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Abstract 

Children’s cognitive control and knowledge at school entry predict growth rates in 

analogical reasoning skill over time; however, the mechanisms by which these factors interact 

and impact learning are unclear. We propose that inhibitory control is critical for developing 

both the relational representations necessary to reason and the ability to use these 

representations in complex problem solving. We evaluate this hypothesis using computational 

simulations in a symbolic connectionist model of analogical thinking, DORA/LISA (Discovery 

Of Relations by Analogy; Doumas, Hummel, & Sandhofer, 2008).  Longitudinal data from 

children who solved geometric analogy problems repeatedly over six months show three 

distinct learning trajectories though all gained somewhat: analogical reasoners throughout, non 

analogical reasoners throughout, and transitional - those who start nonanalogical and grew to 

be analogical. Varying the base level of lateral inhibition in DORA affected the ability to learn 

relational representations, which, in conjunction with lateral inhibition levels used in LISA 

during reasoning, simulated accuracy rates and error types seen in the three different learning 

trajectories. These simulations suggest inhibitory control may not only impact reasoning 

ability, but may also shape the ability to acquire relational knowledge given reasoning 

opportunities.  

 

Keywords: analogical reasoning, relational knowledge, development, computational modeling, 

cognitive control 
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Analogical reasoning, the process of representing information as systems of relationships 

and mapping between these representations, is ubiquitous in learning and discovery throughout 

the lifespan, and is part of what makes humans uniquely intelligent and adaptive (Gentner, 2003; 

Penn, Holyoak & Povinelli, 2008).  Analogical reasoning may play a crucial role in childhood, 

serving as a cognitive-bootstrapping mechanism that enables children to make increasingly 

abstract inferences and generalizations (e.g., Gentner, 2003), and supporting learning across a 

wide range of educational domains (Richland & Simms, 2015).   The mechanisms by which 

children’s analogical reasoning improve, however, are not well understood.  In particular, little 

attention has been paid to the processes by which children develop the relational representations 

used for analogical reasoning.   

Children’s cognitive-control resources have been implicated as one source of individual 

differences in relational representation and reasoning.  Also described as executive function (EF) 

(Diamond, 2013), these resources refer to the ability to use selective attention to manipulate the 

contents of working memory, and are believed to include a variety of functions including 

inhibitory control (IC), updating, and shifting (Bainich, 2009). Cross-sectional studies have 

revealed that children who can solve analogies successfully make mistakes when the 

requirements for cognitive control are raised, either by increasing the requirements for 

controlling attention in the face of distraction, or increasing the complexity of the relations 

(Richland, Morrison & Holyoak, 2006; Thibaut, French & Vezneva, 2010).  The difficulty of 

controlling attention to relations in the face of distraction has been identified across children 

from different cultural and linguistic backgrounds (Richland, Chan, Morrison & Au, 2010). 

Computational work has provided support for the interpretation that these errors are due to low 

levels of resources for inhibitory control (Morrison, Doumas & Richland, 2011).  
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However, a full theory of relational reasoning development must go beyond performance 

accuracy to provide a mechanism for developmental change over time. There is reason to believe 

that cognitive-control resources not only predict performance at a single time point, but also may 

impact children’s growth in reasoning skill.  An analysis of data from a large-scale longitudinal 

study found that children’s performance at school entry on an inhibitory control task (Children’s 

Stroop; Gerstadt, Hong & Diamond, 1994), and an executive function task (Tower of Hanoi) 

both predicted distinct variance in children’s analogical skill, and more interestingly, their 

growth in analogical skill from school entry to adolescence (Richland & Burchinal, 2013).  This 

relationship held even when controlling for environmental factors (e.g., parental education, SES, 

gender), as well as short-term memory, sustained attention, knowledge measures, and analogy 

skill at third grade.  This pattern of change suggests that early executive function skills play an 

important role in shaping children’s trajectory of learning reasoning skills.  

 

EF as a mechanism underpinning relational reasoning growth 

The current paper reports computational simulations that test a mechanism by which 

early inhibitory control resources could alter the trajectory by which children’s reasoning 

develops through the course of children’s reasoning opportunities.  We simulated data from one 

of the few longitudinal studies on the development of analogical reasoning (Hosenfeld, van der 

Maas, & van den Boom 1997). Our aim was to explore how relational knowledge and variations 

in children’s inhibitory control could predict children’s rate of reasoning development over a 

series of repeated opportunities to solve geometric analogies. We focus in particular on the 

interplay between the learning of relational representations and individual differences in 

inhibitory control. 
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Behavioral data on reasoning change over time. In the original study (Hosenfeld, van der 

Maas, & van den Boom 1997), children aged 6-7 years solved 20 geometric analogy problems 

consisting of five common relations between simple shapes including: adding an element, 

changing size, halving, doubling, and changing position repeatedly over 8 testing sessions. The 

measure was originally designed by randomly combining six basic geometric shapes and five 

transformations to create 12,150 problems. The authors used the difficulty metric  (Difficulty = 

0.5 x Elements + 1 x Transformations) to select problems for a large norming project (Hosenfeld, 

van der Boom, & Resling, 1997). Twenty of these problems were then selected for use in the 

longitudinal study to represent a range of difficulty both with respect to the difficulty metric and 

actual child performance.  

During testing, children solved A: B :: C: D problems in which they had to infer the 

missing D term in order to construct a valid analogy.  Figure 1 provides three examples of these 

geometric analogy items in increasing difficulty, showing duplication (top line), 

halving/duplication and “inside” (middle line), and an above/ below/inside set of transformations 

(bottom line). 

On each testing occasion, the children were first given practice time. This included 

naming and drawing the basic geometric shapes that would be part of the relational problems.  

They were then told they would be solving puzzles, and completed three practice analogies with 

the experimenter. The following instruction was provided: “These two boxes belong together 

(point to A and B), and those two boxes belong together (point to C and D). These two ones (A 

and B) belong together in the same way as those ones (C and D) do. Do you know what the 

solution is?” (van der Mas & Boom, 1997, p. 375). 

Twenty test items were then presented, in which children were instructed to draw the 
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missing piece for each problem, and were provided with feedback following errors. The 

problems within each session varied in complexity based on changes in the number of 

relationships needed to characterize the A:B transition. 

 

_________________________________ 

Insert Figure 1 about here 

_________________________________ 

 

Children were tested eight times over the course of one year, at three-week intervals. 

Researchers recorded accuracy rates, time to solution, and types of errors made. These data were 

used to examine the trajectory of children’s analogical reasoning over the course of the study.  

Children's performance could be separated into three learning profiles: 1) Non-Analogical 

Reasoners, who solved the majority of problems non-analogically throughout all sessions, 2) 

Transitional Reasoners, who moved from solving problems largely non-analogically to solving 

problems largely analogically, and 3) Analogical Reasoners, who solved the majority of 

problems analogically throughout the treatment. The reasoning accuracy results for the three 

groups of children over time are shown in Figure 7. 

The data from Hosenfeld et al.’s (1997) study are informative, and they raise a challenge 

of interpretation.  One cannot fully explain these three trajectories by access to learning 

opportunities, since all children had access to the same number of learning opportunities.  

Further, children’s initial skill-based starting point is not fully predictive either, since one group 

started low and ended high, and another group started low and ended low.  Cognitive maturation 

of growth in executive function (EF) capacity is a similarly an unsatisfactory explanation.  While 

some EF growth over the period of six months might be expected, there is no reason to expect 

three different yet systematic patterns of EF growth that would explain these three performance 
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trajectories.   

Current simulation study aims. In the present this study we use computational 

simulations of these data to argue that 1) differences in inhibitory control EF resources may 

explain initial differences in reasoning, but 2) they also help to explain differences between the 

three groups in their ability to learn relational representations necessary for reasoning over 

repeated learning opportunities. Thus while all children received the same number of learning 

opportunities during the six training sessions, the level of structure they identify in the problem 

inputs may increase or decrease their likelihood of successfully reasoning analogically with these 

representations over time. Furthermore, the rate at which they learn is constrained by their 

inhibitory control EF resources. The interaction of processing ability and learning representations 

produces a more complete picture of the development of analogical reasoning then either factor 

independently.  

 

Computational Models of Analogical Reasoning 

Computational models of analogical reasoning provide a unique window into the 

plausible cognitive underpinnings of relational reasoning, and here enable us to test correlations 

between the behavioral data and performance in a constrained system (see French, 2002). We use 

DORA (Discovery Of Relations by Analogy; Doumas, Hummel, & Sandhofer, 2008) as a model 

of how structured relational representations are learned from unstructured inputs, and LISA 

(Learning and Inference with Schemas and Analogy; Hummel & Holyoak, 1997, 2003) as a 

model of human relational reasoning, to simulate Hosenfeld et al.’s (1997) results, and to explore 

the interactions between maturation-based inhibition levels and learning opportunity cycles.  

Previously, we have successfully used changes in inhibitory control in LISA’s working-
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memory system to explain cross-sectional variations in analogical reasoning.  We simulated the 

developmental progression (from age 3 to 14) in children's ability to handle increases in 

relational complexity and distraction from object similarity during analogical reasoning by 

varying inhibitory control (Morrison et al., 2011).  In addition, we have modeled cross-cultural 

differences in analogy performance (Richland, Chang, Morrison & Au, 2010), considered to be 

the result of differences in relational knowledge accretion, via changes to the hand-coded 

representations used in LISA (Morrison et al., 2011).  

In the current study we avoid hand coding of propositional structures. Instead, we use 

DORA to simulate children’s ability to learn spatial relations over time, allowing relational 

learning patterns to be part of the investigation.  We then use those representations in LISA to 

simulate geometric analogy accuracy and types of errors. By doing so, we are able to model the 

trajectory of knowledge accretion as well as reasoning ability. Importantly, we manipulate 

inhibitory control (via changes in lateral inhibition in both models) to simulate individual 

differences. We argue that inhibitory control is fundamental not only to the ability to reason 

relationally, but also to the ability to learn relations in the first place. 

 

Method 

Overview of LISA/DORA Model  

In this section we describe the LISA (Hummel & Holyoak, 1997, 2003) and DORA 

(Doumas et al., 2008) models in broad strokes. Our goal is to highlight the main processing 

features of the models and their core theoretical claims. Knowlton, Morrison, Hummel and 

Holyoak (2012) provide another useful, brief description of the LISA architecture. The most 

complete descriptions of the models may be found in their original reports (Doumas et al., 2008; 
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Hummel & Holyoak, 1997, 2003). 

Both LISA and DORA (DORA is a direct descendent and generalization of LISA) are 

connectionist models. However, unlike traditional connectionist networks (e.g., McClelland, 

2010), LISA and DORA solve the binding problem, and so can process structured (i.e., 

symbolic) representations (see Doumas & Hummel, 2005, 2012). LISA uses structured 

representations of relations (represented as predicates) and their arguments to make analogies, 

induce schemas, and perform relational generalization. DORA provides an account of how the 

structured predicate representations used by LISA can be learned from unstructured 

representations of objects (i.e., flat feature vector representations of objects without predicates; 

see below).  

_________________________________ 

Insert Figure 2 about here 

_________________________________ 

We begin by describing the relational knowledge structures that DORA learns and that 

LISA uses. We then describe how DORA learns these knowledge structures from experience. 

Finally, we describe LISA’s mapping and generalization procedures. Both DORA’s learning and 

LISA’s mapping and generalization procedures play central roles in the simulations we report in 

this paper.  

Knowledge Structures and LISAese 

DORA begins with objects represented as flat feature vectors (see Figure 3a). That is, 

objects are represented as in conventional distributed connectionist systems as patterns of 

activation in a set of units. These initial representations are holistic and unstructured (see 

Doumas & Hummel, 2005). Before describing how DORA learns structured predicate 
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representations of object properties and relations from these initial representations; however, we 

will describe the end state of that learning. Specifically, we now describe knowledge 

representation in LISA (and by extension in DORA after it has learned).  

In LISAese, relational structures are represented by a hierarchy of distributed and localist 

codes (see Figure 3b). At the bottom, “semantic” units represent the features of objects and roles 

in a distributed fashion. Semantic units don’t actually have any necessary meaning. They are 

simply properties of the perceptual stimulus that are detectable by the system (e.g., location on 

the y-axis, being cone shaped). As we discuss below, for the purposes of LISA and DORA, 

exactly what these semantic units code is not important. All that is that is necessary is that there 

are aspects of perceptual stimuli that are consistently detectable by the system (e.g., that when 

encoding two red objects, the same feature—or set of features—responds to their hue). At the 

next level, these distributed representations are connected to localist units termed POs (for 

predicate-object) that represent individual predicates (or roles) and objects. One layer up, localist 

role-binding units (RBs; alternatively called “subpropositions”) link object and relational role 

units into specific role-filler pairs. At the top of the hierarchy, localist P units link RBs into 

whole relational propositions.  

Considering the house object containing the square in Problem 3, Term A (see Figure 1), 

LISA would represent the proposition contains (house, square) using PO units (triangles and 

large circles in Figure 3) to represent the relational roles outside and inside, and the role fillers 

house and square.  Each of these PO units is connected to semantic units coding their semantic 

features.  RB units (rectangles) then conjunctively code the connection between roles and their 

fillers (one RB connects house to outside, and one connects square to inside).  At the top of the 

hierarchy, P units (oval) link sets of RBs into whole relational propositions. A P unit 
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conjunctively codes the connection between the RBs representing outside (house) and the RB 

representing inside (square), thus encoding the relational proposition contains (house, square).   

Note that all of these units are simply connectionist nodes in a layered network. While we 

use different names for units at different layers, and use different shapes to specify different units 

in our figures, we do so only for the purposes of more efficient exposition. There is nothing 

inherently different about PO units or RB units other than they are in different layers of a neural 

network (much as different units might be in the input layer or a hidden layer of a feed-forward 

neural network). However, just as units in a hidden layer serve a different function in relation to 

a network’s behavior relative to units in the input layer, so units in the RB layer serve a different 

function than units in the semantic layer.  

When a proposition enters working memory, role-filler bindings must be represented 

dynamically on the units that maintain role-filler independence (i.e., POs and semantic units; see 

Hummel & Holyoak, 1997). In DORA (and its instantiation of LISA), roles are dynamically 

bound to their fillers by systematic asynchrony of firing. As a proposition in the driver becomes 

active, bound objects and roles fire in direct sequence. Binding information is carried in the 

proximity of firing (e.g., with roles firing directly before their fillers). Using the example in 

Figure 3, in order to bind outside to house and inside to square (and so represent contains (house, 

square)), the units corresponding to outside fire directly followed by the units corresponding to 

house, followed by the units for coding inside followed by the units for square.1 

_________________________________ 

Insert Figure 3 about here 

_________________________________ 

 

1 Asynchrony-based binding allows role and filler to be coded by the same pool of semantic units, which allows 

DORA to learn representations of relations from representations of objects (Doumas et al., 2008). 
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Learning Structured Representations in DORA 

DORA is an account of how structured LISAese representations can be learned from 

unstructured examples. As noted above, DORA begins with representations of objects coded by 

simple flat feature vectors (Figure 3a). For example, a house would be coded with a set of 

features describing that house, or a square would be coded with a set of features describing that 

square. We instantiate these representations as object token units attached to the semantic 

features of that object (see Figure 4a). These initial representations are holistic and unstructured 

(in that an object’s features are active together as a mass; see, e.g., Doumas & Hummel, 2005, 

2012). DORA’s learning algorithm allows it to learn structured representations of specific 

subsets of an object’s features. Vitally, these representations function like predicates in that they 

are explicit and can take (i.e., be dynamically bound to) arguments.  

DORA uses comparison to bootstrap its learning. When DORA compares two objects, 

then those objects become co-active (Figure 4a). As the compared objects pass activation to their 

semantic features, those properties shared by both objects receive twice as much input and 

become roughly twice as active as unshared features (Figure 4b). DORA recruits a PO unit that 

learns connections to the active semantics via simple Hebbian learning. Accordingly, the new PO 

learns stronger connections to the more active (shared) semantics, and weaker connections to the 

less active (unshared) semantics (Figure 4c). DORA also recruits an RB unit at the layer above 

the POs, which learns connections to the active POs via Hebbian learning (Figure 4d).  

_________________________________ 

 

Insert Figure 4 about here 

_________________________________ 

 

The result of this learning algorithm is that DORA acquires explicit representations of the 
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shared properties of compared objects. For example, when DORA compares two red things it 

will learn an explicit representation of the property red, and if DORA compares two objects that 

are containers, it will learn an explicit representation of the property container.2  Importantly, 

these new representations function like single-place predicates: they can be bound to arguments 

(via asynchronous binding; see above), they specify properties of the arguments to which they 

are bound (see Doumas & Hummel, 2012; Doumas et al., 2008), and they support symbolic 

operations such as structure mapping (see Hummel & Holyoak, 1997, Doumas et al., 2008) and 

relational generalization (Hummel & Holyoak, 2003).   

Comparison underlies DORA’s ability to learn functional single-place predicate 

representations, and comparison also allows DORA to learn representations of whole relational 

structures (see Figure 5). If multiple role-filler sets enter DORA’s WM together, the model can 

map each set onto the other. For example, if DORA compares the circle containing the triangle in 

Figure 1 (Problem 3, term C) to the house containing the square (Problem 3, term A), it could 

map outside (circle) to outside (house) and inside (triangle) to inside (square).  This process leads 

to a distinct pattern of firing over the units composing each set of propositions (i.e., the RB units 

of outside (circle) fire out of synchrony with those of inside (triangle) while the RB units of 

outside (house) fire out of synchrony with those of inside (square)). This pattern of oscillating 

activation over sets of units (with co-occurring role-filler pairs firing in sequence) acts as a signal 

to DORA to recruit a P unit, which learns connections to active RBs via Hebbian learning. The 

result is that the new P unit links co-occurring role-filler sets, and results in a rudimentary 

 
3 As noted above, the specific content of the units coding for a property are unimportant to DORA. So long as there 

is something common across the units representing a set of objects, DORA can learn an explicit representation of 

this commonality. For the purposes of DORA’s learning algorithm, all that matters is there is something invariant 

across instances of a container (which there must be for us to learn the concept), and that the perceptual system is 

capable of responding to this invariance (which, again, there must be for us to respond similarly across instances of 

containment in the world).  
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representation of relations (here contains (object1, object2)). Importantly, this kind of relational 

representation, in which a relation is composed of linked sets of its roles, is a full fledged multi-

place relational structure capable of the same sorts of operations and inferences as traditional 

multi-place relations (e.g., predicate calculus; Doumas & Hummel, 2005, 2012; Doumas et al., 

2008).     

Mapping and Relational generalization in LISA 

In LISA/DORA, representations are divided into two mutually exclusive banks of units: a 

driver and one or more recipients.3 The driver is the current focus of attention (i.e., what 

LISA/DORA is thinking about at the present moment), and the recipient is analogous to active 

memory in Cowan’s (2001) terms (i.e., items primed from long-term storage, which can be 

potentially compared to items in the driver). The driver and recipient communicate via the 

semantic feature units, which are shared by both sets. Specifically, items in the driver become 

active and pass activation to the semantic feature units, which activate units in the recipient. 

Units in the recipient then compete via lateral inhibition to respond to the pattern of firing 

imposed on semantic units by units in the driver. Structured representations created during 

relational learning in DORA can be mapped using LISA’s mapping algorithm (Hummel & 

Holyoak, 1997) with minor modifications described in Doumas et al. (2008). LISA/DORA learns 

which elements in the driver and recipient correspond by building mapping connections (via 

Hebbian learning) that keep track of when these elements are active simultaneously.  

When augmented with the capacity for self-supervised learning (Doumas et al., 2008; 

Hummel & Holyoak, 2003; described below), LISA’s mapping algorithm allows for analogical 

inference. To illustrate, consider how LISA/DORA solves an inference problem such as the third 

 
4Mutually exclusive sets are necessary in order to perform comparison (see, e.g., Falkenhainer et al., 1989; Holyoak 

& Thagard, 1989). Knowlton et al. (2012) describe how such sets can be instantiated in prefrontal cortex in a 

neutrally-plausible fashion. 



A Computational Model of Analogical Change 

 

15 

problem in Figure 1.4  The A and B terms are in the driver and the C term is in the recipient. As 

the proposition coding for A term, contains (house, square), becomes active in the driver, it 

activates and consequently maps to the units coding for contains (circle, triangle) in the recipient. 

Specifically, the units coding for outside (house) in the driver activate and map to the units 

coding for outside (circle) in the recipient, and the units coding for inside (square) in the driver 

activate and map to the units coding for inside (triangle) in the recipient.  

Then when the B term, contains (square, shield) becomes active in the driver, there are no 

corresponding units for it to map to in the recipient. As the representation of the C term in the 

recipient is already mapped to the representations of the A term in the driver (and the C term is 

the only item in the recipient), the representation of the B term is left with nothing to which it 

corresponds. This situation, in which items in the driver have no elements in the recipient that 

they can activate (because all recipient elements are already mapped to other driver elements), 

triggers the self-supervised learning algorithm in LISA/DORA. During self-supervised learning, 

active units in the driver prompt LISA/DORA to recruit matching units in the recipient (i.e., an 

active RB unit in the driver prompts recruitment of an RB unit in the recipient). Continuing the 

example, as units coding for outside (square) in the B term become active in the driver, 

LISA/DORA recruits RB and P units in the recipient to match the active RB and P units in the 

driver. The new recruited P unit in the recipient learns connections to active recipient RB units, 

and newly recruited RB units learn connections to active PO units via Hebbian learning. The 

functional result of this unit-based recruitment and Hebbian learning is that LISA/DORA infers a 

representation of outside (triangle) in the recipient, which corresponds to the representation of 

outside (square) in the driver. An analogous sequence occurs when inside (house) fires in the 

 
5The problem is more relationally complex than the simple version we describe here; however, the same principles 

apply to the way LISA can solve the entire problem, including all of the nested relations. 
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driver and LISA/DORA infers inside (circle) in the recipient. Thus, LISA/DORA completes the 

D term in a problem via analogical inference, inferring a representation of contains (triangle, 

circle) in the recipient.  

The Role of Inhibition in DORA/LISA 

Of particular importance to the present simulations, inhibition plays a role in the selection 

of items to enter working memory because selection is a competitive process.  Propositions in the 

driver compete to enter into working memory on the basis of several factors, including their 

pragmatic centrality or importance, support from other propositions that have recently fired, and 

the recency with which they themselves have fired.  Reduced driver inhibition results in reduced 

competition and more random selection of RBs to fire.  The selection of which RBs are chosen to 

fire, and in what order, can have substantial effects on DORA/LISA’s ability to find a 

structurally consistent mapping between analogs. It follows that reduced driver inhibition, 

resulting in more random selection of propositions into working memory, can affect 

DORA/LISA’s ability to discover a structurally-consistent mapping.   

The role of inhibition in the activity of a recipient analog is directly analogous to its role 

in the activity in the driver. Recipient inhibition causes units in the recipient to compete to 

respond to the semantic patterns generated by activity in the driver.  If DORA/LISA’s capacity to 

inhibit units in the recipient is compromised, then the result is a loss of competition, with many 

units in the recipient responding to any given pattern generated by the driver. The resulting chaos 

hampers (in the limit, completely destroys) DORA/LISA’s ability to discover which units in the 

recipient map to which in the driver.  In short, inhibition determines DORA/LISA’s working 

memory capacity (see Hummel & Holyoak, 2003, Appendix A; Hummel & Holyoak, 2005), 

controls the model’s ability to select items for placement into working memory, and also 
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regulates its ability to control the spreading of activation in the various recipient analogs. As 

such, inhibition is critical for the model's ability to favor relational similarity over featural 

similarity. 

This conception is highly complementary to behavioral models suggesting inhibitory 

control in EF contributes to reasoning performance by enabling reasoners to inhibit rules used 

previously in favor of current goal requirements (e.g., Zelazo and colleagues (1998, 2003). Thus, 

we hypothesized that differences between the three groups of children in Hosenfeld et al.’s 

(1997) study were at least partially a product of differences in inhibitory control. We simulated 

these differences in DORA/LISA by varying levels of lateral inhibition. In DORA/LISA, 

inhibition is critical to the selection of information for processing in working memory. 

Specifically, inhibition determines the intrinsic limit on DORA/LISA’s working-memory 

capacity (see Hummel & Holyoak, 2003, Appendix A), controls its ability to select items for 

placement into working memory, and also regulates its ability to control the spreading of 

activation in the recipient. We have previously used this approach in LISA to simulate patterns 

of analogy performance in a variety of populations with lesser working-memory capacity 

including older adults (Viskontas et al., 2004), patients with damage to prefrontal cortex 

(Morrison et al., 2004), and young children (Morrison, Doumas, & Richland, 2011).  

Simulations 

We simulated Hosenfeld et al.’s (1997) results in two steps (see Figure 2). In the first step 

we used DORA’s relation-learning algorithm to learn representations of the transformations used 

in the geometric analogy problems. In our simulations, DORA began with representations of 100 

objects attached to random sets of features (chosen from a pool of 100). We then defined five 

transformations (the same as those used by Hosenfeld et al., 1997): adding an element, changing 
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size, halving, doubling, and changing containment). Each single-place predicate transformation 

(adding an element, changing size, halving, doubling) consisted of two semantic features, and the 

relational transformation (changing containment) consisted of two roles each with two semantic 

features (i.e., for the contains relation, both the roles inside and outside were each defined by two 

specific semantic units). Again, as noted above, these semantic units had no actual content. 

Rather, they represented our assumption that there are invariant properties of objects and 

transformations that are detectable by the perceptual system. Our goal in this first simulation was 

simply to demonstrate that DORA could isolate and learn explicit representations of invariant 

properties during completely unstructured training.  

Each of the 100 objects was attached to the features of between two and four 

transformations chosen at random. If an object was part of a relational transformation, it was 

attached to the features of one of the roles, chosen at random. For example, object1 might be 

attached to the features for doubled (a single-place transformation) and inside (one role of the 

relational transformation, contains).  

We presented DORA with sets of objects selected at random, and allowed it to compare 

the objects and learn from the results (applying DORA’s relation-learning algorithm). As DORA 

learned new representations it would use these representations to make subsequent comparisons. 

For example, if DORA learned an explicit representation of the property double by comparing 

two objects both attached to the features of double, it could use this new representation for future 

comparisons. On each trial we selected between two and six representations and let DORA 

compare them and learn from the results (i.e., perform predication, and relation-learning 

routines). We assume that this act of inspection and comparison is similar to what happens when 

children encounter the geometric analogy problems and have to consider how the various 
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elements are related (Gentner & Smith, 2013). Importantly, this training was completely 

unstructured and undirected (i.e., DORA randomly selected items from memory to reason about). 

We have demonstrated in previous work that DORA can learn under these unstructured 

conditions, and that learning improves markedly with more directed or more structured training 

(see Doumas et al., 2008). We have no doubt that the children in Hosenfeld et al., learned from 

their experience with the various versions of the geometric analogy task, and that taking the test 

over successive sessions served to structure their training somewhat. For the current simulations, 

however, we wanted to make as few assumptions about the learning environments of the children 

in the study as possible (given this information is, very understandably, absent from Hosenfeld et 

al.). As such, we chose to handicap ourselves and avoid making additional assumptions that 

would improve our overall ability to fit the data.  

Moreover, we defined three groups for the purposes of the simulation as determined by a 

range of lateral inhibition values. We ran 100 simulations for each group. During each simulation 

we chose an inhibition level from a normal distribution, with a mean of 0.4 for the low inhibition 

group, 0.6 for the medium inhibition group, and 0.8 for the high inhibition group (each 

distribution had a SD = .1). We chose to simulate groups using a distribution of inhibition scores 

in order to match our assumption that the learning groups from the original Hosenfeld et al. study 

were not completely homogeneous in their inhibitory abilities. Our decision once again served to 

handicap the precision of our simulations by adding some noise, but there was almost certainly 

some natural variability in the inhibitory abilities of the children in the initial study, and we 

wanted our simulations to reflect this variability.  

For the low-knowledge condition, simulations were run with 800 learning trials, and we 

checked the quality of the representations DORA had learned after each 100 trials. Quality was 
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calculated as the mean of connection weights to relevant features (i.e., those defining a specific 

transformation or role of a transformation) divided by the mean of all other connection weights + 

1. (1 was added in the denominator to keep the quality metric bound between 0 and 1.) For the 

high-inhibition, high-knowledge condition we extended the simulations to 1000 learning trials 

and sampled the representations after 300 to 1000 trials. The reason for the different knowledge 

conditions was to test our hypothesis that children in the high performance group not only had 

higher inhibitory resources, but also came into the study with a higher quality of relational 

representations. In brief, our goal was to test whether starting at a higher knowledge state in 

tandem with increased inhibitory resources would provide a closer fit to the high performance 

group’s data than increased inhibitory resources in isolation.  

Figure 6 provides a summary of results from part one of the simulation. While all groups 

did learn, learning was obviously improved with higher levels of inhibition. In addition, learning 

was much faster for the higher inhibition group.  

In the second part of the simulation we passed the representations DORA learned during 

the first part of the simulation to LISA, which then simulated solving the geometric analogy 

problems. Thus, unlike LISA simulations we have performed previously to account for 

developmental changes (e.g., Morrison et al., 2011), relational knowledge representations were 

not hand-coded, but rather were generated automatically by DORA. We created problems of 

varying difficulty to capture the range of difficulty used in the Hosenfeld et al. (1997). Thirty 

percent of problems were hard problems consisting of three transformations (one third had two 

binary transformations and one unary transformation; one third had one binary transformation 

and two unary transformations; and one third had three unary transformations). Thirty-five 

percent were medium difficulty problems consisting of two transformations (one third had two 
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binary transformations; one third had two unary transformations; and one third had one binary 

and one unary transformation).  Lastly, thirty-five percent were easier problems with only one 

transformation per problem (half had one binary transformation while the other half had one 

unary transformation). 

We simulated all eight of the testing phases in the Hosenfeld et al. (1997) study. Each 

testing phase consisted of 20 trials. On each trial we presented LISA/DORA with the A and B 

terms in the driver and the C term in the recipient. The A, B and C terms were represented as 

object POs each attached to four random features, and bound to PO predicate units identifying 

the transformations in which they were involved. Importantly, the PO units identifying the 

transformations (as well as the RB units linking predicate and object POs, and P units linking 

RBs) were representations that DORA had learned during the first part of the simulation. For 

example, if the A term was a shield inside a square, we represented that with the LISEese 

proposition contains (square, shield), with a PO representing square bound to a PO representing 

outside (where outside was a PO that DORA had learned during the first part of the simulation), 

and a PO representing shield bound to a PO representing inside (where inside was a PO that 

DORA had learned during the first part of the simulation). For the first testing phase for the low-

knowledge groups we used the representations DORA had learned after the first 100 learning 

trials, for the second testing phase we used the representations DORA had learned after the first 

200 learning trials, and so on. For the high-knowledge group, we used the representations DORA 

had learned after the first 300 learning trials for the first testing phase, the representations learned 

after the first 400 learning trials for the second testing phase, and so forth. In each case we 

treated the level of lateral inhibition as maturational, and thus used the same levels as used for 

the learning phase for each group (0.4 low, 0.6 medium, 0.80 high; each with ±0.1 SD 
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distribution). 

As noted directly above, using slightly more advanced representations (the high-

knowledge group) reflects the assumption that children with higher maturational inhibitory 

control are likely to have learned more about relations prior to beginning the study compared to 

children with lower maturational inhibitory control.  Note that by starting testing with 

representations at 100 we assume that all children have some capacity for representing relations. 

This assumption is reflected in Hosenfeld et al.’s data, in that low- and medium-analogy group 

children started with similarly low scores in the first testing phase, whereas children in the high-

analogy group started with much higher performance on the first testing phase.  

During test trials, LISA attempted to map driver and recipient propositions and make 

inferences about the missing D term. For example, if LISA mapped the A term in the driver to 

the C term, then when the B term fired LISA inferred the D term in the recipient. We took the 

inferred proposition in the recipient to be LISA’s answer on that trial.  

As is apparent from the learning trajectories plotted in Figure 7, DORA/LISA’s 

performance on the testing trials closely followed those of the children in Hosenfeld et al.’s 

(1997) study. Just like the non-analogical children, DORA/LISA with a low lateral inhibition 

level performed poorly throughout. Like the transitional children, DORA/LISA with a medium 

lateral inhibition level started slow, but slowly improved. Finally, like the analogical children 

DORA/LISA with high lateral inhibition levels performed well virtually from the start and 

maintained good performance; however, additional relational knowledge coupled with high 

lateral inhibition levels appears to best fit the analogical performance group.   

Importantly, the types of errors that DORA/LISA makes closely follow the types of 

errors made by each of the performance groups (see Table 1). Specifically, like the non-
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analogical children, low-inhibition DORA tended to make errors based on featural association 

errors (e.g., objects in A, B and C copied). Like transitional children, with medium inhibition, 

DORA tended to make featural/ associative errors at the beginning, but these largely disappeared 

by the final session. Finally, like the analogical children, with high inhibition, DORA tended to 

make fewer errors overall, which further decreased over time, but these errors that did happen 

were a mix of associative and incomplete solutions.   

Moreover, the kinds of problems that DORA “got wrong” at various inhibition levels 

seems highly in line with the kinds of problems that children seem to make errors on as they 

develop. While Hosenfeld et al. (1998) do not give specific data on which problems the children 

tended to get wrong, a good deal of previous research has been done on children’s analogical 

development using cross sectional designs (see above; e.g., Richland, Morrison & Holyoak, 

2006. Generally, children tend to develop a capacity for solving simpler analogy problems first, 

and solve such problems consistently before they develop the capacity for solving harder analogy 

problems. For example, Richland et al. (2006) found that young children around the age of three 

perform consistently above chance on simple analogy problems that require aligning pairs of 

elements across two pictures (e.g., a task that requires matching the cat in a picture of a dog 

chasing a cat, to the boy, in a picture of a mother chasing a boy). However, these same children 

perform very poorly when the task is made harder, either by adding distractor elements to one or 

both of the pictures, or by requiring integration across multiple relations (see above). Around age 

seven, children consistently solve problems either requiring relational integration or involving 

distractors, but perform less well on problems involving a distractor and requiring relational 

integration. Finally, by age 14, participants could consistently solve all the types of analogy 

problems tested. Similarly, DORA, across all inhibition levels, performed well on some classes 
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of problems and less well on other classes. Specifically, low-inhibition DORA did consistently 

quite well on the easiest problem types, but quite poorly on the medium and hard problems. 

Medium inhibition DORA performed well on easy problems, made some headway on the 

medium problems, and did very poorly on the hard problems. High inhibition DORA, was 

competent across all problem difficulties, but failed most consistently on the hard problems.  

_________________________________ 

 

Table 1 about here 

_________________________________ 

Discussion 

These simulations provide a mechanism by which resources for inhibitory control can 

account for children’s analogical reasoning development (Richland & Burchinal, 2014).  Like 

children, the model moved from preferentially attending to featural information to reasoning 

with relational representations after being given learning opportunities (Gentner & Rattermann, 

1991).  The model suggests that a child’s level of inhibitory control may play an essential role in 

determining their learning trajectory by modulating the noise through which children identify 

and train their relational representations.  We have previously argued that inhibitory control is an 

essential factor in understanding the development of analogical reasoning in children because 

changes in inhibitory control can explain both featural distraction and relational complexity 

effects during childhood (Morrison et al., 2011). However, a complete understanding of the 

development of analogy must also include the role of relational learning and the growth of 

relational knowledge over time, as evidenced by the simulations reported here.   

Why does such a simple change in a single parameter have such a complex effect and 

thus explain so much?  The effect we observe results from two factors.  The first is that the 
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greater the inhibitory control of an individual, the more they can avoid distraction from 

imprecise relational representations.  This means that an adult can form a valid analogy between 

two domains about which they know relatively little, whereas a three-year-old child might know 

quite a bit about two domains yet still fail to inhibit a featural distractor when attempting to make 

an analogical mapping. Second, because relational learning also requires inhibitory control in our 

model (an assumption supported by recent longitudinal studies showing that executive functions 

can predict future analogy performance; Richland & Burchinal, 2013), children with lower 

inhibitory control will learn relations less efficiently.  The combination of these two factors 

results in our complex pattern of simulations.  Children low in inhibitory control have difficulty 

building relationally precise representations, and also are less tolerant of these “dirty” 

representations during reasoning.  Children with high inhibitory control build relationally precise 

representations quickly and are also more tolerant of “dirty” representations.  Our middle 

inhibitory control group operates at the perfect “teachable moment,” something akin to 

Vygotsky's zone of proximal development (Vygotsky, 1978): they possess just the right amount 

of inhibitory control to efficiently build relational representations, which become sufficient 

during the training sessions so as to yield successful analogical reasoning.  

One very important limitation of our current simulations stems from the kinds of 

problems used in the original Hosenfeld et al. (1998) study, and in our simulations. Specifically, 

as has been argued previously (e.g., Thibaut & French, 2016), in the A:B::C:D tasks, the 

subject's goal is to find the item (D) that matches (B) in the same way that (C) matches (A).  

The fact that (C) corresponds to (A) is given by the structure of the problem.  In many tasks 

people draw analogies between situations without knowing these sorts of correspondences 

beforehand (e.g., Markman & Gentner, 1993; Richland et al., 2006). However (as argued 
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above), we do believe that the longitudinal nature of the data collected by Hosenfeld and 

colleagues has a number of merits and that any full account of the development of 

relational reasoning needs to account for the findings that this study reveals. Particularly, 

(a) Hosenfeld et al. (1998) is, to our knowledge, the only longitudinal study of analogical 

development with multiple repeated data collection points; (b) the difficulty of many of the 

problems used in the study makes solving them difficult even for adults (c) the (D) term 

was not given to the children to select (as is often the case with A:B::C:D analogy problems), 

but rather had to be generated in full. Finally, it is important to note that in our simulations 

we did not give DORA the (A) to (C) correspondence a priori. DORA had to discover the (A) 

to (C) correspondence via it’s mapping algorithm, and failure to do so made the generation 

of the (D) term all but impossible. As such, while the our simulations are limited by the 

exclusive use of A:B::C:D type analogy problems in the original study, we do find the 

original study a very important piece in our current understanding of analogical 

development, and, therefore, hold that simulating the study is an important milestone for 

any account of the development of analogical thinking.  

To conclude, while considerable effort has been directed at understanding how inhibitory 

control supports analogical reasoning, less attention has been given to the role of inhibitory 

control in its essential antecedent—relational learning. Understanding this factor constitutes an 

important step toward understanding how relational learning develops and how it can contribute 

to successful analogical reasoning in children.  
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Table 1 

 

Solution Patterns in Children’s and DORA/LISA Simulations for the Three Learning Trajectories 
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Figure Captions 

Figure 1. Hosenfeld et al. (1997) developed a geometric analogy task with problems of varying 

complexity created using relations familiar to children (e.g., above/below, inside, halving or 

duplication, rotation). Examples of open-ended geometric analogy items of low (Problem 1), 

intermediate (Problem 2), and high level of difficulty (Problem 3). The D-term has to be filled in 

by the subjects (figure adapted from the Hosenfeld et al., 1997).  

 

Figure 2. Schematic illustration of how DORA and LISA work together to enable relational 

learning and reasoning. 

 

Figure 3. Representation of a proposition in LISA/DORA.   

 

Figure 4.  DORA learns a representation of inside by comparing a square that is inside some 

object to a triangle inside some object.  (a) DORA compares square and triangle and units 

representing both become active.  (b) Feature units shared by the square and the triangle become 

more active than unshared features (darker grey).  (c) A new unit learns connections to features 

in proportion to their activation (solid lines indicate stronger connection weights).  The new unit 

codes the featural overlap of the square and triangle (i.e., the role “inside”).  

 

Figure 5.  DORA learns a representation of the whole relation contains (house, square) by 

mapping outside (circle) to outside (house) and inside (triangle) to inside (square).  (a) The units 

coding outside fire; (b) the units for circle and house fire; (c) the units for inside fire; (d) finally, 

the units for triangle and square fire.  (e-f) DORA recruits a P unit that learns connections to the 
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active RB unit (the RB coding for outside (house)) in the recipient.  (g-h) The P unit learns 

connections to the active RB unit in the (the RB coding for inside (square)).  The result is a 

structure coding for contains (house, square).  

 

Figure 6. Simulation of relational learning in DORA. DORA’s relational learning algorithm was 

run at either low (0.4), medium (0.6), or high (0.8) lateral inhibition levels for 100 to 800 

iterations to generate representations used in LISA for the low-knowledge condition.  For the 

high-knowledge version a high (0.8) lateral inhibition level was used for 300 to 1100 iterations. 

 

Figure 7. Results from children (Hosenfeld et al., 1997) and LISA simulations.  Simulation 

results were obtained by allowing LISA to make analogical inferences using the representations 

generated in DORA (see Figure 6).  The three performance groups of children were simulated by 

using three different levels of lateral inhibition in both DORA and LISA.  
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