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Detecting Test Fraud Using Bayes Factors

Abstract

According to Wollack and Schoenig (2018), score differencing is one of six types of statistical

methods used to detect test fraud. In this paper, we suggested the use of Bayes factors

(e.g., Kass & Raftery, 1995) for score differencing. A simulation study shows that the

suggested approach performs slightly better than an existing frequentist approach. We also

demonstrate the usefulness of the suggested approach using a real data example.
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Producers and consumers of test scores are increasingly concerned about fraudulent

behavior before and during the test. Such behavior is more likely to be observed when

the stakes are high, such as in licensing, admissions, and certification testing (van der

Linden, 2009). Cheating incidents such as educator cheating in Atlanta public schools (e.g.,

Kingston, 2013) and “cram schools” selling items on SATs (e.g., Strauss, 2014) recently

made headline news. Standard 6.6 of the Standards for Educational and Psychological

Testing (American Educational Research Association, American Psychological Association,

& National Council for Measurement in Education, 2014) includes the recommendation

among others that testing programs with high-stakes consequences should have defined

procedures for detecting potential testing irregularities.

Naturally, there is a growing interest in statistical/psychometric methods for detecting

fraudulent behavior on tests (e.g., Cizek & Wollack, 2017). Wollack and Schoenig (2018)

categorized the statistical methods to detect test fraud/cheating into six categories. One

of these six categories is “score differencing”—this category of methods essentially involves

a test of the hypothesis of equal ability of an examinee over two sets of items S1 and S2

against the alternative hypothesis that the examinee’s performance is better on one of

these item sets. Score differencing can be performed to detect several types of test fraud

including fraudulent erasures (e.g., Sinharay, Duong, & Wood, 2017), fraudulent and large

gain scores (e.g., Fischer, 2003), and item preknowledge (e.g., Sinharay, 2017a, 2017b;

Sinharay & Jensen, 2019).1

The existing methods for score differencing are mostly frequentist methods and the

inferences from these methods are based on frequentist p-values. The use of these p-values

may lead to a large proportion of false positives; Skorupski and Wainer (2017) provided an

example where a statistic with a Type I error rate of 0.01 and power of 0.99 is expected

to flag 1,386 examinees in a population of 70,000 examinees that includes 1% cheaters,

but half of the flags are false positives. In addition, researchers such as van der Linden

and Lewis (2015), Allen and Ghattas (2016), and Skorupski and Wainer (2017) argued

1Note that the term “score differencing” was used in only one of these references. However, the methods

suggested in these references are various versions of “score differencing.”
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that a frequentist p-value corresponding to a statistic for detecting test fraud is an answer

to the question “What is the probability of a significant value of the test statistic given

that the examinee did not commit fraud?” that is not the question of interest in the

context of detecting test fraud. Consequently, van der Linden and Lewis (2015), Allen

and Ghattas (2016), Sinharay (2018), and Skorupski and Wainer (2017) encouraged more

applications of Bayesian statistical methods to the detection of test fraud. In addition, a

recent statement by American Statistical Association (Wasserstein & Lazar, 2016) included

the recommendation that researchers and practitioners should explore Bayesian tools such

as Bayes factors as alternatives to frequentist p-values.

However, Bayesian methods have rarely been applied in score differencing, with the

exception of Wang, Liu, and Hambleton (2017). The goal of this paper is to suggest a new

approach for score differencing using Bayesian methods.

Background: Score Differencing

Consider a test with I items each of which is dichotomously scored.2 Let us assume

that one is interested in score differencing, that is, in testing the equality of the performance

on item sets S1 and S2 for an examinee whose true overall ability is θ. The sets S1 and S2

are non-overlapping and together constitute all items on the test. Let the true ability of the

examinee on S1 and S2 respectively be denoted as θ1 and θ2. Typically, in score differencing,

the null hypothesis is θ1 = θ2 and the alternative hypothesis is that the performance on one

item set is better than that on the other due to reasons such as test fraud. Let us assume,

without loss of generality, that the alternative hypothesis is that the performance on S2 is

better than that on S1 for the examinee, or, in other words, that θ2 is larger than θ1.

Let the scores for the examinee on the I items be denoted by X1, X2, ...XI . Let

X denote the collection of scores for the examinee on all the items on the test. Let

X1 = {Xi, i ∈ S1} and X2 = {Xi, i ∈ S2} respectively denote the collection of the scores of

2Although we deal with tests that include only dichotomous items, our suggested approach extends in a

straightforward manner to tests that include polytomous items.
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the examinee on the items in Sets 1 and 2. Let

Pi(θ) = P (Xi = 1|θ)

denote the probability of a correct answer on item i for an examinee with true ability θ.

For example, for the 2-parameter logistic model (2PLM),

Pi(θ) =
exp[ai(θ − bi)]

1 + exp[ai(θ − bi)]
,

where ai’s and bi’s respectively are the slope and difficulty parameters of the items.

The likelihood of the examinee, denoted as L(θ;X), can be computed as

L(θ;X) =
I∏
i=1

Pi(θ)
Xi(1− Pi(θ))1−Xi · (1)

For an examinee, let us define the maximum likelihood estimate (MLE) or the weighted

maximum likelihood estimate (WLE; Warm, 1989) of the examinee ability from the scores

on item-set S1 as θ̂1, that from the scores on S2 as θ̂2, and that from the scores on all the

items as θ̂.

Let us denote the log-likelihood for the examinee as l(θ;X), that is,

l(θ;X) = log(L(θ;X)).

The likelihood ratio test (LRT) statistic (e.g., Finkelman, Weiss, & Kim-Kang, 2010; Guo

& Drasgow, 2010) for testing the null hypothesis of equality of the examinee ability over S1

and S2 is given by

Λ = 2
[
l(θ̂1;X1) + l(θ̂2;X2)− l(θ̂;X)

]
= 2

∑
i∈S1

Xi log
Pi(θ̂1)(1− Pi(θ̂))
Pi(θ̂)(1− Pi(θ̂1))

+ 2
∑
i∈S2

Xi log
Pi(θ̂2)(1− Pi(θ̂))
Pi(θ̂)(1− Pi(θ̂2))

+2
∑
i∈S1

log
1− Pi(θ̂1)
1− Pi(θ̂)

+ 2
∑
i∈S2

log
1− Pi(θ̂2)
1− Pi(θ̂)

· (2)

To test the null hypothesis of equality of the examinee ability over S1 and S2 versus the

alternative hypothesis that ability over S2 is larger than that based on S1, Sinharay (2017a)
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suggested the signed likelihood ratio (SLR) statistic given by

Ls =


√

Λ if θ̂2 ≥ θ̂1,

−
√

Λ if θ̂2 < θ̂1·
(3)

The statistic Ls has an asymptotic standard normal distribution (e.g., Sinharay, 2017a;

Cox, 2006, p. 104) under the null hypothesis. A large value of Ls leads to the rejection of

the null hypothesis of no difference in performance over S1 and S2. Researchers such as

Sinharay (2017a), Sinharay (2017b), Sinharay and Jensen (2019), and Wang, Liu, Robin,

and Guo (2019) found the Type I error rate and power of Ls to be quite satisfactory in

comparison with those of the existing frequentist procedures for score differencing—so Ls

will be used as the only frequentist procedure for score differencing in this paper.

As demonstrated by several researchers (e.g., Guo & Drasgow, 2010; Sinharay, 2017a;

Sinharay & Jensen, 2019), statistics such as the Ls statistic can be used to detect several

types of test fraud including fraudulent erasures, fraudulent and large gain scores, and

item preknowledge. The item set S2 in these three contexts would be the set of items with

erasures, the set of items administered at the second time point, and the set of compromised

items.

Bayes Factor

Definition

The Bayes factor (e.g., Kass & Raftery, 1995) is a Bayesian approach for model

comparison. Let y denote the data and ψ denote the model parameters. Let p(y|ψ,M1)

denote the distribution of the data given the parameters of model M1 and p(ψ|M1) denote

the prior distribution under model M1. Then, the Bayes factor in favor of model M2 in

comparison to M1 is given by

BF21 =
p(y|M2)

p(y|M1)
, (4)
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where p(y|Mi) denotes the marginal probability of the data y under model Mi and can be

computed as

p(y|Mi) =

∫
ψ

p(y|ψ,Mi)p(ψ|Mi)dψ·

The larger (smaller) the value of BF21, the stronger (weaker) is the evidence in favor of

model M2 versus M1.

If one assumes prior probabilities of p(Mi) on model Mi, i = 1, 2, then one obtains

p(M2|y)

p(M1|y)
=

p(y|M2)

p(y|M1)

p(M2)

p(M1)
,

that is,

Posterior Odds in favor of Model 2 = BF21 × Prior Odds in favor of Model 2· (5)

Thus, the Bayes factor can be interpreted as the ratio between the posterior odds and prior

odds in favor of a model.

The Strength of the Evidence Provided by Bayes Factors

A large value of BF21 provides strong evidence in favor of model M2 versus model M1.

Kass and Raftery (1995) provided the following guidelines on the relationship between the

value of the Bayes factor and the strength of the evidence it provides in favor of Model 2

versus Model 1. Thus, for example, values of 3-20, 20-150, and larger than 150 of BF21,

Table 1. Interpretation of the Bayes Factor.

Bayes factor log of Bayes factor Evidence
1-3 0-1 Not worth more than a bare mention
3-20 1-3 Positive

20-150 3-5 Strong
>150 >5 Very strong

or values of 1-3, 3-5, or larger than 5 of log(BF21), provide a positive, strong, and very

strong evidence in favor of that model.
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Existing Applications to Educational and Psychological Measurement

Hoijtink, Mulder, van Lissa, and Gu (2019), Masson (2011), Morey, Romeijn, and

Rouder (2016), Wetzels et al. (2011), and Wagenmakers (2007) provided widely accessible

overviews of Bayes factors and described how they can be useful to researchers and

practitioners in psychology. Researchers such as Fox, Mulder, and Sinharay (2017), Gu,

Mulder, Deković, and Hoijtink (2014), Klugkist, Laudy, and Hoijtink (2005), Mulder et

al. (2009), Schnbrodt, Wagenmakers, Zehetleitner, and Perugini (2017), and Verhagen,

Levy, Millsap, and Fox (2016) showed how to use Bayes factors to test hypothesis regarding

covariance structures underlying IRT models, evaluate inequality-constrained hypothesis,

evaluate analysis of variance models with inequality constraints, evaluate hypothesis in

repeated measurements, perform sequential hypothesis testing, and test for measurement

invariance in IRT models. However, Bayes factors have not been applied to detection of

test fraud or to score differencing.

Bayes Factor for Score Differencing

One can consider score differencing as a comparison of two models M1 and M2, where

a common examinee ability (θ) underlies all the item scores (X) of the examinee under M1

and two different abilities, θ1 and θ2, underlie the scores (X1 and X2) of the examinee on

item sets S1 and S2 under M2. Thus, in score differencing, the model M1 represents no

performance difference, the model M2 represents a possible performance difference, the data

consist of X under both models M1 and M2, the parameters are θ under M1 and θ1 and θ2

with the restriction θ2 ≥ θ1 under M2. Let us assume a standard normal prior distribution

on θ under M1. To define the prior distribution under M2, let us assume that θ1 and θ2

are independent of each other and θ1 follows the standard normal distribution and θ2

follows a normal distribution with mean 0 and variance 10, but truncated so that θ2 ≥ θ1.

This joint prior distribution is essentially equal to 2φ(θ1)
1√
10
φ( θ2√

10
), where φ(.) denotes

the probability density function of the standard normal distribution.3 The assumption of

3Note that
∫ θ1=∞
θ1=−∞

∫ θ2=∞
θ2=θ1

2φ(θ1) 1√
10
φ( θ2√

10
)dθ1dθ2 = 1.
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a variance of 10 on θ2 acknowledges the possibility that under M2, θ2 may be large when

there is preknowledge (for example, Sinharay, 2017a, reported values between 2.16 and

2.81 of estimates of θ2 for three examinees who were flagged for cheating on a licensure

examination).

Then, the Bayes factor for score differencing can be computed as

BF21 =
p(X|M2)

p(X|M1)

=

∫ θ1=∞
θ1=−∞

∫ θ2=∞
θ2=θ1

2L(θ1;X1)L(θ2;X2)φ(θ1)
1√
10
φ( θ2√

10
)dθ1dθ2∫ θ=∞

θ=−∞ L(θ;X)φ(θ)dθ
· (6)

Larger values of BF21 provide more evidence in favor of a significant score difference; the

numbers in Table 1 can be used as guidelines on the strength of evidence in favor of a

significant score difference provided by various values of BF21.

An Illustration of the Application of Bayes Factors to Score Differencing

Consider a test with 20 items. Let us consider the true IRT model is the Rasch model

and the true item difficulty is 0 for all items. Let us consider that score differencing has to

be performed with the first 10 items and the last 10 items as the two item sets and that

the alternative hypothesis is that the performance is better on the second set. Consider 6

examinees all of whom obtain a total (or raw) score of 10 on the test, but

• Examinee 1 obtains raw scores of 5 and 5 on item sets 1 and 2, respectively.

• Examinee 2 obtains raw scores of 4 and 6 on item sets 1 and 2, respectively.

• . . .

• Examinee 6 obtains raw scores of 0 and 10 on item sets 1 and 2, respectively.

Table 2 provides the difference in raw score between the second half and the first

half, θ̂1, θ̂2, θ̂, the SLR statistic provided by Equation 3, and the Bayes factor provided

by Equation 6 for the six examinees. As one goes down the table, the score difference

increases, that is, the evidence becomes stronger in favor of Model 2 that corresponds to a
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Table 2. Results for six examinees in the Illustration.

Examinee Score Diff θ̂1 θ̂2 θ̂ SLR BF
1 0 0.00 0.00 0.00 0.00 0.68
2 2 -0.37 0.37 0.00 0.89 1.56
3 4 -0.77 0.77 0.00 1.81 5.64
4 6 -1.22 1.22 0.00 2.76 41.04
5 8 -1.85 1.85 0.00 3.81 793.5
6 10 -3.04 3.04 0.00 5.09 56373

Note: ‘Score Diff’ and BF respectively denote ‘Difference in the raw score’ and ‘Bayes
factor’.

possible performance difference. As a consequence, both the SLR statistic and Bayes factor

increases as one goes down the table. Noting that SLR statistic follows a standard normal

distribution under the null hypothesis, the null hypothesis of no performance difference

between the two halves of the test is not rejected for Examinees 1-2 and rejected for

Examinees 3-6 at 5% level. Table 2 implies that the evidence in favor of Model 2 (or, a

better performance on the second half) is not more than a bare mention for Examinees 1

and 2, positive for Examinee 3, strong for Examinee 4, and very strong for Examinees 5

and 6.

A Simulation Study

We used simulations based on real data to examine the properties of the suggested

Bayes factors and to compare the properties of the Bayesian factors to those of the SLR

statistic.

Study Design

The simulations were based on the item scores and response times of about 44,000 test

takers on one form of a subject of a state test. The test consists of 75 multiple-choice items.

There was no knowledge of examinees benefiting from any kind of test fraud on the test.

The item parameters of the data set were estimated under the 2PLM. The MLE of ability

8



parameter were computed for all examinees.

The data set was used to artificially create several simulated data sets that involve

different extents of item preknowledge, which leads to a performance/score difference. The

following two factors were varied in the simulations:

• the size of the set of compromised items (10, 20, or 30 items).

• the number of examinees in the sample who had item preknowledge as a percentage of

those who did not have preknowledge (5, 10, or 20).

To simulate the data and compare the two approaches, we repeated the following steps 100

times for each combination of values of the abovementioned factors:

1. Randomly select 10,000 examinees (who comprise a little less than a quarter of all the

examinees in the original data set) from the original data set. These 10,000 examinees

will play the role of those who did not have item preknowledge.

2. From the rest of the original data set, randomly select 500, 1,000, or 2,000 exam-

inees (that constitute 5, 10, or 20% of the 10,000) who would play the role of the

cheaters, that is, those who had item preknowledge.

3. From the 75 items in the data set, randomly choose the 10, 20, or 30 items that would

play the role of the compromised items.

4. For each combination of a compromised item and a cheater, artificially create item

preknowledge by replacing the item scores of the cheaters on the compromised items

by numbers randomly drawn from a Bernoulli distribution with success probability

equal to the success probability under the 2PLM with the abovementioned estimated

item parameters and ability equal to the estimated ability plus 2. Thus, it is assumed

that the effect of preknowledge on an item is equivalent to a boost in the ability

parameter for that item.

5. Compute the estimated item parameters for the 2PLM from the (changed) data set.
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6. Compute the MLEs of the examinee ability (truncated between -4.0 and 4.0) on the

whole test, compromised items, and non-compromised items from the data set using

the item parameters computed in Step 5.

7. Compute the Bayes factor and the SLR statistic for score differencing for all the exam-

inees in the (changed) data set using the estimated item parameters computed above.

Results from the Simulations

Figure 1 shows a scatter plot of the logarithm of Bayes factors versus the p-values for

the SLR statistic for a 5,000 examinees randomly drawn from all simulated examinees.

The true cheaters (those with preknowledge) are shown using black circles and the true

non-cheaters are shown using gray circles. Two vertical dashed lines show the p-values of

0.01 and 0.05. The figure shows that

• The points for true non-cheaters mostly appear to the right and the bottom (that is,

the Bayes factor is mostly small and p-value is mostly large for them) while those for

the true cheaters mostly appear to the left

• In general, the Bayes factor increases as p-value decreases

• The average Bayes factor is about 1.5 and 7.0 for p-values of 0.05 and 0.01, respectively.

• Several points lie along a vertical line at p-value=0.5. These are outcomes of the

statistic Λ in Equation 2 occasionally becoming negative.4

The distribution of the Bayes factors and p-values are not influenced much by

the percent of cheaters in the data set, but substantially influenced by the number of

compromised items. Therefore, for each value of the number of compromised items, we

pooled the Bayes factors and p-values over the three levels of percent of cheaters. Table 3

shows the percentage of examinees with various levels of values of Bayes factors and p-values

4Sinharay (2017a) noted this phenomenon that occurs when θ̂1 and θ̂2 are very close—a conclusion of no

significant score difference is made for the corresponding examinees.
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Figure 1. A scatter plot of the logarithm of Bayes factors versus the p-values for the SLR

statistic.

for 10, 20, and 30 compromised items. The levels for Bayes factors are those from Table 1.

The levels of p-values used in the table (< 0.001, 0.001-0.01, 0.01-0.05, and > 0.05) are

guided by the traditional interpretation of them found in, for example, (e.g., Wasserman,

2004, p. 157) who mentioned that p-values of < 0.01, 0.01-0.05, and > 0.05 provide very

strong evidence, strong evidence, and weak to no evidence against the null hypothesis.
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Table 3. The percent of examinees for different combinations of P-values and Bayes factors.

NC Bayes P-values for True Non-Cheaters P-values for True Cheaters
Factor > 0.05 0.01-0.05 0.001-0.01 < 0.001 > 0.05 0.01-0.05 0.001-0.01 < 0.001

10 < 1 88 0 0 0 11 0 0 0
1-3 8 1 0 0 23 4 0 0
3-20 0 3 1 0 0 26 13 0

20-150 0 0 0 0 0 0 12 4
> 150 0 0 0 0 0 0 0 6

20 < 1 94 0 0 0 4 0 0 0
1-3 2 2 0 0 9 3 0 0
3-20 0 1 1 0 0 15 14 0

20-150 0 0 0 0 0 0 15 12
> 150 0 0 0 0 0 0 0 28

30 < 1 95 0 0 0 3 0 0 0
1-3 1 2 0 0 6 2 0 0
3-20 0 1 1 0 2 12 10 0

20-150 0 0 0 0 0 0 14 11
> 150 0 0 0 0 0 0 0 41

Note: “NC” means number of compromised items.

Four columns towards the left of Table 3 show percentages of examinees among the true

non-cheaters and the four columns towards the right show percentages of examinees among

the true cheaters. Rows 1-5, 6-10, and 11-15 show the percentages for 10, 20, and 30

compromised items, respectively. Note that the percentages add up to 100 for either the

non-cheaters or cheaters for each number of compromised items. Table 3 shows that

• In agreement with Figure 1, the percentages of examinees are large for small Bayes

factors and large p-values and also for large Bayes factors and small p-values.

• The p-value is larger than 0.05 and the Bayes factor is smaller than 1 for a large

percentage of true non-cheaters (88, 94, and 95 percent, respectively, for 10, 20, and

30 compromised items), but for a small percentage of true cheaters.
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• As the number of compromised items increases, the percentages for the true non-

cheaters do not change much, but the percentage of more extreme p-value and Bayes

factor increases for the true cheaters.

• When the p-value is between 0.01 and 0.05 (a range of values for which a frequentist

often rejects the null hypothesis and, in this context, would often conclude that the

corresponding examinee benefited from preknowledge), the Bayes factor is smaller than

3 (that is, provides evidence that is not worth more than a bare mention) about 25%

of the times. Wetzels et al. (2011) also noted the tendency of the Bayes factor to be

smaller than 3 when the p-value is between 0.01 and 0.05.

The comparison of the power of statistics for detecting aberrant examinees has been

performed using receiver operating characteristics (ROC) curves at least since Drasgow,

Levine, and Williams (1985). Given the values of a statistic (whose larger value indicates

more aberrance) from a simulated data set, an ROC curve requires the computation of the

following two quantities for several values of c:

• the false alarm rate (or “false positive rate” or “Type I error rate”), F (c), which is the

proportion of times when the statistic for a non-aberrant examinee is more than c

• the hit rate (or “true positive rate” or “power”), H(c), which is the proportion of times

when the statistic for an aberrant examinee is more than c

Then, a graphical plot is created in which F (c) is plotted along the x-axis, H(c) is plotted

along the y-axis, and a line joins {F (c), H(c)} for several values of c. The line is referred to

as the ROC curve. Figure 2 shows the ROC curves for the SLR statistic (solid line) and

Bayes factor (BF; dotted line) for the case of 10 compromised items and 10% aberrant

examinees. A diagonal line is shown for convenience. It is possible to use the area under the

ROC Curve (AUROC; Hanley & McNeil, 1982) of a statistic as a measure of how powerful

the statistic is. The AUROC of a very powerful statistic is expected to be close to 1 because

the hit rate of such a statistic will be close to 1 for most values of the false positive rate.

In the context of detecting aberrant examinees, researchers such as Sinharay (2017b) used

13
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Figure 2. The ROC curve for 10 compromised items and 10% aberrant examinees.

truncated ROC areas, or areas under the ROC curves truncated between 0 and 0.1 and

divided by 0.10—that is because false positive rates larger than 0.10 are hardly employed in

the context of detecting aberrant examinees (e.g., Wollack, Cohen, & Eckerly, 2015). The

truncated ROC area of a very powerful statistic is expected to be close to 1. The truncated

ROC areas of the SLR statistic and Bayes factor are very close for all the simulation cases

and the Bayes factor has slightly larger truncated ROC areas than the SLR statistic in a few

simulation cases. The average truncated ROC areas of the SLR statistic and Bayes factor,

averaged over all simulation cases, are 0.90 and 0.92, respectively. Thus, the simulations

show that the Bayes factor seems to flag the cheaters a little more often compared to the

14



SLR statistic while not flagging the non-cheaters too often and provide some evidence of

that the Bayes factor may be superior compared to the SLR statistic in some cases.

Real Data Example

Data

Let us consider item-response data from one form of a non-adaptive licensure

assessment. The data set was analyzed in several chapters of Cizek and Wollack (2017)

and also by Sinharay (2017a), and Sinharay and Jensen (2019). The form includes 170

operational items that are dichotomously scored. Item scores were available for 1,644

examinees for the form. The licensure organization who provided the data identified 61

items on the form as compromised. The organization also flagged 48 individuals on the

form as possible cheaters from a variety of statistical analysis and a rigorous investigative

process that brought in other information; these 48 examinees will be treated as true

cheaters. As in Sinharay (2017a), the interest here will be in detecting item preknowledge.

Analysis and Results

The 2PLM was used for the analysis. The marginal maximum likelihood estimation

procedure was used to estimate the item parameters from the data set and these estimates

were used in the computation of the statistics. The values of the SLR statistic and the

Bayes factor were computed for each individual in the data set. The MLEs of the abilities,

restricted to the range -4.0 and 4.0, were used to compute the SLR statistic. The set

of 109 non-compromised items was considered as the first set of items and the set of 61

compromised items were considered as the second set of items.

Figure 3 shows scatter plots of the SLR statistic versus the logarithm of the Bayes

factor (left panel) and the p-values corresponding to the SLR statistic versus the logarithm

of the Bayes factor (right panel) for all the examinees in the data set. In the figure, the

gray circles correspond to the examinees who were not flagged by the licensure organization

and the black circles correspond to the examinees who were flagged as possible cheaters by
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Figure 3. Scatter plots of the SLR statistic and the corresponding p-value versus the Bayes

factor for the Real Data Example.

the licensure organization. In the left panel, horizontal and vertical dashed lines represent

cutoffs of log(3) and 1.64 for the Bayes factor and the SLR statistic, respectively. In the

right panel, horizontal and vertical dashed lines represent cutoffs of log(3) and 0.05 for the

Bayes factor and the p-value. This choice of the cutoff for the Bayes factor is justified by

the fact that in our simulations, the 95th percentile of the Bayes factor for true non-cheaters

was close to 3, and also by findings of researchers such as Wetzels et al. (2011) who noted

that p-values around 0.05 are roughly equivalent to Bayes factors around 3. The two

statistics are positively correlated, that is, the Bayes factor increases as the SLR statistic

increases. The right panel of the figure looks similar to Figure 1—so the relationship

between the Bayes factor and SLR statistic is similar over the simulated and real data sets.

Interestingly, for the examinee in the top right corner of the figure, the SLR statistic is 5.02
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and the Bayes factor is about 68,000.

Table 4. The Percent of Examinees Above the Cutoff Values for the Licensure Data.

Examinees SLR Bayes Factor
Not Flagged 8.4 4.1

Flagged 29.2 27.1

The percent of examinees for whom the SLR statistic and the Bayes factor are above

their respective cutoffs (1.64 and 3) are provided in Table 4. The first row of Table 4

shows the percents above the cutoff values among the examinees who were not flagged

by the licensure organization. The second row of the table shows the percents above the

cutoff values only among the 48 examinees who were flagged by the licensure organization.

Table 4 shows that the SLR statistic is larger than the cutoff more often compared to the

Bayes factor for both the “Not flagged” and “Flagged” group of examinees. Thus, the use

of the Bayes factor with a cutoff of 3 would lead to a more conservative approach than the

use of the SLR statistic with a cutoff of 1.64. While the conservativeness of the Bayes factor

will protect the administrators from false positives, it will lead to fewer true positives.

Table 4 also shows that the percent above the cutoff for each statistic is much larger

among the examinees flagged by the licensure organization (bottom row of the table) than

among those not flagged (top row of the table)—this result provides some evidence that

the statistics are somewhat successful—they are significant at a larger rate among the

examinees who are true cheaters.

Note that several experts recommended against making conclusions by dichotomizing

evidence using one frequentist or Bayesian statistic (e.g., Wasserstein & Lazar, 2016) and

we agree with that viewpoint—Table 4 is just an attempt to compare the values of the

SLR statistic and Bayes factor. In a real application, to determine whether an examinee

was involved in test fraud, an investigator would most likely use the value of one of these

statistics for the examinee as one piece of evidence along with other non-statistical evidence

such as seating chart and proctor report (e.g., Tendeiro & Meijer, 2014).
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Conclusions

In this paper, Bayes factors (e.g., Kass & Raftery, 1995) were suggested as an

alternative tool for score differencing (Wollack & Schoenig, 2018). A simulation study was

used to examine the performance of the Bayes factor in comparison to that of a frequentist

statistic for score differencing. In a real-data application, the Bayes factor was found to lead

to slightly smaller false positive rate and slightly smaller hit rate compared to a frequentist

statistic for score differencing.

van der Linden and Lewis (2015) suggested the posterior odds of cheating for detecting

various types of cheating on tests. They provided details on the computation of the

posterior odds to detect fraudulent erasures. Given Equation 5, the Bayes factor is closely

related to posterior odds. However, the computation of the posterior odds to detect

fraudulent erasures in van der Linden and Lewis (2015) was predicated on a specialized IRT

model that applies only to fraudulent erasures and the approach cannot be easily extended

to score differencing.

In this paper, the cutoff for the Bayes factor was set equal to 3, which is the boundary

between “non-positive” and “positive” evidence, in the real data example. This choice

led to results that are comparable and close to those with frequentist p-values. In future

research, other choices of the cutoff can be explored. It is possible to use a simulation-based

cutoff—such a choice will lead to a false positive rate that is very close to the level of

significance.

While this paper is one of the first to apply Bayesian methods to score differencing,

it is possible to extend our research in several ways. First, more simulated data and real

data should be analyzed using the method. Second, it is possible to compare the suggested

Bayesian approach to other frequentist methods and to the Bayesian predictive checking

method of Wang et al. (2017). Third, while some limited simulations (not reported here)

shows the suggested Bayes factor to not be influenced much by the prior distributions on the
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ability parameters,5 the sensitivity of the suggested Bayes factor to the prior distribution

can be studied further. Fourth, it is possible to extend the approach to cases where both

item scores and response times of examinees are available; the use of both scores and times

could lead to a more powerful approach. Finally, other Bayesian approaches such as the

use of the posterior probability (e.g., Hoijtink et al., 2019; Gelman et al., 2014) of a model

given the data could be used to score differencing.
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Gu, X., Mulder, J., Deković, M., & Hoijtink, H. (2014). Bayesian evaluation of inequality

constrained hypotheses. Psychological Methods, 19, 511–527.

Guo, J., & Drasgow, F. (2010). Identifying cheating on unproctored internet tests: The

Z-test and the likelihood ratio test. International Journal of Selection and

Assessment, 18, 351–364.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology, 143, 29-36.

Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing hypotheses

using the Bayes factor. Psychological Methods. (Advance online publication.

doi:10.1037/met0000201)

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical

Association, 90, 773-795.

20



Kingston, N. (2013). Educator testing case studies. In J. A. Wollack & J. J. Fremer (Eds.),

Handbook of test security (pp. 299–311). New York, NY: Routledge.

Klugkist, I., Laudy, O., & Hoijtink, H. (2005). Inequality constrained analysis of variance:

A Bayesian approach. Psychological Methods, 10, 477–493.

Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis

significance testing. Behavior Research Methods, 43, 679–690.

Morey, R. D., Romeijn, J.-W., & Rouder, J. N. (2016). The philosophy of Bayes factors

and the quantification of statistical evidence. Journal of Mathematical Psychology,

72, 6–18.

Mulder, J., Klugkist, I., van de Schoot, R., Meeus, W. H. J., Selfhout, M., & Hoijtink, H.

(2009). Bayesian model selection of informative hypotheses for repeated

measurements. Journal of Mathematical Psychology, 53, 530–546.

Schnbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini, M. (2017). Sequential

hypothesis testing with Bayes factors: Efficiently testing mean differences.

Psychological Methods, 22, 322–339.

Sinharay, S. (2017a). Detection of item preknowledge using likelihood ratio test and score

test. Journal of Educational and Behavioral Statistics, 42, 46–68.

Sinharay, S. (2017b). Which statistic should be used to detect item preknowledge when the

set of compromised items is known? Applied Psychological Measurement, 41, 403–421.

Sinharay, S. (2018). Application of Bayesian methods for detecting fraudulent behavior on

tests. Measurement: Interdisciplinary Research and Perspective, 16, 100–113.

Sinharay, S., Duong, M. Q., & Wood, S. W. (2017). A new statistic for detection of

21



aberrant answer changes. Journal of Educational Measurement, 54, 200–217.

Sinharay, S., & Jensen, J. L. (2019). Higher-order asymptotics and its application to

testing the equality of the examinee ability over two sets of items. Psychometrika, 84,

484–510.

Skorupski, W. P., & Wainer, H. (2017). The case for Bayesian methods when investigating

test fraud. In G. J. Cizek & J. A. Wollack (Eds.), Handbook of detecting cheating on

tests (pp. 214–231). Washington, DC: Routledge.

Strauss, V. (2014). The six-step SAT cheating operation in Asia and how to stop it.

(Retrieved from

https://www.washingtonpost.com/news/answer-sheet/wp/2014/11/16/the-six-step-

sat-cheating-operation-in-asia-and-how-to-stop-it/)

Tendeiro, J. N., & Meijer, R. R. (2014). Detection of invalid test scores: The usefulness of

simple nonparametric statistics. Journal of Educational Measurement, 51, 239–259.

van der Linden, W. J. (2009). Conceptual issues in response-time modeling. Journal of

Educational Measurement, 46, 247–272.

van der Linden, W. J., & Lewis, C. (2015). Bayesian checks on cheating on tests.

Psychometrika, 80, 689–706.

Verhagen, J., Levy, R., Millsap, R. E., & Fox, J.-P. (2016). Evaluating evidence for

invariant items: A Bayes factor applied to testing measurement invariance in IRT

models. Journal of Mathematical Psychology, 72, 171–182.

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values.

Psychonomic Bulletin & Review, 14, 779–804.

22



Wang, X., Liu, Y., & Hambleton, R. K. (2017). Detecting item preknowledge using a

predictive checking method. Applied Psychological Measurement, 41, 243–263.

Wang, X., Liu, Y., Robin, F., & Guo, H. (2019). A comparison of methods for detecting

examinee preknowledge of items. International Journal of Testing, 19, 207–226.

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory.

Psychometrika, 54, 427–450.

Wasserman, L. (2004). All of statistics: A concise course in statistical inference. New

York, NY: Springer.

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context,

process, and purpose. The American Statistician, 70, 129–133.

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J.

(2011). Statistical evidence in experimental psychology. Perspectives on Psychological

Science, 6, 291–298.

Wollack, J. A., Cohen, A. S., & Eckerly, C. A. (2015). Detecting test tampering using item

response theory. Educational and Psychological Measurement, 75, 931–953.

Wollack, J. A., & Schoenig, R. W. (2018). Cheating. In B. B. Frey (Ed.), The SAGE

encyclopedia of educational research, measurement, and evaluation (pp. 260–265).

Thousand Oaks, CA: Sage.

23


	2020 Behaviormetrika ERIC Title
	BehaviorMet

