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Abstract

The methodology of single-case experimental designs (SCED) has been expanding its efforts toward rigorous
design tactics to address a variety of research questions related to intervention effectiveness. Effect size
indicators appropriate to quantify the magnitude and the direction of interventions have been recommended
and intensively studied for the major SCED design tactics, such as reversal designs, multiple-baseline designs
across participants, and alternating treatment designs. In order to address complex and more sophisticated
research questions, two or more different single-case design tactics can be merged (i.e., “combined SCEDs").
The two most common combined SCEDs are (a) a combination of a multiple-baseline design across
participants with an embedded ABAB reversal design, and (b) a combination of a multiple-baseline design
across participants with an embedded alternating treatment design. While these combined designs have the
potential to address complex research questions and demonstrate functional relations, the development and
use of proper effect size indicators lag behind and remain unexplored. Therefore, this study probes into the
quantitative analysis of combined SCEDs using regression-based effect size estimates and two-level hierarch-
ical linear modeling. This study is the first demonstration of effect size estimation for combined designs.

Keywords: Combined designs; effect size; hierarchical linear modeling; regression models; single-
case experimental design.

an aggregate unit such as a class) is measured
repeatedly across time during conditions (e.g.,
baseline and intervention condition or multi-
ple intervention conditions). Data from differ-
ent conditions are compared to evaluate the
efficacy or effectiveness of one or multiple
interventions. The basic question examined
using SCEDs is whether there is evidence for
a functional relation between the systematic
manipulation of an independent variable (i.e.,

Single-case experimental designs (SCEDs) are
rigorous experimental designs that have been
applied in a variety of fields (e.g., biomedical
research, language and speech therapy, beha-
vior modification, school psychology, counsel-
ing psychology, physical therapy, special
education, and neuropsychological rehabilita-
tion) to evaluate the efficacy and effectiveness
of interventions (Kennedy, 2005; Kratochwill
etal., 2014; Moeyaert, Ferron, etal., 2014). In

SCEDs, a case (one unit [e.g., participant], or
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E-mail: mmoeyaert@albany.edu

the conditions) and its consistent effect on
a dependent variable (i.e., the target behavior)
(Kratochwill et al., 2010; Kratochwill & Levin,
2014; J. Ledford et al., 2018).

Valid and reliable structured visual ana-
lysis techniques (J. Ferron & Jones, 2006;

© 2020 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17489539.2020.1747146&domain=pdf

2 EBP ADVANCEMENT CORNER

Kratochwill et al., 2010) have been devel-
oped for interpreting SCED results and are
widespread. Visual analysis has a rich his-
tory and is strongly embedded in the field of
SCEDs. It is considered to be a wvalid
approach for identifying “weak”, “moder-
ate”, or “strong” evidence for a causal rela-
tionship between an independent and
dependent variables by evaluating data
using six steps described by Kratochwill
et al. (2010). Following the technical doc-
umentation of the What Works Clearinghouse
(WWC) Standards for Design and Analysis of
SCEDs (Kratochwill et al., 2010), the field
is now moving toward estimating effect size
indicators to supplement and support the
visual analysis results. Efforts have been
made to develop effect size estimates for
“single” SCEDs such as the alternating
treatment design, multiple-baseline design,
and ABAB reversal design (e.g., Lenz, 2013;
Maggin et al., 2011; Manolov & Solanas,
2013; Moeyaert, Ugille, Ferron, Beretvas,
et al., 2014; Moeyaert, Ugille, Ferron,
Onghena, et al., 2014; Parker, Vannest, &
Davis, 2011; Parker et al., 2014; Shadish
et al, 2008, 2014; Swaminathan et al.,
2010; Wolery et al., 2010). However, the
formulation of these effect size indicators
for “combined” SCEDs is not yet fully
developed. This study is timely, especially
given the potential of these types of designs
to answer rich research questions and to
make internally and externally more valid
inferences about the efficacy or effective-
ness of an intervention.

Combined single-case designs

Shadish and Sullivan (2011) conducted
a review of SCED studies published in
2008 to review their design and data char-
acteristics. Their search resulted in 809
unique SCED studies, 73.1% of which con-
sisted of “single” designs: 54.3% were
Multiple-Baseline Designs (MBD) across

participants; 8.2% represented Withdrawal
and Reversal Designs (WRD, such as ABAB
reversal designs); 8.0% were Alternating
Treatment Designs (ATDs); and 2.6% were
Changing Criterion Designs (CC). The
authors found that a proportion of SCEDs
(26.9%) do not use a “single” design, but
rather a design that combines characteris-
tics of two or more “single” SCED designs —
so-called “combined SCEDs” (J. Ledford &
Gast, 2018). Specifically, the combination
of MBD + WRD appeared to be the most
popular one (12.0%), followed by the com-
bination of MBD + ATD (9.9%).

Combined or combination SCEDs (J.
Ledford & Gast, 2018) offer three major
advantages compared to single SCEDs.
First, they allow assessment of multiple
research questions. For example, Trottier
et al. (2011) looked at the functional rela-
tion between peer-tutoring interventions
and the number of spontaneous appropriate
communicative acts generated by students
with autism spectrum disorder (ASD) as the
main focus of their study. The use of
a combined SCED let the researchers exam-
ine whether normally developing peers
could independently teach children with
ASD to use speech-generating devices or
whether the typically developing peers had
to first be taught how to instruct the chil-
dren with ASD. As a result, this combined
design study allowed the researchers to
evaluate two different interventions simul-
taneously: (a) teaching typically developing
peers to give timely prompts to children
with ASD to use the device; and (b) letting
typically developing peers teach children
with ASD to use the device (Trottier et al.,
2011). Additionally, the two interventions
were alternated for each child, and the
interventions were staggered across partici-
pants (n = 2), resulting in an MBD + ATD
combined design.

Second, a combined SCED allows for
more evaluations of the effectiveness of



the treatment as more replications are pre-
sent. For example, the MBD + WRD com-
bined design allows for replication of
a treatment effect after removing and rein-
troducing the treatment within
a participant as well as across participants,
taking into account different start times
for the treatment. In case of the MBD +
ATD combined design, the replication of
alternating treatments can be seen both
within each participant and across partici-
pants at different points in time. The repli-
cation effects can be identified both within

and across participants. Replication is
a central theme in SCED studies
(Kratochwill et al., 2010) because it

enhances the external wvalidity of the
resulting conclusions. Indeed, there is
additional documentation of the effect at
more points in time and more replications
within one case.

Third, due to the dynamic nature of com-
bined designs, they grant an opportunity to
modify pure SCEDs by adding design ele-
ments in the middle of the study. For
instance, Kelley et al. (2002) initially used
an MBD to investigate the effectiveness of
competing reinforcement schedules on
functional communication (Figure 1).
However, the data demonstrated problems.
The disruptive behaviors for two out of the
three participants were not decreasing; as
a result, the authors slightly changed the
condition from Functional Communication
Training (FCT) without extinction to FCT
with extinction, ensuring treatment fidelity
for all the other steps in the study. In this
way, the introduction of the ABAB allowed
the study to continue and provided an
opportunity to address the core research
question.

The analysis of the majority of the com-
bined design studies typically relies on visual
analyses and non-overlap indices to identify
and make inferences about the intervention
effects (Chung & Cannella-Malone, 2010;
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Jason & Frasure, 1979; Matson & Keyes,
1990; Trottier et al.,, 2011). For example,
Lindberg et al. (1999) used an MBD + WRD
combined design study to evaluate the effects
of manipulation and reinforcement on self-
injurious behaviors of two participants, solely
relying on visual analysis. Another combined
SCED study, MBD + ATD (Trottier et al.,
2011), reported the results of the effective-
ness of peer-tutoring on the use of speech-
generating devices for students with autism
in social game routines using visual analysis
and the Percentage of Non-Overlapping Data
index (PND; Schlosser et al., 2008; Scruggs
et al., 1987)). Relying on visual analysis and
non-overlap indices is unfortunate because
the opportunity is lost to precisely address
additional questions through quantitative
summaries (e.g., What is the magnitude of
the intervention effect? To what extent is
the intervention immediately effective? To
what extent does the intervention remain
effective over time? Are all the participants
benefiting equally from the intervention?).
While visual analysis and non-overlap indices
provide an initial indication of effectiveness
of an intervention, effect size indices are
needed to provide additional information
through quantitative synthesis. Effect size
indicators can be used to quantify the magni-
tude of intervention effectiveness at multiple
points in time both for each participant and
across participants. In addition, effect size
estimates are supplemented with a standard
error that reflects precision for the individual
estimate and which can be used as a weight
for quantitative summaries or analyses (i.e.,
multilevel meta-analysis; Moeyaert, 2019).
Therefore, in this article, we are breaking
new ground by applying the effect size logic
to quantify intervention effectiveness for
combined SCEDs. The effect size estimates
will provide a more comprehensive picture
regarding intervention effects by taking into
account the design complexity of combined
SCEDs, and they can be used in meta-
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Figure 1. An example of modifying the multiple baseline design by adding a phase change reversal. Frequency of target
behaviors for three participants. Adapted from “The Effects of Competing Reinforcement Schedules on the Acquisition of

by M.

Functional Communication,”

E. Kelley, D. C. Lerman, and C. M. Van Camp, 2002, Journal of Applied Behavior

Analysis, 35(1), p. 62.

analyses to assess generalizability across

interventions and outcome variables.
Previous research has focused on the cod-

ing schemes and synthesis of results for

each of the “single” SCEDs, including the
simple AB phase design, the MBD across
participants, WRD (ABAB), and ATDs
(Moeyaert, Ugille, Ferron, Onghena, et al.,



2014; Shadish, Kyse et al., 2013).
Researchers have not investigated (1) cod-
ing and effect size estimation for combined
SCEDs, and (2) meta-analysis of studies
involving combined SCEDs. Due to the
lack of methodology to quantify combined
SCEDs, these studies tend to be simplified
or excluded from meta-analyses, which
contributes to biased effect size estimates
and/or publication bias (e.g.,, Kokina &
Kern, 2010; Wang et al., 2013). Therefore,
we focus on how to quantify treatment
effects for combined designs. Thus, the pur-
pose of this study is to illustrate effect size
estimation for combined designs using real
data. In particular, we will focus on the
MBD + WRD combined designs (=45.97%)
and the MBD + ATD combined designs
(=37.91%) as they are the two most popu-
lar classes of combined SCEDs: 83.38% of
the combined SCEDs (Shadish & Sullivan,
2011).

METHOD

We identified combined design studies and
then randomly selected one MBD + WRD
and one MBD + ATD study. Combined
SCEDs were identified by examining primary
studies from four meta-analyses of SCEDs
(Heyvaert et al., 2014; Kokina & Kern, 2010;
Moeyaert et al.,, 2019; Shogren et al., 2004)
and 20 primary studies that evaluated reading
fluency interventions. These meta-analyses
and primary SCED studies were chosen
because the first author had access to raw
data. The meta-analysis of Heyvaert et al.
(2014) included 59 studies of which 11 studies
(i.e., 18.64%) were combined SCEDs. The
review by Kokina and Kern (2010) consisted
of 18 SCEDs of which only four (i.e., 22.22%)
were combined SCEDs. The peer-tutoring
meta-analysis by Moeyaert et al. (2019)
included 65 studies and contained nine com-
bined SCEDs (i.e., 13.85%). The last meta-
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analysis (Shogren et al., 2004) had 13 SCED
studies and two of them (15.38%) were
combined SCEDs. Finally, of the 20 primary

studies that examined reading fluency
interventions, seven (i.e., 35%) were
combined SCEDs. Thus, a substantial

proportion of reviewed studies was combined
SCEDs, a finding that is consistent with the
review of Shadish and Sullivan (2011). The
full list of the 33 combined design studies
from the meta-analyses that we reviewed is
available from the first author upon request.
Of these combined designs, the combinations
MBD + WRD (i.e., 58.82%, 20 studies) and
MBD + ATD (i.e., 23.52%, eight studies) were
the most popular. This also supports the
results from the study of Shadish and
Sullivan (2011) and our decision to focus on
these two classes of combined SCEDs in this
study.

One study per combined SCED type was
randomly selected from the set to demonstrate
the coding of the design matrix and estimation
of the effect sizes. The design matrix gives an
overview of the overall data structure and
includes all variables (e.g., participant identi-
fier, the dependent variable, the independent
variables) together with scores assigned to
these variables. All variables needed to esti-
mate the effect sizes of interest should be
reflected in the design matrix. For more infor-
mation about the design matrix for SCEDs, see
Moeyaert, Ugille, Ferron, Beretvas et al.
(2014). However, other studies from the selec-
tion could also have been chosen. Raw data for
the dependent variable in SCEDs are tradition-
ally graphically displayed as can be seen in
Figure 2 (MBD + WRD) and Figure 3 (MBD
+ ATD). As a result, researchers can retrieve
raw data from the graphical displays in pri-
mary studies. We used WebPlotDigitizer
(Rohatgi, 2011) to retrieve raw data. The raw
data represent the measures of the dependent
variable over time. The dependent variable
(i.e., targeted behavior) together with other
variables (i.e., phase and time indicators) that
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Figure 2. An example of the mixed design: MBD + PCR. Percentage of intervals with problem behaviors for three
participants. Adapted from “The Effects of Choice-making on the Problem Behaviors of High School Students with
Intellectual Disabilities,” by S. Seybert, G. Dunlap, and J. Ferro, 1996, Journal of Behavior Education, 6 (1), p. 58.

are needed to conduct the statistical analysis and will be discussed later. For more informa-
are part of the design matrix. The design tion about the data retrieval process, see
matrix needed for effect size estimation of the Moeyaert, Maggin, et al. (2016). The raw
combined designs is displayed in Tables 1 and 4 data from Figures 2 and 3 can be found in the
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participants. Adapted from “The Effects of Presession Manipulations on Automatically Maintained Challenging Behavior
and Task Responding,” by Y.-C. Chung, and H. I. Cannella-Malone, 2010, Behavior Modification, 34(6), p. 493.

supplement to this article (together with the
SAS codes that can be used for the analyses) to

facilitate replication of the analyses demon-
strated in this study, using the same data sets.
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Table 1. Design matrix for Case 1 (i.e., Scoft) — Seybert
et al. (1996)

Case Session Outcome AI1IB1 B1A2 A2B2

65.92
29.89
55.71
33.46
50.84
33.82
34.15
27.39
33.36
23.35
20.75
44.32
21.51
60.35
66.91
32.76
48.10
16.19
23.37
22.43
16.24
20.29
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RESULTS

Effect sizes are used as a complement to
visual analysis in primary studies and can

be used for between-study comparison of
treatment effects and for meta-analytic pur-
poses. Visual analysis has been well docu-
mented by Kratochwill et al. (2010),
whereas the focus of the current study is
on the quantitative summary of combined
SCEDs. The analyses in the empirical illus-
tration sections are performed using SAS
software, Version 9.4 (© SAS Institute
Inc.) SAS codes are available in the supple-
ment to this article.

Multiple-baseline design — Withdrawal or
reversal design

To demonstrate the effect size estimation for
the first class of combined SCEDs, we
selected the study of Seybert et al. (1996).
Seybert et al. (1996) investigated the differ-
ences in problem and on-task behaviors in
choice and no-choice conditions of three
independent participants with intellectual
disabilities. In the choice condition, partici-
pants were given a choice of the domestic
task to do. In contrast, in the no-choice con-
dition, participants were assigned to do

Table 2. Results of ordinary least squares analysis and Empirical Bayes analysis per

participant
Estimate
Case Parameter OLS Estimate (SE) (Standard error of prediction)
Scoftt Bm 61.31 (6.90) 57.74 (11.87)
[;” —24.28 (9.34) —-19.30 (-)
321 20.73 (8.91) 18.02 (10.35)
[33] —40.01 (9.34) —37.38 (15.50)
Bob [302 38.20 (4.99) 36.37 (11.77)
[312 —22.47 (8.39) —-19.30 (-)
[322 1.31 (9.55) 2.11 (10.32)
Maria [303 16.53 (2.97) 18.90 (11.77)
[313 —12.82 (6.64) —19.30 (-)
[323 26.99 (8.40) 29.85 (10.44)
[333 —10.90 (7.97) —10.98 (15.50)
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Table 3. Results of two-level analysis across participants

Parameter Estimate (SE) t P
Fixed Effects
Baseline level Al 0o 37.67 (11.74) 3.21 .082
Change in level A1 - B1 6 —19.30 (4.59) —4.21 <.001
Change in level B1 — A2 0, 16.66 (10.26) 1.62 227
Change in level A2 — B2 05 —24.18 (15.76) —1.53 367
Random Effects Estimate (SE) z P
Baseline level Al Afo 391.51 (406.93) 0.96 .168
Change in level A1 — B a2, 0 (/) / /
Change in level BT — A2 Aiz 236.77 (291.24) 0.81 .208
Change in level A2 — B2 G2, 414.59 (701.37) 0.59 277
Within-case variance o 207.75 (36.40) 5.71 <.000
Table 4. Design matrix for Case 1 — Data retrieved from Chung and Cannella-Malone
(2010)
Case Session Outcome Treatment; Treatment,
1 1 0.27933 0 0
1 2 29.88827 0 0
1 3 39.38547 0 0
1 4 24.86034 0 0
1 5 22.90503 0 0
1 6 19.55307 0 0
1 7 23.18436 0 0
1 8 46.64804 0 0
1 9 0 1 0
1 10 0.27933 0 1
1 11 0 1 0
1 12 0 0 1
1 13 0 1 0
1 14 0 0 1
1 15 0.27933 1 0
1 16 0.27933 0 1
1 17 0.27933 0 1
1 18 0.27933 1 0
a certain domestic task. The outcome vari- (Scott) to n = 29 (Maria). Seybert et al.

able reflected the percentage of problem
behaviors and task engagement in the choice
versus no-choice conditions. The data were
recorded using the 15-s partial interval
recording: that is, only the five last seconds
was recorded per each 15-s interval. Data
points per participant ranged from n = 22

(1996) used the combination of the MBD +
WRD to investigate the effectiveness of
choice-making on problem behavior.
A graphical display is given in Figure 2.
Seybert et al. (1996) claimed that the MBD
+ WRD allowed them to provide further
evidence for the changes in the treatment
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phase as a result of manipulating the inde-
pendent variable — choice versus no-choice
conditions. The inter-rater observer percent
agreement ranged from 81% to 99% for
occurrence and nonoccurrence of problem
behaviors. Seybert et al. (1996) analyzed
the data using visual analysis techniques,
and the results were reported as percentages
of intervals with problem behaviors. This
combined SCED has the potential to demon-
strate a functional relation between the
choice-making condition and problem beha-
vior as the effectiveness of the treatment can
be evaluated at three or more different
points in time. In addition, most of the
phases included at least five measurements
(one choice and one no-choice condition for
Maria included only four measurements).
The MBD embedded in the combined design
meets the WWC design standards as it
includes at least three potential demonstra-
tions of treatment effectiveness across at
least three different points in time. The
WRD embedded in the combined design
meets basic replications standards for Scott
and Maria whereas this is not the case for
Bob. There appears to be a non-effect for the
withdrawal of the treatment. In addition,
the WRD for Bob does not meet the WWC
design standards as there are only two
potential demonstrations of treatment effec-
tiveness. According to Gast et al. (2018) this
prohibits the conclusion that a functional
relation is present for Bob. Notwithstanding
of this non-effect and lack of experimental
control for Bob, effect size estimation for this
combined design can still be meaningful.
Researchers might be interested in quantify-
ing the size of the effect, and this quantifica-
tion can be used to confirm the results based
on the visual analysis. This effect size esti-
mate can be used afterward for meta-analy-
tic purposes. We focused on estimating
regression-based effect size estimates for the

occurrence of problem behaviors in choice-
making conditions for three participants
with intellectual disabilities. The statistical
model and empirical illustration are dis-
cussed in the following sections.

Statistical model Step 1: single-level
analysis. The single-level analysis can also
be called an individual analysis as it involves
a case-by-case evaluation of treatment
effectiveness. Here, we are interested in
demonstrating  the  effectiveness  of
a treatment at different points in time
within  participants. In the simplest
scenario, the results are an estimate of
change in levels between baseline and
treatment phases for each participant
separately. In other words: “Is there evidence
for change in level between adjacent phases?” In
this particular scenario, the design matrix
contains dummy-coded variables indicating
the specific phase to which a measurement
belongs (see Table 1). We chose the
following notation to distinguish between
the consecutive phases: Al and A2
indicate, respectively, the first and
the second baseline phase, and B1 and B2
denote the first and the second treatment
phase. For the ABAB phase design, three
dummy variables, AIBI, BI1A2, and A2B2
are coded as suggested by Moeyaert, Ugille,
Ferron, Beretvas, et al. (2014) and Shadish,
Kyse, et al. (2013). AIBI = 1 for all the

measurement occasions after the first
baseline phase, BIA2 = 1 for all the
measurement occasions after the first

treatment phase and A2B2 equals 1 during
the last treatment phase (see Table 1). In
order to predict the outcome score at the
ith measurement occasion, the following
multiple regression equation can be used
and parameters can be estimated using
Ordinary Least Squares (i.e., OLS):



Y = By + ByATB1, + B,B1A2; + B5A2B2;
+ e; with e~N(0, 07) (1)

When all three dummy-coded variables equal
zero (i.e., AIBI = BIA2 = A2B2 = 0), then the
indicated phase is the first baseline phase ().
Each dummy variable represents the change
from an earlier to its adjacent phase. Thus, for
example, BIA2 refers to the change in level
from B1 to A2 (i.e., difference in level between
Treatment 1 and Baseline 2). An extension
here could be to investigate whether there
are changes in linear (Moeyaert, Ugille,
Ferron, Beretvas, et al.,, 2014) or non-linear
trends (Hembry et al., 2015) or changes in
variance of scores between adjacent phases
(Baek & Ferron, 2013).

Statistical model Step 2: two-level
analysis. The two-level analysis involves an
aggregate estimate of the treatment
effectiveness across participants. Here, we are
investigating the replication of the treatment
effect across participants (within the same
study), in addition to the replication of the
treatment effect within participants. As
a consequence, more generalized conclusions
can be made, which strengthens the external
validity of the inferences. In addition,
variability in effectiveness of the treatment
between participants can be quantified. One
way to perform this analysis is to conduct
a two-level analysis, which takes the
hierarchical nature of the data into account;
namely, measurements are nested within each
of multiple cases.

The coefficients from the first level: ﬁoj,
Bij, By, and Bs;, can be modeled as varying
at the second (participant) level. By fitting
this multilevel model, overall average
changes in level from one phase to another
can be obtained in addition to how indivi-
dual participants deviate from that overall
change. The level 1 and level 2 equations
are presented in Equations (2) and (3):
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Level 1:

+ e with e;~N(0, 07)
with e;~N(0, 02)

Level 2:
Boj = 6o + Uo; Uoj
Bi; = 10 + uy; Usj
1 10 o 1
/ with /
ﬁzj = 00 + Uy Uaj
Bs; = 630 + us; Usj
2
0 ouo Ouour  Ougu,  Ougus
2
N 0 O'uw up 0u1 ou1uz 0“1 us
’ 2
0 0“2“0 0U2U1 ouz 0U2U3
2
0 0u3u0 0“3“1 0U3U2 GU3

The first line in Equation (3) indicates
that the baseline level for participant j is
modeled as a function of an average base-
line level, Byo, plus a random deviation from
this mean, ug. The subsequent equations
describe the average change in level
between Al and B1 (6qp), change in level
between B1 and A2 (6), and change in
level between A2 and B2 (650)phases,
respectively. The variability in baseline
level (i.e., 050) and variability in changes
in levels (i.e., 0 , 02 and o) are captured
by estimating the variance/covariance
matrix.

Empirical illustration. We use the Seybert
et al. (1996) study for the empirical
illustration of the single-level (individual)
and two-level (average) effect size estimates
for the MBD + WRD design. Seybert et al.
(1996) investigated the effects of choice-
making on the problem behaviors of three
high school students with intellectual
disabilities. In this example, we are looking
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only at the outcome variable of occurrence conditions (i.e., no-choice — denoted as Al
and nonoccurrence of problem behaviors and A2 in Figure 4) are interrupted by
within choice and no-choice conditions. The treatment conditions (i.e., choice — denoted
start of the intervention was staggered across  as Bl and B2 in Figure 4). Participant 2 (i.e.,
the three participants, and two baseline Bob) has no second treatment phase as the

100 -

1 1
B1 Al : 82 ; A2
i i
80 1 no-choice choice . no-choice i choice
6o=37.67 | i 62=16.66 :
60 - By =-2428 i Scott
i i

100 -
no-choice choice no-choice
80 -
6, = 37.67
60 -

w
(=]
o

100553 no-choice choice no-choice choice

Percentge of Intervals with Problem Behavior

Sessions

Figure 4. Estimated parameters for each participant across phases. Note: The lines indicate case-specific and study-
specific estimates.



problem behavior remained low when the
treatment was removed (phase A2). The
graphical presentation of the data is given
in Figure 2. The coding of the design
matrix for participant 1 (i.e., Scott) in
accordance with the mathematical model
presented in Equation (1) can be found in
Table 1 (the same coding is applied for the
other cases). The SAS code to run the
analyses is available as a supplement to
this article.

The output of the single-level analysis is
presented in Table 2, and the visual pre-
sentation of the estimated parameters is
provided in Figure 4. From the single-
level analysis, we can conclude that there
is a demonstration of treatment effective-
ness at three different points in time for
Case 1 (i.e., Scott). When the choice-mak-
ing intervention is introduced, we see
a significant drop in problem behavior
[By; = —24.28, t(25) = —2.60, p = .018 and
B3, = —40.01,t(25) = —4.28,p = .032]. When
the  choice-making intervention  is
removed, we see a significant increase in

problem  behavior [B,; = 20.73,t(25) =
2.33,p = .032;]. For Case 2 (i.e., Bob) and
Case 3 (i.e., Maria), there was only one
demonstration of significant treatment

effectiveness [Case 2: B;, = —22.47,t(20) =

—2.68, p=.015, and Case 3: B,; = 26.99,
t(25) =3.21p = .004]. According to the
WWC design standards (Kratochwill
et al., 2010), the choice-making interven-
tion was only effective for Scott as three
demonstrations of treatment effectiveness
at three different points in time are
required to demonstrate a causal relation-
ship between the introduction of the treat-
ment and the change in outcome score.
The two-level analysis was conducted to
estimate the overall baseline level and
changes in level between subsequent
phases across the three cases in addition
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to between-case variability in these esti-
mates. The two-level analysis enhances
the generalizability of treatment effective-
ness beyond the cases under investigation.
For didactic purposes (allowing visual pre-
sentation of the estimated coefficients,
Figure 4), a small dataset with only three
cases is used. In order to run a two-level
analysis and obtain generalizable esti-
mates, it is suggested to use a larger data-
set, including more than three cases. The
results indicate that the choice-making
intervention succeeded in reducing the
problem behavior and large effect size esti-
mates were obtained for the change in
level between Al and Bl and A2 and B2
[610 = —19.30, t(66) = —4.21, p < .001; B3¢
= —24.18,t(1) = —1.53,p = .367]. Howev-
er, only one estimate (ém) is statistically
significant (p <.05).

An additional advantage of using the
two-level analysis is that the between-
case variance in treatment effect estimates
can be estimated. Most variability was
found in the estimate of the between-
case variance for the change in level
between A2 and B2 (Table 3, random
effects). The results of the single-level
and two-level analyses are visually pre-
sented in Figure 4.

Another advantage of using the two-level
analysis is that empirical Bayes estimates of
the case-specific parameters can be obtained.
The empirical Bayes estimate can be viewed as
a fully Bayesian approach that uses informa-
tion of the full dataset to build prior distribu-
tions (Shadish, Rindskopf, et al., 2013).
Therefore, the empirical Bayes estimates are
shrunken toward the mean (the overall aver-
age fixed effects). These case-specific estimates
are improved estimates compared to the sin-
gle-level ordinary least squares estimates
because information from the entire dataset
is used (in other words, the empirical Bayes
estimate is “borrowing strength” from all
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available study evidence). For an introduction
to empirical Bayes estimates, see Casella
(1985). Instead of running three separate sin-
gle-level analyses, one two-level hierarchical
linear model can be run, providing both the
effect size estimates across cases and case-spe-
cific estimates. The results of the case-specific
estimates based on the empirical Bayes esti-
mates are displayed in Table 2 and closely
match the results of the single-level ordinary
least squares analyses.

Multiple-baseline design — Alternating
freatment design

In Alternating Treatment Designs (ATDs),
two or more treatments (possibly following
a baseline phase) are rapidly alternated
(Barlow & Hayes, 1979; Barlow et al,
2009), or treatment sessions are alternated
with no treatment sessions. Most of the
ATDs are characterized by a baseline phase
and two or more treatments, which are
alternated during the treatment phase. In
this scenario, the researcher is interested in
the differential effect between the two treat-
ment effects (i.e., the relative effectiveness of
two or more interventions; Horner & Odom,
2014). Other ATDs are characterized by an
alternation of two or more treatments, or
with alternation of two or more treatments
with baseline sessions. In this later scenario,
a pure baseline comparison is not possible
unless the alternation is proceeded or fol-
lowed by a phase only including baseline
measures (Zimmerman et al.,, 2019). If the
baseline sessions are alternated with treat-
ment comparisons from the beginning, it is
unknown how the participants perform
without being introduced to the treatment
(which could be a confounding factor). In
addition, multitreatment inference can
occur as it can be the case that multiple
treatments are effective because they are
given in an alternated fashion (one treat-
ment might strengthen the effectiveness of

the other treatment and vice versa).
Zimmerman et al. (2019) indicate that pos-
sible multitreatment interference can be
detected with the inclusion of an initial base-
line and visual analysis that compares the
initial baseline level to the baseline observa-
tions that are part of the alternating
sequence. Similarly, a phase for a specific
treatment can be included so that the obser-
vations within the treatment phase can be
compared to the treatment observations that
are part of the alternating sequence.

To demonstrate a functional relation
between the independent and dependent
variables, the data from different treatments
should not overlap. In addition, the ATD
study should include at least four data
points of comparison in each of the treat-
ments and at least five repetitions of alter-
nating sequence to meet the standards of
What Works Clearinghouse (Horner & Odom,
2014; Kratochwill et al., 2010).

This combined SCED combines the
unique strengths of ATDs with MBDs (i.e.,
external validity, making more generalized
treatment effects). That is, the combination
of ATDs with MBDs uses the rapid compar-
ison of two or more conditions (ATDs) and
the start of the intervention phase is stag-
gered across participants (MBD). In this
way, the combination of ATD + MBD
allows identifying the treatment that has
a larger effect with higher degrees of inter-
nal and external validity of measurements.
Another possibility of the ATDs is that
researchers may choose to continue only
the treatments with the strongest effects in
the final phases of the study (Kratochwill
et al., 2010).

Statistical model Step 1: single-level
analysis. Similar to the single-level (i.e.,
case-specific) analysis for the MBD + WRD,
a case-by-case intervention effectiveness
evaluation can be performed for MBD +
ATD. More specifically, the following



research question is of interest: “Is there
a change in level for Treatment 1 and Treatment
2, respectively?” The effect sizes of interest can
be obtained by introducing dummy variables
for each treatment. The dummy-coded
variables, Treatment,,s, indicate the treatment
phase. For instance, Treatment,,; equals one if
the score belongs to treatment phase m on
moment i, zero otherwise. If all the
Treatment,,;s are zero, then the measurement
occasion belongs to the baseline phase. For
two treatments, the following regression
equation can be wused (using treatment
indicators Treatment;; and Treatment,;).

Y; = By + B,Treatment,; + B, Treatment;;
+ e; with ~N(0, 07) (4)

B, indicates the baseline level, B, refers to
the change in level between the baseline
and Treatment 1 and 3, refers to the change
in level between the baseline and
Treatment 2. The difference between f;
and 3, refers to the differential effect (e.g.,
“Is one of the treatments relatively more effec-
tive?”). Equation (4) can be extended by
modeling linear or non-linear trends
(Hembry et al.,, 2015; Moeyaert, Ugille,
Ferron, Beretvas, et al., 2014), or adding
more dummy variables in case more than
two treatments are examined.

Statistical model Step 2: two-level
analysis. This step is similar to Step 2
described for MBD + WRD design, where
coefficients from the first level can be
modeled as varying at the second level:

Level 1: Y = By; + By;Treatment;;
+ ﬂijreatmentz,-
+ ej with e;~N(0,02)  (5)

Level 2:
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This two-level analysis allows for making
more generalized conclusions as overall
average estimates across cases are obtained
(the Bs in Equation (6)). As noted before,
case-specific estimates are available by
requesting the empirical Bayes estimates.
By estimating the variance/covariance
matrix, the between-case variance in base-
line level (050) and treatment effect esti-
mates (0 and o} ) can be obtained.

EMPIRICAL ILLUSTRATION

The study of Chung and Cannella-Malone
(2010) will be used for the empirical
demonstration. This study used an ATD
that is characterized by a baseline phase
followed by an alternating phase in which
baseline and treatment sessions are alter-
nated. In addition, the ATD is repeated
across multiple independent participants,
and the start of the randomization phase
is staggered across the participants (MBD).
The purpose of the Chung and Cannella-
Malone study was to examine separate
and combined effects of motivation opera-
tions of three participants with multiple
disabilities in four pre-session conditions:
(1) attention, (2) response blocking, (3)
attention with response blocking, and (4)
non-interaction. The dependent variable
was stereotypic behavior, which was mea-
sured using the 10- partial interval
recording. Inter-observer data were calcu-
lated for pre-session (39% of data) and
treatment (40% of data) conditions, with
the agreement reaching 98% and 99%.
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The graphical display of the data can be

found in Figure 3 (i.e., copied from the
original study) and Figure 5 (i.e.,

recreated graph, using the retrieved data
obtained with WebPlotdigitizer; Rohatgi,
2011).
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Figure 5. Estimated parameters for the single-level analysis and two-level analysis. The line during the baseline indicates
the overall average baseline level estimate; the lines during the intervention indicate the estimated challenging behavior
during the pre-session access intervention and the challenging behavior during the no pre-session access intervention.



For this empirical demonstration, we will
analyze the problem behavior for the three
participants of the study of Chung and
Cannella-Malone (2010). During the treat-
ment, participants did two tasks: Task A and
Task B, which were individualized to the
needs and skills of the participating stu-
dents. Students did the tasks in two condi-
tions as shown in Figure 3: (1) pre-session
access condition that was identified in the
functional analysis part of the study and (2)
no pre-session access. Because of the indi-
vidual needs in the Chung and Cannella-
Malone (2010) study, the treatment phases
are participant-specific. This is commonly
the case using SCEDs as one of the
strengths of this design is to adjust the treat-
ment according to the participant's needs.
As a consequence, the baseline versus treat-
ment comparison for the three participants
is not completely the same (i.e., Lilly: base-
line — 5 min blocking; Anna: baseline -
10 min alone and Kellie: baseline — 5 min
blocking). Therefore, strictly speaking, no
experimental conclusions can be drawn
from this combined design (Ledford and
Gast, 2018). However, the treatment phases
can be treated as subcategories of the same
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treatment and as a consequence it is still
meaningful to investigate generalization of
the effect across the three participants. In
the original study, the data were visually
analyzed, and the results were reported as
percentages of intervals with problem beha-
vior. Chung and Cannella-Malone (2010)
reported that the intervention was success-
ful for two out of the three participants,
whose problem behaviors noticeably
decreased. The results of the intervention
for the third participant were contradictory
(i.e., the intervention condition identified
as successful in the previous experiment
failed to decrease problem behaviors).
Notwithstanding, the interventions were
successful for only two out of the three
participants, it is still worth estimating the
size of the intervention effect to comple-
ment this finding. The coding of the design
matrix for Case 1 (i.e., Lilly) in accordance
with the mathematical model presented in
Equation (4) can be found in Table 4. The
SAS codes to run the analyses are available
as a supplement to this article.

The output of the single-level analysis is
presented in Table 5. From the case by case
analysis, we can conclude that there is

Table 5. Results of ordinary least squares analysis and Empirical Bayes analysis
per participant

Estimate
(Standard error
Case Parameter Estimate (SE) of prediction)
Lilly Bo 25.84 (3.34) 26.69 (11.68)
B, —25.73 (5.39) —30.46 (1.07)
B, —25.67 (5.39) —21 60 (6.49)
Anna B, 48.40 (4.52) 6 (11.58)
B, —38.53 (5.48) —30.75 (1.07)
B, —20 36 (5.39) —15.11 (6.01)
Kellie B, 0 (5.87) 65.03 (11.56)
B, —25 93 (7.79) —30.44 (1.07)
g —4.02 (7.79) —8.59 (6.03)
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Table 6. Results of two-level analysis across parficipants

Parameter Estimate (SE) t P

Fixed Effects
Baseline level 0o 44.96 (11.67) 3.85 .057
Change in level Treatment 1 6 —30.55 (4.10) —7.44 .012
Change in level Treatment 2 0, —15.10 (6.26) —2.41 152

Random Effects Estimate (SE) z P
Baseline level Ago 381.27 (399.56) 0.95 7
Change in level Treatment 1 Afh 1.16 (43.95) 0.03 489
Change in level Treatment 2 o 66.37 (122.25) 0.54 293
Within-case variance o2 251.33 (36.64) 6.86 <.0001

a demonstration of treatment effectiveness
for both interventions at two different
points in time for Case 1 (i.e., Lilly) and
for Case 2 (i.e., Anna) at the .05 signifi-
cance level. When both pre-session and no
pre-session access are introduced, we see
a significant drop in problem behavior for
Lilly [Casel: 3, = —25.73,t(15) = —4.77,p
= .0002 and B, = —25.67, t(15) = —4.76, p
= .0003], and Anna [Case2: B, = —38.53, t
(41)= —7.03,p<.0001 and B, = —20.36, t(41)
= —3.78,p = .0005]. For Kelly (Case 3),
there was only one demonstration of treat-

ment effectiveness [B, = —25.93,(39) =
—3.33 p=.0019].

The two-level analysis was conducted to
generalize treatment effectiveness beyond
individual cases. Again, for didactic pur-
poses, a small dataset with only three
cases is used. In order to run a two-level
analysis and obtain generalizable estimates,
it is recommended to use a larger dataset.
The results indicate that both the pre-ses-
sion access and no pre-session access inter-
ventions succeeded in reducing the problem
behaviors as negative estimates were
obtained for the change in level between
the baseline and Treatment 1 and the base-
line and Treatment 2 [6;9 = —30.55,t(61) =
—7.44,p = 012;050 = —15.10,t(61) = —2.41,
p = .152]. However, only the estimate of

the effect of Treatment 1 is statistically sig-
nificant (p < .05). As can be seen in Table 6,
the between-case variance in the treatment
effects was large for Treatment 2 [0 =
66.37, Z = 0.54, p =.293], and the within-
case residual variance is statistically signifi-
cant [62 = 251.33, Z = 6.86, p < .0001].

The visual presentation of the single-level
analysis and two-level analysis is given in
Figure 5.

As mentioned earlier, an extra advantage
of using the two-level model is that case-
specific estimates are obtained in addition
to the overall average estimates across
cases. The results of the case-specific esti-
mates based on the empirical Bayes esti-
mates are displayed in Table 5 and closely
resemble the results of the single-level
analyses.

DISCUSSION

Previous research in the field of SCEDs
solely focused on estimating intervention
effectiveness using data from “single”
SCEDs. This study expands on this and
introduces an analysis technique suitable
to estimate treatment effectiveness for
more complex SCEDs, namely “combined
SCEDs”. This study is the first study to
demonstrate how applied researchers can



use an extension of established methodol-
ogy to come up with an effect size estimate
appropriate for combined designs. The pro-
posed technique is generic and not limited
to combined designs. For instance, by
excluding predictors in the two-level mod-
els, the technique can be used to quantify
treatment effects across single SCEDs.
Combined SCEDs are combinations of sin-
gle SCEDs, and are frequently used as they
are more internally and externally valid
and can answer richer research questions.
The two most popular combined designs are
discussed in detail, namely the MBD +
WRD and MBD + ATD. For these combined
designs, we discuss (a) the mathematical
models appropriate for the quantitative
analysis, (b) the coding of the design
matrix, (c) the statistical software to per-
form the analysis, (d) the interpretation of
the output tables, and (e) the visual presen-
tation of the obtained coefficients. We
demonstrate the process using data from
previously published studies. The purpose
is to assist single-case researchers in draw-
ing valid and reliable inferences regarding
the treatment effectiveness for complex
designs.

The single- and two-level hierarchical lin-
ear modeling (HLM) techniques are sug-
gested. The two-level HLM is appropriate
as both participant-specific and overall
average study-specific estimates are
obtained simultaneously (instead of run-
ning separate single-level analyses for each
case), which leads to drawing more gener-
alized inferences. Empirical Bayes estimates
of the participant-specific treatment effects
are more precisely estimated compared to
the OLS (single-level) estimates, but they
are biased toward the average effect. By
ignoring the hierarchical structure of the
data (i.e., measurements are nested within
cases, and cases are nested within study),
biased standard errors are obtained (the
standard errors are too small due to
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ignoring the dependency), and, conse-
quently, the analysis is prone to Type
I errors. The two-level HLM provides
regression-based effect size estimates and
their standard errors. Therefore, they can
be used afterward for meta-analytic pur-
poses. A third level can be added to the
model, and overall average treatment effec-
tiveness can be estimated across studies. In
addition, the variability in treatment effec-
tiveness between studies can be explored. If
a large amount of variability is identified,
moderators can be added to the model.
Another advantage of summarizing treat-
ment effects across studies is the increased
power to identify true treatment effects.

Limitations and future research directions

The HLM model introduced in this study is
the most basic model, which ignores, for
instance, data trend and autocorrelation,
and is only appropriate for continuous out-
comes. In addition, use of conventional
HLM requires assumptions about multivari-
ate normality that need to be met in order
to make valid inferences (Raudenbush &
Bryk, 2002). This was beyond the scope of
this study as the focus was on the logic of
modeling combined design SCEDs, which is
already a complexity. However, use of the
HLM is flexible, and other complexities can
be introduced into the model. For instance,
in case a researcher is studying a target
behavior or skill in which a trend is
expected, the introduced models can be
extended by including a time indicator vari-
able in the treatment phase. This results in
two effect size estimators of interest: (1)
change in level of the dependent variable
when introducing the treatment and (2) the
trend during the treatment phase. Two-
level hierarchical linear modeling including
a linear time trend is discussed in detail in
Moeyaert, Ugille, Ferron, Beretvas, et al.
(2014).
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Another complexity relates particularly
to the MBD + ATD design. In ATDs, the
effectiveness of two (or more) treatments
is compared with a common baseline
phase, which introduces dependency. The
model can be further extended by exploring
options to model this dependency (by, for
instance, estimating the covariance or using
a more complex estimation technique if
more cases within a study are included,
specifically robust variance estimation;
Hedges et al.,, 2010). Last, when using
HLM, caution needs to be exercised when
interpreting the between-case variance esti-
mates as severely biased estimates can be
obtained (Moeyaert et al., 2013). The lim-
itations discussed here are not specific to
HLM of combined SCEDs, but for using
HLM in general as an analysis technique
for the quantitative integration of SCED
data.

In addition, the results of the two studies
discussed in this article should be interpreted
with caution because in both of them there
was a lack of experimental control. In Seybert
et al. (1996), the withdrawal and reversal
design embedded in the combined design did
not meet the basic replication standards for
one of the participants. In addition, there was
a non-effect for the withdrawal of the treat-
ment for that same participant. As
a consequence, to meet the WWC design stan-
dards to demonstrate experimental control,
there is an additional basic replication needed
for one of the participants of the Seybert et al.
(1996) study. Similarly, in Chung and
Cannella-Malone (2010), the treatment to
reduce problem behaviors was effective for
two out of three participants. In addition, the
effectiveness of the treatment was investigated
across slightly different treatment phases. In
order to meet the WWC design standards, the
treatment phases across the participants
should be identical and there should be three
demonstrations of the effectiveness of the
treatment at three different points in time.

Effect size estimation for these combined
designs is still informative as it quantifies the
magnitude of treatment effect. This quantifi-
cation provides an overall summary of the
study findings (and variability between parti-
cipants in treatment effectiveness) and can be
used for meta-analysis purposes afterward.
However, we encourage applied SCED
researchers designing combined SCEDs that
meet the WWC design standards for experi-
mental control. In order to demonstrate our
methodology, we were limited to published
combined designs. The examples included
are typical for the field and are solely used to
demonstrate the analysis technique.

In terms of future research directions, the
suggested models can be extended by adding
case characteristics (gender, age, race, etc.) to
investigate their moderating effect on the
treatment effectiveness. However, recent
research related to power indicates that at
least 12 cases are needed, or 7 cases in combi-
nation with at least 40 measurement occa-
sions, to be able to include case
characteristics in the analyses (Moeyaert
et al., 2017). This, of course, depends on the
particular predictors and the value of the true
treatment effect. Simulation studies can be
performed in order to investigate the power
for a particular set of design conditions. Again,
this is beyond the scope of this paper. Other
ways of coding the design matrix are also pos-
sible depending on the specific research ques-
tions and structure of the data being analyzed.

To further enhance the internal validity,
single-case researchers might consider
introducing randomization when develop-
ing the combined SCED design. As dis-
cussed in depth by J. R. Ledford et al.
(2018), several forms of randomization can
be incorporated in the design. First, the
start and the retrieval of the intervention
can be randomized. In this scenario, it is
recommended that the randomization does
not start until baseline stability is estab-
lished. Second, the order of the conditions



can be randomized, which is typically done
in ATDs. Unrestricted randomization is not
recommended to avoid conditions not
representing ATDs (i.e., all baseline condi-
tions could be chosen first) or to avoid that
a certain randomized pattern is consistently
chosen (i.e., treatment 1 is always adminis-
tered after treatment 2). A third randomiza-
tion form is the random assignment of
participants to intervention start points.
This is relevant for multiple-baseline
designs across participants. Incorporating
randomization in the design allows for use
of randomization tests to make conclusions
related to treatment effectiveness. The
advantage of such tests is that the sampling
distribution is built based upon the rando-
mization patterns and as a consequence, no
parametric assumptions are made and
needed (for more details about randomiza-
tion, see J. M. Ferron & Levin, 2014;
Heyvaert et al., 2017). Inclusion of rando-
mization has the potential to reduce the risk
of biased effect size estimates.

In order to increase the external validity of
treatment effectiveness and contribute to evi-
dence-based decisions in research, practice
and policy, multiple SCED studies can be sum-
marized. Previous research demonstrates how
the multilevel meta-analytic framework can
be used to combine single SCEDs (Moeyaert,
2018; Moeyaert, Ugille, Ferron, Onghena,
et al.,, 2014). Therefore, future research is
needed to demonstrate how pure and com-
bined SCEDs can be combined using the mul-
tilevel meta-analytic approach. Similarly,
a following-up study can be conducted to
evaluate the consequences of ignoring the
complex nature of combined designs.

CONCLUSIONS

This study is the first study introducing
and demonstrating a promising methodo-
logical framework for effect size estimation
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for combined SCEDs. The two-level hier-
archical model is recommended as it has
the possibility to include wvariables to
account for the combined design complex-
ity. In this study, the logic of modeling the
combined SCED study is introduced,
empirical illustrations are given, analysis
output is discussed and SAS code is sup-
plemented. Single-case researchers are
given the tools (and are encouraged) to
modify and/or further extend the models.
The proposed method of coding and esti-
mating effect sizes for combined SCEDs
can be a useful technique to inform
researchers and practitioners about the
effectiveness of interventions.
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