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We consider the relative performance of two common approaches to multiple imputation (MI): joint multi-

variate normal (MVN) MI, in which the data are modeled as a sample from a joint MVN distribution; and

conditional MI, in which each variable is modeled conditionally on all the others. In order to use the

multivariate normal distribution, implementations of joint MVN MI typically assume that categories of

discrete variables are probabilistically constructed from continuous values. We use simulations to

examine the implications of these assumptions. For each approach, we assess (1) the accuracy of the

imputed values; and (2) the accuracy of coefficients and fitted values from a model fit to completed data

sets. These simulations consider continuous, binary, ordinal, and unordered-categorical variables. One set

of simulations uses multivariate normal data, and one set uses data from the 2008 American National

Election Studies. We implement a less restrictive approach than is typical when evaluating methods

using simulations in the missing data literature: in each case, missing values are generated by carefully

following the conditions necessary for missingness to be “missing at random” (MAR). We find that in these

situations conditional MI is more accurate than joint MVN MI whenever the data include categorical

variables.

1 Introduction

Multiple imputation (MI) is an approach for handling missing values in a data set that allows
researchers to use the entirety of the observed data. Although MI has become more prevalent in
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political science, its use still lags far behind complete case analysis (CCA)—also known as listwise
deletion—which remains the default treatment for missing data in Stata, R, SAS, and SPSS. CCA
entails deleting every row in the data that has any missing values. This practice reduces the available
degrees of freedom for model estimation and deletes perfectly valid data points that happen to
share a row with a missing value. If a survey respondent declines to report his or her income, for
example, we can no longer use this respondent’s sex, age, or political preferences in our model
unless we are willing to drop income from the analysis. If the observed data for the people who
choose not to report their income are different from the data for the people who do state their
income, then CCA can return inaccurate parameter estimates.

Every approach to MI follows the same two steps: (1) replace the missing values in the data with
values that preserve the relationships expressed by the observed data; and (2) use independently
drawn imputed values to create several data sets, and use the variation across these data sets to
inflate model standard errors so that they reflect our uncertainty about the parametric imputation
model.

In practice, however, there are many ways to implement MI, and these approaches differ greatly
in the assumptions they make about the structure and distribution of the data. This study is a
comparison of the two most commonly used MI algorithms: joint multivariate normal (MVN) MI
and conditional MI. The phrase “joint MI” can refer to any MI algorithm in which the data are
assumed to follow a known joint probability distribution with unknown parameters. Nearly all
implementations of joint MI in practice, however, make the assumption that the data are MVN.
Since the multivariate normal is a purely continuous distribution, any noncontinuous variables are
typically modeled and imputed as continuous and are then assigned to discrete values at the end of
the process.1 In contrast, conditional MI draws imputations from conditional distributions that are
flexible to the type and distribution of each variable. Although both joint MVNMI and conditional
MI are implemented in commonly used software, very little research provides practical, empirically
tested guidance to researchers as to which approach to MI is the best option for a particular data
structure.

We aim to provide this guidance by simulating missing data using several different data-
generating processes (DGPs). We begin by simulating data that match the assumptions made by
joint MVN MI: all variables are continuous and are generated from a MVN distribution. We then
take small steps to consider more general data structures: variables are discretized to be binary, or
categorical with between 3 and 10 ordinal or nominal categories. Finally, we dispel the assumption
of multivariate normality and consider data from the 2008 American National Election Studies
(ANES). In each simulation, we use a novel approach to generating missing values that conforms to
Rubin’s (1987) definition of missing at random (MAR) but is a more general approach than is
typical in the missing-data literature. We compare joint MVNMI to conditional MI as well as CCA
and bootstrap draws from the observed values. We evaluate performance based on the accuracy of
their imputations and on the accuracy of coefficients and predictions from a model run on imputed
data. Although these comparisons do not consider every theoretical approach to MI, they focus on
the two strategies which dominate the use of MI in applied research.

2 Background

Our goal in this study is to consider the advantages and disadvantages of joint MVN MI and
conditional MI, their assumptions, and the effect of these assumptions on the quality of the im-
putations and on the accuracy of parameter estimates for a model that uses the imputed data. These
comparisons are important because joint MVN MI and conditional MI are currently the two
dominant approaches to MI in applied research, and because very few studies have attempted to
compare these methods in a systematic and empirical fashion.

1When there are only a few discrete variables, they can be combined with the multivariate normal in the general location
model (Schafer 1997), but in settings such as survey data where most if not all variables are discrete, such a model does
not in general have enough structure to produce reasonable imputations, hence the widespread use of MVN imputation
despite its theoretical problems.
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The dominance of joint MVNMI and conditional MI is demonstrated by the fact that that these
methods are the only two approaches to MI that are implemented in the base-packages of most
widely used statistical software packages.2 Although specialized software exists for some alternative
MI algorithms,3 joint MVN MI and conditional MI are the most ubiquitous algorithms.
Furthermore, several textbooks on missing data analysis place a special emphasis on joint MVN
MI (Schafer 1996, Little and Rubin 2002), or on both joint MVN MI and conditional MI (van
Buuren 2012), above alternative approaches.

Van Buuren (2007), Lee and Carlin (2010) and Yu, Burton, and Rivero-Arias (2007) previously
compared joint MVN MI and conditional MI with mixed results: van Buuren and Yu, Burton, and
Rivero-Arias find that conditional MI outperforms joint MVN MI, whereas Lee and Carlin find
that joint MVN MI performs at least as well as conditional MI. The scope of these studies,
however, is somewhat limited. Both Van Buuren and Lee and Carlin compare the ability of joint
MVN MI and conditional MI to return accurate coefficient estimates from a regression model. Van
Buuran uses complete cases as the standard against which to compare the two approaches, whereas
Lee and Carlin only consider a model with a complete continuous outcome and partially observed
binary or ordinal predictors. Neither study discusses the accuracy of the imputed values or of the
model’s fitted values. Yu, Burton, and Rivero-Arias (2007) compare the imputed values from a
number of joint MVN MI and conditional MI algorithms to the true values of several continuous
variables, but do not consider categorical variables or the results from a regression model.
In addition, none of the software packages that implement joint MVN MI and conditional MI
include any diagnostics or advice to researchers who are trying to choose between the two algo-
rithms. Stata’s (2013) documentation explicitly states that it makes “no definitive recommendation”
on this decision (p. 124). In short, researchers who are trying to choose between joint MVNMI and
conditional MI still lack clear guidance. We aim to provide this guidance by considering the effect
of the MI algorithms on both the accuracy of regressions and of missing value imputations using
partially observed continuous, binary, ordinal, and unordered-categorical variables.4 We begin with
a more detailed description of the joint MVN and conditional approaches to MI.

2.1 Joint Multivariate Normal MI

Joint MI specifies a joint distribution of the data, estimates the parameters of this joint distribution,
and draws imputed values from this distribution. Most implementations of joint MI—including the
ones considered in this study—use the assumption that the data follow a joint MVN distribution. If
the data are distributed according to a known distribution, imputing missing values is only a simple
matter of drawing from the assumed distribution. In order to be less restrictive, implementations of
joint MVN MI sometimes use a version of the EM algorithm that alternates between estimating the
means, variances, and covariances of the MVN distribution and drawing new imputed values
(Dempster, Laird, and Rubin 1977). Given this flexibility, joint MVN MI is able to accurately
impute missing values for any data configuration that resembles MVN. The two joint MVN MI
algorithms considered here—Amelia (Honacker, King, and Blackwell 2011, 2012) and Norm

2In Stata 13, for example, joint MVN MI is implemented by the mi impute mvn command and conditional MI is
implemented by the mi impute chained command (StataCorp 2013) and through the user-written commands uvis
and ice (Royston 2005, 2007, 2009; van Buuren, Boshuizen, and Knook 1999). In SAS 9.0, joint MVN MI and
conditional MI are implemented respectively as the mcmc and reg() options of proc mi (Yuan 2013). Several libraries
implement joint MI in R, including Amelia (Honacker, King, and Blackwell 2011, 2012) and Norm (Schafer and Olsen
1998). Conditional MI is implemented in R by the mice package (van Buuren and Groothuis-Oudshoorn 2011) and by
the mi package (Su et al. 2011; Goodrich et al. 2012).

3For example, Schafer (1997) proposes a log-linear joint distribution for data sets that only include categorical variables
and a general location model to fit the joint distribution of data that contain both continuous and categorical variables,
and distributes software on his webpage to implement these procedures in S-Plus.

4Van Buuren (2012) argues that analyses that consider imputation accuracy are invalid because imputation algorithms
that ignore the uncertainty of the imputations—such as replacing missing values with the mean of the observed values
of each variable—can produce smaller RMSEs than algorithms that do account for the noise. However, the conditional
and joint MVN MI algorithms considered in this article meet Rubin’s (1987) definition of proper; that is, they model
the noise around the imputed values. The measures of accuracy considered here provide a fair adjudication of MI
algorithms that are all proper.
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(Schafer and Olsen 1998)—use variants of the EM algorithm.5 If the data are not close to MVN,
however, there is no reason to expect that the imputed data will be accurate.

In addition to the MVN assumption, discrete and limited variables must be treated as if
they were continuous variables—since the MVN distribution is only defined for continuous
dimensions—then reconstructed once the imputations are complete. One way to turn continuous
imputed values into discrete values is to round them to the nearest category. For example, an
algorithm that treats a binary variable as continuous will produce continuous imputed values
that are often within [0,1] but sometimes outside this range. After imputations are complete,
imputed values within ð�1,0:5Þ can be rounded to 0, and values within ½0:5,1Þ can be rounded
to 1. A similar technique can be applied to ordinal variables. Binary and ordinal rounding is
somewhat intuitive since an imputed value of 0.2 is probably more similar to a real value of 0
than 1. Rounding can also be applied to unordered-categorical variables, which is less intuitive
since intermediate values between two categories may not have any substantive meaning.

Rounding is a controversial topic that has gotten some attention in the MI literature. Some
researchers suggest that rounding makes imputed values less accurate. Horton, Lipsitz, and Parzen
(2003) consider the imputation of binary variables under joint MVN MI, and show that there exist
situations in which the unaltered continuous imputations for binary variables are more accurate
than the rounded imputations. Honacker, King, and Blackwell (2012), the authors of Amelia,
suggest that users allow some noncategorical values. They note that sometimes a decimal value may
represent an intermediate value between two ordinal categories (p. 16–17). Other times, however,
continuous imputations simply are not reasonable values for categorical variables.

As an alternative to simple rounding, Amelia uses the Bernoulli, binomial, and multinomial
distributions to create binary, ordinal, and unordered-categorical draws from continuous imputed
values (Honacker, King, and Blackwell 2012, 17–18). Binary and ordinal variables are imputed as if
they are continuous. These imputed values are continuous and may be greater than the numerical
value of the highest category, less than the numerical value of the lowest category, or in between the
numerical values of the other categories. Values which are imputed to be outside the range of the
categories are rounded to the nearest category. Amelia then equates the continuous imputed
values with probabilities. Continuous draws for binary variables are used as parameters for inde-
pendent Bernoulli distributions, and an imputed value of 0 or 1 is randomly drawn from each
distribution. Continuous draws for ordinal variables are scaled to be within [0,1] and are used in
independent binomial distributions, where a categorical value is randomly drawn from each dis-
tribution. Unordered-categorical variables are broken into binary indicators for each category, and
these binary variables are imputed together. Imputed values outside [0,1] are rounded to 0 or to 1,
and the values are scaled so that they sum to 1. These values are treated as probabilities which are
passed to independent multinomial distributions, and an imputed category is randomly drawn from
each multinomial distribution.

Alternative approaches have also been proposed. Bernaards, Belin, and Schafer (2007) compare
simple rounding and Honacker et al.’s probabalistic approach to a technique in which the cutoff
for rounding to 0 and 1—typically 0.5—is instead estimated. Although they find support for the
accuracy of this approach, it is only applicable to binary and some ordinal imputations. Demirtas
(2010) proposes a rule for ordinal variables that breaks an ordinal variable into indicator variables,
and selects the category whose indicator has the highest modal probability.6

All of these approaches draw an equivalence between the continuous imputed values and prob-
ability. A different approach that avoids rounding from probability distributions involves drawing

5These two programs differ only in their approach to modeling the variance across imputed data sets. Amelia adapts
the EM algorithm to include bootstrapping (Honacker and King 2010). Norm simulates noise by drawing imputed
values from their individual distributions. This approach is a Markov Chain Monte Carlo simulation, and is guaranteed
eventually to converge in distribution to the joint posterior distribution of �, �, and the imputed values (Schafer and
Olsen 1998, 555).

6More specifically, for an ordinal variable with k categories, Demirtas defines a matrix which appends a ðk� 1Þ � ðk� 1Þ
identity matrix to a ðk� 1Þ � 1 row of zeroes to represent each category, then takes the vector of k � 1 continuous
imputations and calculates the Euclidean distance to every row of this matrix. The category whose row has the lowest
distance is drawn as the imputation.
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imputed values using predictive mean matching (PMM) with joint MVN MI. PMM is an alterna-
tive to drawing from the posterior predictive distribution (PPD) for modeling the noise in the data,
and is used by hot deck imputation techniques (Cranmer and Gill 2013). PPD and PMM are
described in more detail in Appendix 1, and we duplicated our analysis using PMM to model
the noise for both joint MVN MI and conditional MI. These supplementary analyses are presented
in Appendix 2, but do not change our conclusions about the relative strengths of joint MVN MI
and conditional MI.

2.2 Conditional MI

Conditional MI involves iteratively modeling the conditional distribution of each partially observed
variable, given the observed and imputed values for the other variables in the data. Like joint MVN
MI, conditional MI requires assumptions about the distribution of the data. Conditional MI cap-
italizes on the fact that the vast majority of statistical models that exist are conditional models,
therefore it is easier to find models tailored to the specific features of each variable type. By focusing
on the conditionals, conditional MI is more flexible than joint MVN MI, and can model a wider
class of joint distributions.

The conditional MI algorithm involves two nested loops. The first loop iterates over the partially
observed variables, replacing the missing values with new imputed values at each step. In order to
derive new imputed values, conditional MI commonly uses an appropriate generalized linear model
for each variable’s conditional distribution in which the variable is fit against all the other variables.
The mi package in R (Su et al. 2011; Goodrich et al. 2012) by default uses Bayesian versions of
OLS, logit, and ordered logit for continuous, binary, and ordinal variables, respectively, and multi-
nomial logit for unordered-categorical variables.7 In these models, all of the predictor variables are
treated as if they are complete; the missing values are replaced with their most recent imputed
values. The algorithm draws imputed values including the appropriate amount of predictive un-
certainty and replaces the previously imputed values with these new values.8 This first loop is nested
inside a second loop that repeats the process until the conditional distributions appear to have
converged and to be drawing from the same joint distribution of the data. Finally, several chains of
this algorithm are run independently in order to assess whether they have converged to the same
distribution after a given number of iterations.

Iterative draws from conditional distributions approximate a joint distribution even when the
joint distribution is not known or is nonanalytic. In fact, if the joint distribution is truly multivari-
ate normal, then the joint MVN MI algorithm described in Section 2.1 is equivalent to a condi-
tional MI algorithm that uses OLS for each conditional distribution. Conditional MI, however,
may be a viable option even when we cannot safely make an assumption about the joint
distribution.

There are some important similarities between joint MVN MI and conditional MI. First, both
joint MVN MI and conditional MI conceive of imputed values as draws from the joint distribution
of the data, even if they make different assumptions about the joint distribution. Second, both joint
MVN MI and conditional MI require multiple imputed data sets in order to correctly model the
uncertainty due to imputation. Finally, neither joint MVN MI nor conditional MI are likely to be
accurate estimators of the imputed values when the data are strongly NMAR.

A major critique of conditional MI is that the algorithm resembles—but is not—a Gibbs
sampler, and the conditionals are not necessarily compatible with a real joint distribution.
Whereas a Gibbs sampler is guaranteed to eventually converge to the correct posterior distribution,

7Multinomial logit is implemented in the nnet package (Venables and Ripley 2002). In addition, count variables are
modeled using a Bayesian quasi-poisson regression (Gelman et al. 2012), interval variables are modeled with a para-
metric survival regression model (Therneau 2012), and proportions are modeled with a beta regression (Cribari-Neto
and Zeileis 2010). These models are defaults, and can be altered to alternative or to custom models by the user.

8Starting values for the imputed values are drawn from the empirical marginal distribution of each variable. That is, the
missing values are initially replaced with randomly drawn (with replacement) values from the observed data points for
each variable. Different draws are made for every chain, and when the chains converge, it implies that the starting
values do not influence the results.
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conditional MI is not. Li, Yu, and Rubin (2012) refer to conditional MI’s algorithm as a possibly
incompatible Gibbs sampler (PIGS), and demonstrate that there are situations in which a PIGS
may not converge at all, or else might converge to a different distribution if the variables are
imputed in a different order. Li, Yu, and Rubin do not demonstrate, however, that there exists a
joint distribution for which a PIGS performs badly and a joint MVN algorithm does well. Any joint
distribution has conditionals, and so long as the conditionals are correctly specified a conditional
algorithm should not suffer from the problems identified by Li, Yu, and Rubin.

Our goal is to examine which style of algorithm tends to be more appropriate in general settings.
Using simulations, described in Sections 3 and 4, we find that conditional MI typically returns more
accurate imputed values and model parameters than joint MVN MI for data that are generated
from a MVN distribution and discretized, and also for commonly used political science data.

3 Simulations Based on Multivariate Normal Data

This simulation uses artificial data generated from a MVN distribution.9 We consider four cases: in
every case, a variable is set aside as the variable “of interest”; in the first case this variable remains
continuous; in the second case the variable is turned binary; in the third case the variable is turned
ordinal; and in the fourth case the variable is constructed to be unordered categorical. Since the
initial distribution of the data is MVN, these simulations present the most favorable circumstances
for joint MVN MI and isolate the impact of the discrete value conversions required for joint
MVN MI.

We begin with complete data and impose MAR missingness onto the data. We run competing
MI algorithms on the partially observed data and assess their performances using two standards:
(1) the difference between the imputed values and the true values; and (2) the similarity between a
regression model run on the imputed data to the same regression run on the true data. In each of
the continuous, binary, ordinal, and unordered-categorical cases, we generate eight variables. We
intend for three of these variables to be complete and for five variables—one of which may be
categorical—to have missing values.10 When the variable of interest is ordinal or unordered cat-
egorical, we repeat the simulation eight times, increasing the number of categories from 3 to 10. For
each simulation, we run one thousand iterations in which we generate MVN data with MAR
missingness, run several competing MI algorithms, and assess their performances.

There are three obstacles to generating informative MVN data with MAR missingness. First, we
intend to consider the family of MVN distributions rather than assume a distribution with a fixed
covariance matrix. Second, we require a reasonable method for discretizing continuous variables.
Third, we want to simulate missingness patterns in the data which are as general as possible while
still conforming to the MAR assumption. We consider our strategy for addressing these challenges
to be in itself a contribution to the missing-data literature. Our method is briefly discussed here, and
is described in detail in Appendix 3.

In order to consider the family of MVN distributions as opposed to a single fixed distribution,
we set the mean of each variable at 0 and the variance of each variable at 1, and we generate a
random correlation matrix using the method of canonical partial correlations suggested by
Lewandowski, Kurowicka, and Joe (2010). For the first case, all variables remain continuous.
We use a probit model to create binary variables for the second case, an ordered probit model
to create ordinal variables for the third case, and a multinomial probit model to create unordered-
categorical variables for the fourth case. Specifically, for binary variables, we turn continuous
draws into probabilities using the standard normal CDF, and we generate binary values from
these probabilities. For ordinal variables, we select cutpoints such that the continuous draws are
divided into k equal parts, where k is the number of categories. We arrange these groupings from
lowest to highest, and we assign ordered categories. For unordered-categorical variables, we draw

9Replication code and data are available on the Political Analysis Dataverse, and the full citation to the replication
material is included in the references.

10We also ran simulations with 6, 2, and no partial variables in addition to the variable of interest, but the results were
not substantially different from the case with four additional partial variables, so these results are omitted for space.
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one variable for each of k categories, and set the generated category to correspond to the maximum
of these values. That is, we generate a categorical value of j if the variable for category j has a higher
drawn value than the values for the other k� 1 variables. In order to preserve the independence-of-
irrelevant-alternatives assumption, the variables for each category are constrained to have correl-
ations that are only randomly different from 0 conditional on the observed and other partially
observed variables.

For each variable which we intend to be partially observed, we draw values for two variables:
one representing the values, and one representing values of a latent missingness variable. The latent
missingness variable is transformed to a standard normal probability and subtracted from a
uniform(0,1) random number. The cases that have the lowest 25% of these differences are
selected to be missing.11 Generating both the values and latent missingness scores together
allows us to directly model MAR missingness by constraining the correlation between these two
variables to be 0.

MAR can be quite difficult to impose on simulated data. Most researchers instead suppose that a
few variables in the data are completely observed, and allow each variable’s missingness to depend
only on these fully observed variables (Greenland and Finkle 1995). In this article, we attempt to
simulate a more general missingness pattern by allowing each variable’s missingness to depend on
binary variables indicating whether other variables are missing.

3.1 Competing MI Algorithms

We compare six approaches to missing data that fall into three categories: implementations of
conditional MI, implementations of joint MI that assume an MVN distribution, and naive missing-
data strategies that serve as baselines for the comparisons of the other algorithms. The
conditional MI algorithm is the mi package in R, using two different techniques to model
unordered-categorical variables, the joint MVN MI algorithms are R packages Amelia and
Norm, and the naive approaches are CCA and draws from the empirical marginal distribution of
each variable. Each of these six competitors is described in detail below.

We use two versions of mi in which continuous, binary, and ordinal variables are, respectively,
modeled with Bayesian versions of OLS, logit, and ordered logit.12 In one version, unordered-
categorical variables are modeled with multinomial logit (MNL), as implemented in the nnet
package (Venables and Ripley 2002). In another version, mi uses renormalized logit (RNL) to
model unordered-categorical variables. RNL is an alternative to MNL designed to provide esti-
mates using less computation time. Each category is modeled as a binary outcome against all other
categories using a logit model, and the predicted probabilities for each category are saved. These
probabilities do not in general sum to 1, so they are “renormalized,” and divided by the sum of
probabilities.

As discussed in Section 2.1, Amelia and Norm differ primarily in how they model the variance
of the imputed values. We consider both here to ensure that the results depend on the MVN
approach to joint MI, and not on the method of modeling imputation variance.

Finally, we consider CCA and draws from the empirical marginal distribution, two strategies for
missing data which assume that missing values are MCAR. CCA does not impute the missing
values, so it is only compared to the other competitors for its accuracy in returning the parameters
of a regression after missing values have been removed. Draws from the empirical marginal dis-
tribution are sampled with replacement from the observed values of each variable. The probability
that any one of the N observed cases will be selected to replace a missing value is equal to 1=N. This
replacement is independent of the values of the other variables in the data, thus this form of
imputation will bias estimated associations between variables toward zero.

11This percent is tunable, but we choose 25% as a realistic proportion of missingness for our simulations.
12These models are implemented in the arm package (Gelman et al. 2012), and place prior distributions on the coeffi-
cients. The prior is centered around zero, which helps avoid problems of nonidentified parameters due to separation
(Gelman et al. 2008). The prior distributions are Cauchy, and the optimum is a maximum a posteriori estimate.
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3.2 Evaluative Statistics

We directly compare imputed values to the true values of the missing data points, and we run a

linear model on the final imputed data that we compare to the same model run on the true data.

Note that the parameters of the linear model are distinct and separately estimated from the par-
ameters of both the joint MVN imputation model and the conditional imputation models. We use

several measures to assess to accuracy of the MI algorithms on both criteria. For every measure,

lower values indicate higher quality.

3.2.1 Quality of imputed values

1. Accuracy of imputed values. If the variable of interest is continuous, this measure is a root
mean squared error (RMSE) of the imputed values compared to the true values. If the

variable of interest is binary, ordinal, or unordered-categorical, the proportion of imputed
categories that match the true categories are calculated and subtracted from 1.

For the MVN simulations, the number of categories of an ordinal variable ranges from 2 (the
binary case) through 10, and the number of categories of an unordered-categorical variable

ranges from 3 to 10. As the number of categories increases, the proportion of correct draws

will naturally decrease. For larger numbers of categories, it is more difficult to distinguish
between the high-quality and low-quality competitors.

An example of this problem, and our solution, is illustrated in Fig. 1. The left-hand graph
contains four generic estimators. One estimator is a random uniform draw which obtains the

correct category at a rate of 1=K, where K is the number of categories. Since we adopt a

standard that lower values represent better performance, we plot 1� ð1=KÞ. There are three
other lines in this graph: one predicts the correct category 50% less often than the uniform

draw, one predicts the correct category 25% more often than the uniform draw, and one

predicts the correct category 75% more often than the uniform draw. However, although the
relative quality of the four estimators is constant, the proportions in the left-hand graph

converge for higher values of K, and we are less able to draw distinctions between them.

Our solution is to divide each proportion by the proportion derived by running the condi-
tional model on true data. In the right-hand graph of Fig. 1, we correct the proportions by

dividing them all by an estimator that predicts the correct value 80% more often than a

random draw. The comparisons between the estimators are now constant across K in the

right-hand graph.

2. Accuracy of imputed choice probabilities. Categorical imputations either return the correct
category or not. Unlike continuous imputations, it is not possible to measure the distance
between imputed and true categorical values.13 In order to get an idea of the distance between

imputed and true data for categorical variables, we consider choice probabilities.

All of the imputation algorithms estimate and use choice probabilities, although not all of the
imputation algorithms intend for these probabilities to be meaningful. Conditional MI esti-

mates the probabilities directly. We calculate probabilities from joint MVN MI, for both

Amelia and Norm, using the same rules used by Amelia that are specifically described in

Section 2.1. For bootstrap draws from the marginal distribution, the probabilities are the
proportion of each category in the observed data. CCA does not define probabilities or

imputations for the missing values. Finally, probabilities are not defined for continuous vari-

ables, so this statistic is only calculated when we consider binary, ordinal, or unordered-
categorical variables.

13For ordinal data it is possible to take a meaningful difference of categories, but this metric is flawed since it assumes
that the ordinal categories are equally spaced.

Jonathan Kropko et al.8

 at N
ew

 Y
ork U

niversity on M
ay 5, 2014

http://pan.oxfordjournals.org/
D

ow
nloaded from

 

,
http://pan.oxfordjournals.org/


We run a conditional model using the true data and save the estimated choice probability of

every realized category. Then, for every imputation algorithm, we compare the corresponding

probabilities to this vector of true probabilities using an RMSE measure.

3.2.2 Quality of a linear model run on imputed data

Before imputation, we run a model on the true data. Each imputation algorithm outputs five

imputed data sets,14 and we combine estimates from the same model fit to each of these imputed

data sets using Rubin’s rules (Rubin 1978, 1987). We consider the following measures of model

accuracy:15

3. Accuracy of coefficients. We calculate the Mahalanobis distance between the coefficient esti-

mates from the imputed data and the coefficient estimates from the true data. We use the

variance-covariance matrix of the true data coefficients for the covariance in the distance

metric.

4. Accuracy of all fitted values. We compare the matrix of fitted values from imputed data to the

matrix of fitted values from true data by taking an RMSE across all elements.16 Since CCA

does not use partial cases, it cannot provide fitted values for partial cases, so it is excluded

from this comparison.
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Fig. 1 An example of adjusting the rate of incorrect imputed values to account for the number of

categories.

14 Little and Rubin (2002, chap. 10) carefully describe the statistical principles that allow a small number of drawn data
sets to accurately approximate moments of the posterior distribution of the complete data. They also provide an
example in which they demonstrate that “five draws of Ymis can be quite adequate for generating MI inferences”
(p. 211). Although performing large numbers of imputations may seem appealing as an approximation to a more
fully Bayesian procedure, we consider here a more general form of imputation inspired by the common situation in
applied research in which several different researchers might want to each perform distinct analyses on the same study
data. In this case, it is helpful to be able to produce a common set of a small number of imputed data sets on which to
perform a variety of different analyses.

15In all cases considered here, the variable of interest is the outcome in the model. For the MVN simulations, however, we
calculated these statistics twice: once for the model in which the variable of interest is a predictor, and once in which the
variable of interest is the outcome. When the variable of interest is a predictor, the outcome is a fully observed variable
that influences whether or not the variable of interest is observed. The results in which the variable of interest is a
predictor do not offer different substantive conclusions than the ones presented here, and are omitted for space.

16For a regression and a logistic regression, the fitted values are given by the cross-product of the coefficients and the
data. For ordered logit, these values are subtracted from each of the K � 1 estimated cut points, where K is the number
of categories, and are arranged in a matrix with N rows and K � 1 columns, where N is the number of cases. For
multinomial logit, the cross-product itself forms an N� ðK� 1Þ matrix.
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5. Accuracy of fitted values for the complete cases only. This measure is equivalent to the
preceding measure, except partial cases are excluded. This exclusion allows CCA to be con-
sidered relative to all of the other imputation algorithms.

3.2.3 Other considerations

6. Time to Convergence. The time, in seconds, that passes between the start and completion of
each imputation algorithm.17

3.3 Results

We present the MVN simulation results of the comparison of joint MVN MI, conditional MI,
CCA, and bootstrap draws from the marginal distribution in this section. The results are displayed
in Fig. 2.

Joint MVN MI and conditional MI appear to perform about equally well when the variable of
interest is continuous. This result makes sense since the data are truly MVN in this case, and both
conditional MI and joint MVN MI make the correct assumption about the normality of the data.
However, whenever the variable of interest is categorical, conditional MI outperforms joint MVN
MI on every metric.

The results regarding the accuracy of choice probabilities are very similar to the results regarding
the accuracy of imputed values. Conditional MI estimated binary choice probabilities poorly, but
joint MVN MI performs much worse than conditional MI in estimating ordinal and unordered-
categorical choice probabilities. Since these models—described in Section 2.1—provide choice
probabilities for joint MVN MI that are primarily used for rounding, we expect the imputed
values from joint MVN MI to be more accurate than the probabilities.

There is very little difference in the results between Amelia and Norm, so it appears that the
differences between these two implementations of joint MVN MI only trivially affect their perform-
ances. Moreover, the two versions of conditional MI—the one that models unordered-categorical
variables with MNL, and the one that instead uses RNL as described in Section 3.1—are very
similar. Conditional MI with MNL, however, appears to consistently outperform conditional MI
with RNL by a small margin. That result is in accordance with our expectations, since RNL is a less
theoretical treatment of the choice probabilities. RNL, however, is much more computationally
efficient than MNL. Figure 3 shows the average time it took each imputation algorithm to converge
to results and terminate in the MVN simulations. Conditional MI is several orders of magnitude
slower than joint MVN MI: minutes as opposed to seconds. The time required for conditional MI
to run also increases with the number of categories of the categorical variable. RNL is faster than
MNL, and this difference increases with the number of categories. RNL may be a viable alternative
to MNL for researchers who wish to use conditional MI, but have unordered-categorical variables
with so many categories that MNL is not feasible. Finally, note that in some instances CCA fails to
surpass conditional MI, but still performs surprisingly well.

4 Applied Example: Simulations Based on the 2008 ANES

In order to demonstrate the validity of MI on a real data set, we use the 2008 edition of the ANES.
The 2008 ANES has 1954 variables and 2322 cases. We impute a subset of variables that includes
two continuous, three binary, three ordinal, and three unordered-categorical variables. These vari-
ables and their distributions are described in Table 1. The variables are chosen with three goals in

17Although MI is capable of using parallel processing, the chains are run sequentially in these simulations to reduce the
amount of RAM used at any one time. The simulations are run on a series of Unix servers, each of which has two
processors with six cores. The processor speed is 2.27GHz with 54.384GFlops. 24GB of DDR3 memory runs at
1066MHz.
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mind: first, we represent all four variable types; second, we use explanatory variables that are likely
to be used in a social science study; and third, we formulate four plausible linear models for four
interesting political outcomes. The four models considered here have the same predictors: age, sex,
race, education, income, religion, and marital status. The first model regresses time on these pre-
dictors. The second model considers importance of the environment to be the outcome, and uses a
logit model. The third model regresses government job assistance on the predictors using a ordered
logit model. The fourth model predicts respondents’ votes using a multinomial logit model.

Conditional Imputation
MI (MNL)
MI (RNL)

Joint Imputation
Norm
Amelia

Baselines
Complete Case Analysis
Marginal Draws

●

●

●

●

● ●
● ● ● ● ● ●

Categories

R
M

SE

●

●

●

●
●

●
●

●
●

2 4 6 8 10

0.
10

0.
20

0.
30

0.
40

C
ho

ic
e 

P
ro

ba
bi

lit
ie

s Binary/Ordinal

● ● ● ● ● ● ● ●

Categories

R
M

SE

●

●

●

●

●

●

●

●

3 4 5 6 7 8 9 10

0.
10

0.
20

0.
30

Unordered

R
M

SE

0.
0

0.
4

0.
8

1.
2

Conditional Joint Baseline

Im
pu

ta
ti

on
s

Continuous

●

●

●

●

●
●

●
● ●

Categories

R
M

SE
●

●

●

●

●

●
●

●
●

2 4 6 8 10

0.
4

0.
6

0.
8

●

●

●

●

●

●
●

●

Categories

R
M

SE

●

●

●

●

●

●
●

●

3 4 5 6 7 8 9 10

0.
5

0.
6

0.
7

0.
8

0.
9

L
os

s

0
1

2
3

4

Conditional Joint Baselines

C
oe

ff
ic

ie
nt

s

● ● ● ● ● ● ● ● ●

Categories

L
os

s

●

●
● ●

● ●
● ● ●

● ● ● ● ● ● ● ● ●

2 4 6 8 10

1.
5

2.
5

3.
5

4.
5

●

●

●

●
●

●
●

●

Categories

L
os

s

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

3 4 5 6 7 8 9 10

2.
5

3.
5

4.
5

R
M

SE

0.
00

0.
10

0.
20

Conditional Joint BaselineF
it

te
d 

V
al

ue
s,

 A
ll 

C
as

es

● ● ● ● ● ● ● ● ●

Categories

R
M

SE

●

●
●

●
● ●

● ● ●

2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●
●

● ● ● ●

Categories

R
M

SE

●

●

●

●

●
●

●
●

3 4 5 6 7 8 9 10

0.
2

0.
4

0.
6

0.
8

R
M

SE

0.
00

0.
10

0.
20

Conditional Joint Baselines

F
it

te
d 

V
al

ue
s,

 A
va

ila
bl

e 
C

as
es

● ● ● ● ● ● ● ● ●

Categories

R
M

SE ●

●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

2 4 6 8 10

0.
5

1.
0

1.
5

●
●

●
●

● ● ● ●

Categories

R
M

SE

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

3 4 5 6 7 8 9 10

0.
2

0.
4

0.
6

0.
8

Fig. 2 Multivariate normal simulation results using draws from the PPD.
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Fig. 3 Time to convergence, multivariate normal simulations.

Table 1 Summary of eleven variables in the 2008 ANES

Variable Type Missing Distribution Description

Age Continuous 45 Mean¼ 47.4 years, Age of the respondent.
SD¼ 17.4 years

Time Continuous 225 Mean¼ 89.3min, Time for the respondent to

complete the survey.SD¼ 22.7min
Importance of
environment

Binary 24 Not important: 1241; Whether the respondent sees
the environment as an

important issue.

important: 1057

Sex Binary 0 Male: 999; Sex of the respondent.
female: 1323

Race Binary 11 Non-white: 869; Non-white includes black,
American Indian, etc.White: 1442

Education Ordinal 11 No high school: 103; High school diploma includes
GED, some college or

vocational training.

some high school: 239;

high school diploma: 1476;
college, plus: 493

Income Ordinal 183 Low: 714; Low is below $25,000

medium: 581; High is above $50,000
high: 844

Government

job
assistance

Ordinal 158 Extremely conservative: 363; Responses range from “Govt

should let each person get
ahead on own” to “Govt
should see to jobs and
standard of living.”

very conservative: 209;
conservative: 205;
moderate: 386;
liberal: 191;

very liberal: 371;
extremely liberal: 439

Religion Unordered

Categorical

402 Protestant: 1231; Other includes Jewish, atheist,

Muslim, Buddhist, Hindu
and other religions.

Catholic: 528;
other: 161

Marital status Unordered

Categorical

14 Single: 604; No longer married includes

divorced, separated, and
widowed.

married: 1013;
no longer married: 691

Vote Unordered

Categorical

274 Obama: 1025; Vote choice in the 2008

Presidential election.McCain: 514;
no vote: 509
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We remove the partially observed cases from the data, leaving 1442 observations. This sample is
henceforth considered to be the complete data sample. Each iteration of the simulation consists of
three steps. First, missing values are generated for the complete ANES data. Then, the competing
MI algorithms are run on the partial data to generate imputed values. Finally, the four models
described above are run on the imputed data, and the results as well as the imputed values for each
outcome are compared against their analogs in the complete data. Each simulation consists of one
thousand iterations.

In order to make the simulation more realistic, we generate missingness that is MAR without
also being MCAR. Missingness patterns are simulated using the following procedure:

1. We select one variable of each type—age, sex, income, and martial status—to remain
complete. We replace income with indicators for low income and high income, excluding
medium income as a base category, and we replace marital status with indicators for single
and no longer married, excluding married as the base category. We standardize these vari-
ables by subtracting their means and dividing by their standard deviations. The standardized
variables form a (1442� 6) matrix denoted C.

2. We take forty-two independent draws from the Nð0,1Þ distribution and arrange them in a
(6� 7) matrix denoted b. The six rows of b correspond to the six columns of C, and the seven
columns of b correspond to the remaining variables: time, importance of the environment,
race, education, government job assistance, religion, and vote. Let � ¼ C�, which represents a
linear combination of the columns of C for each of the 1442 cases and for each of the seven
remaining variables.

3. A matrix Z, which has the same dimensions as Z, is randomly generated from a multivariate
normal distribution. The columns of Z are drawn from the MVNð�,�Þ distribution, where �
is a vector of 0 s and � has 1 s on its diagonal but is unconstrained for its off-diagonal
elements.18 Z is intended only to introduce correlation between the columns of Z.

4. A new matrix M is constructed to be �þ 0:3Z. The elements of M are transformed to
probabilities p using the logistic distribution function.

5. For each element of p, a number di,j is independently drawn from the uniform½0,1� distribu-
tion, and is subtracted from �i,j. In each column, the highest 10% of observations are selected
to be “missing.” These missingness patterns are then applied to time, importance of the
environment, race, education, government job assistance, religion, and vote, respectively.

Using this method, the missingness of each partially observed variable depends both on the four
complete variables and on the missingness of the other partially observed variables. We now have
two versions of the data: a complete data set, and a data set with simulated missingness. After
running MI on the partial data, we compare the imputed data to the complete data.

As with the MVN simulations, we consider the relative performances of the competing MI
algorithms described in Section 3.1 on the evaluative measures described in Section 3.2.

4.1 Results

Figure 4 illustrates the results from the simulations that use data from the 2008 ANES. Figure 4
corresponds to Fig. 2, which displays the results of the MVN simulations, but since these simula-
tions do not increase the number of categories of ordinal and unordered-categorical variables, bar
charts are used instead of line charts.

We see largely the same results when we use data from the ANES as when we use MVN data.
Joint MVN MI and conditional MI perform roughly equally on all metrics for the continuous

18� is a random correlation matrix, as described by Lewandowski, Kurowicka, and Joe (2010). We mention this technique
in Section 3, and we describe it in greater detail in Appendix 3. Unlike our use of the method in Section 3, we do not
include any restrictions on � here. Multivariate normal data with an unconstrained random correlation matrix can be
generated by the rdata.frame() command in the mi package, with option restrictions¼“none.”
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variable; conditional slightly outperforms joint MVN MI for the ordinal variable; and conditional

dramatically outperforms joint MVN MI for the unordered-categorical variable. Likewise, as with

the MVN results, conditional MI outperforms joint MVN MI by a much greater margin for the

probabilities than for the imputed values. The biggest area in which these results differ from the

MVN results is for the simulations in which the outcome is binary. In these cases, joint MVN MI

and conditional MI are nearly equal on the performance metrics.
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Fig. 4 Results for simulations based on 2008 ANES using draws from the PPD.
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5 Discussion

In general, we see that there are two kinds of results. Either conditional MI outperforms joint MVN
MI and the other competitors by a fair margin, or there is very little difference between joint MVN
MI and conditional MI. In no case does joint MVN MI clearly outperform conditional MI.

We expected that two assumptions made by joint MVN MI would cause it to perform less well
than conditional MI: the assumption that the data are jointly distributed MVN; and the rules used
to turn categories into continuous values and continuous imputed values back into categories. We
expected that joint MVN MI and conditional MI would be roughly equal only when the distribu-
tional assumption was true, and when all variables were continuous. Our expectations were largely
met, although joint MVN MI exceeded our expectations in a few cases.

In the cases in which the data are MVN and every variable is continuous, joint MVN MI and
conditional MI perform about equally well. We are surprised, however, that joint MVN MI and
conditional MI continue to perform similarly well for continuous variables for the ANES data,
which are not distributed MVN. Furthermore, joint MVN MI performed surprisingly well for the
binary variable in the ANES simulations. We did not expect joint MVN MI to perform so well in
these cases because the ANES data include continuous, binary, ordinal, and unordered-categorical
variable types, and the imputations of any one variable depend on the imputations of the other
partial variables. If the imputations of an ordered or unordered-categorical variable are inaccurate,
then the imputations of the continuous and binary variables should also be inaccurate. It appears,
however, that joint MVN MI is resilient, and may be a viable option for imputing continuous, and
perhaps even binary, variables without confirming that the data resemble a MVN distribution. This
result is preliminary, and should be confirmed on simulated data that explicitly models specific
kinds of non-normality.

For ordinal and unordered-categorical variables, however, conditional MI improves upon joint
MVNMI for both the MVN and ANES data. For the most part, we observe an improvement in the
accuracy of the imputed values themselves. But the difference is most striking for the accuracy of a
generalized linear model run after imputed data are generated. Researchers using MI for the explicit
purpose of keeping partially observed cases when fitting a linear model should probably consider
conditional MI to be a better alternative than joint MVN MI.

6 Conclusion

It is impossible for any simulation study to consider the entire universe of possible data. We
decided, therefore, to focus on two specific data structures: discretizations of MVN data and
data based on the 2008 ANES. MVN data conform to the assumptions made by the joint MVN
MI algorithms considered here, and should present the most favorable circumstances for joint
MVN MI. The ANES is an applied example that resembles data used by many political scientists.
We find that, using MVN and ANES data, joint MVN MI is faster than conditional MI, but yields
imputations which are less accurate for categorical variables.

Our goal is to encourage applied researchers to choose an imputation algorithm that is appro-
priate for the particular characteristics of their data. Although we have not conducted a universal
analysis, this research should be useful to others who are considering whether to use a joint MVN
or conditional implementation of MI.

We believe that two DGPs considered here generalize to a large number of situations. However,
we have not proven that the comparisons we make here will always apply for any data. In par-
ticular, we have not yet considered alternative variable types, such as truncated variables or count
variables, nor have we considered alternative data structures such as multilevel data, time-series
cross-sectional data, data with nonignorable missingness, or high-dimensional data. Although we
have no theory to suggest that joint MVN MI outperforms conditional MI in any of these settings,
it may be the case that the performance of conditional MI suffers in some cases we have not
examined. In future research, we intend to analyze the performance of conditional MI when
some conditional distributions are explicitly misspecified.
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Appendix 1: General Principles of MI

Rubin and Little (2002) demonstrate that CCA suffers from two problems: “loss of precision, and
bias when . . . the complete-cases are not a random sample of all the cases” (p. 41). Although they

suggest that these problems may be minimal when the proportion of missing data points is small
and when the partial cases do not differ systematically much from the observed cases, they lay out a
case that imputation is usually a better option.

In order to improve on CCA, an imputation technique must have two properties. First, the
technique must preserve associations between complete and partial variables and between pairs of
partial variables. In other words, the imputation technique must use the observed data to make a
more informed guess for each imputed value. Second, the imputed values need to be drawn from

distributions rather than deterministically computed. For example, if one variable is distributed
normally conditional on the other variables in the data, then replacing its missing values with the
mean of this normal distribution is incorrect since it underestimates the noise in the data. Instead,
the imputed values are drawn from the conditional normal distribution, which in this case serves as
the PPD for the partial variable (Rubin and Little 2002, 72). Drawing values allows several versions

of the data set to be generated. These data sets can be combined using Rubin’s (1987) rules to run
statistical models that contain the correct level of noise from the imputed values.

Beyond these requirements, however, Rubin and Little do not provide much guidance to
researchers who must choose between contending approaches. They discuss versions of MI that
assume the data jointly follow an MVN distribution and define an EM estimator. Noting that this
assumption is “restrictive” (p. 224), they present some generalizations of the joint approach,
including a version in which the conditional distributions are estimated through linear regression.
The conditional approach itself can be generalized to model variables of different types other than

continuous, and to represent a class of joint distributions larger than multivariate normal.

The MAR Assumption

Following the notation of Rubin and Little (2002, 12), let Y represent the complete data, where Yobs

denotes the observed data points and Ymiss denotes the missing data points. Also let M be a matrix
containing the indicators of whether each data point is missing or observed, and let � generally
represent parameters from the joint distribution function of Y. A missing-data mechanism is

missing completely at random (MCAR) if

fðMjY,�Þ ¼ fðMj�Þ for all Yobs,Ymiss, �: ðA1Þ

In other words, MCAR requires that whether or not a data point is missing is entirely independent
of any of the real data. Less restrictive is the MAR condition, which holds if

fðMjY,�Þ ¼ fðMjYobs, �Þ for all Ymiss, �: ðA2Þ

Here, whether a data point is missing may depend on observed data, but cannot depend upon the
“true” values of missing data points for either the variable in question or for other variables. If M

depends on Ymiss, then the data are not missing at random (NMAR), in which case MI does not
provide consistent estimates. MAR and NMAR can also be thought of as graphical concepts: MAR
holds when the missing data conform to the trends expressed by the observed data. Figure A1 contains
a scatterplot. X has no missing values, Y is incomplete, and whether Y is missing depends on both
values of X and Y. X and Y are generated randomly, then missing points are selected, so we know the
true values for the missing data points. The graph on the left plots all the true data points, and the

graph on the right omits the data points that are missing on Y. Note how the best-fit line for the true
data differs quite a bit from the best-fit line calculated from the complete cases.

MAR supposes that the best-fit line for the observed cases of a variable provides accurate
estimates of the unobserved cases. But when the missingness is NMAR, as in Fig. A1, these estimates
are inaccurate. CCA is inaccurate when missingness is NMAR, and no MI algorithm—regardless of
the approach—can be expected to provide reliable imputations when missingness is NMAR.

Jonathan Kropko et al.16

 at N
ew

 Y
ork U

niversity on M
ay 5, 2014

http://pan.oxfordjournals.org/
D

ow
nloaded from

 

Multiple Imputation
complete case analysis (
)
. . 
.
posterior predictive distribution (
)
p. 
Missing at Random (
)
p. 
missing at random (
)
multiple imputation 
 -- 
 -- 
http://pan.oxfordjournals.org/


Modeling Noise and Combining Data Sets

Imputing based on observed data trends is accurate when the data are MAR, but imputations

should also express the same level of noise that is present in the observed data. Figure A2 shows the

difference between modeling and ignoring noise. In the graph on the left, the best-fit line for the

regression of Y on X is derived, and imputed values of Y are exactly predicted from this regression.

In the graph on the right, the imputed values are simulated around the predicted values using the

estimated variance of the regression. Rubin and Little (2002) point out that “best prediction

imputations systematically underestimate variability, [and] standard errors from the filled-in data

are too small, leading to invalid inferences” (p. 64). In addition, marginal distributions and

multivariate statistics such as covariances are distorted when the variance is ignored. Accurate

imputation algorithms must model the noise.
There are two methods for capturing the correct noise in the imputed values. First, imputed

values can be drawn from the PPD, by estimating the conditional distribution for each variable,

simulating noise, and drawing imputations from this distribution (Rubin and Little 2002, 65–66).
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Fig. A1 An example of inaccurate imputation when data are NMAR.

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●

●

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7 ● Y is observed

Y is imputed

Ignoring Noise

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●

●

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7 ● Y is observed

Y is imputed

Modeling Noise

Fig. A2 An example of imputation when data are missing at random, ignoring and modeling noise.
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An alternative method is PMM, in which each case with a missing value is compared on some
metric to every case with an observed value (Rubin 1986; Rubin and Little 2002). The imputed
value is the observed data point for the closest match (Rubin and Little 2002, 69). Various
implementations of PMM use different metrics for the comparison. One important class of MI
algorithms that uses PMM is hot deck imputation (Cranmer and Gill 2013).

Regardless of the method of modeling the noise, the imputed values within each data set express
only one possible realization of each missing data point. As a result, there is no distinction between
the observed and imputed data. Imputed values allow us to use the observed data points on the
same row as a missing value, but we cannot allow the imputed data to be counted as if they were
observed. In order to eliminate the influence of the imputed values, several versions of the imputed
data are created independently, and are combined using the rules first described by Rubin (1978,
1987). These rules adjust the results of models run postimputation to reflect uncertainty due to
variation in the imputed values. Rubin and Little (2002, 211–212) suggest that as few as five
imputed data sets may be sufficient to accurately describe the imputation variation.

Appendix 2: PMM

In this section, we replicate our analyses using PMM instead of drawing imputed values from the
PPD. PPD and PMM are discussed in detail in Appendix 1.

The joint MVN MI algorithms considered in this study draw imputed values using PPD by
default, since imputed values are draws from the joint MVN distribution. PMM is not currently
implemented in joint MVN MI software packages Amelia and Norm. For the simulations
described below, we wrote original code to include PMM in these algorithms. After the MVN
distribution is estimated and imputed values are drawn, we calculate the conditional mean of each
observation given the values—imputed or real—of the other variables. We then match each
imputed case to the observed case with the closest conditional mean. mi implements PMM by
matching each imputed value’s linear prediction from the conditional model to the closest
prediction from the observed values. In order to assess probabilities using PMM, we replace the
choice probabilities for missing values with the probabilities of the cases that are matched to the
partial cases.

Results are presented in Figs. A3 and A4, which correspond to Figs. 2 and 4 in Section 3.3.
Using MVN data, joint MVN MI and conditional MI appear to perform about equally well when
the variable of interest is continuous, regardless of whether PPD or PMM is used to draw imputed
values. When we use PMM to draw imputed values for the ANES data, however, conditional MI
outperforms joint MVN MI for every metric and variable type, including the continuous variable.

PMM is a less arbitrary method for turning continuous imputed values into categorical ones in
joint MVN MI. We were surprised therefore to see that switching to PMM has very little effect on
the relative accuracy of joint and conditional MI in the MVN simulations. More troubling for joint
MVN MI is that in the ANES simulations, PMM causes joint MVN MI to perform less well across
the board. Joint MVN MI, using PMM, still treats categorical variables as continuous, still
estimates a MVN mean vector and covariance matrix, and still draws continuous imputed
values. The difference is that the conditional MVN distribution for each variable is derived,
given all of the other variables, and imputed categories are drawn by matching the conditional
mean of each missing value to the observed values. PMM avoids using rounding or probabilities to
draw categories from continuous imputations. It does not, however, avoid treating categorical
variables as continuous. Furthermore, if other variables have inaccurate imputed values, the
conditional mean, and therefore matching, may be inaccurate as well. In general, these rules
appear to inhibit the accuracy of joint MVN MI, and PMM—as described in Section 2.1—does
not improve the performance of joint MVN MI.

Appendix 3: Generating MVN Data with MAR Missingness

One can evaluate the performance of an imputation algorithm using simulations where the DGP is
known. However, the usual approach to Monte Carlo simulations—where complete samples are
repeatedly drawn from a fixed population—would be suboptimal in this context for two reasons.
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First, it would be odd to consider the covariates to be fixed in repeated sampling when some of the

observations on the covariates are missing and hence are considered random variables to be

integrated out. Second, our questions of interest depend on how well an imputation algorithm

performs across populations rather than across samples.
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Fig. A3 Multivariate normal simulation results using posterior mean matching.
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Thus, we first need to specify a distribution of population parameters. Lewandowski,

Kurowicka, and Joe (2010) derive a distribution for a correlation matrix, p �j�ð Þ / det� �ð Þð Þ
��1,

where �ii ¼ 1 8i and � > 0 is a shape parameter. By setting � ¼ 1, the density is constant, which is

to say that all correlation matrices of a given order are equally likely. It is easy to draw a correlation

matrix from this distribution, and by doing so repeatedly, we could integrate over all standardized

populations, knowing that the standardization does not affect any quantity of interest to us.
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Fig. A4 Results for simulations based on 2008 ANES using posterior mean matching.
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The next step is to distinguish between three kinds of variables in a population: fully observed
variables, partially observed variables, and latent missingnesses. The vector of fully observed
variables is denoted X and is of length nf. The vector of partially observed variables is denoted
Y and is of length np. The vector of latent missingnesses is denoted Z and is of length np because
there is one latent missingness variable for each partially observed variable. All of these variables
are observable in the population, but in a sample, some of the observations on each partially
observed variable are missing, which depends on the sign of the corresponding latent missingness.

In other words, for the ith observation in a sample, xik ¼ Xik, yij ¼
Yij if Zij < 0
NA if Zij > 0

�
, and

zij ¼ sign Zij

� �
.

Let � ¼

�XX �XY �XZ

�0XY �YY �YZ

�0XZ �0YZ �ZZ

2
4

3
5 be the n� n population correlation matrix partitioned

according to three types of variables, where n ¼ nf þ 2np. We could draw � uniformaly from the
distribution of n� n correlation matrices via the Lewandowski, Kurowicka, and Joe
algorithm. However, such a DGP would be NMAR rather than MAR. To see this, assume
that the population is multivariate normal and note that the conditional covariance matrix

given X is
�YYjX �YZjX

�0YZjX �ZZjX

� �
¼

�YY �YZ

�0YZ �ZZ

� �
�

�0XY
�0XZ

� �
��1XX �XY �XZ

� �
. A necessary condition

for MAR is that �YZjX ¼ 0, which is sufficient together with multivariate normality. Thus, in this

article, where we are concerned with the behavior of imputation algorithms under MAR, we

constrain the DGP such that �YZjX ¼ 0 ¼ �YZ ��0XY��1XX�XZ.

If the data were not multivariate normal, then it would not necessarily be correct to describe the
DGP as MAR even if �YZjX ¼ 0. However, most statistical analyses hinge on the first two moments
of the data, in which case we would not anticipate the biases to be substantial if Y and Z were
orthogonal given X but had some dependence in the higher moments.

Our population correlation matrices are not quite uniform conditional on �YZjX ¼ 0, but they
are more general than the usual DGPs in the missing-data literature. Most of the literature
implicitly generates data where �ZZjX is not only fixed but is constrained to be diagonal, which
is not a requirement for MAR. Indeed, one of the salient features of most real samples is that
missingness is clustered across variables such that if an observation is missing on one variable, it
tends to be missing on another variable. In our terminology, �ZZ would have large, positive, off-
diagonal elements, and this dependence among the latent missingnesses would persist even after
conditioning on X.

We have conducted simulations with and without the restriction that �YZjX ¼ 0 but report the
results where this unrealistic restriction is imposed. The joint MVN imputation algorithms specify a
multivariate normal distribution over X and Y and ignore Z. A conditional imputation algorithm
can condition on sign z�j

� �
when imputing a missing yij. If the population were generated such that

�YZjX 6¼ 0, we expect conditional imputation algorithms to perform better than joint MVN
imputation algorithms, although in practice the difference seems to be small at most. Thus, we
report the results where the population is generated such that �YZjX ¼ 0, which is somewhat
disadvantageous to a conditional imputation algorithm because conditioning on sign z�j

� �
as well

as x requires estimating additional coefficients that are zero in the population.
The literature also usually generates a population where �YYjX is not only fixed but is

constrained to be diagonal, which is also not a requirement for MAR. We do not impose this
restriction on our random populations, although �YYjX is diagonal in expectation. Although
allowing �YYjX to be nondiagonal is more realistic, we do not expect it to have much effect on
the simulations because neither the joint MVN nor the conditional imputation algorithms assume
anything about �YYjX. If �YYjX were sparse and the sparsity pattern were somehow known, then
perhaps a conditional imputation algorithm could gain an advantage over a joint MVN imputation
algorithm by imposing the corresponding exclusion restrictions, but we do not accept the premise
that the sparsity pattern would be known in general. The literature often, although not always,
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generates a population where np ¼ 1, which is both unrealistic and unlikely to provide a good basis
for comparing imputation algorithms. In our simulations, we manipulate np.

Thus, it is possible to draw � such that �YZjX ¼ 0 and draw a “true sample” of size N from a

multivariate normal distribution with mean vector zero and correlation matrix �. We then
construct an “observed sample” from the true sample by changing yij to NA iff zij > 0 and then

discarding all the latent missingnesses. Finally, we apply imputation algorithms to the observed
sample and calculate various loss functions. It is quite possible to introduce skewness or kurtosis,

but we do not do so in this article.
When some of the variables are discrete, the process of constructing an observed sample is more

involved. If a fully observed or partially observed variable is ordinal, we take the corresponding
marginal from the multivariate normal distribution and discretize it. The cutpoints are chosen such

that the probability of falling in each category is equal. This restriction on the cutpoints is not
particularly realistic but avoids the potential situation that the sample is small, the number of

categories is large, and some category is empty in the observed sample. We manipulate the
number of categories in our simulations. A binary variable is just a special case of an ordinal

variable with two categories, but in that case we simply fix the cutpoint at zero.
Constructing a nominal variable is more complicated than an ordinal variable. An observation

on a nominal variable with K categories can be generated from K latent variables such that the
nominal value takes the kth level if the kth latent variable is larger than the other K� 1 latent

variables. Thus, we generate these K latent variables in the population and make them conditionally
independent given the fully observed variables and the previous partially observed variables. In the

true sample, only the nominal values are observed.
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