comparisons of outcomes such as student test scores and professional licensure exams (Boyd 
et.al., 2009). More recent efforts have focused on examining the connections between the 
knowledge gained by pre-service teachers in their preparation program and the application of this 
knowledge after becoming practicing teachers (Morris & Hiebert, 2017). Results of their work 
suggests that mathematics teacher educators must carefully choose the “small sets of knowledge 
and skills that matter most for beginning teachers” (Morris & Hiebert, p.555).  

The purpose of this study was to better understand the knowledge and skills related to 
teaching of mathematics in-service teachers perceive as important for beginning teachers and 
what knowledge from their pre-service preparation they were able to apply in their instruction. 
Data was collected from practicing elementary and middle grades teachers (n=101) who received 
their undergraduate preparation within the past eight years from a university in the Northeastern 
United States. Participants completed a questionnaire that included Likert and short answer 
questions. Results suggested that there were specific content (e.g., fractions and geometry) and 
learning experiences (exploring multiple approaches to solving problems) that participants 
associated with supporting their current teaching practice. However, responses also suggested a 
pattern in which participants perceived a lack of preparation (knowledge of curriculums). 
Participants provided suggestions on learning experiences related to knowledge and skills needed 
to teach mathematics effectively that would benefit future pre-service teachers. 
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Introduction 
The purpose of this study is to understand the relationship between mathematics related 

affective measures, including professional mathematics identity, mathematics identity, 
mathematics mindset, mathematics anxiety, teaching self-efficacy, and beliefs about teaching 
and learning mathematics. In addition, this study explored the impact of two different field 
experience implementation techniques to determine whether either resulted in a change in beliefs 
over the course of a semester. The following research questions were used to guide this study: 1) 
are elementary preservice teachers’ self-perceptions and beliefs about mathematics and teaching 
correlated and 2) do elementary preservice teachers self-perceptions and beliefs about 
mathematics and teaching differ based on different field experience models as part of their 
mathematics methods course? 

Methods  
Data were collected using a pre- and post-survey of elementary preservice teachers (EPT) in 

the fall of 2017 at one university in the Mid-west region of the United States. A total of 70 EPTs 
in four different sections of an intermediate mathematics methods course participated in the 
study. In addition to demographic information, the survey included items to measure professional 
(teacher) mathematics identity, mathematics identity, mathematics mindset, mathematics anxiety 
and teacher self-efficacy. Additionally, EPTs were asked to complete an online self-assessment 
to determine where EPTs’ beliefs fell in terms of a student-centered versus teacher-centered 
educational philosophy.  

Results 
Using Pearson’s correlation test, each of the mathematics constructs were found to be 

significantly correlated with each other except teacher self-efficacy with mathematics identity 
and mathematics anxiety. In order to address research question 2, a series of t-tests were 
conducted with the post-survey data, finding that no significant differences existed between the 
immersive and traditional field-based groups of EPTs.  

Discussion 
Results from this study indicate that many of the mathematics-related constructs are 

significantly correlated with one another. However, some of the variables are more highly 
correlated than others, such as professional mathematics identity with mathematics identity as 
well as professional mathematics identity and mathematics identity with mathematics anxiety. 
Conversely, teaching self-efficacy was either weakly correlated or not correlated with the 
constructs measured. Additionally, mathematics teaching philosophy was only weakly correlated 
with mathematics mindset. When addressing the second research question, no significant 
differences were found between the groups. If the goal is to assist students in developing more 
positive beliefs related to mathematics and teaching mathematics, the immersive versus 
traditional program investigated in this study did not result in significant change. While much is 
gained by participating in methods courses and field experiences, longer exposure to these, or 
similar experiences, may be needed to significantly affect beliefs and self-perceptions.   
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The purpose of this research study is to understand how PST’s analysis of individual student 
written work relates to PSTs’ whole class instructional decision making (Jacobs et al., 
2010).  For this study, PSTs at four different institutions in four different states, participated in a 
multi-digit multiplication module designed with a goal of developing PSTs’ skill of making whole 
class instructional decisions based on analysis of a set of individual students’ written work taken 
as representative of a whole class.  The research question for this study is: How does PSTs’ 
professional noticing of individual student work samples relate to their whole class instructional 
decision making?  

Keywords: Professional Noticing, Student Work Analysis, Instructional Decision Making 

Methodology 
Participants were 68 elementary PSTs enrolled in a mathematics methods or content course 

at four different institutions in the U.S.; class sizes ranged from 10 to 30 students. PSTs were 
either enrolled in a four-year elementary education program or in a post-baccalaureate 
elementary credential program. In each course, participants were taught a professional noticing 
module focused on children’s solution strategies for multiplication. For this study, we report on a 
portion of the module in which PSTs professionally noticed five individual student work samples 
and synthesized their noticing to make whole class instructional decisions. 

PST responses were scored using a 4-point scale analytical rubric that was developed by the 
researchers and reliability was verified using the Flesis Kappa statistical measure (Landis & 
Koch, 1977).  We then determined the Kendall's tau coefficient to measure the ordinal 
association between the two mean scores. 

Preliminary Results and Implications 
We are in the midst of scoring all PST noticing rubrics, thus our analysis is of a preliminary 

nature. Current results show that the more robust the PSTs’ professional noticing of individual 
student work, more robust their whole class instructional next steps. Since making instructional 
decisions based on students’ mathematical thinking is a difficult skill to develop, providing PSTs 
with opportunities to analyze sets of student work samples that can be considered representative 
of a whole class, and thus support all students, is recommended. 
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Introduction and Research Questions 
Our Research Experiences for Undergraduates (REU) project has exposed pre-service K-12 

teachers to timely problems involving STEM teaching and learning through original research 
conducted with eight STEM Education faculty mentors. At this time, 23 undergraduate Fellows 
have fully completed the academic-year program. Previous research has shown that 
undergraduate research programs can allow students to make a more educated decision regarding 
the pursuit of a graduate degree (Willis, Krueger, & Kendrick, 2013). Our REU project’s main 
objective for pre-service teachers was to instill an appreciation of the interplay between society, 
education, and research. This study aimed to answer the following questions: (1) To what extent 
can undergraduate STEM Fellows’ knowledge and confidence in STEM Education research 
change through participation in an intensive nine-month research program? and (2) What 
research products and career trajectories will result from REU Fellows’ participation in our REU 
program?  

Design, Analysis, and Findings 
This research employed a mixed methods approach (Creswell & Plano Clark, 2007). 

Quantitative data included administering a pre/post survey (Kardash, 2000) concerning 
undergraduate research to determine Fellows’ research expectations, familiarity with research 
literature, and ability to conduct statistical analyses. Qualitative data was comprised of Fellows’ 
pre-, mid-, and post-evaluation interviews and their final research papers and presentations. 
Using a two-tailed t-test to analyze the results of the survey, we discovered significant growth in 
the Fellows’ (𝑛 = 22) confidence levels in studying, conducting, and analyzing research 
(𝑡(21) = 	−4.488, 𝑝 < .001). This significant growth was also echoed in their interviews with 
the program evaluator. Further, our findings showed Fellows entered the program with 
confidence in analyzing literature, but still needed improvement in the areas of designing their 
own research projects and performing statistical analyses of their data. Fellows believed this 
program would greatly increase their abilities to conduct research and write manuscripts for 
publication. At the end of their nine-month research experiences, Fellows stated they felt they 
had gained expertise in coding and analyzing data, conducting clinical interviews, using 
technology, writing, and presenting, but most frequently noted their increase of interpersonal 
skills and collaborating with peers. Additionally, most of the Fellows still planned to work as a 
teacher at the K-12 level, but the experience had helped them gain deep pedagogical knowledge 
and strategies that could be integrated into their future teaching. 
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Because of the important role that proof plays in mathematical learning and sense-making 
(Yackel & Hanna, 2003), mathematical reform documents have called for proof to be central to 
all levels of schooling (e.g. NGA & CCSSO, 2010). Considering this at the elementary level, 
what teachers know about proof and how they have experience the process of proving will affect 
how they promote (or don’t promote) proof in their classrooms (Stylianides & Ball, 2008). As 
such the nature of learning opportunities around proof and proving for elementary pre-service 
teachers (EPSTs) are important to consider. Some of the only such opportunities take place in 
mathematics content courses for EPSTs and the associated textbooks. In these texts EPSTs are 
dominantly given the opportunity to examine others’ completed proofs, but there are many 
instances where informal or exploratory resources are connected to a completed proof (McCrory 
& Stylianides, 2014), which can offer increased insight into why the proof is true (Weber, 2005). 

My research is guided by the questions: 1) How do EPSTs use resources from in-text 
explorations of the proving process as they make sense of written proofs? and 2) To what extent 
are there connections between how EPSTs interpret particular resources as they read proofs and 
how they use those resources as they prove? This poster will present findings from analysis 
grounded in data from interviews and written work of EPSTs as they engaged in making sense of 
two curricular presentations of proof.  

EPSTs’ proof understandings have been an “enduring challenge” in the field, yet few studies 
examine the process of proving and understanding proofs rather than simply the product. To 
better understand this process, my finding report on the types of in-text resources (e.g. 
definitions, diagrams, written descriptions of proof approach) EPSTs utilize as they make sense 
of written proofs and how EPSTs connect exploratory resources to written proofs. My findings 
also address parallels between the processes of reading proofs and proving. Through these 
parallels, this work has implications to better understand EPSTs’ current learning opportunities 
around proof and enrich them through informing curriculum work and teaching experiments.  

References 
McCrory, R. and Stylianides, A. J. (2014). Reasoning-and-proving in mathematics textbooks for prospective 

elementary teachers. International Journal of Educational Research, 64, 119-131. 
National Governors Association Center for Best Practices, & Council of Chief State School Officers, (2010). 

Common core state standards mathematics. Washington, DC: National Governors Association Center for Best 
Practices/Council of Chief State School Officers. 

Stylianides, A. J. and Ball, D. L. (2008). Understanding and describing mathematical knowledge for teaching: 
Knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher 
Education, 11, 307-332. 

Weber, K. (2005). Problem-solving, proving, and learning: The relationship between problem-solving processes and 
learning opportunities in the activity of proof construction. Journal of Mathematical Behavior, 24(3-4), 351-
360.  

Yackel, E., & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, W. G. Martin, &D. Schifter (Eds.), A 
research companion to ‘‘Principles and standards for school mathematics’’ (pp. 227–236). Reston, VA: 
National Council of Teachers of Mathematics. 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

825	

PRESERVICE TEACHERS’ RESPONSIVENESS TO STUDENT MATHEMATICAL 
THINKING IN REHEARSALS OF INSTRUCTIONAL PRACTICES 

 Duane Graysay Benjamin L. Freeburn 
 Syracuse University University of Kentucky 
 dtgraysa@syr.edu byf5045@gmail.com 

Rationale 
A current trend in mathematics teacher education is to support preservice teachers (PTs) to 

develop complex mathematics teaching practice by identifying core practices and by creating 
opportunities for PTs to enact, to reflect, and to investigate those practices (Grossman, 
Hammerness, & McDonald, 2009). Research-supported core practices for mathematics teaching 
include posing purposeful questions and eliciting and using evidence of student thinking (NCTM, 
2014). An approach to developing PTs’ practices is to rehearse core practices within interactions 
that approximate classroom instruction. It is important to attend to the extent to which PTs 
coordinate these practices. We investigate the question: How do PTs respond to student thinking 
while rehearsing the practice of posing purposeful questions? 

Method 
We analyzed video of 12 secondary mathematics PTs’ engagement in three rehearsals of the 

practice of posing purposeful questions. In Rehearsal 1, PTs worked in pairs in interaction with 
one simulated student. In Rehearsal 2, PTs worked individually to interact with a pair of 
simulated students. In Rehearsal 3, PTs worked individually with a small group of peers. Using 
the Teacher Response Coding Scheme (TRC, Peterson et al., 2017), we coded each PT response 
to student thinking for the Actor who is invited to consider an instance, the Move represented by 
the response, the extent to which students’ actions are explicitly referenced, the extent to which 
student ideas are central to the response, and the extent to which the response connects to a 
related mathematical point (Peterson et al., 2017). We searched for patterns among the nature of 
the communication moves, for the extent to which the moves incorporated student thinking, and 
for whether the moves yielded explicit statements of student thinking. 

Results 
Our ongoing analysis suggests that posing questions that elicited evidence of student thinking 

and that built on student thinking were challenging for PTs. Student statements were not always 
explicit, and PTs’ questioning did not necessarily help to draw out clarifying information. 
Further, relationships between the teacher’s response and the student’s thinking were often 
implicit or could not be easily inferred based on the teacher statement. An implication is that the 
development of questioning as a routine must be further supported by helping PTs to attend to 
the quality of the information that is elicited and to the clarity and directness of their responses. 

References 
Grossman, P., Hammerness, K., & McDonald, M. (2009). Redefining teaching, re-imagining teacher education. 

Teachers and teaching: Theory and practice, 15(2), 273–289.  
National Council of Teachers of Mathematics. (2014). Principles to Actions: Ensuring mathematics success for all. 

Reston, VA: Author. 
Peterson, B. E., Van Zoest, L. R., Rougée, A. O. T., Freeburn, B., Stockero, S. L., & Leatham, K. R. 

(2017).  Beyond the “move”: A scheme for coding teachers’ responses to student mathematical thinking. In 
Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.), Proceedings of the 41st annual meeting of the 
International Group for the Psychology of Mathematics Education, Vol. 4 (pp. 17-24). Singapore: PME. 



Preservice Teacher Education 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

826	

INSTRUCTIONAL STRATGIES USED TO TEACH REASONING AND PROOF IN 
SECONDARY TEACHER EDUCATION PROGRAMS 

 Jia He  Tuyin An 
 Augusta University  Georgia Southern University 
 jhe@augusta.edu  tan@georgiasouthern.edu 

Keywords: Reasoning and Proof, Teacher Education-Preservice 

Despite the importance of proof, a considerable body of research suggests that many 
secondary school students face challenges in constructing or understanding proofs (e.g., Knuth, 
Choppin, & Bieda, 2009). Some pre-service secondary school teachers are confused about the 
process of constructing, evaluating, or understanding mathematical proofs (Knuth, 2002). 
Teacher preparation program accreditation agencies such as the Conference Board of the 
Mathematical Sciences (2012) recommend that preservice teachers engage in different types of 
proof related reasoning. This raises the question: “What opportunities do pre-service secondary 
teachers have to develop their knowledge of reasoning and proof?” Yackel & Cobb (1996) 
suggests the importance of the way in which mathematical ideas and process are conveyed 
during the instruction. Thus, in this study, we are interested in “What teaching strategies do 
instructors use to support pre-service secondary teachers’ learning of mathematical ideas and 
processes related to proof?”  

The study was conducted at secondary mathematics teacher preparation programs in three 
contextually different universities. Data include instructor interviews of five required 
mathematics or mathematics education courses at each university. Each interview was audio-
recorded and transcribed. Three researchers iteratively coded the data and resolved discrepancy. 

We developed a framework to capture instructional strategies. Our framework includes proof 
specific teaching strategies and general teaching strategies. We found variations in terms of the 
strategies used among three universities. We also found that a majority of instances of proof 
specifics strategies involve engaging students. However, half of the instances of general teaching 
strategies were instructors’ sole efforts without engaging students. We also noticed that more 
instructional strategies, both proof specific teaching strategies and general teaching strategies, 
were reported in mathematics courses than in mathematics education courses. 

This work has implications for the current learning opportunities for future teachers. It offers 
insights on detailed differences between teacher education programs. It informs changes that 
need to happen in teacher education programs.   
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Research has shown that prospective teachers (PTs) enter their mathematics content courses 
with procedural understandings of mathematics (e.g. Thanheiser et al., 2014). However, in their 
work as teachers, they will be required to know and understand more than just how to solve 
mathematics problems (AMTE, 2017). Teachers should possess a “robust knowledge of the 
mathematical and statistical concepts that underlie what they encounter in teaching.”(AMTE, 
2017, p. 6). 

Additionally, PTs often believe that they already know the elementary mathematics that they 
will need to teach (Thanheiser, 2018). Therefore, it is the job of mathematics teacher educators 
(MTEs) to help PTs see the need for, and develop the specialized mathematics content 
knowledge that they will need to use in their work as teachers. We suggest that transformative 
learning theory (TLT; Mezirow, 1991) provides a model through which MTEs can help PTs 
move from shallow procedural understandings to conceptual understanding with deeper 
procedural understandings as a base. 

We present a 4-step cycle based on TLT: Disorienting Dilemma; Critical Reflection; Rational 
Dialogue; Action. A disorienting dilemma involves a task where PTs’ preconceived 
understandings are challenged or where the procedures that they already know are not enough to 
solve the problem. In the critical reflection phase, PTs are asked to work through the dilemma 
independently while reflecting on their previous assumptions. The rational dialogue phase 
focuses on PTs justifying and explaining their thinking to peers in order to reach an equilibrium 
between their prior assumptions and the disorientation presented by the task. The fourth and final 
step, the action phase is the most important because it involves making connections between the 
PTs’ procedural fluency and the conceptual understanding, helping PTs to see how the 
procedures they learned (their prior assumptions) are related to the knowledge needed to teach 
mathematics (their transformed understanding). 
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The purpose of this paper is to illustrate two commitments to humanizing mathematics 
education in the context of teacher education: Rights of the Learner (RotL) and Rough Draft 
Thinking (RDT). Based on the vision of Olga Torres, a mathematics teacher and teacher 
educator, the Rights of the Learner (RotL) situate students’ ideas as valuable contributions to the 
process of learning mathematics. Students should have the right to: be confused; claim a mistake; 
speak, listen and be heard; and write, do and represent what makes sense to them (Kalinec, 
2017). The RotL align with divergent formative assessment (Pryor & Crossouard, 2008), which 
encourages teachers to learn what students know rather than only if they know something, which 
encourages differing approaches and leverages the collective strengths of a group as they solve a 
task (Lotan, 2003). Rough Draft Thinking (RDT) is the process of sharing unfinished, in-
progress ideas and remain open to revising those ideas. This commitment is inspired by the 
concept of “exploratory talk,” forwarded by Douglas Barnes, which is using talk to “work on 
understanding” or talking to learn (Barnes, 2008, p. 3). Rough draft talk sounds like false starts, 
expressions of uncertainty, and incomplete or imperfect sentences (Jansen, Cooper, Vascellaro, 
& Wandless, 2016). Articulating one’s own thinking as a draft that can be revised honors the 
continual process of making sense of a new idea. During rough draft thinking, learners are 
focused on sorting out their thoughts rather than performing for an audience (Barnes, 2008). 
Promoting RDT can be seen as a part of promoting mastery goals (oriented to engage in school 
in order to learn and understand) over performance goals (oriented to engage in school in order 
to perform well or to avoid performing poorly) (Ames, 1992). This poster theorizes about how 
pre-service teachers can learn about RotL and RDT in order to resituate their perspectives on 
teaching and learning mathematics. By leveraging asset-based mathematics practices that 
foreground what students already know and can do (and thereby resist a deficit perspective of 
students’ thinking is something that always needs to be immediately corrected or changed), the 
authors define the theoretical underpinnings of the RotL and RDT before giving examples in 
practice. The poster includes examples from practice in teacher education.  
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The recently released Standards for Preparing Teachers of Mathematics (AMTE, 2017) point 
to the need to develop preservice teachers (PSTs) in discourse facilitation. However, facilitating 
high-quality discourse in a way that impacts learning is difficult (Michaels & O’Connor, 2015), 
particularly for PSTs (Neergard & Smith, 2012). Therefore, understanding how they develop in 
their facilitation of mathematical discourse, the very focus of this study, seems particularly 
important for the work of mathematics teacher educators. Specifically, this study investigated 
how PSTs in an undergraduate elementary teacher preparation program (TPP) developed in 
facilitation of discourse (herein referred to as “math talk”) over four semesters. 

Four participants were purposefully selected from a group of 16 who were studied in depth 
during their TPP and first year of teaching. The four participants were selected because they 
demonstrated the most “success” (Brinkerhoff, 2003), in comparison to the larger group, in 
facilitating math talk during the first year of teaching, as measured by an observational protocol 
(Walkowiak, Berry, Meyer, Rimm-Kaufman, & Ottmar, 2014). We used the Mathematics 
Discourse Matrix (Sztajn, Heck, & Malzahn, 2013) to code each five-minute segment of four 
previously video-recorded lessons, one per semester, as to which discourse type on the matrix 
was primarily represented. We created graphical representations of the codes to make sense of 
development during the TPP.      

Findings indicate two of the participants showed progress over time in how they were 
facilitating math talk while the other two participants’ lessons remained relatively similar. This 
study can spark discussion in our field about how we measure, make sense, and generate 
developmental trajectories for mathematics pedagogy. Furthermore, the findings point to the 
importance of understanding factors that influence variation in teacher development.   
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Theoretical Perspective 
Special educators have formulated guidelines, Council of Exceptional Children’s new set, for 

identifying evidence-based practices in special education (Cook et al. 2015). However, recently 
there is limited research that evaluated the body of work using Council of Exceptional Children 
(CEC) quality indicators. The purpose of this review is to identify the quality of previous 
investigations of empirical single subject design studies on mathematics word problems 
intervention of elementary students with learning disabilities. The very recently studies of 
effective intervention represent an attempt to improving the skills of mathematics performance. 
 

Research Questions and Design 
This review will address the following research question: what is the quality of the research 

on math word problem solving interventions for students with learning disability? 

Data Collection Techniques and Analysis 
This literature review was conducted for studies which provided intervention. Online 

databases were scanned to locate math word problem solving intervention studies for elementary 
students with math learning disabilities. Relevant studies were reviewed based on title, key 
words, abstract and method to check if the studies involved word problem solving. The Council 
of Exceptional Children’s (CEC, 2014) new set of standards were used for identifying evidence-
based practices in special education. The articles were evaluated by CEC quality indicator for 
single-subject study by reviewing method, result and discussion sections of the articles. 

Summary of Findings 
The finding indicated that not all studies met CEC quality indicator for single-subject study. 

Researchers need to continue to apply the quality indicator into their studies. The studies 
involved interventions that require special training, but the authors didn’t describe any training of 
interventionists and didn’t note that no training were required. Future researchers could use CEC 
quality indicator to evaluate their studies and publish more high quality studies that meet all the 
quality indicators. 
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The importance of student struggle in learning is well documented in the literature (e.g., 
Piaget, 1960; Hiebert & Grouws, 2007). In mathematics education, more students are being 
encouraged to engage in productive struggle to learn mathematics at a deeper, more conceptual 
level (NCTM, 2014; Warshauer, 2015). Hiebert and Grouws classify productive struggle as the 
effort by students “to make sense of mathematics, to figure something out that is not immediately 
apparent” (p. 387). The goal of this exploratory study was to identify and characterize the nature 
of prospective teachers’ struggles as they engaged in a non-routine mathematical task in a 
mathematics content course. The researchers sought to determine 1) how prospective elementary, 
middle, and secondary teachers engage in productive struggle as they complete non-routine 
mathematical tasks and 2) how prospective teachers perceive and characterize their struggle 
during non-routine mathematical tasks.  

Thirty-two prospective elementary, middle, and secondary teachers from three different 
mathematics content courses engaged in a non-routine mathematical task. Researchers observed 
each class and students completed exit tickets where they discussed the struggles encountered 
while completing the task. The exit tickets and observation notes from each of the three content 
courses were coded using Warshauer’s (2015) list of four types of student struggles. We will 
describe the method used to code the data where four additional themes emerged from what 
Warshauer’s team identified. In addition, we will share the analysis of exit tickets and 
researchers’ observation notes that revealed that prospective teachers 1) attempted to describe 
their own struggles while they focused on getting the correct answer and making sense of their 
work; 2) identified positive and negative types of struggles; and 3) the responses in the 
elementary course were notably different than those from the other two courses. The poster will 
also highlight examples of each type of struggle that were identified as well as a discussion of 
the results and the possible implications on teaching prospective mathematics teachers and future 
research. 
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Many Pre-Service Teachers (PSTs) enter professional development programs without 
“meaningful understandings of mathematical content, appreciation of what mathematics entails, 
or confidence in their own ability to do and to learn mathematics,”(Ball, 1990, p. 5). However, 
many students experience college learning in a similarly disengaged way (Blum, 2017). It has 
been suggested that meaningful learning occurs when students have an opportunity to engage 
with the topic in a way that includes space for pausing in mastery and enjoyment (Handa, 2003). 

Self-directed learning (SDL) is a pedagogical “process in which individuals take the 
initiative” in elements of their learning, from diagnosing learning needs to deciding how to 
demonstrate mastery (Knowles, 1975, p. 18). This poster presents a conceptual argument for 
using SDL to promote student engagement in mathematics teacher education, supported by the 
experience of two teacher educators who have used SDL in their classrooms.  

Many studies show that SDL increases learner engagement. SDL in marketing and business 
courses led to increased curiosity and interest in the studied areas (Boyer, Edmondson, Artis, & 
Fleming, 2013). College students who report studying a topic/subject for autonomous reasons 
(like having an interest for the topic) showed more motivation and perseverance toward, and 
performed better on, tasks than their extrinsically-motivated peers (Black & Deci, 2000). Self-
directed learning among in-service teachers on the job tends to be more emotionally impactful 
than formal learning on the learners (affecting their identities as teachers); formal learning is 
often “seen as a bureaucratic requirement” (McNally, Blake, & Reid, 2009, p. 259). 

This is in line with our own experiences using SDL in our respective college classrooms. Our 
evidence of engagement includes a record of the personalized projects students have constructed 
tailoring math to their own interests and teacher journals documenting observed instances of 
student engagement. 
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Research (e.g., Smith, 2017) suggests that it is important to focus on models of multiplication 
beyond equal groups. From our experience teaching mathematics content courses for prospective 
elementary teachers (PTs), we have found that our students sometimes struggle with 
understanding the array or area model of multiplication.  

In order to address these issues, we designed a sequence of mathematical tasks whose 
overarching goal is to help PTs develop a better understanding of the array model of 
multiplication. We designed these tasks by engaging in a previously developed task design cycle 
(Tobias et al., 2014) that focuses on modifying a task designed for children into a task for PTs. 

The initial task begins with a 29x23 rectangular array. We ask PTs to come up with three 
ways to determine the number of 1x1 unit squares in the array by breaking the picture into 
regions. Subsequent tasks focus on using base-10 blocks to model the array and exploring how 
the model relates to the partial products algorithm for multiplication. Our goals for these tasks 
are for PTs to connect the number of 1x1 unit squares in the array with the product 29 x 23. 
Specifically, our goals for the tasks are for PTs to 1) recognize that a product can be found by 
summing, or combining, partial products, and that this procedure can be modeled by 
decomposing a rectangular array into different regions and 2) use a rectangular array model to 
make sense of the distributive property of multiplication over addition as a driving force behind 
the partial products (by place value) and the standard algorithms.   

Preliminary data analysis indicates that we were somewhat successful in achieving our goals. 
However, many PTs still focused only on the total number of squares in an array, rather than on 
the components that made up the multiplication problem. In our poster, we will share the task 
sequence and examples of student work. We will also discuss how we have begun to modify the 
tasks in order to help us better achieve our goals. 
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The recently released Association of Mathematics Teacher Educations Standards for Teacher 
Preparation claims that “All teachers, including well-prepared beginners, must hold positive 
dispositions about mathematics and mathematics learning, such as the notions that mathematics 
can and must be understood, and that each and every student can develop mathematical 
proficiency” (p 2.7, AMTE, 2017). A goal for mathematics classes for PSTs should be to try and 
align the students’ beliefs that align with those positive dispositions about mathematics and 
mathematics learning. Studies (e.g., Philippou & Christou, 1998) have shown that teachers tend 
to come into these courses with negative dispositions about mathematics. In this study, we used 
the method of eliciting personification (Zazkis, 2015) to see what is revealed about PSTs beliefs 
that other methods (e.g., surveys, journaling) fail to capture. 

Sixty-eight sophomore PSTs participated in the study using an assignment to elicit their 
personification by describing a character called Math and writing a dialogue between them and 
their math character. The assignment was given during the beginning of the semester. After 
completing the course, the students were asked to describe the character Math from the course 
and compare this Math to the one they described at the beginning of the semester. Additionally, 
they were asked to read their first assignment and respond to their previous assignment by 
creating a dialogue between their current selves and themselves as the start of the class. 

The assignments were analyzed by the authors using a thematic analysis (Braun & Clarke, 
2006) approach to open-code and develop themes related to beliefs about mathematics. At the 
beginning of the semester the PSTs that engaged in the task viewed mathematics as an activity 
that occurred only schools. They first met math when they entered school and all their described 
interactions, both positive and negative, occurred in a school setting or by engaging in tasks 
related to schooling (e.g., homework). They described a volatile relationship where math was 
alternating between a positive relationship and one that was out to hurt them. In their end of class 
write-ups their focus was on a more approachable mathematics that wants to help the students 
understand. Instead of blaming themselves for not working hard enough, they instead realized 
that they could ask questions of others to help understand the content and that math was kind and 
wanted the best for them.  Going forward, research is needed to focus on how to leverage 
activities such as this to help build positive identities and dispositions towards mathematics. 
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Looking back into the recent past, research has shown that emphasizing the importance of 
effort for learning mathematics can have positive effects on students’ achievement, engagement, 
and sense of competence (Dweck, 2010; Middleton & Jansen, 2011). To adopt this focus, 
teachers must embrace the belief that success (or being “good at math”) is attributable to effort 
(i.e., growth mindset) rather than inherent ability (i.e., fixed mindset). To support this goal, 
teacher educators must address related issues with prospective teachers in their teacher 
preparation programs. As a result of their own experiences as learners of mathematics, many 
prospective elementary teachers (PETs) have fixed mindsets and negative ideas about their own 
mathematical abilities and what it means to be successful in mathematics (e.g. Stoehr, 2017). 

Looking ahead to the future of this issue, we developed and piloted a suite of instruments 
designed to elicit PETs’ beliefs related to success in mathematics. This suite of tools included 
three complementary elements: (a) a personification of mathematics task (adapted from Zazkis, 
2015), (b) a drawing protocol imaging someone who is “good at math,” and (c) a semantic 
differential. In the personification task, PETs write a description of mathematics as a person, 
draw a picture of mathematics, and script a conversation they would have with mathematics. For 
the drawing protocol, PETs reflect on the characteristics of someone who is “good at math” and 
create an image of this person. Finally, the semantic differential presents 20 sets of paired words 
(e.g., fast/accurate or ease/effort) and asks participants to make a selection along a continuum as 
to which of these words more appropriately describes someone who is “good at math.” 

As a trio, these instruments provide a rich description of PETs’ views of what it means to be 
“good at math,” and allow us to consider these ideas through a conceptual framework examining 
attitudes towards mathematics along three interconnected dimensions: vision of mathematics, 
perceived competence, and emotional disposition (Di Martino & Zan, 2010). One’s vision of 
mathematics includes beliefs about what it means to be successful in mathematics, while 
perceived competence positions one’s own competence within this constructed reality.  These 
factors are regulated by emotional dispositions that account for the positive and negative 
affective characteristics that PETs express in relation to mathematics. Our suite of instruments 
and preliminary data from our pilot study provide snapshots of PETs’ dispositions related to 
teaching and learning mathematics, which we hope can inform mathematics teacher educators 
who support these emerging teachers.  
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Effective teaching involves understanding children’s mathematical thinking, interpreting 
their thinking to assess current understanding, and deciding where children need to go next in 
order to advance their learning (Heritage, 2010). Researchers refer to this set of skills as the 
professional noticing of children’s mathematical thinking (Jacobs, Lamb & Philipp, 2010). We 
argue prospective teachers (PTs) need to learn to effectively notice children’s mathematical 
thinking and further, need multiple opportunities in their preparation program to develop their 
skill at noticing. It is important thus to orient PTs to the work of teaching early in their program, 
long before they take a methods course. In this study, we designed and enacted an intervention to 
support PTs development of noticing children’s thinking in a first semester content course and 
examined the following research questions: (1) How does the OGAP framework support PTs’ 
noticing of children’s multiplicative thinking; and (2) How does the OGAP framework support 
PTs’ development of knowledge of children’s multiplicative thinking? 

Drawing from research on learning trajectory-based professional development, we designed 
an intervention using the Ongoing Assessment Project (OGAP) framework (Petit, 2013) that 
scaffolded PTs’ noticing according to a trajectory of children’s multiplicative reasoning. We 
designed a series of four, 50-minute class sessions which utilized number talks and video clips to 
introduce PTs to the five levels of Children’s Multiplication Strategies (Petit, 2013): early-
additive, additive, early-transitional, transitional, and multiplicative. 

This poster reports on some of the results of a pre-post survey created by the authors which 
was used to measure PTs ability to attend to and interpret four samples of children’s 
multiplicative strategies in a variety of ways. Four multiplication problems and associated 
sample of student work were used as a context for PTs to answer a set of identical questions. One 
question asked PTs to anticipate children’s multiplicative thinking for the given task, a second 
asked PTs to describe the provided sample of student work, and a third asked PTs to posit the 
next step in a progression of children’s multiplicative thinking. We utilized the OGAP 
framework as a lens analyze PTs responses to these questions.  

The results shared indicate that PTs made improvements in their noticing and knowledge of 
children’s multiplicative thinking from pre- to post-survey. For example, PTs’ responses 
included specific language from the OGAP framework to describe children’s thinking; as 
exemplified by Toni’s response on the post-survey, “A child might solve this problem using the 
transitional strategy, displaying an area model that considers both dimensions but not every 
individual unit”.  
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Before entering their teacher preparation program, future preservice teachers develop 
preconceived notions of what good teaching looks like based upon their time as students of 
mathematics (Masingila & Doerr, 2002). However, once they become a preservice teacher of 
mathematics, these ideals, or visions to which they strive (Hammerness, 2003), often do not align 
with the standards-based practices of their teacher preparation program. Nevertheless, teacher 
preparation programs can help to refine preservice teachers’ visions of instruction.  One way in 
which teacher preparation programs can help preservice teachers to refine their visions is through 
writing prompts (Duffy, 2002). The hope is that through reflection, preservice teachers are able 
“to develop a clearer sense of their purposes for teaching and of their commitment to the 
profession” (Hammerness, 2003, p. 55). Therefore, two main questions guided this study:  

1. How do preservice elementary teachers’ visions of mathematics instruction evolve 
throughout an elementary mathematics methods course? 

2. What impacts their vision of mathematics instruction throughout the methods course 

Participants & Data Collection 
Thirty-two preservice elementary teachers volunteered to participate in the study that took 

place during their second mathematics methods course, during their senior year. Throughout the 
course, participants were exposed to a variety of tasks, readings, and discussions to enrich their 
content and pedagogical knowledge. In addition to the course assignments, the participants were 
asked to complete six journals throughout the course which specifically asked them to reflect on 
their visions of mathematics instruction.  

Results & Discussion 
Preliminary results of this study show the impact of Jo Boaler’s Mathematical Mindsets text 

used throughout the mathematics methods course. Many participants described their vision as 
changed after reading and discussing growth versus fixed mindsets during the course. They also 
attributed their experience in the course, where the instructor modeled a growth mindset and 
made the environment safe for sharing mistakes, to their changing vision. This change shows the 
importance of teacher educators modeling reform-oriented practices in methods courses and how 
specific readings and discussions attribute to the change of preservice teachers visions of 
effective mathematics teaching.  
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This study examined middle and secondary mathematics teachers’ knowledge structures and 
informal inferential reasoning (IIR). Using task-based clinical interviews (Goldin, 1997) and 
cross-case analysis, nine teachers responded to four LOCUS assessment tasks (Jacobbe, 2016). 
Responses were used to construct knowledge structure maps for measures of center, spread, and 
shape (Groth & Bergner, 2013). Teachers’ IIR was analyzed for the appropriateness of 
responses (Means & Voss, 1996) and key components of IIR were identified. Teachers with more 
connected knowledge structures and fewer undesirable knowledge elements exhibited more 
acceptable forms of IIR. Although teachers engaged in the inference and data components of IIR 
(Makar & Rubin, 2009), they rarely referenced uncertainty. Implications for teacher education 
and future research are discussed. 

Keywords: Data Analysis & Statistics, Teacher Knowledge, Cognition 

Globally, there has been an increased recognition of the need for statistical literacy. This is 
particularly evident in the U.S. from the increased number of statistics standards included in the 
Common Core State Standards for Mathematics (CCSSM) and from other standards reform 
documents (e.g., Franklin et al., 2007). This push is due, in part, to consistent findings that 
tertiary students struggle to improve in their statistical reasoning abilities throughout 
introductory courses (e.g., delMas, Garfield, Ooms, & Chance, 2007). Not surprising, the 
majority of K-12 mathematics teachers in the U.S. feel unprepared to teach statistics content, 
despite completing at least one college level statistics course (Banilower et al., 2013) and despite 
the consistent calls for mathematics teacher education reform over the past twenty years 
(Conference Board of the Mathematical Sciences, 2001, 2012; Franklin et al., 2015). More 
importantly, standards reform documents, such as the CCSSM, require teachers to engage their 
students in informal ways of reasoning, which is not typically found in tertiary courses (Garfield, 
DelMas, & Zieffler, 2012), thereby leaving many teachers unable to draw on experience to 
support such teaching. Several studies have found great success in engaging students in informal 
inferential reasoning (IIR) as a way to promote students’ statistical literacy across middle and 
secondary grades (see for example, Makar & Ben-Zvi, 2011, special issue in Mathematical 
Thinking and Learning; Pratt & Ainley, 2008, special issue in Statistics Education Research 
Journal). However, there has not been an associated level of research into teachers’ engagement 
in IIR, leading to recent claims that research connecting teachers’ content knowledge and IIR is a 
“critical area for future research” (Langrall, Makar, Nilsson, & Shaughnessy, 2017, p. 517). 
This study examined teachers’ knowledge structures for measures of center, spread, and shape as 
it related to their engagement in tasks designed to elicit IIR. The goal was to understand the ways 
in which teachers’ knowledge structures may be constructed, and how they support the ways 
teachers engage in IIR, in the context of task-based clinical interviews. This work adds to 
research base on teachers’ IIR—a relatively thin area compared to research on students. 

Theoretical Framework 
This study draws on the work of Zieffler and colleagues (2008), who defined informal 

inferential reasoning (IIR) as “the way in which students use their statistical knowledge to make 
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arguments to support inferences about unknown populations based on observed samples” (p. 44). 
Their framework for IIR describes three essential components—making claims about 
populations from samples, utilizing prior knowledge, and using evidence-based arguments to 
support claims about populations (Zieffler et al., 2008, p. 45). We further expanded this 
framework, drawing upon Rossman (2008), to include inferences made about causality between 
variables in addition to claims about populations from samples. 

In considering the role of knowledge in this IIR framework, we took the stance of Franklin 
and colleagues (2007) who assumed that knowledge and informal reasoning develop alongside 
one another. Furthermore, in Zieffler and colleagues’ literature review, they found that informal 
reasoning did not improve with “maturation, education, or life experience” (2008, p. 44). 
Therefore, we theorized that IIR occurs at the intersection of statistical knowledge and informal 
reasoning, and neither knowledge nor reasoning are required for the development of the other. 

Research Questions 
This study addressed the following two research questions: What knowledge structures do 

middle level and secondary mathematics teachers have regarding center, spread, and shape of 
distributions (RQ1)? How do teachers’ knowledge structures support IIR (RQ2)? 

Method 
Setting and Participants 

A stratified purposeful sample (Patton, 2002) of nine practicing middle and secondary 
mathematics teachers each participated in two task-based clinical interviews. Teachers were 
required to have taught statistics content that included data analysis explicitly using measures of 
center, spread, and shape of distributions. Teachers were also chosen in order to obtain four 
strata: 1) statistics taught as a unit within middle level mathematics (N = 3), 2) statistics taught as 
a unit within secondary mathematics (N = 2), 3) Non-Advanced Placement (AP) Statistics (N 
=2), and AP Statistics (N = 2). There was wide variability in teachers’ backgrounds that was not 
concentrated in any one strata, all teachers had Master’s degrees in education-related fields, and 
all had completed at least one tertiary course in statistics. 
Data and Analysis 

Task-based clinical interviews were conducted with each teacher, using two tasks for each of 
two 60–90 minute video recorded interviews. The four tasks were selected from released items 
from the Levels of Conceptual Understanding of Statistics (LOCUS) assessment (Jacobbe, 2016) 
in order to align with Huey and Jackson’s IIR task framework (2015) to maximize the potential 
for observing IIR engagement. Due to space limitations, the tasks are not included, but they 
were: New Year’s Day Race, Tomatoes and Fertilizer, Extended School Day, and Jumping 
Distances. Teachers’ written and verbal responses aided in answering both research questions. 
Interview protocols were developed, following the suggestions of Ginsburg (1981) that questions 
should require reflection, determine the seriousness of responses, confirm that participants 
understood the question, and evaluate the strength of belief of responses by challenging them. 
Moreover, we followed suggestions from Goldin (1997) that follow-up questions be non-
directive and that the protocol anticipate as many contingencies as possible. Contingencies were 
more completely anticipated by using LOCUS tasks because a range of student responses are 
included along with each released task. Due to space limitations, instruments and tasks will not 
be shown here but will be provided during the presentation. 

Data analysis first involved transcribing each interview and coding teachers’ responses for 
constructed knowledge elements related to center, spread, and shape of distributions (RQ1). 
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Connections between knowledge elements were then also hypothesized through open-coding 
across all tasks. Node-link diagrams were used in order to visually represent each teacher’s 
knowledge structure. We followed a similar method to that of Groth and Bergner (2013) that 
involved mapping Partially-Correct Constructions for each participant. Thus, teachers’ responses 
were further classified as either desirable or undesirable. A desirable constructed knowledge 
element is one that has been identified in the literature as having the potential for supporting the 
development of other knowledge elements or more complex depictions of that knowledge 
element. An undesirable element is one that may support the development of inconsistent or 
disconnected knowledge elements, or not allow for a desirable element to be constructed from it. 
Desirable elements were visually represented by blue rectangles, and undesirable elements with 
yellow rectangles with rounded vertices. These value laden terms should not be misconstrued as 
a teacher’s lack of expertise because an undesirable element does not necessarily imply that it is 
inherently incorrect. Observed connections between knowledge elements were depicted with a 
double-headed arrow. After all knowledge maps had been constructed, a within-case analysis 
was carried out to confirm each knowledge structure, and then a cross-case analysis was carried 
out to identify common themes across structures to categorize types of structures. 

To address RQ2, we drew upon the work of Means and Voss (1996) to first identify teachers’ 
arguments—their claims and reasons for them—and if they were supported by acceptable or 
unacceptable evidence.  Next, we employed Makar and Rubin’s informal statistical inference 
framework (2009) to identify which of the three components, evidence of IIR, were observed in 
teachers’ arguments—generalization beyond the data, data as evidence, and probabilistic 
language. A cross-case analysis (Creswell, 2013) was carried out to identify categories of types 
of IIR. Lastly, types of IIR were compared with types of knowledge structures to characterize 
how teachers’ knowledge structures may support their IIR. 

Findings 
Knowledge Structures for Center, Spread and Shape 

After a cross-case analysis, 3 basic types of knowledge structures were identified (see Figure 
1): desirable-connected (N = 3), undesirable-connected (N = 4), and undesirable-disconnected 
(N = 2). Desirable-connected structures included almost no undesirable knowledge elements and 
knowledge elements were highly connected, with connections observed both within and between 
knowledge types (center, spread, shape), as can be seen in the case of Rosalynn’s knowledge 
structure as a case of a desirable-connected structure in Figure 1. This knowledge structure 
category was highly consistent across teachers—salient features were observed across all cases. 
On the other end of the spectrum, undesirable-disconnected knowledge structures contained 
multiple undesirable knowledge elements that were observed to be largely disconnected, with no 
connections observed between center and shape knowledge types. These characteristics were 
consistent across the two cases of undesirable-disconnected structures, as can be seen in the case 
of Amalia’s knowledge structure in Figure 1. Knowledge structures described as undesirable-
connected also contained multiple undesirable knowledge elements, but knowledge elements 
were highly connected—thus integrating undesirable knowledge elements into the overall 
structure, as can be seen in Ellie’s knowledge structure in Figure 1. Knowledge structures in this 
category were more varied than the other types. For instance, not all structures included direct 
connections between all knowledge types (center, spread, shape), but all included direct 
connections between at least two of the three types. Moreover, the majority of knowledge 
elements were connected to at least one other knowledge element—reflecting the highly 
integrated nature of teachers’ knowledge. It is of note that in all cases of both undesirable-
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connected and undesirable-disconnected structures, at least one direct path connecting two 
elements of center, spread, and shape included at least one undesirable knowledge element. 
 

Figure 1. Representative cases of the three types of knowledge structures 

Knowledge Structures and Support for IIR 
Tasks that did not require engagement in IIR explicitly (e.g., asking only about 

characteristics of samples) produced different findings than those that did. In particular, teachers 
more frequently exhibited acceptable supports in their arguments when reasoning in these non-

Measures of
Center

Measures of
Spread

Mean
(outlier effects)

Median
(outlier no effect)

Range
(Max - Min)

IQR
("box" range, Q3-Q1;

"middle 50%")

"the middle"
or central
tendency

Sub Range
(range of subsets

of total range)

Boxplot:
Range of Whiskers

(left ~ right = symm; left /~ right = skew)
Min-Q2 vs Q2-Max

(left ~ right = symm; left /~ right = skew)
"Clumps"

"Closer together"
"Spread out"

Symmetric: Mean ~ Med
Skew Right: Mean > Med

"higher peaks"
"clusters"

Between and
Within Variation

Average
as Mean

Standard Deviation
(measure of significance)

Shape of
Distribution

Desirable knowledge element constructed by participant

Undesirable knowledge element constructed by participant

. .Participant constructed relationship between elements at arrow tips

Key

Measures of
Center

Measures of
Spread

Shape of
Distribution

Mean is superior
to other measures

of center

Mean as
Balancing Point

Range
(Max - Min)

"Cluster"/
"Closer Together"

Box of boxplot
NOT a range, but
rather a "cluster"

Mean as
Procedure

Standard
Deviation

Standard Deviation
as deviation from

center

Standard
Deviation
Procedure

Standard
Deviation

interpretation

Center as
Average

Average
as Mean

Mean Effected
by Outliers

Box Plot: Refers to
Physical Features

Histogram:
Clustered & bell curve

implies more consistency

Smaller Range ->
Shorter Whiskers

Sub-Range

Range Better than
"Range of Box"

Histogram:
Bell Curve Average

at Center

Median as
Middle Value

Mode Not
Effected by

Outliers

Desirable knowledge element constructed by participant

Undesirable knowledge element constructed by participant

. .Participant constructed relationship between elements at arrow tips

Key

Desirable knowledge element not constructed by participant

Measures of
Center

Measures of
Spread

Shape of
Distribution

Range
(max to min)

Standard Deviation
(avg dist from mean)

Center as
Balancing Point

Center
Effected by
Extremes

More Consistent
(less spread) =

Symmetric

Average
as Mean

Mean
Effected by
Extremes

Median Not
Effected by
Extremes

Bell Curve/Normal/
Symmetric

Boxplot:
Q2 is Mean

IQR
(boxplot box; Q3-Q1)

Boxplot:
Mean as the
"true center"

Boxplot:
Symm: whiskers ~ same

Skew: whiskers diff

Mean

Desirable knowledge element constructed by participant

Undesirable knowledge element constructed by participant

. .Participant constructed relationship between elements at arrow tips

Key

  

 



Statistics and Probability 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

844	

IIR contexts than in those tasks that demanded IIR (see Table 1). For example, five teachers were 
observed to reason using acceptable supports (i.e., drawing on desirable knowledge elements) 
for at least 75% of their responses (note that teachers were encouraged to offer multiple 
responses per task per the interview protocol) and two of those (Rosalynn and Tim) reasoned in 
this way for 100% of their responses. In contrast, within IIR contexts, none of the teachers were 
observed to reason using acceptable supports for at least 75% of their responses. Although 
teachers’ reasoning in IIR contexts largely made use of unacceptable supports in their 
arguments, when the task only required drawing upon center, spread or shape, 8 of the 9 teachers 
were able to offer at least one response coded as acceptable. However, 5 of these 8 teachers 
simultaneously offered responses coded as unacceptable, indicating wider variation in responses 
for IIR contexts than non-IIR contexts. 

Table 1: Comparing Reasoning Types and Knowledge Structures 

 
 

Tasks that required IIR were also coded according to the three components of informal 
statistical inference described by Makar and Rubin (2009). Two teachers utilized all three 
components (generalization/causation, data as evidence, probabilistic language) for one response 
each and 8 of the 9 teachers incorporated both a generalization and data as evidence when their 
reasoning was coded as acceptable. The use of probabilistic language was exceedingly rare, 
observed in only the two cases where all three components were included, indicating that 
teachers largely did not consider the deterministic nature of their inferential statements. 

Comparing reasoning types to knowledge types, the greatest observable pattern is that 
teachers with mostly desirable elements that were highly integrated also reasoned in acceptable 
forms for the majority of their responses, while teachers with many undesirable elements that 
were largely disconnected tended to reason in unacceptable forms for the majority of their 
responses. A second salient pattern is that those who reasoned in more acceptable forms across 
both contexts (non-IIR and IIR) tended to have more connected knowledge structures. Moreover, 
the relationship between reasoning types and knowledge structures appeared most evident at 
opposite ends of the spectrum. To illustrate this, on the Jumping Distances task, participants 
were asked to compare center, spread and shape of the distances a sample of students jumped by 
examining a pair of boxplots—one boxplot representing jumping distances for a subset who was 
provided with a target to jump towards, the other not having a target to jump towards (see Figure 
2). The following responses come from Amalia and Rosalynn as they respond to this item: 

Amalia: The no target looks to be more symmetric. This one [target plot] is close to be 
symmetric, but it is slightly skewed.  […] The whiskers make me think [the no target plot is] 
not skewed because they look almost the same length. Whereas this one [target plot] is a little 
longer on the left [gesturing to both whiskers of target plot] […] But yeah, I was just looking 

Non-IIR Reasoning Teacher Knowledge Structure IIR Reasoning
Mostly Unacceptable Kathy Mostly Unacceptable IIR

Amalia More Unacceptable IIR
Ellie Mostly Acceptable IIR
Ruby
Michaela
Harrison
Mike
Rosalynn
Tim

Undesirable-
Disconnected

Mixed
Undesirable-
Connected

Mostly Acceptable
Desirable-
Connected
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at the whiskers, and just the fact that the target group, there is a bigger difference between the 
largest and the shortest jump, versus here [no target], there’s not as much of a difference. 
(lines 10 and 21) 
Rosalynn: The shape of the distribution […] Since you do have a longer whisker on the left, 
you’re looking at a slight left skew for the target group versus a more symmetric distribution 
for the no target group. […] The left part [gesturing to distance from minimum to median] is 
more spread out for this one [target] than the right part. (lines 6 and 9) 

Figure 2. Boxplots provided on Jumping Distances task. 

Within these excerpts, you can see that Amalia first begins to describe the distribution’s 
shape using desirable knowledge elements—referring to the respective lengths of the whiskers 
for each plot to hypothesize about the shape. However, she then creates a second argument that 
draws on an undesirable knowledge element—that the smaller range of the no target plot implies 
more symmetry. Thus, without making contradictory claims, she simultaneously argued in ways 
coded as both acceptable and unacceptable. This perspective of spread as being connected to 
shape in an undesirable way led to her unacceptable form of reasoning. Amalia’s knowledge 
structure was categorized undesirable-disconnected (see Figure 1), and her reasoning was 
impacted by the integration of undesirable elements, thus resulting in more responses coded as 
unacceptable. In contrast, Rosalynn’s responses remained in comparison to whether things 
appeared more evenly spread to the left and right of center, drawing on desirable knowledge 
elements for each response. Therefore, Rosalynn’s knowledge structure, categorized as 
desirable-connected (see Figure 1), supported her reasoning in ways that led to more acceptable 
forms of reasoning. Teachers whose knowledge was more integrated yet contained multiple 
undesirable elements, were observed offering both acceptable and unacceptable forms of 
reasoning simultaneously—leading to the characterization of having a more mixed form of 
reasoning. 

Discussion 
A major finding of this study is that middle and secondary teachers’ knowledge structures for 

center, spread and shape of distributions fell into three categories—desirable-connected, 
undesirable-connected, and undesirable-disconnected. Looking across these categories, 7 of the 
9 teachers were found to have highly interconnected knowledge structures that all made 
connections among the three knowledge types (center, spread, shape), and some made 
connections across all three. Moreover, despite many teachers having undesirable elements 
integrated into their knowledge structures, most were observed to have at least one connection 
between desirable elements of center and spread. Although there is evidence that teachers’ 
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knowledge structures were highly interconnected, teachers struggled to integrate their knowledge 
of center, spread and shape. For instance, teachers in this study were largely observed to 
recognize that connections existed between knowledge element types (less so between center and 
shape), yet they did not utilize these connections and draw upon multiple knowledge types 
simultaneously, as prior research has found for students and pre-service teachers (Doerr & Jacob, 
2011; Groth & Bergner, 2006; Noll & Shaughnessy, 2012). Moreover, these studies also found 
that hierarchically higher levels of reasoning required the integration of multiple knowledge 
elements simultaneously—such as describing a measure of spread in relation to a measure of 
center—thus, supporting the notion that desirable-connected knowledge structures are associated 
with more acceptable forms of reasoning. 

Although the theoretical framework for this study does not assume that there is any particular 
prior knowledge necessary for engaging in IIR—and that knowledge and informal reasoning 
work together during engagement in IIR—the teachers who engaged in IIR in mostly acceptable 
forms were those with desirable-connected knowledge structures. This finding aligns with Makar 
and colleagues’ (2011) claim that statistical knowledge is an important support for IIR. 
Moreover, as found by Huey (2011) and Watson (2003), teachers in this study tended to focus 
only on measures of center unless explicitly prompted otherwise. 

These results promote the need for statistics teacher education to include explicit 
opportunities, embedded within tasks, for teachers and preservice teachers to grapple with 
connections both within knowledge types and between them. For instance, some teachers in this 
study believed that outliers were either always or never ignorable, that the term average always 
implied the arithmetic mean, or that the mean was always or never a better measure than the 
median. Situations that confront teachers with these dichotomies will allow them to consider a 
more nuanced understanding and more flexible knowledge structure. Moreover, teachers in this 
study largely drew on ideas of center to support inferences, even when tasks did not restrict them 
in this way. Consequently, tasks designed to engage teachers in IIR should also encourage 
attention to all of center, spread, and shape—not isolating one type.  

More research is needed in these areas in order to explore the kinds of task features that are 
more likely to encourage integration of all three knowledge types, thus supporting teachers in 
strengthening their knowledge structures and reasoning. One possible fruitful area of research is 
to provoke teachers into weighing the evidence of their inferential statements through requiring 
the construction of multiple inferential statements and responding to multiple inferential 
statements to explore their validity. This will allow engagement in the statistics practice 
described in the Statistical Education of Teachers report as being able “to compare the 
plausibility of alternative conclusions and distinguish correct statistical reasoning from that 
which is flawed” (Franklin et al., 2015, p. 14). 

A final needed area of research is in explicitly engaging teachers in, and drawing attention to, 
the use of probabilistic language. A profound lack of attention to this component of IIR was 
observed in this study. Unlike mathematics, where deterministic statements are the norm, 
inferences in statistics are predictions and therefore come with a degree of uncertainty. 

References 
Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 

2012 national survey of science and mathematics education. Chapel Hill, NC: Horizon Research, Inc. 
Conference Board of the Mathematical Sciences. (2001). The mathematical education of teachers. Washington, DC: 

American Mathematical Society and Mathematical Association of America. 
Conference Board of the Mathematical Sciences. (2012). The mathematical education of teachers II. Providence, RI 

and Washington, DC: American Mathematical Society and Mathematical Association of America. 



Statistics and Probability 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

847	

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). SAGE. 
delMas, R., Garfield, J., Ooms, A., & Chance, B. (2007). Assessing students’ conceptual understanding after a first 

course in statistics. Statistics Education Research Journal, 6(2), 28–58. 
Doerr, H. M., & Jacob, B. (2011). Investigating secondary teachers’ statistical understandings. In M. Pytlak, T. 

Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in 
Mathematics Education (pp. 776–786). University of Rzeszów, Poland. 

Franklin, C., Bargagliotti, A. E., Case, C. A., Kader, G., Scheaffer, R., & Spangler, D. A. (2015). The Statistical 
Education of Teachers. Retrieved from http://www.amstat.org/education/SET/SET.pdf 

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for 
Assessment and Instruction in Statistics Education (GAISE) Report. American Statistical Association. 
Alexandria, VA. Retrieved from http://www.amstat.org/Education/gaise/GAISEPreK-12_Full.pdf 

Garfield, J., DelMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, 
tertiary-level statistics course. ZDM - The International Journal on Mathematics Education, 44(7), 883–898. 

Ginsburg, H. (1981). The clinical interview in psychological research on mathematical thinking: Aims, rationales, 
techniques. For the Learning of Mathematics, 4(3), 1–11. 

Goldin, G. A. (1997). Chapter 4: Observing mathematical problem solving through task-based interviews. Journal 
for Research in Mathematics Education. Monograph, 9(Qualitative Research Methods in Mathematics 
Education), 40-62. 

Groth, R. E., & Bergner, J. A. (2006). Preservice elementary teachers’ conceptual and procedural knowledge of 
mean, median, and mode. Mathematical Thinking and Learning, 8(1), 37–63. 

Groth, R. E., & Bergner, J. A. (2013). Mapping the structure of knowledge for teaching nominal categorical data 
analysis. Educational Studies in Mathematics, 83(2), 247–265. https://doi.org/10.1007/s10649-012-9452-4 

Huey, M. E. (2011). Characterizing middle and secondary preservice teachers’ change in inferential reasoning. 
University of Missouri, Columbia, MO. 

Huey, M. E., & Jackson, C. D. (2015). A framework for analyzing informal inferential reasoning tasks in middle 
school textbooks. In T. G. Bartell, K. N. Bieda, R. T. Putnam, K. Bradfield, & H. Dominguez (Eds.), 
Proceedings of the 37th annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (pp. 431–438). East Lansing, MI: Michigan State University. 

Jacobbe, T. (2016). Levels of Conceptual Understanding in Statistics (LOCUS). Retrieved April 18, 2016, from 
https://locus.statisticseducation.org/ 

Langrall, C. W., Makar, K., Nilsson, P., & Shaughnessy, J. M. (2017). The teaching and learning of probability and 
statistics: An integrated perspective. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 
490–525). Reston, VA: National Council of Teachers of Mathematics, Inc. 

Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical 
Thinking and Learning, 13(1–2), 152–173. 

Makar, K., & Ben-Zvi, D. (2011). The role of context in developing reasoning about informal statistical inference. 
Mathematical Thinking and Learning, 13(1–2), 1–4. 

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education 
Research Journal, 8(1), 82–105. 

Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of 
different grade, ability, and knowledge levels. Cognition and Instruction, 14(2), 139–178. 

Noll, J., & Shaughnessy, J. M. (2012). Aspects of students’ reasoning about variation in empirical sampling 
distributions. Journal for Research in Mathematics Education, 43(5), 509–556. 

Patton, M. Q. (2002). Qualitative Research and Evaluation Methods (3rd ed.). Thousand Oaks, California: Sage 
Publications Inc. 

Pratt, D., & Ainley, J. (2008). Introducing the special issue on informal inferential reasoning. Statistics Education 
Research Journal, 7(2), 3–4. 

Rossman, A. (2008). Reasoning about informal statistical inference: One statistician’s view. Statistics Education 
Research Journal, 7(2), 5–19. 

Watson, J., & Callingham, R. (2003). Statistical literacy: A complex hierarchical construct. Statistics Education 
Research Journal, 2(2), 3–46. 

Zieffler, A., Garfield, J., delMas, R., & Reading, C. (2008). A framework to support research on informal inferential 
reasoning. Statistics Education Research Journal, 7(2), 40–58. 

  



Statistics and Probability 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

848	

AN ANALYSIS OF HIGH SCHOOL STUDENTS TAKING STATISTICS USING THE 
HSLS:09 DATASET 

Travis Weiland 
Appalachian State University 

weilandtj@appstate.edu  

In this study I report results of an quantitative analysis using a large scale public dataset 
(HSLS:09) to investigate which students are taking statistics courses in high school to begin to 
understand the access students have to opportunities to learn statistics concepts and practices in 
high schools in the United States. The main result of this study is that predominantly the top 
academically performing high school students are earning credit for taking statistics. This is 
concerning as all students should have experiences learning concepts and practices from 
statistics to be prepared to engage in and play active roles in today’s data centric societies. In 
line with the conference theme of looking forward, implications for future research and policy 
are discussed. 

Keywords: Data Analysis and Statistics, Equity and Diversity, High School Education 

Background and Statement of Problem 
Society today is drenched in data (Steen, 2001). Individuals are surrounded by data aimed at 

influencing their decisions about what school policies to implement, politician to vote for, or 
medicine to use. Statistics, the science of data, is becoming an increasingly important discipline 
for people to be familiar with the key concepts and practices of, because of society’s reliance on 
data (Ben-Zvi & Garfield, 2008). As Franklin et al. (2007) states, “every high school graduate 
should be able to use sound statistical reasoning to intelligently cope with the requirements of 
citizenship” (p.1). For students to develop sound statistical reasoning it is important that a goal of 
public K-12 education is to provide students with opportunities to have rich learning experiences 
with concepts and practices of statistics if they are going to be critical citizens in today’s data-
driven societies.   

Teaching statistics in the K-12 setting is firmly rooted in the mathematics curriculum and 
access and opportunities to learn are crucial equity issues to consider in mathematics education 
(Gutiérrez, 2009; Schmidt & McKnight, 2012). In the United States, students’ opportunities to 
learn mathematics have been found to vary greatly due to the decentralized nature of education 
in the U.S. (Schmidt & McKnight, 2012). The implementation of the Common Core State 
Standards for Mathematics (CCSSM; National Governor’s Association Center for Best Practices 
(NGA Center) & Council of Chief State School Officers (CCSSO), 2010) was meant to serve as 
a unifying force to reduce some of the variation in the mathematics content covered across states 
in the U.S. However, not all states have signed on to adopt the standards, and other states have 
begun to modify the standards to be implemented in an attempt to distance themselves from 
some of the controversy and politics around the standards (Orrill, 2016). In the CCSSM, data 
analysis and statistics have gained emphasis in grades 6-12 compared to most previous state 
standards. However, there has also been the loss of much of the statistics and probability content 
at the K-5 level, which could have serious ramifications in the future (Lubienski, 2015).  

It is important to point out that standards are not the only factor influencing curriculum as 
classroom teachers and local contexts have a direct influence on the enacted curriculum students 
experience in the classroom (Remillard & Heck, 2014). However, this is a unique issue in the 
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case of statistics because although the instruction of statistics is firmly rooted in the mathematics 
curriculum at the K-12 level, statistics is a distinct discipline with concepts and practices that are 
non-mathematical (Cobb & Moore, 1997; Groth, 2013). This can cause problems because many 
K-12 mathematics teachers have often had little to no prior coursework in statistics (Franklin et 
al., 2015; Shaughnessy, 2007), which could have very serious repercussions for the opportunities 
students have to learn statistics in school. Since the enactment of mathematics curriculum varies 
greatly from classroom to classroom based on a number of factors (Remillard & Heck, 2014; 
Schmidt & McKnight, 2012), it is very difficult to study what opportunities students have to 
learn statistics concepts and practices on any kind of large scale.  

In this study, I used the National Center for Educational Statistics’ (NCES) High School 
Longitudinal Study of 2009 (HSLS:09) public access dataset to begin to investigate which 
students are earning statistics credit in high school in an effort to better understand high school 
students access to opportunities to learn statistics concepts and practices. More specifically, I 
investigated the following research questions: 

1. What relationship is there between demographic characteristics (i.e. sex, race, and SES) 
of students who earned at least one credit of statistics and those that did not? 

2. What relationship is there between the academic performance of students who earned at 
least one credit of statistics and those that did not? 

3. What relationship is there between the beliefs/attitudes of students who earned at least 
one credit of statistics and those that did not? 

Conceptual Framework 
This study is framed in a larger equity framework, specifically investigating issues around 

achievement and access, which are dimensions of what Rochelle Gutiérrez (2009) refers to as the 
dominant axis of equity. Gutiérrez (2002) states a basic definition of equity as being the, “erasure 
of the ability to predict students’ mathematics achievement and participation based solely on 
characteristics such as race, class, ethnicity, sex, beliefs and creeds, and proficiency in the 
dominant language” (p.153). Drawing upon this definition this study is focused on the 
characteristics of race, class, sex, and beliefs and whether or not there is a relationship between 
students’ statistics course taking and such characteristics, in an effort to begin to investigate the 
equity in student’s participation in opportunities to learn statistics concepts and practices. To 
consider the issue of achievement in this study, students’ mathematics achievement in terms of 
algebraic reasoning as well as their achievement in terms of their GPAs was considered in 
relation to whether or not they earned at least one credit in statistics or not.    

Mode of Inquiry 
Data source 

The public access dataset from the HSLS:09 was the data source for this study. The goal of 
the HSLS:09 is to provide data to “better understand the impact of earlier educational 
experiences (starting at 9th grade) on high school performance and the impact of these 
experiences on the transitions that students make from high school to adult roles” (Ingels et al., 
2015, p. 6). As such, the HSLS:09 was designed to gather data on a sample that is nationally 
representative of students entering 9th grade in 2009 (n=23503). One of the goals of the HSLS:09 
is to provide data to investigate, “the nature of the paths into and out of STEM (science, 
technology, engineering, and mathematics) curricula” (Ingels et al., 2015, p. 6). At this point data 
is available for the base year (Fall 2009), first follow-up (Spring 2012), post-secondary status 
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update (Summer/Fall 2013), and high school transcript report (2013-2014).  
Methods 

For this study, quantitative methods were employed to investigate variables related to 
students’ demographics, mathematics course taking, academic performance, and beliefs/attitudes 
towards math and science. Students’ mathematics course taking was considered in terms of 
whether or not they earned at least one credit in statistics/probability in high school and what was 
the highest level mathematics course students took in high school. As a note, AP Statistics course 
taking was not included in this analysis, because that data is only available in the restricted use 
data file. The HSLS:09 has a number of different academic performance variables, which include 
students’ performance on a mathematics assessment designed to assess students’ algebraic 
reasoning. In this analysis, I chose to use students’ theta score for their performance on the 
mathematics assessment, which provides a norm-referenced measurement of achievement, for 
the base year assessment and the first follow-up assessment. Students’ mathematics, STEM, and 
all academic course GPAs were also used as performance variables. Finally students’ identity, 
self-efficacy, utility of and interest beliefs/attitudes towards mathematics and science, which 
were measured as normalized scale variables during the base year and the first follow-up, were 
considered. A complete listing of the variables and their description that were used in the 
analysis can be found in Table 1. 

An initial exploratory data analysis (Tukey, 1977) was conducted and important descriptive 
statistics are reported in the results. An inferential analysis of the data was then done to address 
the research questions to investigate the relationship between students’ demographics, academic 
performance and beliefs/attitudes and whether they earned credit for taking a statistics course of 
not. The inferential statistics used included two-sample t-tests for scale variables, which included 
variables for students’ academic performance, beliefs/attitudes towards math and science, and 
SES, grouped based on whether or not they had at least one credit of statistics. In other words, 
the specific relationship that was investigated was whether or not there were differences in the 
variables considered, between the two groups.  For categorical demographic variables, chi-square 
tests were used to determine if there were associations between the variables and the two groups 
considered. Standardized residuals were also employed in the case of statistically significant 
results of the chi-squared tests to get a better idea of which categories were significantly different 
from what was expected. Design effects normalized analytic weights were used for all inferential 
statistics. Effects sizes are reported for the quantitative variables by converting the t-test statistics 
to r and then using the commonly used cutoff’s of r=.1 for small, r=.3 for medium, and r=.5 for 
large effect sizes (Field, 2013). Effect sizes for the categorical variable χ2-test statistics are 
reported using Cramer V and the same cutoffs of .1, .3, and .5.  

The method of focusing on transcript data to investigate students’ course taking is not new. 
The transcript studies conducted periodically as part of the National Assessment of Educational 
Progress (NAEP) have been a source of such information over the past few decades. Based on 
such information, it was recently reported that, statistics/probability course taking in high school 
increased from 1% of high school graduates in 1990 to 11% in 2009 (NCES, 2016). 
Unfortunately, the NAEP transcript data is also limited in the information it collects on students, 
as it is focused mostly on transcript data of course taking and is only linked to students’ 
performance on the NAEP assessment in 12th grade in some cases. The HSLS:09 public access 
dataset includes significantly more variables related to students’ course taking, academic 
performance, demographics, and beliefs/attitudes towards mathematics and science, making it 
useful to investigate factors related to who the students are that are taking statistics courses.   
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Table 1: List of variable names and the descriptions from the HSLS:09 codebook (Ingels et 
al., 2015) for the variables analyzed in this study. 

Variable Name Description of Variable 
X3T1CREDSTAT Indicates at least one Carnegie unit in Statistics/Probability, does not include AP Statistics 

X3THIMATH Highest Mathematics course 
X3TWHENALG1 Indicates the grade level the student took Algebra I. 

X1TXMTH & 
X2TXMTH 

The mathematics theta score represents the student’s ability level on a continuous scale. The 
theta score provides a norm-referenced measurement of achievement, that is, an estimate of 
achievement relative to the population (fall 2009 9th graders) as a whole. It provides 
information on status compared to peers. 

X1MTHID & 
X2MTHID 

This variable is a scale of the sample member’s math identity. Sample members who tend to 
agree with the statements “You see yourself as a math person” or “Others see me as a math 
person” will have higher values.  

X1MTHUTI & 
X2MTHUTI 

This variable is a scale of the sample member’s perception of the utility of mathematics; 
higher values represent perceptions of greater mathematics utility.  

X1MTHEFF & 
X2MTHEFF 

This variable is a scale of the sample member’s math self-efficacy; higher values represent 
higher math self-efficacy.  

X1MTHINT This variable is a scale of the sample member’s interest in his or her base-year math course; 
higher values represent greater interest in the base-year math course.  

X1SCIID & 
X2SCIID 

This variable is a scale of the sample member’s science identity. Sample members who tend 
to agree with the statements “You see yourself as a science person” or “Others see me as a 
science person” will have higher values for X2SCIID.  

X1SCIUTI & 
X2SCIUTI 

This variable is a scale of the sample member’s perception of the utility of science; higher 
values represent perceptions of greater science utility.  

X1SCIEFF & 
X1SCIEFF 

This variable is a scale of the sample member’s science self-efficacy; higher X2SCIEFF 
values represent higher science self-efficacy.  

X1SCIINT This variable is a scale of the sample member’s interest in his or her base-year science 
course; higher values represent greater interest in the base-year science course.  

X3TGPAMAT GPA in Mathematics. 
X3TGPASTEM GPA in STEM courses. 
X3TGPAACAD GPA in Academic courses. 

X1SEX Student's sex 
X1RACE Student's race/ethnicity-composite 
X1SES Socio-economic status composite for base year 
X2SES Socio-economic status composite for first follow-up year 

Results 
Of the sample of students, there was not transcript data available for 1575 (6.7%) of the 

students. 19748 (84%) students did not earn any credit in statistics/probability, and 2180 (9.3%) 
students earned at least one credit in statistics/probability, which in looking back is slightly lower 
than the 11% of students reported in 2009 NAEP transcript study (NCES, 2016).  
Demographic Characteristics 

In considering the relationship between students’ demographic characteristics and whether or 
not they earned at least one credit in statistics, the characteristics of sex, race, and SES were 
investigated. In comparing sex to earning statistics credit, there was no significant association 
(χ2=0.538, df=1, p=0.463). The association between race and earning statistics credit was 
statistically significant (χ2=17.923, df=7, p=0.012). However, the effect size was small (Cramer 
V=.083). In looking at the standardized residuals of the observed and expected cell counts the 
only significant residual (those ≥±1.96) was for Asian students earning a credit in statistics with 
z=2.8, meaning there were significantly more Asian students who earned at least one credit in 
statistics than expected. A further caution is that three of the expected counts where less than 
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five, though that only constitutes 18.8% of the cells, which is below the 20% cutoff that is 
generally considered acceptable (Field, 2013). Finally, in considering the relationship between 
SES and earning statistics credit there were statistically significant differences between the 
groups in both the base and first follow-up years, the results of which can be seen in Table 2. The 
group differences in SES also had small effect size.  

Table 2: Difference in scale variables between students who did not earn any credits in 
statistics/probability versus those who earned at least one credit in statistics/probability. 

 ≥1 Stat Cred 
Mean (SD) 

No Statistics 
Mean (SD) t df 

Mean Diff 
(SE) 

95% CI of  Diff Effect Size 
(r)  

BY Math theta score .563(.893) -.089(.937) -10.51*** 2581 -.652(.062) [-.773, -.530] .203 
FY Math theta score 1.295(1.102) .538(1.123) -10.28*** 2581 -.758(.074) [-.902, -.613] .198 
BY Math Identity .350(.970) -.014(1.002) -5.46*** 2548 -.364(.067) [-.495, -.233] .108 
FY Math Identity .331(1.047) -.003(.997) -5.02*** 2510 -.334(.066) [-.464, -.203] .100 
BY Math Utility .018(.981) -.001(1.001) -.270 2277 -.019(.070) [-.155, .118] .006 
FY Math Utility .176(.979) .018(.991) -2.40* 2503 -.158(.066) [-.287, -.029] .048 
BY Math SE .225(.919) -.007(1.012) -3.31** 2269 -.231(.070) [-.368, -.094] .069 
FY Math SE .180(1.014) .004(.996) -2.64** 2477 -.176(.067) [-.307, -.045] .053 
Interest F09 math .277(.992) -.014(.993) -4.16*** 2227 -.290(.070) [-.427, -.154] .088 
BY Science Identity .245(.978) .006(.993) -3.62*** 2542 -.239(.066) [-.369, -.109] .072 
FY Science Identity .248(1.007) -.008(.997) -3.87*** 2495 -.257(.066) [-.387, -.126] .077 
BY Science Utility .071(1.014) .004(.989) -.95 2088 -.067(.071) [-.207, .072] .021 
FY Science Utility .015(.071) -.001(.069) -3.44** 2487 -.016(.005) [-.025, -.007] .069 
BY Science SE .217(.991) -.006(.985) -3.15** 2079 -.223(.071) [-.362, -.084] .069 
FY Science SE .209(.968) .004(1.005) -3.05** 2437 -.205(.067) [-.337, -.073] .062 
Interest F09 science .127(.996) -.014(1.009) -1.93 2040 -.141(.073) [-.285, .002] .043 
GPA STEM courses 2.889(.722) 2.297(.930) -9.76*** 2576 -.592(.061) [-.711, -.473] .189 
GPA all courses 3.023(.684) 2.456(.889) -9.79*** 2576 -.567(.058) [-.680, -.453] .189 
GPA Math 2.811(.810) 2.218(.974) -9.32*** 2576 -.594(.064) [-.719, -.469] .181 
BY SES Composite .281(.780) -.109(.745) -7.83*** 2581 -.390(.050) [-.487, -.292] .152 
FY SES Composite .306(.717) -.0750(.715) -7.85*** 2394 -.381(.049) [-.476, -.286] .158 
Note. Equal variance assumed for independent t tests. *p<.05, **p<.01, ***p<.001. BY=Base Year, 
FY=First Follow-up Year. 

 

 
Beliefs/Attitudes 

Looking at the belief/attitude scale score variables (see Table 2); during the base year 
students who earned at least one credit in statistics/probability had significantly stronger 
mathematics and science identities, mathematics and science self-efficacy beliefs, and interest in 
their 9th grade mathematics course than students who did not. This pattern continued for the 
identity and self-efficacy variables in the first follow-up of the study. There was no difference in 
the mathematics or the science utility scale scores during the base year of the study. However, at 
the time of the first follow-up, students who earned at least one credit in statistics/probability had 
significantly higher mathematics and science utility scale scores than students who did not. It 
seems that over the course of three years of high school education the population of students who 
earned at least one credit in statistics/probability by the end of high school, were students who 
began to view mathematics as more useful on average than students who did not, whose average 
scale score changed minimally from the base year to the first follow-up year. The same cannot be 
said in the case of science where the scale score for both populations decreased on average from 
the base year to the first follow-up year. It is important to acknowledge that there is no way of 
knowing when students earned at least one credit in statistics, so no inferences should be made 
that temporal shifts in beliefs and attitudes might be influenced by statistics course taking. It is 
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also important to note that even though a number of the belief/attitude variables differed 
significantly between the groups, none of the differences had more than small effect sizes, and 
quite a few were below the r=.1 cutoff for small effect sizes. 
Academic Performance  

In looking at the mathematics course taking of those students who earned at least one credit 
in statistics/probability, a striking trend emerges that students taking statistics are largely the top 
mathematics students. Nearly half (n=1053) of the students earning statistics/probability credit in 
high school completed Algebra I in 8th grade, just over a quarter took statistics as their most 
advanced mathematics course in high school, and in fact over a quarter of students took calculus 
in high school (see Table 3). This trend is also supported by the mathematics performance of 
students who earned a statistics/probability credit versus those who did not (see Table 2). 
Students who earned at least one credit in statistics/probability had significantly higher theta 
scores on the algebraic reasoning assessment on average in both the base year and the first 
follow-up than students who did not earn a statistics/probability credit. This same trend can be 
seen in the GPA of students’ mathematics courses taken in high school, and in their GPA for 
STEM courses, and all academic courses (see Table 2). Furthermore, the differences had small to 
moderate effect sizes. These results seem to indicate that the students who earned at least one 
credit in statistics/probability may include more than just top performing mathematics students, 
but perhaps even the top performing students in general. 

Table 3: Frequency of students’ highest level mathematics course taken for students who 
earned at least one credit in statistics/probability  

X3 Highest level mathematics 
course taken/pipeline 

Frequency of students who earned at 
least one credit in statistics/probability 

No Math 0 
Basic math 0 
Other math 0 
Pre-algebra 0 
Algebra I 0 
Geometry 0 
Algebra II 0 
Trigonometry 0 
Other advanced math 0 
Probability and statistics 697 
Other AP/IB math 260 
Precalculus 596 
Calculus 144 
AP/IB Calculus 483 
Total 2180 

Discussion and Scholarly Significance 
Considering the results as a whole the two most significant factors that differed between the 

group of students who earned at least one credit in statistics and the group of students that did not 
were academic performance and SES. Though there are other factors that differed with statistical 
significance between the two groups, they were all of small or less effect sizes and given the 
large sample size should be considered with caution as only small differences are needed for 
statistical significance, which may not be significant in a practical sense. One possible reason, 
for predominantly top academically performing students earning at least one credit in statistics is 
that they have more time in their schedule to take additional mathematics courses like statistics. 
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Most states require at least three years of mathematics, which generally includes an Algebra I, 
Geometry, Algebra II trajectory or a more integrated Math I, Math II, Math III trajectory where 
the various strands of mathematics are taught together over three years. That means that students 
who take the typical 9th grade mathematics course of Algebra I or Math I in 8th grade have more 
time to take statistics as an elective course in their junior or senior year.  

The cohort of students in the HSLS:09 were in high school during the very beginning of the 
influence of the CCSSM (NGA Center & CCSSO, 2010), which does recommend that statistics 
concepts be included in all students’ high school mathematics education. However, the enacted 
curriculum that students experience is generally carried out by the classroom teacher who 
mediates the influence that official curriculum, such as the CCSSM, have on the enacted 
curriculum (Remillard & Heck, 2014) and as I discussed earlier, statistics has a unique position 
in this regard as many mathematics teachers have often had little to no prior experience with 
learning statistics (Shaughnessy, 2007). Though the results here do not show that all students do 
not have access to opportunities to learn statistics, they do point out that there may, at the very 
least, be an issue in how statistics courses are offered or advertised to students, or perhaps in 
students’ perceptions of the usefulness of statistics, or who should take it. The results do show 
that the majority of students are not earning any credits in statistics/probability, which means if 
they are not experiencing statistics in their other mathematics courses, they are not having any 
experiences with statistics in high school. It is important that more research is done around 
students’ opportunities to learn statistics at the K-12 level especially in the context of the enacted 
curriculum that students experience and how students are provided access to opportunities to 
learn statistics at the school level. 

A limitation in this analysis is that using the HSLS:09 data it is only possible to determine 
which students earned at least one credit of statistics/probability in high school. It does not 
provide information on specific course performance, when the student took the course, or 
identify those students who were enrolled in a statistics/probability course but did not earn credit, 
which limits the results reported. Furthermore, it is not possible to determine the quality of the 
students’ instruction or whether or not they had any opportunities to learn statistics in any of 
their other courses. However, given the current dearth of empirical research looking at the 
teaching or learning of statistics on any kind of large scale, these results help to give some idea 
of patterns in statistics course taking, which have implications for further research and for policy. 
Another limitation is not having transcript data on who earned credit for AP Statistics. However, 
given that AP courses are advanced courses the inclusion of such data would have likely only 
amplified the results as the students often taking AP courses are generally high performing and 
of a higher SES. However, it is still important that future analyses include such data.        

Related to the equity framework used in this study, the results reported here are significant in 
that if the goal of education is democratic equality, preparing students to participate as critical 
citizen’s in society where statistical reasoning is crucial, than there is a serious issue in that it 
appears that predominantly only the top performing students in high school are earning credits in 
statistics/probability. It is promising that students’ sex was found to have no association with 
their taking of statistics. However, race does appear to have a weak association and there are 
significant differences in the academic performance and SES of those who earned credit in 
statistics and those who did not, which points to inequity in students’ access to statistics. Going 
back to Gutiérrez’s (2009) equity framework, it is also important to point out that using this data, 
equity can only be considered through the dominant axis, which means there is still the issue of 
the critical axis of equity, namely identity and power, to consider in future work. Though the 
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variables of math and science identity were considered in the HSLS:09, they are different than 
the identity construct that Gutiérrez (2009) discusses. The identity variables in the HSLS:09 
consider an individual’s identity relative to its alignment with the discipline, whereas Gutiérrez 
(2009) is looking at identity from the perspective of the individual and how they see themselves 
in relation to the discipline and curriculum. It is crucial, that if we are to achieve the promise of 
equal educational opportunity, that all students should have experiences learning statistics 
concepts and practices, and that they have experiences in seeing themselves in the curriculum 
and considering how to read and write the world with statistics (Weiland, 2017).    
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Probability and independence are difficult concepts, as they require the coordination of multiple 
ideas. This qualitative research study used clinical interviews to understand how three 
undergraduate students conceptualize probability and probabilistic independence within the 
theoretical framework of APOS theory. One student’s reasoning was consistent with a process 
conception, one student with at least an object conception, and one with a schema conception of 
probability and independence. Differences in students’ thinking are analyzed, with a specific 
focus on intuition and simultaneously occurring events. 

Keywords: Probability; Post-secondary Education 

Review of Literature 
“Students have difficulty just sorting out the mathematics of whether events are statistically 

dependent or independent in probability problems” (Shaughnessy, 2003, p. 221). The sentiment 
of this quotation resounds throughout the literature on probabilistic independence, and it has 
been well documented for students at varying ages. Considering the definition of independence, 
for two events A and B, 𝑃(𝐴) 	= 	𝑃(𝐴|𝐵), there is a clear relationship between conditional 
probability and independence which students must come to understand. In recognition of the 
need for students to coordinate these concepts, Tarr and Jones (1997) constructed a framework 
for understanding how middle school students conceptualize independence and conditional 
probability. When students’ understanding of these two concepts were analyzed within the four 
levels of this framework, it was determined that students’ levels of reasoning regarding 
conditional probability and independence tend to be the same; this finding advances the apparent 
connection between conditional probability and independence, and furthermore, implies that 
students may construct these concepts in tandem.  

Undergraduate students’ struggles with probabilistic independence have been well 
documented. Kelly and Zwiers (1988) delineated three common misconceptions undergraduates 
have with independence: determining whether events are (in)dependent, understanding that 
dependence does not imply cause, and understanding that (in)dependence is not reliant upon 
time. Plaxco’s (2011) findings support this third struggle. In interviews with undergraduates, 
Plaxco found that all students alluded to a temporal conception of independence and two of the 
three students included an element of time in their definition of independence. Students’ 
inabilities to separate an element of time from their understanding of independence is clearly 
problematic, as the conditioning event may occur at the same time as or after the second event. 
In response to some of the difficulties students experience in conceptualizing independence, 
Keeler and Steinhorst (2001) call for the improvement of instruction in undergraduate probability 
courses, and specifically call instructors to capitalize on students’ intuitions. They posit that an 
inquiry-based learning environment facilitates students’ understanding of probability by building 
upon students’ intuitions. Abrahamson (2014) also encourages probability instruction that 
“guide[s] students to appropriate the cultural resource as a means of supporting and empowering 
their tacit inference” (p. 250). His findings indicate that students’ tacit inferences are a powerful 
instructional tool that instructors can leverage by linking it to formal mathematics. These 
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researchers build upon the work of Fischbein (1987), who defines students’ intuitions as primary 
or secondary. Primary intuitions are those students develop prior to instruction, whereas 
secondary intuitions are developed through formal mathematical experience. Secondary 
intuitions are not right and primary intuitions wrong; rather, secondary intuitions replace primary 
intuitions in situations where primary intuitions fail. Thus, for both Keeler and Steinhorst, and 
for Abrahamson, it seems that helping students construct secondary intuitions to complement 
primary intuitions regarding independence may be a powerful instructional approach. 

On the other hand, Ollerton (2015) found that although undergraduate students have an 
intuitive understanding of independence, they struggle to conceptualize independence in a 
mathematically appropriate manner. Thus, it remains to be seen to what extent students’ 
intuitions of probabilistic independence are beneficial in a mathematical context. Therefore, the 
purpose of this qualitative research study is to construct a more comprehensive understanding of 
how undergraduate students conceptualize both conditional probability and probabilistic 
independence, including how students use intuition to understand probabilistic independence.  

Theoretical Framework 
APOS theory (Dubinsky, 1991) utilizes reflective abstraction as the mechanism for learning 

mathematics, and specifically delineates the process by which individuals mentally construct 
mathematical schemas by progressing through action (A), process (P), and object (O) 
conceptions of mathematical concepts. These progressions ultimately formulate a schema (S), 
which is a “person’s own cognitive framework which connects in some way all of the ideas that 
the individual either consciously or subconsciously views as related to the piece of mathematics” 
(Mathews & Clark, 2003, p. 3). 

An action conception is the most rudimentary, in that mathematical tasks are completely 
external (Mathews & Clark, 2003); therefore, it is necessary for the student to carry out the 
actions of solving. Once an individual has interiorized the mathematical actions, they are able to 
act with a process conception (Dubinsky, 1991), enabling the individual to perform processes 
internally and to “reflect on, describe, or even reverse the steps of transformation” (Mathews & 
Clark, 2003, p. 2). As one’s mental constructions become more powerful, processes can be 
encapsulated into objects (Arnon et al., 2014), which are static entities in and of themselves to 
which actions can be applied (Arnon et al., 2014). Ultimately, a schema conception, or a 
collection of thematized mathematical objects (Mathews & Clark, 2003), is the most powerful, 
and allows for the coordination of objects either within or between mathematical concepts. 

Probability and Independence 
The following is a preliminary genetic decomposition (Arnon et al., 2014) used to facilitate 

the analysis of students’ reasoning. Within APOS, students operating with an action conception 
of probability are likely to calculate probabilities by applying a formula, or by relying upon 
physical manipulatives or a drawn sample space. As a process, students are able to anticipate the 
result of a probability problem without physical manipulations, and can therefore compare and 
reverse probabilities without actions. Once probability is encapsulated into an object, students 
are able to conceptualize compound and conditional probabilities because simple probability is 
now a static entity that can be combined (compound) and nested (conditional). As a schema, 
students can coordinate encapsulated objects within probability, including coordinating multiple 
representations of compound and conditional probability. 

Probabilistic independence is a component of probability, and thus, its construction will be 
linked with that of probability (Tarr & Jones, 1997). With an action conception of probability 
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and independence, determining independence will be reliant upon a formula with no justification 
of its use. Anticipation of the results of probability, indicative of a process conception, may 
allow students to develop an intuition for independence, without explicit calculations. As 
probability is encapsulated into an object, students begin to conceptualize conditional 
probability, which facilitates reasoning with regard to the definition of probabilistic 
independence. Finally, as a schema, multiple representations of probability and independence 
can be coordinated; this includes contingency tables, formulas, and definitions, to name a few. 

Methods and Analysis 
The participants in this qualitative study include three undergraduate students at a large, 

research university in the southeastern United States. The participants were recruited because 
they were at least 18 years of age and had taken a probability course. All participants were 
individually interviewed once, for approximately 40 minutes, and were assigned a pseudonym. 
Interviews were video recorded for the purposes of retrospective analysis. During the interview, 
each student completed nine questions meant to elicit their understandings of conditional 
probability and probabilistic independence. Questions six and seven are adapted from Manage 
and Scariano (2010; Appendix A) and question nine is from the research of Tversky and 
Kahneman (1980; Appendix A). Additional questions are described in the results section.  

The data were analyzed using APOS theory. Accordingly, students’ responses to each task 
were compared to the preliminary genetic decomposition described above. Note that it is possible 
for responses of students who have constructed more sophisticated conceptions of a 
mathematical concept to align with the reasoning of a less sophisticated conception. However, 
students with a less sophisticated conception cannot act in a manner consistent with a more 
sophisticated conception. For example, a student with an object conception of independence may 
write out all of the steps to completing a task because they believe they are supposed to show 
work. To an observer, this may seem to indicate independence is external, or an action, for the 
student; however, it is not a counter-indication of a process or an object conception. Conversely, 
a student with only an action conception cannot act in a manner consistent with an object. Thus, 
student responses throughout the interview were taken as a whole, and the most sophisticated 
conception of probability and independence observed was attributed to the student. 

Results 
John 

The first participant, John, was a sophomore electrical engineering major who had completed 
a probability course in the previous semester. When asked to find the probability of rolling a six 
on a six-sided die given the result is even, John answered two related, albeit incorrect, 
probability problems: What is the probability of rolling a six? And, what is the probability of 
rolling an even? With some prompting he realized “Ohhh, oh, oh. Given that it’s even.” On its 
own, this could be interpreted as a misunderstanding, however, John treated conditional 
probability problems as two related problems, instead of as one problem with a conditioning 
event, three out of four times throughout the interview. In question nine he went as far as to say, 
“So this is, like, two parts.” I interpret these responses as John’s inability to recognize the need to 
adjust the sample space of the problem as a result of the conditioning event; and therefore 
interpret this an indicator that John has not encapsulated probability into an object because he 
does not nest two probabilities. 

In the instances when John did solve conditional probability problems correctly, he relied 
heavily on a formula. On one question in particular, he applied a formula for conditional 
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probability and when asked to justify its use, said, “so you find (laughs)… I don’t know how to 
explain this… it’s just…” An explanation never followed. Later, in response to question nine, 
John tried to find a relationship between the formulas he had inappropriately applied and the 
contingency table provided in the problem. He explained: 

I’m thinking this is definitely true (points to his written formula), but I’m thinking maybe 
some of those (pointing to numbers in the contingency table) could actually give me the 
answer. … doesn’t (as he checks one number in the contingency table against his formula), 
doesn’t (checks a second number), doesn’t (checks a third). No, it doesn’t. 

John’s conclusion is that the numbers in the contingency table were unrelated to the formula.  
This speaks to his inability to conceive of the relationship between the two events within the 
task, which is a counter-indication of constructing an object conception of probability and 
independence because he does not justify the nesting of two probabilities. This is also a counter-
indication of a schema conception because he does not relate multiple representations of 
conditional probability. 

Although John relied heavily on formulas to reason about conditional probability, when 
reasoning about independence, he used formulas to justify his responses, not the other way 
around. In a question about the probability of being dealt two different sets of cards, he indicated 
that all cards dealt were independent of one another, and later used calculations to explain this. 
John went as far as to say, “just by intuition, they’re the same,” meaning the two hands are 
equally likely to be dealt. What John termed intuition, I consider to be his anticipation of the 
result, and therefore, evidence of at least a process conception of probability and independence. 
An area in which John continued to struggle with respect to independence was when two events 
were occurring simultaneously. In question seven, events C and D occur on a single roll of one 
die. John intuited these to be dependent events (incorrect), however, in justifying this response 
with a formula, he found them to be independent (correct). This was the only question regarding 
independence on which John’s intuition led him astray. This was also the only question in which 
one event could not be interpreted to occur before the other event. Ultimately, John explained, “I 
believe in the formula. The results of the formula, they can’t be false. … [but] if you just read it, 
not thinking about the formula, it would seem like they’re kind of dependent.” In this situation 
John struggled to discern independence from dependence as a seeming result of temporal 
reasoning; this limitation indicates that John has not coordinated conditional probability with 
independence in situations involving simultaneous events. 

I attribute to John a process conception of probability and independence; that is to say, he has 
not yet encapsulated probability into an object upon which he can perform actions. John was able 
to apply formulas for probabilistic independence as a justification for his reasoning, not as a 
substitution for his reasoning. This is evidence of a process conception. However, John did not 
consistently adjust the sample space to account for the nesting of probabilities in conditional 
probability problems, which is a counter-indication of him having constructed an object 
conception. Furthermore, he did not demonstrate an understanding of the relationships between 
contingency tables and conditional probability, nor could he coordinate conditional probability 
with independence when events occurred simultaneously. These limitations are counter-
indications of John having constructed a schema conception of probability and independence.  
Dan 

The second participant, Dan, was also a sophomore electrical engineering major, and was in 
the final three weeks of his probability course. In all conditional probability questions, Dan 
immediately recognized the need to adjust the sample space to account for the conditioning 
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event. When asked to find the probability of rolling a six given the result is even, Dan explained, 
“If it’s even it’s going to be one-third because there’s one possibility and there are three times it 
can be even – two, four, six. You want it to be six, so the number is one over three.” This cogent 
justification implies that for Dan the probabilities of rolling a six and rolling an even are static 
objects that he acts upon by nesting them; this indicates at least an object conception of 
probability and independence. 

He also coordinated his understanding of conditional probability with contingency tables. In 
question nine, for instance, he visually demonstrated this apparent coordination when he circled 
one column on the contingency table and said, “So it’s gonna be this right there.” He proceeded 
to verbalize the relationship between the table and the formula for conditional probability. This is 
evidence that Dan has constructed a schema conception of probability because of the 
coordination between multiple representations within the mathematical concept.  
With regard to probabilistic independence, Dan relied upon his intuitions to anticipate the results 
of events within a set without performing calculations. In response to question six, he said, “I 
mean, there’s only three possible outcomes. I’m just thinking about it … so that’s the same for 
all of these … they can’t be independent.” When asked if he was comparing the probabilities of 
each event occurring, Dan repeated that he was “just thinking about it.” This is evidence of his 
use of intuition, rather than mental calculations, which reinforces the indication of at least a 
process conception of probability and independence. 

Dan’s anticipation of probabilistic independence failed him, however, when responding to 
question seven. His intuition led him to believe that the simultaneous events occurring on a 
single die should be dependent, but upon calculation, he determined them to be independent. 
Reflecting on his calculations, he said, “It doesn’t make sense. I’m just trying to picture this as a 
single event. It’s not like you’re saying this happened after the other event. … I just feel like it 
shouldn’t be independent because they’re happening at the same time.” Dan spent several 
minutes trying to think of and explain other situations of independence as a means of eliminating 
his cognitive conflict, but was unsuccessful; he remained perturbed by the idea of independent 
events resulting from the roll of a single die. This is evidence of Dan not having coordinated 
objects of independence and probability in the case of simultaneous events, which is a limitation 
of his conception, and a counter-indication of him having thematized these objects into a schema. 
Considering probability tasks alone, it is possible to attribute to Dan a schema conception. 
However, when considering in tandem his reasoning with regard to probabilistic independence, it 
seems inappropriate to attribute to him the same conception. Based on this evidence, it is 
appropriate to attribute to Dan at least an object conception of probability and independence.  
Aaron 

The third student, Aaron, was a sophomore mathematics and economics major; he had 
completed AP Statistics in high school and received college credit for the course. Aaron 
calculated conditional probabilities correctly on all appropriate tasks, and did so largely 
mentally. In each of these questions he adjusted the sample space correctly in response to the 
conditioning event. In question nine, for instance, he explained that the sample space was 
changing from 1,000 taxis to 290 taxis by saying, “You add up how many times he actually says 
blue, which is the 290, and then of those times it’s actually blue only 120. … That’s (points to 
120/290) the probability that the cab is blue given that he said blue.” This excerpt exemplifies 
Aaron’s ability to operate on one probability nested within another. When asked to explain his 
response to question nine, Aaron also constructed a tree diagram, and stated it was better 
organized than the table. He also clarified, “This is just what the table was telling me.” As a 
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whole, this is evidence that Aaron can coordinate formulas, contingency tables, and tree 
diagrams in reasoning about conditional probability. 

In response to an independence task in which a set of people’s behaviors and socio-economic 
statuses were given in a contingency table, Aaron calculated P(A|B) in determining whether 
event A depends on event B. When asked a follow-up probe (is event B dependent upon event 
A), he said “Maybe that’s something where it’s always if it goes one way [A depends on B] then 
it goes the other [B depends on A]. No, that isn’t right.” When asked how he arrived at this 
conclusion, he did not describe performing any calculations; instead, he described reasoning that 
P(A|B) is not equivalent to P(B|A), which is evidence of using a mental structure to anticipate the 
results of conditional probability. Aaron’s ability to fluently solve conditional probability 
problems, to compare and reverse the conditioning events, and to reason using multiple 
representations, are all indicators of at least an object conception of probability. Moreover, his 
ability to compare and reverse conditioning events indicates he is likely operating on 
probabilities as static entities in their own right; for this reason, it seems likely that Aaron has 
constructed a schema conception of probability. 

To further examine the schema attribution, it is important to consider his means of operating 
with regard to probabilistic independence. Aaron began the interview by explaining that 
probabilistic independence “means that the knowledge of one of them [events] happening 
shouldn’t affect the likelihood of the other one happening.” His metaphor of “dependence as 
knowing” was recurrent; I interpret his use of this metaphor as a mental structure that Aaron 
engaged to anticipate the independence of events. He used this metaphor again in question six: 
“you know that if you win, you don’t lose and so the information of winning would help you 
figure out whether or not you lose. … they are dependent.” Here, his metaphor of dependence as 
knowing includes the idea that “information” about winning provides knowledge, and therefore, 
implies dependence. Aaron’s metaphor of dependence as knowing facilitates the coordination of 
independence with conditional probability, as demonstrated on question seven: 

If you know you rolled C [1 or 3], it doesn’t actually help me know how likely it is that you 
rolled D [1 or 4], it just lets me know that it’s more likely that you rolled a one… that means 
these would be independent… And then it goes the other way. If I knew about event D I 
wouldn’t know any more about event C happening. 

Aaron reasons about independence by explaining that knowing event C occurred doesn’t give 
him more knowledge about whether event D occurred. Aaron does not struggle with the idea of 
events C and D occurring simultaneously because he coordinates conditional probability with 
probabilistic independence by applying his metaphor; this is evidence of a schema conception. 

Discussion 
John, Dan, and Aaron demonstrated different levels of reasoning; John’s being consistent 

with a process, Dan’s with at least an object, and Aaron’s with a schema. A major difference 
between John’s and Dan’s conceptions is that Dan had encapsulated probability into an object 
upon which he could act, making it possible for him to appropriately interpret conditional 
probability. Dan understands the conditioning event to require an adjustment of the sample 
space, and justifies the use of probability formulas in his reasoning. John could not nest 
probabilities. Fischbein and Gazit (1984) found that difficulty reconstructing sample space in 
conditional probability is widespread, and this was experienced by John. Fischbein and Gazit’s 
findings may be explained through the lens of APOS, as it appears that students must objectify 
probability to appropriately reconstruct sample space. This is an area for future research. 
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The main difference between Dan’s and Aaron’s reasoning was regarding independence. 
Aaron was able to coordinate probabilistic events as static entities and act upon these events to 
determine independence regardless of a temporal connection. The task on which this difference 
was the most apparent was task seven, in which two dice are rolled simultaneously. On this task, 
Dan’s object conception did not allow him to coordinate multiple objects (probabilities) 
occurring simultaneously, whereas Aaron’s schema conception did. It is possible that Dan was 
relying on primary intuitions (Fischbein, 1987) in this situation, whereas Aaron had constructed 
secondary intuitions that allowed him to intuit results in the situation of simultaneously occurring 
events. However, the role of simultaneously occurring events in students’ constructions of 
independence requires further empirical consideration; specifically, why this difficulty limits 
students’ coordinations of probability and independence, and how a perturbation, such as Dan’s, 
can be exploited in instruction to engender the construction of more sophisticated conceptions. 
Abrahamson (2014) indicates that probability instruction should link students’ intuitions to 
analytic reasoning and empirical activities with regard to probability. Perhaps by helping 
students construct these links, they will be engendered to construct secondary intuitions to 
supplement their primary intuitions; without secondary intuitions, it seems as though students 
may be restricted to thinking about independence as reliant upon time.  

Interestingly, Aaron had the most sophisticated conception of probability and independence 
among this group of students, and was the only student to rely on a metaphor for determining 
probabilistic independence. Sfard (1994) argues that “reification is, in fact, the birth of a 
metaphor which brings a mathematical object into existence and thereby deepens our 
understanding” (p. 54). With this understanding, it stands to reason that Aaron’s metaphor of 
dependence as knowing was born out of his thematization of probability and independence into a 
schema, thereby allowing him to more meaningfully intuit independence. Aaron’s use of 
metaphor was an unexpected result in this research study, and it remains to be seen whether 
reasoning with metaphor with regard to probabilistic independence advantages students’ 
reasoning in some way over the intuitive reasoning engaged by the other two students.  

Conclusions 
As is frequently noted in the literature, students’ abilities to determine the independence of 

probabilistic events is problematic. Although these undergraduates were all STEM majors with 
formal instruction in probability and independence, each demonstrated a different conception. 
With a process conception, John was significantly limited; moreover, his intuitions regarding 
independence were primary (Fischbein, 1987). Similarly, Dan relied on primary intuitions in the 
situation of simultaneous events. Although Dan had constructed at least an object conception of 
probability, he had not constructed secondary intuitions regarding independence involving 
simultaneous events. John’s and Dan’s intuitions advantaged their reasoning in different ways, 
demonstrating that not all intuitions are equally beneficial. Future research should examine the 
conception of probability and independence that supports students’ constructions of secondary 
intuitions, specifically with regard to temporal reasoning.  

The preliminary genetic decomposition utilized in this research is preliminary in that it 
requires refinement, and the varying reasoning of these students can direct these revisions. First, 
intuition was included as an indicator for the construction of a mental structure for independence, 
and thus, a process. While this was appropriate for John, Dan’s intuitions were more 
sophisticated. As a result, intuition needs to be more thoroughly examined within the APOS 
framework. Furthermore, these results indicate that even primary intuitions can be beneficial to 
students’ reasoning, which supports leveraging students’ intuitions in instruction. By capitalizing 
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on primary intuitions, perhaps researchers can identify the mental constructs that support the 
construction of secondary intuitions and schemas, and instructors can begin to engender these 
constructions in their classrooms. 
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Appendix A 
6) Assume a competitive game can end for team A in a win (P(win) = 0.4), loss (P(loss) = 0.5), or tie (P(tie) = 0.1). 
Are these events pairwise independent or dependent?  
7) Roll a single, fair, four-sided die once and observe its upper face. Define two events: “C: Rolling either a 1 or a 
3” and “D: Rolling either a 1 or a 4.” Are these events independent or dependent? 
9) A cab was involved in a hit and run accident at night. There are two cab companies that operate in the city, a Blue 
Cab company and a Green Cab company. It is known that 85% of the cabs in the city are Green and 15% are Blue. 
A witness at the scene identified the cab involved in the accident as a Blue cab. The witness was tested under similar 
visibility conditions and made the correct color identification in 80% of the trial instances. What is the probability 
that the cab involved in the accident was a Blue Cab rather than a Green one?  
*note that a contingency table was also provided to participants for question 9. 
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This paper describes work to integrate statistics and data modeling deeply into weekly routines 
of classroom instruction, and to use data modeling practices to support positive interdependence 
at small-group and whole-class levels. This research pursued a local problem of practice 
identified by a collaborating teacher: how to promote her students’ individual and collective 
agency in respect to their achievement. Our hypothesis was that designing, creating, 
interpreting, and revisiting anonymized data representations of aggregated assessment 
information could offer a context for classroom groups to formulate, guide, and monitor various 
efforts to improve. Here, we report preliminary findings from work to foster relations among 
data, representations, conceptual structures, and collective agency in these classes. We also 
discuss implications of these early findings for researchers in data science education. 

Keywords: Data Modeling, Positive Interdependence, Classroom Assessment, Representations 

How can students in mathematics classes develop a culture of positive interdependence? 
Although research has shown that shared action and responsibility in classrooms can be powerful 
in supporting students to learn (Deutsch, 1962; Johnson & Johnson, 1989), we also know that 
mathematics classes create individualism and competition (Johnson & Johnson, 1999). Here we 
explore how learners’ creation, negotiation, and use of aggregate representations of classroom 
assessment data can drive effective individual and collective action to improve their learning.  
This follows a line of work that leverages student-generated mathematical objects in aggregate 
representations to support participation in discourse and reasoning within the classroom 
community (Wilensky & Stroup, 1999; Abrahamson & Wilensky, 2004; Brady, White, Davis & 
Hegedus, 2013). We seek to build more visible relations between the social structures in the 
classroom that support or undermine positive interdependence and the conceptual structures that 
underpin the data generated by assessment tools during regular classroom routines. Relations 
among students’ collective and individual perceptions as learners are deeply connected to the 
ways their learning is measured and represented, and how these data are used for interpretation. 
Yet we know that there are significant conceptual barriers for students when reasoning about 
data in aggregate. For example, students need deliberate support to move from case-based 
thinking about data to seeing aggregate “collective” data shape (Petrosino, Lehrer & Schauble, 
2003). With this research in mind, we sought to capitalize on these strategies as resources for 
collective learning. In this paper we describe initial findings about design conjectures guiding 
our work, and identify opportunities that we are discovering and refining in ongoing work to map 
the mathematical structures behind assessment data and social structures in the class onto one 
another to promote interpretive discussion (cf., Stroup, Ares, & Hurford, 2005). Given the 
importance in data science of flexibly connecting information and interpretations about 
individuals and aggregates, we believe such tools are particularly powerful here.  
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Study Design and Data Collection 
The data for this analysis have been generated in an ongoing year-long design-based research 

study (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) conducted in collaboration with a 6th 
grade teacher in a racially and economically diverse urban public school in the Southeastern US. 
This teacher had been participating in a larger professional development project to improve 
middle-grades statistics instruction, and this study emerged to address a problem of practice that 
she identified: supporting her students in making sense of weekly quiz data. This teacher has 
been teaching for less than 5 years with a master’s degree in education, and she is highly 
motivated with a strong commitment to supporting her students. Our collaboration has led us to 
focus on designing tools and routines to help students (a) see their grades as products of a 
coherent system; and (b) better navigate data aggregations at multiple levels: responses to quiz 
questions, individual quiz scores, individual report card scores, classroom aggregates of quiz 
scores, and classroom aggregates of quiz item responses.  

We collected data from each of this teacher’s three classes. The school has labeled two of the 
classes as regular 6th grade math classes and one as advanced. Many of the students in the 
classes had historically experienced little success in school mathematics, but the teacher is 
committed to supporting them to experience success in her class. The school’s assessment 
routine requires students to evaluate assessment scores weekly, to create learning plans to 
improve, and then to “re-take” comparable assessments.  

Over the Fall, we integrated ourselves into the classroom community, with the goal of 
becoming familiar resources for the students and getting to know the culture and rhythms of the 
three classes. We participated in class on Mondays as students examined quiz and discussed the 
instructional “map” for the week. After becoming integrated into regular classroom activity, we 
began collecting written student artifacts and video records of classroom conversations about 
assessment scores on each Monday. We recorded conversations with one stationary camera at the 
back of the room. We qualitatively analyzed classroom videos of conversations with an eye 
toward students using data representations to make inferences about their learning, or about the 
mechanisms that created the assessment data. We also looked for ways students coordinated 
different representations of data aggregations with social formations of collective responsibility. 

Results 
This work is ongoing design research. As such, some of our most valuable research products 

are the evolving conjectures we are iteratively testing and refining (c.f. Sandoval, 2014) and the 
tools and routines that we are developing, implementing, and refining as we build a theory of the 
activity we are working to support. Here we describe some of these conjectures and tools. 
Our early work in this classroom highlighted that most students were unfamiliar with the 
mathematics underlying their grades (e.g. averaging), and in the face of an inscrutable process of 
converting quiz and other grades to a report-card grade, many substituted morally-charged 
explanations for these grades. These explanations often implied self-critiques, such as not having 
studying hard enough or not doing their homework well. However, these critiques did not appear 
to be concretely actionable, and learners were unable to take small steps to improve. 
Conjectures: Challenges in Reasoning about Aggregate Data and Collective Activity 

Our aim in supporting reasoning about classroom assessment data has been to foster concrete 
actions that build (and build on) connections between individuals and aggregates in both the 
mathematical and social spheres. Below is a list of current conjectures guiding our design: (1) 
Connecting individual and aggregate levels, and related changes in those levels, would be 
challenging in both mathematical and social dimensions, and creating representations that 
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support students to link these domains would support fruitful analogous reasoning across the 
mathematical and social. (2) Exhortations to make visible changes to aggregate quiz data would 
spur reasoning about concrete social actions that could be taken at the whole-class level. (3) 
Seeing changes in aggregate data representations could support a social interpretation as 
feedback about success in collective action, and data representations would increasingly become 
tools to motivate, guide, and refine social action over time. (4) Shared experiences of success 
would promote a sense of individual and collective agency and responsibility, extending beyond 
the narrow bounds of quizzes to the broad enterprise of classroom learning. 
Tools: Supporting Varieties of Reflection and Analysis 

In supporting students reasoning about actions to change performance on quizzes we have 
developed two broad forms of data representation. The first is closely related to a standard “dot” 
plot: it built upon the students’ early efforts to order and structure data captured on square post-it 
notes and arranged on the class whiteboard during interpretive discussion. This tool has been 
useful for promoting students’ ability to read data displays, reason about distributions and 
clumping, and argue for “summative” measures to answer the question “Did we improve?”  For 
instance, proposals for evidence of improvement included: Fewer 0s; More 100s; More people 
above the pass/fail cut score of 70; More people going up than down, and so forth. In addition, 
the use of Tinkerplots provided opportunities to trace changes in data across linked 
representations. For example, students traced those that scored “0” in the quiz to observe their 
score on the retake as potential site for evidence about collective improvement. On the other 
hand, large numbers of absences complicated not only claims about individual improvement but 
also inferences and claims at the class level, a subtle and group-worthy data modeling topic. 

 

 
Figure 1. Post-It Inspired Dot Plot displays for a quiz (left) and a retake (right).  

However, there have also been limitations to the discussions supported by the dot plot 
representations. Although we wanted to foster discussions about concrete actions that the group 
could take to improve, students often left these conversation with morally charged interpretations 
that were similar to our initial observations. Thus, we developed a second tool, supporting 
students in disaggregating quiz scores into item level data, and then aggregating that item level 
data to the class level in a non-standard representation that we have named DIGI/WIGI (“Did I 
Get It/Why I Got (or didn’t get) It”). Students record their score on each (dichotomous) item on 
the quiz, and then describe the mathematical knowledge they used (for correct answers) or would 
need to have (for incorrect ones). Students have used DIGI aggregations (see Fig 2) to explore 
counts (which detected data-entry errors), assess relative item difficulty, and identify 
mathematical gaps for the class to work on together. Our use of this form suggests it can help to 
shift the focus of conversations from only student quiz scores to include comparative group-level 
performance on items. We have seen preliminary evidence that this shift may support more 
meaningful and concrete interpretations of assessment data. 
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Figure 2. Aggregation of DIGI data for a 5-question quiz.  

Discussion 
Data science education can help us understand how to apprentice learners in creatively 

making sense of themselves and phenomena in the wide, information-saturated world (e.g. 
Lehrer & Schauble, 2002; Taylor & Hall, 2013). Nonetheless, it is important for this emerging 
field also to attend to quotidian activities and data systems that significantly impact students’ 
identities, learning opportunities, and lived experiences. In this paper, we illustrate the rich 
learning opportunities afforded by mundane but periodic, small-scale classroom assessment data. 
The meanings students generate from data are constructed in relation to local goals, routines, and 
conceptual systems. We are exploring how learners’ individual and collective relations to 
classroom assessment data can support them in flexibly constructing meaning with 
representations. Reciprocally, we are exploring how building interpretations about aggregate data 
representations can drive individual and collective action to effect improvements detectable by 
those representations. Although weekly quizzes may seem prosaic, we are finding evidence that 
students can become empowered to operate more critically, intentionally, and effectively as 
individuals and groups in this familiar but consequential context.  
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CONSTRUCTING INFORMAL VOCABULARY: A MIDDLE-SCHOOLER’S PATH TO 
PROBABILISTIC REASONING 
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Our research investigates the probabilistic reasoning of middle-school students making sense of 
sample space, distribution, and long-run likelihood. Eight students participating in a 3-week 
summer class on probability participated in games and activities that focused on concepts from 
the Common Core State Standards for grades 6-8. These activities utilized both concrete and 
simulated environments. Through engagement with the games and activities, we captured seeds 
of probabilistic reasoning that emerged with one student in particular, Evan, and took note of 
the vocabulary he and the class created to make sense of seemingly paradoxical situations. 
Implications for instruction on probability are briefly discussed. 

Keywords: Probability, Interactive Simulations, Distribution, Sample Space 

The Common Core State Standards have called for instructional emphases in probability and 
statistics in the wake of a data-driven society (National Governors Association Center for Best 
Practices, Council of Chief State School Officers [NGA & CCSSO], 2010). However, 
probability has proved notoriously difficult to teach, due in part to its varying colloquial uses as 
both something subjectively felt and something objectively calculated (Batanero, Chernoff, 
Engle, Lee, & Sánchez, 2016). Conflation is furthered through the term “randomness” due to 
nuanced distinctions in its use in statistics, mathematics, and everyday life (e.g., random 
sampling, random variable, randomly occurring) (Jones, 2006). The integration of probability in 
the middle-grades standards puts a considerable burden on teachers who report low self-efficacy 
for teaching probability and statistics (Chernoff & Zazkis, 2011; Lovett & Lee, 2017). 

This report examines middle-school students’ experiences grappling with probabilistic 
concepts, highlighting how one student’s reasoning emerged. We discuss the role of interactive 
simulations in his development of probabilistic reasoning and the class’ use of vocabulary to 
name these nuanced distinctions of probability and randomness. Our results also offer insight for 
instruction and the importance of student construction of vocabulary. 

Conceptual Framework 
This report investigates what role students’ informal vocabulary played in developing greater 

understanding of probabilistic concepts. We use probabilistic reasoning as a lens for recognizing 
how these spaces connect. Savard (2014) states that probabilistic reasoning involves considering 
both variability and randomness. Variability is a consideration of what is possible by considering 
an outcome in terms of a distribution and a sense of how those results should manifest over the 
long-run. Randomness involves conceiving probability as non-deterministic, meaning we cannot 
ascribe certainty to outcomes. We view students’ grappling with variability and randomness as 
the basis for probabilistic reasoning and an avenue for making sense of unfamiliar situations. 

We emphasize a constructivist perspective on students’ development of probabilistic 
reasoning that seeks to identify the ways students orient themselves to probabilistic situations 
and draw on their own experiences to make sense of these phenomena. The literature notes the 
seemingly paradoxical nature of many probabilistic situations (e.g., Batanero et al., 2016). For 
that reason, we are wary to assess students’ progression of learning on this topic in terms of 
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adopting and articulating rule-based responses. Rather, we keep in mind considerations offered 
by Chernoff and Zazkis (2011), who define a desirable pedagogical approach as “one that uses 
the learner’s ideas as a starting point” (p. 19). Our methodology and analysis kept this point 
central as we sought to identify what students were bringing to this topic rather than their take-up 
of certain instructional ideas. We ask: How do middle-school students’ use of vocabulary help 
them reason probabilistically about sample space, distribution, and long-run likelihood? 

Methodology 
Setting  

This work stems from a research project studying students and teachers’ use of PhET 
interactive simulations (sims) in middle-school mathematics (https://phet.colorado.edu/). The 
original intent of this summer class was to test drive elements from a two-week probability 
sequence that the research team had created for 7th grade involving the PhET sim “Plinko 
Probability.” An instructional sequence was created prior to the summer class, with revisions 
being made after each lesson to adjust for students’ progress and pressing questions. Eight 
students who were rising 6-8th graders participated for at least half of the classes. The students 
were gender and ethnically diverse. Each class was co-taught by us (the authors), with each class 
taking place at a local library branch and lasting 90 minutes.  

Our findings focus on Evan, a rising 8th grader who reported “disliking” mathematics on an 
entrance questionnaire. We highlight Evan because he was present for more classes than any 
other student (11 out of 12) and elicited noteworthy probabilistic reasoning that did not often 
lead to correct conclusions. However, these episodes of reasoning were conceptually complex 
and led to important discussions that led to the creation of more refined vocabulary. 
Data Collection and Analysis 

Data sources include video recordings from each of the 12 classes, student work, including 
activity sheets and posters, student journals, and pre- and post-assessments. This preliminary 
report identifies examples of Evan’s probabilistic reasoning embedded in brief narratives that 
help explain activity elements that facilitated his reasoning. Because of the instructional setting, 
we were able to implement activities and learning opportunities that responded to students’ 
reasoning from day to day, allowing us to test explanations we were developing. Across the 
instructional sequence, students’ vocabulary emerged as central to facilitating opportunities for 
probabilistic reasoning. We report two sequences from the class, highlighting how Evan’s 
reasoning developed and made sense of class vocabulary when encountering new ideas.  

Findings 
Sloppy and Unsloppy Sample Spaces  

After two introductory days of ice-breakers, administrative details, and a fraction review, 
students spent the rest of the first week immersed in the probability of spinners. When reasoning 
about the probability of landing on a certain space with an equally spaced spinner, students were 
all comfortable using a how-many-out-of-how-many approach (e.g., there is a 3/8 probability of 
landing on a space with a star since 3 spaces out of 8 have stars). When the size of the spaces on 
the spinner were no longer equal, students initially tried to adapt the how-many-out-of-how-
many approach before recognizing that it was different. Students decided to describe this as a 
“sloppy” sample space, which they defined as a sample space with unequally likely outcomes. 
Figure 1 presents the poster that Evan’s group made to describe this situation. This designation 
of sample spaces was an important step in distinguishing how variability can be apportioned 
differently across sample spaces—a stepping stone into thinking about distributions. 
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Figure 1. Student Poster for “Sloppy” Sample Space 

Bountiful and Scarce Data 
When reasoning about the sample space of rolling one die, Evan and others quickly described 

this sample space as unsloppy, with each of the options 1-6 being equally likely. However, when 
we discussed the probabilities associated with the sum of rolling two dice, students were initially 
divided. Jada felt it would be unsloppy: “I think they’d still be equal, even if you have two of 
them, because the possible numbers would still be the same.” Evan claimed that the sum of two 
dice was a sloppy sample space: “To get a 5, you can get there a few different ways, but there’s 
only one way to get a 2.” Next, each group rolled a pair of dice 75 times, agreeing as a group that 
the sum of two dice appeared sloppy. Evan responded, “we didn’t even get a two…in order to be 
unsloppy, you need to get an even amount of each number.” The teacher then probed this idea: 
“If it wasn’t exactly even, what if I got like six 2’s, five 3’s, five 4’s, eight 5’s, four 6’s, like if it 
was just a little bit bumpy, would that be okay?” Evan said no, adding that “Unsloppy’s perfect.”  

We followed up on this question of perfectly even by asking the class what they thought 
would happen if we threw just one die 75 times and recorded results. Evan changed his mind, 
now believing this might also be sloppy. After recording our results, the distribution was quite 
bumpy, with considerably more 5’s than any other value. Students posed several ideas, claiming 
that the dice were either rigged, unreliable, or actually more likely to land on certain sides due to 
the distribution of dots. Evan viewed this as evidence for a sloppy sample space. We gathered 75 
more rolls and continued to find bumpy results, further reinforcing students’ notions that the 
sample space was quite sloppy. When the teacher reminded students that they had all agreed the 
theoretical probability was 1/6, Evan posed the idea that we could think of there being a 
theoretical sample space and an experimental sample space that could be considered together.  

We want to highlight Evan’s reasoning here because at one level, it could be easily dismissed 
as incorrect, but at another, it is quite complex and resonant with Bayesian approaches (Chib, 
Clyde, Woodworth, & Zaslavsky, 2003). Evan was cognizant of a theoretical (prior) distribution, 
while also being responsive to experimental results. The next day, we wrestled with how to 
balance these two notions. We began with a presentation about sloppy and unsloppy, but we 
introduced a new idea that emerged: having few results and tons of results (i.e., an experimental 
and theoretical distribution). Using online dice simulations, we revealed a more complete picture 
of rolling one and two dice many times. Evan used “bountiful” to describe when lots of data was 
collected, with “scarce” describing when only a few results were collected. This vocabulary 
helped Evan and others consider underlying variability in tandem with randomness as a factor.  
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Discussion 
Our findings highlight two layers of vocabulary that, together, helped students make sense of 

rather complex notions involved in reasoning about probability. These vocabulary layers assisted 
students as we ventured into the last segment of the course, long-run likelihoods. Using both a 
coin-flipping game (involving making left and right turns based on the flip) and Plinko 
Probability, students were able to connect their vocabulary from the dice activities with new 
situations to conceive of both an underlying theoretical distribution and the randomness of 
experimental outcomes. Figure 2 displays how students were able to make sense of balls 
bouncing down the plinko peg-board based on theoretical probabilities, but could also explain 
why only running a handful of balls down the board resulted in clumpy results using the 
bountiful/scarce language. This combination of vocabulary layers led to productive probabilistic 
reasoning by attending to both distribution and randomness in the data. There are instructional 
implications from these findings, including the importance of leaving room for student ideas and 
names, even when these names are not officially in the curriculum. We hope to explore these 
ideas further by implementing an updated instructional sequence in a 7th grade classroom. 
 

 
Figure 2. Reconciling Distribution and Randomness through Path Likelihoods 
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INTERPRETATION LEVELS OF FREQUENCY GRAPHS BY KINDERGARTEN 
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We hereby present an exploration about graphs interpretation by students who are becoming 
kindergarten teachers. We also pretend to identify the notions which have about representative 
value from a data set. In this study there were 91 future kindergarten teachers participating to 
whom some information represented through a frequency graph was presented for them in order 
to answer a set of questions. The analysis shows the levels of interpretation of the participants, it 
is perceived that most of the teachers gather explicit information from the graph. However, they 
present some difficulties to integrate and combine data in order to make appropriate 
interpretations. The results are a reference in order to design intervention proposals which can 
help in the future teachers in training and the ones in current service as well as to reduce the 
breaches in the statistics learning in kindergarten.  

Keywords: Data Analysis and Statistics, Teacher Knowledge. 

Introduction 
The interpretation of statistic graphs is an everyday activity which people do. Nowadays, 

most of the information is represented through graphs or tables so that when interpreting them, 
people can make decisions or just satisfy their curiosity about any topic of their interest. This has 
led into the necessity to train the future teachers so that they have the abilities and knowledge 
necessary about statistics and so, in that way they train the future citizens. In Mexico, the study 
of representation and interpretation of graphs is seen from the kindergarten level (see SEP, 2011, 
p. 57). This objective is part of the knowledge that a kindergarten teacher in training must 
acquire during his/her initial training (see SEP, 2012, pp. 20 and 22). Due to this, in this current 
research, we have the objective to identify the interpretation level of the future kindergarten 
teachers about frequency graphs as well as to explore their notions in relation with the 
representative value from a set of data.  

There are several studies which give relevant information about graphs interpretation by the 
basic education teacher. González, Espinel and Ailey (2011), Jacobbe and Horton (2010), 
Alacaci, Lewis, Brien and Jiang (2011) and Sanoja and Ortíz (2013) report that the difficulties 
which the teacher face when interpreting the graphs, sometimes, are the result of the lack of 
understanding of basic concepts in statistics (e.g. scale, origin, axis, variable, dependency, 
independency, scattering, among others). From this, the interest of some researchers has focused 
on the mathematical knowledge for interpreting graphs (e.g. Alacaci et al., 2011). For Ball, 
Lubienski and Mewborn (2001) the teacher must build a solid knowledge during his/her initial 
training so that he/she has the basis to teach mathematics, thus statistics. On the other side, 
Llinares (2013) considers that the future teacher has to re-learn the mathematics he/she already 
knows in order to build a specialized knowledge which lets him/her state and give meaning to the 
mathematics to be taught in the classroom. 

Conceptual Framework 
For the interpretation of statistical graphs, Curcio (1989) defines three levels: 1) Reading the 

data, copy or reproduce the information or the facts which are explicitly expressed in the graph 
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without going any further; 2) Reading between the data, combine and integrate data from the 
graph in order to obtain information, for example, by making comparisons or basic algorithms; 
3) Reading beyond the data, predict or infer non-directly expressed information in the graph. In 
terms of Ball, Thames and Phelps (2008), the first two levels make reference to basic knowledge 
(Common Content knowledge) to extract information or data from statistic graphs, and the last 
level is related to the specialized knowledge which involves statistic reasoning. 

Method 
In this study, 91 future kindergarten teachers in training from a Mexican public school 

participated. Their ages were from 18 to 21 years old. A questionnaire about four problems, 
which included frequency graphs and a set of questions related with these graphs, was 
implemented for each participant. It is important to mention that the problems were taken from 
scientific literature. In the current document, only the results of one of the problems are reported 
(see Figure 1). The analysis of the gathered information is of the descriptive type and it was 
made through coding (Birks & Mills 2011). For this, firstly, words or groups of words or phrases 
were identified which derived from the answers of the participants and then, they were 
categorized based on the levels of Curcio (1989).  

 

 
Figure 1.  Problem of lengths of cats, taken from Bright and Friel (1998). 

Results  
The levels of interpretation on which the participants, taking the answers to the problems as a 

reference, are exposed as follows. 

1. How many cats are 30 inches long from nose to tail? How can you tell? The answer to 
this question is the lowest level, Reading the data, and it was expected that the 
participants located the value of the variable corresponding to 30 inches and its 
frequency. This level was achieved by 90% of the participants. One example of the 
answers given was the following: “There are three cats with a length of 30 inches. 
Because in the bars graph it is shown that in the frequency of the inch number 30 is 3.” 
The rest of the participants made at least one mistake when reading the frequency in the 
Y axis of the graph. They based their answer on the idea that each bar represented a cat 
so they gave confusing answers or did not answer the question. 
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2. How many cats are there in all?  How can tell? In order to answer this question, the level 
Reading between the data was expected because it only required basic knowledge such as 
identifying the frequency in each bar and add them up. Only 67% of the participants 
achieved to give a correct answer and get into this level of interpretation. This is reflected 
on the answer which one of the participants gave: “There are 25 cats, because it is the 
total sum of the frequencies.” The answer to this question showed the difficulty for some 
of the teachers in training to read among the data. Such difficulty is related to making 
mistakes when counting or adding up the frequencies of the cats, interpreting each bar as 
a cat, not knowing how to determine that total as well as to give confusing answers or not 
answering at all. 

3. If you added up the lengths of the three shortest cats, what would the total of those 
lengths be? How can you tell? The answer involves the level Reading between the data, 
due to locating the minor values of the variables is enough. These were 16 and 25 inches, 
and their frequencies 1 and 2 respectively. Besides, they had to add those values up ( 
16 + 25 + 25 = 66 ). The future teachers associated the idea of small cat with the bars 
with the lowest frequency. 54% of them added up three bars of the lowest frequency. In 
some cases, they were three consecutive bars and in others, three bars chosen by any 
other criteria which is not clear. An example of this is the following: “16 + 27 + 32 =
75. Because the smallest cats have a measure of 16, 27 and 32 inches. Then 16 + 27 are 
43 + 32 are 75.” 25% answered correctly (66 inches). Other participants made mistakes 
adding up, gave confusing answers or stated not being able to determine the required 
value. In some cases, they just added up the values of the variable which corresponded to 
the cats with the smallest length without considering the frequency of the variable. 

4. What is the typical length of a cat from nose to tail? Explain your answer. The answer 
makes reference to Reading beyond the data. The notion which the future teachers handle 
of typical value matches with the one of average as mode (61.5%), as they took the mode 
to interpret a distribution and this is reflected when considering just as “the most” and not 
as a representative value (Mokros & Russell, 1995). An example of those answers is: “31 
– 33 inches because it is the number which is repeated most of the times.” Other teachers 
did not answer. They considered that the typical value matched with the frequency which 
was repeated the most (2), they mentioned the average, considered the median or did not 
show a clear answer. 

Conclusions 
The teachers in training are able to reading the data without difficulty but when requiring 

them to reading between the data, they show difficulty to infer or interpret the graph. In relation 
with the answers of the second and third questions, the participants backed up on their basic 
knowledge such as the algorithm of adding up or multiplying (this was a mistake), they made it 
evident in a lower number of answers corresponding to combine and integrate the data because it 
was difficult for them. As in the study of Bright and Friel (1998), where the participants were 
children from 11 to 14 years old, the difficulties from the teachers in training are recurrent such 
as interpreting each bar of the graph as the representation of a cat, or that the small cats were 
represented by the bars with lower frequency. As it was mentioned in the introduction, some 
authors consider that this type of difficulties appear because teachers do not have clear some of 
the basic concepts in statistics. The future teachers show confusion when determining the 
frequencies in the bar graphs and operating with them. Besides this, the interpretation of the 
variable together with its frequency can be a non-achieved task by any of them. Concerning the 
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approximations of the representative value, from a set of data, the average as mode is the one 
used the most, maybe 8% of the participants is close to the notion of average as a media point, as 
they consider the median to justify their answers. The results also show that a great percentage of 
teachers in training for kindergarten level have basic and specialized knowledge that allows them 
to literally read the graph or infer information from it. However, the need to reinforce this 
knowledge during their training is evident. Due to the exigency of the society and educational 
reforms which we live nowadays in Mexico, it is expected that the future teacher has wide 
knowledge (Jaworski, 2008), These results show that research focused on how the kindergarten 
teacher presents in the classroom the use and integration of the graphs is required and so to study 
the idea of arithmetic media as a representative value from a set of data.  
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WORKING ON THE EDGE OF MATHEMATICS, STATISTICS, AND BIOLOGY:  
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Historically, mathematics, statistics, and biology are courses taught in isolation. Yet, there are 
some tasks that invite students to combine these different types of knowledge. In this study, 10 
undergraduate biology students were asked to make a graph from a given set of data embedded 
in a biology context. Graphs were analyzed to identify features such as variables plotted, number 
of graphs created, and type of graph used to represent the information (e.g., scatter plot, line 
graph, or bar graph), and whether the graph showed an understanding of the purpose and 
features of the scenario. Participants made a variety of graphs. Graphing data was a task that 
invited them to combine knowledge from different disciplines. Looking forward to the field of 
mathematics education, graphing could be one activity that invites our community to interact 
with other disciplines, embrace our common practices and diverse ways of knowing. 

Keywords: Graphing, Biology, Statistics, Undergraduate, Interdisciplinary 

In mathematics classrooms, we usually ask students to make a graph to represent linear, 
quadratic, or exponential patterns. In these tasks, students usually identify the role of two given 
variables (i.e., independent and dependent variable), determine a couple of coordinates to then 
construct a graph. Meanwhile in statistics classrooms, students use graphs such as a line graph, 
bar graph, or scatterplot as a way to analyze patterns in the data. If students are given a set of 
data, it usually contains more than one variable and students have to explore and determine what 
relationship could be represented from the given set of data (Wild & Pfannkuch, 1999). While it 
is known that mathematics and statistics tasks have real-world contexts in common, in 
mathematics this could be optional, while in statistics, the context is an essential element of the 
situation (Scheaffer, 2006).  In other science fields, such as biology, one skill that students are 
expected to develop is the construction of graphs as part of the scientific process where they can 
use them to summarize data, which comprises evidence to support the validity of a hypothesis. 
One practice that is common across mathematics, statistics, and biology is understanding 
information that graphs convey in order to create an effective representation of data with which 
the graph creator and others can interpret and draw conclusions. For example, in biology, 
students might be asked to design experiments to evaluate the effectiveness of a treatment. In this 
context, students need to integrate different types of knowledge to create an appropriate graph of 
their data to discern patterns.  Knowledge about the biological system under study, so that they 
understand the context, limitations of measurement and study design, and properties of the 
measured variables. Knowledge about mathematics, to operate symbols and use a mathematical 
language to communicate with others. Knowledge about statistics, to explore data, acknowledge 
variation, and select an appropriate graph that allows them to communicate patterns in the data.  

In the construction and reading of graphs, adults and K-12 learners struggle at the time of 
conveying information and making interpretations from them. For example, Chick (2004) found 
that secondary school students’ graph choices were not always suitable and they did not used 
strategies that could have made their graphs clear. Working with a similar population, 
D’Ambrosio, Kastberg, McDermott, and Saada (2004) found that students had difficulties 
interpreting graphs. Specifically, students wrestled integrating the context and the mathematics 
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involved in graphs. Studying graphs created by adults, Tufte (1983) identified graphs published 
in magazines or periodicals that promoted misleading information for readers. In science fields 
such as biology, Angra and Gardner (2017) explored graph constructions of professors, 
undergraduate and graduate biology students. The authors found that in comparison to professors 
and graduate students, undergraduate biology students struggled deciding which data to select 
and represent, what type of graph to use, and aligning their graph construction decisions with the 
question and/or hypothesis under consideration.  

The difficulties learners face making and reading graphs could be seen as a lack of 
mathematics or statistics content preparation. However, we contend that it is not competence 
with the knowledge and skill in any one of the relevant disciplines, but that in order to 
successfully analyze, represent data, and communicate its patterns in biology contexts; students 
need a combination of all of these types of knowledge. We acknowledge that this task is 
challenging given that students are seldom given explicit instruction preparing them to combine 
knowledge from different disciplines. Therefore, in this study the authors built from Williams’ et 
al. (2016) concept of interdisciplinarity to explore graph construction as a task that involves 
working on the edge of three different disciplines: statistics, mathematics, and biology. 
Particularly, the authors explored the types of graphs biology undergraduate students constructed 
from a given set of data and discuss the mathematics, statistics, and biology knowledge used in 
their graphs’ construction.  

Methods and Analysis  
These data were collected as part of another study (Angra & Gardner, 2016, 2017) in which 

biology undergraduates, graduate students, and biology professors were engaged in a pen-and-
paper think-aloud graphing task. The data presented here are from a subset of the full data corpus 
and are comprised of data from 10 undergraduate biology students’ first graphs construction and 
their descriptions. There were two isomorphic biology scenarios assigned to the participants: two 
treatments, five time points, and three replicates within the context of plant growth and cell 
culture experiments. Participants were asked to graph any aspect of a given set of data. Figure 1 
shows data from the plant growth context.  
 

Plant leaves scenario 
Imagine you are a botanist. You are particularly intrigued by how the amount of water influences plant 
growth. In order to answer your question, you set up an experiment that measures the growth of a 
particular type of plant at two different water amounts. You collect your data and display it in a chart 
shown below. 

 Number of Leaves 
Time 

(Hours) 
15ml of water/day 5ml of water/day 

 Plant 1 Plant 2 Plant 3 Plant 1 Plant 2 Plant 3 
0 0 1 0 0 0 0 
30 2 1 3 0 1 1 
60 3 3 5 2 1 2 
90 4 3 5 2 1 3 

120 6 5 7 3 1 4 
 

Figure 1. Scenario and data given to the participants. 

In a first level of analysis, participants’ graphs were examined independently of their think-
aloud. The graphs were coded according to different characteristics. Variables plotted, number of 
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graphs created, type of graph used to represent the information (e.g., scatter plot, line graph, or 
bar graph), and whether the graph is aligned with the purpose and features of the study in the 
scenario (i.e. comparing growth over time in two treatment groups and the use of replicates 
within each treatment). In a second level of analysis, commonalities and differences among 
participants’ graphs were identified and organized along with participants’ verbal descriptions of 
their graphs during the think-aloud. The authors used Konold, Higgins, Russell, and Khalil’s 
(2015) framework as a way to describe their interpretations of participants’ views of data: 
aggregate, classifiers, case values, and pointers. 

Results and Discussion 
Four out of 10 participants drew a graph that showed a comparison of the two treatments (see 

Figure 2a)). In these cases, time was considered the independent variable, and the average of the 
results per plant, as the dependent variable. Three out of 10 participants graphed the results of 
each plant, or tube, per treatment using two separated graphs (see Figure 2b) and c)). In Figure 
2b) the participant was assigned a context related to cells culture and she drew two graphs. One 
graph representing the number of cells in the tubes exposed to the 10 degrees Celsius treatment, 
and the other graph for the 22 degrees Celsius treatment. Finally, three out of 10 participants 
represented the results of each plant under the two treatments. This approach generated three 
different graphs, one per plant (see Figure 2d)). 

 

Figure 2. Examples of participants’ graphs using Konold’s et al. (2015) language. 

When researchers looked at the participants’ background information, they learned that those 
with research experience created one graph that communicated a comparison of the two 
treatments. However, none of them explicitly acknowledged variability in their graph 
construction (e.g., using error bars). In relation to the type of graphs, six out of 10 participants 
used line graphs, 2 out of ten scatter graphs, and the rest bar graphs. The majority of the 

a) Aggregate (reduced) no variation, aligned b) Aggregate, raw data, misaligned 
 

 

 
c) Aggregate, raw data, aligned d) Case values, misunderstanding replicates, aligned 
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participants used time as the independent variable in the x-axis, and number of leaves, or cell, as 
the dependent variable. Participants’ reasoning for using time as the independent variable was 
based on understanding time as a continuous variable, which for them it meant to be placed in 
the x-axis.  

Students created a variety of graphs to represent the same set of data. However, the majority 
of them considered time as the independent variable. As shown in other studies (e.g., Chick, 
2004; D’Ambrosio et al., 2004) representing a given set of data in a graph was not a simple task 
for participants. Creating a clear graph that conveyed information about the results of the 
experiment was something that four out of ten participants successfully did (see Figure 2a)). Yet, 
statisticians would argue that those participants’ graphs with their descriptions lacked of 
explicitly acknowledging variability. 

The authors consider that those participants who created one graph that showed a comparison 
of the two treatments are examples of students combining biology, statistics, and mathematics 
knowledge. The need for a graph originated from the context of the task: exploring the results of 
an experiment where plants or cells where exposed to two different treatments. To compare both 
treatments, students needed to see data as aggregate (Konold et al., 2015), which four students 
interpreted as plotting time versus the average (reduced data) of the results of each plant or cell. 
This procedure, or way of thinking, could be associated to mathematics or statistics depending on 
the student’s academic background. Finally, the type of task used in this study seems to 
encourage students to combine different types of knowledge learned in college coursework. 
However, authors cannot claim with certainty what prompted participants to use a combination 
of mathematics, statistics, and biology knowledge. It seems that having research experience 
could be an antecedent to be considered for future studies. The authors also consider that 
teaching graphing to undergraduate students using interdisciplinary lenses is another way to 
advance their graphing skills further. 
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Probability and statistics have taken prominence in the era of big data. Thus, there is a need 
to ensure that high-school students have a thorough grounding in probability concepts or 
probability literacy. Probability literacy is a collection of knowledge, skills, attitudes, and habits 
of the mind about probability. Gal (2005) placed all aspects of this into two categories with 
subtopics under each. Those two categories are knowledge elements and dispositional element. 
The underlying concerns of this study are the big ideas and figuring probabilities under the 
knowledge element. Multiple reliable tasks will be used to centered around randomness, chance, 
independence, and sample space. The result of understanding probability literacy of high school 
students will help understand the teaching needs of students in schools. Currently, there is little 
research that examines the conceptions that high school students have about randomness, chance, 
independence, and sample space (Jones, Langrall, & Mooney, 2007).  

The purpose of the study is to understand the probability literacy of high-school students as 
stated by Gal’s (2005) framework. Namely: what is the probability literacy of high-school 
students? In particular, what do high school students understand about the following probability 
concepts of chance, randomness, independence and sample space?  

Fischbein, Nello, and Marion (1991) reported students’ responses from a study of probability 
where students correctly answered probability questions with incorrect reasoning. One such 
response was, “the probability is the same because the result cannot be predicted” (Fischbein, 
Nello, & Marion, 1991, p. 538). The student’s response was to a task involving the flipping of 
two coins. The student correctly answered the question, but the reasoning points to the fact the 
student has little understanding of probability. Hence the need for more thorough understanding 
of students’ misconceptions or probability is needed to better inform the instruction to prevent 
such misconceptions from propagating. The information that this study hopes to uncover will 
provide researchers and practitioners with insight about probability literacy among high school 
students. 

The research will be conducted using taped semi-structured oral interviews and parallel 
student written interviews as adapted from Rubel (2007) where she was seeking to uncover 
students’ justifications in addition to correctness. She found inconsistencies in student responses 
between the two forms that might lead to insight to students’ probability literacy. A pilot study 
will be conducted during the summer of 2018 to inform the main study that will take place 
during the spring of 2019.  
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Over the past decade, research on pedagogical content knowledge (PCK) for statistics has 
been identified as a critical area of need, particularly the need to study teachers’ PCK in the 
context of informal inferential reasoning (IIR) (Langrall et al., 2017). A majority of the work in 
statistics education, for both PCK and IIR, has focused on students across PK-16. Within the 
narrow body of literature on middle level and secondary mathematics teachers’ PCK, although 
some teachers have been found to develop strong PCK (Peters, 2013), many struggle to develop 
it, despite strong content backgrounds (Callingham et al., 2011). This study utilized Groth’s 
(2013) statistical knowledge for teaching framework—focusing on the PCK components of 
teachers’ knowledge of content and students, and knowledge of content and teaching—and 
operationalized it through the descriptions of four hierarchical PCK levels expressed by 
Callingham and Watson (2011), set within the context of responding to tasks designed to illicit 
IIR. Due to space, this study focuses only on teachers’ PCK and does not attempt to analyze their 
IIR engagement. 

Data come from a stratified purposeful sample of 9 middle and secondary mathematics 
teachers as they responded to a set of 4 LOCUS (Jacobbe, 2016) tasks during two 60-90 minute 
task-based interviews. After completing the tasks on their own, the following two questions were 
asked, as in Watson et al (2008), to aid in identifying teachers’ statistics PCK: 1) What are some 
appropriate and inappropriate student responses? 2) How might you respond to a student who 
offers an inappropriate response? The interview protocol included follow-up questions based on 
predicted teacher responses, as well as example student responses to offer, when necessary. 
Results indicate that when teachers were responding to explicit IIR items, as opposed to those 
not requiring reasoning about inferences (e.g., reasoning only about center, spread, and shape), 
they tended to fall within the lowest level of PCK. However, when responding to items not 
requiring IIR, their PCK could be characterized at higher levels of PCK and there was less 
consistency with content background knowledge. Additional findings will be shared and 
implications for future research and teacher education will be offered on the poster. 
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In general, students and teachers can often learn the associated computations and procedures 
of a hypothesis test but struggle with the reasoning and basic concepts of this procedure 
(Harradine et al., 2011).  Even with intense remediation efforts, it is often difficult to convey an 
understanding of these abstract ideas (Thompson et al., 2007).  Using simulations for hypothesis 
testing is a growing trend in statistics education due to the belief that simulations help make the 
abstract ideas behind hypothesis testing become more concrete and understandable (Erickson, 
2006). Cobb (2007) described the simulation process as “The three R’s: randomize, repeat, 
reject.  Randomize data production; repeat by simulation to see what’s typical; reject any model 
that puts your data in its tail” (Cobb, 2007, p. 12). In other words, using simulated sampling 
distributions to reject or fail to reject the null hypothesis. 

With this trend in statistics education in mind, I conducted an explanatory case study to 
answer the following question, “How does engaging in the process of using simulations to 
conduct a hypothesis test influence a high school statistics teacher’s understanding of this topic?”  
Before engaging in the simulation tasks, the participant could correctly define terms and explain 
some of the steps that should occur for hypothesis testing.  However, when attempting to answer 
questions or provide explanations that required a more in-depth understanding, she was unable to 
do so.  For example, when she did not have the steps in front of her, she stated the you should 
reject the null hypothesis when the p-value is large.  She believed a large p-value meant that your 
data would likely be replicated again, so your null hypothesis is probably true. 

 My poster will describe the lesson plan design used for the simulation tasks and describe 
how the participant interacted with the tasks.  Additionally, the results of how the tasks 
influenced the teacher’s content knowledge for hypothesis testing will be shared.   
The tasks allowed the teacher to visualize the sampling distribution and correct many of her 
misconceptions.  After the tasks, she correctly described when to reject the null hypothesis and 
was able to articulate how the alpha-level was related to a Type I error.  Additionally, the lesson 
plan design helped her to understand the logic of hypothesis testing.  The poster will highlight 
important elements to incorporate into professional development to help teachers foster a deeper 
understanding of hypothesis testing using technology to conduct simulations for inference. 
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The textbook has served as the centerpiece of learning for almost every academic discipline, 
although the relationship between the course and its textbook is complex. As a fundamental 
resource, Advanced Placement (AP) Statistics’ textbooks have the potential to shape the way the 
instructors teach and the students learn (Zieffler, Isaak, & Garfield, 2013). While a growing body 
of research has sought better ways to improve the teaching of inferential reasoning in AP 
Statistics course, there is a lack of research on particularly focusing on the textbooks’ analysis 
for inferential reasoning (Zieffler et al., 2013). Inferential reasoning is not only an ultimate 
learning goal of the AP Statistics course, both its early introduction and implicit instruction is 
also recommended by the Guidelines for Assessment and Instruction in Statistics Education 
(GAISE) report (Franklin et al., 2007). Recent research efforts have focused on its implicit 
learning goal as “informal” inferential reasoning where students drawing conclusions about 
populations based on data before the procedures of formal inference are introduced (Zieffler et 
al., 2013).  

In this poster, we will describe a framework that we have developed to answer the following: 
What is the nature and extent of inferential statistics concepts contained in AP Statistics 
textbooks?  

We have developed a two-dimensional, four by five matrix structured framework. One 
dimension is the four phases of the statistical investigative cycle, which is defined by GAISE as 
posing a question, collecting data, analyzing data and interpreting results. The other dimension 
is comprised of the five key aspects of inferential reasoning proposed by Lee (2017). They are 
the five columns of this framework as Context, computations and graphs, variability, uncertainty 
and beyond data at hand. Each cell of this matrix will have evaluation criteria. For instance, in 
the cell of the intersection of the row of posing a question and the column of context, students’ 
interest will be the evaluation criteria. The two dimensions of our framework embody the key 
recommendations for developing informal inferential reasoning and capture the common 
attributes, which pave the way to inferential reasoning. This framework acknowledges a 
continuum within each dimension that reveals implicit and explicit pedagogical choices made by 
textbook authors and publishers that directly influence students’ opportunities to learn.  

Our framework analyzes the expositions and tasks in AP Statistics textbooks, which are 
recommended by College Board. Under the lenses of our framework, we will present, the 
preliminary findings of the analysis of two AP Statistics’ textbooks,  
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ESTUDIO DE CASO DE UNA ENSEÑANZA DE LA ESTADÍSTICA BASADA EN 
LENGUAJE R: ESQUEMAS DE ACCIÓN Y DISCURSO 
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Post-Secundaria, Análisis de Datos y Estadística  

Con el objetivo de estudiar la evolución de los procesos de enseñanza de la estadística 
cuando se integran recursos tecnológicos digitales, analizamos los esquemas de acción y 
utilización (Gueudet & Trouche, 2012) de una profesora de estadística universitaria, quien 
integra en sus clases el lenguaje de programación R. Más específicamente, esta profesora diseñó 
su curso a través de una serie de actividades basadas en R, con el objetivo de promover el 
entendimiento de conceptos de estadística, por parte de sus alumnos. Se observó la práctica de 
esta profesora en dos cursos avanzados de nivel universitario, durante un periodo de tres 
semanas; dichas observaciones fueron complementadas con datos de una entrevista semi-
estructurada, recursos materiales (las hojas de trabajo de las actividades en R, evaluaciones, etc.) 
y otros recursos relacionados con su práctica docente. Los resultados fueron analizados 
cualitativamente usando el Enfoque Documental (Gueudet & Trouche, 2012) para inferir la 
génesis documental de esta profesora relativa al uso que hace de los recursos. La génesis 
documental se refiere al proceso mediante el cual, a través de la selección, modificación y 
recombinación de recursos, el profesor desarrolla un sistema de recursos junto con un esquema 
de utilización y/o acción que guía la actividad de enseñanza situada.  

Para este póster, nos centramos en los esquemas de utilización y acción de los recursos del 
lenguaje que surgieron al analizar las relaciones e interacciones entre los recursos digitales y no 
digitales. Se identificó cómo esta profesora usaba diferentes tipos de lenguajes –oral, corporal, 
estadístico y de programación en R— como esquemas de acción. En el discurso de la profesora, 
hay una continua traducción entre el lenguaje estadístico, el lenguaje de programación y los 
lenguajes oral y corporal, por medio del cual se expresan las hipótesis, las relaciones observadas 
y las interpretaciones que se hacen a partir de la exploración de los datos contenidos en los 
problemas planteados en las actividades. De esta manera, los lenguajes oral, corporal y 
estadístico se combinan y articulan con el lenguaje de programación R, constituyéndose así en 
‘recursos de lenguaje’, y sus usos son esquemas de acción de la profesora que promueven la 
comprensión de conceptos y de relaciones entre éstos, a la vez que ayudan a desarrollar la 
capacidad de los alumnos para conducir análisis estadísticos.  
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In order to study the evolution of teaching processes for statistics when integrating digital 
technological resources, we have analyzed the schemes of action and utilization (Gueudet & 
Trouche, 2012) of a university statistics teacher, who conducts her lessons using the R 
programming language. More specifically, this teacher designed her course through a series of 
R-based tasks, with the aim of promoting a more conceptual understanding in her students. We 
observed this teacher in two advanced university courses over the course of three weeks; those 
observations were complemented with data from semi-structured interview, material resources 
(the R tasks worksheets, assessments, etc.) and other documents related to her teaching practice. 
The results were analyzed qualitatively using the Documentational Approach (Gueudet & 
Trouche, 2012) in order to infer this teacher’s documentational geneses related to the use of 
resources, The documentational genesis refers to the process by which, through selection, 
modification and recombination of resources, a teacher develops a system of resources together 
with schemes of utilization and/or action that guide the situated teaching activity.  

For this poster, we focus on the schemes of utilization and action of language resources that 
emerged when analyzing the relationships and interactions between digital and non-digital 
resources. We identified that the teacher used different types of language –verbal, body, 
statistical and R programming ones— as schemes of action. In the teacher’s discourse, there was 
a continuous back-and-forth and translation between the statistical language, the programming 
language, and the oral and body languages, through which she described and expressed the 
hypothesis, observed relationships and interpretations derived from the explorations of the data 
contained in the problems presented in the R-based tasks. In this way, the verbal, body and 
statistical languages are combined and articulated with the R programming language to shape the 
‘language resource’, and its use constitutes schemes of action that help students understand and 
identify relationships between concepts, as well as develop abilities to carry out a statistical 
analyses.   
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SUPPORTING SECONDARY STUDENTS’ PERSEVERANCE FOR SOLVING 
CHALLENGING MATHEMATICS TASKS 

Joseph DiNapoli 
Montclair State University 
dinapolij@montclair.edu 

Perseverance, or initiating and sustaining productive struggle in the face of obstacles, promotes 
making sense of mathematics. Yet, engaging in struggle can be grueling and is avoided for some 
students. I investigate the effect of scaffolding mathematics tasks on student perseverance. The 
results show how prompting secondary students to conceptualize a mathematical situation prior 
to problem-solving can encourage re-initiating and re-sustaining mathematically productive 
effort upon reaching an impasse. For learning mathematics with understanding, these findings 
suggest specific methods by which student perseverance in problem-solving can be supported. 

Keywords: Instructional Activities and Practices, Problem-Solving, High School Education 

Perseverance, or initiating and sustaining in-the-moment productive struggle in the face of 
one or more mathematical obstacles, setbacks, or discouragements, is a productive process by 
which understandings are developed. The idea of withstanding uncertainty and persevering past 
obstacles has long been recognized as a key process by which meanings can be formed (Dewey, 
1910; Polya, 1971). These ideas have been echoed for learning mathematics because students 
develop their understandings through productive struggle, or as they grapple with mathematical 
ideas that are within reach, but not yet well formed (Hiebert & Grouws, 2007). Additionally, 
reconciling moments of impasse, or times of significant uncertainty or discouragement, is critical 
for mathematics learning; the processes of struggle to approach, reach, and make continued 
progress despite a perceived impasse puts forth cognitive demands upon the learner that are 
conducive for development of conceptual ideas (VenLehn et al., 2003). As such, encouraging 
student perseverance has been made explicit as a mathematical and pedagogical demand for 
reform to help improve teaching and learning in mathematics education (NCTM, 2014).  

Supporting Student Perseverance with Mathematics Tasks 
Despite widespread educational support around the notion of struggling with challenging 

mathematics, both students and teachers can be reluctant to engage in and offer opportunities for 
perseverance (DiNapoli & Marzocchi, 2017). Consequently, several recent research efforts have 
sought to make explicit classroom practices that support or constrain student perseverance with 
challenging mathematics. Kapur (2009) found that providing consistent opportunities for 
students to persevere with unfamiliar mathematical tasks encouraged more variability in 
problem-solving strategies and greater learning gains, compared to providing consistent 
opportunities to engage with more procedural mathematics. All students, however, were unlikely 
to make additional attempts at solving a problem after reaching an impasse – an area of concern. 
Bass and Ball (2015) explored the nature of perseverance by implementing classroom tasks with 
familiar entry points yet a complex structure (i.e., low-floor/high-ceiling tasks). The researchers 
observed children leveraging these opportunities to persevere in their efforts despite challenge 
and seemingly make mathematical progress. The authors urge for future research to document 
the student perspective around such perseverance and if it was indeed productive. Warshauer’s 
(2014) exploration of productive struggle found that teachers used probing questions and 
encouragement as effective methods to nurture perseverance at times of immense student 
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struggle, but had great difficultly providing consistent support for all classroom students for 
logistical reasons. Noteworthy outcomes of these studies are ideas for how perseverance can be 
operationalized, and suggestions for future research to carefully study perseverance from the 
student point of view to better understand how it can be supported.  

Additionally, in a recent journal series on nurturing perseverant problem solvers, several 
teaching practices were identified and described as advantageous. These included encouraging 
independent student thinking by restricting teacher reassurance feedback during problem-solving 
(Bieda & Huhn, 2017), scaffolding students’ experiences with tasks through assessing questions, 
advancing questions, and judicious telling (Freeburn & Arbaugh, 2017), and scaffolding student 
engagement with mathematics through establishing a culture of guiding, exploratory self-
questioning (Kress, 2017). These studies offer insight into effective teacher moves for supporting 
student perseverance with mathematical tasks, but also call attention to logistical concerns about 
teachers providing targeted support for each and every student (Warshauer, 2014).  

One method to bypass these logistical concerns is to embed similar scaffold supports into the 
mathematical tasks themselves to better insure each student has an opportunity to engage with 
them. Anghileri (2006) explains different levels of scaffolds that can be applied to tasks to help 
students problem-solve. Most relevant to supporting student perseverance are embedded 
conceptual thinking scaffolds, which provide opportunities for students to conceptualize the 
situation by making connections from their prior mathematical knowledge to the task at hand and 
mapping out their own strategies for problem-solving. Such conceptualization scaffolds provide 
a structure for thinking and acting that can organize a problem-solving plan coming entirely from 
a student’s own ideas. Moreover, these scaffolds align with Polya’s (1971) stages of problem-
solving through which learners approach a task. While stages 3 and 4 help describe the actions of 
perseverance, it is stages 1 and 2 that can theoretically support those actions by encouraging 
students to conceptualize the mathematical situation at hand (see Figure 1).  
 

 
Figure 1. Scaffolding Perseverance in Problem-Solving 

There is ample work that shows how conceptualization scaffolds encourage initial 
engagement with challenging mathematical tasks: when students have opportunities to make 
connections to what they already know and record all of their ideas and plans prior to the actual 
execution of problem-solving strategies, they are better suited to initiate and sustain their 
engagement with the task (e.g., Hmelo-Silver & Barrows, 2006). However, it is less clear how 
conceptualization scaffolds affect student perseverance upon reaching a perceived impasse – a 
moment that could be leveraged for key conceptual learning gains (VenLehn et al., 2003). If 
scaffolds are to support student perseverance during problem-solving, they must not only support 
initiating and sustaining productive struggle at the outset, but also support re-initiating and re-
sustaining productive struggle after a student encounters a significant setback and is uncertain 
about how to continue. Therefore, via the student point of view, this study addressed how 
initially engaging with conceptualization scaffolds embedded at the start of low-floor/high-
ceiling mathematics tasks supported perseverance, especially after a perceived impasse. 
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Methods 
The participants for this study were 10 ninth-grade students from one suburban-area high 

school algebra class in a Mid-Atlantic state. These participants were purposely chosen to have 
demonstrated, via pretest, the prerequisite knowledge necessary to initially engage with each 
mathematical task included in the study.  

To collect data, each participant was observed engaging with five mathematical tasks, one 
per week. These tasks were rated as analogous, expert-level tasks by the Mathematics 
Assessment Project (MAP) because of their low-floor/high-ceiling structure, two objectives, and 
required generalization a mathematical situation. I also solicited independent mathematics 
education experts to rate the difficulty of these tasks; no differences were reported. Additionally, 
each participant was given an opportunity to reflect on task difficulty after their participation and 
reported no differences. Three tasks were randomly chosen to be scaffolded, and two tasks were 
randomly chosen to be non-scaffolded. The conceptualization scaffold embedded into the 
scaffolded tasks was “Before you start, what mathematical ideas or steps do you think might be 
important for solving this problem? Write down your ideas in detail.” Each participant worked 
on these set of five tasks in a random order. For context and to help follow the results in this 
paper, Cross Totals (a scaffolded task) asked students to generalize rules about how to arrange 
the integers 1-9 in a symmetric cross such that equal horizontal and vertical sums would be 
possible or not possible. Triangular Frameworks (a non-scaffolded task) asked students to 
generalize rules about how to build different triangles using the triangle inequality theorem if the 
longest side was even or odd in length. 

This study prioritized the student point of view of their perseverance, so I incorporated many 
opportunities for participants to make explicit their in-the-moment perspectives during problem-
solving. For each task and participant, I conducted think-aloud interviews while they worked on 
a task and video-reflection interviews immediately after they finished working. Additionally, 
once a participant had engaged with all five tasks (and thus all five think-aloud interviews and 
video-reflection interviews), I conducted an exit interview to give each participant an 
opportunity to comment on their overall experience working on the five tasks. In all, I conducted 
11 interviews with each participant, or 110 interviews in total for this study. 

To analyze the data, I developed the Three-Phase Perseverance Framework (3PP) (see Table 
1) that I used to operationalize the construct in this context. It was designed to reflect 
perspectives of concept, problem-solving actions, self-regulation, and making and recognizing 
mathematical progress. The 3PP considered first if the task at hand warranted perseverance for a 
participant (the Entrance Phase), considered next the ways in which a participant initiated and 
sustained productive struggle (the Initial Attempt Phase), and considered last the ways in which a 
participants re-initiated and re-sustained productive struggle, if they reached an impasse as a 
result of their initial attempt (the Additional Attempt Phase). A participant was determined to 
have reached a perceived impasse if they affirmed they were substantially stuck and unsure how 
to continue (VenLehn et al., 2003). Mathematical productivity was determined based on the 
extent to which the participant perceived themselves as better understanding the mathematical 
situation as a result of their efforts. To substantially capture the student point of view during 
engagement with tasks, coding decisions – or whether or not certain engagement constituted 
evidence of perseverance – depended on student cues from all interviews.  

Table 1: Three-Phase Perseverance Framework (3PP) 
Entrance Phase 

Clarity Objectives were understood 
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Initial Obstacle Solution pathway not immediately apparent 
Initial Attempt Phase 

Initial Effort Engaged with task 
Sustained Effort Used problem-solving heuristics to explore task 

Outcome of Effort Made mathematical progress 
Additional Attempt Phase (after perceived impasse) 

Initial Effort Engaged with task 
Sustained Effort Used problem-solving heuristics to explore task 

Outcome of Effort Made mathematical progress 
 

I used a point-based analysis with the 3PP to help inform deeper investigation of the ways in 
which participants persevered on scaffolded and non-scaffolded tasks. Each participants’ 
experiences with each task were analyzed using the framework, and each component in the 
Initial Attempt and Additional Attempt Phases were coded as 1 or 0, as affirming evidence or 
otherwise, respectively. Coding decisions were based off of interview quotes. For instance, 
participants earned a 1 for an Outcome of Effort component only if they affirmed perceiving 
mathematical progress; such decisions were not based on my own perceptions. Since each task 
had two objectives and six components per objective, there were 12 framework components to 
consider, per participant, per task. Thus, 3PP scores ranged from 12 to 0, depicting optimal to 
minimal demonstrated perseverance in this context, respectively. Participants did not need to 
completely solve the task to earn a 12, they just had to exhibit perseverance in all 3PP 
components. Once 3PP scores were determined for all participants’ experiences with all tasks, I 
conducted matched-paired t-tests to compare means of 3PP scores between work on scaffolded 
and non-scaffolded tasks. I also inductively coded interviews to uncover from the participant 
perspective why they persevered differently on scaffolded tasks compared to on non-scaffolded 
tasks. For trustworthiness, I enlisted help from two independent coders to analyze participant 
perseverance and their reasons for doing so. Our inter-rater reliability was 93%. 

Results 
Participants demonstrated higher quality perseverance when working on scaffolded tasks 

compared to on non-scaffolded tasks, in general, as evidenced by significantly greater mean total 
perseverance scores (MS = 8.73, SDS = 2.07, MNS = 6.00, SDNS = 2.60; t(9) = 6.816, p < .001) 
(see Table 2), as well as by participant reports. Differences in participants’ perseverance in the 
Additional Attempt Phase of the 3PP drove this general finding. Participants demonstrated 
higher quality perseverance after encountering a perceived impasse while working on scaffolded 
tasks compared to on non-scaffolded tasks. This was evident by significantly greater mean 
Additional Attempt Phase perseverance scores (MS = 3.67, SDS = 2.50, MNS = 1.60, SDNS = 2.58; 
t(9) = 4.083, p = .003) (see Table 2), as well as by participant reports. All participants affirmed in 
the Entrance Phase that they understood the objectives, but did not know how to solve each task. 
Also, all participants reported a perceived impasse as a result of their engagement with each task. 

Table 2: Three-Phase Perseverance Scores 
Total Perseverance Scores (Maximum of 12 Points) 

Task Type Mean n 
Scaffold 8.73 30 (3 tasks per 10 participants) 

Non-Scaffold 6.00 20 (2 tasks per 10 participants) 
Difference 2.73*** (p < 0.001) 
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Additional Attempt Perseverance Scores (Maximum of 6 Points) 
Task Type Mean n 
Scaffold 3.67 30 (3 tasks per 10 participants) 

Non-Scaffold 1.60 20 (2 tasks per 10 participants) 
Difference 2.07** (p < 0.01) 

 
The most prevalent difference between participants’ perseverance on scaffolded and non-

scaffolded tasks was whether and how they re-initiated and re-sustained a productive additional 
attempt at solving the problem. This means that while working on scaffolded tasks, participants 
often continued to productively struggle toward a solution after reaching a perceived impasse. 
This was not often the case after reaching an impasse while working on non-scaffolded tasks. 
When considering the specific Additional Attempt Phase components of re-initiating, re-
sustaining, and outcome of effort, participants working on scaffolded tasks demonstrated more 
aspects of perseverance compared to their work on non-scaffolded tasks (see Table 3).  

Table 3: Perseverance Frequencies in Additional Attempt Phase 
Component On Scaffolded Tasks On Non-Scaffolded Tasks 

Re-Initiated Effort 80% (24 out of 30) 35% (7 out of 20) 
Re-Sustained Effort 70% (21 out of 30) 35% (7 out of 20) 

Productive Outcome of Effort 57% (17 out of 30) 20% (4 out of 20) 
 

While talking about their engagement with the five problem-solving tasks in the study, all 
participants reported a general positive effect of their preliminary conceptualizing work 
prompted by the scaffolds on their mathematical engagement. Related, none of the participants 
engaged in any noticeable preliminary conceptualizing work on tasks that did not prompt it (i.e., 
the non-scaffolded tasks). Most of the participants explicitly mentioned in their interviews that 
the reason they did not engage in such preliminary work on non-scaffolded tasks was because the 
task did not specifically ask them to do so, even though they recognized such work was helpful 
to them. Several more specific themes emerged from the analysis of all interviews that helped 
explain why participants found it easier to persevere on scaffolded tasks compared to on non-
scaffolded tasks, especially after reaching an impasse (e.g., the scaffolds helped participants re-
visit a different idea, re-conceptualize the situation after a mistake, stay organized, and establish 
momentum to stay interested and engaged). 

Illustrative Case: James’s Experiences with a Scaffolded and Non-Scaffolded Task 
To illustrate how perseverance was better supported in scaffolded tasks compared to non-

scaffolded tasks, especially by helping participants make a quality additional attempt, consider 
participant James’s experiences with the Cross Totals task and Triangular Frameworks task. For 
James, Cross Totals was his fourth overall task and his third and final scaffolded task. Triangular 
Frameworks was his fifth and final task, the second of two non-scaffolded tasks. James passed 
through the 3PP Entrance Phase on both tasks by affirming he understood the objectives, but that 
had “no idea what to do.” James earned 3PP scores of 6 in his Initial and Additional Attempt 
Phases, resulting in a maximum overall score of 12 for his work on Cross Totals. On Triangular 
Frameworks, James earned 3PP scores of 6 and 0 in his Initial and Additional Attempt Phases, 
respectively, resulting in an overall score of 6, with the most notable difference being no 
additional attempt at solving after reaching an impasse on Triangular Frameworks.  

On Cross Totals, James began his work with the scaffold prompt, brainstorming about the 
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mathematics present, including ideas about the parameters of possible and impossible cross totals 
and that the middle number would be included in both horizontal and vertical sums. After 
recording his conceptualization ideas, James started his initial attempt at solving the problem 
stating he would try to “find some possible ones first, and those might connect to impossible 
ones.” He initiated and sustained his effort by guessing and checking different arrangements of 
integers along two lines representative of the lines of the cross, with one integer in the middle of 
both lines, and finding their sums. James noticed he was not having success with his plan, and 
affirmed he was at an impasse when he said “I’m stuck. This is harder than I thought.” During 
his video-reflection, James revealed “I felt stressful here because I never learned this and there 
was not any way I would know how to do it. I definitely panicked.” He did, however, believe he 
made some mathematical progress toward both objectives by figuring out “that you couldn’t just 
throw numbers in [the cross], you had to think about big numbers and small numbers.” 

After James revealed he was at an impasse during his think-aloud, he paused and admitted “I 
don’t know what to do now.” Frustrated, he started looking around at his papers in front of him 
and eventually pointed to his list of mathematical ideas under the scaffold prompt and said, 
“Well I haven’t used [the middle number] yet really. Something might be special about the 
middle number.” During his video-reflection, he explained his point of view during these 
moments, “I had kind of forgotten that I wrote all this stuff down. So I saw again that middle 
number idea. It was kind of like my life-preserver…it kept me from giving up.”  

When James revisited his original conceptualization of this problem, prompted by the 
embedded scaffold, he was propelled forward into making an additional attempt at solving. He 
thought-aloud about his plan to re-initiate his effort by studying the middle number in possible 
and impossible cross totals. He began re-sustaining his effort by changing his point of view, a 
different problem-solving heuristic, and examined the given example. He noticed that “this one 
has 9 in the middle to get a 27, they are balancing the big and small numbers... something about 
the evens and odds.” James wrote down his observations around the provided example and went 
on to explore his own examples (see Figure 2) and solve the problem by concluding and 
defending that “all solutions are odd, like the middle can’t be even to do a cross total.”  
 

 
Figure 2. James’s Work in Additional Attempt Phase on Cross Totals 

On Triangular Frameworks, a non-scaffolded task, James did not record his initial 
conceptualization of the mathematics in the task. He started his initial attempt toward both 
objectives by saying “I’ll try to find some other evens and odds that work out.” He initiated and 
sustained his effort by guessing and checking different triangles, the same initial heuristic he 
used in Cross Totals the week before. James examined the given example of six frameworks 
made with a longest side of 7m, and made mathematical progress when he built four frameworks 
with a longest side of 6m, writing “6-5-4, 6-5-3, 6-5-2, 6-4-3” on his paper. James concluded, “It 
looks like it’s one less for odd or two less for even, so the rules might be that.” Before James 
wrote his rules, he said, “Wait, let me look at something.” Clearly troubled, James went on to 
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write “5-4-3” and “5-4-2” on his paper. Then, seemingly ignoring what he had just done, he 
wrote his rules about the situation (rules that were incorrect), that if the longest side, c, is odd he 
can make c-1 frameworks, and if c is even he can make c-2 frameworks. Finally, he said “I’m 
done” and stopped working without making an additional attempt. 

While reviewing the video of the aforementioned moments during his first attempt at solving 
Triangular Frameworks, James admitted that he was, in fact, at an impasse during the latter 
stages of his first attempt. He said, “I was looking at if 5 was the longest side and my rule didn’t 
work! There should have been four of them but there were only two, 5-4-3 and 5-4-2…so I 
panicked and pretended like it worked.” When asked why he pretended, he said, “I panicked 
when it didn’t work. I didn’t even know where to start to fix it. So I really wanted to stop.” 
James’ experiences with Cross Totals and Triangular Frameworks are illustrative of the ways in 
which participants persevered while working on scaffolded tasks compared to on non-scaffolded 
tasks. Similarly to his engagement on Cross Totals, James leveraged his initial conceptualization 
work while working on the two other scaffolded tasks to help make a quality additional attempt 
at solving despite encountering frustrating impasses. On the other hand, similar to his work on 
Triangular Frameworks, James did not make an additional attempt at solving the other non-
scaffolded task; he cited overwhelming stress and feeling disorganized after encountering a 
setback as the primary reason he did not persevere. During his exit interview, James shared his 
perspective on how initially attending to conceptualizing the mathematical situation had a 
positive effect on his engagement for all scaffolded tasks: 

You have to have a plan of what you can try to do…Like the ones that made me write down 
what I thought first. That was really good. I used that a lot because sometimes you forget 
where you’re going in a problem, it’s like chaos – like on [Triangular Frameworks]. But on 
other ones, like [Cross Totals] I got stuck but had a way out of it. It seems easier with that 
because you don’t have to think of a way out when you’re mad or stuck or something.  
For James, and for almost all participants in this study, responding first to the 

conceptualization scaffold served as a “life-preserver” of sorts later, when participants were 
“panicked” and most tempted to give up. In these moments, the conceptual thinking recorded 
after engaging with the scaffold prompt acted as an organizational toolbox from which to draw a 
fresh mathematical idea, or a new connection between ideas, to use to help re-engage with the 
task upon impasse and to continue to productively struggle to make sense of the mathematical 
situation. Participants were persevering in problem-solving cyclically, with each additional 
attempt as a new opportunity to productively struggle supported by their own conceptual ideas 
(see Figure 3). Without recording their conceptual thinking on non-scaffolded tasks, participants 
felt lost and frustrated after a setback and often gave up without making an additional attempt at 
solving. 

 
Figure 3. Rethinking Scaffolding Perseverance in Problem-Solving 

Discussion and Conclusion 
Prior research on supporting student perseverance with mathematical tasks was limited to a 
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focus on the low-floor/high-ceiling structure of the task itself (e.g., Bass & Ball, 2015), teacher 
moves that nurtured independent student thinking (e.g., Freeburn & Arbaugh, 2017), and using 
conceptualization scaffolds to encourage initial engagement (e.g., Hmelo-Silver & Barrows, 
2006), but did not examine in detail the student perspective around moments when perseverance 
is necessary, especially upon perceived moments of impasse. Addressing classroom logistical 
concerns by embedding scaffolds directly into low-floor/high-ceiling tasks (Anghileri, 2006), 
this study extends past research by investigating from the student point of view how 
conceptualization scaffolds help students persevere re-initiate and re-sustain productive struggle 
after reaching an impasse. In sum, the results showed positive effects of prompting students to 
record their initial conceptualization of a mathematical situation prior to problem-solving, as 
evidenced by more and higher-quality perseverance on scaffolded tasks compared to on non-
scaffolded tasks. Arguably the most notable effect occurred when students reached an impasse 
while problem-solving, because often they were able to leverage their initial conceptualization to 
overcome that obstacle and continue to make progress. This implies such scaffolding can help 
students persevere past impasses and continue to make progress, if provided the opportunity to 
explore mathematics as a discipline of activity (Schoenfeld & Sloane, 2016). Further, greater 
efforts are needed to establish attending to conceptual thinking as a normative and welcomed 
school practice during all problem-solving, not just when prompted (Warshauer, 2014).  

Future work should seek to further validate the impact of conceptualization scaffolds on 
student perseverance after impasse. Especially important is collecting evidence to refute the 
alternative explanation that differences in task difficultly could explain these data reported here. 
Although I made several efforts to ensure each task was similarly difficult (vetted by MAP, 
analyzed by experts, rated by participants), a follow-up study could randomize the assignment of 
scaffolds to tasks for each participant to better control for this potential bias.  
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This study examined the identity resources used and the subject positions taken by secondary 
students in autobiographical narratives of their experiences with mathematics (mathographies). 
Data consisted of mathographies from 54 students in two differently tracked math courses at a 
large, diverse public high school in Brooklyn, NY. The study asked 1) What material resources 
do students use to position themselves as different kinds of mathematics students? What typology 
of mathematics identities is revealed? And, 2) What ideational resources do students use to 
position themselves as different kinds of mathematics students? Findings revealed three 
predominant mathematics subject positions: celebrated high achiever, earnest laborer, and 
trauma survivor. Ideational identity resources included discourses of mathematics, of America 
and American schooling, and of race, language, and immigration.  

Keywords: Equity and Diversity, Identity, High School Education  

Mathematics is a high status, high power discipline–one that confers special status on those 
with recognized facility in the content and practice (Apple, 1993). The notion that there exists 
such a thing as a ‘math person,’ and assumptions about who gets to be one, are connected to 
issues of power. Who is seen as smart, who has a pathway to college, and who has access to an 
upwardly mobile career are all connected through the status of mathematics as a gatekeeper in 
American society (Martin, Gholson & Leonard, 2010). Even with increasingly abundant research 
that conceptualizes learning as a process of inclusion, participation and belonging (e.g. Wenger, 
1998), questions that examine the conditions of possibility for belonging are still left largely 
unattended in mathematics education research. 

Students, teachers and schools are faced daily with the high-stakes negotiation of who is 
recognized as a ‘math person,’ and students from historically marginalized groups in particular 
have especially complicated access to this high-status marker of success. Studies of the 
educational landscape of the United States often use demographic data to document stratification 
at the levels of both access and achievement for young people in mathematics. These studies 
repeatedly demonstrate inequitable outcomes (National Center for Education Statistics, 2013), as 
well as inequitable opportunities, (Storage, Horn, Cimpian & Leslie, 2016) along the lines of 
race, ethnicity, language, gender, (dis)ability and socio-economic status. Even as some research 
has shifted from a focus on an outcome-oriented “achievement gap,” to an input-oriented 
“opportunity gap,” these studies still tell an incomplete story. Adding an otherwise absent 
dimension to this work, recent scholarship demonstrates ways in which schooling, and even 
mathematics learning itself, can include “racialized forms of experience [emphasis original]—
that is, … experiences where race and the meanings constructed around race become highly 
salient” (Martin, 2006, p. 198). Beyond its well-understood status as gatekeeper, mathematics 
education has the potential to reproduce racialized experiences present in other aspects of social, 
political and economic life.  

In one example of racializing experiences found in mathematics learning spaces, Shah & 
Leonardo (2016) share the story of a South Asian American student, Akshay, who performs at a 
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high level in his AP Calculus course only to find his effort dismissed by a classmate who 
comments that he simply does well because he is Indian. In the same school, a Black student, 
James, is treated with surprise and even disbelief when his classmates see that he is enrolled in 
an advanced math course. As these examples suggest, mathematics education may actually 
contribute in complex ways to minoritization – the formation of a marked minority status due to 
racial, ethnic, linguistic, immigration or another social status that diverges from an historical or 
ideological norm (Omi & Winant, 2002).  

Contrary to the popular belief that mathematics is culture-neutral or culture-free, research in 
the last decade has begun to illuminate how mathematics teaching and learning may play a role 
in the process of minoritization (e.g. Shah & Leonardo, 2016). Minoritizing experiences of 
mathematics are particularly problematic because they function to “other” certain students in 
both their successes and their failures, reproducing exclusive notions of who gets to participate 
or belong within the discipline of mathematics. Throughout this paper, the word “minoritized” 
references a broad group of young people for whom their status as a minority is often constructed 
in direct contradiction to their numerical presence in their school, neighborhood, or even city. 
This contradiction makes clear the need to understand how this status is produced and 
reproduced, and in particular what role mathematics education plays in this process.  

With these concerns in mind, mathematics education research has begun to attend to the 
identities of minoritized youth in mathematics, both by asking about the math learning 
experiences of specific social groups, and by asking about how mathematics identities are shaped 
by being part of a social identity group (Berry, Thunder & McClain, 2011). Studies of identity, 
often understood as including both the ways a student defines themself as well as how they are 
perceived by others, have the ability to bring together questions about learning, participation and 
inclusion. However, even as identity has become widely accepted as a crucial analytic lens for 
understanding learning (Gee, 200; Wenger, 1998), the ways that people understand and analyze 
identity in mathematics education vary significantly (Darragh, 2016; Langer-Osuna & Esmonde, 
2016) and we still know little about the interaction between, and co-construction of, social and 
academic identities in mathematics. Furthermore, we know almost nothing about the identity 
resources–ideas, materials and relationships (Nasir & Cooks, 2009)–that students draw upon or 
how they use them in order to make sense of themselves in the world of mathematics. In order to 
explore this gap, the research questions guiding the study were: 

1. What material resources do students use to position themselves as different kinds of 
mathematics students? What typology of mathematics identities is revealed?  

2. What ideational resources do students use to position themselves as different kinds of 
mathematics students?  

Methodology  
This study took a new approach to understanding the identity work of young people. By 

looking at the discourses that students draw upon, and analyzing how students use these 
discourses as identity resources, this work provides insight into the conditions of possibility that 
shape and constrain student identities in mathematics. By examining mathographies–narrative 
autobiographies of student experiences with mathematics–written by Brooklyn high school 
students in response to a prompt from their math teacher, this work centers student voices as they 
describe and comment on their own experiences. Discourse analysis was used to illuminate the 
sets of language and ideas that students drew upon as identity resources and to identify common 
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subject positions that students took as they positioned themselves as different types of math 
students.  
Context and Data 

The 54 mathographies examined in this study were written by students enrolled in a Regents 
Algebra 2 and Trigonometry course (n=29) and students enrolled in a non-Regents Geometry 
course (n=25) at a large, racially and linguistically diverse public high school in Brooklyn, NY. 
In their mathographies, students mentioned over 20 language varieties and 15 different ethnic, 
racial, or national origin groups. Students in both courses were in the 10th or 11th grades. The 
mathographies ranged from one to six paragraphs and 200-1043 words. By examining the 
writing of students at the same school, and in the same grade band, but in two differently tracked 
courses, the sample attempted to account for a broad representation of experiences of success 
and perceived ability with regards to mathematics while holding other factors such as age, school 
site and teacher constant. 

Mathography writing was an instructional activity assigned at the beginning of a new 
semester by one mathematics teacher to two classes of students. The activity was framed as both 
a “getting to know you” task and an opportunity for student reflection on previous learning 
experiences. Students had one week to complete and submit their written work to their teacher. 
The same writing prompt was used in both classes.  

The questions in the writing prompt included inquiry into personal details about family and 
language, as well as questions about experiences with mathematics such as what does math at 
home look like, when have you learned the most math, and have you ever had a ‘math moment’? 
Students were also invited to share hopes and dreams for the future and something a math 
teacher might not know about them if they only knew them in math class. Students were 
prompted to respond in narrative form to any subset of the questions, provided it told a story of 
them and mathematics. They did not have to respond to all questions in the prompt.  
Coding and Analysis  

This study made use of discourse analysis (Wortham & Reyes, 2015), examining student 
language in their mathographies in order to map the ways in which their language use both 
served to situate themselves within existing discourses and also at times worked to challenge 
those discourses. Discourse analysis allowed the researcher to track the linkages between micro-
interactional moments and social structures at the institutional and societal levels. Insight into 
how the micro and macro work together is essential in the treatment of identity and mathematics 
education. As students negotiate identity they do so drawing not only on classroom-based 
interaction but also on their full repertoire of experiences as members of the social, cultural, and 
political world.  

Discourse analysis entails identification of patterns both within and across “speech events” 
(Wortham & Reyes, 2016). In this study, the speech event unit was one mathography (n=54) and 
the speech act unit was a paragraph (as demarcated by students using conventional line breaks or 
indentation) (n=233). Coding schema were developed through open coding, and then focused 
coding was used to further nuance the coding schema (Emerson, Fretz & Shah, 2011). Analysis 
was conducted through the use of analytic memos. Strategic searches for code co-occurrence and 
patterns across the memos were conducted using both Excel and Dedoose, a qualitative coding 
software.  

Coding was conducted in three phases. The first phase of coding and analysis focused on 
research question 1, What material resources do students use to position themselves as different 
kinds of mathematics students? What typology of mathematics identities is revealed? First, I 
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identified speech acts (paragraphs) in which students made claims about themselves as 
mathematics learners or recounted others making claims about them as particular types of 
mathematics students (n=148) and wrote an analytic memo for each. Patterns were noted in the 
identity claims being made by students. The memos were compared and cross referenced such 
that it was possible to propose a typology of mathematics student identity positions that 
accounted for all of the instances. These speech acts were then also coded for material evidence 
and analysis identified the material evidence most commonly associated with each identity 
position from the typology.  

The second phase of coding and analysis focused on research question 2, What ideational 
resources do students use to position themselves as different kinds of mathematics students? This 
phase started by re-examining the speech acts that included student positioning and the material 
resources that students used to position themselves in order to identify the discourses of 
mathematics that students were drawing on in these moments. Another round of analytic memos 
were written for each positioning act. These memos asked for each positioning act, how does the 
student frame mathematics in the world. Specifically, memos addressed “what is math?”, 
“mathematics for what?” and “mathematics for whom?” for each positioning act. 
In order to expand from discourses of mathematics to other potential discourses at play, a third 
phase of coding identified speech acts in which students positioned their families, languages, 
culture or nation of origin in relation to their own experiences of mathematics (n=85). A final 
round of analytic memos were written examining each of these speech acts. Two additional 
discourse categories were identified: discourses of America and American schooling, and 
discourses of race and immigration, along with core sub-components of each discourse. 

Findings  
Three Math Student Subject Positions and the Material Evidence for Each 

In response to research question 1, I identified three mathematics subject positions: 
celebrated high-achiever, earnest laborer, and trauma survivor, explained below. These subject 
positions can also be thought of as available identities that a mathematics student might assume, 
achieve, or have ascribed to them. In their mathographies, as students positioned themselves as 
particular types of math students, or recounted having been positioned by someone else, each 
student also provided evidence to substantiate the position. The evidence they provided reveals 
the material identity resources that students found available to them for making sense of 
themselves as different kinds mathematics learners. In the 54 mathographies, 24 students 
positioned themselves at one point as celebrated high achievers – those with status based on the 
visibility of their successes in math. Twenty-seven (27) students positioned themselves at one 
point as earnest laborers – those whose status relies on effort, and 21 students positioned 
themselves at one point as trauma survivors – those with a significant negative experience that 
has shaped their current orientation toward math. Note that the sum is greater than 54 (the 
number of individual mathographies) because many students made use of more than one position 
over the course of their mathography. A summary of the typology with the related material 
evidence and one example from each position is provided in Table 1. 
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Table 1: Typology of positional mathematics identities with material identity resources 
Position Material Resources Example  

 
Celebrated 

High 
Achiever 
(n=24) 

Course grades 
Test scores  

Regents Exams  
Course enrollment  

Class rank  
Awards 

Competition 
Visibility (positive) 

Being first, being fast 

In school I was doing math like it was nothing. I was 
top in my class. But every year I’ll have a competition 
with someone to get top place. Always someone that 
smarter than me. So I’ll go home and try to be ahead, 
going to tutoring and asking my dad, freshman year I 
was a 95% average student in math had the best 
teacher, Ms. Alexander. That year math was my focus, I 
past every test with 95-100. That made the teacher and 
my parent proud. (MS23G) 

 
Earnest 
Laborer 
(n=27) 

Course grades  
Test scores  

Regents Exams  
Too much content, too 

fast 
Attending tutoring 

Homework completion 
Learning steps and 

procedures 
Practice and repetition 

I’m really not that great in math but I somewhat like 
mathematics because every time I solve a math 
problem it makes me feel like I’m intelligent, I’m like 
everybody else, it’s a challenge sometimes that comes 
with my best effort. Every time I use math in my daily 
life it greatly benefits me, that being said it is 
something I use every day and almost at any time 
especially when it’s dealt with money. It’s always been 
difficult for me to learn math, I sometimes feel as if 
math is like my kryptonite. I know I can’t get every 
question right but at least I know I tried my best even if 
I don’t know what I’m doing. (MS09T) 

 
Trauma 
Survivor 
(n=21) 

Course grades  
Test scores  

Regents Exams  
Course enrollment  

Competition 
Public humiliation 

Being last, being slow 
Visibility (negative) 

My most negative math moment would be long 
dividing in the fourth grade. I absolutely hated it, and 
most of my peers already knew how to do it. Which 
made me more embarrassed to know that I was the only 
one in the class that didn’t know how to do it. Another 
negative would be in the 6th grade where I basically 
got 60s on all my math tests because I didn’t get what 
he was teaching as well as how I even got a 65. I was at 
the lowest level of dumb in math. (MS26T) 

 
Three Discourses as Ideational Resources 

Findings showed that students used cultural and institutional discourses as ideational 
resources as they positioned themselves, their families, languages and cultures or nations in 
relation to mathematics. The discourses they used throughout were discourses of mathematics, 
discourses of American schooling and meritocracy, and discourses of race, language, and 
immigration in the United States. An overview of the three discourses that students drew upon as 
identity resources, and the core components of each, as used by students is found in Table 2. 

Dominant Discourses of Mathematics. Findings show that even as students relied on varied 
material resources to position themselves as different kinds of mathematics students, the material 
resources they used point to a set of widely shared dominant discourses of mathematics itself.  
Those discourses were that 1) mathematics ability is innate and fixed, and 2) mathematical 
competence is comparative, exclusive, and measurable through time constrained performances, 
usually of procedures. These discourses are visible throughout the examples shared in Table 1. 
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For example, one Algebra 2/Trig student wrote, “I’m really not that great in math” (MS09T), 
reflecting the perceived fixed-ness of her mathematics ability status. A Geometry student marks 
her competence through indicators of ease and comparison to her classmates, followed by a 
description of a competition to prove her status: “In school I was doing math like it was nothing. 
I was top in my class” (MS23G). 

Discourses of American Schooling and Meritocracy. In their mathographies, students also 
drew on discourses of schooling and the American social context more broadly, layering these 
with the dominant discourses of mathematics. The two core components of discourses of 
America and American schooling that students drew upon were 1) Innate ability in tension with 
development psychology and lived experience and 2) American meritocracy as advancement 
through legitimate systems that reward both innate talent and work ethic. Whereas discourses of 
mathematics elevate ideas about innate talent, which are corroborated in discourses of American 
meritocracy, discourses of American schooling and meritocracy offer an alternative but well-
established narrative that elevates the importance of lived experience as well as the merits of 
hard work. Students who positioned themselves as earnest laborers or trauma survivors wrote 
about challenges faced and overcome through personal effort and perseverance that shaped the 
student’s relationship with mathematics. 

Discourses of Race, Language and Immigration. American liberal ideals that value both 
individual ambition and competition as well as egalitarianism are complicated by the pressures 
of assimilation for minoritized racial and ethnic groups and immigrants in the United States. 
Both standing out and fitting in are complicated for minoritized students. Furthermore, 
discourses of racial inferiority, both genetically and in terms of educational attitudes, sit as a 
backdrop, in particular for minoritized students, as they attempt to position themselves with worth 
and dignity in front of their current math teacher. Throughout their mathographies minoritized 
students consistently explained experiences of visibility – both positive and negative – as 
attributable to some form of racial, ethnic, linguistic or cultural experience of difference. They 
describe experiences of confronting ideologies of racial and linguistic inferiority and they draw 
on discourses of cultural deficiency themselves. One student wrote,  

The most negative experience happened in second grade. My teacher at that time didn’t try to 
teach me but also made fun of me. I didn’t know that much English at time and some of the 
math problems were in words. It was really difficult to me. My teacher gave up on me but 
she didn’t try at all. She insisted that I should go get my ears checked. She also asked if I’m a 
mute (MS16T).  
At the same time, many more students position themselves and their families as model 

minorities, citing appropriate attitudes toward education and orientations of aspiration and 
investment that make them stand out in their success, or, if not in their success, at least in their 
work ethic. One student attributes her own success to her immigrant parents, positioning their 
attitude toward mathematics as the appropriate one:  

Having parents that find math one of the most important subjects in school shaped me to be 
how I am in math class today. I’ve always found math to be an easy subject to wrap my head 
around; getting 4’s on my state tests. … Whenever my parents talk about currency I love to 
convert the dollars to taka (Bangladesh currency) with a pen a paper instead of just searching 
it up on google. It’s nice when I get the calculations correct (MS03T). 
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Table 2: Discourses used as ideational identity resources in student narratives 
Dominant Discourses of 
Mathematics 

Discourses of American 
Schooling and Meritocracy 

Discourses of Race, 
Language, and Immigration 

Mathematics ability as innate 
and fixed 

 

Innate ability in tension with 
psychology, development, 
and lived experience 

Ideologies of racial and 
linguistic intellectual 
inferiority 

Mathematics competence as 
comparative, exclusive, 
procedural, and time-bound 

 

American meritocracy, work 
ethic, and advancement 
through investment in 
legitimate systems 

Discourses of deprivation 
and deficit alongside 
discourses of investment and 
models of success 

Discussion  
This study contributes to existing theory on the development of mathematical identities for 

young people by proposing new ways of understanding the identity work in which young people 
engage. The voices of students as heard through their mathographies reveal the resonance of 
discourses of mathematics, of schooling and American society, and of race and immigration in 
the United States. These discourses both shape and constrain the possibilities for how young 
people understand themselves and present themselves to the world. At the same time, these 
discourses act as available tools that students necessarily use when shaping ideas about 
themselves, and bidding for particular representations of themselves in the world.  

Ideas about what math is significantly shape and constrain how students see themselves as 
different types of mathematics students and learners. The material evidence that students used to 
instantiate their various mathematics student positions demonstrates the limited nature of the 
notion of mathematics most readily available to students. Discussion of grades, tests, speed, 
awards, homework, attendance records, and comparisons to other students abound as students 
position themselves as mathematics students of a certain type. This reveals the extent to which 
student notions of mathematics are constrained by the dominant discourse of mathematics as a 
set of skills and procedures, measured comparatively and through time-bound mechanisms. 
Students position themselves with self-worth and merit in front of their math teacher within the 
constraints of this dominant discourse of mathematics. Their reliance on the positions of 
celebrated high-achiever, earnest laborer and trauma survivor likely reveals more about the ways 
that dominant discourses in mathematics shape the identities available to students than it does 
about the students themselves as participants in or learners of mathematics.  

Discourses of American ambition and American meritocracy complicate and constrain how 
minoritized students see themselves and present themselves because the meanings behind 
visibility and achievement have different stakes when they are racialized. Discourses of 
American society both resonate with and diverge from the dominant discourses in mathematics. 
As is true in mathematics, American ideals celebrate ambition, standing out and high 
achievement, especially as compared to others. At the same time, American ideals of hard work, 
labor and perseverance act as an alternative axis of merit available to students for whom 
traditional high achiever positions are inaccessible. In their mathographies, students drew widely 
on the American ideals of hard work and perseverance, presenting their own efforts as valuable 
and as deserving of recognition, both when they told stories of high achievement, and when their 
efforts were called upon to stand in the place of high performance.  

That said, standing out and fitting in are inscribed with different meanings when the students 
doing so are racialized or minoritized as existing outside of the dominant norm. Fitting in, when 
it means assimilation, can be high stakes. Where students associated family or language with 
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negative visibility they often employed deficit discourses to themselves or their home lives. At 
the same time, where minoritized students experienced positive visibility it was often framed as 
standing out as compared to other minoritized students. Rather than being celebrated as an 
exceptional student (full stop), the celebration was of being a model minority student. As seen in 
their mathographies, young people work consonantly to find ways to understand and position 
themselves as worthy mathematics students, often contesting the centrality of innate ability. 
However, if the other most readily available discursive tools are the also-racialized American 
myths of hard work and meritocracy, student options remain severely constrained.  
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This study investigated how integrating social justice issues, STEM practices, and mathematics 
may support equity in mathematics education. We analyzed video of four lessons focused on 
inverse trigonometry and disability rights from a STEM project-based geometry class. Using an 
established observation protocol, we identified themes related to access and participation in 
coherent and cognitively demanding mathematics, student voice, and opportunities to develop 
positive mathematics identity. Findings provide insights into project and lesson structures that 
support balancing mathematics and social justice goals across STEM projects and point to 
additional considerations of equity not fully captured by the existing observation protocol. 

Keywords: Equity and Diversity; Geometry; High School Education 

Calls for integrated STEM education in K-12 schools have increased in recent years, and 
strategic STEM education plans often identify project-based learning (PBL) as one approach to 
integrated STEM education (e.g., Chief Education Office, 2016; STEM Leadership Council, 
2018). These STEM education plans argue that full integration of STEM education in K-12 
learning is necessary to ensure all students, particularly those from economically disadvantaged  
in STEM fields. Simultaneously, efforts to use mathematics to critically investigate social justice 
issues increasingly offers another approach to integrating mathematics and other learning goals 
(e.g., Esmonde, 2014; Keith McNeil & Fairley, 2016). Some mathematics education scholars 
argue that teachers face a moral and ethical imperative to transform mathematics classrooms into 
spaces for the development of critical social awareness and social transformation (Stinson, 
2014). Both of these approaches to integrating mathematics with other content areas and topics 
overlap in their goals to make mathematics learning more accessible and equitable for those 
students who have been systematically and historically marginalized in mathematics. 

Envisioning integrated models for mathematics education may hold promise for addressing 
longstanding inequities in mathematics. This study investigates the intersection of STEM PBL 
and social justice in mathematics classrooms with students from economically disadvantaged 
backgrounds and minoritized racial/ethnic groups. In integrated mathematics lessons, however, 
balancing mathematics learning goals with other goals (e.g., social justice, STEM) presents 
significant challenges for teachers (Bartell, 2013), and little is known about whether or not 
students actually experience these integrated lessons as more equitable (Harper, in press). Thus, 
the possibility exists that attempts to integrate social justice goals and STEM might further 
exacerbate equity issues. We aim to investigate the potential for integrating social justice and 
STEM goals into mathematics education by asking: does (and if so, how does) the integration of 
social justice mathematics with STEM PBL support goals for equity in mathematics education? 

Theoretical Framework 
Historically, research towards equity in mathematics education has prioritized achievement 

and access. Achievement relates to tangible outcomes on measures such as standardized tests or 
course-taking patterns, and access relates to tangible resources such as high-quality mathematics 
teaching and rigorous, coherent mathematics curricula (Gutiérrez, 2012). Achievement and 
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access reflect dominant dimensions of equity in mathematics education because of the 
widespread, historical attention these aspects have received and because of the acceptance of 
their importance in mainstream mathematics education research. In addition to these dominant 
dimensions of equity, we include a focus on under-recognized and under-explored dimensions of 
equity, identity and power, in this study (Gutiérrez, 2012). Students develop their mathematics 
identities based on dispositions and beliefs about their ability to learn, do, and use mathematics 
(Martin, 2006). Because school mathematics traditionally marginalizes certain ways of knowing, 
students must negotiate their personal (racial, ethnic, gender, etc.) identities as they develop their 
mathematics identities, but students of Color and students who are economically disadvantaged 
rarely have opportunities to see themselves as competent mathematics learners, doers, and users 
(Gutiérrez, 2012; Martin, 2006). Alternative ways of knowing in mathematics challenge 
traditional power structures in mathematics classrooms, and a more complex conception of 
equity attends to issues of social transformation such as whose voice is heard and what 
mathematics reveals about social justice issues (Gutiérrez, 2012). Identity and power represent 
critical dimensions of equity in mathematics education because attention to identity and power 
reflects a more recent sociopolitical turn in mathematics education (Gutiérrez, 2013). We adopt 
this framework for equity, which attends to both dominant and critical dimensions, and aim to 
describe what these dimensions look like in classroom interactions among teachers and students. 
Namely, we sought to answer the following questions: (1) How does access to mathematics 
content and the emphasis on student identity and power vary across a social justice-oriented, 
STEM project in a mathematics classroom?; and (2) What dimensions of equity within a social 
justice-oriented, STEM project-based classroom are not captured by current frameworks for 
observing mathematics classrooms? 

Research Design and Methods 
This study drew on a subset of data from a larger study that examined how students took up, 

negotiated, shifted, or resisted an innovative approach to coupling equity-minded mathematics 
instruction with STEM PBL across an academic year. The study took place at a STEM-themed 
magnet school, in a low-income area of a small Midwestern city, whose mission emphasizes 
technology-driven (1:1 student-to-computer ratio) PBL. The study occurred in one ninth grade 
geometry classroom in which the teacher integrated various equity-oriented instructional 
approaches, including integrating social justice and mathematics topics, into STEM PBL in 
mathematics. Of the 16 consented research participants, six are young men (4 white, 1 Black, 1 
Latino), and ten are young women (9 Black; 1 Asian American). The teacher participant is a 
White woman who was in her fourth year of teaching. She and the first author collaborated on 
social justice mathematics for three years, and the teacher sought various other professional 
development opportunities (e.g., technology, equitable collaboration).  

The research design was rooted in ethnographic and critical traditions of educational research 
(Anderson-Levitt, 2006; Skovsmose & Borba, 2004). The first author observed 93 total class 
sessions as a participant-observer. Data included video and audio recordings, field notes, and 
photographs from seven major projects and two mini-projects (all teacher-designed), as well as 
interviews assessments with students This study examined only video data from a mini-project in 
late April focused on inverse trigonometry and disability rights (hereafter, the mini-project).  
Mini-Project Overview 

Across four days, students worked in pairs to determine whether or not ramps at the school 
were compliant with regulations set by the Americans with Disabilities Act (1990). The primary 
mathematics goal focused on learning to use inverse trigonometric functions to find an unknown 
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angle when two or more side lengths of a triangle are known. The primary social justice goals 
focused on understanding the meaning and need for the Americans with Disabilities Act (ADA) 
and reflecting on whether persons with disabilities had fair access to and within the school. 
Students utilized technology and engaged with some aspects of design work, but the integration 
of STEM practices was more limited in the mini-project than in the major projects. The design 
aspects of the project involved collecting measurement data from physical ramps at the school 
and creating scaled drawings of ramps. Although students had an option to use dynamic 
mathematics software to model ramps, all students elected to draw by hand. Technology use 
mostly involved word processing, calculators, and researching ADA history and regulations. As 
the final mini-project artifact, students wrote letters to the principal about their investigation, 
making recommendations for school improvements using recently acquired funding. Although 
there were distinct goals for mathematics learning, social justice learning, and STEM practices, 
various activities throughout the mini-project and the final letter required integration across these 
goals and practices.  
Data Analysis 

Because achieving equity goals in mathematics education depends upon particular 
relationships between teacher and student behaviors, we sought to operationalize access, identity, 
and power based on observations of the entire class – teacher and students – throughout the mini-
project. We did not consider achievement because pre- and post-assessment data reflected 
progress over the entire year, not over individual projects. We used the Teaching for Robust 
Understanding of Mathematics (TRU Math) Rubric (The Algebra Teaching Study and 
Mathematics Assessment Project, 2014) to describe how access to mathematics content and the 
emphasis on student identity and power varied across the mini-project. We chose this rubric 
because it was designed to capture overall activities and interactions (i.e., not distinguishing 
between teacher and student behaviors) along five dimensions, which the rubric developers claim 
comprehensively describe powerful mathematics classrooms (Schoenfeld, 2014). The 
identification of these five dimensions as key aspects of mathematically powerful classrooms 
(i.e., “classrooms that produce students who do well on tests of mathematical content and 
problem solving” (Schoenfeld, 2014, p. 406)) was based on cumulative research in mathematics 
education suggesting that access to coherent and cognitively challenging mathematics, an 
emphasis on mathematical sense making, and equal participation are necessary aspects for 
students’ mathematics success. These dimensions of powerful mathematics classrooms, and thus 
the TRU Math Rubric, map onto ways equity in mathematics education has historically been 
theorized (Gutiérrez, 2012), making this rubric a particularly good starting point for considering 
whether social justice, STEM, and mathematics integration achieved equity goals. More 
specifically, we used the TRU Math Rubric to operationalize access as the extent to which 
participation in coherent and cognitively demanding mathematics was available to students and 
identity and power as the extent to which student voice, thinking, or contributions drove the 
mathematics and gave students an opportunity to develop a positive mathematics identity. Table 
1 gives an overview of the five dimensions included in the TRU Math Rubric and shows how we 
mapped each dimension to the theoretical constructs of access, identity and power.  

Table 1: A Map of Dimensions of Equity to the Dimensions of the TRU Math Rubric 

Access 
 

Mathematics The extent to which the mathematics discussed in the observed 
lesson is focused and coherent, and to which connections 
between procedures, concepts and context are addressed 
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(dominant 
dimensions) 

Cognitive 
Demand 

The extent to which classroom interactions create and maintain 
an environment of productive intellectual challenge that is 
conducive to students’ mathematical development 

Access to 
Mathematical 

Content 

The extent to which classroom activity structures invite and 
support the active engagement of all of the students in the 
classroom with the core mathematics being addressed  

Identity & 
Power 

 
(critical 

dimensions) 
 
 

Agency, 
Authority, & 
Mathematical 

Identity 

The extent to which students have opportunities to conjecture, 
explain, make arguments, and build on one another’s ideas in 
ways that contribute to students’ development of agency, 
authority, and identities as doers of mathematics 

Uses of 
Assessment 

The extent to which the teacher solicits student thinking and 
instruction responds to those ideas, by building on productive 
beginnings or addressing emerging misunderstandings 

 
Each author independently analyzed video recordings using the TRU Math rubric to: (1) 

identify segments by participation structure (whole class, group work, or individual work); (2) 
divide segments by participation structure into five minute or less segments; and (3) rate (1 – low 
level, 2 – mid level, 3 – high level, 8 – not enough information, and 9 – not applicable) the 
activities of each segment along the five dimensions described in Table 1 by using unique rubrics 
corresponding to each participation structure (for full rubrics see Schoenfeld, A. H., Floden, R. 
E., & the Algebra Teaching Study and Mathematics Assessment Project, 2014). Each recording 
was approximately one hour in length and was split into fourteen segments on average. We used 
spreadsheets to record the participation structure, duration, TRU Math rating for each dimension, 
and brief memos about observations on each segment. We ensured reliability by meeting and 
comparing our ratings and memos for each segment and resolving differences through discussion 
and rewatching that segment together until we reached consensus. 

Findings 
Across the mini-project, we observed three classroom participation structures: whole class 

activities (36.49% of total time across four days), group work (28.3%), and individual work 
(31.37%). Note that 3.85% of total class time was identified as not applicable and is shown in 
gray in Figures 1 and 2. Whole class activities included launch of activities (18.62% of total time 
across four days), teacher exposition (6.94%), and whole class discussion (23.15%). Table 2 
summarizes mini-project activities and their durations. 

Table 2: Summary of Mini-Project Activities and Their Duration 

 Activity Summary Time 
(min) 

% of 
Lesson Participation Structures 

D
ay

 1
 

Warm-up by solving equations using inverse operations 11.75 23.8% Launch, Individual work, Discussion 
Introduction to using inverse trigonometric functions to solve for 

unknown angles in right triangles 5 10.2% 
Launch, Exposition 

Inverse trigonometry task, adapted from the CPM (2013) Core 
Connections: Geometry, Lesson 5.1.3, involving hypothetical 

wheelchair ramps 32.5 66.0% 

Launch, Group work 
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D
ay

 2
 Connecting math practices necessary for project to evaluation rubric 32.95 58.9% Launch, Individual work, Discussion 

Measuring base, height, and/or hypotenuse of selected ramp in school 22.95 41.1% Launch, Group work, Exposition, (N/A) 

D
ay

 3
 

Revising measurements, producing scaled drawings, calculating angles 
of measured ramps  46.4 83.0% 

Launch, Group work, (N/A), Exposition 
Writing letters to summarize findings and make recommendations 9.5 17.0% Individual work, Exposition 

D
ay

 4
 

Reflection on evaluation from previous project 5.9 11.6% Launch, Individual work, Exposition 
Writing letters to summarize findings and make recommendations 33.2 65.4% Launch, Individual work, Exposition 

Discussion of meaning/importance of ADA law and equity concerns 
raised through this investigation 11.7 23.0% 

Launch, Discussion 
 
Access to coherent and cognitively demanding mathematics content 

Figure 1 shows the average TRU Math Rubric scores for three dimensions for each 
participation structure across the four days of the mini-project. Duration of participation 
structures are drawn to scale, with whole class activities in blue (light blue for launch, dark blue 
for exposition, and blue for discussion); group work in green; and individual work in orange.   

 
Figure 1. Access Dimension. Average TRU Math Rubric Scores for Mathematics, Cognitive 

Demand, and Access to Mathematics Content by Participation Structure 

Taken together, the three dimensions shown in Figure 1 provide insights into how 
participation in coherent and cognitively demanding mathematics (i.e., access), as well as STEM 
practices and social justice content, varied by participation structure and day. Average scores 
(calculated by averaging scores across segments for the duration of each participation structure) 
for the “access to content” dimension suggest that, overall, broad (i.e., equitable) participation 
was achieved (score of 3). In some cases, uneven participation was observed, but the teacher 
made efforts to achieve equitable participation (score of 2). The average scores for the 
“mathematics” and “cognitive demand” dimensions provide information about the nature of that 
participation, respectively, the coherence/meaningfulness of mathematics and the level of 
cognitive challenge involved in participation. Although overall average scores of 2-3 were 
common for these dimensions, we noticed some variation by participation structure and day.  
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During group work on Day 1 and 3, the mathematical content students engaged with was 
largely skills-oriented (solving for an unknown angle using inverse trigonometry) with some 
connections to the meaning of inverse (in Day 1) and to the context of the ramps (Day 1 & 3) 
(“mathematics” score of 2), but the teacher largely drove these connections (“cognitive demand” 
score of 2). On Day 2, however, students had an opportunity to engage with explanation of 
mathematics practices/content as they collaborated to measure a ramp within the school 
(“mathematics” score of 3). The ramp students selected could not be measured in a 
straightforward way because it was two combined ramps (i.e., involved a switchback) and was 
adjacent to stairs. As students worked to decide how to define and measure the height and base 
of each ramp, they (rather than the teacher) took on the cognitive challenge involved with 
explaining and justifying their mathematical thinking (“cognitive demand” score of 2.5). 

Unlike in group work, whole class and individual activities often focused on coherence and 
connections in mathematics (“mathematics” score of 3), but the teacher was the primary driver 
making these connections (“cognitive demand” score of 2). Exceptions included the launch on 
Day 3 in which students’ were challenged to make sense of their ramps measurements by 
connecting to mathematical ideas and the context and the final whole class discussion (Day 4) in 
which students undertook the cognitive work of making connections between the mathematics 
and the social justice issue (“cognitive demand” scores of 3). Further, scoring the “mathematics” 
and “cognitive demand” for whole class and individual activities presented challenges (indicated 
by scores of 9: not applicable and 8: not enough information). In some cases, these dimensions 
were not applicable because the activities did not involve mathematics content. For example, 
launches and teacher exposition commonly scored 9 because these activities focused on logistics 
(e.g., how to complete an activity) without any attention to mathematics content. In other cases, 
however, the challenge of using the rubric to rate segments arose because of the interdisciplinary 
and integrated nature of activities. For example, rating these dimensions during individual letter 
writing was challenging because it was impossible to discern students’ mathematical thinking 
from their thinking about writing and the social justice issue. Further, topics of discussion were 
not always explicitly connected to mathematics (e.g., whole class discussion on Day 4).  
Emphasis on student identity and power  

Figure 2 shows the average TRU Math Rubric scores for two dimensions for each 
participation structure across the four days of the mini-project. Duration of participation 
structures are drawn to scale, with whole class activities in blue (light blue for launch, dark blue 
for exposition, and blue for discussion); group work in green; and individual work in orange.   

 
Figure 2. Identity and Power Dimensions. Average TRU Math Rubric Scores for Agency, 

Authority, and Identity and Uses of Assessment by Participation Structure 

Taken together, the dimensions in Figure 2 provide insight into the extent to which student 
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voice, thinking, or contributions drove the mathematics (i.e., power) and gave students an 
opportunity to develop a positive mathematics identity. Overall, during group and individual 
work, at least one student had an opportunity to talk about mathematical content, but the teacher 
drove conversations and determined mathematical correctness. Students were not supported to 
build on each other’s thinking (“agency, etc.” score of 2), and the teacher did not necessarily 
build on student ideas (e.g., lead students in the “right” direction) (“assessment” score of 2). In 
whole class activities on Day 2, 3, and 4, however, students had an opportunity to explain their 
thinking, with other students building on those ideas, the teacher ascribing ownership to those 
ideas (“agency, etc.” score of 3) and instruction building on those ideas (“assessment” score of 
3). These instances corresponded to high levels of mathematical coherence/connections and 
cognitive demand (scores of 3) but uneven participation (“access” score of 2; Figure 1). 

Discussion and Conclusion 
With increasing recognition of mathematics’ important relationships to other disciplines, 

attempts to integrate other topics (e.g., social justice, STEM) into mathematics education will 
necessarily require that teachers spend instructional time focused on topics that are not explicitly 
mathematical. In efforts to integrate social justice goals and mathematics goals, concerns about 
balancing the focus on mathematics and other goals are not new (Bartell, 2013). A major concern 
is that time taken away from a direct focus on mathematics may exacerbate inequities in 
mathematics (Harper, in press). This study provides insights into how particular project 
structures might support balancing mathematics goals with social justice and STEM goals.  

Although aspects of the mini-project focused on skill-oriented mathematics, non-
mathematical topics, or project logistics, the activities that scored poorly on measures of 
coherent and cognitively demanding mathematics seemed to have served an important purpose in 
the overall scope of the mini-project. The work that students did on Day 1 and the first half of 
Day 2, combined with the integration of STEM practices in the second half of Day 2, likely 
prepared students to engage in coherent, cognitively demanding mathematics as they measured 
ramps and made sense of those measurements by connecting to mathematical ideas (from Day 1) 
and the context at the beginning of Day 3. Although subsequent mathematical work was largely 
procedural and letter writing was not always focused explicitly on mathematics, scores of 
participation were highest when students worked in pairs or individually on their letters to 
integrate mathematics, social justice, and STEM learning from across the mini-project. In other 
words, all students engaged with the intended mathematics, social justice, and STEM ideas, at 
least to some degree. Further, the final whole class discussion provided some insight into the 
integrated and equitable learning that occurred through this letter writing process. Although 
participation was somewhat uneven in this final discussion, the project culminated with high 
levels of coherent, cognitively demanding mathematics and student voice and authority with 
meaningful connections to the social justice issue.  

Finally, this study provides insights into additional considerations that are likely important 
for achieving equity goals through integrated mathematics education. Namely, models for 
powerful mathematics classrooms, and the observation protocols designed to capture dimensions 
of those classrooms, do not account for the ways that non-mathematical aspects of social justice-
oriented STEM PBL support access to coherent and cognitively demanding mathematics (as 
discussed previously) and how those non-mathematical aspects may foster additional aspects of 
power and identity. The framework used in the current study only captured power as student 
voice and authority and focused only on mathematics identity. In this study, the level of 
engagement with and passion for discussing the social justice issues during the whole class 
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discussion on Day 4 are not reflected in the current analysis. Because students negotiate their 
personal (racial, ethnic, gender, etc.) identities as they develop their mathematics identities 
(Martin, 2006), attempts to frame equity in observations of mathematics teaching and learning 
must also incorporate a way to identify opportunities for students to bring other salient identities 
into the mathematics space through integrated mathematics education. For social-justice, STEM 
PBL specifically, this might involve adding an additional dimension that identifies the extent to 
which students use mathematics and/or STEM practices as analytical tools to understand and 
transform social justice issues (i.e., power) and how students see those issues as important and 
relevant to them (i.e., personal identity). Considering the level of engagement with disability 
rights that students came to recognize as relevant and important through this mini-project, non-
mathematical discussions present an important opportunity to understand how students see their 
other identities as salient in mathematics when that mathematics is integrated with social justice 
and STEM. Looking ahead towards integrated mathematics education demands that we re-
imagine what dimensions are necessary for powerful mathematics classrooms so that those 
classrooms support broader equity goals. 
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TACIT, TRICK, OR “TEACH”: WHAT IS GINA’S MATHEMATICAL REALITY? 
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We present study findings that depict the natural and fractional number knowledge of one third 
grade student with learning disabilities (LDs) in seven experimental sessions. We utilize 
qualitative analysis methods to illustrate how this student evidenced her knowledge of natural 
number and fractions through her interactions with varied learning situations. We argue the 
child reverted to pseudo-empirical abstractions and tricks to make sense of the situations as 
opposed her own reasoning. Providing children interventions that promote procedures and 
actions may be preventing children from adapting their thinking structures. 

Natural and rational number understandings are among the most relentless areas of difficulty 
in school mathematics, especially for children who have varying exceptionalities, such as 
learning disabilities (LDs) (Mazzocco & Devlin, 2008). Difficulties in understanding natural 
numbers and fractions impact these students from the early elementary years through their adult 
life (e.g., Lewis, 2014; Mazzocco, Myers, Lewis, Hanich, & Murphy, 2013) and effect 
problem solving, computational procedures, and development of reasoning and sense making. 

In this paper, we present findings from a design experiment that depicts the natural and 
fractional number knowledge of one third grade student with learning disabilities (LDs) in seven 
experimental sessions. We utilize qualitative analysis methods to illustrate how this student 
evidenced her knowledge of natural number and fractions through her interactions with varied 
learning situations. Through presenting this data, we raise questions about the child’s reality and 
what the child’s apparent knowing and learning was relying upon. The research questions are (1) 
What is one child identified with a LD’s mathematical reality specific to her number and 
fractional knowledge as modeled across varying task types and (2) What persistent difficulties 
did the child experience? What seemed to be the function of these difficulties? 

Theoretical Framework: The Mathematical Reality of Children with LDs 
Historical perspectives regarding the mathematical realities of children with LDs arose 

from a medical depiction of LD as either innate, neurological impairment (Lewandowsky 
& Steelman, 1908) or an acquired ‘disabling’ of calculation centers in the brain despite 
normal language and speaking skills (Henshan, 1928). Over time, children not affected by 
injury and thought to have otherwise average or above average intelligence showed similar 
‘impairments’ in mathematics performance (U.S. Office of Education, 1968). Researchers began 
to define ways to address the perceived impairments in mathematical knowledge (e.g., Hudson & 
Miller, 2006). In recent years, specific factors (e.g., working memory, processing, spatial 
reasoning, retrieve basic facts, identifying and/or compare number magnitudes and symbols) 
were tested alongside instruction (or before and after instruction) in a predictive manner to both 
explain and remediate the child’s mathematical reality (e.g., Compton, Fuchs, Fuchs, Lambert, 
& Hamlett, 2012; Jordan, 2007; Mazzocco & Devlin, 2008; Murphy, Mazzocco, Hanich, & 
Early, 2007; Vukovic, 2012). By and large, the field continues to define LDs in children’s 
mathematical realities as innate, neurological differences even today. 

Yet, this definition of LD is incomplete and at times misleading for those who do not 
equate biological difference as a disabler or a remediation with learning. We argue that 
biological variations in the brain are far more dissimilar than they are similar (Compton et 
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al., 2012) and that regardless of variations from a norm, these children still hold knowledge 
(DiSessa, 1988). If this is true, then we also have to accept that even if children labeled LD may 
evidence knowing or engage with situations in unexpected ways that their reasoning cannot be 
conceptualized as “impaired” or even “different”. It must be conceptualized as their knowing: a 
complex, unique organism truly known only to the child. In this way, we draw from Piaget 
(1972/1980), who viewed learning as adaptation, one that any child makes to her internal 
cognitive schemes, as she navigates her environment. In this way, Piaget (1972) links adaptation 
with instruction. 

Adaptations children make in their reasoning, or not, become negotiated by the 
environment and the larger system. These negotiations do begin in the child’s mind, yet the 
child’s mind and the goal-driven activity that produces learning is variant and system dependent. 
Depending on the system, a child with “LDs” might very well be considered disabled in one 
classroom or learning environment and not another (McDermott, 1993). In a similar way, this 
child could be disabled in one kind of mathematical instruction (Lambert, 2014) but not in 
another. These factors can work to enable or disable aspects of the child’s unique knowing and 
learning. 
Number Sequences and Composite Units 

Within the child’s mind lies the potential construction of a meaningful mathematical 
reality. Steffe and Cobb (1988) describe four distinct types of number sequences children may 
evidence and adapt to understand other mathematics: (1) Initial Number Sequence, (2) Tacitly- 
Nested Number Sequence, (3) Explicitly-Nested Number Sequence, and (4) Generalized Number 
Sequence. Each number sequence can be related to children’s composite unit coordination. 

Initial Number Sequence. Steffe (1992) posits that children who “count on” think with an 
Initial Number Sequence (INS). A child who uses an INS is characterized by her counting of 
single units and then segmenting of a numerical sequence. Through this segmenting, the child 
unitizes numerical sequences and interiorizes the rules of patterns (e.g., develop one composite 
unit and count on from this composite unit to a second composite unit, 4…5-6-7-8). 

Tacitly-Nested Number Sequence. Once a child has developed and coordinated composite 
units through an INS, she can use composite units both as a unit in which to count on from and 
one to keep track of when counting. This is a Tacitly-Nested Number Sequence (TNS). The 
activity, while similar to an INS, supports the child to hold a start and stop value AND count on 
additional items from the stop value (e.g., three more items were added to the total of 8…9- 
10-11). Essentially, a child who thinks with a TNS take the result of her counting as a composite 
unit in which to use for a new problem. Ulrich (2015) explains this child is aware of her counting 
acts as both (a) a segment of a numerical sequence (i.e., the difference between 4 and 11 is 5, 6, 
7, 8, 9, 10, 11) and (b) the numerical sequence created through this segmenting (i.e., 5 is 1, 6 is 2, 
7 is 3, 8 is 4, 9, is 5, 10 is 6, 11 is 7). The awareness of one number sequence contained inside 
another, or double-counting, is an indication of TNS, as is a skip count to solve early 
multiplicative kinds of problems, such as how many 3’s are contained in 39. 

Ulrich and Wilkins (2017) further distinguish between two types of TNS, early TNS 
(eTNS) and advanced TNS (aTNS). The two main distinctions between these subsets of TNS are 
described as the degree of abstraction a child relies on when understanding one composite unit 
while developing a second composite unit. For instance, when asked to find the parts of a whole 
in a fraction task (with a continuous model), a child who thinks with an eTNS will engage in 
equi-segmenting where she develops a composite unit that she needs to adjust in relation to the 
whole (Steffe, 2002; Ulrich & Wilkins, 2017). A child who thinks with an aTNS anticipates using 
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a composite unit prior to the activity in a task. The common aspect of each way of reasoning is 
the propensity to be aware of one number sequence in relation to another number sequence. 

Explicitly-Nested Number Sequence. Children who use composite units and the whole 
simultaneously disembed parts from wholes and develop iterable units of one. These children are 
thinking with an Explicitly-Nested Number Sequence (ENS) (Olive, 1999; Ulrich & Wilkins, 
2017). An ENS supports children to multiplicatively understand a single unit and a composite 
unit without disrupting the whole because they see the summation of the parts and the whole as 
interchangeable (2017). Olive explains that each nested unit needs to be understood abstractly, 
allowing two levels of units as a singular abstract composite unit. This nesting of abstract units 
provides children number structures that are necessary for multiplicative reasoning. For example, 
a child at an aTNS stage versus an ENS stage would solve the following task in very different 
ways: 1 + 1 + 1 + 1 + 1. A child at an aTNS stage would need to consider each 1 as its own unit 
in which to understand the whole (e.g., 1+1=2, 1+2=3, 1+3=4; 1+4=5). A child at an ENS stage 
would be able to consider the five 1s and the whole 5 simultaneously. 

Other sequences: Doubles and halves. Doubling and halving are described as representing 
initial forms of partitioning and iterating development that children use when transitioning from 
additive structures towards multiplicative structures. Research studies focused on doubling and 
halving are minimal in mathematics education (i.e., Confrey, 1994; Kieran, 1994; Empson & 
Turner, 2006; Steffe, 2002). Findings from these studies suggest that children do not need 
multiplicative structures to initialize engagement with halving because they can develop 
doubling operations through symmetry and halving operations through activity such as 
considering parts of parts (Author, Confrey, 1994). 

Kieran (1994) first noted that young children were aware of multiplicative patterns through 
paper folding; Empson and Turner (2006) further explored this development with elementary 
school age students. Empson and Turner found that engagement with empirical material resulted 
in four types of development (non-recursive activity, emergent recursive activity, recursive 
activity, and functional multiplication). Through this development, Empson and Turner noted 
that young children began by not being able to relate their folds to the number of parts and to 
use this solution to solve problems (non-recursive activity) and that first-grade students did 
not transition beyond this activity. After transitioning from non-recursive activity, students 
could build towards early recursive activity (emergent recursive) and develop recursive activity 
(recursive activity) and multiplicative structures where solutions were anticipated (2006). These 
stages in students’ development suggest another means in which to make sense of how students 
transition from additive, natural number structure structures, towards other mathematics, such as 
multiplicative or fractional knowledge. 

Methods 
“Gina” 

“Gina” (age = 10 years) attended elementary school in the Northwestern United States. 
She was identified by her school system as having a learning disability that affected her 
mathematics performance. Gina’s performance on the mandated standardized state measure of 
math performance was at a low level. Her reading scores were at average levels. Gina received 
additional support  in  mathematics  concepts  and  operations  that  included  explicitly modeled 
strategies and procedures for operations. Gina’s individual learning differences included 
significant difficulties with working memory. 
Initial Interview and Design Experiment 
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Data collection was collected in two semi-structured clinical interviews (Ginsburg, 1997) 
and seven sessions of a design experiment (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003). 
All sessions were used in data analysis. Sessions took place during school hours and were in 
addition to the child’s regular math class time. The first author was the interviewer and the 
researcher-teacher and attended all sessions. The second author collaborated throughout the 
retrospective analysis of sessions. The first author utilized explanations and indicators of Gina’s 
possible number (Olive, 2001), multiplicative (Hackenberg, 2013; Tzur et al., 2013), and fraction 
(Olive, 2001; Steffe & Olive, 2010; Tzur, 1999, 2000, 2007) conceptions to build a theoretical 
model of Gina’s initial ways of operating. Then, we worked with Gina individually in sessions 
that lasted about 40 minutes. Although sessions were planned for 40-min time increments, not all 
sessions lasted 40 min (range of time = 30 to 50 min; average time per session ≈ 40 min). 
Researchers collected three sources of data: video recordings, written work, and field notes. 

Tasks to promote Gina’s number knowledge. Consulting the available research and 
resources (e.g., Tzur & Lambert, 2011), we designed several learning situations to support Gina 
to adapt her schemes for number toward abstract composite units. Our goal was to promote Gina 
to “know” that fluent addition strategies use number relationships and the structure of the 
number system- that numbers can be decomposed and added on in parts, not just by ones. One 
platform task involved rolling a dice and moving a marker across a linear number game board 
(Tzur & Lambert, 2011). The object of the game was for the child to tell “How Far from the 
Start” she was after combining two addends. Another platform task involved counters and 
covers. In some cases, counters were quantified by the child; the researcher then added to or 
subtracted from the total and asked about the new total. Constraints on the platform tasks (i.e., 
covering of an addend or both addends, larger numbers, moving the location of the unknown 
questions to promote anticipation) were planned such that Gina would hold a start value in her 
head, count on using the structure of numbers through ten as parts and wholes mentally to add 
two numbers- an early ENS with small composites. A third task involved small and large units 
presented as bakery pans. Gina was asked to convert back and forth between the larger (e.g., 3) 
and the smaller (i.e., 1) to “fill orders”. 

Fraction knowledge. We also included a second set of learning situations to assess and 
support Gina’s unit fraction concept (Tzur, 2007). Unit fraction concepts can be initially accessed 
with a tacit number sequence. One platform task was to equally share one item among two 
people and then share among three and four people. Constraints (no folding for 3 sharers; make 
the size in fewest number of attempts for 4+ sharers) were designed such that Gina would use 
iteration, or repeating, of a unit she estimated to be the correct length across the whole and make 
adjustments opposite the number of pieces. 
Data Analysis 

Ongoing analysis of critical events (Powell, Francisco, & Maher, 2003) in the child’s 
thinking and learning were noted and discussed before and after each session. The focus was on 
generating (and documenting) initial hypotheses as to what conceptions could underlie the 
child’s apparent problem-solving strategies during these critical events. These hypotheses led to 
planning the following teaching episode. 

Next, the researchers engaged in a blend of retrospective analyses (Cobb et al., 2003) and 
fine-grained analysis (Siegler, 2007) to consider Gina’s adaptations and interactions with the 
learning situations. To begin, we gathered the video data for all sessions and transcribed these 
sessions verbatim. We also examined corresponding written student work and anecdotal notes 
taken during these sessions. Then, we closely inspected the data for evidence of Gina’s 
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understandings and/or shifts in understandings. That is, we conducted a line by line examination 
of the transcribed data with a side by side of video data to consider how Gina’s thinking 
progressed, or not, across the sessions. We then chunked the data into smaller, more meaningful 
parts. For each identified segment, we examined very closely each child’s spoken and gestured 
actions along with her utterances and representations, consistently and systematically searching 
for confirming or disconfirming evidence (Strauss & Corbin, 1994) to ensure credibility. This 
process allowed us to elaborate on the model of Gina’s mathematics as she interacted with the 
learning environment over time (Steffe, 1995) to gain a clearer picture of adaptations made to her 
thinking. 

Tacit, Trick, OR “Teach”: What is Gina’s Mathematical Reality? 
Gina’s Initial Mathematics:  Clinical Interview and Session One 

In the clinical interview, Gina solved several tasks involving whole number operations the 
revealed a seemingly tacit nature of her thinking. For instance, she skip-counted by threes to 18 
yet had to resort to the use of ones after 15 (e.g., “3, 6, 9, 12, 15…16-17-18; 19-20-21….”). 
When asked to solve 8 +      = 14 in a contextualized story problem, Gina stated, “bottom number 
bigger, break apart a ten”, first counting back with her fingers from 14, keeping a double count, 
and wrote a number sentence (algorithm). Interestingly, she writes “108” as the answer. When 
asked if that matched what she did with her fingers, Gina stated that “you have to put a ten 
there”. When asked different ways to make 17, Gina stated there were not many. When given a 
start number of six, Gina counted up from five to 11 with her fingers, then counted up another 
six verbally to 17. She did not put the five and six together as a solution. We were unsure of 
Gina’s number sequence. 

We also asked questions around Gina’ fraction knowledge. When asked to say for which of 
two cookies she would get a bigger share (one is cut into two parts vertically; the other 
diagonally), Gina stated that they were the same because “they each are a split of one cookie”. In 
another problem, Gina worked to share a thin rectangular paper called a French fry (Tzur & 
Hunt, 2014) between two friends. Gina suggested partitioning the bar “into halves”, 
partitioning the bar in the center. When asked if there was a way to know the parts are equal, 
the child made three parts on each side of the partition line and seemed to explain “equal” as the 
same number on each side. When asked to share the fry among three people and constrained 
not to use cubes or fold, the child drew three relatively equal parts that did not take up the entire 
rectangle. To address the space not used by her three parts, Gina suggested we cut off the rest of 
the rectangle. 

To confirm the participatory nature of Gina’s tacit number knowledge, we began Session 1 
with the “How Far from the Start Are You?” game. Excerpt a begins with Gina’s response to 
“How Far from the Start” she was after rolling 9 then 11 (the first nine spaces were covered with 
a paper and a “9” was written on the cover): 

Excerpt a: Move nine spaces, then move 11 spaces. How far from start are you? 
R: Are you thinking about how to make nine? 
G: Yeah let me show you [counts up five, places a finger, then counts another four and places a finger, 
then counts up one and places a finger]. 
R: Hmm. So, you did five- 1-2-3-4-5 – and then you figured out that the other part of nine was four 
[child nods]. Did you figure that out in your head before you did anything? 
G: Yeah, I was about to do three plus one is four [rolls dice again and gets 11]. I’m trying to figure out 
how to get to the 11; I haven’t done that one before [child uses game board to count ten more by ones, 
then another for 11 spaces]. 
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R: So, we went nine [grabs cover and writes “9”; covers first nine spaces] and then we went 11. How 
far from the start are we? 
G: [pauses for 6 seconds; the grabs pencil and begins to write algorithm]. R: Can you figure it out 
without writing it down? 
G: [pauses for 9 seconds] 20. R: How’d you know it was 20? 
G: Whenever I do math problems, it’s like a paper and pen to the wall showing the math problem and 
the numbers magically appear. It’s just my brain. 
R: Tell me what you were thinking in your brain. G: [writes down 9 + 11 = 20 vertically] 
R: Tell me what that means. 
G: This [points to 9 + 11 that she wrote, write 9 + 1 = 10] is how much this adds up. It’s sort of like 
we’re grouping. 
R: So, you took the nine and the one from the 11 and you did ten? 
G: [Smiles] Or - you could do 9 [lifts fingers one at a time] …10-11-12-13-14-15-16-17-18-19-20. 

In the first session, Gina evidences what could be viewed as tacit knowledge of number 
through a count on. That is, she seems to start from the nine and count up 11 to stop at 20. Yet, 
because she already solved the problem visually by “showing the math problem on the wall”, 
we asked her another problem involving 2 +      = 8. Gina’s thinking in this problem told a 
different story. 

Namely, Gina began to count up from five and stopped. She then stated that four and 
four is eight, raised two fingers, began to count up and stopped at seven. The child then 
began to verbally recite number facts and, after several attempts, eventually stated that two and 
six would make eight. We also used the fraction tasks from the first session, yet this time we 
asked Gina to test a share size to see if it was the correct size for one of three equal shares. 
To do so, Gina repeated the share three times to show a length, yet called the part “one-half”. 
She then described her activity as “two times”, further explaining the activity as 2 + 1. 
Looking across the tasks, Gina’s activity suggested that she was operating with a participatory 
tacit number sequence. Yet, procedural residue made it difficult to say this with certainty. 
Sessions Two and Six 

In session two, Gina continues to display what we called tacit knowledge in both number 
and in fractional knowledge. Excerpt b begins with Gina’s response to a missing addends task 
where she was shown six counters, then the counters were covered. The researcher then said, “I 
placed more counters under the cover; altogether there are 13. How many counters in my hand?”: 

Excerpt b: 6 counters covered, 7 in the researcher’s hand  
G: [mumbling]. Six… [pauses 12 seconds] Trick question. R: How so? 
G: Well, I already know that six plus four is ten. The trick I was taught was to add another three 
[shows three fingers to R]. So, it would have been six plus…like…13 [shugs]. Because there’s 
possibly no way to get to 13 because we’ve already got six [shows six fingers, stares at her fingers. 
Then begins to raise two more fingers]. Eight…. [pauses 7 seconds] it’s 12. I have to get to…. 
R: Well I had six and I added some more and now I have 13. You were trying to think about… G: Is 
this some sort of trick question or what [smiles]? 
R: [smiles at child] Let’s back up to something you were saying. Did you say that you had six, and 
then you put four more onto that and got to ten? 
G: [nods] 
R: Then how many more did you say to 13? G: Three more. 
R: So [shows three on one hand and hour on the other]? 
G:  30…34. No, seven. Seven? 
R: Do you think I put seven under there? 
G: Yes [lifts covers and counts to check, smiles]. 
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In the second session, Gina continues to show a kind of tacit knowledge of number 
through a count on. That is, she seems to start from the six and counts up to 10. Interestingly, 
she then seems to no longer rely on her own knowledge. Instead, she reverts to a “trick” to get 
from 10  to 13. Good evidence for this claims rests in the notion that Gina could not put the four 
[6… 7-8-9- 10] with the 3 to arrive at a missing addend of seven. Instead, Gina sees a “trick 
question”. 

Similar activity seemed to continually show and then fade in Gina’s reasoning throughout the 
remainder of the sessions, and became exacerbated when the location of the session was 
changed from the small environment used in the first four sessions to the room where Gina was 
used to coming for small group math intervention time during the school day. In the seventh 
session where Gina’s response to task where she was shown 4 red units (each red unit measured  
2 white units). The researcher asked Gina to think about how many white units would be needed 
to equal the same length. Gina aligned the white units long ways, reasoning that three white 
units aligned with the red unit as opposed to two and muttered, “3, 6, 9, 12, 15, 18” and 
smiled. Excerpt c begins with a request from the teacher to consider the total amount of white 
units if two more red units were added. Gina answered incorrectly and was asked to explain: 

Excerpt c: Add two more red units (3s)- how many total white units (1s)? 
G: Because this and that [taps table]...it’s like a multistep...so...what we do in my classroom. It’s like, 
um, it’s supposed to be hard. It used to be hard for me but...it’s easy [writes down the word multistep 
on the paper]. So that would be considered multistep. Six red and you need two more red. And you 
already have this over here down [references red units she modeled earlier]. And so, six plus two 
equals eight [points to where she wrote "multistep"]. It’s a multistep. Then 18 [writes 18] plus two, I 
mean eight. 
R: Why eight? 
G: [looks over at other teacher in room] Because six plus two equals eight. 
R: That is true. How many white units equal one red unit? G: Three. 
R: How many reds are you adding? G: Ah ha! 11!  This all equals 11! R: Tell me how. 
G: Because this right here... [draws a circle in the air over her earlier representation of the red and 
white units]. Because this [swipes where she wrote "multistep"] and three equals ... 11. 

This excerpt provides clear evidence that what may have disabled Gina was not her 
innate, cognitive differences but instead prior “tricks” and teaching “strategies” that prohibited 
her from negotiating her own reasoning in the learning situation. Moreover, the mere presence of 
the teacher in the room seemed to change Gina’s goals away from reasoning and sense making 
and toward displaying learning “strategies”. While these strategies were arguable now part of her 
reality, we question whether this thinking was really “hers” in that she could not call upon it to 
explain and justify her words. We will expound upon further examples to illustrate this point 
further in session. 

Discussion 
We investigated how one student, Gina, evidenced her tacit use of composite units and 

early fractional reasoning. We begin to describe the difficulties this child experienced - namely, 
the use of tricks and previously taught strategies to engage with the mathematics as opposed her 
own reasoning. Toward this end, we add a unique contribution to the literature. Namely, we 
found that when Gina engaged in natural number tasks, she did appear to be relying on tacit 
knowledge, at least in part. However, when engaging with other tasks, she reverted to pseudo- 
empirical abstractions and tricks to make sense of the situations. Gina seemed to take up 
procedures that prevented her from reflecting on her actions upon units such that she might adapt 
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her thinking structures. For instance, in session 2, Gina segmented the number sequence between 
six and 13 into four and three. However, we posit that these actions were not organized in such a 
way that Gina could make sense of the potentially powerful way of operations (i.e., a through ten 
thinking, or a breaking of seven into four and three). Instead, strategies and tricks seemed to be 
taught arbitrarily to Gina to afford her success in counting and performance in adding and 
subtracting. 

In other sessions, Gina seemed to have a goal of mimicking her intervention teacher. This is 
evidence that learning is contributed to by both children and teachers and are negotiated by 
factors such as interactions, school curriculum, classroom culture, and so forth. For example, a 
teacher’s reaction to a child with an exceptionality who has supplied a solution that they did not 
expect or time taken to answer may be, “That’s not right” followed by explicitly taught teacher 
thinking. These responses likely reinforce the child as possessing the "problem." Yet, another 
response (e.g., “Say more”) might change the context, opening up space for the child to access 
the mathematics from his or her own conceptions and develop practices that align with academic 
success. The interactional context of, “Did they say what I was expecting?”, becomes replaced 
by, “How are they thinking about it?”. The problem, removed from the child, becomes 
explorable as the narrative of the child as disabled begins to unravel. 

We argue that instruction for Gina would have better served her mathematical needs if 
she had been given more opportunities for adapting her own thinking constructed within her own 
mathematical reality. When well-intentioned educators provide children interventions that 
promote procedures and actions, not only are they not serving their children’s mathematics 
learning needs, they may be preventing them from engaging in learning situations that support 
the children to adapt their thinking structures and advance their learning. In this sense, from 
working with Gina, we have lingering questions regarding her development. For instance, over 
the course of the sessions, Gina evidence an affinity towards doubles and symmetry both within 
natural number development and early fractional reasoning. Other studies (e.g., Empson & 
Turner, 2006) have found students rely on doubles and halves in varying tasks. Although not 
fully reported here, Gina seems to rely heavily on these units across learning situations and 
across natural and fractional number reasoning. Could this have been a pathway forward which 
Gina could utilize to overcome her reliance on tricks and make sense her own thinking? More 
research is necessary to determine real causes of students’ difficulties with number alongside 
research that conforms models of teaching that facilitate these children’s understanding, 
reasoning, and sense-making. 
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A student’s attitude towards mathematics affects how they learn and perform in mathematics. 
What exactly is meant by attitude and how this interacts with mathematics education is a current 
debate in the mathematics education research community. Regardless, practitioners often 
acknowledge a consideration of improving students’ attitudes towards mathematics in their 
course design. This creates an impetus to study attitudes towards mathematics in a way that 
lends itself to observing changes over a course in mathematics. The current study draws on two 
approaches to observing and measuring attitudes towards mathematics in an effort to contrast 
disparate approaches and deepen an investigation of students’ changes in attitudes. Results 
indicate there is no superior approach; that the multi-dimensional nature of attitude defies a 
succinct description, but methods exist to allow us to get a handle on this construct, nonetheless. 

Keywords: Attitudes towards mathematics, undergraduate mathematics education 

Introduction and Literature Review 
Education practitioners often lament their students’ attitudes towards mathematics, and this is 

employed as an explanation of their poor performance (Di Martino and Zan, 2010). But what is 
meant by attitude? How might this construct be operationalized, and with a clear articulation of 
“attitude” in hand, how might students’ attitudes be transformed through education and these 
transformations be observed? Despite decades of research on affect in mathematics education, 
these questions are only now being addressed in any substantial way (Pepin and Roesken-Winter, 
2015; Goldin, et al., 2016).  

The most current perspective on attitude is that it is a multi-dimensional construct, with 
affective, social, emotional, temporal, and other components (Hannula, 2012). Attitude can co-
emerge with the setting, and depends on social and individual aspects. In brief – attitude’s messy.  
Three-dimensional Model for Attitudes (TMA) 

In an effort to improve parsimony of the attitude construct, Di Martino and Zan (2010) 
introduce the Three-dimensional Model of Attitudes (TMA) framework, which conceives of 
attitudes towards mathematics having i) Emotional, ii) Vision of Mathematics, and iii) Perceived 
Competence components. These three form stable dimensions of the attitude construct, being 
based on ~1,600 student essays describing their relationships with mathematics, but each 
dimension could be further refined in a multitude of ways. Vision of Mathematics could be split 
into instrumental and relational views following Skemp (1976), for example, or it could be 
understood in terms of Sfard’s structural/relational model (1991). Di Martino and Zan (2010) 
provide a way to parse the otherwise difficult to grasp attitude construct.  

However, theirs is only one such way; indeed, the origins of attitudinal work in mathematics 
education are in the creation and validation of Likert-type scales; see, for example, (Fenema and 
Sherman, 1976). Di Martino and Zan (2010) level a valid criticism against much of these origins, 
in particular against the “measurement era” of creating Likert-type instruments. In particular, Di 
Martino and Zan (2010) characterize much of the literature as defining “attitude” a posteriori 
through the instruments used to measure it, creating a researcher’s tautology: we chose our 
research foci because the outcomes of our research indicate they are important and problematic. 
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It is necessary, then, to have a relatively clear articulation of “attitude” before rigorous research 
on it can proceed. 

Other criticisms towards instruments intended to measure attitudes are presented in Di 
Martino and Zan (2010). Among these are, i) items run the risk of being chosen in a way that 
may not be relevant to the survey/instrument responders – responders may be tasked only to give 
opinions on the items and their underlying structures that are of value to the researchers; ii) how 
are the scores for grading the items determined? This question is especially relevant to Likert-
type instruments, where researchers sometimes take the, totally erroneous, approach of assigning 
numbers to the Likert responses, calculate subsequent means, for example, and use these for 
comparison; iii) the act of measuring with a pre-defined scale necessarily compresses  or projects 
the multi-dimensionality of attitude onto smaller dimensions, and thereby loses nuance. They 
mention further that the enterprise of measuring attitude assumes it can be measured (read: 
quantified) and can therefore be related to other quantifiable variables present in education. 
These are valid and powerful criticisms and highlight to this author a need to investigate further 
the interactions between various measurement approaches present in the literature and, for 
example, the TMA framework proposed by Di Martino and Zan (2010) to further explicate the 
attitude construct.  
Mathematics Attitudes and Perceptions Survey 

Not all attitudinal survey instruments have been created in the same way: at least one, the 
Mathematics Attitudes and Perceptions Survey (MAPS; Code, et al., 2016) is grounded in 
empirical data, with the items and scales originating from students’ comments about learning in 
STEM fields, and used not as an objective measure of students’ attitudes, but rather as a measure 
of students’ attitudes relative to mathematicians’. 

The MAPS items were initially adapted from the Colorado Learning Attitudes About Science 
Survey (CLASS; Adams, et al., 2006), which were in turn emergent from student interviews. 
Items were subsequently refined, added or dropped based on student and faculty interviews. The 
survey then was completed by 3,411 students in differential, integral, and multi-variable 
calculus, and introduction to proof. An exploratory factor analysis was performed on a subset of 
this data, with a  subsequent confirmatory factor analysis on another. From this cyclical 
development process, seven categories emerged: growth mindset, a view of the relevance of 
mathematics to the real world (shortened: real world), confidence, interest, persistence, a drive to 
make sense of mathematical answers (shortened: sense making), and a view on the nature of 
mathematical answers (shortened: answers). Though these descriptors are largely self-
explanatory, the reader is referred to (Code, et al., 2016) for further elaboration of the categories. 

Importantly, data was also gathered from mathematicians, giving the final MAPS items an 
expert consensus rating. A student’s response to each item is  scored relative to the 
corresponding expert consensus: +1 if in the same “direction” as the mathematician – that is, 
agree or disagree – and -1 if in the opposite direction. A score of 0 is given for neutral responses. 

The intention with this approach was to construct an instrument that could observe 
movement of students’ expert-like views of mathematics. This approach avoids the arbitrariness 
of other instruments (Fennema and Sherman, 1976) and assesses the students’ attitudes, or 
aspects thereof, relative to the mathematics community’s prevailing attitudes. This facilitates a 
way of understanding how an education in mathematics might bring students into the culture of 
mathematics, or push them away. 

Previous implementations of the MAPS survey have revealed interesting results that 
corroborate results in the wider STEM literature (Code, et al., 2016): aspects of attitude do 
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correlate with academic achievement, though the directionality of this relationship is unclear; the 
higher the course in the mathematics sequence, the more expert-like dispositions of the students, 
though this may be a self-selection effect; and the typical mathematics course experience tends to 
push students away from more expert-like attitudes towards the field. Disheartening as this, this 
appears to be the norm; post-secondary education selects those most oriented towards the field, 
and seldom develops such orientation.  
Coordinating approaches to observing attitudes 

Given the proliferation of methods and ways of observing, measuring, and understanding 
attitudes towards mathematics, it seems a worthwhile endeavour to employ multiple methods on 
a particular group of students in a particular context to explore how each measure might 
contribute to an overall picture of the students’ attitudes towards mathematics. Both the TMA 
and MAPS have strengths – the TMA provides a way for the students’ voices to be heard, and 
the MAPS lends itself to large-scale educational institutions – and weaknesses – the TMA is 
applied only to what the student articulates, and the quantitative aspect of MAPS can be 
construed as feigning “rigor”, with educators desiring metrics. It seems that both ought to lead to 
a more complete picture of students’ attitudes towards mathematics.  

This study takes this approach with two such methods: the MAPS instrument and a TMA 
analysis of students’ writing about experiences with mathematics. In particular, we attend to the 
questions: i) is the same attitudinal construct identified by students’ free-form writing about their 
experiences with mathematics identified with a TMA analysis of their writing as that that is 
identified by their responses to the MAPS instrument? ii) Are the two approaches 
complementary or supplementary? iii) how might both be used to asses changes in attitudes 
exhibited by students over a mathematics course?  

Methods 
The data for this study comes from students enrolled in a 5-week Summer pre-university 

preparation program at San José State University (SJSU). Students in this program were admitted 
to SJSU, but did not pass an entry-level mathematics test. As a consequence, they were required 
to enroll in developmental courses during their first year of university. In an effort to get a lead 
on these courses before the start of the semesters, those students of greatest financial and 
academic need were invited to attend the Summer program, which is intended to smooth the 
students’ transitions to university and improve their overall chances of success.  

The Summer program consisted primarily of courses in elementary mathematics and English, 
but also included a series of sessions conducted by the university’s counseling services that 
targeted students’ attitudes towards mathematics. Specifically, the sessions focused on 
mindfulness, fostering a positive attitude, self-esteem and confidence in relation to performance, 
academic skills, stereotype threat, and relaxation. The inclusion of these counseling sessions was 
intended to target and improve the developmental students’ attitudes towards mathematics, as 
developmental students are known, in general, to have less favourable attitudes towards 
mathematics than their non-developmental counterparts and that this significantly hinders their 
progression through university (Maciejewski and Tortora, under review). The content of the 
Summer program is not the focus of the current paper. Rather, I seek to observe changes in 
students’ attitudes towards mathematics as revealed in their writing about mathematics and their 
responses to a survey instrument on attitudes and dispositions towards mathematics.  

Specifically, students in the Summer program were invited at the start and end of the 
program to write a short response to the prompt:  
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Tell us about a personal experience you’ve had with math. Try to write at least 200 words. 
This prompt was chosen to be as open as possible and to not narrow responses to be  

specifically about attitude or approaches to mathematics, etc. The intention here is for the student 
to recall a memory of their own interactions with mathematics; such memories are known to 
have associated emotional content, which is often articulated (Maciejewski, 2017).  

Prior to writing their response to the above prompt, the students responded to the MAPS 
instrument. Both the MAPS and the essay responses were completed online, during a class time.  

Start-of-program essays (N = 134) were matched with end-of-program essays (N = 134) and 
complete MAPS responses (start: N = 123; end: N = 123) to form the dataset (N = 116 start/end 
matched essay pairs and MAPS responses) for this study.  Each essay was scored by the author 
according to the TMA framework of Di Martino and Zan (2010) following the descriptors in 
Table 1. As an example of this scoring, consider the following essay. 

I usually prepare for a test by doing a practice test with sample questions. However, I could 
never get a good grade one a test because when the test comes, my mind freezes. The 
problem feels completely different and more difficult. Even though sometimes the difference 
in the problem was just a few numbers. I try to get through the problem by thinking hard 
about the practice test and writing all the formulas down. 

This essay was assigned a “-” in the Emotional category for the language around the problem 
feeling “different and more difficult”; an “i” in the Vision category for the view of mathematics 
as formulas, and a “l” in Competence, because of their admission of not being able to attain a 
good grade.  

Table 1: TMA dimensions and accompanying scores, in parentheses. 
TMA Dimension Possible Score 

Emotional Disposition N/A Positive (+) Negative (-) 
Vision of Mathematics N/A Relational (r) Instrumental (i) 
Perceived Competence N/A High (h) Low (l) 

  
After each essay was scored, the aggregate scores were assessed using χ2 and z tests to test 

for statistically-significant differences between start- and end-of-term essay response 
categorizations. As will be discussed, there is not a singular best way to analyse the aggregate 
score data. However, the dichotomous parsing of the TMA categories employed here is sufficient 
to observe appreciable differences in start and end of term essay responses. 

The MAPS responses were scored by the author according to the instructions in the MAPS 
literature (Code, et al., 2016). The start and end of term MAPS results were compared on each 
category using Kruskal-Wallace tests.  

Both TMA and MAPS data were then compared with standard logistic regression methods. 
This was intended to articulate the relationships between the MAPS and TMA categories .  

Results 
The results presented below reveal some aspects of the participating students’ attitudes 

towards mathematics changing over the course of the Summer program. However, that is not the 
focus of the results; the reader is encouraged to attend to i) how the start and end of term TMA 
data are compared – the TMA framework has not been used to assess changes in students’ 
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attitudes over the duration of a course or program, as far as this author is aware; ii) the 
contrasting MAPS results; iii) relationships between MAPS and TMA categories present in the 
data.  

In all, the underlying theme of the results takes the form of a question, that deserves being 
presented as a result in and of itself:  

How best to determine if a change of attitudes occurred? 
TMA  

As reported elsewhere (Maciejewski, under review), there was a statistically-significant 
change in the TMA scores, taken as a proportion of positive/relational/high to total number of 
non-N/A scores (p < 0.01). A summary of the raw counts for each TMA category is in Table 2. 
The main observation here is that a TMA analysis of the student essays reveals a change in their 
attitudes towards mathematics.   

Table 2: Results of a TMA analysis of the student essays. 
 Pos./rel./high Neg./ins./low N/A 

 Start End Start End Start End 
Emotional 30 44 49 41 37 31 

Vision 10 12 63 53 43 51 
Competence 32 53 76 56 8 7 

 
Changes in individual students’ attitudes towards mathematics were observed by comparing their 
start and end of term essays. However, as is presented in (Maciejewski, under review), these are 
not necessarily improvements, which would be a normative assessment of the student writing. 
Indeed, the writing was often sufficiently rich to defy such a normative assessment.  
MAPS 

A comparison of the start and end-of-program MAPS scores indicate only one category with 
a statistically-significant change: Interest decreased (p = 0.03). On the surface, this seems to be a 
null, or negative, result. However, results from previous studies conducted with the MAPS 
instrument typically indicate a decrease in all MAPS categories over the duration of a program 
or course (Code, et al., 2016). The maxim, if you can do no good, at least do no harm, seems 
apropos.  
Interactions Between MAPS and TMA scales 

In an effort to understand better the seemingly disparate results from the TMA essay analysis 
and the MAPS results, I seek statistical relationships between the two. That is, this subsection of 
the results answers the question, do high or low MAPS category scores correspond to either of 
the values of the TMA category variables?  

To this end, a logistic regression analysis is performed between each of the, non-zero, TMA 
variables and the MAPS variables; the N/A values in the TMA categories are not included in this 
analysis, to reflect the practice of excluding neutral responses in the MAPS analysis.  

The results of the logistic regression analysis are summarized in Table 3. This analysis 
reveals that there are significant interactions between each TMA variable and multiple MAPS 
categories.  
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Table 3: Logistic regression model results for MAPS and TMA data. Only significant         
(p < 0.05) results are reported. Odds ratios are reported with χ2 and  p-values in 

parentheses. 
 TMA Dimension 

MAPS Category Emotion Vision Competence 

Growth Mindset    

Real World 10.45 (χ2(1) = 12.48, p 
< 0.01)   

Confidence 
10.81 (χ2(1) = 7.46,  

p < 0.01) 
14.61 (χ2(1) = 11.11 ,  

p < 0.01) 
15.76 (χ2(1) = 19.76, 

p < 0.01) 

Interest 
10.04 (χ2(1) = 12.5,  

p < 0.01) 

4.88 (χ2(1) = 4.93,  

p = 0.03) 

3.28 (χ2(1) = 4.77,  

p = 0.03) 

Persistence    

Sense Making    

Answers   
5.66 (χ2(1) =  6.35,  

p = 0.01) 

 
Many of these relationships ought to be expected – confidence and interest cut across all 

TMA categories, for example. It is a reasonable expectation that these two do lead to more 
positive emotions towards mathematics and are related in some way to competence, though the 
analysis here cannot discern the direction of the relationship; perhaps improved competence 
leads to both greater confidence and interest. Persistence not being related to any of the TMA 
categories is also a plausible result – people persist for any number of reasons, whether they are 
competent or like it or not.  

Some of the relationships are not expected, both in terms of relationships present and 
missing. For example, it is not clear why the Real World category ought to be related to 
emotions in mathematics – perhaps an appreciation of the pervasiveness of mathematics in one’s 
life results in greater comfort or otherwise positive emotions. The lack of a statistically-
significant relationship between the MAPS Answers and the TMA Vision of Mathematics 
categories is also unexpected, as these ought to be two different perspectives on the same 
underlying phenomena. However, the p-value (p = 0.08) in the logistic regression analysis 
between these variables was not far from the arbitrary significance cut-off of 0.05. The students 
in this study had a fairly uniform instrumental vision of mathematics, and the dichotomous 
parsing of the Vision category may have overlooked some of the nuance present in their true 
views of the nature of mathematics.  
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Discussion 
This work concerned observing change in students’ attitudes towards mathematics through 

two different methods and analyses. The first, an application of the TMA framework (Di Martino 
and Zan, 2010) to student essay responses, revealed significant positive changes in student 
attitudes towards mathematics over the duration of the program. The second, a start and end-of-
program administration of the MAPS instrument (Code, et al., 2016), revealed only one 
significant change: student interest decreased. How might we understand these seemingly 
disparate results?  

Returning to the research questions posed near the start of this paper, I address (iii) first. 
Changes in students’ attitudes towards mathematics are difficult to identify and describe. The 
MAPS categories, by their quantitative nature, give the illusion of readily being able to describe 
change. However, changes do not always occur in terms of moving towards or away to experts. 
It is possible for a student to have a “horizontal” shift in their attitudes – they may develop a love 
for solving rich modeling problems and increasingly despise computation, the net effect of which 
is that the student is no closer to the experts in that aspect of attitude towards mathematics. The 
MAPS is also restricted to revealing those aspects of the students’ attitudes that are asked about 
by the MAPS items. Though the MAPS categories tend to be identified in the research  

As revealed through logistic regression analyses, there are significant interactions between 
the TMA essay analyses and MAPS results. This lends support to the following hypothesis, 
phrased in terms of a mathematical analogy.  

A student’s attitude towards mathematics is a multi/high-dimensional object. As articulated 
in the literature (Goldin, et al., 2016; Pepin and Roesken-Winter, 2015; Hannula, 2012), attitude 
consists of psychological, social, emotional, and temporal states. Any attempt to observe, 
describe, and otherwise measure the attitude object necessarily results in a reduction of 
dimension. A student writing about their relationship with mathematics reveals only some 
features of attitude, and a subsequent TMA analysis slices through those features. A MAPS 
instrument implementation reveals sections of a students’ attitude object, that they may or may 
not have written about, and attempts to quantify these, metrizing the sections along the MAPS 
categories/dimensions. The MAPS sections may, as in the data reported here and revealed 
through the predictive variables in the logistic regression, intersect with the TMA slices, or be 
parallel.  

The key with this mathematical analogy is that a high-dimensional object is difficult to 
comprehend by humans embedded in a spatially three-dimensional world. This difficulty is not 
an impossibility, since we have ways of bringing high-dimensional objects into three-
dimensions, but this dimensional reduction necessarily results in a loss of information. In our 
efforts to understand that which is not readily graspable, we lose features of the object. Bringing 
the object into our world in one way may reveal the smooth curves of one side, and leave the 
sharp corners and divots of another hidden. 

Taking this view of attitude towards mathematics as a high dimensional object avoids 
privileging of one method to understand that attitude over another. That is, a qualitative analysis 
of a student’s writing about their relationship with mathematics is neither better nor worse than 
the student’s responses to a Likert-based questionnaire on attitudes towards mathematics, or 
vice-versa. Both approaches reveal only restricted features of attitudes, and subsequent analyses 
further reduce those features. Both taken together can reveal more features of overall attitude 
than either one alone. 
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Teachers in mathematics classrooms where the language of instruction differs from students’ 
first language face competing demands regarding mathematics and language teaching. In this 
study, I conducted an analysis of genre of teaching episodes to examine how a teacher in a 
Spanish immersion third-grade classroom in the US responded to those demands. Findings 
indicate that the genres on which the teacher drew are associated with mathematics and with 
language classrooms, in addition to general genres that can be found in either classroom. I 
argue that the teacher’s awareness of school demands and of students’ needs influenced how 
genre-switching unfolded. I discuss how genre analysis adds to conceptualisations of 
mathematics and language as integrated in CLIL classrooms. 

Keywords: Equity and Diversity, Instructional activities and practices 

Mathematics teachers face competing demands in classrooms where the language of 
instruction differs from students’ first language.1 Teachers have the double responsibility of 
supporting students’ development of mathematics and the additional language (Nikula, Dalton-
Puffer, Llinares, & Lorenzo, 2016). These teachers confront the decision of how to split class 
time between these two competing demands. An alternative is to approach mathematics and the 
additional language as integrated. Integration is the premise of Content and Language Integrated 
Learning, CLIL, frameworks (Nikula et al., 2016). In CLIL classrooms, the language of 
instruction differs from students’ first language1. Rather than regarding the role of the teacher as 
complying with competing content and language demands, CLIL teachers integrate the two.  

In this study, I draw on the concept of genre to consider the role that societal forces play in 
mathematics CLIL classroom interactions. I follow Bakhtin’s (1986) notion of genre that 
considers both linguistic and social influences on interactions. I propose a view of classroom 
episodes as representing teaching genres that are particular to mathematics or to language 
classrooms. I ask the following research question: How does a teacher in a CLIL classroom 
integrate mathematics and foreign language to respond to competing demands? I argue that a 
dialogic dynamic among language, content, students’ needs and school demands drove the 
teacher’s efforts toward integration. Both individual and school orientations toward mathematics 
and the foreign language influenced how integration unfolded. 

This paper relates to the theme of the conference of celebrating 40 years of PME-NA. The 
paper focuses on one of the enduring challenges in mathematics education research that the 
conference addresses: supporting all students through equitable teaching informed by bodies of 
knowledge that the conference has supported. Specifically, the paper sheds light on the role 
                                                
1 Following Johnson & Johnson’s (1999) definitions, I refer to first language as the language to which a 
person is exposed from birth and in which the person is raised. A second language refers to a language 
other than the first language that is widely used in the person’s community (for example, English is a 
second language for Spanish speakers living in the US). A foreign language is a language other than the 
first language and that is not widely used in a person’s community. An additional language encompasses 
all languages other than a person’s first language. 
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teachers play in mediating competing demands in mathematics classrooms where the language of 
instruction is different from students’ native language. 

Theoretical Framework 
Mathematics and Language 

I draw on a perspective that regards mathematics and language as integrated and inseparable. 
Instead of delimiting where mathematics ends and where language begins, this perspective 
defines the two as an entanglement. Rather than a final representation of an already existing idea, 
language is part of developing, communicating and refining mathematical ideas (Barwell & 
Pimm, 2016). Accordingly, mathematics and the additional language develop in tandem. 
Mathematical activity involves continuous learning and relearning the additional language as it 
emerges in interaction (Brown, 2002). Additionally, using particular languages influences 
mathematical activity. For example, certain languages express particular mathematical concepts 
in a more transparent way than other languages (Martínez, 2018). Teachers may draw on the 
language that more transparently represents a mathematical idea if such language is valued at 
school. The intersection between a language and mathematical activity presents particular 
complexities, including the social orientations about what languages to use in academic settings. 
CLIL in Mathematics 

I draw on definitions of CLIL as an umbrella term that refers to classrooms where students 
learn both content and an additional language (Nikula et al., 2016). CLIL classrooms have both 
content and language goals and expectations. The focus of CLIL, however, is on integration: 
“[CLIL’s] distinctiveness lies in an integrated approach, where both language and content are 
conceptualised on a continuum without an implied preference for either” (Coyle, 2007, p. 545). 
Because of this attention to integration, CLIL is consistent with this study’s purpose of exploring 
how a teacher integrates language and content to respond to competing demands. 

In addition to the focus on integration, CLIL highlights that contextual forces influence 
classroom interactions. The purpose of CLIL pedagogies is not exclusively to bring a set of pre-
existing grammar structures to the mathematics classroom. Instead, CLIL draws attention to how 
expectations about language, mathematics and schooling affect pedagogical decisions: “CLIL 
teaching [is] a site where diverse institutional, educational, personal and pedagogical scripts and 
purposes intersect” (Nikula et al., 2016, p. 27). 
Genre Analysis 

I follow a Bakhtinian definition of genre as a socially discernible type of language use 
(Bakhtin, 1986). Rather than being classifications that specialist linguists propose, genres are sets 
of cultural conventions (Gerofsky, 1999). That is, genres are what a collective believes them to 
be and they are influenced by the ideologies, expectations and histories of a specific culture 
(Gerofsky, 1999). This simultaneous attention to language use and social influences is consistent 
with this study's purpose of exploring a mathematics CLIL classroom in light of institutional and 
societal expectations and demands. I build on research on genre that is consistent with a 
perspective of mathematics and language as integrated. These studies attend to both linguistic 
features and social orientations and demands that influence language use. For example, when 
studying lectures as a genre in mathematics education, Gerofsky (1999) drew attention to 
linguistic features such as the non-inclusive we/us, ambiguous use of nouns, and saturation of 
imperative forms. Simultaneously, he regarded social expectations for the interaction as 
constitutive of the genre, including who is supposed to be silent and who is expected to speak. 

For the purpose of this study of exploring how a CLIL teacher integrated mathematics and 
language to respond to competing demands, I focus on genres as teaching episodes associated 
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with language or mathematics classrooms, as well as general genres associated with multiple 
classrooms. Particular types of language use, and teachers’ and students’ actions can be thought 
of as typical of language teaching or mathematics teaching. Different genres respond to specific 
institutional and social demands, with some genres motivated by demands about language 
acquisition and others motivated by demands about mathematics learning. Drawing on different 
genres throughout a lesson and a unit, teachers respond to competing demands: “The focus 
would be on the different intended and perceived purposes embedded in different genres, and on 
a mastery and enjoyment of genre-switching” (Gerofsky, 1999). This approach acknowledges 
social influences in recognising and using language at the level of classroom interactions. 

Methodology 
Sites and Participants 

This elementary school was located in the Midwest region of the United States in a mostly 
White, middle class, English monolingual community. The school offered a Spanish language 
immersion program. Following a language enrichment full immersion model, all instruction was 
in Spanish, except for one hour taught in English per day. Mathematics was taught in Spanish. 
The classroom was a third grade with nine female students (one Latina, one African American, 
seven White) and 14 male students (two African American, 12 White). All students spoke 
English at home. All 23 students were able to comfortably initiate and sustain a conversation in 
Spanish. The teacher, señora Abad (all names are pseudonyms) was a US-born Latina who 
considered both English and Spanish her native languages. Her educational background was in 
Spanish bilingual education. She had been a teacher for three years. 
Data Generation 

I used ethnographic methods (participant observation, interviews and field notes) to generate 
data on how the teacher integrated language and mathematics and how such integration related to 
competing demands external to the classroom. Consistent with this study’s purpose of illustrating 
how the teacher drew on different genres rather than claiming this is an exhaustive list, I focus on 
one geometry unit. I chose this unit because it took place toward the end of the academic year 
when patterns of interaction were stable. I video recorded three lessons per week which resulted 
in nearly 11 hours of video for 12 lessons. I transcribed all video recorded lessons. Throughout 
the unit, I conducted unstructured interviews where the teacher and I discussed preliminary 
findings, confirming or redirecting my analyses. I documented references to forces external to 
the classroom that influenced the lesson, including the teacher’s references to the pacing 
guidelines, communications with parents, the textbook, and assessment. I transcribed interviews. 
Data Analysis 

Analysis focused on video data and interview data supported interpretations. The unit of 
analysis were teaching episodes which I defined as class moments beginning with a change in 
topic, task or teaching method. The 12 lessons in this unit resulted in 85 teaching episodes. 
Consistent with the discussion of genre above, during a first stage of analysis I examined both 
linguistic features and social conventions in each episode. Drawing on Gerofsky’s (1999) tools to 
analyse genre, I annotated the following dimensions in each teaching episode: who influenced 
the direction of the conversation, modes of communication (written, spoken, gestures), types of 
questions asked and who asked them, resources being used (for example, textbooks and 
manipulatives), who addressed who (teacher-student, teacher-whole class, student-student), 
mathematical content, mathematical practices (for example, giving an answer and describing a 
problem solving strategy), languages being used, and the level of attention to language accuracy. 
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During a second stage of analysis, I looked for patterns across transcript annotations. I 
grouped similar episodes and characterised each group. I conducted this process three times, 
refining classifications and interpretations, resulting in 11 teaching genres. During the third stage 
of analysis, I classified each genre as associated with language or with mathematics teaching, or 
as general. This classification corresponds to the focus of the episode, the teacher intentions as 
expressed in interviews, and my interpretation of whether the observed episode was recognizable 
as typical of mathematics or language classrooms or both. 

Findings 
Analysis revealed that the teacher drew intermittently on clearly discernible mathematics and 

language teaching genres to respond to demands on each of the two areas. Moreover, some of the 
genres seem to be associated with both mathematics and language classrooms. Table 1 
synthesises the distribution of teaching episodes in each genre and genre category. 

Table 1. Number of teaching episodes by genre. 
Genre Category Genre Number of episodes 

General Whole class discussion 
Small group task 
Task launching 

Teacher explanation 
Student presentation 

21 
18 
11 
8 
4 

Language teaching Info gaps 
Artifact description 

Role playing 

6 
4 
2 

Mathematics teaching Textbook work 
Number talk 

Test 

6 
3 
2 

Total number of episodes 85 
 
Due to space restrictions, I focus on the most frequent genre in the language and the 

mathematics categories. In the transcripts below, text in brackets describes actions. 
Mathematics Episodes: Textbook Work 

In the textbook work genre, students worked individually or in pairs solving problems from 
the textbook. One example of this genre took place during the seventh lesson of the unit. 
Students were working in pair on a page that asked them to find three rectangles with a perimeter 
of 12 centimetres. Afterwards, students needed to fill out a table with the lengths of the adjacent 
sides and the area of each rectangle. The teacher told students they could get geoboard dot paper 
if they wanted to draw their rectangles. A few minutes into the task, Señora Abad approached 
two students, Lisa and John. They were working in silence and looking at each other’s textbook. 
John had drawn a 2x2 square and Lisa had written 2 and 2 in the first row of the chart and 2 and 
4 in the second row. Señora Abad asked the students what the perimeter of their square was. 
Putting her finger in the middle of the square, Lisa answered that the perimeter was four. 

Table 2. Example of the textbook work genre. 
Speaker Original Utterance Transcribed Utterance 
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Señora Abad 
Lisa 
John 
 
Señora Abad 
Lisa 
Señora Abad 
 
Lisa 
Señora Abad 
Lisa 
Señora Abad 
Lisa 
John 
 
Señora Abad 
 
 
Lisa 
Señora Abad 
 
 
 
 
 
 
 
 
 
Lisa 
Señora Abad 

El perímetro es afuera. 
[Mira el dibujo en silencio.] 
[Mira a la señora Abad] ¿Estamos sumando o 
multiplicando? 
¿Qué es perímetro? [Mira a Lisa y a John.] 
Afuera. 
Afuera. Entonces, ¿qué hago para buscar el 
perímetro de esta figura? 
Sumar. 
Mmhm. ¿Qué sumo? [Mira a los dos.] 
Dos mas dos mas dos mas dos. 
Y eso es… 
¿Ocho? 
[Borra los números 2 y 2 que había escrito en 
su cuadro.] 
Ocho. Pero yo necesito rectángulos con un 
perímetro de doce. Tú me dices que dos y dos 
te da un perímetro de doce. 
No. 
OK. Puedes usar tu cuadrícula de puntos 
[señala al papel de John.] Aquí en esta 
[señalando a la segunda fila del cuadro en el 
libro] tú me estás diciendo que un lado tiene 2 
y otro 4 en un rectángulo, ¿si? Si esto es 4, 
esto también va a ser 4 [Dibuja un rectángulo 
y señala dos lados opuestos]. Si esto es 2, esto 
también va a ser dos [señala los otros dos 
lados opuestos]. ¿Cuál es el perímetro de 
esto? 
Doce. 
¡Ajá! Entonces ese, está bien ese. Ahora 
tienes que buscar dos rectángulos mas que 
tengan un perímetro de doce. 

Perimeter is outside. 
[Looks at the drawing quietly.] 
[Looking at señora Abad] Are we adding or 
multiplying? 
What is perimeter? [Looks at Lisa and John]. 
Outside. 
Outside. So, what do I do to look for this shape’s 
perimeter? 
Add. 
Mmhm. What do I add? [Looks at both.] 
Two plus two plus two plus two. 
And that is… 
Eight? 
[Deletes numbers 2 and 2 that he had written in 
his table.] 
Eight. But I need rectangles with a perimeter of 
twelve. You say from two and two you get a 
perimeter of twelve. 
No. 
OK. You can use your dot grid [points at John’s 
dot paper.] Here in this one [pointing at the 
second row in the table in the textbook] you are 
telling me that a side is 2 and another one is 4, 
right? If this is four, this has to be 4 too [Draws a 
rectangle and points at opposite sides]. If this is 
2, this is going to be 2 too [points at the other 
opposite sides]. What is the perimeter? 
 
Twelve. 
Aha! So, this one, this one is correct. Now you 
have to look for two more rectangles that have a 
perimeter of twelve. 

 
Several characteristics of the textbook work genre are present in this excerpt. Both teacher 

and students influenced the direction in which the conversation went. The teacher elicited 
students’ thinking and definitions of concepts (i.e “¿Qué es perímetro?”—what is perimeter?). 
Students’ questions had to do with the correctness of their answers, what they had to do, or 
specific definitions or procedures (i.e “¿Estamos sumando o multiplicando?”—Are we adding or 
multiplying?). Lisa presented her answers as questions, indicating the exploratory nature of her 
work and acknowledging that there was one correct answer that señora Abad could confirm. 
Modes of communication included spoken language, mathematical symbols and drawings. 

Despite the interactive nature of the excerpt above, episodes in the textbook work genre did 
not necessarily involve student talk. Students could decide to work silently, as was the case at the 
beginning of the episode described here. Conversation frequently started when the teacher 
approached each pair. Although both the teacher and the students contributed to this 
conversation, students had the option of remaining silent or limiting their spoken utterances. For 
example, John only spoke once in the excerpt above and most of Lisa’s turns consisted of one 
word. On the contrary, señora Abad’s turns are longer and consist of full sentences. The focus of 
episodes in the textbook work genre was on mathematical ideas. These explorations, however, 
did not revolve around the generation of ideas but rather on recollection of definitions and 
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strategies previously discussed. In the example above, the teacher did not elicit explanations or 
justifications. Instead, she gave definitions (i.e. “perímetro es afuera”—perimeter is outside) or 
reminders and students used phrases or isolated words to give answers. 

In an interview, the teacher mentioned she used the textbook genre to review mathematical 
ideas, focusing on accurate application of procedures to get correct answers. The teacher used 
this genre after students had generated ideas and made sense of specific concepts. According to 
the teacher, she frequently drew on this genre as formative assessment that informed subsequent 
lessons, as well as a review before tests. In this example, the class had already discussed 
perimeter and area, and strategies to calculate each. The teacher mentioned that from previous 
lessons she had concluded the class needed to work on differentiating area and perimeter, which 
was one of her goals in this episode. 
Language Episodes: Info Gap 

In the info gap genre, students worked in pairs. Each student had some of the information 
necessary to solve a problem. The teacher gave a slip of paper to each student in a pair and 
students could not see each other’s slip. One slip was designated “Student A” and the other one 
“Student B.” First, each student needed to figure out what the information in the slip was by 
completing a language driven task. Then, students requested the missing information from each 
other. Although the information discussed was mathematical, the focus was on accurate 
production of the Spanish language. 

One example of the info gap genre took place during the eighth lesson of the unit. In pairs, 
one student got a slip labelled Student A with information about a shape. This student needed to 
unscramble the words in each sentence. Student B had incomplete sentences about the same 
shape. This student needed to formulate questions to request the missing information. Señora 
Abad approached two students, Malik and Daniel. 

Table 4. Example of the info gap genre. 
Speaker Original Utterance Original Utterance 

Señora Abad 
 
Malik 
Señora Abad 
 
 
 
Malik 
 
Señora Abad 
 
Malik 
 
Señora Abad 
 
Daniel 
Malik 
Daniel 
Malik 
Daniel 
 
Malik 
 

¿Qué te hace falta aquí? [señalando la 
palabra “cuadrilatero.”] 
Oh! [Agrega tilde en “cuadrilátero.”] 
Muy bien. [Murmura mientras señala 
cada frase.] Los lados cortos suman… 
La figura tiene… Hmm… ¿Cómo se 
dice esto? 
Oh! La figura tienes 4 ángulos rectos. 
Wait, no! Es correcto. 
Hmm… ¿Recuerdas la historia de los 
caminos? Los caminos eran… 
Um largos y… Oh! [Borra “rectos 
ángulos” y escribe “ángulos rectos.”] 
¡Muy bien! ¡Ángulos rectos! Ahora 
trabaja con Daniel que ya terminó. 
Ahora yo te pregunto. 
Mmhm. 
¿Qué figura es? 
La figura es un cuadrilátero. 
[Escribe en su papel] ¿Cuánto suman los 
lados adyacentes? 
Los adyacentes lados suman nueve 
centímetros [Sonríe.] 

What’s missing here? [pointing at the word 
“cuadrilatero.”] 
Oh! [Adds accent mark in “cuadrilátero.”] 
Very good. [Whispering as she points at 
each sentence.] Both sides add up… The 
shape has… Hmm… How do you say this? 
Oh! The shape have four right angles. Wait, 
no! It’s correct. 
Hmm… Do you remember the story about 
the roads? The roads were… 
Um long and … Oh! [Erases “rectos 
ángulos” and writes “ángulos rectos.”] 
Very good! Right angles! Now, work with 
Daniel; he is done. 
I ask you now. 
Mmhm. 
What is the shape? 
The shape is a quadrilateral. 
[Writes on his paper] What is the sum of the 
adjacent sides? 
The sum of the sides adjacent is nine 
centimetres[Smiles.] 
[Starts to write] What?! No! 
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Daniel 
 
Daniel 
Malik 
 
Daniel 

[Comienza a escribir] ¿Qué?! ¡No! 
[Risas.] 
Malik, ¿no sabes decir eso? 
[Sonríe] Es los lados adyacentes suman 
nueve centímetros. 
[Escribe.] 

[Laughs.] 
Malik, don’t you know how to say this? 
[Smiles] It’s the sum of the adjacent sides is 
nine centimetres. 
[Writes down.] 

 
This example illustrates characteristics of the info gap genre. For example, students worked 

independently some of the time, with the teacher intervening only when she saw inaccuracies in 
language use. When the teacher intervened, she explicitly pointed at errors and asked the student 
to correct. That was the case when señora Abad asked Malik what was missing in the word he 
had spelled as “cuadrilatero” and when she asked him how to write a specific sentence (“ángulos 
rectos”). The questions señora Abad asked were not related to the mathematical meaning of the 
ideas in the slips. The teacher asked questions that drew Malik’s attention to language 
inaccuracies (“¿qué te hace falta aquí?” and “cómo se dice esto”). Specifically, señora Abad 
asked “¿recuerdas la historia de los caminos?” referring to a short story the class had read about 
long roads and straight roads (caminos largos y caminos rectos) to focus on the noun-adjective 
word order in Spanish. Instead of inquiring about students’ mathematical sense making of the 
ideas, the teacher focused on accurate spoken and written language production. That was the case 
when Malik playfully changed the standard “lados adyacentes” for “adyacentes lados” and how 
Daniel realised there was an error. Additionally, interactions in this genre were guided. Students 
engaged in the task writing or taking turns to ask and answer questions. Both students in the pair 
needed to communicate actively in order to complete the task. 

In an interview, the teacher mentioned she used the info gap genre to focus students’ 
production of mathematics discourse. Moreover, the class used the product of tasks in this genre 
as input for problem-solving tasks focused on mathematical ideas. Señora Abad commented that 
she drew on this genre when she thought it was necessary for the class to review the 
mathematical meaning and accurate use of specific terminology and phrases. The teacher 
mentioned that parents were frequently familiar with these tasks as associated with language 
learning and that they appreciated this focus on language. Therefore, she sometimes sent the 
individual part of these tasks as homework. 

Discussion 
This study suggests that the teacher navigated the competing demands by flexibly drawing on 

mathematics and language specific genres. The tasks, types of interactions, linguistic features, 
resources used, and purposes of episodes were similar within a genre and were typical to either 
mathematics or language teaching. This dynamic genre-switching resonates with Gerofsky’s 
(1999) conceptualisation of genre-switching as a pedagogical tool to reach and support diverse 
students. Through genre-switching, the teacher foregrounded one of the two areas at different 
moments of the unit. In doing so, the teacher responded to mathematics and language related 
demands. This finding sheds light on how the teacher used genre-switching as a mechanism to 
respond to competing demands in a CLIL classroom specifically. 

This study illustrates an analytical framework that does not disrupt the mathematics and 
language integration. By drawing on genre analysis of teaching episodes as associated with 
mathematics or language teaching, this study adds to previous research on CLIL mathematics 
classrooms that has mainly focused on students’ language acquisition (Nikula et al., 2016). 
Rather than differentiating whether each teaching episode dealt with language or with 



Student Learning and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

937	

mathematics, this genre analysis maintained the assumption that the two are inseparable. It was 
the types of tasks, interactions and teacher moves that were susceptible of being characterised as 
typical of a mathematics classroom or a language classroom. Analysis of teaching episodes 
focused on the interplay between mathematics and language during mathematical activity. 
During episodes in all genre categories the teacher provided opportunities to use and develop the 
language while simultaneously developing mathematical ideas. 

This study attended to school influences on classroom interactions that the teacher perceived. 
Summative assessment, school pacing guidelines and parents’ perceptions of language tasks 
informed how the teacher selected and sequenced specific genres. Characteristics of the school 
also informed the interplay between mathematics and language in this classroom. The teacher 
was a Latina, Spanish native speaker with formation in bilingual education. Moreover, she was 
aware of parents’ interest in their children language proficiency. The school guidelines required 
the teacher to use Spanish at all times, resorting to English only to clarify specific words. 
Students had been in this language immersion classroom for nearly three years and were able to 
understand and maintain conversations in Spanish. Accordingly, in this classroom, Spanish was 
valued and positioned as useful at all times. In other contexts where language minority students 
learn mathematics in the community’s dominant language, teachers frequently lower 
expectations, water down the mathematical curriculum or pull students out of mathematics 
classes until they develop what the school considers sufficient language proficiency (Setati & 
Moschkovich, 2013). In this classroom, rather than seeing students’ language acquisition as a 
barrier, school, teacher and student characteristics supported the teacher’s pursuit of 
mathematically challenging tasks in Spanish. 
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THE INTERPLAY OF FRUSTRATION AND JOY: ELEMENTARY STUDENTS’ 
PRODUCTIVE STRUGGLE WHEN ENGAGED IN UNSOLVED PROBLEMS  
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In this study, I investigated Grade 4 and 5 students’ emotions while they engaged in the 
exploration of unsolved mathematics problems, including parts of the Graceful Tree Conjecture. 
Ten students from an after-school program in the Midwest participated in seven task-based 
interviews. The students exhibited a variety of emotions throughout the study, with frustration 
and joy displayed most frequently. I found the interplay of these emotions, joy and frustration, to 
describe the productive struggle that the students experienced while working on parts of the 
unsolved problems. A descriptive case of two students, Bernice and Alia, are included to 
describe how the interplay of frustration and joy characterize productive struggle.  

Keywords: Affect, Emotion, Beliefs, and Attitudes; Elementary School Education; Problem 
Solving 

The purpose of this paper is to document what productive struggle look like. To do this, I 
examined the emotions ten students displayed while they were engaged in problem-solving with 
unsolved mathematics problems. The use of the unsolved problems permitted the students the 
opportunity to display multiple emotions and engage in struggle. Hiebert and Grouws (2007) 
defined struggle as when "students expend effort to make sense of mathematics, to figure 
something out that is not immediately apparent" (p. 387). Allowing students, the opportunity to 
struggle is beneficial (e.g., Hiebert & Grouws, 2007; Kapur, 2010; Reinhart, 2000). When 
students have spent time learning mathematics while engaged in productive struggle, they 
significantly outperform similar ability students who were not given the opportunity to struggle 
on a task (Kapur, 2010). According to Kapur (2010), these same students who have engaged in 
productive struggle are also able to engaged and transfer their knowledge to work on challenging 
mathematics concepts they have yet to explore. While past research has documented that 
productive struggle is beneficial, there is no research that described what productive struggle 
actually looks like as children are engaged in mathematical problem solving (Warshauer, 2015; 
Zeybek, 2016). 

When students are engaged in problem solving, they experience both positive and negative 
emotions (Goldin, 2000a; Hannula, 2015). However, the bulk of the previous research on 
emotions is limited to surveys and does not document students’ emotions while they are engaged 
in problem solving (Hannula, 2015). In order to look forward in mathematics education, it is 
critical to document the different emotions students experience while engaged in problem 
solving and to describe what it looks like when students are experiencing productive struggle.  

Research Questions 
The following questions guided my research study:  

1. What are the emotions students displayed when they were engaged in the exploration of 
unsolved problems?  

2. How are the emotions of frustration and joy related to the struggle students experience 
while they are engaged in the exploration of unsolved mathematics problems?  
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Theoretical Framework 
Positioning theory has been used in mathematics education as a way to analyze social 

interactions (e.g., Turner, Dominquez, Maldonado, & Empson, 2013; Wood, 2013; Yamakawa, 
Forman, & Ansell, 2009). Daher (2015) and Evans, Morgan, and Tsataroni (2006) have 
identified that students’ emotions are linked to their positioning. In this study, positioning theory 
(van Langenhove & Harré, 1999) was employed as an overarching theoretical framework for 
how students positioned themselves through their interactions with other students and the 
mathematics. Their positions were displayed through their dispositions or more specifically, their 
emotions.  

Positioning theory is “the study of local moral orders as ever-shifting patterns of mutual and 
contestable rights and obligations of speaking and acting” (van Langenhove & Harré, 1999, p. 1). 
It is “the discursive construction of personal stories that make a person’s actions intelligible and 
relatively determinate as social acts and within which the members of the conversation have 
specific locations” (van Langenhove & Harré, 1999, p. 16). People can position themselves or be 
positioned by others in many different ways, such as being good at mathematics or bad at 
mathematics. A person is positioned based on actions and conversations. The conversations 
create storylines. The storylines can document students emotions at the moment they are 
displayed through their dispositions.  

Methods 
In this qualitative study, I investigated ten Grade 4 and 5 students (Alia, Amanda, Becca, 

Bernice, Edward, Hector, Iris, Joella, Karly, and Trevor; all of the names have been changed) 
while they engaged in the exploration of unsolved problems. The study took place at an after-
school program at a community center in the Midwestern United States. Students participated in 
seven semi-structured, task-based interviews (Goldin, 2000b), which I will refer to as problem-
solving sessions. These seven problem-solving sessions took place over three weeks and each 
lasted between 35 and 45 minutes. For the first six Problem-Solving Sessions, students worked 
on the Graceful Tree Conjecture. During Session 7, students were introduced to Collatz 
Conjecture. 
Graceful Tree Conjecture 

During the first six problem-solving session students worked on the Graceful Tree 
Conjecture. The Graceful Tree Conjecture is an unsolved conjecture from graph theory that is 
accessible to young children. The problem has students exploring different types of tree graphs, 
graphs that are connected (one piece) with no cycles (see Figure 1). This means a tree graph is 
acyclic, which means if you follow a path from node to node along the edges, you will never 
cycle back to the same node without repeating an edge. This means that tree graphs always have 
one more edge than node.  
 

Tree Graph 
 
 

Cycle Graph Not Graceful Labeling 

 

Graceful Labeling 

 
Figure 1. Concepts of the Graceful Tree Conjecture. 

node

edge
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Tree graphs are assigned numbers to the nodes that induce labeling of the edges. For a tree 

graph of order n, every node is labeled distinctly from 1 through n and the edges are labeled with 
the absolute value of the difference of the labels on their endpoints. For a tree graph to be labeled 
gracefully, the edges need to be labeled distinctly 1 through n-1 (see Figure 1).  
Overview of Problem-Solving Sessions 

During the first six sessions, students explore different categories of tree graphs in increasing 
sophistication (see Figure 2). I challenged the students to not only create a graceful labeling for 
each graph but to find a pattern or justification to show that any tree graph in the category could 
be labeled gracefully. While exploring the different tree graphs, students were given a page that 
contained four distinct tree graphs in a given category, enlarged copies of each of the graphs, and 
numbered circle and square chips (see Figure 3). This allowed students to try multiple solutions 
without having to erase.  
 

1. Star Graphs 

 

2. Path Graphs 

3. Caterpillar Graphs 1 
 

4. Comet Graphs 

 
Figure 2. Tree Graphs in increasing sophistication.  

 

 
Figure 3. Enlarged Caterpillar Graph and circle and square numbered chips. 

During Session 1, students were introduced to tree graphs, learned what a graceful labeling 
was, and explore a five node tree graph. Throughout Session 2, students worked to find a 
graceful labeling for Star Graphs. In Session 3, students finished Star Graphs and began to work 
on labeling Path Graphs. During Session 4, students continued to work on labeling Path Graphs. 
In Session 5, students finished labeling Path Graphs and began to work on Caterpillar Graphs. In 
Session 6, students worked on labeling Caterpillar Graphs. In Session 7, Collatz Conjecture was 
introduced but after twenty minutes of work the participants requested to continue working on 
the Graceful Tree Conjecture. The students then began to work on gracefully labeling Comet 
Graphs.  
Analysis 
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All seven problem-solving session were video recorded and student work was collected. All 
video was transcribed including non-verbal actions, such as facial expressions or arms raised in 
the air. Next, I constructed an analytic framework based on the ideas from Else-Quest, Hyde, and 
Hejmadi (2008) to characterize the emotions students displayed while they were engaged with 
the mathematics. During my first round of analysis, I modified Else-Quest et al.'s framework by 
combining emotions such as joy, pleasure, and pride because I was not able to distinguish a 
difference between these emotions without interviewing students to know how they were 
specifically feeling (see Table 1 for the emotion framework). 

Table 1: Emotion Analytic Framework 
Emotion/Code Definition Example 
Anger/Disgust Irritability, temper, rage I hate you.  

Tension Worry, Tautness, rigidity I don’t want to work with 
my sister.  

Sadness Anguish, grief, misery I am really sad.  
Boredom/Apathy Fatigue, lack of interest, 

indifference 
I don’t want to work on 
this today. I am tired.  

Affection/Caring Friendliness, warmth, 
encouragement 

I can help you with this 
one.  

Humor Banter, joking, comedy That looks like a tree. 
Contempt Snobbery, ridicule, mimicking Bad job for you. 

Stop being scary. 
Joy/Pleasure Delight, excitement, 

happiness 
I got it!  

Graceful!  
Distress/Frustration Complaining, impatience, 

upset, disappointment 
I don’t get it.  
I can’t do it. 

 
After creating my analytic framework, I examined all of transcripts from the problem-solving 

sessions and used the framework to document anytime an emotion was displayed by a student. If 
the student displayed several statements of frustration in a row, each individual statement was 
documented as its own sign of frustration. I did this process twice to check for consistency, 
similar interpretation, and to make sure nothing was missed. This process was completed using 
the qualitative software, Transana (Woods & Fassnacht, 2016). Next, I created reports through 
the use of Transana to account for each emotion that was displayed by a student.   

Results 
During analysis, I explored the emotions students displayed when they were engaged with 

the exploration of unsolved problems (see Table 2). Through my Transana reports, I found that 
the two most common emotions students displayed were joy and frustration.  

Table 2: Emotions Displayed by Session 
Emotions 1 2 3 4 5 6 7 Total 

Anger/Disgust 0 0 0 0 0 0 0 0 
Tension 0 0 0 0 0 0 0 0 
Sadness 0 0 0 0 0 0 0 0 

Boredom/Apathy 1 0 1 2 0 0 0 4 
Affection/Caring 2 5 1 0 3 7 0 18 
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Humor 3 9 0 3 1 2 3 21 
Contempt 4 13 6 3 3 15 5 49 

Joy/Pleasure 23 32 21 14 25 44 18 177 
Distress/Frustration 22 26 56 21 23 38 37 223 

 
Frustration 

Documented a total of 223 times, frustration was displayed the most throughout the seven 
problem-solving sessions. Bernice, Trevor, and Joella displayed the emotion of frustration most 
commonly during the sessions (see Table 3). These emotions were most typically displayed 
while the students were working on finding a graceful labeling of a graph. Comments such as, “I 
don’t get this,” “Oh my gosh,” “This is hard,” and “It won’t work” were common statements 
students made that indicated the emotion of frustration. They also had actions like slamming 
their hand on the table or making moaning sounds.  
Joy 

Joy was the second most common emotion displayed. It was documented 177 times. Becca, 
Alia, and Bernice displayed the emotion of joy most frequently throughout the seven sessions 
(see Table 3). Joy was displayed most frequently when students found a graceful labeling for a 
graph. Comments marked as joy included statements such as, “Got it!” “I am done,” “I did it, I 
finished it!” “Finished,” and Graceful!” Many times these comments were also made with 
students throwing their arms in the air in celebration or with clapping. 
Productive Struggle 

Because of the large number of times students displayed joy and frustration, I wanted to 
examine frustration and joy in more detail. I broke down frustration and joy by student and 
session (see Table 3). When I did this, I found that every student displayed both frustration and 
joy multiple times throughout the problem-solving sessions. Upon a closer look at when the 
students were displaying the frustration and joy, I found that students would display multiple 
signs of frustration followed by a moment of joy. Most of the time the joy was displayed when a 
student found a graceful labeling of a graph. I will share two students’ stories throughout a 
session to document the interplay of frustration and joy. 

Table 3: Frustration and Joy By Student and Session 
 Alia Amanda Becca Bernice Edward Hector Iris Joella Karly Trevor 

Session 
# 

F J F J F J F J F J F J F J F J F J F J 

1 2 4 3 1 - - 6 6 2 5 0 1 0 0 3 3 1 0 5 3 
2 0 12 1 2 3 3 8 0 2 2 - - 0 3 3 2 - - 9 8 
3 8 5 1 2 5 2 15 2 1 2 4 0 1 3 10 3 5 2 6 0 
4 - - 1 1 7 1 9 5 1 4 - - 1 1 2 1 - - 0 1 
5 3 9 0 1 0 5 5 4 1 1 2 0 2 2 5 2 0 1 5 0 
6 4 5 2 7 2 10 6 6 1 3 7 4 1 2 11 1 1 2 3 4 
7 2 6 1 0 9 3 9 5 1 0 - - 0 2 1 1 - - 14 1 

Total 19 41 9 14 26 24 58 28 9 17 13 5 5 13 35 13 7 5 42 17 
Note. – means a student was absent for the problem-solving session. F stands for frustration and 
J stands for joy.   
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Bernice. Bernice was a Grade 4 student. Her story was chosen to be documented because she 
was vocal in her feelings and displayed the most frustration and the second most amount of joy.  

During the Session 6, Bernice began with attempting to gracefully label the fourth graph in 
the Caterpillar class. This graph contained 10 nodes (previously she had only done graphs that 
contained eight nodes). Bernice began her attempts at labeling the graph. Several minutes into 
working she said, "Oh, dang it. I need a nine," showing frustration. She continued to work and 
changed her frustration into excitement with the statement, "I am doing it, I am doing it." Only 
two minutes later, while she was still trying to label the graph gracefully she said, "One, two. 
What happened? Oh no, I missed one." (A labeling of a node.) Again shifting from joy back to 
frustration. This frustration continued as she worked and the following conversation took place 
with myself, the teacher.  

Bernice: Seven minus three equals four (has her yellow page almost filled). Oh my god, 
Ms. Teacher, look how close I was. But this last one doesn't make sense. 

Teacher: Well are you looking at your sheet for a pattern? 

Bernice: No. 
Then Bernice continued to struggle while displaying signs of frustration with the following 

statements: "This makes, oh my god this doesn't make sense" and "It does not make sense."  
Several minutes later, Bernice completed a graceful label and shouted with her arms in the 

air, "I did it. I am done. I need a pen. Ms. Teacher, I did it." At this time her frustration oscillated 
to joy (see Figure 4 of her work on the first set of Caterpillar graphs). 

 

Figure 4. Bernice’s work on Caterpillar Graphs. 

Alia. Alia was a Grade 4 student. She had a very positive and cheery demeanor. She also 
displayed her productive struggle through an oscillation of frustration and joy. Her story was 
chosen be documented because she displayed the most total accounts of joy throughout the 
sessions.  

During Session 6, Alia was working on gracefully labeling Caterpillar graphs. After a few 
minutes of working, Alia said, "I am lost" and erased her page, displaying frustration. After 
another thirty seconds, Alia stated aloud, "Okay, I got it" and continued to work for several more 
minutes. Alia then noticed that she was missing an eight on one of her nodes and shouted, "No! I 
need an eight." This showed her frustration. Alia continued to work on finding a graceful 
labeling and just twenty-seven seconds following her last shout of frustration, she clapped her 
hands and then threw her arms in the air and shouted, "I did it! Woo!” changing her frustration to 
joy.  

Alia began to work on labeling her next caterpillar graph gracefully. Two minutes into 
working, Alia took her hand and slammed it on the table and stated, "Oh, I messed up." Only 
twenty-four seconds later, Alia clapped her hands together and said, "I was right. I was right." 
This again showed her oscillation from frustration to joy. Alia continued to work. After six more 
minutes of work, Alia shouted with her arms in the air, "Oh, I am good at this" and continued to 
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work. Several seconds later, Alia said, "No" displaying frustration and a solution that was not a 
graceful label. After six more minutes of working, Alia shouted, "Yes" with her arms in the air. 
After recording her solution, Alia turned to the instructor and said, "Okay, I am ready for the 
next one." Alia continued working throughout the rest of the time with the similar pattern of joy 
and frustration. She displayed frustration when she was struggling to find a solution followed by 
joy and excitement when she made progress on her work.  

 

Figure 5. Alia’s work on Caterpillar Graphs 

Similar to Bernice, Alia also displayed a range of emotions and oscillated between being 
frustrated and then displaying signs of joy or pride when she produced a graceful labeling. I 
found this oscillation between joy and frustration a sign of productive struggle. This struggle was 
similar to the productive struggle Alia, Bernice, and the other students demonstrated during all 
the problem-solving sessions. 

Discussion and Conclusions 
The most common emotions that students displayed were frustration and joy. These results 

are similar to Else-Quest et al. (2008) who found the most common negative emotion students 
displayed were frustration and distress and the most common positive emotions students 
displayed were joy and pride. Students in this study also showed emotions of contempt, sadness, 
boredom, humor, and acts of caring.  

Past research has documented different ways to help students during productive struggle 
(Warshauer, 2015; Zeybek, 2016), and that productive struggle is beneficial (Kapur, 2010). But, 
there is limited research in what productive struggle actually looks like as children are problem 
solving (Warshauer, 2015; Zeybek, 2016). Through this research study, I have documented that 
while students are engaged in productive struggle, they display the emotions of frustration and 
joy. Students display frustration while struggling through a portion of a problem. Frustration was 
displayed multiple times throughout their work. Once a student found some success or made 
progress towards the solution, they enacted joy. This process was repeated throughout the 
mathematical problem solving.  

Overall, I believe a significant finding of this study pertains to the oscillation of joy and 
frustration which I have interpreted as the construct of productive struggle. All of the students in 
this study were able to persist through the struggle and were able to find joy and pride in their 
work. Unsolved mathematics problems are not typically part of elementary school education but 
I found that these types of problems allowed students the opportunity to engaged in productive 
struggle and experience mathematics more similar to how a mathematician might experience 
mathematics. 
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MATHEMATICS ANXIETY AND MEDITATION 
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Mathematics anxiety debilitates many students, reducing academic success and quantitative 
literacy. Although various treatments have been researched, there has been no successful 
intervention for this phenomenon. Meditation has been recognized as helping individuals reduce 
other forms of anxiety. Research in this field is limited due to the internal nature of meditation. 
In this study, a device called a Muse Headband addressed some of these limitations. Results 
showed that meditation can potentially help students reduce their mathematics anxiety. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Technology 
 

Mathematics anxiety, “a feeling of tension and anxiety that interferes with the manipulation 
of numbers and the solving of mathematical problems in … ordinary life or academic situations” 
(Richardson & Suinn, 1972), challenges many students. This phenomenon, although related, is 
distinct from general or test anxiety because of the association with mathematics. Researchers 
disagree on the prevalence of mathematics anxiety. However, conservative estimates indicate 
that this problem disproportionately affects females (Dowker, Sarkar, & Looi, 2016). 

The consequences for students who suffer from mathematics anxiety can be significant. 
These students can have lower grades (Richardson & Suinn, 1972), be less fluent in mathematics 
(Ashcraft & Faust, 1994), avoid enrolling in mathematics courses (Stubblefield, 2006), and 
prefer procedural mathematics courses that are not conceptually driven (Norwood, 1994). These 
factors lead to students being less quantitatively literate, affecting prospects for employment. 

Interventions to help alleviate or prevent mathematics anxiety vary, although there is no 
comprehensive cure (Dowker et al., 2016). Such interventions include having a student 
reappraise the student’s belief in the negative consequences of their mathematics anxiety. 
Another intervention has the student write out their worries and fears. Focused breathing 
exercises have also been shown to help math-anxious students better perform on a series of 
arithmetic tasks (Brunyé et al., 2013). Overall, interventions to alleviate mathematics anxiety 
focus on calming the mind, directing it away from worrisome thoughts. 

Considering mathematics anxiety as a specific type of general anxiety, successful 
interventions for general anxiety may inspire ways to help students with mathematics anxiety. 
Meditation is one particular intervention. Mindful meditative practices, where an individual 
directs attention to their breathing or focuses on their body while in a relaxed state has shown to 
potentially help an individual’s cognition (Zeidan, Johnson, Diamond, David, & Goolkasian, 
2010) and mitigate their anxiety (Khusid & Vythilingam, 2016). Mindfulness and the associated 
calmness, clarity, and stability in the mind can allow an individual to “respond” rather than 
“react” to potentially anxiety-producing situations more effectively (Miller et al., 1995, p. 197).  

Meditation and related activities have been used in mathematics classrooms to support 
student learning. Students have demonstrated increased speed and accuracy in computations after 
practicing tai chi and yoga (Field, Diego, & Hernandez-Reif, 2010). Furthermore, mindfulness 
impacted general anxiety, but did not impact performance on lower-stakes mathematics 
homework assignments (Bellinger, DeCaro, & Ralston, 2015). By helping students explore 
meditative states and mindfulness, can we positively impact students’ mathematics anxiety? 
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Researching mindfulness and meditation is difficult due to the internal nature of focused 
meditation (Davidson & Kaszniak, 2015). There is no way to measure to what extent a 
participant is mentally focused or actively meditating. Furthermore, due to the internal and 
personal nature of meditation, it is difficult for a novice to know when they are in a meditative 
state and how they affect their meditative experience. How can a person know whether they are 
truly meditating? These challenges can be overcome with an electroencephalogram (EEG) to 
provide data and feedback. An EEG measures an individual’s brainwaves and determines the 
degree to which an individual is in a meditative state. EEGs are cumbersome and expensive. 
Researchers need a portable, affordable way to measure students’ mental state; students need a 
way to receive feedback to understand and control their state of mind.  

The Muse Headband: Measuring States of Mind 
 A Muse Headband is a portable EEG, a lightweight headband that measures brainwaves, and 

interprets and records the extent to which a user is in a meditative state. Users wear the headband 
which is paired with a mobile application (app) while listening to audio prompts during the 
session. A Muse session occurs in two phases, a calibration phase and a meditation phase. 

In the calibration phase, the user is prompted to close their eyes and let their mind flow 
naturally, allowing wandering or distraction. A baseline wherein the individual’s general state of 
mind is then recorded. Since an individual’s mental state varies, calibration must occur at the 
start of each session. After calibration, the meditation phase of the Muse session begins. The user 
sets the length of the session and is prompted to focus on their breathing, while trying to calm 
and focus the mind. Background sounds, such as water lapping or ambient music, are played. 
The data collected in this phase are compared with data collected during calibration to determine 
the extent to which the user’s mental activity differs from the calibration, measuring the extent to 
which the user can focus his or her mind. Depending on how the mental activity during the 
meditative session differs from the calibration session each moment is labeled as active, neutral, 
or calm. The user’s goal is to maximize how long they were calm or were able to maintain a 
difference in brain activity between the calibration and meditation phases of the Muse session. 

Using a Muse Headband, students can learn how to focus their mind and maintain a 
meditative state. Consequently, many challenges posed by researching meditation can be 
eliminated since actual brain activity is recorded and both users and researchers can know 
whether they are in a calm focused state. As a result, it is possible to determine the extent to 
which meditation can help students alleviate their mathematics anxiety.  

Methods 
In this study, students at a small university in the northeastern United States participated in 

meditation sessions using a Muse Headband to reduce their mathematics anxiety. This project 
sought to answer the question: Does using a Muse Meditation Headband significantly reduce 
students’ mathematics anxiety? This study was conducted during the Fall 2017 semester. 

Two algebra classes, an experimental and control group, participated in the study. The course 
covered factoring polynomials, graphing and solving quadratics, and manipulating rational 
expressions. Both classes were taught by the same instructor and had identical assignments, 
assessments, and lessons. Nine students in the control class and 13 students in the experimental 
class consented to participate. At the beginning and end of the semester, all students were given 
the Mathematics Anxiety Rating Scale – Short Version (MARS-S) (Suinn & Winston, 2003), a 
scale which measures mathematical test anxiety and numerical (calculating) anxiety. The 
experimental class meditated with the Muse Headband for 3-5 minutes at the beginning of each 
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class, including exam days. Lessons were modified to account for this time. On the last day of 
data collection, students meditated for 10 minutes prior to taking the MARS-S post-test. 

Results 
Complete data from seven students in the experimental group and nine students in the control 

were collected and analyzed. These data included pre- and post-test MARS scores in both classes 
and data from at least 10 meditation sessions in the experimental class. A total of 10 males and 6 
females participated. A repeated measures ANOVA was conducted to address the research 
question. This analysis was conducted twice; the first analysis included a student in the control 
group, the second did not. This student experienced a death in his immediate family early in the 
semester. At the end of the semester, prior to completing the MARS-S posttest, he was again 
absent due to related family obligations. This student’s MARS-S score decreased by 16 points, a 
decreased unmatched by any participant in either class. It is possible that this decrease in the 
MARS-S score was related to this personal trauma. The student may have been more focused on 
their personal loss than on academic success. This student’s unfortunate experience requires that 
we consider these scores an outlier and analyze the data with and without these data. 

Results of these repeated measures ANOVA are mixed. If the outlier is not included in the 
analysis, results indicated a significant decrease in students’ anxiety scores from the pre-test to 
the post-test for students in the experimental class, F(1, 13) = 6.712, p = 0.022. If the outlying 
student in the control group is included in the analysis, then results did not indicate a significant 
decrease in students’ anxiety, F(1, 12) = 3.342, p = 0.089. The source of the interaction effect 
was the difference between the experimental and control groups at post-test. A pairwise 
comparison of post-test scores is not statistically significant, p = 0.094. Overall there is a 
plausible decrease in anxiety scores that warrants further investigation. See Tables 1 and 2. 

Table 1: MARS-S Scores, Excluding Outlier 
 Pre-Test (M ± SD) Post-Test (M ± SD) 

Control Group (n=8) 71.75 ± 16.49 78.75 ± 12.36 
Experimental Group (n=7) 69.57 ± 22.28 64.29 ± 18.4 

Table 2: MARS-S Scores, Including Outlier 
 Pre-Test (M ± SD) Post-Test (M ± SD) 

Control Group (n=9) 73.44 ± 16.24 77.89 ± 11.85 
Experimental Group (n=7) 69.57 ± 22.28 64.29 ± 18.4 

 
Limitations 

The small sample size in this study cannot be overlooked. It would be premature to draw 
conclusions stating that meditation contributes to differences in students’ mathematics anxiety. 
The sample size also makes it difficult to discern whether a students’ anxiety level decreased due 
to having the opportunity to meditate or just from having a moment to mentally pause and 
quietly reflect at the start of class. Finally, the sample size makes it difficult to determine what 
aspects of this experience contributed to potential changes in students’ mathematics anxiety. 

Although the researcher sought out identical classes, the two classes did not have identical 
student bodies. The control class consisted mostly of first-year students who placed directly into 
the class. Students in the experimental class were mostly second-year college students and were 
retaking this course or had taken and failed the prerequisite developmental course. 
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Discussion 
This study demonstrates a potential for meditative practices to reduce mathematics anxiety. 

Future research studies with a more robust sample size could allow for a more thoughtful 
investigation into the connections between meditation and alleviating mathematics anxiety, 
including whether changes in MARS-S scores could be attributed to long-term effects that 
resulted from meditating over the course of the semester, or from the meditation session which 
occurred immediately preceding the student completing the MARS-S. 

Finally, as mathematics educators and teachers, we should recognize how mathematics 
anxiety affects students’ experiences and progress in our classrooms. This project has once again 
demonstrated that mathematics anxiety is a common phenomenon and needs to be addressed. By 
focusing on affective factors such as mathematics anxiety, a phenomena that has continuously 
challenged mathematics education researchers, we would be taking another step towards re-
humanizing mathematics and mathematics education (Gutierrez, 2018). Reducing mathematics 
anxiety has the potential to address the needs of all students. 
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Virtually all calculus-offering post-secondary institutions in the United States provide 
mathematics tutoring for undergraduates, but these tutoring interactions are not well studied. 
This study observed tutoring in a mathematics learning center (MLC) and interviewed four 
tutors about their role within the MLC and the role of the MLC in mathematics learning at the 
institution. The tutors all felt that the MLC was a unique space both socially and academically 
that provided a qualitatively different learning opportunity for students. Formal observations of 
interactions within the MLC support this view. Suggestions are made for increased research of 
MLCs and tutors providing distinct mathematics learning opportunities, with the intention of 
improving student outcomes through extending research-based instructional practices to the 
learning space provided by an MLC. 

Keywords: Affect, emotions, beliefs, and attitudes; Informal education; Post-secondary 
education; Instructional activities and practices 

According to the recent MAA National Study of College Calculus (Bressoud, Mesa, & 
Rasmussen, 2015), a study that collected data from departments and individuals in a stratified 
random sample of over 200 non-profit colleges and universities across the United States, almost 
all calculus-offering institutions in the United States offer mathematics tutoring on campus. 
Furthermore, 40% of Calculus I students surveyed reported that they had utilized the campus-
provided tutoring center for mathematics at some point and the study showed that merely the 
existence of a tutoring center improved student attitudes toward mathematics (Bressoud et al., 
2015). Clearly, mathematics tutors and tutoring centers impact or have the potential to impact 
post-secondary mathematics students in positive ways. Yet at the same time, there is very little 
extant research into undergraduate mathematics tutoring and mathematics learning centers 
(MLCs) (Mills, Tallman, & Rickard, 2017). 

One study by Solomon, Croft, and Lawson (2010) considered MLCs at two UK universities 
through the theoretical lens of figured worlds (Holland, Lachicotte, Skinner, & Cain, 1998). 
Figured worlds provides a socio-cultural perspective of identity formation through ongoing 
authoring and positioning work in social interactions. Their primary finding was that the MLC 
was viewed as a distinct academic and social space by mathematics students, and that these 
distinctions allowed for different types of mathematical identity work versus the interactions that 
took place in a classroom or within the offices of their professors or teaching assistants. The 
present study sought to extend our understanding of the MLC and undergraduate peer tutors by 
considering an MLC as a similarly potentially unique social space where mathematics learning 
and teaching takes place in ways outside of traditional, classroom-based paradigms. In contrast 
to Solomon, et al (2010), this study had a focus on the perspective of tutors rather than students, 
and took place in the US where tutors and tutoring centers may have different, though equally 
distinct and perhaps even more ill-defined, academic and social connotations. The study sought 
to address the research question: how do undergraduate mathematics peer tutors describe the 
figured world of a mathematics learning center and their role within it? The figured world 
framework allows for a description of the social space that accounts for broader culture, specific 



Student Learning and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

951	

interactions, and the beliefs and attitudes of individuals. There is currently a lack of research 
around undergraduate mathematics peer tutoring in the US (Mills, Tallman, & Rickard, 2017) so 
rather than an empirical study this work was exploratory to describe an MLC and thus give 
context to inform continuing and future research.  

Setting 
The study took place in the MLC of a large, public university in the Southwestern United 

States, which offers drop-in tutoring for all mathematics courses, emphasizing the Precalculus 
through Calculus II sequence. The university also has an appointment-based writing center and 
various on-campus organizations offer supplemental instruction sections and other venues for 
tutoring, including mathematics tutoring. The MLC is located in the campus library and employs 
20-30 undergraduates for drop-in tutoring over 46 hours during the week. Between two and five 
tutors may be working at a time, depending on the time of day and other factors like upcoming 
exams. Observed tutoring interactions lasted an average of 10-20 minutes with an individual 
student, although depending on tutoring demand, tutors sometimes remained longer or returned 
again to the same student for another interaction.  

Methods & Analysis 
Four undergraduate peer tutors were recorded going about their normal tutoring duties once a 

week over several weeks. Following each recorded observation the tutors joined the researcher in 
watching the footage of their tutoring interactions and explaining their decision-making and 
thought process to the researcher in the form of a stimulated recall interview (Dempsey, 2010).  
During the stimulated recall interview the participant was asked to “think aloud” about their 
tutoring actions and explain to the researcher their decision-making processes. The research also 
asked clarifying questions about specific enactments. A total of 15 tutoring shifts were video 
recorded and 71 distinct tutoring interactions were discussed in stimulated recall interviews. 
Each participant also participated in a in a final semi-structured interview with the researcher 
where they were asked to more globally describe their perspective on the MLC and their role(s) 
within it. The table below summarizes key characteristics of the participating tutors. 

Table 1. Case study participants’ demographic information. 
Case Study 

Participants* Year Major Ethnicity Time Tutoring 
in the MLC 

Danielle Junior Mathematics White/Caucasian 1-2 years 
Eric Senior Mathematics Chinese-Filipino 1-2 years 
Jake Sophomore Engineering White/Caucasian <1 year 
Lily Junior Mathematics & Physics Cambodian 1-2 years 

*Gender-preserving pseudonyms chosen by the participants 
 

Stimulated recall interviews and final interviews were transcribed. Episodes and potentially 
relevant actions or utterances were logged for observed tutoring shifts which allowed for easy 
reference when analyzing stimulated recall interviews, but observations were not completely 
transcribed. Grounded theory was used to develop a coding scheme (Corbin & Strauss, 1990). 
Interactions were coded as a unit with field notes, log notes from the researcher watching the 
recording of the interaction, and stimulated recall transcripts were considered together. 
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Results 
Aligning with the work of Solomon, et al (2010) tutors reported that the MLC provided 

something more than a central location or extended hours – that the space and the help provided 
there were different than that provided by professors and TAs. From the perspective of figured 
worlds, these tutors explained the MLC as a figured world where mathematical struggle is 
valued, and where the role of a tutor within the MLC to be that of a more advanced peer. Their 
role included normalizing student struggles, creating a non-judgmental environment, and 
explaining things in ways that were accessible to students. As one tutor put it:  

“The intimacy level and the time provides a different environment if that makes sense. Not 
only do [professors], sometimes, not only would they know what's going on better but they 
might try to reach it faster and not be as elaborate in their explanations. And again because 
the tutor might not be on the same page as the lecture it might take some more bungling and 
some more muddling and some more sharing of experiences and tools.” – Eric 
Eric saw this muddling as a good thing, validating student struggles and reinforcing that the 

material isn’t meant to always be easy. He saw himself in the position of a near-peer offering 
help to a fellow student. Lily shared a similar view, seeing in fact her lack of extensive expertise 
in more advanced mathematics and her having recently taken the courses herself as potentially 
beneficial in providing clear explanations and making students feel welcome: 

“[W]e have this math learning center here so that students can come ask for help with people 
who are around their age, also going through the same ideas, the same process of going to 
school, trying to learn, they're struggling also, in a way. But that they've gone through these 
classes and they know what it's like. Because, I mean, professors if they're not the newest 
professors it's been quite a while since they've taken a class on Calc II… Meanwhile we're 
students and we're like ‘oh, we just took this two years ago’ or maybe even a year ago,” – 
Lily 
Jake and Danielle echoed that it was important for there to be a nonjudgmental space, a space 

were students would feel comfortable asking questions. The existence of such a place, Jake 
believed, allowed students to persist rather than giving up: 

“They can ask a question about their class and not worry about their professor being like 
‘Did you read the syllabus?’ And so I think it makes it more comfortable for them and yet it 
helps them learn. I think that obviously more people would be failing if we didn't have a 
place like this because we have a place to come ask questions rather than just giving up on 
it.” – Jake 

“Well I'm not going to judge them… I think that by coming to the MLC talking to someone 
who doesn't know you at all and who isn't grading your stuff, there's not a lot of judgement 
that is there.” – Danielle 

The tutors studied here see their work as being distinct from that of a professor or TA, and 
the MLC as providing a nonjudgmental space that encourages a certain form of help-seeking and 
provides a valuable and unique service for mathematics students. 

Observations of participant’s tutoring and their explanations in stimulated recall interviews 
suggest that these beliefs about their roles and the figured world of the MLC influence tutoring 
interactions. For example, participants were observed to sit whenever possible while tutoring, 



Student Learning and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

953	

and when a chair was not available to bend or kneel rather than remaining upright. When asked 
about this behavior, multiple participants expressed that being eye-level was important so that 
the student never felt that they were being talked down to. 

Conclusion 
The perspectives of the tutors in this study highlight the ways in which a peer tutor and a 

MLC are likely to be distinct in their social and academic environments from classrooms and 
classroom-based instructors. In particular, the tutors interviewed described themselves as being 
less intimidating and perhaps more helpful to students as near-peers than the more intimidating, 
non-peer role of a professor or TA. This informed their role as tutors to include behaviors like 
intentional affirmation of the realities of struggling as a mathematics student, and positioning 
themselves in non-authoritative ways. While the current study is considering a single 
mathematics learning center and a subset of tutors, it is my hope that further studies into MLCs 
and the tutors who work in them will continue to be conducted as we learn more about the role 
that these individuals and spaces play in improving student outcomes in mathematics. 

References 
Bressoud, D. M., Mesa, V., & Rasmussen, C. L. (Eds.). (2015). Insights and recommendations from the MAA 

national study of college calculus. MAA Press. 
Corbin, J., & Strauss, A. (1990). Grounded theory research: Procedures, canons and evaluative criteria. Qualitative 

Sociology, 19(6), 418–427. 
Dempsey, N. P. (2010). Stimulated recall interviews in ethnography. Qualitative Sociology, 33(3), 349–367. 

http://doi.org/10.1007/s11133-010-9157-x 
Holland, D. C., Lachicotte, W., Skinner, D., & Cain, C. (1998). Identity and Agency in Cultural Worlds. Cambridge, 

MA: Harvard University Press. 
Mills, M., Tallman, M., & Rickard, B. (2017). Research opportunities for RUME researchers in the context of 

mathematics resource centers. Presented at the annual meeting of the Special Interest Group of the 
Mathematical Association of American on Research in Undergraduate Mathematics Education, San Diego. 

Solomon, Y., Croft, T., & Lawson, D. (2010). Safety in numbers: Mathematics support centres and their derivatives 
as social learning spaces. Studies in Higher Education, 35(4), 421–431. 
http://doi.org/10.1080/03075070903078712 

  



Student Learning and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

954	

MATHEMATICAL IDENTITIES: NARRATIVES AND DISCOURSES OF FEMALE 
STUDENTS IN AN 8TH GRADE CLASSROOM 

Bailey Braaten 
The Ohio State University 

braaten.7@osu.edu 

This research in progress examines two 8th grade female students’ socially constructed 
mathematical identities. Using ethnographic and discourse analytic methods, the study examined 
how these evolving mathematical identities intersect with gender identities. Preliminary results 
indicate female students in this study actively disrupt stereotypes of femininity and of women in 
mathematics. This study offers a fine-grain analysis of how female students identify with 
mathematics at a social and cultural level, and it provides insight on how these mathematical 
identities can develop and change over time. 

Keywords: Classroom Discourse, Gender, Diversity and Equity, Middle School Education 

Introduction 
Between May of 2009 and May of 2015 employment in science, technology, engineering and 

mathematics (STEM) occupations grew by 10.5% in the United States (Fayer, Lacey & Watson, 
2017). The STEM job market is the fastest growing job sector in the United States, and 
mathematics and computer occupations are predicted to have the most growth in the coming 
years, over 25% between 2014 and 2024 (Fayer, Lacey & Watson, 2017).  Yet, women are still 
vastly underrepresented within STEM occupations, particularly mathematics and computer 
science, with women occupying only 25.5% of these occupations in 2016 (U.S. Department of 
Labor, Bureau of Labor Statistics, 2017). There are many questions that arise as to why this 
under-representation of women in the STEM labor force persists, and what factors may be 
contributing to this under-representation. An area of literature that has yet to be explored in detail 
is the social and cultural construction of mathematical identities in the classroom (Bishop, 2012), 
in particular female students, and how they identify themselves in relation to mathematics while 
also navigating the complexities of social life in schools. Mathematics coursework is a 
foundation for STEM majors and careers, and this academic area is part of students’ educational 
trajectories from their first days in school (Shapiro & Sax, 2011). Middle and high school 
mathematics experiences are particularly foundational for students interested in pursuing STEM 
careers (Shapiro & Sax, 2011). How students identify with mathematics is an essential 
component of students’ mathematics experiences (Bishop, 2012). Thus, this study in progress 
proposes to examine students’ socially constructed mathematical identity and how this intersects 
with gender over the course of 8th grade. 

Background 
A prominent way of defining identity for educational research purposes, is that identity is 

constructed at a social and cultural level and realized through social interactions (Anderson, 
2007; Boaler, 2002; Bucholtz & Hall, 2005; Davies & Harre, 1990; Duff, 2002; Mendick, 2005; 
Nasir & de Royston, 2013; Solomon, Lawson & Croft, 2011). Since this study takes a social and 
cultural lens of classroom and student interactions, identity is defined as socially constructed and 
negotiated in specific contexts and informed by personal history and narratives (Anderson, 2007; 
Boaler, 2002; Bucholtz & Hall, 2005; Davies & Harre, 1990; Duff, 2002; Mendick, 2005; Nasir 
& de Royston, 2013; Solomon, Lawson & Croft, 2011). For the purposes of this research, the 
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socially constructed conception of identity is a persuasive definition based on theoretical 
grounding of social constructivism, in which meanings that we take from the world are 
inherently dependent upon social relationships which we are a part of, and our sense of self must 
be generated through social processes (Gergen, 2009). Now following in the broader definition 
of identity, mathematical identity is located, which for this study is defined as a person’s socially 
constructed and negotiated identity in the mathematics context, which is also informed by a 
personal narrative of one’s mathematical self both inside and outside of the classroom 
(Anderson, 2007; Bishop, 2012; Boaler, 2002; Cobb, Gresalfi, & Hodge, 2009).  

For the purposes of this study, gender is conceptualized as a broader category than merely 
sex, male vs. female, and instead as a socially constructed phenomenon of interest that is 
consequential in mathematical identity formation (Damarin & Erchick, 2010). When a student is 
identified by others in a social context as female, and/or if the student self-identifies as female, 
this holds social consequence, especially in mathematics where mathematical ability is often 
gendered as a male characteristic (Mendick, 2005). This study holds significance in 
understanding how gender plays a role in students’ construction and performance of their 
mathematical identities in classroom spaces during a formative time in their schooling, which is 
their 8th grade year of mathematics, one year prior to the transition to high school.  

Research Design and Methods 
This study provides results from the first year of a two-year ethnographic and discourse 

analytic study of students’ mathematical identities over the course of 8th grade and 9th grade, as 
students have to navigate a major transition in their academic life. This study highlights the 
importance of two female students’ construction of their mathematical identities and narratives 
through two interviews, and performance of their mathematical identities in day to day classroom 
interactions during their 8th grade year. This study also examines how these two female students’ 
mathematical identities intersect with social constructions of gender. In conducting the research 
for this project, both an ethnographic and discourse analytic perspective were taken (Blommaert 
& Jie, 2010; Bloome, et. al, 2005; Green & Bloome, 2004; Heath & Street; 2008).  

The site for this research project collection is an 8th grade mathematics classroom at a middle 
school in a large suburban district in the Mid-Western United States. The two female focal 
students, Cayla and Paris, were selected based on their well-articulated personal narratives that 
they gave in their first interviews, and their self-awareness of how mathematics relates to their 
lives. To protect the participants within the study, all names are pseudonyms. 

The data collected for this study were two interviews with each student, one conducted in the 
fall and the other conducted in the spring, of their 8th grade year of school. The interviews were 
conducted as semi-structured interviews, and each interview was audio recorded and later 
transcribed. The other source of data for this study were 50 classroom observations throughout 
the school year, field notes and video recordings of each classroom observation. Selections from 
the classroom observations were transcribed, which illustrate the mathematical identities of the 
two students and also instances where gender becomes salient within the two students’ classroom 
discourse were transcribed and analyzed. The transcripts of the interviews were analyzed from an 
ethnographic perspective using discourse analytic techniques (Bloome, et. al., 2005).  

Findings 
The in the interviews, first focal student, Cayla, expressed a dislike of mathematics prior to 

her 8th grade year, but now enjoys the algebra concepts that they are learning. She is positioned 
by the teacher and other students as being one of the top performers in the class. She positions 
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herself as a hard-worker who now enjoys mathematics, but does not label herself as smart. 
Through classroom observations, there has been a shift in her social engagement over the course 
of the year from being excessively social with classmates, to the point of distraction, to being 
more focused and often times choosing to separate herself from other students who may be 
potential distractions.  

In the interviews, the second focal student, Paris, expresses her relationship with 
mathematics as closely tied to her struggle managing Attention Deficit Hyperactive Disorder 
(ADHD) symptoms and school. She says that her mathematics experience is very dependent on 
how responsive the teacher is to her needs as a student with ADHD. Paris is positioned by her 
teacher and peers as a middle performer within the class. Paris positions herself as a meticulous 
worker, who mainly associates with a single friend in the class. In class she has proclaimed that 
she has a love-hate relationship with mathematics, and sees herself as being stuck with 
mathematics through school, but enjoys mathematics applied in other contexts like science.  

Data show Cayla and Paris display mathematical identities that have shifted over time. They 
are also actively engaged in producing identities that disrupt traditional notions of femininity, 
and make conversational moves to assert that even though they are young women, this does not 
mean they have to be constrained to feminine constructs. To illustrate this type of move, the 
following is an excerpt from class where Cayla disrupts traditional feminine notions of a 
classmate as they work on a project creating a poster that illustrates an example of a linear 
equation, with an emphasis showing slope and y-intercept: 

 
Richie: This is easy. (Pointing to the assignment instructions.) 
Cayla: I can’t draw. 
Richie: You literally just have to do that (points at instructions for the assignment.) 

Just write little flowers and show growth. 
Cayla: Just because I’m a girl doesn’t mean I’m feminine and have to draw 

flowers on my paper. 
Richie: Yeah, it does. 
Kyle: No, it doesn’t. 
Cayla:  No, I don’t even like flowers. 
Richie: Then draw a bicycle. 
Cayla: What do bicycles have to do with slope and y-intercept? 

 
Cayla is asserting that her conception of what it means to be female does not have to align 

with traditional conceptions of femininity, as well as at the end of the conversation shifting the 
focus of the conversation back to the mathematics assignment, indicating focus as a mathematics 
student. Another illustration of this type of move occurred when  

Conclusion 
The implications of this study are important for better understanding the female experience in 

male-dominated areas of STEM, and why there is a persistent underrepresentation of women in 
STEM majors and careers (U.S. Department of Labor, Bureau of Labor Statistics, 2017). If the 
experiences of Cayla and Paris are indicative of the broader experience of young women, then it 
can be seen how much work is required in navigating mathematics as a young woman. Paris 
views mathematics as a necessary step towards her personal goals, but nothing that she wishes to 
pursue further. Cayla’s narrative is similar, despite feeling an affinity towards the mathematics 
content that she has learned in 8th grade, she does not proclaim excitement or a strong desire to 
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continue mathematics coursework beyond what is required of her. It is important to continue to 
explore young women’s experiences in mathematics in middle and high school related to their 
identity development, to better understand how these experiences influence choices to pursue 
STEM majors and careers which require advanced coursework in mathematics.   
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PROVIDING STUDENTS CORRECT VS. INCORRECT CALCULUS EXAMPLES 
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This study seeks to determine differences in learning when calculus learners analyze correct or 
incorrect work samples and to investigate students’ perceptions of the effect of analyzing work 
samples on their learning of mathematics. Results suggest that when students analyze incorrect 
work samples, they are less likely to repeat the errors they have seen. Results also suggest that 
students perceive correct work samples as more beneficial to learning than incorrect work 
samples. However, both correct and incorrect work samples were found to challenge students’ 
thinking and promote student independence. These findings have implications for teacher 
practice and curriculum development. 

Keywords: Metacognition, Instructional Activities and Practices, Advanced Mathematical 
Thinking 

Although experienced teachers may predict common student misconceptions, this knowledge 
is fruitless unless it can inform instruction. While many believe that any exposure to errors will 
overwhelm or confuse students and thus avoid addressing common errors altogether, others 
recommend having students analyze others’ work, including incorrect work, in hopes of 
challenging student thinking and revealing common misconceptions (Kramarski & Zoldan, 
2008). Borasi (1994) suggests using errors as springboards for inquiry and found examination of 
errors to improve learning and attitudes about math. This article tackles this instructional 
dilemma by investigating learning associated with analyzing correct and incorrect student work 
samples and by investigating students’ perceptions of how this analysis impacted their learning: 
(1) Are there differences in learning outcomes (exam scores, problem-solving, avoiding errors) 
associated with students’ analysis of correct or incorrect examples? (2) Are there differences in 
how students perceive the benefits or hinderances of analyzing correct and incorrect examples? 
(3) How do students describe analyzing work samples and its influence on learning? 

Literature Review 
Errors can encourage communication of ideas, justification of solutions, questioning, 

reflection, critical thinking, inquiry, and flexibility in reasoning (Kramarski, 2004). However, it 
is unclear what the role of students’ errors and misconceptions should be within ambitious 
teaching practices. Participants’ experiences were viewed as intertwinings of thoughts, 
observations, and understandings, consistent with Marton’s (1995) phenomenographic approach. 
This study uses the framework of IMPROVE (Mevarech & Kramarski, 1997), a metacognitive 
approach which encourages students to ask themselves questions and includes four factors: (a) 
comprehension, (b) connections, (c) strategies, and (d) reflection. We assumed that using this 
framework to analyze others’ work would also encourage students to ask questions when they 
are solving problems themselves. This study was influenced by Knowles’ (2011) self-directed 
learning, allowing learners to take initiative in learning, assuming learners’ experiences and 
reflections are valid learning resources, and assuming learners are somewhat intrinsically 
motivated to learn due to curiosity and perceptions of relevance.  
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Materials and Methodology 
Learning modules (LMs), asked students to analyze work samples by presenting them online. 

Students saw the same math problem, but some students saw a correct solution, and others saw 
an incorrect solution. Completion was compulsory and conducted outside of class meetings.  

Participants. Our data was collected from 181 enrollees in 10 sections of Basic Calculus at a 
large university in the United States, and nine of those were interviewed the following semester. 
The sections met together for 50-minute lectures twice per week and separately for 75-minute 
recitations (led by graduate students) once per week. The gender distribution of participants was 
68.51% female and 31.49% male. Each recitation section had two approximately equal-sized 
randomly assigned groups within it, one analyzing correct and one analyzing incorrect work 
samples. Interviewees were selected by their positive response to an electronic invitation.  

Data Collection. From relevant problems on exams, scores and error rates were collected. 
Also, students’ perceptions were measured by survey; each LM ended with a survey asking 
students to rate the LMs’ helpfulness on a five-point scale. The survey’s alpha coefficient was 
.96, suggesting high internal consistency. Semi-structured 30-minute interviews (n=9) were 
conducted. After a pilot study, the pre-test, the sampling techniques, the exams, the 
interventions, and the interview protocol were improved based on expert validator critique. 

Data Analysis. (1) The pre-test and final exam scores were analyzed, using ANCOVA, to 
reveal if work-sample correctness was associated with students’ overall achievement. (2) 
Responses to certain pre-test and exam questions, similar to those in the LMs, were scored by 
rubrics. Prior knowledge was accounted for by pre-test questions, and ANCOVA was conducted 
to analyze possible association with ability to solve similar problems. (3) To reveal differences in 
error rates, all pre-test and exam problems which provided opportunities to make those errors 
were analyzed through ANCOVA. (4) Each LM ended with a survey asking students to rate the 
LMs’ helpfulness in learning. Independent samples t-test tests were conducted to compare 
students’ ratings of correct work samples to incorrect work samples. (5) Semi-structured 
interviews (n=9) were transcribed and analyzed using inductive analysis. Domains emerged by 
finding semantic relationships in the data. Then, weak domains were abandoned, some were 
combined, and some emerged as salient. Further analysis was conducted within and between 
them to identify themes. 

Interventions. The incorrect-work LMs featured common errors. Questions were formed 
that would elicit students’ reflection, metacognition, and advanced mathematical thinking and in 
a manner that would offer approximately the same level of challenge to students in both groups. 
 

 
Figure 1. An example of an incorrect example showing a common error 

Results 
Final Exam Scores and Problem Solving 
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After controlling for pre-test scores, the ANCOVA revealed no significant difference in the 
two groups’ final exam scores; F(1, 169) = 1.24, p = .267. When adjusted for pre-test scores, the 
mean final exam score for analyzers of incorrect work was 82.79, while the mean for correct 
work was 80.78. When analyzing only problems similar to those in the LMs, the difference 
between exam-question scores for analysts of correct and incorrect work was not statistically 
significant after controlling for pre-test scores; F(1, 169) = 0.82, p = .367. Exam-problem scores 
for analysts of incorrect work had an adjusted mean of 79.92, while the scores for analysts of 
correct work had an adjusted mean of 78.35.  
Making Errors 

Error rates differed significantly, after controlling for pre-test error rates; F(1, 1048) = 4.80, p 
= .029. Participants who analyzed incorrect work made these errors 3.7% of the time, while the 
participants who analyzed correct work made them 5.5% of the time. Table 1 shows ANCOVA 
results and adjusted error rates (e(c)= error rate for students who analyzed correct work, e(i) = 
error rate for students who analyzed incorrect work) for the two groups. 

Table 1: Making Errors, Results of ANCOVAs 
Incorrect Cancellation F(1, 159) = 1.13, p = .289 e(c)=2.5% e(i)=3.3% 

f(x)+h instead of f(x+h) F(1, 150) = 1.98, p = .162 e(c)=5.3% e(i)=1.8% 
Omission of negative solution F(1, 163) = 1.17, p = .280 e(c)=8.2% e(i)=6.2% 
Confusion of exponent rules F(1, 126) = 0.14, p = .705 e(c)=8.5% e(i)=7.0% 

Not using quotient rule F(1, 154) = 2.12, p = .147 e(c)=5.0% e(i)=2.2% 
Confusion of f(x) & derivatives F(1, 143) = 2.58, p = .110 e(c)=7.9% e(i)=4.3% 

 
Students’ Perceptions about Effectiveness of Interventions 

Those who examined correct work consistently rated the LMs as having greater association 
than those who examined incorrect work. Independent samples t-test indicated that overall, 
ratings by those who examined correct work were significantly higher than those who examined 
incorrect work. Also, tests were conducted to compare the perceptions of helpfulness to each 
aspect of learning, and significant differences were discovered within all aspects except for 
attitudes.  
Interview Analysis Results 

After reading the transcripts and considering that the overarching goal of this study, the 
frames of analysis were selected to be (a) understanding underlying concepts, (b) using rules and 
procedures, (c) using strategies, (d) communicating about math, and (e) attitudes. Domains were 
identified using semantic relationships. To conduct an analysis within these domains, Marton’s 
perspective of capability and constraint (1995, p. 171) was considered, and domains were 
viewed as either depictions of capability, which positively associate with learning, or depictions 
of constraints, which inhibit learning. The major findings from this study are delineated below 
and mirror the 5 strands of mathematical proficiency (NRC, 2001): 

• Both correct and incorrect LMs made students think about concepts underlying 
procedures (Conceptual understanding).  

• Explaining math was also a task that promoted use of procedures (Procedural Fluency). 
• The correct LMs helped students form strategies to begin problems.  Explaining 

connections between steps emerged as an aid to the use of specific strategies (Strategic 
Competency).  
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• When asked how the LMs influenced the students’ abilities to talk about math to others, 
several mentioned the LMs “made them think” about the mathematics. (Adaptive 
Reasoning).  

• Related to confidence, incorrect work samples seemed to ease anxiety by illustrating 
others make mistakes and mistakes are fixable (Productive Disposition).  

In addition, we observed two overarching themes from analyses of semantic relationships 
between domains—independent learning and student engagement. Students felt as if they had 
interacted (or were more engaged), as opposed to hearing a lecture, which led to more 
independent learning as students were not just “fed” the material. The open-ended nature of the 
analyses, both of correct and incorrect work, influenced some aspects of learning, such as 
improving attitudes and flexible use of strategies.  

Discussion 
This study reveals that if students analyze incorrect work, they may be less likely to make the 

errors. However, ironically, students perceive correct work samples as more helpful to learning. 
With these juxtaposed findings, we see that students are not always aware of what is most 
effective in their own learning. They may experience challenge and interpret it as less helpful 
than a low-risk lecture. Teachers should not avoid using both correct and incorrect work samples 
when teaching and developing tasks because, as evidenced in this study, (a) both are effective in 
promoting problem-solving skills and achievement, (b) seeing common errors in work samples 
of moderate difficulty-level discourages students from making those errors, and (c) using both 
may prevent predictability that can constrain attitudes and student thinking. Teacher educators 
should make preservice and in-service teachers aware of these results in order to counter the 
fears that students will replicate errors. Future research could investigate whether results will 
differ with error type, or could include a group analyzing both correct and incorrect work. 
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DEVELOPMENT OF MATHEMATICS COMPETENCE, IDENTITY, AND SENSE OF 
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In this paper, we consider the ways in which out-of-school educational programs extend support 
to young high-achieving African-American students with an interest in STEM. We present a 
qualitative case study of three female African-American students enrolled in a mathematics 
summer camp intended for high school students interested in higher-level mathematics. We 
report on how these students found the program impacted their own growth and development in 
several specific domains.      

Keywords: Equity and Diversity, Gender, High School Education, Informal Education 

There is growing evidence that out-of-school educational programs contribute to young 
people’s interest, understanding, and participation in STEM (National Research Council, 2015). 
In this paper we consider the ways in which out-of-school educational programs extend support 
to young high-achieving African-American high school students with an interest in STEM. In 
particular, we focus on how these students describe the support provided to them from their own 
perspective. The research questions guiding this study are: How do young African-Americans 
attending an out-of-school mathematics program describe the support provided to them with 
respect to the development of their (a) mathematical competence, (b) mathematical identity, and 
(c) sense of belonging to a community of mathematics learners?   

Literature Review 
Gasman and colleagues (2009) present a comprehensive review of the literature on students 

of color in STEM. They note that STEM education has traditionally been characterized by a 
survival-of-the-fittest approach in which “lack of attainment in STEM fields for 
underrepresented minorities is attributable to students’ background characteristics, including 
socioeconomic status, parental education, family support, preparation in high school, and even 
genetics.” (p. 66) Strayhorn (2011) measured the effect of summer bridge programs (SBP) on 
preparation for college in four areas: academic self-efficacy, sense of belonging, and academic 
and social skills. He found that students participating in SBP with high self-efficacy earned 
greater first semester GPA’s than those with low self-efficacy, and that academic achievement 
prior to college was the most powerful predictor of success in the first semester of college.  

Namakshi (2016) conducted a qualitative case study in which the impacts of an informal 
mathematics program on four former female students were examined. Namakshi found that the 
math camp had a crucial impact on the participants’ future higher-education/career trajectory by 
increasing their social capital and positively influencing their mathematical identity. 

Methods 
Seven African-American students were enrolled in the math camp in this study. Each of the 

seven students had been provided a scholarship to enroll in the program through a private 
foundation that provides assistance to young African-Americans. Three of the seven students 
were chosen for this study based on their transcripts, letters of recommendation, and application 
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essays submitted during the application process to the math camp.  The students selected were 
chosen to represent a wide range of previous academic achievement.  
Context of the study 

The math camp in this study is a 6-week multi-level residential program for 60-68 talented 
high school students located in the southwest part of the United States. The participants were 
from 18 different states. The first-year participant class was 25% African-American. Students are 
immersed in studying mathematics at a high level while learning the process of doing research. 
Students learn to explore problems deeply, compute examples, make conjectures and give 
careful, rigorous mathematical proofs. In their first year, students study number theory with an 
associated Mathematica programming lab. In subsequent summers, the students take more 
advanced courses including Abstract Algebra, Combinatorics and Analysis, and work in groups 
on a research project guided by a faculty mentor. 

All of the students work in nightly study groups of 4 students, with each study group having 
a camp counselor. The counselors are former campers who oversee daily problem sessions and 
provide feedback on the problem sets for student work.  They are role models who give the 
campers help and guidance throughout the summer.  
Participants   

The first participant, Abigail, was a rising sophomore in high school and exhibited a strong 
love for mathematics in her application essay. She had been attending math enrichment programs 
since the 3rd grade and enrolled in a college-level calculus course in the 7th grade. Abigail had 
independently studied subjects such as linear algebra. Abigail’s primary interests in coming to 
the math camp were to develop her knowledge of mathematics so that she could better 
understand how to apply mathematics to her interests in physics and computer science.     

Brianna was a rising junior in high school. In her application essay, she stated that she 
wanted to “be the best that I can be in all things math and science.” At her school, Brianna won a 
competition in which she successfully remembered the most digits of the number Pi. Brianna has 
an interest in going to medical school to study oncology or genetic exploration. To accomplish 
this goal, Brianna intends to apply to several elite universities.  

Candice was a rising junior in high school. As a child, Candice was strongly encouraged to 
join STEM focused clubs in her elementary school. She had received a perfect score on the math 
portion of the PSAT in her sophomore year of high school. Candice was described by her teacher 
as a critical thinker and problem solver with a willingness to help others. Candice’s interests in 
coming to the camp came from her desire to conduct meaningful research in a STEM field that 
could make a significant impact in the lives of others.  
Data Collection 

In addition to the transcripts, letters of recommendation, and application essays, this study 
also drew upon several other sources of data. While at the math camp, the students completed 
weekly electronic journals that served as reflections of their experiences from that week. 
Observations of the nightly study groups were conducted, and field notes were taken. After each 
observation, a one-page reflection report was written that focused on the interactions and general 
flow of events that occurred. During the fifth week, semi-structured interviews were conducted 
with the three participants and their counselors. Electronic post evaluations were collected from 
the students. These reflections provided the students a chance to critically reflect on their overall 
experience in the camp and opened a door to discuss any problems or concerns directly with the 
Director.  
Data Analysis 
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We defined mathematical competence following Boaler and Greeno (2000), who defined 
knowing and understanding as “… [the ability to] engage in sense-making and problem-solving 
using and developing mathematical representations, concepts, and methods as resources… 
[through participation] in the practices of mathematical discourse and thinking” (p. 172). To 
conceptualize mathematical identity, we defined identity as a set of stories about a person (Sfard 
& Prusak, 2005). In this way, the mathematical identity of the participants could be revealed 
through the stories they told about themselves within their application essays, journals, and 
interviews.  

The application essays, journal entries, and interviews were read over to gain familiarity with 
the data. The codes were then compared to ensure reliability. The coding consisted of identifying 
evidence of change in mathematical competence, identity, and sense of belonging as a result of 
attending the camp. This analysis was followed by a cross-case synthesis (Yin, 2017). In the 
following section, we present a synthesis of the results 

Preliminary Findings and Results 
Mathematical Competence 

Each of the three students entered math camp with a strong record of achievement in 
mathematics as attested by their transcripts, applications, and teacher recommendations. They all 
reported improvement in problem solving techniques and proof writing skills. Abigail, in 
addition, felt that during camp she improved in her ability to attack problems and explain the 
solution to others once they were solved. Candice also found how, “effective communication in 
mathematics was an important skill to have and led to a better understanding of math.” Brianna 
referred to changes in her views of learning, and how “true understanding stems from being able 
to take apart these core concepts …. learning is about always asking why, questioning everything 
…asking questions is never a sign of weakness or ignorance.” Candice attributes camp to her 
change in attitude towards math. Rather than take formulas as true statements, she now wants to 
understand why the formula works.  She also felt that she was overcoming her fear or failure 
because she had learned how important failure is in learning to write proofs. While Brianna and 
Candice developed a sense of confidence and comfort through challenges, they acknowledged 
there are “still some topics that are confusing for me.” By the end of camp, Abigail reported how 
she would like to test her mathematical competence by entering math competitions and, 
“hopefully qualify for math prizes.” The students remain focused on the goals that they had set 
prior to attending camp. They reported that they felt an increase in their mathematical ability and 
competence in Number Theory, writing proofs, and in doing mathematics in general. 
Mathematical Identity 

The mathematical identity of the participants could be seen to evolve through their 
perceptions of what mathematics means to them. When prompted to describe her views and her 
personal growth and development over the summer, Brianna responded that “Being here at [the 
camp] has given me an all new meaning to math. It has taught me that math doesn't have to be a 
part of just another agonizing cyclic process in school that has been defined as ‘learning.’” In 
addition, she explains that she felt no limitations when it comes to learning. Brianna and Abigail 
talk about their persistence despite struggles, stating that “my optimism keeps me going along 
with me keeping my eye on the prize and knowing that the struggle won’t last very long and the 
destination is in sight.” Both of Abigail and Candice also provided commentary on how they had 
developed a greater appreciation for the utility of mathematics. Abigail stated in one journal that 
“[the camp] has shown me that math can be important all across the STEM field.”  Candice 
wrote about her fear of failure and how she learned to “embrace failure and learn from my 
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mistakes.” Thus, the mathematical identity of the participants can be seen to have been changed 
by positively impacting their feelings, attitudes, and beliefs. 
Sense of Belonging 

The participants described their sense of belonging to a community of mathematics learners 
through their interactions with other students. Each of the participants placed value on the 
opportunity to work on challenging mathematics together with likeminded individuals. Both of 
Abigail and Brianna described themselves as being motivators for the study groups to interact 
with each other. Abigail explicitly identified herself as the leader of her study group during her 
interview. At times, the participants expressed doubt about their ability to keep up with other 
students. Candice mentioned in her final evaluation that, “After talking with the other students 
at [the camp] on the first day, I felt underprepared when I entered the first Number Theory 
class…” However, Candice explained in the same entry that she felt she was at the same level as 
her peers in the beginning because the number theory class started from the basics. 

Conclusion 
In this paper, we have reported on several ways in which the participants of this study 

described the support provided to them during their time at a summer math camp. The 
participants recounted their experiences in the camp as it related to the positive development of 
their mathematical competence, mathematical identity, and sense of belonging to a community of 
mathematics learners. The impact of these out-of-school experiences can be critical to reaching 
out to and preparing African-American students (and all students) for careers in STEM. Further 
work is needed to better understand the supports provided, and how these supports each played a 
role in supporting the participants growth and development. 
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To investigate performance differences between undergraduate mathematics students whose 
instructors implemented an inquiry-oriented curriculum and those whose instructors did not, we 
analyzed 513 content assessments. The data was disaggregated by gender to examine how 
inquiry-oriented instruction relates to the pattern of underrepresentation of women in 
mathematics. While we detected no gender performance-gap in a national comparison sample, 
we did find one in the inquiry-oriented group. Notably, this gap came from male inquiry-oriented 
students outperforming male students from the comparison group, while female inquiry-oriented 
students performed the same as female students from the comparison group.  

Keywords: Post-Secondary Education, Gender, Equity and Diversity, Assessment and Evaluation 

Active learning in undergraduate STEM classes has been linked to improved student success 
and learning (see Freeman et al.'s (2014) meta-analysis of 225 studies). Additionally, in 
undergraduate mathematics specifically, Laursen, Hassi, Kogan, and Weston’s (2014) work 
suggests that Inquiry-Based Learning (IBL) courses – which promote collaborative learning 
environments – ‘level the playing field’ for male and female students. While these findings are 
powerful, the mechanisms connecting active learning approaches to more equitable student 
outcomes are not well understood. As Singer and colleagues argued in the National Research 
Council’s (2012) report, the identification of critical features of instructional approaches is 
crucial for exploring the ways those approaches may impact particular groups of students. Thus, 
in this study we present a narrow investigation into the relationships between one carefully 
defined instructional approach, namely inquiry-oriented instruction (IOI) (Kuster, Johnson, 
Keene, & Andrews-Larson, 2018), and student performance on a content assessment.  

Our work draws on data collected in an NSF-funded project, Teaching Inquiry-oriented 
Mathematics: Establishing Supports (TIMES), that aims to explore what is needed to support 
instructors learning to teach in inquiry-oriented ways. Of specific interest here is one of three sets 
of materials utilized in this project, namely the Inquiry-Oriented Abstract Algebra (IOAA) 
curriculum (Larsen, Johnson, & Weber, 2013). We analyzed 513 completed content assessments 
to investigate performance differences between students whose instructors implemented the 
IOAA curriculum (with professional development support from the TIMES project), and those 
whose instructors did not. Specifically we address the following two research questions: 1) What 
is the relationship between inquiry-oriented instruction, as manifested by the TIMES program, 
and student performance on a content assessment?, 2) Is the pattern consistent across genders? 
Given Freeman et. al’s (2014) findings, we expect to see the TIMES students outperforming 
Non-TIMES students. Additionally, given the similarities between inquiry-oriented instruction 
and IBL, we expect to see Laursen et al.’s (2014) findings replicated, with men and women 
performing more similarly in the IOI setting than in non-IOI settings.  
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Literature Review and Theoretical Perspective 
In IOI, the intent is for the students “to regard the knowledge they acquire as their own 

private knowledge, knowledge for which they themselves are responsible” (Gravemeijer, 1999, 
p. 158). Thus, through inquiry and collaborative group work, the objective is to reposition 
students as central to the process of constructing and reinventing important mathematical ideas. 
Some literature suggests that classrooms emphasizing collaborative work, problem solving, and 
communication may be supportive for women (Du & Kolmos, 2009; Springer, Stanne, & 
Donovan, 1999). However, research on the nature of social interactions in collaborative decision-
making and facilitated discussions offers additional insights into the negative ways in which 
students may experience the mathematics classroom as a gendered and racialized space. For 
example, when groups are tasked with arriving at a decision, women in predominantly male 
groups speak less and are interrupted more than men (Karpowitz, Mendelberg, and Shaker, 
2012). Further, within the same classroom, students often receive different opportunities to 
participate in whole-class math discussions in ways that follow patterns of gender, race, and class 
(Black, 2004; Walshaw & Anthony, 2008).  

Most closely related to our research context, i.e., mathematics education at the undergraduate 
level, Laursen et al. (2014) found that “in non-IBL [inquiry-based learning] courses, women 
reported gaining less mastery than did men, but these differences vanished in IBL courses” (p. 
415), suggesting that instructional approaches involving collaborative problem solving may 
‘level the playing field’ for male and female students. Their IBL context is commensurate with, 
but distinct from, our inquiry-oriented context. Both IOI and IBL promote collaborative group 
work, prioritize student engagement with authentic mathematical activity, and decentralize 
classroom authority. However, IOI places special emphasis on reinvention and inquiry – by both 
the students and the teacher (see Kuster et al. (2017) for a description of IOI).  

Thus, due to the undergraduate mathematics setting and similarities between IBL and IOI, we 
had reason to believe that we would see Laursen et al.’s (2014) findings replicated in our study. 
However, our study had some key differences. Specifically, our analysis examines student 
content assessments (not affective reports of learning gains) and takes place within the context of 
a long-term, multi-faceted professional development model that emphasized a narrowly defined 
instructional approach. 

Methods 
There were 12 IOAA TIMES Fellows. These fellows received three forms of professional 

development support: curricular support materials, summer workshops, and online working 
groups that met every week as the Fellows were implementing the IOAA curricular materials.  

The TIMES Fellows asked their students to complete the Group Theory Content Assessment 
(GTCA) (Melhuish, 2015). This assessment, developed to measure conceptual understanding of 
key concepts in group theory, included: binary operations and their properties, group structures, 
element properties, and functions. In order to produce a robust validity argument, the GTCA 
began with open-ended tasks, which were converted to a multiple-choice format based on student 
responses. As a result of the development process, we have a large, nationally representative 
‘control’ group from which we can draw comparisons with our IOI students. 

From the 12 TIMES Fellows, there were a total of 174 students, 80% of whom completed the 
GTCA. For our “Not-TIMES” group, we analyzed data from 374 students from 33 institutions. 
For these students, we make no claim about the form of their instructional experiences. Thus, 
they are a control for the TIMES project, but not necessarily for IOI. However, nationally the 
proportion of teachers using “non-lecture” instructional approaches in abstract algebra is less 
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than 10% (Fukawa-Connelly, Johnson, & Keller, 2016). Between the treatment (TIMES, n = 
139) and control (Not-TIMES, n = 374) groups, we have a total of 513 student content 
assessments. In total there were 269 males, 237 females, and 9 who otherwise identify or 
declined to identify their gender. The percentage that identified as female was not significantly 
different (p = .413) between Not-TIMES and TIMES (47.59% and 42.45%, respectively).   

The primary analysis in this research was an investigation of performance on the GTCA and 
group comparisons therein. Summary statistics were computed for the overall sum score based 
on the 15-item subset that was consistent across data collection iterations. Independent sample t-
tests were used to compare mean performance by gender within instructional treatments and 
overall; effect sizes were computed where indicated. 

Results and Discussion 
When tabulating the collective assessment results of all students on the GTCA, we report the 

average performance to be a score of 6.33 items correct out of 15, with a standard deviation of 
2.95. We found that the TIMES students slightly outperform the Not-TIMES students by about 
half a unit (6.65 vs. 6.21), but this difference is not statistically significant (t = -1.516, df = 511, 
p = .130). When considering performance differences by gender, we see that males generally 
outperform females (when aggregating TIMES and Not-TIMES students) by about one correct 
answer (6.75 vs. 5.79). This difference, while statistically significant (t = 3.703, p < .001), is of 
little practical importance as judging by the small effect size (d = .33). Thus, we view this as a 
fairly minimal performance gap. However, when disaggregating the data by instructor 
classification, this trend is inconsistent.   

Gender comparisons within each group revealed no significant difference in the Not-TIMES 
group (males outperform females by about half-point on average, p = .095). In the TIMES group 
however, males outperformed females by over 2 points on average. This difference was 
appreciable both in terms of statistical significance (p < .001) and in practical importance as 
judging by the large effect size (d = .7257).  

 

 
Figure 1. Gender Comparisons of Students on GTCA 

In summary, males outperform females in both groups (though not significantly in the Not-
TIMES group), but when considering the differences within gender across categories of 
instruction, we see that the performance gap widens in the TIMES group because the average 
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male score registers a statistically significant improvement of 1.1 units (t = 2.69, p = 0.008) 
while the average female score declines (albeit insignificantly) by .58 units (t = -1.37, p = .174).  

We see the detection of a gender performance-gap within the IOI setting as an unfortunate 
finding. We are not insinuating that the TIMES project, or the implementation of IOI in general, 
is detrimental to female student achievement; in fact, both male and female TIMES students 
performed as well or better than the national comparison sample. We take the improved scores 
for male students as evidence that IOI has the potential to improve student learning. However, 
the question remains as to why female students did not share the same degree of improvement. It 
is our intention to use our findings to inform a critical examination of the effect of our 
interventions on the gendered experiences of our students and call on others to do the same. 
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This paper examines the problem-solving practices of Latinx bilingual students with a 
challenging mathematics task. Studying the collaborative efforts of two groups of Latinx 
bilinguals, our findings suggest these students can spontaneously and dialogically leverage 
communicative resources to help persevere with in-the-moment obstacles, but only when 
provided freedom to explore mathematics via their dynamic bilingualism.  

Latinx students are one of the fastest growing populations in the U.S. (NCES, 2016), yet 
dehumanizing school practices continue to marginalize this group’s linguistic, social, and 
cultural capital (Langer-Osuna et al., 2016). All students must have access to study rigorous 
mathematics, and thus be supported in their perseverance with such challenges (NCTM, 2014). 
This notion of perseverance exists at specific times during problem-solving when productive 
struggle, or grappling with mathematical ideas not yet well formed, is necessary to develop 
conceptual knowledge (Hiebert & Grouws, 2007). Despite efforts to support perseverance by 
emphasizing collaborative communication, Latinx bilinguals’ mathematical engagement is often 
viewed from deficit perspective by ignoring their linguistic and cultural repertoire and instead 
privileging the dominant school language (Garcia, 2017; Morales Jr., 2004). This naturalistic 
study aims to describe the translanguaging and perseverance practices of Latinx bilingual 
students during problem-solving with challenging mathematics. 

Translanguaging and Persevering to Learn Mathematics 
We draw on translanguaging to reconceptualize bilingualism as a liberating and empowering 

communicative practice, and a resource capable of transforming learning that goes beyond the 
transition to a dominant school language. Translanguaging is an interrelated communicative 
practice that make up bilinguals’ linguistic repertoire. Garcia (2017) posits, “…speakers use their 
languaging, bodies, multimodal resources, tools and artifacts in dynamically entangled, 
interconnected and coordinated ways to make meaning” (p. 258). A translanguaging lens allows 
us to better understand holistically how bilingual students use their linguistic, multimodal, and 
mathematical repertoire to make meaning as they persevere with challenging ideas. Perseverance 
is a cycle of initiating and sustaining in-the-moment productive struggle in the face of one or 
more obstacles, setbacks, or discouragements (DiNapoli, 2018). Because productive struggle is 
helpful in developing mathematical meaning, analysis of perseverance should consider the ways 
in which students first wrestle with an uncertain mathematical situation, and, if necessary, how 
they amend their first effort to continue to make mathematical progress. Yet, for Latinx bilingual 
students, questions remain about how perseverance might manifest working across two 
languages and how teachers might take a translanguaging stance (see Garcia, 2017) to provide 
opportunities to leverage communicative and linguistic repertoires to build understandings.  

Methods 
We observed two groups of 12th-grade Latinx bilingual students from different classes with 

the same monolingual, English-speaking teacher (Ms. Patrick) working on a multi-day task 
necessitating perseverance. The task referenced Alice in Wonderland, in which Alice's height is 
doubled or halved by consuming certain potions. All but one student (Ines, see below) were born 
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in the U.S., yet all students still use home language (Spanish) as part of their linguistic repertoire. 
We employed a perseverance analytical framework (see DiNapoli, 2018) that identified how 
productive struggle was initiated and sustained from the outset with a challenging task (Initial 
Attempt) and how it was re-initiated and re-sustained in a new way (Additional Attempt(s)) if a 
first effort did not lead to a solution. We consider how students engaged in translanguaging 
practice and persevered at specific moments during their problem-solving.  

Findings 
Here we share detailed findings from Group A, who exemplified translanguaging and 

perseverance practices while conceptually exploring exponential growth. We then briefly share, 
due to space limitations, apparent themes from Group B, who demonstrated little to no evidence 
of such practices. Our observations show how student spontaneous translanguaging can help 
support perseverance with challenging mathematics, but only when students had an opportunity 
to productively struggle without teacher intervention. Consider the following vignettes from 
Group A’s three-day collaboration around the task. Group A had demonstrated evidence of 
understanding the goal of the problem on Day 1, but did not know how to solve it. We share 
findings from Day 2, as Group A makes their Initial Attempt at solving. 

JESSICA: ¿Qué era la primera, se hace así? Okay, dice: Alice changes when she eats the 
cake, assume that her height doubles for each ounce she eats, so that means if she eats one 
ounce, that means that she grows twice, dos ¿qué? Double, no double, two. (What was the 
first one, do you do it like this? Okay, it says: Alice changes when she eats the cake, assume 
that her height doubles for each ounce she eats, so that means if she eats one ounce, that 
means that she grows twice, two what? Double, no double two.) 
JESSICA: See, so when two is four, and then three is six, and four is eight, y así, y así vamos 
hacer la graph. Going like that para arriba. (Gesturing) You get it? (See, so when two is four, 
and then three is six, and four is eight, like this, and this is how we are going to make the 
graph. Going like that, up. (Gesturing) You get it?) 
ELENA: Um hmm. Pero, how do we times it? (But how do we times it?) 
JESSICA: Porque mira, two, times two. Well no. (Because look, two, times two. Well no.) 
ELENA: But that’s what you were telling me yesterday y yo pensé que no. Okay so we. (But 
that’s what you were telling me yesterday and I didn’t think so. Okay so we.) 
JESSICA: Double it by, nomás double the number of ounces…[Elena interrupts] (Double it 
by, just double the number of ounces…) 
ELENA: Two times two, y luego four times two, y luego six times two, is that your idea? 
(Two times two, and then four times two, and then six times two, is that your idea?) 
JESSICA: Más o menos como sumando el mismo número. (Like adding the same number.) 
CARINA: Pero es lo mismo de sumando si lo multiplicas por dos. (But it is the same as 
adding if you multiply by two.) 
INES: [Referencing table from year one] Lo que parece es como hicimos un in/out table y ya 
lo sacamos. (It looks like we just did an in/out table and that’s it.) 
CARINA: Yeah. In times two equal out. 
The students made their Initial Attempt at solving by coordinating their meaning making 

actions and deploying their linguistic repertoires. After reading, the students began to interpret 
the task and the nature of doubling. In dialogically entangled ways, they expressed linguistically 
across Spanish and English what doubling meant to them (e.g. double, two, dos, grows twice, 
sumando el mismo numero, multiplicas por dos, times it). They also explored and questioned 
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how to represent their ideas symbolically, which demonstrates their productive struggle 
regarding understanding the nature of doubling. Drawing on such linguistic and mathematical 
resources is further evidence of spending diligent effort during their Initial Attempt to make 
sense of the function. They did not, however, realize immediately that they were multiplying the 
number of ounces of cake by two, instead of Alice’s height. Their equation correctly spanned the 
table of values, yet these representations did not model an exponential function. 

Not completely agreeing with the other students’ mathematical representation, Ines’ own 
metacognitive awareness of the mistake during their Initial Attempt helped collectively move the 
discussion in a direction that considered Alice’s initial height. The entire group collaborated 
around this new idea and persevered together as a learning community. At the end of Day 2, Ines 
recalled her prior experience with the Alice problem from her sophomore year and raised the 
issue of starting with an initial height. This helped the others rethink about the mathematics, 
cross out their table (Figure 1, left), and begin on Day 3 to think about starting a new one.  

INES: …empezamos de cuatro pies. Si toma si come un pedacito son ocho, si come un 
pedacito son dieciseis, el tercer pedazo dieciseis y dieciseis. Treinta y dos ¿no? (…we start at 
four feet. If she drinks, if she eats one piece it becomes eight, if she eats one piece it becomes 
sixteen, the third piece, sixteen and sixteen, thirty two, no?) 
JESSICA: Pero, ¿cómo sacastes eso? (But how did you get that?) 
INES: Porque si empezamos con cuatro pies, como yo les digo, si come un pedacito y sale, 
aumenta de altura de doble. (Because, if we start at four feet, like I’m telling you, if she eats 
one piece and it comes out to, her height grows double.) 
JESSICA: Ohh, her height doubles. 
ELENA: You know it’s the same thing mira. Dos, you multiply one times two is two, two 
times four is eight, y si pones two times two is four, four times four is sixteen. (You know it’s 
the same thing look. Two, you multiply one times two is two, two times four is eight, and if 
you put two times two is four, four times four is sixteen.) 
CARINA: In squared times 2 is equal to your out. 
At the start of Day 3, Ines tried to help the group understand that Alice’s initial height is 

necessary to compute subsequent heights. The task was written in English, yet Ines leveraged her 
home language to re-voice the problem. She modeled mathematically the concept of doubling for 
her group members in Spanish and also gestured to demonstrate how Alice’s height doubles for 
each ounce of cake she eats. This helped Jessica have her “a-ha” moment realizing that she 
needed to double Alice’s height not the number of ounces of cake.  

This translanguaging exchange exemplified further perseverance by exploring what it means 
to double and illustrated how Group A became aware about the flaws in their first attempt to 
make sense of the function. What makes this so significant is the students’ commitment to 
collaboratively draw on linguistic (including their home language) and mathematical resources 
fluidly as they continue to try to overcome the conceptual obstacle of doubling. The combination 
of these interactions affords Jessica her liberating moment of understanding, which leads these 
students to amend their plan and adapt their thinking to continue to persevere.  

Following this discussion, the students created a new table of values (Figure 1, center) that 
correctly modeled Alice’s exponential growth. This new approach demonstrated the end of their 
Initial Attempt and the start of their Additional Attempt by the group amending their plan and 
making a second attempt to make sense of the Alice function. Unfortunately, the equation was 
not correct and did not span all of their entries. Again, this is an important opportunity for the 
group to recognize more mistakes and continue to persevere. Near the end of Day 3, the students 
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used a graphing calculator to make a table of values for 𝑦 = 2𝑥% (Figure 1, right) and discovered 
that it did not match their current table. Consequently, they were ready to continue to explore 
ways to change their equation and make another Additional Attempt, but Ms. Patrick interjected 
to go over the answers. Although Group A did not yet find the proper equation to span their 
IN/OUT table in this episode, they were agents of their own translanguaging repertoire and 
leveraged this practice to help persevere and think more deeply about exponential functions.  
 

 
Figure 1. Progression of Student Tables (recreated by authors) 

Group B did not have similar learning experiences as Group A, likely because Group B was 
not given the chance to persevere with the Alice task themselves. Instead, Ms. Patrick directed 
students to a correct procedure from the outset and students rehearsed these routines. As such, 
these students had no opportunity to use translanguaging practice to help overcome conceptual 
obstacles, and instead simply waited for Ms. Patrick to instruct them about what to do next. 

Discussion and Conclusion 
What emerges from the data are different trajectories of mathematics teaching and learning, 

revealing how the unintended consequences of instructional choices can detrimentally affect 
Latinx students’ perseverance. Our observations show how the level of involvement and 
proceduralized guidance by the teacher can impact opportunities for student perseverance and 
conceptual development. When students had freedom to struggle, this facilitated an evolving 
mathematical understanding of exponential functions. Students leveraged their translanguaging 
repertoire to help persevere past mathematical obstacles and make progress toward a solution. 
Without freedom to struggle, other students only used their bilingualism to monitor routine steps, 
not navigate meaning. This suggests Latinx bilinguals can use bilingualism to their advantage 
when engaging with challenging mathematics, but only when given the opportunity to grapple 
with uncertain mathematical relationships. However, we cannot expect students to always 
spontaneously engage in translanguaging practice. Latinx bilinguals need explicit classroom 
support systems to encourage such engagement. Future research must clarify how teachers can 
create space to leverage their students’ bilingualism for forming mathematical meanings. 
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EFFECTS OF AN INTENSIVE REMEDIAL MATH COURSE ON ENGINEERING 
STUDENTS’ MATH ANXIETY AND MATH SELF-EFFICACY  

 Gustavo Moran-Soto  Paran R. Norton  
 Instituto Tecnológico de Durango Clemson University  
 gmorans@clemson.edu pfisch@clemson.edu 

This article explores the relationship between an intensive remedial math course for freshmen 
engineering majors and students’ math anxiety (MA) and math self-efficacy (MSE) levels. MA 
and MSE have been shown to influence students’ pursuit and completion of a math-related 
major, making these important factors to consider for these students in their first semester. Data 
were collected from 565 students using items from the existing Mathematics Anxiety Rating Scale 
and the Mathematics Self-Efficacy Survey. This study uses Analysis of Covariance (ANCOVA) to 
determine the effects of the remedial course on students’ MA and MSE while controlling for 
confounding variables such as student’s gender and type of high school. Results showed there 
was a significant increase in students’ MA and MSE levels after the intensive course. 
Implications for math instructors designing this type of remedial course are discussed.  

Keywords: Affect, Emotion, Beliefs, and Attitudes, Post-Secondary Education, Measurement 

Introduction  
There is a current need to match the projected demands for new engineering professionals in 

some countries like the U.S., and one way to reach this goal is keeping more engineering 
students in their undergraduate programs. Engineering majors currently have high attrition rates 
(Geisinger & Raman, 2013), and  students’ math preparation and attitudes toward math-related 
activities have been shown to be significant factors in students’ decision to pursue and complete 
an engineering major (Hackett, 1985). This research focuses on two important factors 
influencing students’ perceptions about math-related activities: math anxiety (MA) and math 
self-efficacy (MSE). Once enrolled, engineering students may perceive math courses as barriers, 
and struggling to complete these courses could make them more likely to quit or change majors 
(Suresh, 2006).  

Richardson & Suinn (1972) defined math anxiety as “feelings of tension and anxiety that 
interfere with the manipulation of numbers and the solving of mathematical problems in a wide 
variety of ordinary life and academic settings” (p. 551). Math anxiety is not just a dislike of 
mathematics, but a set of feelings that affect performance in math-related activities that may lead 
to avoidance of math courses. Math anxiety is typically linked to perceptions of low math ability, 
prior unsuccessful experiences, and lack of studying and poor test preparation skills. High MA 
levels has shown to be a significant predictor of poor math performance and is also negatively 
correlated with the decision of pursuing a math-related major (Suinn & Winston, 2003). Women 
have shown to be more likely to report MA feelings when they perform math activities, and these 
negative feelings normally affect them in their decision to continue taking math courses 
(Sherman & Fennema, 1977). 

According to Bandura (1986), self-efficacy refers to “people’s judgments of their capabilities 
to organize and execute courses of action required to attain designated types of performances” 
(p. 391). Self-efficacy beliefs are task-specific, and one’s skills in a particular task may influence 
only the individual performance on that task. Students with a high MSE have shown to be more 
interested in pursuing a math-related major like engineering (Hackett, 1985; Lent et al, 1991). 
On the other hand, low MSE levels have been shown to have an influence on students’ decisions 
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to avoid math-related activities that may lead them to have feelings of stress and anxiety. Math 
self-efficacy has been shown to be lower for students leaving STEM majors, and this factor was 
more significant for students leaving college during their first semesters (Eris et al., 2010). 

If MA and MSE are not established and measured as independent factors, developing a 
conclusion about their effects on students’ behaviors becomes a challenging task. However, it is 
important to recognize that MSE is related to MA, and that these two factors are normally 
influenced by similar past experiences (Hackett & Betz, 1989). Although students’ intentions to 
engage in math-related activities are related to their MA levels, this effect has shown to lose 
significance when MSE is also examined (Meece et al., 1990). If engineering educators could 
develop interventions focused on improving students’ MSE and ameliorate students’ MA, then 
students may be better prepared to complete the math courses required by their engineering 
major. This led to the following research question: What is the effect of an intensive math 
intervention on the MA and MSE of first-year engineering students?  

Methods  
Participants were selected from a Mexican university that were engineering majors. To be 

accepted in this university, students must complete a four-week summer math course designed to 
standardize their math knowledge with a grade of 70% or better. Students meet 5 times a week to 
have a fast pace review of basic pre-college math, and they are evaluated once a week. 

All freshmen students taking the math course for the Fall 2016 semester (N=565) completed 
a survey on the first and last days of the course before an exam (diagnostic and final). The survey 
presented 20 MA Likert-type items with scores from 1 “not anxious at all” to 5 “very anxious”, 
and 36 MSE items where students rated their level of confidence performing math-related 
activities on a scale ranging from “no confidence at all” (0) to “complete confidence” (10). The 
MA items were selected from the 30-item Mathematics Anxiety Rating Scale (MARS 30-item) 
(Suinn & Winston, 2003), based on relevance to the context in the Mexican university. For the 
MSE items, this research used 36 of the 52 Mathematics Self-Efficacy Survey (MSES) items 
(Betz & Hackett, 1983). Only the math problem-solving (18) and the everyday math tasks (18) 
MSES items were considered relevant for this population. All survey items were translated from 
English to Spanish. Both the MARS 30-item and the MSES were selected for this study due to its 
high reliability shown in prior studies, with coefficient alpha values ranging from 0.84 to 0.96 
(Brown & Burnham, 2012).  

An average of the items was calculated as a total MA score (between 1 and 5) and a total 
MSE score (between 1 and 10), and independent scores for each of the constructs were also 
calculated. In order to determine if the math intervention had an effect on students’ MA and 
MSE, a repeated measures Analysis of Covariance (ANCOVA) was conducted. This statistical 
model tests for a significant treatment effect among repeated observations while controlling for 
confounding variables. A mixed model was developed for each construct (total math anxiety, 
math tests anxiety, math activities anxiety, total math SE, math activities SE, and math problems 
SE). Fixed terms were included for treatment (pre/post), covariates (gender, type of high school, 
origin) and the interaction effects. A within-subjects random factor was also added to account for 
the repeated measures of the students. Finally, a correlation analysis was conducted to determine 
the relationship between MA and MSE before and after the math intervention.  

Results  
The results for the fixed effect F-tests of the treatment terms for MA and MSE are given in 

Tables 1 and 2 below. Covariate adjusted means for each construct for before and after the 
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intervention are also given.  

 Table 1: Treatment Effect and Adjusted Means for Math Anxiety  
Construct F- Ratio p- value Pre- Mean Post- Mean 

Total Math Anxiety  14.2030 0.0002* 2.4153 2.7463 
Math Test Anxiety  12.8993 0.0005* 2.8717 3.2434 

Math Activities Anxiety  7.2271 0.0081* 1.9579 2.2493 

Table 2: Treatment Effect and Adjusted Means for Math Self-Efficacy   
Construct F- Ratio p- value Pre- Mean Post- Mean 

Total Math Self-Efficacy 31.0563 <.0001* 7.1439 8.0029 
Math Activities Self-Efficacy  1.2462 0.2663 8.4603 8.2966 
Math Problems Self-Efficacy 65.7355 <.0001* 5.8262 7.7051 

 
The ANCOVA results revealed a significant difference between pre and post mean scores for 

total MA and total MSE (see Tables 1 & 2). Each of the different constructs, math tests anxiety, 
math activities anxiety, and math problems self-efficacy, showed a significant difference with 
higher adjusted mean post scores. The only construct with no significant difference in the mean 
scores was the math activities self-efficacy. Also, there was a significant difference in math test 
anxiety scores between male (M=2.87) and female students (M=3.25) (p =0.0052). For all 
constructs, no interaction terms were significant, meaning that the treatment effect was consistent 
regardless of students’ gender, type of high school, and origin. Next, the correlation analysis 
revealed a significant negative correlation between total MA (M=2.416, SD=0.658) and total 
MSE (M=7.33, SD=1.24) before the intervention (r = -0.47, p < 0.0001). There is also a 
significant negative correlation between total MA (M=2.63, SD=0.74) and total MSE (M=8.16, 
SD=1.08) after the intervention (r =-0.54, p < 0.0001). Even though this correlation is stronger 
for the post scores, it is not significantly different than the pre scores (p= 0.1008).  

Discussion and Conclusion  
The increase of students’ MA and MSE after the course suggests that intensive remedial 

courses could help students improve their math knowledge, but there may be secondary effects 
on students’ feelings about their math abilities. The increase of MA levels is a clear disadvantage 
for this type of course, making students more likely to decide to avoid math-related activities, 
thinking that they will feel stressed and perform poorly (Betz & Hackett, 1983). On the other 
hand, the MSE increment may have a positive impact. Higher MSE feelings could help to keep 
students’ interest in developing their math abilities and desire to complete their engineering 
major despite facing some struggles during their first college math courses (Eris et al., 2010). 

Developing a deeper understanding about the possible effects of this type of remedial math 
course could help math educators to better design these courses. The focus of these courses 
should be on enhancing students’ math knowledge and building better MSE, but there must be an 
emphasis on creating an environment that could help students to develop their math abilities 
without generating anxiety feelings during the process. For this specific course, the stress 
generated by the need of obtaining a passing grade in the weekly tests may have contributed to 
creating a stressful environment for the students. Math and engineering educators should 
consider the stress and anxiety generated by frequent assessments, especially for students who 
may need more time to practice enough to feel confident to be evaluated. Female engineering 
students showed to be more affected by the math test anxiety than their male peers, but these MA 
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levels were not higher in the total MA assessments. Despite literature suggesting that females are 
more likely to experience feelings of anxiety while performing math-related activities (Hackett & 
Betz, 1989), the research findings from this study that focuses on engineering students show no 
significant difference between males and females for total MA. These results suggest that this 
could be because female engineering students might be better prepared to deal with math courses 
in college than other female students in different majors. 

This research found that MA and MSE have a negative correlation, suggesting that MSE 
beliefs are normally higher when MA levels are low. Despite finding a negative correlation, both 
factors showed a significant increment in the post course measurements. The MA increment 
stresses the importance of considering strategies that are directly focused to ameliorate negative 
feelings when students are learning math. Even when students start improving their math 
knowledge and self-efficacy by engaging with math-related activities, if the learning 
environment makes them feel stressed and anxious, then these students may be less likely to get 
interested in seeking more math activities aiming to further develop their math knowledge.  

Math courses should keep the goal of improving students’ math abilities, but there must be a 
greater awareness about the negative repercussions that students may have if they learn math in 
stressful environments. Groups like females have shown to be more likely to feel stressed during 
math tests, and this perception could result in higher MA feelings that may push students away 
from math courses and activities. If math courses increase students’ feelings of anxiety, then 
these students could start doubting their abilities to finish their engineering major due to the 
challenges that completing all the required math courses could present. Math instructors should 
be prepared to support students and create a class environment that promotes their learning and 
MSE while developing the necessary tools to manage their anxiety while performing math. 
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The purpose of this study was to identify differences in middle grades students’ math anxiety 
levels based on 952 Turkish 8th grade students’ responses to the Math Anxiety Scale (Erol, 1989) 
from nine schools located in different regions of Turkey. A mixture partial credit model analysis 
revealed three distinct latent classes based on homogeneities in response patterns. Latent class 
membership indicated that students in Class 1 had the lowest anxiety towards mathematics 
lessons, mathematics in daily life, and test and evaluation, and highest self-confidence about 
mathematics as opposed to students in Class 3 with the highest anxiety in these characteristics 
and with the lowest self-confidence about mathematics. Characterizing differences between 
members of each latent class extends recent advances in measuring math anxiety.      

Keywords: Affect, Emotion, Beliefs, and Attitudes, Middle School Education, Research Methods 

One main challenge in current educational settings is to identify affective constructs, such as 
anger, anxiety, and depression, and to provide intervention as early as possible for improving 
students’ learning. Math anxiety is one of these constructs that lead to confusion about 
manipulation of numbers and solving problems related to mathematics. (Richardson & Suinn, 
1972). In addition to physiological reactions such as sweaty palms and being sick, a student with 
high math anxiety level tend to have less self-confidence about mathematics (Luo, Wang, & Luo, 
2009), and select career paths that to do not involve mathematics (Ashcraft & Moore, 2009).  

To identify math anxiety levels of students, past research has used exploratory and 
confirmatory factor analysis for measuring the dimensions of math anxiety (e.g., Baloğlu & 
Zelhart, 2007) and structural equation modeling of the relationship between math anxiety and 
variables such as mathematics achievement (e.g., Harari, Vukovic, & Bailey, 2013). However, 
these studies were based on total scores obtained from summing all ratings from each student to 
items of a math anxiety scale, and using total scores has the potential of missing fine-grained 
information on characteristics of each student for math anxiety levels. Given the importance of 
math anxiety on learning and career choice, there is an urgent need for using methods that rely 
on individual item scores instead of total scores to detect students with different math anxiety 
levels and to identify those differences on math anxiety. One such method is the use of mixture 
item response theory (IRT) models. Based on past research (e.g., Rost, 1990), mixture IRT 
models can be useful in identifying latent classes of individuals on affective constructs such as 
differences in personality traits including depression (Hong & Min, 2007). The only study, to my 
knowledge, that has examined the utility of using mixture IRT models in detecting latent classes 
of 6th and 7th grade students on math anxiety is Ölmez & Cohen’s (2017) study and they found 
two latent classes with students in Class 1’s being less anxious than those in Class 2 towards 
mathematics lessons, mathematics in daily life, and test and evaluation, students in Class 2’s 
having less self-confidence about mathematics. Hence, the purpose of this study was to identify 
differences in 8th grade students’ math anxiety levels based on their responses to the Math 
Anxiety Scale (MANX; Erol, 1989). 8th grade is a critical grade level for dealing with math 
anxiety as early as possible because math anxiety has been known to peak during the secondary 
grades (Hembree, 1990). The following research questions were addressed in this study: 
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1. How many distinct latent classes of 8th grade students do exist in the population? 
2. What does the existence of these latent classes (if any) imply about the different 
response patterns of math anxiety that exist in this population? 

Theoretical Framework 
The theoretical framework for this study follows the mixture Rasch model (MRM; Rost, 

1990) that assumes the existence of distinct latent classes in the population. While the MRM 
specifies a separate item difficulty for each latent class, it determines a probability of being a 
member of a particular latent class for each individual. The polytomous form of the MRM based 
on scoring items with more than two categories such as never, sometimes, usually, and always, is 
called a partial credit model (PCM; Masters, 1982). In the mixture form of this model, the 
mixture partial credit model (MixPCM), the relationship between the probability of selecting a 
particular response category and the latent trait (i.e., math anxiety) changes across latent classes. 
The differences in response patterns to each item of a scale indicate homogeneities in 
characteristics of members of each latent class. Based on the differences in response patterns, the 
MixPCM could assign two individuals with same total scores to different latent classes.  

Methods 
The sample consisted of 952 Turkish 8th grade students from nine schools located in different 

regions of Turkey. Students’ age range was between 14 and 16 years (female=478, male=474). A 
written consent form was obtained from one of the parents of each student before the study. The 
Math Anxiety Scale, developed by Erol (1989), is a four-point Likert type scale written in 
Turkish with options for each item ranging from “never” to “always.” Higher scores demonstrate 
a higher math anxiety level. An internal consistency reliability estimate of .95 was obtained in 
this study. In a sample of 754 middle school and high school students, Erktin, Dönmez, and Özel 
(2006) identified four factors, which were test and evaluation anxiety, apprehension of math 
lessons, use of mathematics in daily life, and self-confidence for mathematics.  

To analyze the data with the MixPCM, WINMIRA (von Davier, 2001) program was used. 
First, different numbers of latent classes were estimated in separate models to determine the 
relative fit of each model. Second, three indices for each model were compared to select the best 
fitting model: the Akaike information criterion (AIC), the Bayesian information criterion (BIC), 
and consistent AIC (CAIC). The model with the smallest BIC value was selected as the best 
fitting model (Li, Cohen, Kim, & Cho, 2009). Next, the characteristics of each latent class were 
analyzed by focusing on places where members of one latent class considered items to be easier 
or harder to endorse than other latent classes.  

Results 
Unidimensionality of the Scale  

An exploratory factor analysis using maximum likelihood estimation indicated eigenvalues 
of the first three factors as 14.3, 2.6, and 1.9, with the total variance explained by the first factor 
as 31.7%. This indicated an evidence for essential unidimensionality of the Math Anxiety Scale 
based on Reckase’s (1979) criterion.   
Number of Latent Classes  

Table 1 presents the indices for model selection. Minimum values for BIC as 66738.28, and 
CAIC as 67148.28 suggested a three-class solution in the data with 383 students (40.2%) in 
Class 1, 354 students (37.2%) in Class 2, and 215 students (22.6%) in Class 3.  
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Table 1. Model fit indices of the mixture Rasch model 
Model            AIC                       BIC                        CAIC  
One class        67128.86                  67748.38                      67884.38  
Two classes        65687.50                  66931.12                      67204.12  
Three classes        64870.58                  66738.28                      67148.28  
Four classes 
Five classes 

       64500.46 
       64180.87 

                 66992.25 
                 67296.73 

                     67539.25 
                     67980.73 

 

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC =  
Consistent Akaike information criterion; the smallest information criterion index is bold.  
 

Item thresholds indicate the extent of propensity when members of each latent class endorse 
each item. While thresholds lower on the scale such as -3 or -2 indicate a greater propensity of 
examinees to endorse that response category, thresholds higher on the scale such as 2 or 3 show 
that examinees have a greater propensity to endorse a higher response category.  
Analysis of Item Location Parameters and Raw Responses  

Item location parameter is the mean of all item threshold parameters for the particular item. 
While higher numbers on the logit scale demonstrate lower propensities of endorsement, lower 
numbers refer to higher propensities of endorsement. Thus, item location parameters are helpful 
for identifying differences in response patterns across latent classes. Moreover, I also compared 
item response distributions between the three latent classes by examining the percentages of raw 
responses in each latent class. This analysis led to three main results: (1) Students in Class 1 had 
the lowest anxiety towards mathematics lessons, mathematics in daily life, and test and 
evaluation, and highest self-confidence about mathematics than students in Class 2 and in Class 
3; (2) students in Class 3 had the highest anxiety in terms of these characteristics, and lowest 
self-confidence about mathematics; and (3) students in Class 2 had medium anxiety and self-
confidence regarding all these characteristics.  

Items reflecting anxiety related to mathematics lessons (i.e., Items 7, 16, 36) were most 
difficult to endorse for Class 1 and easiest to endorse for Class 3. For example, for Item 36, “I 
struggle with listening to the teacher in the math class” the proportions selecting the options of 
“never” and “always” were 83% and 1%, respectively, in Class 1; 39% and 6%, respectively, in 
Class 2; and 29% and 35%, respectively, in Class 3. Furthermore, items that asked students to 
rate their ideas about mathematics exams and evaluation anxiety (i.e., Items 2, 3, 14, 25, 30, 41) 
were hardest to endorse for students in Class 1 and easiest to endorse for students in Class 3. For 
Item 25, “I feel uneasy a week before the math exam” (Class 1, Class 2, and Class 3 item 
locations were 0.75, 0.21, and 0.18), the proportions selecting the option “never” were 86%, 
33%, and 44% for students in Class 1, Class 2, and Class 3, respectively. And, the proportions 
selecting the option “always” were 0% for Class 1, 8% for Class 2, and 31% for Class 3.  

Items focusing on anxiety about the use of mathematics in daily life (i.e., Items 9, 29, 38) 
were hardest to endorse for students in Class 1 and easiest to endorse for students in Class 3. For 
Item 38, “I feel bothered by the necessity of making calculations by solving mathematical 
problems in my daily life even if they are simple”, 80% of the students in Class 1, 38% of the 
students in Class 2, and 30% of the students in Class 3 selected the option “never.”  

Finally, items involving self-confidence for mathematics (i.e., Items 23, 27, 43) were hardest 
to endorse for students in Class 1 and easiest to endorse for students in Class 3. For Item 23, “I 
cannot dare to ask the points I do not get in the math class”, the proportion selecting “always” 
was 1% in Class 1, 13% in Class 2, and 37% in Class 3.  
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Discussion 
In this study, I examined the differences in middle grades students’ math anxiety levels by 

identifying their latent classes using the MixPCM on a math anxiety scale. The first research 
question indicated three distinct latent classes with different patterns of math anxiety. The second 
research question showed that Class 1 consisted of students who were less anxious towards their 
mathematics lessons, mathematics in daily life, and test and evaluation, and who were more self-
confident about mathematics than students in Class 2 and Class 3. On the other hand, Class 3 
consisted of students who were more anxious regarding these characteristics, and who were less 
self-confident about mathematics than those in Class 1 and Class 2. The results of this study 
confirm the findings reported by Ölmez & Cohen (2017) based on 244 Turkish 6th and 7th grade 
students’ responses to the same math anxiety scale. The only difference between the two studies 
appears to be the number of latent classes in each study (2 latent classes versus 3 latent classes). 
This might either stem from the fact that the sample sizes are different in both studies (N = 244 
versus N = 952) or due to the focuses on different grade levels (6th and 7th grades versus 8th 
grade). The present study revealed that relying on individual item scores instead of total scores 
can provide fine-grained information about the differences in students’ math anxiety levels. By 
using the MixPCM analysis, teachers can identify students in their classrooms with different 
patterns of math anxiety and make interventions accordingly based on the needs of each student. 
Future research should focus on conducting similar studies with other popular math anxiety 
scales to demonstrate a more complete understanding of math anxiety in middle grades.  
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LATINA/O STEM MAJORS’ PERSPECTIVES OF EXPERIENCES  
SUPPORTING THEIR MATHEMATICAL SUCCESS 

 Sarah Oppland-Cordell Katherine Bird 
 Northeastern Illinois University Northeastern Illinois University 
 s-cordell@neiu.edu k-bird@neiu.edu  

This study uses an identity lens and qualitative methods to examine eight Latina/o STEM majors’ 
perceptions of experiences that supported their mathematical success throughout their 
lives. Using NVivo software, an iterative coding scheme is applied to analyze interview data. 
Drawing on Leyva’s (2016a) three-tiered analytical framework, critical race theory, and 
Latina/o critical theory, preliminary cross-case analysis reveals that participants’ mathematical 
success is related to complex experiences negotiated within institutional, interpersonal, and 
ideological dimensions. Such experiences are related to their racial identity constructions, 
gender identity constructions, the co-construction of their mathematical identities with other 
salient identities, and experiences negotiated in multiple sociopolitical contextual layers.  

Keywords: Equity and Diversity, Post Secondary-Education, Gender 

Purpose and Background 
This research project is a response to Leyva’s (2016a) call “for more nuanced 

conceptualizations of gender in future mathematics education research that examine its social 
construction at different intersections of identity (e.g., gender/race) as well as at different levels 
of influence (e.g., institutional, interpersonal, ideological)” (p. 190). Drawing on Leyva’s 
(2016a) three-tiered analytical framework, this research uses an identity lens and qualitative 
methods to examine eight Latina/o STEM majors’ perceptions of experiences that supported 
their math success at the institutional, interpersonal, and ideological levels. The research 
questions are: (1) How do participants define experiences that support their math success at the 
institutional, interpersonal, and ideological levels? and (2) How do participants negotiate what it 
means to be an underrepresented student in relation to experiences that support their math 
success at these three levels? Understanding the complexities, avenues, and transformations that 
support Latina/o students’ math success will further expand knowledge about how to provide 
students with math supports that are identity-affirming and equitable.  

Literature Review 
Emerging math education research has advocated for conducting more holistic explorations 

of underrepresented students’ participation, learning, and experiences in mathematics, including 
the roles of sociopolitical, sociocultural, and psychological mechanisms (e.g., Gutiérrez, 2010). 
Of the small number of math education studies that have conducted in-depth explorations of 
underrepresented students’ perspectives of their math experiences, few have investigated the 
lives of mathematically successful underrepresented students to understand their perceptions of 
experiences that have supported this success (exceptions include Leyva, 2016a, 2016b). Further, 
much of this work has been conducted on African American students and not Latina/o students 
(exceptions include Leyva, 2016a, 2016b). We argue that capturing aspects of Latina/o students’ 
experiential knowledge they perceive as linked to their math success can assist the math 
education community in better supporting both underrepresented and represented students in 
attaining math success. Such information will shed light on how to create equitable math 
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learning environments, how to empower students as math learners, and how to provide 
opportunities that support students’ math success throughout the educational pipeline.  

Mathematics education equity scholarship situated within broader sociopolitical perspectives 
(e.g., Gutiérrez, 2010; Martin, 2009) offers theoretical approaches for uncovering the 
mechanisms underlying underrepresented students’ math participation, learning, and experiences 
that contribute to their success. Sociopolitical scholarship supports using critical race theory 
(CRT) and Latina/o critical theory (LatCrit) to examine marginalized students’ math experiences 
(Gutiérrez, 2010; Martin, 2009). CRT and LatCrit frameworks encourage examining 
marginalized students’ experiences through counter-storytelling methods while emphasizing the 
significance of race and racism and how they intersect with other forms of oppression (Solórzano 
& Yosso, 2002). Leyva (2016a) drew on both CRT and LatCrit to apply his analytic framework, 
which consisted of institutional, interpersonal, and ideological dimensions, to explore Latina/o 
students’ math success. Such work expands knowledge about how Latina/os construct positive 
mathematical identities while taking into consideration the intersectional nature of race and 
gender. 

This study addresses a gap in the math education literature by employing CRT and LatCrit 
and applying Leyva’s framework (2016a) to examine how Latina/o STEM majors succeed in 
mathematics. Understanding the math experiences of this particular student population is critical 
because they can reflect on their elementary through undergraduate math experiences and reveal 
the roles of, for instance, sociohistorical forces and constructs, contextual influences, agency, 
and resilience. Understanding their experiences will broaden the math education community’s 
understanding of how to devise math supports drawn from the experiences of underrepresented 
students who have succeeded in mathematics. We will be able to understand critical factors that 
supported them in persisting and succeeding in math throughout their lives, obstacles they had to 
overcome in their math trajectories to succeed, the various sociopolitical contexts in which they 
managed factors that supported their success in math, and how their identity constructions (e.g., 
math, racial, gender, class) contributed to their mathematical success. 

Methods 
This project uses qualitative methods (Yin, 2009) to explore participants’ experiences related 

to their mathematical success and how such experiences are related to their lives as 
underrepresented STEM students. The data analyzed for this study is part of a larger study on 
underrepresented STEM students conducted at a diverse, Hispanic-serving urban university 
located in Chicago, Illinois during 2013-2015. This larger study involved recruiting African 
American, Latina/o, Native American, low-income, and/or first generation college students. 
Recruitment tactics involved sending emails to students in 200 and 300 level undergraduate 
STEM courses and posting flyers near classrooms where STEM classes were held. All Latina/o 
STEM majors that responded to our recruitment tactics and completed the entire data collection 
process were selected for this particular study. STEM majors included students that were actively 
pursuing a STEM major or had recently graduated with a STEM major at the time of the study. 
Table 1 describes participant demographic information for the eight Latina/o participants.  

Table 1: Participant Demographic Information 
Students Racial/Ethnic Background Gender Birth Country University 

Classification  
Amelia Latina/o Male Mexico Junior 
Antonio Latina/o; Honduran Male Honduras Graduate student 
Elias Latina/o; Columbian-American Male US Junior 
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Caleb Latina/o; Mexican Male US Senior 
Diego Latina/o; Columbian Male Columbia Senior 
Juan Latina/o; Mexican-American Female US Senior 
Maria Latina/o; Mexican Female US Junior 
Ricardo Latina/o; Mexican; Puerto Rican Male US Senior 

 
In-depth interviews were the primary data source; questionnaires were secondary data 

sources. The in-depth interview consisted of open-ended questions that aimed to capture a 
holistic understanding of participants’ perspectives of their life-long math experiences. As 
categories were identified, additional interviews were used to investigate the emergent 
categories. Data collection continued until saturation of main categories was reached. All 
interviews were audiotaped, a subset of interviews were videotaped, and all interviews were 
transcribed. Using NVivo software, an iterative coding scheme will continue to be applied to 
analyze interview data. Interview codes will continue to be developed and compared until 
theoretical saturation is reached (until no new codes or categories emerge). Finally, a theoretical 
model that explains the experiences participants described as supporting their mathematical 
success will be developed.  

Preliminary Results 
Table 2 displays preliminary findings for this study. Preliminary cross-case analysis resulted 

in the following main themes regarding experiences that supported the participants’ math 
success: (a) access to advanced math, math curriculum and pedagogy, and STEM support 
resources in the institutional dimension; (b) experiences involving teacher, family, and peer 
interactions and relationships in the interpersonal dimension, and (c) powerful experiences 
related to self-histories, critical roles of math transitions, complex aspects of math identities, and 
the intersectional nature of math identities and other complex identities in the ideological 
dimension. Such experiences that supported participants’ math success were complexly related to 
racial identity constructions, gender identity constructions, the co-construction of their math 
identities with other salient identities, and experiences negotiated in multiple sociopolitical 
contextual layers. For example, emergent connections between experiences that supported their 
math success and their racial identity constructions included: resisting racialized experiences, 
functioning as cultural math role models, and engaging with cultural academic role models. 
Participants’ counter-stories reveal how inequities, sociohistorical forces, sociopolitical 
constructs, contextual influences, agency, and resilience are intimately related to their math 
success.  

Table 2: Preliminary Themes and Subthemes 
INSTITUTIONAL  

DIMENSION 
INTERPERSONAL  

DIMENSION 
IDEOLOGICAL 

DIMENSION 
Access to Advanced Math 
• Advanced math course 

tracking  
• Math classes with older 

students  
• Summer math classes  
Math Curriculum & 
Pedagogy 
• Non-traditional aspects of 

the math curriculum  

Teacher-Participant 
Interactions & 
Relationships 
• Math classroom 

management 
approaches 

• Nurturing 
personalities 

• Passionate 
personalities 

Powerful Experiences Related to Self-
Histories  
• Experiences that motivated them to pursue 

their major 
• Overcoming life challenges 
Critical Roles of Mathematical Transitions 
• Elementary to high-school shifts in 

perspective 
• High-school to college shifts in perspective 
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• Effective math 
pedagogical approaches 

• Connections between 
math curriculum and 
broader academic/ 
professional/ personal 
goals 

STEM Support Resources 
• Math tutoring 
• STEM-related 

professional development 
programs/activities 

• STEM-related 
mentorship/ advisement  

Family-Participant 
Interactions & 
Relationships 
• Family valuing/ 

supporting 
educational pursuits 

• Comparisons to 
family members 

Peer-Participant 
Interactions & 
Relationships 
• Cooperative learning 

inside & outside of 
classroom spaces 

• Comparisons to peers 
 

• Community college to four year college 
shifts in perspective 

Complex Aspects of Mathematical Identities 
• Awareness of mathematical strengths 
• High mathematical expectations 
• Recognition of the importance of 

mathematics in their lives 
• Recognition of the important role of work 

ethic/curiosity/creativity in learning 
mathematics 

• Agency/resilience as math learners 
Intersectional Nature of Mathematical 
Identities and Other Complex Identities 
• Role of racial identities 
• Role of gender identities 
• Role of socioeconomic statuses 
• Role of the intersectional nature of complex 

identities 

Conclusion 
Emerging math education equity research indicates that we cannot fully understand students’ 

math achievement, participation, and learning without taking into account their identity 
development as math learners. Such research also supports that the math education community 
must embrace the sociopolitical nature of underrepresented students’ math participation, 
learning, and experiences because this more expansive theoretical lens can provide additional 
knowledge regarding how and why they attain mathematical success. This research project 
addresses a gap in existing math education research by raising important considerations 
regarding the significance of understanding what it means to be Latina/o with respect to math 
participation, learning, and success.  
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STUDENTS’ EXPERIENCES IN AN UNDERGRADUATE MATHEMATICS CLASS: 
CASE STUDIES FROM A LEARNER-CENTERED PRECALCULUS CLASS 

 Brooke A. Outlaw Karen Allen Keene Gregory A. Downing 
 NC State University NC State University NC State University 
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In this case study, we report the results from qualitative research set in a large-size 
undergraduate mathematics classroom. We provide evidence that students perceived that their 
participation in tasks where students work together to solve real life math problems involving 
precalculus concepts was helpful to their learning. Students expressed positive attitudes with 
regards to the collaborative efforts in this math classroom, often different from a traditional 
math course. Additionally, they expressed gratitude towards learning math in a way that was 
different than traditional mathematics courses, which we interpret to mean a more conceptual 
versus procedural-type of a mathematical learning.  

Keywords: Post-Secondary Mathematics; Affect, Emotions, Beliefs, and Attitudes; Instructional 
Activities and Practices  

There is great interest in improving undergraduate STEM courses across the country (P-
CAST, 2012). More specifically, there is significant ongoing work on how to improve 
undergraduate mathematics courses by introducing the use of learner-centered teaching 
strategies, particularly what is often called active learning. This educational research is important 
for mathematics educators and policy makers in order to learn whether new instructional 
approaches support positive student affect and learning in STEM fields. Freeman and colleagues 
(2014) published significant results of a meta-analysis that addressed articles about using active 
learning in STEM and student outcomes. Performance outcomes, attitudes, persistence, and 
confidence in doing math has been shown to be higher when incorporating these strategies into 
the classroom (e.g. Freeman et al, 2014; Laursen, Hassi, Kogan, & Weston 2014).  

There has not been significant work done to study the results of introducing new practices 
into service-level mathematics courses, such as Precalculus, that have been taught traditionally 
with procedural content or significant work done in large lecture classes. Being able to show how 
these strategies can be introduced and the results of using them in these large classes is an 
important contribution to mathematics (and more generally STEM) education. 

In this case study, we interviewed several students from a large-scale Precalculus course 
where learner-centered strategies were used. These students expressed their attitudes and beliefs 
about different aspects of the course. We specifically chose to listen to students’ experiences 
from their own perspective because too often, their perspectives are not acknowledged. This 
research is important because it sheds light on how new strategies that are implemented in these 
large-scale mathematics course affect students’ overall experiences. The research question 
addressed in this paper is: What are students’ perceptions of their experience in a large-scale 
Precalculus course where learner-centered strategies are employed? 

Literature Review 
With the existence of a great variety of learner-centered instructional strategies, we propose 

that there are many ways to vary methods of teaching in a large lecture classroom beyond direct 
instruction (Kennedy, 1998). Personal response systems, also knowns as Clickers, is one tool that 
can enhance students’ learning when done properly (e.g., Boyle & Nicol, 2003; Vajravelu & 
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Muhs, 2016). Vajravelu and Muhs (2016) found that when courses are intentionally designed 
with the structure and opportunity for students to become active learners in conjunction with 
their classmates through clickers and team-based activities, students will work together to solve 
mathematical problems and engage in discussion in large lecture classrooms. 

In addition to using learner-centered strategies, student attitudes and self-efficacy are 
important areas for further study. Núñez-Peña and colleagues (2013) found that poor success 
rates in math courses are related to negative attitudes towards math. Additionally, both student 
attitudes and self-efficacy play an integral part in perceived usefulness of math, in choosing 
careers involving math, and in opting to take more math courses beyond those required for their 
degree (e.g., Núñez-Peña, Suárez-Pellicioni, & Bono, 2013; Wilkins & Ma, 2003). Wilkins and 
Ma (2003) report on the importance of social influence, challenging curricula, and engaging 
activities as ways to help students see the importance of math in their own lives. The choices 
instructors make on the activities presented in class can make a difference in how students view 
math in general (Wilkins & Ma, 2003). These activities should be both engaging and include 
problem-solving. Yusof and Tall (1999) found that “when students are doing problem-solving, 
their attitudes change in the direction desired by the mathematics lecturers” (p. 77).  

Methods  
This case study was designed to study the introduction of evidenced-based instruction to 

explore students’ experiences as they relate to various instructional components. For this study, 
outcomes are defined to mean achievement, attitudes, persistence, interest, and self-efficacy. 
This was part of a larger study, in which student-centered strategies were analyzed holistically. 

This research was carried out at a large (~50,000 students), public university located in 
southern United States. There were 94 students enrolled in a 4-credit hour Precalculus course 
that met for 1.5 hours, 4 days a week during the summer of 2016. The students sat inside of an 
auditorium-style lecture hall, large enough to seat 300 students. Most class meetings consisted of 
traditional lecture delivered by the instructor with daily Clicker questions. The clicker questions 
were given to students frequently throughout the daily lecture and were based on the material 
being taught that day. These included a mixture between procedural and conceptual questions. 

Along with normal classroom hours, students were required to participate in a computerized 
portion of the course called Smart Lab for 2 hours per week, which was facilitated by the 
course’s 5 graduate teaching assistants (TAs). During these hours, students received extra help, 
were encouraged to complete math assignments, and completed examinations for the course. 

Several times throughout the course, students also participated in Team Activities that lasted 
an entire class. Students worked in teams of 3-4 to solve application problems. An example of a 
team activity is when students used trigonometry and a sextant to estimate the height of a 
building. The five TAs were available during the days in which Team Activities were completed. 

In the first week of class, students were asked to complete an online survey. This 43-item 
pre-survey addressed attitudes, perceived self-efficacy, and interest in math. Towards the end of 
the course, the students were given a post-survey which consisted of the same items. Finally, 
during the last week of the course, students were also asked to participate in a semi-structured 
interview where they answered questions about their attitudes and experiences towards different 
parts of the course, i.e., Team Activities, Clickers, and Smart Lab. Although many students were 
included in data collection, only the 5 students who completed the pre-survey, post-survey, and 
interview were included in this study. The participants included: Magdelina, Kadeem, Nancy, 
Teo, and Rajiv (pseudonyms). Their experiences are reported next.  
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Results 
     Overall, the participants had relatively positive experiences in the course where evidence-
based strategies were introduced. In this section, we report on these experiences. 
Team Activities 

With regards to Team Activities, participants’ experiences appeared fairly mixed. One of the 
main positive comments made by the participants pertained to the social aspect of the Team 
Activities. In particular, students enjoyed and felt like they benefitted from working with others. 
For example, Nancy commented, “It’s nice working with other people because sometimes you 
don’t get it and they get it.” Another participant, Kadeem, also stated, “I think they contributed to 
your learning because if you, if you’re trying to solve a problem, umm, and you don’t really 
know what to do or there’s a problem, you have teammates there that probably know something 
you don’t know. Or something you forgot.”  
      Although the participants had mixed feelings about the Team Activities, their negative 
feelings consisted of comments such as: they are conceptual, they don’t correlate to the tests, 
they are difficult, they are too long, etc. For example, Magdelina commented “we didn’t have 
enough time to finish most of them”, while another participant, Nancy, stated “I just feel like 
team activities are really hard or really long and it takes too long to finish”. These concerns, 
although conveyed as negative from the students, could be interpreted as positive from a 
researcher standpoint. Thus, these mixed feelings may not tell the whole story.  
Clicker Questions 

With regards to the Clicker questions, in general, the participants found them to be helpful 
for learning, they allowed productive collaboration among their peers, and they were presented 
in a more conceptual way that tied into their learning. For example, Kadeem stated “I, umm, I 
liked those because it’s like, it’s more interactive. And usually the problems he would put up 
there were not the typical homework problems.” Another participant, Teo, also stated,“It kind of 
umm, helped the progression, because as he was going through the class, it kind of helped you 
okay, at like different points you could say ‘Yeah, okay. I understand it up to here. Or I 
understand this concept up until right here’.” Of the students interviewed, only one student stated 
that Clicker questions were not helpful to his learning. 
Smart Lab 

Similar to the Clicker questions, Smart Lab was also perceived as mostly positive. The main 
comments addressed by the participants with regard to the Smart Lab were that it provided a 
space to specifically focus on math homework and that the presence of the TAs was helpful. For 
example, Kadeem, mentioned: 

Whenever you have an issue with a certain problem, [the TAs] are right there to help you. 
And say if you went to the lecture and didn’t understand anything, and that happened once or 
twice. Umm, the tutors are right there, and they can explain it for you.  

Similarly, Magdelina expressed, “That’s just very helpful if you don’t understand something, 
you have, umm… either a tutor or then you can click on like an option that guided you step by 
step on how to do a problem.” With regards to providing a space to work on assignments, Teo 
stated, “it gives you a time, umm… a set time where you can just focus on your math stuff and 
that if you need some help, you can, you know […] there’s someone there to help you.”  
Surveys 

Overall, the results from the surveys of these 5 participants were positive. We saw an 
increase in average score across all items from the pre-survey to the post-survey. Among our 
participants, the largest increases from pre- to post-survey occurred on the following items: 
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“Knowing math will help me in my life”, “Mathematics is important for a good career”, “I am 
not nervous when I am in math class”, and “Mathematics is easy for me to understand”. This 
leads us to believe that including learner-centered instructional strategies can have an effect on 
students’ perceived experiences in a large-scale pre-calculus course, with those focused more on 
mathematics in the real-world showing the largest gains. 

Conclusion 
In this paper, we chose to discuss one portion of our research. Currently, most research 

focuses on either student outcomes or teachers’ moves, and gives little-to-no voice to the 
students themselves. Therefore, we found it important to give those students a voice in this study 
and listen to their perspective to help inform our analysis. 

We found that it is possible to bring learner-centered instructional strategies to a large-sized 
mathematics undergraduate class. The students in this study expressed mostly positive attitudes 
towards these student-centered learning strategies, in addition to demonstrating a similar change 
in attitude from a pre- to post-survey. To implement these strategies successfully, we suggest 
starting with a few activities and then slowly adding more activities to the course. We also found 
the TAs to be an important addition to the course. With a large class size of about 100 students, 
five TAs were utilized to help the Team Activities run more smoothly. We suggest including 
several TAs for these student-centered learning strategies to be more of a success.  

In conclusion, we propose trying to incorporate the types of student-centered learning 
strategies as described in this paper into undergraduate mathematics courses. Educators need to 
be mindful of the pace at which these strategies be introduced in these courses and the number of 
TAs needed to make the course as successful as possible. With thoughtfulness and more 
research, these student-centered learning strategies could be the next step towards improving 
student attitudes and self-efficacy in large-scale, undergraduate mathematics courses. 
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Despite the benefits of homework and teacher feedback on students’ mathematics achievement, 
relatively limited work has been done on analyzing the effect of feedback on homework. This 
study examined the effects of four types of feedback on eighth grade students’ achievement in 
mathematics: no feedback, effort-based teacher feedback on paper-and-pencil-based homework, 
ability-based teacher feedback on paper-and-pencil-based homework, and online programmed 
feedback on computer-based homework. A total of 59 students from an inner-city school district 
in New York participated in the study. A repeated measures experimental design was employed 
to isolate/minimize the between group variability. Analysis of results revealed that although 
effort-based feedback appeared to be a variable of interest, there was statistically insignificant 
relationship between the effect of different type of feedback and academic achievement.  

Keywords: Teacher feedback, Effort feedback, Online feedback, Student achievement 

Introduction 
Homework and feedback have been identified as significantly related to academic 

achievement. The fundamental reason for assigning homework is meant to extend and 
supplement in-class activities (Cooper, Robinson & Patall, 2006). Most studies examining the 
relationship between academic achievement and homework found a positive and statistically 
significant correlation between the two variables (Cooper & Valentine, 2001; Cooper et al., 
2006; Doorn, Janseen, & O’Brien, 2010). Although feedback can lead to large positive gains on 
student performance, relatively limited work has been done on analyzing the effect of feedback 
type on homework and its relationship with mathematics achievement.  

The purpose of this study is to investigate the effect of teacher feedback on paper-and-pencil-
based homework compared to computer feedback on online homework. Although an extensive 
amount of research has been conducted on teacher feedback on student homework, relatively 
limited work has been done in analyzing the effect of feedback type on homework and its 
relationship with academic achievement. In particular, despite the availability and popularity of 
online homework, the research on the impact of online assignments is limited in the current 
literature. Dweck (2006) highlights the importance of a growth mindset over a fixed mindset and 
the need for effort-based feedback/praise over ability-based feedback in motivating students to 
accept more challenging tasks. However, little is known about the effects of teachers’ different 
feedback types (e.g., ability versus effort feedback) on students’ homework behaviors and 
motivation in the paper-and-pencil-based homework setting compared to computer-based 
homework setting. This study hypothesizes that not all feedback types have a positive 
relationship to achievement. This study focuses on two distinct areas – 1) homework and teacher 
feedback and 2) the intersection of homework type (i.e., paper-and-pencil versus online) and 
feedback type (i.e., effort-based feedback, ability-based feedback and computer-generated 
feedback). The study analyzes the effect of no feedback, effort-based feedback, ability-based 
feedback on paper-and-pencil based homework, and computer-programmed immediate feedback 
on online homework and their relationship with the improvement of middle school students’ 
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achievement in mathematics. This study also explores differences in students’ attitudes towards 
mathematics depending on feedback type. The research questions that guide this study include: 
(1) Is there any difference in students’ mathematics achievement depending on feedback type 
(i.e., no feedback, effort-based feedback, ability-based feedback using paper-and-pencil based 
homework)? and (2) Is there any difference in students’ mathematics achievement depending 
upon homework type (i.e., paper-and-pencil versus computer based)?  

Theoretical Framework 
This study was guided by expectancy-value theory (Eccles 1994; Wigfield, Tonks & Eccles, 

2004) to explain and understand the cognitive and behavioral aspects of students’ reasoning 
regarding homework. In addition, this study builds on mindset theory as proposed by Dweck 
(2006) for feedback type. First, according to the expectancy-value theory, student achievement 
and choices related to achievement are determined by two factors: expectancy for success, or 
how confident the students are in their ability to complete the task on hand, and subjective task 
values, which is the perceived value of the task for the student. Expectancy-value theory is used 
in this study to understand and evaluate the factors that motivate a student to choose a particular 
behavior while completing homework assignments. In addition, this study builds on Dweck’s 
(2006) mindset theory to guide the feedback aspect. Mindset theory offers a correlation between 
a person’s self-belief or mindset and their motivations and achievements. If students believe that 
they are capable of improving their knowledge or intelligence, they have adopted a growth 
mindset, whereas if they are under the assumption that intelligence is a precise and pre-
established concept then they are following a fixed mindset. Two main types of feedback or 
praise have been reported in the literature: effort-based praise (“Good try”; “You’ve been 
working hard”), where teachers provide feedback focusing on the process of students’ work and 
task performance and highlight the possibilities for learning to motivate students, and ability-
based praise (“Well done; you are really smart”; “Gee, you are a good student”), where teachers 
provide feedback focusing on students’ innate attributes or ability rather than the quality of their 
work (Son, 2016). The study compared the effects of four methods of feedback on student 
achievement: no feedback on paper-and-pencil based homework, effort-based teacher feedback 
on paper-and-pencil-based homework, ability-based teacher feedback on paper-and-pencil-based 
homework, and online programmed answer based feedback on computer-based homework. 

Methods 
Repeated measures experimental design, a powerful tool to control for existing subject 

differences between groups (Howitt & Cramer, 2011), was employed to explore the correlation 
between homework, feedback, and academic achievement, in which each student is part of each 
treatment condition. The participants for this study was comprised of two 8th grade classes from 
an inner-city junior high school located in New York State; 59 students in total with ages ranging 
from 13 to 14 years. 53% participants were female and 47% were males. In the repeated 
measures design, all participants took part in all possible treatment conditions, and they were 
assigned to each treatment condition randomly.  

All participants took a pre-test and filled out a Homework Feedback Survey to collect 
information on students’ reported practices and perceptions regarding homework, feedback from 
teachers, quality of homework, value of homework, and expectancy beliefs. Participants were 
then randomly divided into four groups A, B, C, and D comprised of about 15 students each 
coming from two different classes. The four treatments were: assigned homework returned with 
no feedback, assigned homework returned with teacher effort-based feedback, assigned 



Student Learning and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

992	

homework returned with teacher ability- based feedback, and online-based homework with IXL-
generated immediate feedback.  

To answer the first research question that explored whether different types of homework 
feedback improved students’ mathematical achievement, one-way repeated measures ANOVA 
was used to test that the difference between means were statistically significantly for feedback 
type. To answer the second research that investigated the effect of teacher provided feedback on 
students’ attitudes towards mathematics in the light of different type of feedback, a two factor 
repeated measures ANOVA was conducted. Feedback type was treated as factor one with three 
levels (no feedback, effort-based feedback and ability-based feedback), and attitude was factor 
two with three levels (homework effort, expectancy, and value) as well.  

Summary of the Findings 
Effect of Feedback Type on Achievement 

The first research question asks whether different types of homework feedback improve 
students’ mathematical achievement. In order to answer the first research question, the effect of 
four different types of feedback, provided on students’ mathematics homework and its 
relationship with mathematics achievement as measured by gain scores (difference between post-
test and the pre-test scores) were explored. Table 1 shows the mean and standard deviations of 
pre-test scores and post-test scores, along with gain scores by each feedback type provided on 
students’ homework.  

Table 1: Descriptive Statistics by Feedback Groups 

Feedback Type Pre-Test Post-Test Gain Scores N 
 Mean SD Mean SD    
No Feedback 49.82 20.16 53.38 18.16 3.47  59 
Effort-based Feedback 48.05 19.25 54.58 21.02 6.53  59 
Ability-based Feedback 48.14 16.40 52.37 18.92 4.24  59 
IXL-based Feedback 48.98 18.80 52.29 20.26 3.31  59 

 
Regardless of the feedback type, students showed improved scores in the post-test. In 

addition, the gain scores show the difference between mean pre-test scores and the mean post-
test scores were the highest for participants provided with effort-based feedback; they showed an 
increase of little more than 6.5 percent points. The gain in post-test scores shown by ability-
based feedback was next at little more than 4 points, whereas the gain made by IXL based 
immediate feedback and no feedback were comparable at about 3.5 points. We found that the 
difference between gain scores among the four feedback conditions were not statistically 
significant, F(2.71, 157.15) = .38, p = .75  > .05. Although, observed pairwise comparisons from 
Table 2 show positive differences in favor of effort-based feedback, post-hoc test using 
Bonferroni correction revealed that none of these differences were statistically significant. 
Although there are differences in gain scores among the four feedback types, this study was not 
able to find a statistically significant relationship between teacher feedback and students’ 
mathematics achievement.  
Students Attitudes and Feedback 

The second research question asked whether there was any difference in student’s attitudes 
towards mathematics depending on feedback type. To answer this research question, Homework 
Feedback Survey, which consisted of six constructs comprising of 26 items, administered to 236 
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participants was used. To analyze the relationship between feedback and attitude, a two-way 
repeated measures ANOVA was employed, the two within-group factors were attitude with three 
levels (i.e., expectancy belief, homework effort, and value belief) and feedback also with three 
levels (i.e., no feedback, effort-based feedback, and ability-based feedback) and gain scores by 
feedback type as the dependent variable. We found that the main effect of attitude is statistically 
significant F(1.63,96.64) =30.47, p = .001 < .05. This finding indicates that students’ attitudes 
are positively associated with their performance in mathematics. However, the interaction effect 
of feedback type and attitude is not statistically significant, F(3.39,196.70) =1.57,  p = .19 > .05. 
Thus, although students’ attitudes are positively related to mathematics achievement, this 
relationship is not moderated by different type of feedback employed in this study.  

Discussion and Implications 
The findings of this study suggest that the effect of feedback type on mathematics homework 

did not have a positive relation to academic achievement. The study could not find statistically 
significant difference between the gains made by students who were provided different types of 
feedback on mathematics homework, though nominal difference in favor of effort-based 
feedback were higher, especially for females. The study also did not find a statistically 
significant interaction between feedback and gender, suggesting the above findings are equally 
applicable to both male and female students.  In addition, although attitude was strongly related 
to mathematics achievement, this relationship was not moderated by the three feedback types 
employed in this study. However, our study showed that students who were provided effort-
based feedback perceived teachers’ feedback to be more useful as compared to ability-based 
feedback and no-feedback groups, and they attached a higher value to it. Nevertheless, this 
usefulness did not translate into statistically significant higher achievement levels. This study 
provides implications for future researchers and educators to gain an inside access to a low 
performing classroom and observe how feedback and homework are related to the academic 
performance of students in mathematics.   
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Interactions between teachers and students are an essential part of learning in educational 
settings. In this study, I explore the phenomenon of pedagogical empathy, which is 
conceptualized as empathy that influences teaching practices. Specifically, I examine how 
mathematics graduate teaching assistants (GTAs) might express pedagogical empathy when 
providing feedback to student questions. Data was collected through interviews of current pre-
calculus instructors in which participants were shown samples of student work and asked to 
respond to questions about that work. Preliminary analysis has revealed varying abilities of 
GTAs to express and attend to student emotion. 

Keywords: Affect, Emotions, Post-Secondary Education 

Learning mathematics is an emotional experience for students (Hannula, 2002). Mathematics 
education researchers have studied student affect and teacher affect independently within the 
context of learning and teaching mathematics. However, little attention has been given to the 
relationship between teachers and student affect (Philipp, 2007). At the post-secondary level, 
both emotional reactions and interpersonal relationships have been shown to influence what is 
learned in the classroom (Lowman, 1994). 

Graduate teaching assistants (GTAs) play a large role in the instruction of lower level 
undergraduate mathematics courses (Speer, Gutmann, & Murphy, 2005). As a result, GTAs have 
opportunities to interact with a variety of students on a day-to-day basis and develop 
interpersonal relationships with them. These interactions likely influence GTAs’ identities as 
teachers and shape their teaching philosophies (Kung, 2010). However, little is known about 
GTAs’ teaching experiences and only recently has the mathematics education community begun 
to study their development as teachers and potential future faculty members (Kung, 2010; Speer 
et al., 2005).  

This study seeks to add to the growing body of information about mathematics GTAs’ 
pedagogical beliefs and teaching practices by investigating the awareness of GTAs to student 
feelings using a qualitative research design. In doing this, I aim to develop a better understanding 
of a new theoretical construct, pedagogical empathy. Building upon a definition used by 
Tettegah and Anderson (2007) in their study of empathic dispositions of pre-service teachers, I 
define pedagogical empathy as “the ability to express concern and to take the perspective of a 
student” (p. 50) and the influence that this ability has on teaching decisions. With this in mind, 
the purpose of this study is to explore how GTAs might express pedagogical empathy when 
providing feedback to students. To examine this phenomenon, I pose the following three 
research questions: 

1. Can the feedback that GTAs provide to student questions be characterized as 
attending to possible student emotions? 

2. Given sample written work on a typical pre-calculus problem, what feelings might 
GTAs attribute to students? 

3. How might GTAs take student feelings or emotions into account when answering 
student questions? 
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Theoretical Framing 
The process of learning is complex and involves both cognitive and affective factors. In 

particular, emotions have an effect on student learning and teachers play a significant role in 
influencing those emotions (Mortiboys, 2012). To better understand the relationship between 
emotions and learning, Hannula (2002) developed a framework to analyze a student’s attitude 
towards mathematics using the psychology of emotions as a foundation. This framework 
separates attitudes into four evaluative processes: 1) The emotions the student experiences during 
mathematics related activities; 2) the emotions that the student automatically associates with the 
concept ‘mathematics’; 3) evaluations of situations that the student expects to follow as a 
consequence of doing mathematics; and 4) the value of mathematics-related goals in the 
student’s global goal structure (Hannula, 2002, p. 26). 

With respect to this study, I focus on the first part of this framework, which attends to the 
emotions that students experience while working on math problems. Whereas the framework was 
analyzed from the perspective of a student, I aim to explore how the framework might be viewed 
from a teacher’s perspective and how the responses of a teacher might take into account the 
initial process of the framework when interacting with students. For this study, it is also 
important to distinguish between feelings and emotions. Hansen (2005) defines feelings as 
conscious perceptions used to describe emotions. Because feelings are perceivable and can be 
articulated by the individuals who experience them, I use this term for discussing student 
displays of emotion. 

Methods 
The participants in this study were 14 mathematics GTAs at a large Midwestern university. 

Each GTA had at least one semester of experience as the instructor of record for a pre-calculus 
class, and none were international GTAs. Data was collected during the 2016-2017 school year 
through structured interviews with the GTAs. Participants selected their own pseudonyms, which 
are used below. During the interview, participants were asked to solve a typical pre-calculus 
problem in order to familiarize them with the problem. After working through the problem, the 
participants were then shown five different samples of student work for the problem and asked to 
respond to questions about the work. The samples of student work were fictitious examples of 
actual student work based on the author's experiences as a pre-calculus instructor. Student 
questions about the work were presented through audio recordings intended to simulate an actual 
student asking the question. Examples of questions asked in the audio recordings include, “Am I 
doing this right?” and “How do you know what is x and what is y?” Finally, at the end of the 
interview the participants were asked to reflect on how they thought each student might have felt 
when working on the problem and if they would respond differently to any of the students after 
thinking about what they might be feeling. Participants were provided with a list of feeling words 
to use a reference during this part of the interview. After data was collected, select interviews 
were transcribed and analyzed using open coding. 

Preliminary Findings 
By conducting this study, I aimed to determine whether feedback to student questions could 

be characterized as attending to emotion. Through open coding, I found that many of the 
responses to interview questions focused on helping students develop either procedural or 
conceptual mathematical knowledge and did not attend to student emotion. However, several 
participants mentioned potential student feelings during the interviews, even before being 
prompted by the interviewer to describe how each student might have felt after viewing their 
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work. In a few notable cases, GTAs were unable to articulate possible student feelings using 
descriptive feeling words. These responses were categorized under the code “non-feeling” and 
were common among only a few participants. In addition to the mathematical responses and 
emotional responses, GTAs also gave reflective responses during the interview. These reflective 
responses often involved taking the perspective of a student or drawing upon prior personal 
experiences, which may be an indicator of expressing pedagogical empathy. Table 1 shows the 
primary codes that emerged from the interviews along with representative excerpts from 4 
different participants. These codes help to categorize GTA responses to student questions. 

Table 1: Characteristics of GTA Responses 
Code Description Interview Excerpt 

Procedural 
Mathematical 
Knowledge 

Responses involving procedures, 
algorithms, rules, or formulas that 

do not directly attend to 
conceptual mathematical ideas 

Nicole:  If I plug in 25,000 
students, do I get out the 13,000? 

Conceptual 
Mathematical 
Knowledge 

Responses connected to 
underlying mathematical 

concepts or content including 
discussion of abstract ideas or 

relationships 

Floyd:  What sort of function are 
we trying to come up with 

here?...Think of the function as a 
machine. 

Student Feelings or 
Emotions 

Anything about what a student 
might be feeling or anything 

related to underlying emotions 
that students might be 

experiencing 

Paul:  It’s less that they don’t 
know the math and more sort of 
fear or being uncomfortable with 

story problems. 

Non-feelings Use of words that are unrelated to 
emotions to describe what a 

student might be feeling when 
specifically prompted 

Phillip:  They probably feel 
medium. 

Student-centered 
Reflection 

Evidence of reflection centered 
on student thinking or past 
experiences with students 

Paul:  Even though my students 
see me make mistakes, they still 

want my pat on the back. 
Instructor-centered 

Reflection 
Evidence of self-reflection that is 
centered on the participant rather 

than the students, including 
personal beliefs 

Phillip:  I feel like in that 
situation, I would feel stupid. 

 
Further analysis is ongoing to identify common feelings that GTAs might attribute to 

particular students and whether some feelings were more prevalent than others. Several feelings 
were mentioned in the interviews including fear, nervousness, confusion, anger, annoyance, 
uncertainty, insecurity, frustration, anxiety, vulnerability and confidence. Some participants also 
made an effort to distinguish between different levels of student emotion. For example, Floyd 
tried to distinguish between vulnerability and insecurity when discussing how one student might 
have felt while working on the problem: 

Floyd:  Maybe vulnerable is a good way to describe that. It’s not so much insecure as much 
as they’re afraid to make a mistake I think – like a different level of insecurity than just not 
being sure of what they’ve done. 
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From the preliminary analysis, it is evident that the GTAs who participated in this study were 
aware of the potential for student feelings to arise when working on a math problem, but varied 
in their abilities to express those feelings. For example, James found it difficult to attribute 
emotions to students: 

James:  I guess I have a hard time ascribing emotion to people as they’re working on math 
problems. That’s not something I really consider too much. 
Other GTAs, however, were able to articulate student feelings and discussed how taking 

student feelings into account was something that they would usually do when responding to 
student questions. In response to the question, “Would you respond differently to any of the 
students after thinking about what they might be feeling?” both Nicole and Aubrey replied 
similarly: 

Nicole:  I don’t think so. I mean I think that’s something that I do think about when a student 
asks me a question, like where they are in terms of not only like mathematically, but also like 
emotionally. 
Aubrey:  Probably not. I try to think on the spot about how they’re feeling and look at 
people’s faces...You get to know your students, and I try to pay attention to how they’re 
feeling. 

Discussion 
The feedback that GTAs provided in response to student questions not only addressed the 

mathematical content required to solve the problem, but also attended to potential student 
feelings. In addition, a variety of possible feelings were brought up organically by several GTAs 
throughout the interviews. This observation draws attention to the fact that GTAs are trying to 
account for student emotion when helping students work through problems. However, further 
analysis is still needed to explore how pedagogical empathy might be manifested in teaching 
practices like providing feedback to students and how different experiences might help the 
development of pedagogical empathy in mathematics teachers. 
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SELF-EFFICACY BELIEFS OF ADULTS WHO DISLIKE MATH: CHALLENGING 
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According to Bandura (1977, 1997), four sources of information inform people’s self-efficacy 
beliefs: mastery experiences, vicarious experiences, verbal persuasion, and physiological and 
emotional states. To date, most research on the sources of mathematics self-efficacy has been 
quantitative in nature. The purpose of this study was to qualitatively examine the sources of self-
efficacy for a small group of young adults who dislike mathematics to uncover the more covert 
aspects of the sources of their mathematics self-efficacy. In this paper, I share evidence from this 
study that reveal flaws in the methodology used in prominent quantitative studies examining the 
sources of mathematics self-efficacy. 

Keywords: Affect, Emotion, Beliefs, and Attitudes; Mathematics Education; Self-efficacy 

In the late 1970s, Bandura (1977) introduced a framework for understanding how people’s 
self-beliefs affect how they act in given situations, especially when the circumstances are 
challenging. Bandura (1977, 1997) defined one such self-belief, self-efficacy, as the belief one 
has about his or her own capabilities to organize and execute the courses of action needed to 
attain certain goals. Since the 1970s, self-efficacy has received considerable attention in 
educational research and has been shown to affect students’ level of achievement, academic 
motivation, persistence, competence, and feelings in various domains (e.g., Hackett & Betz, 
1989; Pajares & Valiante, 1997). 

With such striking correlations, it would be important to better understand the sources, or the 
factors that influence self-efficacy beliefs. Bandura (1977, 1997) hypothesized people form self-
efficacy beliefs based on four sources of information, the most influential of which is one’s 
interpretations of their performance outcomes, or mastery experiences. Also influential are 
vicarious experiences, where one relies on social comparison with and outcomes achieved by a 
model as a source of information about his or her capabilities (Bandura, 1997). Verbal 
persuasion can also influence self-efficacy beliefs, and is hypothesized to have a more limited 
effect on self-efficacy than the previous two, as outcomes are only described, not directly 
encountered (Bandura, 1997). Lastly, fatigue, anxiety, and other physiological and emotional 
states are often interpreted as indicators of capability (Bandura, 1997). 

Much of the research on the sources of mathematics self-efficacy has been quantitative and 
has focused on secondary and college students. Here I attend to some inherent problems in 
measurements used by three particular oft-cited quantitative studies (Klassen, 2004; Lent, Lopez, 
& Bieschke, 1991; Matsui, Matsui, & Ohnishi, 1990). To measure mastery experiences, Klassen 
(2004) and Matsui and colleagues (1990) used only students’ self-reports of their mathematics 
course grades from the previous year. Bandura (1997) postulated that it is not one’s objective 
outcomes that count as mastery experiences, but his or her interpretation of those experiences 
that matter. For instance, a grade of a B may encourage some, leave some unaffected, or 
devastate others (Usher & Pajares, 2008). For vicarious experiences, Klassen’s (2004) survey 
items in this category focused only on how the seventh-grade students compared themselves to 
their peers while others (Lent et al., 1991; Matsui et al., 1990) had their questions include 
teachers and parents along with peers. All three studies failed to explore whether other models 
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such as non-immediate family members, experts in the field, or others had any impact on the 
participants, or which experiences were most meaningful to the students. 

Verbal persuasion had greater correlation with students’ mathematics self-efficacy levels in 
the three mentioned studies, but all three seemed to simplify encouragement or discouragement 
as positive and negative persuasion. This simplification eliminated the meaning (or 
consequences) those statements may have had for the recipients of them. For the last source, 
emotional states, Matsui and colleagues (1990) had students mark a level of agreement with the 
phrase “I really hated math.” What is not clear, however, is whether this feeling about 
mathematics was an effect of the students’ self-efficacy or a cause. 

The quantitative instruments outlined above failed to investigate the experiences that develop 
an individual’s self-efficacy beliefs. Qualitative instruments, however, such as a semi-structured 
interview, could allow participants to provide details about those experiences that they feel have 
been most influential on their beliefs over time (Usher & Pajares, 2008). Hence, in this paper, I 
report the results of a study where I explored the experiences of young adults who reported 
disliking mathematics to uncover the more covert aspects of the sources of their mathematics 
self-efficacy. For the purposes of this report, I analyzed data from semi-structured interviews 
intended to address the following research question: How is the genesis of the young adults’ 
dislike for mathematics explained by the four sources of self-efficacy proposed by Bandura? 

Methods  
Participants (Elissa, Julia, Kayla, and Kyle – pseudonyms) were four young adults (ages 22-

33), all of whom had attended public schools, completed at least three years of post-secondary 
education, and reported disliking mathematics. Three participants were female and in their post-
college careers whereas the male was in his fourth year at a large Midwestern University. 

Semi-structured interviews were conducted in Spring 2017 to explore the reasons people give 
for disliking mathematics and how they might or might not fit within Bandura’s (1997) sources. 
Questions about the sources of self-efficacy were modified from those used by Zeldin and 
colleagues (2008) in their study of the self-efficacy beliefs of men and women who were 
successful in STEM fields. Each participant was also asked to self-report their level of self-
efficacy with the following question: On a scale of 1-10, how would you rate your confidence in 
doing mathematical tasks? Interviews were audiorecorded and then transcribed. I began with 
open coding to look for factors mentioned as affecting their feelings of capability or confidence 
in doing mathematics. Surprisingly, all factors fit well within Bandura’s four sources, which I 
had used as my initial categories (Mastery Experiences, Vicarious Experiences, Verbal 
Persuasion, Emotional States). I then created subcategories within each source, distinguishing 
between instances that seemed to be positive influences on their mathematics self-efficacy or 
feelings as well as instances that were negative influences on it. I then created tables to keep 
track of both the number of instances within each source for each participant and brief 
summaries of the instances described by the participants. 

Results 
Here I will focus on the results of my qualitative analysis that differ in interesting ways from 

prior mathematics self-efficacy research. 
Mastery Experiences 

Of the 20 responses coded mastery experiences, 13 were negatively influential, with Julia 
and Kyle having the most instances (n=4). Julia reported receiving A’s throughout elementary 
and high school, yet reported a low self-efficacy level. She even said, “I think that even if I got a 
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lower grade but still had better understanding of it, a better grasp, I think that I would feel more 
successful.” Julia, Elissa, and Kyle all noted grades as indicators of their own failure in 
mathematics. A grade of a C in Geometry for Julia, a B+ in Geometry and B- in PreCalculus for 
Elissa, and a C in high-school Calculus and D in college Calculus II for Kyle evoked the words 
“lack of understanding”, “not good”, and “failure” by the three participants, respectively. 
Vicarious Experiences 

Of the 18 responses coded vicarious experiences, 12 were negative instances, with Julia and 
Elissa each having the most (n=4). All four participants mentioned falling behind peers they saw 
as “equals” as detrimental to their confidence. Kayla, Julia, and Elissa each mentioned negative 
mathematics teacher models. Kayla had a mathematics teacher who taught from a piece of paper 
and struggled to answer her questions if they were not already on his notes. Julia’s Geometry 
teacher showed a willingness to help certain students, but not her. Elissa’s PreCalculus teacher 
was described as “convoluted” in how she taught and presented mathematics. 
Verbal Persuasion 

Of the 16 replies coded verbal persuasion, 11 were negatively influential, with Kayla and 
Elissa having the most negative instances (n=4). Julia once overheard her parents saying that she 
was not good at math and that she was “not a math person”, while her high-school guidance 
counselor discouraged her from taking any more mathematics than the minimum requirement. 
Kayla’s mom affirmed her lack of confidence by saying things like, “we don’t understand this” 
or “we just don’t do this” while Kayla struggled with her mathematics homework. Kayla 
indicated her friends’ attempts to boost her confidence verbally would in turn lower her 
confidence by “putting her on the spot.” Kayla had a teacher tell her that due to her success in the 
statistics portion of a class he taught, she should take AP Statistics the following year with him. 
She did not perform well in AP Statistics, however, and indicated that her failure to live up to his 
expectations was devastating to her remaining confidence in her mathematical capability. Kyle 
overheard his suite mate telling someone that Kyle was “just getting through” Calculus and told 
Kyle directly, “You might not do too hot but you might be able to pass.” Elissa’s PreCalculus 
teacher would tell the class “how bad they were.”  
Emotional States 

Of the 16 replies coded emotional states, 12 were negatively impactful, with Kayla (n=6) 
having the most. In elementary school, Kayla would panic, not knowing why she was being a 
diligent note-taker and hard worker yet not understanding the concepts. She surmised that some 
elementary concepts “would probably have made sense if I wasn’t in a tailspin of anxiety 
already, if I wasn’t sitting there crying and hyperventilating.” She mentioned shutting down 
when put on the spot (as mentioned previously). She even mentioned feeling anxiety when I 
asked her in the interview about her confidence to perform a mathematical task. 

Julia used the word “stressful” to describe her experiences – including elementary math race 
games where she was slower than her peers and finishing her tests last. She also mentioned 
feeling shame in her high-school Geometry course when she realized she was cheating to pass 
the class because she did not understand the mathematics. Elissa mentioned her experience in 
PreCalculus was boring and gave her a lot of anxiety. She wanted to give up because it would be 
so “frustrating”. Kyle’s lone occurrence focused on his frustration when he would get stuck on 
mathematical tasks while his peers (especially those about whom he felt smarter) solved them. 

Discussion and Concluding Remarks 
Taken together, the analyses of participants’ responses regarding the sources of mathematics 

self-efficacy suggest that a qualitative approach (whether semi-structured interviews or other 
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methods) afforded participants an opportunity to author how their experiences informed their 
efficacy beliefs, and how those sources were interpreted by the participants was not so 
predictable. For instance, positive verbal encouragement from Kayla’s teacher only temporarily 
increased her confidence, and later debilitated it when she could not succeed in her AP Statistics 
course. Grades were not indicators of mastery for Julia. She indicated understanding as more 
important than the grades she received. Elissa saw B’s as indicators of failure. Teacher models, 
whether by making it seem like there’s only “one correct way” to “do mathematics” or by not 
being able to relate to or understand where some students might be in their understandings, 
negatively impacted participants’ efficacy. 

This study also differed from prior research (e.g. Usher, 2009) in that students with high 
achievement did not necessarily exhibit high efficacy. Julia, Elissa, and Kyle all reported 
successful mathematics experiences (high grades, advanced placement), but Julia had low self-
efficacy whereas Elissa and Kyle had moderately high self-efficacy to complete a mathematical 
task. Also, there seemed to be different kinds of mastery evident in the results of this study. 
Participants discussed mastery as decided by others (e.g. grades, placement into advanced 
mathematics classes or not) and mastery perceived by one’s self (e.g. Julia’s self-perceived lack 
of understanding). Prior research only using one’s grade as an indication of mastery (or not) fail 
to give evidence to the different types of mastery that can be influential. 

Another key difference from prior studies is the prevalence of and types of emotional states 
in my participants’ experiences. Many of the quantitative studies discussed a “lack of 
significance” when looking at the correlation between participants’ emotional states and level of 
self-efficacy. Perhaps that is due to an over-simplification of emotional and physiological states 
to only feelings of illness, anxiety, or stress while taking exams. This study revealed there are 
other activities (e.g. math races, doing math homework, calculating tips) and other emotions (e.g. 
boredom, shame) that can bring about emotional and physiological reactions. Although this was 
a small-scale study with only four participants, their recollections of their past mathematical 
experiences point to the shortcomings of using forced-choice and Likert-scale indices to measure 
the sources of mathematics self-efficacy. 
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Clinical interviews are used in mathematics education research to discover cognitive 
processes, identify cognitive activities, and evaluate levels of competence. Yet, interviewees’ 
understanding of the interview impacts both how they participate and subsequently the claims we 
can make about their cognitive processes (Russ, Lee, & Sherin, 2012). Framing has been used in 
science education research to attend to how students understand tasks, and how that 
understanding impacts their performance on the task and their interactions with others. Russ, Lee 
and Sherin (2012) posit that students will interpret clinical interviews in “ways that will affect 
and be evident in how they respond and behave in the interaction” (p. 12). Thus, researchers can 
infer students’ framing of the situation from their verbal, nonverbal, and paraverbal behaviors 
(Russ, Lee, & Sherin, 2012).  

This study describes the framing employed by two college-Algebra students during clinical 
interviews. The clinical interviews analyzed were originally conducted as part of an investigation 
of college-level Algebra students’ concept images of parabolas. The interview protocol was 
intended to stimulate different representations and understandings of parabolas and cue 
participants to move between representations. Interviews were analyzed using the three phase 
analysis described in Russ, Lee and Sherin (2012). Students’ behaviors were compared to the 
three framings identified in Russ, Lee and Sherin (2012): the inquiry frame, oral examination 
frame, and expert interview frame.  

Preliminary results suggest both participants framed the interviews as oral examinations. 
Unlike the students in Russ, Lee and Sherin (2012), who moved between lenses depending on 
the task and interviewer cues, participants in this study maintained their lenses across tasks. One 
possibility for the pervasion of the oral examination lens is the nature of the mathematical tasks, 
which may be too similar to what students experienced in their coursework (not novel) and thus 
they frame the tasks as an assessment of their understanding. Interestingly, when the interview 
shifts from mathematical tasks to questions about their experiences as mathematics learners, the 
college students shift to the expert interview frame. Changes in framing are indicated by the 
reduction in hedging language and laughter, and increased volume and confidence of tone when 
responding to questions. The shift in frame from oral examination to expert interview could 
indicate that students do not see themselves as owners of mathematical knowledge. Future 
analysis seeks to consider the potential influences on participants’ framing, beyond interviewer 
cues and the specific tasks. For example, does the discipline of school mathematics constrain or 
facilitate how students’ frame tasks, both in research settings and in classrooms?             
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Empirical evidence has amassed supporting the effectiveness of having students explain why 
correct problem solutions are correct (e.g., Hilbert, Renkl, Kessler, & Reiss, 2008) as well as 
why incorrect problem solutions are incorrect (e.g., Durkin & Rittle-Johnson, 2012), particularly 
for students in middle school and above (e.g., Adams et al., 2014). However, research is only 
beginning to investigate how this approach impacts learning in elementary school mathematics 
classroom and whether effects are age-dependent. The purpose of the present study was to 
compare the effectiveness of worked-example worksheets in fourth vs. fifth grades.   

We worked closely with elementary school teachers and mathematics coaches to construct 
worked-example assignments for fourth and fifth grade Common Core Content Standards.  We 
collected data in elementary classrooms (14 5th grade, N = 300 students; 12 4th grade, N = 257 
students) where students took a paper- and-pencil pretest and posttest surrounding their unit. The 
test contained two types of questions: isomorphic procedural items (e.g., procedural items that 
had the same structure and difficulty level as those trained) and items that measured conceptual 
understanding of the content.   During the unit, teachers instructed as usual, but replaced student 
practice activities with study assignments where appropriate; experimental group classrooms 
used the worked-example assignments, while control classrooms used assignments that 
contained identical problems but did not include worked-examples or self-explanation prompts.    

Quantitative analyses were conducted to determine whether posttest scores (controlling for 
pretest performance) differed for students in the experimental vs. control condition as well as to 
compare whether the impact of condition varied with grade level. Results indicate that while the 
worked-example assignments did have benefit for both fourth and fifth grade students, the 
pattern of results differed by grade. Fifth graders’ benefit manifested mostly in gains on 
conceptual items, which is consistent with extant findings for middle and high-school students. 
In contrast, fourth graders’ benefit was greater on the procedural items, which is more consistent 
with findings for older students when they study, but don’t explain, worked examples.  Grade 
level differences in how students approached and completed their assignments—and how those 
process data help illuminate findings on differential benefits—will also be discussed.   

References 
Adams, D.M, McLaren, B.M., Durkin, K., Mayer, R.E., Rittle-Johnson, B., Isotani, S., & van Velsen, M. (2014). 

Using erroneous examples to improve mathematics learning with a web-based tutoring system. Computers in 
Human Behavior, 36, 401-411. 

Durkin, K., & Rittle-Johnson, B. (2012). The Effectiveness of Using Incorrect Examples to Support Learning about 
Decimal Magnitude. Learning and Instruction, 22(3), 206-214. 

Hilbert, T. S., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: Learning from heuristic 
examples and how it can be supported. Learning and Instruction, 18(1), 54-65. 

Siegler, R. S. (2002). Microgenetic studies of self-explanations. In N. Granott & J. Parziale (Eds.), 
Microdevelopment: Transition processes in development and learning (pp. 31-58). New York: Cambridge 
University. 
  



Student Learning and Related Factors 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1004	

NEGOTIATING FRAMES IN AN INFORMAL MATH SPACE 

Katherine C. Chapman 
Vanderbilt University 

k.chapman@vanderbilt.edu 

Keywords: Classroom Discourse, Equity and Diversity, Gender, Informal Education 
According to dominant cultural narratives in the United States—including those instantiated 

in testing mandates—mathematics is a highly valued discipline, and mathematical competence is 
reserved for a select few. Despite this rhetoric about mathematical aptitude, research in the 
sociocultural tradition (Vygotsky, 1978) has shown that these notions of competence are 
inherently bound to cultural practices, and systematically exclude students from marginalized 
communities. Furthermore, work to correct this systemic imbalance has taken many forms. 
Funds of Knowledge research (e.g. Civil, 2007) identifies and draws on specific competencies of 
students’ home communities in order to promote in-school academic achievement, while work 
on Third Space (Gutiérrez, 2008) promotes a more even-handed synthesis of home- and school-
based practices. Relatedly, work using constructs such as Figured Worlds (Holland, 2001) has 
begun to specify some of the mechanisms by which students negotiate roles and responsibilities 
in the classroom, as well as the social power that goes along with them (e.g. Esmonde & Langer-
Osuna, 2013).  

Despite their different approaches and arguably different goals, each of these strands of 
research makes contact with a fundamental question: What happens when two or more cultural 
modes come into contact and must be negotiated in situ by participants? In order to begin to 
address this question more explicitly, this analysis draws on Positioning Theory (van 
Langenhove & Harré, 1999) and Framing (Goffman, 1974) to address a more circumscribed 
corrolary: How do students in an informal learning space negotiate answers to the question 
“What is going on here?” In their work to refine Positioning Theory as it applies to mathematics 
education research, Herbel-Eisenmann et al (2015) specifically call for attention to timescales in 
discussions of the storylines that students recruit, as well as more explicit empirical grounding 
for claims. Drawing on interactional analysis of a single pair of students within a single week of 
data collection at a math-focused knitting camp, initial findings suggest that 1) specific tools and 
constraints tend to re-Frame an interaction as being “school math”, and 2) student-initiated 
questions are more likely to subsume mathematics instrumentally into the current Frame.   
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Perceived mathematics ability is a valuable commodity. Those perceived to possess it are 
more positively positioned in mathematics learning spaces than those who do not which has 
implications for equity in access to mathematical ideas and participation. We know from 
research that perceived smartness has consequences for teacher expectations and academic 
identity development, among other things (Hatt, 2012). Using figured worlds (Holland, 
Lachicotte, Skinner, & Cain, 1998), we examine the as-if world of two groups of elementary 
grade students to understand their notions of smartness, mathematics utility, and mathematics 
importance. To further explicate the collective mathematics identity at play in this figured world, 
we utilize the first two components of Martin’s (2000) framework of mathematics identity: 
beliefs about their ability and beliefs about its instrumental importance. Not much is known 
about elementary age student beliefs about ability or smartness in mathematics or the utility of 
mathematics. In this study, we employ stanzas to analyze the presence and deployment in these 
mathematics learning spaces of smartness and utility through cultural artifacts, actors in the 
space, and valued outcomes (Holland et al., 1998). We ask: How do elementary grade students 
figure their mathematics learning spaces in ways that demonstrate their beliefs about smartness, 
utility, importance, and demonstrations of mathematical competence?  

Several focus groups of approximately five to six students were conducted across two urban 
elementary school classrooms, one second grade and one fourth grade, as part of a larger, 
ongoing research project. The focus group interviews contained three segments: 1) students drew 
diagrams of their happy places, 2) students used improvisation to act out what happens in their 
math classroom, and 3) students answered questions about their mathematics classroom learning. 
We used theoretical framing related to situated meanings, social languages, figured worlds, and 
Discourses (Gee, 2014; Rogers, 2011), coupled with a critical approach to discourse analysis of 
the focus group transcripts for our investigation.  Preliminary findings reveal that teacher actions, 
various student behaviors, and summative assessment grades play a major role in students 
meaning-making about mathematical competence. These young mathematics learners 
overwhelmingly expressed the importance of mathematics, yet this emphasis on importance was 
restricted to school mathematics learning and practical uses such as counting money or use in 
future occupations.  
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Students beginning their mathematical studies prior to calculus must master several areas of 
mathematics in order to reach the level expected for a STEM degree. Yet, nationally, 42% of 
students enter college at a mathematical level below what is needed for science, technology, 
engineering and mathematics (STEM) degrees (Radford, Pearson, Ho, Chambers & Ferlazzo, 
2012). From 2015-2017, we studied the success and persistence of college students not yet ready 
for college-level mathematics. We specifically examine mathematics anxiety of students in a pre-
college algebra course and the effects of a peer-mentoring program on their success.  

The potential for experiencing mathematics anxiety that will impact performance is high 
(Ashcraft & Krause, 2007; Hembree, 1990) and can create a barrier to entry into STEM 
disciplines. To examine how affective states such as anxiety impact student success and 
persistence, we collected survey data from 404 students and compared responses to outcomes 
and to persistence in their majors. We found that anxiety impacts student success in measureable 
ways. A one-unit increase in anxiety on our scale (Alexander & Martray, 1989) showed a 1.30% 
decrease in success likelihood (p=.0003), and a greater decrease in female students (2.08%, 
p<.0001). Additionally, we found the impact to be more significant for non-STEM intending 
students (1.52% decrease per unit, p=.0004) than for STEM intending (0.70% with p=.324). 

To further support these students, we implemented a peer-mentoring program in the second 
year of this study. We found the program supported success in STEM coursework but that its 
impact on STEM intending students was mixed. In a one-semester implementation with N=54 
students completing the mentoring process, we observed success rates in the course of 83.3% for 
the mentored group compared to 75% for the non-mentored population. On the other hand, we 
found that STEM majors in the mentored group persisted to the subsequent term at a rate of 
68.8% while in the non-mentored group 80.4% continued.  

Our initial conclusions indicated that as previously observed at other levels of mathematics, 
anxiety plays an inhibitory role in student performance, and that its impact is more pronounced 
in our female population and in non-STEM intending students. We find that peer-mentoring 
supports student success, but that its impact on STEM persistence was not as clear, suggesting 
that we should more pointedly target these students in the mentoring work. 
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Substantial research has shown that student engagement and disengagement with academic 
work predict student learning outcomes (Fredricks, Blumenfeld, & Paris, 2004; Skinner, Furrer, 
Marchand, & Kindermann, 2008). However, less attention has been paid to the ways in which 
students disengage and to the reasons for their disengagement. Nevertheless, understanding that 
may help advance the knowledge of quantitative relationships. Thus, the following question 
guided this exploratory study: How and why do students disengage in a Calculus classroom?  

Data for this study were collected via semi-structured interviews. Participants were five 
demographically diverse students enrolled in the same section of the first calculus course in a 
three-course sequence. This section was chosen because it was taught via multiple instructional 
methods. Specifically, instruction included both lecturing and group work, thus allowing us to 
interview students about their engagement during instructionally different parts of the class.  

The analysis revealed three types of student disengagement. The first type is disengagement 
that may be potentially detrimental for student success in the course. It can be selective when 
students decide to disengage in response to a particular activity (e.g., a student may stop listening 
to the instructor if explanations are perceived to be unnecessary long or complex). Potentially 
detrimental disengagement can also be non-selective when a decision to disengage does not have 
a specific trigger (e.g., a student may stop listening because s/he got tired or distracted). The 
second type is alternative engagement, which may or may not have negative implications for 
student success in the course. This type occurs when a student disengages from one activity but 
engages in a different (yet relevant) activity instead. For example, a student may decide not to 
answer instructor’s questions out loud but, alternatively, answer them in his/her head. The third 
type is disengagement that may be potentially non-detrimental for student success in the course. 
This type can occur when engagement is perceived to be unnecessary (e.g., when a student 
already knows the material), unproductive (e.g., when listening leads to confusion), or not cost-
effective (e.g., when asking a question outside of class is easier). Potentially non-detrimental 
disengagement can also occur when disengagement is perceived to be unavoidable (e.g., not 
working on a task because of being stuck). 

The presence of these disengagement types suggests that the relationship between students’ 
engagement and their success in the course may differ depending on how and why students 
disengage. In other words, the types of student disengagement may moderate this relationship. 
Thus, exploring it without considering the types of disengagement may not provide a full picture. 
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The purpose of this study is to investigate three particular aspects that could affect the 
transition between a third grade Montessori style and a fourth grade non-Montessori style 
classroom, specifically within the context of teaching and learning mathematics. These aspects 
are (a) the change in pacing and structure of the classroom, (b) the removal of manipulatives 
from the learning experience in favor of handwriting methods, and (c) the reversal of roles that 
teachers and students occupy. While post-transition effects are well documented, research is 
limited in analyzing learning during the transitional phase out of Montessori programs. The 
Montessori method relies on self-regulated young learners taking advantage of themselves, their 
environment, and their experiences—therefore metacognition is used as the theoretical 
framework for the research. Commonly found in Montessori classrooms, manipulatives (tangible 
objects used to “manipulate” and physically represent mathematical situations) are often used in 
three main stages: concrete, representational, and abstract—a gradual shift that maintains student 
understanding. This qualitative study is guided by the following research questions: 

1. To what teaching practices and learning opportunities are third and fourth grade students 
exposed? To what extent are these practices and learning opportunities related to the 
Montessori approach? 

2. How are three particular aspects of current teaching practices and learning opportunities 
in fourth grade mathematics perceived by students and teachers compared to previous 
exposure in the Montessori style?  

3. How, and to what extent, does changing these teaching practices and learning 
opportunities affect the problem-solving strategies of students? 

The effect of this transition on problem-solving skills is analyzed through a series of 
Cognitively Guided Instruction problem-solving exercises to determine mathematical 
understanding about key concepts within the curriculum; other tools are modified for 
observations and interviews related to curriculum exposure lined up to theory. Results show that 
students identify alternative strategies when uncertain how to proceed in a problem. Students 
revert to previous object-centered methods when a problem is perceived as too difficult. 
Documents and dialogue show that students use the concept of manipulatives in unfamiliar 
situations, even if they do not recognize the process. Students also need more exposure with 
materials for difficult and alternative topics during the Montessori ages. The use of 
manipulatives is one of the most influential aspects of the transition, followed by the shift in 
defining student and teacher roles. The pacing and structure of the classroom has minimal effect 
on the transition.  
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Educators and researchers concerned with equity in mathematics education have argued the 
need to view mathematics and schooling through parents’ eyes, and in particular, to consider 
Latino and other immigrant parents as intellectual resources, recognizing their knowledge and 
experience as important resources in mathematics teaching and learning (Civil, 2007). The goal 
of this study was to consider what we learned from a series of family workshops in light of the 
following research question: How can we create diverse spaces for family engagement that 
support mathematics learning and draw on the wide range of knowledge and experiences that 
immigrant families bring to their young children’s education?  

The family workshops took place over a semester and were designed for Latino families with 
children in elementary school; six families participated regularly (6 adults, 11 children). 
Instruction was provided in Spanish and focused on mathematics and language acquisition. 
Researchers and volunteers recorded data during and after the workshops through note taking; 
photographs of activities and completed work were also collected. We drew on hermeneutics to 
understand and analyze the data. We worked together to identify significant events and then to 
interpret and understand them. A hermeneutic perspective allowed us to look closely at the data 
and to disrupt it through purposeful interpretation, questioning assumptions about the knowledge 
and languages Latino families bring to their children’s mathematics learning.  

In the family sessions, we created a space where parents and children worked together on 
enjoyable mathematical activities that were new and unfamiliar and that required them to draw 
on previous experiences. The activities were constructed so that parents and children were 
positioned as experts, teaching one another. For instance, during a game board construction 
activity parents relied on the knowledge their children had gained at school while children relied 
on their parents to implement complex rules and mathematical concepts in their games in both 
Spanish and English. As parents and children were positioned as experts, they created a space in 
which they were reflected in each other but also saw each other as a new reality to be learned. 
This process began with the understanding that constructing diverse mathematics learning spaces 
that support and draw on a wide range of knowledge starts with seeing families and children as 
people who have rich knowledge and experiences. When conceptualizing the workshops, we also 
considered education as an issue of equity and identity. We positioned Spanish as the dominant 
language in the learning space, allowing parents and children to draw on different knowledge 
and experiences. This challenged everyone in the workshops to explore tensions inherent to 
speaking Spanish in the U.S., as well as to make experiences with languages powerful 
knowledge in the context of mathematics learning.  
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Introductory college calculus has been shown to be gatekeeper course for STEM majors 
(Suresh 2006), and research continues to show that Calculus I “lowers students’ confidence, 
enjoyment of mathematics, and desire to continue in a field that requires further mathematics” 
(Bressoud 2015). One possible reason for this continued problem is a lack of research pertaining 
to the relationship between instructional practices and students’ mathematics identity 
development. Cobb (2004) calls for more research on how students are developing identities in 
their mathematics classroom since, “mathematics as it is realized in the classroom appears to 
function as a powerful filter in terms of identity” (pg. 333). This is important since students’ 
mathematics identity strongly predicts their career choice in a STEM field (Cribbs 2012).  

This study will report the qualitative piece of a larger mixed methods study aimed at 
comparing students’ mathematics identity in a traditional lecture and an active learning calculus 
classroom. Twelve semi-structured interviews were conducted to explore students’ perceptions 
of the pedagogy used in their introductory calculus class. We will use the interpretive scheme 
developed by Cobb and Hodge (2011) to explore the normative identity established by the 
pedagogical methods as well as students’ personal identities which are “concerned with who 
students are becoming in particular mathematics classrooms” (pg. 190).  

Another theoretical framework that will be used to explain students’ personal identities is 
self-determination theory (SDT). Deci and Ryan (2000) state, “human beings can be proactive 
and engaged or, alternatively, passive and alienated, largely as a function of the social conditions 
in which they develop and function” (pg. 68). They stress the importance of doing research on 
the design of social environments (such as a classroom) in order to determine the best conditions 
for optimizing “people’s development, performance, and well-being” (pg. 68). Deci and Ryan 
identified three needs that are essential in fostering people’s development: competence, 
autonomy, and relatedness. Preliminary analysis revealed that the active learning environment 
provided more opportunities that promoted students’ feelings of competence, autonomy, and 
relatedness than students in the traditional lecture classroom described.  
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As computer-focused policies and trends become more popular in schools, more students 
access math curriculum online. While computer-based programs may be responsive to some 
student input, their algorithmic basis can make it more difficult for them to be prepared for 
divergent student thinking, especially in comparison to a teacher. Consider programs that assess 
student work by judging how well it matches pre-set answers. Unless designed and enacted in 
classrooms with care, computer-based curriculum materials might encourage students to think 
about mathematics in pre-determined ways. How do students approach the process of 
mathematics while using online materials, especially in terms of engaging in original thought? 

Drawing on Pickering’s (1995) dance of agency and Sinclair’s (2001) conception of students 
as path-finders or track-takers, I define two modes of mathematical behavior: trail-taking and 
bushwhacking. While trail-taking, students follow an established approach, often relying on 
Pickering’s (1995) disciplinary agency, wherein the mathematics “leads [them] through a series 
of manipulations” (p. 115). The series of manipulations can be seen as a trail that a student may 
choose to follow. Bushwhacking, on the other hand, refers to actions a student takes of their own 
invention. It is possible that, unknown to the student, these actions have been taken before by 
others. In bushwhacking, the student possesses agency, which Pickering (1995) describes as 
active (rather than passive) and as hallmarked by “choice and discretion” (p. 117).  

In this study, students worked in several dynamic geometric environments (DGEs) during a 
geometry lesson about the midline theorem. The lesson was originally recorded as part of a 
larger study designing mathematically captivating lessons. Students accessed both problems and 
online addresses for corresponding DGEs via a printed packet. Students interacted with the 
DGEs on individual laptops, but were seated in groups of three or four. Passages of group 
conversations in which students transitioned between trail-taking and bushwhacking were 
selected for closer analysis, which involved identifying evidence of each mode and highlighting 
the curricular or social forces that may have contributed to shifts between modes. 

Of particular interest were episodes in which students asked one another to share results, 
which led to students reconsidering previously set approaches, and episodes in which students 
interacted with DGEs containing a relatively high proportion of drag-able components, which 
corresponded to some students working in bushwhacking mode, spontaneously suggesting and 
revising approaches for manipulating the DGE (e.g., “unless you make this parallel to the 
bottom, but I don’t think you… yes you can.”). Both types of episodes were found in multiple 
groups’ conversations. Further analysis of student interactions with tasks, especially with varying 
levels of student control and sharing, could serve to inform future computer-based task design 
aimed to encourage students to productively engage in bushwhacking while problem-solving. 
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Why do secondary students in the US consistently and increasingly report a lack of interest in 
mathematics? Lack of interest in mathematics has been well documented by the TIMSS studies; 
students’ dissatisfaction with mathematics more than doubled by 2011, when 40% of 8th graders 
reported not liking math, up from 18% as 4th graders in 2007. And, sadly, the trend appears to be 
worsening. In 2015, 47% of 8th graders indicated not liking math, up from 22% as 4th graders. 
In order to positively impact student attitudes towards mathematics, it is important to understand 
factors that may influence secondary students’ relationship with the discipline. This poster 
presents findings from an exploratory study of student disposition toward mathematics.  

We designed an online survey to learn about students’ relationship with mathematics, 
including experiences and settings that contribute to both positive and negative feelings about the 
subject. We surveyed 275 students, grades 9 to 12, in 11 classes in three schools in three New 
England districts. Though not randomly chosen, this sample allows us to examine student 
attitudes across a variety of contexts. We asked students about their feelings towards 
mathematics over the years, as well as which aspects of class they most enjoyed or disliked. 
Finally, we included items from the TRIPOD survey (Wallace et al., 2016) and the 2015 NAEP 
survey, which allows us to compare our sample with the national sample. 

Initial results indicate that student view their teachers and the topics of study as the central 
factors influencing their enjoyment of mathematics class. We found a correlation between 
responses that math is boring and that it is not relevant. Students who like math and those who 
do not reported different class activity preferences. For example, students who like math reported 
disliking watching a video in class, while students who dislike math reported disliking learning 
something new. Both groups of students (those who like math and those who do not) dislike 
math class when they have to present work to classmates, but hold positive views of solving 
puzzles and working with other students. Technology seems to appeal equally to both groups. 
Students who reported disliking math also look forward to playing competitive games. We saw 
no evidence that gender or race corresponded to students’ level of appreciation math. Finally, 
students reported liking math class less in high school than in middle school. 

Identifying factors that influence secondary student mathematical dispositions can inform 
curriculum designers seeking to improve mathematical attitudes. Future studies can learn if new 
curricular designs can change student relationships with mathematics to reverse recent trends. 
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Epistemological beliefs about mathematics focus on students’ views of the nature of 
mathematics. Researchers have asked K-12 students, non-math major freshmen, math majors, 
and faculty members to describe their views of mathematics directly or through metaphors (e.g. 
Markovits & Forgasz, 2017; Schinck, Neale, Pugalee, & Cifarelli, 2008; Szydlik, 2013; Ward et 
al., 2010). Students’ beliefs about the nature of mathematics can affect their beliefs about what 
math classes should look like, including the forms of classroom and sociomathematical norms 
(e.g. Boaler, 1999; Cobb, Gresalfi, & Hodge, 2009). Although established classroom norms can 
influence students’ beliefs, how students’ beliefs are affected is not well understood. 

This poster examines the beliefs of abstract algebra students from two classrooms, one taught 
using Inquiry-Oriented materials and another taught via two days of lecture and one day of “lab” 
in which students discussed problems in groups. Students’ beliefs were analyzed through 
thematic analysis (Braun & Clarke, 2006) based on their responses to survey questions and open-
ended questions in follow-up interviews with selected students. 

Students’ views of the nature of mathematics varied, but included being the study of 
numbers, the study of logic, and a practical problem-solving tool. Asking students to provide 
animal metaphors for their views of mathematics highlighted more affective views of 
mathematics than asking what mathematics is. (For example, “Math is like a cat because 
everyone either loves cats, or hates them. Everyone loves math, or never wants to touch it in their 
life.”) Although differences between students’ beliefs were expected in the two classes based on 
differing instructional approaches, clearer differences in responses have emerged based on 
students’ backgrounds, such as the number of previous math classes taken, grades in previous 
classes, and students’ majors. Reasons for such differences will be explored. 
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“EXPLICAME TU ESTRATEGIA”: EMERGING BILINGUAL’S DEVELOPMENT OF 
MATHEMATICAL AGENCY IN PROBLEM SOLVING DISCUSSIONS 

 Juanita M Silva Gladys Krause Luz Maldonado 
 Texas State University College of William and Mary Texas State University 
 jsilva@txstate.edu gladyshrueda@utexas.edu l.maldonado@txstate.edu 

Participating in mathematical practices supports children’s conceptual development and 
increases achievement in the classroom (Bodovski & Farkas, 2007). However, emergent 
bilingual children often have limited exposure to these mathematical practices, and instead 
instruction promotes rote memorization and procedural knowledge without conceptual 
connections, or a focus on English vocabulary (Moschkovich, 2015). The term “emergent 
bilingual” (García & Kleifgen, 2010) identifies students not as lacking language, but instead 
indicates the potential to become bilingual over time, through schooling, and while still 
functioning with the home language. We build on Turner’s (2003) construct of mathematical 
agency, defined as a moment in which a child has the power to make sense of mathematics and 
take ownership of their mathematical thinking. This study investigated emergent bilingual 
children’s opportunities to exhibit mathematical agency when engaging in multilingual 
mathematical discussions. 

Using a teaching experiment methodology (Cobb, 2000), we designed a 5-week after school 
program for seven third grade emergent bilingual students. All sessions were video-audio 
recorded and transcribed. These students were recommended by their teachers for additional 
support due to low scores on district exams. The afterschool math sessions focused on base ten 
story problems, sessions consisted of understanding the story context, solving the problem using 
prior knowledge, and sharing students’ mathematical strategies in group discussion. The 
instructors specifically drew upon mathematical practices and positioning moves to engage the 
emergent bilingual students throughout the sessions. 

We uncovered three mathematical agency categories, limited, developing and enacting. The 
limited category describes children using procedures without connections and little to none 
ownership of their thinking; the developing category describes children sharing their own 
thinking with others and trying to make sense of their math ideas; and the enacting category 
describes children making sense of their strategies used and taking ownership of their ideas. 
Children mostly showed limited mathematical agency in the initial sessions and developing 
mathematical agency throughout the rest of the study.  Enacting mathematical agency was 
absent in the early sessions, but visible towards the end of the sessions. Among others, a key 
finding was the benefit of allowing flexibility in language choice for discussion of strategies. Our 
study highlights the need for further analysis of classroom instruction that builds mathematical 
agency of emergent bilingual students by positioning them as competent learners. 
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Making is defined as a “class of activities focused on designing, building, modifying, and/or 
repurposing material objects, for play or useful ends, oriented toward making a ‘product’ of 
some sort that can be used, interacted with, or demonstrated,” (Vossoughi & Bevan, 2014, p. 3). 
Making is often pitched as a means to increase students’ engagement in transdisciplinary STEM 
learning and career pathways (e.g., Simpson et al., 2017). In terms of mathematics, one could 
argue that less is known about student learning of concepts and practices in making-related 
environments as the majority of mathematics education and scholarship is grounded in formal 
learning environments (Pattison et al., 2016). This research addresses this gap in the literature. 

This study was conducted in partnership with a local science museum that provided an 
afterschool program for six Title 1 elementary schools and set within each school. The data 
source from this study was video data from youths who volunteered to wear a chest-mounted 
Go-Pro camera. We randomly selected two videos from each day of data collection that were at 
least 30 minutes in length. This amounted to 44 videos. Using the work of O’Connell and 
SanGiovanni (2013), we developed an initial coding scheme for each mathematical practice as 
defined by the Common Core State Standards (CCSS, 2017; e.g., Problem Articulation – 
Determine and articulate what the problem or task is questioning). 

In general, youth were more often engaged in “mathematical” practices void of mathematics. 
Engagement in Practice 1, make sense of problems and persevere in solving them, was the most 
common; specifically, self-monitoring. However, monitoring one’s process and making changes 
when necessary (i.e., self-monitoring) looked different as youth were not engaged in doing this 
through mathematics. Conversely, youths were frequently engaged in doing mathematics through 
indirect measurement and spatial reasoning, which are not captured within the practices. Our 
findings highlight how the practices are not conducive to settings outside the formal classroom. 
This raises the question of what and whose mathematics do we privilege – school mathematics or 
everyday mathematics (see Civil, 2017). 
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In this study, we investigate the relationship between teachers’ noticing and the quality of their 
mathematics instruction. We analyzed the conversation of seven elementary teachers around five 
coaching cycles and scored their level of noticing and the mathematical quality of the instruction 
of the lesson. We compared teachers’ noticing levels with their MQI scores for each coaching 
cycle.  One case showed discrepancy between the level of noticing and the MQI scores. In this 
proposal, we discuss the cognitive and psychological constructs that seemed to influence 
teacher’s noticing including mathematical knowledge for teaching (MKT), beliefs, teaching 
efficacy, and emotions. Results show that each of the constructs influenced the teacher’s noticing 
to varying degrees. Implications for professional development are discussed. 

Keywords: Coaching; Mathematical Knowledge for Teaching; Teacher Efficacy, Teacher 
Emotion; Noticing 

Effective mathematics teaching requires foregrounding students’ thinking (Ball & Cohen, 
1999). This requires teachers to attend to and identify how students think and use their 
observations to make informed decisions about how to effectively respond. Recently, a 
significant amount of research (e.g. Sherin & van Es, 2009) has focused on investigating teacher 
noticing in order to understand what and how teachers observe, how they interpret the gathered 
information to respond to what they observe, and how this process can be influenced. These 
efforts have been focused on gaining a deeper understanding of how teacher noticing supports 
teacher learning in efforts to improve their instructional practices (Sherin, Jacobs & Philipp, 
2010).  

Professional noticing of children’s mathematical thinking comprises a set of interrelated 
skills including (a) attending to students’ strategies, (b) interpreting students’ understandings, 
and (c) determining how to respond based on these understandings (Jacobs et al., 2010). Some of 
the work on teacher noticing has focused on the differences in what and how teachers’ notice 
concluding that expert teachers tend to interpret and recall classroom events with greater detail 
and insight than novice teachers (Sherin, Jacobs & Philipp, 2010). We also acknowledge that 
teachers’ abilities to notice may be impacted by the nature and quality of the instruction they are 
observing. For example, if a teacher is lecturing with minimal input from students, which is 
considered to be one indicator of low quality instruction, opportunities for noticing students’ 
thinking will be limited. In this regard, we contend that evaluations of teachers’ abilities to notice 
should be qualified based on the opportunities the teaching event affords for high-level noticing. 
Thus, we were interested in examining the alignment between teachers’ levels of noticing and 
their quality of instruction, and the factors that influence this alignment. We considered 
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mathematical knowledge for teaching (MKT), emotions, beliefs and teaching efficacy (TE) as 
possible factors. We targeted the following research questions: 

• Do teachers’ mathematical quality of instruction align with their level of noticing? 
o If there is alignment, what factors seem to support alignment? 
o If there is misalignment, what factors seem to influence this misalignment?   

Theoretical Framework 
Teachers’ mental lives have a significant impact on their teaching experiences (Schutz, 

Hong, Cross & Osbon, 2006). Surprisingly, the ways in which specific cognitive and 
psychological constructs, such as MKT, emotions, beliefs and TE collectively influence teachers’ 
instructional activity including noticing, has not been investigated broadly. In what follows, we 
provide a brief overview of each of these constructs with a specific focus on how each may 
inform teachers’ instructional practices.  

Mathematical knowledge for teaching (MKT) encompasses deep knowledge of math 
concepts and the knowledge and skills to attend to students’ thinking during the act of teaching, 
and make in-the-moment decisions about the best ways to respond to what they observe (Ball, 
Thame & Phelps, 2008; Hill et al., 2008.). There is also a high correlation between mathematics 
knowledge for teaching and the mathematics quality of instruction (Hill et al., 2008). Teaching is 
emotional work (Schutz, Hong, Cross & Osbon, 2006). Emotions play a significant role in 
teachers’ relationships, instructional decision-making and overall professional well-being. 
According to Trigwell (2012), “there are systematic relations between the ways teachers 
emotionally experience the context of teaching and the ways they approach their teaching.” (p. 
617). In this regard, we consider that the emotions teachers experience as they engage in 
instructional activity, including noticing, may influence what and how they notice. Beliefs are 
defined as “embodied conscious and unconscious ideas and thoughts about oneself, the world, 
and one’s position in it developed through membership in various social groups, which are 
considered by the individual to be true”.( Cross, 2009, p. 4) They are considered precursors to 
actions (Pajares, 1992). Research has shown that teachers’ beliefs about mathematics, learning 
and teaching greatly influence their practices (e.g. Cross Francis, 2015; Ernest, 1989). We also 
know that beliefs can serve as filters, orienting an individual’s thoughts and ideas through a 
particular lens. For example, a teacher who believes that students are able to build knowledge 
through meaningful cognitive engagement in activity would perhaps organize her classroom 
activities to support inquiry and problem solving. Lastly, teacher efficacy (TE) is defined as 
teachers’ beliefs about their capacity to affect how students learn and their perception of overall 
performance (Tsachannen-Moran, Woolfolk-Hoy & Hoy, 1998).  It influences teachers’ 
willingness to learn, adopt and enact particular instructional practices. TE has two components---
knowledge and personal efficacy. Knowledge efficacy refers to a person’s confidence in her 
understanding of mathematics content (Roberts & Henson, 2000), while personal efficacy 
describes a person’s confidence in her ability to support students’ learning through teaching. 
Teachers with strong TE tend to be flexible in their approach to teaching and are more focused in 
planning and organizing instructional activity.  

Methods 
Seven elementary teachers participated in this study. The teachers were each involved in a 

PD program involving five coaching cycles. Coaching involved (i) preparing teachers’ for their 
upcoming coaching session (pre-coaching), (ii) supporting teachers during instruction (coaching) 
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and, (iii) debriefing instruction after the coaching session (post-coaching). All conversations 
were audio-recorded and the coaching sessions were video-recorded. Data sources included (i) 
audio and videorecordings from the coaching cycle, (ii) scores on mathematical quality of 
instruction instrument (MQI) (see Hill et. al, 2008), (iii) interviews prior to the start of the 
coaching that provided data about the core constructs described, and (iv) quantitative results of 
their teaching efficacy and emotions. Pre-coaching conversations were analyzed to determine 
teachers’ knowledge (about the topic to be taught in the coaching session), efficacy and emotions 
related to the upcoming coaching session. Coaching session videos were analyzed using the MQI 
instrument to determine the quality of instruction along four core dimensions. A second round of 
analysis of the coaching video was done to determine the MKT (specifically common content 
knowledge (CCK), knowledge of content and students (KCS), specialized content knowledge 
(SCK) and knowledge of content and teaching (KCT) – (see Ball, Thames and Phelps (2008) for 
full descriptions) specifically focusing on their knowledge of mathematics being taught in the 
lesson, instructional strategies and students’ thinking and the ways they enacted this knowledge 
during instruction.   

In preparation for the coaching conversations, teachers were asked to identify three instances 
during the lesson that they found interesting or significant. Post coaching conversations were 
used to identify the clips the teachers selected which were analyzed for their noticing levels 
using Van Es’ (2011) framework. Then we examined both the MQI scores and noticing levels 
per coaching cycle (Table 1) to determine the degree of alignment. Analyses of pre- and post 
coaching interviews determined the emotions, knowledge and beliefs related to the coaching 
session. Teachers also completed the adapted SETAKIST (Self-Efficacy Teaching and 
Knowledge Instrument for Teachers of Mathematics) (see Roberts & Henson (2000) for 
description of the instrument) to determine their knowledge and personal efficacy.  

Findings & Discussion 
The corpus of data were examined for the seven teachers and presented in Tables 1 and 2. In 

Table 1, we show the data from the coaching video where they have the highest MQI score and 
the accompanying noticing level for that instructional video. 

Table 1: Alignment between teachers’ instructional quality and their noticing level 
Teacher Noticing Level MQI 

(for items that align with 
noticing framework) 

Alignment/Misalignment 

Bill 3.7  2.5 H/H - alignment 
Laura 3 3 H/H - alignment 
Anthony 1.5 1 L/L - alignment 
Wilma 1.6 3 L/H - misalignment 
Katie 1.3 3 L/H - misalignment 
Jessica 1.8 3 L/H - misalignment 
Sarah 1.7 2.5 L/H - misalignment 
L - low; H - high 
 

In the cases of Bill, Laura and Anthony, there was alignment between the quality of their 
instruction and the level of noticing. We have discussed these findings elsewhere (Cross Francis, 
Eker, Lloyd, Lui & Alhaayan, 2017). In this proposal, we will focus on the cases where there 
was misalignment between the teachers’ quality of instruction and their level of noticing. For the 
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purposes of this proposal, we present the analyses of the case of Katie. We considered this 
misalignment particularly noteworthy as we expected that a teacher who was able to produce 
relatively high quality instruction would foreground students’ thinking which would be visible in 
how and what she noticed. To better understand the factors that may have influenced this 
misalignment, we examined her MKT, efficacy, beliefs and emotions. 

Table 2. Results of analyses of Katie’s noticing, MKT, TE and emotions 
 Noticing MQI Emotions Efficacy 
 What How Students’ 

Productions 
Before 
(Coaching) 

During  After KE PE 

Katie Level 
1 

Level 
1 

3 Indifferent/Excited Calm Calm High  High 

 
MKT  

The focus of the lesson was addition and subtraction of single-digit numbers. As with all of 
Katie’s classes she began with the daily math review which consisted of questions aligned with 
the instructional goal of the lesson in addition to other questions related to concepts they had 
previously covered (e.g., number sequences). We determined her localized MKT by rating her 
knowledge as low, medium or high on four of the MKT dimensions – CCK, SCK, KCS and 
KCT. We considered both her CCK and her SCK to be strong with respect to single-digit 
addition and subtraction as she made no errors in solving the problems, supporting students in 
solving the problems or in discussing students’ solutions about the problems. Katie was 
cognizant of the different types of subtraction problems (total unknown, initial unknown and 
change unknown) and their levels of complexity. Specifically, that total unknown problems are 
the least complex of the three and that addition can be used to verify the solution. Subtraction 
was a new concept for the students so Katie began with total unknown problems. She also 
discussed with the students the different ways of solving addition and subtraction problems – 
counting one by one, counting on and making items (drawing circles) to count. We considered 
her KCS and KCT to be low based on specific interactions with students during the instructional 
video and her responses to our questions referring to her thinking during those instances. In the 
first instance, the students were asked to solve the following problem:  

Kenneth had 6 balloons. His sister popped 2. How many does he have left? 
A student solved the problem and wrote: 

6 – 2 =4 (student put this on the board first) 
6 – 2 ≠ 4 (Student changes to this but Katie doesn’t correct the student) 

When asked about the student’s thinking in the post-coaching conversation, Katie says he put 
the slash to show that he was saying that the left side is not equal to the right side. Although 
Katie knew the difference between both signs, she didn’t think she needed to correct it. She was 
then shown a clip of what was written on the board for an earlier problem.  

7 + 8 = 12 + 7 
     15 ≠ 17 

After seeing these two contrasting uses of the not equal sign, Katie was better able to understand 
how this could lead to misunderstandings for her students.  

We also observed Katie’s difficulties in supporting students to solve the following: 
Macy had 6 cookies and she gave 2 away. How much does she have now? 
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Students were supplied with manipulatives to represent the problem. However, instead of being 
given a set of individual manipulatives (e.g., cubes) from which to select and manipulate to solve 
the problem, they were given a connected stack of 6 cubes to start. One student, Macy, kept 
adding two cubes instead of taking two away from the stack. There were several strategies that 
could have been employed to identify the struggle Macy was having and then to help move her 
thinking forward, some of which Katie employed. For example, asking a student to show how he 
would add some more cookies and if that is the same as taking away some cookies. However, 
although Macy continued to struggle, Katie essentially kept repeating the same strategy. Katie 
struggled to  utilize other teaching approaches that would support Macy. After several minutes 
the coach asked Macy to show her six cookies, then suggested that she go ahead and eat two of 
the cookies. Macy took two of the cookies and put them in her lap. She was then able to tell the 
coach that she would have four cookies left. Katie commented that she didn’t think of having 
Macy model the story. She also didn't consider having Macy separate the stack of cubes so she 
could represent each cookie with a cube. It’s possible that Macy was not able to conceptualize 
the connected stack of cubes as six cubes (indication that she is not a numeric thinker/counter 
(Van de Walle, Karp, & Bay-Williams, 2016) but saw the stack as one unit. If Macy was not 
numeric, she would need individual cubes to count and solve the problem. Based on these 
observations in the lesson and Katie’s interpretations of the events, we considered her KCS and 
KCT as low. 

We considered this low KCS and KCT as a possible influential factor in her noticing. If Katie 
was not able to recognizing the range of possible reasons why Macy may have struggled to 
answer the question, she may not have considered this instance of students’ thinking significant. 
Therefore, she would not have thought of it as a particularly interesting or pertinent event to 
discuss in the post-coaching conversation. Considering she stated that several students were 
struggling with subtraction, she perhaps categorized it as a part of the normal struggle students 
have with subtraction problems. As such, she wouldn’t have noticed this incident as one to 
unpack independent of the struggles of the class more generally. Additionally, not being aware 
that allowing students to use the equal sign and not equal sign interchangeably may lead to a 
misconception would not have been significant, and therefore unlikely she would have identified 
it as meaningful for discussion.  

Beliefs. Katie described math as problem solving and stated that math involved quantity and 
exploration.  She believes there is always a “right” answer, but there are multiple ways to think 
about and solve problems. Regarding the learning of content, Katie believes that concepts need 
to be understood first through concrete work and manipulatives and that real contexts are 
important to use when teaching. She thought math can be applied to everything and that it 
allowed students to be creative, referencing the approaches of her first grade students. Katie 
stated that students are learning when they are engaged, when they ask for more, and when they 
can explain a concept. Katie believes students have varied abilities and learn concepts differently 
and as such should be allowed to talk about their thinking and make choices about tasks and 
activities, and the kinds of manipulatives that would support their thinking best. She considers 
productive struggle to be good and that students should be able to ask questions that lead to deep 
thinking and good conversation. Regarding her role as a teacher, she believes that when a student 
doesn’t understand a concept, it is her responsibility and not the child’s “problem.” She also 
believes that teaching should be thought of as a learning process and teachers should be open to 
learning along with his/her students.  Katie thinks that “teachers don’t need to know every single 
thing” - they should start with what they know and build on their knowledge through a range of 
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teaching experiences; similar to the way we should engage students in learning. Mistakes are 
okay so teachers should model how one can reason through and struggle with a problem, as 
reasoning is an important part of the process to developing understanding. Although Katie thinks 
flexibility is important, she also thinks that consistency in routines and procedures is crucial to 
creating a classroom that supports learning.  

We observed that in providing students with manipulatives to model the problem of giving 
away six cookies, Katie was adhering to her beliefs that students should use manipulatives 
(concrete objects) to build their understanding of new concepts. As well, starting with a total 
unknown problem in a context that she believed reflected their own experience allowed for 
students to build knowledge and develop reasoning of new concepts (in this case, subtraction). 
These practices aligned with what she indicates are some of her beliefs about teaching and how 
children learn. One belief that we considered particularly salient in this instance is Katie’s belief 
that teachers don’t need to know every single thing. Similar to the way we approach students’ 
learning, she believes that teachers can start with what they know and continue to build on that. 
Katie believes that mathematics embodies a way of thinking and learning for both students and 
teachers. She believes that learning can be spontaneous and unplanned and that lessons should be 
designed to reflect this. However, while this belief aligns with what the mathematics education 
community would regard as healthy beliefs (NCTM, 2014) they can be problematic if the teacher 
does not have the MKT needed to attend to this spontaneity as learning unfolds. When working 
on the cookies task, Katie struggled to find a teaching approach that would benefit Macy.  When 
the coach suggested an alternate strategy to develop understanding, Katie appreciated this step 
and acknowledged she didn’t think of that possibility.  There were a range of challenges that 
Macy was faced with that Katie didn’t appear to know how to address.  Katie saw this as a 
teachable moment for her – one where she learned a strategy for supporting students struggling 
to solve single-digit subtraction problems. However, she didn’t go further into investigating why 
this approach worked – what was it about Macy’s existing mental constructions of number, 
addition and subtraction that caused her to struggle when Katie posed the task? Katie also didn't 
see it as a shortcoming that she wasn’t able to support Macy in the moment; rather, for Katie this 
was an opportunity to learn.  

Teaching Efficacy. Katie’s confidence in her mathematical knowledge, accessed shortly 
before the coaching experience, is relatively high with a 3.875 (5 is the highest). In the follow-up 
interview she stated that although she was fairly confident in her mathematical knowledge she 
still felt that she had “room for growth and improvement.” The use of the words “growth” and 
“improvement” can be interpreted as indicators that Katie may be more open for learning new 
mathematics and expanding her knowledge of mathematics, however she was not specific about 
what aspects of mathematics she still needed to improve but spoke more generally. This may 
suggest that Katie did not have a clear idea of what she did not know or should know as a math 
teacher and where exactly she needed to improve her knowledge.  

With respect to her personal teaching efficacy, Katie was less confident in her ability to 
support her students’ math learning through her teaching. Her score on the survey was 2.25, 
which is lower than mid-range based on the scale. During the interview, she explained that: “I 
guess I feel like since I didn't have very strong math instruction [as a student], that I'm still trying 
to learn structure as a teacher. And I just question it [my teaching ability] because I know that 
my [own] math instruction wasn't very strong.” Katie was not as confident about her teaching 
ability as she felt she didn’t have very good teacher role models when she was a student. As 
such, she is still trying to develop structure as a teacher, which for her refers to classroom 
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management, grouping strategies and lesson implementation format. It’s notable that she did not 
include analyzing and effectively utilizing students’ thinking as a core concern of teaching. In 
this regard, if classroom features are of primary concern, this may explain her noticing score as 
she would be more focused on classroom-related issues and how the students are functioning as a 
group.  

Emotions. During the pre-coaching conversation, Kim mentioned that the score of 4 on the 
anger scale was because the time allotted for math was limited and she was generally displeased 
with the misbehavior of the students. Her concern with students’ misbehavior was also raised in 
a subsequent pre-coaching conversation where she stated that “Oh, I’m always a bit anxious 
about the students’ behavior.” As a result, she finds that she often spends a significant amount of 
time dealing with disciplinary issues which leaves less time to focus on the students’ 
mathematical ability. A third factor that contributes to this score is that fact that the expectation 
of the administration, according to Katie, is unreasonable. She stated that the administration 
expects all the schools in the school district to teach a specific number of mathematics topics 
within a specific time period, although the students at the respective schools are at different 
levels of mathematical ability.  

With respect to pride (which is 2.5), Katie noted that the reason this score is mid-way is 
because she tends to set a high standard for students in terms of their mathematics proficiency. 
Therefore, if after teaching a particular lesson, there is still a gap in their understanding, then she 
takes full responsibility for such outcome. So, she gave that score because at this point her 
students tend to have more gaps than she is satisfied with. When describing her emotions with 
respect to the teaching of the lesson, Katie notes that she feels indifferent. She states that 
“teaching is what I do for a living”, so there is nothing special about teaching this upcoming 
lesson to her students. However, she mentions that she is excited that someone is going to 
observe her teaching.  This is because even though she has been teaching a long while, she 
believes that there is always room for improvement and she thinks the feedback would be useful. 
Moreover, she is willing to learn new ways of teaching different mathematical concepts. 

During the post coaching conversation, Katie noted that she felt good about the lesson as 
students were more engaged and they were able to work more independently in exploring 
mathematical ideas. She mentioned that she was expecting this type of outcome and so she was 
not overly excited by the successes or challenges the students demonstrated during the lesson. It 
didn’t appear that she had any curiosity, excitement or disappointed related to Macy’s struggle. 
She seemed not to consider it significant so for her it seemed not to warrant any increased 
pleasant or unpleasant emotion. We considered her emotional response noteworthy for two 
reasons, (i) if she had anticipated the outcome, why was she not better prepared to support Macy, 
and (ii) she did appear to have some excitement and interest in the approach that worked with 
Macy however, the heightened emotional response did not later deem the event significant for 
discussion.  

Implications 
Our analyses showed that although a teacher is able to orchestrate instruction that is of fairly 

high quality, that doesn’t guarantee that he/she will readily identify meaningful instances of 
students’ thinking as significant. This may indicate that teachers may enact high-quality teacher 
moves drawing on knowledge that is more tacit than explicit. We also observed that there were 
several factors that seemed to influence Katie’s ability to notice students’ mathematical thinking 
to some degree. They seemed to serve as filters focusing attention on more general aspects of 
classroom activity and not on students’ mathematical thinking. As such, they are important 
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factors that need to be considered in teacher development work on noticing specifically, and on 
instruction broadly. This also underscores the notion that teaching is complex and multi-layered, 
and that there are a range of factors that influence what a teacher identifies as meaningful or 
worthwhile instructional events to varying degrees. Although our study focused on the factors 
that influenced Katie’s ability to notice, we believe that the research literature supports that these 
factors would be influential on other core aspects of teachers’ work. We suspect that across 
teachers the degree of influence varies which would suggest that professional development work 
be more individualized, first building knowledge of how these constructs influence a teacher’s 
instructional activity, then drawing on this knowledge to inform the approach to be used to 
support the teacher. Coaching is one professional development model that can support this kind 
of work.  
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Using mixed-effects regression, we analyzed teachers’ responses to a multimedia survey of 
instructional practices in posing proof problems in geometry. Teachers described and rated for 
appropriateness three different ways of involving students in deciding what to prove, including 
one in which the teacher chooses the givens and the conclusion to prove, and two others that 
expand the students’ role in different degrees. While teachers recognized the former as 
normative, their ratings identified an alternative as more appropriate, having more positive 
value, and less negative value than the normative one. This alternative has students propose the 
givens or the conclusion to prove, and it allows the teacher to control the complexity of 
instruction by endorsing one proposal before students are to write the proof.  

Keywords: Instructional activities and practices, Reasoning and proof, Research methods 

Proof plays many roles in mathematics; among them is that of being a method for the 
discovery of new knowledge (de Villiers, 1990; Lakatos, 1976). Inasmuch as mathematical 
knowledge is usually represented in the form of conditional propositions (i.e., a conclusion is 
claimed as necessarily true if certain conditions or hypotheses are taken to be true), the creation 
of this mathematical knowledge involves both conjecturing a conclusion that can be asserted as 
true and hypothesizing the conditions that need to be assumed for that conclusion to be 
necessitated. A conclusion may be intuited as something that is only sometimes true, and one 
might search for what conditions might make the conclusion is necessarily true. At times, less 
conditions might also be sufficient to claim the same conclusion, while at other times less 
conditions may only allow one to make a weaker claim. In all of that, one exercises logical 
deduction as the process of making a valid inference based on two or more true premises, yet one 
does more than that: As Lakatos (1976) explained, one engages in a heuristic process of finding 
out what could be reasonably true. But, while this is part and parcel of mathematical work and 
quite relevant to making and critiquing mathematical arguments and modeling with mathematics 
as expected by the Standards for Mathematical Practice (Common Core State Standards 
Initiative, 2010), students rarely have opportunities to engage in such work in school 
(Stylianides, 2009).  Why would those opportunities be scarce? How could such opportunities be 
created?  

Our work examines those questions from the perspective of the teacher’s management of the 
complex work of having students do proofs. Our goal in this to show that, from the teacher’s 
perspective, there is a way in which the students’ share of work could be expanded without 
compromising the teacher’s capacity to manage the work. We document below how the literature 
has taken care of both curricular and learning perspectives on this matter. Yet, understanding 
whether opportunities like that are viable also requires consideration of the demands that such 
work places on the teacher. 
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Review of Literature 
The mathematical work that students do in classrooms can be understood using frameworks 

associated with the instructional triangle (Cohen, Raudenbush, & Ball, 2003; Herbst & Chazan, 
2012). Students’ interaction with content happens especially in the context of problems and 
tasks. The choice of such problems is made by the teacher, whose work involves having students 
do work that puts them in interaction with target content.  

Prior research has looked at the nature of the proof tasks that are afforded to students. 
Herbst’s (2002) historical research showed that while a wide variety of opportunities for students 
to do original proofs emerged in the third quarter of the 19th century, some including the search 
for reasoned conjectures described above, the proof exercises in use by the early 1910’s already 
consisted of separated sets of given and prove statements provided to students.  Though efforts 
have increased to provide more opportunities to reason and prove in a variety of ways, such as 
with reform-based curricula, studying one such project Stylianides (2009) found that 
opportunities to find patterns and pose conjectures were low compared to opportunities to engage 
students in providing rationales. In an analysis of six secondary geometry textbooks, Otten, 
Gilbertson, Males, and Clark (2014) found that only between 5% and 20% of problems involved 
the construction of a proof, and most of those involved proving general or particular claims 
rather than constructing conjectures. In contrast, in a study of grade 8 Japanese geometry 
textbooks, Fujita and Jones (2014) found a significant portion of exercises providing 
opportunities for students to conjecture and discover properties. These exploratory problems 
typically came at the beginning of a lesson, so that by the time students prove or justify at the 
end of the lesson, they had already explored and investigated the facts on their own. Cirillo and 
Herbst (2012) have proposed some alternative problems that could be used to engage students in 
an expanded scope of work, where they could either produce the conclusion of a set of givens, or 
the givens needed to prove a particular conclusion. We surmise that the viability of these proof 
problems hinges on more than having such proof problems though. In particular, one might 
wonder whether students are able to do such work.  

The second vertex in the instructional triangle is the student whose interactions with the 
content happen particularly in the context of their work on tasks. The literature on students 
thinking and learning reveals students’ potential but also their difficulties with proof. 
Investigations on students’ thinking have revealed that students, even at the elementary level, are 
capable of constructing arguments and proofs (Ball & Bass, 2003; Lampert, 1992; Reid, 2002).  
Teaching experiments (Norton, 2008) and classroom observations (Ellis, 2007) suggest students 
can be engaged in making reasoned conjectures. Yet, research has also shown that students 
sometimes take properties to be true on account of intuition and experience, not seeing the need 
for proof (Chazan, 1993). This might suggest that problems in which students have to figure out 
what might be true, might not so easily lend themselves to engaging them in proving. 

The third vertex in the instructional triangle is the teacher. One way to inquire on the 
viability of engaging students in better proof problems might hinge on inspecting what teachers 
know about proof. Knuth (2002a) found that while secondary teachers acknowledged different 
important purposes of proof, they failed to recognize proof as a tool for learning mathematics. 
They also had difficulty knowing what constitutes a robust proof, failing to recognizing non-
proofs and making judgements based on the form of an argument instead of the soundness of the 
reasoning.  In a study of the mathematical knowledge for teaching (MKT) needed to teach proof, 
Steele & Rogers (2012) illustrated how secondary teachers’ understanding of proof affected the 
way the teacher positioned students - namely as creators, “but only in the sense that they 
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provided reasons for a set of predetermined steps” (p. 175). Teachers’ attitudes towards students’ 
ability to do proofs also play a role in what proving opportunities are presented to students. We 
aim to investigate ways to promote the creation of these opportunities for students in a way that 
teachers deem appropriate.  

While the literature has been progressively relying on more classroom data, it has been 
common to frame issues of proving in the classroom in terms of having or not having resources, 
be those resources curricula, abilities, attitudes, or knowledge.  In our work we have been 
interested in addressing the problem of students’ share of work from a perspective centered on 
the complexity of the management of classroom instruction. While a teacher may or may not 
have resources with which to deal with such complexity, they are likely to have means to 
appraise that complexity and to relate to different practices that might differ amongst themselves 
by the amount of such complexity. We identify one complexity associated with expanding the 
work of students in proving here, then we describe how we studied it. 

If we start from the nature of the task, we could wonder how teachers might relate to the 
possibility that students might come up with the proposition to be proved. One first complexity 
has to do with framing the problem. A teacher is likely to need to do more than identifying the 
goal of the task (to prove a proposition); some specifics of the thematic territory for the 
proposition to be proved may need to be identified. For this reason, Cirillo & Herbst (2012) 
proposed problems that expected students to provide the givens or the conclusion, but providing 
some of those resources. A second complexity draws on Doyle’s (1986) characterization of 
classrooms as complex environments partly on account of the simultaneity of events. This 
complexity points to the number of possible responses that could ensue if the teacher asked 
students to propose what could be the givens or the conclusion to prove: If students had to come 
up with givens, many students could come up with many different sets of givens. A discussion of 
which set of givens makes the proposition stronger could be desirable; but managing such 
discussion might make the work of the teacher harder, especially if students invested themselves 
in proving different propositions that ended up not all being equally valuable. This work might 
be especially difficult to manage in classrooms where the norm may be one of accepting a 
variety of solutions to problems.  

Based on prior exploratory work (e.g., Aaron & Herbst, 2017), we conjectured that teachers 
can appreciate having problems in which the students’ scope of work on proofs extends beyond 
deductive reasoning, to conjecturing a conclusion or hypothesizing the givens. We also 
conjectured that teachers would perceive the need to manage the complexity of the multiple 
responses and would appreciate the opportunity to collect the students’ thoughts and endorse the 
proposition whose proof will be written. While such work may still maintain something of a 
separation between conjecturing and proving (Aaron & Herbst, 2017), it may make it 
manageable for a teacher to engage students in doing work that is more authentic than current 
work on proof.  

Method 
We studied this question using three sets of scenario-based instruments, all related to the 

hypothesized norm that in proof problems the teacher is responsible for providing the givens and 
the prove statement, for which we had collected empirical evidence in a pilot study (Herbst, 
Aaron, Dimmel, & Erickson, 2013). Each instrument consisted of four item sets and each item 
set included a scenario of instruction, represented using a storyboard, and questions about the 
actions in the scenario: Participants were asked to describe what they saw happening, then to rate 
the appropriateness of the teaching they saw. One set of scenarios (DP-C) included only episodes 
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of doing proofs in which the teacher took responsibility for providing the givens and prove 
statement (as expected by the hypothesized norm). A second set of scenarios (DP-GP) included 
only episodes where the teacher allowed the students to come up with the givens or the prove 
statement (a breach of the hypothesized norm). And a third set of scenarios (DP-TSGP) where 
the teacher again allowed students to propose the givens or the prove statement but also endorsed 
one of those proposals as the proposition for the whole class to prove.  

Open responses to all scenarios were coded in two different ways. On the one hand, they 
were coded for whether or not they contained evidence that the respondent recognized the 
teacher’s enactment of the norm (in the DP-C case) or its breach (in the DP-GP and DP-TSGP 
cases). On the other hand, each of those descriptions were coded for the presence of positive 
appraisals as well as negative appraisals of what the teacher was doing in the scenario (relying on 
Martin & White’s, 2005, appraisal theory). All those coding operations had moderate interrater 
reliability.  Three measures were derived from such codes, which we call norm recognition 
(INR), positive appraisal (PA), and negative appraisal (NA), all of them ranging from 0 to 4 in 
each instrument. Additionally, participants rated each scenario for appropriateness (AT) on a 
scale 1-6, with 1 being very inappropriate and 6 very appropriate.   

Our conjectures included that (1) scores on INR(GP) and INR(TSGP) would both be larger 
than INR (C), indicating that participants noticed that both sets of scenarios breached the norm, 
but (2) AT(TSGP) would be larger than both AT(GP) and AT(C), which would be consistent 
with the conjecture that teachers preferred to expand the students’ scope of work if the diversity 
of student proposals could be made more manageable. Appraisal scores were predicted to 
provide additional evidence: We conjectured that (3) PA(TSGP) would be larger than PA(GP) 
and PA(C) while (4) NA (TSGP) would be smaller than NA(GP) and NA(C). These conjectures 
would align with the interpretation that teachers would see value in expanding the students’ share 
of labor in proof problems if the complexities that ensued from such expansion could be 
managed. We tested these conjectures running mixed effects regression models. 

Data 
Data comes from a nationally distributed sample of U.S. high school mathematics teachers. 

Instruments were administered in 2015-2016 through the LessonSketch (www.lessonsketch.org) 
online platform, where they could peruse scenarios and answer questions. There were 525 
participants who completed at least one of the three instruments, and 347 participants who 
completed all three instruments. Most of the participants who completed all three instruments 
were white (86%) and female (61%), which is similar to the demographics of secondary high 
school teachers in the US. On average, participants had been teaching secondary mathematics for 
14.7 years (SD = 8.69, min = 1, max = 40).  

Results 
Descriptives are shown in Table 1. Of the 525 participants who completed the DP-C 

instrument, 83.4% (n = 438) recognized the compliance of the norm at least in one scenario. Of 
those recognizers 40.4% (n = 177) provided at least one positive appraisal for this compliance, 
while 33.3% (n = 146) provided at least one negative appraisal of the compliance (both groups 
are not necessarily disjoint as any one recognition statement could be accompanied both by 
positive and negative appraisals). The mean positive appraisal scores was 1.24 (SD = 0.53) and 
the mean negative appraisal score was 1.17 (0.43), where both measures have a possible range 0-
4. In comparison, of the 395 participants who completed the DP-GP instrument, 363 (91.9%) 
recognized a breach of the norm. Of those recognizers 53.2% (n = 193) positively appraised this 
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breach, yielding a mean positive appraisal of the breach score of 1.51 (0.75); also 53.2 %  
(n = 193) of recognizers appraised the breach of the norm negatively, yielding a mean negative 
appraisal of the breach score of 1.83 (0.98). Finally, of the 495 participants who completed the 
DP-TSGP, 444 (89.7%) recognized a breach of the norm. Of those recognizers, 53.2% (n = 236) 
positively appraised the breach, yielding a mean positive appraisal of the breach score of 1.61 
(0.82); of the recognizers, also 30.6% negatively appraised the breach, yielding a mean negative 
appraisal score of 1.53 (0.75). These descriptives suggest that people noticed the breach of the 
norm more saliently than its compliance (DP-C:83.4% < DP-GP:91.9%, DP-TSGP: 89.7%), they 
saw more positive as well as more negative issues with merely expanding the scope of work of 
the students. But when considering the possibility that the teacher might control that expansion 
by sanctioning the proposition to be proved, positive appraisals increased and negative appraisals 
decreased to a level comparable to the negative appraisals of complying with the norm. 

A similar tendency could be observed with the appropriateness rating scores. We examined 
differences in how participants responded to a breach or compliance scenario with ratings toward 
the low or high end of the appropriateness scale with participants who completed all three 
instruments and recognized the DP-GP norm (n = 343). When asked to rate the appropriateness 
of the teaching showed in the DP-C scenarios, average scores were 4.42(SD = 0.65, n = 343), 
while those average appropriateness scores were 4.56 (SD = 0.94, n = 343) for the scenarios that 
breached the norm by asking students to provide the givens or the prove statement. The average 
appropriateness score went up to 4.83 (SD = 0.70, n = 343) in the case of the DP-TSGP scenarios 
where in addition to expanding the students’ share of work, the teacher at some point sanctioned 
the proposition that students would prove.  

Table 1. Descriptive statistics of recognizers and appraisers for each instrument 
Instrument Obs Recognizers Appraisers Mean SD Min Max % Appraisers 

DP-C 525 438 POS:  177 1.24 0.53 1 4 40.41% 

NEG: 146 1.17 0.43 1 3 33.33% 

DP-GP 395 363     POS: 193 1.51 0.75 1 4 53.17% 

NEG: 193 1.83 0.98 1 4 53.17% 

DP-TSGP 495 444 POS: 236 1.61 0.82 1 4 53.15% 

NEG: 136 1.53 0.75 1 4 30.63% 
 

To ascertain the significance of the differences in AT, PA, and NA scores across different 
instruments, we calculated a set of mixed effect regression models. Given that each participant 
responded to multiple instruments, average appropriateness (AT), positive appraisal (PA), and 
negative appraisal (NA) that come from the same participant are not independent. Therefore, we 
conducted mixed effect linear regression models that could account for this non-independence 
among the scores. In the models, the categorical variable indicating a type of instrument was 
entered as a fixed effect and the variable indicating a participant’s ID was entered as a random 
effect. The analyses were conducted using the STATA statistical software with the sample of 
participants who responded all three instruments and recognized the DP-GP norm (n = 343).  
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Table 2. Mixed effects linear regressions of scores on a type of instrument 
  Appropriateness (AT) 

B(SE) 
Positive Appraisal (PA) 

B(SE) 
Negative Appraisal (NA) 

B(SE) 

Fixed effects       

    DP-C -0.41 (0.05)*** -0.24 (0.07)** 0.17 (0.07)* 

        DP-GP -0.27 (0.05)*** -0.38 (0.071)*** -0.03 (0.07) 

    Constant 4.83 (0.042)*** 2.84 (0.06)*** 2.04 (0.06)*** 

Random effects       

Constant 0.19 (0.03) 0.52 (0.065) 0.37 (0.06) 

Residual 0.40 (0.02) 0.86 (0.05) 0.90 (0.05) 

N 343 343 343 
Standard errors in parentheses; *p < 0.05, **p < 0.01, ***p < 0.001 
*reference instrument group: DP-TSGP 
 

As shown in Table 2 (the reference group is DP-TSGP), results generally support our 
conjectures. AT (appropriateness) for TSGP is higher than both AT(DP-GP) and AT(DP-C), AT 
is significantly lower for DP-C by about 0.41 and DP-GP by about 0.27 (in a scale 0 ~ 6). In 
addition, the variation associated with the participants explains about 32% of the total deviations 
from the predicted AT that are not due to a type of instrument. Similarly, PA is significantly 
lower for DP-C and DP-GP by about 0.24 and 0.38 (in a scale 0 ~ 4) than for TSGP, 
respectively. The participants random effect comprise about 38% of the total residual variance. 
NA for DP-TSGP yields significantly higher score than NA for DP-C, but it is not significantly 
different from NA for DP-GP. For the NA score, the participants random effect explains 
approximately 29% of the total residual variance. 

Conclusion 
The data suggests that teachers do recognize the norm that the teacher will provide the givens 

and the prove for proof problems, yet they do not appraise it as better than some of the 
alternatives presented. Instead, alternatives in which the teacher expands students’ role by 
inviting them to propose the givens or the statement to prove are appraised as more highly 
positive. Apprehension for these kinds of proof problems is apparent in the fact that negative 
appraisals of these alternative kinds of problems are still higher than for the habitual proof 
problems and not significantly higher than the negative appraisals for instances of doing proofs 
in which students are free to prove whatever they decide. An important implication for practice 
of these results is that it suggests that inservice teacher education could focus on helping teachers 
anticipate what students could propose in response to problems such as those proposed by Cirillo 
and Herbst (2012) and in practicing how to bring the class to a consensus on what statement they 
all should be working on. 
 



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1034	

Acknowledgements 
This work has been done with support of NSF grant DRL-0918425. All opinions are those of the 
authors and do not necessarily represent the views of the National Science Foundation. 
 

References 
Aaron, W. R. & Herbst, P. G. (2017, online first). The teacher’s perspective on the separation between conjecturing 

and proving in high school geometry classrooms. Journal of Mathematics Teacher Education. doi 
10.1007/s10857-017-9392-0 

Ball, D. L. & Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin, & D. 
Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 27-44). Reston, 
VA: National Council of Teachers of Mathematics. 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content 513 knowledge for teaching what makes it special? 
Journal of Teacher Education, 59(5), 389-407. 

Bieda, K. (2010). Enacting proof-related tasks in middle school mathematics: Challenges and opportunities. Journal 
for Research in Mathematics Education, 41(4), 351-382. 

Chazan, D. (1993). High school geometry students’ justification for their views of empirical evidence and 
mathematical proof. Educational Studies in Mathematics, 24(4), 359-387. 

Cheng, Y. -H., & Lin, F.-L. (2007). The effectiveness and limitation of reading and coloring strategy in learning 
geometry proof. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference 
of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 113-120). Seoul, Korea. 

Cirillo, M. & Herbst, P. (2012). Moving toward more authentic proof practices in geometry. The Mathematics 
Educator, 21(2), 11-33. 

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational 
Evaluation and Policy Analysis, 25(2), 119-142. 

Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Washington, DC: 
National Governors Association Center for Best Practices and the Council of Chief State School Officers. 

de Villiers, M. D. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17-24. 
Doyle, W. (1986). Classroom organization and management. In M. Wittrock (Ed.), Handbook of research on 

teaching (3rd edition; pp. 392-431). New York: Macmillan. 
Ellis, A. B. (2007). Connections between generalizing and justifying: Students’ reasoning with linear relationships. 

Journal for Research in Mathematics Education, 38(3), 194–229. 
Fujita, T. & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks in Japan. 

International Journal of Education Research, 64, 81-91. 
Herbst, P. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column 

proof in the early twentieth century. Educational Studies in Mathematics, 49(3), 283-312. 
Herbst, P., Aaron, W., Dimmel, J., and Erickson, A. (2013, April). Expanding students' involvement in proof 

problems:  Are geometry teachers willing to depart from the norm? Paper presented at the 2013 meeting of the 
American Educational Research Association. http://hdl.handle.net/2027.42/97425 

Herbst, P. & Chazan, D. (2012). On the instructional triangle and sources of justification for actions in mathematics 
teaching. ZDM The International Journal of Mathematics Education, 44(5), 601-612. 

Hsu, H. Y. (2010). The study of Taiwanese students’ experiences with geometric calculation with number (GCN) 
and their performance on GCN and geometric proof (GP) (Doctoral dissertation). Available from ProQuest 
Dissertations and Theses database. (UMI No. 3441210). 

Knuth, E. (2002a). Secondary school mathematics teachers’ conceptions of proof. Journal for Research in 
Mathematics Education, 33(5), 379-405. 

Knuth, E. (2002b). Teachers’ conceptions of proof in the context of secondary school mathematics. Journal of 
Mathematics Teacher Education, 5, 61-88.  

Lakatos, I. (1976). Proofs and refutations. New York: NY: Cambridge University Press. 
Lampert, M. (1992). Practices and problems in teaching authentic mathematics. In F. K. Oser, A. Dick, & J. Patry 

(Eds)., Effective and responsible teaching (pp. 295-314). San Francisco, CA: Jossey-Bass Publishers. 
Martin, J. & White, P. (2005). The language of evaluation: Appraisal in English. New York, NY: Palgrave 

Macmillan. 
Norton, A (2008). Josh’s operational conjectures: Abductions of a splitting operation and the construction of new 

fractional schemes. Journal for Research in Mathematics Education, 39(4), 401-430. 



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1035	

Otten, S., Gilbertson, N., Males, L. & Clark, D. (2014). The mathematical nature of reasoning-and-proving 
opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 51-79. 

Reid, D. A. (2002). Conjectures and refutations in grade 5 mathematics. Journal for Research in Mathematics 
Education, 33, 5-29. 

Shaughnessy, J. M., & Burger, W. F. (1985). Spadework prior to deduction in geometry. The Mathematics Teacher, 
78(6), 419-428. 

Steele, M. D. & Rogers, K. C. (2012). Relationships between mathematical knowledge for teaching and teaching 
practice: the case of proof. Journal of Mathematics Teacher Education, 15, 159-180. 

Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical Thinking and 
Learning, 11(4), 258-288. 

Stylianides, G. & Stylianides, A. (2008). Proof in school mathematics: Insights from psychological research into 
students’ ability for deductive reasoning. Mathematical Thinking and Learning, 10(2), 103-133. 

 
  



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1036	
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Recent reforms urge teachers to support students in pursuing their own mathematical strategies. 
Yet, to support a student in pursuing a strategy that they themselves devise, teachers must first 
notice details in the student’s mathematical thinking, often in-the-midst of instruction. In this 
study, I examined four novice teachers’ noticing of students’ thinking in-the-moment, as well as 
the types of knowledge teachers called upon to support them with this noticing. Teachers took 
part in a post-lesson interview, in which they discussed moments from a preceding lesson of 
theirs caught on video. Findings indicate that novice teachers relied most on knowledge they 
developed in their own classrooms (e.g., knowledge of their individual students) to support their 
in-the-moment noticing. These findings align with calls to prepare teachers to view their 
classrooms as rich sources of knowledge supportive of their instructional practice. 

Keywords: Teacher Knowledge, Elementary School Education, Middle School Education, 
Teacher Education-Preservice 

Introduction 
Today’s mathematics classroom looks quite unlike the mathematics classroom of old. While 

in the past, teachers typically modeled a single strategy for students to apply in solving a series 
of practice problems, today, teachers are to encourage students to author their own strategies 
(NCTM, 2014). Existing research has demonstrated that, when teachers teach in this way, 
student learning benefits (e.g., Fennema et al., 1996). 

To support students in pursuing their own mathematical strategies, however, teachers must be 
keen observers, capable of noticing important details in students’ strategies (Jacobs, Lamb & 
Philipp, 2010). Only after noticing what a student did and understands in using some strategy, 
can a teacher then respond in an informed manner (e.g., by suggesting an appropriate next step). 
In the absence of prior noticing, a teacher might lack an adequate understanding of the student’s 
strategy and could thus respond by asking the student to abandon their chosen approach in favor 
of one recommended by the teacher. 

A number of studies have examined what teachers notice. These studies, however, have 
typically focused on what teachers notice when watching classroom video (e.g., Sherin & van Es, 
2005), and not the sort of live, in-the-moment noticing that helps teachers support students in 
pursuing their chosen strategies. Of the few studies that have examined teachers’ in-the-moment 
noticing, most have involved teachers in possession of several, if not many, years of experience 
(Jacobs & Empson, 2016; Sherin, Russ, & Colestock, 2011). While some recent work (e.g., 
Dyer, 2013) has examined the in-the-moment noticing of more novice teachers, this remains an 
under-examined area in need of further study. 

In the absence of a more refined understanding of the novice teacher’s in-the-moment 
noticing, current programs of professional development focused on this important aspect of 
practice may fail to address the unique needs of the novice. Accordingly, this study examined the 
in-the-moment noticing of the novice mathematics teacher. 
 

Theoretical Framework 
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Teacher Noticing 
Framing “noticing.” Teachers have likened the process of noticing to having something 

prick the senses, alerting one to the fact that something important and worthy of attention is 
occurring (Sherin, Russ, & Colestock, 2011). Some scholars have adopted a similar framing, 
focusing on what captures teachers’ attention in their studies of noticing. For example, in their 
work on the noticing of pre-service teachers, Star, Lynch, and Perova (2011) examined what 
teachers identified as important or noteworthy when watching classroom video. Others have 
included not just what a teacher identifies as noteworthy in their description of noticing, but how 
teachers make sense of what they deem noteworthy, as well (Sherin & van Es, 2009). 

A focus for noticing. While some have studied teachers’ noticing of any and all “salient 
features of classroom instruction” (Star, Lynch, & Perova, 2011, p. 117), others have examined 
teachers’ noticing of students’ mathematical thinking, in particular. For example, in their 
research program, Jacobs. Lamb, Philipp, and Schappelle (2011) acknowledged being “less 
interested in identifying the variety of what teachers notice and more interested in how and the 
extent to which teachers notice children’s mathematical thinking” (p. 99). To Jacobs, Lamb, and 
Philipp (2010), noticing children’s mathematical thinking consists of three component parts: a) 
attending, b) interpreting, and c) deciding how to respond. “Attending” refers to the extent to 
which a teacher pays attention to what a student did in solving some mathematics problem. 
“Interpreting,” on the other hand, refers to the extent to which a teacher pays attention to what a 
student understood in solving a problem. Finally, “deciding how to respond” refers to a teacher’s 
intended response to a given student. Attending, interpreting, and deciding how to respond occur 
almost simultaneously, “as if constituting a single, integrated [act]” (p. 173). 

In-the-moment noticing. In recent years, scholars have begun to focus less on what teachers 
notice when watching classroom video and more on what teachers notice in-the-midst of 
instruction. This shift appears motivated by an acknowledgement that noticing “in the classroom 
is quite complex – more so than [when watching video] … when teachers [are] given only a 
small slice of instruction to consider and extended time to do so” (Sherin & van Es, 2009, p. 33). 

Jacobs and Empson (2016) developed a framework for teachers’ in-the-moment noticing of 
children’s mathematical thinking (Figure 1). According to this framework, what a teacher notices 
in children’s mathematical thinking in-the-moment is dependent upon that teacher’s knowledge 
of children’s developmental understandings of key mathematics concepts. 
 

 
Figure 1: Framework for In-the-moment Noticing of Children’s Mathematical Thinking 

A significant volume of research has described this knowledge, identifying what students of a 
given age tend to know, think, and do when working on particular mathematics concepts. For 
instance, Fennema et al. (1996) identified a developmental trajectory that students in the primary 
grades tend to follow as they solve arithmetic problems. 

Even if they have not studied such developmental trajectories explicitly, veteran teachers are 
likely to be familiar with what children of a given age tend to know, think, and do. For novice 
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teachers, however, this knowledge it is likely to be less well-developed. As novices have had 
“the least experience with children’s thinking” (Jacobs et al., 2011, p. 100), they are likely less 
aware of what is typical for children of a given age to know, think, and do mathematically. This 
raises some important questions. If novice teachers are lacking knowledge of children’s 
developmental understandings of key mathematics concepts, are they capable of noticing 
students’ mathematical thinking in-the-moment? And if so, what knowledge do they draw upon 
to support this noticing? The present study sought to answer the following: 

1. To what extent do novice teachers notice students’ mathematical thinking in-the-
moment? 

2. What knowledge do novice teachers draw upon to support them in noticing students’ 
mathematical thinking in-the-moment? 

Method 
Setting and Participants 

For this study, I recruited four early-career teachers from a public school serving students in 
grades 4-9. One teacher, Kerry, taught 4th-grade, while Taylor taught 5th-grade, Hannah taught 
6th-grade, and Caroline taught 9th-grade (all names are pseudonyms). Kerry and Hannah were 
first-year teachers at the time of the study, while Taylor and Caroline were in their third year in 
the classroom. I purposefully selected these teachers because of their school’s commitment to 
student-centered instruction. As opportunities to notice students’ mathematical thinking in-the-
moment arise as teachers interact with students, I sought to work with teachers in a student-
centered school, where significant instructional time would be spent interacting with students. 
Data Collection 

Capturing video for discussion. Similar to Sherin, Russ, and Colestock (2011), I examined 
teachers’ in-the-moment noticing by first capturing video of teachers’ lessons then having them 
discuss moments from this video shortly afterwards. I used two cameras, a Drift StealthTM and a 
GoPro Hero 4TM. Teachers mounted the Stealth to the side of their head using a headband and 
triggered the camera to capture clips of their interactions with students in two of their lessons. I 
collected a second source of video using a GoPro mounted at the back of the room, as I was 
worried that teachers might forget to capture clips using the Stealth. Using an app, I viewed a 
livestream of teachers’ lessons recorded using the GoPro and listened to audio of their 
conversations with students captured using a wireless mic that the teachers wore. As I watched 
the GoPro video, I tagged moments when the teacher interacted with students. 

Post-lesson interview. Consistent with the procedure used by Sherin and colleagues, I asked 
teachers to discuss their videos in an interview shortly after their second lesson; the first lesson 
was solely for piloting camera gear. Between each teacher’s second lesson and their post-lesson 
interview, I watched as many of the teacher’s Stealth clips as possible, selecting those in which 
there was some evidence of students’ mathematical thinking. I also referenced notes I had taken 
for the tagged GoPro moments, choosing those in which some mathematical thinking was on 
display. I chose Stealth clips and GoPro moments in this manner, as I worried that a more 
random selection would have resulted in a lack of noticing of student thinking, not because 
teachers were not capable of such noticing, but because there simply would have been less 
mathematical thinking to notice in a random selection of clips/moments. 

In the interviews, I showed the teacher a still image from the start of each clip/moment then 
asked them the following: “can you walk me through what was happening at this point in the 
lesson?” When a teacher was not able to respond to this prompt, I played the video until they 
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could. As soon as teachers were able to respond to the prompt, I stopped the video. This 
procedure was followed as it limited the amount of video teachers were shown, thereby reducing 
the likelihood that what they went on to describe was based on what they noticed in watching the 
video and not what they had noticed when the moment actually happened in the preceding 
lesson. I collected audio- and video-recordings of these interviews. 
Data Analysis 

Creating instances. I parsed the video of each teacher’s post-lesson interview into instances, 
which consisted of all discussion by the teacher of a given Stealth clip or tagged GoPro moment. 

Teachers’ noticing. I next created two coding schemes: one for teachers’ “attending” and a 
second for teachers’ “interpreting” (Jacobs, Lamb, & Philipp, 2010). Every instance was 
assigned one of three codes for “attending”: (1) evidence of attending provided, (2) lack of 
evidence of attending provided, or (3) not applicable. If a coder could describe the mathematical 
strategy of a student or group of students in some clip/moment based on what the teacher said, a 
level 1 code was assigned. When the teacher did not provide enough detail to make this possible, 
a level 2 code was assigned. When the teacher did not mention any mathematical strategy in a 
given instance, a level 3 code was assigned. A similar process was followed when coding 
“interpreting.” Specifically, each instance was assigned one of three codes for interpreting: (1) 
evidence of interpreting provided, (2) lack of evidence of interpreting provided, or (3) not 
applicable. If in discussing a given clip/moment, a teacher mentioned what in particular a student 
or group of students understood (e.g., the student knows how to count by 5’s), coders assigned a 
level 1 code. When the teacher instead made a broad claim (e.g., the student understands 
addition), a level 2 code was assigned. Finally, if the teacher made no mention of what a student 
or group of students understood mathematically, a level 3 code was assigned. 

Teachers’ knowledge. As teachers discussed clips/moments from their lessons, they not 
only attended to and interpreted students’ thinking, but also referenced their knowledge of a 
range of things. I created a third coding-scheme describing the nine different types of knowledge 
that teachers referenced in their interviews. 

Looking for associations between attending, interpreting, and knowledge. After all 
instances had been assigned a code for attending, a code for interpreting, and up to nine codes for 
knowledge, I looked for associations between the attending, interpreting, and knowledge codes. 
Specifically, I looked to see which types of knowledge were referenced most when “attending” 
was coded level 1, when “interpreting” was coded level 1, and when both were coded level 1. 

Results 
Novice Teachers’ In-the-moment Noticing 

Overall, the four teachers in this study were asked to discuss 49 instances of instruction. In 
19 of these 49 instances, teachers provided evidence of attending (i.e., level 1 attending). 
Similarly, in 18 of these 49 instances, teachers provided evidence of interpreting (i.e., level 1 
interpreting). Though evidence of attending was not always accompanied by evidence of 
interpreting, in 10 of 49 instances, teachers provided evidence of both attending and interpreting. 

As an example of level 1 attending, consider the following comment made by one teacher, 
Kerry, in discussing an interaction she had with a student trying to solve 6 ´ 9: “So, I think what 
[she’s] doing here is talking about ten groups of six, does that sound right? Or seven. One of the 
two. Like, [she’s] doing ten groups then subtracting a group to get nine.” Based on this comment, 
coders were able to describe the strategy of the student being discussed, a compensation strategy 
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for multiplication (i.e., 6 ´ 9 = 6 ´ 10, subtract 6). As such, coders determined that Kerry had 
provided evidence here of attending to the substantive details in the student’s strategy. 

Turning to interpreting, consider Taylor’s comment below about an interaction she had with 
several students trying to place the fractions 4/5 and 3/4 on the number line:  

And, so, I think he was just … using that visual in his head, like, the four, four-fifths versus  
three-quarters. And then I asked them about if they were missing, they were both missing one  
piece and what that means, and they were able to say that the, obviously the one that’s  
missing a fifth is a much smaller piece than the one missing a quarter … because it’s split  
into smaller pieces. 

Here, Taylor made a specific claim about the understanding of a group of students. Specifically, 
Taylor claimed that the students in this particular moment knew that 1/5 was a smaller piece than 
1/4. As such, coders assigned a level 1 code for interpreting here. 

Although teachers provided evidence of either attending or interpreting in a number of 
instances, this was not always the case. Indeed, in 8 of 49 instances, teachers made no mention of 
what a student or group of students did in solving a given mathematics problem, while in 18 of 
49 instances, they made no mention of what students understood mathematically. In these 
instances, teachers instead discussed things like students being off-task, even though students’ 
mathematical thinking was on display. 
Knowledge Referenced When Discussing Moments of Instruction 

Teachers referenced nine types of knowledge in discussing moments from their lessons. 
Knowledge of an individual student was displayed anytime a teacher referenced something in 
general that they knew about a student. As this knowledge was either mathematical or not, there 
were actually two codes for knowledge of an individual student. For example, in discussing a 
student in one moment from her lesson, Kerry commented, “she usually struggles in math, so 
she’ll find the easiest way possible.” As another example, when discussing a moment from her 
lesson, Taylor stated, “well, this one, … she’s kind of a perfectionist.” While Kerry’s comment 
was focused on mathematics, Taylor’s was not. 

Knowledge of a group of students was displayed whenever a teacher referenced something 
they knew about a group of students. As an example, in discussing a moment from her lesson, 
Taylor stated, “this is the group that I went to first because, I, they’re, they’re the 
lowest…they’re still really struggling with fractions.” While Taylor here referenced knowledge 
of a group of students that was mathematical in nature, Hannah provided an example of this type 
of knowledge that was not mathematical, stating, “and the usual ones raised their hands.” 

Knowledge of the class was displayed anytime a teacher referenced something they knew 
about their class. As an example, consider the following comment made by Kerry when 
discussing a moment from her lesson on patterns in multiplication: “So, lots of them I noticed in 
their patterns, and in everything they do, assume that I can read their minds because they only 
put, like, half of what they’re thinking and it’s not enough information for me.” Conversely, 
consider the following comment made by Hannah: “I have, like, a really gifted group and so, 
they tend to move very fast and they jump right ahead of many others, there’s a large gap.” The 
comment here by Kerry focused on the lack of detail her students provide in their mathematical 
work, so was deemed mathematical in nature, while the comment made by Hannah was not. 

Knowledge of students was observed whenever a teacher mentioned something they knew 
about students in general. For example, consider the following comment made by Kerry in 
discussing her lesson: “‘Cause some kids with subtraction just get, like, really stuck up, even 
though it is a smaller subtraction, they’re like, ‘muhhh,’ and they get overwhelmed, so the 
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addition really would be faster for them.” By contrast, Kerry also discussed how she likes to let 
students work in the hallway because, “some kids really do need that quiet to focus.” Hence, the 
first comment here was related to mathematics, but the second one was not. 

Finally, knowledge of a prior lesson or moment was observed anytime the teacher referenced 
either a prior lesson or some moment that had occurred earlier in the lesson being discussed in 
their interview. For example, when discussing a strategy one of her students was using, Kerry, as 
if speaking to the actual student, said: “‘I’m pretty sure you’re using this strategy we talked 
about in class and that’s really cool.’” Conversely, when discussing an interaction with a student 
about a lack of detail in his work, Kerry referenced knowledge of a similar moment from earlier 
in the lesson, stating: “Zack, when I was talking to him, … we were looking at his patterns, same 
thing, where I was just like, ‘I don’t, this isn’t enough information, can you expand on that for 
me?’” In all cases when a teacher referenced knowledge of a prior lesson or moment, this 
knowledge was mathematical in nature. 
Knowledge and In-the-moment Noticing 

When teachers provided evidence of in-the-moment noticing, they referenced certain types of 
knowledge more so than others. Specifically, in 10 of the 19 instances when teachers’ attending 
was coded level 1, teachers referenced knowledge of individual students, while in 9 of these 19 
instances, they referenced knowledge of a prior lesson or moment. Similarly, in 6 of the 18 
instances when teachers’ interpreting was coded level 1, teachers referenced knowledge of 
individual students, while in 9 of these 18 instances, teachers referenced knowledge of a prior 
lesson or moment. In 3 of the 10 instances where both attending and interpreting were coded 
level 1, teachers referenced knowledge of individual students, while in 4 of these 10 instances, 
teachers referenced knowledge of a prior lesson or moment. 

To illustrate how the knowledge teachers referenced seemed to support their in-the-moment 
noticing, consider the following comment made by Taylor in discussing an interaction she had 
with a group of students: 

This one, she’s very, um, particular, like, she’s, she’s kind of a perfectionist, she wants to  
make sure everything’s done well. And I think she was, she was, so, they had figured out  
which of the fractions, which were big–, larger than one, they had figured out which order  
they should go in, but they were trying to figure out where to place it on the number line.  
Um, and I think she was wanting to be, like, pretty exact of where it went. 

In this comment, Taylor referenced non-mathematical knowledge she had of an individual 
student, specifically, that the student was “kind of a perfectionist.” This knowledge seemed to set 
an expectation in Taylor’s mind for what to then notice in the group’s mathematical work, 
specifically, that this group would be quite precise in placing fractions on the number line. 
Indeed, shortly after providing the quote above, Taylor attended to the mathematical strategy 
used by the group of students being discussed, explaining that, rather than place the fractions 8/7 
and 1 & 3/14 just anywhere to the right of 1 on the number line, the students converted 8/7 into a 
mixed number, thereby allowing for a more precise placement of these fractions: 

The, it was, like, one and two-four, they had figured out, they had, they had already found an  
equivalent fraction and converted it to a mixed number fraction, so I think it was 1 & 2/14  
and 1 & 3/14 … I think there was 8/7, I think that they changed 8/7 to, so they figured out 
that it was 1 & 1/7, and then they changed it to 1 & 2/14. Yeah. 
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Discussion 
Better Than Expected  

As this study demonstrates, novice teachers are certainly capable of noticing salient details in 
students’ mathematical thinking in-the-moment. Existing literature, however, might suggest 
otherwise. Studies of novice teachers’ noticing have found that, at least initially, early-career 
teachers tend to notice things like classroom management and behavioral issues more so than the 
substance of students’ mathematical thinking (Star, Lynch, & Perova, 2011). Similarly, research 
examining teachers’ noticing of students’ mathematical thinking in particular has found that 
novice teachers tend to focus on the general features of students’ strategies (e.g., that a student’s 
work lacks organization) more so than the “mathematical essence of the [strategies]” (Jacobs, 
Lamb, & Philipp, 2010, p. 183).  And yet, in 19 of 49 instances in the present study, teachers 
provided evidence of attending to students’ mathematical thinking, while in 18 of 49 instances, 
teachers provided evidence of interpreting students’ thinking. 

These results are particularly compelling for two reasons. First, unlike previous studies of 
teacher noticing (Jacobs, Lamb, & Philipp, 2010), in the present study, teachers were not asked 
to describe what students did or understood mathematically, yet still spoke of such things in 
discussing their lessons. Second, this was a study of teachers’ in-the-moment noticing, which 
scholars have both theorized (Sherin & van Es, 2009) and found (Dyer, 2013) to be particularly 
challenging for teachers. Given this, the task presented to the novice teachers in this study was 
quite demanding, making the extent to which they noticed student thinking all the more 
impressive. 

So, what could explain why the novice teachers in this study did better than might have been 
expected in noticing students’ mathematical thinking? In previous work examining novice 
teachers’ noticing, teachers were asked to observe students who were not their own and who they 
had not actually taught themselves (Jacobs, Lamb, & Philipp, 2010; Star, Lynch, & Perova, 
2011). As such, teachers in these studies had no knowledge of the students they were observing, 
the class they were in, or the prior lessons in which they had taken part. As a result, these 
teachers simply could not leverage such knowledge, knowledge that the present study suggests 
may be critical in supporting novice teachers’ noticing of student thinking. 
Mine Your Experience, There Is Knowledge There 

This study aligns with existing literature that suggests that teachers’ own classrooms are a 
rich source of knowledge. At present, significant efforts are being made in teacher education 
programs to prepare novice teachers for the many demands of the classroom. However, scholars 
have cautioned that no amount of such training can adequately prepare prospective teachers for 
these many demands (e.g., Ball, Sleep, Boerst, & Bass, 2009). Almost two decades ago, Ball and 
Cohen (1999) spoke of how “much of what [teachers] … have to learn must be learned in and 
from practice rather than in preparing to practice” (p. 10). The findings of the present study 
suggest that some of the knowledge that supports novice teachers’ in-the-moment noticing is 
acquired in teachers’ very own classrooms, with their very own students. 

This is not meant to suggest that all teacher learning should be postponed until the novice 
teacher is in their own classroom. Rather, these results suggest that, with regards to in-the-
moment noticing, it may be fruitful to prepare teachers to inquire into and acquire knowledge 
from the spaces in which they teach (Hiebert, Morris, Berk, & Jansen, 2007). 
Concluding Thoughts 

There were several exceptions to the “knowledge informs noticing” story told above. Indeed, 
in 2 of the 10 instances in which teachers provided evidence of both attending and interpreting, 
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none of the knowledge types in my coding scheme were referenced. Also, there were instances 
when teachers called upon what seemed to be the most helpful sources of knowledge (i.e., 
knowledge of individual students, knowledge of a prior lesson or moment), yet did not provide 
evidence of in-the-moment attending or interpreting. While I present these cases here as counter-
examples, they could also be regarded merely as evidence that the relationship between noticing 
and knowledge is simply not that straightforward. 

Finally, it is important to note that the teachers in this study could well have relied on other, 
more tacit knowledge (Eraut, 2000) to support their noticing that they simply did not, or could 
not, share explicitly in their interviews. 
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INVESTIGATING MTE QUESTIONING AS A RELATIONAL TEACHING PRACTICE 
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As mathematics teacher educators (MTEs), we enact teaching practices in our mathematics 
methods courses as instantiations of practice for PTs. Questioning is a core practice in teaching 
(and learning to teach) mathematics that interacts with relationships between MTEs and 
prospective teachers (PTs). We engaged in a collaborative self-study to interrogate our 
questioning practice as part of relational teacher education with a goal of improving our 
questioning to reach all PTs. Observation and recordings of our questions during mathematics 
methods classes, collaborative conversations, and narratives were analyzed to describe 
characteristics of our questioning practice (Dillon, 1990) and determine how it is relational 
(Kitchen 2005b). We found commonalities in our questioning practice and identified ways to 
improve it. This serves as an exemplar for MTEs to inquire about their own questioning practice.   

Keywords: Instructional activities and practices; Teacher Education-Preservice  

As mathematics teacher educators (MTEs), our teaching practice centers on the development 
of ambitious teaching practices (Kazemi, Franke, & Lampert, 2009) of the prospective teachers 
(PTs) with whom we work. We view our practice as relational in that it is complex and 
dependent on the strength of relationships developed between the participants (PTs and MTEs) 
involved (Bieda, 2016; Grossman et al., 2009a; Noddings, 2003). We extend our definition of 
relational practice beyond attending only to the mathematical or pedagogical thinking of the PT 
to include attending to the whole person (Kitchen, 2005a, 2005b; Noddings, 2003). Therefore, 
we strive to incorporate the experiences of our PTs as learners in our classes and interrogate our 
own practice as related to those experiences, thus valuing all learners.  

Practices we enact in our mathematics methods courses become instantiations for PTs to 
experience and take up in formulating their own practices (LaBoskey, 2007). We promote the 
development of ambitious teaching practices by focusing on core practices (Grossman, 
Hammerness, & McDonald, 2009b). Asking questions of learners is one such core practice, as it 
occurs frequently in teaching mathematics, provides opportunities to find out about students’ 
thinking, and is accessible to PTs learning to implement mathematics instruction. Although 
current research on questioning in the teaching of mathematics is available (e.g., Davis, 1997; 
Nicol, 1998; Parks, 2010), little research has focused on the instantiations of a questioning 
practice PTs experience in methods courses that prepare them to enact this practice. Yet, the 
form and function of questions asked in methods courses has potential for influencing PTs’ 
views of questioning practices. We argue that the process of interrogating one’s questioning 
practice as part of relational mathematics teacher education can inform ways to improve that 
practice as an instantiation which can be taken up by PTs. 

Objectives of the Study 
We interrogated our questioning practices as MTEs teaching mathematics methods courses to 

more fully understand the experiences of our PTs in these courses. The following research 
questions guided our self-study inquiry (LaBoskey, 2007): What are characteristics of our 
questioning practice? and, How is our questioning practice relational? Initial examination of our 
questions through the lens of Dillon (1981, 1990) illuminated tractable characteristics of our 
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practice. To explore the relational nature of our questions, we viewed them through Kitchen’s 
lens of relational teacher education (2005a, 2005b, 2016). This lens afforded a view of our 
questions as drawing from our personal histories, experiences as MTEs, and our understandings 
of the PTs’ histories and experiences and provided us a perspective which informed 
improvement of this practice. 

Theoretical Framework 
We define practice following Pinnegar and Hamilton (2009) as “engaging with others in 

ways that lead to the accomplishment of goals through the use of the knowledge, theories, and 
understandings” (p. 16). For us, questioning as a relational practice was always a goal directed 
activity informed by knowledge, theories, and understanding. We sought to build “knowledge 
from practice” (p. 17) as a way of “knowing to” (p. 18) question as a practice. In our inquiry we 
were driven to become aware of what informs our questions and ways we use questioning to 
build our relationships with PTs. 

Relationships have consistently been identified as critical in teaching and learning (Russell & 
Loughran, 2007). Exploration of relationships in self-study has revealed the complexity of 
coming to know a PT and be known by a PT (Kitchen, 2009). The significance of relationships 
in teaching and learning gave rise to descriptions of relational practice. Grossman et al. (2009a), 
drawing from the work of Fletcher (1998), described teaching as relational practice in which 
relationship is used as a lever in teaching. This description highlighted the utility of relationships 
for PTs, but not ways in which teacher educators’ practices could be characterized as relational. 
Kitchen’s (2005a, 2005b) description of relational teacher education as teacher educators 
“knowing in relationship” (2005a, p. 18) illuminated how a relational practice is constructed 
through knowing: knowing oneself and knowing PTs. Like Fletcher (1998), Kitchen drew from 
notions of empathy (Rodgers, 1961) and vulnerability to describe relational practice. Kitchen 
identified seven defining characteristics of relational teacher education: understanding one’s own 
personal practical knowledge, improving one’s practice in teacher education, understanding the 
landscape of teacher education, respecting and empathizing with PTs, conveying respect and 
empathy, helping PTs face problems, and receptivity to growing in relationship. We hypothesize 
that core practices can be viewed as contributing to an MTE’s relational practice. In particular, 
looking at questions an MTE poses through the lens of relational teacher education has the 
potential to unearth factors that influence the construction and posing of questions.  

Questioning can be viewed as a strand of relational practice, since questions communicate 
the MTE’s interests and aims to PTs and provide an opportunity to elicit PT’s ideas. Each strand 
of one’s practice contributes to the development of a relational practice, but one could question 
whether a single strand can be seen as relational. We suggest that one strand of practice can be 
viewed through a relational teacher education (Kitchen, 2005a) lens to gain insight into ways 
understandings of self and others are drawn upon in questioning. It is from this perspective that 
we can label questioning practice as relational. Research points to the complexity of questioning 
in mathematics classrooms (Davis, 1997; Parks, 2010), particularly when moving beyond 
evaluative questioning, and suggests that understanding the underlying influences on questioning 
can inform improvements in the practice. Questioning in a methods course introduces an 
additional level of complexity as MTEs use questioning to understand the mathematical thinking 
of PTs and their views of teaching and learning. Examination of MTEs’ use of the core practice 
of questioning in teaching is then warranted as we strive to provide instantiations of effective 
questioning practice for PTs to draw upon, tacitly or explicitly, as they develop their own 
questioning practices (Mewborn & Tyminski, 2006).  
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Exploring questioning with self-study methodology (LaBoskey, 2008) created space for 
understanding questioning as a practice informed by philosophy (Berci & Griffith, 2005; 
Gadamer, 1975/2004) and empirical research (Dillon, 1982) with the goal of improving 
questioning. Our study of questioning, like that of Olsher and Kantor (2012), focused on 
question-asking and characterizing our questioning practice. We draw from Dillon’s (1981, 
1990) definition of questions as “interrogative utterances” which are “followed by answers” 
(Dillon, 1981, p. 51). Dillon (1990) described two sources of assumptions: assumptions in the 
logic of the question (question-sentences) called presuppositions, and assumptions about the 
context in which the question is asked (question-situations) called presumptions. Identifying our 
assumptions allowed us to identify characteristics of our questioning practices. 

Methodology 
LaBoskey (2007) described self-study methodology as interactive and improvement aimed. 

Drawing from LaBoskey’s view, our interactions are best described as open, collaborative, and 
oriented toward reframing (Samaras & Freese, 2009). We opened our questioning practices to 
each other for scrutiny and engaged in collaborative conversations that created opportunities for 
constructing new perspectives on or reframing our questioning practice. These conversations 
further unearthed tensions underlying our questioning practice including ways that relationships 
informed our practice. 

Data collection and analysis occurred in multiple ways as we studied our questioning 
practices. First, we observed each other teaching at least one class. In-person observations 
allowed us to situate discussions of questioning in particular contexts and teaching practice. In 
addition, each of us audio-recorded at least one class session. We then each catalogued questions 
we posed to PTs during at least one class session. What counted as a question was informed by 
our view of PTs’ engagement. When PTs were exploring, whether prompted by a question or a 
directive, we considered the activity a question. Examples of questions from the transcripts 
illustrate differences in the content and approach (See Table 1).   

Analysis of our questioning took place in three phases. First, we each identified questions, 
presuppositions, presumptions, purpose, and roles for PTs associated with questions from one 
class session and created a table (see Table 1). Presuppositions are assumptions conveyed in the 
logic of the sentence. Presumptions are beliefs conveyed in the question-situations (Dillon, 
1990). Purposes refer to the reasons the MTE posed the question. Roles describe the ways in 
which PTs are positioned in responding to the question. We then summarized our findings, 
describing insights and remaining dilemmas about our questions, presuppositions, presumptions, 
purpose, and roles. We each read the summaries in preparation for our discussions of findings in 
four recorded online conversations (August 10 & 29 and September, 5 & 19, 2017).  

Table 1:  Examples of Questions 
Alyson: The hat you are going to put on is that of the students that wrote the work. And you 
are going to look at the feedback that the other group wrote. And you are going to decide as 
the student who wrote that, that is the feedback that you got, what would you do next? 
(9/13/2016) 
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Presuppositions: 
There is a next step to 
which mathematics-
learners can reply. 
 

Presumptions: 
PTs can pretend to be 
someone else and get 
into another person’s 
thinking. 

Purpose:  
To mimic the act of 
receiving feedback with 
a chance to critically 
examine it after. 

Role:  
Mathematics-
learner 
receiving 
feedback 

Alyson: What I want you looking at now is what was the feedback and how did the math 
learner respond to it? Use your observations of those pairs to think about – do we have a 
complete list of what makes effective feedback? Are there some things you would suggest that 
we should not do? Are there some things you would suggest that we absolutely should do in 
responding? Can we use the feedback and student responses to that feedback to make some 
observations about, adding to or taking off of our list about feedback? (1 minute pause.) Are 
there some finer points that we need to add to this list about things we should consider when 
we are writing feedback to the students in the letter writing exchange? (9/13/2016)  
Presuppositions: 
Our list of 
characteristics of 
feedback is incorrect 
and too generic. 

Presumptions: 
PTs can draw 
conclusions from a 
mock example of 
feedback. 

Purpose:  
To examine instincts on 
providing feedback and 
position PTs to provide 
appropriate feedback in the 
actual activity with students. 

Role:  
Teacher-
researchers 

Susan: So, the text on this page [reads text on a page of a counting book]. So, what I want you 
to do is, if this were the question and you were reading this with a group of kids, I want to 
know what level of cognitive demand, based on the criteria for these levels of cognitive 
demand, where do you think this would fall? Is it a lower cognitive demand like memorization, 
or is it a procedure without a connection or is it more of a higher cognitive demand where it 
might be something related to a procedure with a connection or something that’s more like 
doing mathematics, … [elaborates by continuing to rephrase the questions] … so think about 
that, and then of course I want you to think about how to justify your claim, there may be more 
than one answer here, ok, so, um I’ll give you two or three minutes to work with your group or 
your partner, and see what you think. (9/12/16) 
Presuppositions: 
Features of questions 
or tasks allow for 
classification 
according to 
cognitive demand.  
Depending on the 
question, the type of 
thinking is different. 

Presumptions: 
PTs will use the 
chart describing 
the levels of 
cognitive demand 
to classify a task 
posed in a 
children’s book. 

Purpose:  
Practice applying the levels of 
cognitive demand to questions 
or tasks and consider the type 
of thinking required in the task.  
Knowing the type of thinking 
required in a task is important 
in selecting tasks or questions 
for lesson planning. 

Role:  
PTs analyze 
tasks for 
thinking 

Signe:  What is a confusion you have seen out in the field? (3/6/17) 
Presuppositions: 
Confusions can be 
seen in the field and 
are revealed through 
analysis of student 
thinking. 

Presumptions: 
PTs are 
developmentally 
ready to identify 
confusions  

Purpose:  
Link lesson planning and 
insights about children’s 
mathematics. 
 

Role:  
PTs conduct 
informal 
research to 
inform lessons 
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Our collaborative conversations served as a second phase of analysis. During this phase we 
focused on understanding the relational nature of our questions. We identified commonalities 
and differences in our presuppositions, presumptions, purposes, and roles for PTs. Our 
discussions focused on ways our questioning was influenced by our view of our own histories as 
learners and MTEs. For example, we recognized that our love of mathematics and interest in 
discussing mathematics learning and thinking with PTs influenced our questions. We further 
focused on ways our questions were influenced by the PTs, what we knew about them as people 
and learners. In particular, we pressed each other to explore how PTs’ problems of practice were 
taken up or how empathy was conveyed (Kitchen, 2005b) in our questions. For example, Signe 
consistently wondered if the questions she was posing situated the PTs to respond from their own 
experiences rather than hypothesizing about the experiences of other teachers or mathematics 
learners. Discussions of these commonalities resulted in changes (or what we later called fixes) 
to the characteristics identified by the coding according to Dillon (1990). However, discussions 
of our fixes and the changes themselves provoked additional dilemmas about our questioning as 
a relational practice.  

The third phase of analysis included writing narratives describing fixes we implemented in 
our questioning practice and dilemmas that remained. We read and discussed these narratives 
focusing on questioning as a relational practice. These discussions (December 12 & 19, 2017) 
were recorded and reviewed. From these discussions, we identified dilemmas, made sense of our 
questioning as relational, and developed assertions for action (Pinnegar & Hamilton, 2009).  

Findings 
We first present the common characteristics in our question practice as viewed through the 

lens of Dillon (1990). We then discuss the fixes applied individually in our practice as assertions 
for actions and highlight the dilemmas that remained relevant to our vision of relational practice.   
Presuppositions and purposes 

Presuppositions and purposes revealed reference to knowledge we consciously held and 
wanted to bring to PTs’ attention. For example, Susan believed a teacher’s awareness of the 
cognitive demand of mathematics tasks was important. The logic of her questions included the 
assumption that analyzing the demand of tasks is an essential part of planning lessons. For 
example: “I want to know what level of cognitive demand, based on the criteria for these levels 
of cognitive demand, where do you think this would fall?” (September 12, 2016). This example 
illustrates that, our questions contained expectations that PTs should accept our views of 
teaching and learning rather than developing views from their own experiences, including from 
their experiences in our courses. 
Presumptions and roles  

Presumptions and roles involved intent, contexts, and PTs. We consistently asked questions 
with the intent of learning what PTs knew. Signe asked about confusions PTs noticed in their 
work with children. “What is a confusion you have seen out in the field?” (March 6, 2017). Her 
intent was to gain insight into PTs’ experiences. We wondered if we used PTs’ responses in our 
teaching. We collected PTs’ experiences with a desire to understand their insecurities and 
problems of practice (Kitchen, 2005b), yet our planned lessons played out without drawing from 
the issues PTs raised. We had empathy and respect (Kitchen, 2005b) for PTs, but struggled to 
convey it or help PTs face problems they described. Instead our questions focused on moving 
toward goals and implementing instructional activities we had planned before we knew the PTs. 
In this way we viewed our questions as “information-seeking” (Davis, 1997, p. 363) in that we 
wanted to understand PTs’ thinking, but that thinking did not influence our teaching. 
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Additionally, our questions positioned PTs to take on a variety of roles during a single 
lesson. Alyson noticed that her questions positioned PTs in many different roles during one class 
meeting, roles such as reflective practitioner, researcher, teacher, and learner. She thought of 
Whose Line is It Anyway?, a television show where actors change roles or themes after a minute 
or two, generating chaos and comic situations. She felt she expected too much of PTs and 
wondered: What messages about teaching as reflective practice, might PTs gain through shifting 
roles so quickly and frequently?   
Assertions for action and understanding (Pinnegar & Hamilton, 2009) 

The analysis of our assumptions (Dillon, 1990) motivated fixes that improved our 
questioning practice. We eliminated long introductions, multiple roles, and identified the PTs as 
actors in questions. Dilemmas that remained focused on the relational nature of our questioning 
practice. Next, we describe the fixes each MTE made, improvements that resulted, and dilemmas 
that remained in terms of relational teacher education (Kitchen, 2005b).  

Susan. Susan fixed her long introduction to questions by consciously posing planned 
questions. This fix unearthed a significant tension. Reducing the introduction to questions freed 
up time for PTs’ interests and concerns. Their responses in whole class discussion surfaced their 
concerns and dilemmas or insecurities with teaching mathematics related to their experiences in 
their field classrooms. These interests and concerns turned the discussion in directions Susan had 
not anticipated, making it difficult to cover planned content. In addition, Susan wondered if she 
was listening to the PTs with empathy. Was she participating mindfully and thoughtfully, 
respecting PTs’ contributions to the discussion (Kitchen, 2005a, 2005b)? 
Susan found a dilemma between providing time and space for PTs to articulate their experiences, 
concerns, and insecurities about teaching mathematics (i.e., helping PTs face problems; Kitchen, 
2005b) and being able to acknowledge and build on their ideas, while also trying to cover course 
content. Susan felt most comfortable when the discussions remained anchored around the 
mathematics content, and less so when the class discussions drifted into more general issues of 
pedagogical moves. Yet, teaching about mathematics teaching requires facility with the blending 
of mathematics content and teaching practices (Perks & Prestage, 2008). What is an appropriate 
balance and blend of content and methods that provides time and space for PTs to connect 
through sharing and raising their interests, concerns, dilemmas, and insecurities?  

Alyson.  Alyson began using a new planning method that provided for more concise 
questioning and positioned PTs consistently either as teachers or learners of teaching. Yet 
Alyson was left wondering if she was truly conveying empathy (Kitchen, 2005b) through those 
questions and positionings. Through the roles employed, Alyson was seeing PTs’ thinking more 
clearly and better understanding their struggles but was left with questions about the relational 
characteristic of conveying empathy. Some PTs responded with favorable comments about 
Alyson’s teaching during the semester, yet others struggled to find their way and began to doubt 
themselves as teachers. Alyson was left wondering whether the changes she had made had 
allowed her to convey empathy to all PTs?  

Signe. Signe wondered if she was actually curious about learning about teaching. Raising 
this issue unearthed tensions for Signe about her receptivity to growing in relationship (Kitchen, 
2005b). Signe felt that she wanted to learn from PTs, but perhaps her curiosity had a different 
focus than that of PTs. Wondering about her curiosity about teaching was difficult to admit and 
left Signe feeling distanced from her colleagues. Signe sincerely loved thinking about children’s 
mathematics and teachers’ insights about and use of this mathematics, while Signe viewed PTs 
as focused on improving pedagogical techniques. Neither seemed right or wrong, Signe simply 
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worried. As she tried to enact a questioning practice aligned with Dillon’s (1981) suggestion that 
questions should be asked only when the teacher is actually curious about a learner’s thinking, 
she was faced with her limits. How could she be curious about the more general practices and 
holistic views of learners PTs shared?  

Discussion 
Despite significant differences in our context, we identified common characteristics in our 

questioning practice when we applied Dillon’s (1990) framework and examined our 
presuppositions, presumptions, purposes, and roles. Even though we work in different 
institutional contexts and programs (e.g., Signe and Susan work with elementary PTs and Alyson 
with secondary PTs), we could describe common characteristics in our questions, allowing us to 
answer the first research question. We saw our own histories and experiences reflected in the 
presuppositions and purposes of our questions. Presumptions and roles provided insight into our 
exploration of PTs’ histories and experiences and how we engage PTs in drawing from those 
experiences to inform and inspire their practice. With surface level commonalities identified and 
fixes applied, we could then see the different ways these factors influenced the relational nature 
of our practice as we developed and posed our questions (Kitchen, 2005a, b). 

The examination of our questioning practice in methods courses afforded each of us the 
opportunity to consider ways in which we were relating to our PTs through questioning and the 
types of instantiations of practice PTs were experiencing. Both Alyson and Signe found issues 
with the ways in which they positioned PTs during class sessions. Alyson was positioning PTs in 
a great variety of roles and Signe was positioning PTs to draw on experiences other than their 
own. For each, this inappropriate positioning of PTs could hinder their relational practice. The 
core practice of questioning as relational, assumes that the questioner draws insights from the 
learner and makes use of those insights to move the lesson forward. Davis (1997) has described 
the reciprocal relationship involved in such questioning in the domain of mathematics. In 
mathematics teacher education, feedback PTs provided that is not used may suggest the MTE is 
not listening, thereby introducing an unintended barrier between the MTE and the PT. As a result 
of this finding, both MTEs have introduced more careful positioning of PTs into their courses. 

All three MTEs have found the results to indicate a need for clearer communication and 
purposeful word choice with PTs. Signe identified a need to phrase questions differently so as to 
position PTs to respond from their own perspectives. She accomplished this by attending 
carefully to the choice of words used in her questions. Susan and Alyson identified a tendency to 
ask a series of related questions in quick succession rather than one purposefully chosen 
question. They each addressed this issue in ways that ensured one clear question is asked and 
then time is provided for PTs to contemplate and respond. Improving the clarity of 
communication with PTs removes another unintended barrier to relational practice. 

Through inspection of the core practice (Grossman et al., 2009b) of questioning in a 
mathematics methods course, we found ways to improve that practice so that it more closely 
aligns with our goals of relational teacher education (Kitchen, 2005a, b) and includes more 
opportunities to draw on our PTs’ experiences hermeneutically (Davis, 1997) during class 
activities. Building public exemplars of practice such as this for instructors of mathematics 
methods courses provides much needed opportunity for MTEs to engage in inquiry about those 
practices in order to seek improvements in our work.  
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Flipped instruction is being implemented in an increasing number of mathematics classes but the 
research base is not yet well developed. Many studies of flipped instruction involve a small 
number of flipped classes being compared to non-flipped classes, but this methodology fails to 
account for variations in implementations. To aid in the systematic attention to variation, this 
article presents a framework for flipped mathematics instruction that identifies key features of 
the videos assigned as homework as well as features of the in-class activities. The components of 
the framework are accompanied by proposed quality indicators to further distinguish between 
flipped implementations that are structurally similar but different in enactment 

Keywords: Flipped Instruction; Lesson Observations; Classroom Research; Frameworks 

In recent years there has been an increase in flipped instruction (Smith, 2014). Flipped 
instruction is characterized by teachers “flipping” the settings in which lecture and homework 
occur. Instead of being presented with new material in class and then completing homework 
problems outside of class, students in flipped classes watch videos or read new material outside 
of class and then complete the problem sets in class (Bergmann & Sams, 2012). Although the 
flipped instructional model has a single overarching label, there are a wide variety of learning 
opportunities it can encompass. On one hand, flipped instruction has the potential to be 
innovative with regard to differentiation (e.g., students can rewatch videos at their own pace and 
with technology-based supports) and collaboration (e.g., students can work together because of 
the increased time in class to solve problems). On the other hand, flipped instruction can be non-
innovative, such as when students watch lecture videos at home and then work individually to 
complete procedural exercises in class (de Araujo, Otten, & Birisci, 2017a). 

Because of the variation in flipped implementations, this theoretical article presents a 
research-based framework that moves beyond a general definition of flipped instruction and 
provides specific analytic tools that allow for meaningful distinctions to be drawn with respect to 
the learning opportunities afforded. In particular, the framework considers the components of 
flipped mathematics lessons and the quality indicators for each component. 

Why a Framework is Needed 
Although flipped instruction can vary in its implementation (de Araujo, Otten, & Birisci, 

2017a), much of the early literature on flipped instruction seems to presume that it is a unified 
approach that can be directly contrasted with non-flipped instruction. For example, DeSantis, 
Van Curen, and Putsch (2015) investigated flipped and non-flipped geometry instruction in two 
high school classes. They found no differences in geometry learning, although students in the 
flipped class were less satisfied with the unit than students in the non-flipped class. But the 
flipped lessons in the study involved using the same activities as in the non-flipped lesson, so the 
implicit assumption was that the act of flipping itself—not the manner of flipping—is of central 
importance. Moreover, DeSantis and colleagues did not provide substantial detail about the non-
flipped instruction, so with regard to the finding of no difference, the basis of comparison is 
under-specified. A similar example is Clark (2015), who compared his flipped Algebra 1 classes’ 
year-end student outcomes with non-flipped Algebra 1 classes taught by others in the same 
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school. Clark found, like DeSantis and colleagues (2015), no difference between flipped and 
non-flipped learning measures. Unlike DeSantis et al., however, Clark’s students expressed a 
preference for flipped instruction because of the range of teaching practices it allowed. Again, 
because of the simplistic and small-scale comparison, the underlying assumption in Clark’s study 
is that it is meaningful to compare flipped instruction with non-flipped instruction of the same 
content, without substantial regard for the variations that are possible within each category. 

The fact that these studies found no difference with regard to content learning, and 
contradictory results with regard to student attitudes about flipped instruction, is unsurprising. 
Such results are to be expected if it is true that, as we argue, flipped mathematics instruction can 
vary widely along important dimensions of instruction, just as non-flipped instruction also varies. 
Nevertheless, these studies provide a positive first step with regard to empirically documenting 
the phenomena of flipped instruction in mathematics by showing that, in certain situations, 
flipping alone does not seem to influence student learning. Yet there are substantial limitations to 
the accumulated knowledge that can be generated from these studies because there is not yet a 
structural framework for identifying and interpreting the various features of flipped instruction in 
the cited studies. With such a framework in hand, patterns could be discerned across grade levels 
and even across articles that include empirical descriptions of flipped instruction without 
comparisons to non-flipped instruction (e.g., Talbert, 2014; Zack et al., 2015). 

It should be noted that other frameworks for flipped instruction exist, but they serve different 
functions than ours. For example, Chen and colleagues (2014) introduced the FLIPPED model 
(Flexible environments, Learner-centered approach, Intentional content, Professional educators, 
Progressive networking, Engaging and effective learning experiences, Diversified and seamless 
learning platforms) but theirs is a prescriptive model meant to guide the design and 
implementation of a flipped course. It is not designed to capture the variability across preexisting 
flipped courses. Furthermore, it is not specific to mathematics instruction and it functions at the 
course level whereas our framework is applied at the lesson level. DeLozier and Rhodes (2017) 
provided a more descriptive framework, parsing the out-of-class lectures from the in-class 
activities and specifying different types of the latter (quizzes, pair-and-share activities, student 
presentations). In our work, however, we have seen that not all flipped instructors use strictly 
lecture videos (de Araujo, Otten, & Birisci, 2017b), and DeLozier and Rhodes do not account for 
the quality of the enacted in-class activities, nor is their work specific to mathematics. Yet we do 
incorporate their top-level distinction between out-of-class and in-class lesson phases. 

To assess the quality of the flipped lessons in a mathematics-specific manner, we draw on 
existing instruments for lesson observations but make some key modifications. Observation 
protocols such as the M-SCAN (Walkowiak et al., 2014) and IQA (Boston & Wolff, 2006) 
presume a certain form of instruction, with cognitively demanding tasks and student discussions, 
and thus may not be widely applicable to all forms of mathematics instruction. Moreover, these 
instruments combine various sub-scores into an overall score for the quality of the lesson, even 
though there is scholarly disagreement about the ideal nature of some of the sub-scores. In other 
words, although some aspects are universally regarded as indicators of quality instruction (e.g., 
coherent development of ideas, effective use of multiple representations), other aspects are not 
universally accepted (e.g., the value of shared mathematical authority, student discussions) 
(Munter, Stein, & Smith, 2015). Thus, in order to capture the full range of flipped instruction 
variability in an even-handed way, it would be wise to separate the universally-accepted 
indicators of quality from those that simply mark different instructional paradigms. We represent 
this separation in the in-class component of our framework. 
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A Framework for Flipped Mathematics Instruction 
Adapting the overall structure of the Mathematical Task Framework (Stein, Grover, & 

Henningsen, 1996), our framework (Figure 1) includes the assignment given to students to be 
completed outside of class (left) and the activity that takes place in class (center), which 
collectively produce various student outcomes (right). We distinguish between different types of 
videos (lecture and set-up) and between different interaction formats in class (whole-class and 
non-whole-class). These distinctions are rooted in our perspective on students’ mathematical 
learning as a sociocultural process through which students are coming to participate actively in a 
mathematical community (Vygotsky, 1980). This process is an integration of social and 
individual dimensions and, mathematically, it involves becoming an active participant both in 
individual meaning-making through thinking or writing, for example, as well as collaborative 
meaning-making through listening to or interacting with the teacher and peers, for example. In 
other words, we view the learning of mathematics as not simply the development of an ability to 
solve certain kinds of problems but the development of the ability to participate in various forms 
of mathematical discourse and activity, and our framework distinguishes between some of these 
forms at a structural level. We also attend to the nature of discourse (Staples & Colonis, 2007) 
and the cognitive demand of tasks (Stein, Grover, & Henningsen, 1996) because these relate to 
the kinds of activities students have opportunities to participate in. 

This framework is based on pilot analyses of flipped classes at several different academic 
levels and consultation with experts in specific domains (e.g., video design, classroom discourse, 
mathematical tasks). Due to space limitations, details on the development process are not shared. 
 

 
Figure 1. A framework for flipped mathematics instruction 
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At-Home Components 
Looking more closely at the at-home components, the framework identifies video or 

multimedia homework in which students are assigned multimedia content to watch, read, or 
listen to. Although this type of homework is the definitive category for flipped lessons, teachers 
implementing flipped instruction are not bound to it exclusively. Teachers may, on occasion, also 
assign problems or exercises to be completed outside of class, in which case the framework 
could be used to show that both or either type of homework was assigned. Also, it is possible that 
a particular lesson has no homework assigned. Non-flipped lessons, by definition, will have only 
problems/exercises homework or no homework. 

Videos or multimedia. Although we often use the term ‘video’ because flipped mathematics 
homework commonly takes this form, we acknowledge that some teachers might use written 
text, podcasts, animations, or multimedia resources such as iBooks. For video homework, the 
framework distinguishes between lecture videos, which present expository information or 
worked examples, and set-up or motivation videos, which establish a context or pose a problem 
that will be addressed in class. Within these two types, the framework then specifies normative 
quality criteria. By normative quality, we mean that instruction satisfying the criteria is 
hypothesized to be more predictive of positive student outcomes than instruction that does not 
satisfy the criteria, which could be empirically tested in future studies.  

The normative quality criteria for lecture videos address three aspects: instructional quality, 
multimedia design, and interactivity. Instructional quality captures the clarity and flow of the 
ideas as well as features specific to mathematics, such as mathematical justifications, multiple 
mathematical representations, the absence of unmitigated errors, and connections to 
mathematical content that the students may have already learned or will learn in the future. Most 
of these particular aspects can be operationalized by drawing on existing instruments in the 
mathematics education literature. In particular, the clarity of the lecture foci relates to research on 
explicit lesson objectives (Wiggins & McTighe, 2005), and the coherent flow of ideas relates to 
all of the video content being connected to that foci. We can also attend to whether there is an 
intellectual or “real-world” motivation for the foci. With regard to mathematics-specific features, 
we draw on the Studying Teacher Expertise and Assignment in Mathematics (STEAM) project 
(Tarr et al., 2016), which provides a lesson observation coding scheme for mathematical 
justifications, the meaningful development of mathematical ideas, and the integration of multiple 
representations. In addition to these aspects from STEAM, we also include a dimension from the 
mathematical quality of instruction (MQI) instrument (Learning Mathematics for Teaching 
Project, 2011), namely, the absence of unmitigated mathematical errors. Finally, we attend to 
whether the video’s particular mathematical foci is explicitly connected to the mathematical 
ideas of prior or subsequent lessons. 

These features of instructional quality not only apply to the videos but are also used to 
characterize whole-class discourse in the in-class portion of lessons (see below). Aspects that are 
specific to videos, however, are multimedia design and interactivity. For multimedia design 
quality, we drew on Clark and Mayer’s (2007) six principles of digital material design. The 
multimedia principle states that graphics (not words alone) help students learn the information in 
question. The modality principle states that the graphics should be described or explained with 
spoken words rather than on-screen text. The contiguity principle states that, if some brief on-
screen text is used, it should be placed spatially near the relevant graphics. The redundancy 
principle states that the on-screen text should be minimal and should not be a full transcription of 
the audio narration. The coherence principle states that irrelevant graphics and audio should be 
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excluded. Finally, the personalization principle states that audio narration should be in a 
conversational style and it is preferable for the speaker to be visible. 

Interactivity captures the extent to which students are expected to be more than passive 
viewers of the video. Interactivity can be achieved in a variety of ways. For example, Webel, 
Sheffel, and Conner (2018) studied a teacher whose videos for flipped instruction contained 
embedded questions that provided the teacher with formative assessment data she could use to 
inform in-class activities. These embedded questions within the video are one possible form of 
interactivity. Other forms include requiring students to post a comment or submit a reflection 
after watching the video or incorporating a virtual manipulative (Moyer-Packenham & 
Westenskow, 2013) that the students can interact with as part of the homework. 

The aspects described above apply to a lecture video, which is the most common type of 
video in flipped lessons (de Araujo, Otten, & Birisci, 2017b). Our framework, however, also 
includes set-up or motivation videos. Because of a lack of prior research on set-up videos, we 
drew on practical resources for setting up mathematical work such as the three-act tasks 
promoted by Meyer (2011) often involving what we call a set-up video that presents a situation 
and leads to a mathematical question. Our framework distinguishes between different ways in 
which the set-up videos connect to the mathematical goals of the remainder of the lesson. 
Specifically, we distinguish between three possibilities: an explicit connection to the 
mathematical goal of the in-class activity that follows (i.e., it is clear from watching the video 
what the specific mathematical question or problem is, even though its solution is not 
explicated); an implicit connection (i.e., it presents a context that allows for mathematical 
explorations but it is not clear which mathematical question or problem is intended to be pursued 
until it is specified later); or no discernible connection (i.e., it has a contextual connection or 
some other association with the in-class activity but does not contain the mathematical ideas of 
the lesson). We do not presume a priori that one of these is more beneficial than the others, but 
that could be determined empirically through applications of the framework. 

Problems/exercises. If students are assigned a problem set to complete outside of class, then 
the framework attends to the cognitive demand (Stein, Grover, & Henningsen, 1996) of those 
problems. After coding each item for cognitive demand, the assignment overall can be 
characterized as low (nearly all items at a low level), moderate (predominantly low but a 
substantial minority of items at a high level), or high (a majority of the items at a high level). 
Note that if problems are begun in class and students are then expected to complete any 
unfinished problems at home, this would fall under the in-class component of group or 
independent work rather than strictly homework. 

Moving on, the arrow between the at-home section of the framework and the in-class section 
represents the fact that what occurs outside of class potentially influences what occurs in class. 
For example, if students do not watch the video, the lesson will likely play out differently in 
class than if they had watched the video attentively. Note that, although videos are typically 
assigned to be watched prior to the in-class portion of the lesson, some flipped lessons may use a 
video as a way to summarize ideas after the in-class activity. Thus the arrow is not necessarily 
chronological and the left-to-right order visible in Figure 1 is not absolute. 
In-Class Components 

Moving to the in-class components, the framework first distinguishes between the interaction 
format the teacher employs—a whole-class format in which the entire class is expected to be 
attending to the public discourse whether that be the teacher addressing the entire class or 



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1057	

students sharing out or asking questions, and a non-whole-class format which includes the 
expectation that students work together in groups or independently. 

Whole-class format. As noted above, this framework differs from others because we 
separate instructional quality indicators from markers of a particular pedagogical model. For 
instructional quality we use the same aspects defined above (focus, flow, motivation, 
mathematical justifications, mathematical development of ideas, multiple mathematical 
representations, absence of unmitigated mathematical errors, and connections to other 
mathematical topics) plus an engagement (i.e., on-task) measure to gain a normative sense of the 
lesson flow and development of mathematical ideas. Additionally, the framework distinguishes 
between several descriptive aspects of the lesson. These aspects relate to the interactivity of the 
whole-class segments of the lesson. With regard to mathematical authority, we distinguish 
between teacher/textbook authority and shared/community authority. We also note the extent to 
which students are publicly involved in the whole-class discourse, and if they are, we attend to 
whether the nature of discourse was sharing or collaborative (Staples & Colonis, 2007). Finally, 
considering flipped lessons in particular, we note whether the videos are referenced or 
incorporated into the discourse (e.g., by reviewing the key ideas from the video homework). 

Group or independent work. With regard to group or independent work, the framework 
includes engagement (i.e., on-task behavior), peer talk (i.e., the extent to which students verbally 
interact with one another), and the use of video/multimedia from the lesson homework. For 
example, while solving a problem in class, do students use their phones or tablets to view videos 
and rewatch explanations of worked examples? We also use the well-known construct of 
cognitive demand (Stein, Grover, & Henningsen, 1996) to characterize the written tasks students 
work on during group or independent work. Because flipped instruction can provide more in-
class time for problem solving, it is plausible that teachers may feel more freedom to enact 
cognitively demanding tasks in their flipped lessons. 
Student Outcomes 

The framework does not predetermine the student outcomes of interest because those will 
largely depend upon the specific context in which the framework is employed, especially with 
regard to specific mathematical content. However, the framework does acknowledge that several 
different student outcomes may be of interest in studies of flipped instruction. In addition to 
measures of students’ mathematical knowledge, one may also be interested in their skills with 
various mathematical practices and their attitudes or affective dispositions toward mathematics. 
Furthermore, researchers may wish to use multiple measures of a single outcome to increase the 
robustness of findings. In any event, the specification of these outcomes is somewhat 
independent of the enactment of lessons through the at-home and in-class phases of the lesson. 

Discussion 
In presenting this framework, we hope to provide a structure that can support the 

accumulation of empirical findings related to flipped instruction, inform the design of future 
studies, and facilitate connections between research and practice. This framework is needed 
because empirical research on the effectiveness of flipped instruction must move beyond simple 
flipped/non-flipped comparisons (e.g., Clark, 2015; DeSantis et al., 2015) toward an 
investigation of the specific features of flipped instruction and the complex interactions of those 
features as they relate to student outcomes. 

Although the framework is built around structural components of flipped lessons, it also goes 
further by focusing attention on the quality with which certain structural activities occur. In 
particular, the framework includes quality criteria for lecture videos, set-up videos, whole-class 
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discourse, and it incorporates the levels of cognitive demand (Stein, Grover, & Henningsen, 
1996) for the independent or group tasks. This attention to quality will not only allow researchers 
to distinguish between different structural implementations of flipped instruction (e.g., those who 
use lecture videos and independent work versus those who use set-up videos and whole-class 
discussions) but also between different qualities of implementation within the same structure 
(e.g., productive whole-class discussions versus unproductive ones). To be clear, we do not mean 
to imply that the quality criteria specified in this article are the only sets of criteria that could be 
used, nor do we necessarily think they are ideal. Rather, we have proposed some characteristics 
that, according to our theoretical perspective, are worth considering, but those with different 
perspectives would likely identify different characteristics, and ultimately we hope that future 
research can empirically test the benefits of various implementations of flipped instruction. 

With regard to empirical studies, the framework can be valuable in formulating testable 
hypotheses. For example, one can consider whether video features are more predictive of student 
learning than in-class features. (We hypothesize that the reverse is true.) Additionally, the 
framework can be used to aggregate across lessons rather than remain at the scope of an 
individual lesson. Future research could include multiple observations of a flipped class over 
time and compile the proportional allotments and the quality indicators for the components of 
flipped instruction. For instance, a teacher may 80% of the time assign lecture videos that satisfy 
only some of the quality criteria and may assign the other 20% of the time set-up videos that 
explicitly connect to the lesson’s learning goals, and 50% of the in-class time may be spent 
solving high cognitive demand tasks in groups while the other 50% of the time is spent having 
high quality whole-class discussions. In this way, multiple class aggregations could be formed 
(for flipped and non-flipped classes) and then analyzed with respect to student outcome 
measures. Such work has potential to contribute to our theoretical understanding of mathematics 
instruction and to inform the efforts of practitioners who are implementing flipped instruction. 

Conclusion 
Many of the expositional and anecdotal works related to flipped instruction are written in 

ways that suggest flipped instruction is a unified teaching model. Even the few empirical studies 
that exist involved research designs that presume flipped instruction is a singular approach that 
can be meaningfully compared to non-flipped instruction. We have instead found that wide 
variation exists in flipped implementation (de Araujo, Otten, & Birisci, 2017b; Otten, Zhao, de 
Araujo, & Sherman, in press). Although it is possible that flipped instruction frees up class time 
for rich whole-class discussions and the enactment of cognitively demanding tasks, we know that 
there are secondary mathematics teachers using flipped instruction in ways that differ little from 
conventional non-flipped instruction aside from the change in instructional environment. As a 
field we do not yet know the prevalence of either of these implementations nor do we have 
compelling empirical evidence of the implications that either has for student learning. It is our 
hope that this framework will guide feature endeavors to gather this evidence. 
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In this research report, the question of the role of the teacher in problem-solving contexts is 
addressed, particularly in relation to the development of mathematical concepts. Data extracts 
from a problem-solving session are used to draw out three sorts of teaching actions that aim to 
push forward the mathematics in the classroom. These teaching actions are discussed in light of 
verbatim extracts and of available theoretical constructs from the research literature. 

Keywords: Mathematics, Problem-solving, Teaching Actions, Analytical Geometry 

Introduction 
The literature abounds with work conducted on mathematical problem-solving from a variety 

of perspectives, illustrating the beneficial outcomes for students of a sustained practice of solving 
problems in classrooms: on the meaning given to mathematical concepts and their relevance for 
everyday life; on the development of critical, logical and autonomous thinking; on the active 
engagement in doing mathematics; on the development of positive relationships with 
mathematics, and so on (Boaler, 1998; Borasi, 1992, 1996; English & Gainsburg, 2015). 
Through this literature, one dimension that appears in need of further research concerns the role 
of the teacher in problem-solving contexts. As Stein, Boaler and Silver (2004) explain, problem-
solving work is mostly focused on students – who are plunged into authentic mathematical 
practices as are mathematicians – hence the problem-solving literature says little about teachers, 
their role, and classroom events or actions in which teachers interact. This leads to wonder about 
What is the role of the teacher in problem-solving contexts? In parallel, another salient issue that 
remains little studied, as English and Gainsburg (2015) illustrate, concerns the development of 
content in problem-solving contexts. There is a need to investigate the interplay of mathematical 
concept development and problem-solving endeavors in the classroom, and How is problem-
solving used as a powerful means to develop mathematical concepts? It is these two issues that 
orient this research report, namely teachers’ actions in problem-solving contexts that aim at 
covering content and developing concepts, that is, at pushing forward mathematics in the 
classroom. As Jaworski (e.g., 2011) often noted, we have numerous theories about students’ 
learning and mathematical activity, but the same is not true for teaching and the teacher’s role. 
There is thus an important need to conduct studies that aim to develop conceptualisations of the 
teacher’s roles in the action of teaching in problem-solving contexts: this research report aims to 
contribute to reflections and conceptualizations on these teacher’s roles.  

In order to do this, an analysis is conducted on an extract taken from a session in a Grade-10 
classroom. Once aspects of the research are grounded both theoretically and methodologically, 
the extract is presented and then analyzed in relation to three kinds of teaching actions that 
contributed to concept development – that is, that pushed forward the mathematics of the 
classroom – using theoretical concepts and verbatim extract as supporting illustrations to clarify 
the nature of these teaching actions. 

Theoretical Grounding – Problem Solving as Engaging in a Dynamic Process 
Grounded in the enactivist theory of cognition for conceptualizing problem-solving 

environments as non-linear endeavors (Proulx & Simmt, 2016), the research is also strongly 
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inspired by the work of Borasi (1992) and Lampert (1990) on inquiry and problem-solving, who 
aim to place students in authentic problem-solving situations. In their work, mathematical 
problem-solving is conceived of as a process that does not follow a pre-specified thread of events 
– analogous to the development of mathematics itself as a discipline – where numerous questions 
and ideas arise amid problem-solving endeavors, these often becoming central issues that can 
redirect the inquiry being undertaken (see also Cobb et al., 1994). 

Remillard and Kaye Geist (2003) termed these “emergent” events as openings in the 
curriculum, where occasions offer themselves to inquiry and (can) redirect the flow of classroom 
events; something akin to Van Zoest et al. (2015) notion of building on ideas unfolding in the 
classroom. Borasi (1992, p. 202) addressed these matters in terms of flexibility, where authentic 
mathematical problem-solving spaces are conceived for tackling unanticipated events: 

The open-endedness that characterizes inquiry requires extreme flexibility in terms of 
curriculum content and choices. A teacher will often need to deviate from the original lesson 
plan in order to follow a new lead, pursue valuable questions raised by the students, or let the 
class fully engage in a debate stimulated by difference in opinion or different solutions. 

Mathematics teaching is thus here conceived as a dynamic process that emerges amid 
interactions between teacher and students. As Curcio and Artzt (2004) assert, teachers are 
themselves engaged in problem-solving when they teach through problem-solving, deploying an 
expertise in action, while teaching, in reaction to the events of the classroom. Teachers navigate 
through the “material” of the classroom, act with what happens, and attempt to push the 
mathematics of the classroom forward through analyzing and synthesizing on-the-spot the 
mathematical ideas shared and produced. It is in this sense that, in Bednarz and Proulx (2009), 
teachers’ actions are conceived along three interconnected dimensions. First, following work on 
mathematics teachers’ practices (e.g., Roditi, 2005), teaching is conceived of as an event that 
happens in the action of, in relation to, the task in which the teacher is engaged: teaching is 
enacted in action. Second, along a situated cognition perspective (Lave, 1988), teaching is 
conceived of as situated, deployed in relation to a specific context. As Roditi (2005) insists, 
teaching actions are not independent of students’ learning or the classroom environment, a 
context that plays an immense role in the kinds of actions deployed in the act of teaching: 
teaching is a situated practice. Third, aligned with Mason and Spence’s (1999) knowing-to act in 
the moment, teaching is conceived of as a practice adapted in real time to events of the 
classroom. Teachers constantly need to adapt their responses to the dynamics of the classroom as 
situations often drift from the planned script: teaching is a practice deployed in the moment, 
while it is enacted. Along these dimensions, teachers are seen as continually reflecting on 
possibilities, offering and inventing new avenues and representations in relation to students, 
thinking of additional explanations to clarify or resituate the tasks offered, choosing to 
emphasize some aspects and not others, knowing that an explanation or a representation may 
eventually benefit students’ understanding, and so on. Teaching practice can thus hardly be 
considered as a preestablished practice designed in advance for reacting to situations, but rather 
an expertise enacted in context, in action, as a knowing-to act adapted to situations and deployed 
on-the-spot in (inter)relation to classroom events. It is along this theoretical perspective that 
teachers’ actions for pushing forward the mathematics of the classroom, are considered. 

Methodological Considerations 
This research report is part of a wider research program focused on studying the teaching of 

mathematics through problem-solving in elementary and secondary classrooms. We collaborate 
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with groups of teachers who regularly invite us into their classrooms to experiment various kinds 
of problem-solving approaches and to interact, assess and reflect with us on the teaching that 
goes on in these sessions. Because it inserts itself in regular classrooms, the research does not 
want to be disruptive and follows the teachers’ teaching plans, with the tasks given in class to 
students being chosen by and with teachers (often coming from their teaching materials and 
workbooks). The problem-solving sessions usually follow the same trend, starting with a task 
presented to students, written on the board or handed on paper, where students are given relative 
amounts of time to address it. After this, in a plenary manner, students are asked to share their 
strategies/solutions and thoughts with the group, while making sure that these are clearly 
explained and justified for other students to understand and ask additional questions if necessary. 
Students are also invited to interact between each other in relation to the ideas shared, to question 
or challenge them, add to them, etc., thus aiming to create a community of inquiry (Borasi, 1992; 
Lampert, 1990). These various interactions in turn often provoke new inquiries, where students 
can be asked to explore new issues or additional questions (Cobb et al., 1994). 

Data-collection focuses on classroom discussions and interactions, as well as traces left on 
the board, all chronologically recorded as field notes by a research assistant (RA) or videotaped. 
Data analysis is carried out in two phases. The first phase consists of on-the-spot meetings (PI, 
RA, and teachers) to discuss teaching events that occurred during the sessions that stood out and 
deserved attention (in this case, on teaching actions that pushed the mathematics forward). These 
meetings offer a first level of analysis, which also affords interpretations of teaching events from 
the teachers’ perspectives and permits refinement of, and adds to, the observational notes. This 
first level of analysis revealed salient issues about three explicit teaching actions that succeeded 
in pushing forward the mathematics of the classroom, that is, actions that enabled mathematical 
concept development: validation practices, reformulation practices, and summarizing practices. 
This three-pronged orientation toward teaching actions was used to orient the subsequent data 
analysis. This second phase consisted of attending to the data in relation to Desgagné’s (1998) 
notion of available constructs from the mathematics education literature, which could give these 
teaching actions deeper theoretical meaning: here, e.g., Forman and Ansell’s (2001) revoicing, 
Shimuru’s (2004) yamada, Lampert’s (1990) establishment of a community of validation.  

Data Extract from the Problem-Solving Session 
The extract is taken from a session in a Grade-10 classroom of about 30 students, who were 

working on analytical geometry in relation to distances (points, midpoints, lines, etc.) and had 
been initiated to usual algebraic formulas. This extract was chosen for its capacity to illustrate 
patterns of teacher and student interactions that were common to almost every session 
conducted/experimented in classrooms. For this precise session, the teacher wished to 
experiment with tasks along a mental computation context (following our work on mental 
computation, e.g., Proulx, 2014), with the intention to see how students would engage in it. One 
task given to students was “Find the distance between (0,0) and (4,3) in the plane” (given orally, 
with points drawn on a Cartesian plane on the front board), who had 15 seconds to answer 
without recourse to paper and pencil or any other material. When time was up, students were 
invited to share and justify their solutions to the group. The following is a synthesis of the 
strategies engaged in and the discussions, questions, and explorations that ensued. 

The first strategy referred to applying the usual distance formula (D="(𝑥% − 𝑥')' +	(𝑦% − 𝑦')'), 
leading to 5 as a distance. A second strategy suggested drawing a triangle in the plane, with sides 
3 and 4, for then finding the hypotenuse by using Pythagoras (Figure 1a). 
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Figure 1a – Drawing the right triangle  Figure 1b – Close-up on the triangle 

Another student then suggested a third strategy: coming to the board to trace a red segment to 
count directly on it from (0,0) to (4,3) as in Figure 1b. Starting from (0,0), she counted “the 
number of points” to arrive at (4,3), counting the number of whole-number coordinate points 
from (0,0) to (4,3). While doing this at the board, she suddenly stopped and mentioned that her 
red segment did not go through the points she envisaged, which made the counting difficult. The 
teacher then traced another segment going through square diagonals linking two separate points, 
which could enable counting the number of (whole-number) coordinate points from one point to 
the next (giving 4 as a distance, Figure 2). The student agreed that for this case, it would work. 
 

 
Figure 2 – Line drawn through square diagonals 

The teacher then asked if the measure obtained with square diagonal lengths was identical to that 
obtained with the side of the square (drawing  on the board). 

One student asserted that both lengths were not identical, because the diagonal of the square 
was not of the same length as the square’s side. Another explained that both lengths were 
different, because the hypotenuse is always the longer side in a triangle. Finally, a student 
claimed that the diagonal was longer, because it faces the wider angle. 

The teacher then asked if that last assertion about facing the wider angle was always true, and if 
so why (drawing on the board a random right triangle ). 

One student, pointing at the triangle, stated that it was indeed the case in this drawn triangle. 
Another student explained that, in a triangle, the bigger the angle the longer the opposite side, 
mentioning that if the side-hypotenuse had been longer, the opposite angle would have been 
wider. And, because the sum of the (measures of the) angles in a triangle is 180o, then the 90o 
angle is always the wider one, the other 90o being shared between the remaining two angles. 

Using the drawing of the triangle, the teacher simulated the variation of the right angle toward an 
obtuse one and traced the resulting side obtained, showing how it would become longer (drawing 

 on the board). He then moved it toward producing an acute angle, asking students if their 
“theory” about opposite side of the angle worked for any angle, like acute ones. 

One student asserted that it works for isosceles triangles, with equal sides facing equal 
angles, and another mentioned that it is the same for the equilateral triangle, since it is 
“everywhere the same” with same angles and same side lengths. 

The teacher explained that these ideas about the diagonals being longer than the side underlined 
the fact that this initial strategy amounted to counting diagonals, that is, the number of diagonals 
of a unit square. And, that this offered a different sort of measure for the (same) distance 
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between the two points: one in terms of units and one in terms of diagonals. A student added that 
if one knows the value of the diagonal, then one could find the number of unit squares for the 
diagonal-segment by multiplying by that factor.  

One student offered a fourth strategy to find the distance, suggesting to use the sine law with 
angles of 45o. The teacher asked the student how he knew that both angles were 45o in the 
triangle. As skepticism grew in the classroom, the teacher suggested that students inquire, in 
small groups or individually, if the triangle’s angle were 45o or not, and to be able to convince 
others. After 5-6 minutes of exploration, students were invited to share their findings.  

One student explained that on her exam checklist there is an isosceles right triangle with 45o 
angles. Thus with this triangle of side length of 4 and 3, one cannot directly assert that it is 
45o because it is not an isosceles triangle as its sides are not of equal measure. Another 
student illustrated at the board that if one “completes” the initial triangle into a rectangle  
( , see Figure 3a), then the hypotenuses of both triangles are the rectangle’s diagonal 
which cuts it in two equal parts and thus cuts its angle in two equal 45o parts. 
As the teacher highlighted that the two arguments were opposed, one student replied not in 

agreement with the last argument, drawing on the board a random rectangle with its diagonal 
(Figure 3b), and asserting that in this rectangle it was not certain that the angle was divided into 
two equal parts. Another student added that because the sides of the triangle were not identical 
(of 3 and 4), then the diagonal would not necessarily cut the 90o angle in two equal parts of 45o. 

 

       
  

Figure 3a – The “completed” rectangle  Figure 3b – The “counter” rectangle 

The teacher highlighted that this last argument reused aspects of the precedent “theory” that the 
longer side faces the wider angle in the triangle. Hence, following this, a longer side needed to 
face a wider angle. Then a counter-example was offered to the group. 

The student who made reference to the checklist asserted that it happens in their exams that 
right triangles don’t have 45o angles, for example, one with 32o and 58o; coming to the board 
to draw it (Figure 4). She completed her drawing to create a rectangle, explaining that the 
diagonal cuts as well this rectangle in two parts, but that the angles obtained are not of 45o. 

 
 

Figure 4 – The triangle counter-example 
with angles of 32o and 58o, and the rectangle 

Figure 5 – Comparing triangles within a 
square 

 
The teacher asserted that this offered a counter-example, with a type of right triangle frequently 
met that did not have angles of 45o. One student added that because all sides were different, then 
their associated angles would be different, the longer side needed to face a wider angle, leading 
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to different angles. The teacher then highlighted the work of one student who drew a square in 
his notebook to assess the 45o situation. Drawing a triangle of sides 3-4-5, he extended the 
cathetus of 3 toward one of 4 to create a 4x4 square. Then, because in the previous unit-square 
the angles were of 45o, in this 4x4 they were 45o as well (Figure 5). Comparing hypotenuses of 
both triangles, it illustrated that in the initial 3-4-5 right triangle the angle is smaller than the 
right triangle of side 4 and 4. All this led students to appear to agree with the fact that the angle 
was not 45o, ending the explorations (and leading to offer another task to be solved by the 
students). 
Pushing Forward the Mathematics: Validating Practices 

One kind of teaching actions enacted in the session are validation practices. These, in 
problem-solving contexts, are related to the consideration of the classroom as a mathematical 
community of validation as Boaler (1998), Borasi (1992) and Lampert (1990) call it. In this 
community, members are encouraged to generate ideas, questions, and problems, to solve them, 
to share their understanding, to negotiate meaning, to develop explanations and justifications to 
support their solutions, to question others’ solutions, and so on. As Lampert (1990) explains it is 
the teacher’s role to makes sure that students’ justifications are adequate, that arguments are 
clearly stated, that solutions are expressed in an intelligible manner and are accessible; essential 
conditions for the mathematical community to take shape and flourish. In sum, it is the teacher’s 
role to create and sustain this mathematical community. As a way of example, when Max 
mentioned that the triangle’s angle was 45o for using the sine law, the following interaction led 
to a request for validation from the classroom community: 

Teacher: And, how do you know that the angle is 45o? [some students appeared opposed] 
Max: Because it is 45o for both angles [some students agree, others express disagreement] 
Teacher: Ok, so maybe 45o maybe not. We are not sure. But we need to arrive at something, 

we need to agree, we need to know if it is or not 45o. So, I will ask you to take a couple of 
minutes, alone or in small groups, to see if it is or not 45o, and to be able to explain it and 
even be able to convince others of it. You can use all you have, workbooks, textbooks, 
notes, whatever. After that, we will share your findings. Ok, go! [students start to work] 

For Cobb et al. (1994) and Lampert (1990), a community of validation develops, analyzes, 
questions, and argues for what is or not mathematically acceptable. Hence the mathematics 
produced within the classroom community is validated by the community itself (in which the 
teacher takes part). The teacher’s requirement for and establishment of these validation practices 
aim to give status to the mathematical productions of the classroom, to make official the ideas 
shared by making them accessible and reusable in the future as they are justified and argued for. 
These validation practices contribute to the advancement of mathematical ideas in the classroom. 
Pushing Forward the Mathematics: Reformulating Practices 

Another sort of teaching actions relates to the reformulation of students’ ideas. While 
students share their strategies, as Cobb and Yackel (1998) underline, the teacher can re-describe 
students’ reasoning and reformulate it in different terms: one in which they would not necessarily 
have used but that are aligned with the meaning they are making. As an example, when Sandra 
explained her strategy of counting the points on the red segment, the teacher not only asked her 
to clarify what she did, but also re-explained and reformulated the underlying idea. 

Sandra: Well, I just counted the points. 
Teacher: What do you mean exactly by this? 
Sandra: (coming to the board) Well, if you draw a line from here to here, it gives 1, 2, 3… 
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Teacher: Ah, OK, you trace a segment from one point to the other, so from (0,0) to (4,3). 
Sandra: Yes. But, finally, this thing does not work as I thought. 
Teacher: Ok, it is difficult to count directly on the plane. So, Sandra, you wanted to count the 

number of coordinate points that your segment crosses from (0,0) to (4,3). And it’s 
difficult because it does not cross them directly. But it could work! If you take this 
segment and link these two other points (Figure 2). Then, here, it goes though the square 
diagonals and we can directly count the points crossed on the plane. 

The teacher here resumed and reformulated Sandra’s explanations, not to correct them (even if 
some adjustments could be made), but mostly to clarify them, deepening them, drawing out its 
key elements for all to see. This is aligned with what Forman and Ansell (2001) call revoicing: 

there is a greater tendency for students to provide the explanations […] and for the teacher to 
repeat, expand, recast, or translate students’ explanations for the speaker and the rest of the 
class. The teacher revoices students’ contributions to the conversation so as to articulate 
presupposed information, emphasize particular aspects of the explanation. (p. 119) 

These reformulating practices are a way for the teacher to insert him or herself into students’ 
explanations and work with the mathematical ideas produced in the moment. It is also a way to 
make ideas accessible to the classroom community for engaging in subsequent validation 
practices, since some ideas are not always mathematically adequate (like numerous arguments 
made around the 45o angle). These are then also clarified and reformulated for students to 
understand and validate as a community. By making the mathematical ideas accessible to all and 
highlighting them, the teacher is making the mathematics of the classroom advance. 
Pushing Forward the Mathematics: Summarizing Practices 

A third sort of teaching action is about summarizing practices. At different moments in the 
classroom, when ideas are shared in the problem-solving process, the teacher underlines 
explicitly some ideas produced that have important mathematical potential and to which students 
need to pay attention: those that will be useful or reused in the future. Hence in problem-solving 
contexts, the teacher has an important role to play in underlying the important mathematical 
ideas produced and making sure that these are clear and accessible, as Stein et al. (2004) 
mention. These summarizing practices can happen at varying moments during a problem-solving 
session, and the teacher at any moment can opt to underline, validate, put forth, thus summarize, 
the mathematical ideas shared for leaving traces about the mathematical productions of the 
classroom. For example, in relation to the query about the square diagonal, after arguments and 
ideas were shared, the teacher summed up the ideas and came back on Sandra’s strategy, 
extending it to the calculation of distances: 

Teacher: Let’s go back to the square diagonal. It is longer than the side. In Sandra’s strategy, 
we count the number of diagonals, the ones from one point to the other, from (0,0) to 
(4,3). We talked about points crossing. We would here have 4 diagonals, which is also a 
possible measure of the distance between (0,0) and (4,3). We would thus have two 
measures: one of 5 in terms of square-sides and one of 4 in terms of square-diagonals. 
Same distance, measured in two different ways, hence offering two different measures. 

When it is done at the end of the inquiry, as Shimizu (2004) mentions, this summing up is an 
occasion to conclude by highlighting the mathematical ideas worked on during that inquiry, what 
is called in Japanese the yamada of the activity. For example, the strategy offered for concluding 
the 45o exploration was a way of summing up most ideas shared in class and of settling the issue. 
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Summarizing practices in problem-solving contexts are essential acts that contributes to leaving 
mathematical traces of what was covered in the classroom, enabling students to pay attention to 
important mathematical concepts, hence pushing the mathematics forward. 

Final Remarks 
These three teaching actions succeeded in pushing the mathematics forward in the classroom, 

highlighting the important role of the teacher in the evolution of the classroom and how 
mathematics is tackled and develops in it. The analysis of these teaching actions offers an initial 
way, albeit preliminary, to address the questions that triggered this research report, namely, 
about the possible teacher actions that aim to contribute to the development of mathematical 
concepts in problem-solving contexts. Much more needs to be studied in terms of the outcomes 
of these practices, for example, on student’s personal concept-development and how they 
operationalize these in various situations. But, at this point, this initial analysis offers promise for 
better understanding and conceptualization of teachers’ roles in problem-solving contexts. 
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Stereotypes and storylines for emergent bilinguals (EBs) permeate U.S. culture, have been 
historically deficit-oriented, and determine ways teachers and students interact with each other 
in classroom contexts. As a way to disrupt and challenge such narratives, one elementary 
teacher, Courtney, leveraged her authority to construct and foster the storyline of mathematical 
competence for EBs across multiple school years. One of the most frequent ways Courtney did 
this was to interactively position EBs as teachers in whole class mathematical interactions. 

Keywords: Equity and Diversity, Classroom Discourse 

Stereotypes and storylines of mathematical competence permeate U.S. culture (Nasir, 2016). 
For emergent bilinguals (EBs), their stereotype and storyline has historically been deficit-
oriented, focusing solely on their linguistic deficiencies, need of remediation, and ill-
preparedness for school, and the added challenges they pose to over-worked teachers. Such 
stereotypes and storylines can circulate in classrooms and determine ways teachers and students 
interact with EBs (de Araujo, Smith, & Sakow, 2016; Turner, Dominguez, Maldonado, & 
Empson, 2013; Wood, 2013; Yoon, 2008). For instance, if teachers position EBs in deficit 
storylines, EBs opportunities to learn, have access to, and achieve success in mathematics are 
restricted. In contrast, when teachers position EBs in ways that call attention to and value their 
mathematical and linguistic competencies and diverse cultural assets and experiences, a storyline 
of mathematical competence can be fostered. Too frequently, however, EBs are shut out of such 
storylines. Thus, it is critical for productive storylines be established and fostered for EBs in 
classrooms. Yet, to do this, teachers must be strategic in their use of classroom discourse to 
interactively position EBs in identified and desired storylines.  

One theoretical lens to examine the creation of storylines for EBs via classroom discourse is 
positioning theory (van Langenhove & Harré, 1999). Positioning theory foregrounds discourse 
and proffers a way to critically analyze how language-in-use can construct and foster storylines 
for groups of students through moment-to-moment interactions. More specifically, positioning 
theory enables the researcher to examine how teachers’ interactive positions of EBs individually 
acts to establish and foster different storylines for EBs collectively over time.  

Positioning Theory and the Role of the Teacher 
Positioning theory (van Langenhove & Harré, 1999) is composed of three central 

components: acts, storylines, and positions. Acts refer to the social meaning(s) of people’s 
intended actions, (Harré, Moghaddam, Cairnie, Rothbart, & Sabat, 2009). Storylines are “strips 
of life [that] unfold according to local narrative conventions” (Harré, 2012, p. 198) that are 
constituted and reconstituted through social interactions. Oftentimes, these refer to the multiple 
categories, stereotypes, or cultural values (e.g., teacher/student, reform/traditional instruction, 
correct/incorrect) people draw on in social situations that are used to define the expectations and 
conventions of interactions in that setting (Herbel-Eisenmann, Wagner, Johnson, Suh, & 
Figueras, 2015). For example, a teacher in a classroom may draw on the storylines of 
teacher/student, reform/traditional instruction, and correct/incorrect mathematics answers 
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simultaneously to motivate his/her interactions with students. Hence, within each social 
interaction there are multiple storylines at play, all drawn from and on participants’ cultural, 
historical, and political backgrounds and experiences. Additionally, the ways individuals enact 
storylines are or become socially recognizable. For instance, if a teacher employs a storyline that 
contradicts historical or culturally shared narratives (e.g., incorrect answers are just as valuable 
as correct answers), the acts may not initially be conceived as socially recognizable, however, 
over time they become socially recognizable as the storyline is taken up.  

The ways people enact storylines are referred to as positions. Within storylines, people 
assume a position, called reflexive positioning, and are positioned by others, called interactive 
positioning. These positions are metaphorical and determine the social expectations and range of 
available acts of speakers and listeners. In this way, each position is relational and the range of 
acts that are available is contingent upon each given situation. Some situations can further 
restrict the range of available positions. For example, in institutional settings, such as schools, 
individuals’ rights and duties are socially prescribed.  
Role of the Teacher 

Given their position in the classroom, teachers’ discursive practices represent a powerful tool 
that can be leveraged to create, foster, or shift storylines for groups of students in mathematics. 
The storylines established and fostered by the teacher can expand or restrict students’ ability to 
exercise agency, participate, and learn. For example, if a teacher constructs a storyline of 
mathematical competence for an EB that is supported through her/his positioning moves (e.g., 
calls on student to share her/his mathematical thinking, invites student to take on the role of 
teacher, allows student to control the mathematical tools), the social expectations, opportunities 
to co-construct mathematics, and range of available positions would be different compared to a 
student whose storyline was of mathematical incompetence. The consequences of teacher 
positioning are further magnified by the appropriation of positions and storylines by peers 
(Turner et al., 2013; Yoon, 2008). Thus, teachers’ interactive positions and storylines of EBs can 
affect EBs’ ability to participate, contribute, and learn. 

When teachers’ discursive practices are employed in whole class settings, the interactive 
positions and subsequent storylines for EBs are made visible to everyone. Consequently, 
research (Turner et al., 2013; Wood, 2013) has found that these public displays affect how peers 
interactively position EBs in the future. Moreover, the storylines constructed by teachers can act 
to counter or reinforce storylines for individuals through group associations. For instance, 
storylines constructed for individual EBs can act to counter deficit-oriented stereotypes of EBs as 
a whole. In order to better understand the ways teachers’ interactive positions can create and 
foster storylines for EBs that can counter deficit-oriented storylines, this study was guided by the 
question, What storylines for EBs does an elementary teacher construct and foster through her 
acts in whole-class mathematical interactions?  

Methodology 
Data for this study were drawn from a three-year longitudinal professional development 

intervention focused on EBs development of mathematic and linguistic competencies, the 
enhancement of mathematics curriculum for EBs, and the facilitation of productive classroom 
interactions for EBs (see Chval, Pinnow, & Thomas, 2014 for more information). Data collected 
included classroom video and audio recordings.  

To answer the research question, a case study design (Stake, 1995) was used to examine the 
discursive practices of Courtney, a white female, monolingual third-grade teacher. Courtney 
taught at a school that was predominately white (>70%) with less than 10% of the student 
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population Latinx. In addition, over half of students received free and reduced lunch. Prior to 
Courtney’s participation in the intervention, she had taught for two years and had received no 
formal education in pedagogy for EBs or had opportunities to teach EBs. Consequently, 
Courtney’s participation in the intervention coincided with her first opportunity to teach EBs. 
Thereafter, in each year of the study Courtney taught 1-3 Latinx EBs.  
Data Selection and analysis  

To identify the storylines Courtney constructed and fostered for EBs through her interactive 
positions, a subset of the data was analyzed. Data was restricted to the first two years of the study 
due to the number and retention of EBs. In each of the first two years, Courtney had three Latinx 
EBs (see Table 1 for a summary of student demographics). Each student was classified as an 
English language learner by the school district based on their scores on the Assessing 
Comprehension and Communication in English State-to-State for English Language Learners 
(ACCESS) assessment. Based on their ACCESS composite scores, the EBs in this study can be 
considered to be at an “intermediate” level of English language proficiency.  

Table 1: Summary of student demographics 
Year Student Birthplace ACCESS Composite Score 
1 Alonzo Mexico 4.6* 
1 Yasmin USA 3.8* 
1 Ignacio Mexico 3.9* 
2 Samuel USA 4 
2 Bryce USA 3.8 
2 Lea USA Not available 

*ACCESS scores were only available for the following school year. 
 

Across the two years, there were a total of 45 lessons, each approximately one hour long, that 
were video and audio recorded. To identify the storylines created and fostered for EBs related to 
mathematics, only those interactions where an EB participated, was asked to participate, or was 
interactively positioned by the teacher or peers in whole class settings were transcribed and 
analyzed. In my analysis, I first identified the Courtney’s acts at the utterance and turn taking 
levels in MAXQDA (see Figure 1). Then, I open coded (Strauss & Corbin, 1990) the acts to 
identify Courtney’s interactive positions of EBs and the storylines that were told via the acts. 

  

 
Figure 1. Example of a coded classroom transcript in MAXQDA. 

Findings 
Across the two years, Courtney constructed and fostered multiple storylines for EBs via her 

interactive positions. One of the most frequent storylines she promoted was EBs as teachers. 
Courtney cultivated this storyline in numerous ways, such as asking or allowing EBs to: share 
problem-solving strategies, control the classroom conversation, assign work, revoice a peer’s 
thinking, and correct peers’ mathematical errors. In this way, Courtney positioned EBs 
physically or metaphorically as teachers, which was a privileged role in the institutional space 
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(of the classroom). To illustrate the several ways this storyline was advanced in classroom 
interactions, representative classroom excerpts are presented below.  
Share a Problem-Solving Strategy 

Courtney leveraged problem-solving sharing opportunities as a chance to position EBs as 
teachers. Frequently, these sharing opportunities occurred at the conclusion of the lesson and 
were used as a way to share different student approaches to a single problem or highlight specific 
aspects of a problem-solving strategy (e.g., how to draw efficient pictures). As students worked 
individually or in small groups on mathematics tasks, Courtney circulated and traditionally 
selected three students to share who represented a range of strategies. Often, each student’s work 
was scanned, which served as a visual referent as the student shared at the board. This was a 
particularly useful tool for EBs since they could gesture and point while explaining in English. 
When students presented, they were physically and metaphorically positioned as a teacher. In 
this way, the student was physically located in the space routinely reserved for the teacher (i.e., 
standing at the front of the classroom while peers sat on the carpet) that acted to garner the 
attention of the class. As a result, the student was positioned as an expert who had ideas worthy 
of consideration and could explain those ideas to peers. 

The following transcript from Oct. 22 illustrates this practice. At the close of the lesson, 
Courtney selected three students to share their strategy to the problem, “Clayton rolled 8 dice. 
Each landed on 4. What was Clayton’s total? How do you know that is Clayton’s total?” Lea 
(EB) was the second student to share and her work was shown on board (see Figure 2).   

 

 
Figure 2. Lea’s written work to solve the problem of calculating the sum for eight die each 

showing a value of four. 

1 Courtney: Alright the next person to share is Lea. Lea will you get up. [Administrative talk] 
2 Lea: (gets up and comes to board) First um I added four and then um I added four plus four 

plus four plus four. First I drew a picture of eight dice and then added four plus four plus 
four plus four plus four plus four plus four plus four equals 32.  

3 Courtney: So why did you—how many four—how many times did you need to count up by 
four?  

4 Lea: Well I needed to count um I needed to count eight times so I could get (inaudible)  
5 Courtney: Ok so when she—when she—what’d um—any comments about Lea’s strategy?  
6 Lea: Janie. 
7 Janie: Nice work and I like your strategy. 
8 Lea: Carl 
9 Carl: I like the way how you like, drew a picture of this stuff (gestures across work)—

numbers. 
10 Lea: Ok. Laura 
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11 Laura: Um I think the way that you drew your picture of the four plus four plus four kind 
of (inaudible) but I still think you did a great job.  

12 Courtney: Alright so she wrote a number sentence and she wrote up a picture to go along 
with that. I like—I like your strategy a lot. Nice job Lea. (clapping and cheers)  

In this excerpt, we see how Courtney invited Lea to the front of the room to share her 
strategy with the class with her written work as a visual referent. This act physically positioned 
Lea in the role of the teacher (at the board), metaphorically positioned her as an expert who had a 
problem-solving she could explain and peers could learn from, and provided an opportunity to be 
an active classroom participant. At the board, Lea described her strategy for calculating the sum 
of 32 (turn 2), which included drawing a representation of the dice rolled (Figure 2). Next, 
Courtney asked Lea for clarification of the number of times she added four (turn 3), which 
enabled Lea extended talk time and to maintain control of the conversational floor.  
In sum, interactions such as this illustrate the ways Courtney interactively positioned EBs as 
teachers by allowing EBs to physically assume the space of the teacher, explain problem-solving 
strategies to peers, and control the classroom conversation.  
Control Classroom Conversation 

Another way Courtney interactively positioned EBs as teachers was to allow EBs to control 
the classroom conversation around their mathematical ideas, which occurred after EBs had 
shared their problem-solving strategies. Frequently, Courtney would ask classmates if they had 
any comments, questions, or compliments for the presenter, which the speaker would then field. 
Not only did this practice provide opportunities for EBs to retain the conversational floor but 
also reinforced the expectation that peers will consider and respond to EBs’ mathematical ideas.  

The transcript above illustrates a common way Courtney employed this practice. After Lea 
shared her problem-solving strategy, Courtney invited peers to comment (turn 5). This act 
reinforced the classroom norm that students would attend to and think about each other’s 
mathematical thinking, signaled that Lea’s ideas were worthy of further consideration, and kept 
Lea’s mathematical thinking at the center of the conversation. Courtney then allowed Lea to 
control the conversation of peer comments on her problem-solving strategy, a practice that is 
often reserved for the teacher (Mehan, 1979). Lea fielded comments on her mathematical 
thinking from Janie, Carl, and Laura (turns 7, 9, and 11). Lea’s peers had many comments they 
could make, however, in each comment there is evidence of their attention to Lea’s mathematical 
thinking, particularly her problem-solving strategy and representation. Moreover, each peer 
comment included praise (e.g., “I like your strategy”), although Laura’s was back-handed (turn 
11). Courtney did not allow the conversation around Lea’s ideas to end on this note, but 
concluded with a positive evaluation, “I like your strategy a lot.”  

Overall, this excerpt illustrates another way Courtney interactively positioned EBs in the role 
of the teacher, both physically and metaphorically, which advanced the storyline of EBs as 
teachers. These interactive positions also allowed opportunities for EBs to use mathematical 
discourse, have extended talk time, and control the conversational floor.  
Assign Work  

Assigning work to the class is a practice often reserved for the teacher, however, there were 
instances in the data where Courtney would allow EBs to do just this. For example, on Nov. 11, 
Courtney walked through a task with the class at the carpet. In the task, each student was to 
create their own book of stamps. To do this, they would determine the face value of a stamp, the 
total number of stamps in their book (shaped in an array), and the total value of the book. In the 
demonstration, Courtney asked Alonzo to select the face value of the stamp and then calculate 
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the total value of the book. After Alonzo did this, Courtney asked the class what she must do 
next according to the checklist of instructions.  

1 Courtney:  So all of these altogether is 75, (writes 75 on board) 75 what, dollars? 
2 Choral: 75 cents 
3 Courtney: Ok, so should I just write that [the total value of the book] or 
4 Student: No 
5 Courtney: What’s the next step that I have on my checklist, Clark what’s the next step I 

have on my checklist? 
6 Clark: Um explain, explain your strategy.  
7 Courtney: Oh, I have to explain my strategy. Ok so how can I explain what Alonzo had 

asked us to do? Yasmin, how can I explain it?  
What is important in this interaction is the way Courtney framed the next step of the instructions 
to “explain your strategy.” Although the checklist specified students should do this, Courtney 
reframed this task as something Alonzo had asked them to do (turn 7). With this act, Courtney 
interactively positioned Alonzo as someone who asked the class to do mathematical work—acts 
traditionally reserved for teachers in instructional spaces. Thus, Courtney’s interactive position 
promoted the storyline of EBs as teachers. 
Revoice Peers’ Mathematical Contributions 

Courtney frequently revoiced students’ mathematical explanations in whole class 
discussions. Less commonly, were explicit requests from Courtney for students to take on this 
practice. For instance, on Oct. 27, Courtney asked the class if someone could revoice Emily’s 
strategy to calculate the total value of her book of stamps (see Figure 3).  

 

 
Figure 3. Emily’s book of stamps and her written work.  

1 Emily: I counted by 5s and 10 and (inaudible) instead of going like this (gestures across a 
row), I got, and then I did 5 times 18. 

2 Courtney: Ok um, can someone else explain her strategy? 
3 Lea: (hand raised)  
4 Courtney: Lea can you go up there and explain what Emily did? 
5 Lea: She did like (gets up and moves to board) (5.0 second pause) 
6 Courtney: Shhh.  
7 Lea: She did like, she counted by fives and go like 5, like 10, 15, all the way to 90 (points 

to 90). 
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8 Courtney: Alright. Laura. Thank you Lea for explaining her strategy you must’ve been 
paying close attention. 

In this excerpt, Courtney interactively positioned Lea as a student who could revoice a peer’s 
problem-solving strategy, attended to and thought about a peer’s mathematical ideas, and could 
articulate those thoughts publicly (turn 4). Lea paused in her explanation (turn 5) and Courtney 
moved to silence the class (turn 6), which positioned Lea as a student who should be respected, 
had an idea everyone should hear, and had the conversational floor. Lea continued (turn 7) and 
supported her explanation with gestures to the written work. Lea’s explanation evidenced she 
understood Emily’s strategy of repeated addition. Next, Courtney thanked Lea for her 
explanation and then positioned her as a student who followed the classroom norms of paying 
attention, stating “you must’ve been paying close attention” (turn 8).  

Overall, this interaction represents another way Courtney interactively positioned EBs as 
teachers. In this case specifically, Lea was positioned physically and metaphorically as a teacher 
when she described Emily’s strategy. As with the previous excerpt, Courtney allowed Lea to 
control the space in the front of the room and did not approach her. 
Correct Peer Mathematical Errors  

A final way Courtney interactively positioned EBs as teachers was through invitations to 
correct a peer’s work at the board. For example, on Apr. 26, the class discussed two 
representations of 97 cents, “$0.97” and “¢97,” written on the board and agreed “¢” was to be 
written on the right-hand side of the value (e.g., 97¢). Courtney then stated,  

Alright so the 97 cents, oh instead of having the 97 cents at the back of the cents sign it’s in 
the front of this one isn’t it. Alright, so how can we fix that? So, who can fix that up for me? 
Who can fix it? Who wants to? You want to fix it Samuel? Yeah go fix it, fix somebody’s 
work for me. You’re their editor. You’re going to fix up what somebody did. 

In her turn, Courtney invited an EB to come to the board to correct the error, a practice often 
reserved for the teacher. Courtney picked Samuel, an EB, who was asked to be an “editor” for 
the peer. Courtney’s act invited Samuel to take up the physical space of the teacher (by coming 
to the board) and situated him as a person who can correct peers’ mathematical work. Courtney 
went further by calling Samuel an “editor”—a powerful title for him in a class full of native 
English-speaking peers. In short, this interaction represented another way Courtney interactively 
positioned EBs in the role of a teacher—a person who can correct others’ work.  

Discussion and Conclusion 
Courtney, a white female, monolingual elementary teacher presents a case of a teacher who 

leveraged her authority in the classroom to interactively position EBs in ways that fostered the 
storyline of EBs as teachers–a privileged role in the institutional space of the classroom. An 
examination of the data revealed that Courtney did this through interactive positions that asked 
or allowed EBs to: share problem-solving strategies, control the classroom conversation, assign 
work, revoice a peer’s thinking, and correct peers’ mathematical errors. As a result, Courtney 
employed interactive positions at the individual level, which advanced the storyline of EBs as 
teachers for the collective. In this way, Courtney promoted a storyline for EBs in mathematics 
that challenged dominant narratives that EBs require remediation and extensive mathematical 
support (Chval & Pinnow, 2010; de Araujo et al., 2016; Polat & Mahalingappa, 2013).  

Courtney characteristically represents many elementary teachers in the U.S. As such, her 
case is common, yet unique. She not only represents the majority of elementary teachers in the 
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U.S., but her success in advancing productive storylines for EBs in mathematics situates her in 
the unique position to offer insight into the ways teachers can use their discursive practices to put 
forth storylines for EBs in mathematics that challenge dominant narratives. Thus, there is much 
to learn from Courtney that other monolingual teachers can integrate into their practice. Most 
notably, the interactive positions identified can be implemented by other teachers to advance the 
storyline of EBs as teachers of mathematics. For example, a teacher may begin to reflect on the 
storylines they construct for EBs through their acts. Alternatively, a teacher may ask EBs to take 
on roles and responsibilities that are typically reserved for teachers (e.g., assigning work, control 
the classroom conversation, teaching peers). Given the growth of EBs in the U.S., it is essential 
that teachers understand how their interactive positions can be used to promote storylines 
individually and collectively to create change in public perceptions of mathematical ability.  
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We investigated teachers’ responses to a common set of varied-potential instances of student 
mathematical thinking to better understand how a teacher can shape meaningful mathematical 
discourse. Teacher responses were coded using a scheme that both disentangles and coordinates 
the teacher move, who it is directed to, and the degree to which student thinking is honored. 
Teachers tended to direct responses to the same student, use a limited number of moves, and 
explicitly incorporate students’ thinking. We consider the productivity of teacher responses in 
relation to frameworks related to the productive use of student mathematical thinking. 

Keywords: Classroom Discourse, Instructional Activities and Practices 

Recommendations for ambitious mathematics teaching have identified the importance of 
instruction that honors and incorporates student thinking (e.g., National Council of Teachers of 
Mathematics [NCTM], 2014). Such instruction involves the teacher facilitating meaningful 
mathematical discourse by eliciting and making public student thinking, as well as appropriately 
responding to that thinking. Research has shown that the way in which teachers respond to 
student mathematical thinking (SMT) affects student learning in the classroom. For example, 
research has found that teacher responses that press students to further engage in thinking about 
the mathematics in their contributions provide students with increased learning opportunities 
(Kazemi & Stipek, 2001). More recently, Ing et al. (2015) found that responses that encourage 
students to engage with each other around mathematics correlate with increased student 
participation and higher student achievement.  

Since SMT varies in the degree to which it provides leverage for accomplishing 
mathematical goals (Leatham, Peterson, Stockero, & Van Zoest, 2015), it follows that not all 
thinking should be responded to in the same way. Research examining teachers’ responses to 
different types of SMT has produced mixed findings. Franke et al. (2009) found that the types of 
questions teachers asked did not vary depending on the clarity, correctness or completeness of a 
student’s initial explanation, but other studies have found that teachers’ responses do vary based 
on different types of SMT. For example, Bishop, Hardison, and Przybyla-Kuchek (2016) found 
that short or routine student contributions were related to teacher actions that were not responsive 
to SMT, whereas those that included strategies or reasoning were related to responses that 
engaged students in conversations about the SMT. Similarly, Drageset (2015) reported that brief 
answers to non-complex questions were typically responded to with a recall or procedural 
question, whereas unexplained answers were typically followed by responses that focused on an 
elaboration or rationale. Although prior research provides a foundation for understanding 
teachers’ responses to instances of SMT, more work is required to fully understand variations in 
such responses, including whether particular responses might be more or less productive in 
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supporting student learning in particular situations. Fortunately, scholars have developed a 
number of constructs for characterizing teacher responses that support this line of research. 

Researchers have characterized teacher responses in various ways based on the focus of their 
studies. Brodie (2011) developed a coding scheme for teacher responses that captured two key 
aspects of responses—responsiveness to student ideas and student engagement. Schleppenbach, 
Flavares, Sims, and Perry (2007) analyzed teachers’ responses to student errors using a scheme 
that captured two additional aspects of responses—the form of the response (statements or 
questions) and who questions were directed towards (the same student or other student(s)). 
Peterson et al. (2017) aimed to develop a comprehensive coding scheme that foregrounded 
responsiveness while also capturing other important ideas included in existing teacher response 
constructs. These researchers developed the Teacher Response Coding Scheme (TRC) to both 
disentangle and coordinate a number of components important in a teacher response, including 
the actors invited to respond, the type of action, and responsiveness to the SMT. Such a scheme 
provides a way to study teacher responses to student contributions that simultaneously addresses 
components of responses valued by other scholars working in this area. 

Our study extends earlier research on teacher responses by using the TRC (Peterson et al., 
2017) to examine teachers’ responses to a common set of SMT with varied potential to support 
student mathematical learning. In particular, this study focuses on answering the question: How 
do teachers’ responses vary depending on the potential of an instance of SMT to support student 
mathematical learning? We use these findings to discuss the extent to which various teacher 
responses are productive given the mathematical potential of an instance of SMT. 

Theoretical Framework 
Our work draws on two distinct, but related theoretical constructs. To make sense of the 

potential of an instance of SMT to support student mathematical learning, we use the MOST 
Analytical Framework (Leatham et al., 2015). To interpret the productivity of teachers’ 
responses to these instances of varying potential, we use a set of principles drawn from the 
literature that underlie productive use of SMT. Descriptions of these constructs follow. 
Leatham et al. (2015) characterized particular high potential instances of SMT as MOSTs—
Mathematically Significant Pedagogical Opportunities to Build on Student Thinking. The 
MOST Analytic Framework defines three characteristics of these instances—student 
mathematical thinking, significant mathematics, and pedagogical opportunity—each having two 
criteria that are used to determine whether an instance of SMT embodies that characteristic. For 
student mathematical thinking the criteria are that the student mathematics is inferable and that 
one can articulate a closely related mathematical point that the contribution could be used to 
better understand. For the significant mathematics characteristic, the criteria are that the 
mathematical point is appropriate for the students in the class—not too easy or too hard—and 
central to mathematical goals for their learning. To satisfy the pedagogical opportunity 
characteristic, the instance must create an opening to build on the SMT and the pedagogical 
timing must be right to take advantage of the opening when it occurs. The six criteria are 
considered linearly and an instance of SMT is classified according to the last criteria it satisfies 
(Student Mathematics, Mathematical Point, Appropriate, Central, Opening). Instances that meet 
all six criteria are classified as MOSTs. Those instances that appear mathematical, but for which 
the student mathematics cannot be inferred, are designated cannot infer (CNI). 

To determine whether a teacher response to an instance of SMT is likely to be productive, we 
focus on the extent to which it coordinates core ideas about effective teaching and learning of 
mathematics drawn from the literature (e.g., NCTM, 2014)—what we refer to as principles 
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underlying productive use of SMT (see Figure 1). We see these four principles as simultaneously 
coordinated in the teaching practice of building on SMT—making student thinking “the object of 
consideration by the class in order to engage the class in making sense of that thinking to better 
understand an important mathematical idea” (Van Zoest et al., 2017, p. 36). Further, we see 
MOSTs as instances of SMT that are prime opportunities for a teacher to engage in building.  
 

1. The mathematics of the instance is at the forefront. (Mathematics Principle) 
2. Students are positioned as legitimate mathematical thinkers. (Legitimacy Principle) 
3. Students are engaged in sense making. (Sense-Making Principle) 
4. Students are working collaboratively. (Collaboration Principle) 
Figure 1. Principles underlying productive use of student mathematical thinking. 

Methodology 
The Scenario Interview 

The Scenario Interview (Stockero et al., 2015) is a tool to investigate how teachers respond 
to SMT during instruction and their reasoning underlying those responses. Teachers are 
presented with eight instances of SMT—four each from geometry and algebra contexts. The 
instances represent a range of SMT that satisfy different sets of MOST criteria, including those 
for which the SMT cannot be inferred and those that are mathematically significant but have 
poor timing. Four instances—two from each context—are MOSTs. Figure 2 provides four 
sample instances, their contexts and the last criteria they met on the MOST Analytic Framework. 
 

Scenario Context Instance Criteria 

G1 
Students were sharing their solutions 
to the following task (a corresponding 
picture was on the board).  
Given two concentric circles, radii 
5cm and 3cm, what is the area of the 
band between the circles? 

Chris shared his solution: “The radius 
of the big circle is 5 and the radius of 
the little circle is 3, so the gap is 2, so 
the area of the band is 4π cm2.” 

MOST 

G2 
Before the teacher had a chance to 
respond to Chris, Pat says, “I also got 
4π cm2, but I did it a different way.” 

SM 

A1 

Students had been discussing the 
following task and had come up with 
the equation y = 10x + 25. Task: 
Jenny received $25 for her birthday 
that she deposited into a savings 
account. She has a babysitting job 
that pays $10 per week, which she 
deposits into her account each week. 
Write an equation that she can use to 
predict how much she will have saved 
after any number of weeks. 

Terry says, “If you deposit $20 per 
week instead of $10 per week, the 
number in front of the x in the 
equation would change, but the 
number that is added would stay the 
same.” 

Central 

A2 
Casey said, “You could also change 
the story so the number in front of the 
x is negative.” 

MOST 

Figure 2. Sample Scenario Interview instances, contexts and the last MOST criteria met. 

The Scenario Interview situates the interviewee as the teacher in the context presented. They 
are asked to describe what they might do next were the instance to occur in their classroom and 
to explain why they would respond in that way. The interviewee may ask for contextual 
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information they feel is needed before giving their initial response and is later provided common 
contextual information, after which they can revise their response if desired. If they did so revise, 
the revised response was used for this analysis. Using a common set of instances of SMT and 
providing common contextual information allowed for direct comparisons among teacher 
responses to a collection of instances that satisfy different subsets of the MOST criteria. This 
comparison allowed us to determine whether teachers seem to differentiate their responses based 
on the type of SMT to which they are responding.  
Data Collection and Analysis 

Data consisted of video-recorded Scenario Interviews conducted with 25 grade 6-12 
mathematics teachers from across the United States. We segmented each interview into the 8 
instances of SMT and the 25 teachers’ responses to each individual instance. A teacher response 
was defined as the collection of actions that a teacher describes they would take immediately 
following an instance of SMT. There were a total of 198 teacher responses because one teacher 
was not able to envision one of the instances occurring in their classroom, and another teacher’s 
interview was cut short before the last scenario was completed.  

To begin to understand teachers’ responses, we focused on teachers’ initial responses to the 
instances in the Scenario Interview. Thus, preparing data for coding required making inferences 
about how the teacher would respond in the moment to each instance by considering both the 
teacher’s description of their initial response and their rationale. Three coders individually 
analyzed each instance for a participating teacher, distilled the teacher’s response to its essence, 
and met to discuss their inferred responses until a final teacher response was agreed upon. Any 
disagreements were brought to the larger research team for further discussion.  

The teacher responses were coded using the TRC (Peterson et al., 2017), a scheme that 
disentangles the teacher move (Move) from other aspects of the teacher response, including who 
is publicly given the opportunity to consider the SMT (Actor) and the degree to which the SMT 
is honored (Recognition-Student Action and Recognition-Student Ideas). Figure 3 provides the 
TRC coding categories and codes discussed in this paper. Note that the TRC allows for multiple 
moves to be present in a teacher response. To facilitate our analysis, in cases of multiple actions 
in a given teacher response we identified the predominate code for each category—the code that 
the students are most likely to experience as the instructional intent of the response. The analysis 
used the predominate codes for each of the 198 teacher responses. 
 

Category Coding Category Description Codes 

Actor Those who are publicly given the opportunity to consider 
the instance of SMT 

teacher, same student(s), whole 
class 

Recognition- 
Action 

The degree to which the teacher response (either verbal 
or non-verbal) uses the student action explicit, implicit, not 

Recognition- 
Ideas 

The extent to which the student who contributed the 
instance of SMT is likely to recognize their idea(s) in the 

teacher response 

core, peripheral, other, not 
applicable 

Move What the actor is doing or being asked to do with respect 
to the instance of SMT 

adjourn, clarify, collect, connect, 
develop, dismiss, justify 

Figure 3. Subset of the Teacher Response Coding Scheme (TRC) discussed in this paper. 

We use two teachers’ responses to Scenario G1 (see Figure 1) to illustrate our application of 
the TRC. T1’s response, “I would just ask [Chris] to explain by using pictures and words how he 
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came up with the 4 pi,” asks the same student a question that is a develop move in that the 
student is asked to explain how he arrived at the answer. T1 uses the student’s words so Action is 
coded explicit, and the question stays core to the student’s Ideas because it focuses on how Chris 
arrived at his answer. In T2’s response, “Who else has another answer? Did everybody get that? 
Give me some more answers,” Actor is coded as whole class because all students are invited to 
participate. Move is collect as T2 requests that other students share their answers. The student’s 
words are not used, but referred to (by “that”), so Action is implicit. Asking other students to 
share their answers to the same task is peripheral to the contributing student’s Ideas.  

Results and Discussion 
To understand how teachers’ responses vary depending on the potential of an instance of 

SMT to support student mathematical learning, we begin by comparing results related to the 
Actor, Move, and Recognition categories for MOSTs and non-MOSTs. Then, we discuss how 
particular responses might be more or less productive in particular situations by considering how 
they adhere to the principles underlying productive use of SMT. Note that there were 99 MOSTs 
and 99 non-MOSTs in the data set; since the frequencies and percentages are essentially 
equivalent, we report only the frequencies. 
Comparison of Teacher Responses 

Actor. Responses coded same student were the most prevalent in the data and occurred at 
about the same frequency for MOSTs (65 of 99) and non-MOSTs (63 of 99). This even 
distribution among MOSTs and non-MOSTs did not occur for instances with a whole class or 
teacher actor. More MOSTs (26) than non-MOSTs (6) were coded whole class, while the 
opposite was true for instances coded teacher (4 MOSTs; 30 non-MOSTs). This suggests that 
teachers may distinguish, at least to some extent, instances that have potential to be discussed by 
the class from those that the teacher might just quickly deal with and move on.  

Moves. Two dominant moves in the data, develop and justify, occurred more frequently in 
response to MOSTs than non-MOSTs (Table 1). Develop moves accounted for 37 MOST 
responses and only 25 non-MOST responses, while justify moves accounted for 18 MOST and 
11 non-MOST responses. Together these two moves accounted for over half of responses to 
MOSTs. Two other dominant moves, adjourn and clarify, occurred more frequently in response 
to non-MOSTs. These moves accounted for 21 and 23 non-MOST responses, respectively, and 
for only 3 and 5 MOST responses, respectively. Thus, adjourn and clarify moves accounted for 
nearly half of non-MOST responses. As with Actor, the differences in Move for MOSTs versus 
non-MOSTs suggest the teacher actions differ depending on the type of SMT. 
 

Table 1: Actor and Move Totals for MOSTs and non-MOSTs 
 Actor Move 
 Same Student Whole Class Teacher Develop Justify Adjourn Clarify 

MOST 65 26 4 37 18 3 5 
non-MOST 63 6 30 25 11 21 23 

 
Actor/Move interactions. We also considered the distribution of Moves by Actor. Three 

moves—develop, clarify and justify—accounted for 111 of the 128 responses with a same 
student actor. We found that the distribution of these moves between MOSTs and non-MOSTs 
paralleled that for the data set overall; develop and justify moves occurred more frequently in 
response to MOSTs and clarify moves occurred more frequently in response to non-MOSTs. The 
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predominant moves directed to the whole class—collect and connect—each occurred twice as 
often for MOSTs as non-MOSTs (although the numbers are small). Still different moves were 
the most common when the teacher was the actor, with adjourn being the most common move, 
followed by dismiss. Adjourn and dismiss moves necessarily had a teacher actor since when a 
teacher uses these moves, they do not provide an opportunity for students to publicly consider 
the instance. The majority of both of these moves were in response to non-MOSTs.  

Recognition of Student Actions and Ideas. The Recognition codes operationalize the extent 
to which the student who provided the instance would recognize their thinking in the teacher’s 
response. More responses to MOSTs than to non-MOSTs were classified as explicit or implicit 
for Student Action (86 MOSTs; 65 non-MOSTs), while more responses to non-MOSTs were 
classified as not aligning with student actions (13 MOSTs; 34 non-MOSTs). In terms of Student 
Ideas, 139 of the 198 total responses remained core to the SMT, and 19 of 198 were peripheral. 
As with the student actions, more responses to MOSTs than non-MOSTs were classified as core 
or peripheral (89 MOST; 69 non-MOST), while more responses to non-MOSTs were classified 
as other and not applicable (10 MOSTs; 30 non-MOSTs). These findings suggest that teachers’ 
responses generally valued students’ contributions by incorporating their actions and ideas. 
Discussion of Productivity of Responses  

We consider the productivity of teacher responses by examining the extent to which a 
response adheres to the four principles for productive use of student mathematical thinking (see 
Figure 1). We discuss several instances, including both MOSTs and non-MOSTs, to illustrate 
how responses with different coding can be more or less productive given the type of SMT to 
which the response is given.  

The majority of adjourn moves (21 of the 24) occurred in response to two particular non-
MOSTs instances. The productivity of this move is not the same for each instance, however. The 
first instance, classified as Opening, involved a student, Sam, giving an answer before other 
students had time to think about the task. Here, the common response, "Let’s give everyone a 
chance to work it out and see what everyone else gets" (T10) is productive because of the poor 
timing of Sam blurting out his answer. Adjourning Sam’s response provides all of the students in 
the class sufficient time to engage in sense making. In scenario G2 (where Pat claims to have 
arrived at the same answer in a different way; classified as Student Mathematics), a similar 
adjourning response to “address Chris’s [the previous student’s] comment first" (T3) might be 
less productive. Because we do not know Pat’s “different way,” making a move to develop his 
idea (as 12 teachers did) could lead to an opportunity to compare and contrast two different 
solution methods. Thus, develop responses, such as, "Talk to us Pat. What did you do?" (T9) 
seem more productive than adjourning this instance. T9’s develop move would position Pat as a 
legitimate mathematical thinker and provide an opportunity for all students to make sense of the 
relationship between Pat’s and Chris’s contributions. 

Develop moves with a same student actor were common for MOSTs. However, because 
MOSTs are opportunities for building on SMT—making student thinking the object of 
consideration by the class—asking the same student to develop or justify their idea may not 
always be necessary and may actually limit other students’ opportunities to jointly participate in 
making sense of mathematical ideas. For example, consider scenario A2 (Figure 2), for which 
nearly half of the develop move responses with same student actor for MOSTs occurred. The 
most common teacher response in this instance was to ask Casey, the student who made the 
suggestion, to explain how they would change the story (e.g., “Well what do you mean? What 
sort of an equation, or what sort of a real-life situation can you think of where that would be a 
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negative?” (T6)). Contrast this response with a similar response directed instead to the whole 
class: “Interesting comment; who can come up with a story, a situation that would match what 
Casey is saying?” (T7). In this case, directing the response to the whole class might be more 
productive, as it would engage all of the students in trying to come up with a situation where the 
coefficient is negative, increasing the likelihood of advancing the entire class’s understanding of 
the mathematics of linear equations. This type of response aligns with all four core principles 
underlying productive use of a MOST, as it positions the students as capable of collaboratively 
making sense of the SMT. 

Sometimes it is productive, however, to direct a response back to the same student. Consider 
an instance in which the student, Jesse, said, “It would have to be divided by x,” an imprecise 
statement that needs clarification because “it” is unclear. The most common move in response to 
this instance was clarify, typically by asking Jesse, “what do you want to divide by x?” (T8). 
This response might be quite productive in helping members of the class figure out what Jesse 
was saying, and in doing so, would position Jesse’s statement as legitimate mathematical 
thinking. Although the collaboration principle for productive use of SMT (Figure 1) privileges 
turning SMT over to the whole class whenever appropriate, cases like this one illustrate instances 
where directing the teacher response to the same student may be a productive first step.  
Productivity also depends on the recognition of student actions and ideas. A large percentage of 
the responses in our data were both explicit and core, meaning that the teachers in this study 
honored the SMT by incorporating the student’s verbal or non-verbal actions and staying focused 
on the student’s core ideas. For example, T8’s response to Jesse discussed above is explicit and 
core as it incorporates both the student’s words (divide by x) and his ideas (what he wanted to 
divide). A response such as this positions the student as a legitimate mathematical thinker by 
keeping the students’ mathematics at the forefront, important aspects of productively using SMT.  

Conclusion and Implications 
By studying teachers’ responses to a common set of instances of SMT with varying potential 

for incorporation into instruction, this study contributes to the teacher response literature by 
illuminating (a) how teachers’ responses vary depending on the potential the SMT that is shared 
has to support student mathematical learning and (b) why some teacher responses are more 
productive than others in particular situations.  

The results revealed that the teachers were generally able to distinguish when different 
moves might be more productive, as different moves were often employed in response to 
MOSTs and non-MOSTs. For example, most whole class actor responses occurred with MOSTs 
and most teacher actor responses occurred with non-MOSTs. However, our finding that the 
majority of teacher responses to both MOSTs and non-MOSTs were directed to the same student 
raises some concerns, as MOSTs are prime opportunities for teachers to engage in the teaching 
practice of building on SMT. Thus, directing responses to such instances to a single student 
results in a missed opportunity. In terms of responsiveness, we found that teacher responses to 
both MOSTs and non-MOSTs often stayed core to the ideas in the SMT and explicitly 
incorporated the students’ actions, signaling that these teachers valued students’ contributions 
and often positioned students as legitimate mathematical thinkers who can make valid 
contributions to the development of the mathematics in the classroom.  

Our findings have the potential to help teacher educators develop a more nuanced 
understanding of what teachers are doing well and where they may need support, thus providing 
more focus to their teacher development efforts. For example, suppose the majority of a teacher’s 
responses honor SMT, but engage only the contributing student. Professional development work 
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could focus specifically on expanding the ways that they honor SMT by studying the potential in 
directing a response to the whole class, and when it would and would not be appropriate to do so. 
Such focused efforts would allow teacher educators to leverage teachers’ strengths and thus 
develop teachers’ practice more effectively. 
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This study examines how a PD program to promote teachers’ shift toward a student-adaptive 
pedagogy impacts students’ multiplicative reasoning. We describe the underpinnings of this 
pedagogy and main components of the PD program. Then, we present key features of 
participants, data collection/analysis methods, and the written assessment used to measure 
students’ multiplicative reasoning (MR). We found a significant increase in students’ MR, 
between (a) year-ends for different classes and (b) year-start to year-end for the same groups of 
students.  We also found students of participating (“treatment”) teachers outperformed those of 
non-participating (“control”) teachers. We discuss the importance of these findings for theory, 
for teacher education, and for students’ mathematical future. 

Introduction 
In the context of NCTM (2000) reform efforts, we promote students’ mathematics by 

fostering teachers’ focus on students’ reasoning. Here, we examine the impact of a professional 
development (PD) program to foster grade-3 teachers’ shift to a constructivist-based, student-
adaptive pedagogy (Tzur, 2013) on their students’ multiplicative reasoning. We stress our focus 
is on students’ reasoning, not on their observable solutions to problems (Tzur et al., 2013). In our 
study, we use students’ work to infer reasoning in terms of mental operations on units that could 
explain a child’s underlying sense of the problem and its solution. Our study contributes to the 
body of research that links teacher learning to identify and build on students’ mathematics with 
students’ learning and outcomes (Visnovska & Cobb, 2009). 

Conceptual framework 
We explicate two components of our conceptual framework: student-adaptive pedagogy and 

numerical reasoning—particularly the difference between additive and multiplicative reasoning. 
Extending Steffe’s (1990) notion of adaptive teaching, Tzur (2008, 2013) proposed student-
adaptive pedagogy as a comprehensive approach rooted in a conception-based perspective on 
knowing and learning. Simon et al. (2000) distinguished this perspective from traditional 
(“show-and-tell”) and perception-based perspectives identified in teachers’ transition to reform-
oriented practices. Perception-based perspectives differ from traditional in emphasizing the 
active nature of learning mathematics. However, common to both perspectives is a stance that 
depicts mathematical knowing as existing outside the learner.  

In contrast, a conception-based perspective builds on two implications of the core 
constructivist notion of assimilation (Piaget, 1985). First, one’s available ways of operating 
afford and constrain what and how one may “see” and do mathematically. Second, conceptual 
learning entails bringing forth available ways of operating mathematically and transforming 
those into more advanced ones. These implications compel pedagogical practices that adapt 
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goals and activities for students’ learning based on students’ available mathematics. Tzur (2008) 
depicted student-adaptive pedagogy as a reflective cycle (triad) of teaching rooted in 
hypothetical learning trajectories (HLT; see Simon, 1995; Simon & Tzur, 2004). It begins with 
inferring students’ available mathematics, proceeds to setting the goals for their next learning, 
and then to selecting tasks that can be assimilated into available schemes and help transform 
those into the intended mathematics. For example, a teacher may infer two different strengths of 
her third graders’ conception of whole numbers based on the strategy they use to add two single-
digit numbers: weak (count-on) or strong (break-apart-make-ten, or BAMT) (Tzur et al., 2017). 
Thus, she would not set the same goals and engage all of them in the same tasks. Rather, she can 
engage those who used count-on in tasks to strengthen their conception of number and those who 
used BAMT in tasks to foster transition to multiplicative reasoning.  

As for numerical reasoning, we explain it in terms of mental units and operations inferred to 
underlie students’ problem solving (Steffe, 1992; Ulrich, 2016). Two types of units inform our 
inferences, singletons (1s) and composite units (i.e., units composed of smaller units). For 
example, the number “8” is a unit composed of eight 1s, or of five 1s and three 1s, etc. We infer 
additive reasoning when one’s operations involve no unit change—she operates on one kind of 
unit (e.g., 2 keys + 2 keys + 2 keys = 6 keys). Conversely, we infer the first of six multiplicative 
reasoning schemes, which Tzur et al. (2013) termed multiplicative double counting (mDC), 
when one’s operations involve a change of unit (Simon et al., in press). Such a change takes 
place when items of one kind of unit are distributed over (and coordinated with) items of another 
kind of unit to yield a different kind of unit (e.g., 2 keys-per-box, placed in 3 boxes, yield 6 keys). 
To find the total, a simultaneous count of accrual of composite units and 1s takes place (e.g., 
first-box-is-2-keys, second-is-4, third-is-6).  

Methods 
Settings and Participants 

For two years, eleven grade-3 teachers and their students (age ~9) in two schools in a large 
USA city participated in the study. School A (7 teachers) is located in a small district and School 
B (4 teachers) in another, large district. In School A, 3 teachers participated in the PD program 
(treatment) and 4 teachers did not (control). Of the participating students, ~85% identified as 
students of colour and ~70% were learning English as an additional language (we detail student 
numbers in Data Collection). 
Concept-Sensitive Assessment of the mDC Scheme 

To assess students’ mDC scheme, we used a 5-item written measure that our team developed 
and validated. Validation included correlating students’ written responses with an interviewer’s 
inferences of their mDC scheme (Ktb=0.883, p<.0005).  The first item assesses additive 
reasoning; the following four assess the mDC scheme (Table 1). Cronbach’s 𝜶 (0.91) and Rasch 
(0.98) indicated inter-item reliability. 
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Table 1: Five Word Problems Comprising the mDC Written Assessment

 

Job-embedded PD Program 
Focusing on multiplicative and fractional reasoning enacted within the teaching triad, we 

engaged participating teachers in a PD program to promote their: (a) own mathematical 
reasoning, (b) understanding of progressions in students’ reasoning, (c) use of tasks to foster 
such progressions, and (d) attention to language and actions used by them and by students. To 
these ends, we used three, job-embedded PD experiences: Two, week-long Summer Institutes 
(Sis; total ~70 hours), Buddy-Pairs (total ~24 hours), and School/Grade-based workshops (total 
~16 hours).  

In both Sis, we engaged teachers in whole groups, small group, or individual work while 
using tasks they could later enact in their classrooms. We frequently involved them in observing 
conceptually-selected videos and analysing students’ reasoning, In SI-2, the segments were 
selected from teachers’ own classrooms. Using that analysis, they would discuss goals and 
tailor/justify tasks to promote the next learning. 

During the school year (2016-17), we worked with teachers in their own classrooms, 
mingling buddy-pair experiences and grade-based workshops. In the former, teachers teamed up 
to visit a buddy’s classroom, while a member of our team co-taught with the hosting teacher. 
Then, our team member and buddy teachers reflected on: (a) what students seemed to 
understand, (b) what serves as evidence for such claims, (c) how tasks could foster that learning, 
and (d) what/why/how to teach next. In the workshops, we focused on concepts from the buddy-
pair experiences to promote teachers’ own mathematics, to situate the concept(s) within 
progressions, and to select tasks that can promote differentiated learning based on where students 
seemed to be conceptually. A particular emphasis was on the strength of a student’s conception 
of number and/or on the mDC scheme, which teachers learned to glean from students’ strategies 
when solving problems in the classroom. 
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Data Collection and Analysis 

Collection 
Five graduate research assistants (GRAs) administered the written assessment in a whole-

class setting (~40 minutes). The GRA read out loud each item to enhance comprehension, 
monitored students’ work on all sub-questions, and, before starting Problem 2, guided them to 
build a tower of 7 cubes to ascertain they recognized this object. We administered the mDC 
assessment three times: Spring ’16 (pre-PD, year-end, N=81), Fall ’16 (pre-PD, year-start, 
N=177), and Spring ’17 (post-PD, N=113). The GRAs entered student responses to the mDC 
assessment in pairs; one read the responses out loud and another entered them into a spreadsheet. 
Analysis  

Scoring correct responses as 1 and incorrect as 0, we tested two main hypotheses about 
participating students: (a) post-PD, year-end outcomes will be better than pre-PD year-end and 
(b) post-PD, year-end outcomes will be better than pre-PD, year-start. We also tested a 
hypothesis that treatment students in School A will outperform their control counterparts. For 
each hypothesis, we analysed the mean of responses to all four mDC questions (ranging 0-4) and 
to Problem 3 alone (0 or 1). We chose Problem 3 because it is a typical multiplicative situation 
taught in schools that proved the hardest, and thus distinguishes teaching “multiplication as 
repeated addition” vs. as coordination of composite units and 1s. For the total mean on Problems 
2-5 we used an independent sample t-test, a one-way ANOVA, a repeated-measure ANOVA, 
and Cohen’s-d effect size (ES); for the non-parametric variable of responses to Problem 3 we 
used the Mann-Whitney test (MWz values). 

Results 
Three analyses show the PD impact on 3rd graders’ reasoning: pre/post between two year-

ends (Sp-16, Sp-17), pre/post growth between year-start and year-end (Fa-16, Sp-17), and 
pre/post between treatment and control students in School A. 
Pre/Post PD: Year-Ends (Sp-16 vs. Sp-17) 

Table 3 shows that, overall, 3rd graders at year-end of post-PD (39%) outperformed their 
year-end, pre-PD counterparts (28%), though this did not reach statistical significance (t=1.38, 
df=89, p=.17). For Problem #3, students in post-PD (43%) outperformed pre-PD (32%; 
MWz=1.02, N=91, p=.31). These results differ for each school. In School A (treatment only), a 
minimal change is indicated for all mDC problems, from pre-PD (25%) to post-PD (28%), with a 
larger (non-significant) difference on Problem #3 (22% to 36%, respectively). These non-
significant results are highlighted differently when compared with changes in School A’s control 
group. In School B, the pre-post PD increase on all four mDC problems (29% to 56%) was 
statistically significant (t=2.15, df=47, p=.037), but the increase on Problem #3 (36% to 52%) 
was not (MWz=1.07, N=49, p=.28).  

Table 2: Percentages of students’ correct solution (all mDC problems; Problem 3). 
 All mDC Problems mDC Problem 3 
 Pre (Sp-16) Post (Sp-17) Pre (Sp-16) Post (Sp-17) 
All AdPed 28% 39% 32% 43% 
School A 25% 28% 22% 36% 
School B 29% 52% 36% 52% 
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Pre/Post PD: Year-Start (Fa-16) vs. Year-End (Sp-17) 
Table 4 shows growth, from year-start (Fa-16) to year-end (Sp-17), for all students, then 

separately for each school. Growth in mDC reasoning, from year-start (14%) to year-end (39%), 
was statistically significant (t=4.91, df=147, p<.0005), with large effect-size (Cohen-d’s 
ES=0.83). Similarly, results for Problem #3 show the growth from year-start (18%) to year-end 
(43%) was statistically significant (MWz= 3.36, N=149, p=.001), with moderate effect-size 
(Cohen-r’s ES=0.58).  

In School A, the growth on all four mDC problems, from pre-PD (mere 8%) to post-PD 
(28%), was statistically significant (t=2.96, df=62, p=.004), with near-large effect-size (Cohen-
d’s ES=0.75). Similarly, for Problem #3 the growth from year-start (6%) to year-end (36%) was 
statistically significant (MWz=2.87, N=64, p=.004), with intermediate effect-size (Cohen-r’s 
ES=0.3). In School B, the growth on all four problems was remarkable, from pre-PD (18%) to 
post-PD (52%) (t=4.88, df=83, p<.0005), with a very large effect-size (Cohen-d’s ES=1.15). 
Growth on Problem 3, from pre-PD (24%) to post-PD (52%), was statistically significant 
(MWz=2.5, N=85, p=.012), with a moderate effect-size (Cohen-r’s ES=0.62).  

Table 3: Percentages of students’ correct solution (all mDC problems; Problem 3). 
 All mDC Problems mDC Problem 3 
 Pre (Fa-16) Post (Sp-17) Pre (Fa-16) Post (Sp-17) 
All AdPed 14% 39% 18% 43%  
School A 8% 28% 6% 36% 
School B 18% 52% 24% 52% 

 

Treatment vs. Comparison 
Table 5 (Sp-16 vs. S-17) and Table 6 (Fa-16 vs. Sp-17) compare outcomes of 3rd graders’ 

mDC reasoning, between treatment and comparison groups (School A only). In both tables, a 
two-way ANOVA (shown in the post-PD cells of the treatment group) is statistically significant 
in favour of the treatment group. 

Table 4: Sp-16 vs. Sp-17 – percentages of treatment/control student correct solutions. 
 All mDC Problems mDC Problem 3 

School A Pre (Sp-16) Post (Sp-17) Pre (Sp-16) Post (Sp-17) 
Treatment 25% 28% 

(F1,142=4.42, 
p<.037) 

22% 36% 
(Friedman’s 

Q1,145=26.6, 
p<.0005) 

Control 36% 20% 39% 15% 

Table 5: Fa-16 vs. Sp-17 – percentages of treatment/control student correct solutions. 
 All mDC Problems mDC Problem 3 

School A Pre (Fa-16) Post (Sp-17) Pre (Fa-16) Post (Sp-17) 
Treatment 8% 28% 

(F1,203=6.26, 
p=.013) 

10% 36% 
(Friedman’s 

Q1,54=38, p<.0005) 
Control 19% 20% 23% 22% 
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Summary of Analysis 
We analysed third graders’ responses to four, concept-sensitive items that, combined, 

indicate students’ reasoning with the mDC scheme. We showed PD impact on that reasoning 
using three major comparisons: (a) pre-post increase between two consecutive year-ends within 
the same student population, (b) pre-post growth from year-start to year-end in the same schools 
within the PD year, and (c) interaction between outcomes of students of teachers in treatment and 
control groups within the same, single school. Those comparisons support our claim: PD to 
foster teachers’ shift toward student-adaptive pedagogy (focus on multiplicative reasoning) can 
bring about desired growth in their students’ multiplicative reasoning and problem solving.  

A question arises of causes for between-school differences. While more data are needed, we 
note two plausible factors. First, teacher practices in each school reflected a different starting-
point: mostly traditional at School A and mostly reform-oriented, perception-based perspective at 
school B (Simon et al., 2004). Second, teachers differed in their learning, and thus enactment, of 
assessing and using their students’ conception of number, including how this conception predicts 
mDC (Tzur et al., 2017). Specifically, School B teachers reorganized instruction to (a) foster 
conception of number in students who seemed to lack it and (b) strengthen it in students with a 
weak conception of number. That is, they focused more on fostering students’ construction of 
mDC by capitalizing on the strength of their conception of number.  

Discussion  
We found impact of a PD program to foster teachers’ shift toward student-adaptive pedagogy 

on growth in their students’ multiplicative reasoning. The scope of this paper precludes detailing 
the job-embedded PD. Yet, it shows that fostering teachers’ initial adoption of this constructivist-
based pedagogy supports the crucial conceptual advance in students’ reasoning—from additive 
to multiplicative. Moreover, it shows the benefits of helping teachers to first conceptualize 
multiplication themselves, and then teach it, not as repeated addition (as did Control teachers), 
but rather as coordination of three different units, which we fostered in treatment teachers. 
Implications for Practice 

We note two main implications of this study for practice. First, our findings stress the 
benefits of changing teachers’ understanding of multiplication, and then of teaching it, away 
from “repeated addition” and toward units coordination. Arguably, the most telling evidence is 
found in students’ solutions to the typical multiplication Problem 3—markedly students of 
treatment teachers outperforming their control counterparts. Second, for mathematics teacher 
education, our study highlights the benefits of a dual focus on the necessary growth in teachers’ 
own mathematical reasoning and their ability to tailor learning goals and activities to the 
students’ available conceptions. Specifically, in this study we demonstrate the possibility of 
increasing students’ multiplicative reasoning and problem solving by promoting teacher 
development as professionals who can understand, and apply, theory and research findings to 
alter their practice. We note that, in both schools, the principal and other instructional leaders 
provided constant, enthusiastic support for the intended teacher change. 
Implications for Research and Theory 

We note five main foci implied by this study. First, for theory building, this study implies the 
possibility, and need, to corroborate, statistically, the theoretically sound progression in students’ 
schemes for whole number multiplicative reasoning (Tzur et al., 2013). In this study, we found 
the impact on students’ mDC, an introductory level of multiplicative reasoning. Collecting and 
analysing data from a large sample of students would allow corroboration to more advanced 
schemes of multiplicative reasoning. Second, it seems important to also link the impact of our 
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constructivist-based, job-embedded PD on students’ mDC reasoning with their outcomes on 
district and/or state tests, as well as studying this impact for different student populations. Third, 
in our data analysis we grouped teachers uniformly, although they started their individual 
journeys toward student-adaptive pedagogy at different points and progressed in rather different 
paces. Linking differentiations in teacher practices to student learning and outcomes could 
further understandings of how the impact found in this study is related to teacher learning. 
Fourth, further attribution of PD impact to parts of the intervention is needed, that is, to changes 
in teachers’: own mathematics, understanding of conceptual progressions in students’ 
mathematics, selection and enactment of instructional activities tailored to fostering particular 
students’ learning, and use of language as an additional focus of the intervention. Fifth, the 
differentiated support by school principals and coaches we witnessed indicates the importance of 
considering an extended-level unit of analysis (beyond teachers), namely, schools as systems. All 
five foci can build on the findings reported here about the promising impact that a constructivist-
based PD can have on teachers and thus on students’ mathematics. 
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HOW COGNITIVE DEMAND OF TASKS AND TEACHING PRACTICES DIFFER IN 
LESSONS WITH OR WITHOUT INTERACTIVE SIMULATIONS? 

 Sebnem Atabas Kelly Findley Jennifer Schellinger   
 Florida State University Florida State University Florida State University  
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This study investigates whether the use of Physics Education Technology (PhET) interactive 
simulations (sims) supported teachers’ instructional quality depending on in enacting and 
maintaining cognitive demand of mathematical tasks. We report findings from two middle-school 
mathematics teachers who each used parallel module lesson plans across two of their sections, 
with one section following a sim-based lesson plan and the other following a non-sim-based 
lesson plan. Data collection was comprised of the teacher’s tasks as planned and our classroom 
observations. Each lesson was analyzed in terms of instructional quality assessment framework 
(IQA). Preliminary findings suggest that the students using PhET sims had more opportunities 
for higher academic rigor and accountable talk through the engagement with cognitively 
demanding work, rather than focusing on procedures and reproducing knowledge. 

Keywords: Instructional Quality, Interactive Simulations, Instructional Practice 

In recent years, researchers have accentuated mathematical instruction that engages students 
as explorers in a dynamic disciplinary space (Langer-Osuna, 2017), rather than a static and 
structured system of facts and procedures. The Common Core State Standards in Mathematics 
places a high emphasis on cognitively demanding thinking skills and a more in-depth 
understanding of mathematical concepts (National Council of Teachers of Mathematics 
[NCTM], 2010; Stein, Correnti, Moore, Russell, & Kelly, 2017). However, minimal research 
exists on how teachers can transform their practice to help students engage with mathematics 
while also being faithful to the content standards they are tasked to teach (Stein et al., 2017). 

The development of new technology has advanced the instructional capabilities of 
mathematics teachers (Goldenberg, 2000), resulting in increased use of technology in K-12 
classrooms (Rehn, Moore, Podolefsky, & Finkelstein, 2013). Technology has the potential to 
empower teachers to transform their practice in new ways that position students to develop 
deeper cognitive and conceptual understanding (NCTM, 2000). The National Research Council 
(NRC) (2011) has highlighted simulations as among several tools that may help teachers 
transform their practice to meet challenges associated with recent reform efforts. Interactive 
simulations use dynamic visualizations to model representations and functions that lead students 
to sense-make about a phenomenon of interest (Hensberry, Moore, & Perkins, 2015). 

For this study, we concentrate on PhET sims, which show promise as an effective tool for 
improving student engagement and learning in science and mathematics (Hensberry, et al., 
2015). While the use of simulations provides great opportunity for students’ conceptual 
understanding of science and mathematics, the use of computer technology cannot 
guarantee increased learning gains on its own (Lei, 2010). Learning to use classroom tools in 
tandem with reform-oriented teaching practices can assist teachers to consider the “importance of 
learning with technology rather than learning about technology" (Drier, 2001, p. 170). While 
there is some evidence indicating the use of simulations supports higher levels of student 
mathematical thinking (Brown, 2017), we instead consider the influence of simulations on 
teaching practices and its potential to push teachers to deliver a higher quality of instruction. By 
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using instructional quality assessment (IQA) framework (Boston, 2012), we aimed to capture 
observable indicators of high-quality mathematics instruction. This framework included two 
main categories based on academic rigor and accountable talk happened during the instruction. 
Academic rigor included rubrics for the potential cognitive demand of the task, implementation 
of the task, student discussion following the task, and rigor of teachers' questions. Accountable 
talk included scoring of participation, teacher's linking contribution, student's linking 
contribution, teachers' press for knowledge or thinking, and students providing knowledge or 
thinking based on rubrics. Within this study, we examine the following research question: In 
what ways, if any, does the use of PhET sims influence each teachers’ instructional quality in 
middle school mathematics classrooms? 

Methods 
Setting 

This study involves two middle-school mathematics teachers in U.S. public schools, Elise 
and Kathy (both names are pseudonyms). Elise taught three lesson modules for sim and 
corresponding modules without the use of sims for grade 7 involving the topics of unit rates, 
scale, and probability. With the same number of modules for sim and non-sim versions, Kathy 
taught 6th grades on data analysis, ratio and proportion, and algebraic expressions. The non-sim 
lessons had the same learning goals. Each teacher had access to the lesson plans and tasks at the 
PhET website (https://phet.colorado.edu) and were free in deciding which sim and task they 
preferred to use in their lessons. For the non-sim lesson plans, the teachers each created their 
own sequence of tasks. 
Data Collection and Analysis 

Data include video recordings of both the sim and non-sim class periods, which were 
transcribed for ease of coding. Instructional quality was analyzed using the frameworks 
described previously. In IQA, academic rigor score is calculated by four rubrics AR1 (potential 
of the task), AR2 (implementation of the task), AR3 (student discussion following the task), and 
AR-Q (rigor of teachers’ questions) with a scoring scale from 0 to 4. For accountable talk score, 
we used four rubrics named as AT1 (participation), AT2 (teacher’s linking contribution), AT3 
(student’s linking contribution), AT4 (teacher’s press for knowledge or thinking), AT5 (student’s 
providing knowledge or thinking) with the same scoring scale from 0 to 4.   
Findings 

The dimensions of the IQA framework revealed some qualitative differences in the cognitive 
demand of tasks as planned and enacted, the quality of discussion during the whole class 
discussions, rigor of teacher questioning, the opportunities in making connections, teacher's press 
for knowledge and thinking, and students' responses to that press. Findings suggest that in sim 
lessons, both teachers created more opportunities for students to develop mathematical meaning, 
share their ideas, and justify their thinking, rather than focusing on procedures and reproducing 
knowledge. These findings provide a motivation to explore the role of interactive simulations in 
creating opportunities for some teachers to leave their comfort zone, which comprised of 
relatively traditional and teacher-centered practices and attempt to improve the quality of their 
instruction (Lampert, Boerst, & Graziani, 2008). 

Conclusion 
This report aimed to start an exploration of how teachers’ instructional practices might be 

transformed by the use of tasks with cognitive demand and use of interactive simulations. 
Although each teacher taught the same grade level and the same content in their two classes, 
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their moves seem to show some increase in attending student thinking and creating opportunities 
for students to share their ideas, justify their thinking. Despite its exploratory nature, this study 
offers some insight into how the use of interactive simulations might create opportunities for 
teachers to adopt new teaching practices that support students’ mathematical understanding and 
reasoning.  
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PRECALCULUS CLASS: A MIXED METHODS STUDY 
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Using active learning strategies in a large undergraduate mathematics classroom can be 
challenging. Minimal results from recent research on active-learning indicate that more 
investigation of how instructors are being effective using these strategies in these classrooms is 
still needed. Results from this study indicate that students who participated in Team Activities 
and other learner-centered activities in a large scale precalculus undergraduate classroom 
report a good experience and are more positive in their attitudes towards mathematics. 
Particularly, students valued the collaborative efforts in this mathematics classroom, something 
they do not often have the opportunity to do in a traditional mathematics course. This report has 
implications for large universities where many of the classes are taught at a large scale while 
instructors are focused on bringing in more active learning to improve instruction.  

Keywords: Post-Secondary Mathematics; Affect, Emotions, Beliefs, and Attitudes; Instructional 
Activities and Practices 

The number of students in the United States entering and completing undergraduate and 
graduate science, technology, engineering, and mathematics (STEM) programs is declining, and 
this decline has been connected to the nature and quality of instruction in undergraduate STEM 
courses (Carnevale, Smith, & Melton, 2011; PCAST, 2012). The President’s Council of 
Advisors on Science and Technology estimates that an additional 1,000,000 STEM graduates are 
needed in the next decade to meet workplace demands (PCAST, 2012), with these demands 
being both in STEM careers and broader STEM competencies (Carnevale, Smith, & Melton, 
2011). Freeman and colleagues (2014) published the results of a meta-analysis that addressed 
articles about using active learning in STEM and the student outcomes. The results were 
significant.  Performance outcomes showed on average a .5 standard deviation increase when 
active learning strategies are used.  Additionally, persistence and attitudes towards math and 
confidence in doing mathematics is higher when such strategies are.  

This research aimed to introduce a few active learning practices in a large size Precalculus 
classroom and conduct a mixed method study to understand how they are perceived and affect 
student outcomes. Pre-calculus is a gateway course for upper level mathematics courses for 
students and other STEM courses, thus it should be researched to help in its implementation. 
Conducting this research will add to the literature as possible corroboration for the continued use 
for active learning strategies in mathematics courses specifically in large-scaled classrooms 
where direct instruction has been overused. For this study, outcomes were defined as students’ 
attitudes towards mathematics and themselves as mathematics learners, interest in mathematics, 
and self-efficacy. Research questions are: (1) What are students’ perceptions of active learning 
strategies in a large-scale pre-calculus course?  And (2) How are students’ self-efficacy and 
attitudes towards mathematics different after participation in an active learning course? 

 Literature Review 
Student attitudes and self-efficacy are two important facets to study in mathematics education 

today. Núñez-Peña, Suárez-Pellicioni, and Bono (2013) found that poor success rates in 
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mathematics course are related to negative attitudes towards mathematics in general. In addition, 
both student attitudes and self-efficacy play an integral part in perceived usefulness of 
mathematics, in choosing careers involving mathematics, and in opting to take more mathematics 
courses beyond those required for their degree (Sheldrake, Mujtaba, & Reiss, 2015). 

There have been studies focused on ways to improve student attitudes and self-efficacy in 
these courses to help combat the negative repercussions as described above (Wilkins & Ma, 
2003). Wilkins and Ma (2003) report on the importance of social influence, challenging 
curricula, and engaging activities as ways to help students see the importance of mathematics in 
their own lives and to see that mathematics can be engaging as well. The choices instructors 
make on the activities presented in class can make a big difference in how students view 
mathematics in general (Wilkins & Ma, 2003). As retention rates in STEM fields remain a 
difficult feat still today, it is important to help improve the attitudes and self-efficacy of students 
in undergraduate mathematics courses for the future. 

Theoretical support for our work was taken from higher education research and adds a new 
perspective to traditional mathematics education frameworks.  Fraser (1989) stated that “the 
strongest tradition in past classroom environment research has involved investigation of 
associations between students’ cognitive and affective learning outcomes and their perceptions 
of psychosocial characteristics of their classrooms” (p. 315). So, we use this tradition of studying 
the associations as our research base.  We overlay that plan to investigate students’ outcomes and 
perceptions onto learner-centered classroom environments as we see this as a particularly crucial 
factor in the students learning as well as their self-efficacy (Peters,2013). Therefore, our 
investigation is of learner-centered instruction (and we define environment as part of this) which 
has been shown to be effective in increasing both cognitive and affective outcomes. Students’ 
perceptions will influence the affective outcomes and we will study this relationship. 

Methods 
This research was carried out at a large, public university located in the southeast area of the 

United States. During Summer 2016, 94 students were enrolled in a four-credit hour 
Precalculus/Trigonometry course. Throughout the course, a total of five Team Activities were 
assigned to the students to complete in small groups. An entire class period was dedicated for the 
completion of each Team Activity. These frequently consisted of real-world scenarios, and were 
intended to help students develop a deeper understanding of the mathematics. Students worked in 
teams of 3-4 in order to solve application problems and write out complete solutions.  

Participation in both pre- and post-surveys were online, voluntary, and open to all students in 
the course. In total, 18 students completed both pre- and post-surveys (results are in the 
following section). The surveys contained were Likert-scale statements where participants were 
instructed to select the number that best expressed their feelings as to what extent did they agreed 
or disagreed with each statement. Survey questions addressed mathematical self-efficacy, 
students perceived mathematical ability/work ethic, and students’ interest in the field of 
mathematics in the future.  

The purpose of the interview was to collect qualitative data on student perceptions of the 
class and the mathematics they had learned throughout the duration of the course. Fourteen 
students volunteered to be interviewed to share their experiences at the end of the semester. 
Interview participants included seven women and seven men.  

The interview was split into two parts: student views on the course and student mathematical 
thinking. 
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Results 
A close look at that individual responses showed that: (1) of all the changes that occurred 

from pre- to post-survey, 57.69% were increases, while 42.31% were decreases; (2) 11 of the 18 
students increased on average from pre- to post-survey; and (3) On average, each student 
increased by +0.119. 

Looking at the collective responses on the individual questions, 15 of the questions (65%) 
showed positive agreement increases, while 6 of the questions (26%) showed decreases in 
agreement, and 2 of the questions (9%) remained constant with regards to agreement. The 
questions that showed the biggest mean positive increases were: Math is easy for me to 
understand and I am not nervous when I am in math class, I would like an occupation in math, 
and I am able to do the math in my class. The questions that had the biggest decreases in mean 
responses were: I have a lot of math skills, I work hard with math in school, and I don't give up 
even if I have a difficult math problem. 

The questions specifically centered around three distinct categories of questions. They 
included questions related to students’ mathematics self-efficacy (Group 1), questions gauging 
how students’ think about their own work ethic in mathematics (Group 2), and how mathematics 
relates to students’ futures (Group 3). Participants’ responses were averaged within each group to 
create a students’ overall Group Score for that group. Paired t-tests were run using statistical 
software within these group averages. 

Of the three groups of questions, the first was the found to be statistically significant. Just as 
with some findings described above, the mean values from pre- to post-survey were not 
practically different, only increasing from 3.07 to 3.28. The mean values in Group 2: Work Ethic 
in Math decreased from a 4.30 to 4.25. Group 3: Math in the Future showed an overall increase 
in the means from pre- to post-survey having showed a 0.24 increase. 

In the interviews, students were asked if they believed that Team Activities were helpful for 
their learning and then were encouraged to explain their response. Several codes that emerged 
from this section of the interview, and will be discussed in the presentation. Overall feelings for 
Team Activities were very mixed. There was a similar number of students who felt positively 
toward Team Activities and who felt negatively.  

Discussion and Conclusion 
Various course components provided the students the opportunity to work with other students 

to aid their learning (including other aspects not discussed in this paper). The Team Activities 
provided this unique experience that is often not found in a typical large populated mathematics 
course taught at universities. By breaking away from entire class periods filled solely with 
lecture, this course afforded students the opportunity to benefit from active learning through 
these Team Activities. With the Team Activities, students had to work together in groups of 3-5 
people to complete the mathematical tasks that were assigned to them. All the Team Activities 
got the student to get up out of their seats and find their groups. Some of the Team Activities 
allowed students to get out of the lecture hall, altogether. During this time, students had the 
opportunity to work with one another in order to strengthen and reaffirm what they should have 
learned. These had the students go outside and interact with their surroundings in order to solve a 
mathematical task. An overwhelming majority of students enjoyed this active learning aspect of 
the course (along with others not discussed in this paper).  

An interesting aspect that came up after analysis, is that seeing the mathematics working in a 
“real world” context did not seem to be as an important factor to most students. We thought that 
this concerted effort to bring an applicable view into how mathematics in this classroom is 
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actually used in the field is what these students wanted, but it seemed as if this was not as 
important to these students. The Team Activities were designed to elicit a connection between 
the mathematics and its applicability in the real world, yet students failed to mention how the 
two were connected. Potentially, the design of the Team Activities needs to be revisited to make 
more explicit (when appropriate) how these are real scenarios seen by professionals. 

The teaching assistants (TAs) in this course were very essential to the success for many of 
the students. Students were able to interact with the five TAs in multiple facets of the course. 
TAs had a huge role in the implementation of the Team Activities. Students also lamented the 
fact that during the Team Activities, there were never enough of them.  

In this paper, we chose to discuss just a small portion of the entire work due to lack of space. 
The results are significant as we are finding that it makes a difference even to include just a few 
instructional strategies that are considered learner-centered. As related to Fraser’s (1989) work, 
we found evidence to support his contention that perceptions affect outcomes. This result opens 
up a significant question: How important is it to include learner centered instruction fully 
implemented or can a partial implementation work?  More research has been and will be 
conducted to see what (if any) effect that these active learning components that were used in this 
course have affected students’ perceptions, self-efficacy, and attitudes on learning mathematics.  
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To support equitable learning opportunities during group work, it is important that teachers 
notice participation and authority imbalances among students. We analyze two seemingly 
productive student-pairs working on a math task to understand what is made available to notice 
about participation and positioning on two levels: (1) what a teacher can observe during 
teacher-group interactions, and (2) what is noticeable during group work without the teacher 
present. We found that while mathematical participation was imbalanced during group work for 
both student-pairs, for one pair, “togetherness” and balanced authority during teacher-group 
interaction did not reflect, and thus potentially masked, participation imbalance. 

Keywords: Classroom Discourse, Equity and Diversity, Instructional Activities and Practices 

Collaboration is seen as a promising approach to support equity. However, it is also 
recognized that group work does not always play out equitably in classrooms (Esmonde, 2009). 
It has long been argued that successful implementation of collaborative learning depends on 
strategic facilitation of learning environments and that, in particular, teacher-group interactions 
during small-group work are means to shift inequitable group dynamics (Cohen & Lotan, 2014). 
What teachers notice about students’ equity-related experiences during complex collaborative 
learning interactions is important for such support to be possible (van Es, Hand, & Mercado, 
2017; Wager, 2014). There is a need to better understand what equity-related aspects of students’ 
collaboration are not easily available for teachers to notice during small-group check-ins.  

Some aspects of group work are easier to notice than others. When student-groups are off 
task or silent during group work, it may be easy for a teacher to notice that collaboration is not 
ideal. However, even if students stay on task and talk to each other, inequitable processes such as 
imbalances in participation and authority can still occur (Esmonde, 2009; Langer-Osuna, 2017). 
Since imbalances are often subtle and evolve over time, they may not be easily observable during 
short teacher-group interactions. To shed more light on this issue we examine two seemingly 
productive student-pairs working on a collaborative math task, and compare processes 
consequential for equity across two settings: teacher-group interactions and group work. 

Theoretical Perspectives 
Esmonde (2009) draws on sociocultural theories of learning to define equity as the fair 

distribution of: (a) access to mathematical content and practices and (b) access to productive 
positional identities. In this study, we use the metaphor of participation to identify students’ 
access to mathematical ideas and practices, and positioning theory to identify processes by which 
students make sense of themselves and their peers as mathematics learners.  

Learning happens through participation in disciplinary practices (Lave, 1996). In 
collaborative settings, this means active participation in the task and mathematical discourse 
practices of the group, such as asking questions and providing explanations (Reinholz & Shah, 
2018). 

Positioning theory (van Langenhove & Harré, 1999) illuminates ways in which narratives at 
various scales influence and get constituted by small-scale interactions in classrooms (Herbel-
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Eisenmann, Wagner, Johnson, Suh, & Figueras, 2015). During interaction, communicational acts 
evoke positions, expectations about interlocutors’ rights and obligations in a given situation. For 
example, if one student asks another “Is this answer correct?”, he creates a “right” for evaluation, 
positioning his partner as an expert and himself as a novice. Such interpretation of utterances in 
terms of rights and obligations relies on interlocutors’ past experiences and familiarity with the 
same storylines (e.g. “math experts know the answers”).  

We draw on these analytical lenses to address the following research question: How do 
student participation in mathematical practices and positioning manifest: (a) during teacher-
group interaction, and (b) during group work interaction? 

 
Methods 

Data analyzed in this study was collected at a mid-size city in central England. It is part of a 
large corpus of video data of students working on “Formative Assessment Lessons” (FALs; see 
Burkhardt & Schoenfeld, 2018) developed by the Mathematics Assessment Project 
(http://map.mathshell.org/). The video corpus of FAL classroom enactments was collected to 
support development of tablet-based versions of the FALs by the FACT project (Formative 
Assessment with Computational Technologies: http://fact.engineering.asu.edu/). The analyses 
presented in this paper emerged from a larger study within the FACT project, in which the same 
video data supported the development of a collaboration coding scheme for learning analytics 
(VanLehn, Burkhardt, Cheema, Kang, Pead, Schoenfeld, & Wetzel, submitted). 

Since the purpose of our study was to analyze groups that do not exhibit easy-to-notice, 
undesirable small-group behaviors, we searched the data corpus for groups that seemed to be 
working together productively. We selected two such groups and present analyses of four 
episodes: two TGI episodes and two corresponding group work episodes. These episodes feature 
a teacher, Mr.B, and two student-pairs, Abby & Ben and Chris & Diana. 

The task is part of a 7th grade FAL. Students are given four cards with printed money 
amounts: $100, $150, $200, $160 (to be positioned as four vertices of a square) and 12 arrow 
cards with a specified percent increase or decrease, e.g., “up by 50%”. The task entails matching 
a percent increase or decrease arrow card to an appropriate space between money card vertices, 
e.g., matching the arrow card “down by 25%” to the space between $200 and $150.  

Data Analysis 
Episodes were transcribed and coded for speech and action indicators informed by our 

theoretical framework and prior work on participation and authority. We started our analysis 
with these two categories in mind, yet found that another storyline, which we call “togetherness”, 
was helpful in capturing consequential differences between the two student pairs. Our 
operationalization of participation, authority and togetherness is elaborated below.  

Who suggested the card placement is used as an indicator of mathematical participation in 
the task. To analyze participation in discourse practices, we draw on Reinholz and Shah (2018) 
and focus on two discourse forms: explanations and questioning. We coded who explains and 
explanation length (brief or extended), in addition to who asks a question and question type (a 
“why/how” question or a “what” question). 

Our analysis focuses on two storylines and related positions: (a) authority storyline (experts 
vs. novices) and (b) togetherness storyline (partners vs. individual contributors). In the authority 
storyline, experts answer other students’ questions, evaluate contributions, and explain why 
answers are correct. Novices ask questions, seek approval of experts, and defer to experts for 
decisions. To identify expert or novice positions we look at: Who asks and who answers 
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“why/how”, “what”, and “approval” questions. The togetherness storyline is about how students 
perceive their rights and obligations as groupmates. Partners are expected to seek and maintain 
joint attention, share control over decisions, and solicit contributions from each other. For 
individual contributors joint attention and joint decisions are not expected. Though they can ask 
each other questions, each student is responsible for his or her contribution to the task. To 
identify partner or individual contributor positions we look at: the percent of card placement 
decisions that were made jointly, the acceptance rate of students’ focus initiation moves, and the 
total number of questions students asked each other.  

Findings 
First, we present our analyses of Teacher-Group Interactions (TGIs) and Group Work 

focusing on mathematical participation, authority, and togetherness. We then discuss similarities 
and differences between what was noticeable about the two student-pairs in the two settings. 
Teacher-Group Interactions 

TGIs with both pairs involved one of the students explaining a card placement to the teacher. 
The two exchanges were different, however, in the ways authority and togetherness storylines 
were evoked. In the first group, Ben was positioned as an expert and as an individual contributor. 
In the second group, Chris and Diana positioned themselves as novices and as partners. Chris 
and Diana’s greater similarity in authority and higher degree of togetherness give an overall 
impression of more balance in learning opportunities than between Abby and Ben.  
Group Work 
 

 
Figure 1. Summary of participation, authority, and togetherness during groupwork. 

 
Groupwork participation was imbalanced in favor of one student in both pairs; Ben and 

Diana made considerably more placement suggestions and explanations than their partners. The 
imbalance in explaining mirrors the imbalance in asking “why/how” questions. Abby and Chris’s 
questioning created opportunities for Ben and Diana to explain, but, since Abby and Chris were 
not asked “why/how” questions, they did not have similar opportunities to learn by explaining.  

Authority was distributed differently in the two pairs. With Abby and Ben, imbalanced 
authority was stable and enduring; Ben was positioned as expert and Abby as novice. In the other 
pair, Chris was consistently positioned as novice, but Diana’s position was negotiated in 
contrasting directions. Diana positioned herself as novice by repeatedly asking for approval from 
Chris, yet, Chris also positioned her as expert by asking her several “why/how” questions. 

Togetherness was also different in the two pairs. Ben and Abby did not share a clearly agreed 
upon togetherness storyline. While Ben consistently positioned himself as an individual 
contributor, Abby made repeated moves to position them as partners. These ongoing 
negotiations were reflected in the way Ben and Abby went back and forth between having shared 
focus and not. In contrast, Chris and Diana accepted each other as partners. They maintained 
joint focus and joint ownership over different parts of the task by attending to each other’s 
activity and consistently checking-in with each other to make decisions together. 
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Comparison between TGIs and group work 
  Abby and Ben’s participation and authority imbalance and their overall lack of togetherness 

during Group Work manifested similarly during their TGI. In contrast, Chris and Diana’s 
participation imbalance was not clearly reflected in their TGI. When interacting with Mr. B, both 
students positioned themselves as similarly uncertain about the math and demonstrated a high 
degree of togetherness. Though the pair consistently worked together and authority was 
relatively balanced, close examination of their work revealed that opportunities to learn were 
inequitably distributed as Diana suggested and explained significantly more than Chris did. 

Discussion 
Our study reveals that togetherness and balance in authority, salient during teacher-group 

interactions, does not reflect imbalances in mathematical participation that are detrimental to 
equitable learning opportunities. This finding has implications for teacher noticing of student 
collaboration for equity and the design of technology to support that noticing. Recognition that 
togetherness and balanced authority have the potential to mask enduring participation imbalances 
can help teachers critically examine their noticing of seemingly productive groups. Our findings 
also provide further support for the potential of using learning analytics to track participation 
imbalances in classrooms (Reinholz & Shah, 2018). Our analysis suggests that capturing who 
suggests ideas, asks questions, and explains can support noticing for equitable participation.  
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INVESTIGATING COLLEGE CALCULUS INSTRUCTORS’ KNOWLEDGE, 
DISPOSITION, AND RESPONSIVENESS TO STUDENT THINKING 
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Effective instruction relies on an instructor’s knowledge of student thinking and ability to attend 
and respond to student mathematical strategies. Additionally, their disposition towards student 
thinking further influences how they respond to students, impacting student learning. A survey 
and task-based interviews were used to investigate instructors’ responsiveness to student 
thinking. Results from these analyses indicate that responsiveness to student thinking can be 
present during multiple phases of instruction (planning, assessing, and in-the-moment teaching) 
and provides specific instructional practices that relate to responsiveness to student thinking.  

Keywords: Mathematical Knowledge for Teaching, Post-Secondary Education, Instructional 
activities and practices 

Effective instruction, both in a lecture environment and in an active learning environment, 
relies on the instructor’s ability to attend and respond to student mathematical strategies, which 
involves drawing on their knowledge of student thinking (Johnson & Larsen, 2012). This ability 
to attend, or notice, impacts student learning and is influenced by the instructor’s disposition 
towards student thinking (Sherin & Russ, 2014). The purpose of this study is to gain insight into 
the instructional practices that relate to instructors’ responsiveness, and to understand how 
college calculus instructors incorporate their knowledge of student thinking into instruction. 

Research on Instructors’ Knowledge with Dispositions and Responsiveness  
There has been much research surrounding teachers’ knowledge of student thinking, 

particularly at the K-12 level, by considering this as one component of instructors’ mathematical 
knowledge for teaching (MKT). MKT includes knowledge of content and the pedagogical 
knowledge needed to facilitate learning and effective instruction (e.g. Ball, Thames, & Phelps, 
2008). It influences instructors’ decisions, and impacts what they notice and attend to during in-
the-moment instruction and when they prepare for instruction (Jacobs, Lamb & Philip, 2010). 
Jacobs, Lamb, and Philipp (2010) describe this noticing as attending to, interpreting, and 
deciding how to respond to students’ mathematical strategies, and can be leveraged to connect 
instructors’ knowledge and practice with their disposition to student thinking (Hand, 2012). 

An instructor’s disposition influences what they notice as “significant interactions” during 
instruction (Goodwin, 1994). Gresalfi and Cobb (2006) describe disposition as that which 
“encompasses ideas about, values of, and ways of participating with a discipline” (p. 50). This 
stems from a situated cognition learning perspective which points to the importance of context in 
the development of understanding and knowledge. An instructor’s disposition towards student 
thinking is continually shaped and interacts with their MKT to influence instructor 
responsiveness to student thinking, further impacting how they elicit and respond to student 
thinking (van Es & Sherin, 2002). An instructor’s responsiveness to student thinking generates 
opportunities for effective instructional practices (Carpenter et al., 1989). For example, an 
instructor can support student learning by addressing difficulties, or by eliciting student thinking 
through purposeful activities or questioning when they attend to student thinking (Jacobs, Lamb, 
Philipp, & Schappelle, 2011). In this paper I investigate college calculus instructors’ 



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1103	

responsiveness to student thinking. Specifically, I investigate the following research questions: 
(1) What instructional practices reflect responsiveness toward student thinking? (2) How does 
responsiveness show up when instructors discuss their instructional decisions? 

Methodology and Results 
This study is part of a larger study investigating college mathematics instructor knowledge, 

dispositions, and responsiveness to student thinking. Quantitative and qualitative data were 
collected and analyzed separately, and then the results were brought together to provide a more 
complete picture of how responsiveness relates to instructional practices using a convergent 
parallel mixed methods study design (Creswell & Plano Clark, 2007). 
Quantitative Data Collection and Analysis 

To collect data regarding instructional practices and responsiveness to student thinking, the 
Postsecondary Instructional Practices Survey (PIPS) (Walter et al., 2016) was expanded to 
include 5 responsiveness items (PIPS+) (e.g. R1, listed in Table 1). The survey was distributed to 
precalculus and calculus I and II instructors at 12 institutions in the United States. These schools 
were selected as part of a larger study that is studying multiple dimensions of calculus instruction 
across the US. For this study, I consider results from the calculus I instructors of record, which 
includes 35 graduate teaching assistants and 57 faculty/lecturers from the 12 institutions. 

To answer the first research question, an exploratory factor analysis with varimax rotation 
was conducted on the PIPS+ items. Three factors were requested, suppressing factors with 
loadings less than .4. Constructs were summarized considering themes from the items that loaded 
on each factor. In the results I discuss the two factors where the 5 responsiveness items loaded.  
Quantitative Results 

After rotation, the first factor in the factor analysis accounted for 16.4% of the variance, the 
second factor accounted for 12.3%, and the third factor (not related to responsiveness) accounted 
for 8.2%. The first factor indexed instructional practices that include student involvement in 
class, and had strong loadings on 20 items (including 4 responsiveness items). The second factor 
indexed instructor planning and instructional activities, and loaded highly on 8 items (including 1 
responsiveness item), as displayed in Table 1. 

Table 1. Responsiveness Items Related to Two Factors 
Factor Survey Items 

1 R1: I use a variety of approaches (e.g., questioning, discussion, formal/informal 
assessments) to gauge where my students are in their understanding of concepts 
R2: I use student questions and comments to determine the focus and direction of 
classroom lessons 
R3: I adjust my teaching based upon what students currently do or do not understand 
R4: I use student assessment results to guide the direction of my instruction during the 
semester 
Sample survey item: I structure class so that students explore or discuss their 
understanding of concepts before direct instruction 

2 R5: I consider students' thinking/understanding when planning lessons 
Sample survey item: I explain concepts in this class in a variety of ways 
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The exploratory factor analysis illuminates instructional practices that are linked with 
responsiveness to student thinking since factors are generated by grouping items instructors rated 
as similarly descriptive of their instruction. For example, instructors who consider student 
thinking/understandings when planning lessons (R5) also explain concepts in a variety of ways.  
Qualitative Data Collection and Analysis 

To understand the degrees to which college calculus instructors incorporate their knowledge 
of student thinking into their instructional practices (answering RQ2), eight instructors (6 
graduate teaching assistants and 2 teaching faculty) from one of the 12 institutions surveyed were 
interviewed three times over one academic year. The interview protocol was adapted from a 
task-based interview used to examine college instructor MKT (Speer & Frank, 2013).  

The interview data were analyzed using thematic analysis (Braun & Clarke, 2006), by first 
identifying utterances related to instructors’ attention to student thinking. These segments were 
then coded as either related to responding to specific student thinking through some action (e.g. 
“[I would] help him review [how to find] the minimum”), or as responsiveness to student 
thinking, which demonstrated a more general consideration of student thinking (e.g. “I just try to 
put myself inside [the student’s] head as best as I can”). Responsiveness segments were coded 
again, beginning with a priori codes developed from the 5 responsiveness survey items. Eight 
additional codes were created for segments that could not be described by these, including two 
subcodes related to R5. See Table 2 in the results section for sample coded excerpts. 
Qualitative Results 

Instructors incorporated their knowledge of student thinking during planning, grading, and 
in-the-moment teaching. The coding of the interviews highlighted the attention to student 
thinking captured by the responsiveness survey items was present as instructors discussed how 
they adjusted their instruction in response to their students’ understanding (R2, R3) or considered 
student thinking when planning (R5).  

Table 2. Examples of Segments Coded Using A Priori Responsiveness Codes 

Code Interview Excerpt 

R2 “If I have a lesson planned, … then in the middle … we’ll get derailed and 
somebody will say ‘I have a lot of confusion about this piece’... and we end up 
covering things that I didn’t plan to cover at all.” 

R3 “I have been tweaking my lectures because I keep thinking, like I should do an 
example of this because I realize that they really are confused about [it].” 

R5 “When I plan a lesson I think about what my students will struggle with and 
what they will feel very natural, … when I write a lesson I will try to build in 
examples that I hope address [students’] confusion.” 

R5/ Use own 
experience 

“Every single time we try to think before the [recitation] … [thinking about] the 
first time I learned this- what was tough for me, and we write that on the board.” 

Discussion and Implications 
The results from these analyses demonstrate that instructors respond to student thinking and 

strategies during a variety of instructional practices. The exploratory factor analysis highlights 
specific practices that instructors use (regardless of instructional format) to attend to students’ 
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understandings of mathematical ideas, and is supported by the interviews. These provide specific 
practices that can be incorporated by instructors interested in being more responsive to student 
thinking. This is especially relevant due to the findings that encourage the use of active learning 
strategies in undergraduate instruction (e.g. Freeman, et al., 2014), since this requires a rich 
knowledge of student thinking and the ability to respond during in-the-moment instruction.  

In future work, I will further consider how an instructor’s disposition is related to their 
responsiveness. Gresalfi and Cobb (2006) noted that developing “positive and productive 
dispositions … will allow us to begin to address the current well-documented gap between who 
actually has opportunities to be successful in the classroom” (p. 55). Although Gresalfi and Cobb 
were referring to cultivating students’ dispositions, this also can apply to instructors’ dispositions 
towards student thinking; when we better understand how we can foster positive dispositions and 
responsiveness towards student thinking, then we can better support students by providing 
opportunities for more effective instruction building off of student understandings (Hand, 2012).  
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ARGUMENTATION IN THE MATHEMATICS CLASSROOM: SOCIAL, 
SOCIOMATHEMATICAL, AND MATHEMATICAL ARGUMENTS 
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We argue for the expansion of Krummheuer’s conceptualization of argumentation in the 
mathematics classroom. We use Toulmin’s deconstruction of arguments along with studies on 
social interactions (e.g. Goffman, 1959) to position argumentation as a larger social 
phenomenon. We provide examples from two lessons conducted by a first year secondary teacher 
to highlight three different types of arguments: (1) social arguments; (2) sociomathematical 
arguments; and (3) mathematical arguments. Compartmentalizing classroom arguments in this 
way provides researchers a way to examine the perpetuation of deficit narratives, construction of 
sociomathematical norms, and establishment of productive learning environments. 

Keywords: Classroom discourse, Instructional activities and practice 

In general, argumentation is defined as the attempt to convince someone of the validity of a 
claim (Toulmin, 2003). Researchers have focused on various aspects of argumentation in the 
mathematics classroom including understanding classroom events (Whitenack & Knipping, 
2002), teacher’s support of argumentation (Conner, Singletary, Smith, Wagner, & Francisco, 
2014), and students’ justification and proof (Staples, Bratlo, & Thanheiser, 2012). All of these 
studies build on the conceptualization of arguments by Toulmin (2003), but more importantly, on 
Krummheuer’s (1995) ethnography of argumentation in the mathematics classroom.  
In this report, we return to Toulmin’s (2003) conceptualization of argumentation to describe a 
framework deconstructing the arguments occurring in the mathematics classroom and, as such, 
expand the notion of argumentation as a social action. We argue previous research on 
argumentation has solely focused on mathematical arguments (e.g. Ingles, Meija-Ramos, & 
Simpson, 2007) and less on the social arguments taking place on a regular basis (Gee, 2001; 
Goffman, 1959). We focus on episodes from a 1st year teacher’s class to emphasize the variety 
of social and mathematical arguments occurring in the mathematics classroom.  

Argumentation in the Mathematics Classroom 
Krummheuer (1995) provided a theoretical background of argumentation and conceptualized 

how argumentation can be considered in the learning of mathematics. There has been, however, 
few previous attempts to conceptualize argumentation as a broader lens and what new 
understandings such a lens can provide (see Gomez, 2018). We build on previous investigations 
into the ways individuals attempt to convince others in the community of his or her membership 
to particular social groups (e.g. Gee, 2001). In other words, individuals make arguments about 
how they want to be seen and positioned by others. As Goffman (1959) wrote: 

When an individual plays a part he implicitly requests his observers to take seriously the 
impression that is fostered before them. They are asked to believe that the character they see 
actually possesses the attributes he appears to possess, that the task he performs will have the 
consequences that are implicitly claimed for it, and that, in general, matters are what they 
appear to be. (p. 17)  

The framework we describe in this presentation is meant to bring to the forefront, not just the 
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mathematical arguments made in the classroom, but also the social and sociomathematical 
arguments. The use of an argumentation lens can provide new understandings of the ways 
dominant narratives are perpetuated in mathematics education. With the different types of 
arguments described, in combination with Toulmin’s (2003) deconstruction of arguments, 
researchers can dismantle the ways teachers and students perpetuate deficit narratives and aid in 
the reconstruction of more productive narratives. 

Social, Sociomathematical, and Mathematical Argumentation 
In this section, we provide examples of each type of argument with classroom episodes of a 

first year teacher. We use episodes from two lessons to highlight the three types of arguments: 
(1) social arguments (i.e. attempts to convince an audience about one’s social positioning in the 
world); (2) sociomathematical arguments (i.e. attempts to convince an audience of the ways 
individuals do mathematics within the social order); and (3) mathematical arguments (i.e. 
attempts to convince an audience about the validity of a mathematical claim through the use of 
implicit and explicit warrants of a mathematical nature (e.g. constructs, ideas, and facts) or other 
social capital (e.g. authority, status)).  

The classroom episodes come from a longitudinal study following a cohort of 16 prospective 
secondary teachers through their teacher education program. For this report, we focus on Susan 
(pseudonym), a white cisgender female in her early 20s during her first year of teaching 9th 
grade Algebra. The objective of the lessons was to have students determine and write the 
equations of lines. She focused the majority of her time on two tasks. The first task asked 
students to find the equations of lines representing roads near the school. The second task was a 
penny pattern task (see Figure 1). The students were asked to use the data from the penny pattern 
task to construct a graph on a coordinate plane and find the equation of the line. 

 

 
Figure 1. Penny task Susan gave to students 

Social Arguments 
Social arguments are attempts to convince an audience about one’s social positioning in the 

world. In other words, social arguments are about the kind of person one wants to be seen as by 
others. One must argue he is the person he believes he is by using specific discourses and 
presenting himself in particular ways (e.g. what one chooses to wear) (Gee, 2001). We refer to 
arguments made to demonstrate ownership of characteristic traits or to be legitimized as a 
member of a community as identity work (Gomez, 2018). One needs to make social arguments to 
be recognized as a certain kind of person.  

In the following episode, Susan provides a narrative to her students about her thinking 
process for making mathematics more interesting for them. 

Okay story time goes like this. Um, yesterday I was thinking to myself - self, how can I make 
math more interesting for my students because inevitably what happens when I give you guys 
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something you say to me, "Ms. S when am I ever going to use this in real life?" And that is a 
great question. So I'm answering the question. (Susan, Lesson 1)   

For this argument, Susan claimed to be attempting to make mathematics more interesting for her 
students warranted by her answering their questions about the application of mathematics. In the 
narrative, she positions herself as doing the work of a teacher and taking time outside of class for 
the students’ benefit. She may also have been trying to provide a counter-narrative about 
mathematics teachers to help students reconstruct their mathematics experiences as more 
positive.  
Sociomathematical Arguments 

We define sociomathematical arguments as attempts to convince an audience of the ways 
individuals do mathematics within the social order. Consequently, the sociomathematical 
arguments made are directly related to the construction of sociomathematical norms (Yackel & 
Cobb, 1996), or “normative aspects of mathematics discussions specific to students’ 
mathematical activity” (p. 361). The teacher needs to convince the students to accept, follow, and 
then maintain the constructed sociomathematical norms. Furthermore, these events help in the 
development of the students’ identities as doers-of-mathematics (Cobb, Greselfi, & Hodge, 
2009).  

Susan made a number of sociomathematical arguments during the two lessons by attempting 
to convince the students learning mathematics is collaborative. She did not provide explicit 
warrants to the whole group during these two lessons, but did find opportunities to continue the 
argument while monitoring the students’ small group work. While monitoring the students’ 
work, for example, she warrants argues the benefits of collaboration: 

Susan:    Excellent! Yes! Great job! 
Student 1:  Thanks. Now I just don't know how to do this. 
Susan:    Yes you do. 
Student 2:  Yes, it's like - 
Student 1:  So this would be like 7 and then - 
Student 2:  See like 1 and 7 like that [points to paper]. 
Student 1:  Oh. 
Susan:    This is why I put you guys with each other because you can find the answer with 

each other. You don't even need—well you might need me for some stuff. 
Mathematical Arguments 

Mathematical arguments are the attempt to convince an audience of the validity of a 
mathematical claim through the use of implicit and explicit warrants of a mathematical nature 
(e.g. constructs, ideas, and facts) or other social capital (e.g. authority, status). Mathematical 
arguments have been the main focus of research on argumentation (e.g. Inglis et al., 2007). This 
is possibly because of the strong focus Krummheuer’s (1995) conceptualization of 
argumentation placed on the mathematical arguments happening in the classroom. These 
arguments are usually explicit because it is through the construction of mathematical arguments 
students learn to do mathematics. “Learning how to argue whether an idea or claim is true or 
false in a mathematically valid way is an essential part of learning to do mathematics” (Koestler, 
Felton, Bieda, & Otten, 2013, p. 30).  

A multitude of mathematical arguments occurred during Susan’s two lessons. In this episode, 
Susan asked a student to contribute a claim to the whole group by asking her how many pennies 
there are in the first stage of the penny pattern task. 
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Susan:  Okay so this girl is playing with pennies and she’s decided, hey how about I start 
arranging them in a particular order and keeping track of how I arranged them. So the 
first stage is right there [points to board]. How many pennies total does she have in the 
first stage? [Susan reaches for cup with popsicle sticks and selects one] Student6? 

Student 6:  Seven. 
Susan:  Seven. Yes. [writes 7 in table]. Here is her pennies [points to board; uses marker 

to write "1" on each penny as she counts them]. One, two, three, four, five, six, seven. 
She has seven total pennies from stage one.  

Susan was the main contributor to this mathematical argument. While the student was providing 
the claim, the warrant was contributed by Susan. So she was demonstrating her mathematical 
reasoning and not the student’s thinking. Students may infer this as Susan arguing for her 
authority as well especially if Susan contributes majority of warrants.  

Discussion and Conclusion 
In this report, we extend and build on Krummheuer’s (1995) conceptualization of 

argumentation in the mathematics classroom. In general, more than just mathematical arguments 
occur in the classroom. We argue social and sociomathematical arguments need to be explored 
further because they recognize the complexities of teaching and learning mathematics.   
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CARING, MALE AFRICAN AMERICANS, AND MATHEMATICS TEACHING AND 
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In this paper, the authors report on a qualitative study that explored the influence a “successful” 
African American male mathematics teacher had on three African American male high school 
students’ perceptions of teacher care. This critical ethnography study was guided by an 
intersection of an eclectic array of theoretical traditions, including care theory, critical race 
theory, and culturally relevant pedagogy. The study employed ethnographic methods during data 
collection; data analysis identified six overarching themes that the participants used to describe 
teacher care. Findings suggest that teachers should reconsider the ways they care for African 
American male students and that a caring teacher–student relationship has a positive influence 
on African American male students’ descriptions and perceptions of teacher care. 

Keywords: Equity and Diversity, High School Education  

Introduction 
Narratives on the achievement outcomes of Black boys in mathematics are too often negative 

(see Stinson, 2006). Contrary to these negative narratives, however, research affirms positive 
outcomes for students, including Black boys, when engaged in caring teacher–student 
relationships (see, e.g., Bartell, 2011; Roberts, 2009; Steele, 1992). But literature specific to 
caring teacher−student relationships, African American male students, and mathematics teaching 
and learning is all but nonexistent. Therefore, in this study, we sought to uncover the definitions 
that African American male high school students had of teacher care, and how, if at all, an 
African American male teacher might influence their perceptions of teacher care. We categorized 
the study as a critical ethnography where the researcher studies an intact cultural group in a 
natural setting over a prolonged period of time (Madison, 2005). It was guided by an intersection 
of an eclectic array of theoretical traditions (Stinson, 2009) that included care theory (e.g., 
Gilligan, 1982; Noddings, 1992), critical race theory (e.g., Tate, 1997), and culturally relevant 
pedagogy (e.g., Ladson-Billings, 1992).  

Theoretical Frameworks 
Care theory as an analytic framework has a vast history and has been described from many 

perspectives from a variety of disciplines. This body of knowledge is a result of contributions 
from several scholars who have defined care in multiple ways (see, e.g. Agne, 1999; Gilligan, 
1982; Kohlberg, 1984; Noddings, 1984, 1992, 2002, 2006; Oakes & Lipton, 1999; Siddle-
Walker, 1993). This multiplicity has often created somewhat of a muddled definition of care. 
Nonetheless, Gilligan’s (1982) scholarship provided the foundation in which current research on 
an ethic of care is established where caring transitioned from being initially rooted in the field of 
nursing, to being recognized as a framework to base other research. 

Noddings’s (1984, see also 1992) scholarship is recognized as the first to expand Gilligan’s 
(1982) work on care to education. Noddings believes human interaction was the central theme of 
care theory, which created a natural fit in education research. Noddings defines a caring 
relationship as inclusive of components of understanding, inter-subjectivity, and constant 
activity. She claims that a caring relationship is not complete unless there is some sort of 
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confirmation given by the cared for. Therefore, Noddings argues that the teacher–student 
relationship should be reciprocal and requires a certain amount of trade. She also reveals 
concerns of cultural relevance when it comes to care in the classroom. Noddings (2006) states, 
“Two students in the same class are roughly in the same situation, but they may need very 
different forms of care from their teacher” (p. 20). The teacher must understand each individual 
student to better provide the care defined by Noddings’s theory. 

Critical race theory (CRT) as a theoretical framework was first derived from the legal field in 
the 1980s, when scholars such as Derrick Bell, Richard Delgado, and Alan Freeman searched for 
a way to more directly and adequately address race and racism in the United States (Roberts, 
2010). It was initially rooted in critical legal studies (CLS), a movement that critically examined 
formalism and objectivism (Tate, 1997). CLS offered critiques of the law, but failed to address 
issues related to race. As a result of the shortcomings of CLS, came the development of CRT. 
Gloria Ladson-Billings and William Tate were the first scholars to introduced CRT to the field of 
education (DeCuir & Dixson, 2004). CRT stresses the need to interrogate how the law as well as 
socio-cultural and -political structures and discourse reproduce, reify, and normalize racism in 
society. 

Throughout the research project, male African American high school students were provided 
a non-colorblind opportunity to describe teacher care and explain the practices of a caring 
teacher (see, e.g., Thompson, 1998). This non-color-and-cultural-blind approach made it possible 
for the descriptions that the students had of caring teachers to include tenets of culturally relevant 
pedagogy (CRP). CRP is frequently identified with the work of Ladson-Billings (e.g., 1992); she 
defines CRP as pedagogy that “prepares students to effect change in society, not merely fit into 
it” (p. 382). She stresses how vital the teacher−student relationship is to CRP, and says it allows 
teachers to “empower students intellectually, socially, emotionally, and politically” (p. 382). This 
type of pedagogy views culture as a powerful variable in the success of students, and it 
acknowledges the importance of high standards and expectations for teachers (Irvine, 2001). 
Roberts (2009) argues, “CRP is a philosophical construct that discusses a set of pedagogical 
behaviors that identifies, values, respects, and utilizes the cultural knowledge and performance 
styles of ethnically diverse students” (p. 16).  

Methodological Considerations 
The participants in this study were three high school-aged male African Americans—

Kareem, Joshua, and Michael (pseudonyms, as are all proper names)—in a tenth-grade 
Geometry class at Divine High School, and the African American male teacher of that class. The 
student body at Divine is composed of all male African Americans; it is a public charter school, 
located in the “inner city,” in a low socio-economic neighborhood. The three male participants 
are students of the same “successful” African American male teacher—Mr. Ira—who was 
selected by the process of “community nomination” (Foster, 1997), whereby members of a 
community of interest suggest individuals who they believe will be the best subjects for research. 
Mr. Ira had been teaching for over twenty-two years, working at Divine since it opened. He was 
a tenth-grade geometry teacher, 54-year-old father of three, originally from the northeastern 
United States, and identified as an African American man.  

Data collection included semester-long, daily participant observations (and accompanying 
field notes) and three semi-structured interviews with each participant (all observations and 
interviews were conducted by the first author). The method of participant observation suggests 
researchers should take part in activities, rituals, interactions, and events of the participants as a 
means of learning about their lives and culture (DeWalt & DeWalt, 2011), while field notes 



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1112	

assists in “constructing the case.” The theoretical underpinnings of care theory, critical race 
theory, and culturally relevant pedagogy (described earlier) provided the lens to ground the logic 
of the observations. The first author spent almost every day for a school semester (16 weeks) at 
the research location for participant observations. Participant observation “puts you where the 
action is and lets you collect data…any kind of data that you want” (Bernard, 2006, p. 343). 
Field notes were used to record data from the observations. Field notes were crucial to recording 
the observations, laying a foundation for the contexts for the participant interviews; given that 
participant observation “is rarely, if ever, the only technique used by a researcher conducting 
ethnographic research” (DeWalt & DeWalt, 2011, p. 3).  

Findings 
During data analysis, six overarching themes were identified that the participants used to 

describe teacher care: (a) motivation, (b) culture, (c) confidence, (d) discipline, (e) concern for 
futures, and (f) environment (see Table 1). These themes were interpreted from the participants’ 
significant statements, and of these six themes motivation and classroom environment were 
noted as the most important to the student participants. These African American boys wanted to 
feel (and be) capable and comfortable in a mathematics classroom. Fortunately for them, they 
had an African American male teacher, Mr. Ira, who also found these aspects of teacher care 
important and who would stop at nothing to encourage and create an environment designed for 
their success in mathematics.  

Table 1: Overarching Codes/Themes and Sub Themes – Descriptions of Teacher Care 
 

Motivation Culture Confidence Discipline Concern for 
Futures Environment 

Inspirational Understands 
struggle 

Believes in 
students 

Rules Will not allow 
students to 
cheat 
themselves 

No judging 

Leads by example Fights 
stereotypes 

Gives students 
hope 

Expectations Future job 
concern 

Safe 

Encouragement Defends 
students 

Teaches self-
efficacy 

Second chances Treats students 
like his children 

Comfortable 

Makes students 
feel important 

Diversifies 
lessons 

 Empathy Cares about 
students’ lives 
outside of 
school 

Mistakes okay 

Praises students   Patience  Family 
environment 

   Firm but fair  Offset 
institutional 
racism 

 
When it comes to the influence an African American male teacher had on the participants’ 

perceptions of teacher care, there was some overlap with how they described teacher care. An 
African American male teacher simply softened the environment, so to speak, and made the 
student participants feel more comfortable. Clearly, the students perceived connections to the 
teacher participant, based on his appearance, and assumptions they made about him. Pursuing 
this further, and based on the participants’ descriptions, we are all but certain that these 
assumptions were also rooted in their historical interactions with teachers of other races. These 
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interactions helped garner the assumptions and shape the eventual expectations the students had 
of the teacher participant in the beginning. Mr. Ira called for “empathy and patience as teachers 
weather the storm, because they will be tested.” But when the storm is over, hindsight reveals 
that this is a nonissue. Because as intelligent as they are, the student participants, and Black boys 
in general, eventually crossed reference their pre-expectations with how they define a caring 
teacher.  
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MULTILINGUAL PERSPECTIVES AS NEW OPPORTUNITIES FOR SEEING AND 
LEARNING MATHEMATICS 

 Cristina Valencia Mazzanti Martha Allexsaht-Snider 
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This research intends to offer multilingual perspectives of the languages in mathematics 
classrooms and how they can be conceptualized. Through our analysis of the multilingual 
perspectives of translanguaging and the teachers, children, and researchers in the study we 
present ways to identify and understand different language practices that emerge as young 
multilingual children experience and make sense of mathematics. 

Keywords: Equity and Diversity, Early Childhood Education, Culturally Relevant Pedagogy 

The use of more than one language in mathematics classrooms has been often conceptualized 
as code-switching or language-switching (e.g., Barwell et al., 2016). However, neither language-
switching nor code-switching represents a multilingual perspective of the world, but instead a 
perspective in which being monolingual is still considered the norm (Garcia & Wei, 2014; Celic 
& Seltzer, 2011). Although hard to know with precision, it has long been estimated that more 
than half the world knows more than one language (Stavans & Hoffman, 2015). These 
perspectives point to the increase of multiple languages in mathematics classrooms across the 
globe and make it necessary to understand the language practices of multilingual people1 from a 
standpoint in which being monolingual is no longer considered the norm. 

This paper aims to offer possibilities for the way we identify the languages used by children 
and educators during mathematics learning from the multilingual perspectives of the authors, 
children, and translanguaging, drawing on data collected for two school years in two 
kindergarten classrooms. For this purpose, we understand languages as any medium through 
which we communicate or make sense of the world. From this perspective, we consider the 
following questions: (1) What languages are currently being used in mathematics classrooms? 
(2) How can we conceptualize the languages in mathematics classrooms from multilingual 
perspectives? 

Perspectives and Theoretical Framework 
This paper takes an interpretivist approach, using hermeneutics as a way to make sense of the 

multilingual perspectives of the authors, the children, and translanguaging. A hermeneutic 
perspective allows us to look closely at the narratives collected as data for this study and disrupts 
them through purposeful interpretation; it allows us to question taken for granted notions about 
knowledge and language in the context of mathematics learning. Moules et al. (2015) explain 
that “hermeneutics is organized around the disruption of the clear narrative, always questioning 
those things that are taken for granted.” (p. 4). Hermeneutics also allows us to understand our 
role as researcher in the process of interpretation and to think about the contextual factors that 
shape understanding as well as what can be understood. 

We draw on translanguaging to re-conceptualize the learning and language practices of 
children taking place in mathematics classrooms because it offers a view of language that is 
inherently multilingual. The term is used to describe the way multilingual people use language; it 
refers to “the ability of multilingual speakers to shuttle between languages, treating the diverse 
languages that form their repertoire as an integrated system” (Canagarajah, 2011, p. 401). 
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Translanguaging offers a way to conceptualize the language practices of multilingual people as 
something different than code-switching or language-switching. As explained by Celic & Seltzer 
(2011) “Notice that translanguaging is not simply going from one language code to another. The 
notion of code-switching assumes that the two languages of bilinguals are two separate 
monolingual codes that could be used without reference to each other. Instead, translanguaging 
posits that bilinguals have one linguistic repertoire from which they select features strategically 
to communicate effectively. That is, translanguaging takes as a starting point the language 
practices of bilingual people as the norm, and not the language of monolinguals, as described by 
traditional usage books and grammars” (p. 1). 

We find it particularly helpful to think about the way translanguaging incorporates the idea of 
languaging, and how this allows us to conceptualize language in a dynamic way. “Language is 
not a simple system of structures that is independent of human actions with others, of our being 
with others. The term languaging is needed to refer to the simultaneous process of continuous 
becoming of ourselves and of our language practices, as we interact and make meaning of the 
world. […] Languaging both shapes and is shaped by context.” (Garcia & Wei, 2014, p. 8.) 
Adopting translanguaging as a framework for understanding the language practices of 
multilingual people allows us to unveil the ways in which language practices are complex and 
ingrained in contexts that relate to identity and nationality and carry power dynamics.  

Modes of Inquiry 
In this paper, we draw on multilingual perspectives as the sources of our analysis and 

conceptualization of language through the authors, the children, and translanguaging. We also 
draw on the data collected during mathematics instruction in two kindergarten classrooms in two 
public schools in Georgia as a part of a larger study to understand the connections between 
mathematics and language. The focus of the study during the first school year was the bilingual 
students in a public school in a kindergarten classroom with a large Latino population. The focus 
of the study in the second school year was the children in an immersion bilingual program 
(Spanish/English) in a different public school. The children in the bilingual program were taught 
mathematics in Spanish and were native speakers of Spanish and/or English. 

Cristina collected data through the role of a participant observer and volunteer teacher using 
journal entries to record significant events while also collecting student work. During the second 
year of the study we introduced audio recordings for data collection as well as periodic field 
notes taken by Martha through the role of reactive observer. Data was collected and analyzed 
through an interpretative hermeneutic approach because it provided us with ways to look deeply 
and understand differently, disrupting current narratives about language use in mathematics 
classrooms. We conducted in-depth analysis of events rendered into text, interpreting them from 
multilingual perspectives as a way to bring to light the dynamic, contextualized, and interactive 
nature of language practices in the lived experiences of multilingual children in the mathematics 
classroom. 

Results and Discussion 
In this section, we consider a lesson on word problems implemented by Cristina in the 

second year of the study as it allows us to see the way languages are being used. During this 
particular lesson, the class is being introduced to word problems as well as how to represent their 
mathematical processes and answers. For this purpose, in her role as a volunteer teacher, Cristina 
worked with the children to create a word problem and how to represent their thinking using a 
picture book as a common and meaningful context. The complexity of language practices 
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occurring during this lesson is particularly visible in audio-recordings, for instance in the 
following transcription of the lesson: 

 
Cristina: Ramón hizo cinco dibujos. Su hermana Marisol encontró tres dibujos 

¿Cuantos dibujos hay? [Several students raise their hand] - Kira ¿Cuál es 
el problema? No me digas la respuesta ¿Cuál es el problema? [Ramon 
made five drawings. His sister Marisol found three drawings. How many 
drawings are there? [Several students raise their hand] -Kira, what is 
the problem? Don’t tell me the answer. What is the problem?] 

Kira:  Um- uh – 
Cristina: ¿Qué queremos saber? [What do we want to know?] 
Kira:  The brother did five drawings. The little sister has three more. How many 

does both of them have together?     
     

Perhaps the first idea that comes forward about language in this brief interaction is the fact 
the fact that mathematics is occurring multilingually, that Cristina and Kira are using Spanish 
and English simultaneously as a way to communicate and learn mathematics. Translanguaging 
allows us to see this multilingual interaction as a fully complex communicative practice. In other 
words, instead of seeing the interaction from a perspective in which English and Spanish are 
working separately to support mathematics learning, translanguaging allows to see how both 
languages work together to support Kira’s and other students' mathematical learning. Kira’s 
restatement of the word problem presented in Spanish not only introduces English as a strategy 
to support understanding but also incorporates several mathematical clues about what we are 
trying to know. In her answer, Kira incorporates word clues (i.e., more, both of them, and 
together) calling attention to the mathematical question and the way the numbers relate to each 
other. Kira’s answer builds understanding from what is being said beyond translation, and it 
reflects the syntaxes of Cristina’s sentences in Spanish (Ramón hizo 5 dibujos, the brother did 5 
drawings); this indicates that Kyra is using both languages to understand the mathematics 
question and the communicative demands within the lesson.  

Through the notion of languaging, as explained in the theoretical section, translanguaging 
also allows us to see how the contextual nature of language plays a role in our ability to 
communicate and make meaning of an interaction. This is noticeable in the transcription when 
Cristina restates her question in a different way to elicit Kira’s response. In the interaction it is 
possible to see that the first question Cristina asks does not makes sense to Kira, as the idea of a 
problem in the way they are often talked about in mathematics classrooms is unfamiliar for the 
student. This is consistent with the findings of other researchers who have called attention to the 
issue of naming word problems, problems, when the situation does not appear problematic to 
students. This also brings attention to the way Cristina was able to identify what Kira needed to 
understand and to be successful at answering the question. Although Kira is a native English 
speaker, Cristina understood that the breakdown in communication was because of the meanings 
that are attributed to the word “problema/problem” in mathematics classrooms, and not because 
she did not understand Spanish. 

The interactions in the transcription also allow us to open questions about the way language 
can be used symbolically and how this plays a role in the mathematics classroom. The quantities 
in the word problem (3/5) are originally introduced through the way they are represented by 
sounds in Spanish (tres/cinco). Kira then connects them to the way they are represented by 
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sounds in English (three/five). Later in the lesson the students worked independently to connect 
those sounds to a numeral and a model of the quantity, as can be seen in the following examples:  
 

 
Figure 1. Connections between sounds to a numeral and a model of the quantity. 

 
This way of using languages, to provide multiple complex representations of the same concept 
through different modalities, allow us to conceptualize the languages being used but also allow 
us to see how languages catalyze learning and make it visible. In this particular instance it is a 
way for children to build their number sense, making meaning of the relations that exist between 
numbers to successfully complete and represent ideas about addition.  

This report was designed to highlight the many languages that are used in mathematics 
classrooms and consider how we might conceptualize them from multilingual perspectives. By 
offering a brief analysis of a small set of data we show some of the possibilities and richness 
this kind of analysis can have, particularly for multilingual people. As a final essential remark, 
we would like to point out that adopting translanguaging as a framework for understanding the 
language practices of multilingual people in mathematics classrooms is an issue of equity, 
particularly in a world that is increasingly multilingual. Translanguaging provides us with a 
way to understand the inherent power dynamics of languages and a way to invert them; this is 
visible even in the way it takes multilingualism as the norm instead of monolingualism. Setati 
(2008) makes a powerful argument for the need to focus on the political role of language within 
multilingual mathematics education research. She calls us to go beyond arguing for the 
incorporation of students’ home language or thinking of language as tool for thinking and 
communication. In this instance, taking a stance to see language in mathematics instruction 
through multilingual perspectives allowed us to purposefully interpret data, disrupting taken for 
granted narratives and opening new and more equitable possibilities to see and understand the 
mathematics learning of multilingual children. 
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AND TEACHER CONCERNS IN HIGH SCHOOL MATHEMATICS 
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The purpose of this study is to investigate the relationships among teacher concerns regarding 
the CCSSM, teachers’ intended curriculum and teachers’ enacted curriculum.  Three high school 
teachers were intentionally selected as a focus group, based on their different levels of concern.  
Each teacher was observed during three different lessons on linear/non-linear functions. Pre- 
and post-observation interviews were conducted both before and after each lesson was taught. 
Findings suggest a complicated relationship exists between teacher concerns and their intended 
and enacted curriculum. Regarding teacher concerns, different factors seem to take account for 
the complicated relationship between teacher concerns and their enacted curricula.  

Keywords: Enacted Curriculum, Teacher Concern, High School Mathematics  

Introduction 
The Common Core State Standards for Mathematics (CCSSM) highlight the importance of 

students’ conceptual understanding, mathematical reasoning, and problem solving in order to 
prepare students for college and careers.  However, the success of this reform effort largely 
depends on how teachers actually design and implement instruction based on the goals of the 
new standards (Son & Kim, 2015, 2016).  Depending on the concerns teachers have, based on 
the new standards and curriculum, teachers may or may not consider themselves qualified to 
implement the desired innovations (Christou, Eliophotou-Menon & Philippou, 2004).While there 
exists an increasing amount of research on reform efforts, many questions still remain regarding 
the implementation of the CCSSM and teachers’ concerns. The purpose of this study is to 
investigate the concerns teachers have regarding the implementation of the CCSSM and how 
those concerns relate to the enactment of their curricula. This study also explores how teachers 
address the mathematical shift of rigor defined in the CCSSM in connection with the tasks they 
use and types of questions they pose to their students.  The research questions that guide this 
study include: (1) In what ways do Algebra 1 teachers implement the CCSSM to address the 
mathematical shift of rigor, as defined by the CCSSM, in their Algebra 1 classes? And (2) In 
what ways do Algebra 1 teacher concerns connect to their implementations of the CCSSM?  
Three high school teachers were intentionally selected as a focus group, based on their different 
levels of concern. In answering the two research questions, this study explored whether the three 
teachers’ intended curricula aligned with their enacted curricula in their teaching of linear and 
non-linear functions. It was also determined if the tasks provided to students and the teacher 
questioning during instruction addressed the major shift of rigor emphasized in the CCSM.  

Theoretical Perspectives 
Remillard (2005) describes multiple meanings of curriculum use: curriculum use as 

following or subverting the text, curriculum use as drawing on the text, curriculum use as 
interpretation of text and curriculum use as participation with the text.  Building on Remillard’s 
second perspective, this study regards teachers’ curriculum use as drawing on the text.  With this 
view, the emphasis is placed on the teacher, and views the text as “one of the many resources in 
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constructing the enacted curriculum” (Remillard, 2005, p. 219). We also build on three different 
frameworks to explore teacher concerns, mathematical tasks and teacher questions. 

In exploring teacher concerns on the CCSSM, six stages of concerns identified based on the 
Concerns-Based Adoption Model (CBAM): A Model for Change in Individuals (Hall & Hord, 
2001) are used. In exploring learning opportunities presented to students, cognitive demand of 
mathematical tasks was explored based on the framework by Stein, Grover, and Henningsen 
(1996). The four levels are used to determine the rigor of tasks teachers used in their classrooms, 
which refer to the thinking processes involved in solving the tasks. The framework involves two 
levels of low cognitive demand tasks—High cognitive demand (i.e., Procedures with 
Connections; Doing Mathematics) and low cognitive demand (i.e., Memorization; Procedures 
without Connections). In order to explore teacher questions, the framework adapted from Boaler 
and Brodie (2004) was used.   

Methods 
Table 1shows an overview of the study design. Qualitative research methods (e.g., classroom 

observations and teacher interviews) were utilized for the study. Three teachers were 
intentionally selected, based on their concerns, for the case studies in order to analyze teachers’ 
implementation strategies of the CCSSM. Ms. Brimm, Mrs. Doherty, and Mrs. Schilling (all 
psuedonyms) work in the same school district. Classroom observations and pre and post-lesson 
interviews with these teachers were used for this study. Prior to analyzing lesson tasks, a 
problem analysis was conducted on the Pearson Algebra I Common Core textbook.  Since the 
observed lessons for this study solely focused on linear and non-linear functions, only the 
corresponding chapter (chapter 4) of the textbook was analyzed. 

Table 1: Overview of Study Design 
  Qualitative Research Study 

Participants  • 3 teachers from a rural school district in Western New York   
• Each teacher exhibits a different stage of concern 

Data Collection  • 3 video-recorded classroom observations for each teacher  
• One general interview prior to any lesson enactment 
• Pre- and post-lesson interviews before and after each of the lessons 

Data Analysis  • Relative frequencies completed for task type (application, procedural, 
conceptual) for (a) each lesson and (b) total across the 3 lessons  

• Significant patterns in teacher questioning  
• Differences in intended vs. enacted curriculum  

 
Three sets of data were collected from the three teachers: teachers’ planned lesson, three video-
recorded observations and field notes and structured interviews. Teachers’ guided notes and their 
taught lessons were analyzed in light of two aspects – (1) mathematical tasks and types used and 
(2) types and frequencies of teacher questioning. The interview data were analyzed to determine: 
(a) if the teachers intended curriculum differed from their enacted curriculum, (b) if they were 
aware of any deviations that occurred between the intended and enacted and (c) why teachers 
made deviations.   
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Summary of the Findings 
All three teachers in this study used the same resources, had the same professional 

development opportunities and designed the curriculum collaboratively.  However, the enacted 
curriculum for these teachers was differed  based on the level of concern each teacher had. 
Alignment Between Rigor of Teachers’ Enacted Curriculum and the CCSSM 

First, we found that the Pearson Algebra 1 Common Core (Charles et al., 2012) the three 
teachers used provide cognitively low-demand tasks and fail to address the mathematical shift of 
rigor highlighted in the CCSSM. All sections except section 4.1 had a heavy emphasis on 
procedural tasks including the sections observed in this study.  This analysis suggests that if 
teachers closely follow the Pearson Algebra 1 Common Core textbook as a main resource, their 
students might not be exposed to a high level of cognitive demand.   

Second, we found that the vast majority of tasks and teacher questions for all three 
teachers were low cognitive demand. Teachers at all stages of concern are not providing 
cognitively demanding lessons nor are they addressing the mathematical shift of rigor. Ms. 
Brimm stated in her initial interview that she went on the recommendation of the high school 
teachers to use the Pearson Algebra 1 Common Core textbook. Mrs. Doherty also noted that this 
textbook was most closely aligned with the CCSSM Algebra standards. Mrs. Schilling’s 
comments were similar.  She stated that the textbook was the best one written to address the 
Common Core Algebra standards. We observed that these three teachers rarely altered textbook 
problems. In particular, the vast majority of questions for all three teachers were low cognitive 
demand. Teachers only significantly increased the cognitive demand of the questions when they 
had students working collaboratively in groups in order to communicate their ideas to others and 
justify their reasoning.   
The Relationship of Teacher Concerns and the CCSSM Enacted Curriculum 

First, Ms. Brimm was determined to be at the self-concern level. She felt she was not 
knowledgeable about the mathematics content and methods she had to teach.  She thus followed 
the textbook very closely in selecting tasks.  She stated that at times, she had to learn the content 
before she could teach it. In addition, she rarely altered the tasks during the enactment of the 
lessons. Ms. Brimm’s lack of content knowledge seems to lead her to have self concerns.  This 
resulted in her following the textbook closely.  Her self concerns also led her to focus mainly on 
content coverage and did not allow her to modify the intended curriculum.   

Second, the teacher with management concerns tended to express her students’ low 
abilities in doing mathematics. Ms. Schilling was determined to be at the management concern 
level. Similar to Ms. Brimm, in the selection and design of her lesson tasks, Mrs. Schilling stated 
that all her tasks came from the Pearson Algebra 1 Common Core textbook.  However, in the 
enactment of the tasks, Mrs. Schilling did alter her initial plans. Mrs. Schilling’s concern over 
the material she had to cover led her to have management concerns.  She was comfortable with 
the content and methodology and, therefore, was able to slightly modify her intended curriculum. 
However, she was unable to provide any cognitively demanding lessons since her focus was on 
content coverage and the ability level of her students.   

Third, Mrs. Doherty was found to have impact concerns.  Mrs. Doherty’s high interest in 
student understanding, as well as her desire to collaborate frequently with other teachers, led her 
to have impact concerns.  With this higher level of concern, Mrs. Doherty was able to focus her 
lessons on student understanding, and therefore, was able to modify her intended curriculum.  
She altered the curriculum based on the needs of her students.  However, her tasks and questions 
remained at a low cognitive level for two of the three lessons.  
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Discussion and Implications 
This study contributes to the current literature because it has shown the relationships between 

teacher concerns on the CCSSM and their intended and enacted curriculum.  Teacher concerns 
seem to be hindering their ability to provide cognitively demanding lessons, thereby showing 
limited success for the CCSSM.  Therefore, implications of this research exist for textbook 
publishers, curriculum developers, professional development providers, teacher educators, 
teachers, administrators and future researchers. For example, textbook publishers, curriculum 
developers and teachers need to be aware of cognitive demand of tasks used by teachers.  
Professional development providers and teacher educators can help teachers focus their 
questioning, and address the concerns teachers have.   
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MATHEMATICAL MODELING COMPETENCIES ESSENTIAL FOR ELEMENTARY 
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This report documents three teachers journeys as they engaged in a Teacher Research Study 
Group while implementing mathematical modeling in the elementary grades.  In detailing three 
teachers’ perspectives, we provide a context and describe each of the teachers’ mathematical 
modeling journeys and their process of adopting the innovation of MM in their classrooms. Four 
main mathematical modeling competencies emerged as being central to the success of enacting 
mathematical modeling in the elementary classroom: a) finding relevance, b) identifying MM 
potential; c)posing MM questions; and d) capitalizing on a useable model. 

Keywords: Teacher Education-Inservice/Professional Development, Modeling, Instructional 
Activities and Practices 

 Research Literature on Mathematical Modeling 
As a reform-oriented initiative, we consider MM to be an ambitious teaching practice. 

Ambitious teaching is teaching that aspires to teach all students academic content and have them 
apply their knowledge to solve authentic academic problems. MM does exactly this as it moves 
students through a process of mathematizing a real-world problem and using the mathematics to 
solve it.  MM, as an ambitious teaching practice, builds on student ideas and gives students a role 
of sense-makers. Our increased dependence on technology together with the complexity and 
interconnectedness of our society has led to significant changes in the types of mathematical 
thinking required in today’s world (English, 2013). Educational leaders are emphasizing the 
importance of developing students’ abilities to deal with these new demands of our society (e.g. 
Lesh & Doerr, 2003). These abilities include interdisciplinary problem solving, techno-
mathematical literacy, flexibility in applying numerical and algebraic reasoning, thinking 
critically, and constructing, describing, explaining, manipulating and predicting complex systems 
(English, 2013). Mathematical modeling (MM) is seen as a powerful tool for advancing students 
understanding of mathematics and for developing an appreciation of mathematics as a tool for 
analyzing critical issues in the real-world, that is, the world outside of the mathematics classroom 
(Greer & Mukhopadhyay, 2012). Traditionally, MM has been implemented primarily in 
secondary schools, but recent research examines using this approach with elementary students to 
promote their problem solving and problem-posing abilities (e.g. English, 2010). MM provides 
the opportunity for students to solve genuine problems and to construct significant mathematical 
ideas and processes instead of simply executing previously taught procedures and is important in 
helping students understand the real world (English, 2010).  

Method for Our Study 
A qualitative case study approach was selected for this study as our intent was to gain insight 

and understanding of elementary school teachers’ adoption of MM . The boundaries of the case 
were in-service, K-6, mathematics teachers who, following a PD on mathematical modeling, 
chose to participate in a teacher research study group. This case consisted of three mathematics 
teachers from our larger research project who continued in our spring teacher research study 
group. We were interested in gaining insights into how teachers’ pedagogical practices and 



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1123	

knowledge emerged as they enacted MM in the elementary school and how inquiry into their 
own practice helped them negotiate the adoption of MM.  We were not looking to do a detailed 
study of the individual teachers as that would entail separate case studies. Instead, our unit of 
analysis was the similarities and differences across these teachers’ experiences in implementing 
MM. The boundaries of the case were determined by place, time and event. 

Participants. Participants were inservice, K-6, mathematics teachers, in a large mid-Atlantic 
school district, involved in a professional development (PD) initiative focused on mathematical 
modeling (MM), between August, 2015 and June, 2016. We selected three mathematics teachers 
from our PD who elected to join our spring teacher research study group (TRSG), demonstrated 
an understanding of mathematical modeling that was consistent with the project goals, and whom 
we identified as early adopters of MM (Rogers 2003). Our three participants taught Advanced 
Academic Program (AAP) students. Anne was an experienced teacher with 28 years of 
experience and taught sixth grade. 7% of the students in Anne’s school participate in a free or 
reduced lunch program. Lisa, a third grade teacher, had 5 years of teaching experience at the 
time of our study. Matthew had four years of teaching experience and taught fourth grade and 
had 26 students in his math class. 4% of the students in Matthew’s school participate in a free or 
reduced lunch program.   

Research Questions.  In order to understand how teachers enacted mathematical modeling 
skillfully in the elementary grades, we addressed these research questions: What pedagogical 
practices and knowledge emerged as teachers enacted MM in the elementary school classroom? 
How did teachers develop their modeling teaching practices as they continued on their journey as 
implementers of mathematical modeling in the elementary grades? 

Data Sources. Debriefs of individual Lesson Study session and Lesson Study group 
presentation at a final symposium were captured on video. Sources also included individual 
teacher reflections, semi-structured researcher memo’s for each Lesson Study and symposium 
presentation, exit passes from the summer institute and the final symposium, and participant 
Powerpoint presentations from the final symposium. The artifacts collected from the Lesson 
Study cycle included the planning agendas, actual lesson plans, student work samples, the 
analysis of student work, and teacher reflections. Each of these factors contributed to compiling a 
comprehensive picture of teachers’ experiences with MM.  

Data Analysis. During the first phases of the analysis, we used the observational memos 
from lessons with analytic researcher memos that allowed us to not only describe our teacher-
designers planning and enactment of the mathematical modeling lessons but also summarize our 
thoughts about potential ways in which certain skills, knowledge and beliefs contributed to the 
teachers’ ability to facilitate learning through mathematical modeling.  Interviews, videoclips of 
classroom episodes and artifacts from lessons including lesson plans, and student artifacts also 
helped identity the development of the mathematical modeling processes in the elementary 
classroom and the various models that emerged from the mathematical modeling tasks. We 
created a chronological timeline for each of the teacher designers with linked data sources 
allowing us to focus on documenting the generative change that teachers experienced as they 
continued to implement mathematical modeling during the fall and spring semester of the school 
year. The story line provided a comprehensive profile for each of our participants for our case 
study analysis.  

For the second phase of our data analysis, we used thematic networks as a tool for our data 
analysis. We started by identifying specific teacher moves in the transcripts of our interviews, in 
our researcher memos, and teacher reflections. We used Dedoose Version 7.5.9 to code our data 
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and dissect the text into text segments. These text segment  were  analyzed  qualitatively  for 
emergent themes and patterns. In addition, the text segment were counted  and  compared  within  
each  theme  to identify and describe any differences between the three case study participants. 

Results  
In detailing the teachers’ perspectives of the MM lessons and reflections on the MM process 

using several of the episodes in these cases,  we found four main categories of mathematical 
modeling competencies that emerged as being central to the success of enacting mathematical 
modeling in the elementary classroom: a) finding relevance, b) identifying MM potential; 
c)posing MM questions; and d) capitalizing on a useable model. 

Finding Relevance. One of the strengths of MM is the authenticity and real-worldness of the 
problems being solved by students. We noted teachers in the TRSG able to identify engaging 
contexts, build on student ideas, use authentic problems and make real-life connections for their 
students. This was one of Anne’s strengths. At the beginning of the year, Anne asked her 
students, “How can we impact our school and community?” With her students, she identified 
which ideas could be solved with mathematics and used her students’ ideas and her knowledge 
of the curriculum to develop authentic and relevant MM projects for her class.“Students are 
empowered by knowing they can really do something. It is unlike contrived math that comes 
from a book. I think it is important that they know it is something they can really do.”  

Identifying Mathematical Modeling Potential. We found that the MM tasks designed and 
developed by our participants centered around four types of models: descriptive, optimization, 
predictive and ranking models. This includes the notion of using mathematics to make decisions. 
Teachers working within their curriculums, Matthew began with his curriculum and worked 
backwards, for less experienced teachers, this approach supported them in adopting MM, Anne 
started with a problem, context and then looked at the math. For the school store task, as students 
compiled their surveys she asked them to predict the first week’s sales in their store. This led 
students to compute unit rates, calculate estimated profit, differentiate between wholesale and 
retail costs, draw graphs to represent their predictions (predictive); with the dead-stock of 
pencils, she saw potential to apply linear functions by asking students to find the best sale option 
to get rid of stock and promote bulk sale. (predictive); with the wait-time dilemma - students 
computed rate and flow issues and collected data to reduce wait-time in line (optimization).In 
Lisa’s Planning a day trip task, students had to optimize the time they could spend at sites, 
maximize fun but minimize cost. (optimization) 

Posing Mathematical Modeling Questions. An important element of successful MM tasks 
is asking the right types of questions. Some were planned and spontaneous questions, driving 
questions while others emerged as MM questions as teachers became more comfortable asking 
questions. Questions varied from the main driving question of the MM task that kept students 
focused on the mathematics of the problem to day-to-day questions that preseed students to 
explain and justify their assumptions, choices and reasoning. Anne focused on questioning 
pattern for working with large amounts of data. Students overwhelmed by large amounts of data, 
Anne’s focused questions (focus versus funneling, NCTM, 2014) helped them arrive at use of 
representative samples to process 600+ surveys. Her questioning brought out how this approach 
could apply to other situations.  

Capitalizing on the Usefulness Principle. We found that in elementary school classrooms, 
not all MM tasks result in a generalizable model. Some of the tasks resulted in one model to 
solve a particular real-world problem, sometimes students were able to apply the principles to an 
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additional problem and we found that less frequently, students were able to develop a 
generalizable model. We posit that this is a natural part of mathematical modeling in the 
elementary grades and that these early experiences with MM serve to develop student 
understanding of and comfort with MM that will eventually lead them to develop generalizable 
models. Thus, for elementary grades capitalizing on the useable model looks different than it 
would in upper grades. 

Conclusion 
Supporting teachers adopt an innovation as ambitious teaching practices  

As shared in the teacher’s profile, these teachers were knowledge-seekers, they came with 
the predisposition to gain knowledge “learn more about creating research-based lessons for 
modeling real-world mathematics” and “share this approach with other teachers”.  Each of our 
teachers sought out this innovative ambitious practice of teaching mathematical modeling as a 
process to use with their curriculum standards. They gained knowledge and practice by 
collaborating with a team of teachers during the professional development summer institute and 
lesson study. While they immersed as math modelers during the institute and a teacher designer 
and implementer, they weighed the benefits and challenges and made personal decision whether 
to continue with the innovative practice. This decision led these three teachers to voluntarily join 
the Spring Teacher Research Study Group. With additional support from the project team, these 
teachers gained more knowledge and continued to put this innovation into use, sometimes 
flailing and sometimes, finding the “sweetspot”. In their continued pursuit of finding what 
worked for their students, they continued to evaluate not only their own teaching decisions but 
the learning outcome of their students.  
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This exploratory study investigated 164 instances of student mathematical thinking that emerged 
during whole-class instruction in a high-school geometry course. The MOST Analytic 
Framework provided a way to categorize these instances according to their building potential—
that is, the potential for learning to occur if the student thinking of the instance were made the 
object of consideration by the class. The variations in the building potential of student thinking 
revealed in the study highlight the complexity of teaching and the need to support teachers in 
identifying and appropriately responding to instances with different levels of building potential.  

Keywords: Classroom Discourse, Cognition, Instructional Activities and Practices 

Reform documents (e.g., NCTM, 2014) advocate for the use of student thinking in 
instruction, and the benefits of doing so have been highlighted by various studies (e.g., Franke & 
Kazemi, 2001). Not all student thinking, however, has the same potential to support learning by 
being incorporated into instruction (Leatham, Peterson, Stockero, & Van Zoest, 2015), 
particularly if the teacher’s goal is to enact the teaching practice of building—making student 
thinking the “object of consideration by the class in order to engage the class in making sense of 
that thinking to better understand an important mathematical idea” (Van Zoest et al., 2017, 
p. 36). Better understanding the range of student thinking that is available during instruction 
could help support the development of practices that provide the most productive response to that 
thinking. We report here on our characterization of the student mathematical thinking that 
emerged during whole-class instruction in one teacher’s classroom. 

Literature Review 
We identified research related to three types of characterizations of student thinking: (1) the 

context in which student thinking emerges during classroom instruction (e.g., Edwards & 
Marland, 1984); (2) the type of student thinking that occurs in a particular content area (e.g., 
Carpenter, 1985, for addition); and (3) the potential of the student thinking to further the 
mathematical understanding of the class if incorporated into instruction (e.g., Stockero & 
Van Zoest, 2013). The first two groups of studies provided insight into student thinking, but did 
not provide information on the potential of the student thinking to be used in instruction by a 
teacher. Drawing on the third group of studies, Leatham et al. (2015) developed a framework for 
identifying high-potential instances of student thinking that, if made the object of consideration 
by the class, have the potential to foster learners’ understanding of important mathematical ideas. 
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Such instances of student mathematical thinking are called Mathematically Significant 
Pedagogical Opportunities to Build on Student Thinking (MOSTs). Van Zoest et al. (2017) 
investigated the attributes of MOSTs and how those attributes might be used to support teachers’ 
identification and productive use of MOSTs. Their study, however, did not investigate the 
broader range of student thinking that is available in the classroom. The exploratory study 
reported in this paper extends the work of Van Zoest et al. (2017) by examining the full range of 
student mathematical thinking that emerges during whole-class instruction and considering 
productive teacher responses to instances with different potential for building. 

Theoretical Framework 
Leatham et al. (2015) proposed six criteria for characterizing and identifying MOSTs (see 

Figure 1). These criteria create a natural subcategorization of student thinking that might occur in 
the classroom, a subcategorization that we theorized would differentiate student thinking 
according to the building potential of that thinking—that is, the potential for learning to occur if 
the student thinking of the instance were made the object of consideration by the class. We 
conceptualize building as a teaching practice that involves making clear the instance of student 
thinking that the class is to consider, turning that instance over to the class in a way that requires 
them to make sense of it, orchestrating the conversation that ensues, and ensuring that the 
mathematical point of the instance is made explicit (Van Zoest, et. al, 2016). 

Figure 1. The Six Criteria of the MOST Analytic Framework 

Methodology 
This study is part of a larger project that included a data set of 11 videotaped mathematics 

lessons from 6-12th grade classrooms that reflected the diversity of teachers, students, 
mathematics, and curricula present in US schools (Van Zoest et al., 2017). Based on the analysis 
reported in Van Zoest et al. (2017), we identified a lesson from this data set whose rates of 
instances of student thinking per minute and of MOSTs per minute during whole-class 
instruction were at the medians of the larger data set. We analyzed the 45 minutes of whole-class 
instruction in this 90-minute, 11th grade geometry lesson about finding the surface area and 
volume of a sphere. Our unit of analysis was an instance of student thinking—an “observable 
student action or small collection of connected actions” (Leatham et al., 2015, p. 92)—that is 
potentially mathematical. Employing analytic processes described elsewhere (Van Zoest et al., 
2017) resulted in 164 instances of student thinking that were coded at the last criterion they 
satisfied according to the MOST Analytic Framework (Figure 1). Instances that appeared 
mathematical, but for which the student mathematics (criterion 1) could not be inferred, were 
coded as Cannot Infer (CNI). We then theorized about the relationship between the location of 
these instances within the MOST Criteria and the potential of these instances for productively 
enacting the teaching practice of building. We did so by considering the potential advantages and 
disadvantages of enacting the building practice for such instances.  
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Results & Discussion 
About 17% of the 164 instances were MOSTs (met all six criteria in Figure 1), and thus are, 

by definition, instances that are worth building on. They have high building potential because 
they are particularly opportune instances that have the potential to result in the class developing a 
better understanding of mathematics that is both appropriate and central to their learning. Thus, 
not building on a MOST would be a missed opportunity. The 34.7% of instances that met at least 
Central Mathematics (criterion 4) but fell short of being MOSTs, were considered to have some 
building potential. These instances are mathematically relevant, but lack pedagogical 
expediency—they either lack an intellectual need for the students to engage with the thinking 
(criterion 5) or the pedagogical timing is inappropriate to take full advantage of the thinking 
(criterion 6). Since these instances do involve mathematics that the students could benefit from 
considering, a teacher could use them to move the students’ learning forward, but it would not be 
a missed opportunity were they not made an object of consideration for the class. To illustrate 
the difference between instances with high and some building potential, we provide an example 
of students engaged in sense-making for each of these categories (see Figure 2). 

The teacher begins talking about great circles and a student asks a question. 
Instance of Student Thinking: Would it be kind of be like the circumference of a circle? 
Mathematical Point: A great circle is a circle of maximum circumference that can be drawn on a sphere; the 
great circle is the object (circle) and the circumference is the distance around the circle. 
Building Potential: High (MOST Coding: MOST) 

The teacher asks if the surface area of a sphere is more like the area or circumference of a circle. 
Instance of Student Thinking: Area, because the circumference is just the outside, like a line [outlines a circle in 
the air]. And then the area’s the whole thing. 
Mathematical Point: Circumference is the distance around a circle and area is the space that circle takes up. 
Building Potential: Some (MOST Coding: Central Mathematics) 

Figure 2. Sense-Making Examples for High Building Potential and Some Building Potential 

We considered the 29.9% of instances that satisfied criterion 1, 2, or 3 but fell short of 
meeting the criterion for Central Mathematics as having no building potential. These instances 
lack mathematical relevance to learning goals for the students in the class, so pursuing them 
would seem to be a pedagogical misstep. A productive teacher response to such instances might 
be to allow the conversation to move on. Being aware of instances that have no building 
potential might be as important as being aware of instances that have high building potential, 
since this knowledge would enable teachers to spend time where it is warranted. 

The 18.9% of instances that were not inferable (CNI) were considered to have unknown 
building potential. Pursuing these instances as the object of whole-class discussion in their 
current form would also seem to be a pedagogical misstep. With these instances, if students 
attempt to infer their peers’ mathematical ideas, they may arrive at very different interpretations. 
Participating in a discussion with different perceptions of what it is that they are discussing could 
lead to miscommunication and inhibit learning (Peterson et al., 2018). Although often these 
instances do not seem to warrant further consideration because of their limited nature, in some 
cases the students’ idea might very well be relevant and timely to the discussion (possibly even a 
MOST). In these cases, a productive teacher move would be to seek clarification. 
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Conclusion 
The results of this exploratory study showed that student thinking available in a high school 

geometry classroom during whole-class instruction varied substantially, both with regard to the 
MOST Criteria and with regard to its building potential. We identified and discussed four 
categories of building potential (high, some, none, and unknown), each of which suggests 
different types of productive responses from a teacher. The variation in building potential of 
instances of student thinking revealed in this study highlights the complexity of teaching, and the 
need to support teachers in identifying and appropriately responding to instances with different 
levels of building potential. Further work is needed to better understand these various response-
related practices and how they might be coordinated into productive use of student mathematical 
thinking. Knowing more about variations in building potential and associated productive 
responses informs the design of professional development that supports teachers in implementing 
instruction that productively incorporates student mathematical thinking. 
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Teaching, as any other social activity, is firmly rooted in the cultural context in which it takes 
place. Stigler and Hiebert (1999) used the notion of cognitive scripts to describe what happens in 
a lesson, revealing cross-national differences. Following up on this initial study, Givvin and 
colleagues (2005) showed that lessons across different countries converge towards common 
“lesson signatures.” These signatures capture the (often tacit) cultural expectations of the 
components of a typical mathematics lesson. Building upon this idea, Jacobs and Morita (2002) 
have shown that American and Japanese teachers have different views about their ideal 
mathematics lesson and suggested that these instructional scripts are cultural in nature. 
Moreover, they also argued that American teachers do not hold one ideal lesson script but rather 
have access to multiple “culturally sanctioned options for teaching”. A question that arises here 
is whether choice of those different scripts can be explained by distinctions between the subject 
matter being taught.   

To operationalize the question, we conceive of scripts as being assemblages of norms, and   
we study whether mathematics teachers’ tendency to follow a norm plays a role in teachers’ 
instructional decision making, understood as choosing to act according to the norm. In particular, 
we focus on two instructional situations that are common in secondary mathematics, doing 
proofs in geometry and solving linear equations in algebra. The main hypothesis undergirding 
this poster is that these instructional situations are governed by specific norms. By engaging 
mathematics teachers in scenarios of classroom instruction, we measure their disposition to 
attend to these specific instructional norms across different scenarios. We ask: (1) Do 
instructional norms play a role in teacher’s decisions? (2) Is the disposition to comply with 
norms different from individual resources? 

Using multimedia scenarios depicting eight different teaching situations, we surveyed a 
national sample of secondary mathematics teachers. We find that our hypothesized latent 
constructs explain part of the variation in the kind of decisions that teachers make. In addition, 
we provide initial evidence in support to our claim that these dispositions to comply with 
instructional norms are social resources that are separate from the individual resources that have 
been studied up to this point in teacher decision making. 
This work has raised new questions about the relationship between individual and social 
resources that mathematics teachers seem to rely upon when making instructional decisions. Our 
models provide initial evidence suggesting that decision making is subject-specific and 
acculturation into the norms of the teaching community could explain part of the variation we 
observe in teacher’s decisions. 
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This study focuses on the environmental topic of greenhouse effect for engaging students 
with issues of social injustice through mathematics. Although mathematics has been previously 
used by researchers to guide students towards developing an awareness about social justice 
issues, such as unemployment rate and racial profiling (Gutstein, 2006; Stinson, Bidwell, & 
Powell, 2012), it has not been used for exploring environmental justice. Environmental change is 
a serious threat to humanity and unfortunately it bears down disproportionately upon the poor 
(Agyeman, Bullard, & Evans, 2002). Consequently, any environmental issue can rightfully be 
considered as a social issue that requires immediate attention. 

Our goal is to utilize mathematical thinking to think critically about environmental science, 
and express and challenge views on this topic. We exploited the power of mathematical 
modeling (e.g. Lesh & Lehrer, 2003) for helping students interpret and address social issues 
related to the greenhouse effect and the changing climate. To identify the impact of their daily 
actions on the greenhouse effect and understand its influence on their lives in future, we engage 
students in tasks in which they explore quantities that co-vary, such as the amount of carbon-
dioxide (CO2), air temperature, and the sea level rise.  

In this poster, we present the three modeling tasks we developed in NetLogo (Wilensky, 
1999) and our initial findings from whole class design experiments (Cobb et al., 2003) in middle 
school classrooms. By engaging with our modeling tasks, students were able to reason about the 
covariational relationships of the quantities involved, such as recognizing that “as the albedo 
goes down, temperature goes up” or “when the temperature rises by 0.5 degrees, the sea-level 
rises by 4 feet.” The tasks also helped students distinguish between linear and non-linear 
relationships of the various quantities. By reasoning through mathematics, students were able to 
develop an awareness about the significance of the greenhouse effect on their lives. Examples 
include arguing it is important to take action about the greenhouse effect otherwise “we are 
gonna live with the damaged planet.” In discussing the damages from the rise of sea level, they 
argued that they are in a worse situation than rich people because even if the rich houses get 
destroyed rich people “will be able to build it,” something that the poor families cannot afford. 
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This poster focuses on differentiating math games as an instructional strategy to meet the 
varying academic needs of students.  It is common to see both researchers (e.g., Siegler & 
Ramani, 2008) and curricula, such as Everyday Mathematics, advocating for the use of math 
games with young children in the school setting.  Often, curricula teachers’ manuals suggest that 
all students play the same game, without differentiation.  Moreover, they do not provide teachers 
guidance on how to meet the diverse mathematical needs of students while playing math games. 
Differentiation in the mathematics classroom is not new (e.g., Murata, 2013), but thus far, very 
few have explored the application of differentiation within math games.  To address this need, 
my study focused on one question: “How can math games be differentiated to meet the diverse 
mathematical needs of individual students?”   
 My study is framed broadly by situated learning theories (e.g., Lave & Wenger, 1991), which 
allows researchers to examine students’ mathematical reasoning and thinking through the lens of 
participation in the social classroom environment (Cobb & Bowers, 1999).  In my study, I use 
the situated learning theory as a lens to examine the participation that occurs while students play 
differentiated math games in small groups of two to four.  The study was situated in a first-grade 
classroom of a small rural school, where the majority of students were African American.  For 
eleven sessions, I played a variety of math games that were differentiated for each students’ 
academic level; each session lasted thirty minutes.  All sessions were video recorded and later 
coded and analyzed following traditional methods of ethnographic analysis (Erickson, 1986).  

In this study, I found that differentiating math games provided students the opportunity to 
engage in fun activities while solving math problems that were appropriately leveled. For 
example, in “The Race Car Game,” Clark was able to solve double-digit problems, such as 
32+16 and 36+45, while Joseph solved single-digit problems such as 5+7 and 10+9.  Though 
their numbers differed, both students were equally engaged in the game.  This was evident 
through their body language, such as squeals of delight and hand clapping, and the comments 
they made, such as “I can't wait to get to that shortcut,” “I like playing,” and “this game is fun.”   
 I acknowledge that this type of differentiation would be difficult in a whole class setting.  
Rather, this type of differentiation would work best in math centers, when teachers have the time 
to focus on a small group of students and provide individualized support. By sharing this study, I 
hope to support teacher educators’ work with pre-service and practicing teachers with regards to 
using games productively in the early childhood mathematics classroom. 
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The National Council of Teachers of Mathematics noted that “writing is another important 
component of the discourse” (1991, p. 34). Writing can enhance students’ learning and foster a 
deeper understanding (The National Commission on Writing, 2003). In mathematics, writing can 
offer students an opportunity to personally make sense of ideas and use symbols to convey their 
mathematical thinking. Yet, descriptions are limited in how elementary teachers should utilize 
writing to “lay the foundation for future reasoning and proof writing” (Casa et al., 2016, p. 2).  

To clarify the purposes for mathematical writing, the Elementary Mathematical Writing Task 
Force was convened in October 2015. The task force had three primary goals: (1) consider 
various purposes for writing in mathematics class, (2) reach consensus about the types and 
purposes for mathematical writing that leverage students’ mathematics learning, and (3) account 
for perspectives from multiple stakeholders, evidence of students’ potential for writing 
productively in mathematics, and multiple sets of curriculum standards. To address these goals 
the task force was comprised of those with expertise in mathematics, writing, scientific writing, 
curriculum design, assessment development. Members were also knowledgeable about English 
language learners, students with learning difficulties, and students identified as gifted.  

To begin the meeting, members introduced themselves by sharing an artifact related to 
mathematical writing. These artifacts helped the task force begin to generate initial ideas. Small 
groups then analyzed writing-related items including standards from mathematics and writing 
education and student samples. As the groups worked, they developed descriptions for the types 
of and purposes for mathematical writing. The descriptions were then presented to the entire task 
force to discuss and refine; ultimately leading towards consensus about the types of writing.  

The task force identified two overarching goals of mathematical writing: to reason and to 
communicate mathematically. The task force recommended four types with associated purposes 
for mathematical writing: exploratory writing - to personally make sense of a problem, situation, 
or one’s own ideas; informative/explanatory writing - to describe and to explain; argumentative 
writing - to construct and to critique an argument; and mathematically creative writing - to 
document original ideas, problems, and/or solutions, to convey fluency and flexibility in thinking 
and to elaborate on ideas. The task force also identified considerations for elementary 
mathematical writing including: writing develops across multiple continua, the audience 
influences students’ mathematical writing, and mathematical writing may take multiple forms.    
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Reform-based instructional practices (e.g., NCTM, 2014) have been slow to be pervasive. 
Teachers’ uses of whole class organizations, individual work, and small groups in secondary 
classrooms have shifted from roughly 50%, 30%, and 20% in the 1970s (Fey, 1979) to, more 
recently, roughly 48%, 22%, and 22% (Banilower et al., 2013). Instructional practices are 
important to study because of their proximity to students’ opportunities to learn (Carroll, 1963).  

Methods 
We observed 7 beginning teachers a total of 47 times over 3 semesters to explore how they 

organized students for learning and the instructional strategies utilized. We investigated whether 
these decisions differ by course level and, when possible, examined changes over time. For every 
5-minute interval observed, our dataset notes how teachers organized students and indicates 
whether instructional activity was teacher directed, student centered, or assessing understanding. 

Results and Discussion 
Collectively, teachers in this study organized students as a whole class, in small groups, and 

individually roughly 48%, 29%, and 23% of time. Regarding instructional strategies, teacher 
directed methods, assessing understanding, and student center strategies occurred during 48%, 
26%, and 25% of class time. Student centered strategies occurred most often in small groups. 
These teachers organized their classes similarly to the collective, regardless of course level; 
however, teaching strategies differed. Students in intro courses were less likely to experience 
teacher directed methods and more likely to experience assessing understanding than peers in 
core or advanced courses. Students in core courses were more likely to experience teacher 
directed methods and less likely to experience student centered strategies than their peers. 
Changes in one teacher’s practices stand out. She decreased the proportion of time with students 
organized as a whole class and individually in favor of small group time while also decreasing 
time using teacher directed strategies for more student centered methods. 

Conclusion 
Beginning teachers in this study show an alignment with more recent studies (Banilower et 

al., 2013) by implementing more student centered methods while lessening time students spend 
learning individually. Our participants are demonstrating reform practices in their classrooms, 
but perhaps more work needs to be done addressing how they tend to different levels of classes. 
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The purpose of this study is to test the synthetic interdisciplinary approach with the informed 
disciplinary approach in math and psychology (Lattuca, 2001) on its impact on math efficacy, 
perception of psychology as a science, and mathematics problem solving ability. In accordance 
with previous literature (e.g., Lattuca, Voight, & Fath, 2004) we argue that the use of a synthetic 
interdisciplinary approach will increase math efficacy, perceptions of psychology as a science, 
and academic performance than in classes where an informed disciplinary approach is used. 

To test this, we constructed a survey instrument, which included math tasks. We included 10 
questions from the PISA survey (OECD, 2013) so that we can make national and international 
comparisons. The study used a nested model (class nested in instructor) and was taken twice 
(within subjects approach) at the beginning of the Fall 2017 semester and again at the end of the 
semester. The classes that were assessed are a team-taught, synthetic interdisciplinary Math and 
Psychology course, as well as individually taught disciplinary Psychology in Statistics and Proof 
Writing classes (all classes taught by the authors).  

We have preliminary results from analysis of 10 items from the PISA survey. These assessed 
students’ feelings about their personal math performance and contained questions like: “I learn 
mathematics quickly.” and “I am just not good at math.” (reverse coded) and answered on a 1 
(strongly disagree) to 5 (strongly agree) Likert scale. Students (n = 18) taking the 
interdisciplinary course felt that their math abilities improved by the end of the semester 
(M=3.34) compared to when they began the interdisciplinary course (M=3.08) with p = .003. 
Students (n = 9) taking the math course (without the interdisciplinary element) did not feel like 
their math abilities improved by the end of the semester. The surveys will be analyzed in greater 
depth during summer 2018 and the results of this analysis will also be included in the poster.  

There is the possibility of a follow up study to this one when the authors teach the class 
again.  Therefore, we would also like feedback on study design, and theoretical aspects. This 
study has implications for those teaching interdisciplinary classes and what the effects of this 
kind of teaching are, compared with disciplinary teaching. Because of this, we argue that this 
study is in line with the theme for this year’s PME-NA Conference, in particular, “looking ahead 
to emerging opportunities in mathematics education research” while noting that “mathematics 
itself is increasingly interdisciplinary”. This study could inform institutional decisions about 
whether to support instructors in team-teaching or in offering interdisciplinary courses. In this 
poster we will also describe the teaching methodology used in the classes studied and its 
potential impacts on the survey outcomes.   
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While communicating mathematical reasoning is difficult for young children (Moyer, 2000), 
it is a relevant skill to develop. The following study considers the impact of adding written 
discourse to problem-based lessons on fifty children’s ability to talk and write about their 
mathematical reasoning within the numbers and operations domain in four first-grade classrooms 
in a suburban Title I school in the southeastern United States. The four classes were randomly 
assigned to an intervention group or a comparison group. Both groups participated in the same 
problem-based lesson format that encouraged oral discourse during each of the six lessons. 
While both groups engaged in oral discourse, the intervention group also wrote about how they 
solved the problems. As the researcher and students engaged in the lessons, it became clear that 
it was necessary to establish sociomathematical norms so that students understood what it meant 
to explain how they solved problems (Cobb, Wood & Yackel, 1993).  

Pre and post oral and written mathematical explanations were collected and scored by two 
independent scorers using a rubric adapted from Project M3 (Gavin et al., 2007). Intervention 
effects on oral and written mathematical explanations were evaluated separately using a one-way 
Analysis of Covariance where groups (comparison and intervention) was the independent 
variable, post explanation scores were the dependent variable, and the pre-explanation scores 
were the covariate. Both analyses revealed significant differences between the post oral 
explanation scores and post written explanation scores of the intervention and comparison 
groups, F(1,43) = 8.992, p = .004 (oral) and F(1,44) = 6.173, p = .017 (written). These results 
suggest that adding written discourse to problem-based mathematics lessons that encourage oral 
discourse increased the children in intervention group’s ability to talk and write about their 
mathematical thinking. While both groups had increased opportunity for oral discourse, the 
intervention group’s scores were significantly different, indicating that adding written discourse 
also improves children’s ability to talk about their mathematical reasoning. The practical benefits 
of these results are important. Once children are comfortable talking and writing about their 
solution strategies, both can be used for formative assessment by classroom teachers. Written 
explanations can also serve as a permanent record for mathematical thought (Lee, 2006), 
increasing the teacher’s ability to understand each child’s thinking, therefore increasing equity 
within the early childhood classroom. 
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Research in the field of mathematics is often done collaboratively and is open-ended, as the 
purpose of mathematics research is to solve previously unsolved problems. Moreover, 
mathematics as a field has become increasingly collaborative in recent decades (Grossman, 
2002; Gowers & Nielsen, 2009). In contrast, mathematics in k-16 is still overwhelmingly viewed 
as a closed subject, with answers that are only right or wrong and is viewed as an individual 
activity. This model leaves only an elite few doing mathematics and mathematics research. 
Attempts to explore alternative models of learning and doing mathematics in school settings 
work against strong barriers of perception about what mathematics is and what the role of the 
learner should be. One component in the effort to overcome these barriers is a series of 
“existence proofs” showing (a) that collaborative mathematics is possible at a variety of levels, 
and (b) that working collectively can produce different kinds of mathematical experiences and 
results. This poster describes one such existence proof, describing collective inquiry into a 
celebrated problem. 

In 1937, Lothar Collatz conceptualized a problem, now known by many names but most 
often, The Collatz Conjecture or the 3n+1 problem. The problem depends on a function f(n), 
defined for any positive whole integer, n: 

𝑓(𝑛) = 0
𝑛
2 , 𝑛	is	even

3𝑛 + 1, 𝑛	is	odd
 

The value of f(n) is another integer, and thus a member of the domain of f, enabling one to form 
f(f(n)), or f2(n); f(f(f(n))), or f3(n); and so on.  Repeatedly applying f generates a sequence of 
integers {fi(n)}.  The Collatz Conjecture is that for any initial value of n, this sequence reaches 1 
in a finite number of iterations. This is a simple problem to state but an extremely difficult 
problem to solve. Since 1937, mathematicians have taken up the charge to prove the conjecture, 
most notably, Jeffery Lagarias. In his investigations, he has looked at modular arithmetic and 
creating visual representations (Lagarias, 2010).  

Over a two-week period, we explored what happened when unsolved mathematics (Collatz 
Conjecture) was given to a group of PhD and Masters students enrolled in a course that 
specifically focused on inquiry-based, collaborative, open-ended mathematics. The group studied 
patterns that arose when exploring the 3n+1 problem. The group crafted illuminating 
representations, examined the problem using modular arithmetic, and explored what happened 
when the initial number, n, was negative.  These explorations both recapitulated the work of 
Lagarias and went off in its own directions. This work describes the processes and products. 
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To help meet the well-established need for a more equitable mathematics education in the 
U.S., it is imperative that researchers attend to teachers’ conceptions and enactments of equitable 
instruction. In this analysis, for example, we were concerned with secondary (grades 6-12) 
mathematics teachers’ instructional visions—or their perceptions of ideal instruction (Munter, 
2014)—to understand the development of those visions as teachers engaged in equity-focused 
professional development.  

In analyses of interviews with participating teachers, we noticed that a considerable number 
of them identified strategies used for assigning students to small groups as indicators of equitable 
instruction. Among the grouping strategies that teachers described as equitable was a subset that 
emphasized grouping for “diversity”—a strategy for arranging students so that each small group 
mirrors the demographics of the whole class. Such cases were the focus of this analysis. 

Findings and Discussion 
Of the 37 teachers interviewed, 15 referred to students’ racial or ethnic identities in 

discussing equitable grouping strategies. Of those, 9 recommended grouping for “diversity” 
(GfD) while 6 alluded to the strategy but did not necessarily recommend it. Most teachers who 
promoted GfD did not provide a rationale for its use (n=6), although a few suggested that it could 
support students in getting to know peers outside of their own social groups (n=3). The 6 who 
mentioned but did not promote GfD either explained how district leaders seemed to prefer it 
(n=3) or defended hypothetical classroom scenarios in which GfD was not used (n=3).  

We wonder whether these results are related to the price that Ladson-Billings (2004) argued 
was paid for the 1954 Brown v. Board of Education decision. As she noted, desegregation efforts 
were never about breaking up racial groups of students, and certainly not about getting children 
of color into the presence of white children. However, the U.S. Supreme Court’s decision to rule 
in favor of Brown was grounded in the argument that the public school segregation was 
detrimental to Black children, as it exacerbated “Black inferiority” (p. 5). Given that teachers’ 
GfD descriptions seem related to this narrative (e.g., “If I do see that one group is all African 
American males then yes, that is an issue…that needs to be broken up”), we wonder whether it 
might be shaping teachers’ conceptions of “diversity” at the level of small-group interactions.  

Regarding implications for research, we encourage those interested in teachers’ learning as it 
relates to K-12 (in)equity to be on the lookout for practitioners’ conceptions of equity as 
“diversity” or “desegregation.” Future research might also investigate potential ways to disrupt 
such ideas. Regarding implications for practice, we hope that our results will encourage 
practitioners to take care as they conceptualize and implement equity-related efforts.  
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In this poster, we present a new way to engage with mathematics and design thinking that 
invites students to not only play games, but to also create their own math games supported by 
mobile technologies. Our priority is to establish a framework that can be used in all STEM 
classrooms, regardless of computer programming experience or tools. To achieve this goal, our 
team has designed and implemented an instructional activity and created an extensive coding 
guide to test the effectiveness of this activity in high school STEM classrooms.   

The field of educational games has shown the benefits of playing well-designed games on 
student motivation, engagement, and performance (Gee, 2003), but only recently has research 
focused on the benefits of students creating their own games. By positioning students in the role 
of creators, rather than consumers, they can explore, discover, and construct their own learning, 
which could lead to deeper conceptual understanding (Papert, 1990). Some have also argued that 
STEM learning environments should be more embodied and social (Abrahamson, 2009). 
Embodied learning combines movement with higher-order cognitive activities, such as analyzing 
and evaluating. By grounding students through physical movement, object manipulation, and 
gesture, abstract concepts may become more concrete (Koedinger, Alibali, & Nathan, 2008). 

Extending this evidence, we propose the Embodied Game Design framework as an 
instructional activity and a preliminary method for analyzing students’ higher-level thinking in 
STEM classrooms. Our current study explores the feasibility of game design for high school 
students as well as the pedagogical effectiveness of the activity designs. Over the course of three 
days, participants played an established math game, created their own games in small teams, and 
then modified their games. Results showed that the project is feasible and that particular 
instructional design elements produce varying outcomes. Ultimately, we aim to develop a 
complete, instructional design that will be appropriate for K-12 students and can be used as an 
interdisciplinary, project-based activity that engages students in collaboration, mathematics, 
active and embodied learning, and technology-based design to promote computational thinking. 
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Documents outlining standards and recommendations for mathematics instruction 
consistently emphasize the importance of high-quality mathematical discourse. Although quality 
mathematical discourse is valued, it can be challenging to implement, particularly for novice 
teachers (Bennett, 2010). Teaching self-efficacy, or one’s beliefs about her/his ability to teach, 
has been linked to effective mathematics instructional practices for more experienced teachers 
(Enon, 1995); however, little is known about this relationship for novice teachers, the focus of 
the current study. Specifically, this study examines the relationship between mathematics 
teaching efficacy and mathematical discourse implementation for novice elementary teachers, all 
in their second year of teaching.   

The participants in this study were 118 second-year teachers. The teachers completed a 
mathematics teaching log (Walkowiak & Lee, 2013) on which they reported the proportion of 
time that students in their classroom had opportunities to engage in mathematical discourse 
during a given lesson (with a mean of 38.7 lessons logged per teacher). Teachers responded on a 
four-point scale about students’ opportunities to engage in nine “math talk” behaviors. Teachers 
also completed the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI; Enochs, Smith, 
& Huinker, 2000) to measure their self-efficacy to teach mathematics. Rasch scores were 
computed for each scale: Personal Mathematics Teaching Efficacy (PMTE; belief about ability 
to teach mathematics) and Mathematics Teaching Outcome Expectancy (MTOE; belief about 
ability to impact student outcomes). Multiple regression analyses were utilized to assess if 
mathematics teaching efficacy predicted mathematical discourse, controlling for teachers’ high 
school GPA and SAT scores. Grade band (K-2 vs. 3-5) was examined as a potential moderator.   
MTOE, or beliefs about ability to impact student outcomes, was a statistically significant 
predictor of opportunities for discourse within the mathematics lessons, b = 0.069, t(117) = 2.38, 
p =  .02. The results of the regression including all variables explained a statistically significant 
proportion of the variance in opportunities for classroom discourse (R2=  0.067, F(4,113) = 2.02, 
p < .05). The moderation of grade band was not statistically significant. 
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Building on Shulman’s (1986) work, researchers have explored different ways of 
categorizing and investigating teacher knowledge and competency. Our study examines a 
relatively unknown aspect of teacher competency in mathematics education, which we call 
discursive capacity. Discursive capacity is defined as the toolkit with which a teacher facilitates 
mathematical discourse as evident in meaningful interactions and participations with 
communicative forms in the classroom community as regulated by social and socio-
mathematical norms. Using the construct of discursive capacity, we elaborate further the role of 
maxims and normative knowledge (Shulman, 1986) in teachers’ effective teaching practice as an 
extension of Shuman’s conceptualization of different forms of teacher knowledge.  

We propose understanding the nature and kinds of mathematical discourse for teaching 
(MDT) as the basis for studying discursive capacity. To that end, we observed, video-recorded, 
and transcribed lessons of Korean master teachers in which discourse was the primary mode of 
teaching school mathematics. We analyzed various forms and paths of classroom discourse and 
discursive patterns in the videos in order to characterize the teacher’s discursive practice for 
teaching mathematics.  

Our analysis revealed that student participation is normed and nurtured for learning when the 
teacher established positive relationships in the classroom community and forged the kinds of 
connections with students that increase student motivation to learn. Further, we identified the 
sequential and deeply connected phases of practicing MDT: first, building a classroom 
community rooted in positive relationships and regulated by socio-mathematical norms; second, 
launching a lesson with discursive strategies to elicit student thinking and expanding it for 
further learning; and third, facilitating problem-solving with patterns of discursive practice 
depending on the nature of tasks and engaging students in collaborative problem-solving and 
overcoming misconceptions. These three contexts combine to afford the opportunity for us to 
understand how a teacher and their students co-create a community and engage in mathematics 
discourse. In our presentation, we will illustrate a teacher’s discursive competency found in the 
process of these sequential phases and discuss the opportunity and challenge of theorizing the 
practice-based MDT. 
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Numerous different recommendations for the order that multiplication should be taught exist. 
Woodward (2006) suggested introducing multiplication using 0s, 1s, squares, 5s, 9s and 10s, 
followed by other operands. Researchers in neuroscience suggest that multiplication with 
operands 2-5 is simpler and uses different neural processes than operands 6-9 (Jost et al., 2004). 
Recommendations also vary between different third grade textbooks. Although there are 
numerous recommendations for the order operands are introduced, there is little to no research 
on the order that they are introduced. The purpose of this study is to investigate the order that 
third grade teachers rank introducing specific operands in multiplication. Third grade teachers 
(n=49) were asked to rank the order they “assign tasks/activities with these multiples [0 to 10]” 
in a school year. Descriptive data are reported in Table 1. The distribution of ranks was found to 
be independent from chance (χ2(df=100)=1044.046, p<.001), indicating that, there are certain 
reported tendencies for the order operands are introduced. Median and mode statistics suggest 
the most common sequence reported by teachers is in the following order: 0s, 1s, 2s, 5s, 10s, 3s, 
4s, 6s, 7s, 8s, and 9s. Approximately a third of teachers reported a similar sequence. There is a 
large amount of variance in specific sequences reported. Preliminary analysis suggests teachers’ 
rankings are not meaningfully associated with adopted textbook, years of experience, level of 
education, or other reported background characteristics. Findings suggest a need for further study 
to explain teachers’ rankings of multiplication operands, and the reasoning behind it.  

Table 1: Third Grade Teachers’ Reported Rankings of Order of Multiplication Operands. 
 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 

1st 26 5 14 0 0 1 0 0 0 0 3 
2nd 2 27 4 3 0 11 0 0 0 0 2 
3rd 3 1 27 3 3 1 0 0 0 2 9 
4th 7 3 3 8 2 18 1 0 0 1 6 
5th 4 7 1 4 9 9 0 0 0 2 13 
6th 4 1 0 15 9 7 2 0 0 6 5 
7th 1 4 0 11 12 1 13 1 2 4 0 
8th 1 0 0 4 12 0 16 13 1 2 0 
9th 0 1 0 0 1 0 12 19 14 2 0 

10th 0 0 0 0 0 0 4 10 21 14 0 
11th 1 0 0 1 1 1 1 6 11 16 11 

Mean 2.80 3.10 2.45 5.65 6.45 4.14 8.04 9.14 9.78 8.86 5.59 
Median 1 2 3 6 7 4 8 9 10 10 5 
Mode 1 2 3 6 7 4 8 9 10 11 5 
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Prior research on teachers’ beliefs and conceptions suggests a relationship between teachers’ 
instructional practices and their beliefs about learning (Thompson, 1992). The focus of this work, 
however, has largely been limited to the beliefs of K–12 teachers. Only a few researchers have 
extended this work to the undergraduate level (e.g., Speer, 2008). In an attempt to further this 
line of research, this qualitative methods study tackles the question of what beliefs about learning 
mathematics are being held by university mathematics instructors who—through institutional 
teaching awards—have been recognized for their teaching excellence. The purposes of the study 
are to document these beliefs, as they may provide insightful, workable ways of thinking about 
the learning of mathematics, as well as to compare and contrast these with views espoused by 
mathematics educators.   

The participants were five mathematics instructors at a large Midwestern university. They 
were randomly chosen from a pool of mathematics instructors who had won at least one of the 
university’s teaching awards. One hour-long, semi-structured interviews were conducted with all 
participants, with questions seeking to unearth the instructors’ conceptions of learning. For 
instance, questions were asked about the goals of learning, environments for learning, and the 
roles of teacher and student in the student’s learning process. The interviews were audio-
recorded and transcribed.  

Analysis of the data is ongoing, but preliminary analysis suggests the emergence of a 
complex picture. The participants were largely able to articulate meaningful replies to the 
questions but seemed to fuse different viewpoints on learning. To make sense of the data, I use 
coding methods borrowed from grounded theory, looking for emergent leads. Furthermore, to 
help with untangling and delineating the mathematics instructors’ views, I draw on established 
views of learning in mathematics education literature, such as Sfard’s two metaphors for learning 
(Sfard, 1998) and Harel’s three principles of learning and teaching mathematics (Harel, 2002).  

I would like to emphasize that the mathematics instructors’ views are not meant to provide a 
goal or a benchmark for others to attain, as neither the instructors themselves, nor I, claim that 
they are excellent teachers. Rather, this study is meant to scrutinize the belief systems that have 
allowed some mathematics instructors to celebrate teaching success and gain recognition by their 
students and peers. In addition, understanding the mathematics community’s appointed role 
models may provide a greater understanding of¾and mirror for¾the community as a whole. 
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A majority of the studies scrutinized teacher noticing by having the teachers watch videos of 
lessons and reflect upon what they have noticed (Sherin & van Es, 2005); however, this is a 
significantly different task from the more authentic work of engaging in in-the-moment noticing 
to attend to and respond to student thinking during instruction. In this study, we investigated a 
teacher’s in-the-moment noticing skills and how these supported efforts to provide effective 
scaffolding during interactions with a group of students. 

The teacher participant in this study was a mathematics teacher with experience of 6-10 years 
of teaching grade 7 and 8. A total of 7 lessons were audio and video recorded and the transcripts 
were generated for each lesson. Direct and verbal interactions between the teacher and a group of 
four students in the classroom were identified from the transcripts. Three researchers coded the 
levels of scaffolding strategies from Anghileri (2006) to identify the frequency and context of 
instances of “Level 1: Environmental provisions”; “Level 2: Explaining, reviewing and 
restructuring”; and “Level 3: Developing conceptual thinking” (p.39). The scaffolding strategies 
were analyzed by examining them in relation to noticing classifications perceived by Jacobs et 
al. (2010), which were composed of the following components: “Attending to children’s 
strategies”, “Interpreting children’s mathematical understandings”, and “Deciding how to 
respond on the basis of children’s understandings” (p.172). 

Preliminary data from the 7-day lesson reveal a total 113 verbal interactions between the 
group of students and the teacher, many of which incorporated multiple occasions of scaffolding. 
Out of the 252 scaffolding instances, 58 were classified as Level 1, 180 were Level 2, and 14 
were Level 3. It was noted that higher levels of scaffolding strategies, restructuring practices 
from the Level 2 as well as the Level 3, were mostly coincided with the other two lower 
strategies from the Level 2, which are explaining and reviewing. 
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Rationale and Theory 
Looking back, the NCTM (1991) has advocated for instruction that promotes representations 

and mathematical connections. Yet, this has been an enduring challenge as U.S. mathematics 
lessons often lack such opportunities (Hiebert et al., 2005). A more contemporary 21st-century 
expectation from industry is collaboration. However, students may position one another in ways 
that hinder shared intellectual work (Wood, 2013). As problem posing is deemed a valuable 
mathematical practice (NCTM, 1991) and a tool for representation use (Cai & Hwang, 2002), I 
used the activity of group problem posing to examine how high-school student groups 
incorporated representations and mathematical connections into their problem scenarios. I also 
explored how intellectual work was shared as roles were negotiated and renegotiated. 

Methods and Analysis 
Five groups of Integrated Mathematics 2 students participated in a five-lesson algebra 

intervention. Groups were heterogeneously formed by race, gender, mathematical disposition, 
and performance. Each lesson began with a 30-minute review session on linear functions, 
followed by a 30-minute group problem-posing session. Groups were asked to create problems 
including lesson mathematics, representations, and cultural artifacts (e.g., fast-food menu prices). 
Groups also evaluated and re-negotiated their roles each day. Problems were coded using a priori 
and grounded categories based on representations and mathematical connections. One group’s 
problem-posing sessions were video-recorded. Transcribed videos, field notes, and written 
reflections about the use of roles were analyzed to understand the negotiation of student roles. 

       Results and Discussion 
Analysis revealed that groups often incorporated one or more representations but struggled to 

purposefully use them and/or make mathematical connections. Additionally, many problems 
only focused on finding “total cost.” In spite of the focus on roles, the analyzed group typically 
worked cooperatively rather than collaboratively. Looking ahead, these findings provide insights 
into challenges with using representations, making mathematical connections, and sharing in the 
intellectual work of group problem posing. Understanding such challenges can help identify 
principles for refining the practice and supporting the effective engagement of student groups. 
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There has been a movement in recent years towards developing alternative systems for 
measurement and evaluation of academic achievement and performance. By using a standards-
based grading system, Iamarino (2015) argued that a teacher “is better able to determine a 
student’s grade based on the single most important aspect of education – how well the student 
comprehends the content of the course” (p. 2).  According to Iamarino (2015), implementation of 
standards-based grading can be difficult and uncomfortable for teachers as well as other 
stakeholders such as district supervisors, students, and parents.  Furthermore, Vatterott (2015) 
cautioned that standards-based grading is more than a modification to the course grading scheme 
and many teachers fail to modify all aspects of the learning process.  

Methodology 
This quantitative survey study sought to determine and describe the impact of standards-based 
grading practices on instruction in traditional, secondary (Grades 7-12) mathematics classrooms 
across a state in the Rocky Mountain region of the United States.  To answer their research 
questions, the research team developed an online questionnaire based on sample questions from 
the TIMSS survey (NCES, 2011; NCES, 2015) and the Math Task Analysis Guide (Smith & 
Stein, 1998).  It included basic demographic questions as well as specific questions focused on 
how teachers implement and assess instruction as part of their practice as a secondary 
mathematics teacher.  Using information available on publically accessible websites, the research 
team compiled a list of teachers who were clearly identifiable as teaching secondary  
mathematics.  This process resulted in a sampling frame of 2565 secondary mathematics teachers 
all of whom were invited via email to participate in the study. 

Results and Discussion 
The survey received a response rate of 24.9% (N = 638).  Preliminary data analysis suggests that 
there was no difference between the practices of secondary mathematics teachers who self-
reported utilizing standards-based grading and those who self-reported traditional grading 
practices.  The results of this study suggest a need for follow-up research studies as well as a 
need for pre-service and in-service teacher preparation and support. 
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The education research community has long recognized that teachers’ pedagogical choices 
are key to the development of learning environments that can either promote or hinder equity. 
This is especially evident in mathematics classrooms where inequality between groups of 
students (i.e., boys and girls and majority and minority racial/ethnic groups) is pronounced. 
Specifically, we know from prior research that pedagogy in mathematics that is based on 
traditional modes of direct and lecture-based instruction can actually reproduce and exacerbate 
current patterns of inequality (Ellis, 2008). As a result, mathematical reform efforts call for more 
inquiry-based modes of instruction (NCTM, 2000) as they are beneficial for student outcomes 
and for fostering equitable experiences and outcomes (Boaler & Staples, 2008).   

Both quantitative and qualitative studies have provided valuable insight into the positive 
ways that inquiry-based mathematics instruction can affect not only student achievement but also 
their attitudes towards mathematics and STEM in general (Boaler, 2006; Goos, 2004). 
Importantly, qualitative studies often consider the viewpoints of students in their assessment of 
the processes of classroom instruction as well as the outcomes of that instruction. Yet there is a 
lack of large-scale quantitative research that captures students’ experiences of inquiry-based 
activities in their mathematics classrooms and examines its potential impact on their math-related 
attitudes. Furthermore, as female students continue to confront obstacles to their pursuit of math 
in the form of stereotypes and messages from others about a lack of belonging, it is critical to 
examine whether and how inquiry-based math classrooms may be particularly important in 
shaping favorable math attitudes for girls. And while there is some research that examines 
whether teachers’ pedagogical choices may impact girls’ attitudes more than boys, it is generally 
limited in scope, and further does not simultaneously consider differences by race/ethnicity.  

Thus, our study seeks to fill current gaps in the literature by investigating whether students’ 
experiences of inquiry-based learning in their mathematics classrooms are related to their 
attitudes towards math, and whether and how such patterns might vary by gender as well as by 
race/ethnicity.  We utilize data from the U.S. portion of the Trends in International Mathematics 
and Science Study (TIMSS) of 2007 to conduct our investigation. This dataset is ideal as it 
includes a nationally representative sample of students at the critical stage of adolescence, and 
queries them about their math attitudes as well as the range of activities that characterize their 
math classroom. 
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Mathematics teachers have been advised that contextual problem-solving experiences can be 
used to develop new mathematical ideas, and can serve as anchors for understanding new 
mathematical ideas (Meyer, Dekker, & Querelle, 2001).  But research suggests students are often 
conditioned to strip away contextual elements of problems; thus, the contexts are unlikely to 
serve as anchors for these students.  In this study, we ask: What are the different ways students 
and teachers make reference to the context or prior contexts to support understanding? When 
does this occur? 

 We conducted a multiple case study of two seventh grade mathematics teachers over the 
course of six weeks. We analyzed video recordings of the enacted curriculum through the lens of 
Wernet’s (2017) framework for exploring classroom interactions around contexts. 

 First, the depth of referencing previous contexts varied across teachers. One teacher 
referenced previous contexts through brief transitional statements; the other teacher prompted 
students to compare contexts to previous storylines throughout lessons. Second, we identified 
two subcategories of Wernet’s (2017) “references to the context while solving or making sense 
of the problem” category. Students made conceptually-oriented contextual references when 
reasoning informally or giving contextualized rationales for their reasoning (e.g. grouping infants 
in fives because in the day care each adult could only watch five infants). When more formal 
representations were discussed, the teachers and students made procedurally- oriented contextual 
references by explaining the contextual meaning of quantities in the tables, but not the 
conceptual meaning underlying their procedures (e.g. “what you do to the bottom you have to do 
to the top”).  Third, we note implicit references to prior contextualized experiences, in the form 
of student-generated inscriptions mimicking those developed in response to previous problems.  

Our additions to Wernet’s (2017) framework add to the theoretical knowledge base of 
classroom interactions around contextual problems by providing specificity about different ways 
teachers and students reference contexts, but further research is necessary to understand whether 
the patterns found within these two classrooms are representative of larger trends in contextual-
problem based instruction. Our findings also have practical implications. Teachers should be 
supported in understanding which types of contextual references support conceptual reasoning 
and should consider providing opportunities for students to compare various contexts.  
Reflecting across contexts gives students the opportunity to identify relevant mathematical 
connections and generalize previously developed strategies.  

References 
Meyer, M., Dekker, T., & Querelle, N. (2001) Context in mathematics curricula. Mathematics Teaching in the 

Middle School, 6(9), 522-527.  
Wernet, J. L. (2017). Classroom interactions around problem contexts and task authenticity in middle school 

mathematics. Mathematical Thinking and Learning, 19(2), 69-94. 



Teaching and Classroom Practice 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1149	

PROBLEM POSING AND STUDENT ENGAGEMENT IN A UNIVERSITY 
DEVELOPMENTAL MATHEMATICS COURSE 

 John Sevier Anthony Fernandes 
 Appalachian State University University of North Carolina at Charlotte 
 sevierjn@appstate.edu Anthony.Fernandes@uncc.edu 

Keywords: Engagement, Attitudes, Problem Solving, Problem Posing 

With the continued increase of enrollment at colleges and universities, students entering 
college mathematics underprepared is increasing. The National Assessment of Educational 
Progress, found only 25% of 12 grade students had scored at or above the proficient level on the 
NAEP math assessment (NAEP, 2015). A portion of these students entering post-secondary 
institutions, are being required to enroll in developmental mathematics courses to better prepare 
them for college mathematics coursework (Larnell, 2016).  

Developmental mathematics students learn to focus on the outcomes of their problem-solving 
efforts and often have little or no time to focus on the problem formation where Ellerton (2013) 
noted that the formulation of the problem is more essential than its solution. Silver (1997) found 
that instruction involving problem solving and problem posing tasks will assist students in 
developing more creative approaches to mathematics. With this, problem posing is seen to not 
only engage students with problem solving but use the individual student interest to help increase 
the level of engagement, reduce common fears and anxieties, and help students develop 
improved attitudes towards mathematics (Lavy & Bershadsky, 2003). 

The research is guided by the question: What problems do developmental mathematics 
students design based on their personal experiences and interests as they engage in problem 
posing? The researcher will use Ellerton’s (2013) Active Learning Framework and categorize 
problems posed based on Mji & Glencross’ (1999) notion of surface and deep approaches to 
mathematical understanding. Students will be observed and recorded discussing and creating 
word problems based on their interests and approach. These problems will give instructors 
insight of types of problems that developmental mathematics students prefer to engage in and 
create more potential in understanding course content at a higher level and improve attitudes 
towards mathematics.  

The findings of the study will be reported, and student work will be presented at the poster 
session. Implications of the study will be to observe how to better serve students entering 
underprepared for post-secondary math. It will also give a training ground for pre service 
teachers to better prepare themselves for working with students at the K-12 levels.  
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Background: The Problem 
The authors work closely with a group of K-12 teacher leaders who have become excited 

about engaging students in reasoning and problem-solving in their classes. Despite this 
enthusiasm, secondary teachers find it particularly difficult to move beyond occasional problem-
solving lessons while teaching their mandated curriculum. Their default has been using guided 
notes and practice, focusing on procedures. 

One support for change is instructional routines that provide structure for norms and 
interactions (Lampert & Graziani, 2009) We engaged our teacher leaders in number/pattern talks, 
a widely used structure used by k-8 teachers to engage students in “making sense of 
mathematics” (Parrish 2011, p.204).  For our secondary colleagues, number talks have been 
pivotal in shifting them towards a student-centered practice. This has led to a new challenge - 
designing talks that focus on secondary content. 

Secondary Strings: A Work in Progress 
Together, we are exploring/studying the question: What might math talks look like in high 

school classrooms? For us, a secondary math talk (or string) is a series of problems that support 
the construction of conceptual understanding and procedural fluency. We begin with a problem 
that all students can do, connected to a fundamental concept. Ensuing problems gradually move 
students to new ideas, while positioning the students as problem solvers and sense-makers, and 
prompt them to make connections and generalizations. We will share several prototype 
secondary strings. We will also identify questions that we still have connected to the structure, 
design and use of these strings, including:  

• What are basic design features of effective secondary strings?   
• What skills and knowledge are needed to plan and enact effective secondary strings? 
• What factors contribute to successful uptake of secondary strings? 

Connection to Conference Theme 
Our efforts to extend the work of elementary mathematics teacher educators into secondary 

classrooms is connected to the conference theme in two ways. First, we are hopeful that 
secondary strings can provide supports for teachers hoping to respond to “changing mathematical 
and pedagogical demands” by helping them provide opportunities for students to reason and 
make sense of secondary curriculum. In so doing, we also hope support equitable teaching by 
broadening access to opportunities for reasoning and sense-making for all students.  
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EXPANDING STUDENTS’ CONTEXTUAL NEIGHBOURHOODS OF 
MEASUREMENT THROUGH DYNAMIC MEASUREMENT 

 Debasmita Basu                        Nicole Panorkou 
 Montclair State University Montclair State University 
 basu2@montclair.edu  panorkoun@montclair.edu 

This study is part of a larger project exploring students’ thinking of Dynamic Measurement 
(DYME), an approach to area measurement that engages students in dynamic digital 
experiences of measuring rectangular surfaces through sweeping lengths. The goal of this study 
was to evaluate the extent to which students could bridge the mathematical knowledge they 
gained from these dynamic experiences to other activities that are more static in nature. A 
classroom of 19 third grade students participated in an 8-period design experiment (DE) 
centered on DYME. Data to evaluate the bridging were obtained from pre- and post-assessments 
administered before and after students’ participation in the DE. The results suggest that by 
working with the DYME tasks, students were able develop a conceptual connection between 
multiplicative reasoning and area measurement that were able to apply to solve static tasks. 

Keywords: measurement, technology, situated learning, learning trajectory 

Researcher: So, what did you learn from interacting with these tasks? 
Student: We learned how to paint inside the lines.   
(Excerpt from a design experiment after a series of sessions using DYME tasks) 
As researchers, we carefully design tools and tasks to engage students in experiences that 

would support their learning of mathematics. However, similar to the excerpt above we notice 
that “unfortunately mere experience is not sufficient for learning, for integrating into one’s 
functioning, or for making, more and more effective actions available to be enacted in the future” 
(Mason 2015, p. 334). Indeed, students learn how to play with the tool, engage with the task and 
make some generalizations, which a researcher may describe as powerful for developing 
advanced mathematical ideas, yet there is “little evidence that students can abstract beyond the 
modeling context” (Doerr & Pratt 2008, p. 272) or whether students are able to use this 
knowledge to make sense of other tools or apply it in other contexts.  

In fact, many researchers have tried to describe the situated nature of the generalizations that 
students develop as they engage with contextual problems and digital tools. An example is the 
work of Hoyles and Noss (1992) on the notion of “situated abstractions” in which they describe 
the gap between the generalizations that students form in one context but not in others. Many 
researchers tried to describe this as a failing “transfer” of knowledge. For instance, Broudy 
(1977) discussed transfer as the ability of students to apply their prior knowledge in order to 
solve new problems, while diSessa and Wagner (2005) discussed it as re-using the knowledge 
gained in one situation (or class of situations) to a new situation (or class of situations).  
In exploring students’ transition from a constructionist learning environment to formal algebra, 
Geraniou and Mavrikis (2015) raised the issue of what exactly is that “knowledge” being 
transferred, and chose to focus on “bridging” instead, a metaphor first used by Perkins and 
Salomon (1988) to describe “a process of abstraction and connection making” (p. 28). Following 
this notion, Geraniou and Mavrikis (2015) designed a series of “bridging activities” which 
assisted students in making the connections between the digital tool and the mathematics. These 
bridging activities included consolidation tasks that asked students to reflect on their interactions 
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with the software, collaborative tasks that focused on asking students to justify whether their 
rules were equivalent or not to each other, tool-like paper tasks that looked like the software 
tasks but were on paper, and finally textbook or exam-like tasks. This variety in the design of the 
bridging activities can be seen as aiming to expand what Pratt and Noss (2010) refer to as 
students’ contextual neighborhood, or the range of contexts and variety of circumstances in 
which the students’ knowledge is made relevant and accessible. 

In this paper, we describe our efforts in assisting students to expand their contextual 
neighborhood of measurement through dynamic measurement (which we describe in the next 
section), and discuss how our task design may have helped them bridge their dynamic digital 
experiences with typical static measurement tasks. 

Dynamic Measurement (DYME) 
DYME draws on research on visualizing area as ‘sweeping’ (e.g. Lehrer, Slovin, Dougherty, 

& Zbiek, 2014; Thompson, 2000) to engage students in digital experiences of visualizing the 
multiplicative relationship of length times width that underlies the area formula of a rectangle. 
To understand this approach, imagine a paint roller of length a being swept over a distance of b 
(width) to generate a rectangle of area ab (Figure 1). DYME presents area as a continuous 
dynamic quantity that depends on both the length of the roller and the length of the swipe. 
Aiming to explore students’ DYME reasoning for area, we conducted two cycles of design 
experiments (DE) (Cobb, Confrey, Lehrer, & Schauble, 2003) and developed an interactive book 
of tasks on Geogebra [www.montclair.edu/csam/DYME] and a learning trajectory (LT) (Simon, 
1995), illustrating how students’ thinking of DYME may progress over time. 

 

 
Figure 1. Area as a continuous structure using the ‘sweeping’ approach (Panorkou, 2017) 

Table 1 presents the LT, which consists of a set of DYME constructs from less sophisticated 
to more sophisticated (levels), a sample Geogebra task for each construct, and a set of observable 
student generalizations that are more likely to occur at each construct. The goals of Levels 1-3 
are for the students to build the idea of 2D space by visualizing area as a continuous structure 
that can change dynamically through ‘sweeping,’ recognize that the measurement of a surface 
requires the coordination of two dimensions (e.g. Reynolds & Wheatley, 1996), and recognize 
the multiplicative relationship between the two dimensions of a rectangle and its area (Izsak, 
2005). To help students identify this relationship, the tasks involve the use of a 1-inch roller to 
paint shapes of different lengths and widths and constructing a repeating pattern for covering the 
shape (e.g. Outhred & Mitchelmore, 2000), by considering the distance covered in one swipe 
with the number of swipes. Subsequently, Levels 4-6 present an exploration of what else is 
possible to learn after students develop their DYME thinking, therefore they do not follow a 
specific order (although in this paper we refer to them “levels”.) For instance, in Level 4 students 
use their DYME knowledge of area to identify the effects on the dimensions when the area of a 
shape is scaled, or in Level 5 students explore dimensions as factors that may give the same area. 
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Table 1. The hypothetical learning trajectory for DYME 
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The first two cycles of DE showed DYME’s potential for making the multiplicative 
relationship of the area formula more intuitive and accessible to students (e.g. Panorkou, 2017). 
However, the nature of DYME tasks is very different than any of the measurement tasks that 
students encounter in their classrooms and many of the generalizations they make are situated in 
the specific context of DYME. Therefore, in Cycle 3 we wanted to test out whether students 
could connect these situated experiences to their other measurement experiences. Our task design 
and questioning included many tasks that could help them do that. First, we used consolidation 
tasks that asked students to reflect on their interactions with the software, reflect on their learning 
in every session and generalize their strategies. An example of the latter was when we asked the 
students to advise a painter of how to measure the space of any rectangular surface. Second, we 
used whole class discussions at the end of each session that included collaborative tasks asking 
students to share different strategies of solving a task and discuss why different strategies 
generate the same answer. For instance, finding the space of a rectangular surface of 4 inches by 
5 inches, by using 4 one-inch swipes of 5 inches or 2 two-inch swipes of 5 inches or using 4 
inches times 5 inches. Third, in contrast to Geraniou & Mavrikis (2015) that used software-like 
paper tasks, we used paper-like dynamic tasks, that are similar to what students would encounter 
on paper but with technological affordances, such as presenting them with a rectangular surface 
which they can make bigger or smaller by modifying the length and width through dragging (e.g. 
Level 2 task in Table 1). We conjectured that this kind of design would help students build 
connections between DYME and other types of measurement. 

Aims 
This article describes our efforts to investigate how a whole class design experiment (DE) 

(Cobb et al., 2003) on DYME could help students develop their thinking of area as a 
multiplicative relationship and whether students are able to transfer knowledge gained from 
interacting with the DYME tasks to the static traditional area tasks they would encounter in the 
classroom. More specifically, our goals were to explore:  

1. To what extent did the students develop their thinking of area as a multiplicative 
relationship as a result of the design experiment and the use of the DYME tasks?  

2. To do extent did the students bridge the experiences gained from the dynamic 
environment of DYME tasks to traditional area tasks they encounter in the classroom?  

Methods 
Nineteen third-grade students from an elementary school in the Northeast participated in the 

whole class DE (Cobb et al., 2003). The students already had formal instruction on 
multiplication and area measurement using the common approach of using square units. The DE 
consisted of six 50-minute periods of instruction using the DYME Geogebra tasks.  
Assessment Design  

To answer our research questions, we designed and administered an assessment to students at 
the very beginning of the DE and at the end of the learning experience. The items in both pre- 
and post-assessments were identical aiming to create an initial and final “profile of strengths and 
weaknesses” (Huhta, 2008, p. 470) for each student. The assessments were pilot tested with a 
separate group of students and revised before they were used for the present study. Aiming to 
examine both the development of students’ thinking of area and the extent of bridging, we 
designed the items based on typical measurement assessments used in the literature (e.g. Battista, 
2004) and on questions found in standardized test assessments, such as PARCC. All the items 
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were aligned to a level of the LT and were designed to provoke responses that could indicate 
how students’ reasoning has changed following their interaction with the tasks during the DE.  

For example, one of the DYME goals is for students to recognize that a swipes of b cover the 
same amount of space as b swipes of a, what we refer to as commutativity in DYME. To do that, 
we engage students in dynamic tasks, such as the one presented in Figure 2 (left), where they use 
paint rollers of different orientations (horizontal/vertical) in order to find area and generalize that 
4 swipes of 5 cover the same space as 5 swipes of 4. Instead, typical measurement assessments 
evaluate the commutative property in static tasks similar to the Question A in Figure 2 (right), 
which assesses if students recognize that a 3ft by 4ft tabletop has the same area as a 4ft by 3ft 
tabletop. Question A was used as an item in our pre- and post-assessment. Each assessment 
included three to four items corresponding to each construct of the LT and these items were 
evenly distributed throughout the paper so that no two consecutive items were associated with 
the same LT construct. 
 

 

Figure 2. DYME Geogebra task (left); Question A, adopted from the PARCC assessment (right). 

Assessment Analysis  
For analyzing the students’ work, we read every student’s response and generated categories 

to capture the themes in their responses. We then developed a scoring protocol to measure the 
range of sophistication in their responses. To score the responses, we adopted Norton and 
Wilkins’ (2012) suggestion: 1 for indication of a particular reasoning level and 0 for counter-
indication of a particular reasoning level. The levels of reasoning adopted were consistent with 
the LT levels in Table 1. For instance, a response showing a Level 5 understanding was receiving 
a point for Level 5, while a response showing a Level 3 understanding was receiving a point for 
Level 3. The responses were scored by four researchers independently and then negotiated 
aiming to maximize reliability.  

For an illustrative example of the whole process, consider Question A in Figure 2 (right). 
Table 2 presents the scoring rubric we developed for Question A. In this question, we noticed 
three different levels of reasoning corresponding to constructs 2, 3 and 5 of the LT. Depending 
on how the student responded, they would get a point for that construct. For example, if a student 
used the commutative property to find equal rectangles, they received a point only under level 5. 

Results 
After each student response was scored, we summed the total scores received by all students 

under each level (L1 - L6) and color-coded the responses based on these scores in a contingency 
table (Norton & Wilkins, 2012) (Table 3). As aforementioned, each assessment included three to 

Tori and Leo set up four tables in their clubhouse as below:

Circle two tabletops with the same area (that cover the same 
space), and explain how you know that the areas are equal.
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four items corresponding to each level of the LT. For instance, we included four different items 
in which students could use level 5 reasoning to respond. If a student received 3 points of level 5 
that meant that the student used level 5 reasoning to respond to 75% of the level 5 questions.  

Table 2. Rubric for Question A created based on students’ responses 

 
 

If a student’s overall raw score for a given level was above 60%, then it was inferred that the 
student reached proficiency in that level and the cell under that level was colored dark grey. If a 
student’s overall score for a particular level was between 30%- 60% the cell was colored grey. 
For students whose total scores in any level of understanding were less than or equal to 30%, the 
cells were colored light grey to indicate that students showed some instances of the particular 
level of understanding. Some students did not answer all of the questions, and thus white cells 
indicate missing responses. Dotted lines (--) indicate students who did not take the assessment.  
Table 3 compares students’ responses to the pre- and post-assessments showing the extent to 
which the students’ thinking of area as a multiplicative relationship was developed due to their 
interaction with the DYME tasks. As Table 3 illustrates, out of the 19 third-grade students in the 
whole class design experiment, only 3 were able to think multiplicatively about area in the pre-
assessment (represented by level 3). However, in the post-assessment, 15 students showed an 
understanding of area as a multiplicative relationship of length times width. These results showed 
that not only students’ thinking of area as a multiplicative relationship was developed by 
engaging with the DYME tasks, but also, that they were able to use their DYME experiences to 
solve traditional area tasks.  

Table 3 also shows that in each level, students understanding was developed from the pre-
assessment to the post-assessment (with the exception of level 1 showing that students moved 
beyond that level.) This is illustrated both by the darker shading, which is more prominent for the 
post-assessment, and also by the increase in the average score in every level in post-assessment 
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compared to pre-assessment. For instance, in level 3, students scored an average of .2 during pre-
assessment, which increased to 2.0 during post-assessment. Similar development in students’ 
thinking of area is observed in other levels, especially in level 4, 5, and 6 where the average 
score of students’ responses increased from 0 to 0.6, 0.14 to 1 and 0.07 to 0.6 respectively.  

Table 3. Contingency table showing the total scoring of the assessment questions 

 
 

Although students exhibited an overall improvement in their level of understanding in the 
post-assessment compared to the pre-assessment, we found some exceptions in some students’ 
responses. For instance, though students E and J showed proficiency in coordinating the two 
sides of a rectangle (Level 2) during pre-assessment, they showed a decrease in their responses in 
the particular level during the post-assessment. This was most likely because during the post-
assessment, the level of understanding of the two students in the certain questions moved beyond 
level 2 and they showed a higher degree of understanding in level 3 and 5. Another case is 
student L, who reached level 5 during the pre-assessment but did not proceed beyond level 4 
during the post-assessment. On further analysis, we found that student L did not answer the last 9 
questions in the post-assessment, which explains the decrease in the level of understanding. 

Significance 
Researcher: What have you learned all these days? 
Student 1: I learned that there are other ways to measure length and width. You can use 

objects like paint rollers. 
Student 2:  Yes, and that to double area we need to double one of the measurements.   
(Excerpt from a design experiment after a series of sessions using DYME tasks) 
The findings from the pre- and post-assessment analysis show that students’ engagement 

with the DYME tasks helped them improve their understanding of area. The data analysis also 
showed that students were able to bridge their DYME experiences and generalizations with 
typical area tasks. Students extended their contextual neighborhood of measurement to include 
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sweeping-based reasoning as well as reasoning about area as length times width. Students not 
only developed their understanding of area as a multiplicative relationship but they also used this 
knowledge to respond to more advanced questions in levels 4-6. Among our future goals are to 
examine the order in the upper LT levels (4-6) and also to further examine the type of activities 
that assist students in bridging these connections between DYME and other area generalizations.  
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ENTERING EQUATIONS: COMPARISON OF HANDWRITING RECOGNITION AND 
EQUATION EDITORS  

 Gabrielle A. Cayton-Hodges James Fife 
 Educational Testing Service  Educational Testing Service 
 gcayton-hodges@ets.org jfife@ets.org 

Once a novelty, Digitally-Based Assessments (DBA) have become commonplace in the USA. 
With mathematics, it is often a necessity to include items that require the student to input a 
mathematical formula, equation, or expression. Many of these responses, especially in the upper 
grades, cannot be input with a standard keyboard, but must use some type of equation entry. In 
this study, we compare ninth-graders’ entry of mathematical expressions using an equation 
editor versus using handwriting recognition on a tablet. While neither method is currently 
without flaws, we discuss the benefits and drawbacks of each as well as potential methods for 
improvement and the implications for mathematics assessment. 

Keywords: Assessment and Evaluation, Technology 

Introduction 
Mathematics has long been a subject of paper and pencils. Scratch work, diagrams, and 

mark-ups are all parts of solving mathematical problems that need to be addressed as part of 
developing Digitally-Based Assessments (DBA). One artifact of the paper-and-pencil world is 
that of the mathematical response itself. Most mathematical formulae, equations, and expressions 
cannot be input properly using a standard keyboard. Even at the elementary level, a simple 
fraction requires an equation editor, as most students are used to seeing the numerator directly 
above the denominator (!

"
), not the orientation that would result from a sideways slash (1/2). At 

the middle-school level, exponents, square roots, and 𝜋 further complicate the mix. Finally, at 
the high-school level, all of these are combined together in various embedded formats that can 
confuse even those who are comfortable with the individual symbols. 

The most common solution to this open-ended response problem is to use an equation editor 
(see Figure 1). 
 

 
Figure 1. Sample Equation Editor Entry Box 

While equation editors allow for precise entry of mathematical expressions, they do add an 
extra burden on the student. These additional difficulties can be both construct-related (i.e., 
students who struggle with mathematics may struggle more to use the equation editor due to not 
understanding the various mathematical symbols, orders of entry, etc.; see Noyes, Garland, & 
Robbins, 2004) and construct-irrelevant (i.e., students who have less exposure to equation 
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editors, regardless of mathematical ability, may require extra time to identify and select the 
proper symbols and where to click or type; see Leeson, 2006). Hargreaves et al. (2004) also 
showed that students may solve problems differently when presented assessments through 
different media. 

Tablets and other devices that allow for handwritten digital entry could resolve some of this 
burden, but unless those handwritten responses can be automatically scored with the same ease 
as the typed equation editor responses, the cost (in both time and money) of scoring the 
assessment becomes too great for this to be a reasonable solution. Thus, we cannot administer 
assessments with digital handwritten entry without automated handwriting recognition. In this 
paper, we discuss a study intended to be the first in a series of experiments aimed at first 
identifying differences between equation editor entry and automatically translated handwritten 
entry and then addressing the challenges of each towards the development of a solution that 
provides the most authentic experience as possible for students that minimizes construct-
irrelevant difficulties. 

Study and Research Questions 
As stated above, this study describes the first year of a multi-year study aiming to understand 

and improve equation entry for mathematics assessments. Our goal for the first year of the 
project was 1) to demonstrate that we can score equations and expressions that have been 
captured on a tablet (Apple iPad) via handwriting with a stylus, then automatically translated into 
MathML (Ausbrooks et. al., 2010) via the translator MyScript (Vision Objects, 2017)  and 2) to 
determine if there is a difference in performance when students enter responses on a computer, 
using an equation editor (WIRIS, see Maths for More, 2017), versus entering responses on a 
tablet. If we suppose that prior evidence with paper and pencil is an appropriate stand-in for 
tablets, research would suggest that it is easier for students to handwrite responses on a tablet 
using a stylus than to enter them on a computer using an equation editor and that students are less 
likely to make construct-irrelevant errors (see Hargreaves et al., 2004). The ability to administer 
assessments on a tablet, and to score the responses automatically, will increase flexibility and the 
attractiveness of digitally based assessments to both stakeholders and test-takers. For this study, 
we had students copy equations directly from a screen to study only the entry of the equation 
itself and minimize any effect that the method of entry may have on the solution strategy prior to 
equation entry. 

We designed a study to answer the following research questions: 

1. What are the potential causes of errors and variability in score differences with 
automatically scored equation responses that have been captured on a tablet via 
handwriting with a stylus?  

2. Is there a difference in student performance between responses handwritten on a tablet 
and automatically translated into MathML and responses typed on a computer using the 
equation editor WIRIS?  

3. Are the error rates of the handwriting recognition comparable to (or better/worse than) 
the errors students make when entering equations into an equation editor?  

Methods 
We developed two parallel forms (termed Form A and Form B) of a mathematics assessment 

that would each be administered on computer (using an equation editor) and on an iPad (using 
handwriting recognition). In both forms, students are asked to copy equations directly from the 
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screen. The forms had different equations, yet we developed them to be as parallel as possible in 
terms of mathematical complexity, the necessary use of equation editor templates, and the 
number of characters. For the first half of the assessment, students are looking at the equation 
while they copy it, and for the second half, students must hide the stimulus while copying, but 
they are allowed to go back to view the stimulus as many times as necessary. All students took 
both forms. One-half of the participants handwrote their responses to the item on the first 
assessment on a tablet with a stylus and entered their responses to the items on the second 
assessment on a computer using an equation editor.  The other half of participants completed the 
two assessments in the opposite order. The two groups of students were further subdivided into 
Form A or Form B and counterbalanced for order. Thus there were four groups, into which 
participants were randomly assigned (see Table 1). 

Table 1: Counterbalanced design 
 First Task: Computer 

Second: iPad 
First Task: iPad 

Second: Computer 
Form A: iPad 
Form B: computer Group 2 Group 1 

Form A: computer 
Form B: iPad Group 3 Group 4 

 
In each form, students were asked to copy 20 mathematical equations that ranged from very 

simple to enter (e.g., 6+2=8) to complex (e.g., one form of the quadratic formula). No equation 
exceeded in difficulty or complexity that which a student would see as part of a typical Algebra I 
class. For the computer (equation editor) form, all responses were automatically scored using a 
proprietary mathematical scoring engine (m-rater) that works through MathML. For the tablet 
(handwritten responses), all responses were automatically translated into MathML and then 
scored using the same scoring engine. For this study, we used the WIRIS equation editor, which 
is widely used in K-12 mathematics assessments and the MyScript Handwriting recognition tool, 
which has a popular iOS handwritten mathematics calculator and is also used in various 
mathematical contexts by some leading tech designers. 

See Figure 2 for the process of translating the handwritten responses into MathML. 
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Figure 2. Handwriting to MathML process 

Sample and Data Collection 
We recruited 9th-grade students from 4 high schools in the USA from racially, culturally, and 

socioeconomically diverse areas (35% of students qualified for Free/Reduced Lunch of those that 
reported). Overall, 474 9th-grade Algebra students completed the study (204 Male, 265 Female, 5 
Nonreported). The final sample was 45.8% White, 25.9% African American, 10.1% Asian 
American, 9.7% Hispanic/Latino, and 8.4% other). All students participated during their regular 
mathematics class and we randomized the experimental groups to which students were assigned 
within classes (i.e., each class had students placed into each of the four groups). We encountered 
some connectivity issues discovered after administration whereby 143 students in varying classes 
and schools did not receive MathML translations from the MyScript server as well as some 
various missing data with 22 students. Therefore, analyses were conducted with the remaining 
309 students so as to maintain the counterbalanced design. 

Results 
The students received one point for each response that was an exact match to the target 

equation (in the case of the handwritten responses, one point was given per response in which the 
computer translation was an exact match to the target). No credit was given for partial responses. 
Overall, the automatically-produced scores were higher with the equation editor than with the 
translated handwriting (Form 1: iPad average 10.96 (out of 20), Computer Average, 15.46 (out of 
20); t(156) = 13.4; p <.001; Form 2: iPad average 10.59 (out of 20), Computer Average, 15.5 
(out of 20); t(145) = 11.5; p < .001).  
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It is worth reiterating that these scores are a reflection of the computer translated handwriting 
not a score obtained from the writing itself. In other words, we are not comparing what a student 
wrote with what they typed, but rather how well their handwriting translated into the correct 
scoreable form versus what they typed. Thus, we can state that the student responses entered via 
equation editor far outperformed the computer translated handwritten responses, but we make no 
statement as to the writing on the iPad itself and whether it would have been scored correct or 
incorrect by a human rater. We do this because it is that final translated response that is the 
subject of the viability of this as an option for large-scale assessment, which is the focus of this 
multi-year project. 

Despite the higher overall scores for the equation editor, not all items are created equal. For 
some items, scores between the conditions were about equal (and not significantly different) 
while for others there were large differences. Figure 2 shows the differences for all scores in both 
Form A and Form B. As can be seen, both forms produced very similar scores per item, no 
differences between Forms are significant. 
 

 
Figure 3. Score differences, equation editor minus tablet (Form A in blue square and Form B in 

orange circle) 

 
As stated in our first research question, we wished to not only look at overall performance, 

but to better understand the potential causes of the variability in score differences. To do so, we 
looked at individual examples of high and low difference items. As an illustration, Table 2 lists 
the three items with the smallest and largest differences in percentage correct over both Form A 
and Form B. 
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Table 2: Items with Greatest and Smallest Differences in Percentage Correct 
Item Equation editor 

mean 
Handwritten 

mean 
Difference 

(Equation Editor 
minus 

Handwriting) 
Smallest Differences    

 87.4% 86.7% 0.7 
4 × 2 = 8 88.7% 86.3% 2.4 

𝑦 = 𝑎𝑥" + 𝑏𝑥 + 𝑐 75.4% 78.0% -2.6 
    
Greatest Differences    

28	 ÷ 4 = 7		 98.7% 30.7% 68.0 
36	 ÷ 4 = 9					 92.0% 29.4% 62.6 

 84.9% 28.7% 56.2 

 
In taking a deeper dive into the characteristics of the equations with higher and lower 

handwriting recognition rates, we found that while variables (x and y) were recognized 
reasonably well, the multiplication symbol (×) was occasionally recognized as an x. 
Additionally, the equation 𝑦 = 𝑎𝑥" + 𝑏𝑥 + 𝑐 was one of the only items in which the handwritten 
mean was higher than the equation editor mean, largely because many students had difficulty 
using the template for the superscript, thus resulting in errors such as 𝑦 = 𝑎𝑥"5𝑏𝑥 + 𝑐 and 
similar errors. 

As can be seen in two of the examples with the greatest difference in response type, the 
division symbol (÷) had a fairly low recognition success rate, and even though variables were 
recognized well, once parentheses were used along with the variables, recognition dropped 
substantially. 

However, this is clearly only one part of the story. As part of this exploration of the 
differences, we felt it was also important to look at timing differences. Our rationale was that if 
equation editors do allow for higher performance but also take much longer to use, there may be 
some tradeoff between time and accuracy.  

Figure 3 shows the difference in average time taken on the item for both Form A and Form B 
(computer minus iPad). As can be seen in Figure 3, timing scores for both forms were nearly 
identical, with both forms having high outliers for items 1 and 11. Both of these items occurred 
at the beginning of a new section in each form, and thus it appears that the time difference is 
more a product of the students on computers taking longer to read the directions and begin typing 
than it is of the item itself. For the rest of the items, differences tended to range between zero and 
ten seconds, though we did see a great amount of variability between students such that some 
students had virtually no difference while others took much longer for the computer entry than 
the iPad. The exploration of individual student characteristics will be the focus of a future 
analysis. 
 

x y y x+ = +

( )x y z xy xz+ = +
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Figure 4. Timing Differences, equation editor minus tablet (Form A in blue and Form B in 

Orange) 

Overall, using current technology, automatically produced scores were much higher when 
equations were entered using a standard equation editor than when using handwriting recognition 
software. While those equations did take slightly longer to enter, the timing differences were not 
large enough for this mode of entry to result in more than a few minutes of extra testing time 
(depending on the number of equations being entered). One caveat is that this was for copying 
equations. It would be interesting to see if timing differences were similar when students were 
asked items in which they had to generate equations, as we could see some compounded 
differences with uses of scratch paper, etc.  

Discussion 
What should we conclude about the future of DBA mathematics response entry on the basis 

of this study? While on the surface, we seem to have found that equation entry is currently 
superior to handwritten responses, we also uncovered important difficulties with equation editor 
responses that are particularly troubling considering this is the current preferred response 
method. For example, equation editor responses ranged between 70% and 95% correct. 
Considering that students were copying equations, a 70% correct response rate means that 30% 
of students did not accurately copy an equation using a typical editor that has been the standard 
of DBA. While these rates did outperform translated handwriting, we see this as more of an 
indicator that handwriting translation technology needs to be improved so that it can eventually 
replace the much troubled equation editors, as opposed to an indicator that equation editors are 
superior for response.  

We are currently planning a follow-up study in which students are able to see their 
handwritten translations in real time and make corrections to their writing to see if this capability 
enables students to raise their own rates of recognition. We are also looking into ways to limit 
the lexicon of the recognition software to only include those characters which are part of the 
Algebra I curriculum (i.e., exclude most Greek letters, integrals, and derivatives). We also plan 
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to see if a tutorial on how to use the equation editor may improve equation editor responses. 
These improvements to both of these entry methods would need to be considered along with how 
much time it may cost the test-taker. For instance, watching a tutorial would be a one-time cost 
of a few minutes, while the ability to see the handwriting translation could potentially cost test-
takers a lot of time if they need to correct every individual item (some more than once). 

Conclusion 
Overall, it is true that we should have some concerns about responses to DBA mathematics 

items that require students to enter mathematical equations or expressions, regardless of entry 
mode. Equation editor items should potentially allow for some leeway in scoring on responses 
that indicate the student may have had entry difficulties (e.g., where it appears students have had 
trouble knowing how and where to use a template). Additionally, we should also not discount the 
future of handwritten entry, though the technology is not currently up to the state it should be for 
assessment use. Since DBA mathematics assessment is here to stay, and growing in use, we need 
to continue this line of work to improve the entry capabilities to the point that they seamlessly 
allow students to show what they truly know in the mathematics and not be limited by the 
technology. 
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En este estudio se analizan y contrastan acercamientos que futuros profesores de matemáticas 
de bachillerato muestran al resolver problemas de palabras con el uso de papel y lápiz y, 
posteriormente, con el uso de un Sistema de Geometría Dinámica (SGD). Se analizan los 
recursos, representaciones, estrategias y formas de razonamiento matemático que exhiben los 
participantes cuando utilizan GeoGebra en el proceso de resolución de los problemas. Los 
resultados muestran que el uso de la herramienta favorece la exploración dinámica de los 
conceptos involucrados, la formulación de conjeturas y la búsqueda de distintos argumentos 
para validar la solución. 

Palabras clave: Resolución de Problemas, Álgebra y Pensamiento Algebraico, Tecnología  

Introducción 
Los problemas verbales o de palabras aparecen en los planes y programas de estudio desde el 

nivel básico y representan un reto para los estudiantes en términos de desarrollar conceptos y 
estrategias eficientes para resolverlos. Este tipo de problemas, en general, se destacan como una 
forma de aplicar los contenidos que se estudian a ese nivel con la resolución de problemas 
situados en contextos de la vida real (Verschaffel, Depaepe, & Van Dooren, 2014). En este 
sentido, en algunos libros de texto se propone a los estudiantes un camino que se considera es el 
que debe seguir para resolver los problemas verbales de manera competente: 1) comprender el 
problema; 2) identificar los datos conocidos y desconocidos; 3) asignar a un dato desconocido la 
incógnita (generalmente representada con la letra 𝑥); 4) expresar los datos desconocidos que 
restan en términos de la incógnita; 5) formular la ecuación; y, 6) resolver la ecuación y 
comprobar el resultado (Rees & Sparks, 2005). Sin embargo, cuando un estudiante se enfrenta a 
la resolución de problemas verbales, la primera fase (comprender el problema) suele carecer de 
sentido, ya que los enunciados tienden a usar palabras clave como “más” o “la diferencia de” que 
guían inmediatamente la selección de alguna operación aritmética, fórmula geométrica o 
expresión algebraica (Verschaffel, Greer, & De Corte, 2000), la cual se resuelve sin contemplar 
la situación planteada. En este sentido, se identifica una necesidad por promover tareas que 
involucren problemas verbales donde los estudiantes puedan dar significado a los conceptos u 
objetos matemáticos involucrados en los problemas. De acuerdo con Santos-Trigo y Reyes-
Martínez (2014), el uso coordinado de las tecnologías digitales puede ser un factor fundamental 
para alcanzar los objetivos deseados en la enseñanza de la matemática, ya que ofrece la 
posibilidad de representar, explorar, identificar, formular y resolver problemas. Además, Santos-
Trigo, Reyes-Martínez y Aguilar-Magallón (2015) resaltan que, “los sistemas escolares en todo 
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el mundo se enfrentan a un desafío de incorporar sistemáticamente la utilización coordinada de 
las tecnologías digitales en las propuestas curriculares y entornos de aprendizaje” (p. 298). ¿En 
qué medida el uso de un Sistema de Geometría Dinámico (SGD) influye en el desarrollo de 
recursos, estrategias y formas de razonamiento matemático en los estudiantes cuando resuelven 
problemas verbales? ¿Qué tipo de razonamiento matemático (representaciones, exploraciones, 
conjeturas, explicaciones parciales, etc.) caracterizan los acercamientos basado en el uso de 
tecnologías digitales? Con el objetivo de responder estas preguntas, en este estudio se presenta 
una ruta donde se incorpora el uso de un SGD en la resolución de problemas verbales y se 
analizan las formas de razonamiento que los estudiantes desarrollan sobre los conceptos y la 
manera en que influye en las actividades que caracterizan a la resolución de problemas. 

Marco Conceptual 
Resolución de problemas y el uso de tecnología digital 

Schoenfeld (1985) propuso un marco que explica el comportamiento de los estudiantes en la 
resolución de problemas. Éste se centra en el domino de conocimiento conceptual y 
procedimental (recursos), estrategias de búsqueda para el análisis y transformación de problemas 
que aumenten la probabilidad de encontrar una solución (heurísticas), monitoreo y control de los 
procesos cognitivos (metacognición) y actitudes y emociones positivas hacia la tarea que se está 
desarrollando (creencias). No obstante, el marco se diseñó en un ambiente donde las 
herramientas principales eran el papel y lápiz. Cuando se incorpora el uso de tecnologías 
digitales en la resolución de problemas, no solo facilita aspectos como representar, buscar 
patrones o invariantes entre los objetos de un problema, que es esencial para que los estudiantes 
identifiquen relaciones y planteen conjeturas, sino también simplifica la implementación de 
estrategias y ayuda a extender el repertorio de heurísticas (Santos-Trigo, 2008). 

Con base en estas ideas, Santos-Trigo y Camacho-Machín (2013) propusieron un marco que, 
además de permitir analizar los procesos que siguen los estudiantes cuando resuelven problemas 
con el uso de tecnología digital, da la posibilidad de transformar problemas rutinarios en no 
rutinarios. El marco consta de cuatro episodios: 1) comprensión: identificar los conceptos que se 
relacionan con el problema y plantear algunas preguntas que orienten la actividad; 2) explorar el 
problema: valorar diferentes caminos para alcanzar la solución; 3) búsqueda de distintas 
soluciones: analizar y discriminar los distintos resultados encontrados para proponer una 
solución argumentada, así como plantear nuevos problemas a partir de dichos resultados; y, 4) 
integración y reflexiones: discutir en torno a las actividades y resultados obtenidos. 

Bajo este enfoque, los modelos dinámicos de los problemas se vuelven importantes para 
explorar comportamientos matemáticos de una familia de objetos. En este camino, la 
construcción de un modelo dinámico ofrece una oportunidad para que los estudiantes busquen y 
exploren relaciones entre los elementos del problema vía el uso de estrategias que involucran el 
movimiento controlado de objetos, la generación de lugares geométricos, la cuantificación de 
atributos y la búsqueda de propiedades que validan relaciones y soluciones de los problemas 
(Santos-Trigo, Reyes-Martínez, & Aguilar-Magallón, 2015).  

Metodología 
En este estudio participaron ocho estudiantes de un curso de resolución de problemas que 

forma parte de un programa de Maestría en Educación Matemática. Se trabajó durante diez 
semanas, una sesión de tres horas por semana. El desarrollo de las sesiones se llevó a cabo en un 
aula de computo donde cada estudiante tuvo acceso a una computadora con el SGD, GeoGebra, 
instalado. Durante las primeras dos sesiones, se implementaron tareas que tenían la finalidad de 
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que los estudiantes comenzaran a familiarizarse con GeoGebra, posteriormente, se abordaron 
diversos problemas (rutinarios y no rutinarios) con el objetivo de que los estudiantes 
desarrollaran diversas estrategias durante el seguimiento de los episodios planteados por Santos-
Trigo y Camacho-Machín (2013). En este reporte se analiza el trabajo de los estudiantes en un 
problema que se abordó en dos sesiones al final del curso. 
El problema 

Un grupo de deportistas efectúan un recorrido de 380 km en siete horas durante una 
expedición de caza. Durante cuatro horas viajan a lo largo de una carretera pavimentada y el 
resto del tiempo por un camino de herradura. Si la velocidad media en el camino de herradura es 
de 25 km/h menor que la velocidad media en la carretera, encuéntrese la velocidad media y la 
distancia recorrida en cada uno de aquellos tramos de camino (Rees & Sparks, 2005, p. 60).  

La implementación de la tarea se dividió en dos momentos: (1) primero se les solicitó a los 
estudiantes resolver el problema solamente con papel y lápiz y, (2) después, se les pidió que lo 
resolvieran con el uso de GeoGebra. Los datos se recolectaron a través de los reportes escritos, 
las videograbaciones de las sesiones, archivos de GeoGebra con las construcciones dinámicas 
que elaboraron los estudiantes y las notas de campo de los investigadores. 

Resultados 
En esta sección se discuten los recursos, estrategias y formas de razonamiento que exhibieron 

los estudiantes al resolver el problema: (1) con el uso de papel y lápiz; y, (2) con el uso de 
GeoGebra. En la Tabla 1 se muestran las principales características de los acercamientos que 
llevaron a cabo los estudiantes. 

Tabla 1:  Resultados con el uso de papel y lápiz y con el uso de GeoGebra. 
Estudiante Resultados con el uso de papel y lápiz Resultados con el uso de GeoGebra (primer 

modelo) 

Felipe 
- Plantea un sistema de ecuaciones con ambas 

velocidades.  
- Encuentra la solución. 

- Representa dinámicamente las condiciones del 
problema. 

- Encuentra solución de manera empírica. 
- Analiza el lugar geométrico que describe el 

punto (distancia del camino pavimentado, 
diferencia entre las velocidades) 

- Justifica algebraicamente la solución encontrada 
en el modelo dinámico. 

Homero 

- Diagrama (segmento de recta). 
- Plantea ecuación en términos de la velocidad 

del camino pavimentado. 
- Encuentra la solución. 

- Representa dinámicamente la condición de las 
distancias. 

- No construye el modelo dinámico de manera 
individual. 

Alfonso 

- Plantea ecuación en términos de la velocidad 
del camino pavimentado. 

- Muestra dificultades procedimentales. 
- No encuentra la solución. 

- Representa dinámicamente las condiciones del 
problema. 

- No presenta un análisis del comportamiento de 
los objetos matemáticos involucrados. 

David 

- Diagrama (áreas relacionando tiempo y 
distancia). 

- Plantea ecuación a partir del diagrama 
(interpretación errónea). 

- No encuentra la solución. 

- Representa dinámicamente las condiciones del 
problema. 

- Encuentra solución de manera empírica. 
- Justifica algebraicamente la solución encontrada 

en el modelo dinámico. 

Rocío 

- Diagrama (segmento de recta). 
- Expresa las velocidades en términos de las 

distancias sin llegar a plantear la ecuación 
correspondiente.  

- Representa dinámicamente las condiciones del 
problema. 

- No presenta un análisis del comportamiento de 
los objetos matemáticos involucrados. 
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- No encuentra la solución. 
 

Raúl 

- Diagrama (segmento de recta).  
- Plantea ecuación (relaciona la suma de las 

velocidades con la velocidad promedio). 
- No encuentra la solución (Figura 1). 

- Representa dinámicamente las condiciones del 
problema. 

- Encuentra solución de manera empírica. 
- Analiza el lugar geométrico que describe el 

punto (distancia del camino pavimentado, 
diferencia entre las velocidades) 

Uriel 

- Diagrama (segmento de recta).  
- Plantea ecuación en términos de la distancia 

recorrida en el camino de herradura.  
- Muestra dificultades procedimentales. 
- No encuentra la solución. 

- Representa dinámicamente las condiciones del 
problema. 

- Encuentra solución de manera empírica. 
- Justifica algebraicamente la solución encontrada 

en el modelo dinámico. 

César - No muestra la solución al problema. 
- Representa dinámicamente las condiciones del 

problema. 
- Encuentra solución de manera empírica. 

 
Se observa que, en los distintos acercamientos con el uso de papel y lápiz, el diagrama es 

insuficiente en la búsqueda de la solución. En general, cinco de los estudiantes usan esta 
estrategia (los diagramas son muy similares) y, aunque solo uno de ellos obtuvo la solución 
correcta, en ningún caso el diagrama aportó un dato relevante para resolver correctamente el 
problema, por ejemplo, el acercamiento propuesto por Raúl (Figura 1). De los estudiantes 
restantes, que no hicieron un diagrama, solo uno resolvió correctamente el problema. Al 
respecto, Schoenfeld (1985) menciona que el uso de heurísticas no garantiza la solución de un 
problema si no se cuenta con los recursos necesarios, sin embargo, en los problemas verbales 
parece tener mayor peso el dominio de recursos (procedimientos rutinarios) que los otros 
aspectos que se consideran en la resolución de problemas. También, se observan dificultades 
para representar la situación problemática mediante ecuaciones. Por ejemplo, Raúl plantea la 
igualdad entre la suma de las velocidades y la velocidad promedio, y David plantea la igualdad 
entre la suma de los productos de tiempos por distancias y distancia total recorrida. Es decir, 
ambos casos carecieron de sentido. 

Respecto a los acercamientos con el uso de GeoGebra, se observa que todos los participantes 
lograron representar geométricamente las condiciones iniciales que se deben cumplir en el 
problema: distancias y tiempo (Figura 2). Cinco de los estudiantes encontraron la solución de 
manera empírica mediante la exploración del modelo dinámico del problema. Únicamente dos 
participantes realizaron un análisis dinámico del lugar geométrico que describe el punto que 
relaciona, de manera funcional, la distancia del camino pavimentado y la diferencia entre las 
velocidades. Por último, la justificación algebraica de la solución encontrada en el modelo 
dinámico solo fue presentada por tres estudiantes. 

El primer modelo dinámico del problema sirvió de plataforma para la construcción de un 
segundo modelo dinámico basado en recursos, estrategias y formas de razonamiento diferentes a 
los planteados en el primero. Estos modelos dinámicos se describen en las siguientes secciones. 
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Figura 1. Diagrama y ecuación propuestos 

por Raúl. 
Figura 2. Representación de datos conocidos 

en el sistema cartesiano. 

Acercamientos con el uso de un SGD 
Cuando los estudiantes comenzaron a resolver el problema con GeoGebra, tuvieron que 

pensar el problema en términos de propiedades y los comandos de la herramienta. Por ejemplo, 
se plantearon preguntas como: ¿de qué manera se pueden representar el tiempo, distancia y la 
velocidad en este ambiente?, ¿cómo se construye un modelo dinámico asociado al problema?, 
¿qué estrategias permiten llegar a la solución? Para resolver el problema los estudiantes 
desarrollaron dos modelos dinámicos, el primero, fue común entre los estudiantes (Figura 3), 
mientras que el segundo (Figura 4) fue desarrollado con la guía del investigador e implica una 
solución distinta a la que puede obtenerse en un ambiente donde solo se utiliza papel y lápiz.  
Ambos modelos se basaron en el uso del sistema cartesiano, donde se representaron las unidades 
de tiempo en el eje 𝑥 y en el eje y la distancia recorrida (dividida entre 100 para facilitar la 
construcción y análisis del modelo dinámico). Las condiciones iniciales del problema: recorrido 
de 380 km en siete horas, de las cuales cuatro fueron en carretera pavimentada y el resto del 
tiempo por un camino de herradura, fueron representadas como rectas perpendiculares a los ejes 
que pasaban por el valor numérico correspondiente al dato conocido (Figura 2). 
Primer modelo 
Este modelo parte de la idea de representar las distancias como segmentos sobre el eje y (Figura 
3a) con la finalidad de satisfacer la condición de que sumen 3.8, la cual está relacionada con la 
distancia total que se recorre. Para lograrlo, un estudiante coloca un punto sobre el eje 𝑦 y define 
los segmentos AB y BC como las distancias recorridas en la carretera pavimentada y el camino 
de herradura, respectivamente. Enseguida, traza una perpendicular sobre el eje y que pasa por B, 
esta recta está asociada a la distancia del primer tramo del camino, y construye los segmentos 
AD y DE, en los cuales obtiene las pendientes que interpreta como las velocidades de cada tramo 
(Figura 3b).  

Una vez que cuenta con el modelo dinámico, se enfocó en encontrar la posición del punto B 
en la que se satisface la condición: la velocidad media en el camino de herradura es de 25 km/h 
menor que la velocidad media en la carretera, es decir, la diferencia de las pendientes (m-m1) es 
0.25 (Figura 3c). El estudiante encuentre y analiza el lugar geométrico del punto F que relaciona 
la ordenada del punto B y la resta de las pendientes, e identifica que la solución al problema es 
cuando el lugar geométrico interseca a la recta y=0.25 (Figura 3d). 

 
a) 

 
b) 
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c) 

 
d) 

Figura 3. Construcción del primer modelo dinámico. 

Para justificar el modelo dinámico, los estudiantes representaron algebraicamente la idea 
desarrollada en GeoGebra. Para encontrar la ecuación del lugar geométrico escribieron la resta 
en términos de la variable (en este caso 𝑦(𝐵) que denotaron como 𝑥). Luego, expresaron las 
pendientes como 𝑚 = :(;)

<
= =

<
 y 𝑚! =

>.@A:(;)
>

= >.@A=
>

. Así, la función que define a la recta es 

𝑓(𝑥) = 𝑚(𝑥) − 𝑚!(𝑥) =
=
<
− >.@A=

>
= >=A!D."5<=

!"
= E=A!D."

!"
. Para buscar la solución, encontraron 

la coordenada en x del punto de intersección de 𝑓(𝑥) y la recta 𝑝 (definida como 𝑦 = 0.25), 
resolvieron la ecuación E=A!D."

!"
= 0.25 y obtuvieron que la solución se obtiene en 𝑥 = 2.6, es 

decir, 260 km recorridos en el primer tramo. Con este resultado obtienen las demás respuestas. 
Segundo modelo  

La idea esencial detrás de este modelo fue interpretar las velocidades como pendientes 
asociadas a rectas. El camino inicial que siguió un estudiante fue definir el punto B sobre la recta 
h, trazar la recta AB y medir su pendiente (Figura 4a), que está relacionada con la velocidad del 
primer tramo recorrido. Para representar la velocidad en el segundo tramo del recorrido, el 
estudiante construyó un triángulo rectángulo con base igual a una unidad y altura igual a 𝑚 −
0.25, lo que le permitió trazar la recta AE cuya pendiente es 𝑚 − 0.25 (Figura 4b). Luego, trazó 
una recta paralela a la recta AE que pasara por el punto D y una perpendicular al eje 𝑦 que 
también pasara D. Así, trazó el segmento FG, el cual está relacionado con la distancia recorrida 
en el camino de herradura. Posteriormente, analizó el comportamiento del punto H, que relaciona 
la abscisa del punto B y la suma de las distancias de los recorridos (segmentos r y j) mediante la 
visualización del lugar geométrico (Figura 4c).  

 
a) 

 
b) 

 
c) 

 
d) 

Figura 4. Construcción del segundo modelo dinámico. 
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De esta manera, encuentra que la solución es cuando el lugar geométrico se interseca con la 
recta 𝑦 = 3.8. Con base en estas ideas y exploraciones, el estudiante fue capaz de representar 
algebraicamente este acercamiento. Representó con 𝑥 la coordenada de la abscisa del punto B, el 
cual está asociado a la pendiente m. Para obtener la función debe expresarse a 𝑗 + 𝑟 en términos 
de 𝑥, es decir, dado que 𝑚 = >.@

=
 y 𝑚 = K

<
 entonces al igualar y despejar 𝑗 se obtiene que 𝑗 = !D."

=
. 

Similarmente, dado que 𝑚! = 𝑚 − .25 y 𝑚! =
L
>
 entonces 𝑟 = !!.<

=
− .75. Así, la función 

asociada al lugar geométrico descrito por H es 𝑓(𝑥) = "M.M
=
− .75. Al igualar la función a 3.8, se 

tiene que 𝑥 = "M.M
<.DD

≈ 5.84. Cuando se grafica en GeoGebra la función encontrada, es posible 
corroborar que se los resultados coinciden (Figura 4d).  

Discusión de los resultados 
Cuando los estudiantes intentan resolver el problema en un ambiente donde solamente 

cuentan con papel y lápiz, se observa que para llegar a la solución es necesario que posean los 
recursos que les permitan plantear las ecuaciones adecuadamente y, mediante procedimientos 
rutinarios, obtener el resultado correcto. Sin embargo, si no logran comprender la situación 
problemática será difícil que logren plantear la ecuación o modelo matemático que les permita 
llegar a la solución e incluso implementar la heurística de representar el problema por medio de 
un diagrama para observar cómo se relacionan los datos del problema. 

Cuando se incorporó GeoGebra para resolver el problema, se observó que el nivel de 
apropiación del SGD y los recursos con los que contaba cada estudiante determinaba el tipo de 
estrategia que desarrollaban. De manera general, los dos modelos dinámicos que se construyeron 
involucraron recursos y conceptos matemáticos diferentes, lo que implicó el desarrollo de 
diferentes formas de razonamiento. Cada uno de los modelos permitió que los estudiantes 
interpretaran geométricamente las condiciones que se deben cumplir en el problema planteado. 
Así, el SGD permitió que los estudiantes dieran significado a los conceptos y objetos 
matemáticos involucrados en el problema y, a través de la exploración de los modelos dinámicos, 
encontraran la solución sin necesidad de plantear un acercamiento algebraico de manera inicial.  
En la Tabla 2 se presenta una comparación de las actividades matemáticas que se llevaron a cabo 
en cada uno de los modelos exhibidos por los estudiantes, con base en los episodios propuestos 
por Santos-Trigo y Camacho-Machín (2013). 

Tabla 2: Comparación de los modelos dinámicos del problema 
Episodio Primer modelo Segundo modelo 

Comprensión 

Interpretar las distancias geométricamente 
como segmentos sobre el eje y que sus 
longitudes sumen 3.8 y representar las 
velocidades en términos de las distancias. 

Interpretar las velocidades geométricamente como 
pendientes de rectas donde una sea 0.25 unidades 
menor a la otra y representar las distancias en 
términos de las velocidades. 

Exploración 
del problema 

Buscar para qué longitudes de los 
segmentos se cumple la condición de las 
velocidades (pendientes). 

Buscar para qué pendientes de las rectas se 
cumple la condición de las distancias (segmentos). 

Búsqueda de 
distintos 

acercamientos 
a la solución 

Soluciones empíricas obtenidas por: 
- Analizar los valores numéricos de los 

atributos del modelo 
- Visualizar lugar geométrico (recta) que 

relaciona la longitud del segmento AB 
con la diferencia de las pendientes m y 
m1 (ver Figura 2d) 

Soluciones empíricas obtenidas por: 
- Analizar los valores numéricos de los 

atributos del modelo 
- Visualizar lugar geométrico (hipérbola) que 

relaciona la abscisa del punto B con la suma 
de los segmentos j y r (ver Figura 3d) 

Solución algebraica obtenida por: 
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Solución algebraica obtenida por: 
- Representar el modelo dinámico 

mediante ecuaciones. 

- Representar el modelo dinámico mediante 
ecuaciones. 

Integración y 
reflexión 

Dar sentido a la resta de velocidades 
respecto a la situación problemática. 

Relacionar la pendiente de rectas verticales con la 
indeterminación de la función. 

 
En la Tabla 2 se puede observar que hay recursos y estrategias que coinciden en cada episodio de 
ambos modelos con el uso del SGD. En el primer episodio, fue importante el uso del sistema 
cartesiano para representar los datos del problema geométricamente y para, posteriormente, 
analizar las relaciones y atributos de la construcción. Lo anterior, implicó aplicar una escala en el 
eje de las ordenadas para tener la posibilidad de visualizar el modelo con mayor facilidad y 
explorarlo. También, cobró sentido el concepto de pendiente cuando se interpretó 
geométricamente la razón de dos cantidades (como es el caso de la velocidad). El episodio de 
exploración del problema es resultado de implementar la heurística de punto con movimiento 
controlado que permite el SGD. Es decir, a partir de un punto que se definió sobre una recta o un 
eje, se construyó un modelo dando la oportunidad de explorar y analizar las relaciones entre los 
atributos de la construcción. En el tercer episodio, utilizar la herramienta de lugar geométrico es 
una estrategia esencial para encontrar soluciones geométricas en términos de la covariación de 
atributos de la configuración dinámica, que conlleva a plantear conjeturas por medio de la 
observación y, por lo tanto, a buscar argumentos. Por último, el cuarto episodio se centra en el 
dominio del problema donde se reflexiona sobre el comportamiento y la interpretación del 
modelo para todos los valores del punto móvil. Por otro lado, se evidencian las diferencias de 
ambos acercamientos que muestran los conceptos que se enfatizan y los distintos caminos que 
involucran reflexiones diferentes para interpretar la solución del problema. 

La construcción y exploración de los modelos dinámicos permitió que los estudiantes 
lograran representar algebraicamente el problema al dar seguimiento a los pasos de la 
construcción. Específicamente en el segundo modelo dinámico, se desarrolló un modelo 
algebraico que no sería fácil de plantear sin la exploración de la construcción. De esta manera, 
los estudiantes pudieron interpretar y contextualizar las expresiones algebraicas, y dar sentido a 
diferentes objetos y conceptos matemáticos como la pendiente. 

Conclusiones 
El uso del SGD para la resolución de problemas verbales permitió que los estudiantes 

prestaran más atención a la comprensión del problema para poder construir el modelo dinámico 
del problema y a la exploración del problema, para analizar el comportamiento de los objetos 
matemáticos involucrados. La búsqueda de distintos acercamientos a la solución favoreció el 
desarrollo de diferentes formas de razonamiento, especialmente, se observó un tránsito de lo 
empírico a lo formal cuando los estudiantes llevaron su solución dinámica a la representación 
algebraica. Al integrar y reflexionar sobre las estrategias de solución, fue posible analizar, dentro 
del contexto del problema, estrategias que se identificaron en las exploraciones como la resta de 
velocidades, además de ideas matemáticas como la indeterminación de una función. 
 
 
In this study we analyze and contrast approaches that future high school math teachers show 
when solving word problems with the use of pencil and paper and later, with the use of a 
Dynamic Geometry System (DGS). The resources, representations, strategies and forms of 
mathematical reasoning that the participants exhibit when they use GeoGebra in the process of 
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problem solving are analyzed. The results show that the use of the tool favors the dynamic 
exploration of the concepts involved, the formulation of conjectures and the search for different 
arguments to validate the solution. 

Keywords: Problem Solving, Algebra and Algebraic Thinking, Technology.  

Introduction  
Word problems are an important theme in school plans and programs of study from the basic 

level and represent a challenge for the students in terms of developing concepts and strategies to 
solve them. This type of problems, in general, stand out as a way of applying the contents that 
are studied at that level by solving problems situated in real-life contexts (Verschaffel, Depaepe, 
& Van Dooren, 2014). Likewise, in some textbooks students are encouraged to follow a path that 
involves the following stages: 1) understand the problem statement; 2) identify known and 
unknown data; 3) assign the unknown to an unknown data (usually represented by the letter x); 
4) expressing the unknown data remaining in terms of the unknown; 5) formulating the equation; 
and, 6) solving the equation and check the result (Rees & Sparks, 2005). However, when a 
student is faced with solving word problems, the first phase (understanding the problem) is often 
meaningless, since statements tend to include keywords such as "more" or "difference" that push 
them immediately the selection of some arithmetic operation, geometric formula or algebraic 
expression (Verschaffel, Greer, & De Corte, 2000), that then is solved without making sense of 
the situation posed. In this way, a need is identified to promote tasks that involve word problems 
where students can give meaning to the concepts or mathematical objects involved in the 
problems. According to Santos-Trigo and Reyes-Martínez (2014), the coordinated use of digital 
technologies can be a fundamental factor in achieving the desired objectives in the teaching of 
mathematics, since it offers the possibility of representing, exploring, identifying, formulating 
and solving problems. In addition, Santos-Trigo, Reyes-Martínez and Aguilar-Magallón (2015) 
highlight that, "school systems throughout the world face a challenge of systematically 
incorporating the coordinated use of digital technologies in curricular proposals and learning 
environments " (p. 298). To what extent does the use of a Dynamic Geometry System (DGS) 
affect the development of resources, strategies and ways of mathematical reasoning in the 
students, when they solve word problems? What kind of mathematical reasoning 
(representations, explorations, conjectures, partial explanations, etc.) characterize the approaches 
based on the use of digital technologies? In order to answer these questions, this study presents a 
route that incorporates the use of DGS in the word problem solving and discusses the forms of 
reasoning that students develop about concepts and the way in which it influences the activities 
that characterize the problem solving. 

Conceptual Framework 
Problem Solving and the use of digital technology 

Schoenfeld (1985) proposed a framework that explains the students´ behavior in problem 
solving. It focuses on the domain of conceptual and procedural knowledge (resources), search 
strategies for the analysis and transformation of problems that increase the probability to find a 
solution (heuristics), monitoring and control of cognitive process (metacognition) and attitudes 
and positive emotions towards the task that is been developed (beliefs). However, the framework 
was designed in an environment where the main tools were paper and pencil. When the use of 
digital technologies is incorporated into problem solving, it not just facilitates aspects such as 
representing, looking for patterns or invariants among objects of a problem, which is essential for 
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the students to identify the relationships and raise conjectures, but also it simplifies the strategies 
implementation and helps to extend the heuristics repertoire. (Santos-Trigo, 2008).  

Based on these ideas, Santos-Trigo and Camacho-Machín (2013) proposed a framework that 
besides allowing the analysis of procedures that the students follow when they solve problems 
with the use the digital technology, it gives the possibility to transform routine problems into 
non-routine problems. The framework consists of four episodes: 1) understanding: to identify the 
concepts that relate to the problem and ask some questions that guide the activity 2) explore the 
problem: to evaluate different ways to find the solution 3) search for different solutions: to 
analyze and discriminate the different results found to propose an argued solution, as well as to 
pose new problems from these results 4) integration and reflections: to discuss about the 
activities and the results obtained.  

Under this approach, the dynamic models of the problems become important to explore 
mathematical behaviors of a family of objects. In this way, the construction of a dynamic model 
offers an opportunity for the students to search and explore relationships between the elements of 
the problem through the use of strategies that involve the controlled movement of objects, locus 
generation, attributes qualifications and the search of properties that allow relationships and 
solutions to problems. (Santos-Trigo, Reyes-Martínez, & Aguilar-Magallón, 2015). 

Methodology 
In this study, eight students participated from a problem solving course that is part of a 

Master´s program in Mathematics Education. It worked for ten weeks, with a session of three 
hours per week.   

The development of the sessions was done in a computer lab where each student had access 
to a computer with the DGS, GeoGebra, installed. During the first two sessions, tasks aimed at 
getting the students familiarized with GeoGebra were implemented, after that, various problems 
(routine and non-routine) were addressed with the aim of having the students develop various 
strategies during the follow-up of the episodes proposed by Santos-Trigo and Camacho-Machín 
(2013). In this report it is analyzed the students’ work in a problem that was addressed in two 
sessions at the end of the course. 
The Problem 

A group of athletes make a 380 km tour in seven hours during a hunting expedition. For four 
hours they travel along a paved road and the rest of the time by a bridle path. If the average 
speed in the bridle path is of 25 km/h lower than the average speed on the road, find the average 
speed and the distance traveled in each of those road sections. (Rees & Sparks, 2005, p. 60).  

The implementation of the task was divided in two stages: (1) the students were first asked to 
solve the problem just with the use of pencil and paper and (2) later, they were asked to solve it 
with the use of GeoGebra. The data was collected through the written reports, the video 
recordings of the sessions, GeoGebra archives with the dynamic constructions created by the 
students and the field notes of the researchers.  

Results 
In this section are discussed the resources, strategies and ways of thinking that the students 

showed when they solve the problem: (1) with the use of pencil and paper; and, (2) with the use 
of GeoGebra. Table 1 shows the main characteristic of the approaches carried out by the 
students.  
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Table 1: Results with the use of pencil and paper and with the use of GeoGebra.  
Student´s	
Name: Results	with	the	use	of	pencil	and	paper Results	with	the	use	of	GeoGebra	(first	model) 

Felipe 
- He proposes a system of equations with 

both speeds.  
- He found the solution.  

- He represents in a dynamic way the conditions of 
the problem.  

- He found the solution in an empiric way.  
- He analyses the locus that describes the point 

(paved road distance, difference between speeds)  
- He justifies algebraically the solution found in 

the dynamic model.  

Homero 

- Diagram (line segment). 
- He proposes an equation in terms of the 

speed of the paved road.   
- He found the solution.  

- He represents in a dynamic way the conditions of 
the distances.  

- He does not create the dynamic model in an 
individual way.  

 

Alfonso 

- He proposes an equation in terms of the 
speed of the paved road.   

- He has procedural difficulties.  
- He does not find the solution.  

- He represents in a dynamic way the conditions of 
the problem.  

- He does not present an analysis of the behavior 
of the mathematical objects involved.  

David 

- Diagram (areas relating time and distance). 
- He proposes an equation from the diagram 

(wrong interpretation). 
- He does not find the solution.  

- He represents in a dynamic way the conditions of 
the problem.  

- He found the solution in an empiric way.  
- He justifies algebraically the solution found in 

the dynamic model.  

Rocío 

- Diagram (line segment). 
- She expresses the speeds in terms of the 

distances without proposing the 
corresponding equation.  

- She does not find the solution.   

- She represents in a dynamic way the conditions 
of the problem.  

- She does not present an analysis of the behavior 
of the mathematical objects involved. 

 

Raúl 

- Diagram (line segment).  
- He proposes an equation (he relates the 

sum of the speeds with the average speed) 
- He does not find the solution (Figure 1) 
 

- He represents in a dynamic way the conditions of 
the problem.  

- He found the solution in an empiric way.  
- He analyses the locus that describes the point 

(paved road distance, difference between speeds)  

Uriel 

- Diagram (line segment).  
- He proposes and equation in terms of the 

distance traveled in the bridled path.  
- He has procedural difficulties.  
- He does not find the solution.  

- He represents in a dynamic way the conditions of 
the problem.  

- He found the solution in an empiric way. 
- He justifies algebraically the solution found in 

the dynamic model. 

César - He does not find the solution. 
- He represents in a dynamic way the conditions of 

the problem.  
- He found the solution in an empiric way. 

 
It is observed that, in the different approaches with the use of pencil and paper, the diagram 

is insufficient in the search of the solution. In general, five of the students used this strategy (the 
diagrams are very similar) and, although just one of them obtained the correct solution, in no 
case the diagram gave relevant data to solve correctly the problem, see for example, the approach 
proposed by Raúl (Figure 1).  Of the remaining students, who did not make a diagram, just one 
of them solved correctly the problem. According to that, Schoenfeld (1985) says that the use of 
heuristics does not guarantee the solution of a problem if the necessary resources are not 
available, however, in the word problems, the domain of resources (routine procedures) seems to 
have greater weight than the other aspects that are considered in the problem solving. Also, there 
are some difficulties as to represent the problematic situation through equations. For example, 
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Raúl proposes the equality among the sum of the speeds and the average speed, and David 
proposes the equality among the sum of the products of times by distances and the total of 
distance traveled. In other words, both cases suffered from lack of meaning.  

Regarding the approaches with the use of GeoGebra, it is observed that all the participants 
managed to represent geometrically the initial conditions that must be satisfied in the problem: 
distances and time (Figure 2). Five of the students found the solution in an empiric way through 
the exploration of the dynamic model of the problem. Only two participants did a dynamic 
analysis of the locus that describes the point that relates, in a functional way, the distance of the 
paved road and the difference between the speeds. Finally, the algebraic justification of the 
solution found in the dynamic model was only presented by three students.  

The first dynamic model of the problem was used as a platform to the construction of a 
second dynamic model based on resources, strategies and different forms of reasoning to the 
ones proposed in the first one. These dynamic models are described in the following sections. 
 

  
Figure 1. Diagram and equation proposed by 

Raúl.  
Figure 2. Representation of known data in 

the cartesian system  

Approaches with the use of a Dynamic Geometry System  
At the moment that the students started to solve the problem with GeoGebra, they had to 

think the problem in terms of properties and the commands of the tools. For instance, they asked 
questions like: In which way the time, the distance and the speed in this environment can be 
represented? How does a dynamic model related to the problem is constructed? What strategies 
allow to reach the solution? In order to solve the problem the students developed two dynamic 
models, the first one, was common among the students (Figure 3), while the second one (Figure 
4) was developed with the guide of the researcher and it involves a different solution to the one 
that can be obtained in an environment where is only used pencil and paper.  

Both models were based on the use of a cartesian system, there were represented the time 
units in the x-axis and in the y-axis the distance traveled (divided between 100 to facilitate the 
construction and analysis of the dynamic model). The initial conditions of the problem: 380 km 
route in seven hours, in which four of them were traveled in a paved road, and the remaining 
time by a bridle path, were represented as perpendicular lines that pass through the numerical 
value corresponding to the known data (Figure 2).  
First model 

This model is based on the idea of representing the distances as segments on the y-axis 
(Figure 3a) with the objective of satisfying the condition that they sum 3.8, which will be related 
to the total distance traveled. To achieve this, a student places a point on the y-axis and defines 
the segments AB and BC as the distances traveled in the paved road and in the bridle path 
respectively. Then, trace a perpendicular to the y axis that passes by B, this line segment is 
associated to the distance of the first section of the road, and they build the line segments AD 
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and DE, from which they obtain the slopes that are interpreted as the speed of each section. 
(Figure 3b).  

Once a dynamic model is obtained, they were focused to find the position of the point B in 
which the condition is satisfied: the average speed in the bridle path is of 25 km/h less than the 
average speed in the paved road, in other words, the difference of the slopes (m-m1) is 0.25 
(Figure 3c). The student finds and analyses the locus of the point F that relates the ordinate of the 
point B and the subtraction of slopes, and identifies that the solution to the problem is where the 
locus intersects the line y=0.25 (Figure 3d). 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 3. Construction of the first dynamic model 
 

In order to justify the dynamic model, the students represented algebraically the idea developed 
in GeoGebra. To find the equation of the locus they wrote the subtraction in terms of the variable 
(in this case y(B) that is denoted as x). Later, they express the slopes as 𝑚 = :(;)

<
= =

<
 and 𝑚! =

>.@A:(;)
>

= >.@A=
>

. Hence, the function that defines the line is𝑓(𝑥) = 𝑚(𝑥) − 𝑚!(𝑥) =
=
<
− >.@A=

>
=

>=A!D."5<=
!"

= E=A!D."
!"

.  To look for the solution, they found the coordinate in x of the intersection 

point of 𝑓(𝑥) and the line 𝑝 (defined as 𝑦 = 0.25), they solved the equation E=A!D."
!"

= 0.25 and 
got that the solution is obtained in 𝑥 = 2.6, in other words, 260 km were traveled in the first 
section. With this result they got the others answers.  
Second Model 

The essential idea of this model was to interpret the speeds as slopes related to straight lines. 
The initial path that a student followed was to define the point B on the line h, trace the line AB 
and measure its slope (Figure 4a), which is related to the speed of the first section traveled.  To 
represent the speed in the second section of the travel, the students built a right triangle with a 
base equal to one unit and height equal to 𝑚 − 0.25, which gave him the opportunity to trace the 
line AE, its slope is 𝑚 − 0.25 (Figure 4b). After that, he traced a line parallel to the line AE that 
goes through the point D and a perpendicular to the y-axis that also goes through D.  In this way, 
he traced the segment FG, which is related to the distance traveled in the bridle path. Later on, he 
analyzed the behaviour of the point H that relates the abscissa of the point B and the sum of the 
distances of the travels (segments r and j) through the visualization of the locus (Figure 4c) 
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a) 

 
b) 

 
c) 

 
d) 

Figure 4. Construction of the second dynamic model.  
 

In this way, he finds that the solution is when the locus intersects the line 𝑦 = 3.8. Based on 
these ideas and explorations, the students were able to represent this approach algebraically. He 
represented with x the coordinate of the abscissa of the point B, which is associated with the 
slope m. In order to get the function, 𝑗 + 𝑟 must be expressed in terms of 𝑥, in other words, since 
𝑚 = >.@

=
 and 𝑚 = K

<
  then when equalizing and clearing 𝑗 we obtain that 𝑗 = !D."

=
. Similarly, since 

𝑚! = 𝑚 − .25 and 𝑚! =
L
>
 we get !!.<

=
− .75. In this way, the function associated to the locus is 

described by !!.<
=
− .75. At the moment to equalize the function to 3.8, we obtain that 𝑥 = "M.M

<.DD
≈

5.84. When the function found is plotted in GeoGebra, it is possible to corroborate that the 
results match (Figure 4d). 

Discussion of the Results 
When the students try to solve the problem in an environment where they can only use pencil 

and paper, it is observed that in order to get the solution is necessary that they have the resources 
that allow them to propose the equations in a correct way and, through routine procedures, to get 
the correct result. However, if they do not understand the problematic situation it will be difficult 
for them to manage to propose the equation or mathematical model that allows them to find the 
solution and even, to implement the heuristic of representing the problem by a diagram to 
observe how the data of the problem is related. 

When GeoGebra was incorporated to solve the problem, it was observed that the level of 
appropriation of the DGS and the resources that each student could use determined the type of 
strategy that was developed. In general, the two dynamic models that were built involved 
different resources and mathematical concepts, which in turn involved the development of 
different ways of reasoning. Each model allowed the students to interpret geometrically the 
conditions that must be fulfilled in the problem given.  So, the DGS allowed students to give 
meaning to the concepts and mathematical objects involved in the problems and through the 
exploration of the dynamic problems, they found the solution without the need to propose an 
algebraic approach from the beginning. 
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Table 2 presents a comparison of the mathematical activities that were done in each model 
showed by the students, based in the episodes proposed by Santos-Trigo and Camacho-Machín 
(2013). 

Table 2: Comparison of the dynamic models of the problem 
Episode First	model	 Second	model 

Understanding 

To	interpret	the	distances	geometrically	
as	segments	on	the	y	axis	such	that	all	its	
lengths	sum	3.8	and	represent	the	speeds	
in	terms	of	the	distances.		

To	interpret	the	speeds	geometrically	as	slopes	
of	straight	lines	where	one	is	0.25	less	than	the	
other	and	represent	the	distances	in	terms	of	
the	speeds. 

Exploration	of	
the	problem 

To	search	for	which	lengths	of	segments	
does	the	condition	of	the	speeds	is	met	
(slopes).		

To	search	for	which	slopes	of	the	straight	lines	
does	the	condition	of	the	distances	(segments)	
is	met.	

Search	of	
different	

approaches	to	
the	solution	

Empiric solutions obtained by:  
- Analyzing the numeric values to the 

model attributes.  
- Visualizing the locus (line) that relates 

the length of the segment AB with the 
difference of the slopes m y m1 (see 
Figure 2d) 

Algebraic solution obtained by: 
- Representing the dynamic model 

through equations. 

Empiric solutions obtained by:  
- Analyzing the numeric values to the model 

attributes.  
- Visualizing the locus (hiperbola) that relates 

the abscissa of the segment B with the sum of 
the segments j and r (see Figure 3d) 

Algebraic solution obtained by: 
- Representing the dynamic model through 

equations. 

Integration	
and	reflection		

To	give	sense	to	the	subtraction	of	the	
speeds	related	to	the	problematic	
situation.	

To	relate	the	slope	of	the	vertical	line	with	the	
indetermination	of	the	function.		

 
In Table 2 it can be observed that there are resources and strategies that match in each 

episode in both models with the use of the DGS. In the first episode, it was important the use of 
the Cartesian system to represent the data of the problem geometrically, and after that to analyze 
the relations and attributes of the construction. The last process, involved the application of a 
scale on the axis of the ordinates to get the possibility of visualizing easier the model and explore 
it. Also, the concept of the slope got sense when it was interpreted geometrically as the ratio of 
two quantities (as in the case of the speed).  The episode of the exploration of the problem is the 
result of implementing the heuristic of the point with controlled movement that allows the DGS. 
In other words, from a point that was defined on a line or an axis, a model was built giving the 
opportunity to explore and to analyze the relations between the attributes of the construction. In 
the third episode, to use the locus tool is an essential strategy to find the geometric solutions of 
the covariation of the attributes of the dynamic setting, that allows to propose conjectures 
through the observation and hence, to search arguments. Finally, the fourth episode is focused on 
the handling of the problem where is analized the behavior and the interpretation of the model 
for all the values of the free point.  On the other hand, the differences between both approaches 
are pointed out, these shows the emphasized concepts and the different ways that included 
different reflections in order to interpret the solution of the problem. 

The construction and exploration of the dynamic models allowed the students to achieve to 
represent algebraically the problem by following the steps of the construction. Specifically, in 
the second model it was developed an algebraic model that will not be easy to propose without 
the exploration of the construction. In this way, the students could interpret and contextualize the 
algebraic expressions and give sense to different mathematical concepts and objects as the slope. 
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Conclusions 
The use of DGS for the solution of verbal problems allowed the students to pay more 

attention to the understanding of the problem in order to build the dynamic model of the problem 
and the exploration of it, in order to analyze the behavior of the mathematical objects involved. 
The search for different approaches to the solution promotes the development of different forms 
of reasoning, especially, it was observed a change from the empiric to the formal when the 
students carried their dynamic solution to the algebraic representation. By integrating and 
reflecting about the strategies of the solution, it was possible to analyze in the context of the 
problem, strategies that were identified in the explorations as the subtraction of the speeds, and 
also the mathematical ideas as the indetermination of a function.  
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The research study examined the ways participants analyzed students’ mathematical thinking in 
a massive online open course focused on teaching mathematics with technology. Across units, 
participants’ posts showed increased attention to student thinking and less focus on issues 
related to technology. 

Keywords: Technology, Teacher Professional Development 

Introduction 
Effective professional development is intensive, ongoing and connected to practice. It 

connects to teachers’ professional practice and develops relationships among teachers (Darling-
Hammond, Wei, Andree, Richardson, & Orphanos, 2009; Loucks-Horsley, Hewson, Love, & 
Stiles, 1998). Research provides support for seven key features that are essential for providing 
effective professional development for teachers (e.g., American Federation of Teachers, 2002; 
Borasi & Fonzi, 2002; Darling-Hammond, et al., 2009; Garet, Porter, Desimone, Birman & 
Yoon, 2001; Sparks & Hirsh, 1997). These features include assurance that professional 
development: broaden and deepen teachers’ understandings of the content they are teaching; 
strengthen teachers’ pedagogical skills specific to teaching a particular discipline; provide 
opportunities for teachers to understand how students learn and appreciate differences in student 
thinking; be connected to the practice of teaching (lesson planning, assessing student thinking, 
curriculum development, implementation of activities); be ongoing, job-embedded and site 
specific and continuously interwoven in the daily work of teachers; engage teachers in ongoing 
discussions within professional communities focused on content, teaching, and learning; provide 
supports for change that include personnel, materials, equipment, and time. 

With technology rapidly changing, teachers often seek out professional development 
opportunities to learn about new tools.  However, research shows that just adding technology to 
the classroom is not sufficient (e.g., Ertmer, 1999). Teachers need to understand how technology 
can be used to support students’ mathematical thinking. This requires teachers to attend carefully 
to students’ work and thinking. 

Building on the work of van Es and Sherin (Sherin & van Es, 2005; van Es & Sherin, 2002; 
van Es & Sherin, 2010) who examined teachers’ noticing of student thinking from video 
recordings of classrooms, Wilson, Lee, and Hollebrands (2011) developed a model for 
characterizing prospective teachers’ attention to students’ work and actions and interpretations of 
students’ mathematical thinking while analyzing a video of students’ work with technology. The 
model facilitated the identification of four distinct processes teachers use to make sense of 
student work and thinking: describing, comparing, inferring, and restructuring. Describing is 
characterized by an explicit focus on the actions and words of students. Teachers may repeat the 
same words that were spoken by the students or provide a detailed account of the menus that 
were selected while using the technology. Comparing is characterized by teachers considering 
their own work on the task with students’ actions, either implicitly or explicitly. Inferring 
involves teachers in making assumptions about students’ mathematical knowledge to make 
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inferences about what students are thinking. The final category, restructuring, occurs when 
teachers’ own knowledge about mathematics, teaching, or technology is modified based on their 
analysis of students’ work and thinking. 

The purpose of this study was to examine what teachers focused upon when attending to 
student work and thinking while participating in online discussion forums within a teaching 
mathematics with technology professional development course.  When teachers focused on 
student thinking, we were interested in examining the processes teachers used to make sense of 
students’ work with technology. 

Context 
With a focus on strengthening teachers’ pedagogical skills, knowledge of technology, and 

appreciating differences in student thinking, the first two authors and members of the design 
team created a Massive Open Online Course, “Teaching Mathematics with Technology.” The 
goals of the course are for teachers to become more familiar with different types of technology 
and pedagogical strategies that can be used to support mathematics teaching and learning. In 
addition, we desire for teachers to become aware of the ways students reason and think by 
providing opportunities for them to analyze videos of students’ working on mathematical tasks 
with technology. A summary of the course and opportunities included for teachers to analyze 
students’ thinking is included in Table 1. 

Table 1: Description of Units and Opportunities for Teachers to Analyze Student Thinking 
Unit Title Opportunities to Analyze Student Thinking 
Unit 1: Affordances of 
Technology for the Teaching 
and Learning of 
Mathematics 

Two video recordings of pairs of students completing the 
Penny Circle task are provided. In one video students use 
Demos, in the other video students use paper and pencil to 
complete the task. 

Unit 2: Capitalizing on the 
Power of Technology 

A video recording of a pair of students completing the “Three 
Animals” task using Geogebra is provided. 

Unit 3: Interacting with 
Engaging Mathematical 
Tasks 

A video of two students completing a “Mystery 
Transformations” task using WebSketchpad is provided. Three 
videos of students solving a geometry, statistics, and algebra 
task are also provided. Teachers can select one to view and 
analyze. 

Unit 4: Using Multiple-
Linked Representations 

An animation of a classroom scenario involving a discussion of 
a statistics task using CODAP is provided. 

Unit 5: Assessing Students’ 
Mathematics Thinking 

A video of a class using Plickers to conduct formative 
assessment is provided. 

 
The course was first offered in Fall 2016. The first unit opened October 3rd. Subsequent 

units were opened weekly and the entire course remained open until mid-December. Each unit 
contained two discussion forums where participants were encouraged to respond to prompts and 
to each other. One discussion forum was included in the “Essential Exploration” section where a 
technology-based mathematical task was presented for teachers to solve. It was followed by a 
video or animation of students’ work on that same task. The second discussion forum was 
included in the “Connect to Practice” section where additional tasks and/or videos of students or 
classrooms were provided. Although each unit was opened weekly, participants could work at 
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their own pace and choose to complete activities that were of interest to them. Participants 
interested in obtaining a certificate of completion were required to access the Essentials 
(readings and videos), complete the Essential Exploration, and post at least one discussion or 
comment in each of the two discussion forums within each unit. 

Participants and Methods 
A total of 534 individuals registered for the course, while 337 accessed the course and 236 

posted to the discussion forums. At the conclusion of the course, all discussion forum posts were 
downloaded into a .csv file. Data were cleaned to remove html codes and personal identifiers. 
Because we were interested in how participants analyzed student thinking, we focused on 
discussion forum posts from units 1, 2, and 3 that included opportunities for participants to 
analyze student thinking. This included five discussion forums (two from Unit 1, one from Unit 
2, and two from Unit 3) resulting in 271 discussion threads. From these 271 discussion threads, a 
decision was made to focus on 35 participants who posted in two or more of the five forums.  

These 35 participants resided in four countries, with the majority in the US (89%). Within the 
US, most of the participants resided in the South (48%), while 23% lived in the Midwest, 19% 
resided in the Northeast, and 10% resided in the West. The majority were female (89%). The 
highest degree completed by 23% of the participants was a 4-year college degree, while most 
held advanced degree (69% and 9% had obtained a master’s degree and PhD, respectively). The 
majority of participants were classroom teachers (82%); other participants included 
administrators (6%), undergraduate and graduate students (3%), university faculty (3%), and 
other (6%). Participants background with respect to number of years of experience was diverse, 
with a mean of 14.59 years and a median of 11.5 years. Most of the participants specialized in 
high school (46%) and middle grades (37%), while others specialized in post-secondary or a 
combination of the specialization already mentioned. 

The data were organized by each of the 35 participants to examine their posts across units. A 
total of 174 posts made by the 35 participants were analyzed across three units. Of those 174 
posts, 79 came from Unit 1, 27 from Unit 2, and 68 from Unit 3. With a total of 174 posts and 35 
participants, the average number of posts per participant across all units was 4.97.  

 Each post was then coded to indicate whether the post was about student thinking or not (yes 
or no), what the post was focused on (technology, task, students, mathematics, teaching) and if 
the post was about student thinking the way they were analyzing student thinking (describing, 
comparing, inferring, restructuring, other). 

The describing category was used if the post provided details about what the students did or 
said. For example, one participant posted, “The technology using pair of students used 
interactive coordinate plane, click and drag (mouse) digital data tables.” Inferring was defined 
as a post that includes an assumption about student thinking or motivation. For example, one 
participant posted “The technology option allowed them to see the patterns much easier and with 
more possibilities.” Comparing was defined as a post that included a direct relationship between 
the work of the participant and the work of the student. For example, one participant posted, 
“When I was doing the task, I was trying to ask myself the same questions the boys asked in the 
video.” Restructuring was defined as a post that included evidence that the participant learned 
something about mathematics, teaching, or student thinking from their analysis of student 
thinking. For example, one participant wrote, “What I noticed with the video of the students who 
used paper and pencil, they actually collected data for various circles. They used this data to 
create a graph. By looking at the data, they determined that a quadratic equation was a best fit for 
the data. I think that the students should do this activity first and then go to Desmos to determine 
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the equation that would be a best fit of the data.” We also had a code, Other, that was used to 
code posts that did not fit the four existing categories. Within the Other category there were two 
themes: contrasting paper/pencil to technology and anticipating or comparing to own 
students or students in general. This post was coded as contrasting paper/pencil to technology, 
“The paper-pencil method definitely took a lot longer and there was not enough data to be seen.” 
The following post was coded comparing to students, “I have a similar issue with my students 
and it is tough to not give them too much, but enough to get them exploring to a point they have 
enough to make good conjectures on.” 

The researchers coded an initial subset of posts collaboratively. Once there was consistency 
in coding, each post was coded by three researchers, these codes were discussed until a 
consensus was reached. If there was disagreement about a particular code, definitions were 
refined to provide greater clarity. 

The Focus of Teachers’ Attention  
For those posts that were focused on student thinking 66% were about students or task, which 

is not surprising. For those posts that did not address student thinking, the focus was somewhat 
equally distributed among technology, teaching, task, and students (See Figure 1).  

 
Figure 1. The focus of each discussion forum post and its consideration of student thinking. 

It appears that when participants did not address student thinking, they still attend to task but 
focus more attention on issues related to teaching and technology. Themes within the posts that 
did not address student thinking were: participants own solution of the task with technology, 
contrasting paper/pencil and technological approaches, general discussion about students’ 
mathematical work, teaching concerns.  

Several posts referred to teachers’ own work with technology. For example, one participant 
noted, “I also had difficulties with software, but it means I need to practice more.” Another 
participant stated, “I started with the linear model too! The exponential model got crazy large. I 
like that when I picked that one, the simulation questioned that one and prompted me to go 
back.” Participants also discussed how different tools (paper/pencil, technology) can be used to 
support students’ learning. For example, one participant exclaimed, “Yes! I agree that students 
need a combination of both methods as technology should enhance the experience and not do it 
completely for them!” and another participant commented, “The technology allows learners to 
use more functions and visualise the circle with unlimited pennies and may notice the large 
difference when the functions and graph are done by hand writing.” Several posts addressed 
general teaching concerns such as, “I teach developmental math at college level. I think 
technology is good for teaching and learning. But I have classes in a room without computers. So 
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I mostly think about using technology and demonstration on the screen for the whole class to 
see.” While others referred to students in a general way, “Students sometimes have a hard time 
figuring out if their predictions are good or bad. With this program, they are able to immediately 
determine if the estimates were good or bad.”  

Because opportunities to analyze students’ thinking were included in each unit, teachers’ 
attention to student thinking across the units was examined. As shown in Figure 2a, there was 
increased attention to student thinking across units (from 37% to 44% to 57%). While the 
majority of the posts were identified as “not student thinking” in Units 1 and 2 (63% and 56%, 
respectively), the majority of the posts were identified as “student thinking” in Unit 3 (57%). In 
addition to analyzing whether a post was about student thinking or not, researchers examined the 
focus of each post across units. In Figure 2b, it is evident that of all the posts that were coded as 
focusing on technology, the majority occurred in Unit 1 (61%) and decreased in Units 2 and 3. 

 

  
Figure 2a. Number of discussion forum posts focused on student thinking across units.  

Figure 2b. Proportion of coded discussion forum posts in each of the units. 

Focusing only on those posts that were coded as addressing student thinking, we see that the 
number of posts that also address technology increased from Unit 1 to Unit 2 and then decreased 
in Unit 3 (Figure 3a). Although not as drastic, there was a similar result for the discussion of 
tasks, where 59% of the discussion in Unit 3 of the posts identified as student thinking were also 
discussing the task, whereas those percentages were slightly higher in Units 1 and 2 (76% and 
75%, respectively- Figure 3b). In addition to discussing the technology and the task related to 
student thinking, participants also discussed students and teaching. Posts about teaching and 
student thinking increased from Unit 1 to Unit 2 (See Figure 3c) and posts about students and 
student thinking stayed fairly consistent across units (Figure 3d). 

One of the purposes of this research study was to examine what teachers focused upon when 
attending to student work and thinking while participating in online discussion forums within a 
teaching mathematics with technology professional development course. We found an increase 
in the number of posts that analyzed student thinking across units. When posts were not focused 
on student thinking, they tended to address teaching or technology. Within posts that addressed 
student thinking we saw different trends in the ways teachers discussed technology, teaching, 
task, and students. 
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Figures 3a-3d. Focus of posts coded student thinking. 

The other purpose of this study was to examine processes teachers used when examining 
student thinking. If a post was coded as addressing student thinking, it was coded for the process 
that was used (describing, comparing, inferring, restructuring, and other) to make sense of 
student thinking. Findings to this question are presented in the following section. 

How Teachers Analyze Students’ Work and Thinking 
Posts that included an analysis of student thinking were coded in terms of describing, 

comparing, inferring, restructuring or other. Many of the teachers analyzed student thinking and 
responded by: 1) describing and inferring, 2) inferring and restructuring, or 3) describing, 
inferring, and restructuring. However, others indicated that they had solved the task themselves 
using technology, anticipated student strategies, made comparisons to their own thinking, and/or 
described/made inferences about student thinking (See Figure 4). We found that some teachers 
made two other types of comparisons: comparisons to their own students or students in general. 

 
Figure 4. Teachers’ patterns of analysis of student thinking. 

Across all units, posts typically included inferences about students. They also included 
descriptions of students’ actions or words. Less often, we saw instances of restructuring (Figure 
5).  
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Figure 5. How teachers made sense of student thinking in discussion forum posts. 

If we look at the processes used in the posts across units, posts are identified as “Inferring” 
61% of the time in Unit 3, whereas the percentages are lower in Units 1 and 2 (45% and 57%, 
respectively). Discussion forum posts are also more likely to compare the paper/pencil students 
to the technology students in Units 1 and 2, whereas only 2% of the posts were assigned this 
code in Unit 3. This is not surprising since we noted earlier that the posts focused more on 
technology first two units, and this decreased in Unit 3. Additionally, posts were more likely to 
compare the students in the video to their own students in Unit 3 (about 11% of the time), than in 
Units 1 and 2 (about 2% and 0%, respectively). 

 

Figure 6. How participants discuss student thinking across units. 

Discussion 
With more content and courses for teachers available online, it is likely that this will be a 

venue where teachers seek out professional learning experiences. Massive open-online courses 
transcend geographic distances and time zones to bring people together around a common 
interest across the globe. With asynchronous MOOCs, teachers can make decisions about when 
and how to participate. While research provides evidence about how teachers can improve in 
their ability to notice and analyze students’ thinking in face-to-face professional development, 
little research is available that examines how this transpires online.  

Other studies that examined how participants noticed classroom events while participating 
online found a shift in attention from factors related to classroom implementation to features of 
the task (McGraw, Lynch, Koc, Budak, & Brown, 2007) or a shift in the sophistication of 
analysis of student thinking about specific mathematics (Fernández, Llinares, & Valls, 2012). 
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Our study provides evidence that in our online course teachers’ attention to student thinking 
increased over time. In addition, teachers’ posts provided evidence of going beyond what 
students were doing with the technology to making inferences about students’ thinking. We also 
found that while many of the initial posted focused on issues related to the technology, this 
shifted over time to focus on other aspects related to mathematics teaching and learning. 
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In support of standards for the learning and teaching of mathematics and statistics that advocate 
for the use of technology to promote reasoning and sense making, and to elicit student thinking, 
we draw on the use of authentic student work in the form of video case instruction to develop 
prospective secondary mathematics teachers’ [PSMTs] knowledge of students’ understanding, 
thinking, and learning with technology in mathematics. Specifically, we draw on the extant 
literature related to TPACK, video cases as learning objects, and noticing to propose a set of 
design principles intended to guide the development of materials to support PSMTs’ acquisition 
of TPACK. Here we explicate six design principles situated in the literature, provide an example 
of a module designed based on these principles, and share findings from pilot studies utilizing 
the module.  

Keywords: TPACK; Professional noticing; Preservice teacher education 

The National Council of Teachers of Mathematics (NCTM, 2000) has long advocated that 
“technology is essential in teaching and learning mathematics; it influences what is taught and 
enhances students’ learning” (p. 24). Given the impact that meaningful incorporation of 
technology tools can have on students’ understanding of mathematics, it is important for teachers 
to develop a model of teaching and learning that goes beyond the specifics of a technology tool 
so they are able to make informed decisions about appropriate use of technology to develop 
mathematically proficient students. This was most recently articulated in the Association of 
Mathematics Teacher Educator’s (AMTE) Standards for Preparing Teachers of Mathematics 
which states, “well-prepared beginning teachers of mathematics are proficient with tools and 
technology designed to support mathematical reasoning and sense making, both in doing 
mathematics themselves and in supporting student learning of mathematics” (2017, p. 11). This 
requires teachers to not only be proficient users of technologies, but also to understand how to 
use technology in meaningful ways to support students’ thinking about mathematics. Whether or 
not the use of technology will enhance students’ learning depends on teachers’ decisions when 
using technology tools to design and implement meaningful tasks. These decisions are informed 
by teachers’ knowledge of mathematics, technology, and pedagogy. 

Consider the context of teaching trigonometric functions in high school. Teachers need to 
know how triangle and unit circle models of trigonometric functions are related and connected to 
each other (knowledge of content). They also need to know how to use technology to create 
connected representations of right triangle models, unit circle models, and representations of 
trigonometric functions (knowledge of technology specific to the content). Finally, teachers need 
to be able to design activities that align with the approaches that students might take when asked 
to make sense of the connections between right triangle and unit circle models of trigonometry 
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(knowledge of pedagogy specific to the content). The intersection of these forms of knowledge 
has been identified as technological pedagogical content knowledge (TPACK).  

Building off of the work of Grossman (1989), Niess (2005) articulated four components of 
TPACK: 1) an overarching conception of what it means to teach a particular subject while 
integrating technology in the learning; 2) knowledge of instructional strategies and 
representations for teaching particular topics with technology; 3) knowledge of students’ 
understandings, thinking, and learning with technology in a specific subject; and 4) knowledge 
of curriculum and curriculum materials that integrate technology with learning in the subject 
area. It is the third component, knowledge of students’ understandings, thinking, and learning 
with technology in a specific subject that is the focus of this paper. Specifically, drawing on the 
extant literature related to TPACK, video case instruction, and professional noticing we propose 
a set of design principles for the development of video-enhanced modules for PSMTs with an 
eye toward the development of their knowledge of students’ understandings, thinking, and 
learning with technology in mathematics, an important aspect of TPACK.  

Theoretical Foundations 
Technological Pedagogical Mathematical and Statistical Knowledge 

Within teacher education, many have built upon Shulman’s (1986) idea of teachers’ 
pedagogical content knowledge (PCK). Research and teacher education in mathematics 
education have been greatly influenced by Simon’s hypothetical learning trajectory (1995), 
Even’s (1990) work on the essential features of subject matter knowledge in mathematics 
(particularly for functions), and Ball and colleagues (e.g., Ball, Thames, & Phelps, 2008) work 
on the components of mathematical knowledge for teaching. However, none of this work 
considered the knowledge that comes with teaching with technology. The particular knowledge 
needed when technology is added has been identified as TPACK (e.g., Niess, 2005). This 
construct has been used by several researchers as a frame for their work to describe the 
development of PSMTs’ abilities in using technology in mathematics teaching (e.g., 
Hollebrands, McCulloch, & Lee, 2016; Lee, Kersaint, Harper, Driskell, & Leatham, 2012). 

When considering TPACK within the context of preparing prospective secondary 
mathematics teachers [PSMTs], we believe it is most essential to focus on the intersections of 
content (mathematical and statistical) knowledge with technological and pedagogical knowledge. 
So although we acknowledge the importance of general knowledge of technology and pedagogy, 
we focus on thinking about mathematics and statistics content, and the use of technology tools 
specific to teaching mathematics and statistics, as well as pedagogical and technological 
knowledge that is central to teaching and learning mathematics and statistics (Figure 1). This 
means developing specific types of knowledge for teaching secondary mathematics/statistics 
with technology: 1) Mathematics/Statistics Knowledge (Content Knowledge of mathematics and 
statistics); 2) Technological Mathematical/Statistical Knowledge (Technological Content 
Knowledge with appropriate tools used in mathematics and statistics); 3) Pedagogical 
Mathematical and Statistical Knowledge (Pedagogical Content Knowledge for teaching 
mathematics and statistics); and 4) Technological Pedagogical Mathematical and Statistical 
Knowledge (as a specific type of Technological Pedagogical Content Knowledge). With a focus 
on content, notice that the largest circle represents our approach in that mathematics/statistics 
knowledge is foundational to developing the other three knowledge types. In designing modules 
to focus on examining students’ mathematical practices with technology, we also necessarily 
concentrate on increasing undergraduate PSMTs’ Mathematical and Statistical Knowledge 
(MSK) and Technological Pedagogical Mathematics and Statistics Knowledge (TPMSK). 
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Figure 1. Framing Technological Pedagogical Mathematical and Statistical Knowledge  

Analyzing Student Work 
Research has pointed to the important role that students’ mathematical thinking plays in 

high-quality instruction (e.g., Jacobs & Spangler, 2017). This points to the need for PSMTs to 
have opportunities to grapple with and make sense of how students think about mathematics. 
NCTM’s publication, Principles to Action, identified “elicit and use evidence of student 
thinking” as one of the eight mathematics teaching practices (2014, p. 10). For PSMTs this skill 
must be purposefully developed via teaching practice. One method that has been shown to help 
PSMTs develop an understanding of student thinking is analysis of authentic student work (e.g., 
Jansen & Spitzer, 2009; Philipp, 2008).  

Authentic student work can come in the form of written artifacts or video cases. Here we 
focus on video cases and their corresponding written artifacts as together they provide insight to 
student thinking as they are engaged in mathematical work. Video cases have been shown to 
improve PSMTs’ ability to critically observe classroom practice, attending to teacher choices and 
student thinking rather than merely content delivery (e.g., Star & Strickland, 2008; Sherin & van 
Es, 2005). Additionally, a focus on student thinking through video case analysis has been shown 
to improve PSMTs’ abilities to draw attention to and describe teachers’ instructional moves to 
make student thinking visible, to reason about impact of teacher’s decisions on student learning, 
and to propose alternatives to what was observed in the video (Santagata & Guarino, 2011). 

While video case instruction has been shown to be very beneficial for PSMTs, researchers 
caution that the selection of video clips (e.g., Kurz, Llama, & Savenye, 2005; Sherin, 
Linsenmeier, & van Es, 2009) and how video cases are used is critical to promoting teacher 
learning (e.g., Brophy, 2004). To this end, Sherin et al. (2009) articulated a framework for 
selecting video clips to develop cases that attend to the extent to which a clip provides a window 
into student thinking, the depth of student thinking, and clarity of student thinking. To ensure the 
best video clip possible they suggest that all three criteria are considered. It is also suggested that 
cases be designed so that they focus on aspects of student work in which there are elements of 
confusion or surprise (Shulman, 1996; Sherin et al. 2009). Once video clips are selected, the 
activities that surround their use must be carefully designed, articulating clear goals to focus the 
analysis of the video (Borko, Jacobs, Eiteljorg, & Pittmann, 2008). A method often used to guide 
PSMTs’ analysis of student work in video cases is the professional noticing construct developed 
by Jacobs, Lamb and Philipp (2010). The three components of the professional noticing 
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construct are attending to students’ strategies, interpreting students’ mathematical thinking, and 
deciding how to respond on the basis of students’ understandings.  

Much of the research on PSMTs analyzing student work has been completed through the lens 
of professional noticing. Within professional noticing work more attention has been paid to 
professional noticing of whole class video (e.g., Krupa, Huey, Lesseig, Casey & Monson, 2017; 
McDuffie et. al, 2013), with less on prospective teachers’ noticing of student written work (e.g., 
Dick, 2017; Goldsmith & Seago, 2011). In terms of PSMTs’ professional noticing of students’ 
understanding, thinking, and learning mathematical tasks in technological environments, very 
few studies have been conducted (e.g., Wilson, Lee & Hollebrands, 2011).  

The seminal work on PSMTs’ professional noticing of students’ understanding, thinking, and 
learning of mathematics with technology comes from Wilson et al. (2011). They not only 
indicated that engaging preservice teachers in analyzing video cases of students’ technological 
mathematical work resulted in identifying different ways of constructing models of student 
thinking, but also made a call for the need of research to more fully understand the role of these 
models in the development of PSMTs’ TPACK. Even so, a broad search of the literature 
(including unpublished dissertations) indicates there has been very little continued work in this 
direction. This might be due to the complex nature of designing such materials for PSMTs. To 
address this, and support others who are aiming to support PSMTs in their development of 
TPMSK, we draw on the literature described here to propose a set of design principles for 
engaging PSMTs in professional noticing of students’ mathematical technological practices.  

Design Principles for Supporting Professional Noticing of Students’ Technological 
Mathematical Practices 

The design principles we propose draw on the integration of the literature on developing 
TPACK, video case pedagogies, and the construct of professional noticing. Specifically, we 
propose that by beginning with the philosophy of an integrated approach to develop skills in a 
specific content area, pedagogy and technology, the development of MSK and TPMSK can be 
done through the use of video cases of student practices on technology-based mathematics and 
statistics tasks. Guiding PSMTs’ analysis of video cases is the use of the professional noticing 
construct. Specifically, we propose the following design principles. 

1. PSMTs need to observe secondary students engaged in technology-based tasks of high-
cognitive demand. As such, the selected tasks must be of high cognitive demand (Smith 
& Stein, 1998) and position the use of technology to develop mathematical or statistical 
understanding (Dick & Hollebrands, 2011).  

2. Video clips (and associated written artifacts) should focus on aspects of student work in 
which there are elements of confusion or surprise, as is suggested by Sherin et al. (2009) 
and Shulman (1996). 

3. Final clips should be selected based on Sherin et. al’s (2009) recommendations for 
dimensions of video clips that support teacher discussion of students’ mathematical 
thinking (i.e., window into student thinking, depth of student thinking, and clarity of 
student thinking). This includes use of picture-in-picture so that students’ technological 
work is visible as well as any gestures they are making in relation to their technological 
work (e.g., pointing). 

4. To support PSMTs’ development of TMSK they must engage with the technology-based 
task first as learners (Lee, Hollebrands, & McCulloch, 2015).  
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5. To support PSMTs’ development of TPMSK through the analysis of video clips, guiding 
questions should be designed based on Jacobs et al. (2010) framework for professional 
noticing. This means specifically asking PSMTs to attend, interpret, predict, and make 
pedagogical decisions based on their analysis of the video cases.  

We conjecture that careful selection of tasks, technology, video case clips, and the questions 
included in a video case will work together to provide PSMTs an opportunity to develop their 
knowledge of students’ understandings, thinking, and learning with technology in mathematics. 

An Example: The Function Concept - Functions and Non-functions 
To illustrate our vision for video cases that can promote PSMTs’ professional noticing of 

students’ technological mathematical practices we provide an example. We begin by having 
PSMTs engage with a preconstructed GeoGebra applet designed to provoke a dilemma in 
relation to their understanding of function (Design Principle 4) PSMTs are asked to engage with 
this applet and answer questions related to their own understanding of function, representations 
of function, and consider how they might use the applet with students. (Figure 2). This applet has 
been designed using a vending machine metaphor so that PSMTs grapple with making sense of 
function, domain, and range in a context that does not use traditional algebraic representations 
(Design Principle 1) (see McCulloch, Lovett, & Edgington (2017) for a full discussion of the 
design of this applet and one study of its use with undergraduate students).  
 

  
Figure 2. Vending machine applet Figure 3. Students working on the applet 

 
A second version of the Vending Machine task was designed specifically for secondary 

students (Design Principle 1). It was designed to be used as an introduction to function with 
students who had no previous experience with the term function. The goal of this version of the 
task is that students develop a definition of function based on their exploration of the machines in 
the applet. The applet was then implemented in an 8th grade math class with pairs of students 
working together and their work on the task was screen captured. Next, the students’ videos were 
analyzed for the purpose of selecting examples of work. This included identifying video clips for 
episodes of confusion or surprise, followed by the analysis of the window, depth of student 
thinking, and clarity of student thinking (Design Principle 2 & 3). Once video episodes were 
selected, they were packaged as a case with questions designed based on Jacobs et al. (2010) 
professional noticing construct (Design Principle 5). For example, PSMTs were asked to attend 
to and interpret the coordination of student thinking and technological actions when analyzing 
the video cases. Further, they were asked to make predictions about student thinking and 



Technology 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1200	

technological action based on their attending and interpreting. Using these materials, the video 
case was implemented with PSMTs as follows:  

• PSMTs were asked to discuss revisions they would make to the original applet if they 
intended to use it with secondary students to develop the definition of function. 

• After exploring the version of the applet that was used with secondary students, PSMTs 
anticipate how secondary students would engage with the task - considering actions with 
the technology and students’ verbal and written responses to task prompts. 

• PSMTs then analyze carefully selected screen capture clips of multiple pairs of students 
engaging with the applet (and their associated written work). These video clips show the 
pairs of students’ engagement with some of the machines in the applet, but not all. 
PSMTs then predict how each student pair might identify each machine as a function or 
non-function and how they might engage with the remaining machines given their 
analysis of the first few. 

• Given written definitions of function from five pairs of secondary students, PSMTs select 
which they would use to start a class discussion of the definition of function, why they 
selected that sample, and which machines in the applet they would draw upon for the 
discussion given their selection. 

As is evident, the video case provided ample opportunities for the PSMTs to consider their 
own and students’ technological mathematical work through engaging with a carefully selected 
task and analyze carefully selected video cases of students’ technological mathematical work by 
engaging in professional noticing.  

Discussion 
Our proposed design principles for the development of professional noticing of students’ 
technological mathematical practices are grounded in the literature and have been successfully 
used to frame the design of a module for PSMTs in the context of the use of a vending machine 
applet to build an understanding of the function concept. The vending machine task module has 
been piloted with 98 PSMTs in secondary mathematics education methods courses at six 
different universities. Data included PSMTs’ pre and post function definitions, screen casts of 
their own mathematical work with the vending machine task, and written artifacts from the 
analyzing student work assignments. These studies indicate that this module was successful in 
eliciting PSMTs’ MK, TMK, and TPMK (Lovett et al., Under Review). Specifically, within the 
realm of TPMK, not only were PSMTs able to show an understanding of students’ 
understandings, thinking, and learning with technology in mathematics, but also as they stated 
their predictions of students’ technological mathematical work they showed evidence of being 
able to conceive of how technology can support mathematical thinking (Lovett et al., Under 
Review), both important aspects of TPACK (Niess, 2005).  

Pilot study results also indicate the use of professional noticing to frame the analysis of the 
video cases was important in that it elicited the specific ways in which prospective teachers drew 
upon different aspects of student work evident in the video cases. We found that some drew only 
upon students’ spoken and written words, others drew upon only students’ actions with the 
technology. However, those that coordinated both aspects of the students’ work were better 
prepared to predict students’ responses on related tasks and to make decisions to support student 
learning (Lovett, Dick, McCulloch, Sherman, & Martin, 2018). This coordination was especially 
important as they were making sense of a particular video clip in which students were confused. 
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Finally, it was found that PSMTs’ knowledge of the mathematics deepened through their own 
engagement with the vending machine task as a learner, and for many this knowledge was 
expanded even more through their analysis of the video cases (Lovett et al., 2017). Thus, we 
have substantial evidence that these proposed design principles for developing video cases for 
examining students’ practices with technology are promising.  

Conclusion 
Strong preparation of mathematics teachers must include opportunities to engage with 

technology-based mathematics tasks as learners as well as opportunities to develop an 
understanding of how to support students’ learning in mathematical technological environments. 
As we consider the conference theme, looking back and understanding theories and methods that 
have been successful in supporting prospective teachers as they learn to make sense of student 
thinking can help us look ahead and move forward by drawing on this work to propose new 
theory about continuing this development in technological contexts. In this paper we have 
articulated a set of 6 principles to frame the design of video case materials to support PSMT 
development of TPACK. Results from pilot studies provide empirical support for the promise of 
these design principles. We now challenge ourselves and others in the field to keep these 
principles in mind as we work to ensure PSMTs are well-prepared to teach with technology in 
ways that support students’ mathematical reasoning.  
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En este estudio se analizan y discuten los elementos del diseño y resultados de la 
implementación de un curso masivo abierto en línea (MOOC) que promueve la resolución de 
problemas basado en el uso de tecnología digital. Los resultados muestran que el diseño de las 
actividades, la intervención del equipo de diseño del MOOC en los foros de discusión y la 
interacción entre los participantes permitió y favoreció la creación de un ambiente de 
colaboración en la resolución de problemas. Los participantes compartieron y discutieron sus 
ideas matemáticas como parte de una comunidad virtual de aprendizaje, lo que les permitió 
formular conjeturas, explorar y buscar propiedades para sustentar relaciones y comunicar 
resultados. 

Palabras clave: Resolución de Problemas, Tecnología. 

Introducción 
Durante o después de sus clases, es común que los estudiantes consulten diversas plataformas 

digitales en Internet para acceder a información sobre contenidos disciplinarios, compartir y 
discutir ideas, tomar cursos especializados en algún tema e interactuar con expertos. Así, los 
espacios y tiempos en los que se produce aprendizaje han cambiado y han sido alterados por la 
conectividad en la red (Gros, 2016).  

Diversas universidades han puesto a disposición del público general, Cursos Masivos 
Abiertos en Línea (Massive Open Online Course, MOOC por sus siglas en inglés) a través de 
diversas plataformas digitales. La comunidad virtual que participa en estos cursos comprende un 
conjunto grande (generalmente miles) de personas con diferentes niveles de estudios, edad, 
dominio o conocimiento previo de la materia, entre otros. En el desarrollo de las actividades de 
un MOOC no existe un profesor encargado de responder o dar seguimiento puntual a cada 
participante. Cada integrante define su grado de compromiso y participación en las actividades. 
Para este estudio, se construyó el MOOC: Resolución de Problemas Matemáticos y uso de 
Tecnologías Digitales, basado en los marcos: resolución de problemas (Santos-Trigo, 2014) y 
RASE (Churchill, King, & Fox Churchill, 2016). Churchill, et al., (2016) argumentan que un 
ambiente de aprendizaje en línea debe incluir elementos que permitan a sus participantes trabajar 
y colaborar en equipo con otros. Las actividades deben fomentar la participación activa de los 
estudiantes en un ambiente de reflexión, de discusión y centrarse en un contexto donde las tareas 
involucren a los estudiantes en los episodios de resolución de problemas: formulación de 
preguntas, búsqueda de diversos métodos de solución, exploración de diferentes 
representaciones, búsqueda de patrones, variantes y relaciones entre objetos matemáticos, 
presentación de argumentos, comunicación de resultados, planteamiento de preguntas y 
formulación de nuevos problemas (Santos-Trigo, 2014). El uso sistemático de tecnologías 
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digitales resulta importante en la representación, exploración, comunicación y comprensión de 
conceptos matemáticos en la resolución de problemas (Santos-Trigo, Moreno-Armella, 2016). 

En este estudio interesó analizar el diseño de las actividades matemáticas y la formas de 
razonamiento de los participantes relacionado con: (1) el planteamiento de preguntas y la 
búsqueda de diversas maneras de responderlas; (2) la formulación de conjeturas basadas en el 
movimiento de objetos matemáticos y la cuantificación de atributos como medida de segmentos, 
ángulos, áreas, etc.; y (3) la búsqueda de argumentos que validen esas conjeturas transitando 
desde los argumentos empíricos y visuales hasta la construcción de argumentos geométricos y 
algebraicos. Así, la pregunta de investigación que sirvió de guía para el desarrollo de este estudio 
fue ¿De qué manera el diseño e implementación de las actividades en un MOOC basado en 
resolución de problemas y uso coordinado de tecnologías digitales influye en la construcción y el 
desarrollo del pensamiento matemático de los participantes? 

Marco Conceptual 
La construcción del pensamiento matemático está relacionada con la resolución de problemas 

ya que es un medio que permite identificar, explorar, probar y comunicar las estrategias de 
solución (Santos-Trigo, 2014; Schoenfeld, 1992). Diversas tecnologías digitales ofrecen a los 
estudiantes diversos caminos para representar y explorar conceptos y problemas matemáticos 
que extienden aquellos acercamientos basados en el uso de lápiz y papel (Santos-Trigo, 2014; 
Aguilar-Magallón & Poveda, 2017).  

Un Sistema de Geometría Dinámica (SGD) puede utilizarse para integrar los procesos que 
intervienen en la resolución de problemas ya que permite generar representaciones o modelos 
dinámicos de los problemas matemáticos donde el movimiento de objetos particulares (puntos, 
rectas, segmentos, polígonos, etc.) puede ser explorado y explicado en términos de relaciones 
matemáticas. Así, el uso sistemático de tecnologías digitales resulta importante en la 
representación, exploración, comunicación y comprensión de conceptos matemáticos en la 
resolución de problemas.  

Churchill et al. (2016) argumentan que se necesita un modelo para el diseño de ambientes de 
aprendizaje que proporcione, a profesores e investigadores, pautas para utilizar tecnologías 
digitales en el contexto de la enseñanza y aprendizaje. Proponen el modelo de diseño RASE que 
integra Recursos, Actividades, Soporte y Evaluación. Los Recursos, se refieren a los materiales 
disponibles para los estudiantes: videos, imágenes, documentos digitales, calculadoras, 
herramientas para la representación de situaciones matemáticas, etc. Las Actividades deben 
permitir a los estudiantes involucrarse en procesos de discusión, análisis y reflexión en 
colaboración con otros.   

El Soporte establece que se deben incluir diversos medios de consulta y comunicación entre 
los estudiantes con el objetivo de que puedan obtener ayuda o retroalimentación en el momento 
en que lo necesiten y, así, fomentar su independencia del profesor o tutor. La evaluación debe 
favorecer que los estudiantes mejoren constantemente su aprendizaje, por ello, es necesario que 
cuando expresen sus ideas, analicen la retroalimentación recibida, a través de los medios de 
soporte, para refinar o ampliar los conceptos o ideas iniciales. 

En un MOOC, los foros de discusión se convierten en un medio de conversación entre sus 
participantes y les ofrece la oportunidad de plantear, aclarar, conocer, contrastar ideas propias y 
de otros (Poveda & Aguilar-Magallón, 2017). Ernest (2016) argumenta que en la conversación 
intervienen: un hablante/proponente, un oyente/crítico y un Texto Matemático. El 
hablante/proponente plantea una idea (Texto Matemático) y el oyente/crítico responde 
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proporcionando su punto de vista, aceptando o modificando la idea original. Posteriormente, el 
hablante/proponente puede asumir el rol de oyente/crítico, de esta manera, se alternan sus roles. 

Metodología 
El objetivo del diseño de las actividades del curso fue enfatizar que el aprendizaje de las 

matemáticas requiere problematizar o cuestionar las tareas o situaciones, pensar distintas 
maneras de resolver un problema, comprender y utilizar diversas representaciones, interpretar la 
solución y comunicar los resultados. Mediante este proceso, la formulación de preguntas se 
convierte en un medio que permiten a los participantes construir, desarrollar, refinar, o 
transformar sus formas de comprender y resolver problemas. 

Los Recursos incluyeron representaciones o modelos dinámicos de problemas construidos en 
GeoGebra, vínculos a la plataforma Wikipedia y videos de KhanAcademy para el estudio y 
consulta de conceptos o relaciones matemáticas. Las Actividades comprendieron tres etapas: 1) 
Movimiento: los participantes tuvieron la oportunidad de explorar un modelo dinámico que 
representa un problema y explorar el comportamiento de algunos de sus objetos que resulta al 
mover otros elementos, 2) Conjetura: el objetivo es que, a partir del movimiento, los 
participantes formularan conjeturas que puedan ser sustentadas o refutadas a partir de 
argumentos visuales o empíricos y 3) Justificación: se buscó que toda conjetura fuera justificada 
mediante argumentos que involucraran propiedades y resultados matemáticos.  

Se utilizó el foro de discusión para que los participantes tuvieran la posibilidad de plantear 
sus dudas e ideas las veces que consideraran necesarias. Así, el trabajo de los integrantes puede 
ser un punto de referencia para que otros retomen o extiendan las ideas, las contrasten y las 
discutan. Además, en los foros de discusión los participantes pueden recibir retroalimentación 
acerca de las ideas que plantean, esto puede favorecer el análisis y reflexión como parte del 
proceso de Evaluación. 
Implementación del MOOC, sus participantes y procedimientos 

El MOOC se construyó e implementó en la plataforma Open edx (https://open.edx.org/about-
open-edx), tuvo una duración de siete semanas y estuvo compuesto por cinco Actividades. El 
requisito fue estar cursando o haber terminado estudios del nivel K-12. Participaron 2669 
personas. Al inicio del curso, únicamente estuvo visible la Actividad 1, una semana después se 
mostraba la Actividad 2 y así sucesivamente, sin restringir el acceso a las anteriores.  
Durante las siete semanas en que el curso estuvo disponible a los participantes, el equipo de 
diseño (ED) monitoreó el desarrollo de las Actividades y la participación en los foros. El trabajo 
consistió en lo siguiente:  

1.  Al inicio de la Actividad (primer y segundo día), clasificó los comentarios en cuatro 
categorías: respuestas a las preguntas que planteaba cada Actividad, acercamientos hacia 
la solución del problema (correctos e incorrectos), nuevas preguntas planteadas por los 
integrantes y propuestas para extender el problema. Posteriormente, se eliminaron los 
comentarios con ideas similares; se tomaron dos o tres de cada categoría y fueron 
colocados de tal forma que se mostraran al inicio de las conversaciones, así los 
participantes les podrían dar prioridad en su análisis. 

2. Durante la Actividad intervenía en los foros solo cuando se requería orientar y extender la 
discusión. Nunca se respondía de manera directa a las preguntas de los participantes, sino 
que, se planteaban preguntas con el objetivo de generar discusión y que ellos mismos 
buscaran diferentes formas de solucionar la situación.  
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3. Al final de la Actividad se plantearon preguntas para promover la ampliación del tema y 
que los participantes buscaran extender los problemas iniciales.  

Los datos de este estudio se recolectaron por medio de los foros de discusión. La unidad de 
análisis fueron las conversaciones de los participantes en cada Actividad. Al finalizar el curso, el 
equipo de diseño analizó y documentó cómo el diseño de las Actividades, la discusión e 
interacción entre los participantes y las acciones que tomó el equipo de diseño en el foro 
influyeron en el desarrollo de los episodios de resolución de problemas, según el marco de 
resolución de problemas y uso de tecnologías digitales de Santos-Trigo (2014). 

Presentación de Resultados 
Se discute una de las Actividades propuestas en el MOOC: Dos granjeros desean sembrar un 

terreno que tiene forma de un cuadrado. ¿Cómo dividir el terreno para que cada granjero siembre 
exactamente la misma área? La Actividad consistió desarrollar dos soluciones del problema, en 
cada una se proporcionó un modelo dinámico y un conjunto de preguntas para guiar el trabajo de 
los participantes. La Tabla 1 muestra la etapa en donde los integrantes del MOOC tuvieron la 
oportunidad de mover objetos en búsqueda de relaciones o invariantes y un resumen de las 
conversaciones en el foro.  

Tabla 1: El movimiento y los primeros resultados de la exploración dinámica. 
El movimiento y la exploración Resultados de las interacciones en los foros  

Movimiento: Al mover los puntos A, B, 
P y Q ¿Qué ocurre con las áreas de las 
regiones? ¿Dónde situar los puntos P y Q 
para que las áreas de las regiones AQPD 
y QBCP sean las mismas? 

Todos los participantes: 
1. Coincidieron que, al mover los puntos P y 

Q, es posible obtener regiones de áreas 
iguales, sin importar la medida del lado del 
cuadrado. 

2. Se basaron en el movimiento de objetos y 
la medición de áreas para determinar 
algunas soluciones: 𝑃 = 𝐶 y 𝑄 = 𝐴; 𝑃 =
𝐷 y 𝑄 = 𝐵; y 𝑃𝑄 mediatriz de 𝐷𝐶.  

 
En esta parte de la Actividad, los participantes 
no lograron observar que una solución general 
es cuando 𝑃𝑄 pasa por el centro del cuadrado. 

 
La siguiente pregunta que se planteó a los participantes fue: ¿Resulta importante el centro del 

cuadrado y la posición de la recta que divide al terreno en regiones de la misma área? Todos 
formularon su primera conjetura basada en argumentos visuales y empíricos (mediciones de las 
áreas de 𝐴𝑄𝑃𝐷 y 𝑄𝐵𝐶𝑃): “Si la recta PQ pasa por el centro del cuadrado ABCD entonces lo 
divide en dos áreas iguales”. El ED cuestionó: “¿Cuántas soluciones existen?” Las respuestas 
coincidieron en que existe un número infinito de soluciones. 

En la búsqueda de una justificación de la conjetura, se cuestionó a los participantes: ¿Qué 
conceptos, propiedades y recursos matemáticos se pueden usar para sustentar la conjetura? 
Todos coincidieron, en las conversaciones, en que era necesario trazar las diagonales del 
cuadrado y utilizar sus propiedades (Justificación 1 de la Tabla 2).  
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El participante 𝑃! presentó otra forma de justificar la conjetura: construyó un modelo 
dinámico, planteó sus ideas, contestó las dudas de otros y proporcionó retroalimentación a los 
que decían no comprender la justificación (Justificación 2, Tabla 2). 

Tabla 2: Recursos y estrategias de exploración y solución. 
Justificaciones Recursos y estrategias de exploración y solución 

Justificación 1  Recursos: Propiedades del cuadrado y sus diagonales, 
ángulos entre paralelas, ángulos opuestos por el vértice y 
congruencia de triángulos. 
Estrategia: Colocar un punto móvil 𝑃 sobre el lado 𝐷𝐶, 
construir la recta 𝑃𝑂 y trazar las diagonales del cuadrado.  
Justificación: 𝛥𝐷𝑂𝑃 ≅ 𝛥𝐵𝑂𝑄 (ALA), así 𝐷𝑃 = 𝐵𝑄, por lo 
tanto, los trapecios 𝐴𝑄𝑃𝐷 y 𝑄𝐵𝐶𝑃 son congruentes y tienen 
área igual. 

Justificación 2 de 𝑷𝟏 Recursos: Propiedades del cuadrado, congruencia de 
triángulos, ángulos entre paralelas, propiedades de rectas 
paralelas y perpendiculares. 
Estrategia: Colocar el punto móvil 𝑃 sobre 𝐷𝐶, trazar la recta 
𝑃𝑂 y construir rectas perpendiculares a 𝐷𝐶 y 𝐴𝐵 que pasan 
por 𝑃 y 𝑄, respectivamente. 
Justificación: Δ𝑄𝐾𝑃 ≅ Δ𝑃𝐿𝑄 (LAL) y los rectángulos 
𝐴𝑄𝐾𝐷 y 𝐿𝐵𝐶𝑃 son congruentes (no proporciona 
argumentos). Preguntas de los participantes en el foro: (1) 
¿Qué sucede si P=C y Q=A? 𝑃!: “Se tienen dos triángulos 
rectángulos congruentes”, (2) “¿Cómo sabes que AQ=PC?”. 
𝑃! hizo referencia a la Justificación 1. 

 
La siguiente parte de la Actividad guio a los participantes en la exploración y búsqueda de 

otra solución, los detalles se muestran en la Tabla 3. 

Tabla 3: La importancia del movimiento y la exploración. 
Etapas de la Actividad Interacciones en los foros  

P es un punto móvil dentro del 
cuadrado.  
Movimiento. ¿Qué regiones 
se les puede asignar a los 
grajeros para que cada uno 
siembre la misma área? 

Los participantes coincidieron en que:  
• Al mover 𝑃 se pueden obtener las soluciones cuando: 

𝑃 coincide con alguno de los vértices, 𝑃 es el punto 
medio de un lado o 𝑃 es el centro del cuadrado.  

• Otra solución es cuando 𝑃 pertenece a una de las 
diagonales del cuadrado o a la recta que une los puntos 
medios de 𝐴𝐵	y 𝐷𝐶. 

Luego de las conclusiones anteriores, un participante 
mencionó que la suma de las áreas de los triángulos 𝐴𝐵𝑃 
y 𝐶𝐷𝑃 se mantiene contante e igual a la mitad del área del 
cuadrado. Los demás estuvieron de acuerdo y afirmaron 
que no habían visto dicha invariante.   
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Conjetura: ¿Al variar la 
posición del punto 𝑃, qué 
ocurre con la suma de las áreas 
de los triángulos 𝐴𝐵𝑃 y 𝐶𝐷𝑃? 

Los participantes formularon la conjetura: “Si P es un 
punto que está dentro del cuadrado, la suma de las áreas 
de los triángulos opuestos es la mitad del área del 
cuadrado ABCD”. Retroalimentación: “Al mover P se 
forman 4 triángulos”, respuestas: “Mueve el punto P de 
tal forma que coincida con un vértice, o bien, coloca P 
sobre sobre uno de los lados”. 

 
Luego de que los integrantes formularon la conjetura, la siguiente parte consisitió en buscar 

relaciones matemáticas para justificarla, por ello,  se incluyó, en el modelo dinámico del 
cuadrado, las rectas 𝐹𝐻 y 𝐸𝐺. Los participantes discurtieron y presentaron la Justificación 1 que 
muestra la Tabla 4. La Justificación 2 de la Tabla 4 fue construida y compartida por el 
participante 𝑃". Los demás aprobaron las ideas y construyeron modelos algebraicos como otra 
ruta para sustentalo. 

Tabla 4: Recursos y estrategias de exploración y solución. 
Justificación de la Solución 2 Recursos, estrategias y justificación 

¿Qué propiedades son importantes para 
presentar un argumento que sustente la 
conjetura? ¿Qué propiedades tienen los 
triángulos que se generan al trazar las 
rectas perpendiculares a los lados que 
pasan por el punto 𝑃?  

Recursos: Propiedades de rectas paralelas y 
perpendiculares, triángulos rectángulos 
congruentes 
Estrategia 1: Trazar las rectas 𝐸𝐺 y 𝐹𝐻 
perpendiculares a los lados del cuadrado que 
pasan por 𝑃. 
Justificación 1. ΔAGP ≅ ΔAFP (LLL) y 
ΔGBP ≅ ΔHBP (LLL), del mismo modo 
ΔCEP ≅ ΔCHP y ΔEDP ≅ ΔFDP. Por lo tanto, 
𝐴𝑟𝑒𝑎	𝛥𝐷𝐶𝑃	 + 	𝐴𝑟𝑒𝑎	𝛥𝐴𝐵𝑃	 =
	𝐴𝑟𝑒𝑎	𝛥𝐵𝐶𝑃 + 𝐴𝑟𝑒𝑎	𝛥𝐷𝑃𝐴. 
Estrategia de 𝑷𝟐. La suma de las alturas de 
Δ𝐴𝐺𝑃 y ΔDPE, sin importar la posición de 𝑃, 
es constante e igual a 𝐵𝐶. 
Justificación de 𝑷𝟐: La suma de las alturas de 
Δ𝑃𝐶𝐷 y Δ𝐴𝐵𝑃 es igual a la suma de las alturas 
de ΔDAP y ΔBCP, además, los 4 triángulos 
tienen la misma base, por lo tanto, 
𝐴𝑟𝑒𝑎	𝛥𝑃𝐶𝐷	 + 	𝐴𝑟𝑒𝑎	𝛥𝐴𝐵𝑃	 =
	𝐴𝑟𝑒𝑎	𝛥𝐷𝐴𝑃 + 𝐴𝑟𝑒𝑎	𝛥𝐵𝐶𝑃. 

 
El ED cuestionó en el foro: “¿Existe otra forma de solucionar el problema? ¿Qué otras 

preguntas se pueden plantear?”. El participante 𝑃> retomó las ideas 𝑃" (Jjustificación 2 de la 
Tabla 4) y construyó un modelo dinámico del cuadrado con otra solución (Justificación 1 de la 
Tabla 5). Los demás participantes aprobaron las ideas de 𝑃> y discutieron otra forma de sustentar 
la conjetura (Justificación 2, Tabla 5). Todos los participantes validaron las ideas expuestas y 
proporcionaron ayuda a otros. 
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Tabla 5: Otra solución del problema. 
Otra solución  Recursos, estrategias y justificación 

 

Recursos: Propiedades de rectas paralelas y 
perpendiculares. 
Estrategia: Colocar un punto móvil 𝐸 sobre 𝐷𝐶, trazar 
la recta m perpendicular a 𝐷𝐶 que pasa por 𝐸. Colocar 
dos puntos móviles 𝐹 y 𝐺 sobre 𝑚. 
Justificación 1 de 𝑷𝟑: La suma de las alturas de ΔAFD 
y ΔBCG es constante e igual a 𝐴𝐵 sin importar la 
posición de 𝐸, 𝐹 y 𝐺, por lo tanto, 𝐴𝑟𝑒𝑎	𝛥𝐴𝐹𝐷	 +
	𝐴𝑟𝑒𝑎		𝛥𝐵𝐶𝐺 es la mitad del área del cuadrado. 
Justificación de otros participantes: Trazar rectas 
paralelas a los lados que pasan por los puntos móviles 
para obtener triángulos congruentes. 

 
La Tabla 6 muestra dos de las preguntas que formularon los participantes y las respuestas que 

encontraron.  

Tabla 6: Nuevos problemas planteados por los participantes. 
Preguntas formuladas Justificación 

Extensión 1 
“¿Cómo dividir el terreno en 4 
regiones con la misma área?”. 

 

En la búsqueda de respuestas, un participante 
utilizó la propiedad: Al trazar una mediana de un 
triángulo, éste queda dividido en dos áreas 
iguales. Así, construyó y presentó un modelo 
dinámico similar al de la Solución 2 y en donde 
trazó la mediana de cada triángulo (𝐸𝐼, 𝐸𝐻, 𝐸𝐺 y 
𝐸𝐹). Al sumar las áreas de los triángulos 𝐷𝐸𝐼 y 
𝐶𝐺𝐸, se obtiene que su valor es un cuarto del área 
del cuadrado. 
Los demás participantes en la conversación 
estuvieron de acuerdo con las ideas y recalcaron 
el uso de un SGD en la exploración y búsqueda de 
soluciones. 

Extensión 2 
“¿Será posible determinar un 
cuadrilátero inscrito dentro de 
cualquier otro tal que sea la mitad de 
su área?”. 

Otro participante compartió información de 
Wikipedia relacionada con el teorema de 
Varignon: En cualquier cuadrilátero, los puntos 
medios de los lados forman un paralelogramo 
cuya área es la mitad de la del cuadrilátero 
original.  

Discusión de los resultados 
El diseño de las Actividades guio el trabajo de los participantes hacia la búsqueda de diversas 

formas de explorar los modelos dinámicos. Cada modelo representó para los participantes un 
punto de partida que les permitió identificar conceptos, plantear conjeturas basadas en el 
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movimiento de los objetos matemáticos presentes en la configuración dinámica y sus relaciones 
o invariantes. El uso de los foros de discusión favoreció la comunicación, análisis y contraste de 
ideas matemáticas, además permitió a los participantes proporcionar u obtener retroalimentación 
de otros. Lo anterior fue importante para que transitaran de soluciones visuales y empíricas 
(asociadas con el uso de las herramientas como movimiento de objetos dentro de la 
configuración, la cuantificación de atributos como medida de segmentos, ángulos, áreas, etc.) 
hacia la presentación de argumentos geométricos y algebraicos en la validación de las conjeturas 
formuladas. 

Durante el desarrollo del curso, el monitoreo que realizó el ED en la clasificación y la 
jerarquización de los comentarios favoreció la discusión, refinamiento de conceptos e ideas 
matemáticas y los episodios de la resolución de problemas. Por ejemplo, los participantes 
formularon conjeturas, presentaron argumentos para justificarlas y formularon nuevos 
problemas. El planteamiento de preguntas que presentó el ED fomentó la discusión de las ideas 
matemáticas, la formulación de nuevas soluciones y extensiones del problema (Ver Tabla 2, 5 y 
6).  

Algunas personas participaron en el foro asumiendo el rol específico de proporcionar 
retroalimentación a las preguntas de otros, esto, junto con el diseño de las actividades, promovió 
el trabajo colaborativo y fomentó la independencia de los participantes en el proceso de la 
construcción y su desarrollo del pensamiento matemático.  

Conclusiones 
Los resultados muestran que las diversas tecnologías digitales utilizadas en este estudio y la 

integración de los componentes Recursos, Actividades, Soporte y Evaluación basados en la 
resolución de problemas permitieron crear un ambiente de trabajo colaborativo. La plataforma 
digital permitió incluir representaciones dinámicas de los problemas elaboradas en GeoGebra, en 
las cuales los participantes tuvieron la oportunidad de explorar, identificar conceptos, buscar 
conjeturas y diversos argumentos para sustentarlas. En este proceso, utilizaron estrategias 
asociadas con el uso de la herramienta como movimiento de objetos dentro de la configuración 
dinámica y la cuantificación de sus atributos (longitudes y áreas). 

Durante el desarrollo de las Actividades, un grupo de participantes proporcionó 
retroalimentación a otros, lo que favoreció aclarar o refinar dudas o ideas relacionadas con 
conceptos matemáticos, con la exploración del modelo dinámico, con la formulación de 
conjeturas y su justificación. Lo anterior permitió a los participantes avanzar en el desarrollo y 
comprensión de las Actividades en forma colaborativa y sin depender de un tutor. 

Las acciones que tomó el ED en sus intervenciones en los foros expandieron las discusiones 
en tres direcciones: (1) favorecieron la creación de grupos de trabajo donde se discutían los 
diferentes episodios de la resolución de problemas, (2) dirigieron las discusiones y fomentaron la 
comprensión de conceptos e ideas matemáticas y (3) permitieron a los participantes formular 
preguntas y buscar respuestas, esto los llevó a plantear nuevas soluciones y extensiones al 
problema. Es importe reconocer que durante la etapa del diseño y la implementación de un 
MOOC se debe buscar que los participantes creen la conciencia de que ellos mismos monitoreen 
sus avances en la comprensión y uso de las ideas matemáticas en la resolución de problemas.  

Un factor por considerar en el trabajo a futuro es la posibilidad de que los participantes 
construyan y presenten sus propios modelos dinámicos de los problemas, ya que, en este estudio, 
pese a que no se solicitó explícitamente, algunos construyeron y compartieron sus construcciones 
dinámicas fomentando la discusión de ideas, las formas de resolver y extender el problema. 
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In this study, the elements of the design and results of the implementation of a Massive Open 
Online Course (MOOC) based on the problem solving and the use of digital technology are 
analyzed and discussed. The results show that the design of the activities, the intervention of the 
MOOC design team in the discussion forums and the interaction among the participants allowed 
and favored the creation of a collaborative environment in problem solving. Participants shared 
and discussed their mathematical ideas, as part of a virtual learning community, which allowed 
them to formulate conjectures, explore and search properties to sustain relationships, and 
communicate results. 

Key Words: Problem Solving, Technology. 

Introduction 
During and after their lessons, it is common for the students to use different digital platforms 

on Internet to have access to information about disciplinary contents, share and discuss ideas, 
take specialized courses in a topic and interact with experts. The spaces and times in which the 
learning is developed have been changed and altered by the connectivity of the network (Gros, 
2016). Some universities have made available to the general public Massive Open Online 
Courses through different digital platforms. The virtual community that participates in these 
courses comprises a large group (usually thousands) of people with different levels of studies, 
age, domain or prior knowledge of the subject, among others. In the development of the activities 
of a MOOC there is not a professor in charge to answer or provide timely follow-up to each 
participant. Each member defines their degree of commitment and participation in the activities. 
For this study, the MOOC: Mathematical Problem Solving and use of Digital Technologies was 
built, based on the frameworks: Problem Solving (Santos-Trigo, 2014) and RASE (Resources, 
Activities, Support and Evaluation) (Churchill, King, & Fox Churchill, 2016). Churchill, et al., 
(2016) argue that an online learning environment must include elements that allow its 
participants to work and collaborate in team with others. The activities must motivate the active 
participation of the students in a reflecting environment of discussion and focus in a context in 
which the tasks involve the students in the episodes of problem solving: formulation of 
questions, search for different solution methods, exploration of different representations, search 
for patterns, variables, and relations between mathematical objects, arguments representation, 
communication of results and formulation of new problems (Santos-Trigo, 2014). The systematic 
use of digital technologies is important in the representation, exploration, communication and 
understanding of mathematical concepts in problem solving (Santos-Trigo, Moreno-Armella, 
2016). 

In this study, it was interesting to analyze the design of the mathematical activities and the 
forms of mathematical reasoning of the participants related to: (1) the question formulation and 
the search for different ways to answer them (2) the formulation of conjectures based on the 
movement of mathematical objects and qualification of attributes, e.g. measure of segments, 
angles, areas etc. and (3) the search for arguments that validate those conjectures moving from 
the empiric and visual arguments to the geometric and algebraic arguments. In this way, the 
research question that guided the development of this study was: How does the design and 
implementation of activities in a MOOC based on problem solving and coordinated use of digital 
technologies influence the construction and development of the participants' mathematical 
thinking? 
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Framework 
The construction of the mathematical thinking is related to problem solving because it is a 

way that allows to identify, explore, test and communicate the solution strategies (Santos-Trigo, 
2014; Schoenfeld, 1992). Diverse digital technologies offer the students different ways to 
represent and explore concepts and mathematical problems that extend those approaches based 
on the use of pen and paper (Santos-Trigo, 2014; Aguilar-Magallón & Poveda, 2017).  

A Dynamic Geometry System (DGS) can be used to integrate the processes that are present 
in problem solving that allow to generate representations or dynamic models of the mathematical 
problems where the movement of particular objects (points, lines, segments, polygons, etc.) 
could be explored and explained in terms of mathematical relations. Hence, the systematic use of 
digital technologies is important in the representation, communication, and understanding of 
mathematical concepts in problem solving.  

Churchill et al. (2016) argue that a model is needed for designing the activities that provides 
professors and researchers, guidelines to use digital technologies in the teaching and learning 
context. They propose the design model RASE, the Resources refer to the available materials for 
the students: videos, images, digital files, calculators, tools for the representation of 
mathematical situations, etc. The Activities must allow the students to be involved in the 
processes of discussion, analysis and reflection in collaboration with others.  

The Support establishes that some means of consultation and communication must be 
included between the students, with the objective that they can get help or feedback at the 
moment that they need it and, in this way, to promote the independence from the professor or 
tutor. The Evaluation should encourage the improvement of the students’ learning, therefore, it is 
necessary that when they express their ideas, they analyze the feedback received through support 
media, to refine or expand the initial concepts or ideas. In a MOOC the discussion forums 
become a mean of conversation between their participants and give them the opportunity of 
proposing, getting to know, contrast own ideas and those of others (Poveda & Aguilar-Magallón, 
2017). Ernest (2016) argues that in the conversation are involved: a speaker/proponent, a 
listener/critic and a Mathematical Text.  The speaker/proponent proposes an idea (Mathematical 
Text) and the listener /critic answers by giving his point of view, accepting or changing the 
original idea. After that, the speaker/proponent can assume the listener /critic role, in this way the 
roles are reversed.   

Methodology 
The objective of the activities design of the course was to emphasize that the learning of 

mathematics requires problematizing or questioning the tasks or situations, thinking about 
different ways to solve a problem, understanding and using different representations, interpreting 
the solution and communicating the results. Through this process, the formulation of questions 
becomes a medium that allows the participants to build, develop, re-think or transform their ways 
to understand and solve problems. The Resources included representations or dynamic models of 
problems built in GeoGebra, links to the Wikipedia platform and the videos of KhanAcademy 
for the study of mathematical concepts and relationships.  

The activities included three stages: 1) Movement: the participants had the opportunity to 
explore a dynamic model of a problem and the behaviour of some of its parts that results from 
the movement of other elements, 2) Conjecture: the objective is that from the movement, the 
participants will formulate conjectures that can be supported or refuted from visual or empirical 
arguments and 3) Justification: it was tried that all conjectures were justified through arguments 
that involved mathematical properties and results. The forum was used to give the participants 
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the possibility to propose their doubts and ideas to others as many times as needed. In this way, 
the students’ work can be used as a reference point for others to take up or extend the ideas, 
contrast them and discuss them. In addition, in the forums the participants can receive feedback 
about their proposed ideas, it can be useful for the analysis and reflection as part of the 
Evaluation process.   
Development of activities, participants and procedures 

The MOOC was built and implemented in the platform Open edx 
(https://open.edx.org/about-open-edx), it has a duration of seven weeks and it was composed by 
six activities. The only requirement for registration was that interested individuals had a 
minimum schooling level equivalent to grade 12. 2669 people signed up for the MOOC. At the 
beginning of the course, only Activity 1 was visible, Activity 2 was shown one week later and so 
on, without restricting access to the previous ones. During the seven weeks in which the course 
was available to the participants, the Design Group (DG) monitored the development of the 
activities and the participation in the forums. The work consisted in:   

1. At the beginning of the activity, the comments were classified in four categories: answers 
to the questions that were proposed in each activity, approaches to problem solving 
(correct and incorrect), new questions asked by the members and proposals to extend the 
problem. Later, the comments with similar ideas were eliminated, two or three were 
chosen from each category and were placed in such way that they were shown at the 
beginning of the conversations, in this way the participants could give them priority in 
their analysis.  

2. During the Activity, it intervened in the forums only when it was necessary to orient and 
extend the discussion. Questions from the participants were never answered directly, but 
some different questions were asked in order to generate more discussion and to allow the 
participants to find different ways to create the solution by their own.   

3. At the end of the activity, questions were raised to promote the extension the topic and 
for the participants to look to extend the initial problems. 

The data of this study were collected through the discussion forums. The unit of analysis were 
the conversations of the participants in each activity. At the end of the course, the design team 
analyzed the conversations. Interested to analyze and document how the activities design, the 
discussion and interaction between the participants and the actions that the design team took in 
the forum influenced in the development of the episodes of problem solving, according to the 
framework of the problem solving and the use of dynamic technologies of Santos-Trigo (2014). 

Presentation of results 
One of the Activities proposed in the MOOC is discussed: Two farmers want to plant land 

that is shaped like a square. How to divide the land so each farmer can plant exactly the same 
area? The activity consisted in developing two solutions to the problem, in each one a dynamic 
model was given and a set of questions to guide the work of the participants. Chart 1 shows the 
stage in which the members of the MOOC had the opportunity to move the objects to look for 
relations or invariants and a summary of the conversations in the forum.  
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Chart 1: The movement and the results of the dynamic exploration.  
The movement and the exploration  Results of the interaction in the forums   

Movement: When we move the points 
𝐴, 𝐵, 𝑃 & 𝑄, what happens with the areas 
of the regions? Where to place the points 
P and Q so that the areas of the 𝐴𝑄𝑃𝐷 & 
𝑄𝐵𝐶𝑃 regions are the same? 

All the participants pointed:  
1. It is possible to move the point 𝑃 and 𝑄 and 

obtain regions of same areas regardless of 
the size of the square side.  

2. The object movement and the 
measurement of the areas can give some 
solutions: 𝑃 = 𝐶 y 𝑄 = 𝐴; 𝑃 = 𝐷 y 𝑄 = 𝐵 
& 𝑃𝑄 perpendicular bisector of 𝐷𝐶.  

In this part of the activity, the participants 
could not observe that a general solution is 
when 𝑂 ∈ 𝑃𝑄 (𝑂is the square center). 

 
The next questions asked to the participants was: Is the center of the square and the position 

of the line that divides the land in regions of the same area important? All of them made their 
first conjecture based in visual and empiric arguments (measurement of the areas 𝐴𝑄𝑃𝐷 y 
𝑄𝐵𝐶𝑃): “If 𝑂 ∈ 𝑃𝑄 then it divides the square into two figures of the same area”. 

The DG asked: “How many solutions are there?” The answers agreed that there is an infinite 
number of solutions. In the search for a justification of the conjecture, the participants were 
asked: What concepts, properties and mathematical resources can be used to support the 
conjecture? In the conversations all of them pointed out the need to trace the diagonals of the 
square and use its properties (Justification 1, Chart 2). 

The participant 𝑃! presented a way to justify the conjecture: he built a dynamic model, 
answered the doubts of others and gave feedback to the people that could not understand the 
justification. (Justification 2, Chart 2). 

The next section of the activity guided the participants in the exploration and searching of 
another solution, the details are showed in Chart 3. 

Later, the members formulated the conjecture, the next section consisted in searching for 
mathematical relationships to justify it, therefore, in the dynamic model of the square the lines 
FH and EG were included. All the participants discussed and presented the Justification 1 that is 
shown in Chart 4.  

Chart 2: Resources and strategies of exploration and solution.  
Justifications Resources and strategies of exploration and solution 

Justification 1  Resources: Properties of the square and its diagonals, angles 
between parallel lines, angles opposed by the vertex and 
congruence of triangles. 
Strategy: Put 𝑃 on the side 𝐷𝐶, build the line 𝑃𝑂 and trace 
the diagonals of the square. 
Justification: ΔDOP≅ΔBOQ (SAS), so 𝐷𝑃 = 𝐵𝑄, therefore, 
the polygons 𝐴𝑄𝑃𝐷 y 𝑄𝐵𝐶𝑃 have equal area. 
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Justification 2 of 𝑃! Resources: Properties of the square, congruence of triangles, 
angles between parallel lines, properties of parallel lines and 
perpendicular lines. 
Strategy: Placed 𝑃 on 𝐷𝐶, trace the 𝑃𝑂 line and build 
perpendicular lines to 𝐷𝐶 and 𝐴𝐵 that pass through 𝑃 and 𝑄, 
respectively.  
Justification: 𝛥𝑄𝐾𝑃 ≅ 𝛥𝑃𝐿𝑄 (SAS) and the rectangles 
𝐴𝑄𝐾𝐷 and 𝐿𝐵𝐶𝑃 are congruent (arguments are not given). 
Participants’ questions in the forum: (1) What happens if P=C 
& Q=A? 𝑃!: “We have two congruent right triangles”, (2) 
“¿How do you know that AQ=PC?” 𝑃! reference Justification 
1. 

 

Chart 3: Movement and exploration importance 
Stages of the activity  Interaction in the forums   

P is inside the square.  
Movement. What regions can be 
assigned to the farmers so that 
each one can plant the same 
area? 

Ten participants pointed out some solutions: 
1. 𝑃 matches with any vertex, 𝑃 is the central point of 

a side or 𝑃 is the center of the square.  
2. 𝑃 belongs to a diagonal of the square or to the line 

that joins the middle points of 𝐴𝐵 and 𝐷𝐶. 
  
In this part of the activity, none of the participants 
observed solutions based on the movement of objects, 
for instance, the solution is obtained for any position of 
point 𝑃 inside the square. 

Conjecture: Is it possible to 
identify any relationship 
between the values of the areas? 
When varying the position of the 
point P, what happens to the sum 
of the areas of the triangles 𝐴𝐵𝑃 
and 𝐶𝐷𝑃? 

All participants formulated and shared the conjecture:  
“If P is a point that is inside of the square, the sum of the 
areas of the opposite triangles is the half of the square 
ABCD”. Some participants gave feedback to others, for 
example, someone mentioned: “𝑃 always generates four 
triangles”, it was suggested: “Move point P in such a 
way that it matches with a vertex, or P over one of the 
sides”. 

 
The Justification 2 of Chart 4 was built and shared by participant 𝑃". The other participants 

approved the ideas and built algebraic models as another way to support it.  
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Chart 4: Resources and strategies of exploration and solution. 
Justification of the Solution 2  Resources, strategies and justifiaction 

What properties are important to 
present an argument that supports the 
conjecture? What properties have the 
triangles that are generated when we 
trace the perpendicular lines to the 
sides passing through the point 𝑃?  

Resources: Properties of parallel and 
perpendicular lines, congruence of triangles. 
Strategy 1: Trace the perpendicular lines 𝐸𝐺 and 
𝐹𝐻 to the sides of the square that pass by 𝑃. 
Justification 1. 𝛥𝐴𝐺𝑃 ≅ 𝛥𝐴𝐹𝑃 (SSS) and 
𝛥𝐺𝐵𝑃 ≅ 𝛥𝐻𝐵𝑃 (SSS), at the same time 𝛥𝐶𝐸𝑃 ≅
𝛥𝐶𝐻𝑃 & 𝛥𝐸𝐷𝑃 ≅ 𝛥𝐹𝐷𝑃. Therfore, Area 𝛥DCP 
+ Area 𝛥𝐴𝐵𝑃 = Area 𝛥𝐵𝐶𝑃 + 𝐴𝑟𝑒𝑎𝛥𝐷𝑃𝐴. 
Strategy of 𝑃". the sum of 𝛥AGP and 𝛥𝐷𝑃𝐸, 
without taking into account the position of the 
point P, is constant and equal to 𝐵𝐶.  
Justification of 𝑃": The sum of the heights of 
𝛥PCD and 𝛥ABP is equal to the sum of the heights 
of 𝛥𝐷𝐴𝑃 y 𝛥𝐵𝐶𝑃, so, the four triangles have the 
same base and Area 𝛥PCD + Area 𝛥𝐴𝐵𝑃 = Area 
𝛥𝐷𝐴𝑃 + 𝐴𝑟𝑒𝑎𝛥𝐵𝐶𝑃. 

The DG asked in the forum: Is there another way to solve the problem? What other questions 
can you ask? The participant	𝑃> revisited the ideas from Justification 2 of Chart 4 and built a 
dynamic model of the square with other solution (Justification 1 of the Chart 5).  Other participants 
approved the ideas and discussed another way to support the conjecture (Justification 5 Chart 5).  

Chart 5: Another Solution 
Another solution  Resources, strategies and justification 

 

Resources: Properties of the parallels and perpendicular 
lines.  
Strategy:  Placed the mobile point 𝐸 on 𝐷𝐶, trace the 
perpendicular line 𝑚 to 𝐷𝐶 that passes by 𝐸. Placed two 
mobile points 𝐹and 𝐺 on 𝑚. 
Justification 1: The sum of the heights of 𝛥AFD and 𝛥BCG 
is constant and equal to 𝐴𝐵 for all positions of 𝐸, 𝐹 and 𝐺, 
therefore, Area 𝛥AFD + Area  𝛥BCG is half of the square’s 
area.  
Justification 2. Trace parallel lines to the sides that pass by 
the mobile points F & G to generate congruent triangles.  

 
The Chart 6 shows two of the questions the participants formulated and the answers they 

found. 
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Chart 6: Extensions of the problem.  
Formulated questions Justification  

Extension 1 
“How to divide the land into 4 regions 
with the same area?”.  

 

During the search for the answers, one 
participant used the property: Each median 
divides the area of the triangle in half.  
In this way, he built and presented a dynamic 
model similar to the one of the Solution 2 
where he traced the medians of triangles 
(𝐸𝐼, 𝐸𝐻, 𝐸𝐺&𝐸𝐹).  The sum of the areas of 
triangles 𝐷𝐸𝐼 and 𝐶𝐺𝐸 is a quarter of the 
square’s area. 
 

Extension 2 
“Is it possible to determine a 
quadrilateral inscribed within any other 
such that it has half of its area?”. 

The participants shared information of 
Wikipedia related to the theorem of Varignon: 
The midpoints of the sides of an arbitrary 
quadrilateral form a parallelogram. If the 
quadrilateral is convex or concave, then the 
area of the parallelogram is half the area of 
the quadrilateral. 
 

Discussion of the Results 
The activity design guided the participants’ work towards searching different ways to explore 

the dynamic models. Each model represented to the participants a starting point that allowed 
them to identify concepts, propose conjectures based on the movement of the mathematical 
objects present in the dynamic setting and their relationships or invariants. 

The use of discussion forums helps the communication, analysis and the contrast of 
mathematical ideas, in addition, they allowed the participants to give and receive feedback from 
others. This was important for transiting from visual and empirical solutions (associated with the 
use of tools such as movement of objects within the setting, quantification of attributes as 
measures of segments, angles, areas, etc.) to the presentation of geometric and algebraic 
arguments in the validation of the formulated conjectures.  

During the development of the course, the monitoring that the DG did in the classification of 
the comments helped the discussion, re-think of mathematical concepts and ideas and the 
episodes of problem solving. For example, the participants formulated conjectures, they 
presented arguments to justify them and also proposed new problems. The proposal of questions 
made by the DG helped the discussion of mathematical ideas, the proposal of new solutions and 
extensions of the problem. (See Chart 2, 5 and 6).  

In addition, a group of participants assumed the role of giving feedback to the questions of 
other people, this promoted the collaborative work and fomented the independence of the 
participants in the construction process and the development of mathematical thinking. 
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Conclusions 
The results show that the different digital technologies used in this study and the integration 

of the components: Resources, Activities, Support and Evaluation based in problem solving 
allowed to create a collaborative work environment. The digital platform allowed the inclusion 
of dynamic representations of the problems elaborated in GeoGebra, in which the participants 
had the opportunity to explore, identify concepts, look for conjectures and different arguments to 
justify them. In this process, they used strategies associated with the use of the tool like object 
movement within the dynamic setting and the quantification of its attributes (lengths and areas). 
During the development of the Activities, a group of participants provided feedback to others, 
which helped to clarify ideas related to mathematical concepts, with the exploration of the 
dynamic model, with the formulation of conjectures and their justification. This allowed the 
participants to advance in the development and understanding of the activities in a collaborative 
way and without depending on a professor or tutor.  

The actions taken by the DG in its interventions in the forums increased the discussions in 
three directions: (1) they helped the creation of working groups where the different episodes of 
problem solving were discussed, (2) led discussions and fomented the understanding of 
mathematical concepts and ideas and (3) allowed the participants to propose questions and look 
for answers, this led them to propose new solutions and extensions to the problem. It is important 
to recognize that during the design and implementation stage of a MOOC, participants should be 
expected to create an awareness that they themselves monitor their progress in understanding and 
using mathematical ideas in solving problems. 

One factor to be considered in future work is the possibility for participants to build and 
present their own dynamic models of the problems, since, in this study, although it was not 
explicitly requested, some built and shared their dynamic constructions helping the discussion of 
ideas, the solutions and extensions for a problem. 
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Se reportan y analizan episodios de formulación y resolución de problemas relacionados con la 
construcción de configuraciones dinámicas durante un curso de Maestría en Educación 
Matemática ¿Cuáles son las heurísticas y estrategias que exhiben profesores y futuros 
profesores en el proceso de construir representaciones dinámicas de la figura presente en un 
problema geométrico de demostración?  Los resultados muestran que el uso de GeoGebra puede 
ser útil para motivar e involucrar a los profesores en diversos episodios de formulación y 
resolución de problemas. En este camino, algunas estrategias importantes fueron relajar las 
condiciones del problema, la exploración de casos particulares, la búsqueda de patrones e 
invariantes  y la visualización de lugares geométricos de puntos de intersección.  

Keywords: Resolución de Problemas, Tecnología, Geometría y Pensamiento Geométrico y 
Espacial, Preparación de Maestros en Formación. 

Introducción 
La resolución de problemas es un tema importante en la agenda de investigación en 

Educación Matemática. Actualmente se reconoce que el uso de  tecnologías  como un Sistema de 
Geometría Dinámica (SGD) genera oportunidades para desarrollar conocimiento matemático, 
pero también permite transformar escenarios de enseñanza alrededor de la resolución de 
problemas (Santos-Trigo, Reyes-Martínez & Aguilar-Magallón, 2016). Un principio 
fundamental de este enfoque de resolución de problemas y uso de tecnologías digitales es que el 
individuo reconozca la resolución de problemas como una oportunidad para plantear preguntas 
relevantes de forma constante y sistemática que le ayude en su actividad matemática (Santos-
Trigo, Reyes-Martínez & Aguilar-Magallón, 2015). Para este estudio, resultó importante 
investigar en qué medida el uso de un SGD (GeoGebra), permite a los participantes involucrarse 
en actividades de planteamiento de problemas. En este camino, la pregunta de investigación que 
guio el desarrollo de este estudio es: ¿Cuáles son las heurísticas y estrategias que exhiben 
profesores y futuros profesores en el proceso de construir representaciones dinámicas de la figura 
presente en un problema geométrico de demostración?   

Marco Conceptual 
Por un lado, la formulación de preguntas relevantes o actitud inquisitiva al enfrentarse a 

situaciones problemáticas es un aspecto central de la actividad matemática de un individuo. 
Comúnmente el planteamiento de preguntas durante todo el proceso de resolución de problemas 
conduce a la formulación de nuevos problemas (Osana & Pelczer, 2015). Por otro lado, el 
planteamiento de preguntas y problemas es importante no solo para el desarrollo de habilidades 
matemáticas en profesores y futuros profesores, sino también para el desarrollo de habilidades 
didácticas. En la literatura se reconoce que, en general,  profesores y futuros profesores tienen 
serias dificultades al enfrentarse a tareas de planteamiento de problemas (Rosli et al., 2015). 
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¿Cuál es el papel de las herramientas digitales en el planteamiento de preguntas y problemas y en 
la formación de profesores para desarrollar habilidades de formulación y reformulación 
problemas? Leikin (2015) argumenta que el uso de un SGD es útil para formular preguntas y 
problemas relacionados con el análisis de relaciones matemáticas presentes en figuras que se 
usan para resolver problemas geométricos. Aguilar-Magallón y Poveda-Fernández (2017) 
afirman que las permisibilidades de un SGD (como el arrastre de objetos, la medición de 
atributos, el uso de deslizadores y la visualización de lugares geométricos) en conjunto con 
heurísticas de resolución de problemas (como relajar las condiciones del problema, analizar 
casos particulares y visualizar patrones e invariantes) pueden motivar diversos episodios de 
formulación y resolución de problemas.  

Metodología 
Participantes  

En este estudio participaron nueve estudiantes de un curso de Maestría en Educación 
Matemática durante cuatro sesiones semanales con duración de tres horas cada una. El grupo 
estuvo conformado por seis profesores en servicio y tres futuros profesores. Todos los 
participantes tenían formación académica relacionada con matemáticas.    
El problema 

Para este reporte se analizan los episodios de formulación y resolución de problemas que 
surgieron a partir del análisis de la figura presente en un problema geométrico de demostración 
(Figura 1).  
 

 

Sea 𝐴𝐵𝐶 un triángulo equilátero y 𝑃 cualquier punto de 
la circunferencia que lo circunscribe, demostrar que 
𝐴𝑃	 + 	𝐵𝑃	 = 	𝐶𝑃. 

 

Figura 1.  El problema 

Resultados 
En esta  sección se expone un episodio de formulación y resolución de problemas que fue 

motivado por el uso de GeoGebra. En particular, el análisis se centró en las formas de 
razonamiento, recursos y heurísticas que exhibieron los participantes en este proceso.   
Construcción de una representación dinámica del problema 

¿Cómo obtener una representación dinámica del problema utilizando el SGD? Los 
participantes formularon dos problemas relacionados con dos caminos para obtener una 
representación dinámica del problema: 1) construir un triángulo equilátero y luego trazar su 
circunferencia circunscrita y 2) inscribir un triángulo equilátero en una circunferencia dada.  
En la Tabla 1 se muestra un acercamiento dinámico a la solución del segundo problema 
mostrado por los participantes. Este acercamiento estuvo basado en la heurística de relajar las 
condiciones del problema y la visualización de lugares geométricos por medio del arrastre de 
objetos de la configuración dinámica. Los participantes trazaron un triángulo que cumplía de 
forma parcial con las condiciones del problema; trazaron un triángulo equilátero con dos vértices 
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móviles sobre la circunferencia. Posteriormente, mediante el movimiento de la configuración 
plantearon las condiciones necesarias para resolver el problema. 
 

Tabla 1: Acercamiento dinámicos y solución empírica mostrada por los participantes. 
Configuración Análisis 

 
1. Puntos 𝐶 y 𝐷 móviles. Se traza el triángulo 𝐶𝐷𝐸 
equilátero por medio de circunferencias. Lugar 
geométrico descrito por el punto 𝐸 cuando se mueve 
el punto 𝐶. 

Recursos. Triángulo equilátero y lugar geométrico. 
Estrategia dinámica.  Relajar las condiciones del 
problema. EL triángulo 𝐶𝐷𝐸 es equilátero, pero tiene 
sólo dos vértices inscritos en la circunferencia. Así la 
estrategia de exploración consiste en mover el punto 𝐶 
hasta que el punto 𝐸 pertenezca a la circunferencia 
inicial. 
Solución empírica. La intersección del lugar 
geométrico descrito por el punto 𝐸 con la 
circunferencia inicial definen uno de los vértices del 
triángulo equilátero inscrito (otro es el punto 𝐷 y el 
último se encuentra por construcción). 

 
En este acercamiento se observa el uso de lugar geométrico como herramienta para resolver 

problemas, sin embargo, en una primera instancia la solución se quedó en un nivel visual y 
empírico debido a la imposibilidad de GeoGebra para intersecar lugares geométricos. Para poder 
intersecar lugares geométricos (en GeoGebra) se requiere transformarlos en objetos geométricos 
robustos; en otras palabras, que su construcción dependa de ciertos elementos bien definidos. Por 
ejemplo, para robustecer un lugar geométrico que se supone circunferencia se necesita su centro 
y radio. En la búsqueda del centro para trazar de forma robusta la supuesta circunferencia usada 
en el acercamiento dinámico de la Tabla 1, los participantes se dieron cuenta que la intersección 
𝐹 de la mediatriz del segmento variable 𝐷𝐸  con la circunferencia original era invariante (Figura 
2). Así supusieron que el punto 𝐹 era el centro de la circunferencia y midieron la distancia al 
punto 𝐸 para verificar que era constante. La detección de invariantes en la exploración del 
modelo dinámico de la Tabla 1 permitió a los participantes encontrar una solución sintética (que 
puede obtenerse con regla y compás) al problema (Tabla 2).   
 

 
Figura 2.  El punto 𝑭 de intersección de la mediatriz de 𝑫𝑬 con la circunferencia inicial es 

invariante y es el centro de la circunferencia descrita por el punto 𝑬. 
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Tabla 2:  Solución sintética encontradas por los participantes al analizar modelo dinámico.  

Solución sintética Descripción 

1  

Punto 𝐶 cualquiera sobre la circunferencia 
inicial de centro en 𝐴. Circunferencia con 
centro en 𝐶 y radio 𝐶𝐴. Los puntos de 
intersección 𝐸 y 𝐷 de las dos circunferencias 
formarán uno de los lados del triángulo 
equilátero inscrito. El tercer vértice 𝐹 se 
encuentra con la circunferencia de centro en 𝐷 
y radio 𝐷𝐸. 

Discusión de resultados 
Con ayuda del SGD, los participantes pudieron encontrar tres tipos de soluciones al problema 

de inscribir un triángulo equilátero en una circunferencia: soluciones empíricas, robustas y 
sintéticas. En una primera instancia, debido a que en GeoGebra no se pueden intersecar lugares 
geométricos, las solución encontrada fue empírica. En esta dirección, para encontrar la solución 
robusta (en términos de intersecciones) se requirió transformar (robustecer) el lugar geométrico. 
Posteriormente, la exploración de las propiedades del lugar geométrico mostrado en Tabla 1 
permitió a los participantes encontrar una solución sintética al problema, es decir, una solución 
que puede obtenerse con trazos básicos de regla y compás. Tanto para las soluciones empíricas 
como para las soluciones exactas (robustas y sintéticas), fueron importantes las heurísticas de 
visualizar patrones o lugares geométricos, explorar casos particulares y detectar invariantes. 

Conclusiones   
Existe una gran variedad de problemas geométricos en los cuales la información o 

condiciones son presentados por medio de figuras o configuraciones geométricas. Comúnmente, 
cuando se resuelven problemas de forma tradicional (con papel y lápiz) la tarea de reconstruir las 
figuras que aparecen en los enunciados no es relevante, pues únicamente interesan las relaciones 
matemáticas implícitas en dichas figuras. Cuando se trabaja dentro de un SGD resulta primordial 
pensar en las formas de obtener representaciones dinámicas para explorar los problemas. Así, los 
resultados del estudio mostraron que considerar distintas maneras de representar una situación 
problemática puede motivar episodios de planteamiento de problemas.  
 
 
This document reports the analysis of problem-solving and problem-posing episodes related to 
constructing dynamic configurations in a Math Education Masters course. What are the 
heuristics and strategies that teachers and prospective teachers exhibit in the process of 
constructing dynamic representations of the figure in a geometric problem? The results show 
that the use of GeoGebra motivates teachers to pose and solve problems. In this way, some 
important strategies were to relax the conditions of the problem, the exploration of particular 
cases, the search of patterns and invariants and the visualization of loci of intersection points. 

Keywords: Problem Solving, Technology, Geometry and Geometric and Spacial Thinking, 
Teachers` Preparation in Training 
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Problem solving is an important issue in the research agenda for Mathematics Education. 
Currently, it is recognized that the use of technologies such as a Dynamic Geometry System 
(DGS) generates opportunities to develop mathematical knowledge, but also allows transforming 
teaching scenarios into problem-solving scenarios (Santos-Trigo, Reyes-Martínez & Aguilar-
Magallón, 2016). A fundamental principle of this approach for problem solving and use of digital 
technology is that the individual should be able to recognize that it provides an opportunity to, 
constantly and systematically, formulate relevant, helpful questions in their mathematical activity 
(Santos-Trigo, Reyes-Martínez & Aguilar-Magallón, 2015). For this study, it was important to 
investigate to what extent the use of a DGS (GeoGebra) allows participants to get involved into 
problem-solving activities. The research question that guided the development of this study was: 
What are the heuristics and strategies that teachers and future teachers develop in the process of 
constructing dynamic representations of a figure in a geometric-demonstration problem? 

Conceptual Frame 
A critical characteristic in a mathematical activity is the capacity to formulate relevant 

questions or possessing an inquisitive attitude when facing problematic situations. Frequently, 
formulating questions throughout the problem-solving process leads to formulation of new 
problems (Osana & Pelczer, 2015). Furthermore, formulating questions and new problems is a 
key factor not only for developing mathematical skills in teachers and prospective teachers, but 
also for the development of didactic skills. Previous studies recognize that, in general, professors 
and prospective teachers have serious difficulties when facing problem-posing tasks (Rosli et al., 
2015). What is the role of digital tools in formulating questions and problems, and in training 
teachers to develop problem-posing skills? Leikin (2015) argues that using DGS helps to 
formulate both questions and problems related to the analysis of existing mathematical 
relationships in figures used to solve geometric problems. Aguilar-Magallón and Poveda-
Fernández (2017) affirm that the affordances of DGS (such as dragging objects, measuring 
attributes, use of sliders, and loci visualization) together with problem-solving heuristics (such as 
relaxing problem conditions, analyzing particular cases, and visualizing patterns and invariants) 
motivate diverse episodes of problem formulation and resolution. 

 

 

Methodology 
Participants 

Nine students from a Math Education Masters course participated in this study, over four 
three-hour, weekly sessions. From this group, six were in-service teachers, and three were 
prospective teachers. All the participants had academic training related to mathematics. 
The problem 

The study consisted in analyzing the problems that emerged from the analysis of Figure 1, 
presented in a geometric-demonstration problem.  

Results 
This section presents an episode of problem posing and solving motivated by the use of 

GeoGebra. In particular, the analysis focused on the reasoning forms, resources and heuristics 
exhibited by the participants in this process. 
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Let ABC be an equilateral triangle and P be any point of 
the circumscribing circle, show  that AP + BP = CP. 

Figure 1.  The Problem 

Construction of a Dynamic Representation of the Problem 
How to construct a dynamic representation of the problem using the DGS? The participants 

formulated two problems for obtaining dynamic representations of them: 1) construct an 
equilateral triangle and then trace its circumscribed circumference and 2) inscribe an equilateral 
triangle on a given circumference. 

Table 1 shows a dynamic approach for the solution of the second problem. This approach 
was based on the heuristic of relaxing the problem conditions, and the visualization of loci 
through dragging objects allowed by dynamic configuration.  Participants drew a triangle that 
partially met the problem conditions; they drew an equilateral triangle with two dynamic vertices 
on the circumference. Afterwards, through moving the configuration, they formulated the 
necessary conditions to solve the problem.  
 

Table 1:  Dynamic Approach and empirical solution shown by the participants. 

Configuration Analysis 

 
1. Dynamic Points C and D. The equilateral triangle 
CDE is traced through circumferences.  Locus 
described by point E when the point C moves.  

Resources. Equilateral Triangle and locus. 
Dynamic Strategy. Relaxing the problem conditions. 
The triangle CDE is always equilateral, but only two of 
its vertices are inscribed in the circumference. Thus, the 
exploration strategy consists of moving point C until 
point E belongs to the initial circumference. 
Empirical Solution. The intersection of the locus 
described by point E with the initial circumference 
defines one of the vertices of the inscribed equilateral 
triangle (another one is point D and the last one is by 
construction). 

In the participants’ approach, the use of locus as a problem-solving tool is observed; 
however, in a first instance, the solution remained at a visual and empirical level due to the 
impossibility of GeoGebra to intersect geometric places. This intersection (in GeoGebra) is only 
possible if the objects are transformed into robust geometric objects; meaning that its 
construction depends on well-defined elements. As an example, in order to make robust a locus 
that is assumed as a circumference, its center and radius are required. While searching for the 
center, in order to draw the robust circumference used in this approach, participants realized that 
the intersection of the perpendicular bisector of the variable segment DE with the original 
circumference was invariant (point F in Figure 2). Thus, they assumed that point F was the center 
of the circumference, and measured the distance to point E to verify that it was constant. 
Detecting invariants while exploring the dynamic model shown in Table 1, allowed the 
participants to find a synthetic solution (which can be obtained with ruler and compass) to the 
problem (Table 2). 
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Figure 2.  The intersection point, F, of the ED perpendicular bisector with the initial 

circumference is invariant and the center of the circle described by point E. 

 
Table 2:  Synthetic solution found by the participants when analyzing dynamic model. 

Synthetic Solution Description 

1  

Dynamic Point C on the initial circumference 
with center in A. Circumference with center in 
C and radius CA. The points of intersection, E 
and D, of the two circles form one of the sides 
of the inscribed equilateral triangle. The third 
vertex F was found whit the circumference of 
center at D and radius DE. 

Discussion of Results 
Using the DGS, the participants were able to find three types of solutions to the problem of 

inscribing an equilateral triangle in a circumference: empirical, robust and synthetic solutions. 
The empirical solution was the first one to be found, since GeoGebra cannot intersect loci. In this 
direction, to find the robust solution (in terms of intersections), it was required to transform 
(make robust) the locus. Exploring the properties of the locus shown in Table 1 allowed the 
participants to find a synthetic solution to the problem, that is, a solution that can be obtained 
with basic rules and compass traces. For both empirical and exact solutions (robust and 
synthetic), three problem-solving heuristics were essential: pattern or loci visualization; 
exploring particular cases; and detecting invariants. 

Conclusions 
There are a variety of geometric problems in which the information or conditions are 

presented by means of figures or geometric configurations. Commonly, when problems are 
solved in a traditional way (with paper and pencil), reconstructing the figures that appear in the 
statements is irrelevant, since only the mathematical relationships implicit in these figures are 
important. When working within a DGS, it is essential to think about ways to obtain dynamic 
representations to explore problems. The study results showed that considering different ways of 
representing a problematic situation by dynamic models motivates the formulation and resolution 
of new problems.  
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This study investigated how a weekly mathematically-focused text message to parents, which 
shared 1) what children were learning about in mathematics class, and 2) an idea to build on 
this mathematics topic at home, were perceived and used by parents. We found that parents 
highly valued this regular communication, not only because they appreciated hearing from the 
school but because it connected them more with their child and their child’s mathematical 
learning. Parents also shared that the texts influenced how they thought about their child’s 
mathematical learning and increased mathematical talk at home. 

Keywords: Elementary School Education, Equity and Diversity, Technology 

Objective of the Study 
The overarching goal of the study was to investigate how mathematically-focused text 

messages can be used to connect linguistically-diverse families with what their child is learning 
in mathematics. We first created relevant and mathematically-focused text messages that had the 
potential to support parents to build on their child’s school mathematical learning. After creating 
the texts, our goal was to investigate how families used the texts at home to see if parents 
perceived them as supporting their child’s learning, and how the texts affected parents’ feelings 
of connection to schools and their children. 

Perspective/Rationale 
Home-school partnerships and communication are critical for educational growth and 

development in children (Epstein, 2001) and connecting the home and school settings develops a 
cohesive learning environment for children (Christenson, 2004). Essential to developing home-
school partnerships is active, productive, effective, regular communication.  

Although parents want better communication with teachers and schools (Miretzky, 2004), 
Davies (1991) found that families often wait for schools to initiate contact. Text messaging is 
one promising way to better communicate with parents. This innovative pathway for building 
home-school partnerships and communication opens an efficient, nearly universal avenue for 
schools to communicate with and engage parents. Ninety-one percent of American adults own 
cell phones (Rainie, 2013).  Of these users, 98% can receive text messages of which 95% are 
opened (Ehrlich, 2013). Additionally, Hispanics (88%), African Americans (93%) and whites 
(90%) have similar cell phones ownership rates mitigating the Internet access gap that has 
plagued the use of other electronic communications such as email, student information systems, 
and websites (Rainie, 2013). 

Studies on parent communications using text messages have promising results. York and 
Loeb (2014) found using text messages with tips for parent engagement in literacy increased 
parent engagement with their children’s early literacy development and increased in student 
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literacy assessment scores. Kraft and Monti-Nussbaum (2017) used text messages to engage 
parents as partners in successfully mitigating the summer slump in early literacy. While these 
results show potential, there is a dearth of literature implementing similar communication 
strategies and support for parents and teachers in developing early mathematics skills and 
concepts. Additionally, little of this research captures qualitative data from parent perspectives. 

A review of the literature points to a need to investigate how mathematically-focused texts 
can be used to connect parents and teachers, which leads to the research questions: How do we 
create relevant and useful mathematically-focused text messages that support parents to build on 
students’ mathematical learning? How do families use the texts at home? How do the texts affect 
parents’ feelings of connection to schools and their children? 

Methods 
Context 

The study took place in a culturally and linguistically diverse school. The school’s student 
population during the 2017-18 academic year was almost 500 (43% Black, 35% Hispanic, 8% 
White, 9% Asian, 1% Native American, and 4% multiracial). The overall English language 
learner population was 40% (District Report, 2018). Of that population, about half are Spanish 
speakers, and the remaining ELL students speak Vietnamese, French, Lao, Nilo-Saharan, 
Bosnian, Burmese, Kru, Karen, Nepalese, Arabic, Kunama, Mabaan, Nuer, Swahili, Somali, 
Dinka, Tigrinya and Zapoteco (teacher communication, 2015). Ninety-seven percent of the 
school’s students receive free or reduced lunch (District Report, 2018).   

Within the school, the study worked with the school’s four kindergarten teachers and their 
parents. During the two years of the study, seven to 12 different primary languages were spoken 
by kindergarten parents. 
Participants 

The researchers designed mathematically-focused text messages for the parents and/or 
guardians of four kindergarten classes throughout the school year. Data was collected during the 
2016-2017 and 2017-2018 school years. 

The four kindergarten teachers taught all the kindergartners in the school. Three of the 
teachers had taught kindergarten at the school for over 15 years and the fourth teacher, while 
new to the school and to kindergarten, had previously taught preschool for over 10 years in the 
same district.  

All kindergarten students’ parents or guardians were recruited to sign up for the text 
messages during the school’s Meet-the-Teacher night, which was held the day before school 
began, and at parent conferences in fall and spring. During the 2016-2017 school year, 22 out of 
62 parents signed up (35%). All text messages were sent only in English that year. During the 
2017-2018 school, 43 parents out of 84 signed up for the texts (51%). This year, recipients were 
able to choose to receive text messages in English only (21 parents), Spanish only (5), or both 
languages (17). In both years, every parent asked has signed up to receive the texts, with one 
exception. The challenge was not convincing parents to participate in receiving the texts; the 
challenge was finding the parents to ask them.  
The Text Messages  

The researchers developed mathematically-focused text messages for the parents and/or 
guardians of students in the kindergarten classes at the school.  The weekly texts included 1) 
what the children where learning about in mathematics class and, 2) an idea for how to engage in 
similar mathematics at home. These suggestions for engagement were designed to take only a 
short time to implement (3-5minutes) but could be adapted and repeated as often as a parent or 
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child choose. Each text was limited to 128 characters, so being concise and clear was a 
challenge. An example from November 8, 2016 shares what the children were learning about in 
mathematics and a related activity:  

Text 1: In math class this week we've been counting and writing numbers up to 10.   
Text 2: Activity-Ask your child to write his/her name. Write your own name. Ask how many 

letters are in each name. Which name has more?  
The mathematically-focused text messages were designed to encourage mathematical 

discussions between the parent and child at home. In this way, the child would have an 
opportunity to share his/her mathematical thinking with his/her parents and the parents will have 
an opportunity to extend their child’s mathematical understanding.  
Teacher Focus Groups and Classroom Observations 

To ensure the text messages are aligned with the content, readable by parents, and relevant to 
the children, we conducted a teacher focus group to get feedback from the teachers on text 
message design and content. In year 1, we also visited each of the four classrooms two times per 
month to observe and take field notes of the mathematics that kindergartners were learning to 
align the text messages with the timing and nature of the content taught in the classroom. 
Parent Focus Groups  

Parent focus groups were held at two different points in the study (mid-year 2017-18 (n=7) 
and end-of-the-school-year 2016-17 (n=5); 2017-18 (n=10)) to gather information from parents 
about their perceptions and uses of the text messages.  
Data Analysis  

All the transcripts of parent and teacher focus group interviews were analyzed using NVivo 
software for qualitative research to support systematic procedures for coding and categorizing 
data. The data interpretation and reporting used an inductive approach incorporating systematic 
methods of managing data through reduction, organization, and connection (Dey, 1993). This 
approach allowed us to identify common themes, as well as divergent cases, looking across 
categories to see if there are underlying patterns to the responses. 

Results 
First, creating the first draft of the text messages involved reviewing the kindergarten 

curriculum and curriculum map for mathematics topics and timing, creating texts with specific 
activities, and reviewing these texts with the kindergarten teachers in a focus group to gather 
their feedback. We adapted the texts based on their feedback, which was primarily about aligning 
the math language to the math language they use in their classrooms and how they felt parents 
may understand the language. Then on a weekly basis, after observing in the classrooms and 
before the weekly texts were sent, we tweaked the texts again to make sure timing, activities, and 
language were aligned to the teachers’ instruction.   

Parent focus groups were held to gather information on parents’ use and perspectives of the 
mathematically-focused texts. We discovered that parents found the text useful in fostering 
communication with their child; they appreciated knowing what their child was learning about in 
mathematics because it gave them background so they could discuss the content of what their 
child was learning about in school. As one parent said, “I really liked that, knowing what’s going 
on. ’Cause he may, [child’s name], may not be able to describe what’s going on to me” (Parent 
focus group, May 30, 2017). Another parent shared a similar sentiment, 

When they come home I always ask them what they learned. And for their age, they’re just 
like, “Um.” And they just list all the fun stuff. ‘We play. We ate.’ And I’m just like, ‘Okay. 
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What did you actually learn?’ The text messaging helped because I’m like, ‘Okay, so you’re 
making ways to make 10? Make five?’ They’re like, ‘Oh yeah. We learned that.’ So, then we 
started doing it. (Parent focus group, December 20, 2017) 

Also, most parents shared ways that they adapted and extended the activities. 
We do [the math activity] in the car. And then um, when I do laundry on the weekends, my 
daughter’s favorite thing to do is count out five dryer sheets to put in the dryer, because I 
always put extra. But she counts out five and then she looks at the knob and she puts it on 70 
and turns it on. So, she’s helping with chores while she’s counting. (Parent focus group, 
December 20, 2017) 

Parents said they felt more connected to their child’s learning because of the texts and that it had 
increased their mathematical talk with not only their kindergarten child, but also other children in 
the family. “I put some stuff out for him to try and count and stuff and, and like she said, it’s a 
learning thing because not only is my five-year-old learning, he, my two-year-old now is 
counting” (Parent focus group, December 20, 2017). 

Conclusion 
Using mathematically-focused text messages to communicate with parents is rare in the 

research literature. Working to communicate with linguistically diverse parents using texts is 
also rare in the educational research literature. These two gaps in the mathematics education 
research show the need for figuring out how we can use technology such as text messaging to 
better meet parents where they are and connect them more closely to their child’s learning. This 
study began to address this need and found that receiving the texts made parents feel more 
connected to the school and their child’s learning. Parents appreciated knowing what their child 
was learning, were able to do the math activities in the texts with their child, and often times 
incorporated the math ideas into regular household activities or extended the math ideas. Next 
year we are ready to expand beyond English and Spanish to the next three most popular 
languages in the school – Arabic, Swahili, and Vietnamese.  
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In this theoretical paper, I address students’ ontological and epistemological shifts that have 
been discussed in the existing literature of student learning of geometry. First, students make a 
shift in the ontological view of geometric models from Euclidean to non-Euclidean geometry, in 
which the geometric models are considered conscious artifacts of mathematical design. Second, 
students make a shift in the epistemological view of mathematical proofs from absolutism to 
fallibilism, in which proofs can be characterized with a variety of functions and forms. Drawing 
on the prior literature, I argue that making successful shifts can benefit students in axiomatic 
geometry and that such shifts can be facilitated by engaging in mathematical activities with 
supports of dynamic geometry environments. Examples of those activities that involve 
constructing and analyzing geometric proofs are illustrated.  

Keywords: Epistemology, Geometry, Technology  

The purpose of this theoretical paper is to address students’ ontological and epistemological 
shifts that have been discussed in the existing literature of mathematics education regarding 
student learning of axiomatic geometry. Drawing on the prior literature, I argue that making 
successful shifts can benefit students in axiomatic geometry and that such shifts can be facilitated 
by engaging in mathematical activities with supports of Dynamic Geometry Environments 
(DGEs). In this paper, axiomatic geometry means a study of geometry with a focus on the 
axiomatic approach to understand various geometries with different axiomatic systems including 
Euclidean and non-Euclidean geometries. 

A Shift in Ontology of Geometric Models for Axiomatic Geometry 
In axiomatic geometry, students need to make a shift in ways of perceiving and interacting 

with geometric models. Understanding axiomatic systems and models involves knowing how 
geometric models are constructed with sophisticated mathematical designs, and why those 
models satisfy the given postulates of the systems. In many cases, especially for non-Euclidean 
geometry, the models are not just natural outcomes resulting from physical observations of 
existing figures. Rather, they are conscious artifacts produced by creative and elaborative 
mathematical design. This nature of non-Euclidean models indicates that students need to change 
their ways of perceiving geometric models, which have been developed through their prior 
experience in Euclidean geometry.  

Hegedus and Moreno-Armella (2011) introduced Euclidean ontology in their analysis of 
historical development of non-Euclidean geometry. In Euclidean geometry, a student can draw a 
line on paper, which is an iconic representation of the pure abstraction of all lines. A diagram is 
merely a mirror of an a priori geometric figure. In axiomatic geometry, however, a diagram 
results from an interpretation of the figure in a given geometric model. For instance, Poincaré 
constructed a model of hyperbolic geometry with a particular interpretation of lines–arcs 
orthogonal to the unit circle–whereas Klein used Euclidean line segments inside the unit circle in 
his model. Those models are not natural beings that reflect abstractions of figures, rather artifacts 
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to be constructed, verified, and explored by students investigating characteristics of the figures 
emerging across all possible interpretations. 

The shift in ontology of geometric models from Euclidean to non-Euclidean geometry can be 
supported by DGE-activities that provides students with opportunities of conceptual embodiment 
of geometric models. The conceptual embodiment means to develop perceptual representations 
for figures in non-Euclidean geometry, which are not static mental images, rather dynamic 
mathematical structures that realize abstract concepts of geometry (Tall, 2008). In this regard, 
exploring behaviors of dynamic diagrams of figures in DGEs can facilitate students to develop 
perceptual representations of figures in non-Euclidean geometry. In this exploration, students can 
drag the figures and observe the dynamic responses to their manipulations. It enables students to 
build up their perceptual representations that they can access as engaging in formal reasoning. 
For example, Guven and Karatas (2009) showed that interactive diagrams of a DGE can support 
students' development of a conceptual embodiment of triangles in spherical geometry. In their 
study, the participants who engaged in DGE-activities investigating triangles on a sphere were 
able to create paper-and-pencil diagrams of spherical triangles in explaining the properties used 
in their proofs. 
An Example: DGE-Construction of Poincaré Model 

Constructing an interactive model of hyperbolic geometry in DGEs can provide an 
opportunity to experience both exploration of dynamic figures and design of mathematical 
models highlighted in the literature (Guven & Karatas, 2009; Otten & Zin, 2012). In this activity, 
students can develop perceptual representation of hyperbolic figures with its underlying 
mathematical structures and connect the observed properties of figures and mathematical 
structures. For example, students may recognize a hyperbolic line in Poincaré model becomes 
straight as the two distinct points getting close to a diameter of the unit disk (Figure 1). Knowing 
the underlying design of the lines in this model, students can explain this observation by 
imagining that the radius of the orthogonal circle diverges as the two points lie on the diameter. 
In addition, students can discover new concepts in hyperbolic geometry, which they have never 
seen in Euclidean geometry. For example, students can explore infinitely many parallel lines in 
hyperbolic geometry and discover particular set of parallel lines distinguished from others.  

 
Figure 1. Hyperbolic lines in Poincaré model  

A Shift to Fallibilist View of Mathematical Proof 
In the axiomatic approach to geometry, college students encounter mathematical proofs less 

absolute and deterministic than what they have seen in their prior experience. Proving is not for 
generating an absolute certainty of a given mathematical statement as usually pursed in the 
absolutist view of mathematics. Instead, students can benefit from analyzing why a proof works 
in a system but not in others and investigating why a statement is not provable in a system. In 
this regard, students’ views on proof in axiomatic geometry need a shift from the absolutist to the 
fallibilist view, which provide a variety of functions and forms of proofs.  
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Researchers have compared the two contrasting views of mathematics, absolutism and 
fallibilism, in terms of how proofs are perceived differently in each view (de Villiers, 1998; 
Ernest, 1991, Öner, 2008). In the fallibilist view, also frequently referred to as quasi-empiricist 
(Lakatos, 1976), mathematics is considered a product of social processes in which its concepts 
and proofs can be revised (Ernest, 1991). This view contrasts to the absolutist view, in which 
absolute certainty exists in mathematics. A proof in the absolutist view is a requirement for 
verification or conviction of mathematical knowledge. On the other hand, in the fallibilist view, 
personal conviction motivates one to seek a proof to convince oneself and/or intended audiences 
of the proof (Öner, 2008). As a quasi-empiricist, de Villiers (1998) argues that proving involves 
a variety of functions, including explanation, discovery, communication, and systematization, 
which constitute a broader set of mathematical activities. 

These various functions of proofs in the fallibilist view can be promoted in axiomatic 
geometry by introducing an alternative form of proofs in DGEs. DGEs enable students to 
transform a written proof into a geometric construction. This visual and interactive proofs in 
DGEs is called a robust construction (Leung, 2008; Stylianides & Stylianides, 2005). Whereas a 
diagram in the written proof is a particular instantiation of generic objects from the abstract 
procedure of the construction, the constructed figures in DGEs serve as generic examples that 
can vary to represent any other particular example. This generalizability of the robust 
constructions in DGEs enables us to transform written proofs to geometric constructions without 
loss of generality. Creating and analyzing robust constructions provide students with 
opportunities to discover hidden assumptions, logical flaws in proofs, and axiomatic feature of 
the geometry. 
An Example: Proof Analysis of Exterior Angle Theorem in Spherical Geometry 

From the fallibilist view of proofs, I illustrate a DGE-activity of generating and analyzing 
robust construction of a proof for the exterior angle theorem–an exterior angle of a triangle is 
greater than either of the two opposite interior angles–that holds in Euclidean geometry but not 
in spherical geometry. Analyzing a proof of this theorem in those two geometries allows students 
to investigate the axiomatic natures of the systems related to the proof. By creating and 
interacting with robust constructions of a written proof in the two different geometric models 
(Figure 2), students can identify when the proof fails in spherical geometry as they stretch out the 
triangle. This activity can enable students to figure out what feature of the spherical geometry–
two distinct lines intersect at two distinct points–causes this inconsistent result between two 
geometries. Furthermore, this activity can lead student to experience developing new 
mathematical knowledge. Students generate their own definitions of a family of triangles that do 
not satisfy the theorem in spherical geometry then refine the original statement by adding a 
specified condition describing such triangles. 

 
  

Figure 2. Exterior angle theorem in Euclidean (left) and spherical geometry (right) 

Discussions 
In this paper, I addressed students’ ontological shift in geometric models and epistemological 
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shift in mathematical proofs with respect to student learning of axiomatic geometry using 
technology. The DGE-activities illustrated in this paper show the potential of pedagogical role of 
technology in pursuing such goals in axiomatic geometry classrooms. To provide an implication 
to teaching practices, I propose an alternative way of mathematical communication promoting 
those activities–proving as performing. The act of proving in this view is not just to produce a 
tangible material (e.g., written proofs or images of geometric constructions), but can be to 
perform a proof that is transformed into the robust construction (Leung, 2008; Stylianides & 
Stylianides, 2005). Using screencast software, students can create video recording of their proofs 
in DGE and verbal annotation, showing how they created this generalizable geometric 
construction that is equivalent to the formal written proof.  

Screencast presentations of DGE practices are beneficial for implementing student-centered 
and discourse-oriented geometry classrooms. First of all, video recordings afford a way for 
instructors to listen to their students verbally explaining their thinking while interacting with 
dynamic geometry construction. Second, practices of creating and sharing screencast 
presentations can empower teacher and students by establishing a mathematics register (Pimm, 
1987) and enrich the communicative classroom community. The use of student-generated 
presentations can promote students’ agency in classroom by sharing their own mathematics, 
understanding each other, and interpreting these ideas into formal statements. Lastly, screencast 
presentations can support equitable power dynamics between students (e.g., Esmonde & Langer-
Osuna, 2013) in discourse-based geometry classrooms for all students by allowing them to share 
their voices with each other, especially for those who are marginalized in classroom discussions. 
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As the presence of instructional technology in secondary mathematics classrooms increases, the 
need for teacher resources supporting its use becomes of greater importance. Mathematics 
textbooks are one resource that teachers rely on for instruction, so it is important to know how 
they support teachers in this regard. We analyzed a nationally representative sample of 20 high 
school textbooks, including integrated/non-integrated and conventional/investigative curricula, 
to compare the level of technology integration and the types of technology utilized. Findings 
indicate a relatively low percentage of tasks integrating technology, and that calculators are the 
predominant technology within this sample.  

Keywords: Technology, Curriculum, Curriculum Analysis, High School Education 

A wealth of technologies exists for mathematics instruction, and research shows that the 
strategic use of technology has the potential enhance students’ mathematical thinking and 
understanding (e.g., Hollebrands & Dove, 2011). As access to instructional technologies 
increases in secondary classrooms, the question arises as to the extent to which instructional 
technologies are integrated into contemporary curricula. As mathematics teachers rely on 
textbooks to guide their instruction (e.g., Banilower et al., 2013), it is important to understand 
how often and the types of technology that are included in mathematics curricula. This 
understanding may be used to guide professional development efforts and provide important 
guidance to curriculum developers. 

This study examines the integration of technology use in current secondary mathematics 
curricula. We conducted a textbook analysis using a nationally representative sample of 
secondary mathematics curricula. We noted how often technology is incorporated and the types 
of technology used with respect whether the textbook was 1) Algebra 2 vs. Geometry vs. 
Integrated, and 2) investigative versus conventional. 

Background 
A number of textbook analyses have been published in the last ten years (e.g. Sherman, 

Walkington, & Howell, 2016; Otten, Gilbertson, Males, & Clark, 2014; Tarr, Grouws, Chavez, 
& Soria, 2013), but very few have examined the extent to which instructional technology is 
incorporated into curricula (Oner, 2009).  We aim to address this gap in the literature regarding 
the content of current curricula.   

In this study, we followed Stein, Remillard, and Smith (2007) in differentiating between two 
types of texts: “Investigative textbooks reflect a reform philosophy that is consistent with the 
recommendations of the NCTM Curriculum and Evaluation Standards (1989). Conventional 
textbooks refer to commercially developed textbooks that were not influenced by the earlier 
reform documents mentioned above” (Sherman et al., 2016, p. 118).  Recent studies of integrated 
versus subject-specific curricula demonstrate an advantage for integrated over the subject-
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specific on standardized tests of student learning in high school algebra (Grouws et al., 2013) 
and geometry (Tarr et al., 2013)  

Methods 
This study examines current secondary mathematics textbooks to answer the questions: 1) 

how often do secondary textbooks incorporate tasks that utilize technology, and 2) what types of 
technologies are utilized? 

To characterize technology use in secondary textbooks, a sample of twenty textbooks varying 
with respect to curricular focus, integrated versus non-integrated, and conventional versus 
investigative was chosen. Geometry and Algebra 2, and corresponding integrated textbooks, 
were selected because of the differing technologies that may be used.  Textbook state adoption 
lists were examined for all states that had current, publicly available adoptions posted online. 
These criteria yielded in the sample noted in Table 1.  

Table 3: Textbooks Used for Analysis 

 Textbook Publisher/Series Conventional/ Investigative/ # 
Texts Reference Information 

1 Carnegie Learning Investigative (4) Barte 
Dengler et al. 

2 McGraw Hill Conventional (2) Carter 
3 Houghton Mifflin Harcourt Conventional (2) Burger et al. 
4 Houghton Mifflin Harcourt Conventional (2) Larson et al. 
5 Pearson/Prentice Hall Conventional (2) Bass et al. 
6 Pearson/Prentice Hall Investigative (2) CME Project 
7 McGraw Hill Investigative (2) Hirsch & Fey 

8 College Preparatory 
Mathematics Investigative (4) Dietiker et al. 

Kysh et al. 
 
The unit of analysis for coding was a mathematical task. We were interested in tasks that 

could expect to be implemented in classroom instruction. To this end, main narrative sections, 
extensions of narrative sections, stand-alone labs, stand-alone activities were included, while 
exercise sections, review sections, summary sections, practice assessments, standardized test 
prep sections were excluded. Previous textbook analysis (Sherman et al., 2016), demonstrated 
that this distinction could be made reliably in a large set of textbooks. Each task was coded with 
respect to whether or not it included the use of technology, and the type of technology that was 
used.  Secondary coding was conducted for each of these distinctions to ensure reliability. 

Results 
Across the 20 textbooks a total of 10,100 tasks were coded, with an average of 14.88% (SD = 

8.25%) of tasks within a textbook using technology, ranging from 1.84% to 30.70% across the 
sample.  Table 2 depicts how the inclusion of technology differed across textbook types and 
subjects.  
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Table 2: Technology Integration by Textbook Type and Subject 
  % of Tasks 

Integrating Tech 
Total Tasks 

Conventional Algebra 2 16.23% 2834 
 Geometry 7.43% 2558 
 Overall 12.05% 5392 

Investigative Algebra 2 14.98% 1202 
 Geometry 7.61% 1262 
 Integrated 17.47% 2244 
 Overall 14.19% 4708 

 
Mixed effects logistic regression models were fit to predict whether a given task utilized 

technology or not (coded as a 0/1) with textbook title as a random effect. Whether the textbook 
was conventional or investigative did not significantly predict the presence of technology tasks 
(p = 0.726).  However, when comparing Geometry versus Algebra 2 versus Integrated texts, 
significant differences were found. Geometry texts were significantly less likely to include 
technology tasks than Algebra 2 texts (Odds = 0.39, d = -0,52, p = 0.0012) or Integrated texts 
(Odds = 0.33, d = -0.61, p < .001).  

Technology tasks in each textbook were also coded for the type of technology used, as 
summarized in Table 3 below.   

Table 3: Technology Type by Textbook Subject and Type  
Tech 
Tasks 

Graphing 
Calculator 

Scientific 
Calculator 

DGS Custom 
eTool 

CAS Sprea
dsheet 

Other 

Algebra 2  640 69.53% 20.00% 0.31% 6.41% 1.09% 1.56% 1.09% 
Geometry  286 14.69% 37.06% 26.92% 19.23% 0.00% 2.10% 0.00% 
Integrated  390 52.05% 6.15% 11.79% 15.38% 4.87% 1.54% 8.21% 
         
Conventional 650 55.08% 33.08% 8.15% 0.00% 1.08% 2.46% 0.15% 
Investigative 666 49.85% 6.46% 10.81% 23.42% 2.85% 0.90% 5.71% 

 
Conventional and investigative texts used graphing calculators and DGS at a relatively 

similar rate, while conventional texts were more likely to use scientific calculators.  Although 
custom eTools constitute nearly a quarter of the technology tasks found in investigative texts, 
they are unique to the CPM texts. 

Discussion  
In terms of the quantity of technology integration in current curricula, across all textbooks, an 

average of about 15% of tasks utilized technology in some way, a result that indicates that the 
inclusion of technology in secondary mathematics textbooks is relatively rare. Regarding the 
types of technology utilized in texts, calculators are by far the most commonly used technology, 
while the use of DGS is much less common. The relatively rare use of DGS, even in Geometry 
texts, replicates earlier findings (Oner, 2008) for a larger and more current sample.  Taken 
together, the potential of DGS to support exploring, generalizing, and conjecturing, the fact that 
Geometry texts use technology significantly less than Algebra 2 texts, and the predominant use 
of calculators in this sample of textbooks, suggest that technology might primarily be used as a 
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computational tool, rather than for investigating and interacting with the mathematics. 
Furthermore, in light of current standards (NCTM, 2000; Common Core, 2010) articulating the 
important role of technology in a reformed vision of mathematics education, it is surprising that 
the investigative texts in this sample did not demonstrate a greater inclination toward integrating 
instructional technology. One of four components of Technological Pedagogical Content 
Knowledge (TPACK) articulated by Niess (2005) is “knowledge of curriculum and curriculum 
materials that integrate technology with learning in the subject area” (p. 511).  Thus, these results 
should have important implications for mathematics teachers and teacher educators.  

What the current study does not address is how these textbooks incorporate technology in 
reference to supporting students’ high-level thinking. Our ongoing analysis of the tasks presented 
here includes the use of technology as an amplifier vs. reorganizer (Pea, 1985), as well as level 
of cognitive demand (Stein & Smith, 1998) in order to answer questions regarding the ways in 
which technology is used across this sample of texts. 
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USING TABLET TECHNOLOGY TO PROMOTE PARENT/CHILD MATHEMATICAL 
DIALOGUE 
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As an important player in their child’s education, parents should discuss mathematics with their 
young children. Since children who are read to regularly by their parents have higher literacy 
rates; we posit that positive interactions between children and their caregivers would increase 
children’s competence in mathematics and lower rates of mathematics anxiety. We present 
findings from a design based experiment of original technology developed to encourage parents 
to engage in mathematical dialogue with their children. Three rounds of research were 
conducted with mother and preschool child pairs. Our findings indicated that an iPad app can 
present rich tasks for preschool children and prompts for the parents to encourage productive 
discussion. 

Keywords: Early Childhood Education, Design Experiments, Pre-School Education, Technology  

Mobile technology is now a constant part of our lives. These devices, particularly smart 
phones and tablets, can cause distraction and disconnection between parents and their young 
children if not used in a conscious and thoughtful manner (Park, 2016; Thorton, Faires, Robbins, 
& Rollins, 2014). As this technology continues to emerge and develop, parents face difficult 
decisions about the role they will allow these devices to play in their children’s lives.  
While parents and educators may be worried about the amount of “screen time” that children are 
exposed to, many also recognize that these devices have the potential to be powerful educational 
tools. The American Academy of Pediatrics posited recently that educational apps can be 
beneficial for children if “they are appropriately engaging, but not distracting; that they are 
designed to be used by a dual audience (i.e., both parent and child) to facilitate family 
participation in media use and modeling of more effective social and learning interactions” (Reid 
Chassiakos, Radesky, Christakis, Moreno, & Cross, 2016, p. e5). A randomized experiment 
conducted by Berkowitz et al. (2015) of 587 first-graders showed gains in mathematics 
competence after using an app that encouraged parents and elementary school children to solve 
word problems together.  

We believe that educational apps that facilitate family mathematics interaction could also 
benefit younger children, yet such apps do not currently exist. However, a review of the apps 
available through Apple’s App Store and Google Play revealed that the majority the mathematics 
apps for young children are based on math drills and memorization or have very little 
educational benefit (Reid Chassiakos, Radesky, Christakis, Moreno, & Cross, 2016) 
In this paper, we present the preliminary development and analysis of an iPad app which fosters 
interaction between a parent and young child. This app, Family Math Moments, leverages the 
same mobile technology that modern parents are addicted to as a tool to help them utilize 
research-based mathematics education discussion techniques to unlock and support their child’s 
deep mathematical thinking. 

Our research asked the following questions during three research cycles: 

1. How can a mobile app provide a tool for parents to better uncover and support their 
child’s complex mathematical thinking? 
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2. What supports help parents engage their children in mathematical dialogue? 

Theoretical Framework 
Cognitively Guided Instruction (CGI), play-based mathematics in early childhood, and the 

importance of math talk to develop children’s thinking frame this work. CGI in early childhood 
education emphasizes the child’s thinking in their own learning of mathematics and posits that 
“eliciting and responding to children’s mathematical ideas is central to supporting student 
learning” (Carpenter, Franke, Johnson, Turrou, & Wager, 2017, p. 98). Teachers using CGI in 
their teaching of young children are empowered to listen carefully to children’s thinking and use 
questions to help students work from what they know. The task presented in the app was chosen 
because it was situated in a context familiar to young children and crafted to allow children to 
develop and visually explain their sophisticated mathematical thinking. The app provides a task 
and creates an environment for parents and child to engage in these necessary discussions. 

 

 
Figure 1. A Screenshot of the Cookies Activity in Family Math Moments. The child uses the 

cookie cutters to create cookies, with the goal of maximizing the amount of cookies made. The 
parent/family-member engages the child in mathematical discussion while the child explains 

their thinking.  

Methods 
This study used a design experiment methodology with lean thinking rapid iterations (Cobb, 

Confrey, DiSessa, Lehrer, & Schauble, 2003). Lean thinking allows for quick build-measure-
learn feedback loops (Ries, 2011) that allow for research to be conducted on a minimum viable 
product (MVP) that is constantly updated based on the assessment from each research cycle. 
Before the research interviews began, an MVP prototype of this app was developed. The 
prototype was situated in the context of a mother and child baking cookies together. An opening 
page included cartoon figures and a voice-over that asked children if they would help the 
characters cut out as many cookies as possible out of a piece of cookie dough. Then the app 
transitioned to a screen that included a rolled out piece of cookie dough, cookie cutters, and an 
empty baking pan. Using the touch features of the iPad, the cookie cutters can be picked up and 
moved to the dough. After placing the cookie cutter on the dough, the user can move a cutout 
cookie to the baking pan. Figure 1 shows a screenshot of the app during the task. 
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Consistent with the CGI framework, the child is not provided with direct instructions on how 
to accomplish the task. In the spirit of play-based mathematics learning, the activity was 
intentionally not designed to be a video game experience. There is no scoring or time feature in 
the app. A child using the app is never designated as a “winner” or a “loser.” The mathematics 
involved in this task includes counting, shape recognition, and optimization. The context of 
baking cookies was chosen based on the primary investigator’s own experience as a parent. 
To conduct the three research cycles, three mother/child pairs were recruited to complete 
interviews where the dyad tested the MVP and provided feedback. First, the lead author 
conducted a pilot round with her four-year-old son, Logan (all names used are pseudonyms). The 
other two pairs were four-year-old girls, Ada and Grace, and their mothers, Jessica and Amanda. 
All three children were enrolled in the same Pre-Kindergarten class. Table 1 provides 
demographic information about the participants. 

Table 1: Participants  
Research 
Cycle 

Mother Child 

1 (Pilot) First Author Logan, 4 years 
old 
Considerable 
experience 
using iPad 

2 Jessica 
Daycare 
administrator 

Ada, 4 years 
old 
Limited 
experience 
using iPad 

3 Amanda 
Works in 
Higher 
Education 

Grace, 4 years 
old 
Limited 
experience 
using iPad 

 

Results and Discussion 
The results from this research are promising. The children were interested in using the app 

and engaged with the task quickly. The children and their mothers provided helpful feedback that 
could be quickly incorporated to improve the app’s user experience. The feedback also advanced 
our understanding of how mobile technology can support parents to engage their children in 
mathematical dialogue. Table 2 provides and overview of the results from each research cycle 
and the impact that those results had on the development of Family Math Moments.  

Table 2: Results 
Participants What Happened Revisions  
First Author and Logan Logan liked that the task was 

not timed. 
Logan wanted to try the task 
multiple times. 

Start over button added 
Parent handout created 
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Jessica and Ada Jessica pushed parent handout 
to side 
Jessica focused on giving 
directions on how to use app. 
Researcher asked questions 
and Ada answered, Jessica 
never joined in the 
questioning.  

Suggested questions were put 
on notecards 

Amanda and Grace Verbal introduction and 
tutorial was provided by 
researcher. 
Researcher handed Amanda 
notecards with questions to 
ask. 
Amanda initiated math talk 
with Grace. 

Tutorial and “pop-up” 
questions for parents added to 
app 

 
These first three cycles revealed that parents had difficultly discussing mathematics with 

their children without any direction, but when provided with sample questions they can use their 
intuition and knowledge of their child to extend the discussion and draw out their child’s 
thinking. The results from the first three research cycles will now be used to more fully develop 
iPad app. 

Young children’s mathematical thinking is often diminished or dismissed. This study showed 
thinking that increases a parent’s understanding of their own children’s mathematical prowess. 
These results show that just as parent participation in reading to and with their children has led to 
a generational elimination of illiteracy in North America, an app such as Family Math Moments 
has the potential to further mathematical thinking for all children and eliminate mathematics 
anxiety. 
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IN A DIGITAL LEARNING ENVIRONMENT 
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Promoting mathematics learning without developing students’ engagement is a critical issue in 
the teaching and learning of mathematics. This study reports on the student and teacher 
perceptions on mathematics engagement in digital collaborative settings. Emerging themes 
arose through open coding of the student survey responses and the teacher interview. Findings 
revealed two themes: (a) the digital learning environment holds promise for promoting real-time 
collaboration and productive disciplinary engagement in mathematics and (b) in the digital 
learning environment, some students requested explicit opportunities for initial individual work 
before accessing a shared workspace on the digital platform.  

Keywords: Technology, Problem Solving, and Middle School Education 

Introduction 
The 40th Annual Meeting of the North American Chapter of Psychology in Mathematics 

Education invites the mathematics education community to consider emerging opportunities 
related to technology use that can support each and every student. To this end, we are exploring 
ways in which digital technologies can support student learning of and engagement in 
mathematics. Through the use of design research methodologies, we report on initial work that 
offers promising directions for collaboration when teaching and learning mathematics. 

Theory of Productive Disciplinary Engagement 
While it often appears to educators and scholars that students are engaged in problems in the 

classroom, students may not be involved in the mathematical underpinnings of that engagement. 
Students are productive in their disciplinary engagement when they make intellectual progress or 
demonstrate change over time on the disciplinary learning goal (e.g., Hiebert, et al., 1996). This 
notion is referred to as productive disciplinary engagement. Four design principles of productive 
disciplinary engagement are needed to be embodied in learning environments: problematizing, 
authority, accountability, and resources.  

Good problem solvers are not passive recipients of knowledge. If students are to engage in 
the content, issues, and practices of mathematics, then something must exist that is of genuine 
uncertainty for which there is sufficient space for students to make progress. Problematizing in 
mathematics (Hiebert, et al., 1996) involves addressing problematic situations that encourage 
learner “perplexity, confusion, or doubt” (Dewey, 1910, p.12).  

If learners are involved in the content, issues, and practices of mathematics, then they must 
have some degree of intellectual authority when addressing problematic situations (e.g., 
Lampert, 1990). “As learners are authorized to share their thinking, they become recognized as 
authors of the ideas and contributors to the ideas of others, leading to students becoming local 
authorities on a subject” (Williams-Candek & Smith, 2015, p. 3). 

Accountability refers to the notion that students are self-regulated in their learning. This 
means that they are responsible for how their ideas make sense amongst the ideas of others. The 
goal is that students will make ongoing revisions in their work, communicate their ideas, and 
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consider how the ideas do or do not make sense in the discipline so that they are better positioned 
to improve them when more thoroughly challenged. 

Learning environments need to provide access to sufficient resources so that students can 
engage in the other principles of productive disciplinary engagement. Resources might include 
sufficient time and location, technology tools, or classroom artifacts. Resources are going to vary 
dramatically as they depend on the topic, learning goal, classroom setting, and other factors.  

Methods 
This study is part of a larger design research (e.g., The Design-Based Research Collective, 

2003) project focused on iteratively developing and enacting digital environments. The study is 
guided by thinking about how productive disciplinary engagement can be fostered in digital 
learning environments. The research reported in this study addresses the following research 
question: In the digital learning environment, what are student and teacher perceptions of 
mathematics engagement in collaborative settings? To this end, we report on data collected from 
four classes (approximately 25 students per class) that tested the developed digital resources over 
two days. The mathematics problem that was tested was from the seventh-grade unit, Stretching 
and Shrinking: Understanding Similarity. Problem 2.2 Hats Off to the Wumps: Changing a 
Figure’s Size and Location comes from the Connected Mathematics3 (CMP) curriculum 
materials (Lappan, Phillips, Fey, & Friel, 2014). While the teacher and students are familiar with 
CMP, the use of the prototype digital platform was the first experience for the students and the 
teacher. The platform supports students to make their thinking visible to others, to see and make 
changes in real time, and to publish their work (at any point in time). 

The student survey was administered electronically after the testing of the mathematics 
problem. A total of 37 responses were captured from the students in the four classes.  The 
teacher interview was also conducted after the testing of the mathematics problem. Interview 
questions focused on the experience using the digital platform and its features, student 
engagement in mathematics (problematizing, authority, accountability, and resources), student 
learning about similarity, and similarities and differences about the instructional model (Launch, 
Explore, Summary) from past teaching experiences. Student survey responses and teacher 
interview transcriptions were coded using an open coding approach (Strauss & Corbin, 1998).  
We report on the emerging themes on mathematical engagement in collaborative settings.    

Findings  
In this section, we report on findings of student and teacher perceptions on mathematics 

engagement in collaborative settings for an open mathematics problem. 
Theme 1. The digital learning environment holds promise for promoting real-time 
collaboration and productive disciplinary engagement in mathematics.  

From the analysis of the interview, the teacher spoke towards the positive aspects of the 
digital platform for student learning and engagement in mathematics. Below are excerpts of 
questions and responses between the interviewer (I) and the teacher (T). 

As shown on Table 1, students found that the real-time collaborative digital resources were 
helpful for mathematics engagement and learning. However, some students raised issues on the 
technical lags (e.g., freezing and refreshing) and the cultural norms (i.e., hesitation of 
mistakes/errors now being public and sharing of the work as "copying" of others work). 
Although issues were raised, no students indicated they did not want to work collaboratively 
with the digital resources. 
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I: In your own words, tell me about the different features of the digital platform and the different ways you and 
your students used those features. 
T: So, the main feature was the collaborative space screen, and the students slowly get used to using that to be 
able to share their thoughts and the answers on the same screen. When one student had an answer, they were able 
to input it and then share with their group and the whole class.  
I: Did you notice changes in how students were accountable for their ideas, to the ideas of their group mates, or to 
the ideas of the class? 
T: I think students were held a lot more accountable to each other and group. Because they think their work is 
much more visible, they cannot just write. They have to discuss, talk, and share. They were accountable to the 
whole class with the publish feature. 
I: Have you noticed changes in how students share their thinking or contribute to the ideas of others? 
T: They were just a lot more specific. They had things to reference. They felt a little more comfortable with each 
other. I am excited to see as we keep going how that changes. The next day, we did a lesson in class just out of the 
book paper pencil, I can still definitely feel the vibe of the cooperation thing as we were doing. So, I am 
interested in seeing this throughout the rest of this book if they continue to keep the same tightness they forced to 
do with the digital platform. 

Figure 1. Teacher interview 

Table 1:  Select survey items and student responses 
Did the technology help you be more confident, less 
confident, or as confident as usual in mathematics and in 
sharing your ideas with others? Explain why. (n=37) 

More 
Confident 

30% 

Less 
Confident 

22% 

No 
Difference 

40% 

Other 
 

8% 
Was the technology helpful to explore similarity by 
producing similar and non-similar hats? Explain. (n=37) 

Helpful 
84% 

Not Helpful 
8% 

Other 
8% 

 

The technology allowed you to publish your work. Was 
this helpful or not? Explain. (n=37) 

Helpful 
62% 

Not Helpful 
30% 

Other 
8% 

 

The technology allowed you to look at your classmate's 
published work. Was this helpful or not? Explain. (n=37) 

Helpful 
65% 

Not Helpful 
24% 

Other 
11% 

 

 
Theme 2. In the digital learning environment, some students requested explicit 
opportunities for initial individual work before accessing a shared workspace on the digital 
platform. 

Responses from the student survey surfaced an important consideration for working in 
collaborative groups. This consideration may be connected to an affordance of paper/pencil 
contexts. For example, below are sample student responses from students.   

What changes, if any, would you like to see in the technology? 
• It should be individual and then you share your answers with your table group. 
• You do a private thing then share with your group then publish 
• I would make changes  so that you can individually write things then discuss it with your group. 
• I would have it work better; for example, everyone could have their own separate work and then share it 

when they were all done to compare answers. 
What did you not like about the technology? 

• It was hard to get work done because someone was trying to work on the table, and someone was working 
on the graph. I think each person should have their own interactive thing and then share with just their 
group of table. 

Figure 2. Sample of survey questions and students' responses 

Discussion 
In this study, we reported on student and teacher perceptions related to mathematics 

engagement in collaborative settings. Our analysis of the data was limited to student and teacher 
perceptions around one mathematical problem. The two themes highlight the pivotal role of 
accountability in the theory of productive disciplinary engagement. As Engle (2011) noted, 
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developing and increasing accountability builds by asking learners to account for how their ideas 
make sense from the “inside out" - oneself, safer peers, more challenging peers, internal 
authorities providing increasing challenges, and external disciplinary authorities providing 
increasing challenges. In this version of the prototype, the digital platform began with the 
assumption that students would share a collaborative space. While students had the opportunity 
to create a space for themselves individually, it was an optional feature. The findings from the 
study suggest some need by students to work individually before moving to collaborative space. 
This finding may be interpreted as the students needing the opportunity to make sense of the 
problem themselves before sharing it with safe peers (group members). This study provides some 
evidence that resources and opportunities are needed to support accountability for the learner 
itself prior to moving outwards with others. 

Despite the early stage prototype having technical glitches where students and the teacher 
had limited familiarity with the digital resources, this study underscores the important design 
consideration of collaboration when designing and enacting digital learning environments for 
promoting student engagement and learning of mathematics. Interestingly, the digital platform 
provided an option of an individual workspace for students (where group mates could not access 
their work), but its usage did not surface in our analysis of the survey.  

While the digital learning environments reported in this study are different than paper/pencil 
contexts, students were still expected to be accountable to their ideas by justifying their work in 
their small group, to the whole class, and the teacher. Almost all students appreciated the value 
of working in a collaborative workspace, highlighting the benefits of real-time communication 
and sharing of work with others.  
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This study is centered around a year-long professional development intended to improve 
teachers’ technological, pedagogical, and content knowledge for middle school mathematics. 
Seven teachers’ responses and asynchronous module work were analyzed to measure teachers’ 
beliefs about their ability to implement technology in the classroom and the alignment between 
teacher interaction with technology and their understanding of mathematics.  Results suggest 
that 1) teachers were more efficacious teaching mathematics without technology than with it; 2) 
teachers’ beliefs about technology and their ability to implement it were generally positive and 
increased after professional development activities; 3) gaps in teacher knowledge and teachers’ 
ability to use technology were evident.  

Keywords: Teacher knowledge, technology, beliefs 

  Purpose of the Study 
The use of technology in the classroom has gained momentum over the last decade, putting a 

focus on teachers’ understanding and implementation of a technology-infused classroom.  While 
much attention has been focused on building a framework of teachers technological, 
pedagogical, and content knowledge (TPACK), little attention has been paid to the possible 
factors that guide the implementation process.  The year-long professional development (PD) 
focused on providing technological, pedagogical and content support for middle school 
mathematics teachers.  The purpose of this study, then, is to examine possible factors influencing 
teachers’ ability to implement technology in the middle school, mathematics classroom with two 
guiding questions: 1) What are middle school mathematics teachers’ beliefs about their own 
ability to implement technology in the classroom? and 2) How do measures aimed at quantifying 
teachers’ TPACK align with teachers’ interaction with technology and their understanding of 
mathematics?  

Theoretical Framework 
In Adding It Up, the National Research Council (2001) calls out five components to 

effectively teach mathematics, three of which describe aspects of the knowledge base required to 
teach mathematics stemming from to the notion of Mathematical Knowledge for Teaching 
(MKT, Ball & Bass, 2003).  While MKT theorizes the working parts of the knowledge required 
to teach mathematics, it does little to describe how technology integration fits into instruction.  In 
an attempt to create a framework for the overlapping knowledges required to implement 
technology, Koehler and Mishra (2009) developed technological pedagogical and content 
knowledge (TPACK).  To more effectively teach mathematics using technology, then, one must 
consider both frameworks.  Only then can the influence of knowledge on technology integration 
be more fully understood.   

Unlike MKT, most all measures of TPACK are related to teachers perceived levels of 
knowledge and are self-reported.  While this can be reflective of actual levels of knowledge, 
there is clearly the possibility for disparity among the two levels.  Instruments used to assess 
TPACK may be a better measure of beliefs than actual knowledge.  
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In addition to the possible relationship between knowledge and beliefs, a compelling 
relationship between mathematical knowledge for teaching and instruction exists (Hill et al, 
2008).  Teachers with a strong knowledge of mathematics, a strong knowledge of how to teach 
it, and how to teach it within the context of a mathematics classroom were found to avoid 
mathematical content errors and implement more rigorous lessons.  It would be unjust to assume 
that a relationship between MKT and implementation and not question the relationship between 
a measure of knowledge that includes technology integration and instruction.     

Subsequent research also shows that teacher understanding of curriculum, a construct 
associated with both MKT and pedagogical content knowledge within TPACK, is an essential 
construct that must be addressed in future research on the relationship between knowledge and 
instruction (Hill et al, 2008).  Therefore, the implementation of technology should be studied to 
fully understand how knowledge supports the integration of technology into classroom 
instruction.   

Synthesizing the previous needs and findings, it becomes clear that too little research focuses 
on what factors support the integration of technology in a mathematics classroom.  The impact of 
knowledge, beliefs and experience emerge as crucial constructs, as displayed in Figure 1, 
impacting how mathematics teachers select, evaluate, and implement technology into instruction.  
 

 
Figure 1. A theoretical framework for the implementation of technology in a mathematics 

classroom. 

Methods 
Participants  

Middle school mathematics teachers from a large Midwestern city were recruited to 
participate in a year-long professional development.  Five different school districts, spanning 
from urban to rural, provided 31 teachers and mathematics coaches to participate. For the 
purpose of this study, seven teachers were chosen to examine more closely. Emergent trends 
among the qualitative data were identified and analyzed. 
Professional Development  

Teachers began their PD experience with a six-day, summer institute that aimed to support 
teachers in building algebra content knowledge, building pedagogical content knowledge, and 
supporting the selection, evaluation, and implementation of digital resources in the mathematics 
classroom. Monthly, asynchronous modules were delivered online and modeled using the same 
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focus as the summer institute. Email and site visits provided participants with additional support 
while they completed the online module portion of the project.  
Data Collection 

Initial pre-surveys were administered to measure participant TPACK, self-efficacy, and other 
measures of motivation.  These surveys were again administered after the completion of the 
summer institute.  Teacher work samples serve as a large component of the data set.  

Results 
Teacher beliefs 

Teachers were given a survey with several items aimed at measuring their beliefs.  With 
respect to self-efficacy to teach mathematics with technology versus without technology, five of 
the seven teachers had higher levels of self-efficacy for teaching mathematics without 
technology than with technology. All seven teachers had average scores over 3 (out of 5) for 
measures of self-efficacy to evaluate digital resources, self-efficacy to design, and perceived 
TPACK scores.  Self-efficacy to evaluate digital resources, TPACK, self-efficacy to design 
curriculum, ability, expectancy, and attainment saw an increase after the summer institute.   
Knowledge 

Outcomes related to teacher content knowledge were mixed.  Evidence suggests that while 
teachers understood basic slope content, other content provided more issues.  Topics on 
exponents, multiple representations of equations, and fractions and rational numbers were 
littered with errors.   
 

 
Figure 2. Work example of incorrect sorting of equivalent expressions. 

 
The majority of teachers (4 out of 7) were unable to correctly match equivalent expressions that 
utilized different exponential rules.  The teachers who were incorrect reported that they had 
difficulty remembering the rules associated with exponents.  Figure 2 provides a different 
example, in which the teacher looks to be correct, but has switched two of the cards incorrectly.  
Similarly, the teacher did not fully submit their work due to difficulties utilizing the grouping 
mechanism of the digital resource.  

Although teachers struggled with exponents, they excelled with notions of slope.  
Participants were able to correctly use and create slope triangles to answer questions about slope 
using Geogebra as demonstrated in the figure 3. 
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Figure 3. Example of the creation of a slope calculator using sliders. 

Discussion 
The study aimed to explore possible factors influencing teachers’ ability to implement 

technology in the middle school, mathematics classroom. This study was unique in that looked at 
teachers’ TPACK beyond popular survey methods by examining teacher work in asynchronous, 
online modules. While teachers reported above median values for TPACK, self-efficacy, and 
other measures, they reported more confidence in their ability to teach without technology. 
Teachers work in the asynchronous modules show teacher error in both content and technology 
utilization raising the question of whether erroneous responses were reflective of content 
knowledge or technology knowledge.   
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The following study investigated why and how teachers implemented virtual manipulative (VM) 
tasks after participating in a professional development opportunity aimed at teaching with VMs. 
Findings indicate that teachers used VM tasks to support students’ developing understanding 
and engagement and because they were supported in teaching with VM tasks. Mediating factors 
(e.g., time) influenced why and how teachers chose to use a particular technology tool. 

Keywords: Professional Development, Technology, Middle and High School Education 

Introduction 
As access to various technology tools increases, so too has the expectation for teachers to use 

technology to enhance student engagement and understanding. Unfortunately, teachers often 
report that they are not prepared to use technology in an innovative manner and effectively in 
their instruction (Albion et al., 2015), a critical and longstanding issue in mathematics education. 
Effectively teaching with technology entails teachers using technology to promote opportunities 
for students to develop conceptual understanding through reflection and communication, as well 
as through using and connecting mathematical representations (Reiten, 2018). Which leads to the 
question, when teachers are supported in teaching with a technology tool, why and how do they 
integrate the tool into their instructional practices?  

The following study highlights two teachers to report the findings of a professional 
development (PD) opportunity for secondary mathematics teachers aimed at supporting their 
efforts to teach with virtual manipulatives (VMs). A VM is an interactive, technology-enabled 
visual representation of a dynamic mathematical object, including all of the programmable 
features that allow it to be manipulated, that presents opportunities for constructing mathematical 
knowledge” (Moyer-Packenham & Bolyard, 2016). Visit http://bit.ly/VirtManips for an annotated 
list of VMs and http://bit.ly/VMTasks for a repository of VM tasks used during the PD. 
VMs were the focus of this PD due to the widespread availability of the tool and the increased 
attention that has been given to the development of VMs in recent years. Many VMs provide 
immediate feedback and the interactive environment can promote student perseverance and 
exploration for students who get frustrated or disengage with paper and pencil investigations 
(Moyer-Packenham & Westenskow 2013). Despite these benefits for using VMs, limited 
resources exist to support teaching with VM tasks (Reiten, 2018). A VM task is the VM and all 
accompanying instructions/prompts whether onscreen or in printed form.  

Theoretical Background 
Teachers’ implementation of VM tasks were considered to be mediated by their 

mathematical goals for the task, the tools available related to their implementation, the students 
they teach, the teachers with whom they teach, and school/district initiatives. Therefore, to 
understand why and how teachers implemented VMs, the following study drew from activity 
theory (Engeström, 1999). An activity consists of a subject, object, and actions. The subject is 
the person or people engaged in an activity (i.e., the teachers in the PD). The object motivates the 
activity and gives the activity specific direction (i.e., teachers’ practices related to implementing 
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VMs). Actions are goal-directed processes undertaken by the subject to achieve the object (i.e., 
teachers’ instructional practices related to implementing VM tasks). Other aspects of this activity 
system include the tools/mediating artifacts (e.g., the VMs and tasks, the task analysis 
framework), rules (e.g., curriculum, instructional style), community (e.g., other teachers in the 
school), and division of labor (e.g., do teachers work collaboratively or primarily individually). 

Methods 
For the larger study, 14 mathematics teachers participated in the PD opportunity aimed at 

supporting their efforts to teach with VMs (see Reiten, 2018). The focus in this paper is on a 6th 
/7th grade mathematics intervention teacher (i.e., Tracy, 20 years of experience) and a high 
school Geometry/AP Statistics teacher (i.e., Daron, 21 years of experience). These participants 
were chosen due to representing different grade bands and student populations. Data collected 
included online background and final surveys, video and audio recordings of the PD sessions, 
and teachers’ work during the sessions. Tracy also participated in semi-structured interviews at 
the beginning and end of the PD.  

Transcripts, teachers’ work, and their reflections were initially coded to identify themes 
related to how they used the tools introduced in the PD, how and why they implemented 
technology (codes drawing from literature), and related tensions (emergent codes). Focused 
coding (Saldaña, 2013) then progressed after sorting codes vis-à-vis components of the activity 
system (e.g., division of labor, community, tools, tensions, etc.), re-examining data within codes, 
and linking teachers’ work during the PD with their conversations. This analysis gave insight 
into how and why teachers implemented VM tasks (i.e., the object of the activity system). 

Findings and Discussion 
The goal of the PD was to support teachers in teaching with VM tasks. Teachers’ 

appropriation of tools (i.e., guiding questions, task analysis framework, annotated VM list, folder 
of tasks) used during the PD supported their implementation efforts (Reiten, 2018). Tracy 
implemented over 12 VM tasks and Daron implemented at least four VM tasks with students. 
Why Teachers Implemented VM Tasks 

Engagement and exploration. Teachers implemented VMs and tasks because they thought 
their students’ learning might be enhanced due to students’ engagement with the VM tasks. For 
example, during Tracy’s final interview, she said  

It piques their interest, in all of it. All of a sudden we’ll [i.e., the students] TRY because 
we’re not writing on pencil and paper. Like the one that we did with the area and the 
perimeter when they’re making the gardens [i.e., Fido’s Flower Bed from ExploreLearning] 
all of a sudden, “OH! A man walked by.” Or “Oh, did you see that dog?!” You know, I mean 
… they get excited about it and they can compare [with each other].  

On Daron’s final survey, he said that he used the VM tasks because “students can discover and 
explore concepts in a dynamic way. [The VM tasks] allow for a deeper level of engagement and 
more efficient way to investigate deep mathematical ideas.” Tracy’s and Daron’s reflections 
highlight how they were using VM tasks to give students opportunities to explore content in a 
more dynamic way and with less restrictions than if the task had been done with paper and 
pencil. Additionally, the interactive environment helped to promote students’ engagement (e.g., 
Moyer-Packenham and Westenskow 2013) with the tasks as well as reflecting on the 
mathematics through comparing solution strategies with their peers.  

Instructional guides. Many of the VM tasks that teachers chose to implement had 
accompanying guided questions or instructional guides to help students engage in the task and 
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support their developing understanding. During the October PD session, Tracy said  
I just think that it [the VM with an instructional guide] is more GUIDED and that makes it a 
little more REAL to them where they are actually having to do what they would have to do 
on a math test, you know. That they are practicing those skills and writing it down and 
maybe making it a little more concrete than just click, click, click, click, click, click, click. 
And see if we get an answer eventually that says, “Hey, you’re right!”  

The accompanying questions or instructional guides supported teachers in how they may want to 
use a given VM task and assisted students’ exploration of the given topic.  

However, not all VM tasks had accompanying questions. Therefore, at times teachers 
developed instructional guides to accompany a VM. During the January PD, Daron said  

Some of the ones that I had been looking at don’t really have a guide, so … I kind of keep 
these things in mind [i.e., the affordances in the task analysis framework] as I try to write a 
guide or put together some questions…to try to make sure as many of these were covered so 
it was a meaningful activity for them as well. Where otherwise you might just throw the 
questions out, you just, I think it allows you to think more like, “How do I move them up to 
those levels that we’re trying to get them to?”  

Therefore, teachers’ efforts to develop instructional guides that further supported student 
learning and engagement were also supported via a tool introduced during the PD (i.e., the task 
analysis framework (Reiten, 2018)). Hence, when investigating why teachers choose to 
implement VM tasks, it is important to consider how teachers are supported in developing 
accompanying materials that they find helpful for supporting students’ developing 
understanding.  
How Teachers Implemented VM Tasks 

Instructional role. Teachers used VM tasks for a variety of purposes or instructional roles. 
During the January PD session, Daron specifically looked for a VM exploring a confidence 
interval for a proportion to use in his AP Stats class that might enhance student understanding by 
connecting the confidence interval and the graph of a distribution. During the spring months, 
Tracy often looked for VM tasks that allowed students to investigate and develop area formulas 
(e.g., calculating the area of a parallelogram) rather than simply being told the area formula. 

Implementation efforts. Although the PD aimed to support teachers in teaching with VM 
tasks, there was no requirement that teachers had to implement the VM tasks that they were 
critiquing and modifying during the PD session.  

During the January PD session, Daron brought up his experience implementing a VM with 
his AP Statistics students. According to Daron, after doing the gizmo, students had less questions 
about the binomial theorem compared to years past and a better understanding of the formula. 
Students were not relying on their calculators to evaluate the formula and were not making some 
of the common errors that previous students had made (e.g., leaving off the beginning part of the 
binomial formula). After the PD session, Daron emailed the following thoughts related to his 
implementation of the Binomial Probabilities gizmo: 

I think students were much more engaged in learning the binomial pattern. They were able to 
see where the pattern was coming up from the most basic situation to more complex 
examples. I think students were able to see the pattern in the factorials and Pascal’s triangles 
quickly, then were able to adapt them to more difficult problems. I asked for student 
feedback and they said they really liked using the gizmo and it helped them to see the pattern.  
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Daron’s thoughts demonstrate how both he and his students found the VM helpful for students’ 
developing understanding. This early positive experience implementing a VM task encouraged 
Daron to continue implementing VM tasks during the school year.  

At times, teachers found it challenging to implement VM tasks. When asked during her final 
interview if there was something that prevented her from using VM tasks, Tracy stated, “Time!” 
Time related to having the instructional time within a class period as well as time for finding the 
tasks and getting them ready to implement with her students. Although the PD could not affect 
the instructional time teachers had, the PD provided teachers time to find, critique, and modify 
VM tasks specifically related to their upcoming units. As demands on teachers’ time continue, 
integrating supported time within PD for teachers to find and develop VM tasks directly 
connected to their curriculum can help support teachers’ integration efforts by strengthening the 
connection between the PD and teachers’ instructional practices (Wilson, 2008).  

Conclusion 
Although VMs are not new, little resources exist to support teachers’ efforts to teach with 

VM tasks. Therefore, this PD opportunity was developed to support teachers as they found, 
critiqued, and modified VM tasks to implement with their students. Teachers implemented VM 
tasks due to benefits they experienced in relation to their students’ developing understanding and 
engagement, as well as the ways in which they were supported in designing instructional guides 
to support students’ emerging understanding. The PD aimed to support teachers’ efforts to teach 
with technology by providing teachers’ the time and support needed to not only learn about VM 
tasks, but also time to critique the tasks and prepare the tasks to implement with their students.  
Supporting teachers to teach with technology goes beyond providing them with access to 
technology tools. Rather, it includes providing opportunities for teachers to interact with 
technology tools related to their current curriculum. Additionally, it means providing teachers 
resources that support their integration efforts and emerging understanding regarding knowledge 
growth in how to teach with technology. Supporting teachers also means acknowledging the 
tensions that exist related to integrating technology tools (e.g., time) student needs (i.e., 
community factors), tool limitations and supports (i.e., tools/mediating artifacts), etc.  
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Calculus 1 has been and continues to be a key gateway course to STEM majors, which 
contributes to a loss of students in the STEM pipeline. Self-regulated learning (SRL) 
competencies have widely been found to be related to academic achievement (e.g. Zimmerman, 
Moylan, Hudesman, White, & Flugman, 2011), though common tools to measure SRL have fallen 
under scrutiny (Winne & Jameison-Noel, 2002). Ways in which students interact in the learning 
process impacts performance and, in turn, the student experience. Using an SRL framework, 
online tools were designed to collect data that can be interpreted to create a behavioral SRL 
score based on in-course student activity. This brief report presents initial findings on the 
relationship between a behavioral SRL score and academic achievement in Calculus I.  

Keywords: Metacognition, Measurement, Technology 

Calculus I has often been identified as a gatekeeper course for STEM disciplines. Aside from 
incoming ability, evidence suggests that how students engage with their studies impacts their 
success (Vandamme, Meskens, Superby, 2007). This research aims to investigate the impacts of 
student’s online interactions on academic performance by interpreting students’ use of 
purposefully-designed online tools using a self-regulated learning (SRL) framework. For the 
purpose of academic performance prediction and at-risk student detection, SRL theory provides a 
lens to understand how students engage in online settings. 

This brief research report will describe how an SRL framework can be used to more deeply 
understand students’ behaviors in online settings and how student interactions with resources 
developed around SRL theory can be organized into a behavioral SRL score. We will then 
analyze relationships between this score and academic achievement in a Calculus I class. 

Theoretical Framework: Self-Regulated Learning 
SRL - “the self-directed process by which learners transform their mental abilities into 

academic skills” (Zimmerman, 2002, p. 65) - enables students to better understand how they 
engage with content and adapt their study strategies to overcome academic difficulties and 
become more successful students. For example, when a mathematics student receives a bad 
grade on a homework assignment, they often do not reflect on why or how to change their study 
habits to be more successful in the future. Zimmerman (2000) presents a three-phase process 
model of SRL describing an ideal process through which students can support their learning as 
they engage in a task. This model is cyclic, with each phase - forethought, performance, self-
reflection - informing the next.  

Forethought is the planning phase, which ties in a student’s beliefs and motivation, such as 
self-efficacy, outcome expectations, and task value, around the task (Zimmerman, 2008). During 
this stage a student will analyze a task and determine goals and strategies to implement. 
Following forethought, the performance phase centers around the task itself. The student then 
implements planned strategies, observing and adapting strategies during the task (Zimmerman, 
2000). Self-observations also provide information to the student about effectiveness of strategies 
on performance as students enter the self-reflection phase. The self-reflection phase analyzes the 
gathered information, drawing causal attribution to conditions surrounding the task so that 
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adjustments and improvements can be made, informing future task cycles (Zimmerman 2000). 
As an example, consider a student preparing for an exam via a practice exam. Before sitting 
down, a self-regulating student would determine what resources are needed working on the 
practice exam (e.g. time, location, notes, textbooks, technology). They would identify test-taking 
strategies to use and then select ones that are relevant. During the practice exam, identified 
strategies are implemented and resources are used. Before sitting down, a self-regulating student 
would identify resources and strategies to use during the practice exam. After selecting and 
implementing these strategies, the student would reflect on their performance and process to 
make judgements regarding the effects of their methods on their performance and goals for the 
practice exam. Successful strategies could then be used in the subsequent exam, while others 
might be modified for future use. 
Measuring SRL 

The Motivated Strategies for Learning Questionnaire (MSLQ) is the most commonly used 
instrument for measuring SRL. The MSLQ is an 81-item self-report questionnaire that assesses 
“college students’ motivational orientations and their use of different learning strategies for a 
college course” as well as their “goals and value beliefs” (Pintrich, Smith, Garcia, & McKeachie, 
1991, p. 3). The MSLQ has primarily been used to study the relationship between components of 
SRL and academic performance (e.g. Pardo, Han, & Ellis, 2016). Unfortunately, self-reports do 
not always align with observed behaviors (e.g. strategy usage), which has caused the validity of 
the MSLQ to be called into question (Winne & Jamieson-Noel, 2002). To address this concern, 
we designed online tools specifically to coax evidence of the SRL phases into observable, 
measurable events that can be recorded and formed into a behavioral SRL score, which will be 
referred to as the B-SRL score. 

Methods 
As students often struggle with precalculus content (e.g. Carlson, Madison, & West, 2015), 

self-regulation around the task of assessing and addressing one’s knowledge of precalculus 
topics at the start of the semester was the focus of this research. Three optional online tools were 
developed and made available to students through the university’s learning management system 
(LMS) based on the three SRL phases: forethought, performance, and self-reflection. 
The Prerequisite Self-Assessment (SA) was developed to capture evidence around the 
forethought phase. This eight-item survey asks students to rate their confidence in correctly 
answering questions on relevant prerequisite material on a Likert Scale from one (no confidence) 
to five (very confident). The SA determines if students are engaging in the task analysis 
component of forethought by assessing their confidence in precalculus topics.  

Students’ participation in the performance phase of SRL was determined by how they scored 
on the optional Prerequisites Content Quiz (CQ) - a 12-item multiple-choice and multiple-answer 
quiz about prerequisite material essential for Calculus I. Topics included in the SA and the CQ 
related to function notation, graphs of functions, algebra, and trigonometry. Upon completion, 
students received immediate feedback on the correctness of each response and, if incorrect, the 
relevant topic to review, as well as available resources (e.g. specially developed review videos).  
The Prerequisite Reflection Tool (RT) was designed to provide evidence of students engaging in 
the self-reflection around their CQ performance. This five-item survey asks students to identify 
what precalculus topics they plan to revisit in light of their CQ performance, as well as how and 
when they plan to review. Student precalculus remediation was tracked through provided digital 
and physical resources. Subsequent follow through of remediation provides evidence of cyclic 
nature of SRL, capturing the transitions from reflection into forethought of remediation. As all 
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tools and resources were optional for the students, their’ mere use of these online tools and 
resources provide evidence of students engaging in the different phrases of SRL.    
Formulating a Behavioral SRL Score 

Using the data from the online tools, the B-SRL score was formulated by first categorizing 
the usage data for each online tool, and then coding each student’s set of behaviors with the tools 
onto a six-point scale representing students SRL strategy usage. It is worth noting that SRL is a 
process that can stretch semesters, so the B-SRL score is a snapshot of the SRL process at the 
beginning of the semester around the task of assessing one’s precalculus knowledge and 
potential remediation of skills within the first two weeks of class. 

Since the online tools were all optional, each tool was either used by a student or not. For the 
both the SA and CQ, students who used the tool were further subdivided. Of students that used 
the SA, they were considered to have either high confidence (mean confidence score of three or 
greater) or low confidence. Students that completed the CQ were considered to have either high 
precalculus ability (score of eight or greater) or low ability. Results from the SA and CQ were 
combined with use of the RT (used or did not) and precalculus resource access (accessed or did 
not) to formulate a B-SRL score. Each set of behaviors was then evaluated using Zimmerman’s 
three-phase model with the guiding question ‘How appropriately is the student responding to the 
feedback about their impressions on their precalculus abilities?’. Further, the B-SRL score took 
into account whether or not the student was appropriately calibrated with regard to their 
confidence and academic ability, where more accurate calibration has found to be a product of 
SRL training in the literature (Zimmerman et al., 2011). Each behavior was assigned B-SRL 
scores of 0 (no self-regulation), 1, 2, 3, 4, or 5 (highly self-regulating). 

To highlight the coding from behaviors into the B-SRL score, consider three students: Derek, 
Matilda, and Jay. Derek has high precalculus confidence, but low precalculus ability. Further 
Derek has not engaged with the RT nor the precalculus resources. His confidence and ability 
regarding precalculus ability are miscalibrated, and Derek is not using the low CQ score as a 
prompt to revisit precalculus material. For these reasons, Derek would receive a B-SRL score of 
two. If Derek were to instead use the RT and use one of the precalculus resources, he would 
receive a B-SRL score of four. 

Matilda showed low confidence with precalculus content despite showing high precalculus 
ability. She then did not use the RT nor the precalculus resources. Matilda has high precalculus 
ability, so she does not need to remediate her precalculus abilities. Despite this, Matilda’s ability 
and confidence are not appropriately calibrated since she has high ability but low confidence. 
Further Matilda has not reflected on her CQ performance, so she receives a B-SRL score of 
three. Were Matilda to reflect on the CQ (use the RT), she would receive a B-SRL score of four. 
Lastly, Jay is a student who uses none of the provided online tools. Though Jay may be self-
regulating, there is no evidence of this. Hence, Jay would receive a B-SRL score of zero. 

Data and Initial Findings 
Data was collected from 376 consenting university Calculus I students who competed the 

course. Data sources included course performance data and B-SRL score data.  
Toward considering the relationship of the B-SRL score with academic performance, DF 

rates were inspected for each set of students with a particular B-SRL score. For the 376 students, 
the DF rates for each B-SRL score generally tends to decrease as the B-SRL score increased. 
Particularly, the groups of students who received a B-SRL score of 0, 1, 2, 3, 4, and 5 had DF 
rates of 46.9%, 32%, 27.8%, 31.2%, 24%, and 17%, respectively. Note that the group with a B-
SRL score of two deviates slightly from this pattern. It is worth noting that this B-SRL group is 
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smaller compared to other B-SRL groups (n=18, compared to, on average, n=71.2). Further 
investigation of this group is warranted, but outside the scope of this report. 
In comparing students who had high B-SRL scores (B-SRL score ³ 3) with students with low B-
SRL scores (B-SRL score < 3), Spearman’s correlation revealed significant differences between 
the groups on all course exams and the final course grade (0.14 £ r £ 0.23 and 0.001 £ p £ 
0.005), suggesting that students with high SRL have higher scores than students with low SRL. 

Discussion 
These preliminary findings show promise for being able to use an SRL framework to develop 

tools that measure students’ SRL through observable means. Using purposefully-designed tools, 
we developed a method for generating a B-SRL score for students by analyzing their online 
interactions, specifically those around prerequisite remediation and readiness for Calculus I. The 
relationship between B-SRL scores and academic performance metrics suggests that students 
who tend to self-regulate their precalculus abilities more tend to be more successful in Calculus 
I, which aligns with what is seen in the literature (e.g. Zimmerman et al., 2011; Zimmerman & 
Schunk, 2001). Similarly, students who self-regulate more tend to perform better on exams 
compared to those who self-regulate less.  

Some foundational STEM courses implement ‘gateway exams’ at the beginning of a course 
to assess student readiness for the course. The methodology discussed in this paper expands on 
this strategy, going beyond just prerequisite content knowledge by incorporating student SRL 
strategies and remediation tendencies as well. The B-SRL score and discussed tools can further 
aid in early detection of at-risk students, informing intervention to support and improve student 
success in Calculus I and STEM. Future efforts in this project will be to utilize results to inform 
course design and pedagogical decisions to better support at-risk and underprepared students. 

References 
Carlson, M. P., Madison, B., & West, R. D. (2015). A study of students’ readiness to learn calculus. International 

Journal of Research in Undergraduate Mathematics Education, 1(2), 209-233. 
Pardo, A., Han, F., & Ellis, R. A. (2016). Exploring the relation between self-regulation, online activities, and 

academic performance: a case study. In Proceedings of the Sixth International Conference on Learning 
Analytics & Knowledge, 422-429. 

Pintrich, P. R., Smith, D. A., García, T., & McKeachie, W. J. (1991). A manual for the use of the Motivated 
Strategies for Learning Questionnaire (MSLQ). DOI: 10.13140/RG.2.1.2547.6968. 

Vandamme, J. P., Meskens, N., & Superby, J. F. (2007). Predicting academic performance by data mining methods. 
Education Economics, 15(4), 405-419. 

Winne, P. H., & Jamieson-Noel, D. (2002). Exploring students’ calibration of self reports about study tactics and 
achievement. Contemporary Educational Psychology, 27(4), 551-572. 

Zimmerman, B. J. (2000). Attaining self-regulation. In Boekaerts, M., Pintrich, P. R., & Zeidner, M (Eds.), 
Handbook of self-regulation (pp. 13-39). San Diego, CA: Academic Press. 

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70.  
Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological 

developments, and future prospects. American Educational Research Journal, 45(1), 166-183. 
Zimmerman, B. J., Moylan, A., Hudesman, J., White, N., & Flugman, B. (2011). Enhancing self-reflection and 

mathematics achievement of at-risk urban technical college students. Psychological Test and Assessment 
Modeling, 53(1), 141-160. 

Zimmerman, B. J., & Schunk, D. H. (Eds.). (2001). Self-regulated learning and academic achievement: Theoretical 
perspectives. Routledge. 

  



Technology 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1259	

AN EXPLORATORY APPROACH TO ANALYZING STUDENTS’ EYE MOVEMENTS 
WHEN SOLVING MATH PROBLEMS  

 Shuang Wei  Ying Jie Chen 
 Purdue University Purdue University 
 wei93@purdue.edu victorchen@purdue.edu 
 
 Yan Ping Xin Signe Kastberg 
 Purdue University Purdue University 
 yxin@purdue.edu skastber@purdue.edu 

Eye movement is important data to consider when studying students’ cognition processes while 
solving math problems. However, the large amount of data makes it challenging for educators 
and researchers to discover meaningful patterns. Thus, this paper proposes using visualization 
and the Shneiderman visual information-searching theory —“Overview first, zoom and filter, 
details on demand”—to enable educators to easily and logically discover temporal and spatial 
patterns in eye movement data. 
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Introduction  
Eye tracking is an important technology that has been increasingly used in recent education 

research. An eye tracking system can capture students’ eye movements, reflecting their visual 
attention distribution in real time. From these data, researchers link students’ eye movements to 
their internal cognition processes, which are also the processes of decision making. Eye tracking 
systems have successfully provided eye movement data support for educators to elucidate many 
aspects of students’ cognition processes, such as visual attention (Takacs & Bus, 2016), problem-
solving strategies (Thibaut & French, 2011), and comprehension and learning processes (Liu & 
Shen, 2011).  

However, since the big data size challenges people’s data exploration and analysis abilities, 
determining how to analyze eye movement data is difficult. Hundreds of data points per second 
are produced by eye tracking systems, making it impossible to analyze the data line by line. We 
need an effective method for simplifying the data and extracting valuable information. A typical 
method for simplifying eye movement data is choosing metrics such as fixation numbers and 
fixation duration to conduct statistical analysis (Lai et al., 2013). However, this method discards 
rich spatial and temporal information related to eye movement data. Here, the authors propose a 
method that uses information visualization techniques and a visual information-searching mantra 
to help teachers explore students’ eye movement data efficiently. Specifically, this study applies 
the Shneiderman visual information-searching theory to educational eye movement data analysis 
in order to facilitate data exploration and pattern discovery. The Shneiderman visual 
information-searching theory introduced three steps for exploring visual data: “overview first, 
zoom & filter, details-on-demand” (Shneiderman, 1996). In the following sections, the authors 
apply visualization techniques to eye movement data from a mathematical problem-solving 
project to illustrate how this theory can be used to analyze eye movement data. 

Methods 
Stimuli and Participants  

The computer program used in this study is a Conceptual Model-based Problem-Solving 
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(COMPS) tutor, which was developed to promote additive mathematics problem-solving. Figure 
1 is a typical task that students were given. They were asked to represent the information from 
the word problem task in the Part-Part-Whole (PPW) diagram equation. Then, based on the PPW 
equation, students were required to set up the math equation. Ten third-grade students (five boys, 
five girls) participated in the study. Their eye movements were recorded by Tobii Pro X3-120 
eye trackers during their interactions with the computer program. 

 

 
Figure 1. Layout of A COMPS Task with AOIs (Area of Interest) 

 
Visualization Exploration 

The visualization exploration process follows the Shneiderman information visualization-
searching theory. First, the overview stage reveals students’ eye movement patterns under each 
question structure. Then, zoom and filter closely observes eye movement data and discovers 
patterns worth future exploration. This process examines details on demand to investigate 
outliers, patterns, and differences. We hypothesize that by using Shneiderman, educators can 
quickly understand students’ behaviors, identify concerns, and determine differences among 
them. 

Overview first. Visualizing eye movements without considering the problem-solving context 
is neither accurate nor complete. Consolidating eye movement data within the context of the 
question and students’ performance is necessary for obtaining an integrated and comprehensive 
view of students’ attention distribution that reflects their internal cognitive process. In Figure 2, 
the first column signifies the task content. Each circle represents the length of time a student 
spent on the task. The outer ring of a circle is separated into arcs, according to the different 
stages of each student’s interaction. For example, the light gray arc shows the percentage of time 
a student spent reading the question, while dark gray indicates the operating segment. The 
red/green arc is the feedback segment, and its color is determined by the correctness of the 
students’ operation (incorrect-red /correct-green). Since students have two opportunities to try, 
some circles have two operation and feedback segments. The inner sectors indicate the total 
fixation duration of each interaction segment, while the color of each sector corresponds to the 
area of interest (AOI) color within which the fixations were distributed.  

 
 



Technology 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1261	

 
Figure 2. Students’ Eye Movement Data Overview 

As shown in Figure 2, six students completed the task fluently, indicating that they have no 
difficulty in transferring the PPW equation into the math equation. Four students failed the task. 
Two of them (P2 and P3) tried twice and still failed. It seems that, compared with the other 
students, those who struggled to solve the problems tend to spend much more time looking at the 
math equation area. To get more accurate information, we needed to zoom in and filter out 
unnecessary information.   

Zoom and filter. The visual graphs of P4 and P5 are small in Figure 2, since students spent 
relatively less time on these tasks. Because of this, zoom is needed to observe the graphs. Even 
closer exploration can be supported by using filters. Figure 3 shows students’ fixation 
distribution when reading the questions. Operation segment, feedback segment, and participants 
(P1 & P10) who have no eye movement data in the reading segment are filtered out. Obvious eye 
movement differences between high-performance and low-performance students can be 
observed. High-performance students focused on the filled PPW equation, while low-
performance students spent little time on the PPW equation, indicating that they could not build 
connections between the PPW equation and equations. They looked at the math equation but 
were confused about how to fill it in. This pattern suggests that low-performance students have 
difficulty understanding abstract equations.  

 

 
Figure 3. Fixation Distribution in Reading Segment 

In the overview stage, educators gain a global understanding of students’ performance and 
eye movement distributions. The zoom and filter techniques strengthen the exploration process 
by filtering noise and providing a clear view of information. Students’ eye movement patterns 
can be observed at this stage. As the data is still aggregated, a more detailed exploration of the 
spatial and temporal acuities of the eye movement patterns is needed. 

Details on demand. The “Zoom and Filter” stage reveals different fixation patterns between 
high- and low- students. Figure 4 pinpoints the moment when students’ attention switches 
between the PPW equation and the math equation. This provides useful information: 1) all 
students looked at the math equation at the beginning of the task, but high-performance students 
switched their attention to the PPW diagram equation within two seconds, while low-
performance students kept their attention on the math equation for at least three seconds;  2) 
Low-performance students kept looking back at the math equation during the reading segment 
and paid little attention to the PPW equation, while high-performance students focused on the 
PPW equation for a relatively long period of time. Although only four participants’ visual graphs 
are presented in Figure 4 due to space limitations, similar patterns can be observed in all 
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participants’ eye movement visualizations. This suggests that the timing patterns extracted from 
this visualization can successfully capture differences between high- and low- performers. 

 

 
Figure 4. Visualizing Eye Movement Data from Reading Segment 

Conclusion 
This study presents a visual exploration approach to investigating students’ eye movements 

when solving math problems. The visual exploration example from the COMPS project 
illustrates how the Shneiderman visualization searching-theory can be used to analyze complex 
eye movement data. In the past, research has relied exclusively on statistical models, causing 
valuable patterns to be ignored. The proposed approach can help educators and researchers track 
patterns in students’ eye movements and discover valuable research directions related to 
students’ cognition process. 
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In this study we investigate how students watch and learn from a set of calculus instructional 
videos focused on reasoning about quantities needed to graph the function modeling the 
instantaneous speed of a car. Using pre- and post-video problems, a survey about the students’ 
sense-making and data about the students’ interactions with the video, we found that many 
students did not appear to make significant gains in their learning and that students appeared to 
not recognize their own moments of confusion or lack of understanding. These results highlight 
potential issues related to learning from instructional videos. 

Keywords: Technology, Instructional Activities and Practices, Post-Secondary Education 

In recent years, “flipped” classrooms and massive open online courses have been promoted 
as effective ways to deliver content to students and to support active learning in the classroom 
(e.g., Schroeder, McGiveny-Burelle, & Xue, 2015). Although there is increased interest in using 
these techniques and a growing body of research literature on student learning in flipped 
classrooms (e.g., Maxson & Szaniszlo, 2015), there is still relatively little empirical data to 
support the claims of the efficacy of these instructional innovations. 

With a few exceptions (e.g., Weinberg & Thomas, 2018), there have been virtually no studies 
that have investigated how students utilize the out-of-class resources or how students' experience 
with the videos supports their construction of particular mathematical meanings. Instead, the 
research has been based on an implicit empiricist epistemology, assuming that not only do 
students actually watch and learn from the out-of-class resources, but that the students uniformly 
construct the meaning the instructor believes the video to convey. Thus, it is important for us to 
investigate how students engage with and learn from instructional videos. 
Our research questions are: 

• How often do students pause or re-watch sections of the videos? 
• What do students learn from watching instructional calculus videos? How is students’ 

learning connected with their video-watching activity? 
• What aspects of the calculus videos do the students find confusing? How is this 

connected to their learning? 

Theoretical Framework 
Sense-Making Gaps 

Sense-making research (e.g., Dervin, 1983) has been used in the fields of information 
systems and, more recently, in mathematics education (e.g., Weinberg, Wiesner, & Fukawa-
Connelly, 2014) to understand the ways individuals perceive, act within, and make decisions in 
situations. From this perspective, students experience gaps—moments of confusion or questions 
that must be answered or overcome in order to construct meaning for the video. Gaps are not a 
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feature of the video, but rather are a product of the interaction between the video and the 
student’s knowledge, beliefs, and purpose for watching the video. 
Covariational Reasoning 

To make sense of dynamic situations modeled by calculus, students construct relationships 
between conceived quantities that co-vary (i.e., change together), that is, they develop and apply 
covariational reasoning (e.g., Thompson & Carlson, 2017). Carlson, Jacobs, Coe, Larsen, and 
Hsu (2002) defined this as "the cognitive activities involved in coordinating two varying 
quantities while attending to the ways in which they change in relation to each other" (p. 354). 

Methods 
Video-watching was assigned in three of the authors’ first-semester calculus classes. There 

were 29 volunteer student participants, with only 23 also completing the post-video survey. 
We describe student activity and learning from one set of three instructional videos that focused 
on graphing derivatives. The first video described how to use ideas about amounts of change to 
construct a distance-versus-time graph; the second video described how to construct and graph 
rates of change; the third video provided another example of constructing a graph of speed. All 
the videos were hosted on the Ximera online platform (https://ximera.osu.edu/), which recorded 
the timestamp of each student interaction with the videos—playing, pausing, and skipping 
backward or forward. In order to (potentially) identify places where students experienced a gap, 
we classified each pause and skip-back as a “revisit”—a place where the student felt that some 
aspect of the video was either important, unclear, or confusing. 

Prior to watching the set of videos, students were presented with a graph of a cubic function 
y=g(x) and asked to solve three problems related to approximating values of g’(x). After 
watching the videos, the students were shown a graph of a quartic function y=f (x) and asked to 
solve eleven problems that were similar in nature to those in the pre-video assessment.  
In order to further identify students’ gaps, the students completed a sense-making survey in 
which they were asked to describe aspects of the video that were confusing or could use 
additional explanation. We used thematic analysis (Braun & Clarke, 2006) to generate initial 
descriptions and categories of the students’ responses. 

Results 
Student Learning 

As shown in Table 4, the students correctly answered 41% of the pre-video problems and did 
not improve their scores significantly on their first attempt at the post-video problems (t(28) = 
0.9184, p=0.3662)). Their mean score on their second attempt at the post-video problems was 
82%, which was significantly higher than their pre-video scores (t(28) = 7.7617, p<.0001). The 
students’ mean normalized gain (Bao, 2006) scores was 4.9% when comparing the pre-video 
problems and first attempt at the post-video problems and was 63% with the second attempt.  
Revisits 

The histograms in Figure 5 show the number of “revisits” (i.e., times each student paused or 
skipped backward) for Videos 1, 2, and 3. This shows us that, particularly in Video 2 and Video 
3, most students never revisited during the video; in Video 1 roughly half of the students paused 
at least once. There were a handful of students for each video who revisited relatively frequently 
(i.e., their number of revisits was an outlier for the video). 
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Table 4: Student scores and normalized gains on the pre- and post-video problems 
Group Mean Pre-

Video Score 
Mean Post-
Video Score 
(First Attempt) 

Mean Post-
Video Score 
(Second 
Attempt) 

Mean 
Normalized Gain 
(Pre to First 
Post) 

Mean 
Normalized Gain 
(Pre to Second 
Post) 

Overall 41% 
(SD=30%) 

46% 
(SD=17%) 

82% (SD=15%) 4.9% (SD=37%) 63% (SD=34%) 

Students with 
>50% on Pre 

 56% 
(SD =16%) 

90% 
(SD=11%) 

-22% 
(SD =32%) 

47% 
(SD =49%) 

Students with 
<50% on Pre 

 41% 
(SD =17%) 

78% 
(SD =16%) 

19% 
(SD =31%) 

71% 
(SD =20%) 

 
 

   
Video 1 Video 2 Video 3 

Figure 5. Histograms of number of revisits by students per video. 

Comparing Revisits and Learning 
We performed a linear regression on the normalized gain scores (on pre-video problems to 

post-video problems) versus the number of revisits produced positive slopes; for the purpose of 
performing this regression, we eliminated one high-leverage data point (one student had a total 
of 46 revisits). When comparing the pre-video and first attempts at the post-video problems, the 
slope was not significantly different from zero (β =-.353, t(26) = -0.353, p=0.727); this was also 
the case for the second attempt at the post-video problems (β = 0.00943, t(26) = 0.649, p=0.522). 
Survey Results 

On the sense-making survey, 16 out of 23 students said that the video didn’t need any 
additional clarification; these students only averaged getting 48% of the post-video problems 
correct on the first try, and only 85% after the second try. Of the six remaining students, three 
suggested clarifications that weren’t directly related to graphing the derivative or the presentation 
of the video. The remaining three students indicated confusion about the triangle depicting 
amounts of change in distance and time together with a secant line; the relationship between the 
function increasing/decreasing and the derivative graph; and the relationship between the shape 
of the graph of the function and the shape of the derivative graph, respectively. 

Discussion 
The results for the students’ performance on the pre- and post-video problems—in particular, 

their relatively poor performance on their initial attempts at the post-video problems—suggest 
that the students’ learning was not particularly significant. Potential explanatory factors, such as 
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the frequency of pausing or skipping backward (an indicator that the student experienced gaps in 
their understanding) were not associated with the students’ normalized gain scores. 

Most students never revisited the videos. In their responses to the sense-making surveys—
which were written after the students had completed and received feedback on the post-video 
problems, the students indicated that they generally felt that the videos were clear. We found this 
surprising since the students tended to struggle with the post-video problems. 

There are several potential explanations for these results. Perhaps the explanations in the 
video could be improved or there could be better alignment between the mathematical content of 
the video and the pre- and post-video problems. However, it also could be because the students 
didn’t experience gaps or recognize their own lack of understanding thereby neglecting to revisit 
moments within the video that were critical for their own learning. Students’ insistence that the 
videos were clear—even after they struggled with the post-video problems—could be attributed 
to either their inability to reflect on their own understanding and a propensity to attribute their 
struggle to a perceived inherent difficulty of mathematics. 

Despite creating instructional materials guided by research-based recommendations, the 
students did not appear to construct an understanding of the underlying concepts sufficient for 
successfully solving to the post-video problems. This calls into question the effectiveness of 
instructional videos as stand-alone teaching tools. Moreover, that students did not experience 
gaps or recognize their lack of understanding exposes one of the most commonly-proposed 
benefits of a flipped class—the students’ ability to re-watch videos. If students do not recognize 
their lack of understanding, they will not take advantage of this aspect of a flipped classroom. 
The scope of conclusions we can draw is limited by the relatively small sample size, the focus on 
a single calculus topic, and the use of a single set of videos. It is important to further investigate 
these conclusions by exploring how students watch, interact with, and learn from other 
instructional videos and other mathematical topics. 
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According to recent National Assessment of Educational Progress (2015), 60% of American 4th 
graders performed below proficiency level in mathematics. For students with disabilities, about 
85% performed below the proficiency. In the meantime, there is a serious shortage of curriculum 
materials and teachers in providing high quality Response-to-Intervention (RtI) programs to 
students who are struggling in mathematics. The purpose of this single-case research design 
study was to evaluate the effect of a computer-assisted RtI program that emphasizes 
mathematical model-based problem solving on enhancing problem-solving performance of three 
elementary students with learning disabilities or difficulties. Findings from this study indicate 
promising effects of the program.  

Keywords: mathematical model-based problem solving, computer-assisted instruction, students 
with learning difficulties, elementary mathematics problem solving. 

Background and Conceptual Framework 
While mathematics problem-solving skills are well recognized as critical for virtually all 

areas of daily life and for successful functioning in school, at home and in the community, many 
students with learning disabilities/difficulties in mathematics (LDM) fail to acquire key math 
concepts, such as additive and multiplicative reasoning, during the early school years.  
According to recent National Assessment of Educational Progress (NAEP, 2015), 60% of 
American 4th graders performed below proficiency level in mathematics. For students with 
disabilities, about 85% performed below the proficiency. In fact, about 5-10 % of school age 
children have been identified as having mathematics disabilities (Fuchs, Fuchs & Hollenbeck, 
2007) and students whose math performance was ranked below the 20 to 35 percentile are often 
considered at risk for learning disabilities or for having learning difficulties in mathematics 
(LDM) (Bryant, et al., 2011). Given the increases in sophisticated and affordable technology for 
in and out of school, parents and teachers often turn to the many games, ‘apps,’ and web-based 
teaching/learning programs for help. However, there is a lack of intervention programs that focus 
on nurturing conceptual understanding of fundamental mathematical ideas--concepts that are 
essential to enabling students with LDM to understand and solve word problems.  
Conceptual Model-based Problem Solving (COMPS) Tutor 

Supported by National Science Foundation (NSF), we have developed a prototype of a 
computer-assisted COnceptual Model-based Problem Solving (COMPS) tutor, as a Response-to-



Technology 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1268	

Intervention (RtI) program, to address the skill deficit of second- and third-grade students with 
LDM in meeting the challenging mathematics curriculum standards, particularly in the area of 
additive word problem solving. The COMPS-RtI program reflects a shift from traditional 
problem-solving instruction, which focuses on the choice of operation for solution, to a 
mathematical model-based problem-solving approach that emphasizes an understanding and 
representation of mathematical relations in algebraic equations. The explicit strategy teaching 
also makes the reasoning behind mathematics explicit to the students, so that they are able to 
make sense of what they are doing with mathematical models and abstract symbols. 

The purpose of this study was to explore the effect of computer-assisted COMPS-RtI 
program that emphasizes mathematical model-based problem solving involving elementary 
students with LDM. Specific research questions were: (1) what was the functional relationship 
between the intervention delivered by the COMPS-RtI tutor and students’ performance on 
solving addition and subtraction word problems measured by a researcher-developed criterion 
test?; and (2) were students able to transfer their learned strategy to solve problems with different 
story situations?   

Participants and Setting 
This study was conducted within the larger context of a National Science Foundation (NSF) 

funded project (Xin, Kastberg, and Chen, 2015). Participants were three 3rd graders with LDM, 
who enrolled in an urban elementary school in the United States. Three students (two girls and 
one boy) were included in the general education classrooms for 80-100% of the school day and 
they were all receiving Tier III Response to Intervention (RtI) support. All the instruction and 
testing were conducted in the school’s computer lab during the afterschool program Monday 
through Thursday. Specific participant selection was based on the following criteria: (a) students 
identified as having difficulties in mathematics by the school and (b) students scored below the 
25th percentile on the Mathematics Problem Solving subset of the Stanford Achievement Test 
(SAT-10; Harcourt Assessment, 2004).  

Dependent Measures 
The primary dependent measures is a researcher-developed criterion test (adapted from Xin, 

Wiles, and Lin, 2008) involving eight part-part-whole additive word problem solving items 
(including situations such as combine, change-join, and change-separate with unknown quantity 
placed at all possible positons), similar to problems included in the training module. The 
generalization test (adapted from Xin et al., 2008) not only includes part-part-whole problem 
structures but also additive comparison problem types (involving the “…more than...” or “…less 
than…” situations). 

Experiment Design  
An adapted multiple-probe-design (Horner & Baer, 1978) across participants was employed 

to evaluate potential functional relationship between the intervention and participants’ word 
problem-solving performance. We chose a single-subject research design because the design 
provides a methodological approach well suited to conduct single case or group studies. In a 
multiple-probe-design, the intervention effects can be demonstrated by introducing the 
intervention to different baselines or participants at different points in time. “If each baseline 
changed when the intervention is introduced, the effects can be attributed to the intervention 
rather than to extraneous events” (Kazdin, 1982, p.126). The design included a Baseline 
(students were assessed on the criterion test and generalization [G] test), COMPS-RtI 
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Intervention (repeatedly measured on criterion test), followed by posttests and maintenance tests 
(criterion test and G test). Multiple equivalent test forms were used for the assessment during 
baseline, intervention, and post-intervention phases. 

Procedure  
All three participants completed one criterion test during the baseline condition. Then one 

student (Amelia) took another two equivalent criterion tests. Following the baseline, the 
intervention was first introduced to Amelia. Once the data for Amelia showed an accelerating 
trend, the intervention was introduced to the second student Sam immediately after he took two 
additional baseline tests. The same sequence was followed until all three participants were 
introduced to the intervention. Posttests and maintenance tests follow the intervention.   
Participating students worked with the COMPS-RtI tutor one–on-one on a laptop computer four 
times a week, with each session lasting about 20-30 minutes. Graduate research assistants 
supervised all the sessions. Their roles included administering pre-post assessment, recording 
computer/program’s “bugs” and guiding students to appropriate part of the program after any 
unexpected “interrupt.” Participants received about a total of 11-12 sessions during the spring 
semester. 

Intervention Components   
The COMPS-RtI program addresses Common Core State Standards (CCSS): 

Content.2.OA.A.1 Represent and solve problems involving addition and subtraction: “Use 
addition and subtraction within 100 to solve one- and two-step word problems involving 
situations of adding to, taking from, putting together, taking apart, and comparing, with 
unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown 
number to represent the problem” (CCSS Initiative, 2012). As part of the NSF-funded project, 
the COMPS-RtI tutor used in this specific study focused on solving part-part-whole problem 
types (e.g., combine, change-join, change-separate) but not comparison problems. Before 
solving real world problems, Part-I of the program engaged students in a series of activities 
involving the use of virtual manipulatives such as unifix cubes and coverings guided by a 
constructivist view of mathematics learning. The goal of this part of the program was to nurture 
fundamental mathematical ideas that are crucial for the development of additive reasoning and 
problem solving. It focuses on students’ conception of “number as the composite unit” and the 
development of multi-digit numbers as quantities of tens and ones. 

Building on these fundamental ideas, Part-II of the program focused on representing various 
additive word problem situations in a cohesive mathematical model equation. Part-III of the 
problem engage students in representing and solving contextualized real world problems using 
the mathematical model equation. The goal of Part-II and Part-III of the program was to engage 
students in constructing the big idea of “Part and Part makes up the Whole,” which leads to 
conceptual understanding of the mathematical model equation “P + P = W.” Early in the 
program, Singapore bar models (Ramakrishnan & Soon, 2009) were used to facilitate students’ 
transition from isolated unit of ones to the composite unit (CU); the bar model also facilitates 
students’ conceptual transition to symbolic level of operation as they use the mathematical model 
equation to represent and solve various part-part-whole (PPW) word problems. The program 
engages students in decontextualizing mathematical relations from various real-world story 
problems, and then representing them in a single mathematical model, P + P = W, which drives 
the solution plan including the decision on the choice of operation. 
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Results and Discussion 
All three participants’ baseline performances were low and stable indicating the need for 

intervention. During the intervention, participants gradually improved their performance only 
after they worked with each part of the COMPS-RtI program. Although there are some variations 
across three participants in their performance after each part of the program, overall changes in 
performance during and after the intervention indicate students’ improved performance 
following the COMPS-RtI intervention. Across all three participants’ data path, there is no 
overlapping between baseline performance and the performance during the intervention as well 
as post-intervention assessment. This is an evidence of a strong treatment effect (Percentage of 
Non-overlapping Data [PND] = 100%, Scruggs & Mastropieri, 1998). In addition, all 
participants maintained their improved performance at an average of 90%, 87%, and 90% correct 
respectively during posttest and follow-up test phase. In addition, all three participants improved 
their scores on the generalization (G) test. However their performances were around 50 or 60% 
correct. It should be noted that the G test included additive comparison problem types that were 
not covered in the current version of the COMPS-RtI program.  Systematic programing and 
training for skill transfer may be essential for students with LDM in particular.  
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The purpose of this study is to explore how elementary school students engage with the 
mathematical concepts embedded within “Spatial-Temporal” (ST) representations. I found a 
wide spectrum of conceptual understanding of ST Math, from strong connections with the 
mathematical concepts to little connections. When students had more access to the mathematical 
concepts and the explicit structure of the task, they tended to articulate the mathematical 
meaning of ST representations. However, some students appeared to make little sense of the 
apparent mathematical concepts. These findings suggest that ST Math tasks could improve 
engagement with the operational mathematical concepts, but a sense-making approach would 
additionally support a better relationship between ST representations and mathematical 
concepts.  

Keywords: Technology, Elementary School Education, Number Concepts and Operations 

Introduction  
The integration of technology in mathematics education has increased; however, 

mathematical thinking is not driven by technology alone (Heid, 2005). Investigating the way 
students interpret technology through a mathematical lens and connect mathematical concepts is 
vital to use technology effectively. Regarding sense-making and reasoning, technologies can be 
categorized as either conveyance or mathematical action tools, based on their purposes within 
mathematics instruction (Dick & Hollebrands, 2011). Conveyance technologies are used to 
convey information such as presentation, communication, sharing/collaboration, and 
assessment/monitoring/distribution not oriented to mathematics content. Mathematical action 
technologies enable students to interact and receive feedback during the performance of 
mathematical tasks such as computational /representational tool kits, dynamic geometry 
environments, micro-worlds, and computer simulations.  

Many researchers consider mathematical action tools as cognitive technologies which Pea 
(1985) defined as those which help users “transcend the limitations of the mind...in thinking, 
learning, and problem-solving activities (p. 168).” Also, these cognitive technologies are 
articulated either as amplifiers or as reorganizers. Amplifiers enhance the processes such as 
students’ ability to solve problems in an efficient way, but do not change their thinking. 
Reorganizers engage cognitive processes by modifying the process of cognition (Barrera-Mora 
& Ryes-Rodriguez, 2013). This type of technology allows establishing the dialectic relationship 
among our actions, the forms of thinking, and the functions of technology which influence the 
acquisition of mathematical knowledge. According to What Works Clearinghouse (U.S. 
Department of Education, 2013), only one out of 40 mathematical programs pertained to high-
quality elementary mathematics technology research. Much technology in the elementary school 
level is focused on drill-and-practice as amplifiers not conceptual understanding.  

Recently, Spatial-Temporal (ST) Math, a game-based instructional software, is used in 
mathematics classrooms from kindergarten to middle school. In the same spirit of reorganizers, 
helping student’s cognition enhance, the main feature of ST Math is to utilize interactive visual 



Technology 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1272	

representations to build conceptual understanding with little language and symbols. ST Math is 
designed to aid students with learning spatial and temporal reasoning through visualized 
representations in which mathematical concepts are infused with dynamic action introducing 
mathematical concepts and procedures. Spatial and temporal reasoning means making a mental 
image and thinking ahead in space and time (Peterson et al., 2004). The game-style design and 
exercises are intended to get students engaged and motivated when solving each task (Rutherford 
et al., 2014). If students successfully complete a lower level in the task, then more challenging 
and difficult levels are proposed gradually.  

This study aims to explore the spatial and temporal reasoning of elementary school students 
when they are engaged with ST Math software. In particular, this study seeks to examine the 
following questions: (a) What connections do students make between the spatial-temporal 
representations and the mathematical concepts they are meant to represent? (b) How do different 
activities appear to provide different access to the mathematical concepts? 

Methodology 
In a mathematics education methods course, elementary pre-service teachers (PSTs) 

participated in a series of one-to-one task-based interactions with elementary students in a 
Midwest elementary school. The goal of the interactions were for the PSTs to help support 
elementary students’ mathematics learning and to make sense of children’s mathematical 
thinking.  

Twenty-one PSTs had a training session about how to use ST Math prior to an actual 
interview. PSTs selected specific ST Math tasks such as Pie Monster, How many petals?, and 
Building Expressions (Figure 1) based on the belief that which task was well-suited to their 
assigned student’s mathematical proficiency level; the PSTs also prepared a script to use for 
questioning. PSTs interviewed the assigned child for 10-30 minutes and reported reflections on 
the interview as a course assignment. The audio and screen display were recorded via iPad’s 
screen-casting function. This screen-casting enables the real-time recording of students’ 
explanation about the task including their touching and dragging on the screen.  

To analyze the elementary students’ ST Math activity, I evaluated screen-casted videos and 
made a condensed file to extract information (e.g., task, level, attempted problems, and the rate 
of correct answers). Each video was transcribed and analyzed one at a time. A research memo 
was created and compared to find the common themes across the participants (Yin, 2013). 

 
Figure 1. Pie monster (left), How many petals? (middle), and Building Expression (right) 

Findings 
Ways in which the students engaged with the spatial-temporal representations were analyzed 

by focusing on the mathematical interpretations students articulated when solving ST Math tasks. 
The following section presents the cases of one child (Amy) across the samples, selected on the 
basis of how children connected mathematical concepts with the ST representations in the given 
tasks.  
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Strong Connection with Mathematical Concepts  
Clear relation to the ST representations. When some students solved the ST Math tasks, they 

exhibited strong connection with the mathematical concepts embedded within the ST 
representations. For example, the first level in Pie Monster task represents part-part-whole 
relationship (Carpenter et al., 2015). In the Pie Monster task, the problem type is separate and 
there are three types of direct modeled representations. The screen (see Figure 1- left side) 
represents three red-circles [1] as the change (subtrahend), nine orange-circles [2] as the start 
(minuend), and the white circles [3] in the Monster’s belly as the result (difference).  

Amy showed strong mathematical understanding in this task. To find a solution, Amy was 
supposed to figure out how many pies would be put in the Pie Monster’s body once the amount 
of orange circles was reduced. She perceived that the discrete pie models represented as the 
change (red) to subtract from the start (orange) when she said, “So, you see the number at the 
bottom? Those are how much you’re going to subtract.” In addition, she had clear understanding 
of the structure of the task as subtraction. The function of the red balloons is to remove the 
number of orange pies as the number of red pies the student chosen. After she selected the pie 
models on Monster’s belly, she noticed the animated effect of balloons. At that time, she 
explicitly described that the orange pies took away from the number of red pies: “If you do three, 
it’s going to take away three of them… count the rest of them.” This shows that she 
distinguished the between the change, the start and the result in the Pie Monster context. From 
the ST representations, she extracted her strategy to count the left over after subtracting.  
Little Connection with Mathematical Concepts  

Weak connection with mathematical concepts. The students’ ability to explain the 
relationship between ST representation and mathematical concepts was not consistent across 
different ST Math tasks. For example, the Building Expression task begins with choosing the size 
of the group, selecting the number of groups, then deciding the result from division and 
multiplication respectively.  

Though Amy explained well her problem-solving strategy in the Pie monster task, she was 
struggling with the Building Expression task. At first, Amy chose six green dots, matching the 
first number 6 on the screen (see Figure 1– right side). Then, she selected two groups of pink 
boxes. Here, she was possibly interpreting 6 ÷ 2 as two groups of six, or she might have been 
trying simply to represent the number 2 by manipulating the bar, without considering the 
meaning of the operation. In either case, Amy did not appear to be connecting the division 
symbol to the concept of division as she was engaged with the task. The result she selected was 
two groups of six, a total of twelve dots. When Amy was asked to explain her reasoning about 
the Building Expression task, she was relatively reluctant to express her idea from the beginning 
of the interview—unlike with the Pie Monster task. She was not engaging with solving the task 
or responding to probes from the interviewer. In order to explore Amy’s understanding, the 
interviewer asked about the meaning of the pink box since Amy was struggling with making a 
decision between two big boxes and small parts boxes. She used the negative words five times 
such as “I don’t know!” and “It doesn’t matter.” Even though she strived to solve the task with 
dragging and tapping at first, she was struggling with connection between the ST representations 
and mathematical concepts.  

Discussion 
With regard to the mathematical concepts, the students show the wide spectrum of 

understanding from the ST representations. Across the examples, most students showed the 
ability to quantify the pictorial representations with numbers and vice versa. For example, in the 
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Pie monster task, Amy could interpret the discrete representation as the total number. She 
perceived the discrete red-colored pies as the number 3 to take away from nine orange pies. Also, 
Amy could visualize the number with the concrete representations in the Building Expression 
task. She matched six green dots with the first number 6 and two pink boxes with the following 
number 2. This fundamental skill to solve ST Math tasks is to match the numerical value with the 
ST representations (Sarama & Clements, 2009). Potentially, the visual models in technology can 
help the children see such connections (Moyer, Niezgoda, & Stanley, 2005).  

 ST Math activities have potential to support engagement with the mathematical concepts 
operationally. For example, through the exploration between red, orange and white circles in the 
Pie Monster task, Amy was able to access the operational concepts of the relationship between 
minuend, subtrahend and difference. The impact on students’ conception should be considered at 
the heart of the program (Webel, Krupa, & McManus, 2015). Meanwhile, to become reorganizer, 
the comprehensive approach is required such as sense-making of the ST representations, 
verbalizing what the students think, and concentrating on the animated feedback (Barrera-Mora 
& Ryes-Rodriguez, 2013). 
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Pre-service elementary teachers (PSETs) have difficulties extending measurement concepts 
to from two-dimensional to three-dimensional figures (Tossavainen et al., 2017). This matters 
because how teachers understand mathematical topics shapes how they present those topics to 
their students (Murphy, 2012). If the geometry activities expected of young children are to move 
beyond shape recognition and naming tasks (Bruce & Hawes, 2015), PSETs need to be prepared 
for deeper investigations of the measurement properties of plane and solid figures.  The 
affordances of immersive spatial displays –where participants can engage directly with virtual, 
three-dimensional figures – may provide new opportunities for PSETs to explore measurement 
concepts (Dimmel & Bock, 2018).  We ask: How do the affordances of immersive spatial 
displays allow pre-service elementary teachers to reason about relationships between plane and 
solid figures? 

Immersive spatial displays (i.e. HTC Vive) allow learners to interact with solid mathematical 
figures in their native dimension, visually explore parameters that grow without bound, and 
directly interact with figures.  A pilot study found that pre-service teachers might draw 
connections between plane and solid figures when exploring shearing in immersive spatial 
displays (Bock & Dimmel, 2017). 

In an ongoing study, we are conducting task-based, semi-structured interviews, during which 
participants work in small groups to explore the shearing of plane and solid virtual 
manipulatives. In the case of the triangle, participants can shear the triangle, watching its 
perimeter grow without bound, by standing in its plane. First person and mixed reality views of 
the environments will be recorded with the audio from participant dialog. These interviews will 
be analyzed with Balacheff’s Conception-Knowing-Concept model of the conception (2013). 
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Curriculum policies set expectations for technology to be incorporated in teaching of 
mathematics so that teachers can better support their students in comprehending mathematics 
using the technology. This scenario reinforces the importance in higher education to prepare 
future teachers to employ technology in their teaching to foster mathematical understanding of 
their future students. Pre-service teachers’ creation of video lessons using iPads emerges as a 
new use of technology in which they can actively explore mathematical content and develop 
communication skills that will be required in their future practice (Niess & Walker, 2010). In this 
paper, we investigate how pre-service secondary mathematics teachers incorporate their 
knowledge of technology, mathematics, and pedagogy in a project of creating video lessons 
using an app called ExplainEverything (EE) on an iPad. We characterize their experiences using 
the TPACK framework (Mishra & Koehler, 2006).  

The context of this study was a methods course focused on teaching mathematics with 
technology offered at a large mid-Atlantic university. Seven pre-service teachers participated in 
this study, and this paper presents results on three participants. Data sources include participants’ 
lesson plans, video lesson files, their reflection upon their own videos, and online surveys. Using 
qualitative research methods, students’ video lessons were analyzed by the researchers in tandem 
with their respective lesson plans, reflections, and surveys and coded by TPACK components. 

Results and Implications  
The project of creating video lessons provided an opportunity for pre-service teachers to use 

their mathematical, pedagogical, and technological knowledge in an integrated way towards 
developing their TPACK. In their video lessons, participants showed effective use of technology 
(e.g., EE, GeoGebra, CAS), pedagogical techniques (e.g., pausing, questioning, and building on 
students’ prior knowledge), and mathematical representations using technology (e.g., graphical 
representations). Results suggested that pedagogical aspects of participants’ TPACK were the 
most salient feature of their videos when compared to the other components. Implications from 
this study support that using video lessons in teacher preparation provides opportunities for 
instructors to give specific feedback and guidance for preservice teachers to learn and reflect 
upon their practice as suggested by the literature (e.g., Sherin & van Es, 2009). It is 
recommended that teacher educators implement a cycle of learning in which preservice teachers 
can refine their pedagogical strategies, the rigor in their mathematics, and their use of 
mathematical action technology, if a similar project is to be used in teacher education programs. 
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Gadanidis et al. (2016) expressed concerns that CT in the K-12 curriculum is often viewed as 
its own objective, rather than used to promote other subjects. According to Resnick et al. (2009) 
one of the benefits of CT is that it promotes “wide walls”, meaning it allows for a variety of 
projects and learners to engage and benefit from CT skills. Gadanidis et al., propose that 
mathematical thinking is an appropriate context for these wide walls. In contrast, Wong et al. 
(2015) say learning must trigger a students’ interest so that the interest can be extended to new 
areas. In our research we explored the concept of wide-walls using two different approaches, one 
which used CT skills to trigger interest and later used math as the framework for the walls of CT 
The first activities used both unplugged activities and SCRATCH and were highly engaging for 
the students. The class was able to understand and communicate the importance of learning the 
basics of CT. Through the activities the researchers noticed that, when students asked for help, 
they were willing to answer questions about the reasons certain pieces of code influenced the 
outcome and were willing to explain to the instructor and themselves how to go about finding a 
solution. This optimism persisted throughout the classes. 

The next set of lessons required students to build on their understanding of how to calculate 
area and perimeter by making their own code There was a significant lack of interest from the 
students that became evident in the results. Only one third of students ended up completing the 
activity. One new component was introduced in this process but all students worked through this 
new process on their own. Phrases such as “I can’t do it” began to be prevalent in the classroom. 
Our results suggest that caution should be exercised in defining wide walls of CT by preset 
curriculum. Seeing as wide walls are intended to allow all students to engage, when CT is 
incorporated into a subject where students are not fully engaged or the connection is forced, the 
future benefit of CT to the curriculum may be lost, as was observed in our research. This is not to 
say that triggering students’ interest in the learning loop is not possible with mathematics as the 
starting point; of course, mathematical problems can be creatively contrived to do just that. 
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Room-scale virtual reality (e.g., the HTC Vive) is an example of an immersive spatial 
display—a technology where space itself, rather than a two-dimensional surface, is a canvas for 
making inscriptions (Dimmel & Bock, 2018). Spatial displays make it possible to readily interact 
with figures at different scales and explore them from new perspectives. Despite their 
educational promise, spatial displays are likely to follow the slow, complex process of 
technology acceptance and adoption that is standard in schools (Ertmer, 1999; Inan & Lowther, 
2010). The objective of our research is to look ahead to a time when spatial displays are 
ubiquitous and to begin, now, to prepare teachers to adapt their instructional practices to these 
new technologies. If such adaptations are to be accepted by teachers, teachers themselves will 
have to play a generative role in their design (Cobb, Zhao, & Dean, 2009). We thus cast teachers 
as partners in the process of designing instructional activities that are possible with spatial 
displays. We ask: How do secondary mathematics teachers anticipate using spatial displays as 
instructional tools in their classrooms?  

To investigate this question, we developed an immersive, gesture-based virtual environment 
that places users inside a 10x10x10 grid of points, each of which has integer coordinates. The 
resulting lattice is a three-dimensional analog of the Geoboard (Gattegno, 1954). The 
environment defines a spatial canvas where learners can use gestures to construct and investigate 
lattice polygons or polyhedrons. We convened focus groups of secondary mathematics teachers, 
during which participants explored the environment, critiqued its capabilities, and designed 
instructional activities students could engage in through the environment. Two groups of four 
secondary mathematics teachers participated in the focus group study. We report how 
participants’ explored the environment, their discussion of its potential for use in mathematics 
classrooms, and the instructional activities they designed.  
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Teachers who adopt a strengths-based approach identify and rely upon the assumed valuable 
resources that students bring to their classroom communities (Aguirre et al., 2013; AMTE, 
2017). While the rhetoric of a strengths approach is relatively easy to endorse, the intentional 
practice of interpreting and leveraging student actions as mathematical strengths is far more 
difficult to enact (Jilk, 2016), especially for prospective teachers (PTs) given the broader culture 
of power and exclusion that has persisted in U.S. classrooms for over 40 years (Louie, 2017). An 
enduring challenge for mathematics teacher educators is to develop course-based approximations 
of practice (Grossman et. al, 2009) that provide PTs with meaningful entry points into this work. 
Recent advances in technology-based methods of teacher preparation suggest that the 
LessonSketch (LS) platform is a promising medium for helping PTs to learn this complex 
practice (Amador et. al, 2016; Bannister et. al, 2018). Our research questions were: What do PTs 
notice and name about students’ strengths in a LS experience before and after they are given 
explicit support for using strengths-based language? Are there any changes in the quality and 
quantity of the claims and evidence PTs used in their noticing statements?  

We used a sentence frame intervention in the LS experience to explicitly help PTs learn how 
to notice and name students’ mathematical strengths (Bannister et. al, 2018). We analyzed the 
quality and quantity of the claims 22 undergraduate PTs in an elementary mathematics methods 
course made about student strengths and the mathematical evidence they used to justify these 
claims. We found statistically significant increases in the quality of their claims and the quantity 
of evidence they used to support their claims, which provides empirical backing for a course 
experience that MTEs can use to approximate and support PTs to learn strengths-based practice. 
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To address the needs of children with learning difficulties in mathematics (LDM), a 
mathematics computer tutoring program was developed to nurture conceptual understanding of 
fundamental mathematical ideas in students with LDM (Xin, Kastberg & Chen, 2015). As an 
intervention for this study, we used the Numerical Structuring Module (NSM) of the 
mathematics computer tutoring program, which was designed for developing the composite unit 
in additive problem-solving by provoking changes in children’s mental operations. 

Steffe and Cobb (1988) suggested a model that explains how children come to understand 
quantity by proposing the stages of number sequence development. In each stage, children show 
unique counting acts (e.g., Double-counting). The composite unit, defined as a unit composed of 
unit items, is developed by the result of mental operations developed through challenges to 
counting acts (Olive, 2001).  

The purpose of our study is to understand the learning paths of one student with LDM, Sofia, 
as she engages in NSM. Two research questions are posed in our study: 1) What strategies does 
Sofia use and how does she develop her strategies when she engages in NSM?  

The sources of data for our analysis included pre- and post-tests, video recorded tutoring 
sessions, field notes and the performance data on NSM. We used constant comparative analysis 
to analyze the video recorded sessions and field notes. 

Through her interaction with a computer tutoring program, our participant exhibited the use 
of the composite unit consistent with Steffe’s idea although she relied on using perceptual 
material (i.e., her fingers) when she kept track of her counting acts. Our finding indicates that our 
participant developed the effective double counting strategy using a perceptual material for 
compensating her working memory challenges. 
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This study investigates students’ help-seeking practices and their perceptions toward peer 
interactions as they solve mathematics tasks in a hybrid physical/virtual space. This pilot study 
paves the way for creating an equitable learning technology platform to facilitate classroom 
interactions and discussions in which ALL students participate with confidence. 

In 2013, the report of Programme for International Student Assessment (PISA) suggested 
that students’ poor mathematics performance relate to their mathematics anxiety. To deal with 
this anxiety, struggling students can seek help not only from their teachers but also their peers. 
Research has shown peers can provide rich and meaningful feedback for learning (Gielen et al., 
2010; Colley & Windschitl, 2016). However, help-seeking practices can be intimidating to 
students. Therefore, we aim to understand what would occur as students interact with peers to get 
mathematics help in different contexts and how they perceive the practices. 

Using design-based methodology and a clinical-interview protocol, we revised our tasks and 
questions each round based on participants’ responses and interactions. This study involved six 
(two boys, four girls) children ranging from 3rd-7th grade over three sessions. The activities were 
mainly facilitated by the first author, a 10-year veteran elementary mathematics and science 
teacher. Each session including interviews lasted approximately 45 minutes. In the first round, 
two subjects were seated together. The math questions were presented to each participant on a 
sheet of paper. In the second round, three subjects were seated separately. Each child was 
provided with a laptop or tablet with math questions posted on a Google Doc. In the third round, 
three subjects were seated separately and asked to work on one same math problem in a 
simulation of collaborative virtual environment, i.e., Google Docs.  

This pilot study reveals various factors that influence an individual’s help-seeking practices. 
The virtual space, Google Doc, was tested but failed to serve as an effective means because 
students were impeded by the linguistic demands of conventional semiotic registers of standard 
virtual arenas. Moreover, some students were cautious about who they interacted with in virtual 
space, others were open to interact with someone they did not know. These findings inform us of 
how a safe and interactive online learning environment could be designed to help discover silent 
students’ voice, facilitate quality discussions, and create a more equitable math classroom. 
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As technology becomes more prevalent in the classroom, it is important that we fully explore 
how students interact with learning technology such as laptops and tablets through native or 
peripheral inputs. Prior research comparing the two found that user’s proficiency with each 
device depended on their prior experience using computers with experts were more efficient with 
a mouse while beginners were more efficient with a touchscreen (Thomas & Milan, 1987). When 
estimating the performance of each input device, it is important to also consider how each will 
alter the student’s learning experience. This paper explores how students interact with a dynamic 
technology using a touchscreen versus a traditional mouse and how that affects learning gains. 

From Here to There! (FH2T) is a dynamic math game that uses perceptual based 
interventions to introduce foundational algebraic concepts (Ottmar et al., 2015). The FH2T 
program was given to 23 first grade students, all within a single classroom with a single teacher. 
Of the 23 first graders, 11 students used a mouse on a computer and 12 students used an iPad 
tablet. Our in-class observations noted that students struggled to use the computer mouse and 
would instead try to physically move numbers manually with their hands out of frustration. 
These findings support Thomas & Milan (1987) in that touchscreen devices are preferred by 
beginners than the traditional computer mouse. However, we examined learning gains using a 
two-tailed t-test on the pre and post assessment test scores. This data suggests that learning gains 
are not significantly affected by either input device. This could indicate that deployment on a 
regular computer is just as effective as on a touchscreen device, thus not hindering learning due 
to inaccessibility. We believe this is an important finding as touchscreen devices such as iPads 
are more expensive and are not as readily available as laptops and desktop computers in schools. 
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Although recent evidence suggests that well-designed applications can positively impact 
mathematics learning (Foster, Anthony, Clements, Sarama & Williams, 2016; Schacter & Jo, 
2017), few studies have examined the impact of mathematics applications that teachers or 
parents can find for free on the internet. Yet, these sorts of resources often get used in schools 
and at home. Broadly, the goal of this study is to explore the affordances of freely available 
resources by answering the question: What opportunities for learning mathematics do 
mathematics applications designed and made available by the Public Broadcasting Company 
make possible for urban kindergarteners?   

This poster reports Phase 1 of the study, which included a mathematical content analysis of 
PBS applications, an analysis of initial teacher feedback, and a preliminary analysis of usage data 
that revealed how frequently children engaged with mathematics games in their classrooms. The 
study is not yet complete, but Phase 2 will include an ANOVCA analysis to identify 
relationships between usage and performance on district mathematics assessments. This mixed 
methods study began when national PBS educators produced a suite of 26 games with 
mathematics content and the ability to collect user analytics (such as duration of use, answers, 
etc.) Mathematics educators then reviewed the games to identify mathematics content. This 
analysis identified 10 games likely to provide productive mathematical interactions for 
kindergarteners. Treatment tablets were loaded with these math games, while control tablets 
contained only literacy and drawing games. Approximately 900 tablets were distributed to all 
kindergarteners in a single district.  

The results of the content analysis demonstrated that about half of the designed games were 
not mathematically productive. For example, one application allowed users to succeed by 
repeatedly clicking the mouse to fill a given container without requiring attention to size or 
quantity. Another application asked users to wash, dry, and cut a character’s hair. The only 
mathematics was the labeling of the steps as first, second, and third, and a character reciting the 
counting sequence while having his hair washed. For this reason, only ten math games were 
loaded onto tablets. Initial analysis of the usage data and of conversations with teachers suggests 
that teachers are regularly using these games. For example, about one month after distribution, 
approximately 300 unique users played the games in a two-day period. This analysis suggests 
that teachers are willing to incorporate technology into their instruction and feel comfortable 
doing so on their own, but that initial assessments of the quality of resources are important. Once 
the assessment data is collected as part of this study, we will have been insight about whether the 
games identified as potentially productive had any impact on student mathematical performance.  
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For students studying upper-level mathematics, particularly those majoring in STEM fields, 
having a robust concept definition of function is an essential part of their continued study of 
topics in advanced mathematics (e.g., Thompson & Carlson, 2017). Thompson and Carlson 
(2017) note that it would benefit students learning calculus to have a more developed, conceptual 
understanding of function; and technology can be an effective way for students to make 
connections between different ways of thinking about function (Dick & Hollebrands, 2011). 
Students’ definition of function is varied, with many being misaligned with the mathematical 
definition (Vinner & Dreyfus, 1989). Often students rely on the use of continuous functions or 
think of functions only in terms of a graph or algebraic formula (e.g., Vinner & Dreyfus, 1989). 
Thus, it is worthwhile to give students an opportunity to reexamine their definition of function 
using technology, especially in a manner which does not involve graphs, or equations.  

We designed an applet to challenge Calculus II students’ understanding of function. Our 
applet (https://ggbm.at/J3mJaU6H) featured a vending machine design, as this allowed us to put 
the concept of function in a context that did not make use of numbers or other traditional 
algebraic language. We specifically built the machines to problematize students’ understanding 
of function. Thus we analyzed the students’ pre and post definitions to answer the following 
question: How do students change their definition of function after engaging with the applet?  

Pre- and post-definitions were collected from 87 Calculus II students from three different 
universities. Definitions were coded for many characteristics including accounting for 
correspondence with elements of the range. Our results indicated that 33 of the 64 students 
(52%) who did not account for correspondence in their pre-definition did so in their post. Our 
poster will share full details of our analysis and associated results.  
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Mathematical microworlds are computer-based exploratory environments with a restricted set of 
operations but which have no fixed goals.  Theories of learning take on a particular importance, 
as the way in which these environments are used in the classroom depends on how a particular 
instructor believes that students learn.  This literature review surveys nine key articles on 
learning theory and microworlds, with a particular focus on how social constructivist theories 
can be used to explain the interactions between the student and the computer.  

Keywords: Technology, Learning Theory 

The purpose of this literature review is to examine theoretical research on mathematical 
microworlds and constructivism to determine the contribution that the study of mathematical 
microworlds (computer environments with restricted sets of possibilities but no fixed goals) has 
to offer to the ongoing discourse in the area of developmental and social constructivism. 
For this literature review, we searched Google Scholar and ERIC for various combinations of the 
following phrases: math, mathematical, microworlds, constructivism, sociocultural theory, 
situated cognition, Piaget, and/or Vygotsky.  We also used a snowball methodology to look at 
who cited the articles we found and who those articles were cited by.  From this, we created a 
database of 27 articles.  We excluded articles that were empirical and did not have a significant 
theoretical contribution to offer, narrowing the list down to n=9 articles. 

Microworld theorists coming from a developmental constructivist perspective argue for 
microworlds that are open-ended and focus on studying individual student’s explorations and 
processes.  (e.g. Biddlecomb, 1994).  Social constructivists raise concerns about the fixed nature 
of the tools (Cerulli & Mariotti, 2003) but are also intrigued by how the microworlds embed 
accumulated cultural knowledge (Chiappini, Pedemonte, and Robotti, 2003).  Furthermore, they 
focus on the ways in which students interact with each other when working with these tools in a 
social context (Chiappini, 2003; Hackenberg & Sinclair, 2007).   

Where we choose to focus our attention, on the individual (as the radical constructivists do) 
or on the social (as the social constructionists do), affects what sort of tools we will create.   
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The purpose of this study was to understand (a) what pedagogical opportunities mathematics 
teachers exploited with the presence of CAS and (b) how teachers aligned lessons to develop 
mathematical understandings. The following research question guided the study: How do 
secondary mathematics teachers orient their instructional practices to exploit computer algebra 
systems (CAS) in the development of mathematical knowledge? This case study considered two 
secondary teachers pedagogy as they administered CAS technology. Data included lesson 
observations, interviews, and reflective writings. Pierce and Stacey’s (2010) pedagogical 
framework (P-Map) illuminated the opportunities that teachers situate their utilization of CAS as 
a pedagogical tool. The data was matched to the P-Map and analyzed for emergent themes. 

Background 
The NCTM Principles to Action technology standard stated that “an excellent mathematics 

program integrates the use of mathematical tools and technology as essential resources to help 
students learn and make sense of mathematical ideas, reason mathematically, and communicate 
their mathematical thinking” (NCTM, 2014, p. 5). CAS tools have continued to advance in their 
simplicity, functionality, and availability, but are still not a part of standard educational practice 
(Heid et al., 2013). The mathematics education community is ripe for technological infusion with 
the teacher at the heart of implementation (NCTM, 2014; Heid & Blume, 2008). Teachers are the 
agent of change for technology use in classrooms (Ertmer & Ottenbreit-Leftwich, 2010). It is 
logical to first consider teacher instructional practice that utilized CAS to develop MK.   

Results & Discussion 
Teacher pedagogy was adjusted at these levels: subject, classroom, or task. The taxonomy 

presented by Pierce and Stacey (2010) formed the basis for the analysis. Findings indicate that 
these two teachers were creative in their methodological approaches. Teachers oriented lessons 
through outsourcing procedures, providing guidance, verifying answers, regulating access, 
investigating with multiple representations, and viewing CAS as a mathematical consultant.  
Motivations were grounded in the CAS’ functional capabilities of accuracy and efficiency. 
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We explore whether directed actions—body movements that learners are instructed to 
formulate—enhance mathematical reasoning during proof production. Evidence is mounting that 
sensorimotor activity can activate neural systems, which can in turn alter and induce cognitive 
states (Nathan, 2014). New interventions are using motion-sensing technology to track actions 
that support geometric reasoning (e.g., Smith, King, & Hoyte, 2014).  We directed learners to 
perform mathematically-relevant (vs. irrelevant) motions through motion-capture video game 
play and hypothesized (H1) that directed actions will facilitate production of dynamic gestures, 
which will, in turn, (H2) improve students’ nonverbal mathematical insights and the production 
of multimodal transformational proofs. Moreover, we hypothesized (H3) that adding pedagogical 
hints explicitly connecting directed actions to the conjectures enhances proof performance.   

Thirty-five middle and high school students played the Hidden Village game for the Kinect. 
Students played through 6 conjectures, with 2 to 4 conjectures (with relevant motions) revisited 
where the interviewer revealed to students how the motions related to the conjectures. Students’ 
responses were scored along 4 dimensions: (1) making spontaneous depictive gestures, (2) 
making spontaneous dynamic depictive gestures, (3) recognizing key mathematical insights, (4) 
formulation of a valid transformational proofs (Harel & Sowder, 1998).  

Participants were more likely to make depictive gestures when performing mathematically 
relevant (vs. irrelevant) directed actions (Odds=4.2, d=0.8, p=.008). Participants who performed 
relevant directed actions were not more likely to make dynamic gestures (H1), demonstrate the 
mathematical insight, or provide a valid proof (H2; p > 0.1). However, after receiving the 
pedagogical hint (H3), participants were more likely to make depictive gestures (Odds=5.4, 
d=0.9, p<.001), dynamic gestures (Odds=4.0, d=0.8, p=.001), more likely to express the correct 
insight (Odds=3.1, d=0.6, p<.001), and more likely to formulate a valid proof (Odds=4.7, d=0.9, 
p<.001). Producing depictive gestures predicted mathematical insight (Odds=3.0, d=0.6, p=.007), 
but not formulating a transformational proof. However, making dynamic depictive gestures (H2) 
predicted both insight (Odds=8.1, d=1.2, p<.001) and proof (Odds=11.5, d=1.3, p<.001).  

Results suggest that dynamic gestures may be associated with reasoning deductively about 
generalizable properties of space and shape and that pedagogical hints related to the directed 
actions are beneficial for insight and learning geometric proof.  
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Although flipped instruction is often viewed as a unified instructional model, many 
variations of flipped implementations exist in mathematics (de Araujo, Otten, & Birisci, 2017). 
Some teachers assign videos for homework and follow that with individual activities in class, 
whereas others assign videos with embedded questions followed by group projects in class. 
Extant observation protocols do not adequately capture the nuances between different variations 
of flipped lessons. Thus, we developed a classroom observation protocol robust enough to 
capture variations in flipped and non-flipped lessons. 

Our Flipped Mathematics Instruction Observation Protocol (FMIOP) draws upon existing 
frameworks (e.g., Stein, Grover, & Henningsen, 1996), observation instruments (e.g., MQI), and 
advice from experts in educational technology and mathematics education. We then iteratively 
revised the protocol based upon teacher interviews and observations of flipped lessons. FMIOP 
consists of two components: in-class and at-home. The in-class component captures two aspects 
of the lesson: instructional quality and interactivity. Each aspect has sub-characteristics (e.g., 
mathematics development, video involvement). The protocol also distinguishes the whole-class 
and non-whole-class formats. In a departure from prior protocols, aspects such as the nature of 
authority are not combined into the instructional quality score but instead held separately as 
descriptive features of the lesson since evidence from different disciplines is contradictory about 
which authority pattern will be predictive of student learning. The at-home components are 
examined along three aspects: instructional quality, multimedia design, and interactivity. In 
addition to lecture videos, FMIOP captures the use of set-up videos, which are those that 
establish a non-mathematical context to intrigue students about what will happen in class. 

Looking back, we see that instruments for lesson observations have progressed as new 
instructional models took hold. Looking ahead, the use of technology will continue to grow, so 
our observational tools must advance to account for key features of instructional videos and how 
videos are used in lessons so that we might distinguish implementations of flipped instruction 
and draw meaningful conclusions about how the instruction relates to student learning. 
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In this paper we discuss our development and use of a conjecture map for a large research 
project on the design and implementation of an online professional development model. 
Following Sandoval’s (2014) model, we built the conjecture map to reflect our high-level 
conjectures (overarching goals of the project), the embodiment of the learning design, the 
mediating processes, and the outcomes. After roughly half a dozen iterations to ensure that we 
accurately and fully captured the features of the learning environment and the mediating 
processes, we used the conjecture map as an anchor for a number of our data analysis activities, 
particularly of our online course modules, and for initiating theory-building processes. We also 
found that it was an expedient way to communicate internally and externally the core 
assumptions and learning principles of our multifaceted online professional development model.  
 

The project described in this paper involves a three-part model whose primary goal is to 
transition multi-faceted face-to-face professional development experiences to online 
environments in order to provide rural teachers access to high-quality professional development 
experiences. For example, the Teaching Lab lessons (similar to Lesson Study) have traditionally 
been conducted entirely face-to-face; we subsequently redesigned these experiences so teachers 
from disparate rural environments can participate without having to travel great distances. 
Moving face-to-face experiences to online environments is not straightforward and requires an 
iterative process to understand and respond to the logistic, technological, and theoretical 
challenges that arise. Consequently, we conceptualized our project as design research in that we 
planned to use lessons gained from our initial attempts to inform subsequent revisions to the 
original designs and sequencing of the components of the model. We turned to Sandoval’s 
(2014) description of conjecture maps to guide our efforts to unpack the assumptions and 
theories on which we operated as we designed and redesigned the components.  
In this conceptual paper, we discuss the development and use of a conjecture map (Sandoval, 
2014) to help us reflect on and better understand our own assumptions regarding the overall 
conjectures for the project, the design of the learning environment, and the processes that 
mediate between the learning environment and the outcomes related to our high-level 
conjectures. Wozniak (2015) used a conjecture map for a project involving online learning and 
noted that the refinements made through design research due to the conjecture map enhanced 
their “theoretical understanding about transitioning to online distance learning” (p. 608). In 
considering the relevance of this model to our own context, we asked ourselves the following 
questions:  

1. To what extent do the conjecture maps have face validity to the actual processes engaged 
by our participants? 
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2. How have the conjecture maps informed both the revisions of the professional 
development model and the data analysis?  

Frameworks 
Design Research 

We follow a design-based research model (Barab & Squire, 2004; Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003; Edelson, 2002; The Design-Based Research Collective, 2003) to 
guide our research. Design research is intended to engineer learning environments, study the 
impact of that learning environment on desired outcomes, and revise the learning environment as 
needed, with the goal of testing and building theory. The goal of design research is to be able to 
explain learning that occurs and what supports that learning by systematically and iteratively 
studying the design and the impact of the design (Cobb et al.).  

Design research departs from naturalistic research in that it purposefully engineers features in 
the learning environment, though it retains some of the messy complexity found in naturalistic 
settings. This type of research departs from experimental design and other research done in 
highly controlled, even contrived, settings in that it seeks to understand the role of context and 
the situated nature of activity to explain learning. Design research operates at an intermediate 
level of theory, to produce useful explanations that extend beyond the context in which the study 
is situated, but not to pose universal theories of learning (Cobb et al., 2003). Additionally, the 
design research process purposefully facilitates (engineers) particular interactions in order to 
produce useful explanations (Barab & Squire, 2004). 

In this paper, we describe a model of online mathematics professional development for 
teachers in rural contexts, the hypothesis and conjectures we developed and are testing, and the 
way in which we articulated and operationalized features of the design experiment we are 
conducting. Our goal is to not only understand how our model works with our participants, but 
how it may inform broader efforts to conduct high-quality professional development online, how 
to engage rural mathematics teachers in such experiences, and how it leads to theory-building.  
Conjecture Maps 

We follow Sandoval (2014) in developing and using conjecture maps to articulate our model, 
guide our research, and build theory. According to Sandoval, “Conjecture mapping is a means of 
specifying theoretically salient features of a learning environment design and mapping out how 
they are predicted to work together to produce desired outcomes” (p. 19) and is intended to reify 
the conjectures regarding the learning environment and how they interact to promote learning.  
There are four main elements to a conjecture map. The first element involves high-level 
conjectures about the learning context and it supports learning. Those conjectures are then 
operationalized in the embodiment of the learning design, which is the second element. In the 
third element, this embodiment in turn is intended to generate mediating processes that produce 
desired outcomes. The desired outcomes constitute the fourth and final element of the conjecture 
map. The conjectures about how the designed learning environment (the embodiment) results in 
the mediating processes—or the process from the second to third element—are called design 
conjectures, which take the form “if learners engage in this activity (task + participant) structure 
with these tools, through this discursive practice, then this mediating process will emerge” (p. 
24). The conjectures about how those mediating processes produce desired outcomes—or the 
process from the third to final element—are theoretical conjectures, which take the form “if this 
mediating process occurs it will lead to this outcome” (p. 24).  

High-level conjectures are the abstracted ideas about the learning principles evident in the 
design of the learning environment and are produced by an analysis of the needs evident in a 
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certain context with respect to the desired outcomes. The embodiment of the learning design 
involves four elements, according to Sandoval (2014): tools and materials, task structures, 
participant structures, and discursive practices, described in further detail below. Mediating 
processes involve the kinds of observable interactions between participants and the design of the 
environment, though artifacts created through learning activities can be used as well. Observable 
interactions can show how the learning environment facilitates or mediates participants’ 
interactions, particularly those conjectured as leading to desired outcomes. Analysis of artifacts 
can show how participants interpret designed activity structures and tools to explain their 
interactions and engagement. Mediating processes are intended to produce desired outcomes. 
Sandoval notes that different design research projects can utilize “a wide variety of outcomes and 
could take a wide variety of approaches to gathering evidence of those outcomes” (p. 23).  
Online Learning Model 

We designed a three part online professional development model with the goal of providing 
rural mathematics teachers access to high quality professional development. We chose to pursue 
an online model due to the difficulties for rural teachers to attend face to face professional 
development. The three components had been originally designed and implemented in face to 
face formats and were moved to fully online versions for the purposes of this project. Our project 
utilizes a series of synchronous online experiences, which departs from the typical asynchronous 
nature of much of the current online professional development, educational coursework, and 
virtual teacher communities. The three parts of the model include online course modules, 
Teaching Labs (akin to a lesson study approach), and online coaching. We based our model on 
research on teacher learning, described in more detail below, which informed our conjectures.  

The online course modules were based on discourse practices that orient teachers toward 
high-leverage discourse practices that facilitate mathematically productive classroom discussions 
(Smith & Stein, 2011). These discourse practices are facilitated by five practices emphasized in 
the course, entitled Orchestrating Mathematical Discussions (OMD), anticipating, monitoring, 
selecting, sequencing, and connecting. The modules also emphasize key aspects of lesson 
planning, such as goal-setting, in addition to having teachers solve and discuss high-cognitive 
demand tasks. The modules are designed to develop awareness of specific teacher and student 
discourse moves that facilitate productive mathematical discussions, to understand the role of 
high cognitive demand tasks in eliciting a variety of approaches worthy of group discussions, 
and to further develop participants’ mathematical knowledge, particularly the rich connections 
around big mathematical ideas that are helpful to teach with understanding (Ball, 1991; Ma, 
1999). The modules involve a combination of synchronous and asynchronous work, in order to 
minimize the amount of time teachers must virtually meet together (Robinson, Kilgore, & 
Warren, 2017). This minimizes logistical challenges and maintains a high degree of teacher 
effort and attention due to the shortened synchronous time.  Hrastinski (2008) found that the 
combination of synchronous and asynchronous complement each other by offering opportunities 
for cognitive participation (asynchronous) and personal participation (synchronous).  Cognitive 
participation allows for reflection on complex instruction, while personal participation involves 
collaborative opportunities for immediate feedback, community building, and collaborative 
learning.   

The Teaching Labs follow a lesson study design, modified to decrease time commitments 
and, in our case, with the need to be physically present in the classroom of the target lesson. 
Research on lesson study (e.g., Amador & Carter, 2018; Stigler & Hiebert, 1999) has led to an 
emphasis on demonstration lessons where teams of teachers collectively plan, enact, and reflect 
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on lessons in ways that make public the features of the lessons and teachers’ instructional 
practices (Saphier & West, 2009). The benefits of lesson study are to help teachers incrementally 
expand their knowledge base, promote collective professional discussions, and to improve 
instructional practices (Choskshi & Fernandez, 2005; Stigler & Hiebert, 1999). Our work takes 
this traditionally in-person model and translates it into a synchronous and asynchronous online 
professional development opportunity.  

Coaching has a relatively short history in education, and online coaching is just now 
emerging as something that is beyond experimental. Coaching, as characterized by the 
interactions between coaches and practitioners, facilitates deliberative practice in that there are 
repeated opportunities to reflect on practice in principled and formative ways (Ericsson, Krampe, 
& Tesch-Romer, 2003). Over the last two decades, there has been an increasing focus on coaches 
to provide teachers with personalized and content focused professional development (Campbell 
& Malkus, 2011; Cobb & Jackson, 2011; Hartman, 2013), which is highly valued by the teacher 
(Chval et al., 2010). Common aspects of coaching include working with teachers to model 
instructional practices, reflect on observed instruction, study student work, and plan lessons 
(Batt, 2010; Matsumura, Garnier, & Spybrook, 2012). Research on the impact of coaching has 
found positive effects of content-focused coaching on teachers’ instructional practices and 
student achievement in the area of literacy (Matsumura et al., 2012). Other research has shown 
that literacy coaches, when they collaborate closely with teachers around core instructional 
practices, can have positive impacts, though this impact was mediated by the roles of the coaches 
and the access of teachers to coaches with expertise in the instructional intervention (Coburn & 
Russell, 2008; Penuel, Riel, Krause, & Frank, 2009). Again, our work focuses on moving in-
person coaching to an online context.  

Methods 
Development of the Conjecture Map 

To develop the conjecture map, we first articulated the high-level conjecture and desired 
outcomes (Edelson, 2002), the bookends of the conjecture map. Our high-level conjecture was 
that teachers transform their instructional practices by engaging in collegial interactions related 
to core instructional practices across multiple online contexts. This conjecture captured aspects 
of the goal of transforming practice, the ways in which we were engineering opportunities for 
that to occur, the kinds of interactions we envisioned, the context in which the designed learning 
environment was going to be situated, and the theories we hoped to test and build. This 
conjecture reflected the core hypotheses of our online professional model.  

We then articulated four desired outcomes related to our model. These outcomes were that 
teachers would become more adept at: (1) attending to student thinking in productive ways; (2) 
noticing key aspects of instructional practices; (3) engaging in high-leverage discursive practices 
with the goal of eliciting and refining student thinking; and (4) reflecting on one’s own practices, 
using evidence from the classroom, leading to instructional change. The outcomes reflected our 
understanding of the kinds of instructional practices that result in vibrant and productive 
classroom learning environments (e.g. Jacobs, Lamb, & Philipp, 2010; Smith & Stein, 2011).  

The next step was to describe the embodiment of our conjectures, the designed learning 
environment or what Cobb et al., (2003) term the learning ecology, which they describe as “a 
complex, interacting system involving multiple elements of different types and levels” (p. 9).  
Following Sandoval (2014) and Cobb et al., we focused on four features of the learning 
environment as: (1) tools and materials, (2) task structures, (3) participant structure, and (4) 
discursive practices. The tools and materials included the online platforms we used, the tools 
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available within those platforms, and the protocols for structuring interactions, such as planning 
templates and the Noticings and Wonderings prompts for reflecting on mathematical tasks and 
episodes of instructional practice. The task structures included engaging with and reflecting on 
mathematical tasks, fictional and real accounts of instructional practices, and planning and 
reflecting on lessons. The participant structures included a range of whole group, small group, 
and one-on-one settings. Discursive practices included the type and tenor of interactions we 
intended to facilitate, such as collegial collective discussions and critical reflection on one’s own 
practices. We identified these four features for each of the three components of the model. For 
example, for the Orchestrating Mathematical Discussion online model, we listed the Zoom 
environment (online based video conferencing software) and protocols for interaction as the 
Tools and Materials, the mathematical tasks and cases of classroom instruction as Task 
Structures, collective work in small and whole groups in an online space as the Participant 
Structures, and collegial discussions in which participants share their reflections on the learning 
activities as the Discursive Practices we were trying to engineer. 

Our design conjecture was that the designed learning environment would facilitate the 
development of four mediating processes. These four mediating processes were: (1) reflection on 
one’s own engagement in mathematical processes, discursive processes, and task characteristics; 
(2) discussion of core instructional practices in relation to attention to student thinking; (3) 
collective observation and non-evaluative reflection on concrete instances of practice; and (4) 
supported observation and reflection on one’s own practices. These mediating processes 
constituted a progression of a sort, in that we felt that participants needed to discuss instructional 
practices in the abstract initially, discuss how those practices helped to lead to increased attention 
on student thinking, reflect on instances of actual practice collectively observed, and then reflect 
on their own practice. We saw these as requiring increased capacity as well as development of 
non-evaluative norms for noticing and discussing practice.  

These mediating processes were the practices in which we hoped to productively engage the 
participants and which we viewed as essential if we were to realize the outcomes we had 
identified. While we imagined that we would need to revise the design of the learning 
environment to better facilitate these mediating processes, we saw the mediating processes as 
stable features of the overall design and conjectures, and which would be revised only after 
considerable discussion of the design and systematic analysis of data. We indicate the 
conjectured contribution of each component of the learning environment to the development of 
the mediating processes by the arrows shown in the conjecture map (See Figure 1). The width of 
the arrow indicates the strength of contribution for a particular component to the development of 
a mediating process. Our theoretical conjecture was that these mediating processes collectively 
would lead to the desired outcomes noted above.  

Results 
Below, we first present the conjecture map we constructed and then describe how we use the 

map to guide our analytic and design processes. The conjecture map is seen in Figure 1.  
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Figure 1. Conjecture Map for the Project 

Conjecture Map as Reification of Our Model 
Developing the conjecture map helped to reify our core conjectures about the design of the 

learning environment and the relationship between the design of the model, the intermediate 
processes we needed to develop, and our desired outcomes. Constructing the model engendered 
clarifying discussion about the learning environment and what each component was intended to 
accomplish. In our group, there is a distinction between the design and research teams, with 
several people dedicated entirely to the design and implementation of the learning environment, 
and several people dedicated to research, though there is some overlap between the groups. The 
researchers have focused primarily on the design conjecture at this point in the project: they have 
focused on how the learning environment facilitates the development of the mediating processes. 
Developing the map was one way for the design and research teams to come into greater contact 
with each other. The map provides an explicit articulation of the design and intended impact of 
the model as well as the conjectures and hypotheses on which we are basing our work.  
Conjecture Map Guides Research Activities  

The conjecture map has served as an anchor artifact in the discussions around data analysis 
activities. The map has focused the research team discussions on the design conjectures: we 
make sure we are documenting the design and we explore the affordances and constraints in the 
online learning environment; and we explore the impact of the learning environment on the 
development of the mediating processes. When we find a feature of the learning environment 
missing from the map, we revise the map to more accurately reflect our observations, and we 
check back in with the design team to verify the revised map. We develop our data analysis 
activities keeping in mind that they must speak directly to the nature of the learning environment, 
the relation between the learning environment and mediating processes, and the nature of the 
mediating processes in terms of our observations of the participants.  

 
 

Conjecture Map  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

High Level 
Conjecture 
 
Teachers can 
transform their 
instructional 
practices by 
engaging in 
collegial 
interactions 
related to core 
instructional 
practices across 
multiple online 
contexts 

Mediating Processes 
 
Reflection on one’s own 
engagement in 
mathematical processes, 
discursive processes, and 
task characteristics 
 
Discussion of core 
instructional practices in 
relation to attention to 
student thinking 
 
Collective observation 
and non-evaluative 
reflection on concrete 
instances of practice 
 
Supported observation 
and reflection on one’s 
own practices 
 

Outcomes 
 
Attending to student 
thinking in productive 
ways 
 
Noticing key aspects of 
instructional practices 
 
Engaging in high-leverage 
discursive practices with 
the goal of eliciting and 
refining student thinking 
 
Reflecting on own 
practices, using evidence 
from one’s classroom, 
leading to instructional 
change 

Embodiment 
OMD 
Tools and Materials: Zoom environment; 
protocols for interaction 
Task Structures: mathematical tasks that are 
groupworthy, cases of classroom instruction 
Participant Structures: collective work in small 
and whole groups in an online space 
Discursive Practices: collegial discussions in 
which participants share their reflections on the 
learning activities. 
 
Demonstration Lessons 
Tools and Materials: Zoom environment 
Task Structures: structured discussion of 
practice 
Participant Structures: collective work in online 
space 
Discursive Practices: collegial discussions 
 
Coaching cycles  
Tools and Materials:  Swivl device; Swivl 
software for annotating lessons; protocols for 
coaching 
Task Structures:  annotating practice; structured 
discussion of practice 
Participant Structures:  one-one interaction 
Discursive Practices:  critical reflection on one’s 
practices 
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Conjecture Map Guides Documentation and Revision of Model 
We use the conjecture map to anchor discussions about whether our designed learning 

environment facilitates the desire mediating processes and, if not, what needs to be revised 
within the learning environment. We recognized that it was crucial to fully document the enacted 
design at key intervals, to note the changes made to the learning environment, and to ensure that 
those changes are reflected in any revision of the conjecture map. This process has also identified 
unanticipated processes that have influenced the design of the project. For example, working in 
rural environments requires much more flexibility on our part in terms of the timing of classes 
and meetings, and the lack of internet infrastructure in some cases has led to complications. As a 
result, our design team has made changes on the fly without the benefit of using analysis derived 
from the research team, who have typically lagged six months behind in terms of processing and 
analyzing data. Thus, in documenting our design processes, we have audio-recorded and 
transcribed the design team meetings to understand the motivations behind the changes in the 
learning environment. Ultimately, however, the design and research teams are accountable to the 
conjecture map, and thus the teams will collectively revise the map to account for realizations 
and evidence gleaned through the practical contingencies of implementing a complex online 
model in rural environments and through systematic data analysis.  
Role of Conjecture Map in Theory Building 

The work in the project thus far has focused on our design conjectures (the link between the 
learning environment and mediating processes). However, as we wrap up the initial cohort at the 
end of the current project year, we will begin testing and revising the theoretical conjectures (the 
relationship between the mediating processes and outcomes). Ultimately, we will refine our high-
level conjecture as we seek to generalize our findings beyond the context of the project, to 
address broader claims of learning, and, in particular, professional learning in online contexts.  

Discussion and Implications 
In this conceptual paper, we describe an ongoing design experiment that demonstrates the 

dynamic nature of the development and use of conjecture maps. Similar to Wozniak (2015), we 
found that our ongoing use of the conjecture map is strengthening the iterative nature of our 
design research project. As we regularly revisit the conjecture map and make modifications to 
our professional development design, we use the map as a framework for planning and 
evaluating the actual processes engaged by our professional development participants and the 
theoretical implications of the design. Through this process, the conjecture map is a key artifact 
for researchers engaging in design experiments (Sandoval, 2014; Wozniak, 2015). Developing 
and using a conjecture map holds us accountable to the assumptions of design experiments and 
to our own conjectures and hypotheses about improving classroom instruction of mathematics 
teachers in rural environments via an online professional development model. The map has 
anchored discussions about the design of the learning environment and how we research the 
design conjecture, specifically the data collected and the analysis process. Developing and using 
the map has helped us to identify misunderstandings between the design and research teams, to 
understand our lived processes with respect to revising the design of the learning environment, 
and to be more explicit about the specific mediating processes in which we seek to engage our 
participants. It has also helped us to be aware of key features of the design process, especially 
around the intended consequences of our work and the messiness of conducting research in 
naturalistic, if designed, environments. Ultimately, it will focus our theory-building discussions, 
especially as we explore the theoretical conjectures.  
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To better understand how to support high school students’ engagement, advancements in 
research methods that provide greater understandings of malleable factors of engagement and 
conditions that affect students’ engagement are needed. In this conceptual paper, we introduce 
four dilemmas that researchers need to navigate to study secondary students’ engagement with 
mathematics: How can we concurrently capture engagement in-the-moment and at scale? What 
counts as a moment or experience? What sorts of experiences could be engaging? Whose 
perspectives on the experience should be privileged? We propose approaches for navigating 
these dilemmas in the context of a current research project. 

Keywords: Research Methods; Affect, Emotions, Beliefs, and Attitudes; High School Education 
 

The decline of students’ motivation and engagement in mathematics as they move through 
levels of education is a persistent problem. Students’ self-efficacy, their enjoyment, and their 
sense of the utility of mathematics tends to decrease as they move from elementary school into 
junior high and this trend continues through high school (Chouinard & Roy, 2008; Wigfield, 
Eccles, Mac Iver, Reuman, & Midgley, 1991). To develop insights about how to create learning 
environments that engage more students, more deeply, researchers must develop approaches that 
allow for a greater understanding of students’ engagement. 

Historically, research on engagement and its associated constructs has been conducted either 
at a small, descriptive scale, or at a larger, probabilistic scale. This issue of scale ranges on two 
dimensions: idiographic à nomothetic and momentary à longitudinal. Ideally, learning 
environments would be designed to promote positive experiences at all levels. From the learner’s 
perspective, which is primarily idiographic and momentary, we want to find ways to “catch and 
hold” their engagement. From the perspective of the education system, which is primarily 
nomothetic and longitudinal, we want to increase the chance that learners will identify with 
mathematics-related disciplines and choose to continue learning mathematics far into the future. 
In particular, greater insights are needed about how to foster engagement with mathematics 
among high school students. Prior research suggests that instructional practices such as teachers’ 
demonstrations of warmth and focus on understanding over performance engage students 
(Stipek, Salmon, Givvin, Kazemi, Saxe, & MacGyvers, 1998), but this research was conducted 
in classrooms with elementary school students. Alternative approaches that address nuanced 
differences, are likely needed to engage high school students; they are in a different 
developmental stage both cognitively and socially, and are learning more abstract or otherwise 
different mathematics. What is known is that high school students are more engaged with 
mathematics when they experience authentic work such as being asked interesting questions, 
solving novel problems, digging deeply into understanding a single topic, applying the subject to 
problems and situations in life outside of school, and discussing ideas about the subject with the 
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teacher or students, along with pedagogical strategies that support students socially (Marks, 
2000).  However, what counts as authentic (i.e., interesting, novel, applicable) for some students 
may not be so for others, and means of social support have numerous facets that are worth 
understanding more deeply in high schools. 

The purpose of this paper is to provide a critical analysis of concepts and methods for 
studying engagement with mathematics in the moment in high school classrooms. We propose an 
approach, which we are currently undertaking, that goes beyond fine-grained analyses of a few 
students to seek out larger trends in a manner that is still situated in the context of classroom 
opportunities to engage in mathematics. This approach also delineates variability within and 
between classrooms that might explain some of the reasons students both turn on and turn off 
from mathematics during the high school years. Below, we describe our approach to 
investigating students’ engagement in relation to four dilemmas, but before we do so, we share 
our orientation on engagement. 

What Is Engagement?  
Previous work has considered engagement as both an anthropological and a psychological 

construct. Anthropologically, engagement can be understood as students’ opportunities to 
participate in a particular activity. Psychologically, engagement is often conceptualized as a 
personal endeavor, emphasizing how psychologically present a person is during a moment in 
which they are actively involved (including, but not limited to, a pedagogically relevant 
experience in a math class) (e.g., Shernoff, Csikszentmihalyi, Schneider, & Steele, & Shernoff, 
2003). Engagement can also combine the two approaches, emphasizing sustained behavioral 
involvement (i.e., making use of opportunities to engage) combined with some emotional tone, 
either positive or negative, in context. By this view, all students are engaged in some fashion and 
to some degree, though not all engagement is positive. For example, when engagement occurs by 
the demands of the educator rather than the will of the student, it may instead manifest as anti-
engagement, sometimes termed as disaffection (e.g., Skinner & Belmont, 1993).  

A useful conceptualization of engagement in mathematics classrooms is a person’s 
investment in a pedagogically relevant object of engagement, such a mathematics task or lesson, 
as situated in the relationship between the self, the object of engagement, and others in the 
environment (Middleton, Jansen, & Goldin, 2017). Engagement is dynamic and multi-
dimensional. It manifests itself in affect, cognition, behavior (Fredricks, Blumenfeld, & Paris, 
2004), and under some definitions, social interactions (e.g., Rimm-Kaufman, Baroody, Larsen 
Curby, & Abry, 2015; Wang, Fredricks, Ye, Hofkens & Lin, 2016).  

Although these four components of engagement (affective, cognitive, behavioral, and social) 
interact dynamically, they are often defined separately. For instance, the affective dimension of 
engagement involves both more immediate positive and negative affective reactions to stimuli 
such as math activities, teachers, or classmates, (Fredricks, Blumenfeld, & Paris, 2004), and 
higher-order evaluation of those reactions (e.g., Goldin, 2002; Goldin, 2014); for example, 
perceiving the struggle involved in solving a math problem as enjoyable. By contrast, the 
cognitive dimension of engagement involves effortful cognitive coordination between prior 
knowledge and current information (Middleton, Jansen, & Goldin, 2017). Exemplars of 
cognitive engagement include concentration, and memorization. The behavioral dimension of 
engagement, then, includes the positive behaviors associated with a student’s productivity in the 
math classroom (Rimm-Kaufman, Baroody, Larsen Curby, & Abry, 2015). This entails the 
actions students employ working on math problems and collaborating with peers. Finally, the 
social dimension of engagement relates to the quality and investment in social relationships and 
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nature of interactions, such as those with peers and teachers (Wang, Fredricks, Ye, Hofkens & 
Lin, 2016). We now turn to a critical analysis of four essential dilemmas researchers must face 
when studying engagement from this perspective. 

Dilemma 1: How Can We Concurrently Capture Engagement In The Moment And At 
Scale? 

Engagement is highly dynamic, particularly on a moment-by-moment basis. An uplifting 
mood, a novel mathematics problem, and an open and welcoming classroom environment might 
each increase engagement in the moment. However, over time, these dynamics may become less 
extreme as they become habituated (e.g., a mathematics problem becomes less novel the longer 
one works on it). It is important, therefore, to consider whether the goal is to capture students’ 
tendencies to engage (which may stabilize over time) or to understand conditions that impact the 
more malleable aspects of students’ engagement to foster change in engagement patterns. When 
researchers investigate students’ tendencies to engage, they learn about variations between 
individual students, understanding how different students experience mathematics learning. 
Alternatively, when researching engagement in the moment, researchers can understand factors 
that can impact why and how engagement becomes more and less productive for different people 
at different times. Moreover, sometimes researchers are interested in both the stable and 
malleable aspects of engagement, trying to piece out what aspects are productive, and what 
features of classroom practice support productive engagement patterns.  

Different pursuits require somewhat different methodological approaches. Researchers 
interested in students’ more stable tendencies to engage have relied on the use of long-term 
surveys and proxies for successful outcomes, such as grades (Pinxten, Marsh, De Fraine, Van 
Den Noortgate, & Van Damme, 2014). In contrast, research on engagement in the moment has 
relied on qualitative data collection techniques such as observations (focused on individuals, 
small groups, or classrooms), videos, and observer field notes followed up by interviews 
involving video viewing sessions (e.g., Esmonde, 2009; Gresalfi, Martin, Hand, & Greeno, 2009; 
Webel, 2013) to capture students’ rich experiences in the moment. Although work in this 
qualitative tradition has contributed considerably to knowledge about student engagement, the 
intensive nature of such qualitative data collection has typically necessitated the use of small 
samples, which does not enable seeking wider trends. Efforts to understand students’ experiences 
in the moment have been scaled up using the Experience-Sampling Method (ESM) (e.g. 
Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003), in which respondents are signaled at 
random intervals or around pre-determined experiences, and complete a series of (closed-ended 
and/or open-ended) questions about their experience in the moment (Shernoff, 2013). This 
method has the added benefit of capturing students’ impressions in real time relative to later 
retrospective measures (such as after-the fact interviews) (Shiffman, Stone, & Hufford, 2008).  
Researchers interested in both the stable and malleable, in-the-moment, aspects of student 
engagement benefit from triangulating methods. For example, we are currently combining 
methods ideal for measuring changes in stable traits, such as longer-term surveys, with more in-
the-moment methods, such as ESMs, interviews, and observation, as in Figure 1. In Figure 1, our 
data collection begins with the administration of a long-term survey assessing students’ more 
stable perceptions and traits. This initial survey serves two purposes. First, it can be used to 
establish a baseline measurement of initial perceptions. These baseline measurements are then 
repeated at critical times, most notably at the end of data collection, with a post-test version to 
examine change over time. This provides a check on the validity of the processes going on 
between the two points of study as well as a means of assessing the effect size of the impact of 
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the processes occurring between long-term survey measurements. Second, responses to the long-
term survey can be analyzed using cluster analysis to select focal students to follow up with 
using qualitative methods, such as observation and interviews (e.g., Patrick & Middleton, 2002). 
 

 
Figure 1. Mixed methods model for studying student engagement over time in one classroom. 

Note:  In our current project, some classes use a block schedule, completing a course in one semester. Others follow 
the traditional year-long course model. The number of lesson sequences and long-term survey administrations vary 
accordingly, with fewer administrations in the block scheduled model. 
 

Data collection then focuses in on a series of pedagogically relevant experiences during a 
given class period, often identified in advance by the teacher and researcher (a dilemma 
described further below). During each of these experiences, a series of measurements—ESM 
surveys, observation, student interviews, and teacher interviews—are taken in parallel in a 
convergent design (e.g., Creswell & Clark, 2018), characterizing the student’s engagement in all 
of its nuances. By this view, engagement in the moment in Ms. Smith’s freshman algebra class is 
determined by triangulating the teacher’s thoughts on the observed session with researcher 
observations and videos of each experience, with students’ in-the-moment ESM reports of their 
affect and behavior, and finally, with retrospective interviews asking the students about their 
impressions of each experience. Each of these data points measures and helps describe a given 
experience and students’ engagement in it. Over time, this can uncover the potential factors of 
classroom practice that cause change in engagement, or that support engaged behavior over a 
relatively long period of time, such as a course or academic year. Such mixed methods can 
characterize the moments of mathematics engagement, provide an explanatory narrative of their 
development, and estimate their effect size. 

Dilemma 2: What Counts As A Moment Or Experience? 
When investigating students’ engagement, grain size matters. Doing mathematics in school 

can be viewed as a set of experiences strung together by time, topic, practices, and roles. Thus, 
an experience could be an entire school year or semester, a single class period, an activity during 
a class period, or a mathematics problem within an activity. Many studies at a larger scale focus 
on the longer-term, such as a course, semester, or year (e.g., Skinner & Belmont, 1993). Smaller 
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scale studies focus on the class period, activity, or task-level (e.g., Gresalfi, 2009). The more 
fine-grained the timescale, the more detailed insights can be gained about engagement. But to 
understand how to impact students’ engagement, whether long-term or short-term, researchers 
must record the conditions giving rise to engagement patterns, the engagement patterns 
themselves, and finally, the ways in which students conceptualize their engagement and use it to 
direct future mathematics-related activity. 

By experience, then, we mean an interactive situation (with mathematics content and with 
others in the classroom) structured by some mathematical task, cued by the teacher or students. 
A cue is a social act proffered by a person that indicates an intended shift in the group interactive 
behavior in the mathematics task. Experiences could be operationalized in the context of a 
teacher cueing, such as launching or introducing a task with various forms of participation, such 
as having students work on a task (in groups or alone), or discuss a task in small groups, with 
partners, or as a whole class. Experiences can could also be cued by a student’s query about a 
mathematics concept or procedure.  

Yet, this raises another question: is the experience bounded by an activity or by a 
mathematics problem? We could consider students’ engagement during an entire activity, such 
as the timeframe when students are working together in a small group, as an “experience.” 
Alternatively, we could monitor students’ engagement problem-by-problem when working in 
small groups, considering each problem to be an “experience” in itself.  

Ultimately, our definition of experience fundamentally shapes our research methods. For 
instance, we can take a problem-centered approach by using an ESM to ask participating 
students to reflect upon the same experience at the same grain size. We can ask for such input 
either at the end of a given problem, or an entire group task—reflecting either a problem-centric 
or more holistic approach to the “experience.” Such methods could support comparison of 
students’ perceptions across particular experiences, as well as researchers’ attempts to track the 
coincidence of behaviors and reported feelings across particular experiences. 

We can also have students or teachers participate in a video viewing session to reflect back 
on students’ engagement, using criteria to select a particular moment in the video record to 
reflect upon that participants will recognize as an experience, with some beginning, end, and 
flow of activity. The selection of a clip for a video viewing session can be based on a range of 
criteria. A focal experience could be one that the teacher conjectured would be productive for 
students’ learning and engagement. Alternatively, researchers could choose a moment that they 
conjecture could be engaging (or not) for students based on students’ displayed affect, and ask 
the teacher and students to reflect back on that moment. 

Each of these potential selection criteria reveal different information regarding what the 
engagement patterns of the experience are, and what the causal impact of teacher behaviors, 
mathematics curriculum, and the social setting might be. Defining criteria for selection of 
experiences that matter, then, must be done carefully, with clear theoretical guidance to generate 
coherent epistemological claims. 

Dilemma 3: What Sorts of Experiences are Engaging? 
Following Shernoff et al. (2016), we conjecture that engaging experiences are situated in a 
learning environment that includes both academic and social support. It is worth investigating the 
degree to which mathematics learning environments provide students with (a) opportunities to 
engage in sense-making and reasoning and (b) opportunities to experience positive social 
interactions. Figure 2 presents hypotheses of classrooms that are likely to result in very different 
patterns of engagement among students. 
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A. High sense-making & reasoning 

Negative social interactions 
B. High sense-making & reasoning 

Positive social interactions 

C. Low sense-making & reasoning 
Negative social interactions 

D. Low sense-making & reasoning 
Positive social interactions 

Figure 2. Four patterns of academic and social support 

One hypothesis is that when classrooms provide students with academic support through 
opportunities to engage in sense-making and reasoning (as in A. and B. in Figure 2), students 
will be more engaged with learning mathematics. For example, prior work has suggested that 
learning environments that promote making sense of challenging mathematics and opportunities 
to reason mathematically engage learners in developing mathematical understandings, and, in 
turn, raise students’ self-efficacy, interest, and mastery goals (Stipek et al, 1998).  

Another hypothesis is that when classrooms provide students with social support through 
relatedness (as in B. and D. in Figure 2), students will be more engaged with learning 
mathematics. Learning environments that are warm and welcoming such that they promote 
positive social relationships between the teacher and students, and among the students, allow 
students to feel safe to take intellectual risks and to develop positive emotional well-being 
(Stipek et al, 1998). Students will then exert more effort spent toward learning mathematics. 

Realistically, most classrooms fall in the in-between space of academic and social support, 
such that sense making is pretty good at some times for some students, and pretty poor at others 
times for others. Social support may vary likewise at some times and for some students. This 
makes investigating the dynamics of the pedagogical and social situating of mathematics 
classrooms so critical for the study of engagement.  

To investigate the degree to which such learning environments are engaging, a number of 
questions could be pursued, such as: How prevalent are learning environments that are high in 
sense-making and reasoning in these schools; how prevalent are learning environments that focus 
on positive social interactions in these schools; and how does this relate to engagement? 
Although learning environments that are high in sense-making and reasoning as well as positive 
interactions should lead to greater engagement, and learning environments that are low in sense-
making & reasoning and have negative social interactions should lead to lower engagement, 
what does students’ motivation and engagement look like in learning environments that are high 
in sense-making & reasoning and negative in social interaction OR in learning environments that 
are low in sense-making and reasoning and positive in social interaction? 

Dilemma 4: Whose Perspective On The Experience Should Be Privileged?  
Multiple perspectives on a school mathematics experience are likely to provide broader 

insights not only about how or why an experience is engaging, but for whom. Nevertheless, 
consulting different viewpoints also offers the opportunity for discord. When different 
viewpoints depict differing accounts of who is engaged in the classroom, whose account should 
be given precedence: our own observations as researchers or students’ self-reports?  

One answer is to focus on students’ own perspectives (in contrast to researchers’ 
perspectives). This seems defensible; even though engagement has dynamic components and is 
influenced by classmates and teachers in the classroom, engagement is fundamentally a personal, 
psychological phenomenon. However, the different levels of analysis we prioritize (whole class, 



Theory and Research Methods 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1305 

a small group, individual student, interactions between these), have implications for the content 
of interview questions and on the conclusions we are able to draw. For example, in his high 
school case study of goal development, Webel (2013) found that although engagement behaviors 
were relatively stable at the group level, they varied considerably at the individual level. Each 
student’s goal-seeking behaviors were expressed differently based on the extent to which they 
perceived a match between their own goals and that of the group. Had perceived goal match not 
been a measure in Webel’s work, this relationship would have been obfuscated. This suggests a 
need to capture a broad array of student perceptions, both at the group and individual levels. 

Another dilemma that comes with prioritizing students’ impressions of engagement is which 
temporal student account to prioritize. In the mixed methods approach we advocate above, for 
example, researchers can choose to prioritize in-the-moment assessments, such as the ESM, or 
retrospective reports, such as student interviews. Each of these methods have been used in 
meaningful ways across different studies. For example, research using ESMs has suggested that 
high school students experience more concentration, but less interest and enjoyment when they 
are in class compared to other places (Shernoff 2013), while research using semi-structured 
interviews has suggested that seventh-grade students’ beliefs about participation (e.g., beliefs 
constraining or supporting it) influenced the goals they had during participation (e.g., to help 
classmates and behave appropriately, or to demonstrate competence and complete tasks, 
respectively) (Jansen, 2006).  

Moreover, within the context of a single study, it is possible that a student’s in-the-moment 
impression of an experience may be different than her after-the-fact account. A quiz that seemed 
difficult in the moment may seem easy retrospectively once the student learns that she had 
earned an A. What then? Prior research from other domains has suggested that in some cases, 
willingness to re-engage in an activity (such as an invasive medical procedure) is better predicted 
by a person’s after-the fact impressions than in-the-moment impressions (Shiffman, Stone, & 
Hufford, 2008). Such discoveries require the measurement of both in-the-moment and later 
impressions to determine how such memories are consolidated. This suggests yet another utility 
of using mixed methods, as well as interesting possibilities that may arise from comparing the 
results of different measurements on educational and persistence-related outcomes of interest, 
such as grades, and desire to continue in math or pursue a STEM career. 

Conclusions 
Through this essay, we explored a range of considerations for researchers who are interested 

in the study of secondary students’ engagement in school mathematics classrooms. We reflect 
upon a current project that attempts to address these considerations. A premise guiding this work 
is that students’ voices should be solicited through multiple methods: long-term surveys of 
tendencies, ESM surveys, and interviews. We urge for the study of engagement to go beyond 
observational methods so that students can share the degree to which they experienced the 
observed incident as engaging. The dilemmas we explore support research that examines 
engagement in the moment but in ways that also explore trends over time and allows for 
uncovering variations within individual students as well as between them.  
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Conventional coordinate systems are often considered representational tools for reasoning about 
mathematical concepts. However, researchers have shown that students experience persistent 
difficulties as they engage in graphing activity. Using examples from research and textbooks, we 
present a framework based on a conceptual analysis of the use of coordinate systems. We discuss 
the implications of the framework for student learning, curriculum design, and teaching.  

Keywords: Cognition, Curriculum Analysis, Modeling 

Conventional coordinate systems, such as the Cartesian and polar coordinate systems, are 
often considered representational tools for reasoning about mathematical concepts such as 
number systems, geometric figures, ratios and proportional relationships, and equations and 
functions (e.g., Common Core State Standards for Mathematics). Not only are coordinate 
systems used in the learning, teaching, and doing of mathematics, they are also commonly used 
in other fields like science, technology, and engineering as a means to communicate information 
(Paoletti et al., 2016; Roth, Bowen, & McGinn, 1999; Rybarczyk, 2011).  

Despite a widespread use of coordinate systems, researchers have shown that students 
experience persistent difficulties as they engage in graphing activity—constructing and 
interpreting graphs—in their mathematics (e.g., Leinhardt, Zaslavsky, & Stein, 1990) and 
science courses (Potgieter, Harding, & Engelbrecht, 2008). For instance, when constructing 
graphs, students struggle with establishing axes and scales and transitioning from discrete graphs 
to continuous graphs (Herscovics, 1989), connect points without considering what happens 
between points (Yavuz, 2010), and adhere to familiar forms of regularity like linearity (Leinhardt 
et al., 1990). When interpreting graphs, students show common difficulties such as treating 
graphs as literal representations of a situation (e.g., interpreting a graph of a biker’s speed vs. 
time as the biker’s traveled path) (Clement, 1989; Oehrtman et al., 2008), and focusing on one 
quantity while tacitly overlooking the other quantity when prompted to interpret relationships 
between two quantities (Leinhardt et al., 1990; Oehrtman et al., 2008). 

A frequently overlooked aspect accounting for students’ persistent difficulties in graphing 
activity is students’ understanding of underlying coordinate systems. Researchers and curriculum 
developers often take coordinate systems for granted as a primitive structure. Little focus is 
given to students’ construction of coordinate systems or their understanding of what is being 
represented within coordinate systems. For example, most prior research on students’ 
understandings of graphs presumes the Cartesian plane as a given structure in students’ 
reasoning without exploring what meanings students hold for the underlying coordinate system 
(e.g., Levenberg, 2015). In this report, we outline a framework distinguishing two uses of 
coordinate systems: situational coordination and quantitative coordination. This explicit 
distinction has received little, if any, attention in extant mathematics education research and 
curricula. By bringing attention to the underlying coordinate systems on which students are 
asked to reason, we intend to provide an explanatory construct as to why students may have 
difficulty constructing or interpreting graphs represented on coordinate systems. We discuss 
implications our framework could have and pose future research directions.  
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Conceptual Analysis 
The framework we propose is based on our conceptual analysis (Thompson, 2008) of 

students’ potential uses of coordinate systems as representational tools. Our conceptual analysis 
is informed by research on spatial cognition (e.g., Levinson, 2003; Tversky, 2003), Thompson’s 
(2011) theory of quantitative reasoning, research examining students’ construction and use of 
coordinate systems (e.g., Lee, 2016; Lee & Hardison, 2016; Lee, 2017), research examining 
students’ graphing understandings (e.g., Moore, Paoletti, & Musgrave, 2014; Joshua, Hatfield, 
Musgrave, & Thompson, 2015), and our experiences working with students. 

Two Contrasting Examples 
To illustrate our distinction between two kinds of coordinate systems, we present two tasks 

from textbooks (Figures 1 and 2). Both tasks involve a Ferris Wheel context and, from our 
perspective, both tasks involve establishing a coordinate system. Task A (Figure 1) prompts 
students to find the coordinates of the car located at the loading platform and in other positions, 
with the axle of the Ferris Wheel defined to be at the origin. In this case, students are asked to 
coordinate the location of each car within the space in which the Ferris Wheel is situated. In 
other words, the coordinate system in this task is used for spatially organizing the location of 
each car in reference to the position of the axle of the wheel.  

 

 
Figure 1. Task A (Holliday, Cuevas, McClure, Carter, & Marks, 2006, p. 95). 

 
Figure 2. Task B (Foerster, 2005, p. 112). 
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Now consider Task B (Figure 2). Rather than asking students to use a coordinate system to 
spatially represent the situation, Task B prompts students to graph the relationship between the 
time elapsed since the wheel started rotating and a rider’s distance from the ground. To solve this 
task, students must extract two quantities (Thompson, 2011), time and distance, from the Ferris 
Wheel situation and coordinate them in a new space in order to produce a graph. This new space 
does not entail the spatial situation from which the quantities were extracted. In other words, the 
Ferris Wheel situation is not contained in the graph students are asked to produce or in the 
coordinate system containing this graph. 

Two Uses of Coordinate Systems 
As demonstrated through the contrasting examples above, coordinate systems can serve 

different purposes, which potentially lead to different graphing activities. We propose a 
framework to distinguish between two uses of coordinate systems, situational coordination and 
quantitative coordination. We emphasize we are distinguishing uses of coordinate systems, 
which are different from distinctions others have made about students’ graphing activities (e.g., 
Moore & Thompson, 2015); coordinate systems can, but need not, contain graphs. We describe 
each use of coordinate systems with examples from our research and from textbooks; textbook 
examples are used to illustrate our interpretations of the textbook author’s intended use of 
coordinate systems, which do not necessarily coincide with how students might perceive of the 
coordinate system. Through hypothetical examples, we also illustrate how a student might 
engage in graphing activity in each case.  
Situational Coordination  

Situational coordination refers to an individual using a coordinate system to represent or 
mathematize a space or physical phenomena, as in Task A (Figure 1). Constructing a coordinate 
system for situational coordination (i.e., constructing a situational coordinate system), involves 
establishing frames of reference (e.g., Levinson, 2003) to gauge extents of various attributes of 
objects (e.g., relative location or orientation of an object) within the space or phenomena. When 
constructing a situational coordinate system, an individual can produce quantities by measuring 
attributes of the space/situation using their frames of reference and coordinate such 
measurements to represent attributes of objects in the space or situation. An everyday example 
of a situational coordinate system is used is a map. Graphs constructed on situational coordinate 
systems can be viewed as projections or traces of physical objects or phenomena onto the same 
space containing the original objects or phenomena (e.g., the movement of a car shown on a 
GPS). 
 

 
Locate the four fish in the fish tank models. 
Task C: Fish Tank Task (Lee, 2017) 

 
Task D: (Keedy & Bittinger, 1981, p. 159) 

Figure 3. Two Examples of Coordinate Systems Used for Situational Coordination.  

As an example of a task designed for students to construct a situational coordinate system, 
consider Task C (Figure 3) from the first author’s research involving students’ organization of 
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space. In this task, the researcher asked students to locate four fish figures in three-dimensional 
tanks. The students’ responses to this task (see Lee, 2017) provide an example of how a student 
might construct a coordinate system to represent objects in space by establishing a frame of 
reference and locating points within the space using coordinated measurements. As a second 
example, consider Task D from a college algebra text (Keedy & Bittinger, 1981, p. 159), which 
asks students to reason about a geometric figure and its characteristics situated in a coordinate 
system. Here, the x-axis, y-axis, and origin suggest a frame of reference used to locate the points 
or line segments within the geometrical figure (i.e., triangle). Tasks C and D exemplify 
situational coordinate systems as the coordinate system is (or can be) used to locate or 
mathematize objects (e.g., the fish in Task C or right triangle in Task D) in a given space.  

The examples above highlight how situational coordinate systems can be used to 
mathematize a single moment in time (i.e., a snapshot). Situational coordinate systems can be 
used when representing dynamic situations as well. In other words, a student may think of 
overlaying a frame of reference on an imagined movie. For example, in Task A, one can observe 
or imagine a rider’s position on the Ferris Wheel changing over time within a situational 
coordinate system (e.g., Williams, 2018). Similarly, in Task C, one can observe or imagine a 
fish’s position in the fish tank changing over time within a situational coordinate system.  

When constructing a situational coordinate system, one can establish and insert a multitude 
of quantities onto the situation. We have found it helpful to imagine a situational coordinate 
system as mentally tagging an object with an n-tuple and imagining the values within the n-tuple 
changing over different situational instances. For example, for a Ferris Wheel car’s location in 
Task A, one can mentally tag a 4-tuple such as (θ,  h, a, t), where θ represents the angle through 
which a car on the Ferris wheel has rotated, h represents the height of the car, a represents the arc 
length the car has traveled, and t represents the time the car has been in motion. The quantities 
one inserts onto the situation need not be purely geometric or temporal in nature, as in Tasks A, 
C, and D. For example, an individual might also consider inserting the blood pressure of the rider 
in the car into the situation and therefore the tuple. The critical distinguishing feature of a 
situational coordinate system is that frames of reference are established and used to construct and 
tag quantities onto the situational space or physical phenomena.  
Quantitative Coordination 

Quantitative coordination refers to an individual using a coordinate system to coordinate sets 
of quantities by obtaining a geometrical representation of the product of measure spaces, such as 
in Task B above. To establish a quantitative coordinate system, an individual must establish 
quantities within the given space/situation, disembed (Steffe & Olive, 2010) these quantities (i.e., 
extract them from the situation while maintaining an awareness of the quantities within the 
situation), and project them onto some new space, which is different from the space in which the 
quantities were originally conceived. Graphs as emergent traces (Moore & Thompson, 2015) 
representing relationships between disembedded quantities can be constructed within a 
quantitative coordinate system.  These graphs are not projections of physical objects or 
phenomena from the same space containing the original objects or phenomena. 

Consider Task E (Paoletti & Moore, 2017), a variation of Swan’s (1985) bottle problem, 
which has been used to examine students’ graphing activity (e.g., Carlson, Jacobs, Coe, Larsen, 
& Hsu, 2002). In this problem, students are asked to imagine a bottle being filled with liquid and 
sketch a graph relating the volume of liquid in the bottle and height of liquid in the bottle. To 
solve this task, a student must first conceive of two quantities, liquid volume and liquid height. 
The student may then consider how the two quantities vary as liquid is poured into the bottle. 
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Next, the student may conceive of two number lines, one for liquid height and one for liquid 
volume, and use these number lines to represent the varying magnitudes or values of each 
quantity. The student can then construct a Cartesian plane with the two number lines—the 
horizontal axis representing liquid height and the vertical axis representing liquid volume—and 
imagine a point in this space as simultaneously representing the liquid height and liquid volume 
as water is poured into the bottle (Figure 4a-d). The two-dimensional space that is made by the 
product of the two axes form a new space (a {height×volume} plane), which is different from, 
but related to, the space containing the bottle itself. The infinitude of traced points (height, 
volume) in the graph (Figure 4d) do not depict the physical bottle being filled but represents the 
covarying quantities.   

 
(a)    (b)       (c)       (d)      

Figure 4. Task E: Representing the height and volume of liquid in a bottle. 

For an individual to construct a quantitative coordinate system she must first establish a 
situational coordinate system in terms of the relevant quantities in the imagined situation before 
disembedding these quantities to create a quantitative coordinate system (Lee & Hardison, 2016). 
For example, in Task B, in order for a student to coordinate the time traveled and vertical 
distance of car from the ground, she will first need to establish a situational coordinate system on 
the Ferris Wheel situation (as in Task A) through which she could gauge the time traveled and 
vertical distance from the ground before disembedding those quantities into a new space. 
Similarly, in Task E, a student will first need to establish a situational coordinate system on the 
bottle situation through which she could gauge the liquid height and liquid volume as the water 
fills the bottle.  

Implications of the Framework and Future Research Directions 
We encourage researchers to focus their attention on the two uses of coordinate systems 

when studying students’ construction of coordinate systems and also to use this framework as an 
analytical tool in future studies examining students’ graphing activity. Findings from such 
studies can support curriculum development and classroom instruction related to coordinate 
systems and students’ graphing activities, which we further discuss in the sections below.  
Using the Framework to Better Understand Students’ Graphing Activities 

The proposed framework may help explain some of the students’ challenges in constructing 
or interpreting graphs represented on coordinate systems as reported in the literature. That is, 
identifying whether a student is aware of the purpose of the coordinate system he has constructed 
and/or is reasoning upon can provide insight for his graphing activity. For example, when a 
student constructs axes, examining whether he is (a) attempting to quantitatively organize a 
particular situation, (b) representing magnitudes of quantities abstracted from an outside 
situation, or (c) attempting to reproduce an image from their prior classroom instruction can be 
informing. Similarly, for a student who draws graphs by connecting points without considering 
what happens between points (Yavuz, 2010), it could be insightful to investigate whether the 
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student understands points as representing the coupling of two quantities (Saldanha & 
Thompson, 1998) disembedded from the situation.  

The lack of explicit attention to the two uses of coordinate systems can become problematic 
when a student interprets what a teacher or researcher intends to be a quantitative coordinate 
system as a situational coordinate system. In such a case, the student will be constrained, at best, 
to reasoning about points and lengths in graphs as opposed to reasoning about the contextualized 
quantities outside of the perceptually available graph. Such an interpretation may explain why 
researchers report students treating graphs as literal representations of a situation (e.g., 
interpreting a time-speed graph of a biker as the biker’s traveled path) (Clement, 1989) or why 
some students have difficulty “distinguishing between visual attributes of a physical situation 
and similar perceptual attributes of the graph of a function that models the situation” (Oehrtman 
et al., 2008, pp. 153). 

Looking forward, we intend for our conceptual analysis to be a tool for empirical research 
examining students’ construction of coordinate systems and graphing activities. Furthermore, 
because a quantitative coordinate system presupposes some situational coordinate system, we 
hypothesize that many of students’ difficulties interpreting and constructing graphs within 
quantitative coordinate systems can be explained by students’ challenges in constructing 
situational coordinate systems. Even if an individual is capable of constructing a situational 
coordinate system, transitioning to a quantitative coordinate system is nontrivial. If an individual 
has constructed a situational coordinate system in the bottle problem, for example, establishing a 
quantitative coordinate system requires transforming a volume in the situational coordinate 
system to a directed length on a number line; this transformation cannot be taken for granted 
when teaching and researching students’ graphing activity. As such, we argue students need 
experiences constructing situational coordinate systems prior to constructing quantitative 
coordinate systems and we echo others’ calls (e.g., Thompson & Carlson, 2017) for more 
research on how students map quantities onto number lines.  
Using the Framework to Reflect on Curriculum and Teaching 

Our framework can be used to analyze mathematical tasks. For example, students’ thinking 
of a graph as a picture of a physical situation may be unsurprising when students are, at times, 
presented with graphs that seem to conflate the two uses of coordinate systems. In Task F 
(Figure 5), we see a quantitative coordinate system used for relating time and distance. Yet, the 
use of arrows and labels in the text is problematic from our perspective. The stoplight, school, 
and school zone are not represented physically on this graph as the arrows seem to indicate. 
These objects exist in a space different from the coordinate plane established by the quantities 
time and distance. We hypothesize that conflations between quantitative and situational 
coordinate systems in mathematical tasks can lead to students’ difficulties in graphing activity. 
In analyzing tasks, we also noticed that many graphing exercises in textbooks did not explicitly 
include quantitative referents for axes, which is consistent with the analysis of pre-calculus and 
calculus textbooks reported by Paoletti et al. (2016). They found that popular pre-calculus and 
calculus textbooks almost exclusively used graphs to represent decontextualized functions of x 
and y. Absent of any quantitative referents, students are likely left with little choice but to 
interpret these decontextualized graphing tasks in terms of situational coordinate systems. This is 
problematic as a common way STEM fields communicate information is through graphical 
representations of two (or more) covarying contextualized quantities.  
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Figure 5. Task F: (Holliday, Cuevas, McClure, Carter, & Marks, 2006, p. 95) 

Also relevant to our distinction, Paoletti et al. (2016) found that although many STEM fields 
(e.g., Biology, Chemistry, medicine) often use quantitative coordinate systems to represent two 
or more covarying quantities in their practitioner journals and textbooks, other fields (e.g., 
engineering, physics) commonly employ situational coordinate systems to mathematize a 
situation or phenomena. This difference between the use of coordinate systems in pre-calculus 
and calculus textbooks and other STEM fields may help explain why students often do not see 
connections between the mathematics they learn in mathematics classes and the mathematics 
they use in STEM courses (Britton et al, 2005). We encourage mathematics educators to provide 
students with opportunities to develop a balanced understanding of both uses of coordinate 
systems because it is important for their mathematical development as well as potential future 
STEM courses and careers.  
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The body of research examining students’ graphing understandings across STEM fields indicates 
students are not developing productive meanings for graphs. We conjecture such failings may, in 
part, be explainable by features of students’ use of coordinate systems and graphing activity that 
are under examined. In this theoretical report, we present a conceptual analysis of different ways 
students may reason about graphs and coordinate systems. Specifically, we describe two 
different uses of coordinate systems—spatial and quantitative—students might leverage and two 
ways of reasoning—static and emergent—students might engage in as they construct or interpret 
graphs. We characterize how a student may engage in each kind of reasoning in each use of 
coordinate system. We intend this paper to serve as a theoretical lens for future empirical studies 
examining students’ developing graphing understandings.  

Keywords: Cognition, Learning Theory, Spatial Thinking  

There is a need for U.S. students to enter STEM fields, with mathematics often serving as a 
“gatekeeper” for student success in these fields (Crisp, Nora, & Taggart, 2009). As such, it is 
important for students to have experiences in their K–12 schooling that are attentive to the needs 
of potential STEM coursework and careers. A common way STEM fields communicate 
information is through graphical representations. Paoletti, Rahman, Vishnubhotla, Seventko, and 
Basu (2016) analyzed the graphs depicted in commonly used STEM textbooks and practitioner 
journals, finding the most common uses of graphs were to mathematize a spatial situation or 
phenomena (e.g., Figure 1, left) or to represent two covarying quantities (e.g., Figure 1, center). 
In contrast, the researchers noted most graphs in popular precalculus and calculus textbooks were 
used to represent two decontextualized quantities (e.g., Figure 1, right). Hence, there are 
discrepancies between the graphs students experience in their math classes and are expected to 
interpret in other STEM fields. 

Researchers have identified persistent difficulties students experience as they engage in 
constructing and interpreting graphs in their mathematics (e.g., Leinhardt, Zaslavsky, & Stein, 
1990) and science courses (e.g., Potgieter, Harding, & Engelbrecht, 2008). For instance, 
researchers have identified a range of difficulties including (a) drawing graphs by connecting 
points without considering what happens between points (Yavuz, 2010); (b) treating graphs as 
literal representations of a situation (e.g., interpreting a time-speed graph of a biker as the biker’s 
traveled path) (Clement, 1989); and (c) attending to one quantity while ignoring other quantities 
(i.e. reasoning variationally) (Leinhardt et al., 1990). Collectively, this research indicates 
instructional approaches have not provided students sustained opportunities to develop 
meaningful ways of understanding and interpreting graphs. 

Dewey (1910) stated, “vagueness disguises the unconscious mixing together of different 
meanings, and facilitates the substitution of one meaning for another, and covers up the failure to 
have any precise meaning” (p. 130). In this report, we attempt to clarify a vagueness, in Dewey’s 
terms, regarding how students may think about graphs and coordinate systems. We hypothesize 
supporting students becoming explicitly aware of the subsequent distinctions may alleviate some 
difficulties students experience as they engage in graphing activity. In this theoretical report, we 



Theory and Research Methods 
	

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1316 

present a conceptual analysis of different ways students may reason about coordinate systems 
and graphs. Specifically, we describe two different uses of coordinate systems—spatial and 
quantitative (Lee & Hardison, 2016)—and two ways students might reason as they construct or 
interpret graphs within these coordinate systems—static and emergent thinking (Moore & 
Thompson, 2015). For each use of coordinate system, we characterize how a student may engage 
in each kind of graphical reasoning, creating a framework that will be useful for future studies.   

 

   
Figure 1. Examples of using coordinate systems to (left) mathematize space (Halliday, Resnick, 
& Walker, 2011), (center) represent two covarying quantities (Brown et al., 2012), and (right) 

represent two decontextualized quantities (Glencoe, 2014). 

Conceptual Analysis 
In this theoretical report, we present a conceptual analysis of ways students may reason about 

graphs and coordinate systems; we intend for this conceptual analysis to inform future empirical 
research. Thompson (2008) characterized several uses of conceptual analyses; we leverage two 
of these uses, namely “describing ways of knowing that might be propitious for students’ 
mathematical learning,” and “describing ways of knowing that might be deleterious to students’ 
understanding of important ideas and in describing ways of knowing that might be problematic 
in specific situations” (p. 46). We present our first-order models (Steffe & Olive, 2010) of how 
students may reason about graphs and underlying coordinate systems. These models are based on 
research examining students’ graphing understandings (e.g., Moore & Thompson, 2015), 
research examining students’ construction and use of coordinate systems (e.g., Lee, 2017), 
principles of quantitative reasoning (Thompson, 2011), and our experiences working with 
students. We point the reader to examples from extant literature in which we infer students are 
engaging in reasoning compatible with our conceptual analysis.  

Bridging Two Theoretical Frameworks 
In this report, we examine how a distinction between two uses of coordinate systems and a 

distinction between two ways of thinking about graphs (i.e., traces within coordinate systems) 
can create four different ways students may construct or reason about graphical representations 
within coordinate systems. Below, we describe two frameworks: one for students’ 
understandings of coordinate systems and one for students’ thinking about graphs.   
Two Uses of Coordinate Systems 

Lee and Hardison (2016) found curricular materials often give students rules for “generating” 
a Cartesian plane and plotting points within it, and these materials rarely address students’ 
conceptions of coordinate systems. They (Lee, 2016; Lee & Hardison, 2016; 2017) have 
distinguished between two uses of coordinate systems in students’ thinking: spatial coordination 
and quantitative coordination.  
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Spatial coordination refers to an individual using a coordinate system to represent or 
mathematize a space or physical phenomena. This involves establishing spatial frames of 
reference (Levinson, 2003; Rock, 1992), such as a reference point or orienting vectors, to locate 
objects within the space or physical phenomena (e.g., Figure 1, left). In this case, an individual 
can produce quantities by measuring attributes of the space/situation using the established frames 
of reference and thus coordinate such measurements to locate objects in the space or situation 
(e.g., a map).  

Quantitative coordination refers to an individual coordinating sets of quantities by obtaining 
a geometrical representation of the product of measure spaces. In this case, the quantities being 
coordinated are already established and abstracted from the space/situation and superimposed 
onto some new space. This use of coordinate system, as a result of coordinating quantitative 
frames of reference (Joshua, Musgrave, Hatfield & Thompson, 2015), allows the individuals to 
coordinate quantities and construct graphs representing relationships between these quantities 
(e.g., Figure 1, middle). These graphs are not projections of physical objects or phenomena onto 
the same space containing the original objects or phenomena. 
Static and Emergent Shape Thinking 

Moore and Thompson (2015, under review) differentiated between students’ static and 
emergent shape thinking. A student’s static shape thinking entails his thinking of a displayed 
graph as a shape (i.e. graph-as-wire) that can possibly be manipulated (e.g., translated, rotated). 
In such a case, properties of the perceptual shape and the shape itself are the focus of the 
student’s thinking. For instance, a student emphasizing the properties of a shape may argue that a 
straight line moving up from left-to-right unquestionably represents a linear function with a 
positive slope even if positive x-values are represented to the left of the y-axis in the Cartesian 
coordinate system or if the line is represented in the polar coordinate system.  

Moore and Thompson also noted static shape thinking can take the form of students’ making 
iconic or thematic associations (e.g., Clement, 1989; Leinhardt et al., 1990). A student reasons 
iconically when he incorporates visual features of an event in a graph (e.g., drawing a graph 
resembling a hill because a biker is traversing a hill). A student reasons thematically when he 
incorporates aspects of a phenomena in his graph that are unnecessary from the researcher’s 
perspective (e.g., an object traveling at a varying speed necessarily implying a curved graph).  

In contrast to static shape thinking, Moore and Thompson characterized emergent thinking as 
conceiving a displayed graph simultaneously in terms of “what is made (a trace) and how it is 
made (covariation)” (2015, p. 785). Critical to such a conception is a student’s construction of a 
point on a graph as a multiplicative object; when using the term multiplicative object, Thompson 
and colleagues draw on Piaget’s notion of “and” as a multiplicative operator. Specifically, 
Thompson, Hatfield, Yoon, Joshua, and Byerley (2017) noted, “A person forms a multiplicative 
object from two quantities when she mentally unites their attributes to make a new attribute that 
is, simultaneously, one and the other” (p. 98). Hence, when reasoning emergently, a student 
understands a point as simultaneously representing two quantities and imagines a graph being 
created by the trace of the point as the quantities vary. 

A student with sophisticated emergent thinking may, at times, appear to treat a graph as a 
static shape (e.g., ‘shifting’ the graph in a direction) for various reasons whilst being able to 
unpack the static thinking in terms of the graph’s emergence. Although such ‘shifting’ activity 
could indicate static thinking, if the student is able to unpack his new graph in terms of 
representing an emergent trace constituted by the new distances, such reasoning would constitute 
emergent, rather than static, thinking in the quantitative coordinate system. 
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Static or Emergent Thinking in Spatial or Quantitative Coordinate Systems 
In combining the frameworks elaborated above, we differentiate between static and emergent 

thinking, which characterizes a student’s reasoning when producing or interpreting a graph (i.e., 
a trace within a coordinate system), and quantitative and spatial coordinate systems, which 
characterizes a student’s understanding of the coordinate system potentially containing a graph. 
We provide an example of each kind of reasoning using a billiard context at the Infinity Pool 
Hall. Additionally, we provide a description of student reasoning for each case. We reiterate 
these are first-order models of how students may reason; we point the reader to empirical 
examples where appropriate.  

Table 1: Four ways of reasoning about graphs within coordinate systems.  
  Ways of Reasoning About a Graph (Moore & Thompson, 2015) 
  Emergent Reasoning Static Reasoning 

Uses of Coordinate 
Systems 

(Lee & Hardison, 2016) 

Spatial 
Coordination 

Case A: Emergent thinking within 
a spatial coordinate system 

Case B: Static thinking within a 
spatial coordinate system 

Quantitative 
Coordination 

Case C: Emergent thinking within 
a quantitative coordinate system.  

Case D: Static thinking within a 
quantitative coordinate system 

 
Case A: Emergent thinking in a spatial coordinate system (Emergent, Spatial) 

To imagine a student reasoning emergently in a spatial coordinate system, consider a student 
seeing the red 3-ball moving from the left wall to the top middle pocket in a straight line (Figure 
2, top). If asked to describe the location of the red ball throughout its journey toward the middle 
pocket, the student may establish a spatial frame of reference consisting of a horizontal axis and 
a vertical axis through which the student can gauge the horizontal and vertical locations of the 
ball. Using this spatial frame of reference, the student can describe the ball’s movement in terms 
of varying horizontal and vertical distances within a spatial coordinate system. By conceiving of 
the ball’s location as simultaneously composed of vertical and horizontal components, the 
student conceives of the ball’s location as a multiplicative object and therefore can reason 
emergently about the ball’s path in terms of its horizontal and vertical components. Figure 2 
(bottom) depicts instances of a student’s potential emergent imagery when coordinating the 
ball’s trajectory in relation to its horizontal and vertical components.  

There are several features critical to a student reasoning emergently in a spatial coordinate 
system. First the student must conceive of an object or phenomena happening in a spatial system 
and imagine the object or phenomena as producing a trace in this space. The student then 
overlays a coordinate system onto the spatial system in order to explicitly coordinate and/or 
represent how the object or phenomena is producing the imagined trace in terms of the quantities 
represented in the coordinate system. Hence, the student must conceive of the object or 
phenomena as representable by a multiplicative object, which she can decompose as 
simultaneously representing the orienting quantities in the spatial coordinate system. The student 
can then explicitly coordinate how the orienting quantities are changing as the object moves or 
phenomena occurs to mathematize the situation. For an empirical example of a student reasoning 
emergently in a spatial coordinate system, see Lee (2016). 
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Figure 2. (top) Two instantiations of the red 3-ball traveling from the wall of the table to the 

pocket and (bottom) three instantiations of how a student may reason about the ball’s path as an 
emergent trace by coordinating its vertical and horizontal components. 

Case B: Static thinking in a spatial coordinate system (Static, Spatial) 
To imagine a student reasoning statically in a spatial coordinate system, consider the logo on 

an Infinity Pool Hall table (Figure 3, left). A student sees the logo, which he interprets as 
composed of two circles tangent at a point (i.e., shapes), and is tasked with describing the shape 
of this logo mathematically. To do this, the student defines a coordinate system by establishing a 
spatial frame of reference through which he could describe the location and shape of the logo. 
This includes choosing a reference point and defining orienting quantities. After constructing the 
spatial coordinate system, the student may mathematically describe the shapes in the logo within 
the coordinate system using known equations. For example, in Figure 3 (middle) a student 
decides to use Cartesian coordinates with the origin at the intersection of the circles, and 
describes each circle using memorized rules related to the general form of a circle, (x – h)2 + (y – 
k)2 = r2. Alternatively (Figure 3, right), a student might define a polar coordinate system as in 
Figure 3c, with the pole at the intersection of the circles and use the recalled formula r = acosθ.  

 

 
Figure 3. (left) A pool table with logo, and two possible ways to spatially orient the pool table 

and mathematize the circles in the logo in (middle) Cartesian and (right) polar coordinates. 

As exemplified in the above examples, static thinking in a spatial coordinate system entails 
(a) conceiving of a static shape or object to be located or described mathematically in a situation 
and (b) establishing a spatial frame of reference through which one can situate, coordinatize, and 
mathematize the shape. For an example of a teacher using coordinate systems in ways 
compatible with this description in their classrooms, see Disher (1995).  

In this example, we emphasize a student using memorized rules to mathematize the 
conceived shape, rather than reasoning about an emergent trace. We note that a student could 
demonstrate an understanding of analytic rules as representing an emergent trace of covarying 
quantities; in such a case, the student would not necessarily be reasoning statically when 
representing the ‘shape’ via an analytic rule if the shape’s emergence is implicit in his 
understanding.  
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Case C: Emergent thinking in a quantitative coordinate system (Emergent, Quantitative) 
To imagine a student thinking emergently in a quantitative coordinate system, consider a 

student seeing the red 3-ball’s path, now with the yellow 1-ball and blue 2-ball on the table 
(Figure 4, we positioned the balls and trajectory to mimic the cities and path of the car in 
Saldanha and Thompson’s (1998) Car Problem). The student may be asked to create a graph 
representing the red 3-ball’s distance from the yellow 1-ball and blue 2-ball as it moves to the 
pocket. After conceiving the quantities and how they vary, the student may construct a Cartesian 
coordinate system with the horizontal and vertical axes representing the red 3-ball’s distances 
from the blue 2-ball and yellow 1-ball, respectively. Having constructed a quantitative coordinate 
system, the student may construct an emergent trace within this coordinate system to represent 
the relationship between the 3-ball’s distance from the other balls (e.g., Figure 4a–d).  

We highlight several critical features in this example. First a student needs to conceive of two 
quantities covarying and intend to represent the relationship between the quantities. The student 
must then disembed (Steffe & Olive, 2010) the two quantities from the context and insert them 
onto two number lines to construct a quantitative coordinate system with the intention of 
simultaneously representing the two quantities in a product space. Each quantity would then be 
represented by one of the orienting quantities in the coordinate system (see Moore, Paoletti, and 
Musgrave (2013) for examples in Cartesian and polar coordinate systems). The student 
understands a point on the emergent trace in this quantitative coordinate system as a 
multiplicative object simultaneously representing the two quantities.  

 
Figure 4. Four instantiations of how an individual may reason about and represent the red 3-

ball’s distance from the blue 1-ball and yellow 2-ball as an emergent trace. 

Case D: Static thinking in a quantitative coordinate system (Static, Quantitative) 
We modify the same situation described in Case C to characterize how a student may reason 

statically while using a quantitative coordinate system. Recall, static thinking may entail 
graphically representing features of the situation. For instance, Figure 5 (center) shows a student 
duplicating the 3-ball’s path as a representation of the ball’s distance from the other two balls, 
and Figure 5 (right) shows a student using the balls’ and pocket’s relative locations as points on 
his graph. In both cases, we highlight that although the coordinate system is meant to represent 
(from the researcher’s perspective) the 3-ball’s distance from the 1-ball and 2-ball, the student 
may not explicitly use the coordinate system in this way. One indication that a student is 
interpreting the coordinate system quantitatively is if the student interprets her constructed graph 
by describing the 3-ball’s relative distance from the other two balls. For instance, in Figure 5 
(center), the student may describe that the 3-ball’s distance from the 1-ball increases at a constant 
rate with respect to its distance from the 2-ball (see Paoletti, 2015 for an empirical example).  

Reasoning statically in a quantitative coordinate system can be unproductive in several ways: 
(a) treating a graph in a quantitative coordinate system as a shape which can be moved around 
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the coordinate system without considering how the translation relates the underlying relationship 
between quantities, (b) engaging in an iconic translation while interpreting or creating a graph in 
a quantitative coordinate system, or (c) engaging in a thematic association while interpreting or 
creating a graph in a quantitative coordinate system. In each case, in order for the system to be a 
quantitative coordinate system from the student’s perspective, the student needs to make some 
indication that he is representing the quantities defined on the coordinate axes.  
 

 
Figure 5. Two examples of static thinking in a quantitative coordinate system. 

Concluding Remarks and Areas for Future Research 
In this report, we have presented a conceptual analysis that distinguishes meanings students 

may hold as they engage in graphing activity within coordinate systems. These distinctions can 
provide insights into some difficulties students experience as reported in extant literature. For 
instance, students representing the path of a biker (Clement, 1989) may be indicative, not of a 
misconception, but of the students leveraging a spatial coordinate system to mathematize a 
situation. In this case, and others, misconceptions identified in the literature may be partially 
explainable by students’ reasoning about coordinate systems and graphs in ways inconsistent 
with what the researcher (or teacher) intended.  

If we intend for curriculum designers, teachers, and students to maintain and convey 
particular meanings for graphs within coordinate systems, mathematics education researchers 
must be explicit about these meanings. We intend for the hypothetical models we elaborated, 
which explicitly address students’ meanings for both coordinate systems and graphs, to serve as 
a resource for future research into how students may develop understandings of spatial and 
quantitative coordinate systems, as well as graphs in these systems. Further, the similarity 
between the two uses of coordinate systems discussed here and the uses of coordinate systems 
observed by Paoletti et al. (2016) in STEM resources (e.g., Figure 1, left, middle) underscores 
the importance of students explicitly understanding and using coordinate systems for each 
purpose. Hence, there is a need to develop and test curricular materials that support students in 
explicitly understanding the differences between spatial and quantitative coordinate systems, as 
such differences are relevant for their potential future STEM studies and careers.  
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Teachers’ questioning is a pivotal contributing factor to support students’ engagement in 
productive mathematical collective argumentation. Following Habermas’(1998) construct of 
rational behavior, we attempted to demonstrate how teachers’ questioning can be framed based 
on this construct. Adapting Habermas’ construct with Toulmin’s (1958/2003) model for 
argumentation, we conducted a case study to analyze how a prospective secondary teacher used 
questions to support collective argumentation in one of her student teaching classrooms. We also 
explored how the prospective teacher’s interpretations of argumentation related to her use of 
rational questioning. The results suggested that this theoretical integration can be a useful tool 
to frame teacher questioning based on teachers’ intentions and organizations of argumentation. 
Some educational implications for teacher professional development are provided.  

Keywords: Classroom Discourse, Reasoning and Proof, Research Methods, Teacher Education-
Preservice  

Introduction  
Purpose Statement 

Developing mathematical reasoning is central to mathematics education. Considerable 
evidence suggests the beneficial effects of students articulating their mathematical reasoning and 
challenging others when engaged in collective mathematical argumentation (e.g., Krummheuer, 
1995). Collective mathematical argumentation can be defined broadly as “any instance where 
students and teachers make a mathematical claim and provide evidence to support it” (Conner, 
Singletary, Smith, Wagner, & Francisco, 2014, p.44). Collective mathematical argumentation 
occurs in a mathematics class when the teacher and students (or a small group of students 
working independently) work together to construct or reject mathematical arguments.  

Facilitating productive mathematical argumentation is challenging for many new teachers. 
As stated in Principles to Actions: Ensuring Mathematics Success for All (National Council of 
Teacher of Mathematics, 2014), effective mathematics teachers are expected to use purposeful 
questions to access students’ conceptual understanding and to advance students’ reasoning and 
sense making about important mathematical ideas and relationships. Teachers’ questioning has 
the potential to bring students into a conversation and promote participation, and the type and 
quality of questions can have significant impact on students’ engagement in productive 
argumentation. By examining teachers’ actions in support of student participation in 
mathematical argumentation, Conner et al. (2014) found that posing questions to elicit parts of 
arguments is a useful strategy that supports collective argumentation. Therefore, it is necessary 
to understand what factors influence teachers’ questioning and how teachers use different types 
of questioning to support collective argumentation in mathematics classrooms.  

Boero (2006) proposed that Habermas’ (1998) construct of rational behavior can become a 
frame to deal with the complexity of discursive practices in the intersection of three kinds of 
rationality: epistemic (inherent in the control of validation of statements), teleological (inherent 
in the strategic choice of tools to achieve the goal of the activity), and communicative (inherent 
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in the conscious choice of suitable means to communicate understandably within a given 
community). Researchers have highlighted the importance of Habermas’ (1998) construct as a 
tool to analyze didactical obstacles inherent in proving and argumentative activities (e.g., Boero, 
2011; Boero & Planas, 2014). Under the vygotskian didactical perspective, Douek suggested 
using rational questioning as a method to “organize the mathematical discussion according to the 
three components of rationality” (Douek in Boero & Planas, 2014, p. 210). The teacher plays an 
essential role in creating a suitable context to promote the vygotskian dialectics and develop 
argumentation.  

An interesting aspect of this construct is that Boero, Douek, Morselli, and Pedemonte (2010) 
illustrated the possible adaptation of combining Habermas’ (1998) construct and Toulmin’s 
(1958/2003) model for argumentation to study discursive practices related to proving and 
argumentative activities; they claimed that the combination of these two theoretical frameworks 
might provide a comprehensive frame that would allow one to better analyze students’ proving 
and argumentative activities in mathematics classrooms and support teachers as they plan and 
carry out rational classroom interventions.  
Research Questions 

The goal of this study is to build on Habermas’(1998) construct of rational behavior, and to 
integrate Toulmin’s (1958/2003) model for argumentation to ascertain the potential to use this 
tool to analyze teacher questioning through the lens of supporting mathematical collective 
argumentation. In addition, we are interested in how teachers’ interpretations of argumentation 
relates to their pedagogical choices for rational questioning. The following research questions 
guided this study: 

1. How does a prospective secondary teacher use rational questioning when guiding 
collective mathematical argumentation?  

o Which component of rationality is privileged in class? 
o What does rational questioning tell us about a teacher’s support for argumentation 

in class? 
o What combinations of components of rational questioning support students’ 

contribution of argument components? 
2. How does a teacher’s interpretations of argumentation align with his or her use of rational 

questioning?  

Theoretical Framework 
In order to make sense of classroom experiences, we need to broaden our interpretative 

stance by developing a sociological perspective on mathematical activity. For this purpose, in 
this study we employed the emergent perspective which emphasizes the idea that knowledge is 
created through actions and interactions, and that the development of an individual’s reasoning 
and sense-making processes cannot be separate from his or her participation in the social 
interaction of taken-as-shared mathematical meanings (Cobb, Yackel & Wood, 1992). 

According to Habermas’(1998) construct of rational behavior, we developed a Teacher 
Questioning Framework (see Table 1) by inferring the teacher’s intentions and consciousness in 
asking the question. The framework consisting of three components of rationality and we defined 
rational questioning as a question that contains at least one component of rationality. At times, 
for clarity, we call a question epistemic rational questioning if it contains an epistemic rationality 
component.  
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Table 1: Teacher Questioning Framework 
Component of Habermas’ 

Rationality 
Description of Questions Examples  

Epistemic Rationality The questions used not only 
allow students to provide and 
evaluate arguments or ideas but 
also intend to challenge students 
by asking them to reason and 
make sense of their arguments 
and ideas. 

Can you tell me why? 

Teleological Rationality The questions used allow 
students to show or reflect on the 
strategic choices that they used 
to achieve their arguments or 
ideas. 

What do we need to do to 
the cards in the hat to make 
sure that every single family 
member has an equally 
likely chance of being 
drawn? 

Communicative Rationality The questions used allow 
students to communicate or 
reflect on the steps involved in 
their reasoning and arguments to 
ensure that their ideas can be 
understandable in the given 
community. 

So will somebody raise their 
hand and tell me in their 
own words what they think 
it means to be equally 
likely?  

 
In education literature, Toulmin’s (1958/2003) model has been widely used to identify 

argument components (claims, data, warrants, rebuttals and backing) and analyze 
argumentative activities in classes (see Krummheuer, 1995 for more details on Toulmin’s 
model). Our adaptation of Toulmin’s diagrams (see Figure 1) includes the use of color and line 
style to record the contributor(s) of a component for a given argument and uses “Teacher 
Support” to denote teachers’ contributions and actions (for this specific study, we focused only 
on teachers’ questioning) that prompt or respond to parts of arguments (see Conner et al., 2014 
for more details on the development of the framework).  
 

 
Figure 1. Adaptation of Toulmin’s (1958/2003) Diagram for an Argument 
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In this study, we adapted Habermas’(1998) construct of rational behavior to analyze the 
rationality of teachers’ questioning and employed Toulmin’s (1958/2003) model to examine how 
a teacher used these rational questioning to teaching. 

Context and Methods  
Context 

This study is part of a larger project in which we are examining how teachers learn to support 
collective mathematical argumentation. The participant, Cathy (a pseudonym) was purposefully 
selected in this study based on her good understanding of argumentation as she participated in a 
unit on argumentation during her course work and be willing to support student engagement in 
argumentation during her student teaching. We observed Cathy’s classroom teaching during a 
statistics and probability unit which focused on chance processes and probability models. The 
main data sources in this study included (1) video recordings and transcriptions of one 
representative day of Cathy’s classroom teaching, (2) Cathy’s interactions during a unit of 
instruction on collective argumentation (the argumentation unit) at the beginning of her 
pedagogy course in the mathematics teacher education program, and (3) a reflection that Cathy 
wrote about argumentation based on her observations in secondary classrooms.  
Methods 

We used Teacher Questioning Framework (see Table 1) to establish our starting codes to 
examine teachers’ questioning in Cathy’s class. A simple enumerative approach was also used to 
quantify verbal data in order to explicate the patterns that emerged from the open-coding 
process.  Because we want to see how Cathy used her rational questioning to organize 
arguments, we used Toulmin’s (1958/2003) model to diagram every episode of argumentation in 
Cathy’s class, and we noted the parts of an argument that each question prompted. Finally, we 
used thematic analysis to understand Cathy’s priorities and thoughts about argumentation based 
on her classroom discussions in the argumentation unit at the pedagogy course and her written 
reflection about argumentation a few weeks into the course.  

 

Results  
Use of Rational Questioning 

According to our Teacher Questioning Framework (see Table 1), 66% (80/122) of Cathy’s 
questions involved rational questioning. Among these rational questions, the largest component 
was communicative rationality (83%), followed by teleological rationality (81%); and the portion 
that involved epistemic rationality was smallest (40%). Although Douek’s rational questioning 
seems to presuppose all three components of rationality, it is apparent that communicative 
rationality occupied a dominant position in Cathy’s class. According to our analysis, only 34% 
(27/80) of the rational questioning contained all three components of rationality. Moreover, we 
found that Cathy used a variety of combined forms of rational questioning: some questions 
included two or three components of rationality and others only involved one.  

Our diagrams of argumentation indicated that 59% (72/122) of Cathy’s questions were asked 
during argumentative activities. Among these questions, most of them (81%) contained at least 
one component of rationality, which showed that Cathy had the intention to use rational 
questioning to support collective argumentation. Additionally, for these rational questions that 
were involved in argumentation, most of them had a communicative rationality component 
(85%) and a teleological rationality component (75%), but only 33% (19/58) had an epistemic 
rationality component. An interesting aspect of this result is that compared to the percentage of 
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each rationality component Cathy used in her whole class, as reported previously, we found that 
little difference existed for Cathy in her use of rational questioning during argumentative 
activities and non-argumentative activities. 

According to the above results, Cathy showed a strong emphasis on developing her students’ 
communicative rationality. Some of her communicative rational questioning asked students to 
explain their reasoning steps (e.g., Can you explain a little bit?). Some of them asked students to 
communicate ideas more clearly (e.g., And which numbers are they?) or to rephrase a 
mathematical definition to ensure that their explanations were understandable in the given 
community (e.g., What does it mean for a coin to be fair?). Cathy also used communicative 
rational questioning to encourage more students to engage in collective argumentation; this 
process was evidenced by Cathy often waiting a couple of minutes to see more students’ raise 
their hands before she asked a student to answer her question. In addition, Cathy also pushed her 
students to evaluate and make sense of the claims and warrants that were provided by other 
students (e.g., Does it make sense why these two are counted separately?). According to our 
diagrams of argumentation, for rational questioning containing a communicative component, 24 
(out of 44) prompted claims and data/claims while only 13 (out of 44) prompted warrants, which 
means that Cathy mainly used communicative rational questioning to promote student 
participation in the construction of arguments.  

Within the rational questioning that contained a teleological component in Cathy’s class, we 
found that most all of these questions were strategically goal-oriented reasoning: Cathy first let 
the students find the possible results of an event, and she next asked them to conjecture whether 
these events had equally likely chances of happening. Sometimes she asked students to justify 
their answers by using the classical approach to probability. On a few occasions, Cathy wanted 
to highlight the importance of the strategic choice of using examples, and she asked her students 
to provide different examples of what it meant to be “equally likely”: “Is any, can anybody think 
of a different example? That might give you [an] equally likely [chance]?” 

Cathy used most of her epistemic rational questioning to push her students to justify why 
their arguments hold. For example, she asked, “Would you mind sharing your reasoning with the 
class?” However, only 33% of the rational questioning that contained epistemic components. 
Cathy’s goal for students was apparently less focused on epistemic rationality than on 
teleological and communicative rationality. This difference was also evidenced by our diagrams 
of argumentation, within which only 17 (out of 72) questions prompted warrants while 45 (out of 
72) prompted claims and data/claims.  

As mentioned above, some rational questions involved all three components of rationality 
(e.g., Can you explain to me why it’s going to be fifty fifty?), and we found that more than half 
(56%) of these questions helped students contribute warrants, which means these questions 
provided students opportunities to reason about and make sense of their arguments — one of the 
most important aspects of argumentation for students. Some of Cathy’s rational questions 
contained only teleological and communicative components (e.g., Can somebody remind me 
how I find the volume of any prism? I will wait until I see a few more hands.), and among these 
questions, 11 (out of 19) prompted students’ claims and data/claims. Cathy used this kind of 
rational questioning to ask students to communicate their arguments and to focus on the strategic 
tools that they used to solve the problem.  
Interpretations of Argumentation 

By examining portions of classroom discussions during the argumentation unit that Cathy 
participated in and her written reflections about argumentation, we discovered two clear themes. 
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First, Cathy regarded the role of teachers as asking questions and calling on students to 
participate. For example, during an in-class discussion in the argumentation unit, Cathy stated, 
“The role of the teacher is to facilitate, asking questions, and choosing students to participate…” 
Another theme that emerged concerned Cathy’s desire that students be the main contributors to 
the arguments. In her written reflection, she explained that an effective argument should involve 
multiple students, and she labeled as an ineffective argument as one that involved only one 
student.  

Our analysis suggests that Cathy’s interpretations of argumentation align with her use of 
rational questioning to support collective argumentation during her student teaching classroom 
practice. Most of the rational questioning that Cathy asked contained a communicative 
rationality component, which aimed to bring students’ voices into the discussion and encouraged 
more students to participate in collective argumentation. Data from Cathy’s student teaching 
showed that she used communicative rational questioning not only to encourage students to 
communicate their ideas more clearly but also to provide opportunities for her students to lead 
the classroom discussion. For example, she would ask questions such as the following: “Can I 
have a volunteer go to the board and help us find the unit rate?” Several times after a student 
gave a claim and warrant, Cathy used communicative rational questioning — “Does anybody 
have any questions for Ashley?” — to intentionally slow down the presentation to make sure it 
made sense to others and to inspire students to critique one another’s arguments. The large 
number of communicative rational questions and the way Cathy used them throughout her 
student teaching seemed consistent with her belief that the teacher was responsibility for 
promoting student engagement. Cathy also used teleological and epistemic rationality 
questioning to support of her idea of the teacher as a facilitator and used teleological rationality 
in her questions to strategically develop goal-oriented reasoning, and then followed up with 
epistemic rational questioning to request further explanations from her students.  

In addition, we noticed that 34% (42/122) of the questions were non-rational, which could be 
categorized into two types of questions. One type of non-rational questions was either/or 
questions that were situated in argumentative activities, which prompted claims and asked 
students to construct results for the final step of argumentation. An example of this type of 
question would be as follows: Is it equally likely or not equally likely? Another type of non-
rational questions was used to present information. For example, Cathy often asked students to 
read the task. She also asked several factual questions in order to create a probability problem 
context. We labeled these types of questions as contextual questioning, which may be specific to 
teaching probability. The way in which Cathy used non-rational questioning showed that instead 
of giving all the information herself, she asked students to provide data and final claims in the 
arguments, which aligned with her goal of promoting participation among the students.  

Discussion  
Many researchers have used Habermas’(1998) construct to conduct studies that centered on 

students (e.g., Morselli & Boero, 2011), and our study showed that this theoretical framework 
can also be used to investigate teachers’ intentions when they ask specific kinds of questions. 
Some researchers have categorized types of teachers’ questioning within classroom discourse 
(e.g., Wood, 1998). The integration of Habermas’ construct with Toulmin’s (1958/2003) model 
as a tool to analyze teachers’ questioning provides us with a more comprehensive perspective for 
understanding the roles of teacher questioning within collective argumentation. The two models 
complement each other in the following sense: Habermas’ lens help us to identify fine grained 
rationality components of teachers’ questioning and also how teachers’ questioning is 
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constrained in relation to the three components of rational behavior; the teacher then using 
rational questioning to control the fundamental steps of argumentation is seen through Toulmin’s 
lens. We see the function of rational questioning as fully implementing an approach that pushes 
students to make sense of arguments, to strategically choose effective tools or methods in 
problem-solving, and to communicate understandably in a given community, which are essential 
goals of collective argumentation. This study provides empirical evidence to support Boero et 
al.’s (2010) idea about the value of integrating Habermas’ elaboration of rational behavior with 
Toulmin’s model for argumentation to deal with the complexity of learning and teaching 
activities, particularly with respect to proving and argumentative activities.   

Douek, in Boero and Planas (2014) suggested that teacher’s rational questioning can support 
students’ “rationalization” of discourse and develop mathematical discussions along the three 
components of rationality. Based on our analysis, most of the questions that were posed by Cathy 
to support collective argumentation were connected to the three components of rationality. 
Moreover, in this study we found that Cathy used different combinations of rational questioning 
in her class, and most of them involved only one or two rationality component. According to our 
analysis, these kinds of rational questioning can also support collective argumentation, and the 
function of different kinds of rational questioning may vary across different classroom activities.  
More research is needed to explore whether any other forms of combinations can support 
argumentation and when are the best times and contexts for teachers to use them.  

Although the study showed that Cathy’s rational questioning included all three components 
of rationality, we found that the epistemic component made up a relatively small portion. This 
result raises an important question: Why do some components of rationality occur less frequently 
than others? One reasonable explanation from our study is that teachers attempt to use different 
kinds of rational questioning based on their interpretations of argumentation during course work. 
We also considered that a teacher’s use of different kinds of rational questioning may depend on 
different mathematical domains, content, and various contexts in the classroom (e.g. whole class 
discussions or small group discussions). In this study, we only analyzed one of Cathy’s 
probability classes, and more studies are needed to explore what factors influence a teacher’s 
intentional choices of different kinds of rational questioning.  

Implications 
Our results indicated that Cathy was primarily concerned about her students’ participation 

and thought that the role of teacher was a facilitator; these themes remained consistent with the 
way she adopted rational questioning during her student teaching. Cathy seemed to take her 
interpretations of argumentation into her student teaching placement, and it is reasonable to infer 
that the argumentation unit in her pedagogy course may have influenced her use of questioning 
for instruction. Our results also suggest that teacher education programs should demonstrate the 
power of collective argumentation and promote teachers’ understanding of the roles of a teacher 
in questioning.                                                 

As mentioned above, Cathy used almost the same proportion of different kinds of rational 
questioning when she led argumentative activities and non-argumentative activities, which 
showed that Cathy’s intention to strategically use rational questioning as a tool to support 
collective argumentation spilled over into her regular instruction. More research is necessary to 
examine how to use the three components of rationality in questions at the moment when 
argumentation does not develop or when argumentation is begun but breaks off. We hypothesize 
that understanding specific components of rational questioning could help teachers to integrate 
multiple questioning strategies to support collective argumentation in a specific content and in a 
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specific context. Future studies should continue to analyze the benefits of rational questioning 
and how can it be incorporated into teacher education program to make it more approachable to 
prospective teachers.  
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This paper considers the intra-actions between poststructural theories and mathematics 
education over the last 40 years and considers how these theories have resulted in different ways 
to think students, teachers, and knowledge production. I argue that thinking in intra-action with 
various and different theories can allow us to ask different questions and radically rethink school 
mathematics. 

Keywords: Research Methods, Equity and Diversity 

At the opening plenary of PME-NA Rochelle Gutiérrez (2017) proposed to the mathematics 
education research community that “interaction between different knowledges, different ways of 
knowing and different knowers” (p. 2) could serve to respond to and perhaps address the 
precarious state of our planet and our relationship with it. Gutiérrez is not the first leader in the 
field of mathematics education research to call on the community to consider not only the what 
of mathematics education but also the how. William Tate (1995) called on the community to 
consider policy in relation to equity in mathematics education. He commented that he found the 
“paradigmatic boundaries of mathematics education somewhat narrow,” and he intentionally 
modeled his work after scholars who “crossed the epistemological boundaries of their fields to 
provide a more cogent analysis of important issues facing African Americans” (pp. 425-426).   
In this paper, I will consider research in mathematics education that has already crossed 
epistemological boundaries to open up spaces for mathematics educators, teachers, and students 
to think themselves, mathematics, and schools differently. I will then explore Barad’s (2007) 
construct of intra-action and the potential possibilities it offers for qualitative methodology, 
specifically in mathematics education. Finally, I will come back to calls by Gutiérrez (2017), de 
Freitas and Sinclair (2014), and Martin (2015) to consider how possibilities for ethical action are 
structured by the ways we do and think research. 

Theory and Qualitative Research in Mathematics Education   
de Freitas and Walshaw (2016) describe their approach to theory as impacting their thinking 

and meaning-making, explaining that “the act of defining or creating new concepts is precisely 
what theory has the potential to do. Thus, theory is a creative tool, an inventive approach to 
making meaning, as well as being an intervention into current cultural practices” (p. 4). In this 
frame, theory becomes not just something that you think about prior to research or something 
that you apply to research, but something that inevitably impacts the meaning that is made 
through research.  

Stinson and Walshaw’s (2017) chapter on theoretical frontiers in mathematics education 
research explains that theory has not always been considered a foundational aspect of 
mathematics education research. As theory gains space and attention in the field of mathematics 
education, the question of which theory to use will continue to surface. Rather than thinking 
about which theory is best, perhaps mathematics educators can consider how theories have 
functioned to allow us to “move toward the unthought” (St. Pierre, 1997, p. 185) and ask, what 
other important thoughts have we yet to think or unthink that matter in mathematics education?  
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Poststructuralism has intersected with mathematics education for decades, and mathematics 
educators use of poststructural theories have made it possible to consider how meaning and 
knowledge get made and whose “interests are privileged, marginalized, or silenced” (Stinson & 
Walshaw, 2017, p. 139). Poststructural theories have also been taken up to allow a different view 
of teachers and students as subjects that are constituted through interactions with the powerful 
discourses of school mathematics, education, and gender. 

Walkerdine (1994) drew on poststructural theory to consider the production of the 
“appropriate” mathematical subject, arguing that “theories of the development of reasoning when 
incorporated into education become ‘truths’ which actually serve to produce the desired kinds of 
subjects as normal and pathologizes differences” (p. 65). Walkerdine was particularly interested 
in the effects of gender and class on subject formation in mathematics classrooms. She pointed to 
the ways in which girls were positioned as compared to boys. Her work pointed to the need to 
recognize the meaning in the practices that mathematics educators carry out and the limitations 
they, sometimes inadvertently, put forward in how students can live. Similarly, Mendick (2005) 
questioned why and how particular girls seemed to freely choose paths that reified their 
oppression. She found that girls were less likely to enroll in accelerated mathematics classes 
despite equal or higher achievement on math assessments. She used poststructuralism to question 
the assumptions that math is legitimately powerful and that gender is a natural binary.  
Margret Walshaw (2004) describes the “postmodern analytical edge … invites a less certain 
space for research, pedagogy and practice” (p. 4) that has allowed mathematics educators to 
recognize and disrupt taken for granted assumptions.  

Though poststructuralism has taken on the humanistic stable subject and the power of 
discursive formations, it has been critiqued for its focus on the linguistic and lack of attention to 
the material. In the materialistic turn, where the question of what matter matters has been raised, 
new understandings and theorizations of quantum mechanics and environmental concerns have 
come together to produce theories that undo the nature culture divide and decenter the human as 
privileged caretaker or dominator of the earth. van der Tuin and Dolphijn (2010) explain that 
new materialism is fascinated by affect, force and movement as it travels in all directions. It 
searches not for the objectivity of things in themselves but for an objectivity of actualisation and 
realisation... It is interested in speeds and slownesses, in how the event unfolds according to the 
in-between. (p. 169) 

Like poststructuralism, the key tenants of these new materialisms function to trouble binaries 
and distinctive boundaries. In addition, new materialist theories take seriously what matter 
matters and how it comes to matter.  

Barad—a feminist, philosopher and quantum physicist—introduced many useful and 
important figurations in the last two decades as she imagined her agential materialism into being. 
Through her concept of intra-action, Barad (2007) denies the existence of individual separate 
beings and objects through the exploration and study of Niels Bohr’s “philosophy-physics” (p. 
24). Intra-action is born out of the recognition that things are not discrete but are always already 
entangled. Interaction implies separate entities that take individual action towards or away from 
each other. Instead, Barad considers intra-action that is always taking place between “two 
mutually entailed folds of the same realm” (de Freitas and Sinclair, 2014, p. 46).  

In Barad’s view, matter and meaning are co-constituted and inseparable. Just as matter and 
meaning cannot be separated, so too epistemology, ontology, and ethics cannot be thought apart. 
We are “part of that nature that we wish to understand” (Barad, 2007, p. 26). Since, things are 
not thought of as separate and discrete, neither can they have individual agency, “rather what is 
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understood as ‘agency’ in the relational materialist approach is a quality that emerges in-between 
different bodies involved in mutual engagements and relations” (Hultman & Lenz Taguchi, 
2010, p. 530). In a research setting then, we can no longer think the researcher as an objective 
separate observer, who studies from afar to know a subject. Instead, researcher, students, 
teachers, materials are mutually entangled and constituted and come to know “from a direct 
material engagement with the world” (Barad, 2007, p. 49).  

New materialisms and in particular Barad’s agential realism are beginning to be taken up by 
mathematics educators and are effecting/affecting the types of knowledge that are being 
produced through research. de Freitas and Sinclair (2014) bridge the fields of philosophy, 
mathematics and feminism, pulling the threads of various (and differing) theories to put forward 
a new form of materialism that they term inclusive materialism, which troubles traditional 
humanist and rationalist notions and takes up the aesthetic, affective, and material as mattering.  
Inclusive materialism functions in their work to allow them to conceive of school mathematics as 
reconfigurable into what they imagine as a minor mathematics that is “not the state-sanctioned 
discourse of school mathematics but that might be full of surprises, non-sense and paradox” (de 
Freitas & Sinclair, 2014, p. 226). This is an ethical move for them, though they recognize that 
this mathematics will be “at odds with current institutional demands. However, a minor 
mathematics is likely to engage students and teachers in more expansive ways, and our hope is 
that it would engage more students in mathematics” (de Freitas & Sinclair, 2014, p. 226).  
As in the review of poststructural theories, in thinking with Barad and inclusive materialism a 
new conception of methodology was necessary. de Freitas and Sinclair (2014) show how 
inclusive materialism might alter the way we think about embodiment of mathematical concepts, 
offering alternate ways of studying how students learn concepts and of how we might choose and 
order concepts as part of a curriculum sequence. When concepts are animated differently, 
learning is similarly altered. Inventive acts in classrooms become part of a growing material 
assemblage, a process of embodiment in which the potentiality of the body is emphasized.  

Implications for Enactment of Qualitative Methodology in Mathematics Education 
Though Barad’s conception of onto-epistemology and the collapsing of knowing and being 

are important and productive in how we think mathematics education, given Gutiérrez’s (2017) 
and Martin’s (2015) demands, it is Barad’s inclusion of ethics and her view on responsibility that 
could really matter for students and researchers in mathematics education. Her concept of intra-
action demands a relational ethics, as being and knowing are entangled, so, too, is living well and 
in respons-ability to all others. Barad (2007) proposes, ethico-onto-epistem-ology—an 
appreciation of the intertwining of ethics, knowing, and being— since each intra-action matters, 
since the possibilities for what the world may call out in the pause that precedes each breath 
before a moment comes into being and the world is remade again, because the becoming of the 
world is a deeply ethical matter. (p. 185) 

Our ontologies, epistemologies, and ethics cannot be separated out. They are entangled in the 
production of our worlds and our lives. As we make choices in how we live and research we are, 
according to Barad’s (2007) agential realism, making cuts. We are engaged in boundary-making 
practices that categorize and classify: “Cuts are enacted not by willful individuals but by the 
larger material arrangements of which ‘we’ are a ‘part’” (p. 178). These cuts have material 
effects. For example, in Gutiérrez’s (2008) work around the achievement gap, she points to cuts 
that are made around black and brown bodies that produce them as deficient and lacking. Cathy 
O’Neil (2016) argues convincingly that mathematics has material effects on people’s lives and 
discriminatively negative effects on the poor. Far from being an abstract and static discipline that 
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it is sometimes assumed to be, mathematics is intimately entangled in our lives as it continues to 
serve as a proxy for truth and privilege. The way that we do and use mathematics and the way 
that we do qualitative research matters. The models that we set up, in Barad’s (2007) terms—the 
apparatus within which we are entangled—determine reality (O’ Neil, 2016). In each intra-
action, we determine reality and reconfigure our worlds. These determinations cannot be made 
ahead of time and cannot be rule-bound or universalized. This brings us again to calls by 
Gutiérrez (2017), Martin (2015), and de Freitas and Sinclair (2014), especially as educational 
researchers. How do we work to continually pose questions to ourselves/each other that take into 
consideration how we might all live differently? I propose that we as mathematics educators be 
open and uncertain about what possibilities thinking/being differently in ethical relation with 
mathematics education might open up. Research over the last forty years has shown that 
reconfiguration is possible, and we may have to unlearn some of what we know to achieve the 
needed radical reconfigurations in the next forty. 
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Productive disciplinary engagement (PDE; Engle & Conant, 2002) describes classroom 
situations where students publicly engage in disciplinary practices. Researchers have argued 
that PDE is fostered when students engage in problematizing, where they grapple with genuine 
uncertainty about mathematical objects, among other characteristics.  Building on work by 
Zaslavsky, this paper advances a framework to capture the nature of uncertainty in mathematics 
classrooms.  

Keywords: Problem Solving, Research Methods, Curriculum, Middle School Education 

Introduction 
Problematizing is a core principle of classrooms that embody productive disciplinary 

engagement (PDE) (Engle & Conant, 2002). Engle (2011) articulates problematizing as 
situations involving “uncertainties...related to the discipline...to be taken up by students.” 
Although some existing work has operationalized other principles of PDE, such as authority and 
accountability, measuring the extent to which students are engaging in problematizing is less 
well-defined in existing literature. While existing research has modeled uncertainty when 
students participate in group work (Wood & Kalinec, 2012) and the linguistic basis for verbal 
expressions of uncertainty (Martin & Rose, 2003; Rowland, 1995), uncertainties that arise during 
problematizing are tied to the mathematical work students are engaged in. Engle (2011) suggests 
that uncertainties which arise in situations of PDE include (1) competing claims; (2) unknown 
path; (3) questionable conclusion; (4) non-readily verifiable outcome; and (5) other.  Our work 
seeks to extend these initial categories to generate a comprehensive framework of situations of 
uncertainty when students grapple with open mathematical problems. 

Methods 
To generate the framework, we used an iterative process to code video recordings of 

classroom episodes where students were engaged in solving open problems. Our video data came 
from one lesson taught across two class periods in an 8th grade mathematics classroom in a rural 
school setting, collected in the late spring. The lesson was based on an investigation in the 
Connected Mathematics (CMP) curriculum (Lappan, Fey, Fitzgerald, Friel & Phillips, 2006), a 
curriculum used in this school from 6th to 8th grades. The teacher had taught from CMP in prior 
years. The specific lesson features students engaged in finding and generalizing patterns to find 
an algebraic expression for the number of tiles around a square pool, given any side length. The 
video shows the teacher’s launch of the problem, small group work as students explore the 
problem, and a summary discussion of different groups’ solutions and strategies.  

We used iterative processes (Shaffer, 2017) to generate categories in our framework. The 
process began with individual open coding by each member of the research team to describe the 
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uncertainties observed through students’ spoken words, gestures, postures, and silences. Next, 
we engaged in several iterative cycles of axial coding (Strauss & Corbin, 1998) to collectively 
compare codes against the data and existing codes in order to restructure and refine the 
framework to account for students’ processes. In the final iterative cycles, we looked for overlap 
in our descriptions of types of uncertainty and worked to eliminate any redundancies. We then 
compiled the framework and individually re-coded the video data to determine that all 
uncertainties could be coded with the refined framework. 

The Framework 
The process described in the Methods section yielded the framework shown in Figure 1. 

Building from work by Engle (2011) and Zaslavsky (2005), our modified categories include 
uncertainty about: (1) What action to take - students have uncertainty about what to do, where 
they may feel unable to begin or continue working; (2) Justifying actions or outcomes - students 
don’t know how to verify, check, or justify what they are doing or some outcome of 
mathematical work; (3) Meaning of conclusion - students have or are presented with a final 
result, but are uncertain about what it means or how to apply it more broadly; and (4) Competing 
alternatives - two or more mathematical ideas arise that cause hesitation or uncertainty. 
Competing alternatives may occur during any stage of problem solving and is not necessarily 
independent of other types of uncertainty. Further, uncertainties do not necessarily arise in a 
linear fashion, and the resolution of one uncertainty might give rise to others.  
 

Categories of Uncertainty 

Code Definition 

A. What Action to Take 

1. What a mathematical object 
represents 

Students have hesitation/questioning about the possible meaning conveyed by 
a mathematical object (i.e. a diagram, shape, expression/equation, graph, table) 

2. What does [part of problem 
context] mean? 

Students are unsure about what is meant by some detail of the problem 
statement or part of the problem context. 

3. How to create or use 
something 

Students are uncertain about how to use the tools they have to achieve their 
desired goal. 

4. What is the goal? What is to 
be created? 

Students are unsure about what the problem is asking them to do or what they 
are trying to accomplish. 

B. Justifying Actions or Outcomes 

5. Connecting to prior work Students are uncertain on which prior knowledge they can draw. 

6. Whether strategy is 
productive 

Students are pursuing one method or strategy but are unsure if it will help 
them achieve their desired mathematical goal or solve the problem. 

7. Representing thinking Students have a partially developed idea or conjecture but are not sure how to 
represent it physically or verbally. 

8. Justifying strategy Students are uncertain of how to justify that the mathematical actions they 
have taken are correct. 

9. Has solution been reached? Students are unsure if the solution has been reached or if there is more to do. 
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C. Meaning of Conclusion 

10. What to conclude Students are uncertain of their solution's broader meaning or why it works. 

11. Whether solution makes 
sense 

Students are unsure if their solution makes sense or is reasonable, or how to 
determine this or explain it to someone else. 

12. Strategy works for other 
cases 

Students have an idea or conjecture, but are unsure what it means more 
generally or in other contexts 

D. Competing Alternatives 

13. Relating one mathematical 
object to another 

Students are uncertain if two mathematical objects are related or how they 
might be related. 

14. Finding another way to 
represent idea/work 

Students are uncertain if there is another way to represent their existing 
mathematical idea/work, or how they would go about doing that. 

15. Revising work Students are uncertain of how to revise or change their work or strategy, once 
they recognize it needs to be revised. 

16. Finding another way to 
solve problem 

Students are uncertain if there is another way to solve the problem, or how 
they would go about doing that. 

17. Seeing commonality among 
strategies 

Students are uncertain if two mathematical strategies are related or how they 
might be related. 

Figure 1. The framework and definitions 

Using the Framework: Capturing Uncertainty when Problematizing the Pool Problem 
We present some of the uncertainties that arose in one pair of students’ efforts on the Pool 

Problem (Lappan et al., 2006a, p. 6), where they are asked to find an algebraic expression for the 
number of tiles around a square pool given any side length. This focal pair of students initially 
created an algebraic expression to determine the correct answer for a 2x2 pool, but when asked if 
it would work for a larger pool, one student said “I’m thinking… but probably not.” They 
struggled to calculate appropriate examples with the expression s2+4s+s, unsure which sizes of 
the pool it might work for. This illustrates the uncertainty Whether a Strategy is Productive (B-
6). With the teacher’s assistance, the pair tried their expression with a larger pool and determined 
it was incorrect. One of the students attempted to explain where the structure of their expression 
came from, saying “I don’t know, I tried to take the… what’s it called… not the expanded 
form…”, and the teacher asks, “The factored form?” The student agreed, but that they were not 
sure if it would apply. This illustrates the uncertainty Connecting to Prior Work (B-5). The 
teacher then directed the pair’s attention to the initial problem statement and the use of the 
variable s, and one student quickly gestured to a diagram in the textbook and asked, “Is it the 
outside side or just the inside one?” This uncertainty about the labeling of a diagram illustrates 
What a Mathematical Object Represents (A-1). Moreover, this example shows how addressing 
one uncertainty may involve one or more additional uncertainties arising. 

After resolving this uncertainty about the initial diagram, the teacher asked the pair about an 
equation they wrote down earlier. One of the students confirmed that they used 4s to represent 
the sides, and the teacher asked, “Now what do you need?” The student responded, “The… 
corners.” The teacher asked, “So how could you write that into the equation?” and the student 
answered, “Um… maybe you could, like, put it as a second power?” The student had a mental 
representation of the problem relating to sides and corners but struggled to represent it as an 
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equation, illustrating the uncertainty Representing Thinking (B-7). The pair knew that they 
needed to include 4s in their expression, but they were not sure how to modify this expression to 
account for the corners. One of the students began to try various other multipliers in their 
calculator and realized that multiplying by a different number for each pool size produced the 
correct number of tiles. However, the pair tentatively proceeded to produce what they considered 
as an appropriate equation. This illustrates the uncertainty Revising Work (D-15). 

In many cases, not all uncertainties were resolved quickly. Uncertainty about revising work, 
for example, extended through the rest of the small group work time. To further understand the 
nature of problematizing, we acknowledge several key categories of meta-data important to 
correlate with codes for uncertainty, such as source (others, technology teacher, self), indicator 
(gesture, statement, question), phase (launch, explore, summary), part of problem (initial 
challenge, explore, check, verify), and number of students (whole group, small group, 
individual). 

Discussion 
An essential part of achieving the goal of increasing students’ opportunities to engage in PDE 

is understanding the mechanisms that allow PDE to emerge in classroom settings. In this paper, 
we advance a framework that may help the field get closer to identifying situations of 
problematizing that are essential for PDE by articulating kinds of uncertainty that are empirically 
grounded from a video-recorded sample of classrooms engaging in rich, open problem solving. 
This framework provides a starting point for further research, including investigating 
problematizing as it arises in classrooms with enhanced technology supports for collaborative 
problem solving as well investigating the relationship between authority and accountability and 
the emergence or scarcity of particular kinds of uncertainty.   
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Because students of color are underrepresented in undergraduate mathematics classes, their 
experiences are often ignored in studies drawing on large data sets or are inferred based on the 
experiences of other populations, specifically women. This exclusion and misrepresentation of 
students of color is often attributed to methodological limitations. We reexamine the data studied 
for a previous analysis attending to student race and ethnicity rather than to gender. Due to the 
smaller numbers of non-white students, we utilize different analytic tools, and draw on students’ 
open-ended responses to a survey question asking about their experiences in Calculus I. In 
addition to adding to the literature on students from marginalized populations in undergraduate 
mathematics, this paper argues for a reframing of how we value papers with a small n, and what 
this value indicates about our value of the students making up the small samples.  
 
Keywords: Equity and Diversity, Research Methods, Gender, Post-Secondary Education 

A number of recent studies have been published that draw on a large data set to make strong 
claims about students’ gendered experiences in undergraduate mathematics (see e.g., Ellis, 
Fosdick, & Rasmussen, 2016; Laursen et al., 2011). In each of these studies, the researchers had 
access to the students’ race and ethnicity, but were unable to conduct the same statistical 
analyses differentiating by race and ethnicity as they did by gender because of the small sample 
of students from non-white populations. For instance, in discussing learning gains between the 
active learning courses (specifically Inquiry Based Learning; IBL) and non-active learning 
courses, Laursen and her colleagues (2011) state: “We could only compare [the learning gains 
of] white and Asian students, because the number of other students of color in our sample was 
very low (see Appendix A3)” (p. 55). Similarly, in a recent publication investigating factors 
related to students’ and instructors’ experiences in calculus: Hagman, Johnson, and Fosdick 
(2017) state: “We do not investigate the association between race or ethnicity and [opportunities 
to learn] due to the small proportion of non-white students and instructors in our study” (p. 5).  

Because of the underrepresentation of students of color in undergraduate mathematics 
courses, their experiences in these courses are made invisible in studies that draw on large data 
sets, or are inferred based on the experiences of other underpenetrated populations, specifically 
women. For instance, researchers use Laursen and her colleagues’ (2011) paper as evidence that 
active learning benefits students from “underrepresented” groups. As a prototypical example of 
this, Webb (2016) states: “Research has shown that undergraduate students who are involved in 
active learning techniques can learn more effectively in their classes, resulting in increased 
achievement and dispositions… particularly so for underrepresented groups (Laursen et al., 
2011)” (pp. 1-2). While Laursen et al. (2011) are able to make substantive claims about the 
benefits of IBL for women and typically low-achieving students, which are both 
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underrepresented groups in STEM, these findings are being generalized to make claims about 
underrepresented students in general, which is often taken to specifically include students from 
underrepresented racial and ethnic minorities. 

While there are some studies about such students’ actual experiences in undergraduate 
mathematics (see Adiredja & Andrews Larson, 2017 for a review of this literature), such studies 
are limited and, due to the underrepresentation of such students in undergraduate mathematics, 
draw on a smaller data set and often employ qualitative methods. For instance, McGee and 
Martin (2011) studied the experiences of 23 Black mathematics and engineering college 
students, Levya (2016) studied the experiences of five Latinx engineering college students, and 
Adiredja and Zandieh (2017) studied the experiences of 8 Latina’s in a Linear Algebra course. In 
comparison, Laursen et al. (2011) drew on survey data from 1,100 students and Ellis, Fosdick, 
and Rasmussen (2016) analyzed data from 2,266 students, with about 50% identifying as female 
in each study. 

Because students of color are underrepresented and their numbers are small, their 
experiences are often ignored or are inferred based on the experiences of other underrepresented 
populations, specifically women. This “exclusion and misrepresentation of [students of color] in 
education research” is often attributed to methodological limitations (Teranishi, 2007, p. 38). In 
this study, we reexamine the data studied for a previous analysis (Ellis, Fosdick, & Rasmussen, 
2016) attending to student race and ethnicity rather than to gender. Due to the smaller numbers 
of students of color, we utilize different analytic tools, and draw on students’ open-ended 
responses to a survey question asking about their experiences in Calculus I. In addition to adding 
to the literature on students from marginalized populations in undergraduate mathematics, this 
paper seeks to argue for a reframing of how we value papers with a small n, and what this value 
indicates about our value of the students making up the small samples. 

Students of color continue to face systemic racism and racialized negative narratives in 
mathematics classrooms (Spencer & Hand, 2015). Despite the large and still-growing academic 
research and literature unveiling these disparities and systems of oppression, dominant 
mathematics education narratives continue to defend the “objectivity” of mathematics as a color-
blind discipline (Martin, 2013). While this color-blind narrative put forth in defense of the 
continued practice of marginalization of students of color has been challenged for many years, 
the issue remains of low concern and priority in higher education, perhaps largely due to the 
continued low numbers of students of color in college mathematics courses. This 
underrepresentation, while itself an area of high concern, has set up those students of color who 
do gain access to college mathematics to have their experiences and even their entire presence 
often completely erased in research surrounding college/university mathematics education 
research. One significant contributor to this phenomenon is the practice of removing would-be 
outliers and/or subgroups within large data sets that have small sample sizes. 

Methods 
Background and Data Collection 

The data used for these analyses draws on a national data set made available by the 
Mathematical Association of America. This data was collected by surveys sent to Calculus I 
students at the beginning and the end of the course. We draw on the larger data set containing 
survey responses (n=9793) and a smaller data set containing students’ free responses on the 
survey (n=520). Students were grouped into three race/ethnicity groups. We understand and 
acknowledge the problems in these groupings based on a number of issues. Based on students’ 
responses to race/ethnicity questions, students were categorized as White (68% of large data set, 
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67% of smaller), Asian (14%, 12%), and Underrepresented Students of Color (17%, 19%), 
comprised of students who identify as Black, Pacific Islander, Native American or Alaska 
Native, Hispanic/Latinx, multiple race/ethnicity identities, and race/ethnicities not listed on the 
survey.   
Sample Data Analysis 

The first analysis is the coarsest, and attempts to mimic the analysis of the Ellis, Fosdick, & 
Rasmussen (2016) analysis as much as possible by grouping students into three race and ethnic 
categories. In this analysis, we run a regression with the outcome of persistence in calculus, and 
use the same predictors as those used in the initial gender comparison. i.e. previous calculus 
experience, math standardized test percentile (ACT/SAT), major, scores of teaching quality and 
student centered instruction in their course, and gender. Additionally, we added interaction terms 
with each of the predictor variables for Asian students and underrepresented Students of Color; 
we explain the significance of these interaction terms below. The second analysis investigates 
students’ reasons for switching, and we display student responses grouped by gender and the 
three race/ethnicity groups identified in the first analysis 

Sample Results 
The output variable used for the gender-comparison study was student persistence through 

the calculus sequence. In that study, we looked at the relationship between gender and student 
persistence, controlling for a number of factors that may be related, such as career intentions and 
previous calculus experience. Through that analysis, we found that female students were 50% 
more likely to be identified as Switchers compared to male students, after controlling for a 
number of factors. This result was very statistically significant, which we were able to test for 
because of the large number of students and, more specifically, the large number of students who 
identified as male (n=1,236) or female (n=1,030).  

For the first analysis in this paper, we attempt to mimic the gender-comparison analysis as 
much as possible by identifying students as either White (n=6,674), Asian (n=2,921), or 
underrepresented Students of Color (n=1,699). Due to the large majority of White students in our 
sample, we wondered if the results found in Ellis, Fosdick, & Rasmussen (2016) really 
represented the experiences of only White students. To test this, we rerun the analysis for Asian 
students and unrepresented Students of Color and compare this to the original analyses of all 
students.  
 

   
1a. All students 1b. Asian  1c. UR SOC 
Figure 1a-1c. Odds ratios of switching for all students, Asian students, and underrepresented 

Students of Color (URSOC).  

Figure 1 displays the estimated odds ratios of switching out the calculus sequence for each of 
the predictor categories, for each of the three populations. An estimated odds ratio bigger than 1 
(highlighted in orange) indicates a student with this quality has a higher chance of switching out 
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of calculus and if the odds ratio is smaller than 1 (highlighted in purple), then the student has 
a lower chance of switching.  

In our second analysis, we investigate Switchers’ reasons for switching, disaggregated their 
gender and race/ethnicity group. On the end of term survey, all students who said that they either 
did not intend to take Calculus II, or weren’t sure, we given a list of possible reasons for why, 
and were asked to select all that apply for them. While the numbers of responses are small for 
some items, we can compare relative frequency and see that, for example, a larger ratio of 
URSOC women (17/53) attribute a lack of understanding to their decision compared to Asian 
women (1/53) and White women (40/176, which would be equivalent to approximately 12/53). 
This second analysis compliments the first by showing that, while the regression analysis did not 
indicate significant differences related to persistence based on the factors we investigated, 
students from different populations attribute their decision for leaving to very different aspects of 
their experience. While this analysis allows us to identify trends between the different racial and 
ethnic groups of students, we cannot identify the strength of these trends due to the small n’s. 
Our third analysis analyzes students’ free responses to the question “Is there anything else you 
want to tell us about your experience in Calculus I?” 

Brief Discussion 
The goal of this paper is to bring attention to the normative practice in our community of 

ignoring the experiences of students of color in our quantitative studies. While our qualitative 
colleagues work to richly understand and document the experiences of students of color in our 
undergraduate classes, and while work to increase the representation of students of color in our 
classes and in our data sets, we must challenge and overcome the stigma of a small n. This paper 
indicates that the experiences of students of color are (a) different from the experiences of 
women, (b) not all the same, and (c) are more complex than statistics alone indicate.  
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Networking theories of different grain sizes, we designed a fully online assessment of students’ 
covariational reasoning. With this assessment, we intend to produce a viable means of 
measuring students’ mathematical reasoning using methods other than clinical, task-based 
interviews. The assessment is fully online, and readily accessible across different types of 
devices. We outline design aspects across and within the assessment items and provide three 
theoretically based design principles underlying the design of the assessment. Through this 
research, we contribute to the development of new theoretical approaches to investigate and 
assess complexities of students’ mathematical reasoning. 
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We address the problem: How can a fully online assessment be developed, in place of 
clinical interviews, to make inferences into students’ covariational reasoning? Building from the 
work of Norton, Tzur, and colleagues (Hodkowski, Hornbein, Gardner, Johnson, Jorgensen, & 
Tzur, 2016; Johnson, Tzur, Hodkowski, Jorgensen, Wei, Wang, & Davis, in press; Norton & 
Wilkins, 2009), we designed an assessment to measure undergraduate college algebra students’ 
covariational reasoning. We extend existing research in two ways. First, we developed a fully 
online assessment, rather than a paper and pencil tool. Second, we designed our assessment to 
measure covariational reasoning, rather than multiplicative or fractional reasoning. 

We aimed to not only assess students’ covariational reasoning, but also to distinguish 
gradations in students’ covariational reasoning (see also Johnson et al., in press). Building from 
the work of Johnson and colleagues (Johnson, McClintock, Hornbein, Gardner, & Greiser, 
2017), we networked, or interweaved, theories to design assessment items. Interweaving 
Thompson’s theory of quantitative reasoning (Thompson, 1994; Thompson & Carlson, 2017) 
and Marton’s variation theory (Kullberg, Kempe, & Marton, 2017; Marton, 2015), we designed 
within and across assessment items. To distinguish gradations in students’ covariational 
reasoning, we drew on Tzur’s method of fine grain assessment (Tzur, 2007). Using the fine grain 
assessment method, we designed our assessment with the intent to investigate how students’ 
opportunities to conceive of variation in individual attributes might foster their covariational 
reasoning. We outline design aspects within and across assessment items and provide three 
theoretically based design principles underlying the design of the assessment. 

Theoretical and Conceptual Framework 
Networking Theories to Design Within and Across Assessment Items 

To design within and across assessment items, we networked Thompson’s theory of 
quantitative reasoning (e.g., Thompson, 1994; Thompson & Carlson, 2017) and Marton’s 
variation theory (e.g., Kullberg et al., 2017; Marton, 2015). Marton and colleagues (Kullberg et 
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al., 2017; Marton, 2015) identify two key aspects of variation theory: Discernment and variation. 
For students to discern critical aspects of an object of learning, they need to experience variation 
(difference). Specifically, learners should experience variation in critical aspects across a 
background of invariance. Then learners should repeat experiences across different backgrounds. 
In our set of assessment items, we designed for variation (difference) within assessment items (a 
background of invariance), then across assessment items (different backgrounds). 

To explain the object of learning—covariational reasoning—we appeal to Thompson’s 
theory of quantitative reasoning (e.g., Thompson, 1994; Thompson & Carlson, 2017). In this 
theory, Thompson draws on students’ conceptions of attributes to explain students’ mathematical 
reasoning. In particular, some attribute is a quantity if an individual conceives of that attribute as 
possible to measure. By covariational reasoning, we mean students’ conceptions of relationships 
between attributes that are capable of varying and possible to measure. For example, consider a 
toy car moving around a square track. A student engaging in covariational reasoning could 
conceive of a relationship between the toy car’s total distance traveled and the toy car’s distance 
from a center point on the track.  

Across our assessment items, we included situations incorporating attributes having different 
kinds of variation (change). To clarify, we distinguish this use of variation (change) from 
Marton’s use of variation (difference). Across the items, we varied not only the direction of 
change in attributes (e.g., increases or decreases); we also incorporated variation in 
unidirectional change in attributes (e.g., “increasing” increases or “decreasing” decreases). 
The Fine Grain Assessment Method 

To distinguish gradations in students’ covariational reasoning, we adapted Tzur’s (2007) 
method of fine grain assessment. When using fine grain assessment methods, designers begin 
with items that include no supports, then move to subsequent items including increasing amounts 
of supports. Because items including no supports appear before items with supports, assessment 
designers have the potential to investigate different levels, or gradations of students’ reasoning 
(see also Hodkowski et al., 2016; Johnson et al., in press). In particular, we intend to use this 
assessment to investigate how opportunities to conceive of variation in individual attributes 
might foster students’ covariational reasoning. 

The Covariational Reasoning Assessment 
Table 1 provides a map of the covariation items. The covariational reasoning assessment 

contains four assessment items. Each assessment item contains four question groups. 
Assessment Items and Question Groups 

Assessment items. Each assessment item incorporates a situation involving changing 
attributes. We incorporated variation (difference) across the collection of assessment items. The 
collection incorporates different kinds of attributes (e.g., height from the ground, total distance 
traveled, diameter of the water surface of a fishbowl, and distance of a car from a center point). 
Furthermore, the collection incorporates different kinds of variation (change): Variation in the 
direction of change and variation in unidirectional change (e.g., an “increasing” increase). 

Question groups. Each assessment item contains four question groups. Question group 1 
serves as a member check, to assess if students comprehend the situation. Question group 2 
serves as the first assessment of covariational reasoning: Reasoning without support. Question 
group 3 provides support for students’ covariational reasoning. Question group 4 serves as a 
second assessment of covariational reasoning: Reasoning with support. We designed our 
question groups based on Tzur’s (2007) method of fine grain assessment. If students respond 
correctly to Question group 2, they will move to a new assessment item. If students respond 
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incorrectly to Question group 2, they will move to Question groups 3 and 4.   

Table 1: Map of the covariation items in the covariational reasoning assessment 
Assessment 

Item 
Question Group 

1: Member 
Check 

Question Group 
2: Reasoning 

without support 

Question Group 
3: Supports for 

Reasoning  

Question Group 
4: Reasoning 
with Support 

 
Ferris Wheel 

 
Nat, Path, 

Tree 

 
Fish bowl 

 
Toy Car 

 
 

 
Play Video 

Statement of 
Attributes 

Do you 
understand the 

situation? 
•Yes 
•No 
•If No, explain 
what makes 
this situation 
difficult to 
understand 
•If Yes, move 
to Q2 

 

 
Play Video 

Select a graph 
that represents 
a relationship 
between the 

attributes 
•A 
•B 
•C 
•D 
Explain why 
you chose the 
graph you did 
•If Incorrect,  
move to Q3  
•If Correct, 
move to next 
assessment 
item 

 

 
Video of 
dynamic 

points moving 
along axes 

Describe how 
attribute 1 is 

changing 
Video of 
dynamic 

points moving 
along axes 

Describe how 
attribute 2 is 

changing 
 

 
Play Video 

Select a graph 
that represents 
a relationship 
between the 

attributes 
•A 
•B 
•C 
•D 
Explain why 
you chose the 
graph you did 

 

Design Principles 
Assess for a Spectrum, Rather than a Switch 

We use the analogy of a spectrum versus a switch to communicate our work to move beyond 
binaries in assessing students’ covariational reasoning. Applying Tzur’s (2007) method of fine 
grain assessment, we designed to distinguish gradations in students’ covariational reasoning. We 
anticipate our gradations to be compatible with, yet perhaps not identical to, levels of 
covariational reasoning put forward in the framework of Thompson and Carlson (2017).  
“Practically” Apply Theories to Design Assessment Items 

We aim to interweave and apply theories to do practical work of assessment design. With 
Thompson’s theory of quantitative reasoning, we designed assessment items in which students 
could have opportunities to conceive of attributes as possible to measure and capable of varying. 
Therefore, we interrogated the types of attributes and variation (change) included in the 
assessment. With Marton’s variation theory, we designed for variation (difference) within and 
across assessment items. Within assessment items, we incorporated different types of graphs 
(e.g., linear/nonlinear). Across assessment items, we incorporated different backgrounds (e.g., a 
Ferris wheel, a toy car, etc.) and different types of variation (change) in attributes (e.g., variation 
in direction of change and variation in unidirectional change). 
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Leverage Technology to Promote Access and Opportunity 
We leverage multiple technological affordances to promote greater student access and 

opportunity. Students can access the covariation assessment via a computer, a tablet, or a mobile 
phone. We created the animations following design factors for effective educational multimedia, 
including multiple representation types, pacing, cueing, and user manipulation (Plass, Homer, & 
Hayward, 2009). The assessment incorporates various multimedia, such as original video 
animations, which provided multimodal representations of dynamic graph attributes. 

Concluding Remarks 
Networking theories, we interweave variation (change) and variation (difference) in 

assessment design. We leverage technology to apply Tzur’s method of fine grain assessment. 
Overall, we are working “practically” to network and apply theories to design accessible tools to 
investigate and assess gradations in undergraduate students’ covariational reasoning. 
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INTERPRETIVE FRAMEWORK FOR ANALYZING COLLECTIVE LEARNING IN A 
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An interpretive framework for organizing and reducing data from a whole class teaching 
experiment for further analysis is described. Design research typically generates extensive data 
and can become potentially unmanageable for analysis. The framework described in this paper 
uses a situated cognitive perspective: Meaning making arises out of activity within the context of 
the classroom. Each layer affords and constrains each other. Data from a whole class teaching 
experiment illustrates how the framework was used to reduce and catalog the data for further 
analysis. The framework can be adapted by anyone who is engaging in design research. 

Keywords: Design Experiments, Research Methods 

Educational researchers are continually engaging in design research through whole class 
teaching experiments as a way to study and observe learning. Collective classroom learning is 
the normative understandings that emerge in a classroom community (Cobb & Yackel, 1996). 
Most whole class teaching experiments aim to analyze student learning by repeating the process 
of developing and testing instructional activities. The process of collecting and analyzing data in 
a design research project is messy as it embraces the complexity of the settings in which the 
learning occurs (Cobb, Zhao, & Dean, 2009). In order to study learning, researchers must have a 
variety of data sources to analyze and any source that relates to the broader phenomena being 
studied in the experiment should be collected (Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003). Data sources include notes from the field, video recordings, and documentation of 
anything that occurs in the classroom such as students’ work, class discussions, and the teacher’s 
reflections. Theories, forming from analysis, inform the design decisions that must be made 
throughout the teaching experiment. These ongoing interpretations of the activity in the 
classroom profoundly shape the process of experimenting to support learning (Cobb & 
Gravemeijer, 2008).  

In teaching experiments using design research, the focus is on the whole class’ mathematical 
learning as they practice classroom communal processes (e.g. Cobb, et al., 2009; Confrey & 
Smith, 1995; Lehrer & Schauble, 2004; Stephan, Bowers, & Cobb, 2003) and participate in 
learning as a whole group. Learning in this way is a social phenomenon in which mathematical 
ideas are established in a classroom community through patterns of interaction (Rasmussen & 
Stephan, 2008). Mathematical learning is both a process of constructing meaning as an 
individual and a process of acculturation of meanings in society (Eisenhart, 1988). This implies 
that learners of mathematics learn individually, but also through interaction, eventually 
constructing new knowledge.           

Design researchers document the process of analysis and design in a form intended for public 
reflection and discussion (Edelson, 2002). We used a framework to make ongoing interpretations 
and conjectures about the collective learning that took place to guide our thinking process 
through the design. The framework relates to the conference theme of “Looking Back, and 
Looking Ahead” because it allows researchers to look back at what happened in a whole class 
teaching experiment and look ahead with a deeper understanding of student learning. Our 
purpose in this article is to describe the interpretive framework that we employed to analyze 
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collective classroom learning and make design decisions. Practical applications of the layers of 
the framework contribute to the field of design research methodology in a whole class teaching 
experiment and empower teaching experiences. 

The Interpretive Framework 
The situated cognitive perspective provides a useful lens to study collective classroom 

learning. According to this perspective, all knowledge is considered situated and is regarded as a 
product of the activity, context, and culture in which it is produced and used (Brown, Collins, & 
Duguid, 1986). The situated cognitive perspective has made significant contributions over recent 
years as presenting knowledge not as a stable individual characteristic, but something that is 
distributed across activities, systems, and environments (Lave & Wenger, 1991). A challenge of 
studying the activity in a classroom from a situated perspective is to ensure that what is observed 
in the classroom is not reduced to single acts or products. Rather, the goal of developing such a 
framework is to make sense of classroom interactions as continuous, mutually constitutive, and 
evolving practices where students are engaged in making mathematical meaning. To frame 
collective learning, we adopt Davis’ and Simmt’s (2003) view that a classroom is a complex 
system, “not just the sum of its parts, but the product of the parts and their interactions” (p. 138). 
Our intention in this paper is to connect the conceptual and methodological theory of collective 
learning in a classroom to the pedagogical.  

The interpretive framework used in this study (see Figure 1) was adapted from (de Silva, 
2001) and accounts for individual and collective learning by considering the micro-culture of the 
classroom (Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 1997). The students’ 
mathematical understandings emerge as they engage in activity within the context of the 
classroom through social interaction and tools (Cobb, Stephan, McClain, & Gravemeijer, 2001).  
The interpretive framework reflects that sense making takes place through activity within the 
context of the classroom as illustrated in Figure 1. The arrows represent affordances and 
constraints influenced by each nested layer.  
 

 
Figure 1. The Interpretive Framework used to analyze collective learning in a classroom 

(Bertolone-Smith, 2016). 

Collective learning contains sense making at its core nested within activity that is nested in 
the context of a classroom. This model of collective learning specifies how sense making of 
mathematics is situated in a whole class setting. The core of the interpretive framework is the 
nested layer of sense making. This approach to sense making takes into account both the social 
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perspective (the meanings the class is making as a whole) and the psychological perspective (the 
meanings and interpretations of individual students as they participate in the classroom 
community). This layer is critical when conducting a classroom design experiment with students 
because the purpose of the research is to study learning. The current study needed to address 
students’ learning of fractions in the instructional unit to understand how they were making sense 
of the tasks and, subsequently, learning. These classroom mathematical practices, “taken-as-
shared ways of reasoning, arguing, and symbolizing established while discussing particular 
mathematical ideas” (Cobb et al., 2001), provide a reference for sense making.  

The second layer of the interpretive framework is activity. The role of activity in a social 
setting is to arrive at a common understanding. In the current study, activity accounted for the 
practices in the classroom and the assumption that students had their own way of communicating 
and interacting with each other, the teacher, and the content. The Common Core State Standards 
for Mathematics (NGA/CCSSO, 2010) and the Principles and Standards for School Mathematics 
(2000) emphasize communication as essential for how students learn mathematics. Activity 
occurs through student-student interactions, student-teacher interactions, and student-content 
interactions. Mathematical learning is both a process of constructing meaning as an individual as 
well as a process of acculturation of mathematical meanings in society (Eisenhart, 1988). 
Students learn mathematics individually but also through interaction with each other, as a 
process that occurs during social interactions, a circular sequence of events (Cobb, Yackel, & 
Wood, 1992). The theory of social constructivism (Vygotsky, 1978) reflects this perspective 
where the central tenet is that learners construct their own understanding by participating in 
meaningful shared discourse. Activity also includes the students’ interactions with curriculum 
and representational tools.  

The third layer of the interpretive framework is context. Student learning of mathematics is 
affected by experiences in the classrooms and these experiences are created by and depend on 
the context of the environment, including the teacher and other students. A context conducive to 
learning considers the physical environment and also the social environment that includes the 
interactions that occur among teachers, students, and content (Cohen & Ball, 1999).  

In the overall framework, sense making is afforded and constrained by activity that in turn is 
afforded and constrained by the context. Hence, the framework can be thought of as three layers 
of nested concentric ovals that can be expanded and collapsed; sense making nested within 
activity further nested within context. Sense making is interpreted by how students think about 
and make meaning of the tasks that occur within the activity in light of the context of the 
classroom.  

Using the Framework to Organize Data for Further Analysis 
The following section illustrates how the framework was used to analyze and organize data 

from a whole class teaching experiment (Bertolone-Smith, 2016). We describe a methodological 
approach to organize and reduce data for further analysis. The data presented in this section 
represents a sample from a whole class teaching experiment conducted for illustrative purposes. 
The data collected as part of the whole class teaching experiment in this illustration included 
video of the teaching sessions, video of student discussions and comments, video and field notes 
of student interviews and discussions, video and field notes of teacher and researcher debriefing 
interview sessions, lesson plans, and student work. Analysis of the data occurred every day after 
each teaching episode. All lessons were transcribed and then analyzed through the interpretive 
framework. The raw transcript was organized to indicate classroom context, activity and sense 
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making.  Since mathematical discourse was a focus of the study, conversations were preserved to 
better understand how they impacted or represented the shifts in understanding.  

 Table 2: Emerging Categories through Context, Activity, and Sense Making 

Implications and Discussion 
The interpretive framework (Figure 1) is helpful for reducing and organizing data when 

conducting design research (Cobb et al., 2003) by illuminating aspects of the learning ecology to 
make design decisions during the experiment and retrospectively study the conditions that 
contributed to the sense making that took place.  
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THEORIZING A TRANSLANGUAGING STANCE: ENVISIONING AN 
EMPOWERING PARTICIPATORY MATHEMATICS EDUCATION JUNTOS CON 
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We propose a translanguaging stance in the bilingual mathematics classroom defined by four 
elements: (1) Con respeto for other people’s ideas, leading to positive intellectual relations, (2) 
Con cariño, a commitment to the learning of others, (3) Como familia, working for the good of 
the classroom collective and for the benefit of individuals, and (4) Con acompañamiento, where 
teachers actively do math with their students. We propose a focus for the bilingual mathematics 
classroom and emergent bilingual students that emphasizes the importance of rehumanizing 
mathematics classrooms for all students and valuing their full linguistic repertoires. 

Keywords: Culturally Relevant Pedagogy, Teacher Affect, Beliefs, Identity 

Mathematics education research advocates for practices that celebrate all students’ 
mathematical reasoning and ways of knowing (Turner & Drake, 2016.) There remains a need to 
study what this means for emergent bilingual (EB) students, especially given the deficit-oriented 
historical context of U.S. education policy around language with an overemphasis on English 
mastery (Gandara, et al., 2010).  We see an urgent connection between envisioning a different 
mathematics education for EB students and PMENA’s enduring conference challenge of both 
preparing teachers of EB students and continuing to support all students through equitable 
teaching. Translanguaging, an evolving understanding of language practices (García & Wei, 
2014), provides a different lens through which to view multilingual mathematics classrooms.  

We briefly describe a translanguaging stance and make relevant connections to mathematics 
education research moving the field forward as we propose this new lens. We base our 
arguments on mathematical lessons observed in a 2nd grade dual language class and make an 
argument for how all EB students could participate in mathematics teaching and learning through 
ways that are rehumanizing to all people in the classroom space and to mathematics itself.  

Theoretical framework 
García and Kleifgen (2010) encourage moving past traditional language separation practices 

(i.e, English day and Spanish day) and instead consider the “dynamic bilingual practices” which 
emergent bilinguals enact and are context and person specific. García, Ibarra Johnson & Seltzer 
(2017) define a translanguaging classroom as a “space built collaboratively” with their own 
language practices, and teaching and learning in “deeply creative and critical ways” (pg.2). Due 
to a lack of translanguaging studies in elementary mathematics classrooms, we further argue that 
it is necessary for mathematics educators to cultivate a translanguaging stance and build 
classrooms in which teachers and students juntos (together). 

We conceptualize a translanguaging stance in the mathematics classroom as the deliberate 
choice by teachers to use children’s thinking while engaging in mathematics instruction that 
develops knowledge, dispositions and practices that not only support the development of 
children’s mathematical thinking, but also build on students' cultural, linguistic and community-
based knowledge (Turner et al., 2012). We posit that students can not only expand their sense of 
what they can do mathematically, but also develop a sense of what mathematics can be, and 
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develop mathematical identities characterized by power and possibility (Adams, 2018). Building 
on an active anti-racist stance that first acknowledges EB student’s racialized schooling and 
mathematics learning experiences in US schools (Martin, 2009), we theorize classroom practices  
in a translanguaging mathematics classroom. García, Ibarra Johnson & Seltzer (2017) identified 
four translanguaging classroom elements that support and value EB students: con respeto, con 
cariño, como familia, and con acompañamiento. We briefly present each of these elements and 
supporting mathematics education research.  
Four Elements of a Mathematics Translanguaging Classroom 

Con respeto (with respect). Two second grade EB students, Rubén and Hernán, shared their 
strategies, one in English and one in Spanish, for a subtraction problem, while the teacher, Ms. 
Amaris used mathematical notation to represent their mathematical thinking. Ms. Amaris elicited 
mathematical ideas in both languages and did not provide translation, but let the notation and 
sharing of the strategies remain the focus of the conversation. When teaching with respect, we 
observe how our EB students expand the entire class’ ways of knowing both by honoring the 
languages in which students express themselves and the ideas and reasoning that they share. At 
the same time, by bringing students’ knowledge and ideas to bear in discussions of mathematics, 
we are also showing other ways to mathematize, much like translanguaging expands notions of 
what it means to language (García, Ibarra Johnson & Seltzer 2017).   

We also observed how the teacher understood children’s multidigit subtraction strategies and 
selected powerful mathematical strategies to be shared with the entire class (Carpenter, et al., 
2000). Con respeto is enacted when teachers make instructional decisions based on how their 
students understand mathematics (Franke, et al., 2001). Knowledge of children’s mathematical 
thinking is an important component of how teachers can view their EB students’ mathematical 
thinking in an empowering way, by positioning the students as mathematical thinkers and 
creating a shift in who “does” mathematics (Turner, Domínguez, Maldonado & Empson, 2013).  

Con cariño (with fondness). Cariño denotes the love that can bring together all members of 
a classroom community, along with their languages (García, Ibarra Johnson, & Seltzer, 2017). 
This includes the ways of doing math that students bring with them and how their mathematical 
reasoning intertwines with their languages and their experiences to weave ideas.   

Ms. Amaris posed a Join Change Unknown problem, part of a unit in which the class 
explored how children were affected by the Flint water crisis. Her students proposed raising 
money for Flint children, providing a meaningful context for problems (Dominguez, 2011). The 
class shared strategies and Hernán shared his incorrect answer in Spanish. Ms. Amaris then 
explored a common computational error to promote Hernán’s powerful subtraction base ten 
strategy. This was a common practice in Ms. Amaris’ classroom: Hernán used his linguistic 
repertoire by sharing in Spanish, which provided a space where language was a resource for 
mathematical understanding. In this classroom, encouraging students to express their thinking in 
the language in which their minds happen to express the idea at that moment, shifted the focus 
from form (English vs. Spanish) to content (the mathematical idea being learned). 

This corroborates with Moschkovich’s (2015) definition of academic literacy in mathematics 
for English language learners which posits that academic mathematical literacy is not just about 
the cognitive aspects of mathematics, but also situated in experiences such as discussion and 
being able to express one’s ideas in a known language. It is thus the participation in 
mathematical practices, in this case discussion of one’s strategies, that leads to mathematical 
proficiency for EB students. In this interaction, Ms. Amaris makes a purposeful decision, con 
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cariño, because of her knowledge of the student’s academic literacy in mathematics, to use 
Spanish as the means through which to encourage a powerful strategy into the classroom space. 

Como familia (like a family). Familia as a translanguaging stance in the mathematics 
classroom takes the form of a group that collectively works to support and promote both the 
whole group and each individual member. García (2017) describes how, when a classroom is like 
a familia, classroom discussions address content and language along with “inner truths”, with the 
goal of fostering meaningful learning and strong connections. The previous observed lesson 
showcased how  Ms. Amaris’ classroom behaves as a familia and shows mathematics being 
learned through a student-centered discussion and connected to the original ideas that students 
produced. Ms. Amaris often put the responsibility of making sense on students, and through this 
sense making the original idea shared shifted.  

This element connects to vast research on discussion in mathematics education. Highlighted 
in Moschkovich’s (2015) work as an important component of academic literacy in mathematics, 
other research has iterated how important discussion is for developing conceptual and procedural 
mathematics understanding (Stein, Engle, Smith & Hughes, 2008). Past studies of how teachers 
should include EB students in mathematical discussions (Maldonado, Turner, Dominguez & 
Empson, 2009) have not been viewed through a translanguaging lens, but the element of como 
familia aptly fits the type of classroom that this research advocates for. 

Con acompañamiento (truly together). This element goes beyond being together and 
empathizing for one another and involves actively doing mathematics with one another--in the 
classroom this means that instruction is planned so that teacher and students engage in learning, 
languaging (García, 2017) and math-ing together. Ms. Amaris’ classroom shares a deep and 
profound understanding of why mathematics matters and are engaging in mathematics together. 
In learning mathematics con acompañamiento we see how the focus on the ways students learn 
to treat each other, and the respect they learn for people from circumstances different from their 
own, produce equitable relations that are encouraged and developed in the classroom. This 
supports the importance of using TEACH MATH modules, which encourage teachers to view 
the students and community as sources of mathematics learning (Aguirre, et al., 2012).  

Conclusions 
We have focused on the importance of a translanguaging stance for teaching mathematics to 

EB students, but feel that these elements serve the possibility of rehumanizing mathematics 
classrooms for all students who are seen from a deficit perspective. Moving forward, we also 
need to reconsider how we prepare future bilingual education teachers for this kind of 
mathematics teaching which shifts the focus from language use to mathematical reasoning. 
Given the tensions that bilingual teachers face in classrooms, we need to view this education as 
not only liberatory for the students, but for the teachers as well. 
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This paper describes an approach to cultivating formative intervention research partnerships in 
mathematics with school districts in the U.S. state of Missouri by researching the diagnosis and 
specification of problems as framed and experienced by those grappling daily with challenges 
related to learning and teaching mathematics. Through a mixed methods approach, we engage 
various stakeholders in identifying and describing important problems of practice, work to 
specify the inherent tensions that often exist in those challenges, and, by confronting those 
tensions, initiate a process of innovation rooted in the contexts in which students, teachers, 
leaders, and parents learn and work. 

Keywords: researcher-practitioner partnership, formative intervention research 

Changing the nature of mathematics teaching in the U.S. at any significant scale has proven 
to be extremely difficult (Hiebert, 2013). The predominant approach continues to be some 
variant of what Freire (1970/2000) criticized as the “banking” method, with teachers narrating 
largely procedurally-focused demonstrations and asking students to repeat it themselves. A 
common story in research in mathematics education has been the introduction of some 
conjectured driver of change (e.g., a professional development program, a new curriculum, 
different approaches to assessment, etc.), for which researchers work to find schools or districts 
willing to provide test-sites and subjects for their research, with the idea that an “effective” idea 
will eventually get “scaled up” (Institute of Education Sciences, 2016). While innovations in 
education are certainly needed (and worthy of support), and while there are potential benefits for 
the students, teachers, parents, principals, and district leaders who act as research participants, 
the problems and designs for solutions are typically identified at the outset by researchers, rarely 
originating in the communities with whom those researchers briefly partner. Consequently, the 
innovations that are put in place are often not sustained after the research effort has concluded 
(Resnick & Hall, 1998), and typically fail to change the “instructional core” of what happens 
between teachers and students around disciplinary ideas (Elmore, 2004; Hiebert, 2013).  

Innovation Through Partnership 
To address this shortcoming, different “improvement science” (Lewis, 2015) models for 

collaborating and conducting research in/with school districts have emerged in recent years, all 
of which share a commitment to taking up “problems of practice.” For example, one of the more 
prominent models—and one that has been well received in mathematics education—has been 
design-based implementation research (DBIR). As described by Penuel, Fishman, Cheng, and 
Sabelli (2011), DBIR focuses on persistent problems of practice from multiple stakeholders’ 
perspectives through iterative, collaborative design work. Consistent with the tradition of design 
research in education (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003), the aim of DBIR is 
to develop theory related to both classroom learning and implementation through systematic 
inquiry, but it is also concerned with developing capacity for sustaining change in systems.  
Still, improvement science approaches such as DBIR implicitly require something to be 
implemented. But what if potential collaborators wish to begin at a less prescribed place, 
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focusing first on understanding and defining the problem(s) and only then co-designing and 
pursuing potential solutions? As Lewis (2015) noted, “there is relatively little education research 
in the improvement science tradition, which emphasizes building organization members’ 
understanding of the problem and its causes” (p. 2015).  

One approach that holds promise for treating such problem specification as an object of 
interest (and not merely prerequisite work) is the cultural-historical activity theory tradition of 
formative intervention research. Drawing on Engeström (2011), Penuel (2014) suggested that the 
methodology includes three key commitments: (a) focusing on a problem of practice—a 
contradiction encountered by participants in their life or work activities (the “germ cell”); (b) 
stimulating participants to produce innovations—by first calling attention to a challenging 
situation or set of obstacles, and then triggering a process for overcoming those obstacles 
through design work; and (c) taking as the primary goal the expansion of participants’ agency—
to “enable new forms of collective activity to emerge through direct engagement with the 
contradictions embedded in practice” (p. 100). These contradictions are, at first, abstract. 
Through attempts to understand and model their relationship, they are made concrete, through 
which “learners learn something that is not yet there” (Engeström & Sannino, 2010, p. 2).  

As an example in mathematics education, for teachers who strive to provide students with 
culturally relevant opportunities to engage in mathematical practice and to become proficient in 
standard ideas and skills, a contradiction in practice might be the inherent challenge of affording 
learning opportunities that are emergent in order to achieve learning goals that are largely 
prescribed (Gutiérrez, 2009; Munter, Stein, & Smith, 2015). Neither emergent nor prescribed 
learning goals can be eliminated; the transcendence of the contradiction is fundamental to the 
work (and agency expansion) of teachers and students. But, as the first commitment of formative 
intervention research above suggests, such “germ cells” cannot be identified a priori, but only as 
the result of investigating a problem of practice. Instead of pursuing a predetermined agenda or 
implementing a particular program, “the researcher aims at provoking and sustaining an 
expansive transformation process led and owned by the practitioners” (Engeström, 2011, p. 606).  
It is exactly there that our project is attempting to initiate partnerships with school districts—in 
the investigatory work of understanding problems that students, teachers, principals, parents, and 
leaders face, and identifying tensions for expansion through partnership. Ultimately, our aim is to 
change the learning and teaching of mathematics in the state of Missouri. Our starting point, 
however, is to enlist practitioner partners in co-investigating their current problems of practice. 

Methods 
Our work is guided conceptually by the three commitments of formative intervention 

research listed above. Our first step—and the focus of this paper—is to diagnose the problem(s) 
of practice that Missouri school districts are facing, and how leaders and other stakeholders 
frame those problems. To accomplish this, we employ a mixed methods approach—primarily 
through interviews, and supported by quantitative analyses of district data where applicable. 
Setting and Sample 

To date, our collaboration includes 9 K-12 school districts across the state of Missouri, 
ranging in size from large urban districts to very small rural districts. Our sample includes 32 
district leaders, principals, teachers, and parents/community stakeholders. 
Data Sources 

Beginning with an initial, relevant contact in each district (e.g., curriculum director), we 
conducted semi-structured interviews, snowballing out to others from there (Spillane, 2000; 
Talbert & McLaughlin, 1999), including district leaders, principals, teachers, and other partners 
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(e.g., parents). In each case, we wrote a summary of the interview, shared it with the participant 
and invited their feedback with respect to the summary’s accuracy. Additionally, we made use of 
publicly available quantitative data for each participating district. 
Analysis 

After interviewing additional individuals suggested by interviewees and summarizing those 
interviews, we analyzed the summaries using qualitative analysis software (NVIVO) to identify 
the (a) problems, (b) underlying causes of those problems, and (c) responses to those problems 
described across all interviews in the district. In general, our interest was in understanding how 
individuals frame the problems that they identify, for which the three framing tasks described by 
Benford and Snow (2000) are applicable. The first, diagnostic framing, concerns the underlying 
cause(s) of a problem. The second, prognostic framing, pertains to the proposed solutions for (or 
responses to) a problem. The third, motivational framing, which “provides a ‘call to arms’ or 
rationale for engaging in ameliorative collective action” (Benford & Snow, 2000; p. 617) 
represents one task that we hope to work toward in collaboration with participating districts.  
We also conducted quantitative analyses of publically available data for the district that are 
relevant to the problems described by interviewees. We then wrote a synthesis report for 
participants to review and to initiate a follow-up discussion, in which we called attention to 
similarities and differences between participants with respect to not only what problems, causes, 
and responses were identified but also how those problems, etc. were framed—with the intention 
of sparking subsequent investigations of those problems and possible responses, which, in some 
cases, we might take up in continued partnership. 

Results 
Thus far, a number of patterns have emerged across multiple districts. For example, a key 

concern in a number of districts has been students’ number sense in the early grades. However, 
the underlying causes of that problem that participants identify—both among and within school 
districts—vary widely. For example, some suggest the problem is a matter of teachers’ 
mathematical knowledge (e.g., Hill, Schilling, & Ball, 2004) or views of students (Jackson, 
Gibbons, & Sharpe, 2017), while others view the cause as curricular in nature (e.g., an 
ineffective program, the lack of a program, or the lack of “vertical alignment” across years).  
A second finding concerns broader considerations of curriculum. By looking across multiple 
districts, we have pieced together a model of a “curriculum cycle,” in which districts repeatedly 
gather and then relinquish control for determining curriculum. In such a cycle, districts often 
adopt a new program as a means for improvement. Initially, teachers are expected to strive for 
fidelity of implementation (i.e., using the program “as intended” by developers). However, this 
expectation can lead to over-scriptedness, which can limit teachers’ professional autonomy and 
ability to respond to student needs and interests. In reaction, districts relax expectations, inviting 
teachers to adapt materials as they see fit. But, over time, this leads to the program being phased 
out, until the district has returned to a state of teachers drawing on different sources to develop 
their own instructional materials, with little coordination (or vertical alignment) across grades. 

Discussion and Conclusion 
Our efforts are dual in nature. First, by investing in understanding the problems of practice 

that district leaders face, including how individuals within the same community might frame 
those problems differently, we hope to initiate partnerships at the ground level—a co-
investigation of problems before anything is “implemented.” Second, through such a process, we 
hope to find inherent tensions on which we can focus sustained attention as a means for inducing 
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innovation. For example, in initial presentations of our findings to potential partnering school 
districts, we have used a representation of the curriculum cycle to invite participants’ reflection 
on whether a tension exists between teacher autonomy and centralized curricular efforts—which, 
as we view it, is a potential germ cell that could manifest at multiple levels.  

As noted above, these are the very initial stages of what we hope will be prolonged 
partnerships. By starting a few “steps back” from where work typically has begun, we hope to 
make progress in confronting the stubborn challenge of changing mathematics teaching. 
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PSYCHOMETRIC ASSESSMENT OF THE MATH ANXIETY SCALE WITH THE 
RASCH MEASUREMENT MODEL  
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The purpose of this study was to investigate the psychometric characteristics of the Math Anxiety 
Scale (MANX; Erol, 1989) with data collected from 952 middle school students in Turkey. The 
Rasch Rating Scale model was used to examine the MANX at the item level. The results reveal 
that although the MANX is sensitive to detect students with moderate levels of math anxiety and 
it is not targeted to identify those with very high and low math anxiety levels, it has high 
reliability and validity. Moreover, the majority of the MANX items are of good quality. The 
results provide strong evidence for the validation of the MANX despite the need for deletion of 
eight misfit items, and three redundant items.  

Keywords: Affect, Emotion, Beliefs, and Attitudes, Middle School Education, Research Methods 

Math anxiety can be defined as “feelings of tension and anxiety that interfere with the 
manipulation of numbers and the solving of mathematical problems in a wide variety of ordinary 
life and academic situations” (Richardson & Suinn, 1972, p. 551). Math anxiety has been 
consistently linked to several negative outcomes such as low academic performance (Ashcraft, 
2002), and reduced working memory functioning (Young, Wu, & Menon, 2012). This, in turn, 
can cause many students to pursue career paths that do not involve mathematics.  

In response to the need to identify math anxiety levels, researchers have developed self-
report scales including the Mathematics Anxiety Rating Scale (MARS) by Richardson and Suinn 
(1972), and the Mathematics Anxiety Questionnaire (MAQ) by Wigfield and Meece (1988). In 
addition to these scales’ Turkish translations, there also exist a few scales originally developed in 
Turkish such as the Math Anxiety Scale (MANX; Erol, 1989), which has been used to measure 
math anxiety levels of middle grades students (e.g., Erden & Akgül, 2010), and of high school 
students (e.g., Ader & Erktin, 2010). The only study, however, that examined the psychometric 
characteristics of the MANX was the one conducted by Erktin, Dönmez, and Özel (2006), which 
used factor analysis to determine the underlying factors of the scale. Erktin et al. identified four 
factors: (a) test and evaluation anxiety, which captures anxiety about exams and evaluation; (b) 
apprehension of math lessons, which captures anxiety related to mathematics lessons; (c) use of 
mathematics in daily life, which captures anxiety in daily situations involving mathematics; and 
(d) self-efficacy for mathematics, which captures self-perceptions on mathematics.  

Regarding the negative long-term impacts of math anxiety, it is important to have scales that 
fully measure math anxiety levels of students for the sake of identifying those students and 
providing specific interventions based on the needs of each student. To achieve this aim, 
examination of the psychometric characteristics of the math anxiety scales is critical at the item 
level. To our knowledge, however, the studies which have examined the math anxiety scales 
predominantly rely on factor analysis for validation, which is at the total score level (e.g., 
Baloğlu & Zelhart, 2007; Beasley, Long, & Natali, 2001). Therefore, the purpose of this study 
was to examine the psychometric characteristics of the MANX for measuring 8th grade students’ 
math anxiety at the item level. The following research questions were addressed: 

1. Does the internal structure of the MANX represent gradations of item difficulty? 
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2. Do the MANX items demonstrate acceptable model-data fit supporting the validity of 
inferences in terms of students’ math anxiety levels?  

The present study is one of the few studies (e.g., Prieto & Delgado, 2007) that examine the 
validation of a math anxiety scale with the Rasch measurement model. Specifically, this study is 
the first effort to evaluate the item-level quality of the MANX using the Rasch Rating Scale 
model. Moreover, this study focuses on 8th grade students because this grade is a critical 
transition period from middle school to high school with potential high math anxiety levels. 

Theoretical Framework 
The theoretical framework is based on the Rasch Rating Scale model due to its advantages 

over other approaches such as factor analysis. First, if the data fit the Rasch model well, then 
person trait and item difficulty estimates can be obtained as independent from the sample 
(Engelhard, 2013). Second, the Rasch model transforms the ordinal raw data into interval 
measures as opposed to approaches such as factor analysis relying on correlations of sample 
dependent ordinal data (Bond & Fox, 2015). Third, the Rasch model provides a variable map that 
locates persons and items simultaneously on the latent trait.  

Methods 
The sample consists of 952 Turkish 8th grade students from nine schools located in different 

regions of Turkey. Students’ range of age was between 14 and 16 years.  
The Math Anxiety Scale (MANX), developed by Erol (1989), with 45 items, has four response 
categories for each item including “never,” “sometimes,” “usually” and “always.” Coefficient 
alpha (i.e., α) was .91 in Erol (1989) and .92 in Erktin, Dönmez, and Özel (2006). By following 
the factors in Erktin et al., coefficient alpha in the present study is .95 for the MANX. Before 
performing the analyses, the 9 positively worded items of the MANX were reverse-coded so that 
higher scores demonstrate higher levels of math anxiety, and vice versa. Students completed the 
MANX during approximately 30 minutes of a class period.   

To evaluate the psychometric characteristics of the MANX, we, first, evaluated the 
unidimensionality of the MANX by exploratory factor analysis as implemented in the SPSS 16.0 
software (SPSS Inc., 2007). Second, we obtained reliability of person separation and reliability 
of item separation values. Third, the variable map was evaluated based on the appropriateness of 
the sample for the MANX. Fourth, we examined item quality of the MANX based on individual 
mean square (MS) error statistic. In this study, MS error statistic between 0.60 and 1.40 was 
considered reasonable fit for the MANX items (Linacre & Wright, 1994). All analyses except the 
analysis of unidimensionality were performed using the Facets program (Linacre, 20013). 

Results  
The unidimensionality of the MANX was confirmed with an exploratory factor analysis that 

reports eigenvalues of the first three factors as 14.3, 2.6, and 1.9. The total variance explained by 
the first factor was 31.7%, indicating that the MANX is essentially unidimensional (Reckase, 
1979). Regarding the reliability values for person and item separation, the MANX has a high 
reliability of person separation with Rel = .93, 𝜒$ (951) = 11066.3, and p < .01, and of item 
separation with Rel = .99, 𝜒$ (44) = 6462.4, p < .01. Furthermore, Figure 1 displays a variable 
map showing item and person locations. In column 3, item locations are displayed with four sub-
columns showing the underlying factors ranging from test and evaluation anxiety (i.e., sub-
column 1) to self-efficacy for mathematics (i.e., sub-column 4) as left to right. 
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 Figure 1. Variable map of students’ math anxiety levels and item locations. 

According to the variable map, there exists a good overlap between the person trait and item 
difficulty due to the match between means of the person trait (M = -0.58) and item difficulty (M 
= 0.00). Thus, the majority of the items were appropriate for the sample. While person trait 
measures range from 2.13 to -5.41 logits, the item difficulties range from 1.14 to -1.08 logits.  

Regarding the variable map, the MANX appears to have few limitations. First, the MANX 
has lack of items that provide information about students who are located at the very high and 
low ends of the continuum (i.e., above 1.14 logits and below -0.85 logits). Second, regarding 
distributions of items with respect to their underlying factors (see Figure 1), most of the items are 
spread enough except those which belong to use of mathematics in daily life (i.e., items 9, 15, 17, 
26, 29, 38, and 45). Five of these seven items’ (i.e., items 9, 15, 17, 26, and 29) being located at 
the high end of the continuum indicates that these items do not provide adequate information to 
discriminate between students with very high levels of math anxiety related to the use of 
mathematics in daily life. Third, in terms of redundancy of the items, Item 17 and Item 26, 
represented by the use of mathematics in daily life; Item 6 and Item 37, represented by 
apprehension of math lessons; and Item 21 and Item 44, represented by test and evaluation 
anxiety, have same mean ratings, item difficulties and standard errors as within pairs. Therefore, 
Item 17, Item 37, and Item 21, which has slightly worse fit statistic (Infit and Outfit), can be 
eliminated from the scale.    

Finally, according to item quality indices for each item, most of the items (i.e., 37 of the 45 
items) have a good fit (Linacre & Wright, 1994). Eight of the 45 items, however, demonstrate 
misfit including items 5, 9, 10, 13, 20, 34, 35, and 43. Item 34 is the only item that exhibits less 
variation than expected (Infit = 0.59 and Outfit = 0.58). The remaining seven misfit items had 
more variation than expected due to unpredictability of students’ responses in these items. Five 
of these items (i.e., items 10, 13, 20, 35, and 43) were positively worded (reverse-coded).   
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Discussion 
The purpose of this study was to assess the psychometric characteristics of the MANX at the 

item level using the Rasch Rating Scale model. The results revealed that the MANX is 
essentially unidimensional and highly reliable for persons and items. Furthermore, the variable 
map indicated that the MANX, overall, captures a range of item difficulties reflecting order 
structure of math anxiety. However, we also found that items related to the use of mathematics in 
daily life are quite difficult to agree with for students, and there is shortage of items at the very 
high and low ends of the continuum, indicating that the MANX is not sensitive enough to 
discriminate among students with very high and low levels of math anxiety. Hence, researchers 
and teachers using the MANX in its current form should be cautious when interpreting their 
results for students who have very high and low math anxiety levels. Regarding item quality, 37 
of the 45 items exhibited good psychometric quality, indicating that the items provide adequate 
information to measure moderate levels of math anxiety. Among the eight misfit items, five of 
them were reverse-coded. This might have confused the students and contributed to bias toward 
response styles. In addition, three redundant items can be removed from the scale to reduce the 
length of the administration. In conclusion, the results of this study provide strong evidence for 
the validation of the MANX despite the need for considering deletion of eight items that show 
misfit and of three items that are redundant. Future studies should consider including only the 34 
items that have good item qualities and prioritize using the Rasch model for scale development 
and validation studies over other approaches. 
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In 2017, a National Council of Teachers of Mathematics research committee identified 
inequity as “a long-standing, thoroughly documented, and seemingly intractable problem in 
mathematics education,” and called for more (and more responsible) research to help “solve this 
problem with all its facets” (Aguirre et al., 2017, p. 125). This multi-facetedness likely plays into 
how equity is defined and pursued. Gutiérrez (2012) defined it as access, achievement, identity, 
and power, all of which “are necessary if we are to have true equity” (p. 21).  

But in practice, as schools and districts take up equity-focused policies and initiatives, to 
what extent do they attend to all of these dimensions? How are problems of inequity framed—in 
terms of both their sources (“diagnostic framing”) and appropriate responses (“prognostic 
framing”) (Benford & Snow, 2000), and are those framings well aligned? In short, where do 
educational leaders identify inequity and pursue equity?  

With this poster, we describe an approach to answering such questions based on our work 
with one urban district. Our study originated in a multi-year, multi-institution partnership with an 
urban school district in the northeast U.S. focused on racial equity in secondary (grades 6-12) 
mathematics. In the course of that project we conducted annual interviews with district leaders as 
a way to understand the broader district policy context in which the partnership’s primary efforts 
were situated. All interviews were audio-recorded and transcribed. We also collected relevant 
policy documents. In our analysis of both transcripts and artifacts, we characterized sources of 
inequity and each policy or initiative aimed at addressing those inequities.  

Our analyses revealed that district leaders, at times, framed sources of inequity and 
corresponding pursuits of equity at different levels (individual, institutional, etc.) and according 
to different equity dimensions. As a consequence of such misalignments in frames, attempts to 
address inequities were sometimes misdirected and often undermined by disproportionate focus 
on achievement. With our poster we will discuss implications for research and policy. 
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A longstanding challenge in U.S. mathematics education is that, despite research evidence 
supporting new approaches, conventional teacher-centered forms of instruction still predominate 
(Hiebert, 2013). Despite this problem’s persistence, it has been difficult to achieve consensus 
education on the role novice teachers should play in effecting cultural change. This poster 
provides a theory-based distinction between two approaches to teacher preparation and different 
views on how preparation might carry forward into teachers’ early career classrooms. 
The agent-of-change approach is based on the notion that without a clear vision of a very 
different kind of mathematics education and the kind of political disposition necessary to pursue 
it, teachers will not look for or be prepared to act on opportunities for challenging and disrupting 
the status quo (Gutiérrez, 2013). It supports prospective teachers (PTs) in attempting to 
dismantle conventional practices by introducing a series of critical lenses—from access and 
opportunity to status and power, and then learning to enact more equitable and dialogic forms of 
teaching. The goal is that, upon graduation, PTs will have developed sufficiently robust visions 
and commitments to recognize and reject unproductive institutional routines and to find and 
create opportunities for pursuing a better mathematics education. 
In contrast, the incremental approach starts in close proximity to conventional practices. It 
involves identifying aspects of conventional teaching that can be positive (e.g., conceptually-rich 
lectures) while also raising specific, small-scale critiques (e.g., lack of student involvement in 
particular lessons). In response to the critiques, PTs learn about and practice explicit, tangible 
recommendations for instruction. These recommendations should be small in number but 
developed deeply in conjunction with specific mathematical content, which is the type of 
preparation that has been found to carry forward (Jansen, Burk, & Meikle, 2017). Moreover, 
because PTs view this incremental preparation as realistic and relevant, they will gain trust in the 
preparation institutions and thus be amenable to additional incremental changes in the future. 

The poster will review further literature and also propose research questions and potential 
study designs for assessing the effectiveness of the two approaches. This work will inform those 
who are revising teacher preparation programs and promote collaborations to make evidence-
based decisions as our field moves to meet the longstanding challenge of instructional change. 
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In the competitive world, America's’ future scientists, technologists, engineers, and 
mathematicians must be prepared to remain effective and efficient through re-energized attention 
to Science, Technology, Engineering and Mathematics (STEM) education (Wang, Moore, 
Roehrig, & Park, 2011). A biggest challenge in K-12 STEM education is that few general 
guidelines or models exist for teachers to follow for how to teach using STEM (Kimmel, 
Carpnelli, & Rockland, 2007). The purpose of this study is to contribute to the ongoing dialogue 
regarding the efficacy of genuine STEM integration. Specifically, this study explores the process 
of design and implementation of a learning trajectory that attempts to integrate mathematics and 
engineering in an authentic manner to evoke STEM practices more generally. Our goal is to 
explore the feasibility of using engineering contexts to teach mathematics and develop a 
conceptual framework for genuine STEM integration.  

The rationale behind choosing design based research approach is the ability to contribute to 
development of theory and means of that are designed to support that learning that is the 
educational practice (Plomp & Nieveen, 2007). The research aims to capture the emergence of 
STEM practices, which is the normative way of using STEM practices to interact with others in 
the classroom. The research was conducted in a 7th grade mathematics classroom of a STEM 
middle school in a sub-urban school district in the Southeast region of United States. The 
classroom teacher was part of the design team along with faculty specializing in mathematics 
education, chemistry, and engineering of a large urban university. The engineering context 
involved designing blueprints of a new housing development and building 3D houses.  The 
instructional activities were designed to develop students’ understanding of parallel lines as the 
same distance apart and measuring angles as the degree of turn.  

From our preliminary analysis, a separate emphasis was intentionally placed on mathematics 
and engineering instructional sequences because, the goal of mathematician and engineer are 
different and hence the learning outcomes of mathematics and engineering are going to be 
different as well. The design constraints of the engineering problem was used to purposefully 
guide the exploration of mathematics context. For instance, students played the role of architect 
to design the layout of the phase II of a residential community and a design criteria was to create 
a new parallel road to an existing road in the phase I of the residential community. In the process, 
students’ understanding of parallel lines moved to more sophisticated notions. The instructional 
sequences were designed to encourage students to switch back and forth between the engineering 
context and the mathematics embedded within that context.  
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Concept and Research Questions 
STEM education provides opportunities for mathematics educators to participate in research 

teams. However, research groups face challenges with communication and methodology (e.g., 
Lyall & Meagher, 2012). This poster examines the following questions: (a) What is the nature of 
STEM research collaborations? (b) What challenges exist for mathematics educators in research 
collaborations? and (c) What strategies enrich interactions in STEM research groups? 

Methodology and Findings 
Data consisted of research articles that explored STEM research collaborations published in 

one of the first ten mathematics education journals listed in Williams and Leatham (2017, p. 
377). Search terms used to identify articles for the data were (a) interdisciplinary, 
transdisciplinary, multidisciplinary, monodisciplinary coupled with the term research and (b) 
STEM education. Based on the search, eight articles were identified as data for this study. A 
constant comparative analysis (Strauss & Corbin, 1994) was used to classify the articles based on 
their alignment with categories of integration (monodisciplinary, multidisciplinary, or 
interdisciplinary) as defined by Williams et al. (2016), articulated frameworks, reported 
challenges, and strategies for enriching research. 

We found that the nature of the research teams described in the articles was multidisciplinary 
or interdisciplinary. In addition, six of the eight articles described a framework used by the 
research team. The frameworks in the research articles varied and included cognitive 
neuroscience, situated learning, and learning as a conceptual network. Challenges for the 
research groups included: (a) interacting and conducting research in two or more disciplines, (b) 
translating integrated findings into viable applications, and (c) having institutional/community 
support for research involving multiple disciplines. Strategies for enriching interdisciplinary 
research included: (a) focusing on communication and collaboration, (b) developing 
reconceptualized or more efficient models, (c) identifying shared research questions, and (d) 
understanding the role mathematics plays with other disciplines. Future studies should explore 
the role of mathematics education researchers in the context of STEM research collaboration. 
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ADDRESSING EQUITY AND DIVERSITY ISSUES IN MATHEMATICS EDUCATION: 
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Embracing the theme of this year’s meeting, we seek as a community to embrace the history of 
mathematics education, the history of PMENA, and the promise of the future of mathematics 
education. Following on the topics discussed at the Working Group between 2009-2017, this 
year the focus is continuing on the reestablished purpose of this group and supporting the 
development of new directions for equity-oriented research working groups. The sessions will 
focus on regrouping attendees interested in equity, generating and brainstorming new subtopics 
and potential projects, and working to establish standalone working groups dedicated to 
furthering research on equity. The purpose of this resetting is to encourage a move away from 
“big-tent” equity thinking and toward more productive working collectives. 

Keywords: Equity and Diversity 

Brief History 
This Working Group originates from the Diversity in Mathematics Education (DiME) Group, 

one of the Centers for Learning and Teaching (CLT) funded by the National Science Foundation 
(NSF). DiME scholars graduated from one of three major universities (University of Wisconsin-
Madison, University of California-Berkeley, and UCLA) that comprised the DiME Center. The 
Center was dedicated to creating a community of scholars poised to address critical problems 
facing mathematics education, specifically with respect to issues of equity (or, more accurately, 
issues of inequity).The DiME Group (as well as subsets of that group) has engaged in important 
scholarly activities, including the publication of a chapter in the Handbook of Research on 
Mathematics Teaching and Learning which examined issues of culture, race, and power in 
mathematics education (DiME Group, 2007), a one-day AERA Professional Development 
session examining equity and diversity issues in mathematics education (2008), a book on 
research of professional development that attends to both equity and mathematics issues with 
chapters by many DiME members and other scholars (Foote, 2010), and a book on teaching 
mathematics for social justice (Wager & Stinson, 2012) that also included contributions from 
several DiME members. In addition, several DiME members have published manuscripts in a 
myriad of leading mathematics education journals on equity in mathematics education. This 
working group provides a space for continued collaboration among DiME members and other 
colleagues interested in addressing the critical problems facing mathematics education. 

It is important to acknowledge some of the people whose work in the field of diversity and 
equity in mathematics education has been important to our work. Over time, the Working Group 
has encouraged building on and featuring senior scholars’ work, including  Marta Civil (Civil, 
2007; Civil & Bernier, 2006; González, Andrade, Civil, & Moll, 2001), Eric Gutstein (Gutstein, 
2003, 2006; Gutstein & Peterson, 2013), Jacqueline Leonard (Leonard, 2007; Leonard & Martin, 
2013), Danny Martin (Martin, 2000, 2009, 2013), Judit Moschkovitch (Moschkovich, 2002), 
Rochelle Gutiérrez (2002, 2003, 2008, 2012, 2013) and Na'ilah Nasir (Nasir, 2002, 2011, 2013; 
Nasir, Hand & Taylor, 2008; Nasir & Shah, 2011). We have as well been building on the work of 
our advisors, Tom Carpenter (Carpenter, Fennema, & Franke, 1996), Geoff Saxe (Saxe, 2002), 
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Alan Schoenfeld (Schoenfeld, 2002), and Megan Franke (Kazemi & Franke, 2004), as well as 
many others outside of the field of mathematics education.  

Previous iterations of this Working Group at PMENA 2009 – 2013, and 2015-2016 have 
provided opportunities for participants to continue working together as well as to expand the 
group to include other interested scholars with similar research interests. Experience has shown 
that collaboration is a critical component to this work. These efforts to expand participation and 
collaboration were well received; more than 40 scholars from a wide variety of universities and 
other educational organizations took part in the Working Group each of the past five years. 
Starting in 2017, an effort was made to “reset” the group toward providing opportunities for a 
new generation of scholars whose work intersects with issues of equity/inequity, 
diversity/inclusion, privilege/oppression, and justice in mathematics education research, practice, 
and development. 

Focal Issues 
Under the umbrella of attending to equity and diversity issues in mathematics education, 

researchers are currently focusing on such issues as teaching and classroom interactions, 
professional development, prospective teacher education (primarily in mathematics methods 
classes), factors impacting student learning (including the learning of particular sub-groups of 
students such as African American students or English learners), and parent perspectives. Much 
of the work attempts to contextualize the teaching and learning of mathematics within the local 
contexts in which it happens, as well as to examine the structures within which this teaching and 
learning occurs (e.g. large urban, suburban, or rural districts; under-resourced or well-resourced 
schools; and high-stakes testing environments). How the greater contexts and policies at the 
national, state, and district level impact the teaching and learning of mathematics at specific local 
sites is an important issue, as is how issues of culture, race, and power intersect with issues of 
student achievement and learning in mathematics. There continues to be too great a divide 
between research on mathematics teaching and learning and concerns for equity. 

The Working Group has begun and will continue to focus on analyzing what counts as 
mathematics learning, in whose eyes (and for whose benefit), and how these culturally bound 
distinctions afford and constrain opportunities for traditionally marginalized students to have 
access to mathematical trajectories in school and beyond. Further, asking questions about 
systematic inequities leads to methodologies that allow the researcher to look at multiple levels 
simultaneously. This research begins to take a multifaceted approach, aimed at multiple levels 
from the classroom to broader social structures, within a variety of contexts both in and out of 
school, and at a broad span of relationships including researcher to study participants, teachers to 
schools, schools to districts, and districts to national policy.  

Some of the research questions the Working Group will continue to consider are: 

• What are the characteristics, dispositions, etc. of successful mathematics teachers for all 
students across a variety of local contexts and schools? How do they convey a sense of 
purpose for learning mathematical content through their instruction? 

• How do beginning mathematics teachers perceive and negotiate the multiple challenges 
of the school context?  How do they talk about the challenges and supports for their work 
in achieving equitable mathematics pedagogy? 

• What impediments do teachers face in teaching mathematics for understanding? 
• How can mathematics teachers learn to teach mathematics with a culturally relevant 

approach? 
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• What does teaching mathematics for social justice look like in a variety of local contexts? 
• What are the complexities inherent in teacher learning about equity pedagogy when 

students come from a variety of cultural and/or linguistic backgrounds all of which may 
differ from the teacher’s background? 

• What are dominant discourses of mathematics teachers? 
• What ways do we have (or can we develop) of measuring equitable mathematics 

instruction? 
• How do students’ out-of-school experiences influence their learning of school 

mathematics? 
• What is the role of perceived/historical opportunity on student participation in 

mathematics?  

Specific to the intent of this year’s Working Group, we will organize around questions like 
the ones above in order to create specific, targeted working groups that are charged to address 
and act around such questions.   

Plan for Working Group 
Based on feedback from the previous year and the emergence of new working groups related 

broadly to "equity," this working group has shifted toward a renewed focus on facilitating 
"collaboration within the growing community of scholars and practitioners concerned with 
understanding and addressing the challenges of attending to issues of equity and diversity in 
mathematics education." We have reconfigured the working group toward being a catalyst for 
new spaces instead of a "destination" for the inclusion of equity discourse within the PME-NA 
organization. To put it differently, our vision for the working group is to bring together attendees 
toward developing their own agendas and specific working groups related to equity-oriented 
themes--or toward themes that push the field beyond traditional equity discourses yet adhere to 
the needs and challenges of inequity within mathematics education.  

Our plans for PMENA 2018 will proceed as follows. Each session will build on previous 
sessions, beginning with a facilitated conversation around the previously stated purpose of the 
working group. The format for the sessions will include: 

• DAY 1: Presenting the Vision, Norm-setting, and Brainstorming: On the first day, we 
will lead attendees through introductory activities, collective norm-setting, and a series of 
small- and whole-group brainstorming activities that will generate new ideas and 
directions for the working group more broadly. 

• DAY 2: Agenda-setting: On the second day, the major focus will be the development and 
support of new smaller sub-specializing groups based on the reported interests of 
attendees. We will work with and encourage these subgroups to establish possible 
common topics of interests, potential products, and planning for the next year to support 
the growth of their group and topic.  

• DAY 3: Working groups: On the third day, the newly established subgroups will “take 
flight” and initiate their yearly plan to support their chosen topics. 

Previous Work of the Group  
The Working Group met for productive sections since 2009. In 2009, participants identified 

areas of interest within the broad area of equity and diversity issues in mathematics education. 
Much fruitful discussion was had as areas were identified and examined. Over the past five years 
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subgroups met to consider potential collaborative efforts and provide support. Within these sub-
groups, rich conversations ensued regarding theoretical and practical considerations of the topics. 
In addition, graduate students had the opportunity to share research plans and get feedback. The 
following were topics covered in the subgroups: 

• Teacher Education that Frames Mathematics Education as a Social and Political Activity 
• Culturally Relevant and Responsive Mathematics Education 
• Creating Observation Protocols around Instructional Practices 
• Language and Discourse Group: Issues around Supporting Mathematical Discourse in 

Linguistically Diverse Classrooms 
• A Critical Examination of Student Experiences 

As part of the work of these subgroups, scholars have been able to develop networks of 
colleagues with whom they have been able to collaborate on research, manuscripts and 
conference presentations.  

As a result of the growing understanding of the interests of participants (with regard both to 
the time spent in the working group and to intersections with their research), we began to include 
focus topics for whole group discussion and consideration and continued to provide space for 
people to share their own questions, concerns, and struggles. With respect to the latter, 
participants have continually expressed their need for a space to talk about these issues with 
others facing similar dilemmas, often because they do not have colleagues at their institutions 
doing such work or, worse yet, because they are oppressed or marginalized for the work they are 
doing. These concerns, in part, informed the focus topics for whole group discussion and 
consideration. For example, in 2009 research protocols (e.g., protocols for classroom 
observation, video analysis and interviewing) were shared to foster discussions of possible cross-
site collaboration. In 2012, the Working Group explicitly took up marginalization in the field of 
mathematics education with a discussion about the negotiation of equity language often 
necessary for getting published; this was done in the context of the ‘Where’s the mathematics in 
mathematics education’ debate (see Heid, 2010; Martin, Gholson, & Leonard, 2010). Dr. Amy 
Parks was invited to join Working Group organizers to share reflections on their experiences. In 
2013 the Working Group hosted its first panel in which scholars (Dr. Beatriz D’Ambrosio, Dr. 
Corey Drake, Dr. Danny Martin) shared their perspectives on the state of and new directions for 
mathematics education research with an equity focus.  In 2017, we had collections around topics 
that have resulted in several proposals for sessions and working groups for this years convening 
of PMENA. 

Pre-Conference and Follow-up Activities 
In order to best plan for working group facilitation and prepare attendees for working group 

participation, we plan to send out pre-conference communication, including a survey, to former 
and potential participants in order to gauge the topics and kinds of work being done or sought, as 
well as the resources and forms of support desired by participants.  
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The Models and Modeling Working Group at PME-NA has provided a forum for discussing and 
collaborating on research projects fundamental to this area since the first PME-NA conference 
in 1978.  We propose to convene this Working Group at PME-NA 40 with a dual purpose: (1) to 
build on discussions at PME-NA 37-39, extending collaborative research directions formulated 
at the Indianapolis meeting, and (2) to continue to invite newcomers to the Models and Modeling 
Perspective (MMP), giving them an introduction to this design research tradition. 

Keywords: Modeling, Problem Solving, Design-Based Research, Design Experiments 

The Models and Modeling Working Group has been a significant presence in the PME-NA 
community since the inaugural year of the conference in 1978. Over the 40 years of its existence, 
working-group format has supported substantial research efforts, and also has helped to foster 
collaboration and mentoring relationships between researchers interested in what has come to be 
known as the “Models and Modeling Perspective” (MMP). Since its inception, the MMP has 
pursued fundamental pragmatic questions of effective knowledge, such as “What ... beyond 
having a mathematical idea ... enables students to use it in everyday problem-solving situations?” 
(Lesh, Landau, & Hamilton, 1983, qtd. in Lesh & Doerr, 2003, p. i.). An important historical 
purpose of the Working Group has been to pursue innovations in design-based research (cf, 
Kelly, Lesh, & Baek, 2008) – to discuss and extend the ways in which a focus on models and 
modeling can be used both to support learning in STEM, and to study such learning processes in 
action.  Indeed, calls for STEM integration (English, 2016; English & King, 2015) and for 
attending to Engineering perspectives (Diefes-Dux, Moore, Zawojewski, Imbrie, & Follman, 
2008; Roehrig, Moore, Wang, & Park, 2014) have only increased the potential of this long-
standing tradition to contribute to efforts to innovate in teaching and research.  

Early in its history, the Group focused heavily on the design and analysis of particular 
activities that enabled groups of learners to engage in a deep form of modeling and that produced 
an auditable trail of thinking, exposing their thought processes to teacher and researcher 
observers. In this phase of the field’s development, a primary effort involved elaborating design 
principles for these activities as learning environments and documenting the idea development 
they promoted. Gradually over time, however, researchers associated with the Group have 
expanded their perspective to consider implementations and curricular sequences that have 
longer time-duration, and that integrate models and modeling into the experience of learning 
mathematics in more extensive ways. Several broad patterns in this more extensive and 
disseminated approach to modeling in the curriculum have emerged, and there is no sense that 
we have yet exhausted the space of possibilities. These broader perspectives open both exciting 
opportunities and significant challenges. On the one hand, new questions can be researched, 
opening the way for new forms of contact and interaction with classroom practice; on the other, 



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1376 

the approach raises new challenges at the level of methodology, data analysis, and forms of 
evidence that are convincing backings for claims about learner activity.  

We propose convening the Group at PME-NA 40 to continue a style of work that has 
characterized the Group’s collaborations over the past several years. In particular, based on our 
experiences in 2015-2017, we propose a work-session structure that can serve two dual purposes:  
(a) making substantive progress in concrete projects of collaborative research – planning and 
framing shared implementation, analysis, and writing work; while also (b) integrating 
newcomers to Models and Modeling as a research area.  

For this Working Group, these two goals are both essential: we do not propose to gather as a 
closed expert group. (Broadening exposure to this kind of learning design is important to the 
individuals of the Group as well as to the group as a collective whole.) And we also do not aim 
only at providing an initial introduction to the approaches characteristic of the MMP and the 
activity designs the tradition has developed. (There are urgent opportunities and problems of 
research and practice that the Working Group aims to address.)   

In the following sections, we provide a very brief overview of the field of research 
represented by the Models and Modeling Perspective; we outline patterns in research efforts that 
have extended modeling activities over longer timescales; and we describe our plan of work in 
detail, illustrating how these goals are addressed as well as how we plan to productively integrate 
newcomers to the Group over the three working sessions offered in the Conference. 

The Models and Modeling Perspective (MMP) 
Since the 1970s, MMP researchers and educators have engaged in design research directed at 

understanding the development of mathematical ideas among groups of learners. A key principle 
behind this work has been that learners’ ideas develop through, and in relation to conceptual 
entities called models. The core construct of a “model” and the activity of “modeling” are both 
central to the MMP; and they are also multidimensional, playing multiple roles in the MMP 
theory. 

Models & Modeling Working Group founder Dick Lesh and Helen Doerr provide the 
following working definition of models: 

conceptual systems (consisting of elements, relations, operations, and rules governing 
interactions) that are expressed using external notation systems, and that are used to 
construct, describe, or explain the behaviors of other system(s)—perhaps so that the other 
system can be manipulated or predicted intelligently (Lesh & Doerr, 2003, p. 10) 

In this spirit, “being a good modeler is in large part a matter of having a number of fruitful 
models in one’s ‘hip pocket.’” (Lesh, 1995, personal communication, qtd in Lehrer & Schauble, 
2000).  

But the term “model” not only applies to features of “target knowledge” that are built 
through learning: the interpretive systems that people bring to problems are also “models.”  
When explicitly expressed through representational media, such models—personal interpretive 
systems—can provide illumination into how students, teachers, and researchers adapt, formulate, 
and apply relevant mathematical concepts in particular situations or contexts (Lesh, Doerr, 
Carmona, & Hjalmarson, 2003). In fact, “models” are the shape and vestment of most all 
knowledge--whether this knowledge appears as the patterns of perspectives and pre-conceptions 
that learners bring with them “in the door”; the shared ways of thinking that a group of learners 
build in solving a problem; or the systematic accounts of phenomena that represent the normative 
views of a scientific discipline at a given moment in its history.  
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An early finding of research in the Models and Modeling Perspective (MMP) was that, under 
appropriate conditions, groups of learners can be supported in producing external representations 
of the models they bring to a situation, and that when these groups put their initial models into 
conversation with one another, they can be supported to revise, and refine them in rapid and 
iterative cycles, building toward a more robust model that reflects their achievement of a shared 
way of thinking.  In particular, when individuals and groups encounter problem situations with 
specifications that demand a model-rich response, their models can be observed to grow through 
such relatively rapid cycles of development toward solutions that satisfy these specifications.  

While the elicitation of initial ways of thinking is valuable, MMP researchers’ interest 
quickly turned to this process of model refinement—that is, to the dynamics of modeling (as 
opposed to the statics of models), and to the features of activity environments that foster 
modeling and make it visible for teachers and researchers. The dynamics of modeling represent, 
for the MMP, an account of idea development, as observed in the discourse and other 
representations produced by groups of learners as they iteratively work to mathematize and 
formulate a solution that meets the needs of a concrete client in a realistic setting.   

Thus, the MMP tradition became focused squarely on local conceptual development (Lesh & 
Harel, 2003): that is, on investigating the micro-evolution of ideas in groups of students (and 
teachers). The resources and tools its researchers produced were first and foremost designed to 
study idea development and the range of possibility for this mode of learning activity. The results 
of this work include a body of Model-Eliciting Activities (MEAs), in which students are 
presented with authentic, real-world situations where they repeatedly express, test, and refine or 
revise their current ways of thinking as they endeavor to generate a structurally significant 
product—that is, again, a model, comprising conceptual structures for solving the given problem. 
These activities differ markedly from some other environments dedicated to applications of 
specific mathematical concepts and procedures. In contrast, MEAs give students the opportunity 
to create and adapt mathematical models in order to interpret, explain, and/or predict the 
behavior of real-world systems (Zawojewski, 2013). An extensive body of MMP research has 
produced accounts of learning in these MEA environments (Lesh, Hoover, Hole, Kelly, & Post 
2000; Lesh & Doerr, 2003), design principles to guide MEA development (Hjalmarson & Lesh, 
2007; Doerr & English, 2006; Lesh, et. al., 2000; Lesh, Hoover, & Kelly, 1992) and accounts 
and reflections on the design process of MEAs (Zawojewski, Hjalmarson, Bowman, & Lesh, 
2008). 

As an example of the activity-type of Model-Eliciting Activities (MEAs), consider the Darts 
problem (Figure 1). This problem provokes students to grapple with notions of centrality, 
spread, and distance. Students are often introduced to Darts problem after having engaged with 
several other MEAs that challenge them to develop operational definitions for intuitive but 
difficult-to-quantify constructs such as “worker productivity” or “volleyball-playing ability,” and 
to use data to produce measures of such constructs. The Darts problem pushes them to extend 
this line of thinking, creating operational definitions both to evaluate performances (the darts 
games) and assess performers (the darts players).  

Above is the statement of the Darts problem as presented to students. In this realization of the 
Darts problem, the printed sheet is accompanied by a TinkerPlots document, which allows 
learners to create simulated rounds of darts games by pressing the Run button shown in the 
diagram. 
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Figure 1. Example MEA: The Darts problem 

The second “phase” of the Darts problem asks students to evaluate players (Figure 2): 
 

 
Figure 2. The second phase of the Darts problem 

Student groups iteratively develop solutions to this problem in the time allotted—usually 50-
60 minutes for this MEA. Afterwards, the teacher may organize a “poster session” for the groups 
to share and learn from each others’ solutions. In one version of this activity structure, one 
member of each group hosts a presentation of the poster showing their results. The other students 
circulate to learn about other groups’ solutions, using a Quality Assurance Guide to assess the 
results produced by others in the class. These instruments are submitted to the teacher and 
contribute to assessment in various ways, providing evidence for the achievements of both 
individuals and groups. 

MEAs like the Darts problem present learners with situations where familiar procedures, 
ways-of-operating, and constructs may be applicable, but where they are also insufficient. In this 
sense, they support a learning environment that has a “low threshold” but a “high ceiling” (cf 
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Papert, 1980). That is, on the one hand they are accessible to learners from a wide range of levels 
of ability, experiences, or knowledge (from upper elementary school through graduate school). 
On the other hand, learners encountering these problems find that they have no ready-made 
solution they can apply to address the client’s needs. As a result, groups learners must engage in 
sense-making and solution-construction processes that position them as mathematical creators 
and also put them off balance in comparison to typical school-mathematics tasks. Indeed, this 
uncertainty is part of the design of MEAs, illuminating fundamental conceptual issues associated 
with the core mathematical structures involved.  

MEA Design Principles 
As individual MEAs emerged, an intense period of design research ensued to understand 

them as a genre of learning tasks that could (a) stimulate mathematical thinking representative of 
that which occurs in contexts outside of artificial school settings (Lesh, Caylor, & Gupta, 2007; 
Lesh & Caylor, 2007); (b) enable the growth of productive solutions through rapid modeling 
cycles; and (c) leave behind “auditable trails” - researchable traces of learners’ ways of thinking 
during the process (Kelly & Lesh, 2000; English et al., 2008; Kelly, Lesh & Baek, 2008). The 
success of MEAs as an activity genre and as research tools was both enabled by and illustrated 
by the MMP’s articulation of a set of six design principles (Lesh & Harel, 2003; Lesh et al., 
2000; Hjalmarson & Lesh, 2007). These principles indicate essential elements of MEAs and their 
classroom implementations, enabling them to serve as rich contexts for student problem solving. 
Table 1, below, also indicates “touchstone” tests for whether each of these six principles has 
been realized in a given implementation setting. 

Table 1: Six Design Principles for MEAs and Touchstones (see also Brady et al, 2017) 
Principle Touchstone Test for its Presence 

Reality Principle Students are able to make sense of the task and perceive it as 
meaningful, based on their own real-life experiences. 

Model Construction 
Principle 

To solve the problem, students must articulate an explicit and 
definite conceptual system (model). 

Self-Evaluation Principle Students are able to judge the adequacy of their in-process solution 
on their own, without recourse to the teacher or other “authority 
figure”. 

Model Generalizability 
Principle 

Students’ solutions are applicable to a whole range of problems, 
similar to the particular situation faced by the “client” in the MEA. 

Model-Documentation 
Principle 

Students generate external representations of their thinking during 
the problem-solving process. 

Simplest Prototype 
Principle 

The problem serves as a memorable representative of a kind of 
mathematical structure, which can be invoked by groups and by 
individuals in future problem solving.  

Nested Levels of Modeling: Multi-Tiered Design Research 
In parallel with learner-focused research using MEAs, researchers also have observed that 

teachers’ efforts to understand their students’ thinking involve yet another process of modeling: 
In this case, teachers engage in building models of student understanding. Although these 
teacher-level models are of a different category from student-level models, students’ work while 
engaged in MEAs does provide a particularly rich context for teachers’ modeling processes. 
Following this line of inquiry, the MMP community has also produced tools and frameworks that 
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can be useful to teachers in making full use of MEAs in classroom settings, while also providing 
researchers with insights into teachers’ thinking. 

Finally, at a third level of inquiry, researchers’ own understandings of the actions and 
interactions in curricular activity systems (Roschelle, Knudsen, & Hegedus, 2010) involving 
students, teachers, and other participants in the educational process can also be studied through 
the lens of model development. Multi-tier design experiments in the MMP tradition have done 
precisely this, involving researcher teams in self-reflection and iterative development as well 
(Lesh, 2002). Therefore, the MMP version of multi-tier design research can involve at least three 
levels of investigators— students, teachers, and researchers—all of whom are engaged in 
developing models that can be used to describe, explain, and evaluate their own situations, 
including real-life contexts, students’ modeling activities, and teachers’ and students’ modeling 
behaviors, respectively. The situation can be further enriched by considering other educational 
stakeholders and learning settings, such as interactions between academic coaches and teachers 
(Baker & Galanti, 2017), and between schools and community organizations, and between 
students and parents. 

Constructing Curricular Materials to Support Modeling at Larger Timescales  
Over the past 15 years, MMP researchers have continued this direction of work in their own 

teaching and in partnerships with K-12 classroom teachers. Within the domain of statistical 
thinking in particular, this effort has produced resources and tools sufficient to support entire 
courses in several versions and including accompanying materials related to learning and 
assessment aimed at both student and teacher levels.  

In their work on MEAs, students have rich but idiosyncratic mathematical experiences that 
need to be unpacked and placed into relationship with each other and with more canonical 
concepts, practices, and procedures from the discipline. To investigate such matters, MMP 
researchers attend to learner activity beyond the scope of single MEAs, formulating tools and designs for 
Model Development Sequences, or MDSs (Arleback, Doerr, and O’Neil, 2013; Doerr and English, 2003; 
Hjalmarson, Diefes-Dux, and Moore 2008; Lesh, Cramer, Doerr, Post, & Zawojewski, 2003). Work 
here includes approaches for extending the modeling dynamics that MEAs foster and for unpacking and 
making explicit learners’ ways of thinking, so that they are available to be reflected upon by the 
classroom group as a whole and systematized in relation to big ideas in the discipline (see also Brady, 
Eames, & Lesh, 2015 for tentative MDS design principles). 

Because the courses supported by these materials were designed explicitly to be used as 
research settings, for investigating the interacting development of students’ and teachers’ ways 
of thinking, the materials were modularized so that important components could be easily 
modified or rearranged for a variety of purposes in different implementations. In particular, by 
selecting from and adapting the same core collection of MEAs, and surrounding them with MDS 
activities tailored to the learning goals and emergent ideas of different classrooms, parallel 
versions of the course have been developed for: (a) middle- or high-school students, (b) college-
level elementary or secondary education students, and (c) workshops for in-service teachers. 
Existence-proof versions of these courses have produced impressive gains (see, e.g., Lesh, 
Carmona, & Moore, 2009). 

As a result of the breadth of the MMP, other models for engaging with MEA-style modeling 
at larger timescales have also emerged. These larger structures reflect other professional and 
theoretical interests and concerns, such as a commitment to iterative design-based inquiry 
(Eames, et al, in press); a focus on socio-mathematical norms (Yackel & Cobb, 1996), or the 
dynamics of coaching (Baker & Galanti, 2017).  
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Research and Discussion Themes to Guide the Working Group 
In all, our previous PME-NA working group meetings in East Lansing, Tucson, and 

Indianapolis have brought together over 30 participants from the US, Canada, and Mexico. 
Participants have described ongoing implementation and research across a wide range of grade 
levels and educational settings. In their work, attendees reported that they apply a variety of 
interpretive lenses and frameworks to modeling, and they situate their work in a variety of ways 
with respect to other current trends in mathematics education research. Moreover, in pursuing 
their practice, they developed definitions of core MMP constructs that were both broadly 
compatible (enabling productive discussion) and differently specialized and exemplified 
(enabling illuminating debate).   

We have thus found Working Group meetings to offer unique opportunities to connect 
research voices and viewpoints, spurring conversations between research groups that have 
common inspiration and compatible interests, but very diverse local experiences and 
perspectives. The Working Group meetings have also consistently been a vehicle for connecting 
“old timers” with “newcomers.” Some of the giants in the PME-NA community (e.g., Dick Lesh, 
Lyn English, Helen Doerr, Margret Hjalmarson, Jim Middleton, Tamara Moore, Eric Hamilton, 
and others) have also been leaders in the MMP, and in each of our sessions, we have invited 
participation from one or more of these leaders to offer perspectives on our thinking and on the 
field as a whole. We see these interactions as an important aspect of newcomers’ (and old-
timers’) experience of the conference as a site for the exchange of wisdom, perspective, and 
enthusiasm among participants. 

As one artifact of the meeting in Indianapolis, we identified several areas of prospective 
collaborative work. While we have pursued some of these ideas in the intervening five months, 
several of these remain to be done and can serve as indicators of the work that we will strategize 
and pursue in Greenville: 

• Categorizing and classifying MEAs and other activities that make up MDS sequences.  
Providing a taxonomy and rationale.  (This was a request by Lyn English, who described 
this as a gap in the literature and current discussion of modeling). 

• Pursuing an idea of studying a particular MMP analytical perspective across multiple 
implementations of multiple MEAs (orchestrating multiple implementations of different 
MEAs in different settings, where a shared analytical frame was foregrounded and 
exercised). 

• An article digging into the researcher level of the multi-tiered modeling research process, 
and investigating (as one does at teacher and student levels) what conceptual strategies 
and observation tools are needed to make these processes visible for reflection and 
analysis. 

• An exercise in developing new MEA activities that are specifically designed to highlight 
themes in research on learning dynamics (as well as, or as opposed to only themes and 
big ideas in the discipline). 

• A discussion and investigation of technology supports for MEAs and activities in Model 
Development Sequences. 

• A concerted effort to bring the MMP to Latin America, with a focus on one or more 
Spanish-language journal articles that present the theory, differentiate it from other forms 
of activity, and present empirical results from implementations. 

• A series of translations of canonical works in the MMP tradition into Spanish, with a 
space for commentary and relation to current work by researchers in Latin America.  
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(That is, moving far beyond “translation” to support a renaissance of inquiry into 
foundational MMP issues in the Latin American context.) 

Session Outline: Advancing the Research Agenda while Building Community and Capacity 
The working group will meet in three sessions over the course of the conference. As the 

organizers and facilitators do the preparatory work for the conference, these plans will be 
refined, but the broad outlines here reflect our current thinking. 

As mentioned above, our experience of the working group over the past three PME-NA 
conferences has highlighted the value of these meetings for both (a) establishing and “hashing 
out” plans for innovative new research collaborations, and (b) inviting interested newcomers to 
the MMP and providing them opportunities to engage with its principles and practices, and 
interact with some of its founding members. Although it imposes an intense challenge for 
organizing and facilitating the working group, we aim to continue to support these two strands of 
activity. In part, we are committed to both because we recognize the importance to the MMP 
both to advance its agenda and rejuvenate its participant group. But in addition, we recognize 
that these two threads are in fact inseparable.  Some of our most interesting theoretical 
discussions have come out of the friendly challenges from newcomers/outsiders, and we aim to 
cultivate and integrate rather than cordon off these voices and perspectives. 

Session One. Accordingly, there are two tracks for the first day of the conference (one for 
newcomers, one for relatively experienced researchers who know the MMP). The rationale for 
initial separation is based on the need to produce sharable artifacts representing each group’s 
interests and perspectives, so that we can integrate the participant group productively in Sessions 
Two and Three.  We have tested and refined this broad structure in recent years, where it has 
enabled all attendees to participate meaningfully without producing a permanent separation 
between the Newcomer and Experienced groups. 

The initial day’s activity for the MMP Newcomer research group is oriented to introducing 
the MMP by directly experiencing the kinds of learning environment that it is committed to 
designing and studying. Participants will start by engaging with an MEA as though they were 
learners. We find that this “learning by doing” approach is as important for researchers as it is for 
teachers and students, and it creates a shared experience that can ground theoretical discussions 
that follow.  Although Newcomer participants engage as learners, they also are encouraged to 
reflect on how they would want to study the kind of learning and group dynamics that they see 
and feel themselves enacting. This group ends the first day with a facilitated discussion of their 
“student” experience, reflecting on teacher and researcher perspectives of this kind of learning, 
and framing how they might formulate a research study around this kind of classroom activity. 
The group also prepares questions that they might want to ask the Experienced group participants 
in the General discussion that will start Session Two. 

The Experienced MMP research group’s initial activity will be oriented to tackling 
challenges for cross-institutional research in the MMP. This opening session is structured as a 
“research design charrette” in which we will identify, structure, and sketch a plan to tackle a 
shared problem of design research that the group could address after the conference. Participants 
will start by breaking into smaller groups to tackle one of the study topics generated in the 
Indianapolis meeting (see listing above). The small groups’ goal for Session 1 is to frame an 
“elevator pitch” for a study or article, framing their pitch as a provocation for others in the group 
to identify relevant resources (data, un-identified connections in the literature, analytical frames, 
etc) as well as to critique and refine the pitch into a proposal. At the end of Session 1, one or two 
projects (depending on the participant group size) will be chosen as the focus of work for 
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Sessions 2 and 3. The particular shape of work for Sessions 2 and 3 will thus be somewhat 
dependent on the nature of the projects that emerge. 

Sessions Two and Three.  The collective goal of these sessions is to unify the group toward 
collective research action, identifying connection points between the Newcomer and 
Experienced groups and finding opportunities for all participants to contribute during the 
Conference and afterwards, as they wish. At the beginning of Session 2, Newcomer groups will 
present their solutions to the MEA to the larger group, and they will raise the questions they have 
generated in Session One. They will also have some opportunity to share their perspectives and 
impressions with the larger group, though moving to focused projects by the mid-point of 
Session 2 is critical for success of these projects.  

The Experienced track will then present their "elevator pitches" for study projects, and the 
large group will have a brief discussion of the intrinsic interest of these projects and their 
significance for the MMP agenda. 

Session Two will continue with options for members in the Newcomer track to join a project 
team based on the 'elevator pitches' of the Experienced track. The facilitator group is also 
considering an alternative option, in which newcomers engage in MDS activities with an eye to 
implementation at this scale. (If pursued, this activity would involve both engaging with and 
adapting/extending MDS activities.) Because a substantial number of PME-NA attendees depart 
before the final working group session, the end of Session Two must reach a clear “waypoint” in 
inquiry, and logistical issues must be addressed, such as establishing a group email list and 
collaboration tools. 

Session Three takes the project (and possible MDS) tracks forward toward collaboration after 
the conference. The facilitator group typically also meets after the last session, to debrief and 
establish plans and to-do lists for follow up with the broader participant group. 
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As mathematics education researchers and practitioners, we are poised to look ahead and to 
forge new narratives by challenging work traditionally relegated to special education. Our 
working group, which formed in 2016, is composed of researchers and educators who draw upon 
critical theories such as Disability Studies in Education, Critical Race Theory, and DisCrit, in 
order to offer an alternative vision of mathematics education based around a different 
conceptualization of disability and learning differences. Research on mathematics and 
disabilities traditionally has been conducted within a special education paradigm, which often 
implicitly or explicitly adopts a deficit model of the learner. The deficit model locates the 
“problem” within the individual student rather than in the social, discursive, political, or 
structural context. Instruction for these students tend to focus primarily on rote algorithms and 
calculation skills rather than the solving of rigorous, high cognitive demand problems. We 
consider both the framing of these students as well as how to reframe classroom practice 
utilizing models like Multiple Mathematics Knowledge Bases and Culturally Responsive and 
Sustaining Practices to create classrooms in which all students are able to access curriculum 
and have it represented in meaningful and rigorous ways. 

Keywords: Equity and Diversity, Instructional activities and practices, Classroom Discourse, 
Learning Theories 

Overview of the Working Group 
As we think through how mathematics education has evolved over the last 40 years, this 

working group brings to light a challenge that has persisted with relation to issues of 
mathematics education and disability: How do we support the learning of all students, 
particularly those students with disabilities? The purpose of this working group is to create a 
community of scholars and educators who have share a critical lens to issues of mathematics 
education and disability. Historically, the consideration of disability in mathematics education 
has been examined from a special education lens, which focuses on identifying student deficits 
with the goal of “fixing” or remediation of these perceived deficits. While well-known 
epistemological differences exist between special education and mathematics education, we seek 
to explore new scholarly paths. As mathematics educators we believe a critical perspective on 
disability, drawing upon Disability Studies, Critical Race Theory, and DisCrit, can address these 
differences and offer an alternative vision of mathematics education and disability. Our working 
group is designed to create sustainable opportunities for researchers, teacher educators, and 
practitioners interested in bringing a critical lens to understanding disability, differences, and 
how we respond to differences in mathematics education and how these lenses can address 
persistent challenges in the education of each and every student. In this proposal we briefly 
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present the history of this working group, the theoretical perspectives that this group draws upon, 
and our plans for collaboration. 

 

History of the Working Group 
Our PME-NA working group met for the first time in 2016. Fifteen researchers (faculty and 

graduate students) and two classroom teachers met during PME-NA 2016 in Tucson, Arizona. In 
our initial set of working group meetings, participating group members shared theoretical 
perspectives of disability they employed within their work in mathematics education, current 
projects they were engaged in related to disability and mathematics education, and critical issues 
members often found themselves confronting in taking up this complex work. Conversations that 
took place during this time were exciting. Many common interests were uncovered and shared 
among group members. At the conclusion of our time together at the conference, many of the 
group members were hopeful that the working group in subsequent years could serve as a 
foundation for continued work and conversation. The impact and work of this group continued 
through the year. We established an email list-serv which members have used regularly to share 
and solicit feedback on work and to organize our collective efforts. From this 2016 meeting we 
were able to garner a special issue in the journal Investigations in Mathematical Learning called 
Critical Approaches for Mathematics Learning of Students with Disabilities. 

The second time the working group met was at PME-NA 2017 in Indianapolis, Indiana. 
During this time, we continued conversations of our identity as a working group, the goals we 
wanted to accomplish for the upcoming year, potential future collaborative work, and the extent 
to which we ought to seek partnership with a similar working group meeting at PME-NA that 
year. The group was made up of several returning members as well as new scholars interested in 
our work. One major goal we discussed for the upcoming year was a book project on critical 
mathematics education for practitioners. We identified NCTM as a potential venue to put forth 
our proposal and were thrilled to learn during the spring of 2018 that NCTM accepted our book 
proposal. In turn, this book project will be a major focus of this working group for the 2018 
working group. During this meeting we also decided to open dialogue with the Special Education 
and Mathematics working group, yet scheduling conflicts during the conference prevented this 
from taking place. After this year’s meeting, we continued to communicate and to organize our 
collective efforts via our email list-serv. We also forged new partnerships between members 
including with doctoral student attendees who expressed interest in supporting and enacting this 
type of scholarship. 

In this coming year we plan to continue and expand collaborations between members of this 
working group with the intention of looking ahead to how this working group will structure 
research through a critical lens to address the enduring challenge of reframing disability in 
mathematics education. This working group will create a space in which all involved can learn 
with and from each other with a purpose of establishing the foundation for collaborative work 
throughout the year. Members of the working group have submitted a conference proposal 
through the AERA conference grants. Even though we are actively pursuing opportunities to 
bring this working group together for a more extended period of time maintaining our PME-NA 
working group is essential. The space at PME-NA provides opportunities to connect with others, 
engage in ongoing projects, the possibilities of growing our community, especially in regards to 
bringing special education and mathematics education together. Each year brings this working 
group can come together, there is the potential to bring new members. This provides a 
synergistic place for an ever-growing number of scholars to pursue collaborations around these 
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enduring challenges and hope this working group can provide a space for scholars who are 
taking a critical lens to explore disability related to mathematics education and create a 
conversation around the enduring challenge of supporting all students, with a specific focus on 
disability studies. This year, our group will also focus on strengthening connections with 
international scholars who are similarly interested in mathematics education and students with 
disabilities. Our efforts to connect with others who may have a similar interest have been 
ongoing since our first meeting. 

Paradigm Shifts for Disabilities in Mathematics 
Gathering together a group of researchers, teacher educators, graduate students, 

undergraduate students, and classroom teachers interested in developing an alternate paradigm 
around disability, we have begun to explore the different theoretical frameworks that we can use 
to analyze and change the status quo within mathematics education. This working group draws 
from a number of critical theories that have a common intersection around problematizing 
normativity. Our working group draws upon critical theories such as disability studies, critical 
race theory, and other poststructural theories (including queer studies and trans studies) in this 
analysis. In the following sections, we describe a sampling of these perspectives in order to 
frame the work of the group. 
Critical Theories 

Critical theory seeks to reshape reality, not just explain things as they are as evidenced by 
Karl Marx (1845) saying “The philosophers have only interpreted the world, in various ways; the 
point is to change it.”  Critical theory encompasses any theory that seeks to transform rather than 
explain society. The three main criteria for a critical theory as written by the Stanford 
Encyclopedia of Philosophy, are as follows, “it must explain what is wrong with current social 
reality, identify the actors to change it, and provide both clear norms for criticism and achievable 
practical goals for social transformation.” As such, the theoretical perspectives that our working 
group draws upon are each in their own way “critical theories.” 
Disability Studies and Disability Studies in Education 

Disability studies (DS) and disability studies in education (DSE) are modes of inquiry that 
question the taken-for-granted assumptions and practices in education and the intervention 
paradigm. Both DS and DSE provide frameworks for exploring questions such as: who is 
labeling, who is being labeled, whose voices we value, and how do we advance more equitable 
practices for all students. DS specifically questions the medical model of disability in which 
disability is seen as a deficit within an individual that requires intervention.    

Many DS scholars and activists have adopted a social model of disability, which locates 
disability in an inaccessible environment and make a distinction between impairment, as any 
physical or mental limitation, and disability, as the “social exclusions based on, and social 
meanings attributed to, that impairment” (Kafer, 2013, p. 7). This distinction between 
impairment and disability is unhelpful because it “fails to recognize that both impairment and 
disability are social” (Kafer, 2013, p. 7). In the book Feminist Queer Crip, Kafer suggests the 
term “political/relational model” to refer to perspectives recognizing that both impairment and 
disability are socially constructed. 

By framing disability as social, researchers acknowledge individuals with disabilities should 
be included within the research process itself. Traditionally researchers determine the questions 
asked, the methods of data collection, and the meaning made of the data, with no input from the 
individuals with disabilities, which is oppressive to individuals with disabilities (Oliver, 1992). 
By adopting a social model of disability, researchers acknowledge individuals with disabilities 
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have unique insights into their lived experiences and empower them to engage directly in the 
research process (Barnes, 2003). Members of the working group recently published an 
emancipatory research study (Lewis & Lynn, 2018) where Lewis was positioned as the inquirer 
(the researcher) and Lynn as the expert (the participant). These research collaborations create 
powerful studies that illuminate students with disabilities lived experiences with mathematics 
and ensures the research is in service of those being studied. 

In educational settings, this construction of disability manifests in the double education 
system that splits general education and special education. There is a divide in how students with 
disabilities are framed within special education research and mathematics education. One line of 
research pursued by working group members involves developing understanding and theorizing 
the research divide between special education and mathematics. Institutional practices such as 
writing Individual Education Plans (IEPs) construct certain students as having disabilities; 
however, from a disability studies perspective, “the label of students with IEPs [can be viewed] 
not as an inherent and static determinant of individual ability, but as a school-based designation 
which reflects and recreates differential ability within the classroom” (Foote & Lambert, 2011, p. 
250; also see Dudley-Marling, 2004; McDermott, Goldman & Varenne, 2006; Skrtic, 2005). 
Particular students are chosen for this assessment and intervention, however the selection process 
is not objective and often singles out those students who are not from a dominant cultural 
background. 

A DS perspective problematizes the taken-for-granted assumption that what is “wrong” with 
the situation requiring intervention is a pathology or deficit within students. Instead, the problem 
is located around the lack of access in the environment. The environment needs to be changed to 
allow access for students who differ from one another. As Reid and Valle (2004) assert, “the 
responsibility for ‘fitting in’ has more to do with changing public attitudes and the development 
of welcoming classroom communities and with compensatory and differentiated instructional 
approaches than with individual learners.  

 The focus of this group is on redesigning the context, not on remediating of individual’s 
impairments. Different working group members address this in different ways. One scholar, 
draws upon a Vygotskian framing of disability and identifies the ways in which standard 
mediational tools (e.g., mathematical representations or symbols) are inaccessible to some 
learners. This scholar reframes the word “remediation” as “re-mediation” to move away from the 
deficit framing and toward a framing of disability in terms of access to mediational tools (Lewis, 
2017). 

A second scholar looks at interventions as increasing participation rather than specific skills 
and thinks through what types of interventions might create more equitable participation and 
deeper engagement across students in mathematics classrooms (Lambert & Sugita, 2016). This 
has been explored through empirical research focused on equitable participation in a Cognitively 
Guided Instruction algebra routine (Foote & Lambert, 2011). A political/relational model 
suggests inaccessibility is embedded in the context of power relations and in finding 
interventions to create a more accessible environment requires analyzing the power relations 
involved in maintaining inaccessibility. 

A third scholar is exploring children’s knowing and learning as cognitive diversity in the 
“Small Environment” (Hunt, 2018) of one-on-one and small group instruction.  Specifically, the 
author studies children’s learning trajectories - not as a means of “fixing” children but as a way 
to uncover the knowledge children DO have and leverage the diversity in conceptual 
understanding and strategic competence in instruction (Hunt, Westenskow, Silva, & Welch-Ptak, 
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2016; Robertson & Ne’eman, 2008). In this way, Hunt proposes research and instruction in 
Small Environments should begin by engaging in the mathematics of children and paying 
attention to their reasoning.  Ultimately, teaching is leveraged to support children to explore, 
revise, and adapt both their own reasoning and the learning environment through a negotiation of 
meaning (Hunt & Tzur, 2017; Siebers, 2008). 
Critical Race Theory and DisCrit 

According to Critical Race Theory (CRT), racism is ‘normal’ rather than an anomaly in U.S. 
society (Delgado, 1995). CRT theorists claim the U.S. was founded on property rights, 
specifically that enslaved African Americans were considered property, rather than civil rights 
(Ladson-Billings & Tate, 1995). CRT reveals how race and racism continue to structure U.S. 
society and education. CRT theorists have addressed the issue of over-representation of students 
of color in special education. These analyses leave ableist assumptions in place and DS 
perspectives often fail to adequately consider race. DisCrit acknowledges that racism and 
ableism are both normalizing processes that are interconnected and collusive. Racism and 
ableism work in unspoken ways, yet, racism validates and reinforces ableism, and ableism 
validates and reinforces racism (Connor, Ferri, & Annamma, 2016). Studies of both 
administrators’ and teachers’ perceptions related to overrepresentation of students of color in 
special education reveal their perceptions tend to be rooted in “deficit thinking and infused with 
racial and cultural factors” (Connor, et al., 2016, ch. 1; also see Skiba et al, 2006). DisCrit 
perspectives identify the individual problematic attitudes of educators as one “accessible entry 
point for intervention” (Connor, et al., 2016, ch. 1).  

Extending Previous Work 
As a working group, we identify DisCrit as a crucial area of growth and for future 

scholarship. Several of our working group members have close connections with Dr. Subini 
Annamma, thus we are primed to integrate DisCrit into our work. Likewise, the charge of 
Waitoller and King Thorius (2016) to cross-pollinate Culturally Sustaining Pedagogies and 
Universal Design for Learning frameworks will be an important area to extend on our previous 
work. Indeed, transdisciplinary research work related to disability studies and mathematics 
education (Tan & Kastberg, 2017) is an emerging focus of our working group to extend our 
work.  

Our working group’s special issue in the journal Investigations in Mathematics Learning 
represents another area that we have extended on previous work. This special issue, which is 
scheduled to be published in the Fall of 2018, centers reframing disability in mathematics 
education and features papers addressing disability with a critical lens. One of the papers is from 
members of this working group who share their insider perspectives on experiences with a 
mathematics learning disability (Lewis & Lane, 2018). Lewis and Lane explore the 
compensation strategies used by Lane, who has been identified as having a mathematics learning 
disability (MLD), and how these compensation strategies could help other students with MLD 
gain access into mathematics.  

A second paper explores middle grades d/Deaf and hard of hearing (DHH) students’ 
perceptions of their identities of competence in mathematics classrooms (Goldstein, 2018). This 
paper is significant to the field and to our working group because this disability category is one 
that has been historically under-served and under-researched. Goldstein (2018) offers insight into 
two DHH students their experiences in learning mathematics in a DHH self-contained classroom. 
The students in the classroom experienced mathematics as only procedural in nature and viewed 
competence in mathematics as being able to complete problems. One student, Vivian, did not 
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view herself as competent in mathematics, due to a variety of negative experiences in 
mathematics classes, including being moved from a mainstream classroom into a self-contained 
classroom. While in the mainstream classroom, she had a teacher who did not provide 
accommodations for Vivian, including not using an FM system, even though the classroom was 
equipped with one, or providing Vivian with someone who could sign for her. This illustrates 
issues of access for DHH students in mathematics classes and how these issues of access can 
result in students’ lack of identities in competence in mathematics. 

Another paper in this special issue highlights a conversation between the two authors, a 
special educator and a mathematics educator which was sparked by the question “How can I 
know what’s possible in terms of engaging students with disabilities in mathematical thinking 
and reasoning?” (Greenstein & Baglieri, 2018). This piece is significant and extends our work 
because it offers ways in which synergistic activities across disciplinary fields can take happen.   
The conversation between Greenstien and Baglieri explores how mathematics educators and 
disability studies scholars could come together to support thinking about mathematics in ways 
yet to be imagined. This speaks to the work of this working group, as we come together to 
address critical issues in DS and mathematics education and continue to advance our work in 
new areas. 

Summary of the Problem 
This working group will examine issues related to disability in mathematics education and 

push for new understandings. Using multiple theoretical frameworks, the working group 
participants will analyze current practices in mathematics interventions, including the power 
relations involved, and develop and elaborate on alternatives in order to address enduring 
challenges in disability studies. The working group participants will also plan ways to evaluate 
these alternatives in various educational settings and contexts. 

Plan for Active Engagement of Working Group Participants 
Session 1 

In the first session, the organizers will introduce the rationale for the working group and its 
two-year history. We will spend time hearing how each of the members is theoretically 
addressing disability from a critical perspective and collaboratively:  

• Establish the groups’ vision and mission for this coming year and beyond. 
• Identify and refine the long- and short-term goals of the working group. 
• Develop a strategic plan to meet our goals.   

Session 2 
In the second session, (based on input from Session 1) participants will either: 

• Brainstorm potential collaborative endeavors. 
• Brainstorm how to position this critical work to address enduring challenges in disability 

studies.     
• Break up into subgroups to make progress on collective projects (e.g., NSF Conference 

grant, NCTM book project, collaborative work) 
• Discuss how to develop projects around member’s PMENA presentations or 
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• Discuss a shared reading (distributed to the list-serv before the conference and handed 
out during session 1) to push our thinking and shared understanding of critical 
perspectives.  

Session 3 
Session 3 will be devoted to planning our ongoing collaboration and distributing 

responsibilities for the group’s shared endeavors (e.g., conference/book proposals, developing a 
shared online repository of research and teaching resources).  

Plan for Sustainability: Anticipated Follow-up Activities 
The working group sessions during the conference are designed to enable the participants to 

develop concrete plans for collaborative work beyond the end of the conference timeframe. We 
plan on continuing to communicate between working groups through our email list-serv. 
Specifically, the third session is allotted for developing specific plans for future collaborative 
work. Partnering with doctoral students will continue to be crucial to this group’s sustainability 
as over the working group’s history; they have expressed a great appreciation for this type of 
scholarship in pursuing their own work. In turn, members will continue to share information 
about this working group with others during professional meetings and in informal spaces. For 
example, several of us will also be attending the AERA conference in the spring 2019 and are 
members of the Disability Studies in Education and Research in Mathematics Education SIG. 
This will be an opportune time to both sustain our work and to expand in areas such as DisCrit. 
Lastly, we will continue to purse and apply for funding opportunities to meet as a group outside 
of PME-NA. This will allow us to meet for follow-up activities, sustain and advance our work, 
strengthen existing partnerships and forge new ones, and to produce collaborative scholarly 
works.  
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DESIGNING AND RESEARCHING ONLINE PROFESSIONAL DEVELOPMENT 
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In this working group, we continue with previous efforts to consider design and research 
methodologies related to teacher learning in online professional development contexts. We 
describe the extant literature on online professional development, including a review of digital 
technologies and the applicability of this practice to teacher learning in education. We then 
describe an innovative project designed to support the development of middle school 
mathematics teachers in rural contexts, with a focus on three distinct forms of online learning: 
digitally communicated teaching lab lessons, an online course, and online video coaching. Given 
recent technological advances and demands to support teachers in various contexts, we contend 
that researching and understanding these online models, as well as other online models is 
important for the broader field of mathematics education. As a result, Year Two of this proposed 
discussion group will combine whole-group and subgroup time to converse about: (a) the 
challenges of online professional learning experiences, (b) research tools, methods, and 
analyses, (c) the connections among different projects and studies, and (d) future collaborations 
and research. 

Keywords: Teacher Education-Inservice/Professional, Research Methods, Learning Theory 

All teachers need access to high quality professional development in order to meet the needs 
of students and to teach rigorous mathematics as outlined in college and career-ready standards 
(Marrongelle, Sztajn, & Smith, 2013). In order to accommodate the limited resources in some 
areas, including rural and urban school districts, online professional development has the 
potential to provide access to a wider range of teachers than what is possible face to face. 
Furthermore, given the propensity of millennials to seek online learning experiences, we feel that 
more attention needs to be given to the design, dissemination, and research of online professional 
development. Given the emerging importance and availability of online professional 
development, we propose the continuation of a working group that met at PMENA 2017 to 
continue focus on the design, dissemination, and research on online professional development. 
The working group participants will analyze current practices in online professional 
development, including the technology affordances and limitations. Major themes that will be 
addressed are: 

• affordances of online platforms,  
• affordances and constraints of synchronous vs. asynchronous experiences,  
• challenges related to scaling up high-quality online professional development,  
• methodologies used to research professional learning in online contexts.   
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As schools turn to digital learning contexts, it is inevitable that professional development will 
follow a similar trend. It is imperative to have research-based models that demonstrate how the 
features of high quality face-to-face professional development can be matched or augmented in 
online contexts.  As an example of necessity, teachers in rural areas face constraints in terms of 
accessing the expertise and resources required for high-quality professional learning experiences, 
often because of lack of proximity to such resources as institutions of higher education and 
critical masses of teachers required to collectively reflect on problems of practice (Howley & 
Howley, 2005). Rural contexts are thus ideal sites for online professional development, which 
can be offered at a distance and can involve geographically dispersed participants (Francis & 
Jacobsen, 2013). At the same time, teachers in urban and suburban areas may have more regular 
access to professional development, but online formats afford conveniences and customized 
learning opportunities that may not be available in face-to-face settings. Digital learning contexts 
provide opportunities for connections and visual supports that may otherwise not be accessible in 
face to face professional development. As a result, we consider it necessary to research online 
professional development and to engage with other mathematics educators and researchers about 
online professional learning. This working group is intended to advance the practices of 
designing and researching online professional learning experiences by investigating the 
challenges of balancing high quality learning experiences and accessibility for teachers. The 
focus is also on reconnecting with those in attendance during the 2017 conference for updates on 
discussions about current happenings and experiences with online learning.  

Below we provide an overview of the literature related to professional learning in online 
contexts. Then we revisit the NSF-funded model of online professional development discussed 
last year, describing what we have learned in the last year in terms of the learning environment 
and our efforts to research its impact. We will devote part of the first session  providing updates 
on the project as a means of introducing possible models and methodologies to study online 
professional development, leaving opportunities over the next working sessions to incorporate 
discussion of other models and methodologies. We then conclude with aims for the 2019 
working group.  

Literature Related to Online Professional Learning 
Digital Technologies 

Online professional learning experiences combine longstanding and emerging digital 
technologies to provide high-quality, interactive, content-focused professional development. 
Longstanding digital technologies (e.g., electronic learning management systems) have been 
used to implement online courses to design and implement professional development for the past 
couple of decades. Emerging digital technologies involve an internet-based platform to 
implement online video coaching, or other online communications, in ways that augment the 
interactivity of face-to-face coaching. Online video coaching emerges from the content-focused 
face-to-face coaching that the project personnel have engaged in over the last ten years.  

Research shows that while online communication lacks some of the modalities (e.g., 
gestures, facial expressions) and spontaneity of face-to-face communication (Tiene, 2000), there 
are also affordances unique to its asynchronous and text-based nature. In online discussions, 
communication tends to be more exact and organized (Garrison, Anderson, & Archer, 2001; 
McCreary, 1990), involve more formal and complex sentences (Sotillo, 2000; Warschauer, 1995) 
and incorporate critical thinking, reflection, and complex ideas (Davidson-Shivers, Muilenburg, 
& Tanner, 2001; Marra, Moore, & Klimczak, 2004). Research on synchronous online 
communication – which can include text chat windows and shared space in learning management 
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systems – shows that it is experienced as more social than asynchronous spaces (Chou, 2002). 
Synchronous sessions induce personal participation, which Hrastinski (2008) compared to 
cognitive participation in that personal communication in synchronous spaces “involves more 
intense interaction … while cognitive participation is a more reflective type of participation 
supported by asynchronous communication” (p. 499). Furthermore, synchronous communication 
fosters multiple communication channels based on emerging networks within the larger group, 
including the use of chat boxes and personal email during synchronous sessions 
(Haythornthwaite, 2000, 2001). Researchers have reported positive outcomes from professional 
development involving synchronous exchanges via typing (e.g. Chen, Chen, & Tsai, 2009). 
However, synchronous verbal online discussions and group activities have not been a focus of 
research. 
Online Professional Development in Education 

Despite the growing popularity of online professional development, there is a continued need 
for empirical research regarding its quality and effectiveness (Dede, Ketelhut, Whitehouse, Breit, 
& McCloskey, 2009). Prior research has not demonstrated advantages for online professional 
development in terms of teacher outcomes (cf. Fishman et al., 2013), in part due to the lack of 
online professional development contexts that involve teachers in sustained, intensive reflection 
on their practices. Furthermore, teacher learning in online spaces can be challenging, especially 
related to complex forms of learning. Sing and Khine (2006) found that a number of factors 
make it difficult for teachers to engage in complex or difficult forms of learning in an online 
context, such as teachers’ roles as implementers rather than producers, cultural norms where 
disagreement is seen as confrontational, and the cognitive demands relative to the available 
teacher time. Teacher learning in online contexts is discussed in more detail below. 

 In order to illustrate professional learning in an online context, we present a model that the 
authors are currently using in a project situated in rural contexts. We present the model in order 
to continue the discussion of this model and other potential models, as well as the learning 
platforms and other features, such as the synchronous or asynchronous nature of learning in 
online environments.  

A Model of Online Professional Development 
The innovative online professional learning experiences in the author’s project focus on the 

development of teacher capacity to enact ambitious, responsive instruction aligned with the 
rigorous content and practice elements of the Common Core State Standards for Mathematics 
(CCSSM). We use the term professional learning experiences to denote that the professional 
development we employ differs from traditional workshop or other models that are too short or 
fragmented to be effective (Garet, Porter, Desimone, Birman, & Yoon, 2001).  

In the project, we identified three primary research goals. To study and understand: (a) the 
ways online-based professional development can help teachers improve their instructional 
practices and their ability to notice and respond to student thinking; (b) the characteristics of the 
feedback cycles in the online coaching, the role of video feedback, and the asynchronous 
components of feedback cycle; and (c) the features of the professional development model that 
would inform efforts to scale up the model, including the resource commitments, the requisite 
capacity of the course instructors and coaches, and the logistical requirements of the courses and 
coaching. We are currently in year two of four years of the project. The following describes the 
three online components of our project. In the working group, we envision these and other 
components used by other researchers serving as the catalysts for dialogue around online 
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professional learning and will engage particpatns with conversation around our learning in the 
past year while encouraging them to share their recent experiences.  
Teaching Labs 

In order to address the challenges of engaging teachers in learning complex practices in an 
online context, we include a component aimed at initiating and reinforcing relationships between 
participants and project personnel and at helping participants to understand the types of learning 
experiences and design and feedback cycles that will be the core of the project. Research on 
lesson study (e.g., Amador & Weiland, 2016; Stigler & Hiebert, 1999) has led to an emphasis on 
demonstration lessons where teams of teachers collectively plan, enact, and reflect on lessons in 
ways that make public the features of the lessons and teachers’ instructional practices (Saphier & 
West, 2009). Consequently, one component of our project is a collaborative classroom activity, a 
Teaching Lab, that builds from the studio classroom model developed by the Teachers 
Development Group (2010), with features consistent with content-focused coaching (West & 
Staub, 2003). For each lesson, a group led by project personnel plans a lesson around a 
cognitively demanding task. On the day of the lesson, project participants review the lesson plan 
and explore the task, the mathematics embedded in the task and anticipated student approaches 
to solving the task, and the related CCSSM practice and content standards, making necessary 
revisions to facilitate the lesson. The project personnel then enact the lesson while the rest of the 
group observes and collects evidence of student thinking and learning. The group then 
collectively reflects on the experience, with a focus on describing evidence for student 
understanding using the data gathered by the teachers and observers. This process is repeated 
regularly with participants. 

In the beginning of the project all demonstration lesson activities were face-to-face.  
However, at this point in our project, this component has moved to an online format of 
synchronous and asynchronous activities.  The planning and debriefing portions are held via a 
video conferencing platform, Zoom, allowing for synchronous engagement in both whole group 
and small group discussions of the lessons. Asynchronous activities include watching and 
reflecting on the video recording of the demonstration lesson between the planning and 
debriefing sessions. Discussion in the working group will center on the affordances and 
constraints of the online model and possible modifications to ensure the intended professional 
development goals are met.  
Online course - Orchestrating Mathematical Discussions 

The second component of our project is the two online course modules, Orchestrating 
Mathematical Discussions Parts One and Two, aimed at orienting the participants toward high-
leverage discourse practices that facilitate mathematically productive classroom discussions 
(Smith & Stein, 2011). In this course, the participants solve and discuss a series of high cognitive 
demand tasks, activities that will be accompanied by synchronous and asynchronous discussions 
around the 5 Practices for Orchestrating Productive Mathematics Discussions (i.e. anticipating, 
monitoring, selecting, sequencing, connecting; Smith & Stein, 2011). The courses are designed 
to develop awareness of specific teacher and student discourse moves that facilitate productive 
mathematical discussions, to understand the role of high cognitive demand tasks in eliciting a 
variety of approaches worthy of group discussions, and to further develop participants’ 
mathematical knowledge, particularly the rich connections around big mathematical ideas that 
are helpful to teach with understanding (Ball, 1991; Boaler & Staples, 2008; Chapin, O’Connor, 
& Anderson, 2003; Choppin, 2007a; 2007b; 2014; Herbel-Eisenmann, Steele, & Cirillo, 2013; 
Ma, 1999; O’Connor & Michaels, 1993).    
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In order to take advantage of the affordances of both asynchronous and synchronous 
characteristics of online communication, the course is embedded in a learning management 
system (LMS) that: allows for synchronous whole class and small group interaction; the sharing 
of artifacts, including those collectively developed in the LMS; and asynchronous discussion 
threads. In the online course modules in the LMS, the facilitator verbally presents a challenging 
task to the participants, which is viewed in the shared work space. The course instructor then 
assigns participants to virtual breakout rooms, in which the participants work synchronously in a 
common workspace, creating virtual white boards to share with the other groups. They can talk 
to each other, work simultaneously in the virtual space, and use the chat window to 
communicate. The course instructor can listen to and participate in these group discussions to 
determine when the groups are ready to present their solutions. The course instructor then closes 
the virtual breakout rooms, which automatically returns all participants to the main room to  
conduct a summary discussion of the different strategies, in effect modeling the practices in the 5 
Practices book. Asynchronously, the group can continue to go back and reflect and comment on 
the task and related solutions, as well as on the readings from the 5 Practices book using 
discussions threads in the LMS.  Participants are also encouraged to share resources, lesson 
plans, and student work as appropriate. The working group will discuss this format for online 
professional learning as well as other formats and tools that have proven beneficial for users.  
Online Video Coaching 

The third – and most innovative – component of our project’s professional development 
program is the online video coaching that builds from models of content-focused coaching (West 
& Staub, 2003). More recently, thanks to the advent of improved internet-based software aimed 
at increasing collaboration around video data, the project personnel have begun conducting 
online video coaching with teachers. The coaching cycles are focused on identifying and 
unpacking the mathematics with the teacher, while anticipating likely student strategies, 
conceptions, and misconceptions. The coach helps the teacher identify evidence for 
demonstrating how students are thinking (from the video as well as from student artifacts) and 
make connections between different student approaches in order to help the teacher structure the 
summary discussion of the lesson.  

The online coaching experiences involve synchronous and asynchronous components, with 
the goal of engaging participants in reflective or deliberative practice. The online coaching has 
features similar to face-to-face coaching, such as video conferencing conversations via Zoom, in 
which the coach and participant collaborate to plan lessons and reflect on the qualities of lessons. 
However, the online coaching includes an innovative component that involves asynchronous 
collaboration and feedback that structures the post-lesson collaborative reflection, features that 
augment or surpass the kind of feedback that can be given face-to-face. Teachers video-record 
themselves using Swivl, which allows them to place a camera (iPhone or other device) on a robot 
that tracks them around the room, allowing for teacher-focused video without the necessity of 
someone operating the camera. The video is automatically uploaded into a password-protected 
site and processed, and is immediately accessible to view and notate. The notation feature in 
Swivl allows the coach and the candidate to separately view and annotate the video. For 
example, a teacher can stop the video by hitting the pause button and type in a comment or 
question that is synced with the video, so that when the coach watches the video, she can read the 
comment during the point in the video referenced by the comment. The coach can do the same. 
The video can be viewed repeatedly, which allows for more thorough reflection and analysis. 
The notation provides for more in-depth and substantive feedback, pointing to specific instances 
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of practice. The discussion group will focus on this model for professional coaching as well as 
other models or avenues for supporting individual teachers in online professional learning.  

Researching Online Professional Learning Experiences 
There is a dearth of research on online professional development, especially online 

professional development that is sustained and intensive. Similarly, while there have been 16 
years of intensive efforts to implement coaching in schools, much of the research have revolved 
around the role and impact of coaches (Coburn & Russell, 2008; Penuel, Riel, Krause, & Frank, 
2009), and less around the impact on reflective or deliberative practice. Although coaching has 
now been around for over ten years, there is limited research on the effectiveness of coaching in 
terms of improving teacher quality (Matsumura, Garnier & Spybrook, 2012). The greatest dearth 
of research involves online video coaching in education, as opposed to face-to-face video 
coaching, which has no peer-reviewed research yet associated with it. 

Structure of the Working Group Sessions 
Within this working group we propose to explore the following questions related to 

researching online professional learning experiences: 

1. What are various platforms and models for online professional development? 
2. What theoretical framework and methodologies are salient for researching online digital 

technologies and online professional learning experiences? 
3. What data analysis methods are suited to the data captured in online environments? 
4. In what ways can online professional learning experiences help teachers improve their 

instructional practices and their ability to notice and respond to student thinking? 
5. In what ways can the characteristics of the feedback cycles in online coaching, the role of 

video feedback, and the asynchronous components of feedback cycle inform the design 
on online professional learning experiences to maximize teacher learning? 

6. What features of the professional development model would inform efforts to scale up 
the model, including the resource commitments, the requisite capacity of the course 
instructors and coaches, and the logistical requirements of the courses and coaching? 

Plan for Working Group: 
In Session 1, the organizers will present brief update reports on the Author’s project and 

research design, as well as a recap of the 2017 working group discussions. Subgroups will be 
formed to continue conversations around design and implementation efforts with online 
professional learning experiences from their own research and current efforts in the field; 
attendees from this working group at PMENA 2017 will provide updates on their respective 
projects in the small-group setting.  

During Sessions 2 and 3 we will provide the subgroups time to continue collaborating on 
themes identified in the PMENA 2017 working group: a) identifying the challenges of online 
professional learning experiences that are the most challenging and why—this will include a 
specific look across the projects presented and with a focus on activities on the last year, b) 
refining research tools, methods, and analyses, c) exploring connections among different projects 
and studies for former and new attendees, and d) discussing future collaborations and research. 
We will close Session 3 with time to review group progress and discuss next steps for our work 
as shown in Table 1. Meeting notes, work, and documents will continue to be shared and 
distributed via our Google Folder (set up for this Working Group). The use of Google documents 
allows members to create an institutional memory of activities during the working group that we 
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will continue to use and add to following the 2017 and 2018 working groups. This shared folder 
will also provide a shared space for future collaborations and writing projects related to online 
professional learning experiences within the 2017 and 2018 working group members.      

   

 Overview of Proposed 
Working Subgroup Sessions 

 

Session 1 Activities: 
1. Introductions and Agenda 
2. Brief Presentations of 

Authors’ Project and 
Research Questions 

3. Brief Presentations of 
former Attendees’ and New 
Attendees’ Projects and 
Research Questions 

4. Subgroup formation and 
initial work time - designing 
Online PD experiences 

Guiding Questions: 
1. What are the different forms of online 

professional development? 
2. What research is being done related to 

online professional development? 
3. Which aspects of online professional 

learning experiences are the most 
challenging to implement or research?  

4. What are new questions that have arisen 
within the last year? 
 

Session 2 1. Overview of subgroup’s 
work from previous day 

2. Subgroup work time - 
engagement in online 
professional learning 
experiences 

3. Brief sharing of work in 
subgroups 

1. How can online learning support teacher 
learning? 

2. What are the affordances and constraints of 
various platforms?   

3. What are the affordances and constraints of 
synchronous and asynchronous 
experiences? 

Session 3 1. Overview of subgroup’s 
work from previous day 

2. Subgroup work time - 
researching online 
professional learning 
experiences 

3. Brief sharing of work in 
subgroups 

4. Final reflections – future 
collaborations and research 

1. What theories and theoretical frameworks 
have informed the design of your research 
project(s)? 

2. How might your work inform theory in 
researching online professional learning 
experiences? 

3. What issues and challenges have you faced 
in designing studies in this area? 

4. What challenges may exist for scaling up 
high-quality online professional 
development? 
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Argumentation, justification, and proof are conceptualized in many ways in extant mathematics 
education literature. At times, the descriptions of these objects and processes are compatible or 
complementary; at other times, they are inconsistent and even contradictory. The inconsistencies 
in definitions and usages of the terms argumentation, justification, and proof highlight the need 
for scholarly conversations addressing these (and other related) constructs. Collaboration is 
needed to move toward, not one-size-fits-all definitions, but rather a framework that highlights 
connections among them and exploits ways in which they may be used in tandem to address 
overarching research questions. Working group leaders aim to facilitate discussions and 
collaborations among researchers to advance our collective understanding and conveyed use of 
argumentation, justification and proof, particularly the relationships among these important 
mathematical constructs. The 2018 working group sessions will extend previous conversations 
into issues of teacher preparation with respect to argumentation, justification, and proof. The 
group will also discuss how issues of equity, social justice, and marginalized populations 
intersect with the teaching and learning of argumentation, justification, and proof.   

Keywords: Reasoning and Proof; Advanced Mathematical Thinking 

Brief History of the Working Group 
The Conceptions and Consequences of What We Call Argumentation, Justification, and 

Proof Working Group (AJP-WG) has met for three consecutive years, beginning in 2015. The 
working group’s primary focus is on the field’s conceptualization of the interrelated objects and 
processes of argumentation, justification, and proof. Previous working groups at PME and PME-
NA had focused on either proof or argumentation, but the present working group is the first to 
attend specifically to the connections among these three constructs.  

During the working group’s initial meeting (2015), attendees made progress on considering 
the interrelationships among argumentation, justification and proof, and we deepened our 
understandings of our own perspectives and the range of perspectives held by others in the 
group. The goal during this meeting was not consensus or deciding a best approach. Rather, we 
sought to better understand the complexity and diversity of individuals’ perspectives with respect 
to their research agendas and professional practice. We were encouraged that our efforts were 
well received, with 46 scholars, including at least 10 graduate students, participating in the 
working group the first year.  
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The second gathering of the AJP-WG was held in 2016 at the annual meeting for PME-NA in 
Tuscon, AZ. Thirty-six scholars attended the sessions, which continued the group’s focus on the 
interrelationship between and among the concepts and terms related to argumentation, 
justification, and proof. Specifically, participants considered their definitions for these concepts 
and how such definitions may change given different contexts and foci.  

The AJP-WG met for the third time in 2017 in Indianapolis at the 39th Annual Meeting of 
PME-NA. This meeting, attended by 28 scholars, involved examining a set of middle grades 
student artifacts from different perspectives on argumentation, justification, and proof. Analyses 
were presented by members of the working group, and these analyses were critiqued and 
compared by the working group during our meetings. Additional information about these 
meetings of the AJP-WG is included later in the proposal.  
Summary of Focal Issues  

Engagement in disciplinary practices of constructing viable arguments, justifying 
conclusions, critiquing the reasoning of others, and constructing proofs for mathematical 
assertions appear in educational policy documents of K-12 students. (National Council of 
Teachers of Mathematics [NCTM], 2000; National Governors Association Center for Best 
Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010). Most recently 
policy documents have begun to focus on the teaching practices and the preparation and 
development of teachers in facilitating argumentation, justification, and proof. For example, 
according to Principles to Actions: Ensuring Mathematical Success for All (NCTM, 2014): 
“Effective teaching of mathematics facilitates discourse among students to build shared 
understanding of mathematical ideas by analyzing and comparing student approaches and 
arguments” (p. 29). An example of teacher preparation and development is the Standards for 
Preparing Teachers of Mathematics from the Association of Mathematics Teacher Educators 
(AMTE, 2017) “Well-prepared beginners encourage students to communicate their reasoning, 
critique the reasoning of others, and develop arguments through discourse and mathematical 
writing” (p. 77). Due to these recent calls, the 2018 AJP-WG will engage participants in sessions 
to extend previous conversations of argumentation, justification, and proof into issues of teacher 
education. 

     There is a growing body of research in mathematics education focused on teachers’ 
argumentation, justification, and proof. The research on proof, for example, have included 
studies on teachers’ conceptions (Knuth, 2002) and perceptions (Boyle, Bleiler, Yee, & Ko, 
2015) of proof, how teachers enact proof-related tasks (Bieda, 2010; Bostic, 2016), how teachers 
engage with students in proving (Herbst, 2002; Martin, McCrone, Bower, & Dindyal, 2005), 
teachers’ evaluation of student-generated proofs (Tsamir, Tirosh, Dreyfus, Barkai, & Tabach, 
2009), and how coursework impacts teachers’ reasoning and proving (Karunakaran, Freeburn, 
Konuk, & Arbaugh, 2014). While proof has received more attention, argumentation, as a 
concept, is garnering new prominence with increasing attention in the mathematics education 
research. Research on argumentation has included examining new methodologies to understand 
teachers’ argumentation (Metaxas, Potari, & Zachariades, 2016), teachers’ contextualization of 
argumentation in the classroom (Staples & Newton, 2016), and teachers’ discursive actions 
during argumentation (Conner, Singletary, Smith, Francisco, & Wagner, 2014; Kim & Hand, 
2015). In regards to justification, researchers have investigated justification in mathematics 
courses for prospective elementary teachers (Simon & Blume, 1996), teachers’ perceptions of 
justification (Staples, Bartlo, & Thanheiser, 2012), and professional development to support 
justification (Lesseig, 2016). 
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Highlights from the Year 1 Working Group Discussions 
A focal activity during the initial working group sessions in 2015 was the development of 

Diagrams/Concept Maps in which each participant generated a representation of the relationships 
among argumentation, justification, and proof from his or her perspective. Discussion 
surrounding the relationships between constructs was supported by an initial presentation by 
Keith Weber on Day 1, followed by a panel presentation, moderated by Samuel Otten, with  
Kristen Bieda, AnnaMarie Conner, and Pablo Mejía-Ramos serving as expert panelists (i.e., 
Bieda – justification; Conner – argumentation; and Mejía-Ramos – proof). The panelists shared 
how they conceptualized the interrelationships among argumentation, justification and proof; 
they explicated how they came to use the central construct they use in their research and why 
they felt that choice was productive for their work; and they offered their thoughts on the current 
state of the field and what we might need to tackle next in relation to these constructs. The final 
day of the 2015 working group sessions offered the opportunity to revisit participants’ 
Diagrams/Concept Maps, though now potentially informed by additional perspectives and 
questions gained from the prior two sessions.  

Three products were generated from the 2015 meeting. First, a pair of podcasts generated by 
Samuel Otten are available worldwide: The first podcast is of Weber’s talk 
(http://mathed.podomatic.com/entry/2015-11-16T07_01_19-08_00), and the second podcast is 
the moderated panel discussion (http://mathed.podomatic.com/entry/2015-11-19T07_19_37-
08_00). The second product was a white paper that was developed by the working group 
organizers, the panelists, and several other participants from the working group who volunteered 
to participate in the online publication (Cirillo et al., 2016). The white paper summarized the 
working group activities and discussions and also includes the set of 44 Diagrams/Concept Maps 
that were generated as well as annotations and analyses. The final product was a poster 
presentation for PME-NA 2016 that was based on the analyses of the Diagrams/Concept Maps 
(Strachota et al., 2016).  

Weber’s presentation highlighted different traditions and points of disagreement, for 
example, citing Reid’s (2001) observation that research simultaneously suggests that secondary 
students struggle to construct proofs, while at the same time suggesting that primary children are 
capable of engaging in proof. Weber prompted the group to consider how different traditions 
may inform each other in order to advance the field collectively. In particular, he outlined three 
broad traditions in proving: proving as problem solving, proving as convincing, and proving as 
socially embedded activity. Each corresponds to a different focus for research and/or instruction. 
Weber offered two thought-provoking suggestions, both of which may help us understand the 
lack of convergence in results and definitions. One suggestion was that proof may not be a 
singular, easily defined concept, but rather a cluster concept, as used by Lakoff (1987). In this 
sense, there is no list or decision procedure to identify a proof, but rather there is a set of features 
associated with the concept, and many - but not all - apply in any one instance.  

The second suggestion was that the features or properties associated with proof may be 
closely interrelated for mathematicians, but not for students. In particular, for mathematicians, a 
convincing argument and socially sanctioned argument are often one-in-the-same. For students, 
however, those are not tightly connected and may describe very different types of arguments. He 
suggested, “Perhaps much of the disagreement amongst mathematics educators is that they are 
using proof as a shorthand to denote things that are different to students but similar for 
mathematicians” (Cirillo et al., 2016, p. 7). 
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The panel discussion on our second day further raised awareness of how crucial it is to not 
only define one’s terms, but also to specify the context of one’s work. For example, Bieda and 
Conner both work closely with students and teachers in secondary settings, and in that context, 
they have found proof and proving to be terms that distance or invoke conceptions of end 
product and formality. Consequently in their work, they have chosen different focal constructs. 
Both Bieda and Conner articulated an explicit link of their work to students’ proof-producing 
capacities at the tertiary levels, but they do not centralize that term in their research in school 
mathematics.     

Our discussions and subsequent analyses of the Concept Diagrams/Maps offered additional 
information about the variety of ways these three important constructs are understood in relation 
to one another. During the gallery walk and subsequent analyses across the Concept 
Diagrams/Maps, we could discern little to no agreement about the relationship between 
justification and argumentation. It seemed that participants held these two constructs 
(justification and argumentation) either fully distinct from the set of things we call proof, or that 
proof was a very specific version of each of these. Some considered justification a subset of 
arguments; others positioned arguments as a subset of justifications; and still others had them as 
overlapping, but not concurrent, sets.  

Proof (and proving) seemed to be of a different nature than argumentation and justification 
for our participants, and proof participants either positioned it at the far end of a continuum of 
the constructs, a plane above, or as a separate entity. Others considered proof to be a specific 
subset of arguments and justifications. Additional details can be found in the White Paper 
(Cirillo et al., 2016). A question raised in the discussion on Day 3 was whether proof was so 
valorized that we position it as the “desired end product” for all arguments, even when that might 
not be a productive or educative goal. This lack of not only convergence but general clarity 
provides an important opportunity for further exploration and raises questions about the 
consequences of these different concepts. It implores us to continue to work to develop a 
framework to connect these constructs and clarify not only our commitments and definitions but 
the interrelationships among these important ideas.  
Highlights from the Year 2 Working Group Discussions 

During the first session of the second meeting of the AJP-WG, Samuel Otten moderated 
panel presentations on differing applications of definitions provided by Eric Knuth, David Yopp, 
and Orit Zaslavsky. On the second day, participants examined data artifacts from different grade 
levels and were asked to consider whether and in what ways they would define features in the 
data with respect to argumentation, justification, and proof. All participants were provided two 
common artifacts (a transcript of a high school math class discussion & five samples of grades 
K-3 writing samples) as well as one additional artifact of choice (middle school, high school, or 
tertiary level artifact). Discussion surrounding the artifacts provided an opportunity for 
participants to consider how their definitions were affected by application to the differing data. It 
provided an arena in which to see how each definition served as a lens for viewing the artifacts 
and how these different lenses might lead one to position a work sample in different ways, 
depending on the type of mathematical activity represent in the work sample based on the 
definition. This discussion continued through to the final session. Further, the discussion 
surrounding the artifacts facilitated initial organization of three networking groups–one focused 
on reading and sharing journal articles and two focused on producing written products. One 
product available from this second AJP-WG meeting is a podcast of the panel discussion 
produced by Samuel Otten (https://www.podomatic.com/podcasts/mathed/episodes/2016-11-
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14T07_10_36-08_00). A second product is a white paper (available at 
https://www.researchgate.net/publication/317267228) summarizing the working group activities 
and discussions of the artifacts from year two (Staples et al., 2017). The final product is the 
organization of networking groups for continued collaboration related to, but independent from, 
the working group. Thus, activity across both years of the working group has facilitated the 
continued development of a community of mathematics education researchers who we anticipate 
will continue these discussions over several years.  

During the panel discussion, our panelists shared how they used and defined justification, 
argumentation, and proof and how their definitions and applications of these constructs 
influenced, and were influenced by, their research questions or contexts. A key point arose from 
David Yopp’s juxtaposition of his definition of proof with Stylianides’ (2007) definition of proof 
in relation to a particular 8th-grade work sample. Yopp argued that by Stylianides’ definition, the 
student’s work was not a proof (violating two of three conditions). By Yopp’s definition, 
however, the student’s work was a proof. Yopp stated that a proof eliminates the possibility of 
counterexamples. Thus, from the student’s perspective—and perhaps class’s perspective—he 
had eliminated the possibility of counterexamples, thus providing proof of the claim (see Figure 
1). 

 

 
Figure 1. Student work samples shared by David Yopp. 

We then turned our attention to reviewing artifacts of K-16 classrooms, to provide a concrete 
opportunity to see how definitions might interact with context. Participants were offered two 
artifacts in common, from elementary grades work samples and a high school transcript, and then 
could choose a third artefact to review, from middle school, high school or tertiary level. 
Although it became apparent was that we offered too much in too short a time frame, our 
discussion was productive, and we recap a few of the key ideas offered here. 

One question raised was how much context we needed to know in order to engage the 
question, is this a proof? Or is this an argument? This question was posed based on recognizing 
that both Yopp and Stylianides offered definitions of proof that dependent to a degree on a 
child’s/class’s conceptual sphere. In Stylianides’ definition, this context element comes through 
with the criteria that all must be “known by” or “within the conceptual reach” of the community. 
In Yopp’s, this context element comes through with the idea that one must eliminate all possible 
counterexamples, so if a student is not aware of, say, complex numbers, s/he does not have to 
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offer a proof that accounts for all complex numbers. The student can only attend to and eliminate 
the possibility of counterexamples (actively) from his or her realm of possibility. Continuing 
with the general idea of context, questions were raised about how grade-level dependent a proof 
was, and whether one needed to know more about what was taken-as-shared in a class to 
evaluate whether an argument did or did not comprise a proof.  One of the final points raised was 
that a proof is not a stand-alone entity; we need to know what the norms and assumptions are in 
order to understand if something is operating as a proof in that context.  

In our final session, we sought to continue the discussion from the previous session and also 
organize toward “networking groups” for those interested in sustaining or advancing 
conversations with respect to argumentation, justification and proof during the year. Participants 
each wrote brief questions they were interested in pursuing and indicated a level of commitment 
they might have for the pursuit (e.g., discussion groups, reading groups, research group). Our 
time then was devoted to participants having conversations to connect with one another around 
shared areas of interest and similar levels of desired future commitment. 
Highlights from the Year 3 Working Group Discussions 

In Year 3, the working group explored the consequences of examining data from differing 
perspectives on the definitions of and relationships among argumentation, justification, and proof 
(see Cirillo et al., 2015; Staples at al., 2016; Conner et al., 2017). During the first session, 
working group participants examined a set of data that included both a transcript and students’ 
written artifacts from a middle grades classroom (shared by Megan Staples from the JAGUAR 
project), using perspectives negotiated among themselves. Conversations revealed working 
group participants used a wide range of perspectives as they looked at the data. Working group 
participants raised a number of questions as they looked at the data, including the importance of 
knowing the teacher’s goals for the lesson; emphasizing how a task was set up would impact the 
students’ productions of argumentation, justification, or proof; and how different definitions of 
argumentation, justification, and proof might yield different conclusions about the conversation 
and written work. 

During the second session, the working group heard presentations from two researchers who 
had deliberately taken different perspectives on the data presented in session 1. Kristen Bieda 
examined the data using Harel and Sowder’s (2007) definition of proof, and Megan Staples 
examined the data using a community-of-practice lens (Lave & Wenger, 1991; Wenger, 1998) 
involving justification. Harel and Sowder’s definition of proof involves the constructs of 
ascertaining and persuading. Bieda raised the question of collective ascertaining, asking if 
ascertaining has to be done by one person or if it could be done by or within a group. She also 
noted that the definition of proving as ascertaining and persuading omits specifying forms of 
reasoning that are valid. Staples pointed out that her analysis showed different kinds of language 
use during small-group and whole-class discussion. Significantly, she did not find any teacher 
use of the word justification, but she found numerous instances of justification within the 
transcript, particularly in the context of “explain your thinking.” Discussion after the 
presentations included the importance of positioning definitions of argumentation, justification, 
and proof within a larger perspective. Also discussed were issues of disciplinary norms, 
including a tendency to examine proof from a disciplinary perspective but justification without 
assigning a disciplinarily specific definition. 

In session 3, Karl Kosko introduced a third perspective on the data, using Pierce’s 
(1903/1998) semiotic view coupled with Toulmin’s (1958/2003) diagrams of argumentation to 
examine how grammar in the mathematics register functioned to convey meaning. He examined 
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how use of warrants influences the co-construction of mathematical argumentation. In the 
subsequent discussion of the three presentations, working group participants emphasized that 
definitions and methodology were intertwined and difficult to separate. Essentially, in examining 
the data, the three researchers were looking at different things: justification as a means of 
concept development, understanding whether doubt is removed, and what students are doing as 
they use or omit warrants. All of these perspectives resonated with participants, and the 
conversation validated the importance of specifying both the perspective and the definition being 
used in research about argumentation, justification, and proof. 

Focus for Year 4 
Our focus for Year 4 is how mathematics teacher educators prepare K-16 teachers for 

enacting argumentation, proof, and justification in their own classrooms. We will engage in 
discussion on how focusing on argumentation, proof, and justification may result in different 
outputs from teachers, in teacher preparation programs and professional development. As learned 
in Year 1 and 2, the members of this community have a variety of definitions and perspectives of 
argumentation, proof, and justification (see Cirillo et al., 2015; Staples et al., 2016; Conner et al., 
2017). The community’s perspectives on the relationship between argumentation, justification, 
and proof also varied. We will explore how these differing perspectives inform the ways 
prospective and in-service teachers conceptualize argumentation, justification, and proof. 
Guiding this year’s focus are the following questions:  How have our group members helped 
teachers conceptualize argumentation, justification, and proof? What conjectures do our 
community members have about the consequences of the teachers’ conceptualizations of 
argumentation, justification, and proof in their teaching and learning of mathematics? 

In Year 3, the relationship between context and the individual’s definitions of argumentation, 
justification, and proof was further explored. We plan to build on these previous conversations 
by including how different members have attempted to teach prospective and inservice teachers 
about argumentation, justification, and proof. We hypothesize one’s conceptualization of 
argumentation, justification, and proof will inform the activities and tasks given to prospective 
and inservice teachers. Time will be allotted for the participants of the community to work 
together to discuss, brainstorm, and share different activities they have enacted or could enact 
with preservice and inservice teachers to highlight important aspects of argumentation, 
justification, and proof. Moreover, ways in which argumentation, justification, and proof could 
be emphasized in already enacted activities (e.g. high cognitive demanding tasks) will also be 
discussed. We will use these opportunities to build collaboration among the members of the 
working group. Facilitating these conversations on developing potential activities for prospective 
and inservice teachers, we will construct an online space to share the different activities, tasks, 
and other interventions the members of the working group develop or have enacted previously. 
Continued collaboration will be promoted to design and investigate the enactment and learning 
results of these activities on argumentation, proof, and justification.     

Plan for the Working Group 
Session 1: Exploring the teaching and learning of AJP with prospective teachers 

In Session 1, we will begin with introductions and review our progress from the past three 
years. Then, we will start a panel discussion. The specific focus of this panel discussion is: How 
can we, as mathematics teacher educators, support prospective teachers to learn and teach 
argumentation, proof and justification from elementary to tertiary education?  
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In past discussions, working group participants shared how they defined and conceptualized 
the interrelationships among argumentation, proof, and justification. This year, we will follow up 
to explore how their different perspectives influence their preparation of prospective teachers to 
teach argumentation, justification, and proof in mathematics classrooms. During the session, we 
will invite working group participants to share how they prepare prospective teachers to engage 
in argumentation, justification, and proof in their classrooms.  
Session 2: Issues of equity and social justice in classrooms involving AJP  

In Session 2, we will have a series of presentations exploring the intersection of equity and 
social justice and teaching and learning AJP. We will focus on teaching involving AJP in areas 
with marginalized populations. Researchers will be invited and will share their work, particularly 
about how they conceptualize and use AJP in their studies and implications for marginalized 
students. With working group participants, we will discuss what AJP might look like in 
mathematics classrooms with marginalized students and what the role of equity and social justice 
is and how they can be incorporated into the learning of AJP in those contexts. We will also 
discuss what else a teacher should consider in the intersection of conceptualizations of AJP and 
equitable instruction.  
Session 3: Brainstorming recommendations for the preparation of teachers  

In Session 3, working group participants will brainstorm recommendations for teacher 
educators who are preparing prospective and practicing teachers to teach AJP in the context of 
mathematics classrooms. We will discuss what activities or resources might be helpful for the 
teachers learning to teach the AJP constructs in classrooms and what the teachers could learn 
from participating in these activities. Building on session 2, we will also discuss what the 
teachers should pay attention to when implementing AJP in their classrooms and what relevant 
researchable questions are important to the field. 

Anticipated Follow-up Activities 
We anticipate that the products and follow-up activities from Year 4 will build on the 

activities and products from our three previous years. A major follow-up activity for this year 
will be a white paper exploring recommendations for exploring argumentation, justification, and 
proof in teacher education.  We will continue to encourage networking groups, which will likely 
shift and expand. Additional networking groups with other related interests will also be 
encouraged.  
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This Working Group builds on the work of Working Groups in 2015 and 2016. We will continue 
considering multiple aspects of research and practice related to mathematics learning and 
teaching with English Learners. Our goals for the 2018 Working Group include: (1) sharing 
current perspectives on extant research related to mathematics and English learners, (2) 
understanding venues for dissemination of research on ELs, including novel outlets that connect 
research to practice, and (3) fostering new collaborations and supporting further connections 
among researchers. In Session 1, the organizers will present brief reports on the work that will 
be used to catalyze subsequent sessions’ work. During Session 2, we will engage in a shared 
data analysis activity drawing on excerpts of student interview data. The activity will center on 
comparing and contrasting methods for analyzing the learning and teaching of ELs. In the final 
session, we will have four breakout groups from which participants can choose to join. Each 
group will revisit a key aspect of the prior days’ work. We will close with time to review group 
progress and discuss next steps for our work.  

Keywords: Equity and Diversity; Teacher Education-Pre-service; Teacher Education-In-
service/Professional Development; Research Methods 

Focal Issues   
English Learners (ELs) are the fastest growing group of U.S. students (Verplaetse & 

Migliacci, 2008). U.S. schools have seen an increase of 152% in the population of EL students 
over the past 20 years (National Clearinghouse for English Language Acquisition, 2008). This 
increase in the population of ELs has created a need for schools and teachers to create inclusive 
and equitable mathematics classrooms. No longer is supporting ELs a concern for only for 
educators in states like Arizona, Texas and California with traditionally high numbers of EL 
students. Instead, with all but 15 states across the country seeing increases in their EL 
populations between 2004-05 and 2014-15 (National Center for Educational Statistics (NCES), 
2017), there is increasing nationwide pressure for support in addressing the needs of these 
students.  

The implementation of the Common Core State Standards for Mathematics (National 
Governors Association Center for Best Practices, Council of Chief State School Officers, & 
Officers, 2010) has put additional pressure on mathematics teachers of students who are still 
gaining proficiency in English. Teaching aligned with the CCSSM’s content standards and the 
standards for mathematical practice must address the language demands required to engage in 
mathematical discourse. Providing ELs with quality educational experiences is no longer 
relegated only to language specialists; it is a “mainstream” issue for which all mathematics 
teachers must be prepared (Bunch, 2013). In light of these demographic and curricular shifts, 
there is a growing body of research on the teaching and learning of ELs in school mathematics. 
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In the following we briefly summarize research on mathematics teacher preparation for working 
with ELs and mathematics curriculum design issues for ELs. 

Despite the rise in the number of ELs and changes to school mathematics standards, there has 
not been an increase in teacher preparation geared toward supporting ELs, and this is especially 
the case for content-specific preparation (e.g., Kaufman & Stein, 2010). Although the consensus 
among mathematics educators that teachers need focused, content-specific preparation to teach 
ELs effectively, most inservice teachers have had few, if any, professional learning experiences 
around working with ELs in mathematics classrooms (Ballantyne, Sanderman, & Levy, 2008). In 
fact, many mathematics teachers struggle to understand their role in supporting ELs’ 
mathematics language development (Willey, 2013). In 2008, Ballantyne et al. found that it was 
“likely that a majority of teachers have at least one English language learner in their classroom,” 
although “only 29.5% of teachers with ELs in their classes have the training to do so effectively” 
(p. 9). This misalignment of the realities of today’s classrooms and teacher preparation has 
necessitated examination into effective means of supporting current teachers and preparing 
prospective teachers to meet the needs of linguistically diverse learners and studying such work. 

In addition to the need for inservice teacher training to teach mathematics with ELs, 
preservice teachers are also underprepared to teach mathematics with ELs. Preservice teachers 
typically have few opportunities to think specifically about how they will work with ELs in their 
mathematics classrooms. Preparation programs often include coursework on teaching ELs that is 
not specific to the content areas in which preservice teachers will work. Meanwhile, the content 
courses for preservice teacher often focus solely on content, devoid of exploring how to support 
ELs in mathematics classrooms. Recently researchers have shared strategies for engaging 
preservice teachers in working with ELs in mathematics classrooms. For example, Fernandes 
(2012) suggested a series of mathematics task-based interviews to engage preservice teachers in 
the process of noticing the linguistic challenges that ELs face and the resources these students 
bring to their mathematical communication. In another example of such work, the TEACH 
MATH research team is using tasks in their content courses to support preservice teachers in 
drawing on students’ funds of knowledge (Turner et al., 2012). 

Beyond using tasks in content courses, teachers use tasks in their classrooms in the form of 
curriculum. Such curriculum plays a key role in the teaching and learning of mathematics and 
teachers play a pivotal role in selecting and enacting curriculum materials for students. The 
choice of curriculum materials impacts students’ opportunities for learning in the mathematics 
classroom (Kloosterman & Walcott, 2010). Early work on curriculum and English learners 
focused specifically on the challenges ELs encounter when completing or interpreting word 
problems (Téllez, Moschkovich, & Civil, 2011). Since that time, the field has transitioned to 
focus on curriculum that draws on and connects to students’ cultural resources (e.g., Barton, 
1996; D’Ambrosio, 2006), the development of curriculum materials specifically for ELs (e.g., 
Freeman & Crawford, 2008), and the evaluation of a curriculum’s appropriateness for ELs (e.g., 
Khisty & Radosavljevic, 2010). More recently, work related to ELs and curriculum has begun to 
look at teachers’ use of curriculum (e.g., de Araujo, 2017). 

This year, our Working Group aims to look backward to synthesize research related to the 
mathematics education of ELs broadly, and in relation to this Working Group specifically, while 
also looking forward to consider new research in the field. In looking back at research that the 
field has completed, the organizers have completed a literature review of research on ELs and 
mathematics education (de Araujo, Roberts, Willey, & Zahner, under review), and we found 99 
empirical articles on this topic since 2000. This represents an increase in attention toward the 
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mathematics education of ELs, with most recent work being framed using sociocultural and 
sociopolitical frameworks. We note that this research is occurring in concert with the political 
landscape, acknowledging the sociocultural and political dimensions of mathematics and of 
school mathematics (Gutiérrez, 2013). There is still much work to be done; some contexts and 
critical dimensions remain unexamined. Moreover, teachers still need more support, and we still 
need to acknowledge and build on the resources that ELs bring to classrooms. 

In addition to synthesizing the literature, the 2018 Working Group will look forward as we 
foster new collaborations and help define future directions for research. To do this work, we will 
bring together researchers from diverse contexts to examine current and past research on ELs in 
mathematics education while also supporting burgeoning collaborations to establish future, 
imperative research directions.  

Brief History of the Working Group 
The facilitators of this Working Group initially came to work together through the NSF-

funded Center for the Mathematics Education of Latinas/os (CEMELA). CEMELA brought 
together researchers from across the country to collaborate on research focused specifically on 
critical issues related to Latinos/as in mathematics. Prior to CEMELA, researchers interested in 
such a focus worked mostly in isolation. In considering issues related to Latinos/as in US 
schools, issues of language and culture were central, which often had direct implications for 
English Learners (ELs) more broadly. While not all Latinos/as are English Learners, and not all 
ELs are Latinos/as, these two groups have significant overlap. For example, about 80% of ELs 
speak Spanish as a first language, and Spanish-speaking ELs appear to struggle on measures of 
academic achievement (Goldenberg, 2008). 

CEMELA expanded the field’s knowledge of ELs in mathematics through conducting 
interdisciplinary studies that helped researchers and practitioners better understand the reality of 
Latinas/os and mathematics teaching and learning. CEMELA’s research focused on teacher 
education, research with parents, and research on student learning, resulting in over 50 
publications and presentations. Again, several of these studies involved the investigation of 
questions related to the interplay of language, culture, and mathematics education. CEMELA 
also had the goal of connecting the network of scholars focused on these issues, as a means to 
build capacity and sustain the work.  

Following the conclusion of CEMELA’s funding, Zandra de Araujo, Sarah Roberts, Craig 
Willey, and William Zahner continued to meet regularly. These meetings focused on examining 
intersections among these early career scholars’ work related to the mathematics education of 
ELs. To date these meetings have resulted in a number of national presentations at the annual 
meetings of the National Council of Teachers of Mathematics, the American Educational 
Research Association, and PME-NA. Currently, this group is working on several manuscripts 
and follow-up studies related to the preparation of teachers to work with ELs. Perhaps most 
notable is an extensive review of the international literature focused on mathematics and ELs. 

The Mathematics Education and ELs Working Group met at PME-NA in 2015 (de Araujo et 
al., 2015) and 2016 (de Araujo et al., 2016). At those meetings, we brought together a diverse 
group of about 30 researchers who started working together on several projects related to the 
mathematics education of ELs (see descriptions of these projects in the section below titled 
Previous Work of the Group). Our aim for the 2018 Working Group is to provide a space for 
these scholars to continue their work and bring new scholars into the fold.  
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Previous Work of the Group 
The 2015 and 2016 Working Groups (de Araujo et al., 2015, 2016) began with whole group 

discussions aimed at examining five aspects related to the mathematics education of ELs 
including: a) Student Learning; b) Family and Community Resources; c) Language Perspectives; 
d) Teacher Education; and e) Curriculum. In the following sections we briefly summarize our 
discussions and subsequent work in each of these areas.  
Student Learning 

Building upon situated and sociocultural perspectives (Moschkovich, 2002), the student 
learning group started from the premise that ELs, like all students, learn mathematics through a 
process of appropriating discourse practices, tool use, and perspectives of mathematics. In 
reviewing the literature on the mathematics learning of ELs, we have identified a need to 
understand better how research in mathematics education at large is connected with research on 
the mathematics learning of ELs. Much of the content-focused work in mathematics education is 
isolated from research on how ELs develop specific mathematical understandings. Previous 
discussions at this working group have supported ongoing research and development efforts 
focused on bridging the literature on supporting ELs in mathematics classrooms and the 
literature on students’ mathematics learning through focused instruction. 
Family and Community Resources 

Families and communities can serve as resources for ELs in their mathematics learning in 
myriad ways. Families can advocate for their children and provide and support learning 
experiences both in and out of the classroom. Communities can also provide a wealth of support 
mechanisms and learning possibilities. Moll et al. (1992) described how students studied candy 
making and selling within their neighborhood to explore mathematics within this context, such as 
discussing and analyzing production and consumption. In doing so, the teachers and students 
acknowledged the value of these community experiences. Additionally, Civil and Bernier (2006) 
explored the challenges and possibilities of involving parents in facilitating workshops for other 
parents around key math topics. These studies and others like them illustrate the promise of 
family and community resources in fostering ELs’ mathematics learning. At our 2015 meeting, 
Civil shared her recent work on how school language policies impact ELs’ engagement and how 
teacher educators can draw on family and cultural resources in support of ELs.  We followed up 
on this work during our 2016 with small group discussions. 
Language Perspectives 

Teachers’ and researchers’ conceptions of language, second language acquisition, and 
bilingualism affect teaching and learning mathematics for ELs. In 2015, Judit Moschkovich 
shared her work that highlighted how perspectives of language, second language acquisition, and 
bilingualism appear in both theory and practice. We also discussed, in particular, how work 
focused on ELs can draw on current work on language and communication in mathematics 
classrooms, classroom discourse, and linguistics. Looking for these intersections and connections 
was crucial because it ensures that work in mathematics education is both theoretically and 
empirically grounded in relevant research, and it will prevent researchers from reinventing 
wheels.  
Teacher Education 

Much of the prior work on teacher education related to ELs has focused on more general 
strategies (e.g., sheltered instruction, as in Echevarria, Vogt, & Short, 2007), such as using 
visuals, modifying texts or assignments, and using slower speech. We argue there is a need for 
content-specific support for mathematics teachers of ELs. At our previous meetings, we explored 
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ways to support teachers, both pre-service and in-service, in better understanding the strengths, 
and meeting the needs, of ELs in the mathematics classroom.  

During the 2015 and 2016 Working Groups, the teacher education subgroup focused on the 
primary issues that arise in the preparation of teachers to teach ELs at the various institutions. As 
a group we recognized that there were few attempts to include the teaching and learning of 
mathematics to ELs beyond the states where there was a high population of ELs. Given that 
some of the group members were meeting for the first time, a significant portion of the allotted 
time was spent sharing the details of the research we did and our interest in being part of this 
particular subgroup. One of the members shared a survey about examining preservice teachers’ 
conceptions about teaching mathematics to ELs and the other members agreed to administer the 
survey at their locations. Together, the responses will provide us with some insight about 
possible conceptions that need change and the steps we can take to make that happen. The group 
has stayed in touch online and continue the discussions about potential collaborations. 
Curriculum 

In 2015, the curriculum subgroup focused on the role of textbooks, specifically teachers’ 
guides and student work pages, in demonstrating how one might approach supporting ELs in 
building mathematical understanding and developing mathematics language. We inquired about 
the process publishers undergo to incorporate and offer support to teachers. What assumptions do 
they make? Who do they consult? What motivates them to invest in serving ELs better? What 
is/are their end goal(s)? The group decided to conduct an analysis of various middle grades 
curriculum to ascertain what supports and guidance are offered to teachers. It was suggested that 
we might build on the work of Pitvorec, Willey, and Khisty (2010), who explored the features of 
Finding Out/Descubrimiento (FO/D) that proved to be successful with bilingual children of 
migrant families in the 1980’s and partially contributed to the development of complex 
instruction (Cohen, Lotan, Scarloss, & Arellano, 1999).  

At the 2016 meeting, this group continued to examine textbooks to understand better the 
supports they provide for ELs. Participants considered language issues in mathematics texts for 
ELs, especially as related to word problems and assessment items. We shared a short literature 
review of relevant research on linguistic complexity and vocabulary for mathematics word 
problems. Based on that research, we summarized recommendations for addressing language 
complexity and vocabulary in designing word problems for instruction, curriculum, or 
assessment. We then used examples of released sample Smarter Balanced Assessment 
Consortium items to illustrate how to apply those recommendations to designing word problems 
and to designing supports for ELs to work with word problems. Several of the participants have 
continued this work examining curriculum accommodations for ELs and are completing a 
research study based on the work started at the 2016 Working Group. 

Aims for the 2018 Working Group 
Previous meetings of this Working Group brought together a large and diverse group of 

attendees. For example, in 2016 there were approximately 30 attendees including teachers, 
preservice teachers, researchers, graduate students, and teacher educators from a range of 
institutions. In light of the variety of contexts from which the attendees came and the attendees’ 
various career stages, we have worked to reconceptualize the Working Group in order to offer 
substantial benefits to all in attendance. The result is a highly interactive, three-day series of 
meetings focused on bridging past research findings and looking forward to new avenues for 
research and practice guided by the following objectives: (1) Sharing current perspectives on 
extant research related to mathematics and English learners, (2) Understanding venues for 
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dissemination of research on ELs, including novel outlets that connect research to practice, and 
(3) Fostering new collaborations and supporting further connections among researchers.  In the 
following section we provide an overview of each of the sessions in relation to these aims. 

Plan for the 2018 Working Group Sessions 
 During the three sessions in 2018, participants will continue the work of the subgroups and 

bring new members up to date on the group’s prior activities. In participating in the three 
sessions, participants will work to: a) clarify research questions, b) refine research tools, 
methods, and analyses, c) explore connections among different projects and studies, and d) 
discuss further collaborations and research on learning and teaching mathematics in classroom 
with English learners. 
Session 1: Introductions and Brief Reports 

The goals for the initial session are to allow participants to meet fellow attendees and to share 
current perspectives on extant research related to mathematics and English learners. The 
organizers will present brief reports on the work that resulted from the 2015 and 2016 Working 
Groups. Each of these brief presentations (5-10 minutes) will focus on the conference theme of 
“Looking Back, Looking Ahead.” We will preview the schedule for this year’s Working Group 
sessions.  

 
Activities 

• Introduction and overview of the Working Group including introduction to the Google 
Community. 

• Brief presentations by panel members from each of the subgroups providing overviews of 
research projects with specific examples of how researchers have designed the studies. 
The purpose is to provide an overview and update of scholarly activities that were 
initiated at the 2015 and 2016 Working Group.  

• Following the presentations, participants will discuss specific questions posed by the 
subgroups and aims for the subgroups’ work at the 2018 meeting. 

Guiding Questions 

1. What research has been done in relation to the Working Group’s prior meetings and 
avenues exist for future work? 

2. Which aspects of studies focusing on English learners do you find most puzzling? Most 
useful? Most misunderstood? 

3. What are the goals for the 2018 Working Group? 

Session 2: Interactive Data Analysis  
During Session 2 we will engage in a joint exercise focused on data analysis, using data from 

Zahner’s ongoing research in linguistically diverse high schools to motivate a discussion of 
research methods, tools, and questions.  

 
Activities 

• Introduce a focused set of data for discussion (videos, transcript, and written work from 
two 9th grade ELs’ problem-based interviews). 

• Consider the interview tasks and discuss potential foci. 
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• Break into small groups. Immerse selves in data for 45 minutes, discuss guiding 
questions using the data as touchstone for discussion. 

• Share results of small group discussions with larger group. 
• Facilitated discussion focused on the following set of questions. 

Guiding Questions 

1. What theories and theoretical frameworks have informed the design of your research 
project(s)? 

2. How do sociocultural theories of learning mathematics and language allow for a non-
deficit view of ELs’ mathematics reasoning? 

3. How might your work inform theory building in studies of mathematics learning and 
teaching for ELs?  How can work on this student population expand our theoretical 
lenses? 

4. What issues and challenges have you faced in designing studies and analyzing data? 

Session 3: Breakout Groups and Next Steps 
Given the diverse backgrounds and experiences of attendees of our prior working groups, our 

final session will allow attendees to engage in small group discussions aligned with their 
particular interests. The organizers will lead subgroups as described below. 

• Subgroup 1: Diving deeper into the data. This subgroup will focus on continuing the 
work from the prior session. Zahner will continue to guide the participants in further 
analysis and open space for further discussion of the data and avenues for future research. 

• Subgroup 2: Diving into the translation of research for non-researchers. This 
subgroup will focus on ways in which to researchers can communicate their findings with 
the general public. Willey will share his experiences writing policy briefs and open 
access papers for practitioners, policy makers, and community members.   

• Subgroup 3: Diving into teaching. In this subgroup, de Araujo will lead discussion on 
how to take what we have learned from research into the preservice mathematics methods 
classroom. The group’s discussions will focus on studying our teaching practice in 
relation to ELs and ways of sharing lessons and activities with other teacher educators.  

• Subgroup 4: Diving into dissemination. Roberts will lead this small group in a 
discussion of publication venues that are open to scholarship related to the mathematics 
education of ELs. She will frame the discussion in what was learned from the organizers’ 
review of literature on the mathematics education of ELs. She will also discuss funding 
opportunities for research related to this work and questions raised by our literature 
review.  

We will close Session 3 with time to review group progress and discuss next steps for our 
work. Meeting notes, work, and documents will continue to be shared and distributed via our 
Google Community (https://plus.google.com/communities/104376842129206334879) and 
corresponding Google Drive folder (https://goo.gl/EXhUVm). The use of Google Community 
allows members to create an institutional memory of activities during the Working Group that 
we have continued to use and add to following the 2015 and 2016 Working Groups. In addition 
to the Google Community and Drive resources, anticipated follow-up activities include planning 
for a continuation of the Working Group at PME-NA in 2019, an informal group meeting at 
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TODOS’ 2020Conference, and organizing one or more collaborative writing projects on this 
topic. 

 
Activities 

• We will engage in a brief welcome activity focused on the prior session’s data analysis 
activity and to recap session 2 and to ensure attendees have a chance to meet those in 
attendance. 

• The organizers will briefly introduce the four subgroups and invite attendees to select a 
group to join for continued collaboration. 

• The subgroups will work to discuss their given focus and possible directions for 
continued collaboration. 

• The organizers will bring the groups back together to debrief the subgroup discussions.   
• We will end with a discussion of next steps for continued collaboration, particularly via 

the Google Community 

Guiding Questions 

1. How might we take what we learned from the data analysis activity and apply it to your 
work researching and teaching the mathematics education of English learners? 

2. How will we disseminate our work? 
3. What are the next steps in continuing this work? 

Follow-up Activities 
We anticipate that this Working Group will again attract other researchers interested in issues 

related to the mathematics education of ELs. Therefore, an important component of this third 
meeting of the Working Group will be to maintain current relationships while also continuing to 
establish connections with other interested researchers in order to build opportunities for future 
collaborations. We will provide space for new researchers to contribute to our collective work, to 
suggest new directions, and to add to the growing body of research on mathematics and ELs.  At 
the first session of our Working Group, we will share our ongoing online Google Community, 
which uses Google applications (Hangout, Groups, Drive, etc.). Google’s applications are freely 
available and allow for a number of collaborative opportunities, including video conferencing, 
group messaging, collaborative document development, and shared web and social media space. 
Through this collaborative Google Community, we have organized follow up meetings both 
virtually and at conferences such as TODOS and the NCTM Research Conference. These 
meetings, both face-to-face and virtual, allow us to set concrete goals in preparation for the 
creation of a Working Group proposal for PME-NA 2018 to continue our work. 

In addition to these short-term goals, we have several longer-term goals for this Working 
Group, depending on which groups individuals join during their time on days 2 and 3. First, for 
those who dive into data will consider further collaborations will extend with a Google group 
where individuals can connect with one another as they consider their own data dives around 
mathematics and ELs and where to go next with this work. Second, those who dive into 
translating research will work together beyond the conference to consider white papers and 
publications with broader audiences, particularly teachers. This will also be an opportunity to 
engage in efforts to transform the way mathematics curriculum is developed and enacted with 
respect to enhancing access and engagement of ELs. Third, those who dive into teaching will 
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consider collaborations around enhancing PSTs’ work with ELs and the development of actual 
lessons and activities beyond the conference for doing this work. Finally, those who dive into 
research will consider friendly publication venues, set-up writing groups, and identify future 
research partnerships. 
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MATHEMATICAL MAKING IN IMMERSIVE VIRTUAL ENVIRONMENTS 
WORKING GROUP 
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We propose a working group that will bring mathematics education researchers together to 
explore how immersive spatial display technologies (e.g., room scale virtual reality) can be used 
for the teaching and learning of mathematics. The sessions will provide participants with the 
opportunity to explore a range of virtual worlds that are accessible via the HTC Vive, including 
mathematics-specifics environments that were designed by session organizers. The working 
group will provide a venue where participants can work together to plan research studies, 
discuss instructional activities, and design virtual environments for making and exploring 
mathematical figures. Our group aims to look ahead to a time in the near future–when immersive 
spatial displays are as commonplace as mobile phones–and anticipate the research, design, and 
development that can guide how these technologies will be integrated into schools.   

Keywords: Virtual reality, augmented reality, dynamic mathematics, spatial thinking 

Motivation 
The commercial release of the HTC Vive (April, 2016) marked the beginning of a new era 

for representing and interacting with information. The Vive is an example of a technology that 
can host immersive, room-scale virtual reality experiences. The experiences are immersive 
because one’s visual and aural senses are saturated by the sights and sounds of a virtual world. 
Room scale virtual reality experiences are distinct from stationary experiences, such as those that 
can be supported by phone-based viewers (e.g., Google cardboard, Gear VR). In room scale 
virtual reality, one’s physical location within a physical room is used to determine one’s position 
in a virtual world. This location tracking allows users to have direct control over where they are 
in a scene, and local movement in a virtual world is linked to one’s movements in the physical 
world. Room scale virtual reality also affords users more options for interacting with virtual 
environments than VR viewers, such as the ability to create virtual objects.  

Room scale virtual reality is an example of an immersive spatial display—a technology that 
enables space itself to be the canvas for making inscriptions (Dimmel & Bock, 2018). We use the 
term immersive spatial display to bring a range of related technologies under the same heading, 
including augmented reality (e.g., the Hololens), holographic projection, and volumetric video. 
The capacity for making three-dimensional inscriptions in virtual space will open up new modes 
for making and exploring mathematical figures. An example of a mathematical activity that is 
possible with spatial inscriptions that would be infeasible without them is plane-and-sphere 
constructions (i.e., the three-dimensional analogs of compass and straightedge constructions; 
Dimmel & Bock, 2018).  

The mathematical questions that pertain to generalizations of geometric constructions have 
been answered (Franklin, 1919). But before the advent of immersive spatial displays, it would 
have been difficult to engage in the activity of constructing spatial figures from the intersections 
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of planes and spheres, such as the tetrahedron that is shown in Figure 1. The construction is the 
spatial analog of the compass-and-straightedge construction, from two congruent, intersecting 
circles, of an equilateral triangle: the three centers of the spheres determine the vertices of the 
equilateral triangle that forms the base of the tetrahedron, and a point of concurrency for the 
three spheres determines its apex and other equilateral triangular faces. The image shown in 
Figure 1 was captured from HandWaver (Dimmel & Bock, 2017a), a gesture-based virtual 
environment for making and exploring mathematical figures. Plane-and-sphere constructions are 
just one example of new types of mathematical activities that will be possible with immersive 
spatial displays. 

 

  
Figure 1. A tetrahedron constructed from three spheres.  

That inscriptions have been confined to two-dimensional surfaces has constrained how 
mathematical concepts are canonically represented and influenced what subjects are taught, 
especially in the case of geometry (Franklin, 1919; Herbst et al., 2017). The fine-motor skill 
coordination that is necessary to create two-dimensional inscriptions has also limited who has the 
ability to inscribe and engage in mathematical representations. Spatial display technologies will 
make it possible to view and interact with dynamic, virtual, three-dimensional figures and allow 
learners to share a virtual space with the mathematical objects they are investigating. They have 
the potential to introduce new subjects of study into the school mathematics curriculum, such as 
inquiries into the mathematical properties of polyhedrons that go further than calculating the 
Euler characteristic of the platonic solids or explorations of higher-dimensional polytopes more 
generally.  

Because spatial displays make available an additional dimension for representing 
mathematical figures, students could explore four-dimensional objects by investigating their 
three-dimensional projections. Limited versions of such experiences are possible with two-
dimensional dynamic diagrams or physical models, but spatial displays make it possible to have 
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the best of both worlds: They combine the graspability of physical things with the variability of 
dynamic diagrams.  

Immersive spatial displays also present the possibility of allowing rich mathematical 
participation to students who are limited by geography, disease (hospital/homebound), or any 
other socio-economic or physiological deterrents. Two-dimensional surfaces have prevented 
some vulnerable populations from meaningful engagement in mathematics, and in some cases 
(e.g., children with cerebral palsy), the ability to create mathematical inscriptions all together 
(Nickels, Barrett, & Fralish, 2018). Immersive spatial displays allow users to circumvent or 
overcome their physical disability and create inscriptions that reveal, for the first time, their 
mathematical thinking and reasoning. The working group we propose is motivated by a broad 
question: How can the new modes of representing and interacting with information that are 
possible in spatial displays transform mathematics education?  
Relevance to PME-NA Conference theme: Looking back, looking ahead 

Mathematics has always been linked to display technology, from the sand flats used in the 
ancient world (Davis, 1972), to the chalkboards that are ubiquitous in mathematics departments 
(Greiffenhagen, 2014), to the digital displays that emerged in the latter part of the 20th century. 
And historically, new representations of mathematical figures have lead to the generation of new  
knowledge, such as when 19th century mineralogical collections that featured crystals-within-
crystals helped Lhuilier and Hessel broaden the definition of three-dimensional figures that could 
be considered polyhedral (Lakatos, 1976, p. 15). Already, mathematicians have used the visual 
immersion possible with virtual reality viewers to model and gain new insights into non-
Euclidean geometry (Hart et al., 2017a, 2017b). Whereas mathematicians will be the principals 
who use immersive spatial displays for generating mathematical knowledge, the mathematics 
education research community has an essential role to play in describing and researching the 
opportunities for mathematics education that are possible with these new technologies. 

The working group we propose will bring together mathematics education researchers to 
explore what is currently possible with immersive spatial displays, collaborate to plan research 
studies and imagine mathematics-specific virtual environments, and consider the opportunities 
and challenges of using immersive spatial displays in mathematics classrooms. With current 
technology, it is still impracticable for every student in a class to have access to his or her own 
immersive spatial display (i.e., they are not yet a one-to-one technology); but as the state of the 
art for immersive spatial displays improves, the technologies will become smaller, less 
expensive, and will soon be as ubiquitous as mobile phones. When immersive spatial displays 
are commonplace, how will they be used for mathematics education? We are thus looking ahead 
to a time in the near future and attempting to anticipate the research, design, and development 
that can guide how immersive spatial display technologies will be integrated into schools.   

Focal Issues 
Research has suggested effective uses of technology in the teaching and learning of 

mathematics. We should rely on these findings as we consider the affordances and limitations of 
using immersive spatial displays. We should not use a new technology simply because it is 
available, rather we should be asking how we can best use this technology and if the benefits 
outweigh the costs. We note several key suggestions for effective technology use which can 
guide our initial attempts to integrate immersive spatial displays into mathematics education. We 
note researchers suggest using technology to engage students in exploring and conjecturing (e.g., 
Ball & Stacey, 2005, Cuoco & Goldenberg, 1996; Doerr & Zangor, 2002; Laborde, 2007; 
Wilson, 2008), to present and connect multiple representations (e.g., Cuoco & Goldenberg, 1996; 
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Doerr & Zangor, 2002; Laborde, 2007; Lee & Hollenbrands, 2008; Wilson, 2008), and to 
support students as they work with data or reason from cases (e.g., Cuoco & Goldenberg, 1996; 
Doerr & Zangor, 2002; Lee & Hollenbrands, 2008).  

We should point out that we do not see these three uses of technology as mutually exclusive 
and in fact imagine ways in which there can and should be overlaps or interaction among the 
three. We do not suggest these three uses of technology as the only possible effective uses, but 
rather as examples and starting points as we set out to explore the potential role of immersive 
spatial displays in the teaching and learning of mathematics. This work will be guided by 
essential questions that pertain to student cognition, instructional design, teacher professional 
development, and assessment: How do immersive spatial displays affect student mathematical 
conceptions? What new mathematical learning experiences are possible with immersive spatial 
displays? How can immersive spatial displays be used as an instructional technology? What 
supports do mathematics teachers require to meaningfully incorporate immersive spatial displays 
into their classes? How can we design assessments that will measure what students learn by 
exploring immersive mathematical worlds?  

An additional focal issue concerns the use of theory in research related to immersive spatial 
displays. Until this point in time, theories in mathematics education have acted as multiple lenses 
for examining our data. They have answered the question: How does the theory make meaning 
for the data? Immersive spatial displays, however, have the potential to significantly disrupt 
what is known about mathematical thinking, learning, and teaching. Inherently, they pose 
textual, lexical, and semantic questions as to what counts as inscriptions—moving beyond 
analysis of word-based text and 2-d graphical representations. Immersive spatial displays 
provide, at minimum, data that is not normally or easily accessible—e.g., real-time tracking on 
the user’s head, body, and gestures, and the user’s first-person point-of-view of their activities in 
the environment. Thus, the question, How does the theory make meaning for the data? is, on its 
own, insufficient. We must now ask, What does an immersive spatial display do to the theory? 
To address this focal issue, we will begin to consider: What substantive theories within 
mathematics education are appropriate to immersive spatial displays regarding students’ schemes 
and reasoning? What effects do immersive spatial displays have on students’ progression through 
hypothetical learning trajectories and other known hierarchical theories of mathematical 
learning? 

Session Organization and Participant Engagement 
Session goals 

One goal of our proposed working group is to provide a setting where participants can 
explore the virtual worlds that are possible with immersive spatial displays. While spatial display 
technologies have been commercially available since April, 2016, they are still relatively novel. 
We believe there will be value to the PME-NA community if we provide a setting where 
mathematics education researchers can learn first hand about the kinds of experiences that are 
now possible in virtual worlds. Our second goal is to provide a venue where participants can 
work together to plan research studies, discuss instructional activities, and design virtual 
environments for making and exploring mathematical figures. Throughout each session, 
participants will be engaged in the working group by exploring virtual environments, working 
collaboratively to examine the potential of immersive spatial displays for mathematics education 
practice and research, and discussing how the potential of immersive spatial display technologies 
can be used by teachers in schools. 
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Each session will feature some time when participants can work in small groups to explore 
different virtual environments, followed by small group and whole group discussions. During the 
discussions, participants will describe what they did in the virtual environments, what they 
would have liked to do, and how they see spatial display technologies as relevant to mathematics 
education. The organization of each session will be open and flexible so that participants will 
have the opportunity to shape the work that we do during the three days of the conference. The 
session plans that we describe below are intended to give some idea of the different types of 
activities participants’ would be engaged in throughout their participation in the working group. 
Session organizers will draw on their experience conducting focus group studies of secondary 
mathematics teachers’ encounters with immersive virtual worlds to facilitate small group 
discussions.  
Session 1: Introduction to Immersive Spatial Displays 

The session will begin with a presentation (< 10 minutes) that describes the technological state of 
the art and considers the affordances for representing mathematical concepts that are possible with 
currently available immersive spatial display technologies. Following the presentation, participants 
will break out into four groups (6-8 participants per group) and take turns exploring virtual 
environments (<60 minutes). The environments that will be available to participants will include 
commercially available products (e.g., CalcFlow, TiltBrush, Blocks) as well as products that are 
under active development by session organizers (e.g., HandWaver, LatticeLand). Each group of 
participants will have access to a head-mounted display, and each session organizer will work with 
one group of participants. The goal for the first session will be to ensure that every participant that 
wants to explore the virtual environments has the opportunity to do so. Each of the session organizers 
has experience introducing new users to immersive virtual reality, and the session organizers will 
work with participants to make sure that they are comfortable. Once every participant has explored 
the virtual environments, we will convene as a large group and participants will discuss their 
experiences (remainder of session).  
Session 2: Research and Design with Immersive Spatial Displays 

For the second session, participants will start in their breakout groups. Each group will have 
access to a head mounted display that participants can use at their discretion to explore virtual 
environments. The first activity (<30 minutes) will be small group discussions at each table, each 
of which will be facilitated by one of the session organizers. The purpose of the opening 
discussion will be to brainstorm ideas about how the virtual environments that were surveyed 
during the first session could be used for mathematics education research. After the breakout 
discussions, participants will share their ideas with the whole group (<20 minutes). Session 
organizers will then present to the whole group about mathematics education research that has 
been conducted with immersive spatial displays. Nickels and Cullen will present about their 
work using TiltBrush to investigate children’s conceptions of units of measure (<10 minutes). 
Dimmel and Bock will present their work designing and developing mathematics-specific 
environments for use in room scale virtual reality (<10 minutes). A discussion across both 
presentations will follow (<10 minutes). For the final activity of the second session, participants 
will break out in small groups again and work together to design virtual environments that could 
be supported by the immersive spatial display technologies (remainder of session). 
Session 3: Immersive spatial displays as instructional technologies  
       The third session will focus on how immersive spatial display technologies could be used in 
mathematics classrooms. The session will begin with a short presentation (<10 minutes) during 
which session organizers (Dimmel and Bock) will describe their work designing and installing a 
virtual makerspace in a rural Maine school. Participants will then breakout into small groups and 
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discuss how immersive spatial displays could be used by teachers in schools (<30 minutes). 
Participants could work together to design instructional activities, discuss strategies for how the 
technologies could be equipped in schools, and consider the pedagogical challenges of teaching with 
a technology that, for the near future, will remain impracticable to implement one-to-one. During the 
breakout session, each group will be able to use an HTC Vive as needed to test ideas or ground their 
discussion in the specifics of the virtual environments. The remaining time will be used for each 
group to share their ideas about using spatial displays as instructional technologies (<15 minutes) and 
a final, whole group discussion that reviews the work we did together across all three sessions (<35 
minutes). The final group discussion will also provide an opportunity to plan for further collaboration 
among participants in the group.  

Anticipated Follow Up Activities 
The work that we begin at PME-NA 40 will be sustained by several anticipated follow up 

activities. Each working group session will feature ample time for participants to work together 
in breakout groups to explore and discuss existing virtual environments or to imagine virtual 
environments they would like to be developed. Following the conference, the connections 
participants make through working together during the breakout sessions will create 
opportunities for participants to plan collaborative projects that are linked to immersive spatial 
displays. For example, participants could work together to plan collaborative projects, design 
instructional activities that could be used as the basis for teaching experiments, or propose 
studies that could be conducted by a network of researchers at different universities.  

 The session organizers have experience equipping spaces with the hardware that is necessary 
to conduct research with immersive spatial displays, and we could advise interested participants 
about how to set up such equipment in their own research labs. For participants that are 
interested in designing and developing immersive virtual environments, we could point them to 
open-source projects and to resources for getting started using the Unity development engine. To 
facilitate these ongoing discussions, we will create an immersive spatial displays slack channel, 
use folders in Google drive to share resources (e.g., literature, proposals, manuscripts in 
progress), and, if there is sufficient interest from participants, we could create a mathematics in 
immersive spatial displays website that could serve as an information clearing house. We also 
anticipate that we would continue to convene the working group at future meetings of PME-NA.  
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DEVELOPING A RESEARCH AGENDA OF K–8 TEACHERS’ IMPLEMENTATION 
OF DIGITAL CURRICULA 

 Shannon O. S. Driskell Steve Rhine Rachel A. Harrington 
 University of Dayton Pacific University Western Oregon University 
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The purpose of this working group is to understand how teachers are implementing digital 
curricula to teach elementary mathematics, to explore best teaching practices for using digital 
curricula, and to understand how students are learning from digital curricula. We propose a 
working group on digital curricula that focuses on the themes of: access, equity, and 
empowerment; data generation/use; mathematical content; motivation and mindset; and 
nurturing NCTM Mathematics Teaching Practices and Common Core State Standards for 
Mathematical Practices. The overarching goals are to: 

1. Understand and develop ways to support teaching and learning with digital curricula, 
2. Create a community that will continue to grow and learn and initiate long-range projects 

to improve teaching and learning with digital curricula, and 
3. Serve as a forum to spark conversation and establish a research agenda on teaching and 

learning mathematics with digital curricula. 
During our time at the conference, each theme group within the working group will work 
toward: (a) identification of the issues that surround the theme, (b) recommendations for a 
research agenda, and (c) initiation of work on potential data collection tools. 

Keywords: Curriculum Analysis, Technology, Elementary School Education, Middle School 
Education 

Across the nation, schools are moving toward one-to-one capability with technology in every 
classroom. As districts seek ways to make best use of newly purchased technology, school 
spending on digital curricula is rapidly increasing: from $1.8 billion in 2013 to $4.8 billion in 
2014 (Cauthen, 2017). Pepin, Choppin, Ruthven, and Sinclair (2017) propose a definition for 
“digital curriculum materials/resources/programmes” (DCR): 

Curriculum materials that are programmatic in concern: specifically, organised systems of 
digital resources in electronic formats that articulate a scope and sequence of curricular 
content. It is the attention to sequencing—of grade- or age-level learning topics, or of content 
associated with a particular course of study (e.g., algebra)—so as to cover (all or part of) a 
curriculum specification, which differentiates DCR from other types of digital instructional 
tools or educational software programmes (p. 657). 

Pepin et al. (2017) contends that this definition is “distinct from the broader literature on 
instructional technology, though clearly there is some overlap” (p. 647). For the purpose of this 
working group, we plan to adopt this definition under the umbrella of “digital curricula.” We 
contend that a broader definition allows participants to think more openly about digital curricula. 

In 2016, spending on digital curricula increased by 25% over 2015, so that spending on 
digital curricula “now exceeds all K12 spending by $3.5 Billion” (Kafitz, 2017, n.p.). The Bill 
and Melinda Gates Foundation study (2015) found that 60% of elementary teachers believe 
digital tools are effective in teaching mathematics. While some educators may view a one-to-one 
classroom—where each student has access to one technology device (e.g., laptop, tablet, 
smartphone)—as a means to increase academic outcomes (Sauers & McLeod, 2012), other 
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teachers may view a one-to-one classroom as detrimental to students’ creativity, self-concept, or 
socio-emotional skills (Gardner & Davis, 2013). 

With the surge of digital curricula, it is critical that enactment of that curricula enables rich 
mathematics teaching and learning within the classroom. We believe that such rich mathematics 
teaching and learning is best understood through the lens of the NCTM (2014) Mathematics 
Teaching Practices and the Common Core State Standards for Mathematical Practice (National 
Governors Association Center for Best Practices & Council of Chief State School Officers, 
2010), and that these practices and standards (see Table 1) are seamless within the context of 
digital curricula. 

Table 1: NCTM Mathematics Teaching Practices and CCSS for Mathematical Practices 
NCTM Mathematics Teaching Practices CCSS for Mathematical Practices 
1. Establish mathematics goals to focus 

learning. 
2. Implement tasks that promote reasoning and 

problem solving. 
3. Use and connect mathematical 

representations. 
4. Facilitate meaningful mathematical 

discourse. 
5. Pose purposeful questions. 
6. Build procedural fluency from conceptual 

understanding. 
7. Support productive struggle in learning 

mathematics. 
8. Elicit and use evidence of student thinking. 

MP1: Make sense of problems and persevere in 
solving them. 
MP2: Reason abstractly and quantitatively. 
MP3: Construct viable arguments and critique 
the reasoning of others. 
MP4: Model with mathematics. 
MP5: Use appropriate tools strategically. 
MP6: Attend to precision. 
MP7: Look for and make use of structure. 
MP8: Look for and express regularity in 
repeated reasoning. 

 
Given the emerging availability of digital curricula, we believe that more attention must be 

given to supporting teaching and learning with digital curricula and to creating a research 
community that will discuss and further establish a research agenda on teaching and learning 
with digital curricula. Therefore, we propose a working group on digital curricula that focuses on 
the themes of: access, equity, and empowerment; data generation/use; mathematical content; 
motivation and mindset; and nurturing NCTM’s Mathematics Teaching Practices and the CCSS 
Standards for Mathematical Practice. 

Overview of Literature Related to Teachers’ Instructional Choices 
Research has reported that the teacher’s role in implementing new curriculum is 

consequential for student outcomes (Remillard, 1999; Sherin & Drake, 2009; Son & Kim, 2015, 
2016). Some teachers embrace new curricula to meet the goals of reform, while other teachers 
consciously or unconsciously make changes and bypass the goals of reform (Sherin & Drake, 
2009; Smith, 2000). Thus, the decisions teachers make about curriculum can enhance or hinder 
students’ understanding of mathematics (Nguyen & Kulm, 2005). 

Teachers develop curriculum strategy frameworks to implement new curriculum in the 
classroom. Implemented curricula can take three forms: written, intended, and enacted (Stein, 
Remillard, & Smith, 2007). The written curriculum is sterile in itself. Therefore, teachers receive 
guidance or “strategy frameworks” from professional development about the intended 
curriculum. Curriculum authors also foreground and highlight particular approaches and 
mathematical ideas. Curriculum materials mediate teachers’ decision making while, at the same 
time, a teacher’s orientation toward such materials reflects that teacher’s characteristics, prior 
experiences, perception of the intended goals, and personal goals that influence instructional 
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decision making and ultimately, the enacted curriculum, or what actually takes place. District- 
and school-level support, professional development, and communicated perspectives can also 
influence teachers’ instructional choices and effectiveness in implementing the curriculum. 

Gender can also be a factor in digital curricula implementation, although research is mixed. 
Some research indicates that female teachers tend to be less confident with technology and 
integrate it into their instruction less (Markauskaite, 2006; Wozney, Venkatesh, & Abrami, 
2006), while other studies indicate the gap has reduced (Yukselturk & Bulut, 2009). Duration of 
teaching experience has also been found to influence use of technology in classrooms 
(Hernandez-Ramos, 2005). 

The SAMR model can be used to classify teachers’ instructional choices in leveraging digital 
technologies (Puentedura, 2013). In the Substitution level, digital technology is simply 
substituted for analog technology. For example, the elementary teacher substitutes paper 
worksheets for digitized PDFs, but everything else remains the same. Augmentation uses 
technology in place of a previous task, and the use of technology improves the task. In a third- 
grade classroom, for instance, instead of a teacher-led, whole-class lesson in which the teacher 
explains a mathematical task, students use tablets to read or listen to an explanation, while 
English language learners listen to the explanation in their first language. At the Modification 
level, technology integration requires significant redesign of a task. For example, instead of 
using worksheets with the same problems for every student, students complete a set of problems 
using a digital curriculum that adapts to where students are in their thinking. Finally, the 
Redefinition level uses technology to create novel tasks. For example, instead of teaching 
students a skill and having them practice it and then apply it to solve word problems, the teacher 
poses a problem, each student decides what skills they need to solve that problem, and then they 
individually access web-based instruction on those skills. The technology enables students to 
drive the learning process in a way that was not possible before; thus, students’ activity and 
engagement with mathematics is redefined. 

Overview of Literature Related to Digital Curricula 
The digital curriculum program iXL found through self-funded research that although use of 

their program in California ranged from 1 minute to 100 minutes per week in the classroom, 
there was a strong positive correlation between iXL usage and state test scores (Empirical 
Education, 2013). A randomized control study of the Odyssey program with fourth-grade 
students found that use of the program for 60 minutes per week did not significantly increase 
students’ achievement (Wijekumar, Hitchcock, Turner, Lei, & Peck, 2009). Salman Khan, 
founder and executive director of Khan Academy (KA), recommended using KA to personalize 
instruction, freeing up class time for engaging, high-yield activities like student discourse and 
meaningful collaborative projects (Khan, 2012). Khan added, “ironically, the technology makes 
the classrooms more human for the teachers and students. It has also made the teachers that 
much more valuable” (Weltner, 2012, n.p.). Contrary to Khan’s assertion however, a small study 
by Cargile and Harkness (2015) found that KA was not used to foster more active learning in the 
classroom; nor was instruction customized to students’ progress and achievement levels. 

Other researchers contend that digital curricula have the potential to transform teaching and 
learning and allow for frequent updating, use of multimedia, increased interactivity, connection 
to virtual communities, varied socialization, reduced costs in production and distribution, 
customized instruction, ongoing assessment, and reporting of student progress (Abell, 2006; 
Fletcher, Scaffhauser, & Levin, 2012; Mayer, 2003; Selwyn, 2007; Zhao, Zhang, & Lai, 2010). 
Digital curricula designs can cover a wide spectrum; however, Confrey (2016) identifies specific 
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design decisions and design principles that should be the foundation for all digital curricula. 
When addressed, these principles (e.g., “A workspace for deploying and using tools separated 
from lesson flow allows students to become independent and proficient tool users.” (p. 15)) lead 
to powerful resources that enable the NCTM Mathematics Teaching Practices and the CCSS 
Standards for Mathematical Practice. 

Choppin, Carson, Borys, Cerosaletti, and Gillis (2014) analyzed how six digital curriculum 
programs leverage student learning experiences; support differentiation/individualization; and 
support socialization or communication through discussion boards, Google Docs, or other virtual 
spaces. Through this analysis, they identified two distinct curriculum types. Individualized 
learning programs (e.g., ALEKS, Dreambox) were programs “designed for use by individual 
students . . . with minimal teacher intervention with respect to the design of lessons or 
assessment” (p. 15). The digitized traditional textbook (i.e., ConnectED) included multimedia 
files, virtual tools, management and assessment systems, and communication features. Choppin 
(2016) expanded the number of programs to eight and extended to four types of programs: a) 
individualized learning programs; b) collection of digital lessons (e.g., LearnZillion); c) digitized 
versions of traditional textbooks; and d) a microworld environment (i.e., Algebra in Action). 

Yerushalmy (2016) provides a more expansive idea of e-textbooks and includes three e- 
textbook models: interactive, integrative, and evolving. In identifying three models of e- 
textbooks, he warns that the models “are not distinct but are presented this way for clarity of the 
discussion, as each marks a key rationale or aspect of functionality” (p. 88). The authors of these 
e-textbooks can be teachers or other experts, and each of the three types of e-textbooks “can be 
either used as is or changed by its users (teachers or students)” (p. 88). 

Overview of Literature Related to Teachers’ Use of Assessment Data 
Effective assessment data analysis is one tool to inform instruction, yet schools often lack the 

capacity to execute what research suggests (Marsh et al., 2005; Petrides & Nodine, 2005). To 
improve this issue, some school districts have allocated resources toward management 
information systems and professional development (see, e.g., Borja, 2006). However, research 
suggests that teachers are not using the resultant data to inform their classroom planning or 
instruction (Earl & Katz, 2006). 

Teachers can use data to determine if students are responding to the digital instructional 
program, to identify students who are not making adequate progress, and to help in designing 
effective intervention programs for students who are not profiting from typical instruction (Fuchs 
& Stecker, 2003). Use of progress monitoring for individualized instruction has shown increases 
in learning achievement (Stecker, Fuchs, & Fuchs, 2005), yet less is known about progress- 
monitoring practices in mathematics, as compared to reading (Foegen, Jiban, & Deno, 2007). 
Research has focused on curriculum-based measurement (CBM) and computer adaptive tests 
(CATs). Specifically, CBM in mathematics for elementary and middle school consists only of 
computation and concepts/application measures (Fuchs, Hamlett, & Fuchs, 1999). 

CATs are an emerging method for monitoring learning progress. One benefit of CATs is that 
the administration of items on a computer allows for subsequent items to be generated, based on 
the accuracy of a student’s response. A program such as Dreambox can acquire about 50,000 
data points per student per hour, tracking “a student’s every click, correct answer, hesitation, and 
error” (Singer, 2017, n.p.). CATs can also provide a student or class profile of items learned or 
not learned. As Stecker, Fuchs, and Fuchs (2005) acknowledge, teachers need support in 
deciphering, and then effectively using progress monitoring results. 
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SRI Education (2014) conducted a two-year study of KA with 20 elementary, middle, and 
high schools in California, including more than 70 teachers and 2000 students in grades 5 
through 10. Over half of the teachers (56%) reported reviewing student performance data at least 
once a week. With approximately 40% of teachers reporting that they reviewed student 
performance data less than once a month or not at all, questions remain about how teachers use 
real-time data to differentiate instruction and address specific individual, small-group, or whole- 
class learning needs. 

Since formative assessment strategies such as communicating learning expectations, 
providing descriptive feedback, and adapting instruction based on feedback have positively 
influenced student learning (Hattie & Jaeger, 1998; Stiggins, 2005), it is imperative to investigate 
whether this holds true when teachers use digital curriculum assessments. Identifying the 
presence or absence of these assessment issues will help professional development focus on 
improved digital curriculum assessment strategies and inform teacher education programs on 
how to better prepare preservice teachers to use digital curriculum assessment. 

Overview of Literature Related to Teachers’ and Students’ Disposition 
The Association of Mathematics Teacher Educators’ (2016) Standards for Preparing 

Teachers of Mathematics emphasizes that a positive disposition (i.e., attitudes, beliefs, mindset, 
motivation) toward mathematics is essential for successful mathematics teaching. Yeşilyurt, 
Ulaş, and Akan (2016) contend that “academic self-efficacy, teacher self-efficacy, and computer 
self-efficacy are important predictors of the attitude toward computer-assisted learning” (p. 592). 
A concern in regard to academic self-efficacy is that many elementary teachers bring their own 
mathematics anxiety with them into the classroom (Bursal & Paznokas, 2006; Haciomeroglu, 
2014). Overall, about one-third of elementary teachers may feel anxiety about mathematics 
(McAnallen, 2010). On the other hand, teachers with confidence in their mathematics tend to 
better transform lower-cognitive-demand problems into higher-demand problems (Son & Kim, 
2016). Furthermore, curricula, professional development, administrators, etc. can communicate 
conflicting perspectives about the nature of mathematics. For instance, mathematics can be seen 
as the development of isolated skills and knowledge, as a vehicle for interacting with one’s 
world, or as the means of fostering citizenship and responsibility (Winter, 2001). 

One way to positively influence disposition is to positively influence one’s mindset. Dweck 
(2006) summarized decades of research showing that when students develop a “growth mindset,” 
they believe the brain and intelligence can grow. On the other hand, those with a “fixed mindset” 
believe that you are born with a certain level of intelligence: either you are smart or you are not 
smart. Dweck suggests that the type of feedback students receive can influence students’ 
mindsets. When feedback communicates that mistakes are learning opportunities and that 
learning takes time and effort, students are more likely to develop growth mindsets. Incentives 
have been shown to increase student motivation (Nguyen, Hsiech, & Allen, 2006), yet research 
also indicates that generic praise reduces persistence in children (Zentall & Morris, 2010). 
Digital curriculum includes different types of feedback and motivational strategies for students, 
such as badges and personalized avatars. When students receive personalized feedback on what 
they are and are not understanding, they can target their learning more efficiently. 

Teachers’ dispositions toward mathematics and toward using technology to teach 
mathematics will affect how they integrate digital curriculum into their instruction—which will, 
in turn, directly influence student outcomes. Similarly, students’ dispositions toward 
mathematics and toward using technology to learn mathematics will affect their motivation 
toward mathematics, mindset about mathematics, and how they learn—or fail to learn—through 
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digital curriculum. Learning about teachers’ dispositions toward digital curriculum may help in 
understanding what influences their decisions to adopt, modify, or reject it. Furthermore, 
research on the types of feedback and motivational strategies digital curriculum provides 
students, and its effect on their dispositions toward mathematics, is needed. 

Structure of the Working Group 
To understand how teachers are implementing digital curricula to teach elementary 

mathematics, to explore best teaching practices for using digital curricula, and to understand how 
students are learning from digital curricula, the overarching goals of this working group are to: 

1. Understand and develop ways to support teaching and learning with digital curricula, 
2. Create a community that will continue to grow and learn and initiate long-range projects 

to improve teaching and learning with digital curricula, and 
3. Serve as a forum to spark conversation and establish a research agenda on teaching and 

learning mathematics with digital curricula. 

Theme Groups 
The working group will achieve these goals by forming five theme groups: 

• Access, Equity, and Empowerment: Digital curricula often enters schools with the 
promise of handling remedial issues in mathematics. The intention of this working group 
is to examine issues with the teaching and learning of mathematics involving students 
with learning disabilities, learning differences, or difficulties in mathematics; talented and 
gifted students; and concerns about disproportionate access to learning. This group will 
discuss who benefits from digital curricula use and if using digital curricula is influencing 
broader participation in STEM. 

• Data Generation/Use: Participants in this theme group will discuss how to make sense of 
the abundance of data that can be generated by digital curricula to maximize student 
learning, the nature of that data, who should use such data and for what purposes, which 
data is most valuable for informing learning, and how teachers can be assisted in making 
data-driven instructional decisions to meet the needs of all learners. 

• Mathematical Content: This theme group will discuss how digital curricula can support 
conceptual understanding, problem solving, procedural fluency, and strategic reasoning 
of mathematics. Participants will consider how to examine which features of digital 
curricula are most effective in aiding students’ development of deep and flexible 
mathematics content knowledge. 

• Motivation and Mindset: This theme group’s focus will be issues and concerns with how 
digital curricula use influences students’ motivation for learning mathematics and affects 
students’ mathematical mindsets toward either “growth” or “fixed”. This theme group 
will also consider how digital curricula use influences K–8 teachers’ attitudes about 
mathematics and the teaching of mathematics. 

• Nurturing the Standards for Mathematical Practices: The Mathematical Practices must be 
a central feature in the teaching and learning of mathematics. Participants in this theme 
group will discuss the impact of digital curricula on students’ development of the 
Standards for Mathematical Practices through the Mathematics Teaching Practices. 
Discussion will also emphasize teachers’ actions during non-digital curricula activities to 
enhance students’ mathematical practices. 
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During our time at the conference, each theme group will work toward: a) identification of 
the issues that surround the theme, b) recommendations for a research agenda, and c) initiation of 
work on potential data collection tools. 

 
Working Group Outline 

The outline of each session is described in Table 2: 

Table 2: Outline of Each Session 
Session 1: What do we know already? 

 Activities Guiding Questions 
Whole  
Group 
(30 min) 

Discuss proposed working definition of 
digital curricula. 
Discuss goals for the working group. 
Discuss proposed themes. 

Examine digital curricula implementation 
through the five themes named above. 
Are these the right themes? Are there 
others? 

Theme  
Groups 
(45 min) 

Describe the nature and importance of 
the theme. 
Identify and categorize issues with 
digital curricula based on the group 
theme. 

How is digital curricula being 
implemented in K–8 classrooms? 
What are we seeing in classrooms 
regarding the identified themes? 
What are components of the theme? 
Implications? 

Whole  
Group 
(15 min) 

Briefly report on Theme Group work. 
Identify next steps. 

 

Session 2: What do we need to know and understand? 
 Activities Guiding Questions 
Whole  
Group 
(30 min) 

Set goals for the session. What do we need to know and understand? 

Theme  
Groups 
(45 min) 

Begin writing a research agenda. What are potential areas of research 
pertaining to this theme? 
What might that research look like? What 
type of data would be useful? 

Whole  
Group 
(15 min) 

Briefly report on Theme Group work. 
Identify next steps. 

 

Session 3: How will we find out what we need to know and understand? 
 Activities Guiding Questions 
Whole  
Group 
(30 min) 

Set goals for the session. How will we find out what we need to 
know and understand? 

Theme  
Groups 
(45 min) 

Establish a research plan. 
Initiate identification and design of data 
collection tools. 
Write group report. 

What potential tools might be used to 
examine implementation of digital curricula 
through this theme? Write 5–10 questions 
you would want to see on a survey, 5–10 
situations you would want to observe, and 
3–5 interview questions for both teachers 
and students. 
What would be the structure and methods 
of the research? 



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1436 

Write research plan and timeline. 

Whole  
Group 
(15 min) 

Report on Theme Group work. 
Identify next steps. 

Groups share their action plan for further 
work. 
Who is willing to collect this data? 
Determine organization for the coming 
year/timeline. 

Anticipated Follow-Up Activities 
As a result of our working group discussion and research plan development, we anticipate 

several follow-up activities: 

• Ongoing work with Google Docs for collaborative development of data collection tools 
for observations, surveys, and interviews; 

• Online webinar in early January 2019 to finalize data collection tools and initiate data 
collection for the Spring 2019 semester; 

• Online webinar in April 2019 to check in regarding data collection; 
• Online webinar in July 2019 to initiate state data analysis; and 
• PME-NA 2019 to reunite the working group and to bring together data across states. 

Analysis of the data across states will be used to initiate discussions on how to improve 
both professional development for inservice teachers and teacher preparation for 
preservice teachers. 
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Students’ construction, coordination, and abstraction of units underlie success across multiple 
mathematics domains. Structures for coordinating units underscore notions of numbers as 
composite units (e.g., five is a unit of five and five units of one). In this working group, we seek to 
facilitate collaboration amongst researchers and educators concerned with composite unit 
formation and units coordination. The aim for this working group is two-fold: (1) to extend our 
research around units coordination to new grade levels; and (2) to collaborate with researchers 
who investigate students with learning differences in school settings to determine diverse 
students’ mathematics learning trajectories.    

Introduction 
The phrase “units coordination” has many connotations. One meaning of the phrase refers to 

operations related to understanding place value, such as exchanging ten 1s for one 10 when 
executing arithmetic algorithms (e.g., Thanheiser, 2009). Other meanings involve relationships 
between measurement units, such as extensive measure equivalencies (e.g., 1 foot = 12 inches) or 
intensive measure definitions (e.g., speed = distance/time) (Smith & Barrett, 2017). In Steffe and 
colleagues’ research program, the term “units coordination” refers to the mental operations of 
composing and distributing units involved in a numerical conception (Steffe, 1992). Units 
coordination is fundamental for distinguishing children’s ways of counting - specifically the 
ways that students unitize, iterate, partition, disembed, and compose units. Researchers have 
investigated how ways of coordinating units are connected to students’ learning within and 
across mathematics content domains, from additive and multiplicative reasoning to algebra (i.e., 
Hackenberg & Lee, 2015; Norton & Boyce, 2015; Steffe, 2017; Ulrich, 2015). For instance, 
Hackenberg and Lee (2015) described similarities and differences between units coordination 
with whole number units, fractional units, and variable units (e.g., linear algebraic equations); 
Ulrich (2015) described units coordination with signed integer addition. 

In Steffe’s 2017 plenary for PME-NA, he substantiated particular needs for investigating 
how children develop operations when coordinating units. The aim of this working group is to 
facilitate collaboration amongst researchers and educators concerned with units coordination for 
all learners. Our main goals are to extend our research around units coordination to new grade 
levels and to collaborate with researchers who investigate students with learning differences in 
school settings to determine diverse students’ mathematics learning trajectories. Outcomes from 
these collaborative efforts could inform the development/revision of theoretical frameworks, 
learning trajectories for diverse populations, and professional development for educators. 
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Background and Theoretical Perspective: Composite Units – Old and New 
We provide a theoretical background for units coordination (Norton & Boyce, 2015) 

focusing on units coordination in students’ number sequences (Steffe, 1992), multiplicative 
concepts (Hackenberg & Tillema, 2009), and fractions schemes (Steffe & Olive, 2010). 
Units Coordination 

The construction of mathematical objects forms the basis for units coordination, as students 
rely on concrete, pictorial, fingers, symbolic numerals, and language to evidence internalized 
(being able to mentally re-imagine contextual actions) or interiorized (being able to draw on de-
contextualized actions) actions. Unitizing, or setting an object or a unit aside for further action or 
activity (Steffe, 1992), is the basis for units coordination. Consider the construction of additive 
reasoning as an example. When considering how to add eight and seven, students might not yet 
see the cardinality of eight, counting a set of objects to create eight, then another set of objects to 
create seven, and finally combining the two sets, beginning at one to quantify the total. Should 
students see the cardinality of eight, they might use it as an input for solving the problem. They 
will count on from eight, using objects (cubes, fingers) to keep track of the addition (e.g., 8…9 
[raises a finger], 10 [raises another finger]…). The double counting involved in this activity (e.g., 
8…, 9 (1), 10 (2), 11 (3), 12 (4), 13 (5), 14 (6), 15 (7)) promotes a coordination of the start value 
and the stop value. That is, eight, seven, and 15 are taking on some meaning as composites (8 
and 7) and a unitized whole (15).  Evidence of this meaning includes the breaking apart of one or 
both of the numbers to arrive at the total (e.g., 8 is 5 and 3; 7 is 5 and 2; 8 + 5 is the same as 5 + 
5 + 3 + 2, or 15). This type of units coordination can be explained through the type of numerical 
sequence students produce and rely upon. 
Number Sequence Types (INS, TNS, ENS, GNS) 

Steffe and Olive (2010) described four counting sequences that children develop and 
evidence:  (1) Initial Number Sequence (INS), (2) Tacitly-Nested Number Sequence (TNS), (3) 
Explicitly-Nested Number Sequence (ENS), and (4) Generalized Number Sequence (GNS). Each 
illustrates stages of children’s units development and coordination. 

Initial Number Sequence. Steffe (1992) explained that children who segment and interiorize 
number sequences have developed Initial Number Sequence (INS). Children who develop an INS 
are characterized by their counting of single units and then their segmenting of a numerical 
sequence (evidenced through “counting on” activity). When children segment numerical 
sequences, they are interiorizing patterned templates for counting, which allows them the ability 
to count on from a composite unit (e.g., developing one composite unit to use when counting on, 
4…5-6-7-8). Thus, through counting actions, numerical patterns are developed and become 
interiorized (evidenced through less reliance on sensory-motor experiences; e.g., verbalizing 
counts, using fingers, or tapping) before being segmented into a composite unit. 

Tacitly-Nested Number Sequence. Once children have developed composite units through 
their INS activity, they can begin to coordinate these composite units, treating the result of 
counting activity as both a unit to count on from and one to keep track of when counting. These 
actions evidence children’s development of a Tacitly-Nested Number Sequence (TNS). Steffe 
(1992) explains that when children have a numerical sequence interiorized and segmented they 
can use their segmented numerical sequence as material for making new composite units within 
these numerical sequences. The awareness of one number sequence contained inside another, or 
double-counting, is an indication of TNS, as is a skip count (i.e., 4, 8, 16,…) to solve early 
multiplicative kinds of problems, such as how many 3’s are contained in 12. 
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Explicitly-Nested Number Sequence. Children who are described as having part-whole 
number reasoning in place are capable of disembedding parts from wholes and developing 
iterable units of one. These children are described as reasoning with an Explicitly-Nested Number 
Sequence (ENS) (Olive, 1999; Steffe, 1992; Ulrich & Wilkins, 2017). Children capable of 
multiplicatively understanding a single unit and a composite unit without disrupting the whole 
are said to be operating with an ENS (Ulrich & Wilkins, 2017). The two given composite units 
(e.g., parts and whole) provide children material to coordinate while constructing a third 
composite unit; e.g., a unit of units of units (Steffe, 1992). This part-whole reasoning with 
abstract units provides children multiplicative number structures. 

Generalized Number Sequence. Children capable of developing iterable composite units 
where units of units of units can be coordinated, are described as operating with a GNS. For 
example, Olive (1999) explained that when children are asked to find common multiples, they 
are required to keep track of two series of composite units (e.g., 3, 6, 9, 12; 4, 8, 12; 12. The 
LCM of 3 and 4 is 12). Children evidencing successful completion of tasks like this are 
described as using two iterable composite units (e.g., 3 and 4), while keeping track of the 
common composite unit in each sequence. At the root of much of this number sequence 
development, units development and coordination explain how and why children are capable of 
transitioning from additive/subtractive operative structures towards multiplicative/division 
operative structures towards rational number understanding. 
Multiplicative Levels of Units Coordination 

A student is said to assimilate with one level of units when she conceives of multiplication 
situations, such as seven iterations of four, by counting on from the first or second set of four by 
ones and double-counting the number of fours to reach a stop value (e.g., 4, 8,…9-10-11-12; 13-
14-15-16; 17-18-19-20; 21-22-23-24; 25-26-27-28). Here, the child has to model or carry out the 
situation by using internal (e.g., subvocal counting) or external (e.g., fingers or objects) 
representations. This is referred to as coordinating two levels of units in activity. Units 
coordination in activity is ephemeral: in a follow-up task, such as how many ones are in eight 
iterations of four, the student would likely repeat a similar process rather than count-on. 

A student’s use of strategic reasoning in such situations may be evidence that she assimilates 
the situation with two levels of units. For example, a student assimilating with two levels of units 
might conceive of seven iterations of four as five iterations of four plus two iterations of four 
(e.g., five 4s is 20; 21-22-23-24; 25-26-27-28). As opposed to modeling the entire coordination, 
the child can anticipate breaking apart the composite unit of seven into five and two and use 
each of those parts to solve the problem. For a student assimilating with two levels of units, the 
result of operating is simultaneously 28 ones and 7 fours; hence a follow-up task of finding the 
number of 1s in 8 fours would not require building up from 5 fours again.   

A student is said to assimilate with three levels of units when she can conceive of a situation 
such as seven iterations of four as resulting in three distinct yet coordinated units: (a) one unit of 
28 that contains (b) seven units of four, each of which contains (c) two units of two.  Students 
assimilating with three levels of units have flexibility to reason strategically with each of the 
units. For instance, a student assimilating with three levels of units might solve the task, “How 
many more twos are in 32 than in 28?” by reasoning that 32 is one more 4, which is thus two 
more 2s. This reasoning involves assimilating three levels of units, multiplicatively. 

Norton, Boyce, Ulrich and Phillips (2015) conducted a cross-sectional analysis of 47 sixth-
grade students’ reasoning in whole number multiplicative settings in clinical interviews. Figure 1 
displays descriptors of attributions of students’ activities Norton and colleagues identified as 
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corresponding with students’ reasoning with one, two, or three levels of units. For instance, they 
describe students’ activity when transitioning from reasoning with one level of units to reasoning 
with two levels of units with descriptors G-K (Norton et al., 2015, p. 62). Though there are 
commonalities with descriptions of students’ counting schemes (e.g., descriptors C and J), the 
focus of the descriptors are more generally about how and whether students are able to flexibly 
reverse and reflect on their multiplicative reasoning. 

 
Figure 1. Descriptors of counting schemes. 

 
These stages of units coordination, as delineated in Norton et al.’s (2015) findings, 
comprehensively explains transitions children make from additive operations to multiplicative 
operations. These findings also explain fractional unit development, as recursive units 
coordination in which to act upon and explain how students develop fractions as mental objects.  
Fractional Units 

Reasoning with fractional units requires unitizing a fractional size, 1/nth. When children first 
conceptualize fractional units, Steffe (2001) posited that they would reorganize natural number 
schemes to develop fractional schemes. Olive (1999) and Steffe (2001) argued that they would 
have to re-interiorize their units coordination operations, to consider a fractional unit as a result 
of equi-partitioning a unit whole into a size that, when iterated n times, would result in the size 
of 1. This re-interiorization of schema requires students to recursively develop and coordinate 
new composite units relationships (Olive, 1999). Thus, children’s production of numerical 
sequences and their associated units coordination provide children necessary operations for their 
fractional units coordination. 

To conceive of a fraction m/n as a number, one must understand m/n as equivalent to m 
1/nths, n of which are equivalent to 1. In the case of m > n, the meaning of 1/n must transform 
from thinking of 1/n as one out of n total pieces (a parts-out-of-wholes scheme) to thinking of 1/n 
as an amount that could be iterated more than n times without changing its relationship with the 
size of 1 (an iterative fraction scheme). This measurement conception of fraction (Lamon, 2008) 
involves coordinating three levels of units of nested units: 8/3 is 8 times (1/3), 1=3/3 is 3 times 
(1/3), thus an 8/3 unit contains both a unit of 1 and a unit of 1/3 within 1 (Hackenberg, 2010). 
Students in the intermediate stages of constructing such a measurement conception may reason 
about the size of proper fractions of form m/n by counting the number of parts of size 1/n within 
a whole of n/n. Such students are not yet iterating the amount of 1/n, which limits their ability to 
iterate unit fractions beyond the size of the whole (Tzur, 1999). 

Issues Related to the Psychology of Mathematics Education 
Steffe’s 2017 plenary included both a summary of contributions and important extant 

problems for mathematics educators pertaining to units coordination. Given these advances in 
research surrounding K-8 students’ units coordination, our mathematics education field is still 
limited by the context in which students’ units coordination develops and how preschool and 



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1443 

high school students’ units coordination may inform these trajectories. Further, Steffe (2017) 
proposes that about 40% of first grade students have very different learning trajectories than their 
peers, suggesting a need to develop alternative means in which units coordination may be 
developed by children. Finally, Steffe suggests that our field would benefit by investigating 
children’s transitions in scheme development. For instance:  

It is especially crucial to investigate possible changes that indicate fundamental transitions 
between reasoning with two levels of units and three levels of units induced in the 
construction of quantitative measuring schemes and their use in the construction of 
multiplicative and additive measuring schemes (Steffe, 2017, p. 46). 
One of our intentions for this working group is for researchers from different backgrounds to 

collaborate to work toward solving such problems. Consider in Smith and Barrett’s review of 
research on quantitative reasoning, the following: 

  
[We] found it striking how often the same conceptual principles and associated learning 
challenges appear in the measurement of different quantities… Despite the clear focus in 
research on equipartitioning, units and their iteration, units and subunits… curricula (and 
arguably most classroom teaching) focus students’ attention on particular quantities and the 
correct use of tools, as if each was a new topic and challenge. (p. 377). 
Consistent with Arbaugh, Herbel-Eisenmann, Ramirez, Knuth, Kranendonk, and Quander’s 

(2010) call to “develop mathematics proficiency in various school, cultural, and societal 
contexts” (p. 13), we aim is to connect units coordination research with other learning theories. 

Unfortunately, many students with mathematics learning difficulties do not transition from 
two levels of units to three levels of units at the same pace as their more successful peers. In fact, 
the construction of ENS is one pervasive mathematical impediment for students with 
mathematics difficulties (Landerl, Bevan, & Butterworth, 2004). Compared to students without 
mathematics difficulties, students with mathematics difficulties develop less sophisticated 
strategies for number computation problems over time, suggesting a lack of a conceptual basis 
for ENS engagement that actually plays a part in their later disability identification 
(Butterworth, Varma, & Laurillard, 2011). Therefore, particular research programs with these 
foci are desperately needed to nurture multiplicative and rational number conceptions (Boyce & 
Norton, 2017; Grobecker, 1997; Kosko, 2017) and operations (Grobecker, 1997; Grobecker, 
2000; Kosko, 2017; Norton & Boyce, 2015) for students who need our support. 

By designing interventions with children’s mathematics and their units coordination, the field 
has grown over the years, yet there is much opportunity for improvement. Relations between 
cognitive factors and test performance may be important, yet these relationships are only one 
way to conceptualize “cognition.” Instead of focusing on aspects of students’ working memory 
or processing, researchers can revolutionize access for these students by intervening on the 
malleable cognitive factors that can be improved upon through students’ own development. 
Research Designs and Methodologies 

The primary methodology for investigating units coordination has been the radical 
constructivist teaching experiment (Steffe & Thompson, 2000). A main role of these teaching 
experiments is to generate (and refine) epistemic models of students’ mathematics - models for 
how students with common underlying conceptual operations learn within a particular 
mathematics domain (Steffe & Norton, 2014). Such teaching experiments involve close 
interactions with a teacher-researcher modeling the dynamics of students’ ways of operating 
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longitudinally. Teaching experiment methodology is also used as part of design research (Cobb, 
Confrey, diSessa, Leher, & Schauble, 2003), to inform instructional approaches or interventions 
that could be “scaled up” to heterogeneous classroom settings. 

Results from analyzing teaching experiments have also informed methods for assessing a 
child’s ways of coordinating units at a particular moment. In addition to task-based clinical 
interviews (Clement, 2000), Norton and Wilkins (2009) created written instruments for assessing 
middle-grades’ fractions schemes and operations associated with units coordination. These 
instruments have been used to validate conjectured learning trajectories for children’s 
construction of schemes for coordinating fractional units (e.g., Norton & Wilkins, 2012). These 
instruments currently serve as tools for participant selection in teaching experiments with 
middle-grades students (e.g., Hackenberg & Lee, 2015). These instruments also serve as valuable 
opportunities for connecting results to classroom teaching and learning. 

Consideration of these methodologies for researching units coordination suggests areas for 
collaborative work to build our understanding not only of the research programs Steffe (2017) 
described, but also opportunities and needs regarding related research domains. For instance, 
Norton and Wilkins’ (2009) instruments have been modified to assess prospective teachers’ units 
coordination with fractions (Lovin, Stevens, Siegfied, Wilkins, & Norton, 2016). Thus, research 
development with these methodologies are better served in collaborative designs to allow more 
perspectives in the design and analyses when determining students’ mathematics.  
First Aim: Extending Units Coordination Research 

The first aim of this working group proposal is to extend units coordination research to 
investigations that include both older students and younger students. For instance, questions 
regarding whether differences in secondary students’ units coordination persist beyond eighth-
grade, and, if so, how these differences manifest in older students’ learning, remain 
underexplored. In interview and teaching experiment settings, Grabhorn, Boyce, and Byerley 
(2018) have found that students enrolled in calculus in university do not necessarily coordinate 
three levels of units. Further expanding understanding of students’ units coordination beyond 
eighth grade would contribute to the development of “coherent frameworks for characterizing the 
development of student thinking” (Arbaugh et al., 2010, p. 15). 

In addition to studies focusing on relationships between units coordination and older 
students’ mathematics, studies of pre-kindergarten children are also warranted. For instance, 
Wright (1991) found that kindergarten students had a wide variance in their number knowledge, 
suggesting critical mathematics learning occurs prior to the elementary school. With a significant 
dearth of research studies in the early childhood years (De Smedt, Noel, Gilmore, & Ansari, 
2013), we posit that studies of young children are a critical area of research. Another potential 
need regards equity and access in mathematics education. Researchers might investigate whether 
analyses of students’ units coordination provides insight to the mathematical reasoning of diverse 
and underserved populations. We envision collaborations around similar conceptual principles 
and learning challenges, to investigate units coordination of children enrolled in different grade 
levels and representing different population groups (i.e., special education, early childhood, 
secondary education, teacher education), which would allow more coherent mathematical 
learning theory and practical means in which to link research to mathematics classrooms. 

Steffe (2017) estimated that about 40% of first grade students rely solely on perceptual 
material when counting all items (Counters of Perceptual Unit Items - CPUI) and that 45% of 
first grade students are capable of counting figurative unit items (CFUI), a particularly necessary 
step when interiorizing counting actions and developing “counting-on” activity (e.g., INS) (see 
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Figure 2). These estimates indicate that children entering early elementary school grades have 
not yet been able to internalize their actions and rely on relatively more abstract representations 
for number. Steffe further posits that these two distinct groups of children would require 
different learning trajectories, as they have different operational means and different conceptual 
material in which to coordinate for TNS and ENS activity. 

With more U.S. students attending preschool programs and an increase of 48% in national 
funding towards preschool programs, it would be advantageous to develop research that could 
directly inform early childhood mathematics curricula (Diffey, Parker, & Atchison, 2017; 
Sarama & Clements, 2009). Also, given that these curricula should be coherently aligned with 
elementary grade mathematics curricula initiatives, it would serve early childhood curriculum 
designers to bridge research programs around number development in early elementary grades to 
preschool grade levels. For instance, MacDonald and Wilkins (under review) found in a case 
study that one preschool student may be using early subitizing activity to promote her composite 
unit development and units coordination. Investigating how early, perceptual actions may relate 
to students operations development around units coordination would serve these foci. Thus, our 
first aim is to extend our research around units coordination to new grade levels.   

                                         

 
Second Aim: Widening Units Coordination Research 

Our second aim is to widen units coordination research by collaborating with researchers 
who investigate students with learning differences, from diverse cultures, and from low-
socioeconomic households to determine diverse students’ mathematics learning trajectories. For 
instance, Hunt and MacDonald (in press), who work closely with students with learning 
differences in case study research, uncovered three important challenges students experience as 
they work toward more sophisticated coordination of units. First, when engaging in tasks that 
support the construction of composite unit, the use of memorized fact combinations or teacher 
taught strategies eclipsed the use of one students’ natural reasoning (in press) yet supported 
another’s (Hunt, Silva, & Lambert, 2017). All three students evidenced tacit ways of reasoning 
(e.g., 2 is contained in 3, 3 is contained in 4); two reverted to pseudo-empirical abstractions, 
tricks, or algorithms that they could not explain to solve the tasks. These ways of engaging in the 
tasks were counterproductive to one student’s reflection on their own actions upon units such 
that adaptations in their reasoning could occur. Conversely, the second student leveraged his 
knowledge of number facts and alternative representations to advance his fractional reasoning 
and compensate for his perceptual motor differences (2017). For both students, teacher 
encouragement and support to engage in each student’s own ways of reasoning was imperative. 
Second, Hunt & Silva (forthcoming) found evidence that confirms previous research (Geary, 
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2010) that one of the students sometimes lost track of counting during a count on, possibly due to 
working memory. We conjecture that this learning difference interferes with the move from 
counting on to more sophisticated additive reasoning (e.g., breaking apart tens). Yet, in this case, 
the problem is alleviated through opportunities for within-problem reflection through 
experiences that the child has to construct addends involved in number problems through 
counting, sweeping small numbers as lengths, and improving the usability of small composites 
like 2, 4, 3, 5, and 6 (forthcoming). Lastly, both students evidenced an affinity towards 
symmetric notions of units coordination across learning situations and across natural and 
fractional number reasoning. Hunt is currently conducting cross-case analysis to discern whether 
the symmetry is indicative of unique trajectories in number and/or fractional reasoning. 

We argue that equitable instruction for all students begins with increased opportunities to 
adapt their own thinking grounded in a construction within their own mathematical realities. 
When well-intentioned educators provide children interventions that promote procedures and 
actions, not only are they not serving their children’s mathematics learning needs, they may be 
preventing them from engaging in learning situations that support the children to adapt their 
thinking structures and advance their learning.   
Specific Goals and Aims 

To extend and widen units coordination research this working group intends to accomplish 
the following: (a) develop a research agenda for the group, (b) brainstorm specific research 
questions and unpack theoretical frameworks that will address that agenda, (c) explore research 
methodologies that can answer the potential research questions, (d) discuss the logistics of 
collaborations to carrying out these studies, and (e) embark upon collaborations leading to 
publication and funding opportunities. 

Plan for Working Group 
Session 1: Concept Formation 

GOAL: Generation of research questions that are important to the group and/or sub-groups. 
Introduce focus for the working group by asking “what types of problems would members like to 
explore?”, by viewing/discussing short video clips of students working through various 
mathematical concepts to better understand the students’ thinking, and developing potential 
research foci (e.g., overall purpose/goals of this working group, ties between composite units, 
coordination of units, and particular mathematics content). Finally, subgroups will be developed 
to form research questions that can cross-domains and use questions to form collaborations based 
on each members’ area of interest and expertise. 
Session 2: Theoretical Frameworks and Methodologies 

GOAL: Explore appropriate research methodologies. Formulate plans for research and 
collaboration across group members by examining a variety of methodologies. Means for these 
examinations would include the following: (a) view videos of work already conducted to 
highlight possible methodologies for future studies; (b) discuss other potential methodologies not 
highlighted during the video viewing; (c) discuss how to design robust collaborative studies. 
Small group would entail: (1) work already done; (2) research agenda development; Large group 
would entail: (1) share small group discussions; (2) delineate session 3 goals 
Session 3: Planning and Writing 

GOAL: Embark on collaborations. Small group will entail: (1) work on written product of 
research agenda; (2) develop shared conceptual framework and the relationship of our 
framework to what is currently being done; (3) identify target journals and outlets or grants and 
funding sources. Large group will entail: (1) share progress and commitments from small group 
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discussion; (2) finalize a plan for individual groups to continue updating progress to the larger 
group; (3) creation of working group website or blog. 
Anticipated Follow-up Activities 

Throughout the year, the members of this working group will continue working on research 
problems of common interest. They will contribute to a common website in which they will 
update other members of the working group about the progress of the various research 
collaborations. In the future, this working group will propose a special issue to a leading journal 
in the field and/or construct a grant proposal to a nationally recognized funder. 
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Embodied cognition is growing in theoretical importance and as a driving set of design 
principles for curriculum activities and technology innovations for mathematics education. The 
central aim of the EMIC (Embodied Mathematical Imagination and Cognition) Working Group 
is to attract engaged and inspired colleagues into a growing community of discourse around 
theoretical, technological, and methodological developments for advancing the study of 
embodied cognition for mathematics education. A thriving, informed, and interconnected 
community of scholars organized around embodied mathematical cognition will broaden the 
range of activities, practices, and emerging technologies that count as mathematical. EMIC 
builds upon our prior working groups with a specific focus on how we can leverage emerging 
technologies to study embodied cognition and mathematics learning. In particular, we aim to 
develop new theories and extend existing frameworks and perspectives from which EMIC 
collaboration and activities can emerge. 

Keywords: Technology; Cognition; Informal Education; Learning Theory 

Motivations for This Working Group 
Recent empirical, theoretical and methodological developments in embodied cognition and 

gesture studies provide a solid and generative foundation for the establishment of a regularly 
held Embodied Mathematical Imagination and Cognition (EMIC) Working Group for 
PME-NA. The central aim of EMIC is to attract engaged and inspired colleagues into a growing 
community of discourse around theoretical, technological, and methodological developments for 
advancing the study of embodied cognition for mathematics education, including, but not limited 
to, studies of mathematical reasoning, instruction, the design and use of technological 
innovations, learning in and outside of formal educational settings, and across the lifespan.  

The interplay of multiple perspectives and intellectual trajectories is vital for the study of 
embodied mathematical cognition to flourish. While there is significant convergence of 
theoretical, technological, and methodological developments in embodied cognition, there is also 
a trove of technological, methodological, and theoretical questions that must be addressed before 
we can formulate and implement effective design principles. As a group, we aim to address basic 
theoretical questions such as, What is grounding? And practical ones such as, How can we 
reliably engineer the grounding of specific mathematical ideas? We need to understand how 
variations in actions and perceptions influence mathematical reasoning, including self-initiated 
vs. prescribed actions, and actions that take place in intrapersonal versus interpersonal 
interactions; how gestural point-of-view when enacting phenomena from a first- versus third-
person perspective, including how gestures move through space, influences reasoning and 
communication; how actions enacted by oneself, observed in others, or imagined influence 
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cognition; and how gestures connect with external visual representations (Alibali & Nathan, 
2012; in press). 

A thriving, informed, and interconnected community of scholars organized around embodied 
mathematical cognition will broaden the range of activities and emerging technologies that count 
as mathematical, and envision alternative forms of engagement with mathematical ideas and 
practices (e.g., De Freitas & Sinclair, 2014). This broadening is particularly important at a time 
when schools and communities in North America face persistent achievement gaps between 
groups of students from many ethnic backgrounds, geographic regions, and socioeconomic 
circumstances (Ladson-Billings, 1995; Moses & Cobb, 2001; Rosebery, Warren, Ballenger & 
Ogonowski, 2005). There also is a need to articulate evidence-based findings and principles of 
embodied cognition to the research and development communities that are looking to generate 
and disseminate innovative programs for promoting mathematics learning through movement 
(e.g., Ottmar & Landy, 2016;  Smith, King, & Hoyte, 2014). Generating, evaluating, and curating 
empirically validated and reliable methods for promoting mathematical development and 
effective instruction through embodied activities that are engaging and curricularly relevant is an 
urgent societal goal. As embodied cognition gains prominence in education, so, too, does new 
ways of using technology to support teaching and learning (Lee, 2015). These new uses of 
technology, in turn, offer novel opportunities for students and scientists to engage in math 
visualization, symbolization, intuition, and reasoning. In order for these designs to successfully 
scale up, they must be informed by research that demonstrates both ecological and internal 
validity. 

Past Meetings and Achievements of the EMIC Working Group 
“Mathematics Learning and Embodied Cognition,” the first PME-NA meeting of the EMIC 

working group, took place in East Lansing, MI in 2015. Our group has been growing ever since. 
In addition to the PME-NA meeting each year, there are a number of ongoing activities that our 
members engage in. We have built an active website which provides updates on projects, and 
hosts resources. On this website, we have a list of members with their emails and bios, 
information about our PME-NA presence, and short personal introduction videos.  We’ve also 
created a space for members to share information about their research activities – particularly for 
videos of the complex gesture and action-based interactions that are difficult to express in text 
format. In addition, we have a common publications repository to share files or links (including 
to ResearchGate or Academia.edu publication profiles, so members don’t have to upload their 
files in multiple places). Our members collaborate on ongoing projects, and have presented at 
other pre-conference workshop events such as the Computer Supported Collaborative Learning 
conference (Williams-Pierce et al., 2017), and the APA Technology, Mind, and Society 
conference (Harrison et. al, 2018). Several research programs have formed to investigate the 
embodied nature of mathematics (e.g., Abrahamson 2014; Alibali & Nathan, 2012; Arzarello et 
al., 2009; De Freitas & Sinclair, 2014; Edwards, Ferrara, & Moore-Russo, 2014; Lakoff & 
Núñez, 2000; Melcer & Isbister, 2016; Ottmar & Landy, 2016; Radford 2009; Nathan, 
Walkington, Boncoddo, Pier, Williams, & Alibali, 2014; Soto-Johnson & Troup, 2014; Soto-
Johnson, Hancock, & Oehrtman, 2016), demonstrating a “critical mass” of projects, findings, 
senior and junior investigators, and conceptual frameworks to support an ongoing community of 
like minded scholars within the mathematics education research community. 

Some of our collaborative accomplishments  since 2015 include:  
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1. Developing a group website using the Google Sites platform to connect scholars,  support 
ongoing interactions throughout the year, and regularly adding additional 
resources/activities https://sites.google.com/site/emicpmena/home 

2. Joint submission of several NSF grants by members who first met during the 2015 EMIC 
sessions 

3. Some senior members joining junior members’ NSF grant proposals as Co-PIs and 
advisors 

4. Submission to the IES CASL program to study the role of action in pre-college proof 
performance in geometry (Funded 2016-2020 for Nathan & Walkington), as well of the 
use of perceptual learning on algebra learning (Ottmar & Landy, 2018) 

5. Submission of 2 NSF Proposals to host Workshops on Embodied Cognition (one for 
researchers and one for K-16 math educators) 

6. A joint symposium on Embodied Cognition with 6 members at the 2018 APA 
Technology, Mind & Society Conference 

7. Examining the potential for an NSF Research Coordination Network (RCN) 
8. Application for a grant from Association for Psychological Science (APS) to develop a 

better website and offer stipends for contributors 
9. Presenting a pre-conference workshop to CSCL 2017 on the embodied tools to promote 

STEM education (Williams-Pierce et al., 2017) 
10. A Conference at Berkeley’s Graduate School of Education to examine the relevance of 

coordination dynamics -- the non-linear perspective on kinesiological development -- to 
individuals’ sensorimotor construction of perceptual structures underlying mathematical 
concepts. https://edrl.berkeley.edu/cdme2018 

Current Working Group Organizers 
As the Working Group has matured and expanded, we have a broadening set of organizers 

that represent a range of institutions and theoretical perspectives (and is beyond the limit of six 
authors in the submission system). This, we believe, enriches the Working Group experience and 
the long-term viability of the scholarly community. The current organizers for 2018 are 
(alphabetical by first name): 

• Candace Walkington, Southern Methodist University 
• Carmen J. Petrick Smith, University of Vermont 
• Caro Williams-Pierce, University at Albany, SUNY 
• David Landy, Indiana University 
• Dor Abrahamson, University of California, Berkeley 
• Edward Melcer, University of California, Santa Cruz 
• Emily Fyfe, Indiana University 
• Erin Ottmar, Worcester Polytechnic Institute 
• Hortensia Soto–Johnson, University of Northern Colorado 
• Ivon Arroyo, Worcester Polytechnic Institute 
• Martha W. Alibali, University of Wisconsin-Madison 
• Mitchell J. Nathan, University of Wisconsin-Madison 

Focal Issues in the Psychology of Mathematics Education 
Emerging, yet influential, views of thinking and learning as embodied experiences have 

grown from several major intellectual developments in philosophy, psychology, anthropology, 
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education, and the learning sciences that frame human communication as multimodal interaction, 
and human thinking as multi-modal simulation of sensory-motor activity (Clark, 2008; Hostetter 
& Alibali, 2008; Lave, 1988; Nathan, 2014; Varela et al., 1992; Wilson, 2002). As Stevens 
(2012, p. 346) argues in his introduction to the JLS special issue on embodiment of mathematical 
reasoning, “it will be hard to consign the body to the sidelines of mathematical cognition ever 
again if our goal is to make sense of how people make sense and take action with mathematical 
ideas, tools, and forms”. 

Four major ideas exemplify the plurality of ways that embodied cognition perspectives are 
relevant for the study of mathematical understanding: (1) Grounding of abstraction in perceptuo-
motor activity as one alternative to representing concepts as purely amodal, abstract, arbitrary, 
and self-referential symbol systems. This conception shifts the locus of “thinking” from a central 
processor to a distributed web of perceptuo-motor activity situated within a physical and social 
setting. (2) Cognition emerges from perceptually guided action (Varela, Thompson, & Rosch, 
1991). This tenet implies that things, including mathematical symbols and representations, are 
understood by the actions and practices we can perform with them, and by mentally simulating 
and imagining the actions and practices that underlie or constitute them. (3) Mathematics 
learning is always affective: There are no purely procedural or “neutral” forms of reasoning 
detached from the circulation of bodily-based feelings and interpretations surrounding our 
encounters with them. (4) Mathematical ideas are conveyed using rich, multimodal forms of 
communication, including gestures and tangible objects in the world.  

In addition to theoretical and empirical advances, new technical advances in multi-modal and 
spatial analysis have allowed scholars to collect new sources of evidence and subject them to 
powerful analytic procedures, from which they may propose new theories of embodied 
mathematical cognition and learning. Growth of interest in multi-modal aspects of 
communication have been enabled by high quality video recording of human activity (e.g., 
Alibali et al., 2014; Levine & Scollon, 2004), motion capture technology (Hall, Ma, & 
Nemirovsky, 2014; Sinclair, 2014), developments in brain imaging (e.g., Barsalou, 2008; Gallese 
& Lakoff, 2005), multimodal learning analytics (Worsley & Blikstein, 2014), and data logs 
generated from embodied math learning technologies that interacts with touch and mouse-based 
interfaces  (Manzo, Ottmar, & Landy, 2016). 

Theme: Looking Back, Looking Ahead: Celebrating 40 Years of PME-NA 
Inspired by the PME-NA 2018 theme, we will specifically focus on the ways in which the 

field of embodied cognition has developed and how new emerging technologies and innovative 
pedagogies can influence mathematics teaching and learning. This effort will be crafted to align 
with recent developments in the embodiment literature, and new theoretical frameworks tying 
various perspectives on embodiment to different forms of physicality in educational technology 
(Melcer & Isbister, 2016; see Figure 1 below). 
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Figure 1.  Five distinct approaches to facilitating embodiment through bodily action, objects, 

and the surrounding environment in educational technology. 

Examples include: coding videos of pre-service teachers’ distributed gestures to explore a 
mathematical conjecture (Walkington et al., 2018); exploring mathematical transformations 
while using a dynamic technology tool (Ottmar & Landy, 2016), having students and teachers 
play and create embodied technology games to teach mathematics and computational thinking 
(Arroyo et al., 2017; Melcer & Isbister, 2018); usng dual eye tracking (Shvarts & Abrahamson, 
2018), and a teacher guiding the movements of a learner exploring ratios (Abrahamson & 
Sánchez-García, 2016). Through these examples, we will explore questions such as: what role 
does technology play on supporting the connections between the mind, body, and action? During 
the conference, participants in our EMIC workshop will engage in dedicated activities and 
guided reflections as a basis for exploring the role of technology, action, and embodiment in the 
emergence of mathematics learning.  
Plan for Active Engagement of Participants  

Our formula from prior PME-NA working groups proved to be effective: By inviting 
participants into open ended math activities at the beginning of each session, we were rapidly 
drawn into those very aspects of mathematics that we find most rewarding. We plan to facilitate 
collaborative EMIC activities, followed by group discussions (and we now have many activities 
and members who can trade off in these roles!) that will help us all to “pull back” to the 
theoretical and methodological issues that are central to advancing math education research. 
Within this structure of beginning with mathematical activities and facilitated discussions, on 
Day 1 we plan to begin with four different group activities that highlight the interplay of 
mathematics content, cognition, physicality, and action. These activities will serve as the 
foundation for a broad group discussion about the varied roles of technology in EMIC.  See 
Figure 2 below for examples of collaborative activities from PME-NA 2017. 

 

   
Figure 2.  Collaborative activities.  Participants explore geometric rotation and reflection(left); 

two groups act out and prove mathematical conjectures (middle and right). 
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The full first session will generally be taken up by introductions and a round of open-ended 
activities followed by discussion. On Day 2, we will begin the session with technology-based 
collaborative activities, with four stations that pairs of participants rotate through. Examples of 
three of those stations are in Figure 3. Continuing with the routine established in Day 1, a full 
group discussion will follow, with a particular focus on designing EMIC digital contexts to 
support ongoing collaboration. 
 

 
Figure 3. Technology activities. The Hidden Village (left); Graspable Math (middle); Bots & 

(Main)Frames (right).  

After the discussion, we will discuss different EMIC activity ideas, with the goal of developing 
additional collaborative activities that can be used in various research and learning contexts. The 
final activities will be shared on the EMIC website. 

Day 3 is agenda-setting day, where we all discuss how we will keep the momentum going, 
such as developing an NSF Research Coordination Network (RCN) to build the networked 
community of international scholars from which many fruitful lines of inquiry can emerge. A 
second group may draft a proposal for a special issue of the Journal of Research in Mathematics 
Education that focuses on creating an integrated theoretical framework or sharing the different 
theoretical perspectives, research activities, and operationalization of EMIC by the working 
group members.   

In order to find common ground for the RCN submission and the JRME special issue, we 
will perform a live concept mapping activity that is displayed for all participants to explore the 
range of EMIC topics and identify common conceptual structure. We will discuss different 
general foci, such as teacher professional development with EMIC, designing EMIC games or 
museum exhibits, etc. Building on the four major ideas that we developed earlier, possible topics 
for organizing this activity will be explored, such as: 

 
1. Grounding Abstractions 

a. Conceptual blending (Tunner & Fauconnier, 1995) & metaphor (Lakoff & Núñez, 
2000)  

b. Perceptuo-motor grounding of abstractions (Barsalou, 2008; Glenberg, 1997; 
Ottmar & Landy, 2016; Landy, Allen, & Zednik, 2014) 

c. Progressive formalization (Nathan, 2012; Romberg, 2001) & concreteness fading 
(Fyfe, McNeil, Son, & Goldstone, 2014) 

d. Use of manipulatives (Martin & Schwartz, 2005) 
2. Cognition emerges from perceptually guided action: Designing interactive learning 

environments for EMIC 
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a. Development of spatial reasoning (Uttal et al., 2009)   
b. Math cognition through action (Abrahamson, 2014; Nathan et al., 2014) 
c. Perceptual boundedness (Bieda & Nathan, 2009) 
d. Perceptuomotor integration (Ottmar, Landy, Goldstone, & Weitnauer, 2015; 

Nemirovsky, Kelton, & Rhodehamel, 2013) 
e. Attentional anchors and the emergence of mathematical objects (Abrahamson & 

Bakker, 2016; Abrahamson & Sánchez–García, 2016; Abrahamson et al., 2016; 
Duijzer et al., 2017) 

f. Mathematical imagination (Nemirovsky, Kelton, & Rhodehamel, 2012) 
g. Students’ integer arithmetic learning depends on their actions (Nurnberger-Haag, 

2015).   
3. Affective Mathematics 

a. Modal engagements (Hall & Nemirovsky, 2012; Nathan et al., 2013) 
b. Sensuous cognition (Radford, 2009) 

4. Gesture and Multimodality 
a. Gesture & multimodal instruction (Alibali & Nathan 2012; Cook et al., 2008; 

Edwards, 2009) 
b. Bodily activity of professional mathematicians (Nemirovsky & Smith, 2013; 

Soto-Johnson, Hancock, & Oehrtman, 2016)  
c. Simulation of sensory-motor activity (Hostetter & Alibali, 2008; Nemirovsky & 

Ferrara, 2009) 
 

We will also discuss the implications of this work and the different areas of the concept map for 
teaching, and discuss ideas for bridging the gap between research and practice. 

Follow-up Activities 
We envision an emergent process for the specific follow-up activities based on participant 

input and our multi-day discussions. At a minimum, we will continue to develop a list of 
interested participants and grant them all access to our common discussion forum and literature 
compilation. Those that are interested in the NSF RCN plan will work to form the international 
set of collaborations and articulate the intellectual topics that will knit the network together; and 
those that are interested in the JRME special issue proposal will outline a specific timeline for 
progressing.  One additional set of activities we hope to explore is to create a series of 
instructional activities that can be used to introduce educational practitioners at all levels of 
administration and across the lifespan to the power and utility of the EMIC perspective.  

In the past several years, we have seen a great deal of progress. This is perhaps best 
exemplified by coming together of the EMIC website, the ongoing collaborations between 
members, and the annual workshops, which each draws across multiple institutions. We thus will 
strive to explore ways to reach farther outside of our young group to continually make our work 
relevant, while also seeking to bolster and refine the theoretical underpinnings of an embodied 
view of mathematical thinking and teaching.  
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After not having met for a number of years, the Gender and Sexuality in Mathematics Education 
Working Group will meet again this year with a new name, new members, and a new focus. 
During this Working Group, we will discuss current research being conducted on these topics 
and identify themes for discussion and possible research collaborations. We plan to include a 
discussion about how research assumptions, such as language assuming that gender is binary, 
can affect research findings. All PME-NA attendees with an interest in gender and sexuality in 
mathematics education are invited to attend. 

Keywords: Gender; Equity and Diversity; Affect, Emotion, Beliefs, and Attitudes 

Introduction 
The Gender and Sexuality in Mathematics Education Working Group will reconvene this 

year with a new focus and a new name. After not having met for many years, there is a renewed 
interest in this topic and new leadership for this Working Group. During last year’s PME-NA, in 
Indianapolis, a group of scholars met to discuss their interests in gender and sexuality in 
mathematics education. As a result of those October 2017 meetings, we set up a Google Docs 
shared folder so that we could share relevant research and other resources. At that time, we also 
agreed that having a formal Working Group at PME-NA in 2018 would allow the work of this 
group to coalesce and would be a productive way to invite interested others to join us. We have 
also chosen to rename the Working Group to include the word “sexuality” in order to be more 
inclusive and to remain current with the expanding themes within this area of research.  

In this proposal, we share a brief history of the past work of this group and discuss 
connections of our work to the psychology of mathematics education and to the theme of this 
year’s conference. We also discuss some relevant research being conducted by current members 
of the group and discuss initial themes noted within this work. Finally, we describe our plans for 
the active engagement of participants during the conference and conclude with a discussion of 
anticipated follow-up activities and future directions for the Working Group. 

Brief History of the Working Group 
The Gender and Mathematics Working Group (GMWG) began 20 years ago at PME-NA XX 

in Raleigh, North Carolina. At this conference, mathematics education scholars came together 
“in order to weave together the findings of various strands in research and understanding of 
issues in gender and mathematics” (Damarin et al., 1998). This Working Group continued to 
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meet between 1998 and 2007, with the exception of the 2003 joint conference between PME and 
PME-NA in Honolulu, Hawaii. The group also reconvened for the 2011 PME-NA conference in 
Reno, Nevada. 

The Working Group’s past discussions have involved reviewing the scholarship surrounding 
gender and mathematics, defining research strands, determining gaps in the literature, and 
establishing directions for future work. Some notable accomplishments of this group have been 
creating a visual representation of the field of gender and mathematics and the social and 
psychological complexities of the topic (Erchick, Condron, & Appelbaum, 2000) and publishing 
a monograph on gender and mathematics research as a joint project with scholars from the 
International Group for PME (Forgasz, Becker, Lee, & Steinthorsdottir, 2010).  

Connections to PME and the Conference Theme 
The conference theme this year, “Looking Back, Looking Ahead,” nicely ties in with the 

resurgence of this Working Group. Research on gender and sexuality in mathematics education 
has drastically shifted focus throughout the past few decades. In the 1970s and 1980s, much of 
the work on gender and mathematics focused on sex differences in mathematics achievement, 
often with a focus on biological differences. Through the years, given that sex differences in 
achievement have been found to be relatively small and have decreased over time (Hyde, 
Fennema, & Lamon, 1990), gender research has shifted its focus more to participation, with an 
emphasis on social/cultural influences, as opposed to biological ones. In other words, the 
research questions tend to center around why girls/women are not pursuing mathematics or 
mathematical careers at the same rate as boys/men and what can be done to change this 
imbalance. This work has revolved around many topics, such as agency and voice, self-efficacy 
and self-concept, stereotypes and stereotype threat, curriculum and pedagogy, and differential 
treatment and institutionalized discrimination. 

In more recent years, the field has also begun discussing the need for more research on queer, 
transgender, and gender non-conforming students. Recent researchers have noted that work done 
on gender and mathematics tends to utilize binary wording – dividing participants into 
males/boys/men and females/girls/women, without clearly defining these categories and without 
allowing for students who might not identify with one of these categories (Damarin & Erchick, 
2010; Glasser & Smith, 2008; Hall, 2014). In looking ahead, it is important for researchers in this 
field to develop and define appropriate and inclusive terminology and research methodologies 
that can address issues that arise when conducting gender and sexuality research. 

Current Research in Gender and Sexuality in Mathematics Education 
To provide more details on the type of work currently being done in the field with respect to 

gender and sexuality in mathematics education, the following is a short summary of each 
author’s recent work in this area. More detailed discussions and connections across this work 
will take place during the Working Group sessions. 
Laurie Rubel, Brooklyn College of the City University of New York/University of Haifa 

Laurie Rubel’s current research focuses on the educational experiences of women Palestinian 
citizens of Israel (Arab Israelis, who represent 25% of the population of Israel). Arab Israelis are 
a minority group with limited access to opportunity and resources and lower socioeconomic 
standing in Israel (Bar-Tal & Teichmann, 2005; Zuzovsky, 2010). Arab Israeli girls outperform 
boys in mathematics (Rapp, 2015) and have been found to have beliefs about success in 
mathematics different from Western or Westernized peers (Forgasz & Mittelberg, 2008). It has 
been hypothesized that girls appropriate academic success to overcome the lower status that they 
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hold as a minority in Israel as Palestinians, which is further exacerbated by their role as women 
in a patriarchal society (Rapp, 2015), and as an unintended consequence of less diversity among 
course offerings in Arab high schools (Ayalon, 2002).  

Rubel’s research methodology consists of life-story interviews with Arab Israeli women in 
undergraduate and graduate programs in mathematics education, from diverse Arab ethnic 
groups and geographies, in which they are asked how they understand and interpret the effects of 
local racialized narratives in relation to learning, how they interpret their achievement and 
others’ lack of achievement, and which factors they identify as supporting or inhibiting their 
success. Analysis will pursue the educational experiences of these women, as told in their own 
stories and counterstories, with particular attention to how these stories converge or contrast with 
Western narratives. The commentary will include analysis of researcher positionality (Milner, 
2007) and will discuss methodological tensions inherent to research about equity in mathematics 
in relation to social groups known to espouse conservative, patriarchal, and homophobic 
ideologies.  
Lynda Wiest, University of Nevada, Reno 

Lynda Wiest’s scholarly interests involve understanding factors that influence gender 
differences in mathematics, including those that relate to dispositions and beliefs, and strategies 
and opportunities for supporting and encouraging females in mathematics. Wiest has particularly 
focused on the role that out-of-school-time (OST) learning can play in this regard because it is an 
area of rising scholarly interest in education, especially STEM education (e.g., McCombs et al., 
2012; Slates, Alexander, Entwisle, & Olson, 2012). Wiest developed and has directed a 
residential summer math program for middle school girls for 20 years, conducting research in 
association with the program and recently publishing the first book of its kind on OST STEM 
programs for females (Wiest, Sanchez, & Crawford-Ferre, 2017).  

In researching factors that participants consider most important in a one-week residential 
summer mathematics and technology program for middle school girls, Wiest and colleagues 
(2017) have determined that the girls find the academic learning most important, indicating that 
they can willingly engage in rigorous mathematics even outside of school. Although social 
opportunities (sometimes embedded in recreational activities) were reported as a distant second 
among the most important program features, the academic and social opportunities interacted in 
important ways in the context of a mathematics experience to influence dispositions and beliefs 
(Lavy & Sand, 2012; Szucs, 2014). In terms of most effective instructional approaches, the girls 
most prominently listed active engagement (e.g., hands-on, collaborative, and communicative 
learning) and a high-quality staff (based on individual attention given and perceived 
effectiveness). 

Currently, Wiest is completing a study on the influence of the summer program on 
motivation (internal and external). She and her co-researchers concur with existing findings that 
dispositions can influence STEM achievement and participation (Ellis, Fosdick, & Rasmussen, 
2016; Goetz, Bieg, Lüdtke, Pekrun, & Hall, 2013). They find the fact that females grapple with 
less favorable dispositions toward STEM than males, such as weaker self-beliefs and confidence 
as well as lower interest (Ellis et al., 2016; Lubienski, Robinson, Crane, & Ganley, 2013), 
problematic and thus investigate ways OST programs might favorably influence females’ 
dispositions in mathematics overall and in relation to race/ethnicity and socioeconomic status. 
Rebecca McGraw, University of Arizona 

Rebecca McGraw’s work related to equity, gender, and mathematics includes co-facilitating 
a residential summer math camp for middle grades girls (led by another co-author of this 
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proposal), studying teacher classroom practice from an equity perspective (e.g., distribution of 
images by gender in classroom resources, patterns of participation, course-taking, and 
achievement), and investigating pre-service secondary teacher preparation (Bay-Williams & 
McGraw, 2008; Eli, McGraw, Anhalt, & Civil, in press; McGraw & Lubienski, 2007; McGraw, 
Romero, & Krueger, 2009; Rubinstein-Avila et al., 2014). Currently, McGraw is particularly 
interested in the development of teacher and student beliefs about mathematics and learning, and 
the development of middle/high school students’ mathematical identities. 

Very recently, McGraw began serving as PI on a multi-institutional NSF research project 
(#1758401) focusing on the development of equitable teacher practices in middle/high school 
pre-service and beginning teachers. The study is framed by the theories of equity literacy 
(Gorski, 2014; Gorski & Swalwell, 2015) and culturally relevant teaching (Gay, 2002), and the 
researchers seek to understand the ways that teacher education programs can productively 
engage future teachers in identifying and confronting bias and discrimination (as expressed by 
oneself, others, and institutions), rejecting deficit views and fixed-ability mindsets, and engaging 
with and building upon the resources that students bring to the classroom. This project will 
include five teacher education programs from across the U.S. and approximately 100 
future/beginning mathematics teachers. The Working Group will provide an important venue for 
the bidirectional sharing of ideas – from project research to working group members, and from 
the varied expertise of group members back to the project.  
Angela Hodge, Northern Arizona University 

Angela Hodge’s research interests lie at the intersection of active learning (Ernst, Hodge, & 
Yoshinobu, 2017) and gender equity in the STEM disciplines. Most recently, Hodge conducted 
research on a four-week summer camp for underrepresented middle school girls (Hodge, 
Matthews, & Squires, 2017). The camp was based on empowering the young women by 
engaging them in hands-on, minds-on activities in STEM. The girls participated in physical 
activities each day as well as explored various STEM careers. Hodge was one of the co-founders 
of the camp, which has now been active for six years. During the Working Group, Hodge will 
offer insights gained by research on starting a summer camp for girls, maintaining the camp, and 
selecting activities that are both engaging and empowering for young women. Future research 
ideas for the camp can also be explored during the Working Group.  

In addition, Hodge conducted a research study on why some women choose STEM fields and 
what has made them successful in such majors (Weber & Hodge, 2012). It was found that 
childhood experiences greatly influenced these women in choosing a STEM major. Support 
groups and mentors helped influence their choices to stay in the STEM major, even when their 
coursework became challenging.  

One of the current research projects in which Hodge is involved relates to perceptions of 
women related to their mathematics history. Data were collected in university calculus classes (a 
course with few women enrolled, but all students enrolled are in STEM disciplines) and in a 
math for elementary education course (a course mostly populated by women not in STEM). The 
data first being analyzed come from a pre-course writing assignment called a math 
autobiography. The students in both classes were asked the same questions/prompts. Women’s 
perceptions of themselves as students of mathematics will be explored with both of these groups 
of students. This project will be further discussed during the Working Group.  
Kathy Stoehr, Santa Clara University 

Kathy Stoehr’s research focuses on preservice and early-career teachers’ experiences with 
mathematics anxiety. She utilizes different theoretical lenses to add a deeper understanding of 
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how and why mathematics anxiety is so prevalent among women (Penafiel, Stoehr, & Martinez, 
2016; Stoehr & Olson, 2015; Stoehr, 2017a, 2017b). Stoehr argues that this gender issue is 
important to study so that teacher educators may address this issue and be better equipped to 
prepare competent and confident women to teach elementary mathematics. 

Stoehr is also a co-researcher on two large grants. As Co-Principal Investigator on a two-year 
research project with Dr. Marta Civil from the University of Arizona, she is working with in-
service women elementary teachers and mothers from an underserved community to focus on 
their understanding of each other’s roles in supporting children’s mathematics education. In 
addition, she works with the teachers and mothers to develop deeper confidence and competence 
in mathematics. 

For the other grant, Stoehr is a co-researcher on a five-year U.S. Department of Education 
Grant with Co-Principal Investigators Marco Bravo and Claudia Rodriguez-Mojica. The aim of 
the grant is to enhance teacher preparation for dual-language environments. Stoehr’s 
responsibilities include co-designing two elementary mathematics courses for bilingual 
preservice elementary teachers (mainly women) that focus on the role language plays in learning 
mathematics. She also develops and facilitates workshops for parents (mainly mothers) of 
bilingual students on ways to promote children’s co-development of mathematical knowledge 
and bilingual language proficiency at home.  
Katrina Piatek-Jimenez, Central Michigan University 

Katrina Piatek-Jimenez’s research interests focus on what motivates women to study 
mathematics at the undergraduate level and what influences their decisions whether or not to 
continue in mathematical careers. In order to begin addressing these questions, Piatek-Jimenez 
has explored many potential factors, such as the development and role of one’s mathematics 
identity (Cribbs, Piatek-Jimenez, & Mantone, 2015; Piatek-Jimenez, 2015), images of 
mathematicians (Piatek-Jimenez, 2008a), knowledge of mathematical careers (Piatek-Jimenez, 
2008b), and equity within mathematics textbooks (Piatek-Jimenez, Madison, & Pzybyla-Kuchek, 
2014). 

In her more recent work, Piatek-Jimenez has been focusing on the role of stereotypes held by 
college students. In one study, Piatek-Jimenez explored whether college students believe that 
society sees particular personality attributes as gendered. Findings suggest that personality 
attributes often associated with the field of mathematics (such as “thinks logically” and 
“analytical”) were seen as gender neutral by participants, but those associated with caring for 
others (such as “shows concern for people’s well-being” and “puts others’ needs above one’s 
own”) were ranked as female dominant. Furthermore, women planning on entering STEM 
careers rated these caring attributes as female dominant even more so than the men in the study 
or the women who were not planning on STEM careers. Piatek-Jimenez and colleagues (Cribbs, 
Piatek-Jimenez, & Gill, in press) raise concerns about the influence that these pressures may 
have on women interested in STEM fields, especially since mathematically-based careers are 
often viewed as being less people- or service-oriented than many other careers (Morgan, Isaac, & 
Sansone, 2001).  

In another recent study, Piatek-Jimenez explored college students’ stereotypes of 
mathematicians using two different data collection methods. One method was the “Draw a 
Mathematician Test.” The second involved focus groups in which students were asked to 
consider photos of real people and determine whether or not they thought each was of a 
mathematician. Initial results suggest that the distinct methods employed allowed the researchers 
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to identify different stereotypes and beliefs of the participants. As such, Piatek-Jimenez cautions 
how choice of methodology in gender research may affect results.  
Jennifer Hall, Monash University 

Jennifer Hall’s interest in gender research in mathematics education began when she was a 
master’s student. In her master’s research, she collected data on the experiences of women who 
were upper-year undergraduate mathematics majors, investigating the supports and challenges 
they faced as they selected and persevered in this field of study, which remains dominated by 
men in Canada, where the research was conducted (Hall, 2010). 

During her doctoral studies, Hall’s research focused on elementary students’ experiences 
with and views of mathematics and mathematicians, and the ways that their views are impacted 
by parents’ views, teachers’ views, and popular media representations. Throughout her doctoral 
journey, Hall became increasingly aware of how to conduct research in a gender-sensitive 
manner, and ensured that all aspects of her research, from conception to presentation of findings, 
were conducted in such a manner (Hall, 2014). 

More recently, Hall was part of an international research project led by Helen Forgasz and 
Gilah Leder. This project involved asking the general public about their views on gender and 
mathematics, as well as related fields, via street-level interviews. While reporting on her findings 
from the Canadian dataset (Hall, 2017), she raised concerns about the binary wording (“girls or 
boys”) of the survey questions. As a result, she designed a more recent project that involved 
replicating the aforementioned project, but with an alteration of the data collection instrument (1) 
to make all the questions non-binary (e.g., “For which gender…”) and (2) to add questions that 
explicitly queried the participants’ views on gender. Data collection took place in Canada and 
Australia, and initial analyses are currently underway. 

Hall has also begun a new project in which she and two colleagues will investigate the 
supports and challenges faced by undergraduate students in two Australian universities. This 
project will also have a gendered focus, as the researchers will investigate the ways that gender 
impacts students’ experiences. 
Elizabeth Kersey, Purdue University 

Elizabeth Kersey also notes concerns about utilizing binary wording in gender research. She 
expresses concern about dividing participants into males and females without clearly defining 
those categories and without acknowledging transgender, nonbinary, and intersex identities. 
Kersey is working to address this oversight by using a narrative methodology to examine how 
gender affects the experiences of transgender students in mathematics and other STEM fields. 
She draws from research and theory in (a) feminism, (b) queer theory and intersectionality, (c) 
general education research on transgender students, (d) science education research on LGBTQ 
issues or queer theory, and (e) research on gender and equity in mathematics education. Drawing 
from both feminism and queer theory facilitates a dual focus on gender category 
privilege/oppression and on gender conformity privilege/gender transgression oppression, as 
suggested by Rands (2009).  

The transgender participants in her recent study were more attuned to differences in gendered 
treatment both before and after transitioning, from which we can learn about how mathematics 
and other STEM fields are gendered for all students, not just those who are gender variant. 
Participants in this study regularly described the culture of their fields as masculine. One 
exception is mathematics education, which was described as much less masculine than 
mathematics. Participants also reported being taken less seriously when they transitioned from 
male to female. For instance, they might make a suggestion that would be ignored, only to have 
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the same suggestion be taken up when suggested by a male colleague. For those participants who 
were transgender women, however, the improvement in their quality of life when their 
presentation corresponded with their identity far outweighed any disadvantages they faced when 
presenting as female. All participants in this study were either transgender women or nonbinary; 
more research is required that includes transgender men.  

One strong pattern that emerged in this study is that all participants waited until during or 
after college to transition. While this is not true of everyone who is transgender, it is a common 
phenomenon. Based on this observation, Kersey proposes a model of gender refraction. In this 
model, gender often appears to be a binary because conservative societal norms enforce that 
gender binary. However, when one experiences an open and accepting environment where it is 
safe to explore one’s identity, this environment acts as a prism and reveals gender to be a 
spectrum with a multitude of possible identities. College often acts as this prism, but this is not 
always the case, and different people experience the same environment in different ways. The 
most important aspect of this model is that the spectrum of identities was always present, but it 
was not visible until the conditions were favorable. Kersey argues that our goal as a society and 
as mathematics educators should be to create more environments that can act as a prism and 
allow our students to explore their identities in an environment of safety and acceptance.  

Initial Themes 
The study of gender and sexuality in mathematics education is a complex field and is 

approached from many angles. During the Working Group sessions, we plan to discuss in depth 
themes and commonalities found in our work and to identify ways that we can continue to 
support each other’s work and move the field forward.  

Based on an initial review of our respective work, some preliminary themes begin to arise. 
One important theme is language and methodology, which involves not only the choice of 
language that we as scholars use when conducting research on gender and sexuality in order to 
be inclusive of all individuals and to reflect a multi-dimensional understanding of gender and 
sexuality, but also a reflection on how our choice of language and our choice of methods may 
affect our research results and interpretations. Another theme found in our research is 
interactions between gender/sexuality and students’ perceptions of themselves as mathematical 
learners. While some of our work focuses on mathematics autobiographies and mathematics 
identity and other work specifically explores math anxiety, these are all topics that consider the 
learners’ experiences related to gender/sexuality and mathematics. A third theme found in our 
work is the role of curriculum, pedagogy, and teacher education in the study of gender and 
sexuality in mathematics education. From the role of classroom materials to that of teacher 
practices, the experiences and messages to which students are exposed within the mathematics 
classroom affects their achievement and participation. The final theme involves summer camps 
for middle school girls intended to engage and empower them in the pursuit of mathematics. 

Plans for Active Engagement During the Conference 
Session 1: 

Because this Working Group has not met for many years, and since the group is composed of 
mostly new leadership and new participants, it is important for the participants to become 
familiar with one another’s work. Therefore, we will begin this session with introductions and a 
brief overview of the plan for this Working Group at the conference. Each author of the proposal 
will then present a short synopsis of their research relevant to the topic of gender and sexuality in 
mathematics education, each followed by a brief discussion with the group at large. Finally, as 
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time permits, other participants will be invited to introduce their related research to the group, 
continuing into the next session as needed. 
Session 2: 

We will begin this session with a discussion of language and methodology in gender and 
sexuality research. Given that the language used within the field changes so quickly, and that 
certain fields, such as sociology, have worked at refining this language, we consider it important 
to discuss and develop some consistent language to be used within the group. During this 
session, we will also facilitate a broader discussion that focuses on connections identified 
between one another’s work, and directions the participants see the field of gender and sexuality 
in mathematics education moving. Through these conversations, we anticipate that themes will 
arise that will naturally allow us to divide into smaller, theme-based groups for the third session. 
Session 3: 

During the third session, breakout groups organized the previous day will meet and discuss 
potential collaborations and other ways in which they can support each other’s work on gender 
and sexuality in mathematics education. 

Anticipated Follow-up Activities and Future Directions 
After last year’s PME-NA conference, we created a Google Docs shared folder, which has 

been used to share related articles and information about conferences and funding opportunities. 
We plan to add all interested attendees of this year’s Working Group to the Google Docs shared 
folder and intend to continue the discussions and shared resources begun during the Working 
Group throughout the rest of the year. 

Also, given that it has been nearly a decade since a monograph has been published on work 
in gender and sexuality in mathematics education, and because the field changes so quickly, we 
will begin thinking about putting together an edited volume with current work being done in the 
field.  
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The field of mathematics education is embracing a diversity of research paradigms, which have 
allowed mathematics teacher educators (MTEs) to research their academic experiences. This 
has begun to unearth the diversity and complexity of MTEs’ work. Yet, there are few spaces for 
MTEs to explore and reflect on those experiences. In this working group, we introduce narrative 
inquiry, self-study, and autoethnography as methodologies that focus on the study of the self. 
Through posing research questions and creation of research texts from existing field texts, 
participants will explore these methodologies. Field texts used will be videos, personal journals, 
and transcripts of conversations that the leaders of the working group have constructed in their 
different research studies. The creation of a nurturing space to conduct and review research 
using these methodologies will be promoted in this working group.  

Keywords: Mathematics Teacher Educators, Research Methods, Narrative Inquiry, Self-study, 
Autoethnography 

Significance and Historical Context of the Working Group 
PME-NA has historically created spaces for mathematics teacher educators’ (MTEs’) 

professional growth (e.g., Bastable & Shifter, 1997; Kastberg et al., 2012). As the mathematics 
education field starts refuting closure and embracing a diversity of possibilities for mathematics 
teaching and learning (Stinson & Walshaw, 2017), MTEs’ sharing of their experiences has 
disclosed the complexity of their academic work (e.g., Chauvot, 2009; Jaworski & Wood, 2008; 
Tzur, 2001). For example, Chauvot (2009), building on Shulman (1986), documented the nature 
of knowledge she used in her different roles as MTE. Tzur (2001), building on his personal 
experiences as a mathematics learner and becoming an MTE, documented the importance of 
promoting MTEs’ appreciation for reflecting about their practice. The first International 
Handbook of Mathematics Teacher Education (vol. 4) was dedicated to the work of MTEs as 
professionals (Jaworski & Wood, 2008).  In 2013, the Journal for Research in Mathematics 
Education Equity Special Issue documented a conversation among MTEs where they shared their 
experiences, struggles, questions, and tensions about how they position themselves in their work 
(D’ Ambrosio et al., 2013). Back in 2009, Gutierrez claimed that politics is always a present 
aspect of MTEs’ work whether issues of power are acknowledged or avoided.  

As research is one important part of MTEs’ work, we acknowledge that there seems to be a 
consensus that the main goal of doing research is to develop new knowledge or understand a 
phenomenon (Lincoln, Lynham, & Guba, 2011). However, the kind of research that is legitimate 
and what knowledge is valued varies according to external contexts and overarching paradigms 
held by the researcher. MTEs’ personal worldviews or paradigms inform the decisions we make 
in designing and implementing research. Teppo (1997) defined paradigms as “overarching 
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worldviews that represent particular belief systems about the nature of knowledge and how that 
knowledge is acquired” (p. 3). Ernest (1997) explained that each research paradigm has its own 
expectations about the nature of reality (ontology), knowledge and how do we know 
(epistemology), and the best way to gain that knowledge (methodology). To build perspective on 
a research paradigm, Ernest (1997) advised researchers to consider their personal mission for 
knowledge, whether they want “to predict and control the phenomena under study (technical 
interest), to understand and make sense of them (the practical interest), and to achieve social 
justice through this understanding (the emancipatory interest)” (p. 33). All of these are valuable 
missions that will determine the methodology of a study and contribute to making the field of 
mathematics teacher education rich in diversity of researchers and research approaches (e.g., 
Stinson & Walshaw, 2017).  

At the same time, MTEs’ daily work may be influenced by external factors, such as funding 
and/or peer acceptance, as they try to decide what research questions to pursue and select 
methods for exploring these questions. Negotiating external factors and internal passions to 
conduct inquiry may constrain MTEs’ work. Historically, political organizations in the education 
community have privileged the practice of scientific methodologies in research (e.g., National 
Mathematics Advisory Panel, 2008; National Research Council, 2002). However, recently 
researchers in general teacher education (e.g., Borko, Liston, & Whitcomb, 2007; Lather, 2004), 
and particularly in mathematics education (e.g., Gutstein, 2008; Stinson & Walshaw, 2017), have 
called for more diversity in research. In this present moment there is opportunity for MTEs to 
develop spaces according to their passions and explorations of their identities as writers and 
researchers. Such as work would fulfill the emancipatory interests described by Ernest (1997), 
while develop new insights into MTEs’ practices.  

Energizing MTEs has been identified as critical to sustaining the field of mathematics teacher 
education (e.g., Whitcomb, Liston, & Borko, 2009). As Wilson (2006) described, being a 
“teacher educator-researcher requires understanding the practice of teacher education and the 
practice of teacher education research” (p. 316). MTEs’ experiences working in institutions, 
teaching courses, providing service, conducting research, and wrestling with the competing 
demands of stakeholders as well as within their own practice could make them feel that academic 
life is unsustainable. We argue that MTEs can create spaces to share human experiences of their 
work, and their work with teachers, by conducting research that explores their lived histories and 
practices. Currently this is possible because our field is embracing the exploration of identity and 
power using methodologies “that privilege the self” (Hamilton, Smith, & Worthington, 2008, p. 
17). We envision this working group as a space for those who have used or are interested in the 
methodologies of narrative inquiry (Clandinin & Connelly, 2000), self-study (LaBoskey, 2004), 
and autoethnography (Ellis & Bochner, 2000). Using these methodologies, MTEs could unearth 
new research questions and communicate the complexity of their work. These methodologies 
have allowed the authors to empathetically and respectfully collaborate with students and 
teachers, while also giving us an opportunity to develop self-awareness of our identity, 
experiences, and bias. 

History of the Working Group 
Before becoming part of this group of MTEs, we carried out studies independently using the 

methodologies of narrative inquiry (Clandinin & Connelly, 2000), self-study (LaBoskey, 2004), 
and autoethnography (Ellis & Bochner, 2000). As conferences and committee meetings brought 
us together, we developed a mutual understanding of the potential of these methodologies as 
tools for MTEs’ professional growth. We also came to a greater understanding of that potential 
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only after mingling our work and examining the relationship of one study to another. We came to 
the understanding that our collective research and practices were not only situated in the context 
of time and place, but also in the social (Clandinin & Connelly, 2000), and that our work is 
enriched by the sharing of personal history and experience. Furthermore, as Ellis (2004) 
described, we came to understand human experiences as being connected to ones' culture, 
consisting of both the beliefs and values one holds. These understandings help us to be mindful 
of how difficult it could be to incorporate these methodologies when studying mathematics 
teacher education, and that a space for sharing experience and ideas is necessary to support 
MTEs who strive to use them. Our collective experience is the strength we bring to the working 
group and at the same time drives the need for it.  

Signe started using self-study as a methodology in 2009 to identify her core beliefs and 
explicitly align these with her MTE practice. This collaborative self-study provided a mechanism 
for aligning Signe’s research, teaching, and service. Different happenings in her life as a MTE 
motivated Signe to see self-study methodology as personally rewarding, but not necessarily 
integrated her roles as MTE. In 2014, to understand the experiences of teacher-learners, Signe 
explored the creation of moments of intrigue in her methods courses (Kastberg & D’Ambrosio, 
2012). Over the years, Signe started understanding that self-study was not just a methodology 
that was personally rewarding, but that could be used to improve her practice as MTE. For 
example, in her current work on written feedback, Signe and her colleagues reported the tensions 
that make some “problems of practice” unsolvable and accepted the notion of wrestling with 
tensions as a process of growth (Kastberg, Lischka, & Hillman, 2016a, 2016b). Signe’s passion 
for teaching teacher-learners motivated her to engage with other MTEs to gain insight into the 
experiences of designing and exploring of mathematics methods courses (Kastberg, Tyminski, 
Lischka, & Sanchez, 2017).  

Dana’s research journey shifted in 2014 after working with a group of colleagues on a 
research paper where they explored their beliefs and practices as teacher educators and education 
researchers (Cox, D’Ambrosio, Keiser, & Naresh, 2014).  This was the first time that Dana used 
the self-study methodology and wrote the results in the form of a narrative. Becoming aware of 
contradictions in her practice brought Dana to start understanding how qualitative research can 
act to subvert teacher voices and identity. Later, she challenged the notion that researchers are 
distinct from participant in Cox and D'Ambrosio (2015) and called for new methodologies that 
allowed for a blurring of that distinction in D'Ambrosio and Cox (2015). Empathy is a theme that 
plays out across these three manuscripts. Empathy for others in that work is supported by the use 
of narrative inquiry as a methodology. This positions her participants, be they teachers or 
students, as partners and knowledgeable people from whom she learn, and together construct 
new understandings of mathematics and its teaching. This is reflected in her recent pieces (Cox 
& Harper, 2017; Simon & Cox, under review) where she has used narrative inquiry as a 
methodology to explore and communicate experiences working with her students on problem 
solving and posing in technological environments, and mathematical design.  

Olive, who studied with Michael Connelly, has used narrative inquiry as a research 
methodology in studies of her teaching and mathematics teachers, a research tool to obtain 
phenomenological data in studies with mathematics teachers, and an approach to in-service and 
prospective mathematics teachers’ learning. With the goal of understanding mathematics 
teachers from a holistic context that considers their perspectives, Olive has been communicating 
mathematics teachers’ personal meanings (Chapman, 1994; Chapman, 1997) and teachers’ 
agency on their practice change (Chapman & Heater, 2010; Chapman, 2011; Chapman, 2013). 
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Olive has also used narratives as a research tool and pedagogical tool. When working with 
prospective teachers (Chapman, 2008a), Olive has asked them to write and share narratives of 
teaching mathematics and re-write them later in the course. This pedagogical tool has triggered 
prospective teachers’ reflection of mathematics teaching practices. Olive’s research and teaching 
experience using narrative inquiry and narratives to approach teachers in different stages of their 
career had brought her to lead one of the PME 2017 plenary session, chapters in handbooks (e.g., 
Chapman, 2008b; Chapman, 2009), and discussion groups at PMENA and ICME (Beswick, 
Chapman, Goos, & Zaslavsky, 2012; Beswick & Chapman, 2013) that focused directly or 
indirectly on the mathematics teacher educator knowledge and learning that included narratives 
and self-study.  

As an early childhood mathematics educator, Jennifer seeks to engage teachers on exploring 
and validating children’s mathematics. She learned about this by being involved in the 
community that surrounds the school and engaging in conversations with children. In her 
methods courses, Jennifer has been working on different ways to encourage teacher learners to 
explore children’s mathematics and their cultural backgrounds. Part of her journey creating 
spaces for teacher learners to explore children’ mathematics was described in Ward (2017). In 
this chapter, Jennifer described her experience adapting an assignment so that it provides entries 
for teacher learners to explore children’s ways of knowing, which includes sociocultural 
background information. Seeking to add the voice of a mathematics teacher to the existing 
literature on teaching math for social justice, Jennifer chronicled her journey as a MTE working 
in an early childhood setting with four and five year old children. During this time, Jennifer was 
focused on merging mathematics content with social justice goals as described by Gutstein 
(2008) as she sought to explore her own experience in teaching mathematics for social justice 
with young children. It was through the use of autoethnographic methods that Jennifer was able 
to convey her story, seeking to connect with other who had similar experiences with a level of 
honest and raw narratives about the experience. 

As part of her dissertation study, Elizabeth explored the concept of personal practical 
knowledge ([PPK], Elbaz, 1981, 1983) while working with an eighth-grade mathematics teacher 
for three years.  Dewey's (1938) theory of experience and Schwab's (1969, 1983) 
conceptualization of curriculum served as theoretical lenses in her study. Different histories and 
experiences encouraged Elizabeth to understand teachers’ ways of knowing through the 
methodology of narrative inquiry. The teaching of secondary mathematics in Chile; learning 
about research in education; having a collaborative relationship with a mathematics teacher 
(Suazo, 2016); and encountering Jean Clandinin at an AERA 2016 satellite seminar are some of 
them. Following this methodology, Elizabeth documented her experiences planning and 
implementing a mathematics lesson with the teacher. Once outside of the school, when working 
on the research text, Elizabeth realized that she learned about the teacher’s PPK, but also about 
herself as MTE. The research text relates both mathematics teachers' PPK before coming 
together and during the planning and implementation of the mathematics lesson. Insights into 
their personal experiences, teaching practices, and conceptualization of the concept area are 
interrelated in her narrative inquiry study.   

Through our collaboration writing a proposal for and presenting at the Association of 
Mathematics Teacher Educators (AMTE) 2018, we realized that our methodologies had 
commonalities and differences. As Hamilton, Smith, and Worthington (2008) stated, these 
methodologies have in common the “I” and the goal of understanding participants’ ways of being 
or thinking. Self-study and autoethnography share the goal of understanding the self, but 
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autoethnography pays attention to the cultural surroundings of the participants and self-study has 
the goal of improving the teacher/researcher’s practice. Narrative inquiry focuses on 
acknowledging research as collaboration where researchers focus on the knowledge that is 
constructed when interacting with participants. Something that is common to all these 
methodologies is the rewarding feeling we have experienced. Reflecting on and discussing our 
research made us conscious of lenses and biases involved in our design and implementation of 
research. This contributed to our learning. In our representations of our work and methods, we 
also began to consider ways we might invite other MTEs to engage with us and with one another 
on the development of researchable questions and the use of these methodologies in mathematics 
education.   
Background Information 

To consider what sorts of activities might support the emergence of research questions and 
understandings of the methodologies, we began by summarizing our views of these 
methodologies that have nurtured and energized our practices. 

Narrative Inquiry. The purpose of this methodology is to study lived experiences 
(Clandinin & Connelly, 2000) and the way we create meaning in our lives. In narrative inquiry, it 
is understood that the only way to construct knowledge of participants’ experiences is to be 
involved with them in their environments and move to a place of empathy (i.e., making 
emotional and cognitive connections). The benefit of using narrative inquiry (Clandinin & 
Connelly, 2000) is to capture more personal and human dimensions of experience. Records of 
experiences are taken as they occur, but are then layered with reflection upon those experiences. 
While the experiences are temporal and situated in a place and social context, their meaning 
expands through reflection. More than just providing access to the lived experiences of 
individuals who may or may not be represented in the literature, narrative inquiry is a way to 
uncover things that we as a field, or as individuals are not even aware that we do not know. As 
practitioners of narrative inquiry, we can attest to the transformative nature of this work; we, as 
researchers, cannot remain passive and unchanged. We are active within the study and the study 
is only possible because of our proximity. 

Self-study. This methodology involves studying self as teacher in context (LaBoskey, 2004). 
MTEs’ lived experiences as learners and teachers in relation to learners are sources of insight 
about knowing and knowledge. As a form of practitioner research (Borko, Liston, & Whitcomb, 
2007), self-study is self-initiated and aimed at improving one’s practice (LaBoskey, 2004). We 
view self-study as characterized by openness, collaboration, and reframing (Samaras & Freese, 
2009). Self-studies further situate questions in existing research literature and suggest 
implications for “the larger audience of teacher-educators” (Borko, Liston, & Whitcomb, p. 9). 
We view MTEs’ self-awareness and commitment to self-improvement in the context of working 
with others as the initial steps in self-study. In addition, we view self-study as a methodology 
that can be used to improve practice and support sustainable scholarly inquiry.  

Autoethnography. Situating the writer as both researcher and participant, autoethnography 
allows MTEs systematically analyze their experiences to understand a culture or group in which 
they are members (Ellis & Bochner, 2000). Presenting the story of experience, we aim to connect 
with other MTEs that have had similar experiences through elements of coherence, 
verisimilitude, and interest. As such, we see autoethnography as a means to nurture and energize 
our own practice through critical examination of our own personal beliefs and values. By 
employing autoethnography as a methodology we have been able to develop a sense of 
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connection with other MTEs engaged in similar work. These connections manifest into feelings 
of empathy as we share about experiences and constructed beliefs with other MTEs. 
Beyond Representations to Developing Research Spaces 

Participants in the AMTE session, were curious about and interested in incorporating these 
methodologies in their work. Many of them were looking for spaces that support research under 
such methodologies. This encouraged us to think about proposing the construction of a similar 
space at PMENA 2018. AMTE 2018 was the physical place where we connected for the first 
time with Olive Chapman and invited her to join our group. Meeting our audience and Olive 
energized us in continuing creating spaces for MTEs who are interested on, or could use, these 
methodologies. The construction of such space as AMTE 2018 also brought us to the writing a 
chapter called Mathematics Teacher Educators Inquiry into Their Practice for the International 
Handbook of Mathematics Teacher Education. This chapter will be part of a volume that focuses 
on MTEs as a developing professional. We envision having a working group at PMENA 2018 as 
another evidence that our field is embracing diversity in research methodologies and exploring 
new research questions related to MTEs’ work. 

Outline of Working Group Session 
Our first session will include introductions and overviews of the participants, and the 

leaders', and an exploration of the overviews of the methodologies of narrative inquiry, self-
study, and autoethnography described in the background information of this proposal. We 
anticipate that this will generate questions from the audience about the nuances of these 
methodologies. To build from participants’ interests and experiences, we will provide 
opportunities to brainstorm research questions that have emerged for participants from their work 
as MTEs. These questions will be compiled and discussed to gain insight from the group about 
how to study these questions using the stated methodologies. In the second session, participants 
will select one methodology to explore the study of a research question that was previously 
identified as being answered by a certain methodology (i.e., narrative inquiry, self-study, or 
autoethnography). Part of the second and third day, participants will engage in the creation of 
research texts from existing field texts in the forms of video, personal journals, and transcripts of 
conversations using the different methodologies. By having the experience of analyzing existing 
field texts and creating narratives from them that align with the methodologies, we hope 
participants will engage in a reflection about the "use" of these methodologies and their 
interactions with their personal worldviews. We anticipate this activity will generate a discussion 
about the challenges, tensions, dilemmas, and joys of implementing studies under these 
methodologies. In the third session, we also plan to discuss ways to continue and extend our 
spaces for learning and support of the writing and publication of studies begun or fostered 
through the working group. Some of the activities we plan to implement to generate ideas about 
follow up activities are the following: 

1. Participants grouped according to the methodology they are interested in will share their 
reflections about their experiences exploring such methodologies during the working 
group session and plan for scholarly inquiry. 

2. Small groups will share ideas with the whole group and together we will develop 
potential collaborations and plans to write, lead sessions in conferences, or publish 
manuscripts. 

3. Participants will discuss ways (e.g., social media, emails, Google Drive, Skype) to 
continue communicating throughout the year. 
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This working group will engage PMENA members to better understanding the nature of 
mathematical modeling in the early grades while considering the student perspective and 
recognizing the importance of teachers knowing their students and the contexts that are 
meaningful to their students. We will investigate how K-6 teachers demonstrate the 
interdisciplinary nature of mathematical modeling, the diversity of mathematical approaches 
taken by student modelers, and the multiple pathways the teacher can use to elicit students’ 
mathematical thinking. We will explore how mathematical modeling bridges equity and social 
community in teaching and learning mathematics for all students. Exemplar tasks that 
emphasized local contexts and tapped into students’ funds of knowledge and student artifacts  
will be shared to illustrate the child’s perspective and the developmental progression. These 
topics will facilitate group discussions exploring the learning progression for mathematical 
modeling thinking and habits of mind that can develop for emergent mathematical modelers from 
an early grade. We will map out productive learning pathways for mathematical modeling and 
task design for K-6 mathematics education and beyond.. Finally, based on the interests of the 
participants, we will devote work time to finding synergistic collaborative topics to pursue for 
future research and practice. 

Keywords: Mathematical Modeling, Elementary Education, Teaching Practices, Professional 
Development, Learning Progressions, Knowledge of Content and Pedagogy 

Overview of the Working Group 
This working group had its first meeting at the 2017 PMENA in Indianapolis, IN. We wanted 

to build on PMENA’s long tradition of working groups on Models and Modeling with a special 
focus on early mathematical modeling.  Our goal continues to focus on broadening the access of 
mathematical modeling to diverse learners in the elementary grades and advance the field’s 
collective understanding of the interrelated processes of mathematical modeling in the 
elementary grades and beyond. Although there has been a long history of mathematical modeling 
at PME and PMENA, the focus has primarily been on middle, high school and university levels. 
We believe it is critically important to understand the learning progression of mathematical 
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modeling from elementary to secondary grades to ensure coherence and rigor in the mathematics 
curriculum. 

Our goal from last working group leaders was to propose an edited handbook or a special 
issues journal venue for mathematical modeling where participants interested in submitting 
manuscripts can work together to provide a comprehensive research trajectory documenting the 
progression of mathematical modeling from emergent levels to more sophisticated levels of 
modeling. We are excited to share that this working group was able to secure a contract with 
Springer to publish an edited handbook on this very topic! We hope to continue this working 
group so that we can invite more mathematics educators in the important research of 
mathematical modeling in the early grades. Since our first working group meeting where we had 
leaders three university collaborating working with school districts, we have now expanded just 
within our facilitator leadership over six different universities working with diverse populations 
to understand the nature of mathematical modeling in the elementary grades. In our design-based 
implementation research, each university site worked with the collaborating district’s teacher 
leaders to co-plan the professional development.  Teachers became co-designers of the 
mathematical modeling curriculum for the elementary classrooms. In our project, we engaged 
elementary teachers in considering mathematical modeling using real world tasks that contained 
several of the following attributes: (a) Openness; (b) Problem-posing; (c) Creativity and choices; 
d) Iteration and revisions.   

Implementing mathematical modeling in the elementary grades is not just going “light” with 
the high school math modeling curriculum. Instead we advocate integrating aspects of 
mathematical modeling in the early grades effectively to enhance student learning and to help 
build their competency in real-world problem solving using their current mathematical 
knowledge. The latter content knowledge is expected to evolve as students continue to learn new 
mathematics as they progress towards high school and beyond. So what does mathematical 
modeling look like in the elementary grades? Why focus on early grades? In addition to the 
direct benefits of modeling, the elementary school environment affords many advantages that 
complement work in mathematical modeling. Elementary students often rely on using concrete 
referents such as objects, drawings, diagrams, and actions or pictures to help conceptualize and 
to construct carefully formulated arguments to solve a problem. Such arguments can make sense 
and be correct, even though they are not generalized or made formal until later grades (CCSSO 
2010). Young students have high potential to become fluent – native speakers, thinkers and 
dreamers of mathematics. Thinking creatively may come more easily to children first learning 
and exploring mathematical concepts. Kindergarten students can use manipulatives to 
independently solve traditional multiplication or division problems they have never seen before, 
which is evidence that students come with knowledge--we don’t have to wait to incorporate 
modeling activities until we have “shown them how” to do everything. Because early grade 
teachers are generalists, they can address several subjects simultaneously through modeling 
activities. Mathematical Modeling is of interest and relevance to the mathematics education 
community especially because it connects to the need for professional development focused on 
mathematical modeling in the elementary grades.  

Our researchers used Design-Based Implementation Research methodology, DBIR (Fishman, 
Penuel, Allen, Cheng, & Sabelli, 2013) to examine the design of our professional development 
and to study and enhance our design through feedback from our iterative implementation cycles.  
DBIR was a method of choice for our study because it has  (1) a focus on problems of practice 
from multiple stakeholders’ perspectives; (2) a commitment to iterative, collaborative design; (3) 
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a concern with developing theory and knowledge related to both classroom learning and capacity 
for sustaining change in systems (Fishman, Penuel, Allen, Cheng, & Sabelli, 2013, p. 136).  

Through our work, we are gaining a better sense of teaching practices and classroom routines 
that support modeling. We are contributing to the understanding of what is possible in early 
elementary grades and how these processes support the development of critical 21st century 
skills. As we continue in our research to consider what constitutes the practice of Mathematical 
Modeling (MM) and how it could be implemented in classrooms at different grain size, we invite 
the larger PMENA community to build on this knowledge. Over the past decades, working group 
leaders have individually and in subgroups, been theorizing about as well as collecting, 
analyzing, and reporting on data relating to mathematics modeling. This Working Group builds 
on and extends the work of previous Model and Modeling tradition by discussing current work 
from leading scholars from diverse perspectives. 
Relevance to Psychology of Mathematics Education  

The purpose of this working group is to invite individuals across the research community 
interested in synthesizing the literature and collaborating on research focused on mathematical 
modeling along the developmental continuum. Our goal of mapping a learning progression of 
mathematical modeling from K-12 education, particularly starting from elementary to middle 
grades is critically important to provide coherence in the mathematics curriculum.  

The primary focus for this working group will be around the following three goals:  

1. Examine current research and discuss the nature of mathematics modeling and detailing 
the development of teachers’ content knowledge, teaching practices and students’ 
modeling competencies.  

2. Map the learning pathways for mathematical modeling and task design for K-6 
mathematics education and explore how mathematical modeling can bridge equity and 
social community in teaching and learning mathematics for all students.  

3. Analyze dialogue and collaboration among individuals and groups conducting research 
on student- and teacher-related outcomes related to implementing mathematical 
modeling, ways mathematical modeling promotes 21st century skills, and ways in which 
early modeling can develop interdisciplinary skills in STEM.  

Related Research 
Mathematical proficiency, in today’s world, moves beyond computational ability. It includes 

the development of 21st century skills (i.e., critical thinking, creativity, communication, and 
collaboration), conceptual understanding of mathematics (NCTM, 2014), and mathematics that 
has practical relevance outside of the classroom (Gravemeijer, Stephan, Julie, Lin, & Ohtani, 
2017). Mathematical modeling (MM) is a powerful tool for developing students’ 21st century 
skills (Suh, Matson, & Seshaiyer, 2017), advancing their conceptual understanding of 
mathematics, and for developing their appreciation of mathematics as a tool for analyzing critical 
issues in the world outside of the mathematics classroom (Greer & Mukhopadhyay, 2012). It 
provides the opportunity for students to solve genuine problems and to construct significant 
mathematical ideas and processes instead of simply executing previously taught procedures and 
is important in helping students understand the real world (English, 2010). 

There is broad agreement among mathematics educators on the relevance of mathematical 
modeling in schools, however, the field has yet to come to a consensus on the definition of 
mathematical modeling or on how it might be taught and learned in schools (Kaiser, 2017). 
Although mathematical modeling has been reserved for secondary and college students, its 
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enactment in schools contributes to broad educational goals that are relevant to learners of all 
ages (Ferri, 2018). In addition, scholars have argued that engaging in mathematical modeling is 
important for elementary school students (Carlson, Wickstrom, Burroughs, Fulton, 2016).  

Mathematical modeling has received increased attention in the United States since the release 
of the Common Core Standards in Mathematics (the Common Core hereafter) in 2010. Modeling 
is incorporated as a specific area of expertise that teachers should cultivate in students across 
Grades K–12. The Common Core’s Standards for Mathematical Practice, SMP4 is called Model 
with Mathematics. Although SMP4, as a mathematical practice, cuts across Grades K–12, 
mathematical-modeling opportunities are not highlighted in connection with the K–8 content 
standards presenting an implementation challenge for teachers (Cirillo, Pelesko, Felton-Koestler, 
& Rubel, 2016). Modeling with mathematics, the topic of SMP4, refers to both modeling 
mathematics and mathematical modeling. The distinction between modeling mathematics and 
mathematical modeling is not clear to many teachers (Meyer, 2015), nor is it clear in Common 
Core documents or in mathematics education literature (Cirillo et al., 2016). The key difference 
between mathematical modeling and modeling mathematics is where the mathematical activity 
begins. Modeling mathematics begins in the mathematical world (Van de Walle, Karp, & Bay-
Williams, 2016), whereas mathematical modeling begins in the unedited real world (Pollak, 
2007). The explicit focus on getting a problem outside of mathematics into a mathematical 
formulation and explicitly translating the mathematical solution back into the real world is what 
differentiates mathematical modeling from modeling mathematics. The real-world focus also 
distinguishes mathematical modeling from problem solving and application problems (Lesh & 
Caylor, 2007; Schukajlow et al., 2012). 

One of the ways, the researchers in this working group approached MM in the elementary 
grades was to immerse students in a real world situation within their local context that was 
relatable and personally meaningful. In bringing mathematics closer to the social community 
spaces, mathematical modeling became a vehicle that bridged teaching and learning mathematics 
closer to all students. Reform mathematics have advocated for mathematics to be more related to 
students’ lives by building on community and cultural knowledge and practices with issues that 
matter to them, which then helps students view mathematics as a vehicle through which they 
learn to be active change agents for social justice (Bartell et al. 2017; Civil 2007). 

To keep the initial problem open, students were encouraged to develop the habit of mind of 
being problem posers by identifying the many questions around the real phenomenon, then 
defining a mathematical problem that can be solved by way of mathematics.  After the 
identification process of the problem, the modeler makes assumptions, eliminates unnecessary 
information, and identifies important quantities in order to develop a solution. This mathematical 
solution focuses on the usefulness of mathematics to solve a real-world problem. It should be 
noted that there can be several mathematical solutions  for a given real-world situation. After 
solving the problem the  results are translated back to the real-world and interpreted in the 
original context. The problem-solver then validates the solution by checking whether it is 
appropriate or reasonable for the purpose. This process of making assumptions, identifying 
variables, formulating a solution, interpreting the result, and validating the usefulness of the 
solution is iterative in nature and is modified or changed and repeated until a satisfactory 
solution has been obtained and communicated (Blum, 2002).   

It is important to note that teachers play a crucial role in MM.  The teacher must be able to: 
(1) find appropriate questions to move students through the modeling cycle, (2) handle 
discussions in nondirective but supportive ways, (3) allow students time for productive struggle, 
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and (4) provide scaffolding without directing the problem (Burkhardt, 2006). Teachers also need 
to develop problem-posing expertise (Suh et al., 2017) and to base their instructional decisions 
on responses to students’ work (Bleiler-Baxter et al., 2016). Thus, learning teach mathematical 
modeling requires teachers to develop multiple knowledge bases. For example, teachers must 
understand modeling processes and tasks, including the potential mathematical content 
embedded within tasks; learn about students’ mathematical and personal experiences to predict 
the strategies they might use when responding to modeling tasks; know what content is on the 
mathematical horizon in order to anticipate what mathematical ideas students might construct 
and learn to engage individual and groups of students in the modeling process. (e.g. Blum, 2011; 
Ferri, 2018). 

Previous work with elementary school children demonstrated it is feasible for them to 
develop a disposition towards realistic mathematical modeling (Lieven & De Corte, 1997).  One 
of the issues in implementing MM at the elementary level is that MM can be difficult for both 
teachers and students to implement (Blum & Ferri, 2009). MM can be difficult for teachers to 
implement as they must be able to merge mathematical content and real-world applications while 
teaching in a more open and less predictable way (Blum & Ferri, 2009). Mathematical modeling  
can be a challenge for students because each step of the modeling process presents a possible 
cognitive barrier (Blum & Ferri, 2009).   As stated in the Common Core Standards for 
Mathematical Modeling, “Real-world situations are not organized and labeled for analysis; 
formulating tractable models, representing such models, and analyzing them is appropriately a 
creative process. These real-world problems tend to be messy and require multiple math 
concepts, a creative approach to math, and involves a cyclical process of revising and analyzing 
the model” (Carter et. al., 2009). To model, students need support to develop mathematical 
modeling competency i.e., the ability to independently carry out the various phases of the 
modeling process (Vorhölter & Kaiser, 2016) and its related sub-competencies (Schukajlow et 
al., 2015). Based on the Standard for Mathematical Practice 4 in the Common Core: Model with 
Mathematics, Bleiler-Baxter, Barlow, and Stephens (2016) designated the mathematical 
modeling sub-competencies needed by students as:  simplification (e.g., making assumptions), 
relationship mapping (e.g., identifying important quantities and their relationships), and situation 
analysis (e.g. interpreting results in the context of the situation). In addition, students need to 
develop a metacognitive modeling competency as this is “indispensable in order to enable 
students to solve complex modeling problems independently, which is an indispensable part of 
true modeling activities” (Vorhölter & Kaiser, 2016, p. 279). 

In a previous PMENA report, Suh, Matson, Williams and Seshaiyer (2016) reported the 
challenges and affordances of  mathematical modeling in the early grades. 

  

 
Figure 1. Challenges and affordances of mathematical modeling. 
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Teacher Challenges. The challenges teachers faced when implementing mathematics 
modeling in the elementary grades included: a) Novelty and ambitious nature of the modeling 
process-When implementing MM in the classrooms for the first time, teachers found it was 
difficult to move students through the full process as it was a novel approach and students had 
never been introduced to creating and validating their mathematical models; b) Managing 
discourse- Another difficulty encountered by teachers in the MM process was in defining their 
role as facilitators.  The teachers commented that  “...it is really difficult as a teacher to help 
students find a direction to go with their solution but not direct or guide them toward a teacher 
goal.”; and c) Constraints around mandated standards-Participants acknowledged that MM takes 
time to implement in the classroom and that additional class time to implement these tasks would 
be helpful. An additional challenge noted by teachers was that mathematical modeling didn't go 
the way they expected it to and they wrestled with the need to meet state standards.  

Affordances of Mathematical Modeling. The main affordances our teacher-designers 
mentioned were that mathematical modeling provided opportunity for content to be covered 
without direct instruction, had interdisciplinary connections, and provided mathematical 
relevance, and student engagement: a) Content covered without direct instruction- When teachers 
implemented MM in their classrooms for the first time they were amazed at the amount of 
content that could be covered without direct instruction. Students could see how the mathematics 
could serve their needs as they used the mathematics they learned while other times, the 
mathematics related to future learning objectives which allowed them to revisit their model as 
their learning progressed; b) Interdisciplinary opportunities-Another positive take-away from 
implementing MM in these teachers’ classrooms for the first time was how MM created a space 
where content covered was interdisciplinary connecting to social studies, STEM and language 
arts; c) Relevance-By providing authentic tasks for students to grapple with through the MM 
process, mathematics became relevant to the students; d) Student engagement-A number of our 
teachers indicated how engaged their students were in their MM tasks. Mathematical modeling 
inspired these teachers’ endeavors and provided pictures of practices that served as the proof of 
concept they needed to sustain their professional commitment to mathematical modeling. 

Support Teachers Need. The three main areas of support teacher-designers requested were 
access to MM resources, pictures of practice, time and collaboration with like-minded teachers: 
a) Resources and pictures of practice-Teachers indicated a desire to use MM in their classrooms 
but indicated a need for a bank of open-ended MM lessons and new ideas for continuing to 
create these lessons; b) Time-Teachers expressed the need for more time to work through and 
become comfortable with implementing the modeling process in their classrooms. Teachers 
noted it was only in working through the MM cycle several times that they felt comfortable with 
the process and felt their students were able to understand the whole MM process; and c) 
Teacher collaboration-Teachers indicated a desire to continue to work with a cohort to build 
MM lessons; to observe other teachers implement MM in their classrooms; and to work 
alongside a colleague who valued MM and with whom they could share ideas. 

Other related research the team will share include, Carlson, Wickstrom, Burroughs & 
Fulton’s  (2016) work,  A Case for Mathematical Modeling in the Elementary School Classroom, 
where they provide a teaching framework for MM using  the "organize - monitor - regroup" 
cycle to support the teachers’ work in engaging young students in modeling. Wickstrom, Carr 
and Lackey (2007) will showcase an engaging article using mathematical modeling to explore 
Yellowstone National Park. Suh, Matson, & Seshaiyer (2017) will also share ways in which 
mathematical modeling enhanced students creativity, collaboration, critical thinking and 
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communication skills and exposed students to interdisciplinary themes of service learning and 
STEM integration. 

Plan for Active Engagement of Participants 
The working group will meet three times during the conference and virtually during the 

course of one year. In each session, PMENA members will engage in mathematical modeling 
while sharing their perspectives in teaching and learning mathematics, considering synergistic 
areas fruitful for future research and practice, and finding collaborators within our group.  
Session 1: Exploring the Nature of Mathematical Modeling in the Early Grades  

The first session will focus on better understanding the nature of mathematical modeling in 
the elementary grades while considering the student perspective and recognizing the importance 
of teachers knowing their students and the contexts that are meaningful to their students. We will 
investigate how K-6 teachers demonstrate the interdisciplinary nature of mathematical modeling, 
the diversity of mathematical approaches taken by student modelers, and the multiple pathways 
the teacher can use to elicit students’ mathematical thinking. We will explore how mathematical 
modeling bridges equity and social community in teaching and learning mathematics for all 
students. Exemplar tasks that emphasized local contexts and tapped into students’ funds of 
knowledge and student artifacts will be shared to illustrate the child’s perspective and the 
developmental progression. These topics will facilitate group discussions exploring the learning 
progression for mathematical modeling thinking and habits of mind that can develop for 
emergent mathematical modelers from an early grade. We will map out productive learning 
pathways for mathematical modeling and task design for K-6 mathematics education and 
beyond. 
Session 2: Identifying the Knowledge of Content and Pedagogy Needed for Mathematical 
Modeling in the Elementary Grades  

In our second session, we will focus on clearly defining modeling teaching practices and 
competencies needed for mathematical modeling and outlining research goals and objectives to 
monitor the enactment of these practices. We will detail classroom routines, such as the 
"organize - monitor - regroup" cycle (Carlson, et al. 2017), and the Pedagogical Practices for 
Mathematical Modeling (Suh, Matson, & Seshaiyer, in press) as we share designed activities and 
lesson vignettes to solicit more ideas around high leverage MM teaching practices. We will 
explore what mathematical knowledge is needed to “successfully” facilitate mathematical 
modeling tasks in elementary grades. We will examine current research and discuss the nature of 
mathematics modeling and detailing the development of teachers’ content knowledge, teaching 
practices and students’ modeling competencies. 
Session 3: Finding the Synergy between Mathematical Modeling and the 21st Century 
Skills Frameworks and PBLs in STEM 

The third session will outline several 21st century skill frameworks and teaching approaches 
and how mathematics educators, researchers and practitioners can find a synergistic way to bring 
important process skills without overwhelming teachers and students.  We will discuss the ways 
elementary teachers can make connections between the problem-based ways they have engaged 
students in mathematical modeling and STEM.  The teachers are able to take advantage of 
interdisciplinary opportunities across the subjects they teach and find complementary 
connections between subjects and common classroom practices that support MM. We will 
analyze dialogue and collaboration among individuals and groups conducting research on 
student- and teacher-related outcomes related to implementing mathematical modeling, ways 
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mathematical modeling promotes 21st century skills, and ways in which early modeling can 
develop interdisciplinary skills in STEM 

Anticipated Follow-up Activities and Goals of Working Group 
In the spirit of exploring the theme of 2018 PMENA on changing mathematical and 

pedagogical demands for PK-6 education and supporting all students through a concerted focus 
on equitable teaching practices. In addition, this working group will attend to the 
interdisciplinary nature of mathematics and how it connects to social justice, STEM and civic 
responsibility for our citizen in our country. Each session will engage participants to share their 
research interests related to mathematical modeling and form groups that might pursue research 
collaboratively based on the interests of the participants. We will also work on book chapters for 
the handbook.  Some of the questions that we will engage in include:  

• What defines successful mathematical modeling at different grade levels? 
• How does mathematical modeling support each and every learner? 
• How does mathematical modeling connect one to issues of social justice, STEM and civic 

responsibility of citizens? 
• What can we learn from teachers who implement MM regularly in their classrooms? 
• How is mathematical modeling ambitious teaching and how can we support teachers 

enacting MM through lesson plans and other resources? 
• How can we map out the learning pathways of MM across grade levels? 
• How and what can we learn about models elicited from student artifacts from MM tasks? 
• What do “successful” modeling practices look like in our elementary mathematics 

classrooms? How are they similar or different from practices in secondary classrooms? 
• What does it mean to “see the math” in the components of mathematical modeling? 
• How do teachers select and/or develop modeling problems? How can Professional 

Learning Communities or Teacher Study Groups help teachers anticipating how students 
will answer the MM questions? 

Our goal is for the working group leaders to propose an edited handbook or a special issues 
journal venue for mathematical modeling where participants interested in submitting manuscripts 
can work together to provide a comprehensive research trajectory documenting the progression 
of mathematical modeling from emergent levels to more sophisticated levels of modeling. 
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Though teacher preparation programs include university coursework and fieldwork in K-12 
school settings, they are often disparate experiences. This group of mathematics teacher 
educators (MTEs) has been working to integrate these preparation efforts by purposefully 
designing coursework around McDonald et al.’s (2013) learning cycle to include mediated field 
experiences. Such experiences are embedded within public school classrooms and are organized 
around core teaching practices so that pre-service teachers (PSTs) engage in authentic learning; 
they learn mathematics and ways to teach mathematics through the act of teaching. Our goals as 
a working group are to establish cross-cutting and essential features of these mediated field 
experiences and identify future research questions and ways to standardize data collection to 
create clear lines of investigation to explore the impacts of such experiences. 

Keywords: Teacher Education-Preservice, Teacher Education Programs, Field Experiences; 
Practice-based; Mediated Field Experiences; School-Embedded Courses 

Motivations for This Working Group 
Mathematics teaching is a complex professional practice; relational in nature and requiring a 

deliberate, coached effort to learn and do well (Grossman, Hammerness, & McDonald, 2009). 
Teacher preparation programs include both university course work and clinical field experiences, 
yet decades of research indicate that the two are often disparate experiences for pre-service 
teachers (PSTs)(Grossman et al., 2009; Korthagen & Wubbels, 2001; Lampert & Graziani, 2009; 
McDonald, Kazemi, & Schneider-Kavanagh, 2013). The clinical component of mathematics 
teacher preparation—in the form of PSTs observing and taking increased responsibility in PK-12 
classrooms—can be influential in the development of teachers’ practice (National Research 
Council, 2010) and current standards for the preparation of mathematics teachers call for 
increased opportunities for PSTs to learn via clinical experiences (Association of Mathematics 
Teacher Educators, 2017).  

Embedding university courses within K-12 schools where PSTs have opportunities for 
interactional clinical experiences with the support of a mathematics teacher educator (MTE) is a 
promising model to support the development of skilled practice (Virmani et al., 2017). Horn and 
Campbell (2015) present a hybrid space situating coursework and field work together as 
“mediated field experiences.” Within a mediated field experience, PSTs are provided 
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opportunities, structure, and support to apply knowledge of teaching by confronting specific 
situations and determining ways to integrate realities of the classroom with teaching ideals. For 
example, PSTs may be asked to create a lesson plan, teach a lesson, or reflect about a teaching 
experience; however, without an MTE to “mediate” the implementation, the PSTs may apply 
their university knowledge problematically, or they may not notice or make sense of particular 
features of the teaching practice that produce unexpected results (Campbell & Dunleavy, 2016). 
Because of the unpredictable nature of teaching and learning, flexibility is key within the 
mediated field experience.  Horn and Campbell (2015) found MTEs often modified the focus of 
what was mediated according to what happened during their observations of PSTs.  

Despite a growing body of literature that focuses on the need to more deeply connect field 
experiences to teacher preparation coursework, there is little evidence for what aspects contribute 
to PSTs’ development of the knowledge, skills, and dispositions that help them meet the realities 
of the classroom. The central aim of our Mediated Field Experience (MFE) Working Group is to 
explore the essential features of our school-embedded mediated field experiences that take place 
during PSTs’ preparation, describe ways mediated field experiences can transfer to a variety of 
contexts (different types of institutions and courses), and establish future research questions 
leading to identification of ways mediated field experiences impact PSTs learning. 

Background of Our Work 
 

During a NSF-funded conference held in 2015, ten MTEs, five on this current proposal, 
began collaborating about ways to use MacDonald et al. (2013) learning cycle of enactment and 
investigation (see Figure below) to create mediated field experiences in various math methods 
and content courses to prepare PSTs at our respective institutions. The “pedagogies of practice in 
professional education” (Grossman et al., 2009) framework underpins this cycle; PSTs with 
mentors decompose and approximate practice in increasingly authentic settings. Instructional 
activities act as containers in which PSTs engage in the act of teaching by preparing activities, 
including rehearsing during university class time, enacting activities with children in authentic 
classroom settings, and then reflecting and analyzing their learning about content, student 
thinking, and pedagogy (Kazemi, Franke, & Lampert, 2009). Our working group, was 
particularly interested in investigating ways embedding our courses into the schools while using 
McDonald et al.’s (2013) learning cycle could support PSTs’ development of core teaching 
practices. By situating the learning within practice, we aimed to develop a community of practice 
in which PSTs, MTEs, classroom teachers, and elementary students learned from each other as 
they engaged with core teaching practices within carefully selected instructional activities. 
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.  
Figure 1. Cycle for collectively learning to engage in an authentic and ambitious instructional 

activity (McDonald, Kazemi, & Kavanagh, 2013, p. 382). 

We used Dr. Elham Kazemi’s work at the University of Washington to guide our pilot study. 
Since their teacher preparation work is a graduate program focus with the support of graduate 
student and funding for cooperating teacher involvement, we wanted to examine ways to 
implement McDonald et al.’s (2013) cycle of enactment in different contexts teacher preparation 
courses without additional university classroom supports, varying in intensity of integration of 
methods and content courses, within a K-12 school setting. From our work together, five key 
themes emerged (Virmani et al., 2017): 

1. PSTs work in a P-12 classroom with students and at least one teacher educator in a face-
to- face setting. 

2. MTEs use time-outs or planned/unplanned pauses in ways that (a) provide opportunities 
for all teachers to think in the moment (e.g., make sense of student thinking, discuss a 
next teacher move), and (b) position students as powerful and productive thinkers. 

3. Participants, including PSTs, MTEs, & classroom teachers, approach a lesson with a 
shared curiosity and/or plan to learn something particular about teaching and learning.  

4. Classroom visits focus on observing, studying, and/or trying something related to 
eliciting student thinking in ways that can’t be as authentically explored in the university 
classroom without students. 

5. All participants debrief, analyze, and reflect on the experience individually and 
collectively. This includes conversations with a teacher educator centered on making 
meaning of classroom events in terms of student thinking. 

Since this initial pilot study, a subgroup has continued to work together in developing and 
studying the affordances of school-embedded methods and content courses. Recently, at the 
Association of Mathematics Teacher Educators (AMTE) conference in February 2018, we 
presented our initial analysis on debriefs, or reflective conversations, occurring at various stages 
within the learning cycle. Debriefs took place between the whole group of PSTs, MTEs, and the 



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1490 

classroom teacher and provided opportunities for PSTs to immediately talk about what happened 
during their interactions with students and share common experiences. These debriefs produced 
more authentic conversations about teaching, learning, and students and provided opportunities 
for MTEs to name or “label” what PSTs saw in the classroom and connect it to course materials 
(readings, theory, etc.). Further, there were many areas of growth made visible via debriefs 
including: core teaching practices, PSTs identity development, and the attention to student 
thinking and viewing students as competent sense makers.  

At the AMTE conference, we connected with other MTEs engaged in similar work at their 
institutions. We found there is a need in the math education field to better understand how to 
support the work of embedding teacher preparation coursework in schools via mediated field 
experiences while using McDonald et al.’s (2013) learning cycle to support the development of 
core teaching practices. Together, as a working group, we aim to study our different models of 
these mediated field experiences to identify essential features which would allow these 
experiences to transfer into a variety of contexts and begin initial efforts of investigating the 
impacts of these experiences on PSTs’ development. 

Review of the Literature and Background Information 
Recently, AMTE published the Standards for Preparing Teachers of Mathematics (2017) 

outlining standards and related indicators for effective programs for preparing beginning teachers 
of mathematics. The standards list five key domains including (1) well designed and integrated 
partnerships with all partners productively engaged (2) opportunities for PSTs to develop content 
knowledge and mathematical practices through sustained, quality experiences, (3) opportunities 
for PSTs to learn to teach mathematics which includes knowledge of content, students, and 
contexts in which they teach (4) opportunities for PSTs to learn through clinical experiences 
where they learn from their own teaching and the teaching of others, and (5) recruitment and 
retention. Research across decades has shown, however, that there are numerous barriers to 
accomplishing these standards with traditional models of field experiences that are separate from 
university-based teacher preparation coursework (Akerson, Morrison, & McDuffie, 2006; Borko 
& Mayfield, 1995; Fryholm, 1996; Gainsburg, 2012; Zeichner & Tabachnick, 1981). 

 One such barrier lies in the separation of theory and practice. “What remains to be 
developed is… pedagogies of enactment through which novice teachers are supported in actually 
doing the practice of teaching” within their teacher preparation programs (Kazemi, Franke, & 
Lampert, 2009, p. 12). In many teacher preparation programs, instruction focuses on learning 
about strategies and practices for teaching rather than directly enacting and honing these skills 
(Grossman et al., 2009). This separation of theory and practice is problematic; as Lampert (2005) 
describes,  

…learning about a method or learning to justify a method is not the same thing as learning to 
do the method with a class of students, just as learning about piano playing and musical 
theory is not learning to play the piano (p. 36).   
One way to bridge the theory/application gap, is to engage in practice-based learning, where 

PSTs directly learn via the act of teaching. The term practice conveys a variety of perspectives 
in the research literature related to teacher preparation (Lampert, 2010). Practice- based learning 
describes types of field experiences or programs situating PSTs’ learning in K-12 classrooms 
coupled with instruction as well as training or coursework focusing explicitly on the work of 
teaching (Forzani, 2014). Grossman et al. (2009) describe how a core-practice approach in 
teacher education necessitates organizing coursework and fieldwork around practices of the 
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teaching profession while simultaneously providing PSTs ample opportunities to “practice” and 
enact these teaching practices. Other research within the teacher education community has 
identified “core” or “high-leverage” teaching practices that effective teachers use while teaching 
(i.e., Ball & Forzani, 2009; McDonald, Kazemi, & Kavanagh, 2013; NCTM, 2014).  

The Standards for Preparing Teachers of Mathematics (2017) describe standards for 
effective teacher preparation programs that are practice-based. They call for PSTs’ development 
of teaching practices based on the National Council of Teachers of Mathematics (2014) 
identification of eight effective mathematics-teaching practices. These standards require teacher 
preparation programs to provide scaffolded and multiple opportunities for PSTs to integrate their 
learning and incorporate practice-based experiences in authentic classrooms throughout the 
program, not just in student teaching. Moreover, these standards call for teacher preparation 
programs to be actively involved in partnership with the schools that their candidates are placed 
in, working toward shared goals for instructional improvement and student learning.  

Only when preparation programs purposefully engage with schools, not just in schools, will 
their clinical preparation become truly robust in ways that maximize candidates’ skill 
development and therefore their abilities to support the mathematics learning of students 
(p.37).   
These practice-based experiences must provide PSTs opportunities to develop skills with 

teaching practices, gain mathematics content knowledge and insight into students as 
mathematical learners, and reflect critically and regularly about mathematics teaching and 
learning. Responding to this call, the question of how we might structure learning experiences to 
integrate content knowledge, theory, and practice is central for practice-based teacher education 
and the focus of our working group through studying our mediated field experiences. 
Approximations of Practice to Develop Adaptive Expertise 

Additionally, Grossman et al. (2009) argue PSTs need opportunities to engage in 
“approximations of practice” in both the university classroom and through authentic K-12 
classroom settings. Lampert & Graziani (2009) highlight the importance of instructional 
activities or “enact-ables” that PSTs could rehearse, enact, and receive feedback on in this work. 
McDonald et al.(2013) propose a cycle for learning (Figure above) that is flexible in a variety of 
settings where PSTs learn to enact teaching practices and involves: learning about the 
instructional activity (including envisioning the practice), preparing for enacting these practices 
(including rehearsing), having opportunities to enact the practices with real students in actual K-
12 classrooms, and analyzing and reflecting upon these enactments. Horn and Campbell’s (2015) 
work emphasize the need for mediation of these learning experiences. By purposefully designing 
teacher preparation coursework to include the pedagogies of enactment through our mediated 
field experiences in K-12 school settings, we are working to develop PSTs ability to develop 
core teaching practices. However, further research is needed to provide empirical evidence that 
these efforts produce well-prepared beginning teachers of mathematics. 

Some argue that too much specification could lead to “deskilling” teachers, others argue that 
the ability to specify and codify common practices is a precondition of a profession (Ball & 
Forzani, 2009). With this commitment to specification and building core practices or 
instructional routines, there has been less attention given to what it would take to help teachers 
develop adaptive expertise (Darling-Hammond & Bransford, 2005; Hatano, 1988). Adaptive 
experts are not only highly skilled in the performance of a limited number of tasks, but are also 
able to adapt and extend their routines, by accepting new possibilities or attempting to solve old 
problems in different ways (Chi, 2011). Given that teaching requires such adaptive expertise, as 
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the complex interactions of a classroom can never be fully specified, Janssen (2015) has argued 
that research on practice-based teacher education will also need to attend to the more adaptive 
and improvisational dimension of practice. The field has started to see emerging research that 
supports using enactable activities such as instructional routines to help novices start to develop 
adaptive expertise. However, we need more empirical evidence that field-based teacher 
education organized around enactable instructional activities, like our mediated field 
experiences, significantly impact PSTs’ practice in ways that are not possible without those 
experiences.  
Connection to PME-NA Goals 

The new AMTE (2017) standards urge teacher educators to develop innovative, practice-
based models for supporting PST learning through the purposeful integration of coursework and 
field experiences. Though the McDonald et al. (2013) learning cycle is well-grounded, we can 
not expect teacher preparation programs to change until there is robust, empirical evidence that 
the learning cycle is effective in preparing PSTs and is best achieved via mediated field 
experiences in authentic school settings.  Across our various projects, we have found mediating 
and entering authentic settings alongside PSTs provides incredible opportunities to learn with 
and from children. But this shift also inserts MTEs into the central conflict PSTs have long 
navigated alone: how to support a range of learners to meaningfully engage in high-quality 
mathematics instruction. It is not surprising that in challenging classroom settings, PSTs often 
forfeit the principled vision of high-quality instruction described in their teacher preparation 
programs for lower expectations for traditionally-underserved students (Frykholm, 1996). By 
entering into real classrooms with PSTs, we as MTEs have committed to support PSTs in 
navigating the realities of the classroom through these mediated field experiences.  

The research proposed by this working group exemplifies PME-NA’s commitment to 
equitable teaching practices and addressing the needs of all students. We want to investigate how 
these mediated field experiences help PSTs learn to build off of student thinking instead of 
directing or leading the students to follow their thinking. Our initial findings indicate that PSTs 
are able to understand the need for and develop equitable teaching practices to meet the needs of 
all learners by providing preservice teachers the opportunities to practice such core teaching 
practices like eliciting and responding to student thinking in a real elementary or secondary 
classroom. While working with the K-12 students, receiving feedback on their teaching, and 
reflecting on their experiences, PSTs are able to recognize the importance of providing all 
students with the opportunities to engage in challenging mathematics and practice pedagogical 
strategies that allow all students to participate (e.g., think pair share, or turn and talk). These 
mediated field experiences are an example of a transformation in the preparation of teachers of 
mathematics at all levels with hopes to make changes to the mathematical and pedagogical 
demands in the K-12 school setting through better preparation efforts for PSTs.  

Goals of the Working Group  
This working group has three main goals that it hopes to achieve during its time at PME-NA. 

Our first goal is that we would like to come together to identify features of each MTE’s 
implementation of these mediated field experiences that are similar across institutions. We hope 
to identify these cross-cutting features so that we may start to establish a consensus for which 
ones might be essential to include when creating these experiences for our PSTs. Our second 
goal is to describe ways mediated field experiences can transfer to a variety of contexts (different 
types of institutions and courses), and our third is to develop clear lines of investigation by 
posing research questions, identifying the data to be collected, and standardizing the collection 
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process across researchers to address the questions posed. By developing a clear research 
agenda, we hope to explore the impacts of these field experiences for PSTs. 
Identifying Cross-Cutting Features to Develop “Transfer” 

Across the working group, a variety of models for mediated field experiences have emerged 
(Virmani et al., 2017). These models range from exploratory integration of pedagogy and content 
courses within classrooms to those that have seized the opportunity to fully integrate a majority 
of coursework at school sites. Although these models and levels of integration differ, two main 
themes emerged across the models: (a) composing coursework around the practice of teaching, 
and (b) developing partnerships with teachers and schools. It is our hope that during these 
working group sessions, we will be able to dive deeper into these two themes to identify essential 
elements of these mediated field experiences that provide the PSTs the opportunity to develop 
adaptive expertise. 

A strength of our working group is that we have MTEs from a variety of institution types, 
(e.g., large state schools, small liberal arts schools), programs (elementary, secondary, 
undergraduate and/or graduate), and courses (methods/pedagogy courses and content courses). 
The diversity in our group members affords us the opportunity to identify the essential features 
that can be utilized by virtually any MTE to support PST learning through teaching and their 
development of adaptive expertise. We would like to show other MTEs how McDonald et al.’s 
(2013) learning cycle can transfer into a number of different contexts with differing levels of 
support and that the University of Washington’s model, while it is productive and researched, is 
not the only way this work can be done.  
Creating Clear Lines of Investigation  

The AMTE standards promote the idea of improving the connections between preparation 
coursework and clinical experiences, however there is a lack of empirical evidence or practical 
guidance for what works and how to do it. Our third goal of this working group is to collectively 
develop a clear research trajectory for studying and improving our work across institutions using 
evidence of learning to inform the revisions of (a) our collective theory of action, and (b) our 
individual program models. Our process for outlining a research trajectory for designing, 
implementing, studying, and revising these mediated field experiences in teacher education will 
be informed by educational design research methodology (Cobb, Jackson & Sharpe, 2017) 
and/or case study research design, based on the research questions that emerge from our working 
group discussions. Anderson and Shattuck (2012) describe design-based research (DBR) as, 

A methodology designed by and for educators that seeks to increase the impact, transfer, and 
translation of education research into improved practice. In addition, it stresses the need for 
theory building and the development of design principles that guide, inform, and improve 
both practice and research in educational contexts” (p.16).  
In addition to DBR, some contributors are interested in case-study methodology. Case study 

lends itself to providing a “how” and “why” description of the mediated field experiences from 
variety of settings (Merriam, 2009; Yin, 2008). Once we collaboratively create our research 
questions during a working group session, some contributors plan on developing cross 
comparative case studies that address our research questions.  

Given the multiple learners involved in these mediated field experiences, empirically 
documenting the results of our designs means tracing several lines of investigation 
simultaneously as we study how each of the following groups engages in and develops as result 
of learning opportunities in mediated field experiences: 
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A. K-12 students in the partner classrooms 
B. Pre-service teachers (PSTs) 
C. Cooperating classroom teachers (CTs) 
D. Teacher educators (TEs)  

 
The third goal of this working group requires us to work together in small groups to develop 

a clear research trajectory for each of the above lines of investigation based on researcher 
interest.  

Plans for Active Engagement of the Working Group 
Three working group sessions are planned to address the goals detailed above.  

Session 1: Sharing our Experiences Implementing Mediated Field Experiences 
In the first session, each of the eight working group members will share their current 

structure for implementing mediated field experiences at their institution, including current 
findings and research practices; each presentation will last approximately ten minutes. We will 
use Google Slides so that all presentation slides are in one slide deck to minimize transition time 
and a Google spreadsheet to organize the details of the different aspects of each implementation. 
Participants currently engaging in similar work will be invited to include their implementation 
data into the spreadsheet and included in the analysis. We end with a whole group discussion 
where participants begin initial identification of common features across institutions and settings. 
Session 2: Co-Developing a Vision for Mediated Field Experiences 

In our second session together, we will continue to collectively analyze the different features 
of the mediated field experiences across institutions. All participants will break into small 
groups, based on interest, where each group will analyze a different feature across institutions. 
Using open-coding techniques, each breakout group will work to classify a certain feature as 
essential or not across institutions. As a whole group, we will share findings and discuss 
disagreements to identify essential features of these mediated field experiences. We will work to 
organize these features to help others see how these ideas can “transfer” into different contexts. 
Our goal is to establish what features are “essential” to these experiences or which features lead 
to specific learning outcomes so that other MTEs may begin to see how they could incorporate 
these ideas into their own teacher preparation coursework or programs. 
Session 3: Standardizing Our Data Collection to Create Clear Lines of Investigation 

For our last session, we will identify the research questions that stem from our analysis and 
the data we want to collect to investigate how this is impacting PSTs’ learning along with the 
learning of the others involved (K-12 students, classroom teachers, and even the teacher 
educator). Again, participants will break out into different groups based on their research 
interests--which aspect of their implementation would they like to discuss and investigate? For 
instance, some working group members are interested in creating observational tools to measure 
current PST teaching practices and provide a framework for giving feedback to PSTs both in the 
moment of teaching and after the fact. Some MTEs are interested in investigating the impact of 
these mediated field experiences on PSTs’ content knowledge, and others are interested in 
exploring which instructional routines are helpful in supporting PSTs develop adaptive expertise. 
We also want to standardize data collection so that researchers can pool data and make claims 
across institutions, which will take place while working in the break out groups based on 
researcher interest. We will end the session with a whole-group share out of research questions, 
data collection procedures, and next steps the small groups want to take. 
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Next Steps and Future Directions 
Members of this group have been working together since 2015 and all on this proposal plan 

to continue this work after our proposed meeting sessions. Our first steps are to publish our 
current findings. We are in the process of completing a manuscript for the Mathematics Teacher 
Educator that details our findings from our initial efforts mediating field experiences, and we are 
submitting a proposal to AMTE’s 2019 Annual Conference where we plan to present on our 
observations of PST learning against the AMTE Standards. At this 2019 conference, we plan to 
meet again as a group to share our experiences and any further insights we have made. Each 
breakout group from Session 3 will continue pursuing the research agenda they set up for 
themselves based on their research questions and goals. Some members of the group are 
planning to apply for an NSF DRK-12 Grant to support an investigation of following our PSTs 
into the field to investigate any lasting impacts of the mediated field experiences on their 
teaching practices or preparedness to teach in their own classrooms. Finally, we will continue to 
share resources and pool data using our shared Google folder and work to disseminate new 
findings to the field. 

The early results of our work has been so positive that a long-term goal is to motivate 
programmatic shifts at our individual institutions for different areas of preparation and encourage 
other MTEs to reconsider the structure of their coursework and fieldwork in their preparation 
programs. 

References 
Anderson, T. & Shattuck, J. (2012).  Design-based research: A decade of progress in education research. 

Educational Researcher, 41(1), 16-25. 
Akerson, V. L., Morrison, J. A. & McDuffie, A. R. (2006). One course is not enough: Preservice elementary 

teachers’ retention of improved views of nature of science. Journal of Research in Science Teaching, 43(2), 
pp.194–213. 

Association of Mathematics Teacher Educators (2017).  Standards for Preparing Teachers of Mathematics. 
Available online at amte.net/standards. 

Ball, D. & Forzani, F. (2009).  The work of teaching and the challenge for teacher education.  Journal of Teacher 
Education, 60(5), 497-511. 

Borko, H. & Mayfield, V. (1995). The roles of the cooperating teacher and university supervisor in learning to teach. 
Teaching and Teacher Education, 11(5), pp.501–518. 

Campbell, S.S. & Dunleavy, T.K., (2016). Connecting University Course Work and Practitioner Knowledge through 
Mediated Field Experiences. Teacher Education Quarterly, 43(3), p.49. 

Chi M.T.H. (2011) Theoretical Perspectives, Methodological Approaches, and Trends in the Study of Expertise. In: 
Li Y., Kaiser G. (eds) Expertise in Mathematics Instruction. Springer, Boston, MA. 

Cobb, P., Jackson, K. & Sharpe, C., 2017. Compendium for Research in Mathematics Education. In Cai, Jinfa, ed. 
National Council of Teachers of Mathematics, pp. 208–236. 

Forzani, F. (2014).  Understanding “Core Practices” and “Practice-Based” Teacher Education: Learning from the 
Past.  Journal of Teacher Education, 65(4), 357-368. 

Frykholm, J. A. (1996). Pre-service teachers in mathematics: Struggling with the Standards. Teaching and Teacher 
Education, 12(6), pp.665–681. 

Gainsburg, J. (2012). Why new mathematics teachers do or don’t use practices emphasized in their credential 
program. Journal of Mathematics Teacher Education, 15(5), pp.359–379. 

Grossman, P., Hammerness, K. & McDonald, M. (2009).  Redefining teaching, re-imagining teacher education.  
Teachers and Teaching: Theory and Practice, 15(2), 273-289. 

Horn, I.S. (2007).  Fast kids, slow kids, lazy kids: Framing the mismatch problem in mathematics teachers’ 
conversations. The Journal of the Learning Sciences, 16(1), pp. 37–79.   

Horn, I. S., & Campbell, S. S. (2015). Developing pedagogical judgment in novice teachers: Mediated field 
experience as a pedagogy in teacher education. Pedagogies, 10, 149–176.  

Janssen, F., Grossman, P., and H. Westbroek. (2015). Facilitating decomposition and recomposition in practice-
based teacher education: The power of modularity. Teaching and Teacher Education, 51: 137-146. 



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1496 

Kazemi, E., Franke, M. L., & Lampert, M. (2009). Developing pedagogies in teacher education to support novice 
teachers' ability to enact ambitious instruction. Paper presented at the annual meeting of the Mathematics 
Education Research Group of Australasia, Wellington, New Zealand. 

Korthagen, F., & Wubbels, T. (2001). Learning from practice. In F. Korthagen (Ed). Linking practice and theory: 
The pedagogy of realistic teacher education (pp. 32-50). Mahwah, NJ: Lawrence Erlbaum Associates. 

Lampert, M. (2010).  Learning Teaching in, from, and for Practice: What do we mean? Journal of Teacher 
Education, 61(1-2), 21-34. 

Lampert, M. & Graziani, F. (2009).  Instructional activities as a tool for teachers and teacher educators’ learning.  
The Elementary School Journal, 109(5), 491-509. 

McDonald, M., Kazemi, E. & Kavanagh, S.S., (2013). Core Practices and Pedagogies of Teacher Education A Call 
for a Common Language and Collective Activity. Journal of Teacher Education, 64(5), pp.378–386. 

Merriam, S. B., 2009. Qualitative research: A guide to design and implementation approach. San Francisco, CA: 
Jossey Bass. 

National Council for the Accreditation of Teacher Education (NCATE). (2010). Transforming teacher education 
through clinical practice: A national strategy to prepare effective teachers. Washington, DC: NCATE. 

National Council of Teachers of Mathematics (2014).  Principles to actions: Ensuring mathematical success for all.  
Reston, VA: NCTM. 

Schoenfeld, A.H. (2006). Design experiments. Handbook of complementary methods in education research, pp.193–
205. 

Yin, R. K. (2008). Case study research: Design and methods (4th ed.). Thousand Oaks, CA: Sage. 
Virmani R. Taylor, M., Rumsey, C., Box, T., Kazemi, E., Knapp, M., Lynch, S., … Woods, D. (2017). Bringing 

mathematics methods into classrooms. In S. E. Kastberg, A. M. Tyminski, A. E. Lischka, & W. B. Sanchez 
(Eds.), Building Support for Scholarly Practices in Mathematics Methods (pp. 233-248). Charlotte, NC: 
Information Age Publishing. 

Zeichner, K. M. & Tabachnick, B. R. (1981). Are the effects of university teacher education ’washed out’ by school 
experience? Journal of teacher education, 32(3), pp.7–11. 



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1497 

DEVELOPING THEORY, RESEARCH, AND TOOLS FOR EFFECTIVE LAUNCHING 

 Rob Wieman Jill Perry Andrew Tyminski 
 Rowan University Rowan University Clemson University 
 gomathman@yahoo.com perry@rowan.edu amt23@clemson.edu 
 
 Grace Kelemanik Gloriana González Aaron Trocki 
 Fostering Math Practices University of Illinois Elon University 
 gracekelemanik@gmail.com ggonzlz@illinois.edu atrocki@elon.edu 
 
  Jennifer A. Eli  
  University of Arizona 
  jeli@math.arizona.edu 

Launching cognitively demanding tasks is a much valued, but little understood aspect of 
ambitious mathematics teaching. This working group supports the development of shared 
descriptions, theories, and tools to support teachers, teacher educators, and researchers in 
understanding and developing effective launching. We will begin to develop a shared 
understanding of the purposes of effective launches, as well as common challenges teachers face, 
and structures and skills that teachers can call upon when launching. The working group will 
provide a set of common artifacts that will ground discussion of purpose, structure, and skill. 
These artifacts will include demonstrations and video of launches and launching tools for 
teachers and teacher educators. The working group will support ongoing discussion and 
collaboration between researchers, teacher educators, and practitioners in the field that will 
contribute to our knowledge of effective launches.  

Keywords: Classroom Discourse, Instructional Activities and Practices, Curriculum, Problem 
Solving 

Introduction  
The Problem 

Mathematics education researchers and practitioners have long understood how cognitively 
demanding tasks can provide essential opportunities for student reasoning, problem solving, and 
conceptual learning. Almost as soon as researchers began touting the importance of demanding 
tasks, they have recognized that how teachers introduce, or launch, those tasks to students can 
fundamentally affect the quality of learning opportunities for students (Stein & Lane, 1996). 
Research has documented how teachers can reduce the demand of the task (and the quality of the 
learning opportunities) by introducing a specific method or procedure during the launch or by 
placing too much emphasis on the answer (Stein & Smith, 1998). On the other hand, when 
teachers help students make sense of the context, focus on important mathematical relationships, 
and clarify important vocabulary, students are able to have richer, more productive discussions 
about their solutions (Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013). Clearly, skillful 
launching is an important element of a problem-solving lesson.  

Despite the apparent widespread agreement on the importance of effective launching, it 
remains undertheorized and under-researched. Teachers looking for support in launching have 
few resources, and mathematics teacher educators and researchers do not have a widely shared 
detailed understanding of the purpose and structure of an effective launch, nor do they 
necessarily agree on the kinds of challenges that teachers face while launching demanding tasks.  



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1498 

This Working Group will provide a forum for researchers, teacher educators, and 
practitioners to share localized knowledge in an effort to build a shared understanding of 
launching. In particular, participants will identify and share understandings of launching through 
experiencing, analyzing, and observing a variety of launches and other activities. Participants 
will also examine a variety of tools designed to research, evaluate, plan, and teach launching. 
Finally, participants will have opportunities to identify potential projects for research, 
development and dissemination, while seeking out collaborators for these projects. In particular, 
researchers and practitioners will be encouraged to pool their resources and expertise to describe 
and share localized knowledge and develop theory and tools that will reflect and inform practice. 
Literature Review  

The importance of launching stems from an emphasis on tasks and their implementation in 
supporting ambitious learning goals for mathematics students. Almost 30 years ago, the National 
Council of Teachers of Mathematics (NCTM) publicly advocated for mathematics instruction 
that supported students in gaining deep, conceptual understanding of important mathematical 
ideas, and developing this understanding in the context of reasoning and problem solving 
(NCTM, 1989). During the 1990’s researchers documented essential features of classrooms that 
supported these new, ambitious goals (see, for example, Hiebert et al., 1997; Yackel & Cobb, 
1996). 

One especially important aspect of teaching for understanding was cognitively demanding 
tasks that would present students with opportunities to use what they knew to solve non-routine 
problems, and, in the process, reason and justify their thinking to their peers. In short, if teachers 
wanted their students to learn how to reason and solve problems, they needed to give their 
students problems that they did not already know how to solve (Stein & Lane, 1996). 
Researchers began by describing the characteristics of demanding tasks themselves, helping 
teachers identify and adapt tasks for their students (Stein, Grover, & Henningsen, 1996; Stein & 
Lane, 1996). Such tasks proved challenging to enact, however. Stein and Smith (1998) identified 
maintaining the cognitive demand of these tasks as a major challenge for teachers, describing six 
factors associated with the maintenance of the demand, and seven factors associated with the 
decline of these demands.  

Others have sought to support teachers in maintaining demand through describing specific 
effective teaching practices. O’Connor, Anderson, and Chapin (2003) documented and described 
specific moves that supported discourse around demanding tasks. Stein, English, Smith and 
Hughes (2008) described five practices that teachers use to focus discussions on important 
student thinking and structure the content of those discussions so that students are more likely to 
make connections between solutions and connect those solutions to important underlying 
mathematical ideas. 

One crucial aspect of enacting demanding tasks is how a teacher introduces, or “launches” 
the task. Early research indicated that although tasks may be designed to provide opportunities 
for problem solving and reasoning, the way teachers launched the task could lower the demand 
as experienced by students (Stein & Lane, 1996). Two of the seven factors associated with 
lowering the cognitive demand (Stein & Smith, 1998, cited above) seem especially germane to 
launching. First, teachers could indicate or even demonstrate a specific solution path, thus 
transforming the task for students from problem solving to replicating the teacher’s solution. For 
instance, if students are told that a 30-pound bag of sand sells for $6 at the hardware store, and a 
50-pound bag of sand sells for $9 at the lumberyard and asked which is the better deal, the 
teacher might suggest that they choose an amount of money that they can spend at each store and 
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then see how much sand they get for that amount. Such a suggestion would take away the 
opportunity for students, themselves, to come up with this strategy, but would also make it less 
likely that students might come up with a variety of different strategies which would then 
provide opportunities for reasoning and making connections.  

Second, teachers could also clarify specific aspects of the task, removing ambiguity and 
foreclosing opportunities to make sense of problematic situations. For instance, if students were 
asked to describe what was the best deal, a video streaming plan that costs $40 per month with 
unlimited streaming, or a plan that costs 50 cents per hour of streaming, the teacher could add 
that the customer’s family streamed 75 hours of material each month. This would change the 
problem from one in which students would have to explain how each of the two plans might be 
better, depending on how much streaming the customer planned to do, to a problem with one 
clear answer, where students would not need to figure out that there could be two different 
answers depending on the anticipated streaming time.  

Despite the clear evidence that ineffective launching can undermine students’ opportunities 
to learn from demanding tasks, there has been little research on effective launching that could 
provide guidance for teachers and teacher educators. Early guidance was clearly directed towards 
helping teachers new to problem-based lessons develop a culture of inquiry in their classrooms. 
Effective launching included setting expectations for student collaboration, as well as managing 
the logistical challenges of extended group work (Stein, Smith, Henningsen, & Silver, 2009). 
Effective launches included clear descriptions of the final product, clear instructions for 
logistical details such as who sat where, and what tools were available for student use, and 
discussions of what good cooperative work looked and sounded like.  

Jackson, Garrison, Wilson, Gibbons, and Shahan (2013) described several effective 
launching practices that led to deeper and more productive concluding discussions. The effective 
launches they studied shared these four features: 

• Clarified context 
• Highlighted important mathematical relationships 
• Developed common language 
• Maintained the cognitive demand 

This framework certainly advanced our understanding of launching. However, applying the 
framework gives rise to difficult questions. How does one highlight the important mathematical 
relationships, for instance, without indicating potential solution paths?  How does one clarify the 
context without removing ambiguity? How might effective teacher moves differ depending on 
the task or the students? A greater understanding of what effective teachers actually do when 
they launch, along with more of a shared understanding of the purpose of a launch might inform 
these questions. 

A second article for practitioners described a specific technique for launching tasks, the 
think-aloud strategy borrowed from literacy research (Trocki, Taylor, Starling, Sztajn, & Heck, 
2014). The authors described teachers engaging in thinking aloud when first presenting a 
problem, providing a model of how one might interrogate the problem, make sense of it, and 
begin to think about how to solve it. This technique, if properly applied, supported productive 
discourse and led to students’ success on similar problems without lowering the cognitive 
demand of the tasks. However, the authors also warned against lowering the demand by 
introducing a procedure or method for solving it, and the teachers who used this specific 
technique worried about “crossing the line” into doing too much of the work for their students.  
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More recent research on teachers and their understanding of launching documented this 
dilemma quite clearly. González and Eli (2017) described how future and current teachers 
conceived of launching. They found that practicing teachers were keenly aware of the need to 
support students in making sense of the problem and providing access to the context, while at the 
same time not giving the problem away or telling them too much. More specifically, constraining 
a problem might make it more likely for the students to attend to the mathematical goal of the 
lesson but might also foreclose opportunities for modeling and problem-solving. González and 
Eli also found their participants saw launching as accomplishing a wide range of goals, including 
activating prior knowledge, motivating and engaging students, previewing and reviewing work 
necessary for the solution, providing hints, and clarifying important terms. Pre-service teachers 
were, on the whole, more concerned with motivation and engagement, while practicing teachers 
were more concerned with providing mathematical support through activating prior knowledge 
or clarifying important aspects of the problem.  

Clearly, launching is an important aspect of enacting demanding tasks, fraught with possible 
dilemmas. However, there is little research to inform teachers and teacher educators. There is no 
published research on how curriculum materials support teachers in launching, but a cursory 
examination of a number of materials demonstrate a lack of alignment between and within 
curricula. Methods texts do describe the importance of involving students in the context, 
activating prior knowledge, being sure the problem is understood, and establishing clear 
expectations (see, for instance, van de Walle, Karp, & Bay-Williams, 2013 and Markworth, 
McCool, & Kosiak, 2015). However, there remains the difficult balance between some of the 
suggestions (solve a simpler version of the task, brainstorm possible strategies) and the warning 
to not lower the cognitive demand. 

Despite this lack of theoretical background or specific research guidance, teachers have been 
launching demanding tasks for decades. Researchers have yet to tap what could be a potentially 
rich source of knowledge. Indeed, this gap between research and practice is a perennial problem 
for mathematics education and education at large. 20 years ago, Kennedy described the 
difference between the “expert knowledge” of researchers and the “craft knowledge” of 
practitioners (Kennedy, 1999). Earlier work also described this gap (see, for instance, Cuban, 
1993; Lampert, 1985). This has led to calls for a new knowledge base for teaching that connects 
expert and practitioner knowledge, in which researchers collaborate more closely with teachers 
and practicing teachers have a greater say in identifying research problems and contexts (Hiebert, 
Gallimore, & Stigler, 2002). Launching is a potentially rich field for such collaborations.  

Another potential source of knowledge about launches comes from other content domains. 
Science education researchers and teacher educators have also worked to introduce demanding 
tasks that support ambitious science teaching. Windschitl, Thompson, and Braaten (2008) write 
that science investigations often begin with “readings, video-clips demonstrations or even ‘pre-
modeling’ laboratory activities” which will “motivate interest in some aspect of the natural 
world” and provide resources for students to “develop a tentative representation of the 
phenomenon.” In addition, they suggest a number of “starter questions” that can engage students 
in inquiry. This description of how science teachers might launch inquiries are similar to videos 
used frequently in mathematics classes as a way to introduce problems. (See Meyer, 2011 for 
examples of math problems launched with videos).  
Genesis of this Working Group  

The desire for a working group focused on launching has grown out of several recent 
experiences shared by some of the group’s organizers. This work began with a group of 



Working Groups 

Hodges, T.E., Roy, G. J., & Tyminski, A. M. (Eds.). (2018). Proceedings of the 40th annual meeting of 
the North American Chapter of the International Group for the Psychology of Mathematics 
Education. Greenville, SC: University of South Carolina & Clemson University. 

1501 

mathematics methods instructors designing a module to support pre-service teachers in learning 
to launch. The lack of research and theory on launching was evident to this group as they worked 
together to depict a launch. There were few common images of effective launches in the research 
literature, nor were there descriptions of the kinds of problems that students and teachers 
experienced during launches. As a result, the content and design of the module were based on 
designers’ best guesses, representing untested hypotheses based on their experience and 
judgement. 

Analyzing data and sharing results from pilots of this module further demonstrated the need 
for greater shared understanding of launches. In working to determine what students may have 
learned from the module, designer-researchers uncovered their own unstated assumptions about 
launching and found that they were quite different. For instance, while one researcher assumed 
that any discussion of solution strategies to the problem should not occur during the launch, 
another researcher saw such sharing as a common launching move that could be accomplished 
without lowering the cognitive demand of the task.  

In 2016 these designer-researchers found both a high level of interest and a marked lack of 
consensus when they presented an early version of their work at PME-NA (Wieman & Jansen, 
2016). The session was extremely well-attended and prompted animated discussion about how 
the launch depicted in the module did, or did not, represent good launching practice and how it 
compared with launches that attendees showed as models for their pre-service teachers. After this 
session, the presenters continued the conversation with participants and expanded it to include 
others not in attendance. This discussion resulted in a symposium at the 2018 AMTE annual 
meeting (Wieman, Jackson, Kelemanik, Land, & Tyminski, 2018). This symposium brought 
together researchers who had studied launches, teacher educators who were teaching teachers to 
launch effectively, and professional developers with extensive experience in schools. Again, this 
symposium was well attended, and generated extensive discussion, as well as a clear diversity of 
thought and experience. This working group seeks to expand the work begun at the symposium. 
Many of the activities and discussions planned for the three sessions of the working group will 
allow the participants delve deeper into issues raised at the symposium, and explore some of the 
ideas planned, but not addressed, in that session. 
Goals of the Working Group 

The leaders of this working group have the following long-term goal:  

• Support mathematics teachers in launching tasks effectively, mathematics teacher 
educators in supporting teachers learning to launch, mathematics education 
researchers in generating knowledge about launching, and curriculum writers in 
supporting teachers launching by creating empirically-based, shared knowledge about 
launching cognitively demanding tasks. 

In the service of this long-term goal, the organizers’ aims during the three sessions at this 
conference are to: 

• Facilitate an ongoing discussion about launching, surfacing assumptions about 
effective and ineffective launching practices. 

• Provide a set of common artifacts to initiate this discussion and prompt participants to 
develop and share other artifacts to facilitate ongoing discussion and study. 
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• Foster collaboration and exchange between researchers, teachers and teacher 
educators, supporting productive partnerships that will add to the shared knowledge 
base about launching. 

• Identify key research questions about launching that can help guide the field, and 
these partnerships. 

Questions We Will Be Examining 
The sessions will provide participants an opportunity to examine the following questions: 

• What is the purpose of an effective launch? 
• What challenges do teachers face when planning, enacting and evaluating launches? 
• What are typical experiences for students in launches? 
• Do effective launches look different depending on the task? 
• How do we support teachers and pre-service teachers in developing skill in planning, 

enacting and reflecting on launching (and how might we improve these efforts)? 
• How do we support teacher educators and professional developers in helping others 

get better at launching (and how might we improve these efforts)? 

Connection to the Conference Theme 
One of the central questions stemming from the conference theme of “Looking Back, 

Looking Ahead: 40 years of PME-NA” is how do we support ALL students through equitable 
teaching? At its heart, launching is a part of ambitious teaching that provides access and 
opportunity for ALL students to grapple with challenging mathematics. The small amount of 
extant research on launching begins to describe some of the conditions that must be present in 
order for all students to learn from engaging in demanding tasks and how those conditions might, 
or might not, be present for diverse groups of students. Beginning research has shown that how a 
teacher enacts a launch can either open up access to a wider range of students through 
establishing those conditions for all students, or how it can close off access to opportunities to 
learn for groups of students by failing to establish, or actively undermining those conditions. In 
addition, effective launches have the potential to support students in developing mathematical 
authority and agency as they make sense of the task at hand. The lack of research and work on 
launching represents an ongoing challenge to the field, and advancing this knowledge provides 
possible ways to address fundamental problems of access, authority and agency in an arena in 
which teachers actually have power and control. Effective launches have the potential to 
contribute greatly to equitable opportunities to learn from demanding tasks, and ineffective 
launches can really negatively affect students’ access to those opportunities.   

Plan for Sessions/Participation 
The sessions for this working group will ground discussion and work in a series of shared 

artifacts. These artifacts will serve as a set of common points of reference for participants as they 
examine their own assumptions and work to answer the central questions of the working group. 
The sessions will begin by having participants experience a variety of launches, and then discuss 
their features and the assumptions about purposes, and challenges that lay beneath them. 
Participants will then look at a variety of tools that teachers, teacher educators and researchers 
use to support and study effective launching, connecting those tools to the central questions of 
purpose, structure and challenge. Finally, the group will begin to identify specific research 
projects that will add to the shared knowledge base for effective launching. 
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Session One 
The main goal of this session will be to introduce the central questions of the working group 

and to begin sharing assumptions and knowledge about launching. The session will feature three 
actual launches that differ in important and interesting ways (i.e. content, grade level, length, 
extent to which students reason and talk about the problem or the context, extent to which the 
teacher introduces representations or tools, etc.) Participants will begin by writing down some 
thoughts about launches then watch a video of a launch and engage in a discussion in which they 
compare the launch they just watched with the purposes, structures, and challenges they envision 
for launches. Then, participants will experience two more launches facilitated by organizers of 
the working group, both of which are clear routines with specific structures, and both of which 
differ in significant ways from each other and from the initial example. Again, these will provide 
common experiences which will allow participants to engage in more conversation about the 
purpose, structure and challenges of launches. By the end of the first session, the group will have 
developed some general areas of agreement, some ongoing open questions, and have some 
common images and shared vocabulary that they can use as touchstones for further discussion. 
Session Two 

The main goal of this session will be to continue the discussion of purpose, structure and 
challenge of launches, with a particular focus on tools for teachers, teacher educators and 
researchers. As in the first session, participants will engage with a common set of artifacts, which 
will then act as the basis for further discussion.  

The session will begin with participants planning a launch using a set of common curriculum 
materials. Groups will share the kinds of issues they thought about, questions they asked 
themselves, how their understanding of purpose, structure and challenge informed their planning, 
and how they used the materials to support their planning. Participants will then watch a video of 
a teacher engaging in a think-aloud while planning a launch for the lesson using the same 
materials. They will talk about how their own planning compared with that of the teacher in the 
video, and what issues they face in supporting teachers in planning and enacting launches.  

Participants will then examine and analyze a variety of launching tools. Organizers will have 
available a set of planning tools, a set of observation/evaluation tools, and a set of curriculum 
materials. Participants will examine and analyze the tools with the following questions in mind: 

• What assumptions do these tools seem to have about the purpose, structure and 
possible challenges of an effective launch? 

• What specific scaffolds or supports do the materials offer?  
• How do participants envision teachers engaging with these tools?  How do the tools 

align (or not) with how participants think teachers (or teacher educators, or 
researchers) work, think and make decisions? 

• How might we revise these tools in light of the conversations we have been having? 
• What questions do we have about these tools and their use? 

Depending on the feeling of the group, we might look at one or two of the tools as a large 
group, deciding which tools and in what order based on the conversation from the first session 
and the first half of the second session. Alternatively, we might create separate groups, each of 
which concentrate on specific tools. Participants could engage with whatever tool they find most 
interesting or compelling. There would be time at the end of the session for each group to share 
their findings with the whole. 
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Session Three 
The main goal of the third session is to identify, support and stimulate further work. This 

could take several different forms, but in general will involve brainstorming, identifying and 
exploring possible projects and/or partners and making commitments for future work. Depending 
on the emerging interests and dynamics of the group, each of these processes could take place in 
the context of a whole group session, smaller group sessions, or some combination of the two. 
There will also be an opportunity for participants to share work that they have already begun, 
and possible opportunities for them to pilot materials and instruments or ask for help analyzing 
data or providing feedback. Finally, the organizers will bring some specific projects to the table 
for those interested. These may include initial planning for a conference devoted to the topic, 
researching curricular supports for launching, developing and research specific launching 
routines or researching teacher planning and enactment of launches. The session will end with 
participants writing and sharing specific commitments to future work. 

Possible Future Work 
We are hopeful that this working group will facilitate collaborations and identify possible 

avenues of further work that could result in a wide variety of products and future work together. 
We see this work unfolding in three interconnected arenas, theoretical and empirical research on 
launching, materials and tools for teacher education, and materials and tools for classroom 
teachers. 
Theoretical and Empirical Research on Launching 

One goal for this working group is to encourage and facilitate work that leads to more 
detailed theoretical frameworks for enacting and studying launching. We anticipate that 
discussions at the working group will stimulate theoretical pieces that clearly define the purpose 
of a launch, as well as hypothesize potential challenges that teachers and students face during the 
launch. This work would both inform and be informed by empirical work that could validate and 
refine this theory.  
Materials and Tools for Teacher Education 

Another goal of the working group is to stimulate the development and dissemination of 
materials that could support teacher educators in supporting pre-service and in-service teachers 
in learning to launch more effectively. These could include protocols and templates for planning, 
evaluating, and enacting launches, similar to those shared in session two described above. They 
could also include representations, approximations and decompositions of practice (Grossman, et 
al., 2009), which could support teachers in focusing on specific aspects and issues in launching.  
Materials and Tools for Classroom Teachers 

A final goal of the working group is to stimulate the development of tools for teachers in 
launching complex tasks. In addition to the tools described above for teacher educators, the 
working group will support curriculum developers and professional developers as they create and 
refine materials for teachers. 
Possible Products 

Ideally, each of these three areas will support each other. Tools for teacher educators could 
also work as supports for teachers, while also providing data collection tools for researchers. 
Theory could support the design of such materials.  

Specific products growing out of this working group could take a variety of forms, forms that 
span the three areas above, or concentrate in one single area. Some possible outcomes we 
envision are: 
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• Groups of people working to develop, refine and disseminate specific routines or 
structures for launching tasks 

• Research projects examining launches. 
• A conference on launching 
• An edited book on launching, with articles that might, in part, stem from work 

catalyzed by this working group 
• A practitioner book about launching 
• A series of research articles, perhaps in a special issue of a research journal, on 

launching 
• Exploring funding opportunities to help support any of the projects above 
• Curriculum development or research 
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MATHEMATICAL PLAY: ACROSS AGES, CONTEXT, AND CONTENT 
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Mathematical play has a fairly short history, with strong roots further back in time (e.g., Papert, 
Montessori), and understanding the role of mathematical play from early childhood to adulthood 
is, as yet, unmapped. This working group will provide a community space to explore and discuss 
mathematical play broadly, ranging from early childhood to undergraduate learners, with an 
emphasis on physical and digital interactions designed specifically to support mathematical 
play. Each day will focus specifically on a different approach to and definition of mathematical 
play.  Day 1 will focus on early childhood mathematical play with pattern blocks; Day 2 will 
focus on mathematical play in videogames; and Day 3 will focus on using Rubik’s Cubes to 
investigate undergraduate mathematics, namely algebraic groups. Throughout the sessions, we 
will be examining threads of common ground that will assist in developing a more flexible and 
appropriate model of mathematical play that can inform design of environments and activities 
across age groups, content, and context.   

Keywords: Instructional activities and practices; Design experiments; Technology 

Mathematical play has a fairly short history, with strong roots further back in time (e.g., 
Papert, Montessori). The majority of research on this topic stems from early childhood research 
on play, and researchers have begun to map out the phenomenon of mathematical play in young 
children (see Wager & Parks, 2014, for a review). This approach identifies the mathematical play 
children naturally engage in during open-ended play activities, and explores how to further 
mathematize that play and the consequent learning. In addition, researchers have explored how 
mathematicians in the course of their work engage in mathematical play (e.g., Holton, Ahmed, 
Williams, & Hill, 2001). Given that young children and mathematicians both engage naturally in 
mathematical play, there is an intriguingly underexplored area of promise between those two 
populations. A small number of researchers have examined how to support students in 
approaching mathematics problems with a playful bent (e.g., Steffe & Wiegel, 1994; Holton et 
al., 2001), but understanding the role of mathematical play from early childhood to adulthood is, 
as yet, unmapped.  

This working group will provide a community space to explore and discuss mathematical 
play broadly, ranging from early childhood to undergraduate learners, with an emphasis on 
physical and digital interactions designed specifically to support mathematical play.  

The Origin of this Working Group 
The authors have been engaging in researching mathematical play in their own arena of 

interest for some time and are beginning to engage in conversations across age groups (e.g., early 
childhood, undergraduate), content (e.g., patterns, fractions, algebraic groups), and contexts (e.g., 
Rubik’s cubes, videogames). This working group proposal is the first collaborative effort from 
this diverse group of researchers.   
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Our goal for this working group is to facilitate mathematical play experiences and 
discussions around open research questions that transcend our individual lines of research, such 
as: 

• What is the nature of mathematical play across the age/grade bands? 
• What are the features, characteristics, and affordances of mathematical play? 
• How might context (e.g., physical, digital) influence mathematical play? 
• How might content (e.g., fractions, group theory) influence mathematical play? 
• How might factors such as gender, race and ethnicity, and parental income/education 

level influence experience of and access to mathematical play? 
• How are mathematical play and mathematical learning related? 
• How does mathematical play influence problem solving? 
• How do mathematicians (experts) engage in mathematical play, and how might that 

mindset be fostered for learners (novices)? 
• When might a didactical introduction to the content support more productive 

mathematical play? 
• How might mathematical play support or influence learning in other disciplines (e.g., a 

broader STEM perspective)? 

Although answering all of these is beyond the scope of possibility for our working group, we 
will use these questions to facilitate and orient discussions during each of the three days, and as 
potential topics for future collaborative investigations.  

Definitions of Mathematical Play 
There are a variety of definitions of mathematical play, each emerging from different 

contexts and with different ages. In this section, we briefly review a selection of those definitions 
in order to contextualize the activities we have planned for the working group sessions.  

Steffe and Wiegel (1994) conducted a teaching experiment with a digital microworld 
designed to support operations with quantities, and the role of the instructor was directly to shift 
students from engaging in independent mathematical activity into engaging in mathematical 
play.  Appropriately, they then defined mathematical play as “independent mathematical activity 
with a playful orientation” (p. 27). Sarama and Clements (2009) took a different approach:  
instead of focusing on supporting the shift from independent mathematical activity to 
mathematical play, they distinguish between play that involves mathematics and mathematical 
play. They give examples of the former, including a store in the classroom where one student 
plays the shopkeeper, and another purchases toy dinosaurs for a dollar apiece, and the students 
engage in play while also engaging in counting, place value, and practicing arithmetic. For 
mathematical play, on the other hand, children play with the mathematics itself, and the authors 
describe a four-year-old who is playing with three of five train engines, and first describes those 
three train engines as being numbers 1, 2, and 3 – thus missing engines numbered 4 and 5. Then 
she decides that the trains she has are actually numbered 1, 3, and 5, leaving trains 2 and 4 
missing – as Sarama and Clements (2009) note, “she was playing with the idea that counting 
words themselves could be counted” (p. 327), that is, she was playing directly with mathematics. 

Holton et al. (2001) define mathematical play as “that part of the process used to solve 
mathematical problems, which involves both experimentation and creativity to generate ideas, 
and using the formal rules of mathematics to follow any ideas to some sort of a conclusion” (p. 
403). They identify six components of mathematical play:  
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(1) It is a solver-centred activity with the solver in charge of the process; 
(2) It uses the solver’s current knowledge; 
(3) It develops links between the solver’s current schemata while the play is occurring; 
(4) It will, via 3, reinforce current knowledge; 
(5) It will, via 3, assist future problem solving/mathematical activity as it enhances future 

access to knowledge; 
(6) It is irrespective of age. (p. 404) 

They additionally note that mathematical play will not necessarily directly lead to a correct 
solution of the problem being played with – in fact, one of the important components of 
mathematical play is that it “provides a non-threatening environment where incorrect solutions 
are not read as mistakes and may lead to a better understanding of the problem and/or the 
confrontation of misconceptions” (p. 404).  
 Another framework for mathematical play (Williams-Pierce, 2016, 2017) also highlights the 
importance of a non-threatening environment where mistakes are perceived as natural and 
appropriate. This framework emerges from a blend of scholarship on mathematical learning and 
videogames research, the latter of which has embraced the conceptualization of failure as an 
important and often enjoyable experience within the realm of gameplay (e.g., Juul, 2009; Litts & 
Ramirez, 2014). Williams-Pierce (2016, 2017) defined mathematical play as voluntary 
engagement in cycles of mathematical hypotheses with occurrences of failure, and describes five 
features of digital contexts that support such mathematical play: 

(1) consistent and useful feedback;  
(2) high enough levels of difficulty and ambiguity that players experience frequent failure 

that is closely paired with the feedback;  
(3) non-standard mathematical representations and interactions;  
(4) mathematical notation introduced late or not at all; and  
(5) the legitimate possibility of alternative conceptual paths for successful progression. 

Each of the definitions of mathematical play described above emerge from different contexts: 
some digital (Steffe & Wiegel, 1994; Williams-Pierce, 2016), some physical (Sarama & 
Clements, 2009), some paper and pencil-based (Holton et al., 2001). One of the crucial open 
questions that we highlighted above is how the definitions may vary in the features that they 
prioritize, due to the differing contexts. For example, might Holton et al. (2001) and Williams-
Pierce (2016) find common ground if they examined similar contexts? Or are their approaches 
too fundamentally different to ever come to agreement?  Each session of the working group is 
oriented around a specific definition and operationalization of mathematical play, so that 
attendees have concrete experiences grounded in different definitions to facilitate discussion 
across these different frameworks. 

Working Group Schedule and Activities 
For each of the three Working Group sessions, we plan to begin with a hands-on 

mathematical play activity designed from a different mathematical play approach. The first 
author has been involved in conducting PME-NA working groups in the past (Nathan et al., 
2016, 2017), and found that beginning with a relevant activity quickly develops fruitful 
discussions between participants. In particular, working groups tend to have a variety of 
attendees with a wide-ranging level of expertise in the topic, and grounding the discussion in 
shared experiences serves to support a sense of community. Consequently, we will facilitate a 
mathematical play experience each day, then guide the discussion towards the mathematics at 
play (pun intended) and the specific characteristics of that mathematical play.  During these 
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group discussions, we will regularly orient the conversation specifically towards the open 
research questions listed above. We will take notes during these conversations, and conclude 
each session by collecting names and emails of working group attendees. 

Each day will focus specifically on a different approach to and definition of mathematical 
play.  Day 1 will focus on early childhood mathematical play with pattern blocks; Day 2 will 
focus on mathematical play in videogames; and Day 3 will focus on using Rubik’s Cubes to 
investigate undergraduate mathematics, namely algebraic groups.  While each day’s session 
moves up in age (from early childhood to undergraduate), we will also be moving down in terms 
of established research.  In particular, Day 1 showcases the most researched area of mathematical 
play and will be primarily about introducing attendees to the rich history of early childhood 
mathematical ply; Day 2 focuses on comparing two instantiations of mathematical play, and 
seeks to identify similarities and differences across the digital designed contexts; and Day 3 
involves the initial design of an undergraduate mathematical play experience, and will focus on 
gathering input from the attendees on potential areas of redesign.  
Day 1 Session – following Wager & Parks (2014) 

The first session will focus on mathematical play in early childhood. Mr. Reimer will engage 
participants in a form of pattern block puzzle play that involves spatial reasoning and the 
composition and decomposition of shapes. While mathematical play is a generally new area of 
investigation, Wager and Parks (2014) found that “studies involving block play are the most well 
documented and longest established” (p. 217), although spatial learning with puzzle play is still 
under-examined. Furthermore, most geometry and spatial learning studies have taken place in 
artificial contexts (e.g., research labs), rather than natural contexts.  Consequently, this activity 
relies upon early childhood play frameworks that emphasize child agency through spontaneous 
interaction, choice, and opportunities for repeated trials (Wager & Parks, 2014), with a focus on 
exploration with physical objects to support the development of mental transformations. 

Mr. Reimer will bring sets of pattern block puzzles for the participants (see Figure 1) – for 
use in solo activity or small groups, depending upon the number of attendees.  He will highlight 
the importance of spontaneous interaction, choice, and repeated trials, and throughout the session 
activity, he will provide orienting questions and comments–such as initiated constraints and 
challenges to extend or deepen the activity–to help participants explore possibilities and 
mathematize their play.  

   
Figure 1. A sample of puzzle designs participants may create. 
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The activity will conclude with an open discussion that focuses on the affordances of the 
physical materials in encouraging mathematical play, the importance of orienting questions, and 
the role of narratives in describing and supporting participants’ play activity.  Then we will guide 
the discussion towards the open research questions listed above. 
Day 2 Session – following Williams-Pierce (2017) 

The second activity will focus on mathematical play in digital contexts. Dr. Williams-Pierce 
will coordinate this activity by bringing two games that were designed to support mathematical 
play: Dragonbox 12+ by WeWantToKnow (a commercial learning game that focuses on 
balancing equations), and her in-revision game, Rolly’s Adventure (which focuses on the 
development of understanding multiplying fractions). Both of these games support mathematical 
play and learning in distinctly different ways: Dragonbox 12+ through faithfully enacting 
mathematical phenomena with novel representations and interactions; and Rolly’s Adventure 
through secretly modeling the operation of multiplication and requiring players to engage 
repeatedly in interpreting feedback through failure in order to unpack that secret operation. See 
Figure 2 for screenshots of both games.  

 

    
Figure 2. A screenshot each of Dragonbox 12+ (left) and the original Rolly’s Adventure (right). 

We chose those particular two games for a variety of reasons. First, having the designer of 
Rolly’s Adventure present means that she can unpack any of the hidden design decisions behind 
the game that may emerge as participant questions during play and discussion. Second, while the 
Dragonbox series is highly popular (with over a million downloads worldwide, and a Wired 
article that touted the original game’s release; Liu, 2012), co-authors of this working group have 
strongly divergent views about how mathematical the play in Dragonbox 12+ actually is.   
Consequently, we anticipate that these two games will provoke a lively discussion! 

Both games are iPad games, and Dr. Williams-Pierce will bring ten iPads to share with 
participants, as well as instructions for installing her game for free on their own touchpad 
devices. Depending upon the number of attendees, this activity may be in pairs or small groups. 
Half the participants will play Dragonbox 12+, and half Rolly’s Adventure, while taking guided 
notes on their experience of mathematical play with the games. These guided notes will be based 
upon the five features described above (Williams-Pierce, 2016, 2017). For example, the guided 
notes will include questions like: how does the game give you feedback on what you are doing 
well or poorly? How does the experience of failure influence how you attend to feedback? What, 
if any, is the role of mathematical notation? After playing, Dr. Williams-Pierce and Dr. Ellis – as 
the two authors who disagree about mathematical play in Dragonbox 12+ – will co-facilitate a 
discussion about how the games instantiate those five features differently, and how the 
participants felt their experiences were or were not mathematical play.  
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Day 3 Session – following Holton et al. (2001) 
First, Dr. Plaxco will discuss his preliminary work in designing activities to engage 

undergraduate students in mathematical play with Rubik’s Cubes and connections to the cube’s 
associated algebraic group structure. This will entail an introduction to several algorithms that 
can be useful for manipulating specific pieces on the cubes as well as a discussion of the 
usefulness of some group theoretical constructs (e.g. conjugation and commutators) in generating 
designs on the cubes (see Figure 3).  Holton et al. (2001) note that “Mathematical play involves 
pushing the limits of the situation and following thoughts and ideas wherever they may lead. 
Hence there are no obvious short-term goals for mathematical play; it is designed to allow 
complete freedom on the part of the solver to wander over the mathematical landscape” (p. 403). 
Rubik’s Cubes allow for such mathematical play, though players are typically less familiar with 
the rules and operations of the cubes because the setting is noncommutative, which allows for 
surprising results when trying to generalize from experiences, and because the “landscape” is 
rather large – a 3x3x3 cube has over 4.3x1017 positions.  

 
Figure 3. A Sample of Cube Designs That Working Group Participants May Attempt  

Dr. Plaxco will distribute a class set of solved 2x2x2 and 3x3x3 Rubik’s Cubes so that each 
member of the working group will have access to a cube. Members will also receive a laminated 
sheet with instructions for each of the algorithms discussed and a second sheet with possible 
designs that members can set out to re-create. One difficulty Dr. Plaxco has encountered with 
introducing Rubik’s Cubes to students is the need for prolonged orientation to gain a sense of 
how to use algorithms to produce desired outcomes. Because of this, we will sequence the tasks 
so that participants will work to change a solved cube into increasingly difficult designs, 
incorporating longer algorithms and combining algorithms in new and different ways. 
Participants will also be invited to explore the possibilities of what they can create with the 
algorithms and generate their own designs on the cubes. We will give participants iPads to 
videotape their manipulations of their cubes in order to help them remember the sequences of 
moves they make. We will ask the participants to try and develop notations to help record these 
moves as well. This activity will culminate with a “Match Game” in which groups of participants 
will create designs, recording and notating the required moves and challenge other teams to re-
create their designs. We will then close this session with a discussion of potential directions for 
activities with undergraduate students, including avenues for collaborations in researching 
mathematical play with the Rubik’s Cubes.  

After Dr. Plaxco’s group activity, in order to conclude the working group, we will discuss 
our experiences across each of the three days. In particular, we will focus on the three 
mathematical play approaches emphasized on different days, and how the differing contexts and 
content may have influenced the development of these approaches, following the open research 
questions identified at the beginning of the document. We will seek to find threads of common 
ground that will assist in developing a more flexible and appropriate model of mathematical play 
that can inform design of such environments and activities across age groups, content, and tools.  
Finally, we will conclude by identifying next steps for the working group members, as outlined 
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in the following section. 

Future Plans 
This working group is the first step in establishing a network of support for designing and 

examining mathematical play at all ages. First, we will develop a plan for a white paper about 
mathematical play that draws out common themes across the differing ages and content that have 
been researched thus far, and identifies aspects of the frameworks and definitions that may be 
irreconcilable. For example, might unstructured mathematical play and structured mathematical 
play be fundamentally different? Are there commonalities about mathematical play that can be 
established across paper-and-pencil activities, physical manipulatives, and digital contexts? How 
might audience (e.g., voluntary players who can stop playing at any time, students who have no 
choice but to participate, research participants who chose to be part of the research) influence the 
experience of mathematical play? In this paper, we will explore those questions, and identify the 
particular next steps that should be undertaken to further understand and unpack the phenomenon 
of mathematical play.  Second, we will investigate future potential conference proposals or 
journal articles that draws across different areas of mathematical play expertise, in order to begin 
productively synthesizing the phenomenon.  For example, one of the discussions that developed 
during the crafting of this proposal revolved around the use of Holton et al.’s (2001) components 
of mathematical play for the Rubik’s cube activity, and how certain aspects of the Williams-
Pierce (2016, 2017) framework might apply better. One potential line of investigation then is to 
examine the possibility of synthesizing the two frameworks in a way that accounts for the very 
different contexts they initially emerged from. 

Third, we will set up a listserv for the attendees, so that they find it convenient and simple to 
stay in touch with others interested in mathematical play. Immediately after the conference, we 
will share this listserv so that participants may continue discussing any potential collaboration 
plans developed through discussions during the working group. Finally, we plan to submit for an 
NSF Advancing Informal STEM Learning: Conferences grant in order to conduct yearly 
meetings that focus solely on mathematical play throughout the lifespan. The participants at the 
Mathematical Play Working Group at PME-NA 2018 will be the first list we contact to invite to 
apply for this opportunity. 
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This Working Group will continue the conversation started since PME-NA-34, with a goal to 
move forward the teaching and learning of mathematics involving students with learning 
disabilities or difficulties in mathematics (LDM).  This Working Group is rooted in following 
premises: (1) students with LDM are capable of and need to develop conceptual understanding 
of mathematics, and (2) special education as well as inclusive classroom instruction need to 
transition toward this focus. Participants will continue (a) the collaborative research agenda for 
the group, and (b) the dissemination effort through publications that reflect the cross-
disciplinary collaborative work of this group within the context of international perspectives.  

According to US National Report Card (National Assessment of Educational Progress 
[NAEP], 2015), 85% of 4th grade students with disabilities performed below the proficiency in 
mathematics, and 100% of 8th grade students with disabilities performed below the basic level in 
mathematics. In fact, about five to ten percent of school-age children are identified as having 
mathematics disabilities and students whose math performance was ranked at or below the 35 
percentile are often considered at risk for learning disabilities or for having learning difficulties 
in mathematics (LDM). In spite of substantial work on learning disabilities or difficulties in 
mathematics conducted and disseminated by special educators, it seems current practices remain 
highly ineffective in promoting desired changes.   

That being said, emerging collaborations among special education and mathematics 
education researchers have been showing promising results. Whether this emerging research will 
change the current math instructional practice involving students with disabilities remain 
uncertain.  “To most teachers, math is just about calculation” and calculation math is “drill and 
kill!” (Janell Uerkwitz, NSF-I-Corps program interview note, March 2nd, 2018).  The underlying 
common approach the Working Group has been developing revolves around paradigm shift away 
from the focus on behavioral and procedural oriented teaching to guided constructivist approach 
that focus on conceptual learning and teaching. 

The purpose of our Working Group is to not only facilitate the collaboration between math 
education and special education researchers with an intention to move forward the teaching and 
learning of mathematics involving students with LDM, but also to disseminate the work resulting 
from such collaboration to inform the research and practice in the field.  

This Working Group is formed to create sustainable opportunities for collaborative work 
between researchers and practitioners from both the fields of math education and special 
education, who are working with students with LDM. Understanding how students with LDM 
develop mathematics concepts and skills and how teaching and instructional environment can 
promote this process is an important dimension of the psychology of mathematics education, has 
several implications for both research and practice.  First, practitioners in both general and 
special education can benefit from diverse perspectives as well as empirical evidence and gain a 
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richer understanding of how students with LDM learn mathematical concepts. Secondly, active 
study of the development of mathematics concepts and skills for students with disabilities 
provides both researchers and practitioners with mechanisms for moving toward a 
methodological focus on pedagogy rooted in assessment of what students with disabilities are 
capable of learning. 

For the purposes of continuing the conversation around mathematics in special education, 
this group is concerned with students who have significant issues with mathematics, including: 

• students with learning disabilities specific to mathematics (MD) 
• students with cognitive differences in how they understand and process number 
• students who are placed in special education and have difficulties with mathematics 

We refer to these students as having learning disabilities or difficulties in mathematics 
(LDM) in the remainder of this paper. 

History of the Working Group 
Our PME-NA/PME Working Group has met six times; each year our group had good 

participation of both returning and new members.  In 2012, 15 researchers (faculty and graduate 
students) and 2 practitioners met during PME-NA in Kalamazoo, MI.  This first meeting 
specifically focused on better understanding mathematical learning disabilities (MD).  The 
Working Group began with a discussion of the issues around identification and definition of MD.  
In particular, the group discussed the unique characteristics of students with MD (e.g., slow 
speed of processing despite average reasoning; fundamental issues with number sense; over 
learning of procedural knowledge at the expense of mathematical reasoning) and implications for 
instruction and assessment.  We took up a theoretical stance that positioned disability as an issue 
of diversity and considered the origin of the disability as the inaccessibility of instruction rather 
than a defect within the individual.  Members shared videotapes of various students with MD 
solving problems in assessment and teaching situations and discussed the need for teachers to 
target and teach toward the specific mathematical strengths and weaknesses demonstrated by the 
student. We further discussed at what point(s) the learning paths of students with MD may differ 
from what is documented among students in general education, how existing developmental 
trajectories may or may not fit the population of students with MD, and the need to expand or 
further document current trajectories to include students with MD. Moreover, discussions 
focused on issues surrounding motivation related to the design and use of instruction, 
mathematical tools, and mathematical tasks.  A rich discussion was held concerning the nature 
and sequencing of mathematical tasks, the use of concrete and pictorial representations and the 
extent to which they are and are not supportive of the abstraction of mathematical concepts for 
this population, and the need for increased research to inform the creation of practitioner tools 
and resources.   

During the first year of our Working Group, our focus was specifically on MD- those 
students with a biological and cognitively-based difference in how their brain processes 
numerical information.  Based on our discussions during the first year of our Working Group we 
decided to expand from a narrow focus on MD to a more inclusive focus on students in special 
education who struggle with mathematics (i.e., learning disabilities/difficulties in mathematics, 
LDM).  This not only avoids the definitional issues at the forefront of the field (i.e., the lack of 
assessments to accurately identify students with MD and the resulting conflation of low 
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achievement and MD), but also more accurately reflects the diversity of interests of the members 
of this group.    

In the second year of our Working Group (2013) fourteen participants focused on a 
collaboration that was a result of the contacts that were made during the first Working Group.  In 
this collaboration two faculty members worked together on a teaching experiment about fraction 
knowledge, a compliment to a 2013 funded National Science Foundation (NSF) CAREER 
project (Hunt, 2013). Their collaboration resulted in each bringing unique expertise; the 
mathematics education scholar brought insight into the mathematical thinking of the student, 
while the special education scholar brought insight into learning differences. The goal of the 
teaching experiment was to document how the foundation scheme of unit fractions (1/n) evolves 
in the mathematical activity of two cases of students with learning disabilities.  The students’ 
evolving conceptions were supported by constructivist-oriented pedagogy. Video data segments 
(i.e., each girl’s conceptualization of the multiplicative nature of and inverse relation (1/m > 1/n 
if m < n) among unit fractions; the girls’ solutions to novel problems) from this project served as 
starting points for discussions in the subsequent PME-NA Working Group meeting.  
Specifically, Working Group members used the video segments and descriptions of the 
collaboration as a springboard for discussing possible research questions and methods of data 
analysis to employ in future, collaborative work. It is collaborations like these that this Working 
Group is designed to foster.  

In 2014, we met as a Working Group at the joint PME and PME-NA conference in 
Vancouver. There our Working Group continued to expand to 25 members, now including 
international members from outside of North America. During the meeting, two Working Group 
members (one from math education and one from special education) shared a multiplicative 
reasoning assessment tool resulting from their NSF-funded research project (Xin, Tzur, & Si, 
2008). Upon examining this instrument, the group discussed alternative ways for assessing 
students with LDM and implications for intervention development. As a result of our 
collaboration in Vancouver, we had two main accomplishments. First, as a group we identified 
three research subgroups: (a) cognitive characteristics of students with LDM, (b) interventions 
for students with LDM, and (c) teacher preparation or professional development, that represented 
the interests of the members.  Each research subgroup identified pertinent research questions and 
an agenda for further collaboration.  

Second, as a group, we proposed an idea for developing a proposal for a special issue to be 
published in an influential special education journal to address the research around the 
intersection of math and special education. Later in the year, members of the Working Group 
developed the proposal for the special issue and worked extensively with the editors of a special 
education journal Learning Disabilities Quarterly (LDQ).  The quality of our proposal led to the 
acceptance of this special issue proposal by the co-Editors of LDQ. Two members from the 
Working Group served as co-Guest Editors of this special issue and identified potential 
contributing works from the Working Group members. In addition, we invited a well-known 
scholar from the field of special education for co-authoring a commentary paper as part of this 
special issue.  

In 2015 PME-NA, we continued and expanded collaborations between members of this 
Working Group, by focusing discussions around two central themes: (a) math concept 
development and corresponding methodologies for studying its emergence in students with 
special needs, and (b) designing research questions and writing a research plan around this topic.  
We invited interested researchers and educators to the Working Group sessions. We had several 
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new members joining this Working Group including scholars from countries other than U.S. 
During the Working Group sessions, equity was brought up as a new discussion point.  
Following 2015 PME-NA, two members of this Working Group, along with a new member, 
formed a new collaboration; and they worked on writing a practitioner piece pertinent to 
differentiating instruction for diverse students—that article was accepted to MTMS.   

In 2016, the Math and Special Education Working Session met twice during PME 40 held in 
Australia. Nine people from five continents attended these sessions, while another three people 
actively participate in our projects throughout the year. On the first day, there were several new 
members to the group, so we introduced each other and explained the history and goal of the 
working session: to promote cross-disciplinary work that supports the learning of math by 
students with mathematical learning difficulties. We then discussed a project that we started at 
PME 38 and have recently concluded. That is the special series of Learning Disabilities 
Quarterly (LDQ) on the subject of the intersection between mathematics and special education. 
As a result of this discussion, we came up with a number of new questions that we would like to 
explore (e.g., challenges and strategies of collaborative work between professionals/scholars 
from the field of math education and the field of special education) and consider questions from 
an international perspective. 

On the second day of the Working Group session we discussed our next big project to work 
on as a group. We decided that we would like to produce a book that teacher educators can use 
for teaching undergraduate and graduate students about the intersection between mathematics 
education and special education. The group members committed to the collaborative work on 
this book project.  

In 2017 during PME-NA39, a total of 26 people (including three members via Skype from 
UK and Canada) attended the Working Group sessions across three conference days. Day one, 
the group went over the history of the Working Group and reported the publication of the special 
series that this Working Group initiated in 2014 at the joint PME and PME-NA conference in 
Vancouver.  All five papers of this special series plus an introduction paper (Xin & Tzur, 2016) 
have been published in the journal of LDQ (impact factor =1.028) across four issues (from LDQ 
Vol 39 (4) published in November 2016, to LDQ Vol 40 (3) published in August 2017). These 
papers address characteristics of individuals with LDM and interventions from different 
theoretical frameworks. From a socio-cultural framework, one paper addressed “mediational 
tools” that supported the development of math or language abilities of one individual with MD 
(Lewis, 2016). From a constructivist framework, another paper examines the partitioning and 
units coordination of 44 students with MD or at-risk for MD in terms of initial numeric and 
fractional reasoning (Hunt, Welch-Ptak, & Silva, 2016).  From an integration of constructivist 
pedagogy and explicit strategy instruction, one intervention study paper reported the outcome of 
a RCT study that evaluated the acquisition and generalization effect of the PGBM-COMPS 
intelligent tutor program (Xin, Tzur, Si, Hord, Liu, & Park, 2017) on enhancing multiplicative 
reasoning and problem solving of students with LDM.  Lastly, building on the framework of 
Conversational Repair from the field of linguistics, the second intervention study paper reported 
the effectiveness of a discourse-based intervention on math problem solving and reasoning (Liu 
& Xin, 2017).   

During the second and third day of the Working Group sessions, the group engaged in heated 
discussion of the book proposal—the new project initiated by this group following the special 
series project. The discussion revolved around the purpose of the potential book, potential title of 
the book, potential audience and market of the book, unique selling point of the book, potential 
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competitors of the book, and potential table of content. Between the Working Group sessions 
during the conference, the team conducted an initial search for similar books in the current 
market. Then, based on the review of these existing “similar” books, the Working Group had 
further discussion about the significance and unique feature of our potential book.  Following 
PME-NA 39, the Working Group members have continued their work on the book proposal and 
produced an initial draft of the book proposal.  

Issues Relating to Psychology of Mathematics Education 
Historically, special education researchers and teachers focused almost exclusively on 

students’ mastery of procedural skills, such as basic number combinations and ability to execute 
mathematical algorithms (Jackson & Neel, 2006; Fuchs et al., 2005; Geary, 2010; Swanson, 
2007; Kameenui & Carnine, 1998). A recent literature review comparing instructional domains 
for students with disabilities found that the majority of research conducted in the field of special 
education addressed basic computation and problem solving, with the primary focus placed on 
mnemonics, cognitive strategy instruction (e.g., general heuristic four-step strategy: read, plan, 
solve, and check), or curriculum-based measurement (Van Garderen, Scheuermann, Jackson, & 
Hampton, 2009).  Instructional practices mainly focused on task analysis (breaking up skills into 
decontextualized steps that need to be memorized and followed), flash cards, or general 
heuristics that do not help with domain knowledge learning and concept development (Cole & 
Washburn-Moses, 2010). In particular, the focus on primarily procedures-driven instruction and 
rote memorization of skills seems to result in students’ incomplete and inaccurate understanding 
of fundamental mathematics concepts as well as a lack of retention and/or transfer (Baroody, 
2011).  
Importance of Both Conceptual and Procedural Knowledge  

Crucial for rich mathematical understandings that enable retention and transfer of 
fundamental concepts is the iterative development of conceptual understanding along with 
procedural proficiency (Rittle-Johnson, Siegler, & Alibali, 2001; Rittle-Johnson & Koedinger, 
2005).  Rittle-Johnson and Alibali (1999) noted that conceptual knowledge supports procedural 
generalization. In particular, conceptual knowledge could aid children in mindfully avoiding the 
use of procedures that fail to work in novel situations. Additionally, an ability to understand and 
manipulate different mathematical representations to navigate conceptually a mathematical 
context contributes to conceptual understanding and procedural skill (Ball, 1993; Kaput, 1987; 
Rittle-Johnson et al., 2001). It seems that any investigation into mathematical cognition, whether 
related to disability or not, must fundamentally engage with issues of conceptual understanding 
(Hunt & Empson, 2015). 

A focus on procedural skills limits students with disabilities’ access to the general education 
curriculum, which is a requirement of the Individuals with Disabilities Educational Improvement 
Act (Maccini & Gagnon, 2002). In mathematics, access to the general education curriculum 
means addressing problem-solving, mathematical modeling, higher order thinking and reasoning, 
and algebra readiness as required by the new Common Core Standards (CCSSI, 2012).   To 
accomplish these Standards, mathematics educators need to engage students actively in making 
conjectures, justifying and questioning each other’s ideas, and operating in ways that lead to 
deep levels of mathematical understanding (Kazemi & Stipek, 2001; Lampert, 1990; Martino & 
Maher, 1999; Yackel, 2002).  
Conceptual Diagnosis Based Pedagogy   

A pedagogical approach to be explored and advanced during this Working Group’s meetings 
is one that focuses on promoting conceptual learning in students with LDM. This approach is 
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rooted in a constructivist stance (Piaget, 1985; von Glasersfeld, 1995), particularly the notion of 
assimilation, which stresses the need to build instruction on what students already know and are 
able to think/do. That is, teaching needs to be sensitive, relevant, and adaptive to students’ 
available ways of operating mathematically (Steffe, 1990). To this end, teachers must learn how 
to: (a) diagnose students’ available conceptions, and (b) design and use learning situations that 
both reactivate these conceptions and lead to intended transformations in these conceptions.  

Building on Simon (2006)’s core idea of hypothetical learning trajectories, Tzur (2008) has 
articulated such an adaptive pedagogy, which revolves around the Teaching Triad notion: (a) 
students’ current conceptions, (b) goals for students’ learning (intended math), and (c) 
tasks/activities to promote progression from the former to the latter. Key here is that in designing 
every lesson one proceeds from conceptual diagnosis of the mathematics students are capable of 
thinking/doing. That is, assessment methods need to focus on dynamic (formative) inquiry into 
student understandings, as opposed to on testing correct and incorrect answers per se. This day-
to-day diagnosis, obtained via engaging students in solving tasks and probing for their reasoning 
processes, gives way to selecting goals for students’ intended learning. Building on this 
diagnosis, a mathematics lesson begins with problems that students can successfully solve on 
their own, which Vygotsky (1978) referred as the Zone of Actual Development (see also Tzur 
and Lambert, 2011). Recent studies of mathematics teaching in China (Jin, 2012; Tzur & 
Lambert, 2011) revealed a strategic, targeted method, bridging, which is geared specifically 
toward both: (a) reactivating mathematical conceptions the teacher supposes all students know, 
and (b) directing their thinking to the new, intended ideas. 
Exemplar Research Activities with Students with LDM  

Multiplicative Reasoning Project: From 2008 to 2015, two members of this Working Group 
(one from math education and one from special education) have been working collaboratively on 
a federal funded grant project (Xin, Tzur, and Si, 2008).  This project integrated research-based 
practices from mathematics education and special education and was aimed to promote 
multiplicative reasoning and problem solving of elementary students with LDM. As an outcome 
of this collaborative project, the research team has developed an intelligent tutor, PGBM-
COMPS. The PGBM-COMPS intelligent tutor draws on three research-based frameworks: a 
constructivist view of learning from mathematics education (Steffe & D’Ambrosio, 1995), data 
(or statistical) learning from computer sciences (Sebastiani, 2002), and Conceptual Model-based 
Problem Solving (COMPS) (Xin, 2012) that generalizes word-problem underlying structures 
from special education.  

Rooted in a constructivist perspective on learning (Piaget, 1985; von Glasersfeld, 1995), the 
PGBM part of the intelligent tutor focused on how a student-adaptive teaching approach (Steffe, 
1990), which tailors goals and activities for students’ learning to their available conceptions, can 
foster advances in multiplicative reasoning. This approach eschews a deficit view of students 
with learning disabilities. Rather, it focuses on and begins from what they do know and uses 
task-based activities to foster transformation into advanced, more powerful ways of knowing. On 
the other hand, intelligent computer systems can play an important role in students’ learning by 
effectively modeling their thinking and dynamically recommending tasks tailored to their 
conceptual profiles. Going hand-in-hand, the COMPS part of the program (Xin, 2012) 
generalizes students’ understanding of multiplicative reasoning to the level of mathematical 
models. At this stage, students no longer rely on concrete or semi-concrete models for problem 
solving; rather, the mathematical models directly drive the solution plan.  
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The collaborative research team has conducted several piloting studies to field test the 
PGBM-COMPS intelligent tutor with elementary students with LDM. The preliminary studies 
have shown promising results—participating students with LDM who interacted with this 
intelligent tutor not only enhanced their problem-solving skills on a researcher-designed criterion 
test but also a norm-reference standardized test (Xin et al., 2017). In addition, the results of these 
piloting studies have shown success in promoting students’ substantial conceptual advances (e.g., 
concept of number, multiplicative reasoning). In fact, a paper resulting from a randomized 
control trial (RCT) study of this project has been published (Xin et al., 2017) as part of the 
special series produced by this Working Group. As a follow up, the research team has continued 
on this line of work and recently embarked on a new NSF supported project (Xin, Kastberg, and 
Chen, 2015), which focuses on additive reasoning.  

Most recently, building the data gleaned from Multiplicative Reasoning Project, the team 
members of this Working Group formed further collaboration and conducted a quantitative 
analysis of teacher-student interactions during discourse–oriented instruction involving 
elementary students with LDM in solving multiplicative word problem (under revision). The 
findings from this discourse analysis study indicate that with appropriate opportunities 
/prompting as well as guidance and support, students with LDM demonstrated various degrees of 
problem solving and reasoning in a discourse–oriented mathematics instructional environment. 
Findings of this study support the notion that quality classroom discourse and teachers’ 
responsiveness to students’ thinking contribute to students’ learning and achievement. 

Fraction Project. Another Working Group member is documenting learning trajectories of 
elementary school children with LDM as they come to understand fractions as quantities (Hunt, 
2013). In its first year, this work produced models of children’s key developmental 
understandings from semi-structured interviews with 44 second, third, fourth, and fifth graders 
with LDM (Hunt et al., 2016). Interviews followed a protocol that established a basis for 
questioning but also allowed for maximum researcher flexibility to fully examine student 
thinking and examine trends across the students’ unique ways of reasoning. Two design 
experiments also took place during Year 1 to test an expanded group of tasks from which the 
trajectory is based.  The design experiment exemplified Hunt’s (2018) evolving characterization 
of knowing, learning, and teaching in terms of the mathematical knowledge students with 
learning disabilities (LDs) do possess. Utilizing an iterative, three phase qualitative analysis, 
Hunt (2018) illuminated two children’s perceptions and meaning-making for the unit fraction 
concept observable through work in learning situations that supported partitioning and unit 
coordinating activity. The analysis revealed each child’s evolving knowledge as a complexity 
consisting of the negotiation and construction of meaning among the child’s mind, her 
participation in a learning environment, and the teacher’s responsiveness to the child’s ways of 
reasoning and making sense.   

In Years 2 and 3, the researcher took up a teaching experiment methodology, much like those 
used in the collaborative pilot that resulted from this Working Group, to document how eight 
children with LDM constructed conceptions of number and fractions alongside the factors that 
supported, extended, or constrained their understanding.  Data analysis within and across each of 
the eight cases is ongoing, yet initial findings from three of the cases can be shared.  First, when 
engaging in tasks that support the construction of composite unit, the use of memorized fact 
combinations or teacher taught strategies eclipsed the use of two students’ natural reasoning 
(Hunt, MacDonald, & Silva, in press) yet supported the third’s (Hunt, Silva, & Lambert, 2017). 
All three students evidenced tacit ways of reasoning (e.g., 2 is contained in 3, 3 is contained in 
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4); two reverted to pseudo-empirical abstractions, tricks, or algorithms that they could not 
explain to solve the tasks. These ways of engaging in the tasks were counterproductive to these 
two students’ reflection on their own actions upon units such that adaptations in their reasoning 
could occur. Conversely, the third student leveraged his knowledge of number facts and 
alternative representations to advance his fractional reasoning and compensate for his perceptual 
motor differences (2017). For all three students, teacher encouragement and support to engage in 
each student’s own ways of reasoning was imperative. Second, Hunt and colleagues (under 
review) found evidence that confirms previous research (Geary, 2010) that two students 
sometimes lost track of counting during a count on, possibly due to working memory. Author 
conjectures that this learning difference interferes with the move from counting on to more 
sophisticated additive reasoning (e.g., breaking apart tens). Yet, in one case, the problem is 
alleviated through opportunities for within-problem reflection through experiences that the child 
has to construct addends involved in number problems through counting, sweeping small 
numbers as lengths, and improving the usability of small composites like 2, 4, 3, 5, and 6 (under 
review). Lastly, all three students evidenced an affinity towards symmetric notions of units 
coordination across learning situations and across natural and fractional number reasoning. Hunt 
is currently conducting cross-case analysis to discern whether the symmetry is indicative of 
unique trajectories in number and/or fractional reasoning. 

As forgoing, this Working Group participants will use artifacts from projects described above 
as possible starting points to illuminate and further explore possible applications of student-
adaptive pedagogy (conceptual diagnosis-based) as well as conceptual development trajectories 
in the design of effective/efficient assessment and intervention programs for students with LDM. 
We believe such approaches are complimentary and have the potential to become core 
methodological approaches for teaching and studying the conceptual understandings of students 
with LDM. In a similar way, this Working Group provides a venue to give and receive feedback 
on ongoing cutting-edge empirical work, which is reshaping how students with LDM are 
researched.  

Plan for Working Group 
The aim of this Working Group is to continue the conversation surround the intersection of 

mathematics education and special education. In particular, one of the major goals of this year’s 
Working Group sessions is to revised and finalize the proposal for a new book that university 
professors and teacher educators can use for teaching graduate students about the intersection 
between mathematics education and special education.  

This Working Group intends to accomplish the following:  

• Review the draft of the book proposal  
• Make addition or modification to current book proposal draft  
• Finalize the content of the book (Table of Content)  
• Identify potential team members who will work on each of the proposed chapters 
• Each Team will brainstorm the outline of the chapter. 
• Discuss the logistics of collaborations to carrying out the identified tasks following the 

PME-NA conference, and  
• Discuss further collaborations leading to additional publication and funding 

opportunities.  
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These goals are further outlined across sessions as follows: 
 

Session 1: Introduction and Progress-to-date 
GOAL: To identify participant’s affinity for establishing potential sub-groups for 

collaborative work pertinent to math and special education.  

• Prior members will briefly introduce the Working Group’s history and describe the 
collaborations that have emerged in prior years.  

• Participants will each introduce themselves and their current research and interest in 
students with LDM. 

• Form sub-groups or collaborative teams among participants based on their common 
(research) interests.  

• Group(s) will be engaged in discussing common research agenda and potential 
collaboration opportunities.  

Session 2: Book Proposal Development 
GOAL: Revised and finalize book proposal  

• Revise the content of the book proposal  
• Revise the draft Table of Content; come up key words we think readers may use. 
• Revise the list of book titles with which our book will compete and revisit /revise how 

our book will differ from these titles.  
• Revise the selling points of our book based on draft book proposal 

Session 3: Continue the ongoing collaboration 
GOAL: Establish next steps for both the sub-groups and the whole Working Group.  

• Identify potential team members who will work on each of the chapters, so that after this 
PME-NA conference, the team will continue their collaborative work in making the 
abstract for the chapter and even drafting the chapter. 

• Team members work together and exchange ideas of how to approach each of the 
chapters, and perhaps discuss the logistics of collaborations to carrying out the identified 
tasks, and  

• Discuss further collaborations leading to additional publication and funding 
opportunities.  

• Determine what our next whole group meeting will entail (e.g., PMENA Working Group 
for the following year) 

Anticipated Follow-up Activities  
Throughout the year, the members of this Working Group will work collaboratively creating 

the outline of the chapter assigned, drafting the abstract and then the content for the chapter. In 
addition, the members of this working group will continue their effort in forming collaborative 
research agenda and conducting collaborative research that is relevant to the goal of this 
Working Group.  
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