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Model selection is important in any statistical analysis, and the primary goal is to
find the preferred (or most parsimonious) model, based on certain criteria, from a
set of candidate models given data. Several recent publications have employed the
deviance information criterion (DIC) to do model selection among different forms
of multilevel item response theory models (MLIRT). The majority of the practition-
ers use WinBUGS for implementing MCMC algorithms for MLIRT models, and the
default version of DIC provided by WinBUGS focused on the measurement-level pa-
rameters only. The results herein show that this version of DIC is inappropriate.
This study introduces five variants of DIC as a model selection index for MLIRT
models with dichotomous outcomes. Considering a multilevel IRT model with three
levels, five forms of DIC are formed: first-level conditional DIC computed from the
measurement model only, which is the index given by many software packages such
as WinBUGS; second-level marginalized DIC and second-level joint DIC computed
from the second-level model; and top-level marginalized DIC and top-level joint
DIC computed from the entire model. We evaluate the performance of the five model
selection indices via simulation studies. The manipulated factors include the number
of groups, the number of second-level covariates, the number of top-level covariates,
and the types of measurement models (one-parameter vs. two-parameter). Consid-
ering the computational viability and interpretability, the second-level joint DIC is
recommended for MLIRT models under our simulated conditions.

Model selection is important in any model-based inference. Taking item response
theory (IRT) model as an example, the selection of a misspecified model leads to
not only theoretically different interpretations of the data but also inappropriate con-
clusions with respect to other IRT applications such as biased parameter estimation,
differential item functioning (DIF), or inappropriate person-fit assessment (DeMars,
2010).

The ease of fitting hierarchical models using Markov chain Monte Carlo (MCMC)
algorithm has facilitated the development of model selection criterion within
Bayesian framework. Congdon (2003) provided versions of Akaike’s (1974) infor-
mation criterion (AIC) and Schwarz’s (1978) Bayesian information criterion (BIC)
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when the fully Bayesian estimation methods, such as the MCMC algorithm, are used.
Both AIC and BIC are based on the likelihood with a penalty, and their difference
lies on the penalty term, which depends on the effective number of parameters in
the model. This effective number is a measure of model complexity, which is often
difficult to calculate for hierarchical models. This is because, although the number
of parameters follows directly from the likelihood, the prior distribution imposes ad-
ditional restrictions on the parameter space and it reduces the effective dimension
(Entink, Fox, & van der Linden, 2009; Fox, 2010).

Within the Bayesian framework, a common approach for comparing two models
is to compute the Bayes factor (BF; Berger & Delampady, 1987; Gelfand, 1996;
Jeffreys, 1961; Kass & Raftery, 1995), which is defined as the ratio of the posterior
probabilities of two models given data. Supposing that the prior densities of both
models consist of a point mass at their respective MLEs (maximum likelihood
estimates), and replacing the posterior probabilities by the likelihood of the two
model parameters evaluated at their respective MLEs, the Bayesian factor becomes
the classical likelihood ratio (Ando, 2010). Kass and Wasserman (1995) showed that
under certain conditions the BIC was an approximation of the BF. An advantage
of the BF is its clear interpretation of the change in the odds in favor of the model
when moving from the prior to the posterior distribution (Lavine & Schervish,
1999). Unfortunately, BF is quite difficult both to compute and to interpret for high-
dimensional hierarchical models and for models having improper prior distributions.

As a remedy, Geisser and Eddy (1979) discussed cross-validation in Bayes re-
gression model comparison and proposed a so-called pseudo-Bayes factor (PsBF).
The PsBF uses a “leave-one-out” method to calculate the cross-validation predictive
densities (Gelfland & Dey, 1994) so that it can avoid intractable computation and
dependence on the prior. The pseudo-marginal likelihood used here may be inter-
preted as a predictive measure for a future replication of the given data (Ando &
Tsay, 2010). The PsBF is provided by the ratio of two such quantities from the two
competing models. This predictive density yields the conditional predictive ordinates
(CPO) index such that PsBF can be expressed as the ratio of two CPO indices. One
drawback of PsBF, as noted by Eklund and Karlsson (2007), is that the division of
the data into subsets may affect the results. Yet there exist no clear guidelines for the
division, and the approach is difficult to apply when the data are dependent, as in, for
instance, time series data. When the number of observations is large, the approach
consumes a substantial amount of computational time (Ando & Tsay, 2010).

In addition to BF, Spiegelhalter, Best, Carlin, and Van Der Linde (2002) developed
the deviance information criterion (DIC) as a measure of global model fit, which is
computed based on Bayesian posterior estimates of model parameters. DIC is usu-
ally viewed as the Bayesian counterpart of AIC, which is approximately equivalent
to AIC for models with negligible prior information, and it is easily obtained as a
byproduct of the MCMC sampling algorithm. Further, it also makes weaker assump-
tions and automatically penalizes model complexity (Bolker et al., 2009). Despite
these advantages, there still exist many weaknesses of DIC, as discussed by Spiegel-
halter et al. (2002) and comments therein and by a series of articles by Celeux,
Forbes, Robert, and Titterington (2006), Carlin (2006), Meng and Vaida (2006), and
Plummer (2006). Because DIC is widely used for hierarchical/multilevel models, the
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main criticism is that DIC is dependent on the level of parameter specification upon
which the model likelihood is conditioned (i.e., “parameter of focus”) and hence
lacks invariance to reparameterization. Millar (2009) presented three variants of DIC
for a three-level hierarchical model: (1) the conditional DIC, which used likelihood
conditioned on parameters at the lowest level of the hierarchy, (2) the second-level
marginalized DIC, which used partially marginal likelihood conditioned on parame-
ters at the first and second levels, and (3) the top-level marginalized DIC, which used
marginal likelihood conditioned on parameters at all levels. Hamaker, van Hattum,
Kuiper, and Hoijtink (2011) introduced the conditional DIC and marginal DIC; the
marginal DIC is similar to Millar’s second-level marginalized DIC.

This article focuses on the model selection for the family of multilevel IRT mod-
els (e.g., Goldstein, 2003; Raudenbush & Bryk, 2002), which are commonly used to
model nested structures in behavioral and social sciences with categorical outcomes.
Many researchers have used different evaluation criteria to evaluate the global fit
of multilevel models. For example, Entink et al. (2009) have used the conditional
DIC provided in WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003) to assess
the global fit of a multilevel item response theory model (MLIRT), and other sim-
ilar applications include Hamaker et al. (2011), Hung and Wang (2012), and Choi
and Wilson (2016). Fox (2010), in contrast, used the top-level marginalized DIC to
assess the fit of a MLIRT model with an application to the PISA (Program for In-
ternational Student Assessment) data. Geering, Glas, and van der Linden (2011) and
Wang, Chang, and Douglas (2013) used DIC calculated from the joint likelihood
(without any marginalization) for a linear item cloning model and semi-parametric
hierarchical linear transformation model, respectively. This type of DIC, however,
does not fall into any of the three variants of DIC described by Millar (2009).

Furthermore, Hung and Wang (2012) have used BF to compare the generalized
multilevel facets model for longitudinal data, and BF was also used by Entink et al.
(2009). Choi and Wilson (2016) used the posterior predictive model check (PPMC;
Gelman, Carlin, Stern, & Rubin, 1996; Guttman, 1967) method to investigate the
effect of incorrect modeling school membership in the analysis of multilevel and
longitudinal item response data.

Other information-based indices, such as the average of AIC and BIC, which
were computed from the post burn-in iterations of MCMC algorithms, were used
by Cho and Cohen (2010); AIC and the quasi-information criterion (QIC) were used
by Barnett, Koper, Dobson, Schmiegelow, and Manseau (2010) and compared with
DIC, and they recommended DIC; conditional AIC computed from the measure-
ment model, marginal AIC computed from the measurement model and second level
model, and BIC were used by Hamaker et al. (2011).

As noted by Hamaker et al. (2011), more often than not the selection of a model
fit evaluation criterion is based on the capacity of the software. For example, the DIC
provided in WinBUGS by default is a conditional DIC computed from the level-1
model, whereas the AIC and BIC from MLwiN (Rasbash et al., 2000), SPSS, R, and
Mplus (Muthén & Muthén, 2010) are based on the marginal likelihood computed
from the first and the second-level models.

Studies related to evaluating the performance of different variants of DIC are
scarce. To the authors’ best knowledge, there is only one study (Millar, 2009), that
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used three variants of marginalized DIC to compare the hierarchical Bayesian mod-
els on over-dispersed count data, and the second-level marginalized DIC was rec-
ommended. However, this recommendation may not hold for binary item response
data. Moreover, there were no systematic investigations comparing the performance
of marginalized DIC and joint DIC. Without integrating out random effects at dif-
ferent levels of hierarchy, the joint DIC, in theory, should be computationally much
easier than the marginalized DIC. It is yet to be evaluated in the present study to
check if joint DIC can still select the best-fitting model under various conditions.

The current study focuses on multilevel IRT (MLIRT) models and is designed
to investigate the performance of five variants of DIC: the first-level conditional
DIC (DICC), the second-level marginalized DIC (DICS), the second-level joint DIC
(DICjS), the top-level marginalized DIC (DICT), and the top-level joint DIC (DICjT).
The outline of the rest of the article is as follows. In Section 2, we briefly review
the multilevel IRT models. In Section 3, we present five variants of DIC as model
selection criteria for MLIRT models. Simulation studies are provided in Section 4
to illustrate the performance of these five variants of DIC. A real-data analysis is
provided in Section 5. We end with some concluding remarks in Section 6.

Model Description

In this section, we give a brief overview of the MLIRT model that is considered
in this article. Interested readers can refer to Fox (2010) for a full description of the
family of MLIRT models. The MLIRT model consists of two components.

Measurement Model: Level 1

In this article, the probit link is considered as the linking function, so that the
posterior distributions of item parameters and latent trait (i.e., ability) have closed
forms, which facilitate computing marginal likelihoods. And the two-parameter nor-
mal ogive (2PNO) model and one-parameter normal ogive (1PNO) model (Baker
& Kim, 2004; Embretson & Reise, 2000; Hambleton & Swaminathan, 1985; Lord,
1980) are considered as the measurement models, because Kang and Cohen (2007)
reported that DIC did not work well with data from the three-parameter models. Let
yijk denote the binary scored response of examinee i (i = 1, . . . , nj) in group j (j = 1,
. . . , J) on item k (k = 1, . . . , K); the probability of a correct response is given by

P(yijk = 1
∣∣θij, ak, bk ) = �(akθij − bk), (1)

where �(.) denotes the standard normal cumulative distribution function, and ak and
bk are the discrimination and difficulty parameters of item k, set ak = 1 when 1PNO
model is used. θij denotes the ability of examinee i in group j. Hereafter, the parame-
ters of item k will also be succinctly denoted by a 2-by-1 vector, ξk, that is, ξk = (ak,
bk)T.

Structural Multilevel Model: Level 2 and Level 3

The structural multilevel model explains the relations between the latent variables
and other observed variables:
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Level 2

θij = β0 j + β1 j x1ij + · · · + βq j xqij + · · · + βQ j xQij + eij, (2)

Level 3

β0 j = γ00 + γ01ω1 j + · · · + γ0SωSj + u0 j ,

β1 j = γ10 + γ11ω1 j + · · · + γ1SωSj + u1 j ,

...

βQ j = γQ0 + γQ1ω1 j + · · · + γQSωSj + uQ j . (3)

In level 2, xqij denotes the qth (q = 0, . . . , Q) individual-specific covariate of ex-
aminee i in group j, such as socioeconomic status or gender. βqj is the corresponding
regression coefficient, and eij denotes the random effect at an individual level and is
assumed to follow a normal distribution with a constant variance, that is, eij � N(0,
σ2). In level 3, ωsj denotes the sth (s = 0, . . . , S) school-specific covariate of group
j, such as teacher satisfaction or school climate. γqs is the corresponding regression
coefficient, uqi denotes the random effect at the school level and uj � N(0, T), where

T =
⎡
⎣τ2

00 · · · 0
.
.
.

. . .
.
.
.

0 · · · τ2
Q Q

⎤
⎦ is a Q-by-Q covariance matrix.

Some restrictions are imposed to remove the scale indeterminacy inherent in nor-
mal ogive models. Two sets of constraints are usually adopted in the literature. One is
to fix the scale of the ability to a standard normal distribution. As a result, the struc-
tural multilevel IRT model in Equations 2 and 3 is identified owing to the fixed scale
of the abilities. Another way is to put a restriction on the item parameters, which can
be accomplished by imposing the restriction a1 = 1 and b1 = 0. In this article, we
take the second approach.

The Gibbs sampler (Albert, 1992; Fox & Glas, 2001) is used for MLIRT model
estimation. The details are provided in Appendix 1.

Model Selection Methods

In this section, we introduce five variants of the DIC of Spiegelhalter et al. (2002)
that will be used for hierarchical models. The generic form of DIC (Spiegelhalter
et al., 2002) is expressed as

DIC = 2 D(�) −D(�̄), (4)

where D(�) = −2 log{p(y|�)} + 2 log{p(y)} denotes Bayesian deviance, and the
overline denotes posterior expectation. In Equation 4, y is the data matrix, and the de-
viance is conditional on parameter vector �, which is termed the “parameter of inter-
est” or “parameter in focus” by Spiegelhalter et al. (2002). Here, it is sufficient to as-
sume that the standardizing factor p(y) equals one such that D(�) = −2 log{p(y|�)}
(Fox, 2010). The number of effective model parameters pD equals D(�) − D(�̂) .
Finally, the best-fitting model is associated with the smallest DIC value.
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Figure 1. An illustration of five variants of DIC from a MLIRT model. (Color
figure can be viewed at wileyonlinelibrary.com)

Figure 1 shows the parameters of focus in these five variants of DIC from a MLIRT
model. Three boxes are plotted, implying that items are nested within individuals,
whereas individuals are nested within schools. Different variants of DIC are marked
graphically in this figure. For example, DICC only focuses on the lowest measure-
ment model level, whereas DICS and DICjS focus on the second level, and the last
two focus on the top level. Observed variables are in squares, latent variable and
parameters are in circles.

As the Gibbs sampler is used to fit the MLIRT model, after augmenting the discrete
data y with the continuous data z, the DIC in Equation 4 can be expressed as the
integrated augmented DIC; that is,

DIC =
∫

[DIC |z,� ] · p (z,� |y ) dzd�

=
∫ [

2D(z,�) − D
(
z, �̂

)] · p (z,� |y ) dzd�

=
∫ {−4E�|Z {log [p (z |� )]} + 2 log

[
p
(
z
∣∣�̂)]} · p (z,� |y ) dzd�, (5)

where p(z|�) is the augmented likelihood function, � is the matrix of the parame-
ters, and �̂ is the point estimated value based on MCMC samples. zijk can be sampled
from the full conditional posterior density:

zijk

∣∣ θ, ξ, y ∼
{

N (akθij − bk, 1) truncated at the left by 0 if yijk = 1
N (akθij − bk, 1) truncated at the right by 0 if yijk = 0

. (6)

The detailed calculations of the augmented likelihood for five versions of DIC are
presented in Appendix 2. Hereafter, we focus the definition calculation of D(z, �),
instead of D(�).

In the present context, it is computationally most convenient to take � as the
parameters in the lowest (i.e., measurement) level of the hierarchy, as specified by
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Equation 1. This will be referred to as the conditional model and the corresponding
deviance is

D(z, θ, ξ) = −2 log{p(z |θ, ξ )}. (7)

The DIC calculated using the deviance defined in Equation 7 is the first-level con-
ditional DIC (DICC; Millar, 2009). The first-level conditional DIC is defined simi-
larly as the DIC used by Entink et al. (2009) and Fox (2010). Millar (2009) men-
tioned that the first-level conditional DIC ignored the immediate information pro-
vided by the higher-level structures, although the estimates of ξ and θ may still carry
the higher-level information indirectly, therefore it was not sensitive to differenti-
ate models that differ in higher levels. Even so, given its computational ease, it is
still widely used and it is actually the default option in WinBUGS. Also note that
the first-level conditional DIC is built on the “complete-data” likelihood from level
1 model, assuming random effect at level 1 (e.g., θ) is known by plugging in their
estimated values. In so doing, it treats the estimated random effects as fixed values
when computing DIC.

Furthermore, the parameters at the second level can sometimes be of interest when
one intends to evaluate whether certain individual level (i.e., level 2) covariates have
significant effects. Both marginal likelihood and joint likelihood are considered here.
The second-level marginalized deviance D(z, ξ, β, σ2) is defined as

D(z, ξ, σ2, β) = −2 log{p(z
∣∣ξ, σ2 , β)}. (8)

Fox’s method (Fox, 2010) for calculating marginalized Bayesian deviance and
Chib’s method (Chib, 1995) for calculating marginal densities are applied here. The
idea is to obtain a closed-form expression of the marginal likelihood using Bayes’s
formula. Hence, the corresponding second-level marginalized distribution has the
following density:

p(z
∣∣ξ, σ2, β ) =

∫
p(z |ξ, θ )p(θ

∣∣σ2, β )dθ

= p(z, θ
∣∣ξ, σ2, β )

p(θ
∣∣z, ξ, σ2, β )

= p(z |ξ, θ )p(θ
∣∣σ2, β )

p(θ
∣∣z, ξ, σ2, β )

. (9)

The three parts on the right side of Equation 9 all have closed forms and the full
computation details are provided in Appendix 2. The DIC calculated using the de-
viance in Equation 8 is the second-level marginalized DIC (DICS; Millar, 2009). As
compared to the complete-data likelihood used in the first-level conditional DIC, this
form of DIC uses the second-level marginalized likelihood (see Equation 9), which
can be viewed as an observed likelihood from model level 2. The “missing” data of θ

is marginalized, and hence the second-level marginalized DIC belongs to the family
of “observed” DICs (Celeux et al., 2006).

The second-level joint deviance Dj (z, ξ, σ2, β) is defined as

D j
(
z, ξ, σ2, β

) = −2 log
{

p
(
z, θ

∣∣ξ, σ2, β
)}

, (10)

9
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and then the corresponding second-level joint distribution is given by

p
(
z, θ

∣∣ξ, σ2, β
) = p (z |ξ, θ ) p

(
θ
∣∣σ2, β

)
. (11)

The DIC calculated using the deviance in Equation 10 will be called the second-
level joint DIC (DICjS), which can be treated as one kind of complete DIC (Celeux
et al., 2006) because it is again based on complete-data likelihood. The unobserved,
missing random effects are treated as known. Actually it is a semi-complete DIC
because there is no immediate information from the highest level, that is, level 3.

It is also possible to calculate a top-level marginalized DIC or top-level joint DIC
when the interest is focused on the significant school level (i.e., level 3) effects. The
top-level marginalized deviance is given by

D
(
z, ξ, σ2, γ, T

) = −2 log
{

p
(
z
∣∣ξ, σ2, γ, T

)}
. (12)

Based on the Bayes’ formula, the corresponding density can be expressed as

p(z|ξ, σ2, γ, T) =
∫

p(z|ξ, σ2, β)p(β|γ, T)dβ

=
∫ ∫

p(z|ξ, θ)p(θ|σ2, β)p(β|γ, T)dθdβ

= p(z|ξ, σ2, β, γ, T)
p(β|γ, T)

p(β|z, ξ, σ2, γ, T)
. (13)

The three parts on the right side of Equation 13 all have closed forms, and the
computation details will also be provided in Appendix 2. The DIC calculated using
the deviance in Equation 12 is the top-level marginalized DIC (DICT; Millar, 2009).
Similarly, the top-level marginalized DIC is another version of observed DIC (Celeux
et al., 2006), which can be calculated using an observed likelihood from model level
2 and level 3. The “missing” data of θ and β are integrated out.

The top-level joint deviance is

D j
(
z, ξ, σ2, γ, T

) = −2 log
{

p
(
z, θ, β

∣∣ξ, σ2 , γ, T
)}

, (14)

and the corresponding likelihood is

p
(
z, θ, β

∣∣ξ, σ2 , γ, T
) = p (z |ξ, θ ) p

(
θ
∣∣σ2, β

)
p (β |γ, T ) . (15)

The DIC calculated using the deviance in Equation 14 will be called the top-level
joint DIC (DICjT). It is a complete DIC, which contains all the information from the
model.

As both marginal likelihood and joint likelihood are used frequently in statisti-
cal analysis/inference (Bjørnstad, 1996), DIC could be formed using either form of
the likelihood. Celeux et al. (2006) provided a thorough discussion about the perfor-
mances of different versions of DIC in a missing data model; however, their findings
may not be easily generalizable to hierarchical models because the missing data (due
to random effects) can occur at different levels of the model. Hence, our study will
provide a unique contribution to the literature by comparing the performances of the
variants of DIC under various conditions often seen in hierarchical models.
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Table 1
Models Used in Simulation Studies

Measurement Model Individual-Level Model School-Level Model

Model 1 2PNO θij = β0 j + β1 j x1ij + eij
β0 j = γ00 + γ01ω1 j + u0 j

β1 j = γ10 + γ11ω1 j + u1 j

Model 2 2PNO θij = β0 j + β1 j x1ij + eij
β0 j = γ00 + u0 j

β1 j = γ10 + u1 j

Model 3 2PNO θij = β0 j + eij β0 j = γ00 + u0 j

Model 4 1PNO θij = β0 j + β1 j x1ij + eij
β0 j = γ00 + γ01ω1 j + u0 j

β1 j = γ10 + γ11ω1 j + u1 j

Note. The notations are deferred to Equations 1 to 3.

In Equations B14 and B15, Hj is a Knj-by-Knj symmetry matrix. The inverse of
Hj should be calculated M × J times when calculating the top-level marginalized
DIC, where M is the number of interim values from post-burn-in iteration, which are
used to calculate the posterior mean, and J is the number of groups (see Equation 1).
When the number of interim values or groups is large, yielding a high-dimensional
matrix, taking the matrix inverse becomes computationally prohibitive. Therefore,
the top-level marginalized DIC is computationally much more demanding than other
variants of DIC.

Simulation Studies

In this section, simulation studies are designed to evaluate the performance of the
five versions of DIC in terms of selecting the correct model. The true multilevel IRT
model differs by (1) whether significant individual- and/or school-level covariates
are included; (2) whether 2PNO or 1PNO is used as the true measurement model.
Two simulation studies are performed and they are described in detail below.

Simulation Design

For meaningful examination of the behavior of DICs, the simulated data must be
generated from a plausible model (Sinharay & Stern, 2003).There are four MLIRT
models to be chosen, named Models 1 to 4. Table 1 shows the specifications of the
four models.

Tables 2 and 3 show the simulation design for Study 1 and Study 2, respectively.
There are 36 (2 group size × 2 test length × 3 number of covariates × 3 measurement
models) conditions in Study 1 and 8 (2 group size × 2 test length × 2 measurement
models) conditions in Study 2. It is typical to consider one covariate in each level of
structure models, because if more than one covariate in the higher-level of structure
models (i.e., level 3 in this study) are considered, the 95% posterior credible inter-
val (P.C.I.) can be calculated as a variable selection index, which we also report in
Study 1. The Gibbs sampler is used to obtain the estimated values of the parameters.
The source code is available to readers upon request.
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Table 2
Fixed and Manipulated Conditions and Parameter Values in Study 1

Study 1 Generation Model Model 1 or Model 2 or Model 3

(Fox & Glas, 2001) Calibration model Model 1 and Model 2 and Model 3
Fixed conditions
Examinee sample size 2,000
ak Item discrimination ak ∼ log N (μa = exp(1), σa = .25)
bk Item difficulty bk ∼ N (μb = 0, σb = .5)
x1 j Individual-specific

covariate
x1 j ∼ N (μx = 0, σx = 1)

eij Individual-specific random
effect parameter

eij ∼ N (μe = 0, σe = .2)

ω1 j School-specific covariate ω1 j ∼ N (μω = .5, σω = 1)

γ School-specific regression
coefficients

γ00 = −.30, γ01 = .15
γ10 = .35, γ11 = 1.0[

u0 j

u1 j

]
School-specific random

effect parameters

[
u0 j

u1 j

]
∼

MVN
(
μu =

[
0
0

]
, �u =

[
.1 0
0 .1

])
Manipulated conditions
Group size Small: 10

Large: 200
Test length Small: 10

Large:30
Number of covariates One individual-specific covariate and

one school-specific covariate
One individual-specific covariate but no

school-specific covariate
No covariate

Without loss of generality, an additional simulation check was done based on Co-
hen, Kane, and Kim’s (2001) index to detect the number of replications. Take θ as
an example, let r = 1, . . . , R denote replications. Cohen et al. (2001) calculated a
magnitude of the differences between the average of MSE(θ) (denoted as AMSE(θ))
under manipulated conditions. Then under a stringent tolerance criterion, we can
obtain that

R̂ ≥
(
σ2

MSE(θ)c1
+ σ2

MSE(θ)c2

)/
R

0.1 × |AMSE(θ)c1 − AMSE(θ)c2|
, (16)

where the subscript “c1” and “c2” denote two different conditions, σ2
MSE(θ) is the stan-

dard deviation of MSE(θ), and R̂ denotes the least necessary number of replications.
Under the simulation conditions, when R was set to 50, the right side of Equa-

tion 16 was always less than 10, which means 10 or more replications are enough.
Therefore, we consider 50 to be a reasonable and adequate number for this study.
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Table 3
Fixed and Manipulated Conditions and Parameter Values in Study 2

Study 2 Generation Model Model 1 or Model 4

Calibration model Model 1 and Model 4
Fixed conditions
Examinee sample size 2,000
Number of covariates One individual-specific covariate and one

school-specific covariate

bk ,x1 j ,eij,ω1 j ,γ,
[

u0 j

u1 j

]
The same as those in Study 1 (Table 2).

Manipulated conditions
Group size Small: 10

Large: 200
Test length Small: 10

Large: 30
ak Item discrimination 2PNO: ak ∼ log N (μa = exp(1), σa = .25)

1PNO: ak = 1

Geweke’s (1992) convergence diagnosis method was used to diagnose conver-
gence. Three thousand iterations were treated as the initial phase; after that, under
Geweke’s approach, for a given parameter, a z score, which is defined as the dif-
ference between the first nA (nA = 1,000) and the last nB (nB = 1,000) iterations is
computed as evidence of convergence,

zθ = θ̄A − θ̄B√
n−1

A Ŝθ(0)A − n−1
B Ŝθ(0)B

, (17)

where θ̄ denotes the sample mean of θ and Ŝθ(0) denotes the consistent spectral den-
sity estimate. The z score tends to follow a standard normal distribution as n → ∞
(Geweke, 1992). Hence, a z score less than 1.96 implied parameter convergence.

Through all the conditions, the Markov chain stabilized after 5,000 iterations.
Hence, a chain length of 10,000 iterations with a burn-in of 5,000 is chosen rea-
sonably for this study. We sampled one out of 20 points from the sampling phase to
calculate the model selection criteria.

Result of Study 1

Table 4 presents the proportion of correct model selection for each of the five
variants of DIC in Study 1. The values in the table indicate, out of the three fitted
models, how often each of the indices selected the true model.

DICC, based on the measurement model, chose the correct model for both test
lengths and both group sizes when Model 1 or 3 was the generation model. However,
when the data were generated from Model 2, when the test length was small, DICC

chose Model 1 44% of the time and Model 2 56% of the time for the small group
size, and it chose Model 1 58% of the time and Model 2 42% of the time for the large
group size, and when the test length was large, DICC chose Model 1 46% of the time

13
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and Model 2 54% of the time for the small group size, and it chose Model 1 54%
of the time and Model 2 46% of the time for the large group size. This observation
indicates that DICC cannot easily distinguish models that differ by person-level
covariates.

DICS, based on second-level marginal likelihood, chose the correct model for both
test lengths and both group sizes when Model 3 was the true model. When Model 1
was the generation model for both test lengths, DICS could choose the correct model
for the large group size; however, for the small group size, DICS tended to select
Model 2 predominately (with the proportion of selection higher than .90). When
the data were generated from Model 2, for small test length, DICS chose Model 1
18% of the time and Model 2 82% of the time for the small group size, and chose
Model 1 and Model 2 with the same probability for the large group size, and for
large test length, DICS chose Model 1 24% of the time and Model 2 76% of the time
for the small group size, and chose Model 1 42% of the time and Model 2 58% of
the time for the large group size. It appears from the results that Models 1 and 2
are relatively difficult to differentiate using DICS, and DICS tended to favor Model 2
when the group size is small.

DICT, based on the top-level marginal likelihood, chose the correct model when
the true model was Model 3. When Model 1 was the true model, DICT chose
Model 1 2% of the time and Model 2 98% of the time for the small test length and
the small group size, for large test length, DICT chose Model 1 16% of the time and
Model 2 84% of the time for the small group size, and for both test lengths and the
large group size, it could choose the generation model with probability 1. When the
data were generated from Model 2, the results for both test lengths were the same.
DICT selected the true model 84% of the time for the small group size, and it chose
Model 2 only approximately one-third of the time for the large group size. In other
words, when Model 2 is the true model and when the group size is large, DICT cannot
distinguish the three models very well.

Based on second-level joint likelihood, when the true model was Model 1 or
Model 3, DICjS could choose the true model with probability higher than .98. When
the data were generated from Model 2, when the test length was small, DICjS chose
the true model 82% of the time for the small group size, and for the large group size
it chose Model 1 54% of time and Model 2 46% of the time, and when the test length
was large, DICjS chose the true model 72% of the time for the small group size, and
for the large group size it chose Model 2 52% of the time. Overall, DICjS can almost
select the true model for all manipulated conditions.

When Model 1 was the generation model, DICjT, based on top-level joint likeli-
hood, chose Model 2 with probability 1 for the small test length and the small group
size, chose Model 1 as the best-fitting model 32% of the time and chose Model 2
54% of the time for the large test length and the small group size, and for the large
group size it chose the correct model with probability larger than .94. When the true
model was Model 2 or Model 3, DICjT chose Model 3 with probability higher than
.09 for the small test length except when the test length was small and the group size
was larger; under that condition, DICjT chose Model 3 with probability .54 when
response data were generated from Model 2 and with probability 1 when data were
generated from Model 3, and it chose Model 3 with probability higher than .72 for
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Table 5
Proportion of the 95% P.C.I.s of γ = [γ00, γ01, γ10, γ11] That Contain Zero in Study 1

Generation Model

Model 1 Model 2 Model 3

K J
Calibration

Model γ00 γ01 γ10 γ11 γ00 γ01 γ10 γ11 γ00 γ01 γ10 γ11

10 10 Model 1 .52 .84 .54 0 .44 .98 .46 .96 1 1 1 1
Model 2 .68 – 0 – .30 – .26 – 1 – 1 –
Model 3 .46 – – – .20 – – – 1 – – –

200 Model 1 0 0 0 0 0 .86 0 .82 0 1 1 1
Model 2 0 – 0 – 0 – 0 – 0 – 1 –
Model 3 1 – – – 0 – – – 0 – – –

30 10 Model 1 .60 .84 .42 0 .64 .96 .48 .98 1 1 1 1
Model 2 .64 – 0 – .06 - 0 – 1 – 1 –
Model 3 .62 – – – .06 – – – 0 – – –

200 Model 1 0 0 0 0 0 .94 0 .84 0 1 1 1
Model 2 .02 – 0 – 0 – 0 – 0 – 1 –
Model 3 .02 – – – 0 – – – 0 – – –

Note. K = test length; J = group size. ‘-’ means null.

the large test length. According to the results, Models 1 and 2 are relatively difficulty
to differentiate using DICjT, and DICjT cannot easily distinguish models that differ
by school-level covariates.

As shown in Table 4, the test length cannot affect the model selection by DICs.
When Model 1 was the true model, for a small group size DICC and DICjS performed
best, and for a large group size all variants of DIC performed well. When Model 2
was the true model, all variants of DIC had low sensitivities for the large group
size, DICS and DICjS could choose the true model with probability higher than .50,
and DICC and DICT performed similarly to DICS and DICjS when the group size
was small. When Model 3 was the true model, all variants of DIC could choose the
correct model with probability higher than .82.

Table 5 presents the proportion of the 95% P.C.I.s for school-specific regression
coefficient γ which contain 0 in Study 1. We consider the proportion of the 95%
P.C.I.s that contain 0 as an alternative model selection index to evaluate whether
the inclusion of covariates is needed in the model. This is because Models 1 to
3 differ essentially on whether a certain covariate is included in the model. As
shown in Table 5, the structural multilevel model of the generation model can be
chosen with probability higher than .82 with the proportion of the 95% P.C.I.s that
contain 0.

Result of Study 2

Table 6 presents the correct model selection proportion in Study 2. When the data
were generated from Model 1, DICC and DICjS could choose the correct model with
probability higher than .68, and the correct model could be selected by DICC, DICjS,

16



Table 6
Correct Model Selection Frequency of Study 2

Generation Model

DICC DICS DICT DICjS DICjT

K J
Calibration

Model M 1 M 4 M 1 M 4 M 1 M 4 M 1 M 4 M 1 M 4

10 10 Model 1 .92 .22 0 0 0 0 .84 .34 .42 .44
Model 4 .08 .78 1.00 1.00 1.00 1.00 .16 .66 .58 .56

200 Model 1 .86 .44 0 0 .04 .10 .68 .46 .54 .50
Model 4 .14 .56 1.00 1.00 .90 .90 .32 .54 .46 .50

30 10 Model 1 1.00 .04 0 0 .0 0 1.00 .04 1.00 .56
Model 4 0 .96 1.00 1.00 1.00 1.00 0 .96 0 .44

200 Model 1 1.00 .12 0 0 .14 .24 1.00 .10 1.00 .42
Model 4 0 .88 1.00 1.00 .86 .76 0 .90 0 .58

Note. K = test length; J = group size; DICC = conditional DIC; DICS = second-level marginalized DIC;
DICT = top-level marginalized DIC; DICjS = second-level joint DIC; DICjT = top-level joint DIC;
M 1 = Model 1; M 4 = Model 4.

and DICjT with probability 1 for the large test length. When Model 4 was the gener-
ation model, all indices except DICjT could choose the generation model with prob-
ability higher than .54, and DICjT could choose each model with similar probability.
It appears that longer test length helps distinguish the number of item parameters in
measurement models.

Real-Data Illustration

In this section, we present a real-data example to illustrate the application of
the DIC indices. A data set from the Program for International Student Assess-
ment (PISA) 2012 assessment (http://www.oecd.org/pisa/data/pisa2012database-
downloadabledata.htm) was analyzed.

Data Source

The PISA, collected by the Organization for Economic Co-operation and Develop-
ment (OECD), is conducted to assess students’ performance and explore the effects
of student and institutional factors on student performance. In 2012, 65 countries
participated in the assessment, and the survey covered mathematics, reading, sci-
ence, and problem solving. In this section, we will focus only on the mathematics
test given to 15-year-old United States students in 2012. The data set contains 4,978
students from 162 schools, and each student responded to 49 multiple choice items
scored dichotomously. In addition, we chose the indices of economic, social, and
cultural status (ESCS) and school location as individual-level and school-level co-
variates, respectively. For data cleaning, we deleted all schools in which there were
fewer than 10 students. The resulting sample size entered into the final analysis was
4,882 students from 154 schools.
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Table 7
Model Comparison Results for the PISA Example

DICC(Rank) DICS(Rank) DICT(Rank) DICjS(Rank) DICjT(Rank)

Model 1 91166.62(1) 52,9868.71(5) 52,9904.25(5) 89,426.13(2) 11,4476.65(4)
Model 2 91,167.25(2) 52,9937.53(6) 52,9958.12(6) 89,450.28(3) 11,4275.47(3)
Model 3 91,563.14(3) 52,8752.41(4) 52,8709.88(4) 88,273.01(1) 78,486.09(1)
Model 4 93,343.43(4) 52,3447.23(2) 52,3607.71(2) 93,913.58(5) 12,0908.47(5)
Model 5 93,348.21(5) 52,3454.88(3) 52,3618.39(3) 93,913.65(6) 12,0996.91(6)
Model 6 93,977.81(6) 52,2507.45(1) 52,2553.78(1) 93,507.10(4) 83,857.69(2)

Note. DICC = conditional DIC; DICS = second-level marginalized DIC; DICT = top-level marginalized
DIC; DICjS = second-level joint DIC; DICjT = top-level joint DIC.

Table 8
95% P.C.I.s of γ for the PISA Example

Est. P.C.I. Est. P.C.I.

Model 1 γ00 −.0358 [−.0959,.0239] Model 4 γ00 −.0291 [−.0905,.0341]
γ01 −.00018 [−.0192,.0160] γ01 −.0039 [−.0222,.0147]
γ10 .0192 [−.0420,.0792] γ10 .0474 [−.0209,.1129]
γ11 −.0019 [−.0196,.0163] γ11 .0031 [−.0217,.0165]

Model 2 γ00 −.0416 [−.0630,−.0200] Model 5 γ00 −.0416 [−.0637,−.0188]
γ10 .0131 [−.0081,.0344] γ10 .0368 [.0145,.0599]

Model 3 γ00 −.037 [−.0592,−.0156] Model 6 γ00 −.0323 [−.0548,−.0107]

Estimation of Model Parameters

Six models were applied to the PISA data; they were Models 1 to 4, described
in the simulation studies, in which ESCS was considered as the individual-level co-
variate, and school location was considered as the school-level covariate, along with
two additional models: the 1PNO model as the measurement model, and a structural
multilevel model similar to Model 2 and Model 3. For the MCMC algorithm, accord-
ing to Geweke’s convergence criterion, a conservative burn-in of 5,000 iterations and
5,000 post-burn-in iterations was used here.

Results

Model selection results for the real-data illustration are given in Tables 7 and 8.
As noted above, the smaller the DIC, the better the model–data fit. Meanwhile, a
popular rule of thumb for model comparison (e.g., Spiegelhalter et al., 2002), is that
a difference of 2 or less is considered negligible, a difference between 3 and 7 pro-
vides positive support for the model with a lower value, and a difference exceeding
7 constitutes strong support.

As shown in Table 7, because the difference in the DICC values between Model 1
and Model 2 was less than 1, the two models are nearly equally favorable based on
DICC. Model 3 was selected by DICjS, and DICjT and Model 6 was selected by DICS
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and DICT, because they generated the smallest DIC value. Table 8 provides the 95%
P.C.I.s for the coefficient γ. As seen in Table 8, when comparing Model 1 to Model
3, it appears that the 95% P.C.I.s of γ contained 0 in Model 1 and Model 2, indicating
that these parameters are not significantly different from 0. Conversely, the P.C.I.s of
γ00 in Model 3 did not contain 0, implying that this parameter must be included in the
model. Taken together, Model 3 is the preferred model among the three fitted models,
of which 2PNO models are the measurement models. When comparing Model 4 to
Model 6, this observation indicates that the 95% P.C.I.s of γ contained 0 in Model 4,
indicating that these parameters are not significantly different from 0. Conversely, the
P.C.I.s of γ00 in Models 5 and 6 and the P.C.I.s of γ10 in Model 5 did not contain 0,
implying that those parameters must be included in the model. Taken together, Model
5 is the preferred model among the three fitted models of which the 1PNO models
are the measurement models. Considering the results from all indices, it appeared
that Model 3 may be the best fit for the data.

Discussion

The present study was motivated by two observations. First, there is a lack of ef-
fective model selection criteria for multilevel IRT models. Because the MCMC sam-
pling method is often used to estimate multilevel IRT models, DIC becomes a natural
option for evaluating the global model fit. Second, for multilevel models, DIC can be
constructed differently depending on (1) whether joint or marginal likelihood is used
and (2) the target parameters of interest. There is currently not enough information
on which version of DIC is recommended for multilevel IRT models when different
measurement models are considered and when various levels of covariates are in-
cluded in the model. The main purpose of this study was to examine the accuracy of
five DIC-based indices in the selection of a best-fitting MLIRT model.

Across all simulation conditions, second-level joint DIC is recommended for
MLIRT models because it almost selects the correct model and is computationally
less demanding than some other alternatives. Conditional DIC sometimes tends to
choose a more complex model for a large group size. Second-level marginalized
DIC and top-level marginalized DIC perform similarly; they tend to choose a sim-
pler model for a small group size. For a large group size, top-level marginalized DIC
performs worse than second-level marginalized DIC. Because the numerical com-
plexity of top-level marginalized DIC is far more demanding, top-level marginalized
DIC is not recommended for all conditions for multilevel models, and top-level joint
DIC tend to select a simpler model regardless of the group size.

Additionally, we conducted a sensitivity analysis and found that the computed
joint DICs showed more variation than the marginalized DICs. This happened be-
cause, when to calculating the joint DICs, the point estimates of individual θ and ξ

were plugged in and these point estimates are prone to measurement errors. How-
ever, when calculating the marginalized DICs, the influences of random effects were
integrated out in the marginal likelihood. That is the reason why the joint DICs have
more variation, especially the top-level joint DIC.

Because this study was a preliminary investigation of the comparison of joint DIC
and marginalized DIC for MLIRT models, there are several limitations. First, from
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the empirical perspective, only one individual-specific covariate and one school-
specific covariate were considered in the real-data illustration; future research should
assess the effect of more covariates at both the individual level and school level. Sec-
ond, the performance of DIC-based indices in this study was focused on a multilevel
data structure at only one time point. Future research surrounding the model selection
method for MLIRT models can be expanded to select multilevel models for longi-
tudinal data. Finally, as warned by Celeux et al. (2006) and Li et al. (2009), DIC
was less accurate with mixture models; one might wish to investigate the restrictions
under which some type of DIC can perform well for multilevel mixture models.

As a point of reference, it should be noted that the computation of top-level
marginalized DIC is extremely time-consuming. Several days of CPU time was re-
quired on a 3.20 GHz desktop PC to compute per condition, per replication using
MATLAB 2013a. Other versions of DIC required less than 10 minutes.
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Appendix 1: MCMC Algorithm for the MLIRT Model

In this appendix, the MCMC algorithm used in this article is described briefly. In-
terested readers can refer to Fox (2010) for a full description of the MCMC algorithm
for the family of MLIRT models.

The full posterior distribution of the parameters given the data is given by

p(z, θ, ξ, β, σ2, γ, T |Y, X, W ) ∝
J∏

j=1

n j∏
i=1

(
K∏

k=1
p(zijk

∣∣θij, ξk, yijk )

)
p(θij

∣∣β j , σ
2, X j )·

p(β j

∣∣γ, T, W j )p(γ |T )p(ξ)p(σ2)p(T)
(A1)

Step 1: Sampling z. Given the parameters θ and ξ, the variables zijk are indepen-
dent, according to the definition of zijk, it follows that

p(zijk

∣∣θij, ξk, yijk ) ∝ ψ(zijk; akθij − bk, 1)[I (zijk > 0)I (yijk = 1)

+ I (zijk ≤ 0)I (yijk = 0)], (A2)

where ψ(·; akθij − bk, 1) denotes the normal density with a mean equal to akθij - bk

and a variance equals to one, and I (·) is an indicator variable which equals to one if
its argument is true, and equals to zero otherwise.

So the fully conditional posterior density of zijk is given by

zijk

∣∣∣∣θ, ξ, Y ∼
{

N (akθij − bk, 1) truncated at the left by 0 if yijk = 1
N (akθij − bk, 1) truncated at the right by 0 if yijk = 0

. (A3)
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Step 2: Sampling θ. The ability parameters are independent given z, ξ, β and σ2.
Its full conditional posterior density is given by

θij

∣∣∣∣∣zij, ξ, β j , σ
2 ∼ N

(
θ̂ij/v + xijβ j/σ

2

1/v + 1/σ2
,

1

1/v + 1/σ2

)
, (A4)

with

θ̂ij =
∑K

k=1 ak(zijk + bk)∑K
k=1 a2

k

, v =
(∑K

k=1
a2

k

)−1

. (A5)

Step 3: Sampling ξ. Let E = [θ,−1], therefore

ξk

∣∣∣θ, Zk ∼ N (ξ̂k, (Et E)−1)I (ak > 0) , (A6)

with ξ̂k = (Et E)−1EZk . Hereafter, the superscript t denotes the transposition of a
matrix.

Step 4: For each j, sample βj from the full conditional

β j

∣∣θ j , σ
2, γ, T ∼ N (Dd, D) , (A7)

where D = (�−1
j + T−1)−1 and d = �−1

j β̂ j + T−1ω jγ, with � j = σ2(xt
j x j )−1 and

β̂ j = (xt
j x j )−1xt

jθ j .
Step 5: Sample γ from the full conditional

γ
∣∣β j , T ∼ N

((∑J

j=1
ωt

j T
−1ω j

)−1∑J

j=1
ωt

j T
−1β j ,

(∑J

j=1
ωt

j T
−1ω j

)−1
)

. (A8)

Step 6: Sample σ2 given θ and β from the full conditional

σ2 |θ, β ∼ Inv − χ2(N , S2), (A9)

where S2 = 1
N

∑J
j=1 (θ j − x jβ j )

t (θ j − x jβ j ).
Step 7: Sample T from the full conditional

T |β, γ ∼ Inv − Wishart(J, S−1
T ), (A10)

where S−1
T = ∑J

j=1 (β j − ω jγ)(β j − ω jγ)t .

Appendix 2: Calculation of Variants of DIC

The First-Level Conditional DIC
The density function of z given (ξ, θ) in Equation 7 can be expressed as

p (z |ξ, θ ) =
∏

j

(2π)−Knj/ 2 exp

{
−1

2

∑
i,k

(
zijk + bk − akθij

)2

}
, (B1)

where nj is the number of examinees in group j. θij is normally distributed with vari-
ance �θ = (at a + σ−2)−1 and mean μθ = �θ(at (zij + b) + σ−2xt

ijβ j ), a is the vector
of discrimination parameters, b is the vector of difficulty parameters, and zij and
xij are the vectors of the augmented data and the individual-specific covariates of
examinee i in group j, respectively.
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Hence, the augmented likelihood, focused on the parameters from level 1, used to
calculate the posterior mean of the deviance is expressed as

p
(
z(r )
∣∣ξ, θ(r )

) =
∏

j

(2π)−Knj/ 2 exp

{
−1

2

∑
i,k

(
z(r )

ijk + b(r )
k − a(r )

k θ
(r )
ij

)2
}

. (B2)

Hereafter, the superscript r denotes the interim value from the rth post-burn-in
iteration.

In contrast, the deviance evaluated at the posterior mean θ̂ can be expressed as

p
(
ẑ
∣∣ξ, θ̂ ) =

∏
j

(2π)−Knj/ 2 exp

{
−1

2

∑
i,k

(
ẑijk + b̂k − âk θ̂ij

)2

}
. (B3)

Hereafter, the hat denotes the final point estimate value based on the Gibbs sam-
pler, and ẑ denotes the augmented data based on a, b, and θ̂.

The Second-Level Marginalized DIC
Let � = (ξ, σ2, β) denote all model parameters of interest for DICS, where ξ

denotes the matrix of item parameters, σ2 denotes the variance of level 2 random
effects (see Equation 2), and β denotes the matrix of regression coefficients in level 2.
The method to calculate the second-level marginalized DIC is similar to Fox (2010).
Interest is focused on the augmented likelihood in Equation 9,

p(z |ξ, σ2, β)
�= p(z |� ) = p(z, θ |� )

p(θ |z,� )
= p(z |ξ, θ )p(θ

∣∣σ2, β )

p(θ |z,� )
, (B4)

where p(θ|z, �) is the full conditional probability density function, the density func-
tion of z given (ξ, θ) is the same as that in Equation B1, and the density function of
θ given (σ2, β) can be expressed as

p
(
θ
∣∣σ2, β

) =
∏

j

(2πσ2)
−Knj/ 2

exp

⎡
⎢⎣−

(
θ j − xt

jβ j

)t (
θ j − xt

jβ j

)
2σ2

⎤
⎥⎦ . (B5)

Hence, the augmented likelihood used to calculate the posterior mean of the deviance
follows that

p
(

z(r )
j

∣∣�(r )
)

= (2π)−Knj/ 2

(
�(r )

θ

σ2(r )

)n j / 2

exp
{
−S(r )

(
θ

(r )
j

)/
2
}

, (B6)

where

S(r )
(
θ

(r )
j

)
=
∑
i,k

(
z(r )

ijk + b(r )
k − a(r )

k θ
(r )
ij

)2
+ σ−2(r )

(
θ

(r )
j − x jβ

(r )
j

)t (
θ

(r )
j − x jβ

(r )
j

)
. (B7)

However, the deviance evaluated at the posterior mean �̂ follows that

p
(
ẑ j

∣∣�̂) = (2π)−Knj/ 2

(
�̂θ

σ̂2

)n j / 2

exp
{−Ŝ

(
θ̂ j
)/

2
}
, (B8)
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where

Ŝ
(
θ̂ j
) =

∑
i,k

(
ẑijk + b̂k − âk θ̂ij

)2 + σ̂−2
(
θ̂ j − x j β̂ j

)t (
θ̂ j − x j β̂ j

)
. (B9)

The Second-Level Joint DIC
The joint likelihood of all parameters of interest from levels 1 and 2 is written as

p (z, θ |� ) =
∏
i, j,k

ψ
(

z(r )
ijk ; a(r )

k θ
(r )
ij − b(r )

k , 1
)∏

i, j

ψ
(
θ(r )

ij
; xijβ

(r )
ij

, σ2(r )
)
, (B10)

where ψ(· ; μ, σ2) is the normal density function with mean μ and variance σ2. More-
over, the deviance evaluated at the posterior mean �̂ follows that

p(ẑ, θ̂
∣∣�̂ ) =

∏
i, j,k

ψ
(
ẑijk; âk θ̂ij − b̂k, 1

)∏
i, j

ψ
(
θ̂

ij
; xijβ̂ij

, σ̂2
)
. (B11)

The Top-Level Marginalized DIC
Let � = (ξ, σ2, γ, T), where T denotes the covariance of level 3 random effects

(see Equation 3), and γ denotes the vector of regression coefficients in level 2. The
method to calculate the top-level marginalized DIC refers to Fox’s method (2010).
Interested readers can refer to Fox (2010, pp. 190–191) for a detailed description.

Based on Bayes’s formula, the augmented likelihood in Equation 13 can be ob-
tained as follows:

p(z
∣∣ξ, σ2, γ, T)

�= p(z |� ) = p(z |β,� )
p(β |γ, T )

p(β |z,� )
. (B12)

The first part of Equation B12, the conditional augmented likelihood given (β, �),
is derived as

p (z |β,� ) = ∏
j

(2π)−Knj/ 2
(

�θ

σ2

)n j / 2
exp

{
− 1

2

(
zijk + bk − akθij

)2
}

,

exp
{
− 1

2σ2

(
θ j − x jβ j

)t (
θ j − x jβ j

)}
,

(B13)

where θij is normally distributed as in Equation B1.
Then, the density function of βj given (γ, T) is a multivariate normal probability

density function with mean ωj γ and covariance matrix T. The conditional distribu-
tion of βj |zj, � is multivariate normal with mean

E(β j

∣∣z j ,� ) = ω jγ + (Txt
j ⊗ at )H−1

j (z j − (x jω jγ ⊗ a − 1n j ⊗ b)), (B14)

and covariance matrix

�β j = Var(β j

∣∣z j ,� ) = T + (Txt
j ⊗ at )H−1

j (x j T ⊗ a), (B15)

where H−1
j = xy

j Tx j ⊗ aat + In j ⊗ (σ2aat + IK ).
The deviance evaluated using the posterior mean, obtained by performing (B12),

is given by

p
(

z(r )
j

∣∣�(r )
)

= (2π)−Knj/2

(
�(r )

θ

σ2(r )

)n j /2∣∣T(r )
∣∣−1/2

∣∣∣�(r )
β

∣∣∣1/2
exp

{
−B(r )

(
θ

(r )
j , β

(r )
j

)
/2
}

, (B16)
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where

B(r )
(
θ

(r )
j , β

(r )
j

)
=
∑
i,k

(
z(r )

ijk + b(r )
k − a(r )

k θ
(r )
ij

)2
+ σ−2(r )

(
θ

(r )
j − x jβ

(r )
j

)t (
θ

(r )
j − x jβ

(r )
j

)

+
(
β

(r )
j − ω jγ

(r )
j

)t (
β

(r )
j − ω jγ

(r )
j

)
. (B17)

Moreover, the deviance evaluated at the posterior mean �̂ follows that

p
(
ẑ j

∣∣�̂) = (2π)−Knj/2

(
�̂θ

σ̂2

)n j /2∣∣T̂∣∣−1/2∣∣�̂β

∣∣1/2
exp

{−B̂
(
θ̂ j , β̂ j

)
/2
}
, (B18)

where

B̂
(
θ̂ j , β̂ j

) =
∑
i,k

(
ẑijk + b̂k − âk θ̂ij

)2 + σ̂−2
(
θ̂ j − x j β̂ j

)t (
θ̂ j − x j β̂ j

)

+ (
β̂ j − ω j γ̂ j

)t (
β̂ j − ω j γ̂ j

)
. (B19)

The Top-Level Joint DIC
The top-level joint likelihood used to calculate the posterior mean of the deviance

in Equation 15 is then

p
(
z(r ), θ(r ), β(r )

∣∣�(r ) ) =
∏
i, j,k

ψ
(

z(r )
ijk ; a(r )

k θ
(r )
ij − b(r )

k , 1
)

∏
i, j

ψ
(
θ

(r )
ij ; xijβ

(r )
ij , σ2(r )

)
ψMVN

(
β

(r )
ij ; ω jγ

(r ), T(r )
)
, (B20)

where ψMVN(· ; μ, �) denotes the multivariate normal density function with mean μ

and covariance matrix 
. Moreover, the deviance evaluated at the posterior mean �̂

follows that

p
(
ẑ, θ̂, β̂

∣∣�̂ ) =
∏
i, j,k

ψ
(
ẑijk; âk θ̂ij − b̂k, 1

)∏
i, j

ψ
(
θ̂ij ; xijβ̂ij, σ̂

2
)
ψMVN

(
β̂ij; ω j γ̂, T̂

)
. (B21)

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19, 716–723.

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs
sampling. Journal of Educational and Behavioral Statistics, 17(3), 251–269.

Ando, T. (2010). Bayesian model selection and statistical modeling. Boca Raton, FL: Chap-
man & Hall/CRC Press.

Ando, T., & Tsay, R. (2010). Predictive likelihood for Bayesian model selection and averag-
ing. International Journal of Forecasting, 26, 744–763.

24



Bayesian Model Selection Methods for Multilevel IRT Models

Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques
(2nd ed.). New York, NY: Marcel Dekker.

Barnett, A. G., Koper, N., Dobson, A. J., Schmiegelow, F., & Manseau, M. (2010). Using
information criteria to select the correct variance–covariance structure for longitudinal data
in ecology. Methods in Ecology and Evolution, 1(1), 15–24.

Berger, J. O., & Delampady, M. (1987). Testing precise hypotheses. Statistical Science,
2, 317–335.

Bjørnstad, J. F. (1996). On the generalization of the likelihood function and the likelihood
principle. Journal of the American Statistical Association, 91, 791–806.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H.,
& White, J. S. S. (2009). Generalized linear mixed models: A practical guide for ecology
and evolution. Trends in Ecology and Evolution, 24(3), 127–135.

Carlin, B. P. (2006). Comment on article by Celeux et al. Bayesian Analysis, 1, 675–676.
Celeux, G., Forbes, F., Robert, C. P., & Titterington, D. M. (2006). Deviance information

criteria for missing data models. Bayesian Analysis, 1, 651–673.
Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statisti-

cal Association, 90, 1313–1321.
Cho, S.-J., & Cohen, A. S. (2010). A multilevel mixture IRT model with an application to

DIF. Journal of Educational and Behavioral Statistics, 35, 336–370.
Choi, I. H., & Wilson, M. (2016). Incorporating mobility in growth modeling for multilevel

and longitudinal item response data. Multivariate Behavioral Research, 51(1), 120–137.
Cohen, A. S., Kane, M. T., & Kim, S. H. (2001). The precision of simulation study results.

Applied Psychological Measurement, 25(2), 136–145.
Congdon, P. (2003). Applied Bayesian modeling. New York, NY: John Wiley.
DeMars, C. (2010). Item response theory. Oxford, UK: Oxford University Press.
Eklund, J., & Karlsson, S. (2007). Forecast combination and model averaging using predictive

measures. Econometric Reviews, 26, 329–363.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ:

Lawrence Erlbaum.
Entink, R. K., Fox, J.-P., & van der Linden, W. J. (2009). A multivariate multilevel approach

to the modeling of accuracy and speed of test takers. Psychometrika, 74, 21–48.
Fox, J.-P. (2010). Bayesian item response modeling theory and applications. New York, NY:

Springer.
Fox, J.-P. & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs

sampling. Psychometrika, 66, 271–288.
Geerlings, H., Glas, C. A., & van der Linden, W. J. (2011). Modeling rule-based item genera-

tion. Psychometrika, 76, 337–359.
Geisser, S., & Eddy, W. F. (1979). A predictive approach to model selection. Journal of the

American Statistical Association, 74, 153–60.
Gelfand, A. E. (1996). Markov chain Monte Carlo in practice. London, UK: Chapman & Hall.
Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calcula-

tions. Journal of the Royal Statistical Society, Series B (Methodological), 56, 501–514.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1996). Bayesian data analysis. London,

UK: Chapman and Hall.
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation

of posterior moments. In J. M. Bernardo, A. F. M. Smith, A. P. Dawid, & J. O. Berger
(Eds.), Bayesian statistics (pp. 169–193). New York, NY: Oxford University Press.

Goldstein, H. (2003). Multilevel statistical models (3rd ed.). London, UK: Anorld.
Guttman, I. (1967). The use of the concept of a future observation in goodness-of-fit problems.

Journal of the Royal Statistical Society, Series B (Methodological), 29, 83–100.

25



Zhang et al.

Hamaker, E. L., van Hattum, P., Kuiper, R. M., & Hoijtink, H. (2011). Model selection based
on information criteria in multilevel modeling. In J. J. Hox & J. K. Roberts (Eds.), Hand-
book for Advanced Multilevel Analysis (pp. 231–255). New York, NY: Routledge.

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applica-
tions. Norwell, MA: Kluwer.

Hung, L. F., & Wang, W. C. (2012). The generalized multilevel facets model for longitudinal
data. Journal of Educational and Behavioral Statistics, 37(2), 231–255.

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Clarendon Press.
Kang, T., & Cohen, A. S. (2007). IRT model selection methods for dichotomous items. Applied

Psychological Measurement, 31, 331–358.
Kass, R., & Raftery, A. (1995). Bayes factors and model uncertainty. Journal of the American

Statistical Association, 90, 773–795.
Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its

relationship to the Schwarz criterion. Journal of the American Statistical Association, 90,
928–934.

Lavine, M., & Schervish, M. J. (1999). Bayes factors: What they are and what they are not.
American Statistician, 53(2), 119–122.

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hills-
dale, NJ: Lawrence Erlbaum.

Meng, X. L., & Vaida, F. (2006). Comment on article by Celeux et al. Bayesian Analysis, 1,
687–698.

Millar, R. B. (2009). Comparison of hierarchical Bayesian models for overdispersed count
data using DIC and Bayes’ factor. Biometrics, 65, 962–969.

Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide. Los Angeles, CA: Muthén &
Muthén.

Plummer, M. (2006). Comment on Article by Celeux et al. Bayesian Analysis, 1,
681–686.

Rasbash, J., Browne, W., Goldstein, H., Yang, M., Plewis, I., Healy, M., & Lewis, T. (2000).
A user’s guide to MLwiN, Version 2.1. London, UK: Institute of Education, University of
London.

Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical linear models: Applications and data
analysis methods. Thousand Oaks, CA: Sage.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6,
461–464.

Sinharay, S., & Stern, H. S. (2003). Posterior predictive model checking in hierarchical mod-
els. Journal of Statistical Planning and Inference, 111, 209–221.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures
of model complexity and fit. Journal of the Royal Statistical Society B, 64, 583–639.

Spiegelhalter, D., Thomas, A., Best, N. G., & Lunn, D. (2003). WinBUGS user manual. Cam-
bridge, UK: MRC Biostatistics Unit.

Wang, C., Chang, H.-H., & Douglas, J. A. (2013). The linear transformation model with frail-
ties for the analysis of item response times. British Journal of Mathematical and Statistical
Psychology, 66(1), 144–168.

Authors

XUE ZHANG is a post-doc at China Institute of Rural Education Development,
Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, China;
Zhangx815@nenu.edu.cn. Her primary research interests include model/item fit, Bayesian
inference, longitudinal data analysis and item response theory.

26



Bayesian Model Selection Methods for Multilevel IRT Models

JIAN TAO is a Professor at School of Mathematics and Statistics, Northeast Normal Univer-
sity, 5268 Renmin Street, Changchun, 130024, Jilin, China; taoj@nenu.edu.cn. His primary
research interests include statistical methods, Bayesian inference, and item response theory.

CHUN WANG is an Assistant Professor at the University of Washington, Seattle, WA
98105, USA; wang4066@uw.edu. Her primary research interests include multidimen-
sional/multilevel item response theory models, computerized adaptive testing, and cognitive
diagnostics models.

NING-ZHONG SHI is a Professor at School of Mathematics and Statistics, Northeast Nor-
mal University, 5268 Renmin Street, Changchun, 130024, Jilin, China; shinz@nenu.edu.cn.
His primary research interests include order restricted statistical inference and hypothesis
testing.

Supporting Information

Additional supporting information may be found online in the Supporting Information section
at the end of the article.

Table A1. Parameter Recovery in Study 1.
Table A2. Estimation of γ in Study 1.
Table A3. Parameter Recovery in Study 2.
Table A4. Summary of Item Parameter Estimates.
Figure A1. Empirical PDF plot of the θ estimates.

27


	Zhang 2019 JEM title
	Zhang_et_al-2019-Journal_of_Educational_Measurement

