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Item Calibration Methods with Multiple Subscale Multistage Testing 

 
Abstract 

Many large-scale educational surveys have moved from linear form design to multistage testing 

(MST) design. One advantage of MST is that it can provide more accurate latent trait (θ) 

estimates using fewer items than required by linear tests. However, MST generates incomplete 

response data by design; hence questions remain as to how to calibrate items using the 

incomplete data from MST design. Further complication arises when there are multiple 

correlated subscales per test, and when items from different subscales need to be calibrated 

according to their respective score reporting metric. The current calibration-per-subscale method 

produced biased item parameters, and there is no available method for resolving the challenge. 

Deriving from the missing data principle, we showed when calibrating all items together, the 

Rubin’s (1976) ignorability assumption is satisfied such that the traditional single-group 

calibration is sufficient. When calibrating items per subscale, we proposed a simple modification 

to the current calibration-per-subscale method that helps reinstate the missing-at-random 

assumption and therefore corrects for the estimation bias that is otherwise existent. Three 

mainstream calibration methods are discussed in the context of MST, they are the marginal 

maximum likelihood estimation (MML), the expectation maximization (EM) method, and the 

fixed parameter calibration (FPC). An extensive simulation study is conducted and a real data 

example from NAEP is analyzed to provide convincing empirical evidence.  

Key words: multistage testing, missing data, marginal maximum likelihood, EM 
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1. Introduction 

With the advent of web-based technology, computer based testing (a.k.a., online testing) 

is becoming the mainstream form of large-scale educational assessments. The landscape of 

educational assessment is changing rapidly with the growth of computer-administered tests. As 

an example, National Assessment of Educational Progress (NAEP), the “largest nationally 

representative and continuing assessment” (e.g., Beaton & Zwick, 1992), has moved from paper 

based assessment (PBA) to digitally based assessment (DBA) recently.  

A particular mode of DBA that NAEP has piloted for Mathematics is the multistage 

testing (MST), which refers to a testing format where “subsets of test items are presented to 

students based on item difficulty and student performance” (Governing Board and NAEP 

Resources1). Figure 1 illustrates a simple, two-stage MST design. The routing block contains 

items spread across a typical range of difficulty levels in PBA, and the targeted blocks differ by 

difficulty—blocks of easy, medium, and hard items. 

 
Figure 1. An illustration of a two-stage MST design used in NAEP 

 
Compared to the linear form design, the MST design has a profound advantage. That is, 

due to length constraints and the demands placed on the single set of items, linear form tests may 

provide little information to certain subgroups (mostly highly achieving subgroups or low 

achieving subgroups) because there are not enough items with appropriate difficulty levels to 

measure students in those subgroups. A MST, however, tailors the set of items (i.e., target block) 

                                                            
1 Retrieved from https://www.nagb.org/content/nagb/assets/documents/what-we-do/quarterly-board-meeting-materials/2014-11/tab02-governing-
board-and-naep-resources.pdf 
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a student sees to the student’s individual ability level, so that no student receives too many 

overly easy or difficult items. Consequently, MST can provide more accurate latent trait (θ) 

estimates using fewer items than required by PBA (e.g., Weiss, 1982; Wainer, 1990). Moreover, 

the computer-based nature of MST yields many other advantages, such as new item formats, new 

types of skills that can be measured, easier and faster data analysis, and richer behavior data 

collection such as item response time (as part of behavior/process data) (e.g., Wang, Zheng, & 

Chang, 2014).  

Despite of the advantages, MST generates incomplete response data by design; hence 

questions remain as to whether the item calibration procedure for the traditional linear forms 

(e.g., Mislevy, 1991; Mislevy, Beaton, Kaplan, & Sheehan, 1992) can still apply. Widely used 

calibration methods for linear forms include the marginal maximum likelihood estimation with 

expectation maximization implementation (MMLE/EM; Bock & Aitkin, 1981), the expectation 

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Woodruff & Hanson,1996), and 

the fixed parameter calibration (FPC) methods (Ban, Hanson, Wang, Yi, & Harris, 2001; Chen & 

Wang, 2016, Chen, Wang, Xin, & Chang, 2017; Kim, 2006). A default assumption made by all 

three methods is that the sample is drawn from a single population, although the multiple group 

versions of all three methods have also been developed (Lissitz, Jiao, Li, et al., 2014). While 

MMLE/EM often assumes θ follows a normal distribution, both EM and FPC allow more 

flexible θ distributions.  

Given the MST design in Figure 1, students routed to each module in the second stage 

naturally form three separate subgroups, whose θ distributions differ. The three non-equivalent 

groups share the same routing block, which serves as the linkage to put all items on the same 

scale. In this regard, it seems intuitively reasonable to assume that there are multiple subgroups 
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and the subgroup structure should be taken into account during the calibration procedure. Indeed, 

several recent studies (Cai, Roussos, & Wang, 2018; Lu, Jia, Wu, 2017) have explored the 

multiple-group MML method for MST item calibration. Their results showed that the multiple-

group MML performed poorly, yielding large item parameter bias, whereas the single-group 

MML performed well. However, not clear reason is provided to explain the results.   

In addition, another layer of complexity arises when the assessment covers multiple 

content subdomains. For instance, the mathematics assessment in NAEP has five subscales, 

“Number properties and operations”, “Measurement”, “Geometry”, “Data analysis, Statistics, 

and Probability”, and “Algebra”. For score reporting purposes, items from each subscale need to 

be calibrated on their respective scale. Traditionally, the item calibration on each subscale is 

conducted separately using the unidimensional item response theory (IRT) models, and then a 

composite score, which is a weighted combination of the subscale scores2, is created to report the 

overall mathematics performance. However, this calibration-per-subscale approach failed to 

recover item parameters properly within the MST design (e.g., Lu, Jia, & Wu, 2018; Wu & Lu, 

2017; Wu & Xi, 2017), and no viable alternative was provided.  

To sum up, there are two scenarios where MST item calibration has been explored: the 

first one is when all items are put on a single unidimensional scale, and the second one is when 

items from different content subdomains are put on separate unidimensional scales. The aim of 

the paper is two-fold: (1) to provide reasons why the current MST item calibration approaches 

are unsuccessful, including the multiple-group MML (Cai, et al., 2018; Lu, et al., 2017) for the 

first scenario and the single-group calibration-per-subscale for the second scenario (Wu & Xi, 

2017; Wu & Lu, 2017); and (2) to propose a new method that resolves the challenge in the 

                                                            
2 https://nces.ed.gov/nationsreportcard/tdw/analysis/trans.aspx   
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second scenario. The proposed solution is grounded in Rubin (1976)’s missing data theory, 

which provides a streamlined framework to explore the MST item calibration for both scenarios. 

Please note that the second scenario was motivated from the operational NAEP analysis, but the 

solutions provided could be apply to other operational designs similar to NAEP.  

The rest of the paper is organized as follows. We first briefly introduce the 

unidimensional two-parameter logistic (2PL) model as the underlying IRT models throughout 

the study. Then we will describe the three commonly used item calibration methods: 

MMLE/EM, EM, and FPC. All these methods could be used with the MST data. In the next 

section, we will introduce Rubin (1976)’s missing data theory and its application to the MST 

design. In particular, we will explain why the current calibration-per-subscale method with the 

MST design is inadequate, and present a new, simple solution. Two simulation studies are 

presented, followed by a real data illustration. A discussion is presented in the end.  

2. Models 

The unidimensional 2PL model is used throughout the paper. For 2PL, the item response 

function for item j takes the following form 

𝑃௝ሺ𝜃ሻ ൌ
𝑒ଵ.଻௔ೕ൫ఏି௕ೕ൯

1 ൅ 𝑒ଵ.଻௔ೕ൫ఏି௕ೕ൯
 , ሺ1ሻ 

where subscript 𝑗 indicates item. 𝑎௝ and  𝑏௝ denote item discrimination and difficulty parameters 

respectively, and θ denotes the latent trait measured by the test. Here “1.7” is a scaling factor to 

equate the logistic form with the normal ogive form.  

                                                       

3. Existing Item Calibration Methods 

3.1 Marginal Maximum Likelihood Estimation/Expectation Maximization (MMLE/EM) 
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 The MMLE/EM algorithm (or MML for short hereafter) for IRT parameter estimation 

when the response data is complete has been well established in the literature (e.g., Bock & 

Aitkin, 1981; Mislevy, 1984).  Suppose a J-item test is given to N examinees, resulting in an N-

by-J binary response matrix Y.  Assuming all items are modelled by 2PL, and let Δ = (𝒂,𝒃) 

denote the set of unknown item parameters, which are the target parameters in item calibration. 

The joint likelihood can be easily written as  

𝐿ሺ𝚫,𝜽|𝒀ሻ ൌෑ ෑ ൣ𝑃௝ሺ𝜃௜ሻ
௬೔ೕሺ1 െ 𝑃௝ሺ𝜃௜ሻሻ

ଵି௬೔ೕ൧ ,                       ሺ2ሻ
௃

௝ୀଵ

ே

௜ୀଵ
 

due to the local independence assumption. Let 𝑃ሺ𝒚௜|𝜃௜ ,𝚫ሻ ൌ ∏ ൣ𝑃௝ሺ𝜃௜ሻ
௬೔ೕሺ1 െ 𝑃௝ሺ𝜃௜ሻሻ

ଵି௬೔ೕ൧௃
௝ୀଵ  

denote the joint probability of 𝒚௜ for notational simplicity. Then the marginal likelihood of 𝚫 is  

𝐿ሺ𝚫|𝒀ሻ ൌෑ න𝑃ሺ𝒚௜|𝜃௜ ,𝚫ሻ𝑔൫𝜃ห𝜇ఏ,𝜎ఏ
ଶ൯𝑑𝜃,

ே

௜ୀଵ
                                   ሺ3ሻ 

where 𝑔൫𝜃ห𝜇ఏ,𝜎ఏ
ଶ൯ denotes the density function of θ in the population, and 𝜇ఏ and 𝜎ఏ

ଶ are its 

mean and variance respectively. Here in Eq. (3), it is assumed that there is one population from 

which the sample is drawn. However, the MML method could also be generalized to multiple 

group scenario such that the population mean and variance will be group specific (e.g., Mislevy, 

et al., 1992; Cai, Yang, & Hansen, 2011). 

To remove the scale indeterminacy inherent in the IRT models, in Eq. (3), one often 

assumes that the latent trait θ follows a standard normal distribution (i.e., 𝑔൫𝜃ห𝜇ఏ ൌ 0,𝜎ఏ
ଶ ൌ 1൯). 

The marginal likelihood in Eq. (3) cannot be directly maximized easily because there is no 

closed form solution of 𝚫, and finding numerical solution means searching in a 2ൈ 𝐽-dimensional 

space. The EM algorithm, however, provides a viable computational tool to simplify the direct 

maximization of the marginal likelihood (Bock & Aitkin, 1981).  
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 In essence, the EM algorithm alternates between the E-step and M-step. In the E-step, the 

conditional expectation of the complete data log-likelihood (i.e., 𝑙ሺ𝚫|𝒀,𝜽ሻ ൌ logሺ𝐿ሺ𝚫|𝒀,𝜽ሻሻ) with 

respect to the missing data (in this case, θ) is obtained, denoted as 

𝐸𝜽|𝒀,𝚫𝒓൫𝑙ሺ𝚫|𝒀,𝜽ሻ൯ ൌ 𝐸𝜽|𝒀,𝚫𝒓൫log൫𝐿ሺ𝚫|𝒀,𝜽ሻ൯൯,                                                               ሺ4ሻ 

where 𝚫𝒓 denote the parameter estimates from the rth iteration.  The notation 𝐸𝜽|𝒀,𝚫𝒓 implies that 

the expectation is taken with respect to the conditional distribution of θ (i.e., missing data) given 

the observed data (Y) and provisional parameter estimates, 𝑃൫𝜃ห𝒀,𝚫𝒓൯. This conditional 

expectation is maximized to obtain the MLE of 𝚫 in the M-step. This way, the 2ൈ 𝐽-dimensional 

maximization challenge is reduced to searching a numerical solution in a 2-dimensional space, 

which is much more feasible. 

3.2 Expectation Maximization (EM) algorithm 

 While the above MML method treats the EM algorithm as a tool to reduce the 

computational complexity of directly maximizing the marginal likelihood, the item calibration 

can also proceed directly from the principal idea of the EM algorithm (Bock & Aitkin, 1981; 

Dempster et al., 1977; Rubin, 1991; Rubin & Thayer, 1982). In this case, the unknown latent trait 

θ is considered “missing” data. To model the distribution of θ flexibly, let us consider the 

discrete values 𝜃௞ ሺ𝑘 ൌ 1, … ,𝐾ሻ and their associated unknown probabilities 𝜋௞ ሺ𝑘 ൌ 1, … ,𝐾ሻ  

(Kim, 2006). Here K is the total number of quadrature points along the θ continuum. Under this 

assumption, θ distribution can be recovered via the probability mass function 𝜋௞ where 

∑ 𝜋௞ ൌ 1௄
௞ୀଵ . In this regard, both the item parameters Δ = (𝒂,𝒃) and π ൌ ሺ𝜋ଵ, … ,𝜋௄ሻ are 

unknown parameters. The IRT latent scale can be fixed by setting the mean of 𝜃 at 0, i.e., 

∑ 𝜋௞𝜃௞ ൌ 0௄
௞ୀଵ , and by setting its variance at 1.  
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 The EM algorithm again proceeds by alternating between the E-step and the M-step. 

Here, the conditional expectation is slightly different from Eq. (4) as follows,  

𝐸𝜽|𝒀,𝚫𝒓,𝝅ೝ൫log൫𝐿ሺ𝚫,𝝅|𝒀,𝜽ሻ൯൯ ൌ 𝐸𝜽|𝒀,𝚫𝒓,𝝅ೝ ൬logෑ 𝐿ሺ𝚫,𝝅|𝒀௜ ,𝜃௜ሻ
ே

௜ୀଵ
൰

ൌ෍ න log 𝐿ሺ𝚫,𝝅|𝒀௜ ,𝜃௜ሻ
ே

௜ୀଵ
𝑃൫𝜃ห𝒀௜ ,𝚫

𝒓,𝝅௥൯𝑑𝜃

∝෍ ෍ logሺ𝐿ሺ𝚫|𝒀௜ሻ𝜋𝑘ሻ
௄

௞ୀଵ

ே

௜ୀଵ
ൈ 𝑃൫𝜃𝑘ห𝒀௜ ,𝚫

𝒓,𝝅௥൯ ,                                        ሺ5ሻ 

where 𝑃൫𝜃𝑘ห𝒀௜ ,𝚫
𝒓,𝝅௥൯ is the posterior distribution of 𝜃௞ given 𝒀௜, 𝚫

𝒓 and 𝝅௥. Then in the M-step, 

the conditional expectation is maximized with respect to both Δ and π. Solving for item 

parameters remains the same as in section 3.1, whereas 𝜋௞
௥ is updated via a simple, closed-form 

solution as follows 

𝜋௞
௥ାଵ ൌ

𝑓௞
௥

∑ 𝑓௞
௥௄

௞ୀଵ
ൌ
𝑓௞
௥

𝑁
,                                                                     ሺ6ሻ 

where  𝑓௞
௥=∑ 𝑃ሺ𝜃௞|𝒀𝑖,𝚫𝒓,𝝅𝑟ሻே

௜ୀଵ . Within each EM cycle, to fix the latent scale, a few 

standardization steps need to be in place. In particular, let  𝜇௥ାଵ ൌ ∑ 𝜋௞
௥ାଵ𝜃௞

௥ାଵ௄
௞ୀଵ  and 𝜎ଶ,௥ାଵ ൌ

∑ 𝜋௞
௥ାଵ௄

௞ୀଵ ሺ𝜃௞
௥ାଵ െ 𝜇௥ାଵሻଶ be the provisional mean and variance of θ, then the discrete 

quadrature points are standardized by updating 𝜃௞
௥ାଵ with 

ఏೖ
ೝశభି ఓೝశభ

ఙೝశభ
. Accordingly, the 

provisional item parameter estimates are updated as follows:  𝑎௥ାଵ is updated with 𝑎௥ାଵ ൈ 𝜎௥ାଵ, 

𝑏௥ାଵ is updated with 
௕ೝశభିఓೝశభ

ఙೝశభ
, and 𝜋௞

௥ାଵ is updated with 𝜋௞
௥ାଵ ൈ 𝜎௥ାଵ.  

Although in the above exposition, π is estimated for a single θ distribution, the EM 

algorithm can also be extended for multiple group calibration. That is, group specific π’s could 

be estimated for each subpopulation separately. One advantage of the EM algorithm compared to 

MML is that the distribution of θ does not have to be specified in advance, and hence it is more 
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flexible to deal with non-normal θ distributions. This is especially desirable in the multiple group 

calibration approach when the group specific θ distributions are unknown.  

3.3 Fixed Parameter Calibration (FPC) 

Fixed parameter calibration refers to fixing a subset of item parameters at their previously 

estimated values and calibrating the remaining items so that their item parameters are placed on 

the same, fixed scale. In this case, the scale of θ  is naturally determined via the fixed parameters, 

and hence no constraints need to be added. This method is often used in online calibration 

scenario where new items are calibrated while holding the operational item parameters as fixed 

(e.g., Chen & Wang, 2016; Kim, 2006).  Both the aforementioned MML and EM methods can be 

used in FPC. With the former method, if the θ distribution is assumed normal, then its mean and 

variance can be freely estimated; whereas with the latter method, the standardization steps are no 

longer needed. For more details, please refer to Chen et al. (2017) or Kim (2006). In this paper, 

will consider the EM algorithm coupled with FPC such that the θ distribution does not have to be 

pre-specified. Moreover, FPC can also be used with both single group and multiple group 

calibration approaches (Kim & Kolen, 2016).  

 

4. Item Calibration with Missing Data 

By nature, the multistage testing generates incomplete response data because after the 

routing stage, each examinee is routed to one module in the remaining stages that matches 

closely with his/her ability level. Mislevy and Sheenan (1989) showed that in incomplete 

designs, the use of MML could be justified from Rubin’s (1976) general theory on inference in 

the presence of missing data. In particular, Mislevy and Wu (1996) argued that missing data due 

to MST (or adaptive) testing can be ignored when making inference about θ because the chance 
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for an item to be missing depends on observed responses from previous items but not on 

unobserved responses. However, they did not discuss the impact of missing data on item 

calibration. Eggen and Verhelst (2011) first provided a brief justification of using MML in the 

MST item calibration, but they did not mention the scenario when the test contains multiple 

subscales. In this section, we intend to provide a comprehensive discussion with regard to the 

missing data mechanism of the MST design within Rubin’ (1976) framework, especially the 

implications of missing data on item calibration when the test contains multiple subscales. Please 

note that for exposition simplicity, we assume there is only one form per module in the MST 

design in this paper. However, in practice, there is oftentimes multiple, parallel forms per 

module. Because the parallel forms are usually randomly assigned, the missing data resulting 

from this random assignment is completely random and hence it can be ignored.  

Essential to Rubin’s (1976) theory is the stochastic nature of the missing data mechanism 

(Little & Rubin, 1987), denoted as  

ℎఝሺ𝑴 ൌ 𝒎|𝒀 ൌ 𝒚ሻ,                                                         (7) 

where 𝑀 ൌ ൫𝑀ଵ, … ,𝑀௃൯ is the missing data indicator, indicating whether 𝑌௝ is actually observed 

(i.e., 𝑚௝ ൌ 1) or missing (i.e., 𝑚௝ ൌ 0).  𝑦௝ is the response on item j. Eq. (7) defines the process 

that causes the missing data, with the parameter 𝜑 that governs the missing mechanism.  

In the incomplete design, we have a sample realization of M and 𝒀௢௕௦ (“obs” denotes 

observed responses). So we can only estimate the item parameters of interest (i.e., Δ) based on 

partially observed Y, which is the marginal joint distribution of M and 𝒀௢௕௦ as, 

׬ 𝑓ఝሺ𝒎,𝒚|𝚫ሻ𝒚೘೔ೞ
𝑑𝒚௠௜௦=׬ 𝑓ሺ𝒚|𝚫ሻℎఝሺ𝒎|𝒚ሻ𝒚೘೔ೞ

𝑑𝒚௠௜௦                                (8) 

where 𝑓ఝሺ𝒎,𝒚|𝚫ሻ is the joint distribution of the complete data (i.e., 𝒀 ൌ ሺ𝒀௢௕௦,𝒀௠௜௦ ሻ) and the 

missing indicators. According to Rubin (1976), if the process that causes missing data can be 



12 
 

ignored, then Eq. (8) is equivalent to ׬ 𝑓ఝሺ𝒎,𝒚|𝚫ሻ𝒚೘೔ೞ
𝑑𝒚௠௜௦ ൌ 𝑓ሺ𝒚௢௕௦|𝚫ሻ, implying that the 

parameter of interest, Δ, can be inferred directly from the observed data.  

Rubin (1976) provides sufficient conditions under which ignoring the missing data 

mechanism still yields correct direct likelihood inference about Δ. The conditions are: (1) 

Satisfying missing at random assumption (MAR), i.e., for each value of 𝜑, ℎఝሺ𝒎|𝒚௢௕௦,𝒚௠௜௦ሻ ൌ

ℎఝሺ𝒎|𝒚௢௕௦ሻ for all values of 𝒚௠௜௦; (2) The parameter 𝜑 is distinct from Δ, which means that all 

possible values of 𝜑 are possible in combination with all possible values of Δ. 

In what follows, we will discuss the missing mechanisms induced by the two routing 

rules using Rubin’s (1976) framework. One is based on 𝜃෠ which is used in the current 

operational testing, and the other is based on true θ which is certainly unrealistic. The rationale 

for considering the latter design is that several previous studies used multiple-group calibration 

approach to estimate item parameters from the MST design but they were unsuccessful (e.g., Lu 

et al., 2017; Cai et al., 2018). Therefore, we intend to provide a theory grounded argument that 

only when the routing is based on true θ that the multiple-group approach is needed. This 

argument is also further backed up by the simulation results in section 5.   

4.1 Routing based on 𝜃෠  

We first consider a MST design where the routing rule is based on interim 𝜃෠, which is 

estimated from the responses and the previously known item parameters3 in the routing block. 

Under this design, the marginal likelihood of Δ for person i by integrating out both 𝒚௜,௠௜௦ and θ 

is 

                                                            
3 These are the initially estimated item parameters obtained from the previous administrations. The item parameters 
will be recalibrated again with the MST-generated data, which is the routine analysis in NAEP to avoid any 
aberrances due to item parameter drift.  
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න න 𝐿ఝ
𝒚೔,೘೔ೞఏ

൫𝜃,𝚫|𝒚௜,௢௕௦,𝒚௜,௠௜௦,𝒎௜൯𝑑𝒚௜,௠௜௦𝑑𝜃

ൌ න න 𝐿
𝒚೔,೘೔ೞఏ

൫𝜃,𝚫|𝒚௜,௢௕௦,𝒚௜,௠௜௦൯ℎఝ൫𝒎௜ห𝒚௜,௢௕௦,𝒚௜,௠௜௦, 𝜃൯𝑑𝒚௜,௠௜௦𝑑𝜃 

                             ൌ න න 𝐿
𝒚೔,೘೔ೞఏ

൫𝜃,𝚫|𝒚௜,௢௕௦,𝒚௜,௠௜௦൯ℎఝ൫𝒎௜ห𝒚௜,௢௕௦
ோ ൯𝑑𝒚௜,௠௜௦𝑑𝜃,                                          ሺ9ሻ 

where 𝒚௜,௢௕௦
ோ  denotes the observed responses on the items in the routing block. Here, 𝜑 contains the 

pre-specified cut-offs for routing decisions and therefore it is distinct from the target parameters 

Δ. Because the missing data mechanism only depends on observed data, the MAR assumption is 

automatically satisfied. Then, the last equality in Eq. (9) holds, and ℎఝሺ𝒎௜|𝒚௜,௢௕௦
ோ ሻ indicates the 

missing data process that depends on the observed response vector because 𝜃෠ is estimated from  

𝒚௜,௢௕௦
ோ .  

Further expand 𝐿 ሺ𝜃,𝚫|𝒚𝑖,𝑜𝑏𝑠, 𝒚𝑖,𝑚𝑖𝑠ሻ ൌ ൣ∏ 𝑃൫𝒚𝑖,𝑜𝑏𝑠|𝜃,Δ௝൯𝑗 ൧𝑔ሺ𝜃|𝜇𝜃 ൌ 0, 𝜎𝜃
2 ൌ  1ሻ𝑃ሺ𝒚𝑖,𝑚𝑖𝑠|𝜃ሻ  

in Eq. (9) such that it can be simplified as 

׬ ൣ∏ 𝑃൫𝒚𝑖,𝑜𝑏𝑠|𝜃,Δ௝൯𝑗 ൧𝑔ሺ𝜃|𝜇ఏ ൌ 0,𝜎ఏ
ଶ ൌ 1ሻℎ𝜑ሺ𝒎𝑖|𝒚𝑖,𝑜𝑏𝑠

𝑅 ሻ𝑑𝜃ఏ .                   (10) 

This is because ׬ 𝑃ሺ𝒚௜,௠௜௦|𝜃ሻ𝒚೔,೘೔ೞ
 𝑑𝒚௜,௠௜௦ = 1. So the MML item calibration method intends to 

maximize the marginal likelihood 

ෑන ቎ෑ𝑃൫𝒚௜,௢௕௦|𝜃,Δ𝑗൯
௝

቏ 𝑔ሺ𝜃|𝜇ఏ ൌ 0,𝜎ఏ
ଶ ൌ 1ሻℎఝሺ𝒎𝑖|𝒚௜,௢௕௦

ோ ሻ𝑑𝜃
ఏ

ே

௜ୀଵ

ൌෑℎఝሺ𝒎𝑖|𝒚௜,௢௕௦
ோ ሻන ቎ෑ𝑃൫𝒚௜,௢௕௦|𝜃,Δ𝑗൯

௝

቏ 𝑔൫𝜃ห𝜇ఏ ൌ 0,𝜎ఏ
ଶ ൌ 1൯𝑑𝜃.                     ሺ11ሻ

ఏ

ே

௜ୀଵ

 

When both the MAR assumption and distinctiveness assumption are satisfied, Rubin (1976)’s 

ignorability condition is satisfied. Hence, a single-group marginal maximum likelihood (MML) 
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introduced in section 3.1 is sufficient for item calibration in this MST design. Indeed, after taking 

a log-transformation of Eq. (11), the term ℎఝሺ𝒎𝒊|𝒚௜,௢௕௦
௥ ሻ is no longer relevant because it does not 

contain Δ. In this case, maximizing Eq. (11) is equivalent to maximizing Eq. (3). 

 We can also show that for the EM algorithm in section 3.2, when the MAR assumption is 

satisfied, the EM algorithm can proceed based solely on the observed data. The detailed 

derivation is provided in the Appendix.  

 

4.2 Routing based on true 𝜃  

Several recent studies (Cai, et al., 2018; Lu et al., 2018) have used the multiple-group 

MML method for MST item calibration and found biased parameter estimates. In this section, we 

will show that, from missing data principle, the multiple-group calibration approach is only 

appropriate for a special, unrealistic, scenario where the routing is based on true 𝜃. Even so, the 

group specific 𝜃 distribution also needs to be defined correctly.  

In the current practice, multiple-group MML proceeds by assuming θ distribution follows 

normal 𝑁൫µ௚,𝜎௚ଶ൯, where g denotes the gth group (Cai, et al., 2011). There are two commonly 

used approaches to remove the scale indeterminacy. The first approach is to let the mean and 

variance for all three groups be estimable parameters with the constraints that the overall mean 

and standard deviation are 0 and 1 respectively (Lu, Jia, & Wu, 2017). The second approach is to 

fix the mean and variance of θ in one group to constants, and let them in all remaining groups to 

be freely estimated.  

According to the discussion in 4.1, when routing is based on  𝜃෠, the ignorablility 

condition is satisfied and hence a single-group MML is sufficient. Using multiple-group MML 

not only adds estimation complexity due to additional parameters, but it is also based on a false 
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assumption that θ distribution for each subgroup follows a normal distribution. This is exactly 

the reason why the previous studies using the multiple-group calibration were unsuccessful. 

There is one exception when the multiple-group MML is necessary. That is when the routing 

decision is made based on true 𝜃. For example, let 𝑐ଵ and 𝑐ଶ be the two cut-offs along the 𝜃 

continuum, and now the missing mechanism is  

ℎఝሺ𝒎|𝜃ሻ ൌ ቐ

1ఏவ௖మ     if this person takes the difficult block
1௖భஸఏஸ௖మ  if this person takes the medium block
1ఏழ௖భ           if this person takes the easy block

       .                           (12) 

The MAR assumption is no longer satisfied because the missing data depends on the unknown 

latent variable θ which itself is also missing. Replacing ℎఝ൫𝒎௜ห𝒚௜,௢௕௦
ோ ൯ in Eq. (10) by (12) results 

in a marginal likelihood that is comprised of three components,  

∏ ׬ ൣ∏ 𝑃൫𝒚௜,௢௕௦|𝜃,𝛥௝൯௝ ൧𝑔൫𝜃ห𝜇ఏ ൌ 0,𝜎ఏ
ଶ ൌ 1൯1𝜃൐𝑐2

𝑑𝜃ఏ௜∈ୢ୧୤୤୧ୡ୳୪୲  ൈ

∏ ׬ ൣ∏ 𝑃൫𝒚௜,௢௕௦|𝜃,𝛥௝൯௝ ൧𝑔൫𝜃ห𝜇ఏ ൌ 0,𝜎ఏ
ଶ ൌ 1൯1𝑐1൑𝜃൑𝑐2

𝑑𝜃 ൈఏ௜∈୫ୣୢ୧୳୫

∏ ׬ ൣ∏ 𝑃൫𝒚௜,௢௕௦|𝜃,𝛥௝൯௝ ൧𝑔൫𝜃ห𝜇ఏ ൌ 0,𝜎ఏ
ଶ ൌ 1൯1𝜃൏𝑐1

𝑑𝜃ఏ௜∈ୣୟୱ୷              (13) 

 

It is clear from Eq. (13) that a three-group calibration needs to be performed, and each group has 

a θ distribution that follows a truncation of a standard normal distribution.  

 

4.3 The challenge of calibration by subscale 

 Many large scale assessments such as NAEP or PISA (e.g., Liu, Wilson, & Paek, 2008) 

measure students’ performance on multiple subscales within a given subject domain. The 

standard practice of NAEP item calibration is to calibrate items from each subscale separately 

using the traditional single-group MML method (Wu & Lu, 2017; Wu & Xi, 2017). However, 

this procedure yields biased item parameter estimates when the response data are collected from 
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the MST design (e.g., Lu et al., 2017). Previous studies have neither given a justifiable 

explanation nor provided a viable solution.  

In fact, from the missing data theory, it can be easily verified that when the calibration is 

conducted per subscale, the MAR assumption is violated. This is because, by design, the missing 

data mechanism is based on the observed responses from all items in the routing block, i.e., 

ℎఝ൫𝒎௜ห𝒚௜,௢௕௦
ோ ൯. However, if one conducts the calibration per subscale, for subscale d, we have 

the marginal likelihood for person i as follows,  

න න 𝐿ఝ
𝒚೔,೘೔ೞ
೏ఏ೏

൫𝚫, 𝜃ௗ|𝒚௜,௢௕௦
ௗ ,𝒚௜,௠௜௦

ௗ ,𝒎௜൯𝑑𝒚௜,௠௜௦
ௗ 𝑑𝜃ௗ

ൌ න න 𝐿
𝒚೔,೘೔ೞ
೏ఏ೏

൫𝚫, 𝜃ௗ|𝒚௜,௢௕௦
ௗ ,𝒚௜,௠௜௦

ௗ ൯ℎఝ൫𝒎௜ห𝒚௜,௢௕௦
ோ,ௗ ൯𝑑𝒚௜,௠௜௦

ௗ 𝑑𝜃ௗ .                                      ሺ14ሻ 

In Eq. (14), 𝒚௜,௢௕௦
ோ,ௗ  denotes the observed responses from person i on items in subscale d in the 

routing block. Please note that because the missing data function  ℎఝሺ𝒎௜|𝒚௜,௢௕௦
ோ,ௗ ሻ ് ℎఝ൫𝒎௜ห𝒚௜,௢௕௦

ோ ൯, 

using (14) will inevitably introduce bias due to the misspecification of the missing data function. 

Indeed, if let 𝒚௜,௢௕௦
ோ ≡ ൫𝒚௜,௢௕௦

ோ,ௗ ,𝒚௜,௢௕௦
ோ,ିௗ൯, where 𝒚௜,௢௕௦

ோ,ିௗ denotes the observed responses from person i 

on all items in the routing block except subscale d , then if one performs the calibration by 

subscale via MML following Eq. (14), 𝒚௜,௢௕௦
௥,ିௗ  is considered as “missing” data because it is not 

used in the calibration. Therefore, the missing data actually depends on the “missing” 

observations, violating the missing at random assumption. Following this argument, a simple 

solution is to augment the subscale data 𝒚௜,௢௕௦
ௗ  by 𝒚௜,௢௕௦

ோ,ିௗ, and the MAR assumption will be 

satisfied such that a single-group MML still applies.  

 Figure 2 provides an illustrative comparison of the traditional calibration per subscale 

approach, and our proposed, modified approach. Assuming the test contains three subscales, for 
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the modified approach, although item responses from the other two subscales in the routing 

block are also used in item calibration, the item parameters for those subscales are considered 

“nuisance”.  

(a) Traditional approach       (b) Modified approach 

 

Figure 2. Illustration of calibration per subscale. The three boxes with different colored lines represent 
three different subscales. If one intends to calibrate item parameters from scale 1 (red color), item 

responses from the shaded area are used as input.  
 

 

5. Simulation Studies 

Two simulation studies were conducted to evaluate the performance of the different 

calibration methods under a typical NAEP design. The 2PL model was used throughout the 

simulation studies because its item parameters tend to be relatively easy to recover, whereas the 

c-parameter estimation in the 3PL model is known to be challenging (Thissen & Wainer, 1982; 

Swaminathan & Gifford, 1986).  

5.1 Design and Methods 

Item bank and MST design  The items were obtained from NAEP 2011 Grade 8 

mathematics assessment4. The item bank was constructed by pooling together items in all five 

content areas and all testing blocks. There were 115 items in total, from which four testing 

modules were assembled. For content balancing purpose, the following procedure was conducted 

                                                            
4 The real item parameters were retried from 
https://nces.ed.gov/nationsreportcard/tdw/analysis/scaling_irt_math.aspx  
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on each of the five subscales. First, the items were ranked in ascending order in terms of the 

discrimination parameter. About ¼ of the items with the lowest 𝑎 values were chosen to form the 

routing module. Selecting items with lower-a parameters at the beginning of the test is consistent 

with the suggestions in Chang and Ying (1996). This design not only helps balance item usage 

and but also makes the test more robust to random errors (e.g., incorrect answers due to test 

anxiety) at the beginning of the test (Chang & Ying, 2008).  Then, the remaining items were 

ordered by the difficulty parameter, and an “easy” module is made from 1/3 of the remaining 

items with the lowest difficulty. Similarly, the “difficult” module consists of 1/3 of the most 

difficult items. The final module consists of the last 1/3 items with medium difficulty. Table 1 

shows the number of items in each module and each subscale. Although the number of items per 

subscale differs by test design, they are roughly evenly distributed across four modules. Table 2 

presents the descriptive statistics of the item parameters.  

Table 1. Item distributions per module and per subscale 

 Number sense, 
properties, and 
operations 

Measurement Geometry 
and spatial 
sense 

Data analysis, 
statistics, and 
probability 

Algebra 
and 
functions 

Total 

Routing 5 6 7 4 9 31 
Easy 5 5 6 4 9 29 
Medium 4 5 6 3 9 27 
Hard 5 5 6 3 9 28 
Total 19 21 25 14 36 115 

 

Table 2. Descriptive statistics of item parameters 

 
Mean SD 

a b a b 
Routing 0.63 -0.01 0.14 1.24 

Easy 1.05 -0.34 0.24 0.41 
Medium 1.08 0.46 0.27 0.38 

Hard 1.21 1.24 0.37 0.48 
Total 0.98 0.32 0.34 0.94 
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 Response generation and routing  Two simulation designs (denoted as Design I and 

Design II) were considered depending upon the routing methods (routing based on true 𝜃 vs. 

routing based on 𝜃෠). Sample size was set at 3,000. In both designs, every simulee responded to 

the items in the routing module, and roughly 1/3 of the simulees were routed to one of the three 

target modules based on the routing rules. The 1/3 and 2/3 quantiles of the standard normal 

distribution were chosen as the two fixed cut points, and they are 𝑐ଵ ൌ െ.43 and 𝑐ଶ ൌ .43.  

For design I, a group of 3000 simulees’ true 𝜃s was generated from a standard normal 

distribution. Then the responses were generated based on 2PL in Eq. (1). The next module was 

decided by the location of the simulees’ true 𝜃s relative to the cut points. If their true 𝜃s were 

smaller than 𝑐ଵ, they were assigned to the easy module; if their true 𝜃s were larger than 𝑐ଶ, they 

were assigned to the difficult module; and if their true 𝜃s were between the two cut points, they 

were assigned to the medium module. This design, although unrealistic in practice, results in a 

missing not at random (MNAR) condition. 

Design II only differs from Design I by the routing method. To reduce random error, 

Design II shared the same 3000 𝜃s and the same responses from the routing block in Design I. 

After the routing stage, individual 𝜃 was estimated via the expected a posterior (EAP) with a 

standard normal prior5, and the next module was decided by the location of 𝜃෠ relative to the cut 

points. This design results in a MAR condition.  

Calibration methods  Table 3 summarizes the calibration methods used in the two 

simulation designs. If viewing all items in the test measure a single, unidimensional trait, five 

                                                            
5 See Eq (2.1) on page 7 of the following document 
https://www.nagb.gov/content/nagb/assets/documents/publications/achievement/developing-achievement-levels-
2011-naep-grade8-grade12-writing-technical-report.pdf 

 



20 
 

different methods were compared. They are (1) the single-group MML (denoted as S-MML 

hereafter) assuming the entire calibration sample as a single group with θ from a standard normal 

distribution; (2) the multiple-group MML with all normal (denoted as M-MML-N), where we 

assume the population consists of three subpopulations, all of which follow a normal distribution 

with group specific mean and variance. Here the mean and variance for the middle group were 

fixed at their true values to fix the scale. We considered this method jus to replicate the studies 

by Cai et al. (2018) and Lu et al. (2018); (3) the multiple-group MML with truncated normal 

(denoted as M-MML-T) according to the description in section 4.2; (4) the single-group fixed 

parameter calibration (S-FPC) and (5) the multiple-group FPC (M-FPC). With FPC, the 

calibration proceeds in two steps. In the first step, the complete response matrix from the routing 

block were calibrated as usual, then those routing item parameters were fixed at their estimated 

values, and the targeted block items were calibrated via FPC. By single-group, we refer to 

estimating 𝜋௞’s as if they are from a single population, whereas by multiple-group, we refer to 

estimating 𝜋௞’s separately for three subpopulations. It is anticipated that when the MAR 

assumption is satisfied with 𝜃෠ routing, all single-group methods should outperform the multiple-

group methods. On the other hand, when the MAR assumption is violated with true θ routing, the 

multiple-group methods should be preferred.  

With respect to calibration per subscale, again both single-group and multiple-group 

approaches were evaluated. Within the single-group framework, we considered both the MML 

and FPC methods, and for each method, we considered two scenarios: the one with all routing 

items (i.e., our modified approach that satisfies the MAR assumption) and the one with the 

routing items only pertinent to the corresponding subscales (i.e., current method). These 2 (MML 

vs. FPC) by 2 (All vs. Only) result in four methods, denoted as S-MML-All, S-FPC-All, S-
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MML-Only, and S-FPC-Only hereafter. Regarding the multiple group approach, we only 

considered the FPC method because it does not need to specify the distribution of θ in advance. 

They are referred to as multiple-group FPC with only subscale relevant routing items (M-FPC-

Only) and with all routing items (M-FPC-All).  

 30 replications were conducted per condition, and two prior distributions of the item 

parameters (i.e., log ሺ𝑎ሻ~𝑁ሺ0, 0.5ଶሻ and b~𝑁ሺ0, 2ଶሻ) under the 2PL model were specified for 

effective runs of the FPC method. These are the default priors used in BILOG-MG and 

PARSCALE (Kim, 2006, p. 357).  

Table 3. Summary of the calibration methods for different simulation designs6 
Single vs. 
Multiple group 

Methods Notation Simulation I 
Unidimensional 2PL with 
θ routing 

Simulation II 
Unidimensional 2PL with 
𝜃෠ routing 

Scenario 1: All items are calibrated on a single scale 
S MML  S-MML √ √ 
M MML with all normal  M-MML-

N 
√ √ 

M MML with truncated 
normal  

M-MML-T √ √ 

S Fixed parameter EM 
(FPC) 

S-FPC √ √ 

M Fixed parameter EM 
(FPC) 

M-FPC √ √ 

Scenario 2: Items from different content areas (i.e., subscales) are calibrated on separate scales 
S MML per subscale S-MML-

Only 
 √ 

S Modified MML per 
subscale 

S-MML-
All 

 √ 

S Fixed parameter  
EM per subscale  

S-FPC-
Only 

 √ 

S Modified Fixed 
parameter  
EM per subscale 

S-FPC-All  √ 

M Fixed parameter EM 
per subscale 

M-FPC-
Only 

 √ 

M Modified Fixed 
parameter  
EM per subscale 

M-FPC-
All 

 √ 

 

                                                            
6 The R and MATLAB source code for running all the proposed methods can be found on 
https://sites.uw.edu/pmetrics/publications-and-source-code/ 
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5.2 Results 

 Overall unidimensional calibration The evaluation criteria are the average bias and root 

mean squared error (RMSE) of the a- and b- parameters. They were computed first across all 

replications per item, and then averaged over all items. The parameter recovery were 

summarized for both all items and items within each block. Table 4 presents the average bias and 

RMSE for design I with true θ routing and Table 5 presents the item parameter recovery for 

design II with estimated 𝜃෠ routing. 

Table 4. Average bias and RMSE of a- and b- parameters with 2PL model calibration for Design 
I (i.e., true θ routing) 

 All Routing Easy Medium Hard 
Method a b a b a b a b a b 

bias 
S-MML -0.28 0.25 0.01 -0.03 -0.30 0.42 -0.61 0.78 -0.247 -0.13 
M-MML-N 0.00 0.01 0.00 0.02 -0.06 0.04 0.04 0.00 0.02 -0.01 
M-MML-T 0.01 0.02 0.04 0.00 0.00 0.08 -0.03 0.05 0.01 -0.08 
S-FPC  -0.27 0.21 0.00 0.01 -0.30 0.45 -0.55 0.49 -0.28 -0.09 
M-FPC -0.05 0.03 0.00 0.01 -0.05 0.05 -0.10 0.07 -0.05 0.01 

RMSE 
S-MML 0.30 0.55 0.04 0.08 0.31 0.45 0.62 1.58 0.26 0.17 
M-MML-N 0.12 0.08 0.03 0.05 0.14 0.10 0.20 0.11 0.11 0.05 
M-MML-T 0.14 0.12 0.05 0.08 0.16 0.14 0.24 0.20 0.12 0.09 
S-FPC 0.29 0.31 0.04 0.07 0.32 0.47 0.56 0.59 0.29 0.15 
M-FPC  0.13 0.10 0.04 0.07 0.15 0.12 0.22 0.15 0.12 0.06 

 
Table 5. Average bias and RMSE of a- and b- parameters with 2PL model calibration for Design 

II (i.e., estimated 𝜃෠ routing) 
 All Routing Easy Medium Hard 
Method a b a b a b a b a b 

bias 
S-MML  0.01 -0.03  0.01 -0.03  0.01 -0.03  0.00 -0.03  0.00 -0.04 
M-MML-N -0.10 0.01 -0.26 0.02 -0.10 -0.85 0.07 -0.03 -0.10 0.94 
M-MML-T 0.35 -0.10 0.06 0.00 0.35 -0.18 0.79 -0.20 0.26 -0.03 
S-FPC -0.02 0.02 0.00 0.01 -0.02 0.03 -0.02 0.02 -0.04 0.01 
M-FPC 0.41 -0.10 0.00 0.01 0.39 -0.32 1.01 -0.21 0.31 0.10 

RMSE 
S-MML 0.10 0.08 0.03 0.08 0.12 0.09 0.14 0.09 0.11 0.07 
M-MML-N 0.16 0.63 0.26 0.64 0.13 0.85 0.14 0.07 0.13 0.94 
M-MML-T 0.38 0.15 0.07 0.09 0.39 0.20 0.83 0.23 0.29 0.08 
S-FPC  0.10 0.08 0.04 0.07 0.11 0.09 0.13 0.08 0.11 0.06 
M-FPC 0.44 0.19 0.04 0.07 0.43 0.33 1.04 0.25 0.34 0.13 
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               Several conclusions can be drawn from Tables 4 and 5. First and unsurprisingly, the 

MML and FPC methods, including both of their single-group and multiple-group versions, 

perform similarly in all conditions. That is, when S-MML performs well, S-FPC also performs 

well. In contrast, when M-MML (both M-MML-N and M-MML-T) performs badly, so does M-

FPC. This indicates that one can either concurrently calibrate all items or calibrate routing items 

first and targeted block items second. Second and more interestingly, when routing is based on 

true θ, multiple-group approach outperforms single-group approach regardless of the specific 

calibration method. In this case, the MAR assumption is violated, and using a single-group 

approach based on observed data ignores the missing data mechanism. As a result, the item 

parameter estimates are severely biased. On the other hand, when routing is based on estimated 

𝜃෠, then the single-group approach performs much better than the multiple-group approach. In the 

latter case, the items in the routing block are still recovered well, it is the targeted blocks that are 

adversely affected. 

                Calibration per subscale Although the items are calibrated separately per subscale, the 

same evaluation criteria were still used to summarize the parameter recovery. In this case, only 

simulation design II was considered because they mimic the real practice closely. Tables 6 

reports the results for Design II.  

 
Table 6. Average bias and RMSE of a- and b- parameters with 2PL model calibration per 

subscale for Design II (i.e., estimated 𝜃෠ routing) 
 All Routing Easy Medium Hard 
Method a b a b a b a b a b 

bias 
S-MML-Only -0.35 0.25 -0.04 0.00 -0.39 0.74 -0.67 0.63 -0.34 -0.33 
S-MML-All 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01 -0.01 
S-FPC-Only  -0.29 0.19 0.00 0.01 -0.34 0.71 -0.54 0.40 -0.30 -0.35 
S-FPC-All  -0.01 0.02 0.00 0.01 -0.01 0.02 -0.02 0.02 -0.03 0.01 
M-FPC-Only 0.20 -0.08 0.00 0.01 0.24 -0.27 0.44 -0.16 0.16 0.11 
M-FPC-All 0.73 -0.13 0.00 0.01 0.70 -0.38 1.95 -0.27 0.39 0.09 



24 
 

RMSE 
S-MML-Only 0.36 055 0.06 0.10 0.40 0.76 0.67 1.00 0.36 0.37 
S-MML-All 0.12 0.08 0.04 0.07 0.15 0.09 0.18 0.10 0.12 0.06 
S-FPC-Only 0.31 0.42 0.04 0.07 0.35 0.72 0.55 0.53 0.32 0.39 
S-FPC-All 0.11 0.08 0.04 0.07 0.13 0.09 0.16 0.09 0.13 0.07 
M-FPC-Only 0.29 0.17 0.04 0.07 0.34 0.29 0.55 0.19 0.25 0.14 
M-FPC-All 0.79 0.23 0.04 0.07 0.77 0.39 2.05 0.33 0.43 0.13 

 

It is shown from Table 6 that, consistent with prior findings (e.g., Lu et al., 2017), using a 

single-group MML or a single-group FPC per subscale calibration leads to severe bias. This is 

due to the violation of the MAR assumption. The modified approach, however, by augmenting 

the subscale item responses by responses on all routing items, help satisfy the MAR assumption. 

Therefore, as expected, the modified approach greatly improves estimation accuracy. Both S-

MML-All and S-FPC-All result in almost unbiased parameter estimates. Another interesting 

finding worth mentioning is, when the MAR assumption is violated, the multiple group approach 

outperforms the single group approach. This is reflected in the better results from M-FPC-Only 

than from S-FPC-Only, although M-FPC-Only still yields large bias and RMSE relatively. One 

explanation is, the number of items per subscale per block (see Table 1) is too few to help 

recover the underlying θ distribution per group in the M-FPC-Only approach. Further simulation 

studies need to be conducted to verify the conjecture. 

 

6. Real Data Analysis 

The real response data from a special NAEP MST grade 8 math assessment study in year 

2011 is used as an example. The total sample size is 8,401, in which about 40% of the students 

(N2 = 3344) were placed in the experiment sample (taking the two-stage MST, see Figure 1), and 

roughly 60% (N1 = 5057) were in the calibration sample (random routing). In the routing stage, 

there are two parallel forms, and examinees were randomly assigned to one of the two forms, 
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hence the missing data in the routing stage is completely at random. Table 7 presents the sample 

size per form and per target block from each sample. As shown, the sample sizes are comparable 

across different forms/blocks, and the sample size is enough to calibrate the 2PL model 

parameters accurately. Table 8 presents the number of items per content domain within each 

form/block.  

Table 7. Sample size per form/block 
Routing Form 1 2  
Target block Easy Medium Hard Easy Medium Hard Total 
Experiment sample 669 715 273 681 734 272 3344 
Calibration sample 847 826 868 857 848 811 5057 
Total 1516 1541 1141 1538 1582 1083 8401 

 

Table 8. Number of items per content domain in each form/block. 
 Routing  Target 
 Form 1 Form 2 Easy Medium Hard 
Number properties and operations 3 4 2 2 3 
Measurement  3 3 2 2 2 
Geometry 3 3 3 3 3 
Data analysis statistics and probability 2 2 2 1 2 
Algebra 6 5 5 5 3 

 

For both samples, two scenarios were considered, i.e., items from the entire test were 

calibrated on a single scale (labeled as “overall calibration” in Table 9) and items from each 

content area were calibrated on separate scales (labeled as “calibration per subscale”).  For 

overall calibration, four methods are compared. They are the single group maximum likelihood 

estimation (S-MML), single-group EM (S-EM), single-group fixed parameter calibration (S-

FPC), and multiple group FPC (M-FPC). The multiple-group MML is not considered because 

the FPC method is more flexible to model the different shapes of θ distributions per group. It is 

expected that all four approaches will produce similar item parameter estimates when data comes 
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from the calibration sample, whereas M-FPC will produce biased item parameter estimates when 

the data comes from experiment sample.  

For the calibration per subscale, which is more interesting, two approaches are compared 

as shown in Table 9. They are both single-group methods because the multiple-group alternatives 

did not produce satisfactory results according to the simulation findings. Again, both methods 

should work reasonably well on the calibration sample, whereas only the S-FPC-All method is 

expected to produce comparable and almost unbiased item parameters using the experiment 

sample. The S-MML-Only and the S-MML-All methods evaluated in the simulation study are no 

longer considered here for two reasons: (1) Both of them perform similarly to the FPC 

alternatives when the population distribution of θ is normal; and (2) the distribution of θ in the 

current sample departs slightly from normal (see Figures 3 and 4) and hence FPC is preferred.  

 
Table 9. Calibration plan for the real data 

 Overall calibration Calibration per subscale 
Calibration/Experiment sample  S-MML S-EM S-FPC M-FPC S-FPC-Only S-FPC-All 

 

6.1 Overall calibration results 

Figures 3 and 4 present the scatter plots of the estimated item a- and b- parameters from 

pairs of methods for the two samples respectively. In both Figures, the single-group EM method 

serves as the benchmark method because as discussed earlier, the missing data in this scenario 

could be considered MAR. As shown in Figure 3, the item parameter estimates from all four 

methods align well when the data is from the calibration sample. Note that S-EM, S-FPC, and 

M-FPC allow flexible (non-parametric) θ distributions whereas S-MML implicitly assumes a 

normal θ distribution. There is a slight misalignment between the estimated a-parameters from S-

MML versus the estimates from S-EM, which implies that the θ distribution in the calibration 

sample does not strictly follow a normal distribution. This misalignment is exacerbated the 
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experiment sample. Moreover, in Figure 4, both S-EM and S-FPC produce similar parameter 

estimates, whereas the item parameter estimates from M-FPC do not align well. This is 

consistent with the simulation findings. In addition, because the θ distribution in the calibration 

and experiment samples do not seem to be the same, the item parameter estimates from these two 

samples may not be directly comparable, resulting in a slight misalignment in Figure 5. Given 

this observation, the comparison between the two samples will be dropped from further 

discussion. 

 

Figure 3. Scatter plots of the estimated item a- and b- parameters from overall calibration for the 
calibration sample 
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Figure 4. Scatter plots of the estimated item a- and b- parameters from overall calibration for the 
experiment sample 
 

 

Figure 5. Scatter plots of the estimated item a- and b- parameters from calibration vs. experiment 
sample using the S-EM algorithm  
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This section includes the results of calibrating items from different content areas on their 

respective scales. Figure 6 presents the results for the calibration sample, comparing the S-FPC-

Only and S-FPC-All methods against S-EM which is again the benchmark. Similar findings 

emerge. That is, the S-FPC-All method generates item parameter estimates that are in closer 

alignment with the S-EM approach, whereas the S-FPC-Only approach produces biased item 

parameter estimates. The biases are much more extreme when evaluating the results from the 

experiment sample, as reflected in Figure 7. This observation further reinforces that our proposed 

S-FPC-All approach should be preferred to the original S-FPC-Only approach because it 

reinstates the MAR assumption.  

 

Figure 6. Scatter plots of the estimated unidimensional item a- and b- parameters from the 
calibration sample 
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Figure 7. Scatter plots of the estimated unidimensional item a- and b- parameters from the 
experiment sample 
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relevance. Only when the item parameters are precisely calibrated and linked across years can 

long-term trend lines be constructed and subgroup comparisons made. 

            Questions remain as to how to calibrate items using the incomplete data from the MST 

design. Complication arises when there are multiple correlated subscales per assessment, and 

when it is necessary to put item parameters on their respective subscale score reporting metric. 

Although several recent studies have started to explore various item calibration methods with the 

MST design (e.g., Lu et al., 2017, 2018, Cai, et al., 2018, Jewsbury & van Rijn, 2018), they have 

not thoroughly analyzed the MST calibration challenge from a missing data perspective. For 

example, Lu et al. (2018) tried to provide different priors on a- and b- parameters to bring down 

the estimation bias, but there was not much success. Therefore, it remains unclear why the 

multiple-group EM does not produce an acceptable parameter recovery. In addition, a viable 

method is needed to properly calibrate item parameters per subscale.  

              In this paper, we draw upon Rubin (1976)’s missing data theory, and explicitly show 

that when the routing decision is based on 𝜃෠, the ignorability condition (i.e., MAR and 

distinctiveness assumption) is satisfied such that the as-usual, single-group calibration methods 

are sufficient. Using a multiple-group approach, however, will introduce additional bias 

regardless of the actual calibration methods. On the other hand, when the MAR assumption is 

violated, as in the true θ routing condition, the multiple group approach is necessary. As an 

additional check, Table 10 presents the “misclassification” rate from the simulation design II. 

The true group membership is based on comparing an individual’s true θ to the two cut-offs, 

whereas the assigned group membership is based on estimated  𝜃෠. Although there is only about 

20% discrepancy on average, the same calibration method can perform drastically different in the 

two scenarios (true θ vs. estimated 𝜃෠ routing), as reflected by results in Tables 4 & 5. This 
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reinforces the importance of checking the MAR assumption. In fact, prior studies (e.g., Mislevy 

& Wu, 1996; Glas, 2010; Eggen & Verhelst, 2011) have concluded that the MAR assumption is 

satisfied for MST design when the focus is on θ-estimation given known item parameters 

(Mislevy & Sheena, 1989), or on item calibration (Glas, 2010; Eggen & Verhelst, 2011). 

Following this perspective, we propose a simple, yet effective method to resolve the calibration 

by subscale challenge. The key is to augment the response data such that MAR assumption is 

satisfied.  

Table 10. Misclassification rate from the simulation design II 

True Group 
based on θ 

Assigned Group 
based on 𝜃෠ 

 Easy Medium  Difficult 
Easy .830 .166 .002 

Medium .140 .725 .135 
Difficult 0 .157 .845 

 

             In this paper, three mainstream calibration methods are reviewed and discussed in the 

context of missing data, they are MML, EM, and FPC. While MML often assumes θ follows a 

normal distribution or other known parametric distributions, the EM algorithm can naturally 

handle the case when the parametric form of the θ distribution is unknown. This is because it 

directly estimates the probability mass function of  θ by treating it as a discrete random variable. 

This feature is extremely useful in particular within the FPC framework because when certain 

item parameters are fixed, the entire θ distribution can be freely estimated. For instance, in the 

simulation design I when routing is based on true 𝜃, both the multiple-group MML with normal 

(M-MML-N) and multiple-group MML with truncated normal (M-MML-T) methods assume the 

shape of θ distribution per group is known, whereas M-FPC estimates the shape of the θ 

distribution per group freely. Despite of these differences, the three methods, both their single-
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group version and multiple-group version, all perform similarly and hence they can be used 

exchangeably whenever situation allows. Last but not least, in addition to the proposed new item 

calibration method, the challenge could also be potentially resolved by using a multidimensional 

IRT (MIRT) calibration. This is because MIRT calibration also takes into account all item 

responses in the routing block simultaneously. Future studies could compare the MIRT 

calibration versus the several methods considered herein.   
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Appendix 

In this Appendix, we provide derivations showing that when the MAR assumption is satisfied 

(i.e., routing based on 𝜃෠ ), the EM algorithm introduced in section 3.2 can also proceed based  

solely on the observed data.  

Specifically, for the E-step, we can write the conditional expectation as follows, 

𝐸ሺ𝒚೘೔ೞ,𝜽ሻ|𝒚೚್ೞ,𝚫ೝ,𝝅ೝ൫log൫𝐿ሺ𝚫,𝝅|𝒀,𝜽,𝒎ሻ൯൯ 

ൌ 𝐸ሺ𝒚೘೔ೞ,𝜽ሻ|𝒚೚್ೞ,𝚫ೝ,𝝅ೝ ቀ∑ log ቀ𝐿ሺ𝚫,𝝅|𝒚௜,௢௕௦,𝒚௜,௠௜௦,𝜃௜ሻ ൈ ℎఝ൫𝒎௜ห𝒚௜,௢௕௦,𝒚௜,௠௜௦,𝜃௜൯ቁ
ே
௜ୀଵ ቁ  

ൌ ∑ 𝐸ሺ𝒚೔,೘೔ೞ,ఏ೔ሻ|𝒚೔,೚್ೞ,𝚫ೝ,𝝅ೝ ൬log ቀ𝐿൫𝜃௜ ,𝚫|𝒚௜,௢௕௦൯ ൈ 𝐿൫𝜃௜,𝚫|𝒚௜,௠௜௦൯ ൈ 𝑔ሺ𝜃௜|𝝅ሻ ൈ ℎ൫𝒎௜ห𝒚௜,௢௕௦
ோ ൯ቁ൰ே

௜ୀଵ   

= ∑ ∑ ൬log ቀ𝐿൫𝜃௞,𝚫|𝒚௜,௢௕௦൯ ൈ 𝜋௞ ൈ ℎఝ൫𝒎௜ห𝒚௜,௢௕௦
ோ ൯ቁ ൈ 𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯൰௄

௞ୀଵ
ே
௜ୀଵ  

൅∑ ∑ 𝐸ሺ𝒚೔,೘೔ೞሻ|𝒚೔,೚್ೞ,𝚫ೝ,𝝅ೝ ൬log ቀ𝐿൫𝜃௞,𝚫|𝒚௜,௠௜௦൯ቁ ൈ 𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯൰௄
௞ୀଵ

ே
௜ୀଵ   
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=∑ ∑ ቀlog൫𝐿൫𝜃௞,𝚫|𝒚௜,௢௕௦൯ ൈ 𝜋௞൯ ൈ 𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯ቁ௄
௞ୀଵ

ே
௜ୀଵ ൅

∑ ∑ ൬log ቀℎఝ൫𝒎௜ห𝒚௜,௢௕௦
௥ ൯ቁ ൈ 𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯൰௄

௞ୀଵ
ே
௜ୀଵ ൅

∑ ∑ 𝐸𝒚೔,೘೔ೞ|𝒚೔,೚್ೞ,𝚫ೝ,𝝅ೝ ൬log ቀ𝐿൫𝜃௞,𝚫|𝒚௜,௠௜௦൯ቁ ൈ 𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯൰௄
௞ୀଵ

ே
௜ୀଵ                                ሺA1ሻ 

The second to the last equality holds because the expectation 𝐸ሺ𝒚೔,೘೔ೞ,ఏ೔ሻ|𝒚೔,೚್ೞ,𝚫ೝ,𝝅ೝ is actually a 

double integral, one with respect to the distribution of 𝒚௜,௠௜௦ and the other with respect to the 

distribution of 𝜃௜. Then, the first term in this equality is irrelevant to 𝒚௜,௠௜௦ hence it can be taken 

outside the expectation with respect to 𝒚௜,௠௜௦, resulting in only one integral that is written as a 

numeric sum over K.  

In the last equality in Eq. (A1), the first term is simply the conditional expectation of the 

log-likelihood based on observed data (i.e., the same as Eq. 5), the second term is irrelevant to 

the target parameters, whereas the third term actually vanishes in the M-step. The explanation is 

as follows. Without loss of generality, take item j as an example. Take a first-order derivative 

with respect to Δ௝, we have 

𝐸𝒚೔,೘೔ೞ|𝒚೔,೚್ೞ,𝜟𝒓,𝝅ೝ ቆ
ப୪୭୥ ሾ௅ሺఏೖ,𝚫|𝒚೔,೘೔ೞሻሿ

ப୼ೕ
𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯ቇ=𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯ ൈ

𝐸𝒚೔షೕ,೘೔ೞ
൤𝐸௬೔ೕ,೘೔ೞ

൬
ப ୪୭୥ൣ௅ሺఏೖ,𝚫|௬೔ೕ,೘೔ೞሻ൧

ப୼ೕ
൰൨                                                                                                      ሺA2ሻ 

where 𝑦௜௝,௠௜௦ denotes the missing responses of person i on item j, and 𝒚௜ି௝,௠௜௦ denotes the 

missing responses of person i on the remaining items except item j.  Equation (A2) holds because 

(1) 𝑝൫𝜃௞ห𝒚௜,௢௕௦,𝚫௥ ,𝝅௥൯ is irrelevant to the distribution of 𝒚௜,௠௜௦ and hence it can be taken outside 

the expectation; and (2) due to the discreetness of 𝒚௜,௠௜௦, the expectation with respect to the 

posterior distribution of 𝒚௜,௠௜௦ can be expanded as a series of expectations. 
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Because 𝐿൫𝜃௞,𝚫ห𝑦௜௝,௠௜௦൯ ൌ 𝑃൫𝑦௜௝,௠௜௦ ൌ 1ห𝜃௞,𝚫൯
௬೔ೕ,೘೔ೞሺ1 െ 𝑃൫𝑦௜௝,௠௜௦ ൌ 1ห𝜃௞,𝚫൯ሻଵି௬೔ೕ,೘೔ೞ 

Consider item parameter 𝑎௝ as an example, then 

ப ୪୭୥ൣ௅ሺఏೖ,𝚫|௬೔ೕ,೘೔ೞሻ൧

பୟೕ
ൌ 1.7 ቀ𝑦௜௝,௠௜௦ െ 𝑃൫𝑦௜௝,௠௜௦ ൌ 1ห𝜃௞,𝚫൯ቁ .                    (A3) 

And because 𝑦௜௝,௠௜௦ follows a Bernoulli distribution, it is easily shown that the expectation of 

(A3) with respect to the distribution of 𝑦௜௝,௠௜௦, i.e., 𝐸௬೔ೕ,೘೔ೞ
൬
ப ୪୭୥ൣ௅ሺఏೖ,𝚫|௬೔ೕ,೘೔ೞሻ൧

ப୼ೕ
൰=0. As a result, 

Eq. (A2) also becomes 0 and hence it vanishes in the M-step. Therefore, with missing data 

satisfying MAR, the EM algorithm can proceed in the same fashion as in section 3.2 using the 

observed data.  

 

 


